]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: sysfs: show used checksum driver per filesystem
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
aac0023c 43#include "block-group.h"
eb60ceac 44
319e4d06
QW
45#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
46 BTRFS_HEADER_FLAG_RELOC |\
47 BTRFS_SUPER_FLAG_ERROR |\
48 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
49 BTRFS_SUPER_FLAG_METADUMP |\
50 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 51
e8c9f186 52static const struct extent_io_ops btree_extent_io_ops;
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
d352ac68
CM
100/*
101 * async submit bios are used to offload expensive checksumming
102 * onto the worker threads. They checksum file and metadata bios
103 * just before they are sent down the IO stack.
104 */
44b8bd7e 105struct async_submit_bio {
c6100a4b 106 void *private_data;
44b8bd7e 107 struct bio *bio;
a758781d 108 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 109 int mirror_num;
eaf25d93
CM
110 /*
111 * bio_offset is optional, can be used if the pages in the bio
112 * can't tell us where in the file the bio should go
113 */
114 u64 bio_offset;
8b712842 115 struct btrfs_work work;
4e4cbee9 116 blk_status_t status;
44b8bd7e
CM
117};
118
85d4e461
CM
119/*
120 * Lockdep class keys for extent_buffer->lock's in this root. For a given
121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
122 * the level the eb occupies in the tree.
123 *
124 * Different roots are used for different purposes and may nest inside each
125 * other and they require separate keysets. As lockdep keys should be
126 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
127 * by btrfs_root->root_key.objectid. This ensures that all special purpose
128 * roots have separate keysets.
4008c04a 129 *
85d4e461
CM
130 * Lock-nesting across peer nodes is always done with the immediate parent
131 * node locked thus preventing deadlock. As lockdep doesn't know this, use
132 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 133 *
85d4e461
CM
134 * The key is set by the readpage_end_io_hook after the buffer has passed
135 * csum validation but before the pages are unlocked. It is also set by
136 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 137 *
85d4e461
CM
138 * We also add a check to make sure the highest level of the tree is the
139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
140 * needs update as well.
4008c04a
CM
141 */
142#ifdef CONFIG_DEBUG_LOCK_ALLOC
143# if BTRFS_MAX_LEVEL != 8
144# error
145# endif
85d4e461
CM
146
147static struct btrfs_lockdep_keyset {
148 u64 id; /* root objectid */
149 const char *name_stem; /* lock name stem */
150 char names[BTRFS_MAX_LEVEL + 1][20];
151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
152} btrfs_lockdep_keysets[] = {
153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 165 { .id = 0, .name_stem = "tree" },
4008c04a 166};
85d4e461
CM
167
168void __init btrfs_init_lockdep(void)
169{
170 int i, j;
171
172 /* initialize lockdep class names */
173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 snprintf(ks->names[j], sizeof(ks->names[j]),
178 "btrfs-%s-%02d", ks->name_stem, j);
179 }
180}
181
182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 int level)
184{
185 struct btrfs_lockdep_keyset *ks;
186
187 BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189 /* find the matching keyset, id 0 is the default entry */
190 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 if (ks->id == objectid)
192 break;
193
194 lockdep_set_class_and_name(&eb->lock,
195 &ks->keys[level], ks->names[level]);
196}
197
4008c04a
CM
198#endif
199
d352ac68
CM
200/*
201 * extents on the btree inode are pretty simple, there's one extent
202 * that covers the entire device
203 */
6af49dbd 204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 205 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 206 int create)
7eccb903 207{
3ffbd68c 208 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 209 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
210 struct extent_map *em;
211 int ret;
212
890871be 213 read_lock(&em_tree->lock);
d1310b2e 214 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 215 if (em) {
0b246afa 216 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 217 read_unlock(&em_tree->lock);
5f39d397 218 goto out;
a061fc8d 219 }
890871be 220 read_unlock(&em_tree->lock);
7b13b7b1 221
172ddd60 222 em = alloc_extent_map();
5f39d397
CM
223 if (!em) {
224 em = ERR_PTR(-ENOMEM);
225 goto out;
226 }
227 em->start = 0;
0afbaf8c 228 em->len = (u64)-1;
c8b97818 229 em->block_len = (u64)-1;
5f39d397 230 em->block_start = 0;
0b246afa 231 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 232
890871be 233 write_lock(&em_tree->lock);
09a2a8f9 234 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
235 if (ret == -EEXIST) {
236 free_extent_map(em);
7b13b7b1 237 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 238 if (!em)
0433f20d 239 em = ERR_PTR(-EIO);
5f39d397 240 } else if (ret) {
7b13b7b1 241 free_extent_map(em);
0433f20d 242 em = ERR_PTR(ret);
5f39d397 243 }
890871be 244 write_unlock(&em_tree->lock);
7b13b7b1 245
5f39d397
CM
246out:
247 return em;
7eccb903
CM
248}
249
d352ac68 250/*
2996e1f8
JT
251 * Compute the csum of a btree block and store the result to provided buffer.
252 *
253 * Returns error if the extent buffer cannot be mapped.
d352ac68 254 */
2996e1f8 255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 256{
d5178578
JT
257 struct btrfs_fs_info *fs_info = buf->fs_info;
258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
d5178578
JT
266
267 shash->tfm = fs_info->csum_shash;
268 crypto_shash_init(shash);
19c00ddc
CM
269
270 len = buf->len - offset;
d5178578 271
d397712b 272 while (len > 0) {
d2e174d5
JT
273 /*
274 * Note: we don't need to check for the err == 1 case here, as
275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 * and 'min_len = 32' and the currently implemented mapping
277 * algorithm we cannot cross a page boundary.
278 */
19c00ddc 279 err = map_private_extent_buffer(buf, offset, 32,
a6591715 280 &kaddr, &map_start, &map_len);
c53839fc 281 if (WARN_ON(err))
8bd98f0e 282 return err;
19c00ddc 283 cur_len = min(len, map_len - (offset - map_start));
d5178578 284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
285 len -= cur_len;
286 offset += cur_len;
19c00ddc 287 }
71a63551 288 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 289
d5178578 290 crypto_shash_final(shash, result);
19c00ddc 291
19c00ddc
CM
292 return 0;
293}
294
d352ac68
CM
295/*
296 * we can't consider a given block up to date unless the transid of the
297 * block matches the transid in the parent node's pointer. This is how we
298 * detect blocks that either didn't get written at all or got written
299 * in the wrong place.
300 */
1259ab75 301static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
302 struct extent_buffer *eb, u64 parent_transid,
303 int atomic)
1259ab75 304{
2ac55d41 305 struct extent_state *cached_state = NULL;
1259ab75 306 int ret;
2755a0de 307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
308
309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 return 0;
311
b9fab919
CM
312 if (atomic)
313 return -EAGAIN;
314
a26e8c9f
JB
315 if (need_lock) {
316 btrfs_tree_read_lock(eb);
300aa896 317 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
318 }
319
2ac55d41 320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 321 &cached_state);
0b32f4bb 322 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
323 btrfs_header_generation(eb) == parent_transid) {
324 ret = 0;
325 goto out;
326 }
94647322
DS
327 btrfs_err_rl(eb->fs_info,
328 "parent transid verify failed on %llu wanted %llu found %llu",
329 eb->start,
29549aec 330 parent_transid, btrfs_header_generation(eb));
1259ab75 331 ret = 1;
a26e8c9f
JB
332
333 /*
334 * Things reading via commit roots that don't have normal protection,
335 * like send, can have a really old block in cache that may point at a
01327610 336 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
337 * if we find an eb that is under IO (dirty/writeback) because we could
338 * end up reading in the stale data and then writing it back out and
339 * making everybody very sad.
340 */
341 if (!extent_buffer_under_io(eb))
342 clear_extent_buffer_uptodate(eb);
33958dc6 343out:
2ac55d41 344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 345 &cached_state);
472b909f
JB
346 if (need_lock)
347 btrfs_tree_read_unlock_blocking(eb);
1259ab75 348 return ret;
1259ab75
CM
349}
350
e7e16f48
JT
351static bool btrfs_supported_super_csum(u16 csum_type)
352{
353 switch (csum_type) {
354 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 355 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 356 case BTRFS_CSUM_TYPE_SHA256:
e7e16f48
JT
357 return true;
358 default:
359 return false;
360 }
361}
362
1104a885
DS
363/*
364 * Return 0 if the superblock checksum type matches the checksum value of that
365 * algorithm. Pass the raw disk superblock data.
366 */
ab8d0fc4
JM
367static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
368 char *raw_disk_sb)
1104a885
DS
369{
370 struct btrfs_super_block *disk_sb =
371 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 372 char result[BTRFS_CSUM_SIZE];
d5178578
JT
373 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
374
375 shash->tfm = fs_info->csum_shash;
376 crypto_shash_init(shash);
1104a885 377
51bce6c9
JT
378 /*
379 * The super_block structure does not span the whole
380 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
381 * filled with zeros and is included in the checksum.
382 */
d5178578
JT
383 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
384 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
385 crypto_shash_final(shash, result);
1104a885 386
51bce6c9
JT
387 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
388 return 1;
1104a885 389
e7e16f48 390 return 0;
1104a885
DS
391}
392
e064d5e9 393int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 394 struct btrfs_key *first_key, u64 parent_transid)
581c1760 395{
e064d5e9 396 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
397 int found_level;
398 struct btrfs_key found_key;
399 int ret;
400
401 found_level = btrfs_header_level(eb);
402 if (found_level != level) {
63489055
QW
403 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
404 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
405 btrfs_err(fs_info,
406"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
407 eb->start, level, found_level);
581c1760
QW
408 return -EIO;
409 }
410
411 if (!first_key)
412 return 0;
413
5d41be6f
QW
414 /*
415 * For live tree block (new tree blocks in current transaction),
416 * we need proper lock context to avoid race, which is impossible here.
417 * So we only checks tree blocks which is read from disk, whose
418 * generation <= fs_info->last_trans_committed.
419 */
420 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
421 return 0;
62fdaa52
QW
422
423 /* We have @first_key, so this @eb must have at least one item */
424 if (btrfs_header_nritems(eb) == 0) {
425 btrfs_err(fs_info,
426 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
427 eb->start);
428 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
429 return -EUCLEAN;
430 }
431
581c1760
QW
432 if (found_level)
433 btrfs_node_key_to_cpu(eb, &found_key, 0);
434 else
435 btrfs_item_key_to_cpu(eb, &found_key, 0);
436 ret = btrfs_comp_cpu_keys(first_key, &found_key);
437
581c1760 438 if (ret) {
63489055
QW
439 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
440 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 441 btrfs_err(fs_info,
ff76a864
LB
442"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
443 eb->start, parent_transid, first_key->objectid,
444 first_key->type, first_key->offset,
445 found_key.objectid, found_key.type,
446 found_key.offset);
581c1760 447 }
581c1760
QW
448 return ret;
449}
450
d352ac68
CM
451/*
452 * helper to read a given tree block, doing retries as required when
453 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
454 *
455 * @parent_transid: expected transid, skip check if 0
456 * @level: expected level, mandatory check
457 * @first_key: expected key of first slot, skip check if NULL
d352ac68 458 */
5ab12d1f 459static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
460 u64 parent_transid, int level,
461 struct btrfs_key *first_key)
f188591e 462{
5ab12d1f 463 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 464 struct extent_io_tree *io_tree;
ea466794 465 int failed = 0;
f188591e
CM
466 int ret;
467 int num_copies = 0;
468 int mirror_num = 0;
ea466794 469 int failed_mirror = 0;
f188591e 470
0b246afa 471 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 472 while (1) {
f8397d69 473 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 474 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 475 if (!ret) {
581c1760 476 if (verify_parent_transid(io_tree, eb,
b9fab919 477 parent_transid, 0))
256dd1bb 478 ret = -EIO;
e064d5e9 479 else if (btrfs_verify_level_key(eb, level,
448de471 480 first_key, parent_transid))
581c1760
QW
481 ret = -EUCLEAN;
482 else
483 break;
256dd1bb 484 }
d397712b 485
0b246afa 486 num_copies = btrfs_num_copies(fs_info,
f188591e 487 eb->start, eb->len);
4235298e 488 if (num_copies == 1)
ea466794 489 break;
4235298e 490
5cf1ab56
JB
491 if (!failed_mirror) {
492 failed = 1;
493 failed_mirror = eb->read_mirror;
494 }
495
f188591e 496 mirror_num++;
ea466794
JB
497 if (mirror_num == failed_mirror)
498 mirror_num++;
499
4235298e 500 if (mirror_num > num_copies)
ea466794 501 break;
f188591e 502 }
ea466794 503
c0901581 504 if (failed && !ret && failed_mirror)
20a1fbf9 505 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
506
507 return ret;
f188591e 508}
19c00ddc 509
d352ac68 510/*
d397712b
CM
511 * checksum a dirty tree block before IO. This has extra checks to make sure
512 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 513 */
d397712b 514
01d58472 515static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 516{
4eee4fa4 517 u64 start = page_offset(page);
19c00ddc 518 u64 found_start;
2996e1f8
JT
519 u8 result[BTRFS_CSUM_SIZE];
520 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 521 struct extent_buffer *eb;
8d47a0d8 522 int ret;
f188591e 523
4f2de97a
JB
524 eb = (struct extent_buffer *)page->private;
525 if (page != eb->pages[0])
526 return 0;
0f805531 527
19c00ddc 528 found_start = btrfs_header_bytenr(eb);
0f805531
AL
529 /*
530 * Please do not consolidate these warnings into a single if.
531 * It is useful to know what went wrong.
532 */
533 if (WARN_ON(found_start != start))
534 return -EUCLEAN;
535 if (WARN_ON(!PageUptodate(page)))
536 return -EUCLEAN;
537
de37aa51 538 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
539 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
540
2996e1f8
JT
541 if (csum_tree_block(eb, result))
542 return -EINVAL;
543
8d47a0d8
QW
544 if (btrfs_header_level(eb))
545 ret = btrfs_check_node(eb);
546 else
547 ret = btrfs_check_leaf_full(eb);
548
549 if (ret < 0) {
c06631b0 550 btrfs_print_tree(eb, 0);
8d47a0d8
QW
551 btrfs_err(fs_info,
552 "block=%llu write time tree block corruption detected",
553 eb->start);
c06631b0 554 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
555 return ret;
556 }
2996e1f8 557 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 558
2996e1f8 559 return 0;
19c00ddc
CM
560}
561
b0c9b3b0 562static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 563{
b0c9b3b0 564 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 565 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 566 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
567 int ret = 1;
568
0a4e5586 569 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 570 while (fs_devices) {
7239ff4b
NB
571 u8 *metadata_uuid;
572
573 /*
574 * Checking the incompat flag is only valid for the current
575 * fs. For seed devices it's forbidden to have their uuid
576 * changed so reading ->fsid in this case is fine
577 */
578 if (fs_devices == fs_info->fs_devices &&
579 btrfs_fs_incompat(fs_info, METADATA_UUID))
580 metadata_uuid = fs_devices->metadata_uuid;
581 else
582 metadata_uuid = fs_devices->fsid;
583
584 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
585 ret = 0;
586 break;
587 }
588 fs_devices = fs_devices->seed;
589 }
590 return ret;
591}
592
facc8a22
MX
593static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
594 u64 phy_offset, struct page *page,
595 u64 start, u64 end, int mirror)
ce9adaa5 596{
ce9adaa5
CM
597 u64 found_start;
598 int found_level;
ce9adaa5
CM
599 struct extent_buffer *eb;
600 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 601 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 602 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 603 int ret = 0;
2996e1f8 604 u8 result[BTRFS_CSUM_SIZE];
727011e0 605 int reads_done;
ce9adaa5 606
ce9adaa5
CM
607 if (!page->private)
608 goto out;
d397712b 609
4f2de97a 610 eb = (struct extent_buffer *)page->private;
d397712b 611
0b32f4bb
JB
612 /* the pending IO might have been the only thing that kept this buffer
613 * in memory. Make sure we have a ref for all this other checks
614 */
67439dad 615 atomic_inc(&eb->refs);
0b32f4bb
JB
616
617 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
618 if (!reads_done)
619 goto err;
f188591e 620
5cf1ab56 621 eb->read_mirror = mirror;
656f30db 622 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
623 ret = -EIO;
624 goto err;
625 }
626
ce9adaa5 627 found_start = btrfs_header_bytenr(eb);
727011e0 628 if (found_start != eb->start) {
893bf4b1
SY
629 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
630 eb->start, found_start);
f188591e 631 ret = -EIO;
ce9adaa5
CM
632 goto err;
633 }
b0c9b3b0 634 if (check_tree_block_fsid(eb)) {
02873e43
ZL
635 btrfs_err_rl(fs_info, "bad fsid on block %llu",
636 eb->start);
1259ab75
CM
637 ret = -EIO;
638 goto err;
639 }
ce9adaa5 640 found_level = btrfs_header_level(eb);
1c24c3ce 641 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
642 btrfs_err(fs_info, "bad tree block level %d on %llu",
643 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
644 ret = -EIO;
645 goto err;
646 }
ce9adaa5 647
85d4e461
CM
648 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
649 eb, found_level);
4008c04a 650
2996e1f8 651 ret = csum_tree_block(eb, result);
8bd98f0e 652 if (ret)
a826d6dc 653 goto err;
a826d6dc 654
2996e1f8
JT
655 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
656 u32 val;
657 u32 found = 0;
658
659 memcpy(&found, result, csum_size);
660
661 read_extent_buffer(eb, &val, 0, csum_size);
662 btrfs_warn_rl(fs_info,
663 "%s checksum verify failed on %llu wanted %x found %x level %d",
664 fs_info->sb->s_id, eb->start,
665 val, found, btrfs_header_level(eb));
666 ret = -EUCLEAN;
667 goto err;
668 }
669
a826d6dc
JB
670 /*
671 * If this is a leaf block and it is corrupt, set the corrupt bit so
672 * that we don't try and read the other copies of this block, just
673 * return -EIO.
674 */
1c4360ee 675 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
676 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
677 ret = -EIO;
678 }
ce9adaa5 679
813fd1dc 680 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
681 ret = -EIO;
682
0b32f4bb
JB
683 if (!ret)
684 set_extent_buffer_uptodate(eb);
75391f0d
QW
685 else
686 btrfs_err(fs_info,
687 "block=%llu read time tree block corruption detected",
688 eb->start);
ce9adaa5 689err:
79fb65a1
JB
690 if (reads_done &&
691 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 692 btree_readahead_hook(eb, ret);
4bb31e92 693
53b381b3
DW
694 if (ret) {
695 /*
696 * our io error hook is going to dec the io pages
697 * again, we have to make sure it has something
698 * to decrement
699 */
700 atomic_inc(&eb->io_pages);
0b32f4bb 701 clear_extent_buffer_uptodate(eb);
53b381b3 702 }
0b32f4bb 703 free_extent_buffer(eb);
ce9adaa5 704out:
f188591e 705 return ret;
ce9adaa5
CM
706}
707
4246a0b6 708static void end_workqueue_bio(struct bio *bio)
ce9adaa5 709{
97eb6b69 710 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 711 struct btrfs_fs_info *fs_info;
9e0af237 712 struct btrfs_workqueue *wq;
ce9adaa5 713
ce9adaa5 714 fs_info = end_io_wq->info;
4e4cbee9 715 end_io_wq->status = bio->bi_status;
d20f7043 716
37226b21 717 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 718 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 719 wq = fs_info->endio_meta_write_workers;
a0cac0ec 720 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 721 wq = fs_info->endio_freespace_worker;
a0cac0ec 722 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 723 wq = fs_info->endio_raid56_workers;
a0cac0ec 724 else
9e0af237 725 wq = fs_info->endio_write_workers;
d20f7043 726 } else {
a0cac0ec 727 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 728 wq = fs_info->endio_repair_workers;
a0cac0ec 729 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 730 wq = fs_info->endio_raid56_workers;
a0cac0ec 731 else if (end_io_wq->metadata)
9e0af237 732 wq = fs_info->endio_meta_workers;
a0cac0ec 733 else
9e0af237 734 wq = fs_info->endio_workers;
d20f7043 735 }
9e0af237 736
a0cac0ec 737 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 738 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
739}
740
4e4cbee9 741blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 742 enum btrfs_wq_endio_type metadata)
0b86a832 743{
97eb6b69 744 struct btrfs_end_io_wq *end_io_wq;
8b110e39 745
97eb6b69 746 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 747 if (!end_io_wq)
4e4cbee9 748 return BLK_STS_RESOURCE;
ce9adaa5
CM
749
750 end_io_wq->private = bio->bi_private;
751 end_io_wq->end_io = bio->bi_end_io;
22c59948 752 end_io_wq->info = info;
4e4cbee9 753 end_io_wq->status = 0;
ce9adaa5 754 end_io_wq->bio = bio;
22c59948 755 end_io_wq->metadata = metadata;
ce9adaa5
CM
756
757 bio->bi_private = end_io_wq;
758 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
759 return 0;
760}
761
4a69a410
CM
762static void run_one_async_start(struct btrfs_work *work)
763{
4a69a410 764 struct async_submit_bio *async;
4e4cbee9 765 blk_status_t ret;
4a69a410
CM
766
767 async = container_of(work, struct async_submit_bio, work);
c6100a4b 768 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
769 async->bio_offset);
770 if (ret)
4e4cbee9 771 async->status = ret;
4a69a410
CM
772}
773
06ea01b1
DS
774/*
775 * In order to insert checksums into the metadata in large chunks, we wait
776 * until bio submission time. All the pages in the bio are checksummed and
777 * sums are attached onto the ordered extent record.
778 *
779 * At IO completion time the csums attached on the ordered extent record are
780 * inserted into the tree.
781 */
4a69a410 782static void run_one_async_done(struct btrfs_work *work)
8b712842 783{
8b712842 784 struct async_submit_bio *async;
06ea01b1
DS
785 struct inode *inode;
786 blk_status_t ret;
8b712842
CM
787
788 async = container_of(work, struct async_submit_bio, work);
06ea01b1 789 inode = async->private_data;
4854ddd0 790
bb7ab3b9 791 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
792 if (async->status) {
793 async->bio->bi_status = async->status;
4246a0b6 794 bio_endio(async->bio);
79787eaa
JM
795 return;
796 }
797
ec39f769
CM
798 /*
799 * All of the bios that pass through here are from async helpers.
800 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
801 * This changes nothing when cgroups aren't in use.
802 */
803 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 804 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
805 if (ret) {
806 async->bio->bi_status = ret;
807 bio_endio(async->bio);
808 }
4a69a410
CM
809}
810
811static void run_one_async_free(struct btrfs_work *work)
812{
813 struct async_submit_bio *async;
814
815 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
816 kfree(async);
817}
818
8c27cb35
LT
819blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
820 int mirror_num, unsigned long bio_flags,
821 u64 bio_offset, void *private_data,
e288c080 822 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
823{
824 struct async_submit_bio *async;
825
826 async = kmalloc(sizeof(*async), GFP_NOFS);
827 if (!async)
4e4cbee9 828 return BLK_STS_RESOURCE;
44b8bd7e 829
c6100a4b 830 async->private_data = private_data;
44b8bd7e
CM
831 async->bio = bio;
832 async->mirror_num = mirror_num;
4a69a410 833 async->submit_bio_start = submit_bio_start;
4a69a410 834
a0cac0ec
OS
835 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
836 run_one_async_free);
4a69a410 837
eaf25d93 838 async->bio_offset = bio_offset;
8c8bee1d 839
4e4cbee9 840 async->status = 0;
79787eaa 841
67f055c7 842 if (op_is_sync(bio->bi_opf))
5cdc7ad3 843 btrfs_set_work_high_priority(&async->work);
d313d7a3 844
5cdc7ad3 845 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
846 return 0;
847}
848
4e4cbee9 849static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 850{
2c30c71b 851 struct bio_vec *bvec;
ce3ed71a 852 struct btrfs_root *root;
2b070cfe 853 int ret = 0;
6dc4f100 854 struct bvec_iter_all iter_all;
ce3ed71a 855
c09abff8 856 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 857 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 858 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 859 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
860 if (ret)
861 break;
ce3ed71a 862 }
2c30c71b 863
4e4cbee9 864 return errno_to_blk_status(ret);
ce3ed71a
CM
865}
866
d0ee3934 867static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 868 u64 bio_offset)
22c59948 869{
8b712842
CM
870 /*
871 * when we're called for a write, we're already in the async
5443be45 872 * submission context. Just jump into btrfs_map_bio
8b712842 873 */
79787eaa 874 return btree_csum_one_bio(bio);
4a69a410 875}
22c59948 876
9b4e675a
DS
877static int check_async_write(struct btrfs_fs_info *fs_info,
878 struct btrfs_inode *bi)
de0022b9 879{
6300463b
LB
880 if (atomic_read(&bi->sync_writers))
881 return 0;
9b4e675a 882 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 883 return 0;
de0022b9
JB
884 return 1;
885}
886
a56b1c7b 887static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
888 int mirror_num,
889 unsigned long bio_flags)
44b8bd7e 890{
0b246afa 891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 892 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 893 blk_status_t ret;
cad321ad 894
37226b21 895 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
896 /*
897 * called for a read, do the setup so that checksum validation
898 * can happen in the async kernel threads
899 */
0b246afa
JM
900 ret = btrfs_bio_wq_end_io(fs_info, bio,
901 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 902 if (ret)
61891923 903 goto out_w_error;
08635bae 904 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
905 } else if (!async) {
906 ret = btree_csum_one_bio(bio);
907 if (ret)
61891923 908 goto out_w_error;
08635bae 909 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
910 } else {
911 /*
912 * kthread helpers are used to submit writes so that
913 * checksumming can happen in parallel across all CPUs
914 */
c6100a4b 915 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 916 0, inode, btree_submit_bio_start);
44b8bd7e 917 }
d313d7a3 918
4246a0b6
CH
919 if (ret)
920 goto out_w_error;
921 return 0;
922
61891923 923out_w_error:
4e4cbee9 924 bio->bi_status = ret;
4246a0b6 925 bio_endio(bio);
61891923 926 return ret;
44b8bd7e
CM
927}
928
3dd1462e 929#ifdef CONFIG_MIGRATION
784b4e29 930static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
931 struct page *newpage, struct page *page,
932 enum migrate_mode mode)
784b4e29
CM
933{
934 /*
935 * we can't safely write a btree page from here,
936 * we haven't done the locking hook
937 */
938 if (PageDirty(page))
939 return -EAGAIN;
940 /*
941 * Buffers may be managed in a filesystem specific way.
942 * We must have no buffers or drop them.
943 */
944 if (page_has_private(page) &&
945 !try_to_release_page(page, GFP_KERNEL))
946 return -EAGAIN;
a6bc32b8 947 return migrate_page(mapping, newpage, page, mode);
784b4e29 948}
3dd1462e 949#endif
784b4e29 950
0da5468f
CM
951
952static int btree_writepages(struct address_space *mapping,
953 struct writeback_control *wbc)
954{
e2d84521
MX
955 struct btrfs_fs_info *fs_info;
956 int ret;
957
d8d5f3e1 958 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
959
960 if (wbc->for_kupdate)
961 return 0;
962
e2d84521 963 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 964 /* this is a bit racy, but that's ok */
d814a491
EL
965 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
966 BTRFS_DIRTY_METADATA_THRESH,
967 fs_info->dirty_metadata_batch);
e2d84521 968 if (ret < 0)
793955bc 969 return 0;
793955bc 970 }
0b32f4bb 971 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
972}
973
b2950863 974static int btree_readpage(struct file *file, struct page *page)
5f39d397 975{
d1310b2e
CM
976 struct extent_io_tree *tree;
977 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 978 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 979}
22b0ebda 980
70dec807 981static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 982{
98509cfc 983 if (PageWriteback(page) || PageDirty(page))
d397712b 984 return 0;
0c4e538b 985
f7a52a40 986 return try_release_extent_buffer(page);
d98237b3
CM
987}
988
d47992f8
LC
989static void btree_invalidatepage(struct page *page, unsigned int offset,
990 unsigned int length)
d98237b3 991{
d1310b2e
CM
992 struct extent_io_tree *tree;
993 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
994 extent_invalidatepage(tree, page, offset);
995 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 996 if (PagePrivate(page)) {
efe120a0
FH
997 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
998 "page private not zero on page %llu",
999 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1000 ClearPagePrivate(page);
1001 set_page_private(page, 0);
09cbfeaf 1002 put_page(page);
9ad6b7bc 1003 }
d98237b3
CM
1004}
1005
0b32f4bb
JB
1006static int btree_set_page_dirty(struct page *page)
1007{
bb146eb2 1008#ifdef DEBUG
0b32f4bb
JB
1009 struct extent_buffer *eb;
1010
1011 BUG_ON(!PagePrivate(page));
1012 eb = (struct extent_buffer *)page->private;
1013 BUG_ON(!eb);
1014 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1015 BUG_ON(!atomic_read(&eb->refs));
1016 btrfs_assert_tree_locked(eb);
bb146eb2 1017#endif
0b32f4bb
JB
1018 return __set_page_dirty_nobuffers(page);
1019}
1020
7f09410b 1021static const struct address_space_operations btree_aops = {
d98237b3 1022 .readpage = btree_readpage,
0da5468f 1023 .writepages = btree_writepages,
5f39d397
CM
1024 .releasepage = btree_releasepage,
1025 .invalidatepage = btree_invalidatepage,
5a92bc88 1026#ifdef CONFIG_MIGRATION
784b4e29 1027 .migratepage = btree_migratepage,
5a92bc88 1028#endif
0b32f4bb 1029 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1030};
1031
2ff7e61e 1032void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1033{
5f39d397 1034 struct extent_buffer *buf = NULL;
537f38f0 1035 int ret;
090d1875 1036
2ff7e61e 1037 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1038 if (IS_ERR(buf))
6197d86e 1039 return;
537f38f0 1040
c2ccfbc6 1041 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1042 if (ret < 0)
1043 free_extent_buffer_stale(buf);
1044 else
1045 free_extent_buffer(buf);
090d1875
CM
1046}
1047
2ff7e61e
JM
1048struct extent_buffer *btrfs_find_create_tree_block(
1049 struct btrfs_fs_info *fs_info,
1050 u64 bytenr)
0999df54 1051{
0b246afa
JM
1052 if (btrfs_is_testing(fs_info))
1053 return alloc_test_extent_buffer(fs_info, bytenr);
1054 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1055}
1056
581c1760
QW
1057/*
1058 * Read tree block at logical address @bytenr and do variant basic but critical
1059 * verification.
1060 *
1061 * @parent_transid: expected transid of this tree block, skip check if 0
1062 * @level: expected level, mandatory check
1063 * @first_key: expected key in slot 0, skip check if NULL
1064 */
2ff7e61e 1065struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1066 u64 parent_transid, int level,
1067 struct btrfs_key *first_key)
0999df54
CM
1068{
1069 struct extent_buffer *buf = NULL;
0999df54
CM
1070 int ret;
1071
2ff7e61e 1072 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1073 if (IS_ERR(buf))
1074 return buf;
0999df54 1075
5ab12d1f 1076 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1077 level, first_key);
0f0fe8f7 1078 if (ret) {
537f38f0 1079 free_extent_buffer_stale(buf);
64c043de 1080 return ERR_PTR(ret);
0f0fe8f7 1081 }
5f39d397 1082 return buf;
ce9adaa5 1083
eb60ceac
CM
1084}
1085
6a884d7d 1086void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1087{
6a884d7d 1088 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1089 if (btrfs_header_generation(buf) ==
e2d84521 1090 fs_info->running_transaction->transid) {
b9447ef8 1091 btrfs_assert_tree_locked(buf);
b4ce94de 1092
b9473439 1093 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1094 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1095 -buf->len,
1096 fs_info->dirty_metadata_batch);
ed7b63eb 1097 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1098 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1099 clear_extent_buffer_dirty(buf);
1100 }
925baedd 1101 }
5f39d397
CM
1102}
1103
8257b2dc
MX
1104static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1105{
1106 struct btrfs_subvolume_writers *writers;
1107 int ret;
1108
1109 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1110 if (!writers)
1111 return ERR_PTR(-ENOMEM);
1112
8a5a916d 1113 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1114 if (ret < 0) {
1115 kfree(writers);
1116 return ERR_PTR(ret);
1117 }
1118
1119 init_waitqueue_head(&writers->wait);
1120 return writers;
1121}
1122
1123static void
1124btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1125{
1126 percpu_counter_destroy(&writers->counter);
1127 kfree(writers);
1128}
1129
da17066c 1130static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1131 u64 objectid)
d97e63b6 1132{
7c0260ee 1133 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1134 root->node = NULL;
a28ec197 1135 root->commit_root = NULL;
27cdeb70 1136 root->state = 0;
d68fc57b 1137 root->orphan_cleanup_state = 0;
0b86a832 1138
0f7d52f4 1139 root->last_trans = 0;
13a8a7c8 1140 root->highest_objectid = 0;
eb73c1b7 1141 root->nr_delalloc_inodes = 0;
199c2a9c 1142 root->nr_ordered_extents = 0;
6bef4d31 1143 root->inode_tree = RB_ROOT;
16cdcec7 1144 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1145 root->block_rsv = NULL;
0b86a832
CM
1146
1147 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1148 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1149 INIT_LIST_HEAD(&root->delalloc_inodes);
1150 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1151 INIT_LIST_HEAD(&root->ordered_extents);
1152 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1153 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1154 INIT_LIST_HEAD(&root->logged_list[0]);
1155 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1156 spin_lock_init(&root->inode_lock);
eb73c1b7 1157 spin_lock_init(&root->delalloc_lock);
199c2a9c 1158 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1159 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1160 spin_lock_init(&root->log_extents_lock[0]);
1161 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1162 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1163 mutex_init(&root->objectid_mutex);
e02119d5 1164 mutex_init(&root->log_mutex);
31f3d255 1165 mutex_init(&root->ordered_extent_mutex);
573bfb72 1166 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1167 init_waitqueue_head(&root->log_writer_wait);
1168 init_waitqueue_head(&root->log_commit_wait[0]);
1169 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1170 INIT_LIST_HEAD(&root->log_ctxs[0]);
1171 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1172 atomic_set(&root->log_commit[0], 0);
1173 atomic_set(&root->log_commit[1], 0);
1174 atomic_set(&root->log_writers, 0);
2ecb7923 1175 atomic_set(&root->log_batch, 0);
0700cea7 1176 refcount_set(&root->refs, 1);
ea14b57f 1177 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1178 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1179 atomic_set(&root->nr_swapfiles, 0);
7237f183 1180 root->log_transid = 0;
d1433deb 1181 root->log_transid_committed = -1;
257c62e1 1182 root->last_log_commit = 0;
7c0260ee 1183 if (!dummy)
43eb5f29
QW
1184 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1185 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1186
3768f368
CM
1187 memset(&root->root_key, 0, sizeof(root->root_key));
1188 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1189 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1190 if (!dummy)
06ea65a3
JB
1191 root->defrag_trans_start = fs_info->generation;
1192 else
1193 root->defrag_trans_start = 0;
4d775673 1194 root->root_key.objectid = objectid;
0ee5dc67 1195 root->anon_dev = 0;
8ea05e3a 1196
5f3ab90a 1197 spin_lock_init(&root->root_item_lock);
370a11b8 1198 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1199}
1200
74e4d827
DS
1201static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1202 gfp_t flags)
6f07e42e 1203{
74e4d827 1204 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1205 if (root)
1206 root->fs_info = fs_info;
1207 return root;
1208}
1209
06ea65a3
JB
1210#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1211/* Should only be used by the testing infrastructure */
da17066c 1212struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1213{
1214 struct btrfs_root *root;
1215
7c0260ee
JM
1216 if (!fs_info)
1217 return ERR_PTR(-EINVAL);
1218
1219 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1220 if (!root)
1221 return ERR_PTR(-ENOMEM);
da17066c 1222
b9ef22de 1223 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1224 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1225 root->alloc_bytenr = 0;
06ea65a3
JB
1226
1227 return root;
1228}
1229#endif
1230
20897f5c 1231struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1232 u64 objectid)
1233{
9b7a2440 1234 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1235 struct extent_buffer *leaf;
1236 struct btrfs_root *tree_root = fs_info->tree_root;
1237 struct btrfs_root *root;
1238 struct btrfs_key key;
b89f6d1f 1239 unsigned int nofs_flag;
20897f5c 1240 int ret = 0;
33d85fda 1241 uuid_le uuid = NULL_UUID_LE;
20897f5c 1242
b89f6d1f
FM
1243 /*
1244 * We're holding a transaction handle, so use a NOFS memory allocation
1245 * context to avoid deadlock if reclaim happens.
1246 */
1247 nofs_flag = memalloc_nofs_save();
74e4d827 1248 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1249 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1250 if (!root)
1251 return ERR_PTR(-ENOMEM);
1252
da17066c 1253 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1254 root->root_key.objectid = objectid;
1255 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1256 root->root_key.offset = 0;
1257
4d75f8a9 1258 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1259 if (IS_ERR(leaf)) {
1260 ret = PTR_ERR(leaf);
1dd05682 1261 leaf = NULL;
20897f5c
AJ
1262 goto fail;
1263 }
1264
20897f5c 1265 root->node = leaf;
20897f5c
AJ
1266 btrfs_mark_buffer_dirty(leaf);
1267
1268 root->commit_root = btrfs_root_node(root);
27cdeb70 1269 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1270
1271 root->root_item.flags = 0;
1272 root->root_item.byte_limit = 0;
1273 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1274 btrfs_set_root_generation(&root->root_item, trans->transid);
1275 btrfs_set_root_level(&root->root_item, 0);
1276 btrfs_set_root_refs(&root->root_item, 1);
1277 btrfs_set_root_used(&root->root_item, leaf->len);
1278 btrfs_set_root_last_snapshot(&root->root_item, 0);
1279 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1280 if (is_fstree(objectid))
1281 uuid_le_gen(&uuid);
6463fe58 1282 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1283 root->root_item.drop_level = 0;
1284
1285 key.objectid = objectid;
1286 key.type = BTRFS_ROOT_ITEM_KEY;
1287 key.offset = 0;
1288 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1289 if (ret)
1290 goto fail;
1291
1292 btrfs_tree_unlock(leaf);
1293
1dd05682
TI
1294 return root;
1295
20897f5c 1296fail:
1dd05682
TI
1297 if (leaf) {
1298 btrfs_tree_unlock(leaf);
59885b39 1299 free_extent_buffer(root->commit_root);
1dd05682
TI
1300 free_extent_buffer(leaf);
1301 }
1302 kfree(root);
20897f5c 1303
1dd05682 1304 return ERR_PTR(ret);
20897f5c
AJ
1305}
1306
7237f183
YZ
1307static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1308 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1309{
1310 struct btrfs_root *root;
7237f183 1311 struct extent_buffer *leaf;
e02119d5 1312
74e4d827 1313 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1314 if (!root)
7237f183 1315 return ERR_PTR(-ENOMEM);
e02119d5 1316
da17066c 1317 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1318
1319 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1320 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1321 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1322
7237f183 1323 /*
27cdeb70
MX
1324 * DON'T set REF_COWS for log trees
1325 *
7237f183
YZ
1326 * log trees do not get reference counted because they go away
1327 * before a real commit is actually done. They do store pointers
1328 * to file data extents, and those reference counts still get
1329 * updated (along with back refs to the log tree).
1330 */
e02119d5 1331
4d75f8a9
DS
1332 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1333 NULL, 0, 0, 0);
7237f183
YZ
1334 if (IS_ERR(leaf)) {
1335 kfree(root);
1336 return ERR_CAST(leaf);
1337 }
e02119d5 1338
7237f183 1339 root->node = leaf;
e02119d5 1340
e02119d5
CM
1341 btrfs_mark_buffer_dirty(root->node);
1342 btrfs_tree_unlock(root->node);
7237f183
YZ
1343 return root;
1344}
1345
1346int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1347 struct btrfs_fs_info *fs_info)
1348{
1349 struct btrfs_root *log_root;
1350
1351 log_root = alloc_log_tree(trans, fs_info);
1352 if (IS_ERR(log_root))
1353 return PTR_ERR(log_root);
1354 WARN_ON(fs_info->log_root_tree);
1355 fs_info->log_root_tree = log_root;
1356 return 0;
1357}
1358
1359int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1360 struct btrfs_root *root)
1361{
0b246afa 1362 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1363 struct btrfs_root *log_root;
1364 struct btrfs_inode_item *inode_item;
1365
0b246afa 1366 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1367 if (IS_ERR(log_root))
1368 return PTR_ERR(log_root);
1369
1370 log_root->last_trans = trans->transid;
1371 log_root->root_key.offset = root->root_key.objectid;
1372
1373 inode_item = &log_root->root_item.inode;
3cae210f
QW
1374 btrfs_set_stack_inode_generation(inode_item, 1);
1375 btrfs_set_stack_inode_size(inode_item, 3);
1376 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1377 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1378 fs_info->nodesize);
3cae210f 1379 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1380
5d4f98a2 1381 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1382
1383 WARN_ON(root->log_root);
1384 root->log_root = log_root;
1385 root->log_transid = 0;
d1433deb 1386 root->log_transid_committed = -1;
257c62e1 1387 root->last_log_commit = 0;
e02119d5
CM
1388 return 0;
1389}
1390
35a3621b
SB
1391static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1392 struct btrfs_key *key)
e02119d5
CM
1393{
1394 struct btrfs_root *root;
1395 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1396 struct btrfs_path *path;
84234f3a 1397 u64 generation;
cb517eab 1398 int ret;
581c1760 1399 int level;
0f7d52f4 1400
cb517eab
MX
1401 path = btrfs_alloc_path();
1402 if (!path)
0f7d52f4 1403 return ERR_PTR(-ENOMEM);
cb517eab 1404
74e4d827 1405 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1406 if (!root) {
1407 ret = -ENOMEM;
1408 goto alloc_fail;
0f7d52f4
CM
1409 }
1410
da17066c 1411 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1412
cb517eab
MX
1413 ret = btrfs_find_root(tree_root, key, path,
1414 &root->root_item, &root->root_key);
0f7d52f4 1415 if (ret) {
13a8a7c8
YZ
1416 if (ret > 0)
1417 ret = -ENOENT;
cb517eab 1418 goto find_fail;
0f7d52f4 1419 }
13a8a7c8 1420
84234f3a 1421 generation = btrfs_root_generation(&root->root_item);
581c1760 1422 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1423 root->node = read_tree_block(fs_info,
1424 btrfs_root_bytenr(&root->root_item),
581c1760 1425 generation, level, NULL);
64c043de
LB
1426 if (IS_ERR(root->node)) {
1427 ret = PTR_ERR(root->node);
cb517eab
MX
1428 goto find_fail;
1429 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1430 ret = -EIO;
64c043de
LB
1431 free_extent_buffer(root->node);
1432 goto find_fail;
416bc658 1433 }
5d4f98a2 1434 root->commit_root = btrfs_root_node(root);
13a8a7c8 1435out:
cb517eab
MX
1436 btrfs_free_path(path);
1437 return root;
1438
cb517eab
MX
1439find_fail:
1440 kfree(root);
1441alloc_fail:
1442 root = ERR_PTR(ret);
1443 goto out;
1444}
1445
1446struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1447 struct btrfs_key *location)
1448{
1449 struct btrfs_root *root;
1450
1451 root = btrfs_read_tree_root(tree_root, location);
1452 if (IS_ERR(root))
1453 return root;
1454
1455 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1456 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1457 btrfs_check_and_init_root_item(&root->root_item);
1458 }
13a8a7c8 1459
5eda7b5e
CM
1460 return root;
1461}
1462
cb517eab
MX
1463int btrfs_init_fs_root(struct btrfs_root *root)
1464{
1465 int ret;
8257b2dc 1466 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1467
1468 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1469 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1470 GFP_NOFS);
1471 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1472 ret = -ENOMEM;
1473 goto fail;
1474 }
1475
8257b2dc
MX
1476 writers = btrfs_alloc_subvolume_writers();
1477 if (IS_ERR(writers)) {
1478 ret = PTR_ERR(writers);
1479 goto fail;
1480 }
1481 root->subv_writers = writers;
1482
cb517eab 1483 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1484 spin_lock_init(&root->ino_cache_lock);
1485 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1486
1487 ret = get_anon_bdev(&root->anon_dev);
1488 if (ret)
876d2cf1 1489 goto fail;
f32e48e9
CR
1490
1491 mutex_lock(&root->objectid_mutex);
1492 ret = btrfs_find_highest_objectid(root,
1493 &root->highest_objectid);
1494 if (ret) {
1495 mutex_unlock(&root->objectid_mutex);
876d2cf1 1496 goto fail;
f32e48e9
CR
1497 }
1498
1499 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1500
1501 mutex_unlock(&root->objectid_mutex);
1502
cb517eab
MX
1503 return 0;
1504fail:
84db5ccf 1505 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1506 return ret;
1507}
1508
35bbb97f
JM
1509struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1510 u64 root_id)
cb517eab
MX
1511{
1512 struct btrfs_root *root;
1513
1514 spin_lock(&fs_info->fs_roots_radix_lock);
1515 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1516 (unsigned long)root_id);
1517 spin_unlock(&fs_info->fs_roots_radix_lock);
1518 return root;
1519}
1520
1521int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1522 struct btrfs_root *root)
1523{
1524 int ret;
1525
e1860a77 1526 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1527 if (ret)
1528 return ret;
1529
1530 spin_lock(&fs_info->fs_roots_radix_lock);
1531 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1532 (unsigned long)root->root_key.objectid,
1533 root);
1534 if (ret == 0)
27cdeb70 1535 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1536 spin_unlock(&fs_info->fs_roots_radix_lock);
1537 radix_tree_preload_end();
1538
1539 return ret;
1540}
1541
c00869f1
MX
1542struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1543 struct btrfs_key *location,
1544 bool check_ref)
5eda7b5e
CM
1545{
1546 struct btrfs_root *root;
381cf658 1547 struct btrfs_path *path;
1d4c08e0 1548 struct btrfs_key key;
5eda7b5e
CM
1549 int ret;
1550
edbd8d4e
CM
1551 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1552 return fs_info->tree_root;
1553 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1554 return fs_info->extent_root;
8f18cf13
CM
1555 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1556 return fs_info->chunk_root;
1557 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1558 return fs_info->dev_root;
0403e47e
YZ
1559 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1560 return fs_info->csum_root;
bcef60f2
AJ
1561 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1562 return fs_info->quota_root ? fs_info->quota_root :
1563 ERR_PTR(-ENOENT);
f7a81ea4
SB
1564 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1565 return fs_info->uuid_root ? fs_info->uuid_root :
1566 ERR_PTR(-ENOENT);
70f6d82e
OS
1567 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1568 return fs_info->free_space_root ? fs_info->free_space_root :
1569 ERR_PTR(-ENOENT);
4df27c4d 1570again:
cb517eab 1571 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1572 if (root) {
c00869f1 1573 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1574 return ERR_PTR(-ENOENT);
5eda7b5e 1575 return root;
48475471 1576 }
5eda7b5e 1577
cb517eab 1578 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1579 if (IS_ERR(root))
1580 return root;
3394e160 1581
c00869f1 1582 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1583 ret = -ENOENT;
581bb050 1584 goto fail;
35a30d7c 1585 }
581bb050 1586
cb517eab 1587 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1588 if (ret)
1589 goto fail;
3394e160 1590
381cf658
DS
1591 path = btrfs_alloc_path();
1592 if (!path) {
1593 ret = -ENOMEM;
1594 goto fail;
1595 }
1d4c08e0
DS
1596 key.objectid = BTRFS_ORPHAN_OBJECTID;
1597 key.type = BTRFS_ORPHAN_ITEM_KEY;
1598 key.offset = location->objectid;
1599
1600 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1601 btrfs_free_path(path);
d68fc57b
YZ
1602 if (ret < 0)
1603 goto fail;
1604 if (ret == 0)
27cdeb70 1605 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1606
cb517eab 1607 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1608 if (ret) {
4df27c4d 1609 if (ret == -EEXIST) {
84db5ccf 1610 btrfs_free_fs_root(root);
4df27c4d
YZ
1611 goto again;
1612 }
1613 goto fail;
0f7d52f4 1614 }
edbd8d4e 1615 return root;
4df27c4d 1616fail:
84db5ccf 1617 btrfs_free_fs_root(root);
4df27c4d 1618 return ERR_PTR(ret);
edbd8d4e
CM
1619}
1620
04160088
CM
1621static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1622{
1623 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1624 int ret = 0;
04160088
CM
1625 struct btrfs_device *device;
1626 struct backing_dev_info *bdi;
b7967db7 1627
1f78160c
XG
1628 rcu_read_lock();
1629 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1630 if (!device->bdev)
1631 continue;
efa7c9f9 1632 bdi = device->bdev->bd_bdi;
ff9ea323 1633 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1634 ret = 1;
1635 break;
1636 }
1637 }
1f78160c 1638 rcu_read_unlock();
04160088
CM
1639 return ret;
1640}
1641
8b712842
CM
1642/*
1643 * called by the kthread helper functions to finally call the bio end_io
1644 * functions. This is where read checksum verification actually happens
1645 */
1646static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1647{
ce9adaa5 1648 struct bio *bio;
97eb6b69 1649 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1650
97eb6b69 1651 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1652 bio = end_io_wq->bio;
ce9adaa5 1653
4e4cbee9 1654 bio->bi_status = end_io_wq->status;
8b712842
CM
1655 bio->bi_private = end_io_wq->private;
1656 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1657 bio_endio(bio);
9be490f1 1658 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1659}
1660
a74a4b97
CM
1661static int cleaner_kthread(void *arg)
1662{
1663 struct btrfs_root *root = arg;
0b246afa 1664 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1665 int again;
a74a4b97 1666
d6fd0ae2 1667 while (1) {
d0278245 1668 again = 0;
a74a4b97 1669
fd340d0f
JB
1670 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1671
d0278245 1672 /* Make the cleaner go to sleep early. */
2ff7e61e 1673 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1674 goto sleep;
1675
90c711ab
ZB
1676 /*
1677 * Do not do anything if we might cause open_ctree() to block
1678 * before we have finished mounting the filesystem.
1679 */
0b246afa 1680 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1681 goto sleep;
1682
0b246afa 1683 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1684 goto sleep;
1685
dc7f370c
MX
1686 /*
1687 * Avoid the problem that we change the status of the fs
1688 * during the above check and trylock.
1689 */
2ff7e61e 1690 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1691 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1692 goto sleep;
76dda93c 1693 }
a74a4b97 1694
2ff7e61e 1695 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1696
d0278245 1697 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1698 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1699
1700 /*
05323cd1
MX
1701 * The defragger has dealt with the R/O remount and umount,
1702 * needn't do anything special here.
d0278245 1703 */
0b246afa 1704 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1705
1706 /*
1707 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1708 * with relocation (btrfs_relocate_chunk) and relocation
1709 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1710 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1711 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1712 * unused block groups.
1713 */
0b246afa 1714 btrfs_delete_unused_bgs(fs_info);
d0278245 1715sleep:
fd340d0f 1716 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1717 if (kthread_should_park())
1718 kthread_parkme();
1719 if (kthread_should_stop())
1720 return 0;
838fe188 1721 if (!again) {
a74a4b97 1722 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1723 schedule();
a74a4b97
CM
1724 __set_current_state(TASK_RUNNING);
1725 }
da288d28 1726 }
a74a4b97
CM
1727}
1728
1729static int transaction_kthread(void *arg)
1730{
1731 struct btrfs_root *root = arg;
0b246afa 1732 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1733 struct btrfs_trans_handle *trans;
1734 struct btrfs_transaction *cur;
8929ecfa 1735 u64 transid;
a944442c 1736 time64_t now;
a74a4b97 1737 unsigned long delay;
914b2007 1738 bool cannot_commit;
a74a4b97
CM
1739
1740 do {
914b2007 1741 cannot_commit = false;
0b246afa
JM
1742 delay = HZ * fs_info->commit_interval;
1743 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1744
0b246afa
JM
1745 spin_lock(&fs_info->trans_lock);
1746 cur = fs_info->running_transaction;
a74a4b97 1747 if (!cur) {
0b246afa 1748 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1749 goto sleep;
1750 }
31153d81 1751
afd48513 1752 now = ktime_get_seconds();
3296bf56 1753 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1754 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1755 (now < cur->start_time ||
0b246afa
JM
1756 now - cur->start_time < fs_info->commit_interval)) {
1757 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1758 delay = HZ * 5;
1759 goto sleep;
1760 }
8929ecfa 1761 transid = cur->transid;
0b246afa 1762 spin_unlock(&fs_info->trans_lock);
56bec294 1763
79787eaa 1764 /* If the file system is aborted, this will always fail. */
354aa0fb 1765 trans = btrfs_attach_transaction(root);
914b2007 1766 if (IS_ERR(trans)) {
354aa0fb
MX
1767 if (PTR_ERR(trans) != -ENOENT)
1768 cannot_commit = true;
79787eaa 1769 goto sleep;
914b2007 1770 }
8929ecfa 1771 if (transid == trans->transid) {
3a45bb20 1772 btrfs_commit_transaction(trans);
8929ecfa 1773 } else {
3a45bb20 1774 btrfs_end_transaction(trans);
8929ecfa 1775 }
a74a4b97 1776sleep:
0b246afa
JM
1777 wake_up_process(fs_info->cleaner_kthread);
1778 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1779
4e121c06 1780 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1781 &fs_info->fs_state)))
2ff7e61e 1782 btrfs_cleanup_transaction(fs_info);
ce63f891 1783 if (!kthread_should_stop() &&
0b246afa 1784 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1785 cannot_commit))
bc5511d0 1786 schedule_timeout_interruptible(delay);
a74a4b97
CM
1787 } while (!kthread_should_stop());
1788 return 0;
1789}
1790
af31f5e5
CM
1791/*
1792 * this will find the highest generation in the array of
1793 * root backups. The index of the highest array is returned,
1794 * or -1 if we can't find anything.
1795 *
1796 * We check to make sure the array is valid by comparing the
1797 * generation of the latest root in the array with the generation
1798 * in the super block. If they don't match we pitch it.
1799 */
1800static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1801{
1802 u64 cur;
1803 int newest_index = -1;
1804 struct btrfs_root_backup *root_backup;
1805 int i;
1806
1807 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1808 root_backup = info->super_copy->super_roots + i;
1809 cur = btrfs_backup_tree_root_gen(root_backup);
1810 if (cur == newest_gen)
1811 newest_index = i;
1812 }
1813
1814 /* check to see if we actually wrapped around */
1815 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1816 root_backup = info->super_copy->super_roots;
1817 cur = btrfs_backup_tree_root_gen(root_backup);
1818 if (cur == newest_gen)
1819 newest_index = 0;
1820 }
1821 return newest_index;
1822}
1823
1824
1825/*
1826 * find the oldest backup so we know where to store new entries
1827 * in the backup array. This will set the backup_root_index
1828 * field in the fs_info struct
1829 */
1830static void find_oldest_super_backup(struct btrfs_fs_info *info,
1831 u64 newest_gen)
1832{
1833 int newest_index = -1;
1834
1835 newest_index = find_newest_super_backup(info, newest_gen);
1836 /* if there was garbage in there, just move along */
1837 if (newest_index == -1) {
1838 info->backup_root_index = 0;
1839 } else {
1840 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1841 }
1842}
1843
1844/*
1845 * copy all the root pointers into the super backup array.
1846 * this will bump the backup pointer by one when it is
1847 * done
1848 */
1849static void backup_super_roots(struct btrfs_fs_info *info)
1850{
1851 int next_backup;
1852 struct btrfs_root_backup *root_backup;
1853 int last_backup;
1854
1855 next_backup = info->backup_root_index;
1856 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1857 BTRFS_NUM_BACKUP_ROOTS;
1858
1859 /*
1860 * just overwrite the last backup if we're at the same generation
1861 * this happens only at umount
1862 */
1863 root_backup = info->super_for_commit->super_roots + last_backup;
1864 if (btrfs_backup_tree_root_gen(root_backup) ==
1865 btrfs_header_generation(info->tree_root->node))
1866 next_backup = last_backup;
1867
1868 root_backup = info->super_for_commit->super_roots + next_backup;
1869
1870 /*
1871 * make sure all of our padding and empty slots get zero filled
1872 * regardless of which ones we use today
1873 */
1874 memset(root_backup, 0, sizeof(*root_backup));
1875
1876 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877
1878 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1879 btrfs_set_backup_tree_root_gen(root_backup,
1880 btrfs_header_generation(info->tree_root->node));
1881
1882 btrfs_set_backup_tree_root_level(root_backup,
1883 btrfs_header_level(info->tree_root->node));
1884
1885 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1886 btrfs_set_backup_chunk_root_gen(root_backup,
1887 btrfs_header_generation(info->chunk_root->node));
1888 btrfs_set_backup_chunk_root_level(root_backup,
1889 btrfs_header_level(info->chunk_root->node));
1890
1891 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1892 btrfs_set_backup_extent_root_gen(root_backup,
1893 btrfs_header_generation(info->extent_root->node));
1894 btrfs_set_backup_extent_root_level(root_backup,
1895 btrfs_header_level(info->extent_root->node));
1896
7c7e82a7
CM
1897 /*
1898 * we might commit during log recovery, which happens before we set
1899 * the fs_root. Make sure it is valid before we fill it in.
1900 */
1901 if (info->fs_root && info->fs_root->node) {
1902 btrfs_set_backup_fs_root(root_backup,
1903 info->fs_root->node->start);
1904 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1905 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1906 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1907 btrfs_header_level(info->fs_root->node));
7c7e82a7 1908 }
af31f5e5
CM
1909
1910 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1911 btrfs_set_backup_dev_root_gen(root_backup,
1912 btrfs_header_generation(info->dev_root->node));
1913 btrfs_set_backup_dev_root_level(root_backup,
1914 btrfs_header_level(info->dev_root->node));
1915
1916 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1917 btrfs_set_backup_csum_root_gen(root_backup,
1918 btrfs_header_generation(info->csum_root->node));
1919 btrfs_set_backup_csum_root_level(root_backup,
1920 btrfs_header_level(info->csum_root->node));
1921
1922 btrfs_set_backup_total_bytes(root_backup,
1923 btrfs_super_total_bytes(info->super_copy));
1924 btrfs_set_backup_bytes_used(root_backup,
1925 btrfs_super_bytes_used(info->super_copy));
1926 btrfs_set_backup_num_devices(root_backup,
1927 btrfs_super_num_devices(info->super_copy));
1928
1929 /*
1930 * if we don't copy this out to the super_copy, it won't get remembered
1931 * for the next commit
1932 */
1933 memcpy(&info->super_copy->super_roots,
1934 &info->super_for_commit->super_roots,
1935 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1936}
1937
1938/*
1939 * this copies info out of the root backup array and back into
1940 * the in-memory super block. It is meant to help iterate through
1941 * the array, so you send it the number of backups you've already
1942 * tried and the last backup index you used.
1943 *
1944 * this returns -1 when it has tried all the backups
1945 */
1946static noinline int next_root_backup(struct btrfs_fs_info *info,
1947 struct btrfs_super_block *super,
1948 int *num_backups_tried, int *backup_index)
1949{
1950 struct btrfs_root_backup *root_backup;
1951 int newest = *backup_index;
1952
1953 if (*num_backups_tried == 0) {
1954 u64 gen = btrfs_super_generation(super);
1955
1956 newest = find_newest_super_backup(info, gen);
1957 if (newest == -1)
1958 return -1;
1959
1960 *backup_index = newest;
1961 *num_backups_tried = 1;
1962 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1963 /* we've tried all the backups, all done */
1964 return -1;
1965 } else {
1966 /* jump to the next oldest backup */
1967 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968 BTRFS_NUM_BACKUP_ROOTS;
1969 *backup_index = newest;
1970 *num_backups_tried += 1;
1971 }
1972 root_backup = super->super_roots + newest;
1973
1974 btrfs_set_super_generation(super,
1975 btrfs_backup_tree_root_gen(root_backup));
1976 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1977 btrfs_set_super_root_level(super,
1978 btrfs_backup_tree_root_level(root_backup));
1979 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1980
1981 /*
1982 * fixme: the total bytes and num_devices need to match or we should
1983 * need a fsck
1984 */
1985 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1986 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1987 return 0;
1988}
1989
7abadb64
LB
1990/* helper to cleanup workers */
1991static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1992{
dc6e3209 1993 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1994 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1995 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1996 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1997 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1998 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1999 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2000 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2001 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2002 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2003 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2004 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2005 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2006 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a9b9477d
FM
2007 /*
2008 * Now that all other work queues are destroyed, we can safely destroy
2009 * the queues used for metadata I/O, since tasks from those other work
2010 * queues can do metadata I/O operations.
2011 */
2012 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2013 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2014}
2015
2e9f5954
R
2016static void free_root_extent_buffers(struct btrfs_root *root)
2017{
2018 if (root) {
2019 free_extent_buffer(root->node);
2020 free_extent_buffer(root->commit_root);
2021 root->node = NULL;
2022 root->commit_root = NULL;
2023 }
2024}
2025
af31f5e5 2026/* helper to cleanup tree roots */
4273eaff 2027static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2028{
2e9f5954 2029 free_root_extent_buffers(info->tree_root);
655b09fe 2030
2e9f5954
R
2031 free_root_extent_buffers(info->dev_root);
2032 free_root_extent_buffers(info->extent_root);
2033 free_root_extent_buffers(info->csum_root);
2034 free_root_extent_buffers(info->quota_root);
2035 free_root_extent_buffers(info->uuid_root);
4273eaff 2036 if (free_chunk_root)
2e9f5954 2037 free_root_extent_buffers(info->chunk_root);
70f6d82e 2038 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2039}
2040
faa2dbf0 2041void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2042{
2043 int ret;
2044 struct btrfs_root *gang[8];
2045 int i;
2046
2047 while (!list_empty(&fs_info->dead_roots)) {
2048 gang[0] = list_entry(fs_info->dead_roots.next,
2049 struct btrfs_root, root_list);
2050 list_del(&gang[0]->root_list);
2051
27cdeb70 2052 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2053 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2054 } else {
2055 free_extent_buffer(gang[0]->node);
2056 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2057 btrfs_put_fs_root(gang[0]);
171f6537
JB
2058 }
2059 }
2060
2061 while (1) {
2062 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2063 (void **)gang, 0,
2064 ARRAY_SIZE(gang));
2065 if (!ret)
2066 break;
2067 for (i = 0; i < ret; i++)
cb517eab 2068 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2069 }
1a4319cc
LB
2070
2071 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2072 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2073 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2074 }
171f6537 2075}
af31f5e5 2076
638aa7ed
ES
2077static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2078{
2079 mutex_init(&fs_info->scrub_lock);
2080 atomic_set(&fs_info->scrubs_running, 0);
2081 atomic_set(&fs_info->scrub_pause_req, 0);
2082 atomic_set(&fs_info->scrubs_paused, 0);
2083 atomic_set(&fs_info->scrub_cancel_req, 0);
2084 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2085 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2086}
2087
779a65a4
ES
2088static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2089{
2090 spin_lock_init(&fs_info->balance_lock);
2091 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2092 atomic_set(&fs_info->balance_pause_req, 0);
2093 atomic_set(&fs_info->balance_cancel_req, 0);
2094 fs_info->balance_ctl = NULL;
2095 init_waitqueue_head(&fs_info->balance_wait_q);
2096}
2097
6bccf3ab 2098static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2099{
2ff7e61e
JM
2100 struct inode *inode = fs_info->btree_inode;
2101
2102 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2103 set_nlink(inode, 1);
f37938e0
ES
2104 /*
2105 * we set the i_size on the btree inode to the max possible int.
2106 * the real end of the address space is determined by all of
2107 * the devices in the system
2108 */
2ff7e61e
JM
2109 inode->i_size = OFFSET_MAX;
2110 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2111
2ff7e61e 2112 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2113 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2114 IO_TREE_INODE_IO, inode);
7b439738 2115 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2116 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2117
2ff7e61e 2118 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2119
2ff7e61e
JM
2120 BTRFS_I(inode)->root = fs_info->tree_root;
2121 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2122 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2123 btrfs_insert_inode_hash(inode);
f37938e0
ES
2124}
2125
ad618368
ES
2126static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2127{
ad618368 2128 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2129 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2130 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2131}
2132
f9e92e40
ES
2133static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2134{
2135 spin_lock_init(&fs_info->qgroup_lock);
2136 mutex_init(&fs_info->qgroup_ioctl_lock);
2137 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2138 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2139 fs_info->qgroup_seq = 1;
f9e92e40 2140 fs_info->qgroup_ulist = NULL;
d2c609b8 2141 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2142 mutex_init(&fs_info->qgroup_rescan_lock);
2143}
2144
2a458198
ES
2145static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2146 struct btrfs_fs_devices *fs_devices)
2147{
f7b885be 2148 u32 max_active = fs_info->thread_pool_size;
6f011058 2149 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2150
2151 fs_info->workers =
cb001095
JM
2152 btrfs_alloc_workqueue(fs_info, "worker",
2153 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2154
2155 fs_info->delalloc_workers =
cb001095
JM
2156 btrfs_alloc_workqueue(fs_info, "delalloc",
2157 flags, max_active, 2);
2a458198
ES
2158
2159 fs_info->flush_workers =
cb001095
JM
2160 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2161 flags, max_active, 0);
2a458198
ES
2162
2163 fs_info->caching_workers =
cb001095 2164 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2165
2a458198 2166 fs_info->fixup_workers =
cb001095 2167 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2168
2169 /*
2170 * endios are largely parallel and should have a very
2171 * low idle thresh
2172 */
2173 fs_info->endio_workers =
cb001095 2174 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2175 fs_info->endio_meta_workers =
cb001095
JM
2176 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2177 max_active, 4);
2a458198 2178 fs_info->endio_meta_write_workers =
cb001095
JM
2179 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2180 max_active, 2);
2a458198 2181 fs_info->endio_raid56_workers =
cb001095
JM
2182 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2183 max_active, 4);
2a458198 2184 fs_info->endio_repair_workers =
cb001095 2185 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2186 fs_info->rmw_workers =
cb001095 2187 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2188 fs_info->endio_write_workers =
cb001095
JM
2189 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2190 max_active, 2);
2a458198 2191 fs_info->endio_freespace_worker =
cb001095
JM
2192 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2193 max_active, 0);
2a458198 2194 fs_info->delayed_workers =
cb001095
JM
2195 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2196 max_active, 0);
2a458198 2197 fs_info->readahead_workers =
cb001095
JM
2198 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2199 max_active, 2);
2a458198 2200 fs_info->qgroup_rescan_workers =
cb001095 2201 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198
ES
2202
2203 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2204 fs_info->flush_workers &&
2a458198
ES
2205 fs_info->endio_workers && fs_info->endio_meta_workers &&
2206 fs_info->endio_meta_write_workers &&
2207 fs_info->endio_repair_workers &&
2208 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2209 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2210 fs_info->caching_workers && fs_info->readahead_workers &&
2211 fs_info->fixup_workers && fs_info->delayed_workers &&
2a458198
ES
2212 fs_info->qgroup_rescan_workers)) {
2213 return -ENOMEM;
2214 }
2215
2216 return 0;
2217}
2218
6d97c6e3
JT
2219static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2220{
2221 struct crypto_shash *csum_shash;
2222 const char *csum_name = btrfs_super_csum_name(csum_type);
2223
2224 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2225
2226 if (IS_ERR(csum_shash)) {
2227 btrfs_err(fs_info, "error allocating %s hash for checksum",
2228 csum_name);
2229 return PTR_ERR(csum_shash);
2230 }
2231
2232 fs_info->csum_shash = csum_shash;
2233
2234 return 0;
2235}
2236
2237static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2238{
2239 crypto_free_shash(fs_info->csum_shash);
2240}
2241
63443bf5
ES
2242static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2243 struct btrfs_fs_devices *fs_devices)
2244{
2245 int ret;
63443bf5
ES
2246 struct btrfs_root *log_tree_root;
2247 struct btrfs_super_block *disk_super = fs_info->super_copy;
2248 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2249 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2250
2251 if (fs_devices->rw_devices == 0) {
f14d104d 2252 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2253 return -EIO;
2254 }
2255
74e4d827 2256 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2257 if (!log_tree_root)
2258 return -ENOMEM;
2259
da17066c 2260 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2261
2ff7e61e 2262 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2263 fs_info->generation + 1,
2264 level, NULL);
64c043de 2265 if (IS_ERR(log_tree_root->node)) {
f14d104d 2266 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2267 ret = PTR_ERR(log_tree_root->node);
64c043de 2268 kfree(log_tree_root);
0eeff236 2269 return ret;
64c043de 2270 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2271 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2272 free_extent_buffer(log_tree_root->node);
2273 kfree(log_tree_root);
2274 return -EIO;
2275 }
2276 /* returns with log_tree_root freed on success */
2277 ret = btrfs_recover_log_trees(log_tree_root);
2278 if (ret) {
0b246afa
JM
2279 btrfs_handle_fs_error(fs_info, ret,
2280 "Failed to recover log tree");
63443bf5
ES
2281 free_extent_buffer(log_tree_root->node);
2282 kfree(log_tree_root);
2283 return ret;
2284 }
2285
bc98a42c 2286 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2287 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2288 if (ret)
2289 return ret;
2290 }
2291
2292 return 0;
2293}
2294
6bccf3ab 2295static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2296{
6bccf3ab 2297 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2298 struct btrfs_root *root;
4bbcaa64
ES
2299 struct btrfs_key location;
2300 int ret;
2301
6bccf3ab
JM
2302 BUG_ON(!fs_info->tree_root);
2303
4bbcaa64
ES
2304 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2305 location.type = BTRFS_ROOT_ITEM_KEY;
2306 location.offset = 0;
2307
a4f3d2c4 2308 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2309 if (IS_ERR(root)) {
2310 ret = PTR_ERR(root);
2311 goto out;
2312 }
a4f3d2c4
DS
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 fs_info->extent_root = root;
4bbcaa64
ES
2315
2316 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2317 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2318 if (IS_ERR(root)) {
2319 ret = PTR_ERR(root);
2320 goto out;
2321 }
a4f3d2c4
DS
2322 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2323 fs_info->dev_root = root;
4bbcaa64
ES
2324 btrfs_init_devices_late(fs_info);
2325
2326 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2327 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2328 if (IS_ERR(root)) {
2329 ret = PTR_ERR(root);
2330 goto out;
2331 }
a4f3d2c4
DS
2332 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2333 fs_info->csum_root = root;
4bbcaa64
ES
2334
2335 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2336 root = btrfs_read_tree_root(tree_root, &location);
2337 if (!IS_ERR(root)) {
2338 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2339 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2340 fs_info->quota_root = root;
4bbcaa64
ES
2341 }
2342
2343 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2344 root = btrfs_read_tree_root(tree_root, &location);
2345 if (IS_ERR(root)) {
2346 ret = PTR_ERR(root);
4bbcaa64 2347 if (ret != -ENOENT)
f50f4353 2348 goto out;
4bbcaa64 2349 } else {
a4f3d2c4
DS
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 fs_info->uuid_root = root;
4bbcaa64
ES
2352 }
2353
70f6d82e
OS
2354 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2355 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2356 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2357 if (IS_ERR(root)) {
2358 ret = PTR_ERR(root);
2359 goto out;
2360 }
70f6d82e
OS
2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362 fs_info->free_space_root = root;
2363 }
2364
4bbcaa64 2365 return 0;
f50f4353
LB
2366out:
2367 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2368 location.objectid, ret);
2369 return ret;
4bbcaa64
ES
2370}
2371
069ec957
QW
2372/*
2373 * Real super block validation
2374 * NOTE: super csum type and incompat features will not be checked here.
2375 *
2376 * @sb: super block to check
2377 * @mirror_num: the super block number to check its bytenr:
2378 * 0 the primary (1st) sb
2379 * 1, 2 2nd and 3rd backup copy
2380 * -1 skip bytenr check
2381 */
2382static int validate_super(struct btrfs_fs_info *fs_info,
2383 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2384{
21a852b0
QW
2385 u64 nodesize = btrfs_super_nodesize(sb);
2386 u64 sectorsize = btrfs_super_sectorsize(sb);
2387 int ret = 0;
2388
2389 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2390 btrfs_err(fs_info, "no valid FS found");
2391 ret = -EINVAL;
2392 }
2393 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2394 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2395 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2396 ret = -EINVAL;
2397 }
2398 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2399 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2400 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2401 ret = -EINVAL;
2402 }
2403 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2404 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2405 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2406 ret = -EINVAL;
2407 }
2408 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2410 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2411 ret = -EINVAL;
2412 }
2413
2414 /*
2415 * Check sectorsize and nodesize first, other check will need it.
2416 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2417 */
2418 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2419 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2420 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2421 ret = -EINVAL;
2422 }
2423 /* Only PAGE SIZE is supported yet */
2424 if (sectorsize != PAGE_SIZE) {
2425 btrfs_err(fs_info,
2426 "sectorsize %llu not supported yet, only support %lu",
2427 sectorsize, PAGE_SIZE);
2428 ret = -EINVAL;
2429 }
2430 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2431 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2433 ret = -EINVAL;
2434 }
2435 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2436 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2437 le32_to_cpu(sb->__unused_leafsize), nodesize);
2438 ret = -EINVAL;
2439 }
2440
2441 /* Root alignment check */
2442 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2443 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2444 btrfs_super_root(sb));
2445 ret = -EINVAL;
2446 }
2447 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2448 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2449 btrfs_super_chunk_root(sb));
2450 ret = -EINVAL;
2451 }
2452 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2453 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2454 btrfs_super_log_root(sb));
2455 ret = -EINVAL;
2456 }
2457
de37aa51 2458 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2459 BTRFS_FSID_SIZE) != 0) {
21a852b0 2460 btrfs_err(fs_info,
7239ff4b 2461 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2462 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2463 ret = -EINVAL;
2464 }
2465
2466 /*
2467 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2468 * done later
2469 */
2470 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2471 btrfs_err(fs_info, "bytes_used is too small %llu",
2472 btrfs_super_bytes_used(sb));
2473 ret = -EINVAL;
2474 }
2475 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2476 btrfs_err(fs_info, "invalid stripesize %u",
2477 btrfs_super_stripesize(sb));
2478 ret = -EINVAL;
2479 }
2480 if (btrfs_super_num_devices(sb) > (1UL << 31))
2481 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2482 btrfs_super_num_devices(sb));
2483 if (btrfs_super_num_devices(sb) == 0) {
2484 btrfs_err(fs_info, "number of devices is 0");
2485 ret = -EINVAL;
2486 }
2487
069ec957
QW
2488 if (mirror_num >= 0 &&
2489 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2490 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2491 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2492 ret = -EINVAL;
2493 }
2494
2495 /*
2496 * Obvious sys_chunk_array corruptions, it must hold at least one key
2497 * and one chunk
2498 */
2499 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2500 btrfs_err(fs_info, "system chunk array too big %u > %u",
2501 btrfs_super_sys_array_size(sb),
2502 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2503 ret = -EINVAL;
2504 }
2505 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2506 + sizeof(struct btrfs_chunk)) {
2507 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2508 btrfs_super_sys_array_size(sb),
2509 sizeof(struct btrfs_disk_key)
2510 + sizeof(struct btrfs_chunk));
2511 ret = -EINVAL;
2512 }
2513
2514 /*
2515 * The generation is a global counter, we'll trust it more than the others
2516 * but it's still possible that it's the one that's wrong.
2517 */
2518 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2519 btrfs_warn(fs_info,
2520 "suspicious: generation < chunk_root_generation: %llu < %llu",
2521 btrfs_super_generation(sb),
2522 btrfs_super_chunk_root_generation(sb));
2523 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2524 && btrfs_super_cache_generation(sb) != (u64)-1)
2525 btrfs_warn(fs_info,
2526 "suspicious: generation < cache_generation: %llu < %llu",
2527 btrfs_super_generation(sb),
2528 btrfs_super_cache_generation(sb));
2529
2530 return ret;
2531}
2532
069ec957
QW
2533/*
2534 * Validation of super block at mount time.
2535 * Some checks already done early at mount time, like csum type and incompat
2536 * flags will be skipped.
2537 */
2538static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2539{
2540 return validate_super(fs_info, fs_info->super_copy, 0);
2541}
2542
75cb857d
QW
2543/*
2544 * Validation of super block at write time.
2545 * Some checks like bytenr check will be skipped as their values will be
2546 * overwritten soon.
2547 * Extra checks like csum type and incompat flags will be done here.
2548 */
2549static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2550 struct btrfs_super_block *sb)
2551{
2552 int ret;
2553
2554 ret = validate_super(fs_info, sb, -1);
2555 if (ret < 0)
2556 goto out;
e7e16f48 2557 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2558 ret = -EUCLEAN;
2559 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2560 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2561 goto out;
2562 }
2563 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2564 ret = -EUCLEAN;
2565 btrfs_err(fs_info,
2566 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2567 btrfs_super_incompat_flags(sb),
2568 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2569 goto out;
2570 }
2571out:
2572 if (ret < 0)
2573 btrfs_err(fs_info,
2574 "super block corruption detected before writing it to disk");
2575 return ret;
2576}
2577
b105e927 2578int __cold open_ctree(struct super_block *sb,
ad2b2c80
AV
2579 struct btrfs_fs_devices *fs_devices,
2580 char *options)
2e635a27 2581{
db94535d
CM
2582 u32 sectorsize;
2583 u32 nodesize;
87ee04eb 2584 u32 stripesize;
84234f3a 2585 u64 generation;
f2b636e8 2586 u64 features;
51bce6c9 2587 u16 csum_type;
3de4586c 2588 struct btrfs_key location;
a061fc8d 2589 struct buffer_head *bh;
4d34b278 2590 struct btrfs_super_block *disk_super;
815745cf 2591 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2592 struct btrfs_root *tree_root;
4d34b278 2593 struct btrfs_root *chunk_root;
eb60ceac 2594 int ret;
e58ca020 2595 int err = -EINVAL;
af31f5e5
CM
2596 int num_backups_tried = 0;
2597 int backup_index = 0;
6675df31 2598 int clear_free_space_tree = 0;
581c1760 2599 int level;
4543df7e 2600
74e4d827
DS
2601 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2602 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2603 if (!tree_root || !chunk_root) {
39279cc3
CM
2604 err = -ENOMEM;
2605 goto fail;
2606 }
76dda93c
YZ
2607
2608 ret = init_srcu_struct(&fs_info->subvol_srcu);
2609 if (ret) {
2610 err = ret;
2611 goto fail;
2612 }
2613
4297ff84 2614 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2615 if (ret) {
2616 err = ret;
9e11ceee 2617 goto fail_srcu;
e2d84521 2618 }
4297ff84
JB
2619
2620 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2621 if (ret) {
2622 err = ret;
2623 goto fail_dio_bytes;
2624 }
09cbfeaf 2625 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2626 (1 + ilog2(nr_cpu_ids));
2627
908c7f19 2628 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2629 if (ret) {
2630 err = ret;
2631 goto fail_dirty_metadata_bytes;
2632 }
2633
7f8d236a
DS
2634 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2635 GFP_KERNEL);
c404e0dc
MX
2636 if (ret) {
2637 err = ret;
2638 goto fail_delalloc_bytes;
2639 }
2640
76dda93c 2641 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2642 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2643 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2644 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2645 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2646 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2647 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2648 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2649 spin_lock_init(&fs_info->trans_lock);
76dda93c 2650 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2651 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2652 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2653 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2654 spin_lock_init(&fs_info->super_lock);
f28491e0 2655 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2656 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2657 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2658 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2659 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2660 mutex_init(&fs_info->reloc_mutex);
573bfb72 2661 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2662 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2663
0b86a832 2664 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2665 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2666 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2667 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2668 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2669 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2670 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2671 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2672 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2673 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2674 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2675 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2676 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2677 BTRFS_BLOCK_RSV_DELREFS);
2678
771ed689 2679 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2680 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2681 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2682 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2683 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2684 fs_info->sb = sb;
95ac567a 2685 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2686 fs_info->metadata_ratio = 0;
4cb5300b 2687 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2688 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2689 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2690 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2691 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2692 /* readahead state */
d0164adc 2693 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2694 spin_lock_init(&fs_info->reada_lock);
fd708b81 2695 btrfs_init_ref_verify(fs_info);
c8b97818 2696
b34b086c
CM
2697 fs_info->thread_pool_size = min_t(unsigned long,
2698 num_online_cpus() + 2, 8);
0afbaf8c 2699
199c2a9c
MX
2700 INIT_LIST_HEAD(&fs_info->ordered_roots);
2701 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2702
2703 fs_info->btree_inode = new_inode(sb);
2704 if (!fs_info->btree_inode) {
2705 err = -ENOMEM;
2706 goto fail_bio_counter;
2707 }
2708 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2709
16cdcec7 2710 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2711 GFP_KERNEL);
16cdcec7
MX
2712 if (!fs_info->delayed_root) {
2713 err = -ENOMEM;
2714 goto fail_iput;
2715 }
2716 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2717
638aa7ed 2718 btrfs_init_scrub(fs_info);
21adbd5c
SB
2719#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2720 fs_info->check_integrity_print_mask = 0;
2721#endif
779a65a4 2722 btrfs_init_balance(fs_info);
21c7e756 2723 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2724
9f6d2510
DS
2725 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2726 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2727
6bccf3ab 2728 btrfs_init_btree_inode(fs_info);
76dda93c 2729
0f9dd46c 2730 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2731 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2732 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2733
43eb5f29
QW
2734 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2735 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2736 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2737 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2738 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2739 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2740
5a3f23d5 2741 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2742 mutex_init(&fs_info->tree_log_mutex);
925baedd 2743 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2744 mutex_init(&fs_info->transaction_kthread_mutex);
2745 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2746 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2747 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2748 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2749 init_rwsem(&fs_info->subvol_sem);
803b2f54 2750 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2751
ad618368 2752 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2753 btrfs_init_qgroup(fs_info);
416ac51d 2754
fa9c0d79
CM
2755 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2756 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2757
e6dcd2dc 2758 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2759 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2760 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2761 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2762 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2763
da17066c
JM
2764 /* Usable values until the real ones are cached from the superblock */
2765 fs_info->nodesize = 4096;
2766 fs_info->sectorsize = 4096;
2767 fs_info->stripesize = 4096;
2768
eede2bf3
OS
2769 spin_lock_init(&fs_info->swapfile_pins_lock);
2770 fs_info->swapfile_pins = RB_ROOT;
2771
9e967495
FM
2772 fs_info->send_in_progress = 0;
2773
53b381b3
DW
2774 ret = btrfs_alloc_stripe_hash_table(fs_info);
2775 if (ret) {
83c8266a 2776 err = ret;
53b381b3
DW
2777 goto fail_alloc;
2778 }
2779
da17066c 2780 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2781
3c4bb26b 2782 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2783
2784 /*
2785 * Read super block and check the signature bytes only
2786 */
a512bbf8 2787 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2788 if (IS_ERR(bh)) {
2789 err = PTR_ERR(bh);
16cdcec7 2790 goto fail_alloc;
20b45077 2791 }
39279cc3 2792
8dc3f22c
JT
2793 /*
2794 * Verify the type first, if that or the the checksum value are
2795 * corrupted, we'll find out
2796 */
51bce6c9
JT
2797 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2798 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2799 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2800 csum_type);
8dc3f22c
JT
2801 err = -EINVAL;
2802 brelse(bh);
2803 goto fail_alloc;
2804 }
2805
6d97c6e3
JT
2806 ret = btrfs_init_csum_hash(fs_info, csum_type);
2807 if (ret) {
2808 err = ret;
2809 goto fail_alloc;
2810 }
2811
1104a885
DS
2812 /*
2813 * We want to check superblock checksum, the type is stored inside.
2814 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2815 */
ab8d0fc4 2816 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2817 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2818 err = -EINVAL;
b2acdddf 2819 brelse(bh);
6d97c6e3 2820 goto fail_csum;
1104a885
DS
2821 }
2822
2823 /*
2824 * super_copy is zeroed at allocation time and we never touch the
2825 * following bytes up to INFO_SIZE, the checksum is calculated from
2826 * the whole block of INFO_SIZE
2827 */
6c41761f 2828 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2829 brelse(bh);
5f39d397 2830
fbc6feae
NB
2831 disk_super = fs_info->super_copy;
2832
de37aa51
NB
2833 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2834 BTRFS_FSID_SIZE));
2835
7239ff4b 2836 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2837 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2838 fs_info->super_copy->metadata_uuid,
2839 BTRFS_FSID_SIZE));
7239ff4b 2840 }
0b86a832 2841
fbc6feae
NB
2842 features = btrfs_super_flags(disk_super);
2843 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2844 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2845 btrfs_set_super_flags(disk_super, features);
2846 btrfs_info(fs_info,
2847 "found metadata UUID change in progress flag, clearing");
2848 }
2849
2850 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2851 sizeof(*fs_info->super_for_commit));
de37aa51 2852
069ec957 2853 ret = btrfs_validate_mount_super(fs_info);
1104a885 2854 if (ret) {
05135f59 2855 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2856 err = -EINVAL;
6d97c6e3 2857 goto fail_csum;
1104a885
DS
2858 }
2859
0f7d52f4 2860 if (!btrfs_super_root(disk_super))
6d97c6e3 2861 goto fail_csum;
0f7d52f4 2862
acce952b 2863 /* check FS state, whether FS is broken. */
87533c47
MX
2864 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2865 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2866
af31f5e5
CM
2867 /*
2868 * run through our array of backup supers and setup
2869 * our ring pointer to the oldest one
2870 */
2871 generation = btrfs_super_generation(disk_super);
2872 find_oldest_super_backup(fs_info, generation);
2873
75e7cb7f
LB
2874 /*
2875 * In the long term, we'll store the compression type in the super
2876 * block, and it'll be used for per file compression control.
2877 */
2878 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2879
2ff7e61e 2880 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2881 if (ret) {
2882 err = ret;
6d97c6e3 2883 goto fail_csum;
2b82032c 2884 }
dfe25020 2885
f2b636e8
JB
2886 features = btrfs_super_incompat_flags(disk_super) &
2887 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2888 if (features) {
05135f59
DS
2889 btrfs_err(fs_info,
2890 "cannot mount because of unsupported optional features (%llx)",
2891 features);
f2b636e8 2892 err = -EINVAL;
6d97c6e3 2893 goto fail_csum;
f2b636e8
JB
2894 }
2895
5d4f98a2 2896 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2897 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2898 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2899 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2900 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2901 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2902
3173a18f 2903 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2904 btrfs_info(fs_info, "has skinny extents");
3173a18f 2905
727011e0
CM
2906 /*
2907 * flag our filesystem as having big metadata blocks if
2908 * they are bigger than the page size
2909 */
09cbfeaf 2910 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2911 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2912 btrfs_info(fs_info,
2913 "flagging fs with big metadata feature");
727011e0
CM
2914 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2915 }
2916
bc3f116f 2917 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2918 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2919 stripesize = sectorsize;
707e8a07 2920 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2921 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2922
da17066c
JM
2923 /* Cache block sizes */
2924 fs_info->nodesize = nodesize;
2925 fs_info->sectorsize = sectorsize;
2926 fs_info->stripesize = stripesize;
2927
bc3f116f
CM
2928 /*
2929 * mixed block groups end up with duplicate but slightly offset
2930 * extent buffers for the same range. It leads to corruptions
2931 */
2932 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2933 (sectorsize != nodesize)) {
05135f59
DS
2934 btrfs_err(fs_info,
2935"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2936 nodesize, sectorsize);
6d97c6e3 2937 goto fail_csum;
bc3f116f
CM
2938 }
2939
ceda0864
MX
2940 /*
2941 * Needn't use the lock because there is no other task which will
2942 * update the flag.
2943 */
a6fa6fae 2944 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2945
f2b636e8
JB
2946 features = btrfs_super_compat_ro_flags(disk_super) &
2947 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2948 if (!sb_rdonly(sb) && features) {
05135f59
DS
2949 btrfs_err(fs_info,
2950 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2951 features);
f2b636e8 2952 err = -EINVAL;
6d97c6e3 2953 goto fail_csum;
f2b636e8 2954 }
61d92c32 2955
2a458198
ES
2956 ret = btrfs_init_workqueues(fs_info, fs_devices);
2957 if (ret) {
2958 err = ret;
0dc3b84a
JB
2959 goto fail_sb_buffer;
2960 }
4543df7e 2961
9e11ceee
JK
2962 sb->s_bdi->congested_fn = btrfs_congested_fn;
2963 sb->s_bdi->congested_data = fs_info;
2964 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2965 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2966 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2967 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2968
a061fc8d
CM
2969 sb->s_blocksize = sectorsize;
2970 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2971 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2972
925baedd 2973 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2974 ret = btrfs_read_sys_array(fs_info);
925baedd 2975 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2976 if (ret) {
05135f59 2977 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2978 goto fail_sb_buffer;
84eed90f 2979 }
0b86a832 2980
84234f3a 2981 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2982 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2983
da17066c 2984 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2985
2ff7e61e 2986 chunk_root->node = read_tree_block(fs_info,
0b86a832 2987 btrfs_super_chunk_root(disk_super),
581c1760 2988 generation, level, NULL);
64c043de
LB
2989 if (IS_ERR(chunk_root->node) ||
2990 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2991 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2992 if (!IS_ERR(chunk_root->node))
2993 free_extent_buffer(chunk_root->node);
95ab1f64 2994 chunk_root->node = NULL;
af31f5e5 2995 goto fail_tree_roots;
83121942 2996 }
5d4f98a2
YZ
2997 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2998 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2999
e17cade2 3000 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3001 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3002
5b4aacef 3003 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3004 if (ret) {
05135f59 3005 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3006 goto fail_tree_roots;
2b82032c 3007 }
0b86a832 3008
8dabb742 3009 /*
9b99b115
AJ
3010 * Keep the devid that is marked to be the target device for the
3011 * device replace procedure
8dabb742 3012 */
9b99b115 3013 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3014
a6b0d5c8 3015 if (!fs_devices->latest_bdev) {
05135f59 3016 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3017 goto fail_tree_roots;
3018 }
3019
af31f5e5 3020retry_root_backup:
84234f3a 3021 generation = btrfs_super_generation(disk_super);
581c1760 3022 level = btrfs_super_root_level(disk_super);
0b86a832 3023
2ff7e61e 3024 tree_root->node = read_tree_block(fs_info,
db94535d 3025 btrfs_super_root(disk_super),
581c1760 3026 generation, level, NULL);
64c043de
LB
3027 if (IS_ERR(tree_root->node) ||
3028 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3029 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3030 if (!IS_ERR(tree_root->node))
3031 free_extent_buffer(tree_root->node);
95ab1f64 3032 tree_root->node = NULL;
af31f5e5 3033 goto recovery_tree_root;
83121942 3034 }
af31f5e5 3035
5d4f98a2
YZ
3036 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3037 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3038 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3039
f32e48e9
CR
3040 mutex_lock(&tree_root->objectid_mutex);
3041 ret = btrfs_find_highest_objectid(tree_root,
3042 &tree_root->highest_objectid);
3043 if (ret) {
3044 mutex_unlock(&tree_root->objectid_mutex);
3045 goto recovery_tree_root;
3046 }
3047
3048 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3049
3050 mutex_unlock(&tree_root->objectid_mutex);
3051
6bccf3ab 3052 ret = btrfs_read_roots(fs_info);
4bbcaa64 3053 if (ret)
af31f5e5 3054 goto recovery_tree_root;
f7a81ea4 3055
8929ecfa
YZ
3056 fs_info->generation = generation;
3057 fs_info->last_trans_committed = generation;
8929ecfa 3058
cf90d884
QW
3059 ret = btrfs_verify_dev_extents(fs_info);
3060 if (ret) {
3061 btrfs_err(fs_info,
3062 "failed to verify dev extents against chunks: %d",
3063 ret);
3064 goto fail_block_groups;
3065 }
68310a5e
ID
3066 ret = btrfs_recover_balance(fs_info);
3067 if (ret) {
05135f59 3068 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3069 goto fail_block_groups;
3070 }
3071
733f4fbb
SB
3072 ret = btrfs_init_dev_stats(fs_info);
3073 if (ret) {
05135f59 3074 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3075 goto fail_block_groups;
3076 }
3077
8dabb742
SB
3078 ret = btrfs_init_dev_replace(fs_info);
3079 if (ret) {
05135f59 3080 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3081 goto fail_block_groups;
3082 }
3083
9b99b115 3084 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3085
b7c35e81
AJ
3086 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3087 if (ret) {
05135f59
DS
3088 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3089 ret);
b7c35e81
AJ
3090 goto fail_block_groups;
3091 }
3092
3093 ret = btrfs_sysfs_add_device(fs_devices);
3094 if (ret) {
05135f59
DS
3095 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3096 ret);
b7c35e81
AJ
3097 goto fail_fsdev_sysfs;
3098 }
3099
96f3136e 3100 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3101 if (ret) {
05135f59 3102 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3103 goto fail_fsdev_sysfs;
c59021f8 3104 }
3105
c59021f8 3106 ret = btrfs_init_space_info(fs_info);
3107 if (ret) {
05135f59 3108 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3109 goto fail_sysfs;
c59021f8 3110 }
3111
5b4aacef 3112 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3113 if (ret) {
05135f59 3114 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3115 goto fail_sysfs;
1b1d1f66 3116 }
4330e183 3117
6528b99d 3118 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3119 btrfs_warn(fs_info,
52042d8e 3120 "writable mount is not allowed due to too many missing devices");
2365dd3c 3121 goto fail_sysfs;
292fd7fc 3122 }
9078a3e1 3123
a74a4b97
CM
3124 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3125 "btrfs-cleaner");
57506d50 3126 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3127 goto fail_sysfs;
a74a4b97
CM
3128
3129 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3130 tree_root,
3131 "btrfs-transaction");
57506d50 3132 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3133 goto fail_cleaner;
a74a4b97 3134
583b7231 3135 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3136 !fs_info->fs_devices->rotating) {
583b7231 3137 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3138 }
3139
572d9ab7 3140 /*
01327610 3141 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3142 * not have to wait for transaction commit
3143 */
3144 btrfs_apply_pending_changes(fs_info);
3818aea2 3145
21adbd5c 3146#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3147 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3148 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3149 btrfs_test_opt(fs_info,
21adbd5c
SB
3150 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3151 1 : 0,
3152 fs_info->check_integrity_print_mask);
3153 if (ret)
05135f59
DS
3154 btrfs_warn(fs_info,
3155 "failed to initialize integrity check module: %d",
3156 ret);
21adbd5c
SB
3157 }
3158#endif
bcef60f2
AJ
3159 ret = btrfs_read_qgroup_config(fs_info);
3160 if (ret)
3161 goto fail_trans_kthread;
21adbd5c 3162
fd708b81
JB
3163 if (btrfs_build_ref_tree(fs_info))
3164 btrfs_err(fs_info, "couldn't build ref tree");
3165
96da0919
QW
3166 /* do not make disk changes in broken FS or nologreplay is given */
3167 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3168 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3169 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3170 if (ret) {
63443bf5 3171 err = ret;
28c16cbb 3172 goto fail_qgroup;
79787eaa 3173 }
e02119d5 3174 }
1a40e23b 3175
6bccf3ab 3176 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3177 if (ret)
28c16cbb 3178 goto fail_qgroup;
76dda93c 3179
bc98a42c 3180 if (!sb_rdonly(sb)) {
d68fc57b 3181 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3182 if (ret)
28c16cbb 3183 goto fail_qgroup;
90c711ab
ZB
3184
3185 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3186 ret = btrfs_recover_relocation(tree_root);
90c711ab 3187 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3188 if (ret < 0) {
05135f59
DS
3189 btrfs_warn(fs_info, "failed to recover relocation: %d",
3190 ret);
d7ce5843 3191 err = -EINVAL;
bcef60f2 3192 goto fail_qgroup;
d7ce5843 3193 }
7c2ca468 3194 }
1a40e23b 3195
3de4586c
CM
3196 location.objectid = BTRFS_FS_TREE_OBJECTID;
3197 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3198 location.offset = 0;
3de4586c 3199
3de4586c 3200 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3201 if (IS_ERR(fs_info->fs_root)) {
3202 err = PTR_ERR(fs_info->fs_root);
f50f4353 3203 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3204 goto fail_qgroup;
3140c9a3 3205 }
c289811c 3206
bc98a42c 3207 if (sb_rdonly(sb))
2b6ba629 3208 return 0;
59641015 3209
f8d468a1
OS
3210 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3211 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3212 clear_free_space_tree = 1;
3213 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3214 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3215 btrfs_warn(fs_info, "free space tree is invalid");
3216 clear_free_space_tree = 1;
3217 }
3218
3219 if (clear_free_space_tree) {
f8d468a1
OS
3220 btrfs_info(fs_info, "clearing free space tree");
3221 ret = btrfs_clear_free_space_tree(fs_info);
3222 if (ret) {
3223 btrfs_warn(fs_info,
3224 "failed to clear free space tree: %d", ret);
6bccf3ab 3225 close_ctree(fs_info);
f8d468a1
OS
3226 return ret;
3227 }
3228 }
3229
0b246afa 3230 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3231 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3232 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3233 ret = btrfs_create_free_space_tree(fs_info);
3234 if (ret) {
05135f59
DS
3235 btrfs_warn(fs_info,
3236 "failed to create free space tree: %d", ret);
6bccf3ab 3237 close_ctree(fs_info);
511711af
CM
3238 return ret;
3239 }
3240 }
3241
2b6ba629
ID
3242 down_read(&fs_info->cleanup_work_sem);
3243 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3244 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3245 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3246 close_ctree(fs_info);
2b6ba629
ID
3247 return ret;
3248 }
3249 up_read(&fs_info->cleanup_work_sem);
59641015 3250
2b6ba629
ID
3251 ret = btrfs_resume_balance_async(fs_info);
3252 if (ret) {
05135f59 3253 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3254 close_ctree(fs_info);
2b6ba629 3255 return ret;
e3acc2a6
JB
3256 }
3257
8dabb742
SB
3258 ret = btrfs_resume_dev_replace_async(fs_info);
3259 if (ret) {
05135f59 3260 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3261 close_ctree(fs_info);
8dabb742
SB
3262 return ret;
3263 }
3264
b382a324
JS
3265 btrfs_qgroup_rescan_resume(fs_info);
3266
4bbcaa64 3267 if (!fs_info->uuid_root) {
05135f59 3268 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3269 ret = btrfs_create_uuid_tree(fs_info);
3270 if (ret) {
05135f59
DS
3271 btrfs_warn(fs_info,
3272 "failed to create the UUID tree: %d", ret);
6bccf3ab 3273 close_ctree(fs_info);
f7a81ea4
SB
3274 return ret;
3275 }
0b246afa 3276 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3277 fs_info->generation !=
3278 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3279 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3280 ret = btrfs_check_uuid_tree(fs_info);
3281 if (ret) {
05135f59
DS
3282 btrfs_warn(fs_info,
3283 "failed to check the UUID tree: %d", ret);
6bccf3ab 3284 close_ctree(fs_info);
70f80175
SB
3285 return ret;
3286 }
3287 } else {
afcdd129 3288 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3289 }
afcdd129 3290 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3291
8dcddfa0
QW
3292 /*
3293 * backuproot only affect mount behavior, and if open_ctree succeeded,
3294 * no need to keep the flag
3295 */
3296 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3297
ad2b2c80 3298 return 0;
39279cc3 3299
bcef60f2
AJ
3300fail_qgroup:
3301 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3302fail_trans_kthread:
3303 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3304 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3305 btrfs_free_fs_roots(fs_info);
3f157a2f 3306fail_cleaner:
a74a4b97 3307 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3308
3309 /*
3310 * make sure we're done with the btree inode before we stop our
3311 * kthreads
3312 */
3313 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3314
2365dd3c 3315fail_sysfs:
6618a59b 3316 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3317
b7c35e81
AJ
3318fail_fsdev_sysfs:
3319 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3320
1b1d1f66 3321fail_block_groups:
54067ae9 3322 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3323
3324fail_tree_roots:
4273eaff 3325 free_root_pointers(fs_info, true);
2b8195bb 3326 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3327
39279cc3 3328fail_sb_buffer:
7abadb64 3329 btrfs_stop_all_workers(fs_info);
5cdd7db6 3330 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3331fail_csum:
3332 btrfs_free_csum_hash(fs_info);
16cdcec7 3333fail_alloc:
4543df7e 3334fail_iput:
586e46e2
ID
3335 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3336
4543df7e 3337 iput(fs_info->btree_inode);
c404e0dc 3338fail_bio_counter:
7f8d236a 3339 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3340fail_delalloc_bytes:
3341 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3342fail_dirty_metadata_bytes:
3343 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3344fail_dio_bytes:
3345 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3346fail_srcu:
3347 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3348fail:
53b381b3 3349 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3350 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3351 return err;
af31f5e5
CM
3352
3353recovery_tree_root:
0b246afa 3354 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3355 goto fail_tree_roots;
3356
4273eaff 3357 free_root_pointers(fs_info, false);
af31f5e5
CM
3358
3359 /* don't use the log in recovery mode, it won't be valid */
3360 btrfs_set_super_log_root(disk_super, 0);
3361
3362 /* we can't trust the free space cache either */
3363 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3364
3365 ret = next_root_backup(fs_info, fs_info->super_copy,
3366 &num_backups_tried, &backup_index);
3367 if (ret == -1)
3368 goto fail_block_groups;
3369 goto retry_root_backup;
eb60ceac 3370}
663faf9f 3371ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3372
f2984462
CM
3373static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3374{
f2984462
CM
3375 if (uptodate) {
3376 set_buffer_uptodate(bh);
3377 } else {
442a4f63
SB
3378 struct btrfs_device *device = (struct btrfs_device *)
3379 bh->b_private;
3380
fb456252 3381 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3382 "lost page write due to IO error on %s",
606686ee 3383 rcu_str_deref(device->name));
01327610 3384 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3385 * our own ways of dealing with the IO errors
3386 */
f2984462 3387 clear_buffer_uptodate(bh);
442a4f63 3388 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3389 }
3390 unlock_buffer(bh);
3391 put_bh(bh);
3392}
3393
29c36d72
AJ
3394int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3395 struct buffer_head **bh_ret)
3396{
3397 struct buffer_head *bh;
3398 struct btrfs_super_block *super;
3399 u64 bytenr;
3400
3401 bytenr = btrfs_sb_offset(copy_num);
3402 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3403 return -EINVAL;
3404
9f6d2510 3405 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3406 /*
3407 * If we fail to read from the underlying devices, as of now
3408 * the best option we have is to mark it EIO.
3409 */
3410 if (!bh)
3411 return -EIO;
3412
3413 super = (struct btrfs_super_block *)bh->b_data;
3414 if (btrfs_super_bytenr(super) != bytenr ||
3415 btrfs_super_magic(super) != BTRFS_MAGIC) {
3416 brelse(bh);
3417 return -EINVAL;
3418 }
3419
3420 *bh_ret = bh;
3421 return 0;
3422}
3423
3424
a512bbf8
YZ
3425struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3426{
3427 struct buffer_head *bh;
3428 struct buffer_head *latest = NULL;
3429 struct btrfs_super_block *super;
3430 int i;
3431 u64 transid = 0;
92fc03fb 3432 int ret = -EINVAL;
a512bbf8
YZ
3433
3434 /* we would like to check all the supers, but that would make
3435 * a btrfs mount succeed after a mkfs from a different FS.
3436 * So, we need to add a special mount option to scan for
3437 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3438 */
3439 for (i = 0; i < 1; i++) {
29c36d72
AJ
3440 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3441 if (ret)
a512bbf8
YZ
3442 continue;
3443
3444 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3445
3446 if (!latest || btrfs_super_generation(super) > transid) {
3447 brelse(latest);
3448 latest = bh;
3449 transid = btrfs_super_generation(super);
3450 } else {
3451 brelse(bh);
3452 }
3453 }
92fc03fb
AJ
3454
3455 if (!latest)
3456 return ERR_PTR(ret);
3457
a512bbf8
YZ
3458 return latest;
3459}
3460
4eedeb75 3461/*
abbb3b8e
DS
3462 * Write superblock @sb to the @device. Do not wait for completion, all the
3463 * buffer heads we write are pinned.
4eedeb75 3464 *
abbb3b8e
DS
3465 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3466 * the expected device size at commit time. Note that max_mirrors must be
3467 * same for write and wait phases.
4eedeb75 3468 *
abbb3b8e 3469 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3470 */
a512bbf8 3471static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3472 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3473{
d5178578
JT
3474 struct btrfs_fs_info *fs_info = device->fs_info;
3475 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3476 struct buffer_head *bh;
3477 int i;
3478 int ret;
3479 int errors = 0;
a512bbf8 3480 u64 bytenr;
1b9e619c 3481 int op_flags;
a512bbf8
YZ
3482
3483 if (max_mirrors == 0)
3484 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3485
d5178578
JT
3486 shash->tfm = fs_info->csum_shash;
3487
a512bbf8
YZ
3488 for (i = 0; i < max_mirrors; i++) {
3489 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3490 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3491 device->commit_total_bytes)
a512bbf8
YZ
3492 break;
3493
abbb3b8e 3494 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3495
d5178578
JT
3496 crypto_shash_init(shash);
3497 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3498 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3499 crypto_shash_final(shash, sb->csum);
4eedeb75 3500
abbb3b8e 3501 /* One reference for us, and we leave it for the caller */
9f6d2510 3502 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3503 BTRFS_SUPER_INFO_SIZE);
3504 if (!bh) {
3505 btrfs_err(device->fs_info,
3506 "couldn't get super buffer head for bytenr %llu",
3507 bytenr);
3508 errors++;
4eedeb75 3509 continue;
abbb3b8e 3510 }
634554dc 3511
abbb3b8e 3512 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3513
abbb3b8e
DS
3514 /* one reference for submit_bh */
3515 get_bh(bh);
4eedeb75 3516
abbb3b8e
DS
3517 set_buffer_uptodate(bh);
3518 lock_buffer(bh);
3519 bh->b_end_io = btrfs_end_buffer_write_sync;
3520 bh->b_private = device;
a512bbf8 3521
387125fc
CM
3522 /*
3523 * we fua the first super. The others we allow
3524 * to go down lazy.
3525 */
1b9e619c
OS
3526 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3527 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3528 op_flags |= REQ_FUA;
3529 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3530 if (ret)
a512bbf8 3531 errors++;
a512bbf8
YZ
3532 }
3533 return errors < i ? 0 : -1;
3534}
3535
abbb3b8e
DS
3536/*
3537 * Wait for write completion of superblocks done by write_dev_supers,
3538 * @max_mirrors same for write and wait phases.
3539 *
3540 * Return number of errors when buffer head is not found or not marked up to
3541 * date.
3542 */
3543static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3544{
3545 struct buffer_head *bh;
3546 int i;
3547 int errors = 0;
b6a535fa 3548 bool primary_failed = false;
abbb3b8e
DS
3549 u64 bytenr;
3550
3551 if (max_mirrors == 0)
3552 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3553
3554 for (i = 0; i < max_mirrors; i++) {
3555 bytenr = btrfs_sb_offset(i);
3556 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3557 device->commit_total_bytes)
3558 break;
3559
9f6d2510
DS
3560 bh = __find_get_block(device->bdev,
3561 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3562 BTRFS_SUPER_INFO_SIZE);
3563 if (!bh) {
3564 errors++;
b6a535fa
HM
3565 if (i == 0)
3566 primary_failed = true;
abbb3b8e
DS
3567 continue;
3568 }
3569 wait_on_buffer(bh);
b6a535fa 3570 if (!buffer_uptodate(bh)) {
abbb3b8e 3571 errors++;
b6a535fa
HM
3572 if (i == 0)
3573 primary_failed = true;
3574 }
abbb3b8e
DS
3575
3576 /* drop our reference */
3577 brelse(bh);
3578
3579 /* drop the reference from the writing run */
3580 brelse(bh);
3581 }
3582
b6a535fa
HM
3583 /* log error, force error return */
3584 if (primary_failed) {
3585 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3586 device->devid);
3587 return -1;
3588 }
3589
abbb3b8e
DS
3590 return errors < i ? 0 : -1;
3591}
3592
387125fc
CM
3593/*
3594 * endio for the write_dev_flush, this will wake anyone waiting
3595 * for the barrier when it is done
3596 */
4246a0b6 3597static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3598{
e0ae9994 3599 complete(bio->bi_private);
387125fc
CM
3600}
3601
3602/*
4fc6441a
AJ
3603 * Submit a flush request to the device if it supports it. Error handling is
3604 * done in the waiting counterpart.
387125fc 3605 */
4fc6441a 3606static void write_dev_flush(struct btrfs_device *device)
387125fc 3607{
c2a9c7ab 3608 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3609 struct bio *bio = device->flush_bio;
387125fc 3610
c2a9c7ab 3611 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3612 return;
387125fc 3613
e0ae9994 3614 bio_reset(bio);
387125fc 3615 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3616 bio_set_dev(bio, device->bdev);
8d910125 3617 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3618 init_completion(&device->flush_wait);
3619 bio->bi_private = &device->flush_wait;
387125fc 3620
43a01111 3621 btrfsic_submit_bio(bio);
1c3063b6 3622 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3623}
387125fc 3624
4fc6441a
AJ
3625/*
3626 * If the flush bio has been submitted by write_dev_flush, wait for it.
3627 */
8c27cb35 3628static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3629{
4fc6441a 3630 struct bio *bio = device->flush_bio;
387125fc 3631
1c3063b6 3632 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3633 return BLK_STS_OK;
387125fc 3634
1c3063b6 3635 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3636 wait_for_completion_io(&device->flush_wait);
387125fc 3637
8c27cb35 3638 return bio->bi_status;
387125fc 3639}
387125fc 3640
d10b82fe 3641static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3642{
6528b99d 3643 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3644 return -EIO;
387125fc
CM
3645 return 0;
3646}
3647
3648/*
3649 * send an empty flush down to each device in parallel,
3650 * then wait for them
3651 */
3652static int barrier_all_devices(struct btrfs_fs_info *info)
3653{
3654 struct list_head *head;
3655 struct btrfs_device *dev;
5af3e8cc 3656 int errors_wait = 0;
4e4cbee9 3657 blk_status_t ret;
387125fc 3658
1538e6c5 3659 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3660 /* send down all the barriers */
3661 head = &info->fs_devices->devices;
1538e6c5 3662 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3663 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3664 continue;
cea7c8bf 3665 if (!dev->bdev)
387125fc 3666 continue;
e12c9621 3667 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3668 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3669 continue;
3670
4fc6441a 3671 write_dev_flush(dev);
58efbc9f 3672 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3673 }
3674
3675 /* wait for all the barriers */
1538e6c5 3676 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3677 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3678 continue;
387125fc 3679 if (!dev->bdev) {
5af3e8cc 3680 errors_wait++;
387125fc
CM
3681 continue;
3682 }
e12c9621 3683 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3684 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3685 continue;
3686
4fc6441a 3687 ret = wait_dev_flush(dev);
401b41e5
AJ
3688 if (ret) {
3689 dev->last_flush_error = ret;
66b4993e
DS
3690 btrfs_dev_stat_inc_and_print(dev,
3691 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3692 errors_wait++;
401b41e5
AJ
3693 }
3694 }
3695
cea7c8bf 3696 if (errors_wait) {
401b41e5
AJ
3697 /*
3698 * At some point we need the status of all disks
3699 * to arrive at the volume status. So error checking
3700 * is being pushed to a separate loop.
3701 */
d10b82fe 3702 return check_barrier_error(info);
387125fc 3703 }
387125fc
CM
3704 return 0;
3705}
3706
943c6e99
ZL
3707int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3708{
8789f4fe
ZL
3709 int raid_type;
3710 int min_tolerated = INT_MAX;
943c6e99 3711
8789f4fe
ZL
3712 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3713 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3714 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3715 btrfs_raid_array[BTRFS_RAID_SINGLE].
3716 tolerated_failures);
943c6e99 3717
8789f4fe
ZL
3718 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3719 if (raid_type == BTRFS_RAID_SINGLE)
3720 continue;
41a6e891 3721 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3722 continue;
8c3e3582 3723 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3724 btrfs_raid_array[raid_type].
3725 tolerated_failures);
3726 }
943c6e99 3727
8789f4fe 3728 if (min_tolerated == INT_MAX) {
ab8d0fc4 3729 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3730 min_tolerated = 0;
3731 }
3732
3733 return min_tolerated;
943c6e99
ZL
3734}
3735
eece6a9c 3736int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3737{
e5e9a520 3738 struct list_head *head;
f2984462 3739 struct btrfs_device *dev;
a061fc8d 3740 struct btrfs_super_block *sb;
f2984462 3741 struct btrfs_dev_item *dev_item;
f2984462
CM
3742 int ret;
3743 int do_barriers;
a236aed1
CM
3744 int max_errors;
3745 int total_errors = 0;
a061fc8d 3746 u64 flags;
f2984462 3747
0b246afa 3748 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3749
3750 /*
3751 * max_mirrors == 0 indicates we're from commit_transaction,
3752 * not from fsync where the tree roots in fs_info have not
3753 * been consistent on disk.
3754 */
3755 if (max_mirrors == 0)
3756 backup_super_roots(fs_info);
f2984462 3757
0b246afa 3758 sb = fs_info->super_for_commit;
a061fc8d 3759 dev_item = &sb->dev_item;
e5e9a520 3760
0b246afa
JM
3761 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3762 head = &fs_info->fs_devices->devices;
3763 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3764
5af3e8cc 3765 if (do_barriers) {
0b246afa 3766 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3767 if (ret) {
3768 mutex_unlock(
0b246afa
JM
3769 &fs_info->fs_devices->device_list_mutex);
3770 btrfs_handle_fs_error(fs_info, ret,
3771 "errors while submitting device barriers.");
5af3e8cc
SB
3772 return ret;
3773 }
3774 }
387125fc 3775
1538e6c5 3776 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3777 if (!dev->bdev) {
3778 total_errors++;
3779 continue;
3780 }
e12c9621 3781 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3782 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3783 continue;
3784
2b82032c 3785 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3786 btrfs_set_stack_device_type(dev_item, dev->type);
3787 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3788 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3789 dev->commit_total_bytes);
ce7213c7
MX
3790 btrfs_set_stack_device_bytes_used(dev_item,
3791 dev->commit_bytes_used);
a061fc8d
CM
3792 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3793 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3794 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3795 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3796 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3797 BTRFS_FSID_SIZE);
a512bbf8 3798
a061fc8d
CM
3799 flags = btrfs_super_flags(sb);
3800 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3801
75cb857d
QW
3802 ret = btrfs_validate_write_super(fs_info, sb);
3803 if (ret < 0) {
3804 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3805 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3806 "unexpected superblock corruption detected");
3807 return -EUCLEAN;
3808 }
3809
abbb3b8e 3810 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3811 if (ret)
3812 total_errors++;
f2984462 3813 }
a236aed1 3814 if (total_errors > max_errors) {
0b246afa
JM
3815 btrfs_err(fs_info, "%d errors while writing supers",
3816 total_errors);
3817 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3818
9d565ba4 3819 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3820 btrfs_handle_fs_error(fs_info, -EIO,
3821 "%d errors while writing supers",
3822 total_errors);
9d565ba4 3823 return -EIO;
a236aed1 3824 }
f2984462 3825
a512bbf8 3826 total_errors = 0;
1538e6c5 3827 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3828 if (!dev->bdev)
3829 continue;
e12c9621 3830 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3831 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3832 continue;
3833
abbb3b8e 3834 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3835 if (ret)
3836 total_errors++;
f2984462 3837 }
0b246afa 3838 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3839 if (total_errors > max_errors) {
0b246afa
JM
3840 btrfs_handle_fs_error(fs_info, -EIO,
3841 "%d errors while writing supers",
3842 total_errors);
79787eaa 3843 return -EIO;
a236aed1 3844 }
f2984462
CM
3845 return 0;
3846}
3847
cb517eab
MX
3848/* Drop a fs root from the radix tree and free it. */
3849void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3850 struct btrfs_root *root)
2619ba1f 3851{
4df27c4d 3852 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3853 radix_tree_delete(&fs_info->fs_roots_radix,
3854 (unsigned long)root->root_key.objectid);
4df27c4d 3855 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3856
3857 if (btrfs_root_refs(&root->root_item) == 0)
3858 synchronize_srcu(&fs_info->subvol_srcu);
3859
1c1ea4f7 3860 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3861 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3862 if (root->reloc_root) {
3863 free_extent_buffer(root->reloc_root->node);
3864 free_extent_buffer(root->reloc_root->commit_root);
3865 btrfs_put_fs_root(root->reloc_root);
3866 root->reloc_root = NULL;
3867 }
3868 }
3321719e 3869
faa2dbf0
JB
3870 if (root->free_ino_pinned)
3871 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3872 if (root->free_ino_ctl)
3873 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3874 btrfs_free_fs_root(root);
4df27c4d
YZ
3875}
3876
84db5ccf 3877void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3878{
57cdc8db 3879 iput(root->ino_cache_inode);
4df27c4d 3880 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3881 if (root->anon_dev)
3882 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3883 if (root->subv_writers)
3884 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3885 free_extent_buffer(root->node);
3886 free_extent_buffer(root->commit_root);
581bb050
LZ
3887 kfree(root->free_ino_ctl);
3888 kfree(root->free_ino_pinned);
b0feb9d9 3889 btrfs_put_fs_root(root);
2619ba1f
CM
3890}
3891
c146afad 3892int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3893{
c146afad
YZ
3894 u64 root_objectid = 0;
3895 struct btrfs_root *gang[8];
65d33fd7
QW
3896 int i = 0;
3897 int err = 0;
3898 unsigned int ret = 0;
3899 int index;
e089f05c 3900
c146afad 3901 while (1) {
65d33fd7 3902 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3903 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3904 (void **)gang, root_objectid,
3905 ARRAY_SIZE(gang));
65d33fd7
QW
3906 if (!ret) {
3907 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3908 break;
65d33fd7 3909 }
5d4f98a2 3910 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3911
c146afad 3912 for (i = 0; i < ret; i++) {
65d33fd7
QW
3913 /* Avoid to grab roots in dead_roots */
3914 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3915 gang[i] = NULL;
3916 continue;
3917 }
3918 /* grab all the search result for later use */
3919 gang[i] = btrfs_grab_fs_root(gang[i]);
3920 }
3921 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3922
65d33fd7
QW
3923 for (i = 0; i < ret; i++) {
3924 if (!gang[i])
3925 continue;
c146afad 3926 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3927 err = btrfs_orphan_cleanup(gang[i]);
3928 if (err)
65d33fd7
QW
3929 break;
3930 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3931 }
3932 root_objectid++;
3933 }
65d33fd7
QW
3934
3935 /* release the uncleaned roots due to error */
3936 for (; i < ret; i++) {
3937 if (gang[i])
3938 btrfs_put_fs_root(gang[i]);
3939 }
3940 return err;
c146afad 3941}
a2135011 3942
6bccf3ab 3943int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3944{
6bccf3ab 3945 struct btrfs_root *root = fs_info->tree_root;
c146afad 3946 struct btrfs_trans_handle *trans;
a74a4b97 3947
0b246afa 3948 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3949 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3950 mutex_unlock(&fs_info->cleaner_mutex);
3951 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3952
3953 /* wait until ongoing cleanup work done */
0b246afa
JM
3954 down_write(&fs_info->cleanup_work_sem);
3955 up_write(&fs_info->cleanup_work_sem);
c71bf099 3956
7a7eaa40 3957 trans = btrfs_join_transaction(root);
3612b495
TI
3958 if (IS_ERR(trans))
3959 return PTR_ERR(trans);
3a45bb20 3960 return btrfs_commit_transaction(trans);
c146afad
YZ
3961}
3962
b105e927 3963void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3964{
c146afad
YZ
3965 int ret;
3966
afcdd129 3967 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3968 /*
3969 * We don't want the cleaner to start new transactions, add more delayed
3970 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3971 * because that frees the task_struct, and the transaction kthread might
3972 * still try to wake up the cleaner.
3973 */
3974 kthread_park(fs_info->cleaner_kthread);
c146afad 3975
7343dd61 3976 /* wait for the qgroup rescan worker to stop */
d06f23d6 3977 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3978
803b2f54
SB
3979 /* wait for the uuid_scan task to finish */
3980 down(&fs_info->uuid_tree_rescan_sem);
3981 /* avoid complains from lockdep et al., set sem back to initial state */
3982 up(&fs_info->uuid_tree_rescan_sem);
3983
837d5b6e 3984 /* pause restriper - we want to resume on mount */
aa1b8cd4 3985 btrfs_pause_balance(fs_info);
837d5b6e 3986
8dabb742
SB
3987 btrfs_dev_replace_suspend_for_unmount(fs_info);
3988
aa1b8cd4 3989 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3990
3991 /* wait for any defraggers to finish */
3992 wait_event(fs_info->transaction_wait,
3993 (atomic_read(&fs_info->defrag_running) == 0));
3994
3995 /* clear out the rbtree of defraggable inodes */
26176e7c 3996 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3997
21c7e756
MX
3998 cancel_work_sync(&fs_info->async_reclaim_work);
3999
bc98a42c 4000 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4001 /*
d6fd0ae2
OS
4002 * The cleaner kthread is stopped, so do one final pass over
4003 * unused block groups.
e44163e1 4004 */
0b246afa 4005 btrfs_delete_unused_bgs(fs_info);
e44163e1 4006
6bccf3ab 4007 ret = btrfs_commit_super(fs_info);
acce952b 4008 if (ret)
04892340 4009 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4010 }
4011
af722733
LB
4012 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4013 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4014 btrfs_error_commit_super(fs_info);
0f7d52f4 4015
e3029d9f
AV
4016 kthread_stop(fs_info->transaction_kthread);
4017 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4018
e187831e 4019 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4020 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4021
04892340 4022 btrfs_free_qgroup_config(fs_info);
fe816d0f 4023 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4024
963d678b 4025 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4026 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4027 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4028 }
bcc63abb 4029
4297ff84
JB
4030 if (percpu_counter_sum(&fs_info->dio_bytes))
4031 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4032 percpu_counter_sum(&fs_info->dio_bytes));
4033
6618a59b 4034 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4035 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4036
faa2dbf0 4037 btrfs_free_fs_roots(fs_info);
d10c5f31 4038
1a4319cc
LB
4039 btrfs_put_block_group_cache(fs_info);
4040
de348ee0
WS
4041 /*
4042 * we must make sure there is not any read request to
4043 * submit after we stopping all workers.
4044 */
4045 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4046 btrfs_stop_all_workers(fs_info);
4047
5cdd7db6
FM
4048 btrfs_free_block_groups(fs_info);
4049
afcdd129 4050 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4051 free_root_pointers(fs_info, true);
9ad6b7bc 4052
13e6c37b 4053 iput(fs_info->btree_inode);
d6bfde87 4054
21adbd5c 4055#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4056 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4057 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4058#endif
4059
0b86a832 4060 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4061 btrfs_close_devices(fs_info->fs_devices);
b248a415 4062
e2d84521 4063 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4064 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4065 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4066 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4067 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4068
bfcea1c6 4069 btrfs_free_csum_hash(fs_info);
53b381b3 4070 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4071 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4072}
4073
b9fab919
CM
4074int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4075 int atomic)
5f39d397 4076{
1259ab75 4077 int ret;
727011e0 4078 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4079
0b32f4bb 4080 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4081 if (!ret)
4082 return ret;
4083
4084 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4085 parent_transid, atomic);
4086 if (ret == -EAGAIN)
4087 return ret;
1259ab75 4088 return !ret;
5f39d397
CM
4089}
4090
5f39d397
CM
4091void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4092{
0b246afa 4093 struct btrfs_fs_info *fs_info;
06ea65a3 4094 struct btrfs_root *root;
5f39d397 4095 u64 transid = btrfs_header_generation(buf);
b9473439 4096 int was_dirty;
b4ce94de 4097
06ea65a3
JB
4098#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4099 /*
4100 * This is a fast path so only do this check if we have sanity tests
52042d8e 4101 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4102 * outside of the sanity tests.
4103 */
b0132a3b 4104 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4105 return;
4106#endif
4107 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4108 fs_info = root->fs_info;
b9447ef8 4109 btrfs_assert_tree_locked(buf);
0b246afa 4110 if (transid != fs_info->generation)
5d163e0e 4111 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4112 buf->start, transid, fs_info->generation);
0b32f4bb 4113 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4114 if (!was_dirty)
104b4e51
NB
4115 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4116 buf->len,
4117 fs_info->dirty_metadata_batch);
1f21ef0a 4118#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4119 /*
4120 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4121 * but item data not updated.
4122 * So here we should only check item pointers, not item data.
4123 */
4124 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4125 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4126 btrfs_print_leaf(buf);
1f21ef0a
FM
4127 ASSERT(0);
4128 }
4129#endif
eb60ceac
CM
4130}
4131
2ff7e61e 4132static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4133 int flush_delayed)
16cdcec7
MX
4134{
4135 /*
4136 * looks as though older kernels can get into trouble with
4137 * this code, they end up stuck in balance_dirty_pages forever
4138 */
e2d84521 4139 int ret;
16cdcec7
MX
4140
4141 if (current->flags & PF_MEMALLOC)
4142 return;
4143
b53d3f5d 4144 if (flush_delayed)
2ff7e61e 4145 btrfs_balance_delayed_items(fs_info);
16cdcec7 4146
d814a491
EL
4147 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4148 BTRFS_DIRTY_METADATA_THRESH,
4149 fs_info->dirty_metadata_batch);
e2d84521 4150 if (ret > 0) {
0b246afa 4151 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4152 }
16cdcec7
MX
4153}
4154
2ff7e61e 4155void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4156{
2ff7e61e 4157 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4158}
585ad2c3 4159
2ff7e61e 4160void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4161{
2ff7e61e 4162 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4163}
6b80053d 4164
581c1760
QW
4165int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4166 struct btrfs_key *first_key)
6b80053d 4167{
5ab12d1f 4168 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4169 level, first_key);
6b80053d 4170}
0da5468f 4171
2ff7e61e 4172static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4173{
fe816d0f
NB
4174 /* cleanup FS via transaction */
4175 btrfs_cleanup_transaction(fs_info);
4176
0b246afa 4177 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4178 btrfs_run_delayed_iputs(fs_info);
0b246afa 4179 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4180
0b246afa
JM
4181 down_write(&fs_info->cleanup_work_sem);
4182 up_write(&fs_info->cleanup_work_sem);
acce952b 4183}
4184
143bede5 4185static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4186{
acce952b 4187 struct btrfs_ordered_extent *ordered;
acce952b 4188
199c2a9c 4189 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4190 /*
4191 * This will just short circuit the ordered completion stuff which will
4192 * make sure the ordered extent gets properly cleaned up.
4193 */
199c2a9c 4194 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4195 root_extent_list)
4196 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4197 spin_unlock(&root->ordered_extent_lock);
4198}
4199
4200static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4201{
4202 struct btrfs_root *root;
4203 struct list_head splice;
4204
4205 INIT_LIST_HEAD(&splice);
4206
4207 spin_lock(&fs_info->ordered_root_lock);
4208 list_splice_init(&fs_info->ordered_roots, &splice);
4209 while (!list_empty(&splice)) {
4210 root = list_first_entry(&splice, struct btrfs_root,
4211 ordered_root);
1de2cfde
JB
4212 list_move_tail(&root->ordered_root,
4213 &fs_info->ordered_roots);
199c2a9c 4214
2a85d9ca 4215 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4216 btrfs_destroy_ordered_extents(root);
4217
2a85d9ca
LB
4218 cond_resched();
4219 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4220 }
4221 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4222
4223 /*
4224 * We need this here because if we've been flipped read-only we won't
4225 * get sync() from the umount, so we need to make sure any ordered
4226 * extents that haven't had their dirty pages IO start writeout yet
4227 * actually get run and error out properly.
4228 */
4229 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4230}
4231
35a3621b 4232static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4233 struct btrfs_fs_info *fs_info)
acce952b 4234{
4235 struct rb_node *node;
4236 struct btrfs_delayed_ref_root *delayed_refs;
4237 struct btrfs_delayed_ref_node *ref;
4238 int ret = 0;
4239
4240 delayed_refs = &trans->delayed_refs;
4241
4242 spin_lock(&delayed_refs->lock);
d7df2c79 4243 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4244 spin_unlock(&delayed_refs->lock);
0b246afa 4245 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4246 return ret;
4247 }
4248
5c9d028b 4249 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4250 struct btrfs_delayed_ref_head *head;
0e0adbcf 4251 struct rb_node *n;
e78417d1 4252 bool pin_bytes = false;
acce952b 4253
d7df2c79
JB
4254 head = rb_entry(node, struct btrfs_delayed_ref_head,
4255 href_node);
3069bd26 4256 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4257 continue;
3069bd26 4258
d7df2c79 4259 spin_lock(&head->lock);
e3d03965 4260 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4261 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4262 ref_node);
d7df2c79 4263 ref->in_tree = 0;
e3d03965 4264 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4265 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4266 if (!list_empty(&ref->add_list))
4267 list_del(&ref->add_list);
d7df2c79
JB
4268 atomic_dec(&delayed_refs->num_entries);
4269 btrfs_put_delayed_ref(ref);
e78417d1 4270 }
d7df2c79
JB
4271 if (head->must_insert_reserved)
4272 pin_bytes = true;
4273 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4274 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4275 spin_unlock(&head->lock);
4276 spin_unlock(&delayed_refs->lock);
4277 mutex_unlock(&head->mutex);
acce952b 4278
d7df2c79 4279 if (pin_bytes)
d278850e
JB
4280 btrfs_pin_extent(fs_info, head->bytenr,
4281 head->num_bytes, 1);
31890da0 4282 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4283 btrfs_put_delayed_ref_head(head);
acce952b 4284 cond_resched();
4285 spin_lock(&delayed_refs->lock);
4286 }
4287
4288 spin_unlock(&delayed_refs->lock);
4289
4290 return ret;
4291}
4292
143bede5 4293static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4294{
4295 struct btrfs_inode *btrfs_inode;
4296 struct list_head splice;
4297
4298 INIT_LIST_HEAD(&splice);
4299
eb73c1b7
MX
4300 spin_lock(&root->delalloc_lock);
4301 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4302
4303 while (!list_empty(&splice)) {
fe816d0f 4304 struct inode *inode = NULL;
eb73c1b7
MX
4305 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4306 delalloc_inodes);
fe816d0f 4307 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4308 spin_unlock(&root->delalloc_lock);
acce952b 4309
fe816d0f
NB
4310 /*
4311 * Make sure we get a live inode and that it'll not disappear
4312 * meanwhile.
4313 */
4314 inode = igrab(&btrfs_inode->vfs_inode);
4315 if (inode) {
4316 invalidate_inode_pages2(inode->i_mapping);
4317 iput(inode);
4318 }
eb73c1b7 4319 spin_lock(&root->delalloc_lock);
acce952b 4320 }
eb73c1b7
MX
4321 spin_unlock(&root->delalloc_lock);
4322}
4323
4324static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4325{
4326 struct btrfs_root *root;
4327 struct list_head splice;
4328
4329 INIT_LIST_HEAD(&splice);
4330
4331 spin_lock(&fs_info->delalloc_root_lock);
4332 list_splice_init(&fs_info->delalloc_roots, &splice);
4333 while (!list_empty(&splice)) {
4334 root = list_first_entry(&splice, struct btrfs_root,
4335 delalloc_root);
eb73c1b7
MX
4336 root = btrfs_grab_fs_root(root);
4337 BUG_ON(!root);
4338 spin_unlock(&fs_info->delalloc_root_lock);
4339
4340 btrfs_destroy_delalloc_inodes(root);
4341 btrfs_put_fs_root(root);
4342
4343 spin_lock(&fs_info->delalloc_root_lock);
4344 }
4345 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4346}
4347
2ff7e61e 4348static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4349 struct extent_io_tree *dirty_pages,
4350 int mark)
4351{
4352 int ret;
acce952b 4353 struct extent_buffer *eb;
4354 u64 start = 0;
4355 u64 end;
acce952b 4356
4357 while (1) {
4358 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4359 mark, NULL);
acce952b 4360 if (ret)
4361 break;
4362
91166212 4363 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4364 while (start <= end) {
0b246afa
JM
4365 eb = find_extent_buffer(fs_info, start);
4366 start += fs_info->nodesize;
fd8b2b61 4367 if (!eb)
acce952b 4368 continue;
fd8b2b61 4369 wait_on_extent_buffer_writeback(eb);
acce952b 4370
fd8b2b61
JB
4371 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4372 &eb->bflags))
4373 clear_extent_buffer_dirty(eb);
4374 free_extent_buffer_stale(eb);
acce952b 4375 }
4376 }
4377
4378 return ret;
4379}
4380
2ff7e61e 4381static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4382 struct extent_io_tree *pinned_extents)
4383{
4384 struct extent_io_tree *unpin;
4385 u64 start;
4386 u64 end;
4387 int ret;
ed0eaa14 4388 bool loop = true;
acce952b 4389
4390 unpin = pinned_extents;
ed0eaa14 4391again:
acce952b 4392 while (1) {
0e6ec385
FM
4393 struct extent_state *cached_state = NULL;
4394
fcd5e742
LF
4395 /*
4396 * The btrfs_finish_extent_commit() may get the same range as
4397 * ours between find_first_extent_bit and clear_extent_dirty.
4398 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4399 * the same extent range.
4400 */
4401 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4402 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4403 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4404 if (ret) {
4405 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4406 break;
fcd5e742 4407 }
acce952b 4408
0e6ec385
FM
4409 clear_extent_dirty(unpin, start, end, &cached_state);
4410 free_extent_state(cached_state);
2ff7e61e 4411 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4412 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4413 cond_resched();
4414 }
4415
ed0eaa14 4416 if (loop) {
0b246afa
JM
4417 if (unpin == &fs_info->freed_extents[0])
4418 unpin = &fs_info->freed_extents[1];
ed0eaa14 4419 else
0b246afa 4420 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4421 loop = false;
4422 goto again;
4423 }
4424
acce952b 4425 return 0;
4426}
4427
c79a1751
LB
4428static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4429{
4430 struct inode *inode;
4431
4432 inode = cache->io_ctl.inode;
4433 if (inode) {
4434 invalidate_inode_pages2(inode->i_mapping);
4435 BTRFS_I(inode)->generation = 0;
4436 cache->io_ctl.inode = NULL;
4437 iput(inode);
4438 }
4439 btrfs_put_block_group(cache);
4440}
4441
4442void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4443 struct btrfs_fs_info *fs_info)
c79a1751
LB
4444{
4445 struct btrfs_block_group_cache *cache;
4446
4447 spin_lock(&cur_trans->dirty_bgs_lock);
4448 while (!list_empty(&cur_trans->dirty_bgs)) {
4449 cache = list_first_entry(&cur_trans->dirty_bgs,
4450 struct btrfs_block_group_cache,
4451 dirty_list);
c79a1751
LB
4452
4453 if (!list_empty(&cache->io_list)) {
4454 spin_unlock(&cur_trans->dirty_bgs_lock);
4455 list_del_init(&cache->io_list);
4456 btrfs_cleanup_bg_io(cache);
4457 spin_lock(&cur_trans->dirty_bgs_lock);
4458 }
4459
4460 list_del_init(&cache->dirty_list);
4461 spin_lock(&cache->lock);
4462 cache->disk_cache_state = BTRFS_DC_ERROR;
4463 spin_unlock(&cache->lock);
4464
4465 spin_unlock(&cur_trans->dirty_bgs_lock);
4466 btrfs_put_block_group(cache);
ba2c4d4e 4467 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4468 spin_lock(&cur_trans->dirty_bgs_lock);
4469 }
4470 spin_unlock(&cur_trans->dirty_bgs_lock);
4471
45ae2c18
NB
4472 /*
4473 * Refer to the definition of io_bgs member for details why it's safe
4474 * to use it without any locking
4475 */
c79a1751
LB
4476 while (!list_empty(&cur_trans->io_bgs)) {
4477 cache = list_first_entry(&cur_trans->io_bgs,
4478 struct btrfs_block_group_cache,
4479 io_list);
c79a1751
LB
4480
4481 list_del_init(&cache->io_list);
4482 spin_lock(&cache->lock);
4483 cache->disk_cache_state = BTRFS_DC_ERROR;
4484 spin_unlock(&cache->lock);
4485 btrfs_cleanup_bg_io(cache);
4486 }
4487}
4488
49b25e05 4489void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4490 struct btrfs_fs_info *fs_info)
49b25e05 4491{
bbbf7243
NB
4492 struct btrfs_device *dev, *tmp;
4493
2ff7e61e 4494 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4495 ASSERT(list_empty(&cur_trans->dirty_bgs));
4496 ASSERT(list_empty(&cur_trans->io_bgs));
4497
bbbf7243
NB
4498 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4499 post_commit_list) {
4500 list_del_init(&dev->post_commit_list);
4501 }
4502
2ff7e61e 4503 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4504
4a9d8bde 4505 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4506 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4507
4a9d8bde 4508 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4509 wake_up(&fs_info->transaction_wait);
49b25e05 4510
ccdf9b30
JM
4511 btrfs_destroy_delayed_inodes(fs_info);
4512 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4513
2ff7e61e 4514 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4515 EXTENT_DIRTY);
2ff7e61e 4516 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4517 fs_info->pinned_extents);
49b25e05 4518
4a9d8bde
MX
4519 cur_trans->state =TRANS_STATE_COMPLETED;
4520 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4521}
4522
2ff7e61e 4523static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4524{
4525 struct btrfs_transaction *t;
acce952b 4526
0b246afa 4527 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4528
0b246afa
JM
4529 spin_lock(&fs_info->trans_lock);
4530 while (!list_empty(&fs_info->trans_list)) {
4531 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4532 struct btrfs_transaction, list);
4533 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4534 refcount_inc(&t->use_count);
0b246afa 4535 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4536 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4537 btrfs_put_transaction(t);
0b246afa 4538 spin_lock(&fs_info->trans_lock);
724e2315
JB
4539 continue;
4540 }
0b246afa 4541 if (t == fs_info->running_transaction) {
724e2315 4542 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4543 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4544 /*
4545 * We wait for 0 num_writers since we don't hold a trans
4546 * handle open currently for this transaction.
4547 */
4548 wait_event(t->writer_wait,
4549 atomic_read(&t->num_writers) == 0);
4550 } else {
0b246afa 4551 spin_unlock(&fs_info->trans_lock);
724e2315 4552 }
2ff7e61e 4553 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4554
0b246afa
JM
4555 spin_lock(&fs_info->trans_lock);
4556 if (t == fs_info->running_transaction)
4557 fs_info->running_transaction = NULL;
acce952b 4558 list_del_init(&t->list);
0b246afa 4559 spin_unlock(&fs_info->trans_lock);
acce952b 4560
724e2315 4561 btrfs_put_transaction(t);
2ff7e61e 4562 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4563 spin_lock(&fs_info->trans_lock);
724e2315 4564 }
0b246afa
JM
4565 spin_unlock(&fs_info->trans_lock);
4566 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4567 btrfs_destroy_delayed_inodes(fs_info);
4568 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4569 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4570 btrfs_destroy_all_delalloc_inodes(fs_info);
4571 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4572
4573 return 0;
4574}
4575
e8c9f186 4576static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4577 /* mandatory callbacks */
0b86a832 4578 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4579 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4580};