]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: move btrfs_add_free_space out of a header file
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
eb60ceac 43
319e4d06
QW
44#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
45 BTRFS_HEADER_FLAG_RELOC |\
46 BTRFS_SUPER_FLAG_ERROR |\
47 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
48 BTRFS_SUPER_FLAG_METADUMP |\
49 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 50
e8c9f186 51static const struct extent_io_ops btree_extent_io_ops;
8b712842 52static void end_workqueue_fn(struct btrfs_work *work);
143bede5 53static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 54static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 55 struct btrfs_fs_info *fs_info);
143bede5 56static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 57static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 58 struct extent_io_tree *dirty_pages,
59 int mark);
2ff7e61e 60static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
62static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 64
d352ac68 65/*
97eb6b69
DS
66 * btrfs_end_io_wq structs are used to do processing in task context when an IO
67 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
97eb6b69 70struct btrfs_end_io_wq {
ce9adaa5
CM
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
4e4cbee9 75 blk_status_t status;
bfebd8b5 76 enum btrfs_wq_endio_type metadata;
8b712842 77 struct btrfs_work work;
ce9adaa5 78};
0da5468f 79
97eb6b69
DS
80static struct kmem_cache *btrfs_end_io_wq_cache;
81
82int __init btrfs_end_io_wq_init(void)
83{
84 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
85 sizeof(struct btrfs_end_io_wq),
86 0,
fba4b697 87 SLAB_MEM_SPREAD,
97eb6b69
DS
88 NULL);
89 if (!btrfs_end_io_wq_cache)
90 return -ENOMEM;
91 return 0;
92}
93
e67c718b 94void __cold btrfs_end_io_wq_exit(void)
97eb6b69 95{
5598e900 96 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
97}
98
d352ac68
CM
99/*
100 * async submit bios are used to offload expensive checksumming
101 * onto the worker threads. They checksum file and metadata bios
102 * just before they are sent down the IO stack.
103 */
44b8bd7e 104struct async_submit_bio {
c6100a4b 105 void *private_data;
44b8bd7e 106 struct bio *bio;
a758781d 107 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 108 int mirror_num;
eaf25d93
CM
109 /*
110 * bio_offset is optional, can be used if the pages in the bio
111 * can't tell us where in the file the bio should go
112 */
113 u64 bio_offset;
8b712842 114 struct btrfs_work work;
4e4cbee9 115 blk_status_t status;
44b8bd7e
CM
116};
117
85d4e461
CM
118/*
119 * Lockdep class keys for extent_buffer->lock's in this root. For a given
120 * eb, the lockdep key is determined by the btrfs_root it belongs to and
121 * the level the eb occupies in the tree.
122 *
123 * Different roots are used for different purposes and may nest inside each
124 * other and they require separate keysets. As lockdep keys should be
125 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
126 * by btrfs_root->root_key.objectid. This ensures that all special purpose
127 * roots have separate keysets.
4008c04a 128 *
85d4e461
CM
129 * Lock-nesting across peer nodes is always done with the immediate parent
130 * node locked thus preventing deadlock. As lockdep doesn't know this, use
131 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 132 *
85d4e461
CM
133 * The key is set by the readpage_end_io_hook after the buffer has passed
134 * csum validation but before the pages are unlocked. It is also set by
135 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 136 *
85d4e461
CM
137 * We also add a check to make sure the highest level of the tree is the
138 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
139 * needs update as well.
4008c04a
CM
140 */
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142# if BTRFS_MAX_LEVEL != 8
143# error
144# endif
85d4e461
CM
145
146static struct btrfs_lockdep_keyset {
147 u64 id; /* root objectid */
148 const char *name_stem; /* lock name stem */
149 char names[BTRFS_MAX_LEVEL + 1][20];
150 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
151} btrfs_lockdep_keysets[] = {
152 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
153 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
154 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
155 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
156 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
157 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 158 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
159 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
160 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
161 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 162 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 163 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 164 { .id = 0, .name_stem = "tree" },
4008c04a 165};
85d4e461
CM
166
167void __init btrfs_init_lockdep(void)
168{
169 int i, j;
170
171 /* initialize lockdep class names */
172 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
173 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
174
175 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
176 snprintf(ks->names[j], sizeof(ks->names[j]),
177 "btrfs-%s-%02d", ks->name_stem, j);
178 }
179}
180
181void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
182 int level)
183{
184 struct btrfs_lockdep_keyset *ks;
185
186 BUG_ON(level >= ARRAY_SIZE(ks->keys));
187
188 /* find the matching keyset, id 0 is the default entry */
189 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
190 if (ks->id == objectid)
191 break;
192
193 lockdep_set_class_and_name(&eb->lock,
194 &ks->keys[level], ks->names[level]);
195}
196
4008c04a
CM
197#endif
198
d352ac68
CM
199/*
200 * extents on the btree inode are pretty simple, there's one extent
201 * that covers the entire device
202 */
6af49dbd 203struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 204 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 205 int create)
7eccb903 206{
3ffbd68c 207 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 208 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
209 struct extent_map *em;
210 int ret;
211
890871be 212 read_lock(&em_tree->lock);
d1310b2e 213 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 214 if (em) {
0b246afa 215 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 216 read_unlock(&em_tree->lock);
5f39d397 217 goto out;
a061fc8d 218 }
890871be 219 read_unlock(&em_tree->lock);
7b13b7b1 220
172ddd60 221 em = alloc_extent_map();
5f39d397
CM
222 if (!em) {
223 em = ERR_PTR(-ENOMEM);
224 goto out;
225 }
226 em->start = 0;
0afbaf8c 227 em->len = (u64)-1;
c8b97818 228 em->block_len = (u64)-1;
5f39d397 229 em->block_start = 0;
0b246afa 230 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 231
890871be 232 write_lock(&em_tree->lock);
09a2a8f9 233 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
234 if (ret == -EEXIST) {
235 free_extent_map(em);
7b13b7b1 236 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 237 if (!em)
0433f20d 238 em = ERR_PTR(-EIO);
5f39d397 239 } else if (ret) {
7b13b7b1 240 free_extent_map(em);
0433f20d 241 em = ERR_PTR(ret);
5f39d397 242 }
890871be 243 write_unlock(&em_tree->lock);
7b13b7b1 244
5f39d397
CM
245out:
246 return em;
7eccb903
CM
247}
248
d352ac68 249/*
2996e1f8
JT
250 * Compute the csum of a btree block and store the result to provided buffer.
251 *
252 * Returns error if the extent buffer cannot be mapped.
d352ac68 253 */
2996e1f8 254static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 255{
d5178578
JT
256 struct btrfs_fs_info *fs_info = buf->fs_info;
257 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
258 unsigned long len;
259 unsigned long cur_len;
260 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
261 char *kaddr;
262 unsigned long map_start;
263 unsigned long map_len;
264 int err;
d5178578
JT
265
266 shash->tfm = fs_info->csum_shash;
267 crypto_shash_init(shash);
19c00ddc
CM
268
269 len = buf->len - offset;
d5178578 270
d397712b 271 while (len > 0) {
d2e174d5
JT
272 /*
273 * Note: we don't need to check for the err == 1 case here, as
274 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
275 * and 'min_len = 32' and the currently implemented mapping
276 * algorithm we cannot cross a page boundary.
277 */
19c00ddc 278 err = map_private_extent_buffer(buf, offset, 32,
a6591715 279 &kaddr, &map_start, &map_len);
c53839fc 280 if (WARN_ON(err))
8bd98f0e 281 return err;
19c00ddc 282 cur_len = min(len, map_len - (offset - map_start));
d5178578 283 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
284 len -= cur_len;
285 offset += cur_len;
19c00ddc 286 }
71a63551 287 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 288
d5178578 289 crypto_shash_final(shash, result);
19c00ddc 290
19c00ddc
CM
291 return 0;
292}
293
d352ac68
CM
294/*
295 * we can't consider a given block up to date unless the transid of the
296 * block matches the transid in the parent node's pointer. This is how we
297 * detect blocks that either didn't get written at all or got written
298 * in the wrong place.
299 */
1259ab75 300static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
301 struct extent_buffer *eb, u64 parent_transid,
302 int atomic)
1259ab75 303{
2ac55d41 304 struct extent_state *cached_state = NULL;
1259ab75 305 int ret;
2755a0de 306 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
307
308 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
309 return 0;
310
b9fab919
CM
311 if (atomic)
312 return -EAGAIN;
313
a26e8c9f
JB
314 if (need_lock) {
315 btrfs_tree_read_lock(eb);
300aa896 316 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
317 }
318
2ac55d41 319 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 320 &cached_state);
0b32f4bb 321 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
322 btrfs_header_generation(eb) == parent_transid) {
323 ret = 0;
324 goto out;
325 }
94647322
DS
326 btrfs_err_rl(eb->fs_info,
327 "parent transid verify failed on %llu wanted %llu found %llu",
328 eb->start,
29549aec 329 parent_transid, btrfs_header_generation(eb));
1259ab75 330 ret = 1;
a26e8c9f
JB
331
332 /*
333 * Things reading via commit roots that don't have normal protection,
334 * like send, can have a really old block in cache that may point at a
01327610 335 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
336 * if we find an eb that is under IO (dirty/writeback) because we could
337 * end up reading in the stale data and then writing it back out and
338 * making everybody very sad.
339 */
340 if (!extent_buffer_under_io(eb))
341 clear_extent_buffer_uptodate(eb);
33958dc6 342out:
2ac55d41 343 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 344 &cached_state);
472b909f
JB
345 if (need_lock)
346 btrfs_tree_read_unlock_blocking(eb);
1259ab75 347 return ret;
1259ab75
CM
348}
349
e7e16f48
JT
350static bool btrfs_supported_super_csum(u16 csum_type)
351{
352 switch (csum_type) {
353 case BTRFS_CSUM_TYPE_CRC32:
354 return true;
355 default:
356 return false;
357 }
358}
359
1104a885
DS
360/*
361 * Return 0 if the superblock checksum type matches the checksum value of that
362 * algorithm. Pass the raw disk superblock data.
363 */
ab8d0fc4
JM
364static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
365 char *raw_disk_sb)
1104a885
DS
366{
367 struct btrfs_super_block *disk_sb =
368 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 369 char result[BTRFS_CSUM_SIZE];
d5178578
JT
370 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
371
372 shash->tfm = fs_info->csum_shash;
373 crypto_shash_init(shash);
1104a885 374
51bce6c9
JT
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
378 * filled with zeros and is included in the checksum.
379 */
d5178578
JT
380 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
381 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 crypto_shash_final(shash, result);
1104a885 383
51bce6c9
JT
384 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
385 return 1;
1104a885 386
e7e16f48 387 return 0;
1104a885
DS
388}
389
e064d5e9 390int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 391 struct btrfs_key *first_key, u64 parent_transid)
581c1760 392{
e064d5e9 393 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
394 int found_level;
395 struct btrfs_key found_key;
396 int ret;
397
398 found_level = btrfs_header_level(eb);
399 if (found_level != level) {
63489055
QW
400 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
401 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
402 btrfs_err(fs_info,
403"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
404 eb->start, level, found_level);
581c1760
QW
405 return -EIO;
406 }
407
408 if (!first_key)
409 return 0;
410
5d41be6f
QW
411 /*
412 * For live tree block (new tree blocks in current transaction),
413 * we need proper lock context to avoid race, which is impossible here.
414 * So we only checks tree blocks which is read from disk, whose
415 * generation <= fs_info->last_trans_committed.
416 */
417 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
418 return 0;
581c1760
QW
419 if (found_level)
420 btrfs_node_key_to_cpu(eb, &found_key, 0);
421 else
422 btrfs_item_key_to_cpu(eb, &found_key, 0);
423 ret = btrfs_comp_cpu_keys(first_key, &found_key);
424
581c1760 425 if (ret) {
63489055
QW
426 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
427 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 428 btrfs_err(fs_info,
ff76a864
LB
429"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
430 eb->start, parent_transid, first_key->objectid,
431 first_key->type, first_key->offset,
432 found_key.objectid, found_key.type,
433 found_key.offset);
581c1760 434 }
581c1760
QW
435 return ret;
436}
437
d352ac68
CM
438/*
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
441 *
442 * @parent_transid: expected transid, skip check if 0
443 * @level: expected level, mandatory check
444 * @first_key: expected key of first slot, skip check if NULL
d352ac68 445 */
5ab12d1f 446static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
447 u64 parent_transid, int level,
448 struct btrfs_key *first_key)
f188591e 449{
5ab12d1f 450 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 451 struct extent_io_tree *io_tree;
ea466794 452 int failed = 0;
f188591e
CM
453 int ret;
454 int num_copies = 0;
455 int mirror_num = 0;
ea466794 456 int failed_mirror = 0;
f188591e 457
0b246afa 458 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 459 while (1) {
f8397d69 460 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 461 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 462 if (!ret) {
581c1760 463 if (verify_parent_transid(io_tree, eb,
b9fab919 464 parent_transid, 0))
256dd1bb 465 ret = -EIO;
e064d5e9 466 else if (btrfs_verify_level_key(eb, level,
448de471 467 first_key, parent_transid))
581c1760
QW
468 ret = -EUCLEAN;
469 else
470 break;
256dd1bb 471 }
d397712b 472
0b246afa 473 num_copies = btrfs_num_copies(fs_info,
f188591e 474 eb->start, eb->len);
4235298e 475 if (num_copies == 1)
ea466794 476 break;
4235298e 477
5cf1ab56
JB
478 if (!failed_mirror) {
479 failed = 1;
480 failed_mirror = eb->read_mirror;
481 }
482
f188591e 483 mirror_num++;
ea466794
JB
484 if (mirror_num == failed_mirror)
485 mirror_num++;
486
4235298e 487 if (mirror_num > num_copies)
ea466794 488 break;
f188591e 489 }
ea466794 490
c0901581 491 if (failed && !ret && failed_mirror)
20a1fbf9 492 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
493
494 return ret;
f188591e 495}
19c00ddc 496
d352ac68 497/*
d397712b
CM
498 * checksum a dirty tree block before IO. This has extra checks to make sure
499 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 500 */
d397712b 501
01d58472 502static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 503{
4eee4fa4 504 u64 start = page_offset(page);
19c00ddc 505 u64 found_start;
2996e1f8
JT
506 u8 result[BTRFS_CSUM_SIZE];
507 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 508 struct extent_buffer *eb;
8d47a0d8 509 int ret;
f188591e 510
4f2de97a
JB
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
0f805531 514
19c00ddc 515 found_start = btrfs_header_bytenr(eb);
0f805531
AL
516 /*
517 * Please do not consolidate these warnings into a single if.
518 * It is useful to know what went wrong.
519 */
520 if (WARN_ON(found_start != start))
521 return -EUCLEAN;
522 if (WARN_ON(!PageUptodate(page)))
523 return -EUCLEAN;
524
de37aa51 525 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
2996e1f8
JT
528 if (csum_tree_block(eb, result))
529 return -EINVAL;
530
8d47a0d8
QW
531 if (btrfs_header_level(eb))
532 ret = btrfs_check_node(eb);
533 else
534 ret = btrfs_check_leaf_full(eb);
535
536 if (ret < 0) {
537 btrfs_err(fs_info,
538 "block=%llu write time tree block corruption detected",
539 eb->start);
540 return ret;
541 }
2996e1f8 542 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 543
2996e1f8 544 return 0;
19c00ddc
CM
545}
546
b0c9b3b0 547static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 548{
b0c9b3b0 549 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 551 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
552 int ret = 1;
553
0a4e5586 554 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 555 while (fs_devices) {
7239ff4b
NB
556 u8 *metadata_uuid;
557
558 /*
559 * Checking the incompat flag is only valid for the current
560 * fs. For seed devices it's forbidden to have their uuid
561 * changed so reading ->fsid in this case is fine
562 */
563 if (fs_devices == fs_info->fs_devices &&
564 btrfs_fs_incompat(fs_info, METADATA_UUID))
565 metadata_uuid = fs_devices->metadata_uuid;
566 else
567 metadata_uuid = fs_devices->fsid;
568
569 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
570 ret = 0;
571 break;
572 }
573 fs_devices = fs_devices->seed;
574 }
575 return ret;
576}
577
facc8a22
MX
578static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579 u64 phy_offset, struct page *page,
580 u64 start, u64 end, int mirror)
ce9adaa5 581{
ce9adaa5
CM
582 u64 found_start;
583 int found_level;
ce9adaa5
CM
584 struct extent_buffer *eb;
585 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 586 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 587 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 588 int ret = 0;
2996e1f8 589 u8 result[BTRFS_CSUM_SIZE];
727011e0 590 int reads_done;
ce9adaa5 591
ce9adaa5
CM
592 if (!page->private)
593 goto out;
d397712b 594
4f2de97a 595 eb = (struct extent_buffer *)page->private;
d397712b 596
0b32f4bb
JB
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
600 extent_buffer_get(eb);
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
603 if (!reads_done)
604 goto err;
f188591e 605
5cf1ab56 606 eb->read_mirror = mirror;
656f30db 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
608 ret = -EIO;
609 goto err;
610 }
611
ce9adaa5 612 found_start = btrfs_header_bytenr(eb);
727011e0 613 if (found_start != eb->start) {
893bf4b1
SY
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
f188591e 616 ret = -EIO;
ce9adaa5
CM
617 goto err;
618 }
b0c9b3b0 619 if (check_tree_block_fsid(eb)) {
02873e43
ZL
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
1259ab75
CM
622 ret = -EIO;
623 goto err;
624 }
ce9adaa5 625 found_level = btrfs_header_level(eb);
1c24c3ce 626 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632
85d4e461
CM
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
4008c04a 635
2996e1f8 636 ret = csum_tree_block(eb, result);
8bd98f0e 637 if (ret)
a826d6dc 638 goto err;
a826d6dc 639
2996e1f8
JT
640 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
641 u32 val;
642 u32 found = 0;
643
644 memcpy(&found, result, csum_size);
645
646 read_extent_buffer(eb, &val, 0, csum_size);
647 btrfs_warn_rl(fs_info,
648 "%s checksum verify failed on %llu wanted %x found %x level %d",
649 fs_info->sb->s_id, eb->start,
650 val, found, btrfs_header_level(eb));
651 ret = -EUCLEAN;
652 goto err;
653 }
654
a826d6dc
JB
655 /*
656 * If this is a leaf block and it is corrupt, set the corrupt bit so
657 * that we don't try and read the other copies of this block, just
658 * return -EIO.
659 */
1c4360ee 660 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
661 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
662 ret = -EIO;
663 }
ce9adaa5 664
813fd1dc 665 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
666 ret = -EIO;
667
0b32f4bb
JB
668 if (!ret)
669 set_extent_buffer_uptodate(eb);
75391f0d
QW
670 else
671 btrfs_err(fs_info,
672 "block=%llu read time tree block corruption detected",
673 eb->start);
ce9adaa5 674err:
79fb65a1
JB
675 if (reads_done &&
676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 677 btree_readahead_hook(eb, ret);
4bb31e92 678
53b381b3
DW
679 if (ret) {
680 /*
681 * our io error hook is going to dec the io pages
682 * again, we have to make sure it has something
683 * to decrement
684 */
685 atomic_inc(&eb->io_pages);
0b32f4bb 686 clear_extent_buffer_uptodate(eb);
53b381b3 687 }
0b32f4bb 688 free_extent_buffer(eb);
ce9adaa5 689out:
f188591e 690 return ret;
ce9adaa5
CM
691}
692
4246a0b6 693static void end_workqueue_bio(struct bio *bio)
ce9adaa5 694{
97eb6b69 695 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 696 struct btrfs_fs_info *fs_info;
9e0af237
LB
697 struct btrfs_workqueue *wq;
698 btrfs_work_func_t func;
ce9adaa5 699
ce9adaa5 700 fs_info = end_io_wq->info;
4e4cbee9 701 end_io_wq->status = bio->bi_status;
d20f7043 702
37226b21 703 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
704 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
705 wq = fs_info->endio_meta_write_workers;
706 func = btrfs_endio_meta_write_helper;
707 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
708 wq = fs_info->endio_freespace_worker;
709 func = btrfs_freespace_write_helper;
710 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
711 wq = fs_info->endio_raid56_workers;
712 func = btrfs_endio_raid56_helper;
713 } else {
714 wq = fs_info->endio_write_workers;
715 func = btrfs_endio_write_helper;
716 }
d20f7043 717 } else {
8b110e39
MX
718 if (unlikely(end_io_wq->metadata ==
719 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
720 wq = fs_info->endio_repair_workers;
721 func = btrfs_endio_repair_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else if (end_io_wq->metadata) {
726 wq = fs_info->endio_meta_workers;
727 func = btrfs_endio_meta_helper;
728 } else {
729 wq = fs_info->endio_workers;
730 func = btrfs_endio_helper;
731 }
d20f7043 732 }
9e0af237
LB
733
734 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
735 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
736}
737
4e4cbee9 738blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 739 enum btrfs_wq_endio_type metadata)
0b86a832 740{
97eb6b69 741 struct btrfs_end_io_wq *end_io_wq;
8b110e39 742
97eb6b69 743 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 744 if (!end_io_wq)
4e4cbee9 745 return BLK_STS_RESOURCE;
ce9adaa5
CM
746
747 end_io_wq->private = bio->bi_private;
748 end_io_wq->end_io = bio->bi_end_io;
22c59948 749 end_io_wq->info = info;
4e4cbee9 750 end_io_wq->status = 0;
ce9adaa5 751 end_io_wq->bio = bio;
22c59948 752 end_io_wq->metadata = metadata;
ce9adaa5
CM
753
754 bio->bi_private = end_io_wq;
755 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
756 return 0;
757}
758
4a69a410
CM
759static void run_one_async_start(struct btrfs_work *work)
760{
4a69a410 761 struct async_submit_bio *async;
4e4cbee9 762 blk_status_t ret;
4a69a410
CM
763
764 async = container_of(work, struct async_submit_bio, work);
c6100a4b 765 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
766 async->bio_offset);
767 if (ret)
4e4cbee9 768 async->status = ret;
4a69a410
CM
769}
770
06ea01b1
DS
771/*
772 * In order to insert checksums into the metadata in large chunks, we wait
773 * until bio submission time. All the pages in the bio are checksummed and
774 * sums are attached onto the ordered extent record.
775 *
776 * At IO completion time the csums attached on the ordered extent record are
777 * inserted into the tree.
778 */
4a69a410 779static void run_one_async_done(struct btrfs_work *work)
8b712842 780{
8b712842 781 struct async_submit_bio *async;
06ea01b1
DS
782 struct inode *inode;
783 blk_status_t ret;
8b712842
CM
784
785 async = container_of(work, struct async_submit_bio, work);
06ea01b1 786 inode = async->private_data;
4854ddd0 787
bb7ab3b9 788 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
789 if (async->status) {
790 async->bio->bi_status = async->status;
4246a0b6 791 bio_endio(async->bio);
79787eaa
JM
792 return;
793 }
794
06ea01b1
DS
795 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
796 async->mirror_num, 1);
797 if (ret) {
798 async->bio->bi_status = ret;
799 bio_endio(async->bio);
800 }
4a69a410
CM
801}
802
803static void run_one_async_free(struct btrfs_work *work)
804{
805 struct async_submit_bio *async;
806
807 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
808 kfree(async);
809}
810
8c27cb35
LT
811blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
812 int mirror_num, unsigned long bio_flags,
813 u64 bio_offset, void *private_data,
e288c080 814 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
815{
816 struct async_submit_bio *async;
817
818 async = kmalloc(sizeof(*async), GFP_NOFS);
819 if (!async)
4e4cbee9 820 return BLK_STS_RESOURCE;
44b8bd7e 821
c6100a4b 822 async->private_data = private_data;
44b8bd7e
CM
823 async->bio = bio;
824 async->mirror_num = mirror_num;
4a69a410 825 async->submit_bio_start = submit_bio_start;
4a69a410 826
9e0af237 827 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 828 run_one_async_done, run_one_async_free);
4a69a410 829
eaf25d93 830 async->bio_offset = bio_offset;
8c8bee1d 831
4e4cbee9 832 async->status = 0;
79787eaa 833
67f055c7 834 if (op_is_sync(bio->bi_opf))
5cdc7ad3 835 btrfs_set_work_high_priority(&async->work);
d313d7a3 836
5cdc7ad3 837 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
838 return 0;
839}
840
4e4cbee9 841static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 842{
2c30c71b 843 struct bio_vec *bvec;
ce3ed71a 844 struct btrfs_root *root;
2b070cfe 845 int ret = 0;
6dc4f100 846 struct bvec_iter_all iter_all;
ce3ed71a 847
c09abff8 848 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 849 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 850 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 851 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
852 if (ret)
853 break;
ce3ed71a 854 }
2c30c71b 855
4e4cbee9 856 return errno_to_blk_status(ret);
ce3ed71a
CM
857}
858
d0ee3934 859static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 860 u64 bio_offset)
22c59948 861{
8b712842
CM
862 /*
863 * when we're called for a write, we're already in the async
5443be45 864 * submission context. Just jump into btrfs_map_bio
8b712842 865 */
79787eaa 866 return btree_csum_one_bio(bio);
4a69a410 867}
22c59948 868
9b4e675a
DS
869static int check_async_write(struct btrfs_fs_info *fs_info,
870 struct btrfs_inode *bi)
de0022b9 871{
6300463b
LB
872 if (atomic_read(&bi->sync_writers))
873 return 0;
9b4e675a 874 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 875 return 0;
de0022b9
JB
876 return 1;
877}
878
a56b1c7b 879static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
880 int mirror_num,
881 unsigned long bio_flags)
44b8bd7e 882{
0b246afa 883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 884 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 885 blk_status_t ret;
cad321ad 886
37226b21 887 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
888 /*
889 * called for a read, do the setup so that checksum validation
890 * can happen in the async kernel threads
891 */
0b246afa
JM
892 ret = btrfs_bio_wq_end_io(fs_info, bio,
893 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 894 if (ret)
61891923 895 goto out_w_error;
2ff7e61e 896 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
897 } else if (!async) {
898 ret = btree_csum_one_bio(bio);
899 if (ret)
61891923 900 goto out_w_error;
2ff7e61e 901 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
902 } else {
903 /*
904 * kthread helpers are used to submit writes so that
905 * checksumming can happen in parallel across all CPUs
906 */
c6100a4b 907 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 908 0, inode, btree_submit_bio_start);
44b8bd7e 909 }
d313d7a3 910
4246a0b6
CH
911 if (ret)
912 goto out_w_error;
913 return 0;
914
61891923 915out_w_error:
4e4cbee9 916 bio->bi_status = ret;
4246a0b6 917 bio_endio(bio);
61891923 918 return ret;
44b8bd7e
CM
919}
920
3dd1462e 921#ifdef CONFIG_MIGRATION
784b4e29 922static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
923 struct page *newpage, struct page *page,
924 enum migrate_mode mode)
784b4e29
CM
925{
926 /*
927 * we can't safely write a btree page from here,
928 * we haven't done the locking hook
929 */
930 if (PageDirty(page))
931 return -EAGAIN;
932 /*
933 * Buffers may be managed in a filesystem specific way.
934 * We must have no buffers or drop them.
935 */
936 if (page_has_private(page) &&
937 !try_to_release_page(page, GFP_KERNEL))
938 return -EAGAIN;
a6bc32b8 939 return migrate_page(mapping, newpage, page, mode);
784b4e29 940}
3dd1462e 941#endif
784b4e29 942
0da5468f
CM
943
944static int btree_writepages(struct address_space *mapping,
945 struct writeback_control *wbc)
946{
e2d84521
MX
947 struct btrfs_fs_info *fs_info;
948 int ret;
949
d8d5f3e1 950 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
951
952 if (wbc->for_kupdate)
953 return 0;
954
e2d84521 955 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 956 /* this is a bit racy, but that's ok */
d814a491
EL
957 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
958 BTRFS_DIRTY_METADATA_THRESH,
959 fs_info->dirty_metadata_batch);
e2d84521 960 if (ret < 0)
793955bc 961 return 0;
793955bc 962 }
0b32f4bb 963 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
964}
965
b2950863 966static int btree_readpage(struct file *file, struct page *page)
5f39d397 967{
d1310b2e
CM
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 970 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 971}
22b0ebda 972
70dec807 973static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 974{
98509cfc 975 if (PageWriteback(page) || PageDirty(page))
d397712b 976 return 0;
0c4e538b 977
f7a52a40 978 return try_release_extent_buffer(page);
d98237b3
CM
979}
980
d47992f8
LC
981static void btree_invalidatepage(struct page *page, unsigned int offset,
982 unsigned int length)
d98237b3 983{
d1310b2e
CM
984 struct extent_io_tree *tree;
985 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
986 extent_invalidatepage(tree, page, offset);
987 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 988 if (PagePrivate(page)) {
efe120a0
FH
989 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
990 "page private not zero on page %llu",
991 (unsigned long long)page_offset(page));
9ad6b7bc
CM
992 ClearPagePrivate(page);
993 set_page_private(page, 0);
09cbfeaf 994 put_page(page);
9ad6b7bc 995 }
d98237b3
CM
996}
997
0b32f4bb
JB
998static int btree_set_page_dirty(struct page *page)
999{
bb146eb2 1000#ifdef DEBUG
0b32f4bb
JB
1001 struct extent_buffer *eb;
1002
1003 BUG_ON(!PagePrivate(page));
1004 eb = (struct extent_buffer *)page->private;
1005 BUG_ON(!eb);
1006 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1007 BUG_ON(!atomic_read(&eb->refs));
1008 btrfs_assert_tree_locked(eb);
bb146eb2 1009#endif
0b32f4bb
JB
1010 return __set_page_dirty_nobuffers(page);
1011}
1012
7f09410b 1013static const struct address_space_operations btree_aops = {
d98237b3 1014 .readpage = btree_readpage,
0da5468f 1015 .writepages = btree_writepages,
5f39d397
CM
1016 .releasepage = btree_releasepage,
1017 .invalidatepage = btree_invalidatepage,
5a92bc88 1018#ifdef CONFIG_MIGRATION
784b4e29 1019 .migratepage = btree_migratepage,
5a92bc88 1020#endif
0b32f4bb 1021 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1022};
1023
2ff7e61e 1024void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1025{
5f39d397 1026 struct extent_buffer *buf = NULL;
537f38f0 1027 int ret;
090d1875 1028
2ff7e61e 1029 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1030 if (IS_ERR(buf))
6197d86e 1031 return;
537f38f0 1032
c2ccfbc6 1033 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1034 if (ret < 0)
1035 free_extent_buffer_stale(buf);
1036 else
1037 free_extent_buffer(buf);
090d1875
CM
1038}
1039
2ff7e61e 1040int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1041 int mirror_num, struct extent_buffer **eb)
1042{
1043 struct extent_buffer *buf = NULL;
ab0fff03
AJ
1044 int ret;
1045
2ff7e61e 1046 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1047 if (IS_ERR(buf))
ab0fff03
AJ
1048 return 0;
1049
1050 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1051
c2ccfbc6 1052 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
ab0fff03 1053 if (ret) {
537f38f0 1054 free_extent_buffer_stale(buf);
ab0fff03
AJ
1055 return ret;
1056 }
1057
1058 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
537f38f0 1059 free_extent_buffer_stale(buf);
ab0fff03 1060 return -EIO;
0b32f4bb 1061 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1062 *eb = buf;
1063 } else {
1064 free_extent_buffer(buf);
1065 }
1066 return 0;
1067}
1068
2ff7e61e
JM
1069struct extent_buffer *btrfs_find_create_tree_block(
1070 struct btrfs_fs_info *fs_info,
1071 u64 bytenr)
0999df54 1072{
0b246afa
JM
1073 if (btrfs_is_testing(fs_info))
1074 return alloc_test_extent_buffer(fs_info, bytenr);
1075 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1076}
1077
581c1760
QW
1078/*
1079 * Read tree block at logical address @bytenr and do variant basic but critical
1080 * verification.
1081 *
1082 * @parent_transid: expected transid of this tree block, skip check if 0
1083 * @level: expected level, mandatory check
1084 * @first_key: expected key in slot 0, skip check if NULL
1085 */
2ff7e61e 1086struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1087 u64 parent_transid, int level,
1088 struct btrfs_key *first_key)
0999df54
CM
1089{
1090 struct extent_buffer *buf = NULL;
0999df54
CM
1091 int ret;
1092
2ff7e61e 1093 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1094 if (IS_ERR(buf))
1095 return buf;
0999df54 1096
5ab12d1f 1097 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1098 level, first_key);
0f0fe8f7 1099 if (ret) {
537f38f0 1100 free_extent_buffer_stale(buf);
64c043de 1101 return ERR_PTR(ret);
0f0fe8f7 1102 }
5f39d397 1103 return buf;
ce9adaa5 1104
eb60ceac
CM
1105}
1106
6a884d7d 1107void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1108{
6a884d7d 1109 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1110 if (btrfs_header_generation(buf) ==
e2d84521 1111 fs_info->running_transaction->transid) {
b9447ef8 1112 btrfs_assert_tree_locked(buf);
b4ce94de 1113
b9473439 1114 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1115 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1116 -buf->len,
1117 fs_info->dirty_metadata_batch);
ed7b63eb 1118 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1119 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1120 clear_extent_buffer_dirty(buf);
1121 }
925baedd 1122 }
5f39d397
CM
1123}
1124
8257b2dc
MX
1125static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1126{
1127 struct btrfs_subvolume_writers *writers;
1128 int ret;
1129
1130 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1131 if (!writers)
1132 return ERR_PTR(-ENOMEM);
1133
8a5a916d 1134 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1135 if (ret < 0) {
1136 kfree(writers);
1137 return ERR_PTR(ret);
1138 }
1139
1140 init_waitqueue_head(&writers->wait);
1141 return writers;
1142}
1143
1144static void
1145btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1146{
1147 percpu_counter_destroy(&writers->counter);
1148 kfree(writers);
1149}
1150
da17066c 1151static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1152 u64 objectid)
d97e63b6 1153{
7c0260ee 1154 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1155 root->node = NULL;
a28ec197 1156 root->commit_root = NULL;
27cdeb70 1157 root->state = 0;
d68fc57b 1158 root->orphan_cleanup_state = 0;
0b86a832 1159
0f7d52f4 1160 root->last_trans = 0;
13a8a7c8 1161 root->highest_objectid = 0;
eb73c1b7 1162 root->nr_delalloc_inodes = 0;
199c2a9c 1163 root->nr_ordered_extents = 0;
6bef4d31 1164 root->inode_tree = RB_ROOT;
16cdcec7 1165 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1166 root->block_rsv = NULL;
0b86a832
CM
1167
1168 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1169 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1170 INIT_LIST_HEAD(&root->delalloc_inodes);
1171 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1172 INIT_LIST_HEAD(&root->ordered_extents);
1173 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1174 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1175 INIT_LIST_HEAD(&root->logged_list[0]);
1176 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1177 spin_lock_init(&root->inode_lock);
eb73c1b7 1178 spin_lock_init(&root->delalloc_lock);
199c2a9c 1179 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1180 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1181 spin_lock_init(&root->log_extents_lock[0]);
1182 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1183 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1184 mutex_init(&root->objectid_mutex);
e02119d5 1185 mutex_init(&root->log_mutex);
31f3d255 1186 mutex_init(&root->ordered_extent_mutex);
573bfb72 1187 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1188 init_waitqueue_head(&root->log_writer_wait);
1189 init_waitqueue_head(&root->log_commit_wait[0]);
1190 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1191 INIT_LIST_HEAD(&root->log_ctxs[0]);
1192 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1193 atomic_set(&root->log_commit[0], 0);
1194 atomic_set(&root->log_commit[1], 0);
1195 atomic_set(&root->log_writers, 0);
2ecb7923 1196 atomic_set(&root->log_batch, 0);
0700cea7 1197 refcount_set(&root->refs, 1);
ea14b57f 1198 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1199 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1200 atomic_set(&root->nr_swapfiles, 0);
7237f183 1201 root->log_transid = 0;
d1433deb 1202 root->log_transid_committed = -1;
257c62e1 1203 root->last_log_commit = 0;
7c0260ee 1204 if (!dummy)
43eb5f29
QW
1205 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1206 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1207
3768f368
CM
1208 memset(&root->root_key, 0, sizeof(root->root_key));
1209 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1210 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1211 if (!dummy)
06ea65a3
JB
1212 root->defrag_trans_start = fs_info->generation;
1213 else
1214 root->defrag_trans_start = 0;
4d775673 1215 root->root_key.objectid = objectid;
0ee5dc67 1216 root->anon_dev = 0;
8ea05e3a 1217
5f3ab90a 1218 spin_lock_init(&root->root_item_lock);
370a11b8 1219 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1220}
1221
74e4d827
DS
1222static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1223 gfp_t flags)
6f07e42e 1224{
74e4d827 1225 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1226 if (root)
1227 root->fs_info = fs_info;
1228 return root;
1229}
1230
06ea65a3
JB
1231#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1232/* Should only be used by the testing infrastructure */
da17066c 1233struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1234{
1235 struct btrfs_root *root;
1236
7c0260ee
JM
1237 if (!fs_info)
1238 return ERR_PTR(-EINVAL);
1239
1240 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1241 if (!root)
1242 return ERR_PTR(-ENOMEM);
da17066c 1243
b9ef22de 1244 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1245 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1246 root->alloc_bytenr = 0;
06ea65a3
JB
1247
1248 return root;
1249}
1250#endif
1251
20897f5c 1252struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1253 u64 objectid)
1254{
9b7a2440 1255 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1256 struct extent_buffer *leaf;
1257 struct btrfs_root *tree_root = fs_info->tree_root;
1258 struct btrfs_root *root;
1259 struct btrfs_key key;
b89f6d1f 1260 unsigned int nofs_flag;
20897f5c 1261 int ret = 0;
33d85fda 1262 uuid_le uuid = NULL_UUID_LE;
20897f5c 1263
b89f6d1f
FM
1264 /*
1265 * We're holding a transaction handle, so use a NOFS memory allocation
1266 * context to avoid deadlock if reclaim happens.
1267 */
1268 nofs_flag = memalloc_nofs_save();
74e4d827 1269 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1270 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1271 if (!root)
1272 return ERR_PTR(-ENOMEM);
1273
da17066c 1274 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1275 root->root_key.objectid = objectid;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = 0;
1278
4d75f8a9 1279 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1280 if (IS_ERR(leaf)) {
1281 ret = PTR_ERR(leaf);
1dd05682 1282 leaf = NULL;
20897f5c
AJ
1283 goto fail;
1284 }
1285
20897f5c 1286 root->node = leaf;
20897f5c
AJ
1287 btrfs_mark_buffer_dirty(leaf);
1288
1289 root->commit_root = btrfs_root_node(root);
27cdeb70 1290 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1291
1292 root->root_item.flags = 0;
1293 root->root_item.byte_limit = 0;
1294 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1295 btrfs_set_root_generation(&root->root_item, trans->transid);
1296 btrfs_set_root_level(&root->root_item, 0);
1297 btrfs_set_root_refs(&root->root_item, 1);
1298 btrfs_set_root_used(&root->root_item, leaf->len);
1299 btrfs_set_root_last_snapshot(&root->root_item, 0);
1300 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1301 if (is_fstree(objectid))
1302 uuid_le_gen(&uuid);
6463fe58 1303 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1304 root->root_item.drop_level = 0;
1305
1306 key.objectid = objectid;
1307 key.type = BTRFS_ROOT_ITEM_KEY;
1308 key.offset = 0;
1309 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1310 if (ret)
1311 goto fail;
1312
1313 btrfs_tree_unlock(leaf);
1314
1dd05682
TI
1315 return root;
1316
20897f5c 1317fail:
1dd05682
TI
1318 if (leaf) {
1319 btrfs_tree_unlock(leaf);
59885b39 1320 free_extent_buffer(root->commit_root);
1dd05682
TI
1321 free_extent_buffer(leaf);
1322 }
1323 kfree(root);
20897f5c 1324
1dd05682 1325 return ERR_PTR(ret);
20897f5c
AJ
1326}
1327
7237f183
YZ
1328static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1330{
1331 struct btrfs_root *root;
7237f183 1332 struct extent_buffer *leaf;
e02119d5 1333
74e4d827 1334 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1335 if (!root)
7237f183 1336 return ERR_PTR(-ENOMEM);
e02119d5 1337
da17066c 1338 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1339
1340 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1341 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1342 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1343
7237f183 1344 /*
27cdeb70
MX
1345 * DON'T set REF_COWS for log trees
1346 *
7237f183
YZ
1347 * log trees do not get reference counted because they go away
1348 * before a real commit is actually done. They do store pointers
1349 * to file data extents, and those reference counts still get
1350 * updated (along with back refs to the log tree).
1351 */
e02119d5 1352
4d75f8a9
DS
1353 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1354 NULL, 0, 0, 0);
7237f183
YZ
1355 if (IS_ERR(leaf)) {
1356 kfree(root);
1357 return ERR_CAST(leaf);
1358 }
e02119d5 1359
7237f183 1360 root->node = leaf;
e02119d5 1361
e02119d5
CM
1362 btrfs_mark_buffer_dirty(root->node);
1363 btrfs_tree_unlock(root->node);
7237f183
YZ
1364 return root;
1365}
1366
1367int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1368 struct btrfs_fs_info *fs_info)
1369{
1370 struct btrfs_root *log_root;
1371
1372 log_root = alloc_log_tree(trans, fs_info);
1373 if (IS_ERR(log_root))
1374 return PTR_ERR(log_root);
1375 WARN_ON(fs_info->log_root_tree);
1376 fs_info->log_root_tree = log_root;
1377 return 0;
1378}
1379
1380int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1381 struct btrfs_root *root)
1382{
0b246afa 1383 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1384 struct btrfs_root *log_root;
1385 struct btrfs_inode_item *inode_item;
1386
0b246afa 1387 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1388 if (IS_ERR(log_root))
1389 return PTR_ERR(log_root);
1390
1391 log_root->last_trans = trans->transid;
1392 log_root->root_key.offset = root->root_key.objectid;
1393
1394 inode_item = &log_root->root_item.inode;
3cae210f
QW
1395 btrfs_set_stack_inode_generation(inode_item, 1);
1396 btrfs_set_stack_inode_size(inode_item, 3);
1397 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1398 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1399 fs_info->nodesize);
3cae210f 1400 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1401
5d4f98a2 1402 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1403
1404 WARN_ON(root->log_root);
1405 root->log_root = log_root;
1406 root->log_transid = 0;
d1433deb 1407 root->log_transid_committed = -1;
257c62e1 1408 root->last_log_commit = 0;
e02119d5
CM
1409 return 0;
1410}
1411
35a3621b
SB
1412static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1413 struct btrfs_key *key)
e02119d5
CM
1414{
1415 struct btrfs_root *root;
1416 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1417 struct btrfs_path *path;
84234f3a 1418 u64 generation;
cb517eab 1419 int ret;
581c1760 1420 int level;
0f7d52f4 1421
cb517eab
MX
1422 path = btrfs_alloc_path();
1423 if (!path)
0f7d52f4 1424 return ERR_PTR(-ENOMEM);
cb517eab 1425
74e4d827 1426 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1427 if (!root) {
1428 ret = -ENOMEM;
1429 goto alloc_fail;
0f7d52f4
CM
1430 }
1431
da17066c 1432 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1433
cb517eab
MX
1434 ret = btrfs_find_root(tree_root, key, path,
1435 &root->root_item, &root->root_key);
0f7d52f4 1436 if (ret) {
13a8a7c8
YZ
1437 if (ret > 0)
1438 ret = -ENOENT;
cb517eab 1439 goto find_fail;
0f7d52f4 1440 }
13a8a7c8 1441
84234f3a 1442 generation = btrfs_root_generation(&root->root_item);
581c1760 1443 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1444 root->node = read_tree_block(fs_info,
1445 btrfs_root_bytenr(&root->root_item),
581c1760 1446 generation, level, NULL);
64c043de
LB
1447 if (IS_ERR(root->node)) {
1448 ret = PTR_ERR(root->node);
cb517eab
MX
1449 goto find_fail;
1450 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1451 ret = -EIO;
64c043de
LB
1452 free_extent_buffer(root->node);
1453 goto find_fail;
416bc658 1454 }
5d4f98a2 1455 root->commit_root = btrfs_root_node(root);
13a8a7c8 1456out:
cb517eab
MX
1457 btrfs_free_path(path);
1458 return root;
1459
cb517eab
MX
1460find_fail:
1461 kfree(root);
1462alloc_fail:
1463 root = ERR_PTR(ret);
1464 goto out;
1465}
1466
1467struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1468 struct btrfs_key *location)
1469{
1470 struct btrfs_root *root;
1471
1472 root = btrfs_read_tree_root(tree_root, location);
1473 if (IS_ERR(root))
1474 return root;
1475
1476 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1477 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1478 btrfs_check_and_init_root_item(&root->root_item);
1479 }
13a8a7c8 1480
5eda7b5e
CM
1481 return root;
1482}
1483
cb517eab
MX
1484int btrfs_init_fs_root(struct btrfs_root *root)
1485{
1486 int ret;
8257b2dc 1487 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1488
1489 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1490 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1491 GFP_NOFS);
1492 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1493 ret = -ENOMEM;
1494 goto fail;
1495 }
1496
8257b2dc
MX
1497 writers = btrfs_alloc_subvolume_writers();
1498 if (IS_ERR(writers)) {
1499 ret = PTR_ERR(writers);
1500 goto fail;
1501 }
1502 root->subv_writers = writers;
1503
cb517eab 1504 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1505 spin_lock_init(&root->ino_cache_lock);
1506 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1507
1508 ret = get_anon_bdev(&root->anon_dev);
1509 if (ret)
876d2cf1 1510 goto fail;
f32e48e9
CR
1511
1512 mutex_lock(&root->objectid_mutex);
1513 ret = btrfs_find_highest_objectid(root,
1514 &root->highest_objectid);
1515 if (ret) {
1516 mutex_unlock(&root->objectid_mutex);
876d2cf1 1517 goto fail;
f32e48e9
CR
1518 }
1519
1520 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1521
1522 mutex_unlock(&root->objectid_mutex);
1523
cb517eab
MX
1524 return 0;
1525fail:
84db5ccf 1526 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1527 return ret;
1528}
1529
35bbb97f
JM
1530struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1531 u64 root_id)
cb517eab
MX
1532{
1533 struct btrfs_root *root;
1534
1535 spin_lock(&fs_info->fs_roots_radix_lock);
1536 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1537 (unsigned long)root_id);
1538 spin_unlock(&fs_info->fs_roots_radix_lock);
1539 return root;
1540}
1541
1542int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1543 struct btrfs_root *root)
1544{
1545 int ret;
1546
e1860a77 1547 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1548 if (ret)
1549 return ret;
1550
1551 spin_lock(&fs_info->fs_roots_radix_lock);
1552 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553 (unsigned long)root->root_key.objectid,
1554 root);
1555 if (ret == 0)
27cdeb70 1556 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1557 spin_unlock(&fs_info->fs_roots_radix_lock);
1558 radix_tree_preload_end();
1559
1560 return ret;
1561}
1562
c00869f1
MX
1563struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1564 struct btrfs_key *location,
1565 bool check_ref)
5eda7b5e
CM
1566{
1567 struct btrfs_root *root;
381cf658 1568 struct btrfs_path *path;
1d4c08e0 1569 struct btrfs_key key;
5eda7b5e
CM
1570 int ret;
1571
edbd8d4e
CM
1572 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1573 return fs_info->tree_root;
1574 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1575 return fs_info->extent_root;
8f18cf13
CM
1576 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1577 return fs_info->chunk_root;
1578 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1579 return fs_info->dev_root;
0403e47e
YZ
1580 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1581 return fs_info->csum_root;
bcef60f2
AJ
1582 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1583 return fs_info->quota_root ? fs_info->quota_root :
1584 ERR_PTR(-ENOENT);
f7a81ea4
SB
1585 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1586 return fs_info->uuid_root ? fs_info->uuid_root :
1587 ERR_PTR(-ENOENT);
70f6d82e
OS
1588 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1589 return fs_info->free_space_root ? fs_info->free_space_root :
1590 ERR_PTR(-ENOENT);
4df27c4d 1591again:
cb517eab 1592 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1593 if (root) {
c00869f1 1594 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1595 return ERR_PTR(-ENOENT);
5eda7b5e 1596 return root;
48475471 1597 }
5eda7b5e 1598
cb517eab 1599 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1600 if (IS_ERR(root))
1601 return root;
3394e160 1602
c00869f1 1603 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1604 ret = -ENOENT;
581bb050 1605 goto fail;
35a30d7c 1606 }
581bb050 1607
cb517eab 1608 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1609 if (ret)
1610 goto fail;
3394e160 1611
381cf658
DS
1612 path = btrfs_alloc_path();
1613 if (!path) {
1614 ret = -ENOMEM;
1615 goto fail;
1616 }
1d4c08e0
DS
1617 key.objectid = BTRFS_ORPHAN_OBJECTID;
1618 key.type = BTRFS_ORPHAN_ITEM_KEY;
1619 key.offset = location->objectid;
1620
1621 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1622 btrfs_free_path(path);
d68fc57b
YZ
1623 if (ret < 0)
1624 goto fail;
1625 if (ret == 0)
27cdeb70 1626 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1627
cb517eab 1628 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1629 if (ret) {
4df27c4d 1630 if (ret == -EEXIST) {
84db5ccf 1631 btrfs_free_fs_root(root);
4df27c4d
YZ
1632 goto again;
1633 }
1634 goto fail;
0f7d52f4 1635 }
edbd8d4e 1636 return root;
4df27c4d 1637fail:
84db5ccf 1638 btrfs_free_fs_root(root);
4df27c4d 1639 return ERR_PTR(ret);
edbd8d4e
CM
1640}
1641
04160088
CM
1642static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1643{
1644 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1645 int ret = 0;
04160088
CM
1646 struct btrfs_device *device;
1647 struct backing_dev_info *bdi;
b7967db7 1648
1f78160c
XG
1649 rcu_read_lock();
1650 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1651 if (!device->bdev)
1652 continue;
efa7c9f9 1653 bdi = device->bdev->bd_bdi;
ff9ea323 1654 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1655 ret = 1;
1656 break;
1657 }
1658 }
1f78160c 1659 rcu_read_unlock();
04160088
CM
1660 return ret;
1661}
1662
8b712842
CM
1663/*
1664 * called by the kthread helper functions to finally call the bio end_io
1665 * functions. This is where read checksum verification actually happens
1666 */
1667static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1668{
ce9adaa5 1669 struct bio *bio;
97eb6b69 1670 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1671
97eb6b69 1672 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1673 bio = end_io_wq->bio;
ce9adaa5 1674
4e4cbee9 1675 bio->bi_status = end_io_wq->status;
8b712842
CM
1676 bio->bi_private = end_io_wq->private;
1677 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1678 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1679 bio_endio(bio);
44b8bd7e
CM
1680}
1681
a74a4b97
CM
1682static int cleaner_kthread(void *arg)
1683{
1684 struct btrfs_root *root = arg;
0b246afa 1685 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1686 int again;
a74a4b97 1687
d6fd0ae2 1688 while (1) {
d0278245 1689 again = 0;
a74a4b97 1690
fd340d0f
JB
1691 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1692
d0278245 1693 /* Make the cleaner go to sleep early. */
2ff7e61e 1694 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1695 goto sleep;
1696
90c711ab
ZB
1697 /*
1698 * Do not do anything if we might cause open_ctree() to block
1699 * before we have finished mounting the filesystem.
1700 */
0b246afa 1701 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1702 goto sleep;
1703
0b246afa 1704 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1705 goto sleep;
1706
dc7f370c
MX
1707 /*
1708 * Avoid the problem that we change the status of the fs
1709 * during the above check and trylock.
1710 */
2ff7e61e 1711 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1712 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1713 goto sleep;
76dda93c 1714 }
a74a4b97 1715
2ff7e61e 1716 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1717
d0278245 1718 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1719 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1720
1721 /*
05323cd1
MX
1722 * The defragger has dealt with the R/O remount and umount,
1723 * needn't do anything special here.
d0278245 1724 */
0b246afa 1725 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1726
1727 /*
1728 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1729 * with relocation (btrfs_relocate_chunk) and relocation
1730 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1731 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1732 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1733 * unused block groups.
1734 */
0b246afa 1735 btrfs_delete_unused_bgs(fs_info);
d0278245 1736sleep:
fd340d0f 1737 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1738 if (kthread_should_park())
1739 kthread_parkme();
1740 if (kthread_should_stop())
1741 return 0;
838fe188 1742 if (!again) {
a74a4b97 1743 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1744 schedule();
a74a4b97
CM
1745 __set_current_state(TASK_RUNNING);
1746 }
da288d28 1747 }
a74a4b97
CM
1748}
1749
1750static int transaction_kthread(void *arg)
1751{
1752 struct btrfs_root *root = arg;
0b246afa 1753 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1754 struct btrfs_trans_handle *trans;
1755 struct btrfs_transaction *cur;
8929ecfa 1756 u64 transid;
a944442c 1757 time64_t now;
a74a4b97 1758 unsigned long delay;
914b2007 1759 bool cannot_commit;
a74a4b97
CM
1760
1761 do {
914b2007 1762 cannot_commit = false;
0b246afa
JM
1763 delay = HZ * fs_info->commit_interval;
1764 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1765
0b246afa
JM
1766 spin_lock(&fs_info->trans_lock);
1767 cur = fs_info->running_transaction;
a74a4b97 1768 if (!cur) {
0b246afa 1769 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1770 goto sleep;
1771 }
31153d81 1772
afd48513 1773 now = ktime_get_seconds();
4a9d8bde 1774 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1775 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1776 (now < cur->start_time ||
0b246afa
JM
1777 now - cur->start_time < fs_info->commit_interval)) {
1778 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1779 delay = HZ * 5;
1780 goto sleep;
1781 }
8929ecfa 1782 transid = cur->transid;
0b246afa 1783 spin_unlock(&fs_info->trans_lock);
56bec294 1784
79787eaa 1785 /* If the file system is aborted, this will always fail. */
354aa0fb 1786 trans = btrfs_attach_transaction(root);
914b2007 1787 if (IS_ERR(trans)) {
354aa0fb
MX
1788 if (PTR_ERR(trans) != -ENOENT)
1789 cannot_commit = true;
79787eaa 1790 goto sleep;
914b2007 1791 }
8929ecfa 1792 if (transid == trans->transid) {
3a45bb20 1793 btrfs_commit_transaction(trans);
8929ecfa 1794 } else {
3a45bb20 1795 btrfs_end_transaction(trans);
8929ecfa 1796 }
a74a4b97 1797sleep:
0b246afa
JM
1798 wake_up_process(fs_info->cleaner_kthread);
1799 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1800
4e121c06 1801 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1802 &fs_info->fs_state)))
2ff7e61e 1803 btrfs_cleanup_transaction(fs_info);
ce63f891 1804 if (!kthread_should_stop() &&
0b246afa 1805 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1806 cannot_commit))
bc5511d0 1807 schedule_timeout_interruptible(delay);
a74a4b97
CM
1808 } while (!kthread_should_stop());
1809 return 0;
1810}
1811
af31f5e5
CM
1812/*
1813 * this will find the highest generation in the array of
1814 * root backups. The index of the highest array is returned,
1815 * or -1 if we can't find anything.
1816 *
1817 * We check to make sure the array is valid by comparing the
1818 * generation of the latest root in the array with the generation
1819 * in the super block. If they don't match we pitch it.
1820 */
1821static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1822{
1823 u64 cur;
1824 int newest_index = -1;
1825 struct btrfs_root_backup *root_backup;
1826 int i;
1827
1828 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1829 root_backup = info->super_copy->super_roots + i;
1830 cur = btrfs_backup_tree_root_gen(root_backup);
1831 if (cur == newest_gen)
1832 newest_index = i;
1833 }
1834
1835 /* check to see if we actually wrapped around */
1836 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1837 root_backup = info->super_copy->super_roots;
1838 cur = btrfs_backup_tree_root_gen(root_backup);
1839 if (cur == newest_gen)
1840 newest_index = 0;
1841 }
1842 return newest_index;
1843}
1844
1845
1846/*
1847 * find the oldest backup so we know where to store new entries
1848 * in the backup array. This will set the backup_root_index
1849 * field in the fs_info struct
1850 */
1851static void find_oldest_super_backup(struct btrfs_fs_info *info,
1852 u64 newest_gen)
1853{
1854 int newest_index = -1;
1855
1856 newest_index = find_newest_super_backup(info, newest_gen);
1857 /* if there was garbage in there, just move along */
1858 if (newest_index == -1) {
1859 info->backup_root_index = 0;
1860 } else {
1861 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1862 }
1863}
1864
1865/*
1866 * copy all the root pointers into the super backup array.
1867 * this will bump the backup pointer by one when it is
1868 * done
1869 */
1870static void backup_super_roots(struct btrfs_fs_info *info)
1871{
1872 int next_backup;
1873 struct btrfs_root_backup *root_backup;
1874 int last_backup;
1875
1876 next_backup = info->backup_root_index;
1877 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1878 BTRFS_NUM_BACKUP_ROOTS;
1879
1880 /*
1881 * just overwrite the last backup if we're at the same generation
1882 * this happens only at umount
1883 */
1884 root_backup = info->super_for_commit->super_roots + last_backup;
1885 if (btrfs_backup_tree_root_gen(root_backup) ==
1886 btrfs_header_generation(info->tree_root->node))
1887 next_backup = last_backup;
1888
1889 root_backup = info->super_for_commit->super_roots + next_backup;
1890
1891 /*
1892 * make sure all of our padding and empty slots get zero filled
1893 * regardless of which ones we use today
1894 */
1895 memset(root_backup, 0, sizeof(*root_backup));
1896
1897 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1898
1899 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1900 btrfs_set_backup_tree_root_gen(root_backup,
1901 btrfs_header_generation(info->tree_root->node));
1902
1903 btrfs_set_backup_tree_root_level(root_backup,
1904 btrfs_header_level(info->tree_root->node));
1905
1906 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1907 btrfs_set_backup_chunk_root_gen(root_backup,
1908 btrfs_header_generation(info->chunk_root->node));
1909 btrfs_set_backup_chunk_root_level(root_backup,
1910 btrfs_header_level(info->chunk_root->node));
1911
1912 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1913 btrfs_set_backup_extent_root_gen(root_backup,
1914 btrfs_header_generation(info->extent_root->node));
1915 btrfs_set_backup_extent_root_level(root_backup,
1916 btrfs_header_level(info->extent_root->node));
1917
7c7e82a7
CM
1918 /*
1919 * we might commit during log recovery, which happens before we set
1920 * the fs_root. Make sure it is valid before we fill it in.
1921 */
1922 if (info->fs_root && info->fs_root->node) {
1923 btrfs_set_backup_fs_root(root_backup,
1924 info->fs_root->node->start);
1925 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1926 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1927 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1928 btrfs_header_level(info->fs_root->node));
7c7e82a7 1929 }
af31f5e5
CM
1930
1931 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1932 btrfs_set_backup_dev_root_gen(root_backup,
1933 btrfs_header_generation(info->dev_root->node));
1934 btrfs_set_backup_dev_root_level(root_backup,
1935 btrfs_header_level(info->dev_root->node));
1936
1937 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1938 btrfs_set_backup_csum_root_gen(root_backup,
1939 btrfs_header_generation(info->csum_root->node));
1940 btrfs_set_backup_csum_root_level(root_backup,
1941 btrfs_header_level(info->csum_root->node));
1942
1943 btrfs_set_backup_total_bytes(root_backup,
1944 btrfs_super_total_bytes(info->super_copy));
1945 btrfs_set_backup_bytes_used(root_backup,
1946 btrfs_super_bytes_used(info->super_copy));
1947 btrfs_set_backup_num_devices(root_backup,
1948 btrfs_super_num_devices(info->super_copy));
1949
1950 /*
1951 * if we don't copy this out to the super_copy, it won't get remembered
1952 * for the next commit
1953 */
1954 memcpy(&info->super_copy->super_roots,
1955 &info->super_for_commit->super_roots,
1956 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1957}
1958
1959/*
1960 * this copies info out of the root backup array and back into
1961 * the in-memory super block. It is meant to help iterate through
1962 * the array, so you send it the number of backups you've already
1963 * tried and the last backup index you used.
1964 *
1965 * this returns -1 when it has tried all the backups
1966 */
1967static noinline int next_root_backup(struct btrfs_fs_info *info,
1968 struct btrfs_super_block *super,
1969 int *num_backups_tried, int *backup_index)
1970{
1971 struct btrfs_root_backup *root_backup;
1972 int newest = *backup_index;
1973
1974 if (*num_backups_tried == 0) {
1975 u64 gen = btrfs_super_generation(super);
1976
1977 newest = find_newest_super_backup(info, gen);
1978 if (newest == -1)
1979 return -1;
1980
1981 *backup_index = newest;
1982 *num_backups_tried = 1;
1983 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1984 /* we've tried all the backups, all done */
1985 return -1;
1986 } else {
1987 /* jump to the next oldest backup */
1988 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1989 BTRFS_NUM_BACKUP_ROOTS;
1990 *backup_index = newest;
1991 *num_backups_tried += 1;
1992 }
1993 root_backup = super->super_roots + newest;
1994
1995 btrfs_set_super_generation(super,
1996 btrfs_backup_tree_root_gen(root_backup));
1997 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1998 btrfs_set_super_root_level(super,
1999 btrfs_backup_tree_root_level(root_backup));
2000 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2001
2002 /*
2003 * fixme: the total bytes and num_devices need to match or we should
2004 * need a fsck
2005 */
2006 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2007 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2008 return 0;
2009}
2010
7abadb64
LB
2011/* helper to cleanup workers */
2012static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2013{
dc6e3209 2014 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2015 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2016 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2017 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2018 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2019 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2020 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2021 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2022 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2023 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2024 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2025 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2026 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2027 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2028 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2029 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2030 /*
2031 * Now that all other work queues are destroyed, we can safely destroy
2032 * the queues used for metadata I/O, since tasks from those other work
2033 * queues can do metadata I/O operations.
2034 */
2035 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2036 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2037}
2038
2e9f5954
R
2039static void free_root_extent_buffers(struct btrfs_root *root)
2040{
2041 if (root) {
2042 free_extent_buffer(root->node);
2043 free_extent_buffer(root->commit_root);
2044 root->node = NULL;
2045 root->commit_root = NULL;
2046 }
2047}
2048
af31f5e5
CM
2049/* helper to cleanup tree roots */
2050static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2051{
2e9f5954 2052 free_root_extent_buffers(info->tree_root);
655b09fe 2053
2e9f5954
R
2054 free_root_extent_buffers(info->dev_root);
2055 free_root_extent_buffers(info->extent_root);
2056 free_root_extent_buffers(info->csum_root);
2057 free_root_extent_buffers(info->quota_root);
2058 free_root_extent_buffers(info->uuid_root);
2059 if (chunk_root)
2060 free_root_extent_buffers(info->chunk_root);
70f6d82e 2061 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2062}
2063
faa2dbf0 2064void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2065{
2066 int ret;
2067 struct btrfs_root *gang[8];
2068 int i;
2069
2070 while (!list_empty(&fs_info->dead_roots)) {
2071 gang[0] = list_entry(fs_info->dead_roots.next,
2072 struct btrfs_root, root_list);
2073 list_del(&gang[0]->root_list);
2074
27cdeb70 2075 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2076 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2077 } else {
2078 free_extent_buffer(gang[0]->node);
2079 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2080 btrfs_put_fs_root(gang[0]);
171f6537
JB
2081 }
2082 }
2083
2084 while (1) {
2085 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2086 (void **)gang, 0,
2087 ARRAY_SIZE(gang));
2088 if (!ret)
2089 break;
2090 for (i = 0; i < ret; i++)
cb517eab 2091 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2092 }
1a4319cc
LB
2093
2094 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2095 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2096 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2097 }
171f6537 2098}
af31f5e5 2099
638aa7ed
ES
2100static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2101{
2102 mutex_init(&fs_info->scrub_lock);
2103 atomic_set(&fs_info->scrubs_running, 0);
2104 atomic_set(&fs_info->scrub_pause_req, 0);
2105 atomic_set(&fs_info->scrubs_paused, 0);
2106 atomic_set(&fs_info->scrub_cancel_req, 0);
2107 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2108 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2109}
2110
779a65a4
ES
2111static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2112{
2113 spin_lock_init(&fs_info->balance_lock);
2114 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2115 atomic_set(&fs_info->balance_pause_req, 0);
2116 atomic_set(&fs_info->balance_cancel_req, 0);
2117 fs_info->balance_ctl = NULL;
2118 init_waitqueue_head(&fs_info->balance_wait_q);
2119}
2120
6bccf3ab 2121static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2122{
2ff7e61e
JM
2123 struct inode *inode = fs_info->btree_inode;
2124
2125 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2126 set_nlink(inode, 1);
f37938e0
ES
2127 /*
2128 * we set the i_size on the btree inode to the max possible int.
2129 * the real end of the address space is determined by all of
2130 * the devices in the system
2131 */
2ff7e61e
JM
2132 inode->i_size = OFFSET_MAX;
2133 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2134
2ff7e61e 2135 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2136 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2137 IO_TREE_INODE_IO, inode);
7b439738 2138 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2139 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2140
2ff7e61e 2141 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2142
2ff7e61e
JM
2143 BTRFS_I(inode)->root = fs_info->tree_root;
2144 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2145 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2146 btrfs_insert_inode_hash(inode);
f37938e0
ES
2147}
2148
ad618368
ES
2149static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2150{
ad618368 2151 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2152 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2153 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2154}
2155
f9e92e40
ES
2156static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2157{
2158 spin_lock_init(&fs_info->qgroup_lock);
2159 mutex_init(&fs_info->qgroup_ioctl_lock);
2160 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2161 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2162 fs_info->qgroup_seq = 1;
f9e92e40 2163 fs_info->qgroup_ulist = NULL;
d2c609b8 2164 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2165 mutex_init(&fs_info->qgroup_rescan_lock);
2166}
2167
2a458198
ES
2168static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2169 struct btrfs_fs_devices *fs_devices)
2170{
f7b885be 2171 u32 max_active = fs_info->thread_pool_size;
6f011058 2172 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2173
2174 fs_info->workers =
cb001095
JM
2175 btrfs_alloc_workqueue(fs_info, "worker",
2176 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2177
2178 fs_info->delalloc_workers =
cb001095
JM
2179 btrfs_alloc_workqueue(fs_info, "delalloc",
2180 flags, max_active, 2);
2a458198
ES
2181
2182 fs_info->flush_workers =
cb001095
JM
2183 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2184 flags, max_active, 0);
2a458198
ES
2185
2186 fs_info->caching_workers =
cb001095 2187 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2188
2189 /*
2190 * a higher idle thresh on the submit workers makes it much more
2191 * likely that bios will be send down in a sane order to the
2192 * devices
2193 */
2194 fs_info->submit_workers =
cb001095 2195 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2196 min_t(u64, fs_devices->num_devices,
2197 max_active), 64);
2198
2199 fs_info->fixup_workers =
cb001095 2200 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2201
2202 /*
2203 * endios are largely parallel and should have a very
2204 * low idle thresh
2205 */
2206 fs_info->endio_workers =
cb001095 2207 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2208 fs_info->endio_meta_workers =
cb001095
JM
2209 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2210 max_active, 4);
2a458198 2211 fs_info->endio_meta_write_workers =
cb001095
JM
2212 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2213 max_active, 2);
2a458198 2214 fs_info->endio_raid56_workers =
cb001095
JM
2215 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2216 max_active, 4);
2a458198 2217 fs_info->endio_repair_workers =
cb001095 2218 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2219 fs_info->rmw_workers =
cb001095 2220 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2221 fs_info->endio_write_workers =
cb001095
JM
2222 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2223 max_active, 2);
2a458198 2224 fs_info->endio_freespace_worker =
cb001095
JM
2225 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2226 max_active, 0);
2a458198 2227 fs_info->delayed_workers =
cb001095
JM
2228 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2229 max_active, 0);
2a458198 2230 fs_info->readahead_workers =
cb001095
JM
2231 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2232 max_active, 2);
2a458198 2233 fs_info->qgroup_rescan_workers =
cb001095 2234 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2235 fs_info->extent_workers =
cb001095 2236 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2237 min_t(u64, fs_devices->num_devices,
2238 max_active), 8);
2239
2240 if (!(fs_info->workers && fs_info->delalloc_workers &&
2241 fs_info->submit_workers && fs_info->flush_workers &&
2242 fs_info->endio_workers && fs_info->endio_meta_workers &&
2243 fs_info->endio_meta_write_workers &&
2244 fs_info->endio_repair_workers &&
2245 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2246 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2247 fs_info->caching_workers && fs_info->readahead_workers &&
2248 fs_info->fixup_workers && fs_info->delayed_workers &&
2249 fs_info->extent_workers &&
2250 fs_info->qgroup_rescan_workers)) {
2251 return -ENOMEM;
2252 }
2253
2254 return 0;
2255}
2256
6d97c6e3
JT
2257static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2258{
2259 struct crypto_shash *csum_shash;
2260 const char *csum_name = btrfs_super_csum_name(csum_type);
2261
2262 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2263
2264 if (IS_ERR(csum_shash)) {
2265 btrfs_err(fs_info, "error allocating %s hash for checksum",
2266 csum_name);
2267 return PTR_ERR(csum_shash);
2268 }
2269
2270 fs_info->csum_shash = csum_shash;
2271
2272 return 0;
2273}
2274
2275static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2276{
2277 crypto_free_shash(fs_info->csum_shash);
2278}
2279
63443bf5
ES
2280static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2281 struct btrfs_fs_devices *fs_devices)
2282{
2283 int ret;
63443bf5
ES
2284 struct btrfs_root *log_tree_root;
2285 struct btrfs_super_block *disk_super = fs_info->super_copy;
2286 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2287 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2288
2289 if (fs_devices->rw_devices == 0) {
f14d104d 2290 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2291 return -EIO;
2292 }
2293
74e4d827 2294 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2295 if (!log_tree_root)
2296 return -ENOMEM;
2297
da17066c 2298 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2299
2ff7e61e 2300 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2301 fs_info->generation + 1,
2302 level, NULL);
64c043de 2303 if (IS_ERR(log_tree_root->node)) {
f14d104d 2304 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2305 ret = PTR_ERR(log_tree_root->node);
64c043de 2306 kfree(log_tree_root);
0eeff236 2307 return ret;
64c043de 2308 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2309 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2310 free_extent_buffer(log_tree_root->node);
2311 kfree(log_tree_root);
2312 return -EIO;
2313 }
2314 /* returns with log_tree_root freed on success */
2315 ret = btrfs_recover_log_trees(log_tree_root);
2316 if (ret) {
0b246afa
JM
2317 btrfs_handle_fs_error(fs_info, ret,
2318 "Failed to recover log tree");
63443bf5
ES
2319 free_extent_buffer(log_tree_root->node);
2320 kfree(log_tree_root);
2321 return ret;
2322 }
2323
bc98a42c 2324 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2325 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2326 if (ret)
2327 return ret;
2328 }
2329
2330 return 0;
2331}
2332
6bccf3ab 2333static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2334{
6bccf3ab 2335 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2336 struct btrfs_root *root;
4bbcaa64
ES
2337 struct btrfs_key location;
2338 int ret;
2339
6bccf3ab
JM
2340 BUG_ON(!fs_info->tree_root);
2341
4bbcaa64
ES
2342 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2343 location.type = BTRFS_ROOT_ITEM_KEY;
2344 location.offset = 0;
2345
a4f3d2c4 2346 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2347 if (IS_ERR(root)) {
2348 ret = PTR_ERR(root);
2349 goto out;
2350 }
a4f3d2c4
DS
2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 fs_info->extent_root = root;
4bbcaa64
ES
2353
2354 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2355 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2356 if (IS_ERR(root)) {
2357 ret = PTR_ERR(root);
2358 goto out;
2359 }
a4f3d2c4
DS
2360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361 fs_info->dev_root = root;
4bbcaa64
ES
2362 btrfs_init_devices_late(fs_info);
2363
2364 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2365 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2366 if (IS_ERR(root)) {
2367 ret = PTR_ERR(root);
2368 goto out;
2369 }
a4f3d2c4
DS
2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 fs_info->csum_root = root;
4bbcaa64
ES
2372
2373 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2374 root = btrfs_read_tree_root(tree_root, &location);
2375 if (!IS_ERR(root)) {
2376 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2377 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2378 fs_info->quota_root = root;
4bbcaa64
ES
2379 }
2380
2381 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2382 root = btrfs_read_tree_root(tree_root, &location);
2383 if (IS_ERR(root)) {
2384 ret = PTR_ERR(root);
4bbcaa64 2385 if (ret != -ENOENT)
f50f4353 2386 goto out;
4bbcaa64 2387 } else {
a4f3d2c4
DS
2388 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389 fs_info->uuid_root = root;
4bbcaa64
ES
2390 }
2391
70f6d82e
OS
2392 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2393 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2394 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2395 if (IS_ERR(root)) {
2396 ret = PTR_ERR(root);
2397 goto out;
2398 }
70f6d82e
OS
2399 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2400 fs_info->free_space_root = root;
2401 }
2402
4bbcaa64 2403 return 0;
f50f4353
LB
2404out:
2405 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2406 location.objectid, ret);
2407 return ret;
4bbcaa64
ES
2408}
2409
069ec957
QW
2410/*
2411 * Real super block validation
2412 * NOTE: super csum type and incompat features will not be checked here.
2413 *
2414 * @sb: super block to check
2415 * @mirror_num: the super block number to check its bytenr:
2416 * 0 the primary (1st) sb
2417 * 1, 2 2nd and 3rd backup copy
2418 * -1 skip bytenr check
2419 */
2420static int validate_super(struct btrfs_fs_info *fs_info,
2421 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2422{
21a852b0
QW
2423 u64 nodesize = btrfs_super_nodesize(sb);
2424 u64 sectorsize = btrfs_super_sectorsize(sb);
2425 int ret = 0;
2426
2427 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2428 btrfs_err(fs_info, "no valid FS found");
2429 ret = -EINVAL;
2430 }
2431 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2432 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2433 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2434 ret = -EINVAL;
2435 }
2436 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2437 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2438 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2439 ret = -EINVAL;
2440 }
2441 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2442 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2443 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2444 ret = -EINVAL;
2445 }
2446 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2447 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2448 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2449 ret = -EINVAL;
2450 }
2451
2452 /*
2453 * Check sectorsize and nodesize first, other check will need it.
2454 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2455 */
2456 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2457 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2458 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2459 ret = -EINVAL;
2460 }
2461 /* Only PAGE SIZE is supported yet */
2462 if (sectorsize != PAGE_SIZE) {
2463 btrfs_err(fs_info,
2464 "sectorsize %llu not supported yet, only support %lu",
2465 sectorsize, PAGE_SIZE);
2466 ret = -EINVAL;
2467 }
2468 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2469 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2470 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2471 ret = -EINVAL;
2472 }
2473 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2474 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2475 le32_to_cpu(sb->__unused_leafsize), nodesize);
2476 ret = -EINVAL;
2477 }
2478
2479 /* Root alignment check */
2480 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2481 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2482 btrfs_super_root(sb));
2483 ret = -EINVAL;
2484 }
2485 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2486 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2487 btrfs_super_chunk_root(sb));
2488 ret = -EINVAL;
2489 }
2490 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2491 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2492 btrfs_super_log_root(sb));
2493 ret = -EINVAL;
2494 }
2495
de37aa51 2496 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2497 BTRFS_FSID_SIZE) != 0) {
21a852b0 2498 btrfs_err(fs_info,
7239ff4b 2499 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2500 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2501 ret = -EINVAL;
2502 }
2503
2504 /*
2505 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2506 * done later
2507 */
2508 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2509 btrfs_err(fs_info, "bytes_used is too small %llu",
2510 btrfs_super_bytes_used(sb));
2511 ret = -EINVAL;
2512 }
2513 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2514 btrfs_err(fs_info, "invalid stripesize %u",
2515 btrfs_super_stripesize(sb));
2516 ret = -EINVAL;
2517 }
2518 if (btrfs_super_num_devices(sb) > (1UL << 31))
2519 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2520 btrfs_super_num_devices(sb));
2521 if (btrfs_super_num_devices(sb) == 0) {
2522 btrfs_err(fs_info, "number of devices is 0");
2523 ret = -EINVAL;
2524 }
2525
069ec957
QW
2526 if (mirror_num >= 0 &&
2527 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2528 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2529 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2530 ret = -EINVAL;
2531 }
2532
2533 /*
2534 * Obvious sys_chunk_array corruptions, it must hold at least one key
2535 * and one chunk
2536 */
2537 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2538 btrfs_err(fs_info, "system chunk array too big %u > %u",
2539 btrfs_super_sys_array_size(sb),
2540 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2541 ret = -EINVAL;
2542 }
2543 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2544 + sizeof(struct btrfs_chunk)) {
2545 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2546 btrfs_super_sys_array_size(sb),
2547 sizeof(struct btrfs_disk_key)
2548 + sizeof(struct btrfs_chunk));
2549 ret = -EINVAL;
2550 }
2551
2552 /*
2553 * The generation is a global counter, we'll trust it more than the others
2554 * but it's still possible that it's the one that's wrong.
2555 */
2556 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2557 btrfs_warn(fs_info,
2558 "suspicious: generation < chunk_root_generation: %llu < %llu",
2559 btrfs_super_generation(sb),
2560 btrfs_super_chunk_root_generation(sb));
2561 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2562 && btrfs_super_cache_generation(sb) != (u64)-1)
2563 btrfs_warn(fs_info,
2564 "suspicious: generation < cache_generation: %llu < %llu",
2565 btrfs_super_generation(sb),
2566 btrfs_super_cache_generation(sb));
2567
2568 return ret;
2569}
2570
069ec957
QW
2571/*
2572 * Validation of super block at mount time.
2573 * Some checks already done early at mount time, like csum type and incompat
2574 * flags will be skipped.
2575 */
2576static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2577{
2578 return validate_super(fs_info, fs_info->super_copy, 0);
2579}
2580
75cb857d
QW
2581/*
2582 * Validation of super block at write time.
2583 * Some checks like bytenr check will be skipped as their values will be
2584 * overwritten soon.
2585 * Extra checks like csum type and incompat flags will be done here.
2586 */
2587static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2588 struct btrfs_super_block *sb)
2589{
2590 int ret;
2591
2592 ret = validate_super(fs_info, sb, -1);
2593 if (ret < 0)
2594 goto out;
e7e16f48 2595 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2596 ret = -EUCLEAN;
2597 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2598 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2599 goto out;
2600 }
2601 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2602 ret = -EUCLEAN;
2603 btrfs_err(fs_info,
2604 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2605 btrfs_super_incompat_flags(sb),
2606 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2607 goto out;
2608 }
2609out:
2610 if (ret < 0)
2611 btrfs_err(fs_info,
2612 "super block corruption detected before writing it to disk");
2613 return ret;
2614}
2615
ad2b2c80
AV
2616int open_ctree(struct super_block *sb,
2617 struct btrfs_fs_devices *fs_devices,
2618 char *options)
2e635a27 2619{
db94535d
CM
2620 u32 sectorsize;
2621 u32 nodesize;
87ee04eb 2622 u32 stripesize;
84234f3a 2623 u64 generation;
f2b636e8 2624 u64 features;
51bce6c9 2625 u16 csum_type;
3de4586c 2626 struct btrfs_key location;
a061fc8d 2627 struct buffer_head *bh;
4d34b278 2628 struct btrfs_super_block *disk_super;
815745cf 2629 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2630 struct btrfs_root *tree_root;
4d34b278 2631 struct btrfs_root *chunk_root;
eb60ceac 2632 int ret;
e58ca020 2633 int err = -EINVAL;
af31f5e5
CM
2634 int num_backups_tried = 0;
2635 int backup_index = 0;
6675df31 2636 int clear_free_space_tree = 0;
581c1760 2637 int level;
4543df7e 2638
74e4d827
DS
2639 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2640 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2641 if (!tree_root || !chunk_root) {
39279cc3
CM
2642 err = -ENOMEM;
2643 goto fail;
2644 }
76dda93c
YZ
2645
2646 ret = init_srcu_struct(&fs_info->subvol_srcu);
2647 if (ret) {
2648 err = ret;
2649 goto fail;
2650 }
2651
4297ff84 2652 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2653 if (ret) {
2654 err = ret;
9e11ceee 2655 goto fail_srcu;
e2d84521 2656 }
4297ff84
JB
2657
2658 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2659 if (ret) {
2660 err = ret;
2661 goto fail_dio_bytes;
2662 }
09cbfeaf 2663 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2664 (1 + ilog2(nr_cpu_ids));
2665
908c7f19 2666 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2667 if (ret) {
2668 err = ret;
2669 goto fail_dirty_metadata_bytes;
2670 }
2671
7f8d236a
DS
2672 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2673 GFP_KERNEL);
c404e0dc
MX
2674 if (ret) {
2675 err = ret;
2676 goto fail_delalloc_bytes;
2677 }
2678
76dda93c 2679 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2680 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2681 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2682 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2683 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2684 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2685 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2686 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2687 spin_lock_init(&fs_info->trans_lock);
76dda93c 2688 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2689 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2690 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2691 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2692 spin_lock_init(&fs_info->super_lock);
f28491e0 2693 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2694 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2695 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2696 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2697 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2698 mutex_init(&fs_info->reloc_mutex);
573bfb72 2699 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2700 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2701
0b86a832 2702 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2703 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2704 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2705 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2706 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2707 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2708 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2709 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2710 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2711 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2712 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2713 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2714 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2715 BTRFS_BLOCK_RSV_DELREFS);
2716
771ed689 2717 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2718 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2719 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2720 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2721 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2722 fs_info->sb = sb;
95ac567a 2723 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2724 fs_info->metadata_ratio = 0;
4cb5300b 2725 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2726 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2727 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2728 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2729 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2730 /* readahead state */
d0164adc 2731 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2732 spin_lock_init(&fs_info->reada_lock);
fd708b81 2733 btrfs_init_ref_verify(fs_info);
c8b97818 2734
b34b086c
CM
2735 fs_info->thread_pool_size = min_t(unsigned long,
2736 num_online_cpus() + 2, 8);
0afbaf8c 2737
199c2a9c
MX
2738 INIT_LIST_HEAD(&fs_info->ordered_roots);
2739 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2740
2741 fs_info->btree_inode = new_inode(sb);
2742 if (!fs_info->btree_inode) {
2743 err = -ENOMEM;
2744 goto fail_bio_counter;
2745 }
2746 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2747
16cdcec7 2748 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2749 GFP_KERNEL);
16cdcec7
MX
2750 if (!fs_info->delayed_root) {
2751 err = -ENOMEM;
2752 goto fail_iput;
2753 }
2754 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2755
638aa7ed 2756 btrfs_init_scrub(fs_info);
21adbd5c
SB
2757#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2758 fs_info->check_integrity_print_mask = 0;
2759#endif
779a65a4 2760 btrfs_init_balance(fs_info);
21c7e756 2761 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2762
9f6d2510
DS
2763 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2764 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2765
6bccf3ab 2766 btrfs_init_btree_inode(fs_info);
76dda93c 2767
0f9dd46c 2768 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2769 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2770 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2771
43eb5f29
QW
2772 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2773 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2774 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2775 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2776 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2777 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2778
5a3f23d5 2779 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2780 mutex_init(&fs_info->tree_log_mutex);
925baedd 2781 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2782 mutex_init(&fs_info->transaction_kthread_mutex);
2783 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2784 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2785 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2786 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2787 init_rwsem(&fs_info->subvol_sem);
803b2f54 2788 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2789
ad618368 2790 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2791 btrfs_init_qgroup(fs_info);
416ac51d 2792
fa9c0d79
CM
2793 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2794 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2795
e6dcd2dc 2796 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2797 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2798 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2799 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2800 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2801
da17066c
JM
2802 /* Usable values until the real ones are cached from the superblock */
2803 fs_info->nodesize = 4096;
2804 fs_info->sectorsize = 4096;
2805 fs_info->stripesize = 4096;
2806
eede2bf3
OS
2807 spin_lock_init(&fs_info->swapfile_pins_lock);
2808 fs_info->swapfile_pins = RB_ROOT;
2809
9e967495
FM
2810 fs_info->send_in_progress = 0;
2811
53b381b3
DW
2812 ret = btrfs_alloc_stripe_hash_table(fs_info);
2813 if (ret) {
83c8266a 2814 err = ret;
53b381b3
DW
2815 goto fail_alloc;
2816 }
2817
da17066c 2818 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2819
3c4bb26b 2820 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2821
2822 /*
2823 * Read super block and check the signature bytes only
2824 */
a512bbf8 2825 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2826 if (IS_ERR(bh)) {
2827 err = PTR_ERR(bh);
16cdcec7 2828 goto fail_alloc;
20b45077 2829 }
39279cc3 2830
8dc3f22c
JT
2831 /*
2832 * Verify the type first, if that or the the checksum value are
2833 * corrupted, we'll find out
2834 */
51bce6c9
JT
2835 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2836 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2837 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2838 csum_type);
8dc3f22c
JT
2839 err = -EINVAL;
2840 brelse(bh);
2841 goto fail_alloc;
2842 }
2843
6d97c6e3
JT
2844 ret = btrfs_init_csum_hash(fs_info, csum_type);
2845 if (ret) {
2846 err = ret;
2847 goto fail_alloc;
2848 }
2849
1104a885
DS
2850 /*
2851 * We want to check superblock checksum, the type is stored inside.
2852 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2853 */
ab8d0fc4 2854 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2855 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2856 err = -EINVAL;
b2acdddf 2857 brelse(bh);
6d97c6e3 2858 goto fail_csum;
1104a885
DS
2859 }
2860
2861 /*
2862 * super_copy is zeroed at allocation time and we never touch the
2863 * following bytes up to INFO_SIZE, the checksum is calculated from
2864 * the whole block of INFO_SIZE
2865 */
6c41761f 2866 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2867 brelse(bh);
5f39d397 2868
fbc6feae
NB
2869 disk_super = fs_info->super_copy;
2870
de37aa51
NB
2871 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2872 BTRFS_FSID_SIZE));
2873
7239ff4b 2874 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2875 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2876 fs_info->super_copy->metadata_uuid,
2877 BTRFS_FSID_SIZE));
7239ff4b 2878 }
0b86a832 2879
fbc6feae
NB
2880 features = btrfs_super_flags(disk_super);
2881 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2882 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2883 btrfs_set_super_flags(disk_super, features);
2884 btrfs_info(fs_info,
2885 "found metadata UUID change in progress flag, clearing");
2886 }
2887
2888 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2889 sizeof(*fs_info->super_for_commit));
de37aa51 2890
069ec957 2891 ret = btrfs_validate_mount_super(fs_info);
1104a885 2892 if (ret) {
05135f59 2893 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2894 err = -EINVAL;
6d97c6e3 2895 goto fail_csum;
1104a885
DS
2896 }
2897
0f7d52f4 2898 if (!btrfs_super_root(disk_super))
6d97c6e3 2899 goto fail_csum;
0f7d52f4 2900
acce952b 2901 /* check FS state, whether FS is broken. */
87533c47
MX
2902 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2903 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2904
af31f5e5
CM
2905 /*
2906 * run through our array of backup supers and setup
2907 * our ring pointer to the oldest one
2908 */
2909 generation = btrfs_super_generation(disk_super);
2910 find_oldest_super_backup(fs_info, generation);
2911
75e7cb7f
LB
2912 /*
2913 * In the long term, we'll store the compression type in the super
2914 * block, and it'll be used for per file compression control.
2915 */
2916 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2917
2ff7e61e 2918 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2919 if (ret) {
2920 err = ret;
6d97c6e3 2921 goto fail_csum;
2b82032c 2922 }
dfe25020 2923
f2b636e8
JB
2924 features = btrfs_super_incompat_flags(disk_super) &
2925 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2926 if (features) {
05135f59
DS
2927 btrfs_err(fs_info,
2928 "cannot mount because of unsupported optional features (%llx)",
2929 features);
f2b636e8 2930 err = -EINVAL;
6d97c6e3 2931 goto fail_csum;
f2b636e8
JB
2932 }
2933
5d4f98a2 2934 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2935 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2936 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2937 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2938 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2939 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2940
3173a18f 2941 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2942 btrfs_info(fs_info, "has skinny extents");
3173a18f 2943
727011e0
CM
2944 /*
2945 * flag our filesystem as having big metadata blocks if
2946 * they are bigger than the page size
2947 */
09cbfeaf 2948 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2949 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2950 btrfs_info(fs_info,
2951 "flagging fs with big metadata feature");
727011e0
CM
2952 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2953 }
2954
bc3f116f 2955 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2956 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2957 stripesize = sectorsize;
707e8a07 2958 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2959 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2960
da17066c
JM
2961 /* Cache block sizes */
2962 fs_info->nodesize = nodesize;
2963 fs_info->sectorsize = sectorsize;
2964 fs_info->stripesize = stripesize;
2965
bc3f116f
CM
2966 /*
2967 * mixed block groups end up with duplicate but slightly offset
2968 * extent buffers for the same range. It leads to corruptions
2969 */
2970 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2971 (sectorsize != nodesize)) {
05135f59
DS
2972 btrfs_err(fs_info,
2973"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2974 nodesize, sectorsize);
6d97c6e3 2975 goto fail_csum;
bc3f116f
CM
2976 }
2977
ceda0864
MX
2978 /*
2979 * Needn't use the lock because there is no other task which will
2980 * update the flag.
2981 */
a6fa6fae 2982 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2983
f2b636e8
JB
2984 features = btrfs_super_compat_ro_flags(disk_super) &
2985 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2986 if (!sb_rdonly(sb) && features) {
05135f59
DS
2987 btrfs_err(fs_info,
2988 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2989 features);
f2b636e8 2990 err = -EINVAL;
6d97c6e3 2991 goto fail_csum;
f2b636e8 2992 }
61d92c32 2993
2a458198
ES
2994 ret = btrfs_init_workqueues(fs_info, fs_devices);
2995 if (ret) {
2996 err = ret;
0dc3b84a
JB
2997 goto fail_sb_buffer;
2998 }
4543df7e 2999
9e11ceee
JK
3000 sb->s_bdi->congested_fn = btrfs_congested_fn;
3001 sb->s_bdi->congested_data = fs_info;
3002 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3003 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3004 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3005 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3006
a061fc8d
CM
3007 sb->s_blocksize = sectorsize;
3008 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3009 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3010
925baedd 3011 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3012 ret = btrfs_read_sys_array(fs_info);
925baedd 3013 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3014 if (ret) {
05135f59 3015 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3016 goto fail_sb_buffer;
84eed90f 3017 }
0b86a832 3018
84234f3a 3019 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3020 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3021
da17066c 3022 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 3023
2ff7e61e 3024 chunk_root->node = read_tree_block(fs_info,
0b86a832 3025 btrfs_super_chunk_root(disk_super),
581c1760 3026 generation, level, NULL);
64c043de
LB
3027 if (IS_ERR(chunk_root->node) ||
3028 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3029 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3030 if (!IS_ERR(chunk_root->node))
3031 free_extent_buffer(chunk_root->node);
95ab1f64 3032 chunk_root->node = NULL;
af31f5e5 3033 goto fail_tree_roots;
83121942 3034 }
5d4f98a2
YZ
3035 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3036 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3037
e17cade2 3038 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3039 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3040
5b4aacef 3041 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3042 if (ret) {
05135f59 3043 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3044 goto fail_tree_roots;
2b82032c 3045 }
0b86a832 3046
8dabb742 3047 /*
9b99b115
AJ
3048 * Keep the devid that is marked to be the target device for the
3049 * device replace procedure
8dabb742 3050 */
9b99b115 3051 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3052
a6b0d5c8 3053 if (!fs_devices->latest_bdev) {
05135f59 3054 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3055 goto fail_tree_roots;
3056 }
3057
af31f5e5 3058retry_root_backup:
84234f3a 3059 generation = btrfs_super_generation(disk_super);
581c1760 3060 level = btrfs_super_root_level(disk_super);
0b86a832 3061
2ff7e61e 3062 tree_root->node = read_tree_block(fs_info,
db94535d 3063 btrfs_super_root(disk_super),
581c1760 3064 generation, level, NULL);
64c043de
LB
3065 if (IS_ERR(tree_root->node) ||
3066 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3067 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3068 if (!IS_ERR(tree_root->node))
3069 free_extent_buffer(tree_root->node);
95ab1f64 3070 tree_root->node = NULL;
af31f5e5 3071 goto recovery_tree_root;
83121942 3072 }
af31f5e5 3073
5d4f98a2
YZ
3074 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3075 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3076 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3077
f32e48e9
CR
3078 mutex_lock(&tree_root->objectid_mutex);
3079 ret = btrfs_find_highest_objectid(tree_root,
3080 &tree_root->highest_objectid);
3081 if (ret) {
3082 mutex_unlock(&tree_root->objectid_mutex);
3083 goto recovery_tree_root;
3084 }
3085
3086 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3087
3088 mutex_unlock(&tree_root->objectid_mutex);
3089
6bccf3ab 3090 ret = btrfs_read_roots(fs_info);
4bbcaa64 3091 if (ret)
af31f5e5 3092 goto recovery_tree_root;
f7a81ea4 3093
8929ecfa
YZ
3094 fs_info->generation = generation;
3095 fs_info->last_trans_committed = generation;
8929ecfa 3096
cf90d884
QW
3097 ret = btrfs_verify_dev_extents(fs_info);
3098 if (ret) {
3099 btrfs_err(fs_info,
3100 "failed to verify dev extents against chunks: %d",
3101 ret);
3102 goto fail_block_groups;
3103 }
68310a5e
ID
3104 ret = btrfs_recover_balance(fs_info);
3105 if (ret) {
05135f59 3106 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3107 goto fail_block_groups;
3108 }
3109
733f4fbb
SB
3110 ret = btrfs_init_dev_stats(fs_info);
3111 if (ret) {
05135f59 3112 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3113 goto fail_block_groups;
3114 }
3115
8dabb742
SB
3116 ret = btrfs_init_dev_replace(fs_info);
3117 if (ret) {
05135f59 3118 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3119 goto fail_block_groups;
3120 }
3121
9b99b115 3122 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3123
b7c35e81
AJ
3124 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3125 if (ret) {
05135f59
DS
3126 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3127 ret);
b7c35e81
AJ
3128 goto fail_block_groups;
3129 }
3130
3131 ret = btrfs_sysfs_add_device(fs_devices);
3132 if (ret) {
05135f59
DS
3133 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3134 ret);
b7c35e81
AJ
3135 goto fail_fsdev_sysfs;
3136 }
3137
96f3136e 3138 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3139 if (ret) {
05135f59 3140 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3141 goto fail_fsdev_sysfs;
c59021f8 3142 }
3143
c59021f8 3144 ret = btrfs_init_space_info(fs_info);
3145 if (ret) {
05135f59 3146 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3147 goto fail_sysfs;
c59021f8 3148 }
3149
5b4aacef 3150 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3151 if (ret) {
05135f59 3152 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3153 goto fail_sysfs;
1b1d1f66 3154 }
4330e183 3155
6528b99d 3156 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3157 btrfs_warn(fs_info,
52042d8e 3158 "writable mount is not allowed due to too many missing devices");
2365dd3c 3159 goto fail_sysfs;
292fd7fc 3160 }
9078a3e1 3161
a74a4b97
CM
3162 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3163 "btrfs-cleaner");
57506d50 3164 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3165 goto fail_sysfs;
a74a4b97
CM
3166
3167 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3168 tree_root,
3169 "btrfs-transaction");
57506d50 3170 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3171 goto fail_cleaner;
a74a4b97 3172
583b7231 3173 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3174 !fs_info->fs_devices->rotating) {
583b7231 3175 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3176 }
3177
572d9ab7 3178 /*
01327610 3179 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3180 * not have to wait for transaction commit
3181 */
3182 btrfs_apply_pending_changes(fs_info);
3818aea2 3183
21adbd5c 3184#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3185 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3186 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3187 btrfs_test_opt(fs_info,
21adbd5c
SB
3188 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3189 1 : 0,
3190 fs_info->check_integrity_print_mask);
3191 if (ret)
05135f59
DS
3192 btrfs_warn(fs_info,
3193 "failed to initialize integrity check module: %d",
3194 ret);
21adbd5c
SB
3195 }
3196#endif
bcef60f2
AJ
3197 ret = btrfs_read_qgroup_config(fs_info);
3198 if (ret)
3199 goto fail_trans_kthread;
21adbd5c 3200
fd708b81
JB
3201 if (btrfs_build_ref_tree(fs_info))
3202 btrfs_err(fs_info, "couldn't build ref tree");
3203
96da0919
QW
3204 /* do not make disk changes in broken FS or nologreplay is given */
3205 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3206 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3207 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3208 if (ret) {
63443bf5 3209 err = ret;
28c16cbb 3210 goto fail_qgroup;
79787eaa 3211 }
e02119d5 3212 }
1a40e23b 3213
6bccf3ab 3214 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3215 if (ret)
28c16cbb 3216 goto fail_qgroup;
76dda93c 3217
bc98a42c 3218 if (!sb_rdonly(sb)) {
d68fc57b 3219 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3220 if (ret)
28c16cbb 3221 goto fail_qgroup;
90c711ab
ZB
3222
3223 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3224 ret = btrfs_recover_relocation(tree_root);
90c711ab 3225 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3226 if (ret < 0) {
05135f59
DS
3227 btrfs_warn(fs_info, "failed to recover relocation: %d",
3228 ret);
d7ce5843 3229 err = -EINVAL;
bcef60f2 3230 goto fail_qgroup;
d7ce5843 3231 }
7c2ca468 3232 }
1a40e23b 3233
3de4586c
CM
3234 location.objectid = BTRFS_FS_TREE_OBJECTID;
3235 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3236 location.offset = 0;
3de4586c 3237
3de4586c 3238 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3239 if (IS_ERR(fs_info->fs_root)) {
3240 err = PTR_ERR(fs_info->fs_root);
f50f4353 3241 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3242 goto fail_qgroup;
3140c9a3 3243 }
c289811c 3244
bc98a42c 3245 if (sb_rdonly(sb))
2b6ba629 3246 return 0;
59641015 3247
f8d468a1
OS
3248 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3249 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3250 clear_free_space_tree = 1;
3251 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3252 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3253 btrfs_warn(fs_info, "free space tree is invalid");
3254 clear_free_space_tree = 1;
3255 }
3256
3257 if (clear_free_space_tree) {
f8d468a1
OS
3258 btrfs_info(fs_info, "clearing free space tree");
3259 ret = btrfs_clear_free_space_tree(fs_info);
3260 if (ret) {
3261 btrfs_warn(fs_info,
3262 "failed to clear free space tree: %d", ret);
6bccf3ab 3263 close_ctree(fs_info);
f8d468a1
OS
3264 return ret;
3265 }
3266 }
3267
0b246afa 3268 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3269 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3270 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3271 ret = btrfs_create_free_space_tree(fs_info);
3272 if (ret) {
05135f59
DS
3273 btrfs_warn(fs_info,
3274 "failed to create free space tree: %d", ret);
6bccf3ab 3275 close_ctree(fs_info);
511711af
CM
3276 return ret;
3277 }
3278 }
3279
2b6ba629
ID
3280 down_read(&fs_info->cleanup_work_sem);
3281 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3282 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3283 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3284 close_ctree(fs_info);
2b6ba629
ID
3285 return ret;
3286 }
3287 up_read(&fs_info->cleanup_work_sem);
59641015 3288
2b6ba629
ID
3289 ret = btrfs_resume_balance_async(fs_info);
3290 if (ret) {
05135f59 3291 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3292 close_ctree(fs_info);
2b6ba629 3293 return ret;
e3acc2a6
JB
3294 }
3295
8dabb742
SB
3296 ret = btrfs_resume_dev_replace_async(fs_info);
3297 if (ret) {
05135f59 3298 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3299 close_ctree(fs_info);
8dabb742
SB
3300 return ret;
3301 }
3302
b382a324
JS
3303 btrfs_qgroup_rescan_resume(fs_info);
3304
4bbcaa64 3305 if (!fs_info->uuid_root) {
05135f59 3306 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3307 ret = btrfs_create_uuid_tree(fs_info);
3308 if (ret) {
05135f59
DS
3309 btrfs_warn(fs_info,
3310 "failed to create the UUID tree: %d", ret);
6bccf3ab 3311 close_ctree(fs_info);
f7a81ea4
SB
3312 return ret;
3313 }
0b246afa 3314 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3315 fs_info->generation !=
3316 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3317 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3318 ret = btrfs_check_uuid_tree(fs_info);
3319 if (ret) {
05135f59
DS
3320 btrfs_warn(fs_info,
3321 "failed to check the UUID tree: %d", ret);
6bccf3ab 3322 close_ctree(fs_info);
70f80175
SB
3323 return ret;
3324 }
3325 } else {
afcdd129 3326 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3327 }
afcdd129 3328 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3329
8dcddfa0
QW
3330 /*
3331 * backuproot only affect mount behavior, and if open_ctree succeeded,
3332 * no need to keep the flag
3333 */
3334 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3335
ad2b2c80 3336 return 0;
39279cc3 3337
bcef60f2
AJ
3338fail_qgroup:
3339 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3340fail_trans_kthread:
3341 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3342 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3343 btrfs_free_fs_roots(fs_info);
3f157a2f 3344fail_cleaner:
a74a4b97 3345 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3346
3347 /*
3348 * make sure we're done with the btree inode before we stop our
3349 * kthreads
3350 */
3351 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3352
2365dd3c 3353fail_sysfs:
6618a59b 3354 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3355
b7c35e81
AJ
3356fail_fsdev_sysfs:
3357 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3358
1b1d1f66 3359fail_block_groups:
54067ae9 3360 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3361
3362fail_tree_roots:
3363 free_root_pointers(fs_info, 1);
2b8195bb 3364 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3365
39279cc3 3366fail_sb_buffer:
7abadb64 3367 btrfs_stop_all_workers(fs_info);
5cdd7db6 3368 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3369fail_csum:
3370 btrfs_free_csum_hash(fs_info);
16cdcec7 3371fail_alloc:
4543df7e 3372fail_iput:
586e46e2
ID
3373 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3374
4543df7e 3375 iput(fs_info->btree_inode);
c404e0dc 3376fail_bio_counter:
7f8d236a 3377 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3378fail_delalloc_bytes:
3379 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3380fail_dirty_metadata_bytes:
3381 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3382fail_dio_bytes:
3383 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3384fail_srcu:
3385 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3386fail:
53b381b3 3387 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3388 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3389 return err;
af31f5e5
CM
3390
3391recovery_tree_root:
0b246afa 3392 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3393 goto fail_tree_roots;
3394
3395 free_root_pointers(fs_info, 0);
3396
3397 /* don't use the log in recovery mode, it won't be valid */
3398 btrfs_set_super_log_root(disk_super, 0);
3399
3400 /* we can't trust the free space cache either */
3401 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3402
3403 ret = next_root_backup(fs_info, fs_info->super_copy,
3404 &num_backups_tried, &backup_index);
3405 if (ret == -1)
3406 goto fail_block_groups;
3407 goto retry_root_backup;
eb60ceac 3408}
663faf9f 3409ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3410
f2984462
CM
3411static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3412{
f2984462
CM
3413 if (uptodate) {
3414 set_buffer_uptodate(bh);
3415 } else {
442a4f63
SB
3416 struct btrfs_device *device = (struct btrfs_device *)
3417 bh->b_private;
3418
fb456252 3419 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3420 "lost page write due to IO error on %s",
606686ee 3421 rcu_str_deref(device->name));
01327610 3422 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3423 * our own ways of dealing with the IO errors
3424 */
f2984462 3425 clear_buffer_uptodate(bh);
442a4f63 3426 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3427 }
3428 unlock_buffer(bh);
3429 put_bh(bh);
3430}
3431
29c36d72
AJ
3432int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3433 struct buffer_head **bh_ret)
3434{
3435 struct buffer_head *bh;
3436 struct btrfs_super_block *super;
3437 u64 bytenr;
3438
3439 bytenr = btrfs_sb_offset(copy_num);
3440 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3441 return -EINVAL;
3442
9f6d2510 3443 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3444 /*
3445 * If we fail to read from the underlying devices, as of now
3446 * the best option we have is to mark it EIO.
3447 */
3448 if (!bh)
3449 return -EIO;
3450
3451 super = (struct btrfs_super_block *)bh->b_data;
3452 if (btrfs_super_bytenr(super) != bytenr ||
3453 btrfs_super_magic(super) != BTRFS_MAGIC) {
3454 brelse(bh);
3455 return -EINVAL;
3456 }
3457
3458 *bh_ret = bh;
3459 return 0;
3460}
3461
3462
a512bbf8
YZ
3463struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3464{
3465 struct buffer_head *bh;
3466 struct buffer_head *latest = NULL;
3467 struct btrfs_super_block *super;
3468 int i;
3469 u64 transid = 0;
92fc03fb 3470 int ret = -EINVAL;
a512bbf8
YZ
3471
3472 /* we would like to check all the supers, but that would make
3473 * a btrfs mount succeed after a mkfs from a different FS.
3474 * So, we need to add a special mount option to scan for
3475 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3476 */
3477 for (i = 0; i < 1; i++) {
29c36d72
AJ
3478 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3479 if (ret)
a512bbf8
YZ
3480 continue;
3481
3482 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3483
3484 if (!latest || btrfs_super_generation(super) > transid) {
3485 brelse(latest);
3486 latest = bh;
3487 transid = btrfs_super_generation(super);
3488 } else {
3489 brelse(bh);
3490 }
3491 }
92fc03fb
AJ
3492
3493 if (!latest)
3494 return ERR_PTR(ret);
3495
a512bbf8
YZ
3496 return latest;
3497}
3498
4eedeb75 3499/*
abbb3b8e
DS
3500 * Write superblock @sb to the @device. Do not wait for completion, all the
3501 * buffer heads we write are pinned.
4eedeb75 3502 *
abbb3b8e
DS
3503 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3504 * the expected device size at commit time. Note that max_mirrors must be
3505 * same for write and wait phases.
4eedeb75 3506 *
abbb3b8e 3507 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3508 */
a512bbf8 3509static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3510 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3511{
d5178578
JT
3512 struct btrfs_fs_info *fs_info = device->fs_info;
3513 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3514 struct buffer_head *bh;
3515 int i;
3516 int ret;
3517 int errors = 0;
a512bbf8 3518 u64 bytenr;
1b9e619c 3519 int op_flags;
a512bbf8
YZ
3520
3521 if (max_mirrors == 0)
3522 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3523
d5178578
JT
3524 shash->tfm = fs_info->csum_shash;
3525
a512bbf8
YZ
3526 for (i = 0; i < max_mirrors; i++) {
3527 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3528 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3529 device->commit_total_bytes)
a512bbf8
YZ
3530 break;
3531
abbb3b8e 3532 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3533
d5178578
JT
3534 crypto_shash_init(shash);
3535 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3536 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3537 crypto_shash_final(shash, sb->csum);
4eedeb75 3538
abbb3b8e 3539 /* One reference for us, and we leave it for the caller */
9f6d2510 3540 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3541 BTRFS_SUPER_INFO_SIZE);
3542 if (!bh) {
3543 btrfs_err(device->fs_info,
3544 "couldn't get super buffer head for bytenr %llu",
3545 bytenr);
3546 errors++;
4eedeb75 3547 continue;
abbb3b8e 3548 }
634554dc 3549
abbb3b8e 3550 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3551
abbb3b8e
DS
3552 /* one reference for submit_bh */
3553 get_bh(bh);
4eedeb75 3554
abbb3b8e
DS
3555 set_buffer_uptodate(bh);
3556 lock_buffer(bh);
3557 bh->b_end_io = btrfs_end_buffer_write_sync;
3558 bh->b_private = device;
a512bbf8 3559
387125fc
CM
3560 /*
3561 * we fua the first super. The others we allow
3562 * to go down lazy.
3563 */
1b9e619c
OS
3564 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3565 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3566 op_flags |= REQ_FUA;
3567 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3568 if (ret)
a512bbf8 3569 errors++;
a512bbf8
YZ
3570 }
3571 return errors < i ? 0 : -1;
3572}
3573
abbb3b8e
DS
3574/*
3575 * Wait for write completion of superblocks done by write_dev_supers,
3576 * @max_mirrors same for write and wait phases.
3577 *
3578 * Return number of errors when buffer head is not found or not marked up to
3579 * date.
3580 */
3581static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3582{
3583 struct buffer_head *bh;
3584 int i;
3585 int errors = 0;
b6a535fa 3586 bool primary_failed = false;
abbb3b8e
DS
3587 u64 bytenr;
3588
3589 if (max_mirrors == 0)
3590 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3591
3592 for (i = 0; i < max_mirrors; i++) {
3593 bytenr = btrfs_sb_offset(i);
3594 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3595 device->commit_total_bytes)
3596 break;
3597
9f6d2510
DS
3598 bh = __find_get_block(device->bdev,
3599 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3600 BTRFS_SUPER_INFO_SIZE);
3601 if (!bh) {
3602 errors++;
b6a535fa
HM
3603 if (i == 0)
3604 primary_failed = true;
abbb3b8e
DS
3605 continue;
3606 }
3607 wait_on_buffer(bh);
b6a535fa 3608 if (!buffer_uptodate(bh)) {
abbb3b8e 3609 errors++;
b6a535fa
HM
3610 if (i == 0)
3611 primary_failed = true;
3612 }
abbb3b8e
DS
3613
3614 /* drop our reference */
3615 brelse(bh);
3616
3617 /* drop the reference from the writing run */
3618 brelse(bh);
3619 }
3620
b6a535fa
HM
3621 /* log error, force error return */
3622 if (primary_failed) {
3623 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3624 device->devid);
3625 return -1;
3626 }
3627
abbb3b8e
DS
3628 return errors < i ? 0 : -1;
3629}
3630
387125fc
CM
3631/*
3632 * endio for the write_dev_flush, this will wake anyone waiting
3633 * for the barrier when it is done
3634 */
4246a0b6 3635static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3636{
e0ae9994 3637 complete(bio->bi_private);
387125fc
CM
3638}
3639
3640/*
4fc6441a
AJ
3641 * Submit a flush request to the device if it supports it. Error handling is
3642 * done in the waiting counterpart.
387125fc 3643 */
4fc6441a 3644static void write_dev_flush(struct btrfs_device *device)
387125fc 3645{
c2a9c7ab 3646 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3647 struct bio *bio = device->flush_bio;
387125fc 3648
c2a9c7ab 3649 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3650 return;
387125fc 3651
e0ae9994 3652 bio_reset(bio);
387125fc 3653 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3654 bio_set_dev(bio, device->bdev);
8d910125 3655 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3656 init_completion(&device->flush_wait);
3657 bio->bi_private = &device->flush_wait;
387125fc 3658
43a01111 3659 btrfsic_submit_bio(bio);
1c3063b6 3660 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3661}
387125fc 3662
4fc6441a
AJ
3663/*
3664 * If the flush bio has been submitted by write_dev_flush, wait for it.
3665 */
8c27cb35 3666static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3667{
4fc6441a 3668 struct bio *bio = device->flush_bio;
387125fc 3669
1c3063b6 3670 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3671 return BLK_STS_OK;
387125fc 3672
1c3063b6 3673 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3674 wait_for_completion_io(&device->flush_wait);
387125fc 3675
8c27cb35 3676 return bio->bi_status;
387125fc 3677}
387125fc 3678
d10b82fe 3679static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3680{
6528b99d 3681 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3682 return -EIO;
387125fc
CM
3683 return 0;
3684}
3685
3686/*
3687 * send an empty flush down to each device in parallel,
3688 * then wait for them
3689 */
3690static int barrier_all_devices(struct btrfs_fs_info *info)
3691{
3692 struct list_head *head;
3693 struct btrfs_device *dev;
5af3e8cc 3694 int errors_wait = 0;
4e4cbee9 3695 blk_status_t ret;
387125fc 3696
1538e6c5 3697 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3698 /* send down all the barriers */
3699 head = &info->fs_devices->devices;
1538e6c5 3700 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3701 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3702 continue;
cea7c8bf 3703 if (!dev->bdev)
387125fc 3704 continue;
e12c9621 3705 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3706 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3707 continue;
3708
4fc6441a 3709 write_dev_flush(dev);
58efbc9f 3710 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3711 }
3712
3713 /* wait for all the barriers */
1538e6c5 3714 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3715 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3716 continue;
387125fc 3717 if (!dev->bdev) {
5af3e8cc 3718 errors_wait++;
387125fc
CM
3719 continue;
3720 }
e12c9621 3721 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3722 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3723 continue;
3724
4fc6441a 3725 ret = wait_dev_flush(dev);
401b41e5
AJ
3726 if (ret) {
3727 dev->last_flush_error = ret;
66b4993e
DS
3728 btrfs_dev_stat_inc_and_print(dev,
3729 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3730 errors_wait++;
401b41e5
AJ
3731 }
3732 }
3733
cea7c8bf 3734 if (errors_wait) {
401b41e5
AJ
3735 /*
3736 * At some point we need the status of all disks
3737 * to arrive at the volume status. So error checking
3738 * is being pushed to a separate loop.
3739 */
d10b82fe 3740 return check_barrier_error(info);
387125fc 3741 }
387125fc
CM
3742 return 0;
3743}
3744
943c6e99
ZL
3745int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3746{
8789f4fe
ZL
3747 int raid_type;
3748 int min_tolerated = INT_MAX;
943c6e99 3749
8789f4fe
ZL
3750 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3751 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3752 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3753 btrfs_raid_array[BTRFS_RAID_SINGLE].
3754 tolerated_failures);
943c6e99 3755
8789f4fe
ZL
3756 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3757 if (raid_type == BTRFS_RAID_SINGLE)
3758 continue;
41a6e891 3759 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3760 continue;
8c3e3582 3761 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3762 btrfs_raid_array[raid_type].
3763 tolerated_failures);
3764 }
943c6e99 3765
8789f4fe 3766 if (min_tolerated == INT_MAX) {
ab8d0fc4 3767 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3768 min_tolerated = 0;
3769 }
3770
3771 return min_tolerated;
943c6e99
ZL
3772}
3773
eece6a9c 3774int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3775{
e5e9a520 3776 struct list_head *head;
f2984462 3777 struct btrfs_device *dev;
a061fc8d 3778 struct btrfs_super_block *sb;
f2984462 3779 struct btrfs_dev_item *dev_item;
f2984462
CM
3780 int ret;
3781 int do_barriers;
a236aed1
CM
3782 int max_errors;
3783 int total_errors = 0;
a061fc8d 3784 u64 flags;
f2984462 3785
0b246afa 3786 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3787
3788 /*
3789 * max_mirrors == 0 indicates we're from commit_transaction,
3790 * not from fsync where the tree roots in fs_info have not
3791 * been consistent on disk.
3792 */
3793 if (max_mirrors == 0)
3794 backup_super_roots(fs_info);
f2984462 3795
0b246afa 3796 sb = fs_info->super_for_commit;
a061fc8d 3797 dev_item = &sb->dev_item;
e5e9a520 3798
0b246afa
JM
3799 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3800 head = &fs_info->fs_devices->devices;
3801 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3802
5af3e8cc 3803 if (do_barriers) {
0b246afa 3804 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3805 if (ret) {
3806 mutex_unlock(
0b246afa
JM
3807 &fs_info->fs_devices->device_list_mutex);
3808 btrfs_handle_fs_error(fs_info, ret,
3809 "errors while submitting device barriers.");
5af3e8cc
SB
3810 return ret;
3811 }
3812 }
387125fc 3813
1538e6c5 3814 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3815 if (!dev->bdev) {
3816 total_errors++;
3817 continue;
3818 }
e12c9621 3819 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3820 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3821 continue;
3822
2b82032c 3823 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3824 btrfs_set_stack_device_type(dev_item, dev->type);
3825 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3826 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3827 dev->commit_total_bytes);
ce7213c7
MX
3828 btrfs_set_stack_device_bytes_used(dev_item,
3829 dev->commit_bytes_used);
a061fc8d
CM
3830 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3831 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3832 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3833 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3834 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3835 BTRFS_FSID_SIZE);
a512bbf8 3836
a061fc8d
CM
3837 flags = btrfs_super_flags(sb);
3838 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3839
75cb857d
QW
3840 ret = btrfs_validate_write_super(fs_info, sb);
3841 if (ret < 0) {
3842 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3843 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3844 "unexpected superblock corruption detected");
3845 return -EUCLEAN;
3846 }
3847
abbb3b8e 3848 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3849 if (ret)
3850 total_errors++;
f2984462 3851 }
a236aed1 3852 if (total_errors > max_errors) {
0b246afa
JM
3853 btrfs_err(fs_info, "%d errors while writing supers",
3854 total_errors);
3855 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3856
9d565ba4 3857 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3858 btrfs_handle_fs_error(fs_info, -EIO,
3859 "%d errors while writing supers",
3860 total_errors);
9d565ba4 3861 return -EIO;
a236aed1 3862 }
f2984462 3863
a512bbf8 3864 total_errors = 0;
1538e6c5 3865 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3866 if (!dev->bdev)
3867 continue;
e12c9621 3868 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3869 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3870 continue;
3871
abbb3b8e 3872 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3873 if (ret)
3874 total_errors++;
f2984462 3875 }
0b246afa 3876 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3877 if (total_errors > max_errors) {
0b246afa
JM
3878 btrfs_handle_fs_error(fs_info, -EIO,
3879 "%d errors while writing supers",
3880 total_errors);
79787eaa 3881 return -EIO;
a236aed1 3882 }
f2984462
CM
3883 return 0;
3884}
3885
cb517eab
MX
3886/* Drop a fs root from the radix tree and free it. */
3887void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3888 struct btrfs_root *root)
2619ba1f 3889{
4df27c4d 3890 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3891 radix_tree_delete(&fs_info->fs_roots_radix,
3892 (unsigned long)root->root_key.objectid);
4df27c4d 3893 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3894
3895 if (btrfs_root_refs(&root->root_item) == 0)
3896 synchronize_srcu(&fs_info->subvol_srcu);
3897
1c1ea4f7 3898 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3899 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3900 if (root->reloc_root) {
3901 free_extent_buffer(root->reloc_root->node);
3902 free_extent_buffer(root->reloc_root->commit_root);
3903 btrfs_put_fs_root(root->reloc_root);
3904 root->reloc_root = NULL;
3905 }
3906 }
3321719e 3907
faa2dbf0
JB
3908 if (root->free_ino_pinned)
3909 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3910 if (root->free_ino_ctl)
3911 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3912 btrfs_free_fs_root(root);
4df27c4d
YZ
3913}
3914
84db5ccf 3915void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3916{
57cdc8db 3917 iput(root->ino_cache_inode);
4df27c4d 3918 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3919 if (root->anon_dev)
3920 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3921 if (root->subv_writers)
3922 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3923 free_extent_buffer(root->node);
3924 free_extent_buffer(root->commit_root);
581bb050
LZ
3925 kfree(root->free_ino_ctl);
3926 kfree(root->free_ino_pinned);
b0feb9d9 3927 btrfs_put_fs_root(root);
2619ba1f
CM
3928}
3929
c146afad 3930int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3931{
c146afad
YZ
3932 u64 root_objectid = 0;
3933 struct btrfs_root *gang[8];
65d33fd7
QW
3934 int i = 0;
3935 int err = 0;
3936 unsigned int ret = 0;
3937 int index;
e089f05c 3938
c146afad 3939 while (1) {
65d33fd7 3940 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3941 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3942 (void **)gang, root_objectid,
3943 ARRAY_SIZE(gang));
65d33fd7
QW
3944 if (!ret) {
3945 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3946 break;
65d33fd7 3947 }
5d4f98a2 3948 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3949
c146afad 3950 for (i = 0; i < ret; i++) {
65d33fd7
QW
3951 /* Avoid to grab roots in dead_roots */
3952 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3953 gang[i] = NULL;
3954 continue;
3955 }
3956 /* grab all the search result for later use */
3957 gang[i] = btrfs_grab_fs_root(gang[i]);
3958 }
3959 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3960
65d33fd7
QW
3961 for (i = 0; i < ret; i++) {
3962 if (!gang[i])
3963 continue;
c146afad 3964 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3965 err = btrfs_orphan_cleanup(gang[i]);
3966 if (err)
65d33fd7
QW
3967 break;
3968 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3969 }
3970 root_objectid++;
3971 }
65d33fd7
QW
3972
3973 /* release the uncleaned roots due to error */
3974 for (; i < ret; i++) {
3975 if (gang[i])
3976 btrfs_put_fs_root(gang[i]);
3977 }
3978 return err;
c146afad 3979}
a2135011 3980
6bccf3ab 3981int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3982{
6bccf3ab 3983 struct btrfs_root *root = fs_info->tree_root;
c146afad 3984 struct btrfs_trans_handle *trans;
a74a4b97 3985
0b246afa 3986 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3987 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3988 mutex_unlock(&fs_info->cleaner_mutex);
3989 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3990
3991 /* wait until ongoing cleanup work done */
0b246afa
JM
3992 down_write(&fs_info->cleanup_work_sem);
3993 up_write(&fs_info->cleanup_work_sem);
c71bf099 3994
7a7eaa40 3995 trans = btrfs_join_transaction(root);
3612b495
TI
3996 if (IS_ERR(trans))
3997 return PTR_ERR(trans);
3a45bb20 3998 return btrfs_commit_transaction(trans);
c146afad
YZ
3999}
4000
6bccf3ab 4001void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4002{
c146afad
YZ
4003 int ret;
4004
afcdd129 4005 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4006 /*
4007 * We don't want the cleaner to start new transactions, add more delayed
4008 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4009 * because that frees the task_struct, and the transaction kthread might
4010 * still try to wake up the cleaner.
4011 */
4012 kthread_park(fs_info->cleaner_kthread);
c146afad 4013
7343dd61 4014 /* wait for the qgroup rescan worker to stop */
d06f23d6 4015 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4016
803b2f54
SB
4017 /* wait for the uuid_scan task to finish */
4018 down(&fs_info->uuid_tree_rescan_sem);
4019 /* avoid complains from lockdep et al., set sem back to initial state */
4020 up(&fs_info->uuid_tree_rescan_sem);
4021
837d5b6e 4022 /* pause restriper - we want to resume on mount */
aa1b8cd4 4023 btrfs_pause_balance(fs_info);
837d5b6e 4024
8dabb742
SB
4025 btrfs_dev_replace_suspend_for_unmount(fs_info);
4026
aa1b8cd4 4027 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4028
4029 /* wait for any defraggers to finish */
4030 wait_event(fs_info->transaction_wait,
4031 (atomic_read(&fs_info->defrag_running) == 0));
4032
4033 /* clear out the rbtree of defraggable inodes */
26176e7c 4034 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4035
21c7e756
MX
4036 cancel_work_sync(&fs_info->async_reclaim_work);
4037
bc98a42c 4038 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4039 /*
d6fd0ae2
OS
4040 * The cleaner kthread is stopped, so do one final pass over
4041 * unused block groups.
e44163e1 4042 */
0b246afa 4043 btrfs_delete_unused_bgs(fs_info);
e44163e1 4044
6bccf3ab 4045 ret = btrfs_commit_super(fs_info);
acce952b 4046 if (ret)
04892340 4047 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4048 }
4049
af722733
LB
4050 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4051 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4052 btrfs_error_commit_super(fs_info);
0f7d52f4 4053
e3029d9f
AV
4054 kthread_stop(fs_info->transaction_kthread);
4055 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4056
e187831e 4057 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4058 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4059
04892340 4060 btrfs_free_qgroup_config(fs_info);
fe816d0f 4061 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4062
963d678b 4063 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4064 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4065 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4066 }
bcc63abb 4067
4297ff84
JB
4068 if (percpu_counter_sum(&fs_info->dio_bytes))
4069 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4070 percpu_counter_sum(&fs_info->dio_bytes));
4071
6618a59b 4072 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4073 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4074
faa2dbf0 4075 btrfs_free_fs_roots(fs_info);
d10c5f31 4076
1a4319cc
LB
4077 btrfs_put_block_group_cache(fs_info);
4078
de348ee0
WS
4079 /*
4080 * we must make sure there is not any read request to
4081 * submit after we stopping all workers.
4082 */
4083 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4084 btrfs_stop_all_workers(fs_info);
4085
5cdd7db6
FM
4086 btrfs_free_block_groups(fs_info);
4087
afcdd129 4088 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4089 free_root_pointers(fs_info, 1);
9ad6b7bc 4090
13e6c37b 4091 iput(fs_info->btree_inode);
d6bfde87 4092
21adbd5c 4093#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4094 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4095 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4096#endif
4097
0b86a832 4098 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4099 btrfs_close_devices(fs_info->fs_devices);
b248a415 4100
e2d84521 4101 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4102 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4103 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4104 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4105 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4106
bfcea1c6 4107 btrfs_free_csum_hash(fs_info);
53b381b3 4108 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4109 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4110}
4111
b9fab919
CM
4112int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4113 int atomic)
5f39d397 4114{
1259ab75 4115 int ret;
727011e0 4116 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4117
0b32f4bb 4118 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4119 if (!ret)
4120 return ret;
4121
4122 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4123 parent_transid, atomic);
4124 if (ret == -EAGAIN)
4125 return ret;
1259ab75 4126 return !ret;
5f39d397
CM
4127}
4128
5f39d397
CM
4129void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4130{
0b246afa 4131 struct btrfs_fs_info *fs_info;
06ea65a3 4132 struct btrfs_root *root;
5f39d397 4133 u64 transid = btrfs_header_generation(buf);
b9473439 4134 int was_dirty;
b4ce94de 4135
06ea65a3
JB
4136#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4137 /*
4138 * This is a fast path so only do this check if we have sanity tests
52042d8e 4139 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4140 * outside of the sanity tests.
4141 */
b0132a3b 4142 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4143 return;
4144#endif
4145 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4146 fs_info = root->fs_info;
b9447ef8 4147 btrfs_assert_tree_locked(buf);
0b246afa 4148 if (transid != fs_info->generation)
5d163e0e 4149 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4150 buf->start, transid, fs_info->generation);
0b32f4bb 4151 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4152 if (!was_dirty)
104b4e51
NB
4153 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4154 buf->len,
4155 fs_info->dirty_metadata_batch);
1f21ef0a 4156#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4157 /*
4158 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4159 * but item data not updated.
4160 * So here we should only check item pointers, not item data.
4161 */
4162 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4163 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4164 btrfs_print_leaf(buf);
1f21ef0a
FM
4165 ASSERT(0);
4166 }
4167#endif
eb60ceac
CM
4168}
4169
2ff7e61e 4170static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4171 int flush_delayed)
16cdcec7
MX
4172{
4173 /*
4174 * looks as though older kernels can get into trouble with
4175 * this code, they end up stuck in balance_dirty_pages forever
4176 */
e2d84521 4177 int ret;
16cdcec7
MX
4178
4179 if (current->flags & PF_MEMALLOC)
4180 return;
4181
b53d3f5d 4182 if (flush_delayed)
2ff7e61e 4183 btrfs_balance_delayed_items(fs_info);
16cdcec7 4184
d814a491
EL
4185 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4186 BTRFS_DIRTY_METADATA_THRESH,
4187 fs_info->dirty_metadata_batch);
e2d84521 4188 if (ret > 0) {
0b246afa 4189 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4190 }
16cdcec7
MX
4191}
4192
2ff7e61e 4193void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4194{
2ff7e61e 4195 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4196}
585ad2c3 4197
2ff7e61e 4198void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4199{
2ff7e61e 4200 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4201}
6b80053d 4202
581c1760
QW
4203int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4204 struct btrfs_key *first_key)
6b80053d 4205{
5ab12d1f 4206 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4207 level, first_key);
6b80053d 4208}
0da5468f 4209
2ff7e61e 4210static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4211{
fe816d0f
NB
4212 /* cleanup FS via transaction */
4213 btrfs_cleanup_transaction(fs_info);
4214
0b246afa 4215 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4216 btrfs_run_delayed_iputs(fs_info);
0b246afa 4217 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4218
0b246afa
JM
4219 down_write(&fs_info->cleanup_work_sem);
4220 up_write(&fs_info->cleanup_work_sem);
acce952b 4221}
4222
143bede5 4223static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4224{
acce952b 4225 struct btrfs_ordered_extent *ordered;
acce952b 4226
199c2a9c 4227 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4228 /*
4229 * This will just short circuit the ordered completion stuff which will
4230 * make sure the ordered extent gets properly cleaned up.
4231 */
199c2a9c 4232 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4233 root_extent_list)
4234 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4235 spin_unlock(&root->ordered_extent_lock);
4236}
4237
4238static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4239{
4240 struct btrfs_root *root;
4241 struct list_head splice;
4242
4243 INIT_LIST_HEAD(&splice);
4244
4245 spin_lock(&fs_info->ordered_root_lock);
4246 list_splice_init(&fs_info->ordered_roots, &splice);
4247 while (!list_empty(&splice)) {
4248 root = list_first_entry(&splice, struct btrfs_root,
4249 ordered_root);
1de2cfde
JB
4250 list_move_tail(&root->ordered_root,
4251 &fs_info->ordered_roots);
199c2a9c 4252
2a85d9ca 4253 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4254 btrfs_destroy_ordered_extents(root);
4255
2a85d9ca
LB
4256 cond_resched();
4257 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4258 }
4259 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4260
4261 /*
4262 * We need this here because if we've been flipped read-only we won't
4263 * get sync() from the umount, so we need to make sure any ordered
4264 * extents that haven't had their dirty pages IO start writeout yet
4265 * actually get run and error out properly.
4266 */
4267 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4268}
4269
35a3621b 4270static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4271 struct btrfs_fs_info *fs_info)
acce952b 4272{
4273 struct rb_node *node;
4274 struct btrfs_delayed_ref_root *delayed_refs;
4275 struct btrfs_delayed_ref_node *ref;
4276 int ret = 0;
4277
4278 delayed_refs = &trans->delayed_refs;
4279
4280 spin_lock(&delayed_refs->lock);
d7df2c79 4281 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4282 spin_unlock(&delayed_refs->lock);
0b246afa 4283 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4284 return ret;
4285 }
4286
5c9d028b 4287 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4288 struct btrfs_delayed_ref_head *head;
0e0adbcf 4289 struct rb_node *n;
e78417d1 4290 bool pin_bytes = false;
acce952b 4291
d7df2c79
JB
4292 head = rb_entry(node, struct btrfs_delayed_ref_head,
4293 href_node);
3069bd26 4294 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4295 continue;
3069bd26 4296
d7df2c79 4297 spin_lock(&head->lock);
e3d03965 4298 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4299 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4300 ref_node);
d7df2c79 4301 ref->in_tree = 0;
e3d03965 4302 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4303 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4304 if (!list_empty(&ref->add_list))
4305 list_del(&ref->add_list);
d7df2c79
JB
4306 atomic_dec(&delayed_refs->num_entries);
4307 btrfs_put_delayed_ref(ref);
e78417d1 4308 }
d7df2c79
JB
4309 if (head->must_insert_reserved)
4310 pin_bytes = true;
4311 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4312 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4313 spin_unlock(&head->lock);
4314 spin_unlock(&delayed_refs->lock);
4315 mutex_unlock(&head->mutex);
acce952b 4316
d7df2c79 4317 if (pin_bytes)
d278850e
JB
4318 btrfs_pin_extent(fs_info, head->bytenr,
4319 head->num_bytes, 1);
31890da0 4320 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4321 btrfs_put_delayed_ref_head(head);
acce952b 4322 cond_resched();
4323 spin_lock(&delayed_refs->lock);
4324 }
4325
4326 spin_unlock(&delayed_refs->lock);
4327
4328 return ret;
4329}
4330
143bede5 4331static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4332{
4333 struct btrfs_inode *btrfs_inode;
4334 struct list_head splice;
4335
4336 INIT_LIST_HEAD(&splice);
4337
eb73c1b7
MX
4338 spin_lock(&root->delalloc_lock);
4339 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4340
4341 while (!list_empty(&splice)) {
fe816d0f 4342 struct inode *inode = NULL;
eb73c1b7
MX
4343 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4344 delalloc_inodes);
fe816d0f 4345 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4346 spin_unlock(&root->delalloc_lock);
acce952b 4347
fe816d0f
NB
4348 /*
4349 * Make sure we get a live inode and that it'll not disappear
4350 * meanwhile.
4351 */
4352 inode = igrab(&btrfs_inode->vfs_inode);
4353 if (inode) {
4354 invalidate_inode_pages2(inode->i_mapping);
4355 iput(inode);
4356 }
eb73c1b7 4357 spin_lock(&root->delalloc_lock);
acce952b 4358 }
eb73c1b7
MX
4359 spin_unlock(&root->delalloc_lock);
4360}
4361
4362static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4363{
4364 struct btrfs_root *root;
4365 struct list_head splice;
4366
4367 INIT_LIST_HEAD(&splice);
4368
4369 spin_lock(&fs_info->delalloc_root_lock);
4370 list_splice_init(&fs_info->delalloc_roots, &splice);
4371 while (!list_empty(&splice)) {
4372 root = list_first_entry(&splice, struct btrfs_root,
4373 delalloc_root);
eb73c1b7
MX
4374 root = btrfs_grab_fs_root(root);
4375 BUG_ON(!root);
4376 spin_unlock(&fs_info->delalloc_root_lock);
4377
4378 btrfs_destroy_delalloc_inodes(root);
4379 btrfs_put_fs_root(root);
4380
4381 spin_lock(&fs_info->delalloc_root_lock);
4382 }
4383 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4384}
4385
2ff7e61e 4386static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4387 struct extent_io_tree *dirty_pages,
4388 int mark)
4389{
4390 int ret;
acce952b 4391 struct extent_buffer *eb;
4392 u64 start = 0;
4393 u64 end;
acce952b 4394
4395 while (1) {
4396 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4397 mark, NULL);
acce952b 4398 if (ret)
4399 break;
4400
91166212 4401 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4402 while (start <= end) {
0b246afa
JM
4403 eb = find_extent_buffer(fs_info, start);
4404 start += fs_info->nodesize;
fd8b2b61 4405 if (!eb)
acce952b 4406 continue;
fd8b2b61 4407 wait_on_extent_buffer_writeback(eb);
acce952b 4408
fd8b2b61
JB
4409 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4410 &eb->bflags))
4411 clear_extent_buffer_dirty(eb);
4412 free_extent_buffer_stale(eb);
acce952b 4413 }
4414 }
4415
4416 return ret;
4417}
4418
2ff7e61e 4419static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4420 struct extent_io_tree *pinned_extents)
4421{
4422 struct extent_io_tree *unpin;
4423 u64 start;
4424 u64 end;
4425 int ret;
ed0eaa14 4426 bool loop = true;
acce952b 4427
4428 unpin = pinned_extents;
ed0eaa14 4429again:
acce952b 4430 while (1) {
0e6ec385
FM
4431 struct extent_state *cached_state = NULL;
4432
fcd5e742
LF
4433 /*
4434 * The btrfs_finish_extent_commit() may get the same range as
4435 * ours between find_first_extent_bit and clear_extent_dirty.
4436 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4437 * the same extent range.
4438 */
4439 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4440 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4441 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4442 if (ret) {
4443 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4444 break;
fcd5e742 4445 }
acce952b 4446
0e6ec385
FM
4447 clear_extent_dirty(unpin, start, end, &cached_state);
4448 free_extent_state(cached_state);
2ff7e61e 4449 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4450 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4451 cond_resched();
4452 }
4453
ed0eaa14 4454 if (loop) {
0b246afa
JM
4455 if (unpin == &fs_info->freed_extents[0])
4456 unpin = &fs_info->freed_extents[1];
ed0eaa14 4457 else
0b246afa 4458 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4459 loop = false;
4460 goto again;
4461 }
4462
acce952b 4463 return 0;
4464}
4465
c79a1751
LB
4466static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4467{
4468 struct inode *inode;
4469
4470 inode = cache->io_ctl.inode;
4471 if (inode) {
4472 invalidate_inode_pages2(inode->i_mapping);
4473 BTRFS_I(inode)->generation = 0;
4474 cache->io_ctl.inode = NULL;
4475 iput(inode);
4476 }
4477 btrfs_put_block_group(cache);
4478}
4479
4480void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4481 struct btrfs_fs_info *fs_info)
c79a1751
LB
4482{
4483 struct btrfs_block_group_cache *cache;
4484
4485 spin_lock(&cur_trans->dirty_bgs_lock);
4486 while (!list_empty(&cur_trans->dirty_bgs)) {
4487 cache = list_first_entry(&cur_trans->dirty_bgs,
4488 struct btrfs_block_group_cache,
4489 dirty_list);
c79a1751
LB
4490
4491 if (!list_empty(&cache->io_list)) {
4492 spin_unlock(&cur_trans->dirty_bgs_lock);
4493 list_del_init(&cache->io_list);
4494 btrfs_cleanup_bg_io(cache);
4495 spin_lock(&cur_trans->dirty_bgs_lock);
4496 }
4497
4498 list_del_init(&cache->dirty_list);
4499 spin_lock(&cache->lock);
4500 cache->disk_cache_state = BTRFS_DC_ERROR;
4501 spin_unlock(&cache->lock);
4502
4503 spin_unlock(&cur_trans->dirty_bgs_lock);
4504 btrfs_put_block_group(cache);
ba2c4d4e 4505 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4506 spin_lock(&cur_trans->dirty_bgs_lock);
4507 }
4508 spin_unlock(&cur_trans->dirty_bgs_lock);
4509
45ae2c18
NB
4510 /*
4511 * Refer to the definition of io_bgs member for details why it's safe
4512 * to use it without any locking
4513 */
c79a1751
LB
4514 while (!list_empty(&cur_trans->io_bgs)) {
4515 cache = list_first_entry(&cur_trans->io_bgs,
4516 struct btrfs_block_group_cache,
4517 io_list);
c79a1751
LB
4518
4519 list_del_init(&cache->io_list);
4520 spin_lock(&cache->lock);
4521 cache->disk_cache_state = BTRFS_DC_ERROR;
4522 spin_unlock(&cache->lock);
4523 btrfs_cleanup_bg_io(cache);
4524 }
4525}
4526
49b25e05 4527void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4528 struct btrfs_fs_info *fs_info)
49b25e05 4529{
bbbf7243
NB
4530 struct btrfs_device *dev, *tmp;
4531
2ff7e61e 4532 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4533 ASSERT(list_empty(&cur_trans->dirty_bgs));
4534 ASSERT(list_empty(&cur_trans->io_bgs));
4535
bbbf7243
NB
4536 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4537 post_commit_list) {
4538 list_del_init(&dev->post_commit_list);
4539 }
4540
2ff7e61e 4541 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4542
4a9d8bde 4543 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4544 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4545
4a9d8bde 4546 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4547 wake_up(&fs_info->transaction_wait);
49b25e05 4548
ccdf9b30
JM
4549 btrfs_destroy_delayed_inodes(fs_info);
4550 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4551
2ff7e61e 4552 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4553 EXTENT_DIRTY);
2ff7e61e 4554 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4555 fs_info->pinned_extents);
49b25e05 4556
4a9d8bde
MX
4557 cur_trans->state =TRANS_STATE_COMPLETED;
4558 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4559}
4560
2ff7e61e 4561static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4562{
4563 struct btrfs_transaction *t;
acce952b 4564
0b246afa 4565 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4566
0b246afa
JM
4567 spin_lock(&fs_info->trans_lock);
4568 while (!list_empty(&fs_info->trans_list)) {
4569 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4570 struct btrfs_transaction, list);
4571 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4572 refcount_inc(&t->use_count);
0b246afa 4573 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4574 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4575 btrfs_put_transaction(t);
0b246afa 4576 spin_lock(&fs_info->trans_lock);
724e2315
JB
4577 continue;
4578 }
0b246afa 4579 if (t == fs_info->running_transaction) {
724e2315 4580 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4581 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4582 /*
4583 * We wait for 0 num_writers since we don't hold a trans
4584 * handle open currently for this transaction.
4585 */
4586 wait_event(t->writer_wait,
4587 atomic_read(&t->num_writers) == 0);
4588 } else {
0b246afa 4589 spin_unlock(&fs_info->trans_lock);
724e2315 4590 }
2ff7e61e 4591 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4592
0b246afa
JM
4593 spin_lock(&fs_info->trans_lock);
4594 if (t == fs_info->running_transaction)
4595 fs_info->running_transaction = NULL;
acce952b 4596 list_del_init(&t->list);
0b246afa 4597 spin_unlock(&fs_info->trans_lock);
acce952b 4598
724e2315 4599 btrfs_put_transaction(t);
2ff7e61e 4600 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4601 spin_lock(&fs_info->trans_lock);
724e2315 4602 }
0b246afa
JM
4603 spin_unlock(&fs_info->trans_lock);
4604 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4605 btrfs_destroy_delayed_inodes(fs_info);
4606 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4607 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4608 btrfs_destroy_all_delalloc_inodes(fs_info);
4609 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4610
4611 return 0;
4612}
4613
e8c9f186 4614static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4615 /* mandatory callbacks */
0b86a832 4616 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4617 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4618};