]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: get fs_info from eb in btree_read_extent_buffer_pages
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
eb60ceac 42
de0022b9
JB
43#ifdef CONFIG_X86
44#include <asm/cpufeature.h>
45#endif
46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
e8c9f186 54static const struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
143bede5 56static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 57static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 58 struct btrfs_fs_info *fs_info);
143bede5 59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 60static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *dirty_pages,
62 int mark);
2ff7e61e 63static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 64 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
65static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 67
d352ac68 68/*
97eb6b69
DS
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
71 * by writes to insert metadata for new file extents after IO is complete.
72 */
97eb6b69 73struct btrfs_end_io_wq {
ce9adaa5
CM
74 struct bio *bio;
75 bio_end_io_t *end_io;
76 void *private;
77 struct btrfs_fs_info *info;
4e4cbee9 78 blk_status_t status;
bfebd8b5 79 enum btrfs_wq_endio_type metadata;
8b712842 80 struct btrfs_work work;
ce9adaa5 81};
0da5468f 82
97eb6b69
DS
83static struct kmem_cache *btrfs_end_io_wq_cache;
84
85int __init btrfs_end_io_wq_init(void)
86{
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
89 0,
fba4b697 90 SLAB_MEM_SPREAD,
97eb6b69
DS
91 NULL);
92 if (!btrfs_end_io_wq_cache)
93 return -ENOMEM;
94 return 0;
95}
96
e67c718b 97void __cold btrfs_end_io_wq_exit(void)
97eb6b69 98{
5598e900 99 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
100}
101
d352ac68
CM
102/*
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
106 */
44b8bd7e 107struct async_submit_bio {
c6100a4b 108 void *private_data;
44b8bd7e 109 struct bio *bio;
a758781d 110 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 111 int mirror_num;
eaf25d93
CM
112 /*
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
115 */
116 u64 bio_offset;
8b712842 117 struct btrfs_work work;
4e4cbee9 118 blk_status_t status;
44b8bd7e
CM
119};
120
85d4e461
CM
121/*
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
125 *
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
129 * by btrfs_root->root_key.objectid. This ensures that all special purpose
130 * roots have separate keysets.
4008c04a 131 *
85d4e461
CM
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 135 *
85d4e461
CM
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 139 *
85d4e461
CM
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
4008c04a
CM
143 */
144#ifdef CONFIG_DEBUG_LOCK_ALLOC
145# if BTRFS_MAX_LEVEL != 8
146# error
147# endif
85d4e461
CM
148
149static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154} btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 167 { .id = 0, .name_stem = "tree" },
4008c04a 168};
85d4e461
CM
169
170void __init btrfs_init_lockdep(void)
171{
172 int i, j;
173
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
181 }
182}
183
184void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 int level)
186{
187 struct btrfs_lockdep_keyset *ks;
188
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
194 break;
195
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
198}
199
4008c04a
CM
200#endif
201
d352ac68
CM
202/*
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
205 */
6af49dbd 206struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 207 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 208 int create)
7eccb903 209{
3ffbd68c 210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 211 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
212 struct extent_map *em;
213 int ret;
214
890871be 215 read_lock(&em_tree->lock);
d1310b2e 216 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 217 if (em) {
0b246afa 218 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 219 read_unlock(&em_tree->lock);
5f39d397 220 goto out;
a061fc8d 221 }
890871be 222 read_unlock(&em_tree->lock);
7b13b7b1 223
172ddd60 224 em = alloc_extent_map();
5f39d397
CM
225 if (!em) {
226 em = ERR_PTR(-ENOMEM);
227 goto out;
228 }
229 em->start = 0;
0afbaf8c 230 em->len = (u64)-1;
c8b97818 231 em->block_len = (u64)-1;
5f39d397 232 em->block_start = 0;
0b246afa 233 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 234
890871be 235 write_lock(&em_tree->lock);
09a2a8f9 236 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
237 if (ret == -EEXIST) {
238 free_extent_map(em);
7b13b7b1 239 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 240 if (!em)
0433f20d 241 em = ERR_PTR(-EIO);
5f39d397 242 } else if (ret) {
7b13b7b1 243 free_extent_map(em);
0433f20d 244 em = ERR_PTR(ret);
5f39d397 245 }
890871be 246 write_unlock(&em_tree->lock);
7b13b7b1 247
5f39d397
CM
248out:
249 return em;
7eccb903
CM
250}
251
9ed57367 252u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 253{
9678c543 254 return crc32c(seed, data, len);
19c00ddc
CM
255}
256
0b5e3daf 257void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 258{
7e75bf3f 259 put_unaligned_le32(~crc, result);
19c00ddc
CM
260}
261
d352ac68 262/*
2996e1f8
JT
263 * Compute the csum of a btree block and store the result to provided buffer.
264 *
265 * Returns error if the extent buffer cannot be mapped.
d352ac68 266 */
2996e1f8 267static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 268{
19c00ddc
CM
269 unsigned long len;
270 unsigned long cur_len;
271 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
272 char *kaddr;
273 unsigned long map_start;
274 unsigned long map_len;
275 int err;
276 u32 crc = ~(u32)0;
277
278 len = buf->len - offset;
d397712b 279 while (len > 0) {
d2e174d5
JT
280 /*
281 * Note: we don't need to check for the err == 1 case here, as
282 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
283 * and 'min_len = 32' and the currently implemented mapping
284 * algorithm we cannot cross a page boundary.
285 */
19c00ddc 286 err = map_private_extent_buffer(buf, offset, 32,
a6591715 287 &kaddr, &map_start, &map_len);
c53839fc 288 if (WARN_ON(err))
8bd98f0e 289 return err;
19c00ddc 290 cur_len = min(len, map_len - (offset - map_start));
b0496686 291 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
292 crc, cur_len);
293 len -= cur_len;
294 offset += cur_len;
19c00ddc 295 }
71a63551 296 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 297
19c00ddc
CM
298 btrfs_csum_final(crc, result);
299
19c00ddc
CM
300 return 0;
301}
302
d352ac68
CM
303/*
304 * we can't consider a given block up to date unless the transid of the
305 * block matches the transid in the parent node's pointer. This is how we
306 * detect blocks that either didn't get written at all or got written
307 * in the wrong place.
308 */
1259ab75 309static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
310 struct extent_buffer *eb, u64 parent_transid,
311 int atomic)
1259ab75 312{
2ac55d41 313 struct extent_state *cached_state = NULL;
1259ab75 314 int ret;
2755a0de 315 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
316
317 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
318 return 0;
319
b9fab919
CM
320 if (atomic)
321 return -EAGAIN;
322
a26e8c9f
JB
323 if (need_lock) {
324 btrfs_tree_read_lock(eb);
300aa896 325 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
326 }
327
2ac55d41 328 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 329 &cached_state);
0b32f4bb 330 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
331 btrfs_header_generation(eb) == parent_transid) {
332 ret = 0;
333 goto out;
334 }
94647322
DS
335 btrfs_err_rl(eb->fs_info,
336 "parent transid verify failed on %llu wanted %llu found %llu",
337 eb->start,
29549aec 338 parent_transid, btrfs_header_generation(eb));
1259ab75 339 ret = 1;
a26e8c9f
JB
340
341 /*
342 * Things reading via commit roots that don't have normal protection,
343 * like send, can have a really old block in cache that may point at a
01327610 344 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
345 * if we find an eb that is under IO (dirty/writeback) because we could
346 * end up reading in the stale data and then writing it back out and
347 * making everybody very sad.
348 */
349 if (!extent_buffer_under_io(eb))
350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41 352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 353 &cached_state);
472b909f
JB
354 if (need_lock)
355 btrfs_tree_read_unlock_blocking(eb);
1259ab75 356 return ret;
1259ab75
CM
357}
358
1104a885
DS
359/*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
ab8d0fc4
JM
363static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
364 char *raw_disk_sb)
1104a885
DS
365{
366 struct btrfs_super_block *disk_sb =
367 (struct btrfs_super_block *)raw_disk_sb;
368 u16 csum_type = btrfs_super_csum_type(disk_sb);
369 int ret = 0;
370
371 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
372 u32 crc = ~(u32)0;
776c4a7c 373 char result[sizeof(crc)];
1104a885
DS
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 378 * is filled with zeros and is included in the checksum.
1104a885
DS
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
776c4a7c 384 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
385 ret = 1;
386 }
387
388 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 389 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
390 csum_type);
391 ret = 1;
392 }
393
394 return ret;
395}
396
448de471
QW
397int btrfs_verify_level_key(struct btrfs_fs_info *fs_info,
398 struct extent_buffer *eb, int level,
399 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
400{
401 int found_level;
402 struct btrfs_key found_key;
403 int ret;
404
405 found_level = btrfs_header_level(eb);
406 if (found_level != level) {
63489055
QW
407 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
408 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
409 btrfs_err(fs_info,
410"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
411 eb->start, level, found_level);
581c1760
QW
412 return -EIO;
413 }
414
415 if (!first_key)
416 return 0;
417
5d41be6f
QW
418 /*
419 * For live tree block (new tree blocks in current transaction),
420 * we need proper lock context to avoid race, which is impossible here.
421 * So we only checks tree blocks which is read from disk, whose
422 * generation <= fs_info->last_trans_committed.
423 */
424 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
425 return 0;
581c1760
QW
426 if (found_level)
427 btrfs_node_key_to_cpu(eb, &found_key, 0);
428 else
429 btrfs_item_key_to_cpu(eb, &found_key, 0);
430 ret = btrfs_comp_cpu_keys(first_key, &found_key);
431
581c1760 432 if (ret) {
63489055
QW
433 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 435 btrfs_err(fs_info,
ff76a864
LB
436"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
437 eb->start, parent_transid, first_key->objectid,
438 first_key->type, first_key->offset,
439 found_key.objectid, found_key.type,
440 found_key.offset);
581c1760 441 }
581c1760
QW
442 return ret;
443}
444
d352ac68
CM
445/*
446 * helper to read a given tree block, doing retries as required when
447 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
448 *
449 * @parent_transid: expected transid, skip check if 0
450 * @level: expected level, mandatory check
451 * @first_key: expected key of first slot, skip check if NULL
d352ac68 452 */
5ab12d1f 453static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
454 u64 parent_transid, int level,
455 struct btrfs_key *first_key)
f188591e 456{
5ab12d1f 457 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 458 struct extent_io_tree *io_tree;
ea466794 459 int failed = 0;
f188591e
CM
460 int ret;
461 int num_copies = 0;
462 int mirror_num = 0;
ea466794 463 int failed_mirror = 0;
f188591e 464
0b246afa 465 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 466 while (1) {
f8397d69 467 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 468 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 469 mirror_num);
256dd1bb 470 if (!ret) {
581c1760 471 if (verify_parent_transid(io_tree, eb,
b9fab919 472 parent_transid, 0))
256dd1bb 473 ret = -EIO;
448de471
QW
474 else if (btrfs_verify_level_key(fs_info, eb, level,
475 first_key, parent_transid))
581c1760
QW
476 ret = -EUCLEAN;
477 else
478 break;
256dd1bb 479 }
d397712b 480
0b246afa 481 num_copies = btrfs_num_copies(fs_info,
f188591e 482 eb->start, eb->len);
4235298e 483 if (num_copies == 1)
ea466794 484 break;
4235298e 485
5cf1ab56
JB
486 if (!failed_mirror) {
487 failed = 1;
488 failed_mirror = eb->read_mirror;
489 }
490
f188591e 491 mirror_num++;
ea466794
JB
492 if (mirror_num == failed_mirror)
493 mirror_num++;
494
4235298e 495 if (mirror_num > num_copies)
ea466794 496 break;
f188591e 497 }
ea466794 498
c0901581 499 if (failed && !ret && failed_mirror)
20a1fbf9 500 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
501
502 return ret;
f188591e 503}
19c00ddc 504
d352ac68 505/*
d397712b
CM
506 * checksum a dirty tree block before IO. This has extra checks to make sure
507 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 508 */
d397712b 509
01d58472 510static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 511{
4eee4fa4 512 u64 start = page_offset(page);
19c00ddc 513 u64 found_start;
2996e1f8
JT
514 u8 result[BTRFS_CSUM_SIZE];
515 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 516 struct extent_buffer *eb;
f188591e 517
4f2de97a
JB
518 eb = (struct extent_buffer *)page->private;
519 if (page != eb->pages[0])
520 return 0;
0f805531 521
19c00ddc 522 found_start = btrfs_header_bytenr(eb);
0f805531
AL
523 /*
524 * Please do not consolidate these warnings into a single if.
525 * It is useful to know what went wrong.
526 */
527 if (WARN_ON(found_start != start))
528 return -EUCLEAN;
529 if (WARN_ON(!PageUptodate(page)))
530 return -EUCLEAN;
531
de37aa51 532 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
533 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
534
2996e1f8
JT
535 if (csum_tree_block(eb, result))
536 return -EINVAL;
537
538 write_extent_buffer(eb, result, 0, csum_size);
539 return 0;
19c00ddc
CM
540}
541
b0c9b3b0 542static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 543{
b0c9b3b0 544 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 545 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 546 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
547 int ret = 1;
548
0a4e5586 549 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 550 while (fs_devices) {
7239ff4b
NB
551 u8 *metadata_uuid;
552
553 /*
554 * Checking the incompat flag is only valid for the current
555 * fs. For seed devices it's forbidden to have their uuid
556 * changed so reading ->fsid in this case is fine
557 */
558 if (fs_devices == fs_info->fs_devices &&
559 btrfs_fs_incompat(fs_info, METADATA_UUID))
560 metadata_uuid = fs_devices->metadata_uuid;
561 else
562 metadata_uuid = fs_devices->fsid;
563
564 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
565 ret = 0;
566 break;
567 }
568 fs_devices = fs_devices->seed;
569 }
570 return ret;
571}
572
facc8a22
MX
573static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
574 u64 phy_offset, struct page *page,
575 u64 start, u64 end, int mirror)
ce9adaa5 576{
ce9adaa5
CM
577 u64 found_start;
578 int found_level;
ce9adaa5
CM
579 struct extent_buffer *eb;
580 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 581 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 582 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 583 int ret = 0;
2996e1f8 584 u8 result[BTRFS_CSUM_SIZE];
727011e0 585 int reads_done;
ce9adaa5 586
ce9adaa5
CM
587 if (!page->private)
588 goto out;
d397712b 589
4f2de97a 590 eb = (struct extent_buffer *)page->private;
d397712b 591
0b32f4bb
JB
592 /* the pending IO might have been the only thing that kept this buffer
593 * in memory. Make sure we have a ref for all this other checks
594 */
595 extent_buffer_get(eb);
596
597 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
598 if (!reads_done)
599 goto err;
f188591e 600
5cf1ab56 601 eb->read_mirror = mirror;
656f30db 602 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
603 ret = -EIO;
604 goto err;
605 }
606
ce9adaa5 607 found_start = btrfs_header_bytenr(eb);
727011e0 608 if (found_start != eb->start) {
893bf4b1
SY
609 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
610 eb->start, found_start);
f188591e 611 ret = -EIO;
ce9adaa5
CM
612 goto err;
613 }
b0c9b3b0 614 if (check_tree_block_fsid(eb)) {
02873e43
ZL
615 btrfs_err_rl(fs_info, "bad fsid on block %llu",
616 eb->start);
1259ab75
CM
617 ret = -EIO;
618 goto err;
619 }
ce9adaa5 620 found_level = btrfs_header_level(eb);
1c24c3ce 621 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
622 btrfs_err(fs_info, "bad tree block level %d on %llu",
623 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
624 ret = -EIO;
625 goto err;
626 }
ce9adaa5 627
85d4e461
CM
628 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
629 eb, found_level);
4008c04a 630
2996e1f8 631 ret = csum_tree_block(eb, result);
8bd98f0e 632 if (ret)
a826d6dc 633 goto err;
a826d6dc 634
2996e1f8
JT
635 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
636 u32 val;
637 u32 found = 0;
638
639 memcpy(&found, result, csum_size);
640
641 read_extent_buffer(eb, &val, 0, csum_size);
642 btrfs_warn_rl(fs_info,
643 "%s checksum verify failed on %llu wanted %x found %x level %d",
644 fs_info->sb->s_id, eb->start,
645 val, found, btrfs_header_level(eb));
646 ret = -EUCLEAN;
647 goto err;
648 }
649
a826d6dc
JB
650 /*
651 * If this is a leaf block and it is corrupt, set the corrupt bit so
652 * that we don't try and read the other copies of this block, just
653 * return -EIO.
654 */
2f659546 655 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
656 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
657 ret = -EIO;
658 }
ce9adaa5 659
2f659546 660 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
661 ret = -EIO;
662
0b32f4bb
JB
663 if (!ret)
664 set_extent_buffer_uptodate(eb);
75391f0d
QW
665 else
666 btrfs_err(fs_info,
667 "block=%llu read time tree block corruption detected",
668 eb->start);
ce9adaa5 669err:
79fb65a1
JB
670 if (reads_done &&
671 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 672 btree_readahead_hook(eb, ret);
4bb31e92 673
53b381b3
DW
674 if (ret) {
675 /*
676 * our io error hook is going to dec the io pages
677 * again, we have to make sure it has something
678 * to decrement
679 */
680 atomic_inc(&eb->io_pages);
0b32f4bb 681 clear_extent_buffer_uptodate(eb);
53b381b3 682 }
0b32f4bb 683 free_extent_buffer(eb);
ce9adaa5 684out:
f188591e 685 return ret;
ce9adaa5
CM
686}
687
4246a0b6 688static void end_workqueue_bio(struct bio *bio)
ce9adaa5 689{
97eb6b69 690 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 691 struct btrfs_fs_info *fs_info;
9e0af237
LB
692 struct btrfs_workqueue *wq;
693 btrfs_work_func_t func;
ce9adaa5 694
ce9adaa5 695 fs_info = end_io_wq->info;
4e4cbee9 696 end_io_wq->status = bio->bi_status;
d20f7043 697
37226b21 698 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
700 wq = fs_info->endio_meta_write_workers;
701 func = btrfs_endio_meta_write_helper;
702 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
703 wq = fs_info->endio_freespace_worker;
704 func = btrfs_freespace_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
706 wq = fs_info->endio_raid56_workers;
707 func = btrfs_endio_raid56_helper;
708 } else {
709 wq = fs_info->endio_write_workers;
710 func = btrfs_endio_write_helper;
711 }
d20f7043 712 } else {
8b110e39
MX
713 if (unlikely(end_io_wq->metadata ==
714 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
715 wq = fs_info->endio_repair_workers;
716 func = btrfs_endio_repair_helper;
717 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
718 wq = fs_info->endio_raid56_workers;
719 func = btrfs_endio_raid56_helper;
720 } else if (end_io_wq->metadata) {
721 wq = fs_info->endio_meta_workers;
722 func = btrfs_endio_meta_helper;
723 } else {
724 wq = fs_info->endio_workers;
725 func = btrfs_endio_helper;
726 }
d20f7043 727 }
9e0af237
LB
728
729 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
730 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
731}
732
4e4cbee9 733blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 734 enum btrfs_wq_endio_type metadata)
0b86a832 735{
97eb6b69 736 struct btrfs_end_io_wq *end_io_wq;
8b110e39 737
97eb6b69 738 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 739 if (!end_io_wq)
4e4cbee9 740 return BLK_STS_RESOURCE;
ce9adaa5
CM
741
742 end_io_wq->private = bio->bi_private;
743 end_io_wq->end_io = bio->bi_end_io;
22c59948 744 end_io_wq->info = info;
4e4cbee9 745 end_io_wq->status = 0;
ce9adaa5 746 end_io_wq->bio = bio;
22c59948 747 end_io_wq->metadata = metadata;
ce9adaa5
CM
748
749 bio->bi_private = end_io_wq;
750 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
751 return 0;
752}
753
4a69a410
CM
754static void run_one_async_start(struct btrfs_work *work)
755{
4a69a410 756 struct async_submit_bio *async;
4e4cbee9 757 blk_status_t ret;
4a69a410
CM
758
759 async = container_of(work, struct async_submit_bio, work);
c6100a4b 760 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
761 async->bio_offset);
762 if (ret)
4e4cbee9 763 async->status = ret;
4a69a410
CM
764}
765
06ea01b1
DS
766/*
767 * In order to insert checksums into the metadata in large chunks, we wait
768 * until bio submission time. All the pages in the bio are checksummed and
769 * sums are attached onto the ordered extent record.
770 *
771 * At IO completion time the csums attached on the ordered extent record are
772 * inserted into the tree.
773 */
4a69a410 774static void run_one_async_done(struct btrfs_work *work)
8b712842 775{
8b712842 776 struct async_submit_bio *async;
06ea01b1
DS
777 struct inode *inode;
778 blk_status_t ret;
8b712842
CM
779
780 async = container_of(work, struct async_submit_bio, work);
06ea01b1 781 inode = async->private_data;
4854ddd0 782
bb7ab3b9 783 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
784 if (async->status) {
785 async->bio->bi_status = async->status;
4246a0b6 786 bio_endio(async->bio);
79787eaa
JM
787 return;
788 }
789
06ea01b1
DS
790 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
791 async->mirror_num, 1);
792 if (ret) {
793 async->bio->bi_status = ret;
794 bio_endio(async->bio);
795 }
4a69a410
CM
796}
797
798static void run_one_async_free(struct btrfs_work *work)
799{
800 struct async_submit_bio *async;
801
802 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
803 kfree(async);
804}
805
8c27cb35
LT
806blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
807 int mirror_num, unsigned long bio_flags,
808 u64 bio_offset, void *private_data,
e288c080 809 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
810{
811 struct async_submit_bio *async;
812
813 async = kmalloc(sizeof(*async), GFP_NOFS);
814 if (!async)
4e4cbee9 815 return BLK_STS_RESOURCE;
44b8bd7e 816
c6100a4b 817 async->private_data = private_data;
44b8bd7e
CM
818 async->bio = bio;
819 async->mirror_num = mirror_num;
4a69a410 820 async->submit_bio_start = submit_bio_start;
4a69a410 821
9e0af237 822 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 823 run_one_async_done, run_one_async_free);
4a69a410 824
eaf25d93 825 async->bio_offset = bio_offset;
8c8bee1d 826
4e4cbee9 827 async->status = 0;
79787eaa 828
67f055c7 829 if (op_is_sync(bio->bi_opf))
5cdc7ad3 830 btrfs_set_work_high_priority(&async->work);
d313d7a3 831
5cdc7ad3 832 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
833 return 0;
834}
835
4e4cbee9 836static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 837{
2c30c71b 838 struct bio_vec *bvec;
ce3ed71a 839 struct btrfs_root *root;
2c30c71b 840 int i, ret = 0;
6dc4f100 841 struct bvec_iter_all iter_all;
ce3ed71a 842
c09abff8 843 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 844 bio_for_each_segment_all(bvec, bio, i, iter_all) {
ce3ed71a 845 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 846 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
847 if (ret)
848 break;
ce3ed71a 849 }
2c30c71b 850
4e4cbee9 851 return errno_to_blk_status(ret);
ce3ed71a
CM
852}
853
d0ee3934 854static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 855 u64 bio_offset)
22c59948 856{
8b712842
CM
857 /*
858 * when we're called for a write, we're already in the async
5443be45 859 * submission context. Just jump into btrfs_map_bio
8b712842 860 */
79787eaa 861 return btree_csum_one_bio(bio);
4a69a410 862}
22c59948 863
18fdc679 864static int check_async_write(struct btrfs_inode *bi)
de0022b9 865{
6300463b
LB
866 if (atomic_read(&bi->sync_writers))
867 return 0;
de0022b9 868#ifdef CONFIG_X86
bc696ca0 869 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
870 return 0;
871#endif
872 return 1;
873}
874
8c27cb35
LT
875static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
876 int mirror_num, unsigned long bio_flags,
877 u64 bio_offset)
44b8bd7e 878{
c6100a4b 879 struct inode *inode = private_data;
0b246afa 880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 881 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 882 blk_status_t ret;
cad321ad 883
37226b21 884 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
885 /*
886 * called for a read, do the setup so that checksum validation
887 * can happen in the async kernel threads
888 */
0b246afa
JM
889 ret = btrfs_bio_wq_end_io(fs_info, bio,
890 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 891 if (ret)
61891923 892 goto out_w_error;
2ff7e61e 893 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
894 } else if (!async) {
895 ret = btree_csum_one_bio(bio);
896 if (ret)
61891923 897 goto out_w_error;
2ff7e61e 898 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
899 } else {
900 /*
901 * kthread helpers are used to submit writes so that
902 * checksumming can happen in parallel across all CPUs
903 */
c6100a4b
JB
904 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
905 bio_offset, private_data,
e288c080 906 btree_submit_bio_start);
44b8bd7e 907 }
d313d7a3 908
4246a0b6
CH
909 if (ret)
910 goto out_w_error;
911 return 0;
912
61891923 913out_w_error:
4e4cbee9 914 bio->bi_status = ret;
4246a0b6 915 bio_endio(bio);
61891923 916 return ret;
44b8bd7e
CM
917}
918
3dd1462e 919#ifdef CONFIG_MIGRATION
784b4e29 920static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
921 struct page *newpage, struct page *page,
922 enum migrate_mode mode)
784b4e29
CM
923{
924 /*
925 * we can't safely write a btree page from here,
926 * we haven't done the locking hook
927 */
928 if (PageDirty(page))
929 return -EAGAIN;
930 /*
931 * Buffers may be managed in a filesystem specific way.
932 * We must have no buffers or drop them.
933 */
934 if (page_has_private(page) &&
935 !try_to_release_page(page, GFP_KERNEL))
936 return -EAGAIN;
a6bc32b8 937 return migrate_page(mapping, newpage, page, mode);
784b4e29 938}
3dd1462e 939#endif
784b4e29 940
0da5468f
CM
941
942static int btree_writepages(struct address_space *mapping,
943 struct writeback_control *wbc)
944{
e2d84521
MX
945 struct btrfs_fs_info *fs_info;
946 int ret;
947
d8d5f3e1 948 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
949
950 if (wbc->for_kupdate)
951 return 0;
952
e2d84521 953 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 954 /* this is a bit racy, but that's ok */
d814a491
EL
955 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
956 BTRFS_DIRTY_METADATA_THRESH,
957 fs_info->dirty_metadata_batch);
e2d84521 958 if (ret < 0)
793955bc 959 return 0;
793955bc 960 }
0b32f4bb 961 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
962}
963
b2950863 964static int btree_readpage(struct file *file, struct page *page)
5f39d397 965{
d1310b2e
CM
966 struct extent_io_tree *tree;
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 968 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 969}
22b0ebda 970
70dec807 971static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 972{
98509cfc 973 if (PageWriteback(page) || PageDirty(page))
d397712b 974 return 0;
0c4e538b 975
f7a52a40 976 return try_release_extent_buffer(page);
d98237b3
CM
977}
978
d47992f8
LC
979static void btree_invalidatepage(struct page *page, unsigned int offset,
980 unsigned int length)
d98237b3 981{
d1310b2e
CM
982 struct extent_io_tree *tree;
983 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
984 extent_invalidatepage(tree, page, offset);
985 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 986 if (PagePrivate(page)) {
efe120a0
FH
987 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
988 "page private not zero on page %llu",
989 (unsigned long long)page_offset(page));
9ad6b7bc
CM
990 ClearPagePrivate(page);
991 set_page_private(page, 0);
09cbfeaf 992 put_page(page);
9ad6b7bc 993 }
d98237b3
CM
994}
995
0b32f4bb
JB
996static int btree_set_page_dirty(struct page *page)
997{
bb146eb2 998#ifdef DEBUG
0b32f4bb
JB
999 struct extent_buffer *eb;
1000
1001 BUG_ON(!PagePrivate(page));
1002 eb = (struct extent_buffer *)page->private;
1003 BUG_ON(!eb);
1004 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1005 BUG_ON(!atomic_read(&eb->refs));
1006 btrfs_assert_tree_locked(eb);
bb146eb2 1007#endif
0b32f4bb
JB
1008 return __set_page_dirty_nobuffers(page);
1009}
1010
7f09410b 1011static const struct address_space_operations btree_aops = {
d98237b3 1012 .readpage = btree_readpage,
0da5468f 1013 .writepages = btree_writepages,
5f39d397
CM
1014 .releasepage = btree_releasepage,
1015 .invalidatepage = btree_invalidatepage,
5a92bc88 1016#ifdef CONFIG_MIGRATION
784b4e29 1017 .migratepage = btree_migratepage,
5a92bc88 1018#endif
0b32f4bb 1019 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1020};
1021
2ff7e61e 1022void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1023{
5f39d397 1024 struct extent_buffer *buf = NULL;
2ff7e61e 1025 struct inode *btree_inode = fs_info->btree_inode;
537f38f0 1026 int ret;
090d1875 1027
2ff7e61e 1028 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1029 if (IS_ERR(buf))
6197d86e 1030 return;
537f38f0
NB
1031
1032 ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf,
1033 WAIT_NONE, 0);
1034 if (ret < 0)
1035 free_extent_buffer_stale(buf);
1036 else
1037 free_extent_buffer(buf);
090d1875
CM
1038}
1039
2ff7e61e 1040int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1041 int mirror_num, struct extent_buffer **eb)
1042{
1043 struct extent_buffer *buf = NULL;
2ff7e61e 1044 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1045 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1046 int ret;
1047
2ff7e61e 1048 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1049 if (IS_ERR(buf))
ab0fff03
AJ
1050 return 0;
1051
1052 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1053
8436ea91 1054 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1055 mirror_num);
ab0fff03 1056 if (ret) {
537f38f0 1057 free_extent_buffer_stale(buf);
ab0fff03
AJ
1058 return ret;
1059 }
1060
1061 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
537f38f0 1062 free_extent_buffer_stale(buf);
ab0fff03 1063 return -EIO;
0b32f4bb 1064 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1065 *eb = buf;
1066 } else {
1067 free_extent_buffer(buf);
1068 }
1069 return 0;
1070}
1071
2ff7e61e
JM
1072struct extent_buffer *btrfs_find_create_tree_block(
1073 struct btrfs_fs_info *fs_info,
1074 u64 bytenr)
0999df54 1075{
0b246afa
JM
1076 if (btrfs_is_testing(fs_info))
1077 return alloc_test_extent_buffer(fs_info, bytenr);
1078 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1079}
1080
581c1760
QW
1081/*
1082 * Read tree block at logical address @bytenr and do variant basic but critical
1083 * verification.
1084 *
1085 * @parent_transid: expected transid of this tree block, skip check if 0
1086 * @level: expected level, mandatory check
1087 * @first_key: expected key in slot 0, skip check if NULL
1088 */
2ff7e61e 1089struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1090 u64 parent_transid, int level,
1091 struct btrfs_key *first_key)
0999df54
CM
1092{
1093 struct extent_buffer *buf = NULL;
0999df54
CM
1094 int ret;
1095
2ff7e61e 1096 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1097 if (IS_ERR(buf))
1098 return buf;
0999df54 1099
5ab12d1f 1100 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1101 level, first_key);
0f0fe8f7 1102 if (ret) {
537f38f0 1103 free_extent_buffer_stale(buf);
64c043de 1104 return ERR_PTR(ret);
0f0fe8f7 1105 }
5f39d397 1106 return buf;
ce9adaa5 1107
eb60ceac
CM
1108}
1109
6a884d7d 1110void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1111{
6a884d7d 1112 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1113 if (btrfs_header_generation(buf) ==
e2d84521 1114 fs_info->running_transaction->transid) {
b9447ef8 1115 btrfs_assert_tree_locked(buf);
b4ce94de 1116
b9473439 1117 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1118 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1119 -buf->len,
1120 fs_info->dirty_metadata_batch);
ed7b63eb 1121 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1122 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1123 clear_extent_buffer_dirty(buf);
1124 }
925baedd 1125 }
5f39d397
CM
1126}
1127
8257b2dc
MX
1128static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1129{
1130 struct btrfs_subvolume_writers *writers;
1131 int ret;
1132
1133 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1134 if (!writers)
1135 return ERR_PTR(-ENOMEM);
1136
8a5a916d 1137 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1138 if (ret < 0) {
1139 kfree(writers);
1140 return ERR_PTR(ret);
1141 }
1142
1143 init_waitqueue_head(&writers->wait);
1144 return writers;
1145}
1146
1147static void
1148btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1149{
1150 percpu_counter_destroy(&writers->counter);
1151 kfree(writers);
1152}
1153
da17066c 1154static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1155 u64 objectid)
d97e63b6 1156{
7c0260ee 1157 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1158 root->node = NULL;
a28ec197 1159 root->commit_root = NULL;
27cdeb70 1160 root->state = 0;
d68fc57b 1161 root->orphan_cleanup_state = 0;
0b86a832 1162
0f7d52f4 1163 root->last_trans = 0;
13a8a7c8 1164 root->highest_objectid = 0;
eb73c1b7 1165 root->nr_delalloc_inodes = 0;
199c2a9c 1166 root->nr_ordered_extents = 0;
6bef4d31 1167 root->inode_tree = RB_ROOT;
16cdcec7 1168 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1169 root->block_rsv = NULL;
0b86a832
CM
1170
1171 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1172 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1173 INIT_LIST_HEAD(&root->delalloc_inodes);
1174 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1175 INIT_LIST_HEAD(&root->ordered_extents);
1176 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1177 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1178 INIT_LIST_HEAD(&root->logged_list[0]);
1179 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1180 spin_lock_init(&root->inode_lock);
eb73c1b7 1181 spin_lock_init(&root->delalloc_lock);
199c2a9c 1182 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1183 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1184 spin_lock_init(&root->log_extents_lock[0]);
1185 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1186 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1187 mutex_init(&root->objectid_mutex);
e02119d5 1188 mutex_init(&root->log_mutex);
31f3d255 1189 mutex_init(&root->ordered_extent_mutex);
573bfb72 1190 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1191 init_waitqueue_head(&root->log_writer_wait);
1192 init_waitqueue_head(&root->log_commit_wait[0]);
1193 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1194 INIT_LIST_HEAD(&root->log_ctxs[0]);
1195 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1196 atomic_set(&root->log_commit[0], 0);
1197 atomic_set(&root->log_commit[1], 0);
1198 atomic_set(&root->log_writers, 0);
2ecb7923 1199 atomic_set(&root->log_batch, 0);
0700cea7 1200 refcount_set(&root->refs, 1);
ea14b57f 1201 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1202 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1203 atomic_set(&root->nr_swapfiles, 0);
7237f183 1204 root->log_transid = 0;
d1433deb 1205 root->log_transid_committed = -1;
257c62e1 1206 root->last_log_commit = 0;
7c0260ee 1207 if (!dummy)
43eb5f29
QW
1208 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1209 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1210
3768f368
CM
1211 memset(&root->root_key, 0, sizeof(root->root_key));
1212 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1213 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1214 if (!dummy)
06ea65a3
JB
1215 root->defrag_trans_start = fs_info->generation;
1216 else
1217 root->defrag_trans_start = 0;
4d775673 1218 root->root_key.objectid = objectid;
0ee5dc67 1219 root->anon_dev = 0;
8ea05e3a 1220
5f3ab90a 1221 spin_lock_init(&root->root_item_lock);
370a11b8 1222 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1223}
1224
74e4d827
DS
1225static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1226 gfp_t flags)
6f07e42e 1227{
74e4d827 1228 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1229 if (root)
1230 root->fs_info = fs_info;
1231 return root;
1232}
1233
06ea65a3
JB
1234#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1235/* Should only be used by the testing infrastructure */
da17066c 1236struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1237{
1238 struct btrfs_root *root;
1239
7c0260ee
JM
1240 if (!fs_info)
1241 return ERR_PTR(-EINVAL);
1242
1243 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1244 if (!root)
1245 return ERR_PTR(-ENOMEM);
da17066c 1246
b9ef22de 1247 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1248 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1249 root->alloc_bytenr = 0;
06ea65a3
JB
1250
1251 return root;
1252}
1253#endif
1254
20897f5c
AJ
1255struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256 struct btrfs_fs_info *fs_info,
1257 u64 objectid)
1258{
1259 struct extent_buffer *leaf;
1260 struct btrfs_root *tree_root = fs_info->tree_root;
1261 struct btrfs_root *root;
1262 struct btrfs_key key;
b89f6d1f 1263 unsigned int nofs_flag;
20897f5c 1264 int ret = 0;
33d85fda 1265 uuid_le uuid = NULL_UUID_LE;
20897f5c 1266
b89f6d1f
FM
1267 /*
1268 * We're holding a transaction handle, so use a NOFS memory allocation
1269 * context to avoid deadlock if reclaim happens.
1270 */
1271 nofs_flag = memalloc_nofs_save();
74e4d827 1272 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1273 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1274 if (!root)
1275 return ERR_PTR(-ENOMEM);
1276
da17066c 1277 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1278 root->root_key.objectid = objectid;
1279 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1280 root->root_key.offset = 0;
1281
4d75f8a9 1282 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1283 if (IS_ERR(leaf)) {
1284 ret = PTR_ERR(leaf);
1dd05682 1285 leaf = NULL;
20897f5c
AJ
1286 goto fail;
1287 }
1288
20897f5c 1289 root->node = leaf;
20897f5c
AJ
1290 btrfs_mark_buffer_dirty(leaf);
1291
1292 root->commit_root = btrfs_root_node(root);
27cdeb70 1293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1294
1295 root->root_item.flags = 0;
1296 root->root_item.byte_limit = 0;
1297 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1298 btrfs_set_root_generation(&root->root_item, trans->transid);
1299 btrfs_set_root_level(&root->root_item, 0);
1300 btrfs_set_root_refs(&root->root_item, 1);
1301 btrfs_set_root_used(&root->root_item, leaf->len);
1302 btrfs_set_root_last_snapshot(&root->root_item, 0);
1303 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1304 if (is_fstree(objectid))
1305 uuid_le_gen(&uuid);
6463fe58 1306 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1307 root->root_item.drop_level = 0;
1308
1309 key.objectid = objectid;
1310 key.type = BTRFS_ROOT_ITEM_KEY;
1311 key.offset = 0;
1312 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1313 if (ret)
1314 goto fail;
1315
1316 btrfs_tree_unlock(leaf);
1317
1dd05682
TI
1318 return root;
1319
20897f5c 1320fail:
1dd05682
TI
1321 if (leaf) {
1322 btrfs_tree_unlock(leaf);
59885b39 1323 free_extent_buffer(root->commit_root);
1dd05682
TI
1324 free_extent_buffer(leaf);
1325 }
1326 kfree(root);
20897f5c 1327
1dd05682 1328 return ERR_PTR(ret);
20897f5c
AJ
1329}
1330
7237f183
YZ
1331static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1332 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1333{
1334 struct btrfs_root *root;
7237f183 1335 struct extent_buffer *leaf;
e02119d5 1336
74e4d827 1337 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1338 if (!root)
7237f183 1339 return ERR_PTR(-ENOMEM);
e02119d5 1340
da17066c 1341 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1342
1343 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1344 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1345 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1346
7237f183 1347 /*
27cdeb70
MX
1348 * DON'T set REF_COWS for log trees
1349 *
7237f183
YZ
1350 * log trees do not get reference counted because they go away
1351 * before a real commit is actually done. They do store pointers
1352 * to file data extents, and those reference counts still get
1353 * updated (along with back refs to the log tree).
1354 */
e02119d5 1355
4d75f8a9
DS
1356 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1357 NULL, 0, 0, 0);
7237f183
YZ
1358 if (IS_ERR(leaf)) {
1359 kfree(root);
1360 return ERR_CAST(leaf);
1361 }
e02119d5 1362
7237f183 1363 root->node = leaf;
e02119d5 1364
e02119d5
CM
1365 btrfs_mark_buffer_dirty(root->node);
1366 btrfs_tree_unlock(root->node);
7237f183
YZ
1367 return root;
1368}
1369
1370int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info)
1372{
1373 struct btrfs_root *log_root;
1374
1375 log_root = alloc_log_tree(trans, fs_info);
1376 if (IS_ERR(log_root))
1377 return PTR_ERR(log_root);
1378 WARN_ON(fs_info->log_root_tree);
1379 fs_info->log_root_tree = log_root;
1380 return 0;
1381}
1382
1383int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1384 struct btrfs_root *root)
1385{
0b246afa 1386 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1387 struct btrfs_root *log_root;
1388 struct btrfs_inode_item *inode_item;
1389
0b246afa 1390 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1391 if (IS_ERR(log_root))
1392 return PTR_ERR(log_root);
1393
1394 log_root->last_trans = trans->transid;
1395 log_root->root_key.offset = root->root_key.objectid;
1396
1397 inode_item = &log_root->root_item.inode;
3cae210f
QW
1398 btrfs_set_stack_inode_generation(inode_item, 1);
1399 btrfs_set_stack_inode_size(inode_item, 3);
1400 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1401 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1402 fs_info->nodesize);
3cae210f 1403 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1404
5d4f98a2 1405 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1406
1407 WARN_ON(root->log_root);
1408 root->log_root = log_root;
1409 root->log_transid = 0;
d1433deb 1410 root->log_transid_committed = -1;
257c62e1 1411 root->last_log_commit = 0;
e02119d5
CM
1412 return 0;
1413}
1414
35a3621b
SB
1415static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1416 struct btrfs_key *key)
e02119d5
CM
1417{
1418 struct btrfs_root *root;
1419 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1420 struct btrfs_path *path;
84234f3a 1421 u64 generation;
cb517eab 1422 int ret;
581c1760 1423 int level;
0f7d52f4 1424
cb517eab
MX
1425 path = btrfs_alloc_path();
1426 if (!path)
0f7d52f4 1427 return ERR_PTR(-ENOMEM);
cb517eab 1428
74e4d827 1429 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1430 if (!root) {
1431 ret = -ENOMEM;
1432 goto alloc_fail;
0f7d52f4
CM
1433 }
1434
da17066c 1435 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1436
cb517eab
MX
1437 ret = btrfs_find_root(tree_root, key, path,
1438 &root->root_item, &root->root_key);
0f7d52f4 1439 if (ret) {
13a8a7c8
YZ
1440 if (ret > 0)
1441 ret = -ENOENT;
cb517eab 1442 goto find_fail;
0f7d52f4 1443 }
13a8a7c8 1444
84234f3a 1445 generation = btrfs_root_generation(&root->root_item);
581c1760 1446 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1447 root->node = read_tree_block(fs_info,
1448 btrfs_root_bytenr(&root->root_item),
581c1760 1449 generation, level, NULL);
64c043de
LB
1450 if (IS_ERR(root->node)) {
1451 ret = PTR_ERR(root->node);
cb517eab
MX
1452 goto find_fail;
1453 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1454 ret = -EIO;
64c043de
LB
1455 free_extent_buffer(root->node);
1456 goto find_fail;
416bc658 1457 }
5d4f98a2 1458 root->commit_root = btrfs_root_node(root);
13a8a7c8 1459out:
cb517eab
MX
1460 btrfs_free_path(path);
1461 return root;
1462
cb517eab
MX
1463find_fail:
1464 kfree(root);
1465alloc_fail:
1466 root = ERR_PTR(ret);
1467 goto out;
1468}
1469
1470struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1471 struct btrfs_key *location)
1472{
1473 struct btrfs_root *root;
1474
1475 root = btrfs_read_tree_root(tree_root, location);
1476 if (IS_ERR(root))
1477 return root;
1478
1479 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1480 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1481 btrfs_check_and_init_root_item(&root->root_item);
1482 }
13a8a7c8 1483
5eda7b5e
CM
1484 return root;
1485}
1486
cb517eab
MX
1487int btrfs_init_fs_root(struct btrfs_root *root)
1488{
1489 int ret;
8257b2dc 1490 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1491
1492 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1493 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1494 GFP_NOFS);
1495 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1496 ret = -ENOMEM;
1497 goto fail;
1498 }
1499
8257b2dc
MX
1500 writers = btrfs_alloc_subvolume_writers();
1501 if (IS_ERR(writers)) {
1502 ret = PTR_ERR(writers);
1503 goto fail;
1504 }
1505 root->subv_writers = writers;
1506
cb517eab 1507 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1508 spin_lock_init(&root->ino_cache_lock);
1509 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1510
1511 ret = get_anon_bdev(&root->anon_dev);
1512 if (ret)
876d2cf1 1513 goto fail;
f32e48e9
CR
1514
1515 mutex_lock(&root->objectid_mutex);
1516 ret = btrfs_find_highest_objectid(root,
1517 &root->highest_objectid);
1518 if (ret) {
1519 mutex_unlock(&root->objectid_mutex);
876d2cf1 1520 goto fail;
f32e48e9
CR
1521 }
1522
1523 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1524
1525 mutex_unlock(&root->objectid_mutex);
1526
cb517eab
MX
1527 return 0;
1528fail:
84db5ccf 1529 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1530 return ret;
1531}
1532
35bbb97f
JM
1533struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1534 u64 root_id)
cb517eab
MX
1535{
1536 struct btrfs_root *root;
1537
1538 spin_lock(&fs_info->fs_roots_radix_lock);
1539 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1540 (unsigned long)root_id);
1541 spin_unlock(&fs_info->fs_roots_radix_lock);
1542 return root;
1543}
1544
1545int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1546 struct btrfs_root *root)
1547{
1548 int ret;
1549
e1860a77 1550 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1551 if (ret)
1552 return ret;
1553
1554 spin_lock(&fs_info->fs_roots_radix_lock);
1555 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1556 (unsigned long)root->root_key.objectid,
1557 root);
1558 if (ret == 0)
27cdeb70 1559 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1560 spin_unlock(&fs_info->fs_roots_radix_lock);
1561 radix_tree_preload_end();
1562
1563 return ret;
1564}
1565
c00869f1
MX
1566struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1567 struct btrfs_key *location,
1568 bool check_ref)
5eda7b5e
CM
1569{
1570 struct btrfs_root *root;
381cf658 1571 struct btrfs_path *path;
1d4c08e0 1572 struct btrfs_key key;
5eda7b5e
CM
1573 int ret;
1574
edbd8d4e
CM
1575 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1576 return fs_info->tree_root;
1577 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1578 return fs_info->extent_root;
8f18cf13
CM
1579 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1580 return fs_info->chunk_root;
1581 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1582 return fs_info->dev_root;
0403e47e
YZ
1583 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1584 return fs_info->csum_root;
bcef60f2
AJ
1585 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1586 return fs_info->quota_root ? fs_info->quota_root :
1587 ERR_PTR(-ENOENT);
f7a81ea4
SB
1588 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1589 return fs_info->uuid_root ? fs_info->uuid_root :
1590 ERR_PTR(-ENOENT);
70f6d82e
OS
1591 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1592 return fs_info->free_space_root ? fs_info->free_space_root :
1593 ERR_PTR(-ENOENT);
4df27c4d 1594again:
cb517eab 1595 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1596 if (root) {
c00869f1 1597 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1598 return ERR_PTR(-ENOENT);
5eda7b5e 1599 return root;
48475471 1600 }
5eda7b5e 1601
cb517eab 1602 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1603 if (IS_ERR(root))
1604 return root;
3394e160 1605
c00869f1 1606 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1607 ret = -ENOENT;
581bb050 1608 goto fail;
35a30d7c 1609 }
581bb050 1610
cb517eab 1611 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1612 if (ret)
1613 goto fail;
3394e160 1614
381cf658
DS
1615 path = btrfs_alloc_path();
1616 if (!path) {
1617 ret = -ENOMEM;
1618 goto fail;
1619 }
1d4c08e0
DS
1620 key.objectid = BTRFS_ORPHAN_OBJECTID;
1621 key.type = BTRFS_ORPHAN_ITEM_KEY;
1622 key.offset = location->objectid;
1623
1624 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1625 btrfs_free_path(path);
d68fc57b
YZ
1626 if (ret < 0)
1627 goto fail;
1628 if (ret == 0)
27cdeb70 1629 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1630
cb517eab 1631 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1632 if (ret) {
4df27c4d 1633 if (ret == -EEXIST) {
84db5ccf 1634 btrfs_free_fs_root(root);
4df27c4d
YZ
1635 goto again;
1636 }
1637 goto fail;
0f7d52f4 1638 }
edbd8d4e 1639 return root;
4df27c4d 1640fail:
84db5ccf 1641 btrfs_free_fs_root(root);
4df27c4d 1642 return ERR_PTR(ret);
edbd8d4e
CM
1643}
1644
04160088
CM
1645static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1646{
1647 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1648 int ret = 0;
04160088
CM
1649 struct btrfs_device *device;
1650 struct backing_dev_info *bdi;
b7967db7 1651
1f78160c
XG
1652 rcu_read_lock();
1653 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1654 if (!device->bdev)
1655 continue;
efa7c9f9 1656 bdi = device->bdev->bd_bdi;
ff9ea323 1657 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1658 ret = 1;
1659 break;
1660 }
1661 }
1f78160c 1662 rcu_read_unlock();
04160088
CM
1663 return ret;
1664}
1665
8b712842
CM
1666/*
1667 * called by the kthread helper functions to finally call the bio end_io
1668 * functions. This is where read checksum verification actually happens
1669 */
1670static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1671{
ce9adaa5 1672 struct bio *bio;
97eb6b69 1673 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1674
97eb6b69 1675 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1676 bio = end_io_wq->bio;
ce9adaa5 1677
4e4cbee9 1678 bio->bi_status = end_io_wq->status;
8b712842
CM
1679 bio->bi_private = end_io_wq->private;
1680 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1681 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1682 bio_endio(bio);
44b8bd7e
CM
1683}
1684
a74a4b97
CM
1685static int cleaner_kthread(void *arg)
1686{
1687 struct btrfs_root *root = arg;
0b246afa 1688 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1689 int again;
a74a4b97 1690
d6fd0ae2 1691 while (1) {
d0278245 1692 again = 0;
a74a4b97 1693
fd340d0f
JB
1694 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1695
d0278245 1696 /* Make the cleaner go to sleep early. */
2ff7e61e 1697 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1698 goto sleep;
1699
90c711ab
ZB
1700 /*
1701 * Do not do anything if we might cause open_ctree() to block
1702 * before we have finished mounting the filesystem.
1703 */
0b246afa 1704 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1705 goto sleep;
1706
0b246afa 1707 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1708 goto sleep;
1709
dc7f370c
MX
1710 /*
1711 * Avoid the problem that we change the status of the fs
1712 * during the above check and trylock.
1713 */
2ff7e61e 1714 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1715 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1716 goto sleep;
76dda93c 1717 }
a74a4b97 1718
2ff7e61e 1719 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1720
d0278245 1721 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1722 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1723
1724 /*
05323cd1
MX
1725 * The defragger has dealt with the R/O remount and umount,
1726 * needn't do anything special here.
d0278245 1727 */
0b246afa 1728 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1729
1730 /*
1731 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1732 * with relocation (btrfs_relocate_chunk) and relocation
1733 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1734 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1735 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1736 * unused block groups.
1737 */
0b246afa 1738 btrfs_delete_unused_bgs(fs_info);
d0278245 1739sleep:
fd340d0f 1740 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1741 if (kthread_should_park())
1742 kthread_parkme();
1743 if (kthread_should_stop())
1744 return 0;
838fe188 1745 if (!again) {
a74a4b97 1746 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1747 schedule();
a74a4b97
CM
1748 __set_current_state(TASK_RUNNING);
1749 }
da288d28 1750 }
a74a4b97
CM
1751}
1752
1753static int transaction_kthread(void *arg)
1754{
1755 struct btrfs_root *root = arg;
0b246afa 1756 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1757 struct btrfs_trans_handle *trans;
1758 struct btrfs_transaction *cur;
8929ecfa 1759 u64 transid;
a944442c 1760 time64_t now;
a74a4b97 1761 unsigned long delay;
914b2007 1762 bool cannot_commit;
a74a4b97
CM
1763
1764 do {
914b2007 1765 cannot_commit = false;
0b246afa
JM
1766 delay = HZ * fs_info->commit_interval;
1767 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1768
0b246afa
JM
1769 spin_lock(&fs_info->trans_lock);
1770 cur = fs_info->running_transaction;
a74a4b97 1771 if (!cur) {
0b246afa 1772 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1773 goto sleep;
1774 }
31153d81 1775
afd48513 1776 now = ktime_get_seconds();
4a9d8bde 1777 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1778 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1779 (now < cur->start_time ||
0b246afa
JM
1780 now - cur->start_time < fs_info->commit_interval)) {
1781 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1782 delay = HZ * 5;
1783 goto sleep;
1784 }
8929ecfa 1785 transid = cur->transid;
0b246afa 1786 spin_unlock(&fs_info->trans_lock);
56bec294 1787
79787eaa 1788 /* If the file system is aborted, this will always fail. */
354aa0fb 1789 trans = btrfs_attach_transaction(root);
914b2007 1790 if (IS_ERR(trans)) {
354aa0fb
MX
1791 if (PTR_ERR(trans) != -ENOENT)
1792 cannot_commit = true;
79787eaa 1793 goto sleep;
914b2007 1794 }
8929ecfa 1795 if (transid == trans->transid) {
3a45bb20 1796 btrfs_commit_transaction(trans);
8929ecfa 1797 } else {
3a45bb20 1798 btrfs_end_transaction(trans);
8929ecfa 1799 }
a74a4b97 1800sleep:
0b246afa
JM
1801 wake_up_process(fs_info->cleaner_kthread);
1802 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1803
4e121c06 1804 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1805 &fs_info->fs_state)))
2ff7e61e 1806 btrfs_cleanup_transaction(fs_info);
ce63f891 1807 if (!kthread_should_stop() &&
0b246afa 1808 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1809 cannot_commit))
bc5511d0 1810 schedule_timeout_interruptible(delay);
a74a4b97
CM
1811 } while (!kthread_should_stop());
1812 return 0;
1813}
1814
af31f5e5
CM
1815/*
1816 * this will find the highest generation in the array of
1817 * root backups. The index of the highest array is returned,
1818 * or -1 if we can't find anything.
1819 *
1820 * We check to make sure the array is valid by comparing the
1821 * generation of the latest root in the array with the generation
1822 * in the super block. If they don't match we pitch it.
1823 */
1824static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1825{
1826 u64 cur;
1827 int newest_index = -1;
1828 struct btrfs_root_backup *root_backup;
1829 int i;
1830
1831 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1832 root_backup = info->super_copy->super_roots + i;
1833 cur = btrfs_backup_tree_root_gen(root_backup);
1834 if (cur == newest_gen)
1835 newest_index = i;
1836 }
1837
1838 /* check to see if we actually wrapped around */
1839 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1840 root_backup = info->super_copy->super_roots;
1841 cur = btrfs_backup_tree_root_gen(root_backup);
1842 if (cur == newest_gen)
1843 newest_index = 0;
1844 }
1845 return newest_index;
1846}
1847
1848
1849/*
1850 * find the oldest backup so we know where to store new entries
1851 * in the backup array. This will set the backup_root_index
1852 * field in the fs_info struct
1853 */
1854static void find_oldest_super_backup(struct btrfs_fs_info *info,
1855 u64 newest_gen)
1856{
1857 int newest_index = -1;
1858
1859 newest_index = find_newest_super_backup(info, newest_gen);
1860 /* if there was garbage in there, just move along */
1861 if (newest_index == -1) {
1862 info->backup_root_index = 0;
1863 } else {
1864 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1865 }
1866}
1867
1868/*
1869 * copy all the root pointers into the super backup array.
1870 * this will bump the backup pointer by one when it is
1871 * done
1872 */
1873static void backup_super_roots(struct btrfs_fs_info *info)
1874{
1875 int next_backup;
1876 struct btrfs_root_backup *root_backup;
1877 int last_backup;
1878
1879 next_backup = info->backup_root_index;
1880 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1881 BTRFS_NUM_BACKUP_ROOTS;
1882
1883 /*
1884 * just overwrite the last backup if we're at the same generation
1885 * this happens only at umount
1886 */
1887 root_backup = info->super_for_commit->super_roots + last_backup;
1888 if (btrfs_backup_tree_root_gen(root_backup) ==
1889 btrfs_header_generation(info->tree_root->node))
1890 next_backup = last_backup;
1891
1892 root_backup = info->super_for_commit->super_roots + next_backup;
1893
1894 /*
1895 * make sure all of our padding and empty slots get zero filled
1896 * regardless of which ones we use today
1897 */
1898 memset(root_backup, 0, sizeof(*root_backup));
1899
1900 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1901
1902 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1903 btrfs_set_backup_tree_root_gen(root_backup,
1904 btrfs_header_generation(info->tree_root->node));
1905
1906 btrfs_set_backup_tree_root_level(root_backup,
1907 btrfs_header_level(info->tree_root->node));
1908
1909 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1910 btrfs_set_backup_chunk_root_gen(root_backup,
1911 btrfs_header_generation(info->chunk_root->node));
1912 btrfs_set_backup_chunk_root_level(root_backup,
1913 btrfs_header_level(info->chunk_root->node));
1914
1915 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1916 btrfs_set_backup_extent_root_gen(root_backup,
1917 btrfs_header_generation(info->extent_root->node));
1918 btrfs_set_backup_extent_root_level(root_backup,
1919 btrfs_header_level(info->extent_root->node));
1920
7c7e82a7
CM
1921 /*
1922 * we might commit during log recovery, which happens before we set
1923 * the fs_root. Make sure it is valid before we fill it in.
1924 */
1925 if (info->fs_root && info->fs_root->node) {
1926 btrfs_set_backup_fs_root(root_backup,
1927 info->fs_root->node->start);
1928 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1929 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1930 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1931 btrfs_header_level(info->fs_root->node));
7c7e82a7 1932 }
af31f5e5
CM
1933
1934 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1935 btrfs_set_backup_dev_root_gen(root_backup,
1936 btrfs_header_generation(info->dev_root->node));
1937 btrfs_set_backup_dev_root_level(root_backup,
1938 btrfs_header_level(info->dev_root->node));
1939
1940 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1941 btrfs_set_backup_csum_root_gen(root_backup,
1942 btrfs_header_generation(info->csum_root->node));
1943 btrfs_set_backup_csum_root_level(root_backup,
1944 btrfs_header_level(info->csum_root->node));
1945
1946 btrfs_set_backup_total_bytes(root_backup,
1947 btrfs_super_total_bytes(info->super_copy));
1948 btrfs_set_backup_bytes_used(root_backup,
1949 btrfs_super_bytes_used(info->super_copy));
1950 btrfs_set_backup_num_devices(root_backup,
1951 btrfs_super_num_devices(info->super_copy));
1952
1953 /*
1954 * if we don't copy this out to the super_copy, it won't get remembered
1955 * for the next commit
1956 */
1957 memcpy(&info->super_copy->super_roots,
1958 &info->super_for_commit->super_roots,
1959 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1960}
1961
1962/*
1963 * this copies info out of the root backup array and back into
1964 * the in-memory super block. It is meant to help iterate through
1965 * the array, so you send it the number of backups you've already
1966 * tried and the last backup index you used.
1967 *
1968 * this returns -1 when it has tried all the backups
1969 */
1970static noinline int next_root_backup(struct btrfs_fs_info *info,
1971 struct btrfs_super_block *super,
1972 int *num_backups_tried, int *backup_index)
1973{
1974 struct btrfs_root_backup *root_backup;
1975 int newest = *backup_index;
1976
1977 if (*num_backups_tried == 0) {
1978 u64 gen = btrfs_super_generation(super);
1979
1980 newest = find_newest_super_backup(info, gen);
1981 if (newest == -1)
1982 return -1;
1983
1984 *backup_index = newest;
1985 *num_backups_tried = 1;
1986 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1987 /* we've tried all the backups, all done */
1988 return -1;
1989 } else {
1990 /* jump to the next oldest backup */
1991 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1992 BTRFS_NUM_BACKUP_ROOTS;
1993 *backup_index = newest;
1994 *num_backups_tried += 1;
1995 }
1996 root_backup = super->super_roots + newest;
1997
1998 btrfs_set_super_generation(super,
1999 btrfs_backup_tree_root_gen(root_backup));
2000 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2001 btrfs_set_super_root_level(super,
2002 btrfs_backup_tree_root_level(root_backup));
2003 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2004
2005 /*
2006 * fixme: the total bytes and num_devices need to match or we should
2007 * need a fsck
2008 */
2009 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2010 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2011 return 0;
2012}
2013
7abadb64
LB
2014/* helper to cleanup workers */
2015static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2016{
dc6e3209 2017 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2018 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2019 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2020 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2021 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2022 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2023 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2024 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2025 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2026 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2027 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2028 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2029 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2030 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2031 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2032 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2033 /*
2034 * Now that all other work queues are destroyed, we can safely destroy
2035 * the queues used for metadata I/O, since tasks from those other work
2036 * queues can do metadata I/O operations.
2037 */
2038 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2039 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2040}
2041
2e9f5954
R
2042static void free_root_extent_buffers(struct btrfs_root *root)
2043{
2044 if (root) {
2045 free_extent_buffer(root->node);
2046 free_extent_buffer(root->commit_root);
2047 root->node = NULL;
2048 root->commit_root = NULL;
2049 }
2050}
2051
af31f5e5
CM
2052/* helper to cleanup tree roots */
2053static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2054{
2e9f5954 2055 free_root_extent_buffers(info->tree_root);
655b09fe 2056
2e9f5954
R
2057 free_root_extent_buffers(info->dev_root);
2058 free_root_extent_buffers(info->extent_root);
2059 free_root_extent_buffers(info->csum_root);
2060 free_root_extent_buffers(info->quota_root);
2061 free_root_extent_buffers(info->uuid_root);
2062 if (chunk_root)
2063 free_root_extent_buffers(info->chunk_root);
70f6d82e 2064 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2065}
2066
faa2dbf0 2067void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2068{
2069 int ret;
2070 struct btrfs_root *gang[8];
2071 int i;
2072
2073 while (!list_empty(&fs_info->dead_roots)) {
2074 gang[0] = list_entry(fs_info->dead_roots.next,
2075 struct btrfs_root, root_list);
2076 list_del(&gang[0]->root_list);
2077
27cdeb70 2078 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2079 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2080 } else {
2081 free_extent_buffer(gang[0]->node);
2082 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2083 btrfs_put_fs_root(gang[0]);
171f6537
JB
2084 }
2085 }
2086
2087 while (1) {
2088 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2089 (void **)gang, 0,
2090 ARRAY_SIZE(gang));
2091 if (!ret)
2092 break;
2093 for (i = 0; i < ret; i++)
cb517eab 2094 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2095 }
1a4319cc
LB
2096
2097 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2098 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2099 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2100 }
171f6537 2101}
af31f5e5 2102
638aa7ed
ES
2103static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2104{
2105 mutex_init(&fs_info->scrub_lock);
2106 atomic_set(&fs_info->scrubs_running, 0);
2107 atomic_set(&fs_info->scrub_pause_req, 0);
2108 atomic_set(&fs_info->scrubs_paused, 0);
2109 atomic_set(&fs_info->scrub_cancel_req, 0);
2110 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2111 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2112}
2113
779a65a4
ES
2114static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2115{
2116 spin_lock_init(&fs_info->balance_lock);
2117 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2118 atomic_set(&fs_info->balance_pause_req, 0);
2119 atomic_set(&fs_info->balance_cancel_req, 0);
2120 fs_info->balance_ctl = NULL;
2121 init_waitqueue_head(&fs_info->balance_wait_q);
2122}
2123
6bccf3ab 2124static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2125{
2ff7e61e
JM
2126 struct inode *inode = fs_info->btree_inode;
2127
2128 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2129 set_nlink(inode, 1);
f37938e0
ES
2130 /*
2131 * we set the i_size on the btree inode to the max possible int.
2132 * the real end of the address space is determined by all of
2133 * the devices in the system
2134 */
2ff7e61e
JM
2135 inode->i_size = OFFSET_MAX;
2136 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2137
2ff7e61e 2138 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2139 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2140 IO_TREE_INODE_IO, inode);
7b439738 2141 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2142 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2143
2ff7e61e 2144 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2145
2ff7e61e
JM
2146 BTRFS_I(inode)->root = fs_info->tree_root;
2147 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2148 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2149 btrfs_insert_inode_hash(inode);
f37938e0
ES
2150}
2151
ad618368
ES
2152static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2153{
ad618368 2154 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2155 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2156 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2157}
2158
f9e92e40
ES
2159static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2160{
2161 spin_lock_init(&fs_info->qgroup_lock);
2162 mutex_init(&fs_info->qgroup_ioctl_lock);
2163 fs_info->qgroup_tree = RB_ROOT;
2164 fs_info->qgroup_op_tree = RB_ROOT;
2165 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2166 fs_info->qgroup_seq = 1;
f9e92e40 2167 fs_info->qgroup_ulist = NULL;
d2c609b8 2168 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2169 mutex_init(&fs_info->qgroup_rescan_lock);
2170}
2171
2a458198
ES
2172static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2173 struct btrfs_fs_devices *fs_devices)
2174{
f7b885be 2175 u32 max_active = fs_info->thread_pool_size;
6f011058 2176 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2177
2178 fs_info->workers =
cb001095
JM
2179 btrfs_alloc_workqueue(fs_info, "worker",
2180 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2181
2182 fs_info->delalloc_workers =
cb001095
JM
2183 btrfs_alloc_workqueue(fs_info, "delalloc",
2184 flags, max_active, 2);
2a458198
ES
2185
2186 fs_info->flush_workers =
cb001095
JM
2187 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2188 flags, max_active, 0);
2a458198
ES
2189
2190 fs_info->caching_workers =
cb001095 2191 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2192
2193 /*
2194 * a higher idle thresh on the submit workers makes it much more
2195 * likely that bios will be send down in a sane order to the
2196 * devices
2197 */
2198 fs_info->submit_workers =
cb001095 2199 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2200 min_t(u64, fs_devices->num_devices,
2201 max_active), 64);
2202
2203 fs_info->fixup_workers =
cb001095 2204 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2205
2206 /*
2207 * endios are largely parallel and should have a very
2208 * low idle thresh
2209 */
2210 fs_info->endio_workers =
cb001095 2211 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2212 fs_info->endio_meta_workers =
cb001095
JM
2213 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2214 max_active, 4);
2a458198 2215 fs_info->endio_meta_write_workers =
cb001095
JM
2216 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2217 max_active, 2);
2a458198 2218 fs_info->endio_raid56_workers =
cb001095
JM
2219 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2220 max_active, 4);
2a458198 2221 fs_info->endio_repair_workers =
cb001095 2222 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2223 fs_info->rmw_workers =
cb001095 2224 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2225 fs_info->endio_write_workers =
cb001095
JM
2226 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2227 max_active, 2);
2a458198 2228 fs_info->endio_freespace_worker =
cb001095
JM
2229 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2230 max_active, 0);
2a458198 2231 fs_info->delayed_workers =
cb001095
JM
2232 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2233 max_active, 0);
2a458198 2234 fs_info->readahead_workers =
cb001095
JM
2235 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2236 max_active, 2);
2a458198 2237 fs_info->qgroup_rescan_workers =
cb001095 2238 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2239 fs_info->extent_workers =
cb001095 2240 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2241 min_t(u64, fs_devices->num_devices,
2242 max_active), 8);
2243
2244 if (!(fs_info->workers && fs_info->delalloc_workers &&
2245 fs_info->submit_workers && fs_info->flush_workers &&
2246 fs_info->endio_workers && fs_info->endio_meta_workers &&
2247 fs_info->endio_meta_write_workers &&
2248 fs_info->endio_repair_workers &&
2249 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2250 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2251 fs_info->caching_workers && fs_info->readahead_workers &&
2252 fs_info->fixup_workers && fs_info->delayed_workers &&
2253 fs_info->extent_workers &&
2254 fs_info->qgroup_rescan_workers)) {
2255 return -ENOMEM;
2256 }
2257
2258 return 0;
2259}
2260
63443bf5
ES
2261static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2262 struct btrfs_fs_devices *fs_devices)
2263{
2264 int ret;
63443bf5
ES
2265 struct btrfs_root *log_tree_root;
2266 struct btrfs_super_block *disk_super = fs_info->super_copy;
2267 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2268 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2269
2270 if (fs_devices->rw_devices == 0) {
f14d104d 2271 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2272 return -EIO;
2273 }
2274
74e4d827 2275 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2276 if (!log_tree_root)
2277 return -ENOMEM;
2278
da17066c 2279 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2280
2ff7e61e 2281 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2282 fs_info->generation + 1,
2283 level, NULL);
64c043de 2284 if (IS_ERR(log_tree_root->node)) {
f14d104d 2285 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2286 ret = PTR_ERR(log_tree_root->node);
64c043de 2287 kfree(log_tree_root);
0eeff236 2288 return ret;
64c043de 2289 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2290 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2291 free_extent_buffer(log_tree_root->node);
2292 kfree(log_tree_root);
2293 return -EIO;
2294 }
2295 /* returns with log_tree_root freed on success */
2296 ret = btrfs_recover_log_trees(log_tree_root);
2297 if (ret) {
0b246afa
JM
2298 btrfs_handle_fs_error(fs_info, ret,
2299 "Failed to recover log tree");
63443bf5
ES
2300 free_extent_buffer(log_tree_root->node);
2301 kfree(log_tree_root);
2302 return ret;
2303 }
2304
bc98a42c 2305 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2306 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2307 if (ret)
2308 return ret;
2309 }
2310
2311 return 0;
2312}
2313
6bccf3ab 2314static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2315{
6bccf3ab 2316 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2317 struct btrfs_root *root;
4bbcaa64
ES
2318 struct btrfs_key location;
2319 int ret;
2320
6bccf3ab
JM
2321 BUG_ON(!fs_info->tree_root);
2322
4bbcaa64
ES
2323 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2324 location.type = BTRFS_ROOT_ITEM_KEY;
2325 location.offset = 0;
2326
a4f3d2c4 2327 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2328 if (IS_ERR(root)) {
2329 ret = PTR_ERR(root);
2330 goto out;
2331 }
a4f3d2c4
DS
2332 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2333 fs_info->extent_root = root;
4bbcaa64
ES
2334
2335 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2336 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2337 if (IS_ERR(root)) {
2338 ret = PTR_ERR(root);
2339 goto out;
2340 }
a4f3d2c4
DS
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->dev_root = root;
4bbcaa64
ES
2343 btrfs_init_devices_late(fs_info);
2344
2345 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2346 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2347 if (IS_ERR(root)) {
2348 ret = PTR_ERR(root);
2349 goto out;
2350 }
a4f3d2c4
DS
2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 fs_info->csum_root = root;
4bbcaa64
ES
2353
2354 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2355 root = btrfs_read_tree_root(tree_root, &location);
2356 if (!IS_ERR(root)) {
2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2358 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2359 fs_info->quota_root = root;
4bbcaa64
ES
2360 }
2361
2362 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2363 root = btrfs_read_tree_root(tree_root, &location);
2364 if (IS_ERR(root)) {
2365 ret = PTR_ERR(root);
4bbcaa64 2366 if (ret != -ENOENT)
f50f4353 2367 goto out;
4bbcaa64 2368 } else {
a4f3d2c4
DS
2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 fs_info->uuid_root = root;
4bbcaa64
ES
2371 }
2372
70f6d82e
OS
2373 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2374 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2375 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2376 if (IS_ERR(root)) {
2377 ret = PTR_ERR(root);
2378 goto out;
2379 }
70f6d82e
OS
2380 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 fs_info->free_space_root = root;
2382 }
2383
4bbcaa64 2384 return 0;
f50f4353
LB
2385out:
2386 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2387 location.objectid, ret);
2388 return ret;
4bbcaa64
ES
2389}
2390
069ec957
QW
2391/*
2392 * Real super block validation
2393 * NOTE: super csum type and incompat features will not be checked here.
2394 *
2395 * @sb: super block to check
2396 * @mirror_num: the super block number to check its bytenr:
2397 * 0 the primary (1st) sb
2398 * 1, 2 2nd and 3rd backup copy
2399 * -1 skip bytenr check
2400 */
2401static int validate_super(struct btrfs_fs_info *fs_info,
2402 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2403{
21a852b0
QW
2404 u64 nodesize = btrfs_super_nodesize(sb);
2405 u64 sectorsize = btrfs_super_sectorsize(sb);
2406 int ret = 0;
2407
2408 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2409 btrfs_err(fs_info, "no valid FS found");
2410 ret = -EINVAL;
2411 }
2412 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2413 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2414 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2415 ret = -EINVAL;
2416 }
2417 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2419 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2420 ret = -EINVAL;
2421 }
2422 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2424 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2425 ret = -EINVAL;
2426 }
2427 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2428 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2429 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2430 ret = -EINVAL;
2431 }
2432
2433 /*
2434 * Check sectorsize and nodesize first, other check will need it.
2435 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2436 */
2437 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2438 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2439 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2440 ret = -EINVAL;
2441 }
2442 /* Only PAGE SIZE is supported yet */
2443 if (sectorsize != PAGE_SIZE) {
2444 btrfs_err(fs_info,
2445 "sectorsize %llu not supported yet, only support %lu",
2446 sectorsize, PAGE_SIZE);
2447 ret = -EINVAL;
2448 }
2449 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2450 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2452 ret = -EINVAL;
2453 }
2454 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2455 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2456 le32_to_cpu(sb->__unused_leafsize), nodesize);
2457 ret = -EINVAL;
2458 }
2459
2460 /* Root alignment check */
2461 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2462 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2463 btrfs_super_root(sb));
2464 ret = -EINVAL;
2465 }
2466 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2467 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2468 btrfs_super_chunk_root(sb));
2469 ret = -EINVAL;
2470 }
2471 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2472 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2473 btrfs_super_log_root(sb));
2474 ret = -EINVAL;
2475 }
2476
de37aa51 2477 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2478 BTRFS_FSID_SIZE) != 0) {
21a852b0 2479 btrfs_err(fs_info,
7239ff4b 2480 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2481 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2482 ret = -EINVAL;
2483 }
2484
2485 /*
2486 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2487 * done later
2488 */
2489 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2490 btrfs_err(fs_info, "bytes_used is too small %llu",
2491 btrfs_super_bytes_used(sb));
2492 ret = -EINVAL;
2493 }
2494 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2495 btrfs_err(fs_info, "invalid stripesize %u",
2496 btrfs_super_stripesize(sb));
2497 ret = -EINVAL;
2498 }
2499 if (btrfs_super_num_devices(sb) > (1UL << 31))
2500 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2501 btrfs_super_num_devices(sb));
2502 if (btrfs_super_num_devices(sb) == 0) {
2503 btrfs_err(fs_info, "number of devices is 0");
2504 ret = -EINVAL;
2505 }
2506
069ec957
QW
2507 if (mirror_num >= 0 &&
2508 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2509 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2510 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2511 ret = -EINVAL;
2512 }
2513
2514 /*
2515 * Obvious sys_chunk_array corruptions, it must hold at least one key
2516 * and one chunk
2517 */
2518 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2519 btrfs_err(fs_info, "system chunk array too big %u > %u",
2520 btrfs_super_sys_array_size(sb),
2521 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2522 ret = -EINVAL;
2523 }
2524 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2525 + sizeof(struct btrfs_chunk)) {
2526 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2527 btrfs_super_sys_array_size(sb),
2528 sizeof(struct btrfs_disk_key)
2529 + sizeof(struct btrfs_chunk));
2530 ret = -EINVAL;
2531 }
2532
2533 /*
2534 * The generation is a global counter, we'll trust it more than the others
2535 * but it's still possible that it's the one that's wrong.
2536 */
2537 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2538 btrfs_warn(fs_info,
2539 "suspicious: generation < chunk_root_generation: %llu < %llu",
2540 btrfs_super_generation(sb),
2541 btrfs_super_chunk_root_generation(sb));
2542 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2543 && btrfs_super_cache_generation(sb) != (u64)-1)
2544 btrfs_warn(fs_info,
2545 "suspicious: generation < cache_generation: %llu < %llu",
2546 btrfs_super_generation(sb),
2547 btrfs_super_cache_generation(sb));
2548
2549 return ret;
2550}
2551
069ec957
QW
2552/*
2553 * Validation of super block at mount time.
2554 * Some checks already done early at mount time, like csum type and incompat
2555 * flags will be skipped.
2556 */
2557static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2558{
2559 return validate_super(fs_info, fs_info->super_copy, 0);
2560}
2561
75cb857d
QW
2562/*
2563 * Validation of super block at write time.
2564 * Some checks like bytenr check will be skipped as their values will be
2565 * overwritten soon.
2566 * Extra checks like csum type and incompat flags will be done here.
2567 */
2568static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2569 struct btrfs_super_block *sb)
2570{
2571 int ret;
2572
2573 ret = validate_super(fs_info, sb, -1);
2574 if (ret < 0)
2575 goto out;
2576 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2577 ret = -EUCLEAN;
2578 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2579 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2580 goto out;
2581 }
2582 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2583 ret = -EUCLEAN;
2584 btrfs_err(fs_info,
2585 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2586 btrfs_super_incompat_flags(sb),
2587 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2588 goto out;
2589 }
2590out:
2591 if (ret < 0)
2592 btrfs_err(fs_info,
2593 "super block corruption detected before writing it to disk");
2594 return ret;
2595}
2596
ad2b2c80
AV
2597int open_ctree(struct super_block *sb,
2598 struct btrfs_fs_devices *fs_devices,
2599 char *options)
2e635a27 2600{
db94535d
CM
2601 u32 sectorsize;
2602 u32 nodesize;
87ee04eb 2603 u32 stripesize;
84234f3a 2604 u64 generation;
f2b636e8 2605 u64 features;
3de4586c 2606 struct btrfs_key location;
a061fc8d 2607 struct buffer_head *bh;
4d34b278 2608 struct btrfs_super_block *disk_super;
815745cf 2609 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2610 struct btrfs_root *tree_root;
4d34b278 2611 struct btrfs_root *chunk_root;
eb60ceac 2612 int ret;
e58ca020 2613 int err = -EINVAL;
af31f5e5
CM
2614 int num_backups_tried = 0;
2615 int backup_index = 0;
6675df31 2616 int clear_free_space_tree = 0;
581c1760 2617 int level;
4543df7e 2618
74e4d827
DS
2619 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2620 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2621 if (!tree_root || !chunk_root) {
39279cc3
CM
2622 err = -ENOMEM;
2623 goto fail;
2624 }
76dda93c
YZ
2625
2626 ret = init_srcu_struct(&fs_info->subvol_srcu);
2627 if (ret) {
2628 err = ret;
2629 goto fail;
2630 }
2631
908c7f19 2632 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2633 if (ret) {
2634 err = ret;
9e11ceee 2635 goto fail_srcu;
e2d84521 2636 }
09cbfeaf 2637 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2638 (1 + ilog2(nr_cpu_ids));
2639
908c7f19 2640 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2641 if (ret) {
2642 err = ret;
2643 goto fail_dirty_metadata_bytes;
2644 }
2645
7f8d236a
DS
2646 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2647 GFP_KERNEL);
c404e0dc
MX
2648 if (ret) {
2649 err = ret;
2650 goto fail_delalloc_bytes;
2651 }
2652
76dda93c 2653 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2654 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2655 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2656 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2657 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2658 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2659 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2660 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2661 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2662 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2663 spin_lock_init(&fs_info->trans_lock);
76dda93c 2664 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2665 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2666 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2667 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2668 spin_lock_init(&fs_info->super_lock);
fcebe456 2669 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2670 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2671 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2672 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2673 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2674 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2675 mutex_init(&fs_info->reloc_mutex);
573bfb72 2676 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2677 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2678
0b86a832 2679 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2680 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2681 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2682 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2683 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2684 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2685 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2686 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2687 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2688 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2689 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2690 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2691 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2692 BTRFS_BLOCK_RSV_DELREFS);
2693
771ed689 2694 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2695 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2696 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2697 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2698 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2699 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2700 fs_info->sb = sb;
95ac567a 2701 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2702 fs_info->metadata_ratio = 0;
4cb5300b 2703 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2704 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2705 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2706 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2707 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2708 /* readahead state */
d0164adc 2709 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2710 spin_lock_init(&fs_info->reada_lock);
fd708b81 2711 btrfs_init_ref_verify(fs_info);
c8b97818 2712
b34b086c
CM
2713 fs_info->thread_pool_size = min_t(unsigned long,
2714 num_online_cpus() + 2, 8);
0afbaf8c 2715
199c2a9c
MX
2716 INIT_LIST_HEAD(&fs_info->ordered_roots);
2717 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2718
2719 fs_info->btree_inode = new_inode(sb);
2720 if (!fs_info->btree_inode) {
2721 err = -ENOMEM;
2722 goto fail_bio_counter;
2723 }
2724 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2725
16cdcec7 2726 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2727 GFP_KERNEL);
16cdcec7
MX
2728 if (!fs_info->delayed_root) {
2729 err = -ENOMEM;
2730 goto fail_iput;
2731 }
2732 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2733
638aa7ed 2734 btrfs_init_scrub(fs_info);
21adbd5c
SB
2735#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2736 fs_info->check_integrity_print_mask = 0;
2737#endif
779a65a4 2738 btrfs_init_balance(fs_info);
21c7e756 2739 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2740
9f6d2510
DS
2741 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2742 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2743
6bccf3ab 2744 btrfs_init_btree_inode(fs_info);
76dda93c 2745
0f9dd46c 2746 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2747 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2748 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2749
43eb5f29
QW
2750 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2751 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2752 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2753 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2754 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2755 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2756
5a3f23d5 2757 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2758 mutex_init(&fs_info->tree_log_mutex);
925baedd 2759 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2760 mutex_init(&fs_info->transaction_kthread_mutex);
2761 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2762 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2763 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2764 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2765 init_rwsem(&fs_info->subvol_sem);
803b2f54 2766 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2767
ad618368 2768 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2769 btrfs_init_qgroup(fs_info);
416ac51d 2770
fa9c0d79
CM
2771 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2772 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2773
e6dcd2dc 2774 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2775 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2776 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2777 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2778 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2779
04216820
FM
2780 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2781
da17066c
JM
2782 /* Usable values until the real ones are cached from the superblock */
2783 fs_info->nodesize = 4096;
2784 fs_info->sectorsize = 4096;
2785 fs_info->stripesize = 4096;
2786
eede2bf3
OS
2787 spin_lock_init(&fs_info->swapfile_pins_lock);
2788 fs_info->swapfile_pins = RB_ROOT;
2789
53b381b3
DW
2790 ret = btrfs_alloc_stripe_hash_table(fs_info);
2791 if (ret) {
83c8266a 2792 err = ret;
53b381b3
DW
2793 goto fail_alloc;
2794 }
2795
da17066c 2796 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2797
3c4bb26b 2798 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2799
2800 /*
2801 * Read super block and check the signature bytes only
2802 */
a512bbf8 2803 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2804 if (IS_ERR(bh)) {
2805 err = PTR_ERR(bh);
16cdcec7 2806 goto fail_alloc;
20b45077 2807 }
39279cc3 2808
1104a885
DS
2809 /*
2810 * We want to check superblock checksum, the type is stored inside.
2811 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2812 */
ab8d0fc4 2813 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2814 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2815 err = -EINVAL;
b2acdddf 2816 brelse(bh);
1104a885
DS
2817 goto fail_alloc;
2818 }
2819
2820 /*
2821 * super_copy is zeroed at allocation time and we never touch the
2822 * following bytes up to INFO_SIZE, the checksum is calculated from
2823 * the whole block of INFO_SIZE
2824 */
6c41761f 2825 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2826 brelse(bh);
5f39d397 2827
fbc6feae
NB
2828 disk_super = fs_info->super_copy;
2829
de37aa51
NB
2830 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2831 BTRFS_FSID_SIZE));
2832
7239ff4b 2833 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2834 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2835 fs_info->super_copy->metadata_uuid,
2836 BTRFS_FSID_SIZE));
7239ff4b 2837 }
0b86a832 2838
fbc6feae
NB
2839 features = btrfs_super_flags(disk_super);
2840 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2841 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2842 btrfs_set_super_flags(disk_super, features);
2843 btrfs_info(fs_info,
2844 "found metadata UUID change in progress flag, clearing");
2845 }
2846
2847 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2848 sizeof(*fs_info->super_for_commit));
de37aa51 2849
069ec957 2850 ret = btrfs_validate_mount_super(fs_info);
1104a885 2851 if (ret) {
05135f59 2852 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2853 err = -EINVAL;
2854 goto fail_alloc;
2855 }
2856
0f7d52f4 2857 if (!btrfs_super_root(disk_super))
16cdcec7 2858 goto fail_alloc;
0f7d52f4 2859
acce952b 2860 /* check FS state, whether FS is broken. */
87533c47
MX
2861 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2862 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2863
af31f5e5
CM
2864 /*
2865 * run through our array of backup supers and setup
2866 * our ring pointer to the oldest one
2867 */
2868 generation = btrfs_super_generation(disk_super);
2869 find_oldest_super_backup(fs_info, generation);
2870
75e7cb7f
LB
2871 /*
2872 * In the long term, we'll store the compression type in the super
2873 * block, and it'll be used for per file compression control.
2874 */
2875 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2876
2ff7e61e 2877 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2878 if (ret) {
2879 err = ret;
16cdcec7 2880 goto fail_alloc;
2b82032c 2881 }
dfe25020 2882
f2b636e8
JB
2883 features = btrfs_super_incompat_flags(disk_super) &
2884 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2885 if (features) {
05135f59
DS
2886 btrfs_err(fs_info,
2887 "cannot mount because of unsupported optional features (%llx)",
2888 features);
f2b636e8 2889 err = -EINVAL;
16cdcec7 2890 goto fail_alloc;
f2b636e8
JB
2891 }
2892
5d4f98a2 2893 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2894 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2895 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2896 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2897 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2898 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2899
3173a18f 2900 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2901 btrfs_info(fs_info, "has skinny extents");
3173a18f 2902
727011e0
CM
2903 /*
2904 * flag our filesystem as having big metadata blocks if
2905 * they are bigger than the page size
2906 */
09cbfeaf 2907 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2908 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2909 btrfs_info(fs_info,
2910 "flagging fs with big metadata feature");
727011e0
CM
2911 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2912 }
2913
bc3f116f 2914 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2915 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2916 stripesize = sectorsize;
707e8a07 2917 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2918 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2919
da17066c
JM
2920 /* Cache block sizes */
2921 fs_info->nodesize = nodesize;
2922 fs_info->sectorsize = sectorsize;
2923 fs_info->stripesize = stripesize;
2924
bc3f116f
CM
2925 /*
2926 * mixed block groups end up with duplicate but slightly offset
2927 * extent buffers for the same range. It leads to corruptions
2928 */
2929 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2930 (sectorsize != nodesize)) {
05135f59
DS
2931 btrfs_err(fs_info,
2932"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2933 nodesize, sectorsize);
bc3f116f
CM
2934 goto fail_alloc;
2935 }
2936
ceda0864
MX
2937 /*
2938 * Needn't use the lock because there is no other task which will
2939 * update the flag.
2940 */
a6fa6fae 2941 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2942
f2b636e8
JB
2943 features = btrfs_super_compat_ro_flags(disk_super) &
2944 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2945 if (!sb_rdonly(sb) && features) {
05135f59
DS
2946 btrfs_err(fs_info,
2947 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2948 features);
f2b636e8 2949 err = -EINVAL;
16cdcec7 2950 goto fail_alloc;
f2b636e8 2951 }
61d92c32 2952
2a458198
ES
2953 ret = btrfs_init_workqueues(fs_info, fs_devices);
2954 if (ret) {
2955 err = ret;
0dc3b84a
JB
2956 goto fail_sb_buffer;
2957 }
4543df7e 2958
9e11ceee
JK
2959 sb->s_bdi->congested_fn = btrfs_congested_fn;
2960 sb->s_bdi->congested_data = fs_info;
2961 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2962 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2963 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2964 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2965
a061fc8d
CM
2966 sb->s_blocksize = sectorsize;
2967 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2968 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2969
925baedd 2970 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2971 ret = btrfs_read_sys_array(fs_info);
925baedd 2972 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2973 if (ret) {
05135f59 2974 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2975 goto fail_sb_buffer;
84eed90f 2976 }
0b86a832 2977
84234f3a 2978 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2979 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2980
da17066c 2981 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2982
2ff7e61e 2983 chunk_root->node = read_tree_block(fs_info,
0b86a832 2984 btrfs_super_chunk_root(disk_super),
581c1760 2985 generation, level, NULL);
64c043de
LB
2986 if (IS_ERR(chunk_root->node) ||
2987 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2988 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2989 if (!IS_ERR(chunk_root->node))
2990 free_extent_buffer(chunk_root->node);
95ab1f64 2991 chunk_root->node = NULL;
af31f5e5 2992 goto fail_tree_roots;
83121942 2993 }
5d4f98a2
YZ
2994 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2995 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2996
e17cade2 2997 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2998 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2999
5b4aacef 3000 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3001 if (ret) {
05135f59 3002 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3003 goto fail_tree_roots;
2b82032c 3004 }
0b86a832 3005
8dabb742 3006 /*
9b99b115
AJ
3007 * Keep the devid that is marked to be the target device for the
3008 * device replace procedure
8dabb742 3009 */
9b99b115 3010 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3011
a6b0d5c8 3012 if (!fs_devices->latest_bdev) {
05135f59 3013 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3014 goto fail_tree_roots;
3015 }
3016
af31f5e5 3017retry_root_backup:
84234f3a 3018 generation = btrfs_super_generation(disk_super);
581c1760 3019 level = btrfs_super_root_level(disk_super);
0b86a832 3020
2ff7e61e 3021 tree_root->node = read_tree_block(fs_info,
db94535d 3022 btrfs_super_root(disk_super),
581c1760 3023 generation, level, NULL);
64c043de
LB
3024 if (IS_ERR(tree_root->node) ||
3025 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3026 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3027 if (!IS_ERR(tree_root->node))
3028 free_extent_buffer(tree_root->node);
95ab1f64 3029 tree_root->node = NULL;
af31f5e5 3030 goto recovery_tree_root;
83121942 3031 }
af31f5e5 3032
5d4f98a2
YZ
3033 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3034 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3035 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3036
f32e48e9
CR
3037 mutex_lock(&tree_root->objectid_mutex);
3038 ret = btrfs_find_highest_objectid(tree_root,
3039 &tree_root->highest_objectid);
3040 if (ret) {
3041 mutex_unlock(&tree_root->objectid_mutex);
3042 goto recovery_tree_root;
3043 }
3044
3045 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3046
3047 mutex_unlock(&tree_root->objectid_mutex);
3048
6bccf3ab 3049 ret = btrfs_read_roots(fs_info);
4bbcaa64 3050 if (ret)
af31f5e5 3051 goto recovery_tree_root;
f7a81ea4 3052
8929ecfa
YZ
3053 fs_info->generation = generation;
3054 fs_info->last_trans_committed = generation;
8929ecfa 3055
cf90d884
QW
3056 ret = btrfs_verify_dev_extents(fs_info);
3057 if (ret) {
3058 btrfs_err(fs_info,
3059 "failed to verify dev extents against chunks: %d",
3060 ret);
3061 goto fail_block_groups;
3062 }
68310a5e
ID
3063 ret = btrfs_recover_balance(fs_info);
3064 if (ret) {
05135f59 3065 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3066 goto fail_block_groups;
3067 }
3068
733f4fbb
SB
3069 ret = btrfs_init_dev_stats(fs_info);
3070 if (ret) {
05135f59 3071 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3072 goto fail_block_groups;
3073 }
3074
8dabb742
SB
3075 ret = btrfs_init_dev_replace(fs_info);
3076 if (ret) {
05135f59 3077 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3078 goto fail_block_groups;
3079 }
3080
9b99b115 3081 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3082
b7c35e81
AJ
3083 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3084 if (ret) {
05135f59
DS
3085 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3086 ret);
b7c35e81
AJ
3087 goto fail_block_groups;
3088 }
3089
3090 ret = btrfs_sysfs_add_device(fs_devices);
3091 if (ret) {
05135f59
DS
3092 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3093 ret);
b7c35e81
AJ
3094 goto fail_fsdev_sysfs;
3095 }
3096
96f3136e 3097 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3098 if (ret) {
05135f59 3099 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3100 goto fail_fsdev_sysfs;
c59021f8 3101 }
3102
c59021f8 3103 ret = btrfs_init_space_info(fs_info);
3104 if (ret) {
05135f59 3105 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3106 goto fail_sysfs;
c59021f8 3107 }
3108
5b4aacef 3109 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3110 if (ret) {
05135f59 3111 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3112 goto fail_sysfs;
1b1d1f66 3113 }
4330e183 3114
6528b99d 3115 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3116 btrfs_warn(fs_info,
52042d8e 3117 "writable mount is not allowed due to too many missing devices");
2365dd3c 3118 goto fail_sysfs;
292fd7fc 3119 }
9078a3e1 3120
a74a4b97
CM
3121 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3122 "btrfs-cleaner");
57506d50 3123 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3124 goto fail_sysfs;
a74a4b97
CM
3125
3126 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3127 tree_root,
3128 "btrfs-transaction");
57506d50 3129 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3130 goto fail_cleaner;
a74a4b97 3131
583b7231 3132 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3133 !fs_info->fs_devices->rotating) {
583b7231 3134 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3135 }
3136
572d9ab7 3137 /*
01327610 3138 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3139 * not have to wait for transaction commit
3140 */
3141 btrfs_apply_pending_changes(fs_info);
3818aea2 3142
21adbd5c 3143#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3144 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3145 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3146 btrfs_test_opt(fs_info,
21adbd5c
SB
3147 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3148 1 : 0,
3149 fs_info->check_integrity_print_mask);
3150 if (ret)
05135f59
DS
3151 btrfs_warn(fs_info,
3152 "failed to initialize integrity check module: %d",
3153 ret);
21adbd5c
SB
3154 }
3155#endif
bcef60f2
AJ
3156 ret = btrfs_read_qgroup_config(fs_info);
3157 if (ret)
3158 goto fail_trans_kthread;
21adbd5c 3159
fd708b81
JB
3160 if (btrfs_build_ref_tree(fs_info))
3161 btrfs_err(fs_info, "couldn't build ref tree");
3162
96da0919
QW
3163 /* do not make disk changes in broken FS or nologreplay is given */
3164 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3165 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3166 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3167 if (ret) {
63443bf5 3168 err = ret;
28c16cbb 3169 goto fail_qgroup;
79787eaa 3170 }
e02119d5 3171 }
1a40e23b 3172
6bccf3ab 3173 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3174 if (ret)
28c16cbb 3175 goto fail_qgroup;
76dda93c 3176
bc98a42c 3177 if (!sb_rdonly(sb)) {
d68fc57b 3178 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3179 if (ret)
28c16cbb 3180 goto fail_qgroup;
90c711ab
ZB
3181
3182 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3183 ret = btrfs_recover_relocation(tree_root);
90c711ab 3184 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3185 if (ret < 0) {
05135f59
DS
3186 btrfs_warn(fs_info, "failed to recover relocation: %d",
3187 ret);
d7ce5843 3188 err = -EINVAL;
bcef60f2 3189 goto fail_qgroup;
d7ce5843 3190 }
7c2ca468 3191 }
1a40e23b 3192
3de4586c
CM
3193 location.objectid = BTRFS_FS_TREE_OBJECTID;
3194 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3195 location.offset = 0;
3de4586c 3196
3de4586c 3197 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3198 if (IS_ERR(fs_info->fs_root)) {
3199 err = PTR_ERR(fs_info->fs_root);
f50f4353 3200 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3201 goto fail_qgroup;
3140c9a3 3202 }
c289811c 3203
bc98a42c 3204 if (sb_rdonly(sb))
2b6ba629 3205 return 0;
59641015 3206
f8d468a1
OS
3207 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3208 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3209 clear_free_space_tree = 1;
3210 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3211 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3212 btrfs_warn(fs_info, "free space tree is invalid");
3213 clear_free_space_tree = 1;
3214 }
3215
3216 if (clear_free_space_tree) {
f8d468a1
OS
3217 btrfs_info(fs_info, "clearing free space tree");
3218 ret = btrfs_clear_free_space_tree(fs_info);
3219 if (ret) {
3220 btrfs_warn(fs_info,
3221 "failed to clear free space tree: %d", ret);
6bccf3ab 3222 close_ctree(fs_info);
f8d468a1
OS
3223 return ret;
3224 }
3225 }
3226
0b246afa 3227 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3228 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3229 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3230 ret = btrfs_create_free_space_tree(fs_info);
3231 if (ret) {
05135f59
DS
3232 btrfs_warn(fs_info,
3233 "failed to create free space tree: %d", ret);
6bccf3ab 3234 close_ctree(fs_info);
511711af
CM
3235 return ret;
3236 }
3237 }
3238
2b6ba629
ID
3239 down_read(&fs_info->cleanup_work_sem);
3240 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3241 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3242 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3243 close_ctree(fs_info);
2b6ba629
ID
3244 return ret;
3245 }
3246 up_read(&fs_info->cleanup_work_sem);
59641015 3247
2b6ba629
ID
3248 ret = btrfs_resume_balance_async(fs_info);
3249 if (ret) {
05135f59 3250 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3251 close_ctree(fs_info);
2b6ba629 3252 return ret;
e3acc2a6
JB
3253 }
3254
8dabb742
SB
3255 ret = btrfs_resume_dev_replace_async(fs_info);
3256 if (ret) {
05135f59 3257 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3258 close_ctree(fs_info);
8dabb742
SB
3259 return ret;
3260 }
3261
b382a324
JS
3262 btrfs_qgroup_rescan_resume(fs_info);
3263
4bbcaa64 3264 if (!fs_info->uuid_root) {
05135f59 3265 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3266 ret = btrfs_create_uuid_tree(fs_info);
3267 if (ret) {
05135f59
DS
3268 btrfs_warn(fs_info,
3269 "failed to create the UUID tree: %d", ret);
6bccf3ab 3270 close_ctree(fs_info);
f7a81ea4
SB
3271 return ret;
3272 }
0b246afa 3273 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3274 fs_info->generation !=
3275 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3276 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3277 ret = btrfs_check_uuid_tree(fs_info);
3278 if (ret) {
05135f59
DS
3279 btrfs_warn(fs_info,
3280 "failed to check the UUID tree: %d", ret);
6bccf3ab 3281 close_ctree(fs_info);
70f80175
SB
3282 return ret;
3283 }
3284 } else {
afcdd129 3285 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3286 }
afcdd129 3287 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3288
8dcddfa0
QW
3289 /*
3290 * backuproot only affect mount behavior, and if open_ctree succeeded,
3291 * no need to keep the flag
3292 */
3293 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3294
ad2b2c80 3295 return 0;
39279cc3 3296
bcef60f2
AJ
3297fail_qgroup:
3298 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3299fail_trans_kthread:
3300 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3301 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3302 btrfs_free_fs_roots(fs_info);
3f157a2f 3303fail_cleaner:
a74a4b97 3304 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3305
3306 /*
3307 * make sure we're done with the btree inode before we stop our
3308 * kthreads
3309 */
3310 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3311
2365dd3c 3312fail_sysfs:
6618a59b 3313 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3314
b7c35e81
AJ
3315fail_fsdev_sysfs:
3316 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3317
1b1d1f66 3318fail_block_groups:
54067ae9 3319 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3320
3321fail_tree_roots:
3322 free_root_pointers(fs_info, 1);
2b8195bb 3323 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3324
39279cc3 3325fail_sb_buffer:
7abadb64 3326 btrfs_stop_all_workers(fs_info);
5cdd7db6 3327 btrfs_free_block_groups(fs_info);
16cdcec7 3328fail_alloc:
4543df7e 3329fail_iput:
586e46e2
ID
3330 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3331
4543df7e 3332 iput(fs_info->btree_inode);
c404e0dc 3333fail_bio_counter:
7f8d236a 3334 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3335fail_delalloc_bytes:
3336 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3337fail_dirty_metadata_bytes:
3338 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3339fail_srcu:
3340 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3341fail:
53b381b3 3342 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3343 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3344 return err;
af31f5e5
CM
3345
3346recovery_tree_root:
0b246afa 3347 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3348 goto fail_tree_roots;
3349
3350 free_root_pointers(fs_info, 0);
3351
3352 /* don't use the log in recovery mode, it won't be valid */
3353 btrfs_set_super_log_root(disk_super, 0);
3354
3355 /* we can't trust the free space cache either */
3356 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3357
3358 ret = next_root_backup(fs_info, fs_info->super_copy,
3359 &num_backups_tried, &backup_index);
3360 if (ret == -1)
3361 goto fail_block_groups;
3362 goto retry_root_backup;
eb60ceac 3363}
663faf9f 3364ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3365
f2984462
CM
3366static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3367{
f2984462
CM
3368 if (uptodate) {
3369 set_buffer_uptodate(bh);
3370 } else {
442a4f63
SB
3371 struct btrfs_device *device = (struct btrfs_device *)
3372 bh->b_private;
3373
fb456252 3374 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3375 "lost page write due to IO error on %s",
606686ee 3376 rcu_str_deref(device->name));
01327610 3377 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3378 * our own ways of dealing with the IO errors
3379 */
f2984462 3380 clear_buffer_uptodate(bh);
442a4f63 3381 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3382 }
3383 unlock_buffer(bh);
3384 put_bh(bh);
3385}
3386
29c36d72
AJ
3387int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3388 struct buffer_head **bh_ret)
3389{
3390 struct buffer_head *bh;
3391 struct btrfs_super_block *super;
3392 u64 bytenr;
3393
3394 bytenr = btrfs_sb_offset(copy_num);
3395 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3396 return -EINVAL;
3397
9f6d2510 3398 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3399 /*
3400 * If we fail to read from the underlying devices, as of now
3401 * the best option we have is to mark it EIO.
3402 */
3403 if (!bh)
3404 return -EIO;
3405
3406 super = (struct btrfs_super_block *)bh->b_data;
3407 if (btrfs_super_bytenr(super) != bytenr ||
3408 btrfs_super_magic(super) != BTRFS_MAGIC) {
3409 brelse(bh);
3410 return -EINVAL;
3411 }
3412
3413 *bh_ret = bh;
3414 return 0;
3415}
3416
3417
a512bbf8
YZ
3418struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3419{
3420 struct buffer_head *bh;
3421 struct buffer_head *latest = NULL;
3422 struct btrfs_super_block *super;
3423 int i;
3424 u64 transid = 0;
92fc03fb 3425 int ret = -EINVAL;
a512bbf8
YZ
3426
3427 /* we would like to check all the supers, but that would make
3428 * a btrfs mount succeed after a mkfs from a different FS.
3429 * So, we need to add a special mount option to scan for
3430 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3431 */
3432 for (i = 0; i < 1; i++) {
29c36d72
AJ
3433 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3434 if (ret)
a512bbf8
YZ
3435 continue;
3436
3437 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3438
3439 if (!latest || btrfs_super_generation(super) > transid) {
3440 brelse(latest);
3441 latest = bh;
3442 transid = btrfs_super_generation(super);
3443 } else {
3444 brelse(bh);
3445 }
3446 }
92fc03fb
AJ
3447
3448 if (!latest)
3449 return ERR_PTR(ret);
3450
a512bbf8
YZ
3451 return latest;
3452}
3453
4eedeb75 3454/*
abbb3b8e
DS
3455 * Write superblock @sb to the @device. Do not wait for completion, all the
3456 * buffer heads we write are pinned.
4eedeb75 3457 *
abbb3b8e
DS
3458 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3459 * the expected device size at commit time. Note that max_mirrors must be
3460 * same for write and wait phases.
4eedeb75 3461 *
abbb3b8e 3462 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3463 */
a512bbf8 3464static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3465 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3466{
3467 struct buffer_head *bh;
3468 int i;
3469 int ret;
3470 int errors = 0;
3471 u32 crc;
3472 u64 bytenr;
1b9e619c 3473 int op_flags;
a512bbf8
YZ
3474
3475 if (max_mirrors == 0)
3476 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3477
a512bbf8
YZ
3478 for (i = 0; i < max_mirrors; i++) {
3479 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3480 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3481 device->commit_total_bytes)
a512bbf8
YZ
3482 break;
3483
abbb3b8e 3484 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3485
abbb3b8e
DS
3486 crc = ~(u32)0;
3487 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3488 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3489 btrfs_csum_final(crc, sb->csum);
4eedeb75 3490
abbb3b8e 3491 /* One reference for us, and we leave it for the caller */
9f6d2510 3492 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3493 BTRFS_SUPER_INFO_SIZE);
3494 if (!bh) {
3495 btrfs_err(device->fs_info,
3496 "couldn't get super buffer head for bytenr %llu",
3497 bytenr);
3498 errors++;
4eedeb75 3499 continue;
abbb3b8e 3500 }
634554dc 3501
abbb3b8e 3502 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3503
abbb3b8e
DS
3504 /* one reference for submit_bh */
3505 get_bh(bh);
4eedeb75 3506
abbb3b8e
DS
3507 set_buffer_uptodate(bh);
3508 lock_buffer(bh);
3509 bh->b_end_io = btrfs_end_buffer_write_sync;
3510 bh->b_private = device;
a512bbf8 3511
387125fc
CM
3512 /*
3513 * we fua the first super. The others we allow
3514 * to go down lazy.
3515 */
1b9e619c
OS
3516 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3517 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3518 op_flags |= REQ_FUA;
3519 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3520 if (ret)
a512bbf8 3521 errors++;
a512bbf8
YZ
3522 }
3523 return errors < i ? 0 : -1;
3524}
3525
abbb3b8e
DS
3526/*
3527 * Wait for write completion of superblocks done by write_dev_supers,
3528 * @max_mirrors same for write and wait phases.
3529 *
3530 * Return number of errors when buffer head is not found or not marked up to
3531 * date.
3532 */
3533static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3534{
3535 struct buffer_head *bh;
3536 int i;
3537 int errors = 0;
b6a535fa 3538 bool primary_failed = false;
abbb3b8e
DS
3539 u64 bytenr;
3540
3541 if (max_mirrors == 0)
3542 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3543
3544 for (i = 0; i < max_mirrors; i++) {
3545 bytenr = btrfs_sb_offset(i);
3546 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3547 device->commit_total_bytes)
3548 break;
3549
9f6d2510
DS
3550 bh = __find_get_block(device->bdev,
3551 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3552 BTRFS_SUPER_INFO_SIZE);
3553 if (!bh) {
3554 errors++;
b6a535fa
HM
3555 if (i == 0)
3556 primary_failed = true;
abbb3b8e
DS
3557 continue;
3558 }
3559 wait_on_buffer(bh);
b6a535fa 3560 if (!buffer_uptodate(bh)) {
abbb3b8e 3561 errors++;
b6a535fa
HM
3562 if (i == 0)
3563 primary_failed = true;
3564 }
abbb3b8e
DS
3565
3566 /* drop our reference */
3567 brelse(bh);
3568
3569 /* drop the reference from the writing run */
3570 brelse(bh);
3571 }
3572
b6a535fa
HM
3573 /* log error, force error return */
3574 if (primary_failed) {
3575 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3576 device->devid);
3577 return -1;
3578 }
3579
abbb3b8e
DS
3580 return errors < i ? 0 : -1;
3581}
3582
387125fc
CM
3583/*
3584 * endio for the write_dev_flush, this will wake anyone waiting
3585 * for the barrier when it is done
3586 */
4246a0b6 3587static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3588{
e0ae9994 3589 complete(bio->bi_private);
387125fc
CM
3590}
3591
3592/*
4fc6441a
AJ
3593 * Submit a flush request to the device if it supports it. Error handling is
3594 * done in the waiting counterpart.
387125fc 3595 */
4fc6441a 3596static void write_dev_flush(struct btrfs_device *device)
387125fc 3597{
c2a9c7ab 3598 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3599 struct bio *bio = device->flush_bio;
387125fc 3600
c2a9c7ab 3601 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3602 return;
387125fc 3603
e0ae9994 3604 bio_reset(bio);
387125fc 3605 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3606 bio_set_dev(bio, device->bdev);
8d910125 3607 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3608 init_completion(&device->flush_wait);
3609 bio->bi_private = &device->flush_wait;
387125fc 3610
43a01111 3611 btrfsic_submit_bio(bio);
1c3063b6 3612 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3613}
387125fc 3614
4fc6441a
AJ
3615/*
3616 * If the flush bio has been submitted by write_dev_flush, wait for it.
3617 */
8c27cb35 3618static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3619{
4fc6441a 3620 struct bio *bio = device->flush_bio;
387125fc 3621
1c3063b6 3622 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3623 return BLK_STS_OK;
387125fc 3624
1c3063b6 3625 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3626 wait_for_completion_io(&device->flush_wait);
387125fc 3627
8c27cb35 3628 return bio->bi_status;
387125fc 3629}
387125fc 3630
d10b82fe 3631static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3632{
6528b99d 3633 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3634 return -EIO;
387125fc
CM
3635 return 0;
3636}
3637
3638/*
3639 * send an empty flush down to each device in parallel,
3640 * then wait for them
3641 */
3642static int barrier_all_devices(struct btrfs_fs_info *info)
3643{
3644 struct list_head *head;
3645 struct btrfs_device *dev;
5af3e8cc 3646 int errors_wait = 0;
4e4cbee9 3647 blk_status_t ret;
387125fc 3648
1538e6c5 3649 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3650 /* send down all the barriers */
3651 head = &info->fs_devices->devices;
1538e6c5 3652 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3653 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3654 continue;
cea7c8bf 3655 if (!dev->bdev)
387125fc 3656 continue;
e12c9621 3657 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3658 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3659 continue;
3660
4fc6441a 3661 write_dev_flush(dev);
58efbc9f 3662 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3663 }
3664
3665 /* wait for all the barriers */
1538e6c5 3666 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3667 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3668 continue;
387125fc 3669 if (!dev->bdev) {
5af3e8cc 3670 errors_wait++;
387125fc
CM
3671 continue;
3672 }
e12c9621 3673 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3674 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3675 continue;
3676
4fc6441a 3677 ret = wait_dev_flush(dev);
401b41e5
AJ
3678 if (ret) {
3679 dev->last_flush_error = ret;
66b4993e
DS
3680 btrfs_dev_stat_inc_and_print(dev,
3681 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3682 errors_wait++;
401b41e5
AJ
3683 }
3684 }
3685
cea7c8bf 3686 if (errors_wait) {
401b41e5
AJ
3687 /*
3688 * At some point we need the status of all disks
3689 * to arrive at the volume status. So error checking
3690 * is being pushed to a separate loop.
3691 */
d10b82fe 3692 return check_barrier_error(info);
387125fc 3693 }
387125fc
CM
3694 return 0;
3695}
3696
943c6e99
ZL
3697int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3698{
8789f4fe
ZL
3699 int raid_type;
3700 int min_tolerated = INT_MAX;
943c6e99 3701
8789f4fe
ZL
3702 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3703 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3704 min_tolerated = min(min_tolerated,
3705 btrfs_raid_array[BTRFS_RAID_SINGLE].
3706 tolerated_failures);
943c6e99 3707
8789f4fe
ZL
3708 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3709 if (raid_type == BTRFS_RAID_SINGLE)
3710 continue;
41a6e891 3711 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3712 continue;
3713 min_tolerated = min(min_tolerated,
3714 btrfs_raid_array[raid_type].
3715 tolerated_failures);
3716 }
943c6e99 3717
8789f4fe 3718 if (min_tolerated == INT_MAX) {
ab8d0fc4 3719 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3720 min_tolerated = 0;
3721 }
3722
3723 return min_tolerated;
943c6e99
ZL
3724}
3725
eece6a9c 3726int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3727{
e5e9a520 3728 struct list_head *head;
f2984462 3729 struct btrfs_device *dev;
a061fc8d 3730 struct btrfs_super_block *sb;
f2984462 3731 struct btrfs_dev_item *dev_item;
f2984462
CM
3732 int ret;
3733 int do_barriers;
a236aed1
CM
3734 int max_errors;
3735 int total_errors = 0;
a061fc8d 3736 u64 flags;
f2984462 3737
0b246afa 3738 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3739
3740 /*
3741 * max_mirrors == 0 indicates we're from commit_transaction,
3742 * not from fsync where the tree roots in fs_info have not
3743 * been consistent on disk.
3744 */
3745 if (max_mirrors == 0)
3746 backup_super_roots(fs_info);
f2984462 3747
0b246afa 3748 sb = fs_info->super_for_commit;
a061fc8d 3749 dev_item = &sb->dev_item;
e5e9a520 3750
0b246afa
JM
3751 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3752 head = &fs_info->fs_devices->devices;
3753 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3754
5af3e8cc 3755 if (do_barriers) {
0b246afa 3756 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3757 if (ret) {
3758 mutex_unlock(
0b246afa
JM
3759 &fs_info->fs_devices->device_list_mutex);
3760 btrfs_handle_fs_error(fs_info, ret,
3761 "errors while submitting device barriers.");
5af3e8cc
SB
3762 return ret;
3763 }
3764 }
387125fc 3765
1538e6c5 3766 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3767 if (!dev->bdev) {
3768 total_errors++;
3769 continue;
3770 }
e12c9621 3771 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3772 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3773 continue;
3774
2b82032c 3775 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3776 btrfs_set_stack_device_type(dev_item, dev->type);
3777 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3778 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3779 dev->commit_total_bytes);
ce7213c7
MX
3780 btrfs_set_stack_device_bytes_used(dev_item,
3781 dev->commit_bytes_used);
a061fc8d
CM
3782 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3783 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3784 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3785 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3786 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3787 BTRFS_FSID_SIZE);
a512bbf8 3788
a061fc8d
CM
3789 flags = btrfs_super_flags(sb);
3790 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3791
75cb857d
QW
3792 ret = btrfs_validate_write_super(fs_info, sb);
3793 if (ret < 0) {
3794 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3795 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3796 "unexpected superblock corruption detected");
3797 return -EUCLEAN;
3798 }
3799
abbb3b8e 3800 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3801 if (ret)
3802 total_errors++;
f2984462 3803 }
a236aed1 3804 if (total_errors > max_errors) {
0b246afa
JM
3805 btrfs_err(fs_info, "%d errors while writing supers",
3806 total_errors);
3807 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3808
9d565ba4 3809 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3810 btrfs_handle_fs_error(fs_info, -EIO,
3811 "%d errors while writing supers",
3812 total_errors);
9d565ba4 3813 return -EIO;
a236aed1 3814 }
f2984462 3815
a512bbf8 3816 total_errors = 0;
1538e6c5 3817 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3818 if (!dev->bdev)
3819 continue;
e12c9621 3820 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3821 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3822 continue;
3823
abbb3b8e 3824 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3825 if (ret)
3826 total_errors++;
f2984462 3827 }
0b246afa 3828 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3829 if (total_errors > max_errors) {
0b246afa
JM
3830 btrfs_handle_fs_error(fs_info, -EIO,
3831 "%d errors while writing supers",
3832 total_errors);
79787eaa 3833 return -EIO;
a236aed1 3834 }
f2984462
CM
3835 return 0;
3836}
3837
cb517eab
MX
3838/* Drop a fs root from the radix tree and free it. */
3839void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3840 struct btrfs_root *root)
2619ba1f 3841{
4df27c4d 3842 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3843 radix_tree_delete(&fs_info->fs_roots_radix,
3844 (unsigned long)root->root_key.objectid);
4df27c4d 3845 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3846
3847 if (btrfs_root_refs(&root->root_item) == 0)
3848 synchronize_srcu(&fs_info->subvol_srcu);
3849
1c1ea4f7 3850 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3851 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3852 if (root->reloc_root) {
3853 free_extent_buffer(root->reloc_root->node);
3854 free_extent_buffer(root->reloc_root->commit_root);
3855 btrfs_put_fs_root(root->reloc_root);
3856 root->reloc_root = NULL;
3857 }
3858 }
3321719e 3859
faa2dbf0
JB
3860 if (root->free_ino_pinned)
3861 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3862 if (root->free_ino_ctl)
3863 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3864 btrfs_free_fs_root(root);
4df27c4d
YZ
3865}
3866
84db5ccf 3867void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3868{
57cdc8db 3869 iput(root->ino_cache_inode);
4df27c4d 3870 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3871 if (root->anon_dev)
3872 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3873 if (root->subv_writers)
3874 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3875 free_extent_buffer(root->node);
3876 free_extent_buffer(root->commit_root);
581bb050
LZ
3877 kfree(root->free_ino_ctl);
3878 kfree(root->free_ino_pinned);
b0feb9d9 3879 btrfs_put_fs_root(root);
2619ba1f
CM
3880}
3881
c146afad 3882int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3883{
c146afad
YZ
3884 u64 root_objectid = 0;
3885 struct btrfs_root *gang[8];
65d33fd7
QW
3886 int i = 0;
3887 int err = 0;
3888 unsigned int ret = 0;
3889 int index;
e089f05c 3890
c146afad 3891 while (1) {
65d33fd7 3892 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3893 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3894 (void **)gang, root_objectid,
3895 ARRAY_SIZE(gang));
65d33fd7
QW
3896 if (!ret) {
3897 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3898 break;
65d33fd7 3899 }
5d4f98a2 3900 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3901
c146afad 3902 for (i = 0; i < ret; i++) {
65d33fd7
QW
3903 /* Avoid to grab roots in dead_roots */
3904 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3905 gang[i] = NULL;
3906 continue;
3907 }
3908 /* grab all the search result for later use */
3909 gang[i] = btrfs_grab_fs_root(gang[i]);
3910 }
3911 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3912
65d33fd7
QW
3913 for (i = 0; i < ret; i++) {
3914 if (!gang[i])
3915 continue;
c146afad 3916 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3917 err = btrfs_orphan_cleanup(gang[i]);
3918 if (err)
65d33fd7
QW
3919 break;
3920 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3921 }
3922 root_objectid++;
3923 }
65d33fd7
QW
3924
3925 /* release the uncleaned roots due to error */
3926 for (; i < ret; i++) {
3927 if (gang[i])
3928 btrfs_put_fs_root(gang[i]);
3929 }
3930 return err;
c146afad 3931}
a2135011 3932
6bccf3ab 3933int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3934{
6bccf3ab 3935 struct btrfs_root *root = fs_info->tree_root;
c146afad 3936 struct btrfs_trans_handle *trans;
a74a4b97 3937
0b246afa 3938 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3939 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3940 mutex_unlock(&fs_info->cleaner_mutex);
3941 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3942
3943 /* wait until ongoing cleanup work done */
0b246afa
JM
3944 down_write(&fs_info->cleanup_work_sem);
3945 up_write(&fs_info->cleanup_work_sem);
c71bf099 3946
7a7eaa40 3947 trans = btrfs_join_transaction(root);
3612b495
TI
3948 if (IS_ERR(trans))
3949 return PTR_ERR(trans);
3a45bb20 3950 return btrfs_commit_transaction(trans);
c146afad
YZ
3951}
3952
6bccf3ab 3953void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3954{
c146afad
YZ
3955 int ret;
3956
afcdd129 3957 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3958 /*
3959 * We don't want the cleaner to start new transactions, add more delayed
3960 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3961 * because that frees the task_struct, and the transaction kthread might
3962 * still try to wake up the cleaner.
3963 */
3964 kthread_park(fs_info->cleaner_kthread);
c146afad 3965
7343dd61 3966 /* wait for the qgroup rescan worker to stop */
d06f23d6 3967 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3968
803b2f54
SB
3969 /* wait for the uuid_scan task to finish */
3970 down(&fs_info->uuid_tree_rescan_sem);
3971 /* avoid complains from lockdep et al., set sem back to initial state */
3972 up(&fs_info->uuid_tree_rescan_sem);
3973
837d5b6e 3974 /* pause restriper - we want to resume on mount */
aa1b8cd4 3975 btrfs_pause_balance(fs_info);
837d5b6e 3976
8dabb742
SB
3977 btrfs_dev_replace_suspend_for_unmount(fs_info);
3978
aa1b8cd4 3979 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3980
3981 /* wait for any defraggers to finish */
3982 wait_event(fs_info->transaction_wait,
3983 (atomic_read(&fs_info->defrag_running) == 0));
3984
3985 /* clear out the rbtree of defraggable inodes */
26176e7c 3986 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3987
21c7e756
MX
3988 cancel_work_sync(&fs_info->async_reclaim_work);
3989
bc98a42c 3990 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3991 /*
d6fd0ae2
OS
3992 * The cleaner kthread is stopped, so do one final pass over
3993 * unused block groups.
e44163e1 3994 */
0b246afa 3995 btrfs_delete_unused_bgs(fs_info);
e44163e1 3996
6bccf3ab 3997 ret = btrfs_commit_super(fs_info);
acce952b 3998 if (ret)
04892340 3999 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4000 }
4001
af722733
LB
4002 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4003 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4004 btrfs_error_commit_super(fs_info);
0f7d52f4 4005
e3029d9f
AV
4006 kthread_stop(fs_info->transaction_kthread);
4007 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4008
e187831e 4009 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4010 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4011
04892340 4012 btrfs_free_qgroup_config(fs_info);
fe816d0f 4013 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4014
963d678b 4015 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4016 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4017 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4018 }
bcc63abb 4019
6618a59b 4020 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4021 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4022
faa2dbf0 4023 btrfs_free_fs_roots(fs_info);
d10c5f31 4024
1a4319cc
LB
4025 btrfs_put_block_group_cache(fs_info);
4026
de348ee0
WS
4027 /*
4028 * we must make sure there is not any read request to
4029 * submit after we stopping all workers.
4030 */
4031 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4032 btrfs_stop_all_workers(fs_info);
4033
5cdd7db6
FM
4034 btrfs_free_block_groups(fs_info);
4035
afcdd129 4036 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4037 free_root_pointers(fs_info, 1);
9ad6b7bc 4038
13e6c37b 4039 iput(fs_info->btree_inode);
d6bfde87 4040
21adbd5c 4041#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4042 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4043 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4044#endif
4045
dfe25020 4046 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4047 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4048
e2d84521 4049 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4050 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4051 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4052 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4053
53b381b3 4054 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4055 btrfs_free_ref_cache(fs_info);
53b381b3 4056
04216820
FM
4057 while (!list_empty(&fs_info->pinned_chunks)) {
4058 struct extent_map *em;
4059
4060 em = list_first_entry(&fs_info->pinned_chunks,
4061 struct extent_map, list);
4062 list_del_init(&em->list);
4063 free_extent_map(em);
4064 }
eb60ceac
CM
4065}
4066
b9fab919
CM
4067int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4068 int atomic)
5f39d397 4069{
1259ab75 4070 int ret;
727011e0 4071 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4072
0b32f4bb 4073 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4074 if (!ret)
4075 return ret;
4076
4077 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4078 parent_transid, atomic);
4079 if (ret == -EAGAIN)
4080 return ret;
1259ab75 4081 return !ret;
5f39d397
CM
4082}
4083
5f39d397
CM
4084void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4085{
0b246afa 4086 struct btrfs_fs_info *fs_info;
06ea65a3 4087 struct btrfs_root *root;
5f39d397 4088 u64 transid = btrfs_header_generation(buf);
b9473439 4089 int was_dirty;
b4ce94de 4090
06ea65a3
JB
4091#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4092 /*
4093 * This is a fast path so only do this check if we have sanity tests
52042d8e 4094 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4095 * outside of the sanity tests.
4096 */
b0132a3b 4097 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4098 return;
4099#endif
4100 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4101 fs_info = root->fs_info;
b9447ef8 4102 btrfs_assert_tree_locked(buf);
0b246afa 4103 if (transid != fs_info->generation)
5d163e0e 4104 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4105 buf->start, transid, fs_info->generation);
0b32f4bb 4106 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4107 if (!was_dirty)
104b4e51
NB
4108 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4109 buf->len,
4110 fs_info->dirty_metadata_batch);
1f21ef0a 4111#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4112 /*
4113 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4114 * but item data not updated.
4115 * So here we should only check item pointers, not item data.
4116 */
4117 if (btrfs_header_level(buf) == 0 &&
2f659546 4118 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4119 btrfs_print_leaf(buf);
1f21ef0a
FM
4120 ASSERT(0);
4121 }
4122#endif
eb60ceac
CM
4123}
4124
2ff7e61e 4125static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4126 int flush_delayed)
16cdcec7
MX
4127{
4128 /*
4129 * looks as though older kernels can get into trouble with
4130 * this code, they end up stuck in balance_dirty_pages forever
4131 */
e2d84521 4132 int ret;
16cdcec7
MX
4133
4134 if (current->flags & PF_MEMALLOC)
4135 return;
4136
b53d3f5d 4137 if (flush_delayed)
2ff7e61e 4138 btrfs_balance_delayed_items(fs_info);
16cdcec7 4139
d814a491
EL
4140 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4141 BTRFS_DIRTY_METADATA_THRESH,
4142 fs_info->dirty_metadata_batch);
e2d84521 4143 if (ret > 0) {
0b246afa 4144 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4145 }
16cdcec7
MX
4146}
4147
2ff7e61e 4148void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4149{
2ff7e61e 4150 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4151}
585ad2c3 4152
2ff7e61e 4153void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4154{
2ff7e61e 4155 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4156}
6b80053d 4157
581c1760
QW
4158int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4159 struct btrfs_key *first_key)
6b80053d 4160{
5ab12d1f 4161 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4162 level, first_key);
6b80053d 4163}
0da5468f 4164
2ff7e61e 4165static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4166{
fe816d0f
NB
4167 /* cleanup FS via transaction */
4168 btrfs_cleanup_transaction(fs_info);
4169
0b246afa 4170 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4171 btrfs_run_delayed_iputs(fs_info);
0b246afa 4172 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4173
0b246afa
JM
4174 down_write(&fs_info->cleanup_work_sem);
4175 up_write(&fs_info->cleanup_work_sem);
acce952b 4176}
4177
143bede5 4178static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4179{
acce952b 4180 struct btrfs_ordered_extent *ordered;
acce952b 4181
199c2a9c 4182 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4183 /*
4184 * This will just short circuit the ordered completion stuff which will
4185 * make sure the ordered extent gets properly cleaned up.
4186 */
199c2a9c 4187 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4188 root_extent_list)
4189 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4190 spin_unlock(&root->ordered_extent_lock);
4191}
4192
4193static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4194{
4195 struct btrfs_root *root;
4196 struct list_head splice;
4197
4198 INIT_LIST_HEAD(&splice);
4199
4200 spin_lock(&fs_info->ordered_root_lock);
4201 list_splice_init(&fs_info->ordered_roots, &splice);
4202 while (!list_empty(&splice)) {
4203 root = list_first_entry(&splice, struct btrfs_root,
4204 ordered_root);
1de2cfde
JB
4205 list_move_tail(&root->ordered_root,
4206 &fs_info->ordered_roots);
199c2a9c 4207
2a85d9ca 4208 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4209 btrfs_destroy_ordered_extents(root);
4210
2a85d9ca
LB
4211 cond_resched();
4212 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4213 }
4214 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4215
4216 /*
4217 * We need this here because if we've been flipped read-only we won't
4218 * get sync() from the umount, so we need to make sure any ordered
4219 * extents that haven't had their dirty pages IO start writeout yet
4220 * actually get run and error out properly.
4221 */
4222 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4223}
4224
35a3621b 4225static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4226 struct btrfs_fs_info *fs_info)
acce952b 4227{
4228 struct rb_node *node;
4229 struct btrfs_delayed_ref_root *delayed_refs;
4230 struct btrfs_delayed_ref_node *ref;
4231 int ret = 0;
4232
4233 delayed_refs = &trans->delayed_refs;
4234
4235 spin_lock(&delayed_refs->lock);
d7df2c79 4236 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4237 spin_unlock(&delayed_refs->lock);
0b246afa 4238 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4239 return ret;
4240 }
4241
5c9d028b 4242 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4243 struct btrfs_delayed_ref_head *head;
0e0adbcf 4244 struct rb_node *n;
e78417d1 4245 bool pin_bytes = false;
acce952b 4246
d7df2c79
JB
4247 head = rb_entry(node, struct btrfs_delayed_ref_head,
4248 href_node);
3069bd26 4249 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4250 continue;
3069bd26 4251
d7df2c79 4252 spin_lock(&head->lock);
e3d03965 4253 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4254 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4255 ref_node);
d7df2c79 4256 ref->in_tree = 0;
e3d03965 4257 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4258 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4259 if (!list_empty(&ref->add_list))
4260 list_del(&ref->add_list);
d7df2c79
JB
4261 atomic_dec(&delayed_refs->num_entries);
4262 btrfs_put_delayed_ref(ref);
e78417d1 4263 }
d7df2c79
JB
4264 if (head->must_insert_reserved)
4265 pin_bytes = true;
4266 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4267 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4268 spin_unlock(&head->lock);
4269 spin_unlock(&delayed_refs->lock);
4270 mutex_unlock(&head->mutex);
acce952b 4271
d7df2c79 4272 if (pin_bytes)
d278850e
JB
4273 btrfs_pin_extent(fs_info, head->bytenr,
4274 head->num_bytes, 1);
31890da0 4275 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4276 btrfs_put_delayed_ref_head(head);
acce952b 4277 cond_resched();
4278 spin_lock(&delayed_refs->lock);
4279 }
4280
4281 spin_unlock(&delayed_refs->lock);
4282
4283 return ret;
4284}
4285
143bede5 4286static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4287{
4288 struct btrfs_inode *btrfs_inode;
4289 struct list_head splice;
4290
4291 INIT_LIST_HEAD(&splice);
4292
eb73c1b7
MX
4293 spin_lock(&root->delalloc_lock);
4294 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4295
4296 while (!list_empty(&splice)) {
fe816d0f 4297 struct inode *inode = NULL;
eb73c1b7
MX
4298 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4299 delalloc_inodes);
fe816d0f 4300 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4301 spin_unlock(&root->delalloc_lock);
acce952b 4302
fe816d0f
NB
4303 /*
4304 * Make sure we get a live inode and that it'll not disappear
4305 * meanwhile.
4306 */
4307 inode = igrab(&btrfs_inode->vfs_inode);
4308 if (inode) {
4309 invalidate_inode_pages2(inode->i_mapping);
4310 iput(inode);
4311 }
eb73c1b7 4312 spin_lock(&root->delalloc_lock);
acce952b 4313 }
eb73c1b7
MX
4314 spin_unlock(&root->delalloc_lock);
4315}
4316
4317static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4318{
4319 struct btrfs_root *root;
4320 struct list_head splice;
4321
4322 INIT_LIST_HEAD(&splice);
4323
4324 spin_lock(&fs_info->delalloc_root_lock);
4325 list_splice_init(&fs_info->delalloc_roots, &splice);
4326 while (!list_empty(&splice)) {
4327 root = list_first_entry(&splice, struct btrfs_root,
4328 delalloc_root);
eb73c1b7
MX
4329 root = btrfs_grab_fs_root(root);
4330 BUG_ON(!root);
4331 spin_unlock(&fs_info->delalloc_root_lock);
4332
4333 btrfs_destroy_delalloc_inodes(root);
4334 btrfs_put_fs_root(root);
4335
4336 spin_lock(&fs_info->delalloc_root_lock);
4337 }
4338 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4339}
4340
2ff7e61e 4341static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4342 struct extent_io_tree *dirty_pages,
4343 int mark)
4344{
4345 int ret;
acce952b 4346 struct extent_buffer *eb;
4347 u64 start = 0;
4348 u64 end;
acce952b 4349
4350 while (1) {
4351 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4352 mark, NULL);
acce952b 4353 if (ret)
4354 break;
4355
91166212 4356 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4357 while (start <= end) {
0b246afa
JM
4358 eb = find_extent_buffer(fs_info, start);
4359 start += fs_info->nodesize;
fd8b2b61 4360 if (!eb)
acce952b 4361 continue;
fd8b2b61 4362 wait_on_extent_buffer_writeback(eb);
acce952b 4363
fd8b2b61
JB
4364 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4365 &eb->bflags))
4366 clear_extent_buffer_dirty(eb);
4367 free_extent_buffer_stale(eb);
acce952b 4368 }
4369 }
4370
4371 return ret;
4372}
4373
2ff7e61e 4374static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4375 struct extent_io_tree *pinned_extents)
4376{
4377 struct extent_io_tree *unpin;
4378 u64 start;
4379 u64 end;
4380 int ret;
ed0eaa14 4381 bool loop = true;
acce952b 4382
4383 unpin = pinned_extents;
ed0eaa14 4384again:
acce952b 4385 while (1) {
0e6ec385
FM
4386 struct extent_state *cached_state = NULL;
4387
fcd5e742
LF
4388 /*
4389 * The btrfs_finish_extent_commit() may get the same range as
4390 * ours between find_first_extent_bit and clear_extent_dirty.
4391 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4392 * the same extent range.
4393 */
4394 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4395 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4396 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4397 if (ret) {
4398 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4399 break;
fcd5e742 4400 }
acce952b 4401
0e6ec385
FM
4402 clear_extent_dirty(unpin, start, end, &cached_state);
4403 free_extent_state(cached_state);
2ff7e61e 4404 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4405 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4406 cond_resched();
4407 }
4408
ed0eaa14 4409 if (loop) {
0b246afa
JM
4410 if (unpin == &fs_info->freed_extents[0])
4411 unpin = &fs_info->freed_extents[1];
ed0eaa14 4412 else
0b246afa 4413 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4414 loop = false;
4415 goto again;
4416 }
4417
acce952b 4418 return 0;
4419}
4420
c79a1751
LB
4421static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4422{
4423 struct inode *inode;
4424
4425 inode = cache->io_ctl.inode;
4426 if (inode) {
4427 invalidate_inode_pages2(inode->i_mapping);
4428 BTRFS_I(inode)->generation = 0;
4429 cache->io_ctl.inode = NULL;
4430 iput(inode);
4431 }
4432 btrfs_put_block_group(cache);
4433}
4434
4435void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4436 struct btrfs_fs_info *fs_info)
c79a1751
LB
4437{
4438 struct btrfs_block_group_cache *cache;
4439
4440 spin_lock(&cur_trans->dirty_bgs_lock);
4441 while (!list_empty(&cur_trans->dirty_bgs)) {
4442 cache = list_first_entry(&cur_trans->dirty_bgs,
4443 struct btrfs_block_group_cache,
4444 dirty_list);
c79a1751
LB
4445
4446 if (!list_empty(&cache->io_list)) {
4447 spin_unlock(&cur_trans->dirty_bgs_lock);
4448 list_del_init(&cache->io_list);
4449 btrfs_cleanup_bg_io(cache);
4450 spin_lock(&cur_trans->dirty_bgs_lock);
4451 }
4452
4453 list_del_init(&cache->dirty_list);
4454 spin_lock(&cache->lock);
4455 cache->disk_cache_state = BTRFS_DC_ERROR;
4456 spin_unlock(&cache->lock);
4457
4458 spin_unlock(&cur_trans->dirty_bgs_lock);
4459 btrfs_put_block_group(cache);
ba2c4d4e 4460 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4461 spin_lock(&cur_trans->dirty_bgs_lock);
4462 }
4463 spin_unlock(&cur_trans->dirty_bgs_lock);
4464
45ae2c18
NB
4465 /*
4466 * Refer to the definition of io_bgs member for details why it's safe
4467 * to use it without any locking
4468 */
c79a1751
LB
4469 while (!list_empty(&cur_trans->io_bgs)) {
4470 cache = list_first_entry(&cur_trans->io_bgs,
4471 struct btrfs_block_group_cache,
4472 io_list);
c79a1751
LB
4473
4474 list_del_init(&cache->io_list);
4475 spin_lock(&cache->lock);
4476 cache->disk_cache_state = BTRFS_DC_ERROR;
4477 spin_unlock(&cache->lock);
4478 btrfs_cleanup_bg_io(cache);
4479 }
4480}
4481
49b25e05 4482void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4483 struct btrfs_fs_info *fs_info)
49b25e05 4484{
2ff7e61e 4485 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4486 ASSERT(list_empty(&cur_trans->dirty_bgs));
4487 ASSERT(list_empty(&cur_trans->io_bgs));
4488
2ff7e61e 4489 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4490
4a9d8bde 4491 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4492 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4493
4a9d8bde 4494 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4495 wake_up(&fs_info->transaction_wait);
49b25e05 4496
ccdf9b30
JM
4497 btrfs_destroy_delayed_inodes(fs_info);
4498 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4499
2ff7e61e 4500 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4501 EXTENT_DIRTY);
2ff7e61e 4502 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4503 fs_info->pinned_extents);
49b25e05 4504
4a9d8bde
MX
4505 cur_trans->state =TRANS_STATE_COMPLETED;
4506 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4507}
4508
2ff7e61e 4509static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4510{
4511 struct btrfs_transaction *t;
acce952b 4512
0b246afa 4513 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4514
0b246afa
JM
4515 spin_lock(&fs_info->trans_lock);
4516 while (!list_empty(&fs_info->trans_list)) {
4517 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4518 struct btrfs_transaction, list);
4519 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4520 refcount_inc(&t->use_count);
0b246afa 4521 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4522 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4523 btrfs_put_transaction(t);
0b246afa 4524 spin_lock(&fs_info->trans_lock);
724e2315
JB
4525 continue;
4526 }
0b246afa 4527 if (t == fs_info->running_transaction) {
724e2315 4528 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4529 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4530 /*
4531 * We wait for 0 num_writers since we don't hold a trans
4532 * handle open currently for this transaction.
4533 */
4534 wait_event(t->writer_wait,
4535 atomic_read(&t->num_writers) == 0);
4536 } else {
0b246afa 4537 spin_unlock(&fs_info->trans_lock);
724e2315 4538 }
2ff7e61e 4539 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4540
0b246afa
JM
4541 spin_lock(&fs_info->trans_lock);
4542 if (t == fs_info->running_transaction)
4543 fs_info->running_transaction = NULL;
acce952b 4544 list_del_init(&t->list);
0b246afa 4545 spin_unlock(&fs_info->trans_lock);
acce952b 4546
724e2315 4547 btrfs_put_transaction(t);
2ff7e61e 4548 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4549 spin_lock(&fs_info->trans_lock);
724e2315 4550 }
0b246afa
JM
4551 spin_unlock(&fs_info->trans_lock);
4552 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4553 btrfs_destroy_delayed_inodes(fs_info);
4554 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4555 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4556 btrfs_destroy_all_delalloc_inodes(fs_info);
4557 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4558
4559 return 0;
4560}
4561
e8c9f186 4562static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4563 /* mandatory callbacks */
0b86a832 4564 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4565 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4566};