]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: reschedule when cloning lots of extents
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68 207/*
2996e1f8 208 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 209 */
c67b3892 210static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 211{
d5178578 212 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 213 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 215 char *kaddr;
e9be5a30 216 int i;
d5178578
JT
217
218 shash->tfm = fs_info->csum_shash;
219 crypto_shash_init(shash);
e9be5a30
DS
220 kaddr = page_address(buf->pages[0]);
221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 223
e9be5a30
DS
224 for (i = 1; i < num_pages; i++) {
225 kaddr = page_address(buf->pages[i]);
226 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 227 }
71a63551 228 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 229 crypto_shash_final(shash, result);
19c00ddc
CM
230}
231
d352ac68
CM
232/*
233 * we can't consider a given block up to date unless the transid of the
234 * block matches the transid in the parent node's pointer. This is how we
235 * detect blocks that either didn't get written at all or got written
236 * in the wrong place.
237 */
1259ab75 238static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
239 struct extent_buffer *eb, u64 parent_transid,
240 int atomic)
1259ab75 241{
2ac55d41 242 struct extent_state *cached_state = NULL;
1259ab75 243 int ret;
2755a0de 244 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
245
246 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
247 return 0;
248
b9fab919
CM
249 if (atomic)
250 return -EAGAIN;
251
a26e8c9f
JB
252 if (need_lock) {
253 btrfs_tree_read_lock(eb);
300aa896 254 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
255 }
256
2ac55d41 257 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 258 &cached_state);
0b32f4bb 259 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
260 btrfs_header_generation(eb) == parent_transid) {
261 ret = 0;
262 goto out;
263 }
94647322
DS
264 btrfs_err_rl(eb->fs_info,
265 "parent transid verify failed on %llu wanted %llu found %llu",
266 eb->start,
29549aec 267 parent_transid, btrfs_header_generation(eb));
1259ab75 268 ret = 1;
a26e8c9f
JB
269
270 /*
271 * Things reading via commit roots that don't have normal protection,
272 * like send, can have a really old block in cache that may point at a
01327610 273 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
274 * if we find an eb that is under IO (dirty/writeback) because we could
275 * end up reading in the stale data and then writing it back out and
276 * making everybody very sad.
277 */
278 if (!extent_buffer_under_io(eb))
279 clear_extent_buffer_uptodate(eb);
33958dc6 280out:
2ac55d41 281 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 282 &cached_state);
472b909f
JB
283 if (need_lock)
284 btrfs_tree_read_unlock_blocking(eb);
1259ab75 285 return ret;
1259ab75
CM
286}
287
e7e16f48
JT
288static bool btrfs_supported_super_csum(u16 csum_type)
289{
290 switch (csum_type) {
291 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 292 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 293 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 294 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
295 return true;
296 default:
297 return false;
298 }
299}
300
1104a885
DS
301/*
302 * Return 0 if the superblock checksum type matches the checksum value of that
303 * algorithm. Pass the raw disk superblock data.
304 */
ab8d0fc4
JM
305static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
306 char *raw_disk_sb)
1104a885
DS
307{
308 struct btrfs_super_block *disk_sb =
309 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 310 char result[BTRFS_CSUM_SIZE];
d5178578
JT
311 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
312
313 shash->tfm = fs_info->csum_shash;
1104a885 314
51bce6c9
JT
315 /*
316 * The super_block structure does not span the whole
317 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
318 * filled with zeros and is included in the checksum.
319 */
fd08001f
EB
320 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
321 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 322
51bce6c9
JT
323 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
324 return 1;
1104a885 325
e7e16f48 326 return 0;
1104a885
DS
327}
328
e064d5e9 329int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 330 struct btrfs_key *first_key, u64 parent_transid)
581c1760 331{
e064d5e9 332 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
333 int found_level;
334 struct btrfs_key found_key;
335 int ret;
336
337 found_level = btrfs_header_level(eb);
338 if (found_level != level) {
63489055
QW
339 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
340 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
341 btrfs_err(fs_info,
342"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
343 eb->start, level, found_level);
581c1760
QW
344 return -EIO;
345 }
346
347 if (!first_key)
348 return 0;
349
5d41be6f
QW
350 /*
351 * For live tree block (new tree blocks in current transaction),
352 * we need proper lock context to avoid race, which is impossible here.
353 * So we only checks tree blocks which is read from disk, whose
354 * generation <= fs_info->last_trans_committed.
355 */
356 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
357 return 0;
62fdaa52
QW
358
359 /* We have @first_key, so this @eb must have at least one item */
360 if (btrfs_header_nritems(eb) == 0) {
361 btrfs_err(fs_info,
362 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
363 eb->start);
364 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
365 return -EUCLEAN;
366 }
367
581c1760
QW
368 if (found_level)
369 btrfs_node_key_to_cpu(eb, &found_key, 0);
370 else
371 btrfs_item_key_to_cpu(eb, &found_key, 0);
372 ret = btrfs_comp_cpu_keys(first_key, &found_key);
373
581c1760 374 if (ret) {
63489055
QW
375 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
376 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 377 btrfs_err(fs_info,
ff76a864
LB
378"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
379 eb->start, parent_transid, first_key->objectid,
380 first_key->type, first_key->offset,
381 found_key.objectid, found_key.type,
382 found_key.offset);
581c1760 383 }
581c1760
QW
384 return ret;
385}
386
d352ac68
CM
387/*
388 * helper to read a given tree block, doing retries as required when
389 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
390 *
391 * @parent_transid: expected transid, skip check if 0
392 * @level: expected level, mandatory check
393 * @first_key: expected key of first slot, skip check if NULL
d352ac68 394 */
5ab12d1f 395static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
396 u64 parent_transid, int level,
397 struct btrfs_key *first_key)
f188591e 398{
5ab12d1f 399 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 400 struct extent_io_tree *io_tree;
ea466794 401 int failed = 0;
f188591e
CM
402 int ret;
403 int num_copies = 0;
404 int mirror_num = 0;
ea466794 405 int failed_mirror = 0;
f188591e 406
0b246afa 407 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 408 while (1) {
f8397d69 409 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 410 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 411 if (!ret) {
581c1760 412 if (verify_parent_transid(io_tree, eb,
b9fab919 413 parent_transid, 0))
256dd1bb 414 ret = -EIO;
e064d5e9 415 else if (btrfs_verify_level_key(eb, level,
448de471 416 first_key, parent_transid))
581c1760
QW
417 ret = -EUCLEAN;
418 else
419 break;
256dd1bb 420 }
d397712b 421
0b246afa 422 num_copies = btrfs_num_copies(fs_info,
f188591e 423 eb->start, eb->len);
4235298e 424 if (num_copies == 1)
ea466794 425 break;
4235298e 426
5cf1ab56
JB
427 if (!failed_mirror) {
428 failed = 1;
429 failed_mirror = eb->read_mirror;
430 }
431
f188591e 432 mirror_num++;
ea466794
JB
433 if (mirror_num == failed_mirror)
434 mirror_num++;
435
4235298e 436 if (mirror_num > num_copies)
ea466794 437 break;
f188591e 438 }
ea466794 439
c0901581 440 if (failed && !ret && failed_mirror)
20a1fbf9 441 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
442
443 return ret;
f188591e 444}
19c00ddc 445
d352ac68 446/*
d397712b
CM
447 * checksum a dirty tree block before IO. This has extra checks to make sure
448 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 449 */
d397712b 450
01d58472 451static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 452{
4eee4fa4 453 u64 start = page_offset(page);
19c00ddc 454 u64 found_start;
2996e1f8
JT
455 u8 result[BTRFS_CSUM_SIZE];
456 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 457 struct extent_buffer *eb;
8d47a0d8 458 int ret;
f188591e 459
4f2de97a
JB
460 eb = (struct extent_buffer *)page->private;
461 if (page != eb->pages[0])
462 return 0;
0f805531 463
19c00ddc 464 found_start = btrfs_header_bytenr(eb);
0f805531
AL
465 /*
466 * Please do not consolidate these warnings into a single if.
467 * It is useful to know what went wrong.
468 */
469 if (WARN_ON(found_start != start))
470 return -EUCLEAN;
471 if (WARN_ON(!PageUptodate(page)))
472 return -EUCLEAN;
473
de37aa51 474 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
475 offsetof(struct btrfs_header, fsid),
476 BTRFS_FSID_SIZE) == 0);
0f805531 477
c67b3892 478 csum_tree_block(eb, result);
2996e1f8 479
8d47a0d8
QW
480 if (btrfs_header_level(eb))
481 ret = btrfs_check_node(eb);
482 else
483 ret = btrfs_check_leaf_full(eb);
484
485 if (ret < 0) {
c06631b0 486 btrfs_print_tree(eb, 0);
8d47a0d8
QW
487 btrfs_err(fs_info,
488 "block=%llu write time tree block corruption detected",
489 eb->start);
c06631b0 490 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
491 return ret;
492 }
2996e1f8 493 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 494
2996e1f8 495 return 0;
19c00ddc
CM
496}
497
b0c9b3b0 498static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 499{
b0c9b3b0 500 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 501 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 502 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 503 u8 *metadata_uuid;
2b82032c 504
9a8658e3
DS
505 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
506 BTRFS_FSID_SIZE);
944d3f9f
NB
507 /*
508 * Checking the incompat flag is only valid for the current fs. For
509 * seed devices it's forbidden to have their uuid changed so reading
510 * ->fsid in this case is fine
511 */
512 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
513 metadata_uuid = fs_devices->metadata_uuid;
514 else
515 metadata_uuid = fs_devices->fsid;
516
517 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
518 return 0;
519
520 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
521 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
522 return 0;
523
524 return 1;
2b82032c
YZ
525}
526
facc8a22
MX
527static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
528 u64 phy_offset, struct page *page,
529 u64 start, u64 end, int mirror)
ce9adaa5 530{
ce9adaa5
CM
531 u64 found_start;
532 int found_level;
ce9adaa5 533 struct extent_buffer *eb;
15b6e8a8
DS
534 struct btrfs_fs_info *fs_info;
535 u16 csum_size;
f188591e 536 int ret = 0;
2996e1f8 537 u8 result[BTRFS_CSUM_SIZE];
727011e0 538 int reads_done;
ce9adaa5 539
ce9adaa5
CM
540 if (!page->private)
541 goto out;
d397712b 542
4f2de97a 543 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
544 fs_info = eb->fs_info;
545 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 546
0b32f4bb
JB
547 /* the pending IO might have been the only thing that kept this buffer
548 * in memory. Make sure we have a ref for all this other checks
549 */
67439dad 550 atomic_inc(&eb->refs);
0b32f4bb
JB
551
552 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
553 if (!reads_done)
554 goto err;
f188591e 555
5cf1ab56 556 eb->read_mirror = mirror;
656f30db 557 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
558 ret = -EIO;
559 goto err;
560 }
561
ce9adaa5 562 found_start = btrfs_header_bytenr(eb);
727011e0 563 if (found_start != eb->start) {
893bf4b1
SY
564 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
565 eb->start, found_start);
f188591e 566 ret = -EIO;
ce9adaa5
CM
567 goto err;
568 }
b0c9b3b0 569 if (check_tree_block_fsid(eb)) {
02873e43
ZL
570 btrfs_err_rl(fs_info, "bad fsid on block %llu",
571 eb->start);
1259ab75
CM
572 ret = -EIO;
573 goto err;
574 }
ce9adaa5 575 found_level = btrfs_header_level(eb);
1c24c3ce 576 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
577 btrfs_err(fs_info, "bad tree block level %d on %llu",
578 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
579 ret = -EIO;
580 goto err;
581 }
ce9adaa5 582
85d4e461
CM
583 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
584 eb, found_level);
4008c04a 585
c67b3892 586 csum_tree_block(eb, result);
a826d6dc 587
2996e1f8 588 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 589 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
590
591 read_extent_buffer(eb, &val, 0, csum_size);
592 btrfs_warn_rl(fs_info,
35be8851 593 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 594 fs_info->sb->s_id, eb->start,
35be8851
JT
595 CSUM_FMT_VALUE(csum_size, val),
596 CSUM_FMT_VALUE(csum_size, result),
597 btrfs_header_level(eb));
2996e1f8
JT
598 ret = -EUCLEAN;
599 goto err;
600 }
601
a826d6dc
JB
602 /*
603 * If this is a leaf block and it is corrupt, set the corrupt bit so
604 * that we don't try and read the other copies of this block, just
605 * return -EIO.
606 */
1c4360ee 607 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
608 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
609 ret = -EIO;
610 }
ce9adaa5 611
813fd1dc 612 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
613 ret = -EIO;
614
0b32f4bb
JB
615 if (!ret)
616 set_extent_buffer_uptodate(eb);
75391f0d
QW
617 else
618 btrfs_err(fs_info,
619 "block=%llu read time tree block corruption detected",
620 eb->start);
ce9adaa5 621err:
79fb65a1
JB
622 if (reads_done &&
623 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 624 btree_readahead_hook(eb, ret);
4bb31e92 625
53b381b3
DW
626 if (ret) {
627 /*
628 * our io error hook is going to dec the io pages
629 * again, we have to make sure it has something
630 * to decrement
631 */
632 atomic_inc(&eb->io_pages);
0b32f4bb 633 clear_extent_buffer_uptodate(eb);
53b381b3 634 }
0b32f4bb 635 free_extent_buffer(eb);
ce9adaa5 636out:
f188591e 637 return ret;
ce9adaa5
CM
638}
639
4246a0b6 640static void end_workqueue_bio(struct bio *bio)
ce9adaa5 641{
97eb6b69 642 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 643 struct btrfs_fs_info *fs_info;
9e0af237 644 struct btrfs_workqueue *wq;
ce9adaa5 645
ce9adaa5 646 fs_info = end_io_wq->info;
4e4cbee9 647 end_io_wq->status = bio->bi_status;
d20f7043 648
37226b21 649 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 650 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 651 wq = fs_info->endio_meta_write_workers;
a0cac0ec 652 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 653 wq = fs_info->endio_freespace_worker;
a0cac0ec 654 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 655 wq = fs_info->endio_raid56_workers;
a0cac0ec 656 else
9e0af237 657 wq = fs_info->endio_write_workers;
d20f7043 658 } else {
5c047a69 659 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 660 wq = fs_info->endio_raid56_workers;
a0cac0ec 661 else if (end_io_wq->metadata)
9e0af237 662 wq = fs_info->endio_meta_workers;
a0cac0ec 663 else
9e0af237 664 wq = fs_info->endio_workers;
d20f7043 665 }
9e0af237 666
a0cac0ec 667 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 668 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
669}
670
4e4cbee9 671blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 672 enum btrfs_wq_endio_type metadata)
0b86a832 673{
97eb6b69 674 struct btrfs_end_io_wq *end_io_wq;
8b110e39 675
97eb6b69 676 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 677 if (!end_io_wq)
4e4cbee9 678 return BLK_STS_RESOURCE;
ce9adaa5
CM
679
680 end_io_wq->private = bio->bi_private;
681 end_io_wq->end_io = bio->bi_end_io;
22c59948 682 end_io_wq->info = info;
4e4cbee9 683 end_io_wq->status = 0;
ce9adaa5 684 end_io_wq->bio = bio;
22c59948 685 end_io_wq->metadata = metadata;
ce9adaa5
CM
686
687 bio->bi_private = end_io_wq;
688 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
689 return 0;
690}
691
4a69a410
CM
692static void run_one_async_start(struct btrfs_work *work)
693{
4a69a410 694 struct async_submit_bio *async;
4e4cbee9 695 blk_status_t ret;
4a69a410
CM
696
697 async = container_of(work, struct async_submit_bio, work);
c6100a4b 698 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
699 async->bio_offset);
700 if (ret)
4e4cbee9 701 async->status = ret;
4a69a410
CM
702}
703
06ea01b1
DS
704/*
705 * In order to insert checksums into the metadata in large chunks, we wait
706 * until bio submission time. All the pages in the bio are checksummed and
707 * sums are attached onto the ordered extent record.
708 *
709 * At IO completion time the csums attached on the ordered extent record are
710 * inserted into the tree.
711 */
4a69a410 712static void run_one_async_done(struct btrfs_work *work)
8b712842 713{
8b712842 714 struct async_submit_bio *async;
06ea01b1
DS
715 struct inode *inode;
716 blk_status_t ret;
8b712842
CM
717
718 async = container_of(work, struct async_submit_bio, work);
06ea01b1 719 inode = async->private_data;
4854ddd0 720
bb7ab3b9 721 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
722 if (async->status) {
723 async->bio->bi_status = async->status;
4246a0b6 724 bio_endio(async->bio);
79787eaa
JM
725 return;
726 }
727
ec39f769
CM
728 /*
729 * All of the bios that pass through here are from async helpers.
730 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
731 * This changes nothing when cgroups aren't in use.
732 */
733 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 734 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
735 if (ret) {
736 async->bio->bi_status = ret;
737 bio_endio(async->bio);
738 }
4a69a410
CM
739}
740
741static void run_one_async_free(struct btrfs_work *work)
742{
743 struct async_submit_bio *async;
744
745 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
746 kfree(async);
747}
748
8c27cb35
LT
749blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
750 int mirror_num, unsigned long bio_flags,
751 u64 bio_offset, void *private_data,
e288c080 752 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
753{
754 struct async_submit_bio *async;
755
756 async = kmalloc(sizeof(*async), GFP_NOFS);
757 if (!async)
4e4cbee9 758 return BLK_STS_RESOURCE;
44b8bd7e 759
c6100a4b 760 async->private_data = private_data;
44b8bd7e
CM
761 async->bio = bio;
762 async->mirror_num = mirror_num;
4a69a410 763 async->submit_bio_start = submit_bio_start;
4a69a410 764
a0cac0ec
OS
765 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
766 run_one_async_free);
4a69a410 767
eaf25d93 768 async->bio_offset = bio_offset;
8c8bee1d 769
4e4cbee9 770 async->status = 0;
79787eaa 771
67f055c7 772 if (op_is_sync(bio->bi_opf))
5cdc7ad3 773 btrfs_set_work_high_priority(&async->work);
d313d7a3 774
5cdc7ad3 775 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
776 return 0;
777}
778
4e4cbee9 779static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 780{
2c30c71b 781 struct bio_vec *bvec;
ce3ed71a 782 struct btrfs_root *root;
2b070cfe 783 int ret = 0;
6dc4f100 784 struct bvec_iter_all iter_all;
ce3ed71a 785
c09abff8 786 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 787 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 788 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 789 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
790 if (ret)
791 break;
ce3ed71a 792 }
2c30c71b 793
4e4cbee9 794 return errno_to_blk_status(ret);
ce3ed71a
CM
795}
796
d0ee3934 797static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 798 u64 bio_offset)
22c59948 799{
8b712842
CM
800 /*
801 * when we're called for a write, we're already in the async
5443be45 802 * submission context. Just jump into btrfs_map_bio
8b712842 803 */
79787eaa 804 return btree_csum_one_bio(bio);
4a69a410 805}
22c59948 806
9b4e675a
DS
807static int check_async_write(struct btrfs_fs_info *fs_info,
808 struct btrfs_inode *bi)
de0022b9 809{
6300463b
LB
810 if (atomic_read(&bi->sync_writers))
811 return 0;
9b4e675a 812 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 813 return 0;
de0022b9
JB
814 return 1;
815}
816
a56b1c7b 817static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
818 int mirror_num,
819 unsigned long bio_flags)
44b8bd7e 820{
0b246afa 821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 822 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 823 blk_status_t ret;
cad321ad 824
37226b21 825 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
826 /*
827 * called for a read, do the setup so that checksum validation
828 * can happen in the async kernel threads
829 */
0b246afa
JM
830 ret = btrfs_bio_wq_end_io(fs_info, bio,
831 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 832 if (ret)
61891923 833 goto out_w_error;
08635bae 834 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
835 } else if (!async) {
836 ret = btree_csum_one_bio(bio);
837 if (ret)
61891923 838 goto out_w_error;
08635bae 839 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
840 } else {
841 /*
842 * kthread helpers are used to submit writes so that
843 * checksumming can happen in parallel across all CPUs
844 */
c6100a4b 845 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 846 0, inode, btree_submit_bio_start);
44b8bd7e 847 }
d313d7a3 848
4246a0b6
CH
849 if (ret)
850 goto out_w_error;
851 return 0;
852
61891923 853out_w_error:
4e4cbee9 854 bio->bi_status = ret;
4246a0b6 855 bio_endio(bio);
61891923 856 return ret;
44b8bd7e
CM
857}
858
3dd1462e 859#ifdef CONFIG_MIGRATION
784b4e29 860static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
861 struct page *newpage, struct page *page,
862 enum migrate_mode mode)
784b4e29
CM
863{
864 /*
865 * we can't safely write a btree page from here,
866 * we haven't done the locking hook
867 */
868 if (PageDirty(page))
869 return -EAGAIN;
870 /*
871 * Buffers may be managed in a filesystem specific way.
872 * We must have no buffers or drop them.
873 */
874 if (page_has_private(page) &&
875 !try_to_release_page(page, GFP_KERNEL))
876 return -EAGAIN;
a6bc32b8 877 return migrate_page(mapping, newpage, page, mode);
784b4e29 878}
3dd1462e 879#endif
784b4e29 880
0da5468f
CM
881
882static int btree_writepages(struct address_space *mapping,
883 struct writeback_control *wbc)
884{
e2d84521
MX
885 struct btrfs_fs_info *fs_info;
886 int ret;
887
d8d5f3e1 888 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
889
890 if (wbc->for_kupdate)
891 return 0;
892
e2d84521 893 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 894 /* this is a bit racy, but that's ok */
d814a491
EL
895 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
896 BTRFS_DIRTY_METADATA_THRESH,
897 fs_info->dirty_metadata_batch);
e2d84521 898 if (ret < 0)
793955bc 899 return 0;
793955bc 900 }
0b32f4bb 901 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
902}
903
70dec807 904static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 905{
98509cfc 906 if (PageWriteback(page) || PageDirty(page))
d397712b 907 return 0;
0c4e538b 908
f7a52a40 909 return try_release_extent_buffer(page);
d98237b3
CM
910}
911
d47992f8
LC
912static void btree_invalidatepage(struct page *page, unsigned int offset,
913 unsigned int length)
d98237b3 914{
d1310b2e
CM
915 struct extent_io_tree *tree;
916 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
917 extent_invalidatepage(tree, page, offset);
918 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 919 if (PagePrivate(page)) {
efe120a0
FH
920 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
921 "page private not zero on page %llu",
922 (unsigned long long)page_offset(page));
d1b89bc0 923 detach_page_private(page);
9ad6b7bc 924 }
d98237b3
CM
925}
926
0b32f4bb
JB
927static int btree_set_page_dirty(struct page *page)
928{
bb146eb2 929#ifdef DEBUG
0b32f4bb
JB
930 struct extent_buffer *eb;
931
932 BUG_ON(!PagePrivate(page));
933 eb = (struct extent_buffer *)page->private;
934 BUG_ON(!eb);
935 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
936 BUG_ON(!atomic_read(&eb->refs));
937 btrfs_assert_tree_locked(eb);
bb146eb2 938#endif
0b32f4bb
JB
939 return __set_page_dirty_nobuffers(page);
940}
941
7f09410b 942static const struct address_space_operations btree_aops = {
0da5468f 943 .writepages = btree_writepages,
5f39d397
CM
944 .releasepage = btree_releasepage,
945 .invalidatepage = btree_invalidatepage,
5a92bc88 946#ifdef CONFIG_MIGRATION
784b4e29 947 .migratepage = btree_migratepage,
5a92bc88 948#endif
0b32f4bb 949 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
950};
951
2ff7e61e 952void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 953{
5f39d397 954 struct extent_buffer *buf = NULL;
537f38f0 955 int ret;
090d1875 956
2ff7e61e 957 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 958 if (IS_ERR(buf))
6197d86e 959 return;
537f38f0 960
c2ccfbc6 961 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
962 if (ret < 0)
963 free_extent_buffer_stale(buf);
964 else
965 free_extent_buffer(buf);
090d1875
CM
966}
967
2ff7e61e
JM
968struct extent_buffer *btrfs_find_create_tree_block(
969 struct btrfs_fs_info *fs_info,
970 u64 bytenr)
0999df54 971{
0b246afa
JM
972 if (btrfs_is_testing(fs_info))
973 return alloc_test_extent_buffer(fs_info, bytenr);
974 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
975}
976
581c1760
QW
977/*
978 * Read tree block at logical address @bytenr and do variant basic but critical
979 * verification.
980 *
981 * @parent_transid: expected transid of this tree block, skip check if 0
982 * @level: expected level, mandatory check
983 * @first_key: expected key in slot 0, skip check if NULL
984 */
2ff7e61e 985struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
986 u64 parent_transid, int level,
987 struct btrfs_key *first_key)
0999df54
CM
988{
989 struct extent_buffer *buf = NULL;
0999df54
CM
990 int ret;
991
2ff7e61e 992 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
993 if (IS_ERR(buf))
994 return buf;
0999df54 995
5ab12d1f 996 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 997 level, first_key);
0f0fe8f7 998 if (ret) {
537f38f0 999 free_extent_buffer_stale(buf);
64c043de 1000 return ERR_PTR(ret);
0f0fe8f7 1001 }
5f39d397 1002 return buf;
ce9adaa5 1003
eb60ceac
CM
1004}
1005
6a884d7d 1006void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1007{
6a884d7d 1008 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1009 if (btrfs_header_generation(buf) ==
e2d84521 1010 fs_info->running_transaction->transid) {
b9447ef8 1011 btrfs_assert_tree_locked(buf);
b4ce94de 1012
b9473439 1013 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1014 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1015 -buf->len,
1016 fs_info->dirty_metadata_batch);
ed7b63eb 1017 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1018 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1019 clear_extent_buffer_dirty(buf);
1020 }
925baedd 1021 }
5f39d397
CM
1022}
1023
da17066c 1024static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1025 u64 objectid)
d97e63b6 1026{
7c0260ee 1027 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1028 root->fs_info = fs_info;
cfaa7295 1029 root->node = NULL;
a28ec197 1030 root->commit_root = NULL;
27cdeb70 1031 root->state = 0;
d68fc57b 1032 root->orphan_cleanup_state = 0;
0b86a832 1033
0f7d52f4 1034 root->last_trans = 0;
13a8a7c8 1035 root->highest_objectid = 0;
eb73c1b7 1036 root->nr_delalloc_inodes = 0;
199c2a9c 1037 root->nr_ordered_extents = 0;
6bef4d31 1038 root->inode_tree = RB_ROOT;
16cdcec7 1039 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1040 root->block_rsv = NULL;
0b86a832
CM
1041
1042 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1043 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1044 INIT_LIST_HEAD(&root->delalloc_inodes);
1045 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1046 INIT_LIST_HEAD(&root->ordered_extents);
1047 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1048 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1049 INIT_LIST_HEAD(&root->logged_list[0]);
1050 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1051 spin_lock_init(&root->inode_lock);
eb73c1b7 1052 spin_lock_init(&root->delalloc_lock);
199c2a9c 1053 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1054 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1055 spin_lock_init(&root->log_extents_lock[0]);
1056 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1057 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1058 mutex_init(&root->objectid_mutex);
e02119d5 1059 mutex_init(&root->log_mutex);
31f3d255 1060 mutex_init(&root->ordered_extent_mutex);
573bfb72 1061 mutex_init(&root->delalloc_mutex);
c53e9653 1062 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1063 init_waitqueue_head(&root->log_writer_wait);
1064 init_waitqueue_head(&root->log_commit_wait[0]);
1065 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1066 INIT_LIST_HEAD(&root->log_ctxs[0]);
1067 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1068 atomic_set(&root->log_commit[0], 0);
1069 atomic_set(&root->log_commit[1], 0);
1070 atomic_set(&root->log_writers, 0);
2ecb7923 1071 atomic_set(&root->log_batch, 0);
0700cea7 1072 refcount_set(&root->refs, 1);
8ecebf4d 1073 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1074 atomic_set(&root->nr_swapfiles, 0);
7237f183 1075 root->log_transid = 0;
d1433deb 1076 root->log_transid_committed = -1;
257c62e1 1077 root->last_log_commit = 0;
e289f03e 1078 if (!dummy) {
43eb5f29
QW
1079 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1080 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1081 extent_io_tree_init(fs_info, &root->log_csum_range,
1082 IO_TREE_LOG_CSUM_RANGE, NULL);
1083 }
017e5369 1084
3768f368
CM
1085 memset(&root->root_key, 0, sizeof(root->root_key));
1086 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1087 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1088 root->root_key.objectid = objectid;
0ee5dc67 1089 root->anon_dev = 0;
8ea05e3a 1090
5f3ab90a 1091 spin_lock_init(&root->root_item_lock);
370a11b8 1092 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1093#ifdef CONFIG_BTRFS_DEBUG
1094 INIT_LIST_HEAD(&root->leak_list);
1095 spin_lock(&fs_info->fs_roots_radix_lock);
1096 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1097 spin_unlock(&fs_info->fs_roots_radix_lock);
1098#endif
3768f368
CM
1099}
1100
74e4d827 1101static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1102 u64 objectid, gfp_t flags)
6f07e42e 1103{
74e4d827 1104 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1105 if (root)
96dfcb46 1106 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1107 return root;
1108}
1109
06ea65a3
JB
1110#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1111/* Should only be used by the testing infrastructure */
da17066c 1112struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1113{
1114 struct btrfs_root *root;
1115
7c0260ee
JM
1116 if (!fs_info)
1117 return ERR_PTR(-EINVAL);
1118
96dfcb46 1119 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1120 if (!root)
1121 return ERR_PTR(-ENOMEM);
da17066c 1122
b9ef22de 1123 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1124 root->alloc_bytenr = 0;
06ea65a3
JB
1125
1126 return root;
1127}
1128#endif
1129
20897f5c 1130struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1131 u64 objectid)
1132{
9b7a2440 1133 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1134 struct extent_buffer *leaf;
1135 struct btrfs_root *tree_root = fs_info->tree_root;
1136 struct btrfs_root *root;
1137 struct btrfs_key key;
b89f6d1f 1138 unsigned int nofs_flag;
20897f5c 1139 int ret = 0;
20897f5c 1140
b89f6d1f
FM
1141 /*
1142 * We're holding a transaction handle, so use a NOFS memory allocation
1143 * context to avoid deadlock if reclaim happens.
1144 */
1145 nofs_flag = memalloc_nofs_save();
96dfcb46 1146 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1147 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1148 if (!root)
1149 return ERR_PTR(-ENOMEM);
1150
20897f5c
AJ
1151 root->root_key.objectid = objectid;
1152 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1153 root->root_key.offset = 0;
1154
9631e4cc
JB
1155 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1156 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1157 if (IS_ERR(leaf)) {
1158 ret = PTR_ERR(leaf);
1dd05682 1159 leaf = NULL;
20897f5c
AJ
1160 goto fail;
1161 }
1162
20897f5c 1163 root->node = leaf;
20897f5c
AJ
1164 btrfs_mark_buffer_dirty(leaf);
1165
1166 root->commit_root = btrfs_root_node(root);
27cdeb70 1167 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1168
1169 root->root_item.flags = 0;
1170 root->root_item.byte_limit = 0;
1171 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1172 btrfs_set_root_generation(&root->root_item, trans->transid);
1173 btrfs_set_root_level(&root->root_item, 0);
1174 btrfs_set_root_refs(&root->root_item, 1);
1175 btrfs_set_root_used(&root->root_item, leaf->len);
1176 btrfs_set_root_last_snapshot(&root->root_item, 0);
1177 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1178 if (is_fstree(objectid))
807fc790
AS
1179 generate_random_guid(root->root_item.uuid);
1180 else
1181 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1182 root->root_item.drop_level = 0;
1183
1184 key.objectid = objectid;
1185 key.type = BTRFS_ROOT_ITEM_KEY;
1186 key.offset = 0;
1187 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1188 if (ret)
1189 goto fail;
1190
1191 btrfs_tree_unlock(leaf);
1192
1dd05682
TI
1193 return root;
1194
20897f5c 1195fail:
8c38938c 1196 if (leaf)
1dd05682 1197 btrfs_tree_unlock(leaf);
00246528 1198 btrfs_put_root(root);
20897f5c 1199
1dd05682 1200 return ERR_PTR(ret);
20897f5c
AJ
1201}
1202
7237f183
YZ
1203static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1204 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1205{
1206 struct btrfs_root *root;
7237f183 1207 struct extent_buffer *leaf;
e02119d5 1208
96dfcb46 1209 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1210 if (!root)
7237f183 1211 return ERR_PTR(-ENOMEM);
e02119d5 1212
e02119d5
CM
1213 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1214 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1215 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1216
7237f183 1217 /*
92a7cc42 1218 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1219 *
92a7cc42
QW
1220 * Log trees are not exposed to user space thus can't be snapshotted,
1221 * and they go away before a real commit is actually done.
1222 *
1223 * They do store pointers to file data extents, and those reference
1224 * counts still get updated (along with back refs to the log tree).
7237f183 1225 */
e02119d5 1226
4d75f8a9 1227 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1228 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
7237f183 1229 if (IS_ERR(leaf)) {
00246528 1230 btrfs_put_root(root);
7237f183
YZ
1231 return ERR_CAST(leaf);
1232 }
e02119d5 1233
7237f183 1234 root->node = leaf;
e02119d5 1235
e02119d5
CM
1236 btrfs_mark_buffer_dirty(root->node);
1237 btrfs_tree_unlock(root->node);
7237f183
YZ
1238 return root;
1239}
1240
1241int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1242 struct btrfs_fs_info *fs_info)
1243{
1244 struct btrfs_root *log_root;
1245
1246 log_root = alloc_log_tree(trans, fs_info);
1247 if (IS_ERR(log_root))
1248 return PTR_ERR(log_root);
1249 WARN_ON(fs_info->log_root_tree);
1250 fs_info->log_root_tree = log_root;
1251 return 0;
1252}
1253
1254int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1255 struct btrfs_root *root)
1256{
0b246afa 1257 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1258 struct btrfs_root *log_root;
1259 struct btrfs_inode_item *inode_item;
1260
0b246afa 1261 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1262 if (IS_ERR(log_root))
1263 return PTR_ERR(log_root);
1264
1265 log_root->last_trans = trans->transid;
1266 log_root->root_key.offset = root->root_key.objectid;
1267
1268 inode_item = &log_root->root_item.inode;
3cae210f
QW
1269 btrfs_set_stack_inode_generation(inode_item, 1);
1270 btrfs_set_stack_inode_size(inode_item, 3);
1271 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1272 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1273 fs_info->nodesize);
3cae210f 1274 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1275
5d4f98a2 1276 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1277
1278 WARN_ON(root->log_root);
1279 root->log_root = log_root;
1280 root->log_transid = 0;
d1433deb 1281 root->log_transid_committed = -1;
257c62e1 1282 root->last_log_commit = 0;
e02119d5
CM
1283 return 0;
1284}
1285
62a2c73e
JB
1286struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1287 struct btrfs_key *key)
e02119d5
CM
1288{
1289 struct btrfs_root *root;
1290 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1291 struct btrfs_path *path;
84234f3a 1292 u64 generation;
cb517eab 1293 int ret;
581c1760 1294 int level;
0f7d52f4 1295
cb517eab
MX
1296 path = btrfs_alloc_path();
1297 if (!path)
0f7d52f4 1298 return ERR_PTR(-ENOMEM);
cb517eab 1299
96dfcb46 1300 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1301 if (!root) {
1302 ret = -ENOMEM;
1303 goto alloc_fail;
0f7d52f4
CM
1304 }
1305
cb517eab
MX
1306 ret = btrfs_find_root(tree_root, key, path,
1307 &root->root_item, &root->root_key);
0f7d52f4 1308 if (ret) {
13a8a7c8
YZ
1309 if (ret > 0)
1310 ret = -ENOENT;
cb517eab 1311 goto find_fail;
0f7d52f4 1312 }
13a8a7c8 1313
84234f3a 1314 generation = btrfs_root_generation(&root->root_item);
581c1760 1315 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1316 root->node = read_tree_block(fs_info,
1317 btrfs_root_bytenr(&root->root_item),
581c1760 1318 generation, level, NULL);
64c043de
LB
1319 if (IS_ERR(root->node)) {
1320 ret = PTR_ERR(root->node);
8c38938c 1321 root->node = NULL;
cb517eab
MX
1322 goto find_fail;
1323 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1324 ret = -EIO;
64c043de 1325 goto find_fail;
416bc658 1326 }
5d4f98a2 1327 root->commit_root = btrfs_root_node(root);
13a8a7c8 1328out:
cb517eab
MX
1329 btrfs_free_path(path);
1330 return root;
1331
cb517eab 1332find_fail:
00246528 1333 btrfs_put_root(root);
cb517eab
MX
1334alloc_fail:
1335 root = ERR_PTR(ret);
1336 goto out;
1337}
1338
2dfb1e43
QW
1339/*
1340 * Initialize subvolume root in-memory structure
1341 *
1342 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1343 */
1344static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1345{
1346 int ret;
dcc3eb96 1347 unsigned int nofs_flag;
cb517eab
MX
1348
1349 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1350 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1351 GFP_NOFS);
1352 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1353 ret = -ENOMEM;
1354 goto fail;
1355 }
1356
dcc3eb96
NB
1357 /*
1358 * We might be called under a transaction (e.g. indirect backref
1359 * resolution) which could deadlock if it triggers memory reclaim
1360 */
1361 nofs_flag = memalloc_nofs_save();
1362 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1363 memalloc_nofs_restore(nofs_flag);
1364 if (ret)
8257b2dc 1365 goto fail;
8257b2dc 1366
aeb935a4
QW
1367 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1368 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1369 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1370 btrfs_check_and_init_root_item(&root->root_item);
1371 }
1372
cb517eab 1373 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1374 spin_lock_init(&root->ino_cache_lock);
1375 init_waitqueue_head(&root->ino_cache_wait);
cb517eab 1376
851fd730
QW
1377 /*
1378 * Don't assign anonymous block device to roots that are not exposed to
1379 * userspace, the id pool is limited to 1M
1380 */
1381 if (is_fstree(root->root_key.objectid) &&
1382 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1383 if (!anon_dev) {
1384 ret = get_anon_bdev(&root->anon_dev);
1385 if (ret)
1386 goto fail;
1387 } else {
1388 root->anon_dev = anon_dev;
1389 }
851fd730 1390 }
f32e48e9
CR
1391
1392 mutex_lock(&root->objectid_mutex);
1393 ret = btrfs_find_highest_objectid(root,
1394 &root->highest_objectid);
1395 if (ret) {
1396 mutex_unlock(&root->objectid_mutex);
876d2cf1 1397 goto fail;
f32e48e9
CR
1398 }
1399
1400 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1401
1402 mutex_unlock(&root->objectid_mutex);
1403
cb517eab
MX
1404 return 0;
1405fail:
84db5ccf 1406 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1407 return ret;
1408}
1409
a98db0f3
JB
1410static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1411 u64 root_id)
cb517eab
MX
1412{
1413 struct btrfs_root *root;
1414
1415 spin_lock(&fs_info->fs_roots_radix_lock);
1416 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1417 (unsigned long)root_id);
bc44d7c4 1418 if (root)
00246528 1419 root = btrfs_grab_root(root);
cb517eab
MX
1420 spin_unlock(&fs_info->fs_roots_radix_lock);
1421 return root;
1422}
1423
1424int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1425 struct btrfs_root *root)
1426{
1427 int ret;
1428
e1860a77 1429 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1430 if (ret)
1431 return ret;
1432
1433 spin_lock(&fs_info->fs_roots_radix_lock);
1434 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1435 (unsigned long)root->root_key.objectid,
1436 root);
af01d2e5 1437 if (ret == 0) {
00246528 1438 btrfs_grab_root(root);
27cdeb70 1439 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1440 }
cb517eab
MX
1441 spin_unlock(&fs_info->fs_roots_radix_lock);
1442 radix_tree_preload_end();
1443
1444 return ret;
1445}
1446
bd647ce3
JB
1447void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1448{
1449#ifdef CONFIG_BTRFS_DEBUG
1450 struct btrfs_root *root;
1451
1452 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1453 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1454
bd647ce3
JB
1455 root = list_first_entry(&fs_info->allocated_roots,
1456 struct btrfs_root, leak_list);
457f1864
JB
1457 btrfs_err(fs_info, "leaked root %s refcount %d",
1458 btrfs_root_name(root->root_key.objectid, buf),
bd647ce3
JB
1459 refcount_read(&root->refs));
1460 while (refcount_read(&root->refs) > 1)
00246528
JB
1461 btrfs_put_root(root);
1462 btrfs_put_root(root);
bd647ce3
JB
1463 }
1464#endif
1465}
1466
0d4b0463
JB
1467void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1468{
141386e1
JB
1469 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1470 percpu_counter_destroy(&fs_info->delalloc_bytes);
1471 percpu_counter_destroy(&fs_info->dio_bytes);
1472 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1473 btrfs_free_csum_hash(fs_info);
1474 btrfs_free_stripe_hash_table(fs_info);
1475 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1476 kfree(fs_info->balance_ctl);
1477 kfree(fs_info->delayed_root);
00246528
JB
1478 btrfs_put_root(fs_info->extent_root);
1479 btrfs_put_root(fs_info->tree_root);
1480 btrfs_put_root(fs_info->chunk_root);
1481 btrfs_put_root(fs_info->dev_root);
1482 btrfs_put_root(fs_info->csum_root);
1483 btrfs_put_root(fs_info->quota_root);
1484 btrfs_put_root(fs_info->uuid_root);
1485 btrfs_put_root(fs_info->free_space_root);
1486 btrfs_put_root(fs_info->fs_root);
aeb935a4 1487 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1488 btrfs_check_leaked_roots(fs_info);
3fd63727 1489 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1490 kfree(fs_info->super_copy);
1491 kfree(fs_info->super_for_commit);
1492 kvfree(fs_info);
1493}
1494
1495
2dfb1e43
QW
1496/*
1497 * Get an in-memory reference of a root structure.
1498 *
1499 * For essential trees like root/extent tree, we grab it from fs_info directly.
1500 * For subvolume trees, we check the cached filesystem roots first. If not
1501 * found, then read it from disk and add it to cached fs roots.
1502 *
1503 * Caller should release the root by calling btrfs_put_root() after the usage.
1504 *
1505 * NOTE: Reloc and log trees can't be read by this function as they share the
1506 * same root objectid.
1507 *
1508 * @objectid: root id
1509 * @anon_dev: preallocated anonymous block device number for new roots,
1510 * pass 0 for new allocation.
1511 * @check_ref: whether to check root item references, If true, return -ENOENT
1512 * for orphan roots
1513 */
1514static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1515 u64 objectid, dev_t anon_dev,
1516 bool check_ref)
5eda7b5e
CM
1517{
1518 struct btrfs_root *root;
381cf658 1519 struct btrfs_path *path;
1d4c08e0 1520 struct btrfs_key key;
5eda7b5e
CM
1521 int ret;
1522
56e9357a 1523 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1524 return btrfs_grab_root(fs_info->tree_root);
56e9357a 1525 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1526 return btrfs_grab_root(fs_info->extent_root);
56e9357a 1527 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1528 return btrfs_grab_root(fs_info->chunk_root);
56e9357a 1529 if (objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1530 return btrfs_grab_root(fs_info->dev_root);
56e9357a 1531 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1532 return btrfs_grab_root(fs_info->csum_root);
56e9357a 1533 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1534 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1535 fs_info->quota_root : ERR_PTR(-ENOENT);
56e9357a 1536 if (objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1537 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1538 fs_info->uuid_root : ERR_PTR(-ENOENT);
56e9357a 1539 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1540 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1541 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1542again:
56e9357a 1543 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1544 if (root) {
2dfb1e43
QW
1545 /* Shouldn't get preallocated anon_dev for cached roots */
1546 ASSERT(!anon_dev);
bc44d7c4 1547 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1548 btrfs_put_root(root);
48475471 1549 return ERR_PTR(-ENOENT);
bc44d7c4 1550 }
5eda7b5e 1551 return root;
48475471 1552 }
5eda7b5e 1553
56e9357a
DS
1554 key.objectid = objectid;
1555 key.type = BTRFS_ROOT_ITEM_KEY;
1556 key.offset = (u64)-1;
1557 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1558 if (IS_ERR(root))
1559 return root;
3394e160 1560
c00869f1 1561 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1562 ret = -ENOENT;
581bb050 1563 goto fail;
35a30d7c 1564 }
581bb050 1565
2dfb1e43 1566 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1567 if (ret)
1568 goto fail;
3394e160 1569
381cf658
DS
1570 path = btrfs_alloc_path();
1571 if (!path) {
1572 ret = -ENOMEM;
1573 goto fail;
1574 }
1d4c08e0
DS
1575 key.objectid = BTRFS_ORPHAN_OBJECTID;
1576 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1577 key.offset = objectid;
1d4c08e0
DS
1578
1579 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1580 btrfs_free_path(path);
d68fc57b
YZ
1581 if (ret < 0)
1582 goto fail;
1583 if (ret == 0)
27cdeb70 1584 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1585
cb517eab 1586 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1587 if (ret) {
00246528 1588 btrfs_put_root(root);
4785e24f 1589 if (ret == -EEXIST)
4df27c4d 1590 goto again;
4df27c4d 1591 goto fail;
0f7d52f4 1592 }
edbd8d4e 1593 return root;
4df27c4d 1594fail:
8c38938c 1595 btrfs_put_root(root);
4df27c4d 1596 return ERR_PTR(ret);
edbd8d4e
CM
1597}
1598
2dfb1e43
QW
1599/*
1600 * Get in-memory reference of a root structure
1601 *
1602 * @objectid: tree objectid
1603 * @check_ref: if set, verify that the tree exists and the item has at least
1604 * one reference
1605 */
1606struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1607 u64 objectid, bool check_ref)
1608{
1609 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1610}
1611
1612/*
1613 * Get in-memory reference of a root structure, created as new, optionally pass
1614 * the anonymous block device id
1615 *
1616 * @objectid: tree objectid
1617 * @anon_dev: if zero, allocate a new anonymous block device or use the
1618 * parameter value
1619 */
1620struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1621 u64 objectid, dev_t anon_dev)
1622{
1623 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1624}
1625
8b712842
CM
1626/*
1627 * called by the kthread helper functions to finally call the bio end_io
1628 * functions. This is where read checksum verification actually happens
1629 */
1630static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1631{
ce9adaa5 1632 struct bio *bio;
97eb6b69 1633 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1634
97eb6b69 1635 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1636 bio = end_io_wq->bio;
ce9adaa5 1637
4e4cbee9 1638 bio->bi_status = end_io_wq->status;
8b712842
CM
1639 bio->bi_private = end_io_wq->private;
1640 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1641 bio_endio(bio);
9be490f1 1642 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1643}
1644
a74a4b97
CM
1645static int cleaner_kthread(void *arg)
1646{
1647 struct btrfs_root *root = arg;
0b246afa 1648 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1649 int again;
a74a4b97 1650
d6fd0ae2 1651 while (1) {
d0278245 1652 again = 0;
a74a4b97 1653
fd340d0f
JB
1654 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1655
d0278245 1656 /* Make the cleaner go to sleep early. */
2ff7e61e 1657 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1658 goto sleep;
1659
90c711ab
ZB
1660 /*
1661 * Do not do anything if we might cause open_ctree() to block
1662 * before we have finished mounting the filesystem.
1663 */
0b246afa 1664 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1665 goto sleep;
1666
0b246afa 1667 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1668 goto sleep;
1669
dc7f370c
MX
1670 /*
1671 * Avoid the problem that we change the status of the fs
1672 * during the above check and trylock.
1673 */
2ff7e61e 1674 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1675 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1676 goto sleep;
76dda93c 1677 }
a74a4b97 1678
2ff7e61e 1679 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1680
d0278245 1681 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1682 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1683
1684 /*
05323cd1
MX
1685 * The defragger has dealt with the R/O remount and umount,
1686 * needn't do anything special here.
d0278245 1687 */
0b246afa 1688 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1689
1690 /*
1691 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1692 * with relocation (btrfs_relocate_chunk) and relocation
1693 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1694 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1695 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1696 * unused block groups.
1697 */
0b246afa 1698 btrfs_delete_unused_bgs(fs_info);
d0278245 1699sleep:
fd340d0f 1700 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1701 if (kthread_should_park())
1702 kthread_parkme();
1703 if (kthread_should_stop())
1704 return 0;
838fe188 1705 if (!again) {
a74a4b97 1706 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1707 schedule();
a74a4b97
CM
1708 __set_current_state(TASK_RUNNING);
1709 }
da288d28 1710 }
a74a4b97
CM
1711}
1712
1713static int transaction_kthread(void *arg)
1714{
1715 struct btrfs_root *root = arg;
0b246afa 1716 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1717 struct btrfs_trans_handle *trans;
1718 struct btrfs_transaction *cur;
8929ecfa 1719 u64 transid;
a944442c 1720 time64_t now;
a74a4b97 1721 unsigned long delay;
914b2007 1722 bool cannot_commit;
a74a4b97
CM
1723
1724 do {
914b2007 1725 cannot_commit = false;
0b246afa
JM
1726 delay = HZ * fs_info->commit_interval;
1727 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1728
0b246afa
JM
1729 spin_lock(&fs_info->trans_lock);
1730 cur = fs_info->running_transaction;
a74a4b97 1731 if (!cur) {
0b246afa 1732 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1733 goto sleep;
1734 }
31153d81 1735
afd48513 1736 now = ktime_get_seconds();
3296bf56 1737 if (cur->state < TRANS_STATE_COMMIT_START &&
8b87dc17 1738 (now < cur->start_time ||
0b246afa
JM
1739 now - cur->start_time < fs_info->commit_interval)) {
1740 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1741 delay = HZ * 5;
1742 goto sleep;
1743 }
8929ecfa 1744 transid = cur->transid;
0b246afa 1745 spin_unlock(&fs_info->trans_lock);
56bec294 1746
79787eaa 1747 /* If the file system is aborted, this will always fail. */
354aa0fb 1748 trans = btrfs_attach_transaction(root);
914b2007 1749 if (IS_ERR(trans)) {
354aa0fb
MX
1750 if (PTR_ERR(trans) != -ENOENT)
1751 cannot_commit = true;
79787eaa 1752 goto sleep;
914b2007 1753 }
8929ecfa 1754 if (transid == trans->transid) {
3a45bb20 1755 btrfs_commit_transaction(trans);
8929ecfa 1756 } else {
3a45bb20 1757 btrfs_end_transaction(trans);
8929ecfa 1758 }
a74a4b97 1759sleep:
0b246afa
JM
1760 wake_up_process(fs_info->cleaner_kthread);
1761 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1762
4e121c06 1763 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1764 &fs_info->fs_state)))
2ff7e61e 1765 btrfs_cleanup_transaction(fs_info);
ce63f891 1766 if (!kthread_should_stop() &&
0b246afa 1767 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1768 cannot_commit))
bc5511d0 1769 schedule_timeout_interruptible(delay);
a74a4b97
CM
1770 } while (!kthread_should_stop());
1771 return 0;
1772}
1773
af31f5e5 1774/*
01f0f9da
NB
1775 * This will find the highest generation in the array of root backups. The
1776 * index of the highest array is returned, or -EINVAL if we can't find
1777 * anything.
af31f5e5
CM
1778 *
1779 * We check to make sure the array is valid by comparing the
1780 * generation of the latest root in the array with the generation
1781 * in the super block. If they don't match we pitch it.
1782 */
01f0f9da 1783static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1784{
01f0f9da 1785 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1786 u64 cur;
af31f5e5
CM
1787 struct btrfs_root_backup *root_backup;
1788 int i;
1789
1790 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1791 root_backup = info->super_copy->super_roots + i;
1792 cur = btrfs_backup_tree_root_gen(root_backup);
1793 if (cur == newest_gen)
01f0f9da 1794 return i;
af31f5e5
CM
1795 }
1796
01f0f9da 1797 return -EINVAL;
af31f5e5
CM
1798}
1799
af31f5e5
CM
1800/*
1801 * copy all the root pointers into the super backup array.
1802 * this will bump the backup pointer by one when it is
1803 * done
1804 */
1805static void backup_super_roots(struct btrfs_fs_info *info)
1806{
6ef108dd 1807 const int next_backup = info->backup_root_index;
af31f5e5 1808 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1809
1810 root_backup = info->super_for_commit->super_roots + next_backup;
1811
1812 /*
1813 * make sure all of our padding and empty slots get zero filled
1814 * regardless of which ones we use today
1815 */
1816 memset(root_backup, 0, sizeof(*root_backup));
1817
1818 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1819
1820 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1821 btrfs_set_backup_tree_root_gen(root_backup,
1822 btrfs_header_generation(info->tree_root->node));
1823
1824 btrfs_set_backup_tree_root_level(root_backup,
1825 btrfs_header_level(info->tree_root->node));
1826
1827 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1828 btrfs_set_backup_chunk_root_gen(root_backup,
1829 btrfs_header_generation(info->chunk_root->node));
1830 btrfs_set_backup_chunk_root_level(root_backup,
1831 btrfs_header_level(info->chunk_root->node));
1832
1833 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1834 btrfs_set_backup_extent_root_gen(root_backup,
1835 btrfs_header_generation(info->extent_root->node));
1836 btrfs_set_backup_extent_root_level(root_backup,
1837 btrfs_header_level(info->extent_root->node));
1838
7c7e82a7
CM
1839 /*
1840 * we might commit during log recovery, which happens before we set
1841 * the fs_root. Make sure it is valid before we fill it in.
1842 */
1843 if (info->fs_root && info->fs_root->node) {
1844 btrfs_set_backup_fs_root(root_backup,
1845 info->fs_root->node->start);
1846 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1847 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1848 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1849 btrfs_header_level(info->fs_root->node));
7c7e82a7 1850 }
af31f5e5
CM
1851
1852 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1853 btrfs_set_backup_dev_root_gen(root_backup,
1854 btrfs_header_generation(info->dev_root->node));
1855 btrfs_set_backup_dev_root_level(root_backup,
1856 btrfs_header_level(info->dev_root->node));
1857
1858 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1859 btrfs_set_backup_csum_root_gen(root_backup,
1860 btrfs_header_generation(info->csum_root->node));
1861 btrfs_set_backup_csum_root_level(root_backup,
1862 btrfs_header_level(info->csum_root->node));
1863
1864 btrfs_set_backup_total_bytes(root_backup,
1865 btrfs_super_total_bytes(info->super_copy));
1866 btrfs_set_backup_bytes_used(root_backup,
1867 btrfs_super_bytes_used(info->super_copy));
1868 btrfs_set_backup_num_devices(root_backup,
1869 btrfs_super_num_devices(info->super_copy));
1870
1871 /*
1872 * if we don't copy this out to the super_copy, it won't get remembered
1873 * for the next commit
1874 */
1875 memcpy(&info->super_copy->super_roots,
1876 &info->super_for_commit->super_roots,
1877 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1878}
1879
bd2336b2
NB
1880/*
1881 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1882 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1883 *
1884 * fs_info - filesystem whose backup roots need to be read
1885 * priority - priority of backup root required
1886 *
1887 * Returns backup root index on success and -EINVAL otherwise.
1888 */
1889static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1890{
1891 int backup_index = find_newest_super_backup(fs_info);
1892 struct btrfs_super_block *super = fs_info->super_copy;
1893 struct btrfs_root_backup *root_backup;
1894
1895 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1896 if (priority == 0)
1897 return backup_index;
1898
1899 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1900 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1901 } else {
1902 return -EINVAL;
1903 }
1904
1905 root_backup = super->super_roots + backup_index;
1906
1907 btrfs_set_super_generation(super,
1908 btrfs_backup_tree_root_gen(root_backup));
1909 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1910 btrfs_set_super_root_level(super,
1911 btrfs_backup_tree_root_level(root_backup));
1912 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1913
1914 /*
1915 * Fixme: the total bytes and num_devices need to match or we should
1916 * need a fsck
1917 */
1918 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1919 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1920
1921 return backup_index;
1922}
1923
7abadb64
LB
1924/* helper to cleanup workers */
1925static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1926{
dc6e3209 1927 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1928 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1929 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1930 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1931 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1932 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1933 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1934 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1935 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1936 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1937 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1938 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1939 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1940 if (fs_info->discard_ctl.discard_workers)
1941 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1942 /*
1943 * Now that all other work queues are destroyed, we can safely destroy
1944 * the queues used for metadata I/O, since tasks from those other work
1945 * queues can do metadata I/O operations.
1946 */
1947 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1948 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1949}
1950
2e9f5954
R
1951static void free_root_extent_buffers(struct btrfs_root *root)
1952{
1953 if (root) {
1954 free_extent_buffer(root->node);
1955 free_extent_buffer(root->commit_root);
1956 root->node = NULL;
1957 root->commit_root = NULL;
1958 }
1959}
1960
af31f5e5 1961/* helper to cleanup tree roots */
4273eaff 1962static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1963{
2e9f5954 1964 free_root_extent_buffers(info->tree_root);
655b09fe 1965
2e9f5954
R
1966 free_root_extent_buffers(info->dev_root);
1967 free_root_extent_buffers(info->extent_root);
1968 free_root_extent_buffers(info->csum_root);
1969 free_root_extent_buffers(info->quota_root);
1970 free_root_extent_buffers(info->uuid_root);
8c38938c 1971 free_root_extent_buffers(info->fs_root);
aeb935a4 1972 free_root_extent_buffers(info->data_reloc_root);
4273eaff 1973 if (free_chunk_root)
2e9f5954 1974 free_root_extent_buffers(info->chunk_root);
70f6d82e 1975 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
1976}
1977
8c38938c
JB
1978void btrfs_put_root(struct btrfs_root *root)
1979{
1980 if (!root)
1981 return;
1982
1983 if (refcount_dec_and_test(&root->refs)) {
1984 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 1985 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
1986 if (root->anon_dev)
1987 free_anon_bdev(root->anon_dev);
1988 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 1989 free_root_extent_buffers(root);
8c38938c
JB
1990 kfree(root->free_ino_ctl);
1991 kfree(root->free_ino_pinned);
1992#ifdef CONFIG_BTRFS_DEBUG
1993 spin_lock(&root->fs_info->fs_roots_radix_lock);
1994 list_del_init(&root->leak_list);
1995 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1996#endif
1997 kfree(root);
1998 }
1999}
2000
faa2dbf0 2001void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2002{
2003 int ret;
2004 struct btrfs_root *gang[8];
2005 int i;
2006
2007 while (!list_empty(&fs_info->dead_roots)) {
2008 gang[0] = list_entry(fs_info->dead_roots.next,
2009 struct btrfs_root, root_list);
2010 list_del(&gang[0]->root_list);
2011
8c38938c 2012 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2013 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2014 btrfs_put_root(gang[0]);
171f6537
JB
2015 }
2016
2017 while (1) {
2018 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2019 (void **)gang, 0,
2020 ARRAY_SIZE(gang));
2021 if (!ret)
2022 break;
2023 for (i = 0; i < ret; i++)
cb517eab 2024 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2025 }
2026}
af31f5e5 2027
638aa7ed
ES
2028static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2029{
2030 mutex_init(&fs_info->scrub_lock);
2031 atomic_set(&fs_info->scrubs_running, 0);
2032 atomic_set(&fs_info->scrub_pause_req, 0);
2033 atomic_set(&fs_info->scrubs_paused, 0);
2034 atomic_set(&fs_info->scrub_cancel_req, 0);
2035 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2036 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2037}
2038
779a65a4
ES
2039static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2040{
2041 spin_lock_init(&fs_info->balance_lock);
2042 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2043 atomic_set(&fs_info->balance_pause_req, 0);
2044 atomic_set(&fs_info->balance_cancel_req, 0);
2045 fs_info->balance_ctl = NULL;
2046 init_waitqueue_head(&fs_info->balance_wait_q);
2047}
2048
6bccf3ab 2049static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2050{
2ff7e61e
JM
2051 struct inode *inode = fs_info->btree_inode;
2052
2053 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2054 set_nlink(inode, 1);
f37938e0
ES
2055 /*
2056 * we set the i_size on the btree inode to the max possible int.
2057 * the real end of the address space is determined by all of
2058 * the devices in the system
2059 */
2ff7e61e
JM
2060 inode->i_size = OFFSET_MAX;
2061 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2062
2ff7e61e 2063 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2064 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2065 IO_TREE_INODE_IO, inode);
7b439738 2066 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2067 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2068
2ff7e61e 2069 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2070
5c8fd99f 2071 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2072 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2073 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2074 btrfs_insert_inode_hash(inode);
f37938e0
ES
2075}
2076
ad618368
ES
2077static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2078{
ad618368 2079 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2080 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2081 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2082}
2083
f9e92e40
ES
2084static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2085{
2086 spin_lock_init(&fs_info->qgroup_lock);
2087 mutex_init(&fs_info->qgroup_ioctl_lock);
2088 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2089 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2090 fs_info->qgroup_seq = 1;
f9e92e40 2091 fs_info->qgroup_ulist = NULL;
d2c609b8 2092 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2093 mutex_init(&fs_info->qgroup_rescan_lock);
2094}
2095
2a458198
ES
2096static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2097 struct btrfs_fs_devices *fs_devices)
2098{
f7b885be 2099 u32 max_active = fs_info->thread_pool_size;
6f011058 2100 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2101
2102 fs_info->workers =
cb001095
JM
2103 btrfs_alloc_workqueue(fs_info, "worker",
2104 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2105
2106 fs_info->delalloc_workers =
cb001095
JM
2107 btrfs_alloc_workqueue(fs_info, "delalloc",
2108 flags, max_active, 2);
2a458198
ES
2109
2110 fs_info->flush_workers =
cb001095
JM
2111 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2112 flags, max_active, 0);
2a458198
ES
2113
2114 fs_info->caching_workers =
cb001095 2115 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2116
2a458198 2117 fs_info->fixup_workers =
cb001095 2118 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2119
2120 /*
2121 * endios are largely parallel and should have a very
2122 * low idle thresh
2123 */
2124 fs_info->endio_workers =
cb001095 2125 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2126 fs_info->endio_meta_workers =
cb001095
JM
2127 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2128 max_active, 4);
2a458198 2129 fs_info->endio_meta_write_workers =
cb001095
JM
2130 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2131 max_active, 2);
2a458198 2132 fs_info->endio_raid56_workers =
cb001095
JM
2133 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2134 max_active, 4);
2a458198 2135 fs_info->rmw_workers =
cb001095 2136 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2137 fs_info->endio_write_workers =
cb001095
JM
2138 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2139 max_active, 2);
2a458198 2140 fs_info->endio_freespace_worker =
cb001095
JM
2141 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2142 max_active, 0);
2a458198 2143 fs_info->delayed_workers =
cb001095
JM
2144 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2145 max_active, 0);
2a458198 2146 fs_info->readahead_workers =
cb001095
JM
2147 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2148 max_active, 2);
2a458198 2149 fs_info->qgroup_rescan_workers =
cb001095 2150 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2151 fs_info->discard_ctl.discard_workers =
2152 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2153
2154 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2155 fs_info->flush_workers &&
2a458198
ES
2156 fs_info->endio_workers && fs_info->endio_meta_workers &&
2157 fs_info->endio_meta_write_workers &&
2a458198
ES
2158 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2159 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2160 fs_info->caching_workers && fs_info->readahead_workers &&
2161 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2162 fs_info->qgroup_rescan_workers &&
2163 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2164 return -ENOMEM;
2165 }
2166
2167 return 0;
2168}
2169
6d97c6e3
JT
2170static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2171{
2172 struct crypto_shash *csum_shash;
b4e967be 2173 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2174
b4e967be 2175 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2176
2177 if (IS_ERR(csum_shash)) {
2178 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2179 csum_driver);
6d97c6e3
JT
2180 return PTR_ERR(csum_shash);
2181 }
2182
2183 fs_info->csum_shash = csum_shash;
2184
2185 return 0;
2186}
2187
63443bf5
ES
2188static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2189 struct btrfs_fs_devices *fs_devices)
2190{
2191 int ret;
63443bf5
ES
2192 struct btrfs_root *log_tree_root;
2193 struct btrfs_super_block *disk_super = fs_info->super_copy;
2194 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2195 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2196
2197 if (fs_devices->rw_devices == 0) {
f14d104d 2198 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2199 return -EIO;
2200 }
2201
96dfcb46
JB
2202 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2203 GFP_KERNEL);
63443bf5
ES
2204 if (!log_tree_root)
2205 return -ENOMEM;
2206
2ff7e61e 2207 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2208 fs_info->generation + 1,
2209 level, NULL);
64c043de 2210 if (IS_ERR(log_tree_root->node)) {
f14d104d 2211 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2212 ret = PTR_ERR(log_tree_root->node);
8c38938c 2213 log_tree_root->node = NULL;
00246528 2214 btrfs_put_root(log_tree_root);
0eeff236 2215 return ret;
64c043de 2216 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2217 btrfs_err(fs_info, "failed to read log tree");
00246528 2218 btrfs_put_root(log_tree_root);
63443bf5
ES
2219 return -EIO;
2220 }
2221 /* returns with log_tree_root freed on success */
2222 ret = btrfs_recover_log_trees(log_tree_root);
2223 if (ret) {
0b246afa
JM
2224 btrfs_handle_fs_error(fs_info, ret,
2225 "Failed to recover log tree");
00246528 2226 btrfs_put_root(log_tree_root);
63443bf5
ES
2227 return ret;
2228 }
2229
bc98a42c 2230 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2231 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2232 if (ret)
2233 return ret;
2234 }
2235
2236 return 0;
2237}
2238
6bccf3ab 2239static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2240{
6bccf3ab 2241 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2242 struct btrfs_root *root;
4bbcaa64
ES
2243 struct btrfs_key location;
2244 int ret;
2245
6bccf3ab
JM
2246 BUG_ON(!fs_info->tree_root);
2247
4bbcaa64
ES
2248 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2249 location.type = BTRFS_ROOT_ITEM_KEY;
2250 location.offset = 0;
2251
a4f3d2c4 2252 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2253 if (IS_ERR(root)) {
2254 ret = PTR_ERR(root);
2255 goto out;
2256 }
a4f3d2c4
DS
2257 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2258 fs_info->extent_root = root;
4bbcaa64
ES
2259
2260 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2261 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2262 if (IS_ERR(root)) {
2263 ret = PTR_ERR(root);
2264 goto out;
2265 }
a4f3d2c4
DS
2266 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2267 fs_info->dev_root = root;
4bbcaa64
ES
2268 btrfs_init_devices_late(fs_info);
2269
2270 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2271 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2272 if (IS_ERR(root)) {
2273 ret = PTR_ERR(root);
2274 goto out;
2275 }
a4f3d2c4
DS
2276 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2277 fs_info->csum_root = root;
4bbcaa64 2278
aeb935a4
QW
2279 /*
2280 * This tree can share blocks with some other fs tree during relocation
2281 * and we need a proper setup by btrfs_get_fs_root
2282 */
56e9357a
DS
2283 root = btrfs_get_fs_root(tree_root->fs_info,
2284 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4
QW
2285 if (IS_ERR(root)) {
2286 ret = PTR_ERR(root);
2287 goto out;
2288 }
2289 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2290 fs_info->data_reloc_root = root;
2291
4bbcaa64 2292 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2293 root = btrfs_read_tree_root(tree_root, &location);
2294 if (!IS_ERR(root)) {
2295 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2296 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2297 fs_info->quota_root = root;
4bbcaa64
ES
2298 }
2299
2300 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2301 root = btrfs_read_tree_root(tree_root, &location);
2302 if (IS_ERR(root)) {
2303 ret = PTR_ERR(root);
4bbcaa64 2304 if (ret != -ENOENT)
f50f4353 2305 goto out;
4bbcaa64 2306 } else {
a4f3d2c4
DS
2307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2308 fs_info->uuid_root = root;
4bbcaa64
ES
2309 }
2310
70f6d82e
OS
2311 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2312 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2313 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2314 if (IS_ERR(root)) {
2315 ret = PTR_ERR(root);
2316 goto out;
2317 }
70f6d82e
OS
2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319 fs_info->free_space_root = root;
2320 }
2321
4bbcaa64 2322 return 0;
f50f4353
LB
2323out:
2324 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2325 location.objectid, ret);
2326 return ret;
4bbcaa64
ES
2327}
2328
069ec957
QW
2329/*
2330 * Real super block validation
2331 * NOTE: super csum type and incompat features will not be checked here.
2332 *
2333 * @sb: super block to check
2334 * @mirror_num: the super block number to check its bytenr:
2335 * 0 the primary (1st) sb
2336 * 1, 2 2nd and 3rd backup copy
2337 * -1 skip bytenr check
2338 */
2339static int validate_super(struct btrfs_fs_info *fs_info,
2340 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2341{
21a852b0
QW
2342 u64 nodesize = btrfs_super_nodesize(sb);
2343 u64 sectorsize = btrfs_super_sectorsize(sb);
2344 int ret = 0;
2345
2346 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2347 btrfs_err(fs_info, "no valid FS found");
2348 ret = -EINVAL;
2349 }
2350 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2351 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2352 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2353 ret = -EINVAL;
2354 }
2355 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2356 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2357 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2358 ret = -EINVAL;
2359 }
2360 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2361 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2362 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2363 ret = -EINVAL;
2364 }
2365 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2366 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2367 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2368 ret = -EINVAL;
2369 }
2370
2371 /*
2372 * Check sectorsize and nodesize first, other check will need it.
2373 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2374 */
2375 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2376 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2377 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2378 ret = -EINVAL;
2379 }
2380 /* Only PAGE SIZE is supported yet */
2381 if (sectorsize != PAGE_SIZE) {
2382 btrfs_err(fs_info,
2383 "sectorsize %llu not supported yet, only support %lu",
2384 sectorsize, PAGE_SIZE);
2385 ret = -EINVAL;
2386 }
2387 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2388 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2389 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2390 ret = -EINVAL;
2391 }
2392 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2393 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2394 le32_to_cpu(sb->__unused_leafsize), nodesize);
2395 ret = -EINVAL;
2396 }
2397
2398 /* Root alignment check */
2399 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2400 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2401 btrfs_super_root(sb));
2402 ret = -EINVAL;
2403 }
2404 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2405 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2406 btrfs_super_chunk_root(sb));
2407 ret = -EINVAL;
2408 }
2409 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2410 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2411 btrfs_super_log_root(sb));
2412 ret = -EINVAL;
2413 }
2414
de37aa51 2415 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2416 BTRFS_FSID_SIZE) != 0) {
21a852b0 2417 btrfs_err(fs_info,
7239ff4b 2418 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2419 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2420 ret = -EINVAL;
2421 }
2422
2423 /*
2424 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2425 * done later
2426 */
2427 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2428 btrfs_err(fs_info, "bytes_used is too small %llu",
2429 btrfs_super_bytes_used(sb));
2430 ret = -EINVAL;
2431 }
2432 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2433 btrfs_err(fs_info, "invalid stripesize %u",
2434 btrfs_super_stripesize(sb));
2435 ret = -EINVAL;
2436 }
2437 if (btrfs_super_num_devices(sb) > (1UL << 31))
2438 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2439 btrfs_super_num_devices(sb));
2440 if (btrfs_super_num_devices(sb) == 0) {
2441 btrfs_err(fs_info, "number of devices is 0");
2442 ret = -EINVAL;
2443 }
2444
069ec957
QW
2445 if (mirror_num >= 0 &&
2446 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2447 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2448 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2449 ret = -EINVAL;
2450 }
2451
2452 /*
2453 * Obvious sys_chunk_array corruptions, it must hold at least one key
2454 * and one chunk
2455 */
2456 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2457 btrfs_err(fs_info, "system chunk array too big %u > %u",
2458 btrfs_super_sys_array_size(sb),
2459 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2460 ret = -EINVAL;
2461 }
2462 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2463 + sizeof(struct btrfs_chunk)) {
2464 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2465 btrfs_super_sys_array_size(sb),
2466 sizeof(struct btrfs_disk_key)
2467 + sizeof(struct btrfs_chunk));
2468 ret = -EINVAL;
2469 }
2470
2471 /*
2472 * The generation is a global counter, we'll trust it more than the others
2473 * but it's still possible that it's the one that's wrong.
2474 */
2475 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2476 btrfs_warn(fs_info,
2477 "suspicious: generation < chunk_root_generation: %llu < %llu",
2478 btrfs_super_generation(sb),
2479 btrfs_super_chunk_root_generation(sb));
2480 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2481 && btrfs_super_cache_generation(sb) != (u64)-1)
2482 btrfs_warn(fs_info,
2483 "suspicious: generation < cache_generation: %llu < %llu",
2484 btrfs_super_generation(sb),
2485 btrfs_super_cache_generation(sb));
2486
2487 return ret;
2488}
2489
069ec957
QW
2490/*
2491 * Validation of super block at mount time.
2492 * Some checks already done early at mount time, like csum type and incompat
2493 * flags will be skipped.
2494 */
2495static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2496{
2497 return validate_super(fs_info, fs_info->super_copy, 0);
2498}
2499
75cb857d
QW
2500/*
2501 * Validation of super block at write time.
2502 * Some checks like bytenr check will be skipped as their values will be
2503 * overwritten soon.
2504 * Extra checks like csum type and incompat flags will be done here.
2505 */
2506static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2507 struct btrfs_super_block *sb)
2508{
2509 int ret;
2510
2511 ret = validate_super(fs_info, sb, -1);
2512 if (ret < 0)
2513 goto out;
e7e16f48 2514 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2515 ret = -EUCLEAN;
2516 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2517 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2518 goto out;
2519 }
2520 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2521 ret = -EUCLEAN;
2522 btrfs_err(fs_info,
2523 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2524 btrfs_super_incompat_flags(sb),
2525 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2526 goto out;
2527 }
2528out:
2529 if (ret < 0)
2530 btrfs_err(fs_info,
2531 "super block corruption detected before writing it to disk");
2532 return ret;
2533}
2534
6ef108dd 2535static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2536{
6ef108dd 2537 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2538 struct btrfs_super_block *sb = fs_info->super_copy;
2539 struct btrfs_root *tree_root = fs_info->tree_root;
2540 bool handle_error = false;
2541 int ret = 0;
2542 int i;
2543
2544 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2545 u64 generation;
2546 int level;
2547
2548 if (handle_error) {
2549 if (!IS_ERR(tree_root->node))
2550 free_extent_buffer(tree_root->node);
2551 tree_root->node = NULL;
2552
2553 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2554 break;
2555
2556 free_root_pointers(fs_info, 0);
2557
2558 /*
2559 * Don't use the log in recovery mode, it won't be
2560 * valid
2561 */
2562 btrfs_set_super_log_root(sb, 0);
2563
2564 /* We can't trust the free space cache either */
2565 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2566
2567 ret = read_backup_root(fs_info, i);
6ef108dd 2568 backup_index = ret;
b8522a1e
NB
2569 if (ret < 0)
2570 return ret;
2571 }
2572 generation = btrfs_super_generation(sb);
2573 level = btrfs_super_root_level(sb);
2574 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2575 generation, level, NULL);
217f5004 2576 if (IS_ERR(tree_root->node)) {
b8522a1e 2577 handle_error = true;
217f5004
NB
2578 ret = PTR_ERR(tree_root->node);
2579 tree_root->node = NULL;
2580 btrfs_warn(fs_info, "couldn't read tree root");
2581 continue;
b8522a1e 2582
217f5004
NB
2583 } else if (!extent_buffer_uptodate(tree_root->node)) {
2584 handle_error = true;
2585 ret = -EIO;
2586 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2587 continue;
2588 }
2589
2590 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2591 tree_root->commit_root = btrfs_root_node(tree_root);
2592 btrfs_set_root_refs(&tree_root->root_item, 1);
2593
336a0d8d
NB
2594 /*
2595 * No need to hold btrfs_root::objectid_mutex since the fs
2596 * hasn't been fully initialised and we are the only user
2597 */
b8522a1e
NB
2598 ret = btrfs_find_highest_objectid(tree_root,
2599 &tree_root->highest_objectid);
2600 if (ret < 0) {
b8522a1e
NB
2601 handle_error = true;
2602 continue;
2603 }
2604
2605 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2606
2607 ret = btrfs_read_roots(fs_info);
2608 if (ret < 0) {
2609 handle_error = true;
2610 continue;
2611 }
2612
2613 /* All successful */
2614 fs_info->generation = generation;
2615 fs_info->last_trans_committed = generation;
6ef108dd
NB
2616
2617 /* Always begin writing backup roots after the one being used */
2618 if (backup_index < 0) {
2619 fs_info->backup_root_index = 0;
2620 } else {
2621 fs_info->backup_root_index = backup_index + 1;
2622 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2623 }
b8522a1e
NB
2624 break;
2625 }
2626
2627 return ret;
2628}
2629
8260edba 2630void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2631{
76dda93c 2632 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2633 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2634 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2635 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2636 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2637 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2638 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2639 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2640 spin_lock_init(&fs_info->trans_lock);
76dda93c 2641 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2642 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2643 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2644 spin_lock_init(&fs_info->super_lock);
f28491e0 2645 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2646 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2647 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2648 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2649 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2650 mutex_init(&fs_info->reloc_mutex);
573bfb72 2651 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2652 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2653
0b86a832 2654 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2655 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2656 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2657 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2658#ifdef CONFIG_BTRFS_DEBUG
2659 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2660 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2661 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2662#endif
c8bf1b67 2663 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2664 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2665 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2666 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2667 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2668 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2669 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2670 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2671 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2672 BTRFS_BLOCK_RSV_DELREFS);
2673
771ed689 2674 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2675 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2676 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2677 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2678 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2679 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2680 fs_info->metadata_ratio = 0;
4cb5300b 2681 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2682 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2683 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2684 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2685 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2686 /* readahead state */
d0164adc 2687 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2688 spin_lock_init(&fs_info->reada_lock);
fd708b81 2689 btrfs_init_ref_verify(fs_info);
c8b97818 2690
b34b086c
CM
2691 fs_info->thread_pool_size = min_t(unsigned long,
2692 num_online_cpus() + 2, 8);
0afbaf8c 2693
199c2a9c
MX
2694 INIT_LIST_HEAD(&fs_info->ordered_roots);
2695 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2696
638aa7ed 2697 btrfs_init_scrub(fs_info);
21adbd5c
SB
2698#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2699 fs_info->check_integrity_print_mask = 0;
2700#endif
779a65a4 2701 btrfs_init_balance(fs_info);
57056740 2702 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2703
0f9dd46c 2704 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2705 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2706 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2707
fe119a6e
NB
2708 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2709 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2710 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2711
5a3f23d5 2712 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2713 mutex_init(&fs_info->tree_log_mutex);
925baedd 2714 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2715 mutex_init(&fs_info->transaction_kthread_mutex);
2716 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2717 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2718 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2719 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2720 init_rwsem(&fs_info->subvol_sem);
803b2f54 2721 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2722
ad618368 2723 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2724 btrfs_init_qgroup(fs_info);
b0643e59 2725 btrfs_discard_init(fs_info);
416ac51d 2726
fa9c0d79
CM
2727 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2728 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2729
e6dcd2dc 2730 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2731 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2732 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2733 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2734 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2735
da17066c
JM
2736 /* Usable values until the real ones are cached from the superblock */
2737 fs_info->nodesize = 4096;
2738 fs_info->sectorsize = 4096;
2739 fs_info->stripesize = 4096;
2740
eede2bf3
OS
2741 spin_lock_init(&fs_info->swapfile_pins_lock);
2742 fs_info->swapfile_pins = RB_ROOT;
2743
9e967495 2744 fs_info->send_in_progress = 0;
8260edba
JB
2745}
2746
2747static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2748{
2749 int ret;
2750
2751 fs_info->sb = sb;
2752 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2753 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2754
ae18c37a
JB
2755 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2756 if (ret)
c75e8394 2757 return ret;
ae18c37a
JB
2758
2759 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2760 if (ret)
c75e8394 2761 return ret;
ae18c37a
JB
2762
2763 fs_info->dirty_metadata_batch = PAGE_SIZE *
2764 (1 + ilog2(nr_cpu_ids));
2765
2766 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2767 if (ret)
c75e8394 2768 return ret;
ae18c37a
JB
2769
2770 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2771 GFP_KERNEL);
2772 if (ret)
c75e8394 2773 return ret;
ae18c37a
JB
2774
2775 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2776 GFP_KERNEL);
c75e8394
JB
2777 if (!fs_info->delayed_root)
2778 return -ENOMEM;
ae18c37a
JB
2779 btrfs_init_delayed_root(fs_info->delayed_root);
2780
c75e8394 2781 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2782}
2783
97f4dd09
NB
2784static int btrfs_uuid_rescan_kthread(void *data)
2785{
2786 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2787 int ret;
2788
2789 /*
2790 * 1st step is to iterate through the existing UUID tree and
2791 * to delete all entries that contain outdated data.
2792 * 2nd step is to add all missing entries to the UUID tree.
2793 */
2794 ret = btrfs_uuid_tree_iterate(fs_info);
2795 if (ret < 0) {
c94bec2c
JB
2796 if (ret != -EINTR)
2797 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2798 ret);
97f4dd09
NB
2799 up(&fs_info->uuid_tree_rescan_sem);
2800 return ret;
2801 }
2802 return btrfs_uuid_scan_kthread(data);
2803}
2804
2805static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2806{
2807 struct task_struct *task;
2808
2809 down(&fs_info->uuid_tree_rescan_sem);
2810 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2811 if (IS_ERR(task)) {
2812 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2813 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2814 up(&fs_info->uuid_tree_rescan_sem);
2815 return PTR_ERR(task);
2816 }
2817
2818 return 0;
2819}
2820
ae18c37a
JB
2821int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2822 char *options)
2823{
2824 u32 sectorsize;
2825 u32 nodesize;
2826 u32 stripesize;
2827 u64 generation;
2828 u64 features;
2829 u16 csum_type;
ae18c37a
JB
2830 struct btrfs_super_block *disk_super;
2831 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2832 struct btrfs_root *tree_root;
2833 struct btrfs_root *chunk_root;
2834 int ret;
2835 int err = -EINVAL;
2836 int clear_free_space_tree = 0;
2837 int level;
2838
8260edba 2839 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2840 if (ret) {
83c8266a 2841 err = ret;
ae18c37a 2842 goto fail;
53b381b3
DW
2843 }
2844
ae18c37a
JB
2845 /* These need to be init'ed before we start creating inodes and such. */
2846 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2847 GFP_KERNEL);
2848 fs_info->tree_root = tree_root;
2849 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2850 GFP_KERNEL);
2851 fs_info->chunk_root = chunk_root;
2852 if (!tree_root || !chunk_root) {
2853 err = -ENOMEM;
c75e8394 2854 goto fail;
ae18c37a
JB
2855 }
2856
2857 fs_info->btree_inode = new_inode(sb);
2858 if (!fs_info->btree_inode) {
2859 err = -ENOMEM;
c75e8394 2860 goto fail;
ae18c37a
JB
2861 }
2862 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2863 btrfs_init_btree_inode(fs_info);
2864
3c4bb26b 2865 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2866
2867 /*
2868 * Read super block and check the signature bytes only
2869 */
8f32380d
JT
2870 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2871 if (IS_ERR(disk_super)) {
2872 err = PTR_ERR(disk_super);
16cdcec7 2873 goto fail_alloc;
20b45077 2874 }
39279cc3 2875
8dc3f22c 2876 /*
260db43c 2877 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
2878 * corrupted, we'll find out
2879 */
8f32380d 2880 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2881 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2882 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2883 csum_type);
8dc3f22c 2884 err = -EINVAL;
8f32380d 2885 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2886 goto fail_alloc;
2887 }
2888
6d97c6e3
JT
2889 ret = btrfs_init_csum_hash(fs_info, csum_type);
2890 if (ret) {
2891 err = ret;
8f32380d 2892 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2893 goto fail_alloc;
2894 }
2895
1104a885
DS
2896 /*
2897 * We want to check superblock checksum, the type is stored inside.
2898 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2899 */
8f32380d 2900 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2901 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2902 err = -EINVAL;
8f32380d 2903 btrfs_release_disk_super(disk_super);
141386e1 2904 goto fail_alloc;
1104a885
DS
2905 }
2906
2907 /*
2908 * super_copy is zeroed at allocation time and we never touch the
2909 * following bytes up to INFO_SIZE, the checksum is calculated from
2910 * the whole block of INFO_SIZE
2911 */
8f32380d
JT
2912 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2913 btrfs_release_disk_super(disk_super);
5f39d397 2914
fbc6feae
NB
2915 disk_super = fs_info->super_copy;
2916
de37aa51
NB
2917 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2918 BTRFS_FSID_SIZE));
2919
7239ff4b 2920 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2921 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2922 fs_info->super_copy->metadata_uuid,
2923 BTRFS_FSID_SIZE));
7239ff4b 2924 }
0b86a832 2925
fbc6feae
NB
2926 features = btrfs_super_flags(disk_super);
2927 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2928 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2929 btrfs_set_super_flags(disk_super, features);
2930 btrfs_info(fs_info,
2931 "found metadata UUID change in progress flag, clearing");
2932 }
2933
2934 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2935 sizeof(*fs_info->super_for_commit));
de37aa51 2936
069ec957 2937 ret = btrfs_validate_mount_super(fs_info);
1104a885 2938 if (ret) {
05135f59 2939 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2940 err = -EINVAL;
141386e1 2941 goto fail_alloc;
1104a885
DS
2942 }
2943
0f7d52f4 2944 if (!btrfs_super_root(disk_super))
141386e1 2945 goto fail_alloc;
0f7d52f4 2946
acce952b 2947 /* check FS state, whether FS is broken. */
87533c47
MX
2948 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2949 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2950
75e7cb7f
LB
2951 /*
2952 * In the long term, we'll store the compression type in the super
2953 * block, and it'll be used for per file compression control.
2954 */
2955 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2956
2ff7e61e 2957 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2958 if (ret) {
2959 err = ret;
141386e1 2960 goto fail_alloc;
2b82032c 2961 }
dfe25020 2962
f2b636e8
JB
2963 features = btrfs_super_incompat_flags(disk_super) &
2964 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2965 if (features) {
05135f59
DS
2966 btrfs_err(fs_info,
2967 "cannot mount because of unsupported optional features (%llx)",
2968 features);
f2b636e8 2969 err = -EINVAL;
141386e1 2970 goto fail_alloc;
f2b636e8
JB
2971 }
2972
5d4f98a2 2973 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2974 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2975 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2976 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2977 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2978 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2979
3173a18f 2980 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2981 btrfs_info(fs_info, "has skinny extents");
3173a18f 2982
727011e0
CM
2983 /*
2984 * flag our filesystem as having big metadata blocks if
2985 * they are bigger than the page size
2986 */
09cbfeaf 2987 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2988 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2989 btrfs_info(fs_info,
2990 "flagging fs with big metadata feature");
727011e0
CM
2991 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2992 }
2993
bc3f116f 2994 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2995 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2996 stripesize = sectorsize;
707e8a07 2997 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2998 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2999
da17066c
JM
3000 /* Cache block sizes */
3001 fs_info->nodesize = nodesize;
3002 fs_info->sectorsize = sectorsize;
3003 fs_info->stripesize = stripesize;
3004
bc3f116f
CM
3005 /*
3006 * mixed block groups end up with duplicate but slightly offset
3007 * extent buffers for the same range. It leads to corruptions
3008 */
3009 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3010 (sectorsize != nodesize)) {
05135f59
DS
3011 btrfs_err(fs_info,
3012"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3013 nodesize, sectorsize);
141386e1 3014 goto fail_alloc;
bc3f116f
CM
3015 }
3016
ceda0864
MX
3017 /*
3018 * Needn't use the lock because there is no other task which will
3019 * update the flag.
3020 */
a6fa6fae 3021 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3022
f2b636e8
JB
3023 features = btrfs_super_compat_ro_flags(disk_super) &
3024 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3025 if (!sb_rdonly(sb) && features) {
05135f59
DS
3026 btrfs_err(fs_info,
3027 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3028 features);
f2b636e8 3029 err = -EINVAL;
141386e1 3030 goto fail_alloc;
f2b636e8 3031 }
61d92c32 3032
2a458198
ES
3033 ret = btrfs_init_workqueues(fs_info, fs_devices);
3034 if (ret) {
3035 err = ret;
0dc3b84a
JB
3036 goto fail_sb_buffer;
3037 }
4543df7e 3038
9e11ceee 3039 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3040 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3041 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3042 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3043
a061fc8d
CM
3044 sb->s_blocksize = sectorsize;
3045 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3046 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3047
925baedd 3048 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3049 ret = btrfs_read_sys_array(fs_info);
925baedd 3050 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3051 if (ret) {
05135f59 3052 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3053 goto fail_sb_buffer;
84eed90f 3054 }
0b86a832 3055
84234f3a 3056 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3057 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3058
2ff7e61e 3059 chunk_root->node = read_tree_block(fs_info,
0b86a832 3060 btrfs_super_chunk_root(disk_super),
581c1760 3061 generation, level, NULL);
64c043de
LB
3062 if (IS_ERR(chunk_root->node) ||
3063 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3064 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3065 if (!IS_ERR(chunk_root->node))
3066 free_extent_buffer(chunk_root->node);
95ab1f64 3067 chunk_root->node = NULL;
af31f5e5 3068 goto fail_tree_roots;
83121942 3069 }
5d4f98a2
YZ
3070 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3071 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3072
e17cade2 3073 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3074 offsetof(struct btrfs_header, chunk_tree_uuid),
3075 BTRFS_UUID_SIZE);
e17cade2 3076
5b4aacef 3077 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3078 if (ret) {
05135f59 3079 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3080 goto fail_tree_roots;
2b82032c 3081 }
0b86a832 3082
8dabb742 3083 /*
9b99b115
AJ
3084 * Keep the devid that is marked to be the target device for the
3085 * device replace procedure
8dabb742 3086 */
9b99b115 3087 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3088
a6b0d5c8 3089 if (!fs_devices->latest_bdev) {
05135f59 3090 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3091 goto fail_tree_roots;
3092 }
3093
b8522a1e 3094 ret = init_tree_roots(fs_info);
4bbcaa64 3095 if (ret)
b8522a1e 3096 goto fail_tree_roots;
8929ecfa 3097
75ec1db8
JB
3098 /*
3099 * If we have a uuid root and we're not being told to rescan we need to
3100 * check the generation here so we can set the
3101 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3102 * transaction during a balance or the log replay without updating the
3103 * uuid generation, and then if we crash we would rescan the uuid tree,
3104 * even though it was perfectly fine.
3105 */
3106 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3107 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3108 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3109
cf90d884
QW
3110 ret = btrfs_verify_dev_extents(fs_info);
3111 if (ret) {
3112 btrfs_err(fs_info,
3113 "failed to verify dev extents against chunks: %d",
3114 ret);
3115 goto fail_block_groups;
3116 }
68310a5e
ID
3117 ret = btrfs_recover_balance(fs_info);
3118 if (ret) {
05135f59 3119 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3120 goto fail_block_groups;
3121 }
3122
733f4fbb
SB
3123 ret = btrfs_init_dev_stats(fs_info);
3124 if (ret) {
05135f59 3125 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3126 goto fail_block_groups;
3127 }
3128
8dabb742
SB
3129 ret = btrfs_init_dev_replace(fs_info);
3130 if (ret) {
05135f59 3131 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3132 goto fail_block_groups;
3133 }
3134
9b99b115 3135 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3136
c6761a9e 3137 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3138 if (ret) {
05135f59
DS
3139 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3140 ret);
b7c35e81
AJ
3141 goto fail_block_groups;
3142 }
3143
96f3136e 3144 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3145 if (ret) {
05135f59 3146 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3147 goto fail_fsdev_sysfs;
c59021f8 3148 }
3149
c59021f8 3150 ret = btrfs_init_space_info(fs_info);
3151 if (ret) {
05135f59 3152 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3153 goto fail_sysfs;
c59021f8 3154 }
3155
5b4aacef 3156 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3157 if (ret) {
05135f59 3158 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3159 goto fail_sysfs;
1b1d1f66 3160 }
4330e183 3161
6528b99d 3162 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3163 btrfs_warn(fs_info,
52042d8e 3164 "writable mount is not allowed due to too many missing devices");
2365dd3c 3165 goto fail_sysfs;
292fd7fc 3166 }
9078a3e1 3167
a74a4b97
CM
3168 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3169 "btrfs-cleaner");
57506d50 3170 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3171 goto fail_sysfs;
a74a4b97
CM
3172
3173 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3174 tree_root,
3175 "btrfs-transaction");
57506d50 3176 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3177 goto fail_cleaner;
a74a4b97 3178
583b7231 3179 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3180 !fs_info->fs_devices->rotating) {
583b7231 3181 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3182 }
3183
572d9ab7 3184 /*
01327610 3185 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3186 * not have to wait for transaction commit
3187 */
3188 btrfs_apply_pending_changes(fs_info);
3818aea2 3189
21adbd5c 3190#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3191 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3192 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3193 btrfs_test_opt(fs_info,
21adbd5c
SB
3194 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3195 1 : 0,
3196 fs_info->check_integrity_print_mask);
3197 if (ret)
05135f59
DS
3198 btrfs_warn(fs_info,
3199 "failed to initialize integrity check module: %d",
3200 ret);
21adbd5c
SB
3201 }
3202#endif
bcef60f2
AJ
3203 ret = btrfs_read_qgroup_config(fs_info);
3204 if (ret)
3205 goto fail_trans_kthread;
21adbd5c 3206
fd708b81
JB
3207 if (btrfs_build_ref_tree(fs_info))
3208 btrfs_err(fs_info, "couldn't build ref tree");
3209
96da0919
QW
3210 /* do not make disk changes in broken FS or nologreplay is given */
3211 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3212 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3213 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3214 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3215 if (ret) {
63443bf5 3216 err = ret;
28c16cbb 3217 goto fail_qgroup;
79787eaa 3218 }
e02119d5 3219 }
1a40e23b 3220
6bccf3ab 3221 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3222 if (ret)
28c16cbb 3223 goto fail_qgroup;
76dda93c 3224
bc98a42c 3225 if (!sb_rdonly(sb)) {
d68fc57b 3226 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3227 if (ret)
28c16cbb 3228 goto fail_qgroup;
90c711ab
ZB
3229
3230 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3231 ret = btrfs_recover_relocation(tree_root);
90c711ab 3232 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3233 if (ret < 0) {
05135f59
DS
3234 btrfs_warn(fs_info, "failed to recover relocation: %d",
3235 ret);
d7ce5843 3236 err = -EINVAL;
bcef60f2 3237 goto fail_qgroup;
d7ce5843 3238 }
7c2ca468 3239 }
1a40e23b 3240
56e9357a 3241 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3242 if (IS_ERR(fs_info->fs_root)) {
3243 err = PTR_ERR(fs_info->fs_root);
f50f4353 3244 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3245 fs_info->fs_root = NULL;
bcef60f2 3246 goto fail_qgroup;
3140c9a3 3247 }
c289811c 3248
bc98a42c 3249 if (sb_rdonly(sb))
2b6ba629 3250 return 0;
59641015 3251
f8d468a1
OS
3252 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3253 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3254 clear_free_space_tree = 1;
3255 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3256 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3257 btrfs_warn(fs_info, "free space tree is invalid");
3258 clear_free_space_tree = 1;
3259 }
3260
3261 if (clear_free_space_tree) {
f8d468a1
OS
3262 btrfs_info(fs_info, "clearing free space tree");
3263 ret = btrfs_clear_free_space_tree(fs_info);
3264 if (ret) {
3265 btrfs_warn(fs_info,
3266 "failed to clear free space tree: %d", ret);
6bccf3ab 3267 close_ctree(fs_info);
f8d468a1
OS
3268 return ret;
3269 }
3270 }
3271
0b246afa 3272 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3273 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3274 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3275 ret = btrfs_create_free_space_tree(fs_info);
3276 if (ret) {
05135f59
DS
3277 btrfs_warn(fs_info,
3278 "failed to create free space tree: %d", ret);
6bccf3ab 3279 close_ctree(fs_info);
511711af
CM
3280 return ret;
3281 }
3282 }
3283
2b6ba629
ID
3284 down_read(&fs_info->cleanup_work_sem);
3285 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3286 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3287 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3288 close_ctree(fs_info);
2b6ba629
ID
3289 return ret;
3290 }
3291 up_read(&fs_info->cleanup_work_sem);
59641015 3292
2b6ba629
ID
3293 ret = btrfs_resume_balance_async(fs_info);
3294 if (ret) {
05135f59 3295 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3296 close_ctree(fs_info);
2b6ba629 3297 return ret;
e3acc2a6
JB
3298 }
3299
8dabb742
SB
3300 ret = btrfs_resume_dev_replace_async(fs_info);
3301 if (ret) {
05135f59 3302 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3303 close_ctree(fs_info);
8dabb742
SB
3304 return ret;
3305 }
3306
b382a324 3307 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3308 btrfs_discard_resume(fs_info);
b382a324 3309
4bbcaa64 3310 if (!fs_info->uuid_root) {
05135f59 3311 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3312 ret = btrfs_create_uuid_tree(fs_info);
3313 if (ret) {
05135f59
DS
3314 btrfs_warn(fs_info,
3315 "failed to create the UUID tree: %d", ret);
6bccf3ab 3316 close_ctree(fs_info);
f7a81ea4
SB
3317 return ret;
3318 }
0b246afa 3319 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3320 fs_info->generation !=
3321 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3322 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3323 ret = btrfs_check_uuid_tree(fs_info);
3324 if (ret) {
05135f59
DS
3325 btrfs_warn(fs_info,
3326 "failed to check the UUID tree: %d", ret);
6bccf3ab 3327 close_ctree(fs_info);
70f80175
SB
3328 return ret;
3329 }
f7a81ea4 3330 }
afcdd129 3331 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3332
8dcddfa0
QW
3333 /*
3334 * backuproot only affect mount behavior, and if open_ctree succeeded,
3335 * no need to keep the flag
3336 */
3337 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3338
ad2b2c80 3339 return 0;
39279cc3 3340
bcef60f2
AJ
3341fail_qgroup:
3342 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3343fail_trans_kthread:
3344 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3345 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3346 btrfs_free_fs_roots(fs_info);
3f157a2f 3347fail_cleaner:
a74a4b97 3348 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3349
3350 /*
3351 * make sure we're done with the btree inode before we stop our
3352 * kthreads
3353 */
3354 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3355
2365dd3c 3356fail_sysfs:
6618a59b 3357 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3358
b7c35e81
AJ
3359fail_fsdev_sysfs:
3360 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3361
1b1d1f66 3362fail_block_groups:
54067ae9 3363 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3364
3365fail_tree_roots:
9e3aa805
JB
3366 if (fs_info->data_reloc_root)
3367 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3368 free_root_pointers(fs_info, true);
2b8195bb 3369 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3370
39279cc3 3371fail_sb_buffer:
7abadb64 3372 btrfs_stop_all_workers(fs_info);
5cdd7db6 3373 btrfs_free_block_groups(fs_info);
16cdcec7 3374fail_alloc:
586e46e2
ID
3375 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3376
4543df7e 3377 iput(fs_info->btree_inode);
7e662854 3378fail:
586e46e2 3379 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3380 return err;
eb60ceac 3381}
663faf9f 3382ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3383
314b6dd0 3384static void btrfs_end_super_write(struct bio *bio)
f2984462 3385{
314b6dd0
JT
3386 struct btrfs_device *device = bio->bi_private;
3387 struct bio_vec *bvec;
3388 struct bvec_iter_all iter_all;
3389 struct page *page;
3390
3391 bio_for_each_segment_all(bvec, bio, iter_all) {
3392 page = bvec->bv_page;
3393
3394 if (bio->bi_status) {
3395 btrfs_warn_rl_in_rcu(device->fs_info,
3396 "lost page write due to IO error on %s (%d)",
3397 rcu_str_deref(device->name),
3398 blk_status_to_errno(bio->bi_status));
3399 ClearPageUptodate(page);
3400 SetPageError(page);
3401 btrfs_dev_stat_inc_and_print(device,
3402 BTRFS_DEV_STAT_WRITE_ERRS);
3403 } else {
3404 SetPageUptodate(page);
3405 }
3406
3407 put_page(page);
3408 unlock_page(page);
f2984462 3409 }
314b6dd0
JT
3410
3411 bio_put(bio);
f2984462
CM
3412}
3413
8f32380d
JT
3414struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3415 int copy_num)
29c36d72 3416{
29c36d72 3417 struct btrfs_super_block *super;
8f32380d 3418 struct page *page;
29c36d72 3419 u64 bytenr;
8f32380d 3420 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3421
3422 bytenr = btrfs_sb_offset(copy_num);
3423 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3424 return ERR_PTR(-EINVAL);
29c36d72 3425
8f32380d
JT
3426 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3427 if (IS_ERR(page))
3428 return ERR_CAST(page);
29c36d72 3429
8f32380d 3430 super = page_address(page);
29c36d72
AJ
3431 if (btrfs_super_bytenr(super) != bytenr ||
3432 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3433 btrfs_release_disk_super(super);
3434 return ERR_PTR(-EINVAL);
29c36d72
AJ
3435 }
3436
8f32380d 3437 return super;
29c36d72
AJ
3438}
3439
3440
8f32380d 3441struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3442{
8f32380d 3443 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3444 int i;
3445 u64 transid = 0;
a512bbf8
YZ
3446
3447 /* we would like to check all the supers, but that would make
3448 * a btrfs mount succeed after a mkfs from a different FS.
3449 * So, we need to add a special mount option to scan for
3450 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3451 */
3452 for (i = 0; i < 1; i++) {
8f32380d
JT
3453 super = btrfs_read_dev_one_super(bdev, i);
3454 if (IS_ERR(super))
a512bbf8
YZ
3455 continue;
3456
a512bbf8 3457 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3458 if (latest)
3459 btrfs_release_disk_super(super);
3460
3461 latest = super;
a512bbf8 3462 transid = btrfs_super_generation(super);
a512bbf8
YZ
3463 }
3464 }
92fc03fb 3465
8f32380d 3466 return super;
a512bbf8
YZ
3467}
3468
4eedeb75 3469/*
abbb3b8e 3470 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3471 * pages we use for writing are locked.
4eedeb75 3472 *
abbb3b8e
DS
3473 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3474 * the expected device size at commit time. Note that max_mirrors must be
3475 * same for write and wait phases.
4eedeb75 3476 *
314b6dd0 3477 * Return number of errors when page is not found or submission fails.
4eedeb75 3478 */
a512bbf8 3479static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3480 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3481{
d5178578 3482 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3483 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3484 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3485 int i;
a512bbf8 3486 int errors = 0;
a512bbf8 3487 u64 bytenr;
a512bbf8
YZ
3488
3489 if (max_mirrors == 0)
3490 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3491
d5178578
JT
3492 shash->tfm = fs_info->csum_shash;
3493
a512bbf8 3494 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3495 struct page *page;
3496 struct bio *bio;
3497 struct btrfs_super_block *disk_super;
3498
a512bbf8 3499 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3500 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3501 device->commit_total_bytes)
a512bbf8
YZ
3502 break;
3503
abbb3b8e 3504 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3505
fd08001f
EB
3506 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3507 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3508 sb->csum);
4eedeb75 3509
314b6dd0
JT
3510 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3511 GFP_NOFS);
3512 if (!page) {
abbb3b8e 3513 btrfs_err(device->fs_info,
314b6dd0 3514 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3515 bytenr);
3516 errors++;
4eedeb75 3517 continue;
abbb3b8e 3518 }
634554dc 3519
314b6dd0
JT
3520 /* Bump the refcount for wait_dev_supers() */
3521 get_page(page);
a512bbf8 3522
314b6dd0
JT
3523 disk_super = page_address(page);
3524 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3525
314b6dd0
JT
3526 /*
3527 * Directly use bios here instead of relying on the page cache
3528 * to do I/O, so we don't lose the ability to do integrity
3529 * checking.
3530 */
3531 bio = bio_alloc(GFP_NOFS, 1);
3532 bio_set_dev(bio, device->bdev);
3533 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3534 bio->bi_private = device;
3535 bio->bi_end_io = btrfs_end_super_write;
3536 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3537 offset_in_page(bytenr));
a512bbf8 3538
387125fc 3539 /*
314b6dd0
JT
3540 * We FUA only the first super block. The others we allow to
3541 * go down lazy and there's a short window where the on-disk
3542 * copies might still contain the older version.
387125fc 3543 */
314b6dd0 3544 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3545 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3546 bio->bi_opf |= REQ_FUA;
3547
3548 btrfsic_submit_bio(bio);
a512bbf8
YZ
3549 }
3550 return errors < i ? 0 : -1;
3551}
3552
abbb3b8e
DS
3553/*
3554 * Wait for write completion of superblocks done by write_dev_supers,
3555 * @max_mirrors same for write and wait phases.
3556 *
314b6dd0 3557 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3558 * date.
3559 */
3560static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3561{
abbb3b8e
DS
3562 int i;
3563 int errors = 0;
b6a535fa 3564 bool primary_failed = false;
abbb3b8e
DS
3565 u64 bytenr;
3566
3567 if (max_mirrors == 0)
3568 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3569
3570 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3571 struct page *page;
3572
abbb3b8e
DS
3573 bytenr = btrfs_sb_offset(i);
3574 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3575 device->commit_total_bytes)
3576 break;
3577
314b6dd0
JT
3578 page = find_get_page(device->bdev->bd_inode->i_mapping,
3579 bytenr >> PAGE_SHIFT);
3580 if (!page) {
abbb3b8e 3581 errors++;
b6a535fa
HM
3582 if (i == 0)
3583 primary_failed = true;
abbb3b8e
DS
3584 continue;
3585 }
314b6dd0
JT
3586 /* Page is submitted locked and unlocked once the IO completes */
3587 wait_on_page_locked(page);
3588 if (PageError(page)) {
abbb3b8e 3589 errors++;
b6a535fa
HM
3590 if (i == 0)
3591 primary_failed = true;
3592 }
abbb3b8e 3593
314b6dd0
JT
3594 /* Drop our reference */
3595 put_page(page);
abbb3b8e 3596
314b6dd0
JT
3597 /* Drop the reference from the writing run */
3598 put_page(page);
abbb3b8e
DS
3599 }
3600
b6a535fa
HM
3601 /* log error, force error return */
3602 if (primary_failed) {
3603 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3604 device->devid);
3605 return -1;
3606 }
3607
abbb3b8e
DS
3608 return errors < i ? 0 : -1;
3609}
3610
387125fc
CM
3611/*
3612 * endio for the write_dev_flush, this will wake anyone waiting
3613 * for the barrier when it is done
3614 */
4246a0b6 3615static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3616{
e0ae9994 3617 complete(bio->bi_private);
387125fc
CM
3618}
3619
3620/*
4fc6441a
AJ
3621 * Submit a flush request to the device if it supports it. Error handling is
3622 * done in the waiting counterpart.
387125fc 3623 */
4fc6441a 3624static void write_dev_flush(struct btrfs_device *device)
387125fc 3625{
c2a9c7ab 3626 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3627 struct bio *bio = device->flush_bio;
387125fc 3628
c2a9c7ab 3629 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3630 return;
387125fc 3631
e0ae9994 3632 bio_reset(bio);
387125fc 3633 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3634 bio_set_dev(bio, device->bdev);
8d910125 3635 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3636 init_completion(&device->flush_wait);
3637 bio->bi_private = &device->flush_wait;
387125fc 3638
43a01111 3639 btrfsic_submit_bio(bio);
1c3063b6 3640 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3641}
387125fc 3642
4fc6441a
AJ
3643/*
3644 * If the flush bio has been submitted by write_dev_flush, wait for it.
3645 */
8c27cb35 3646static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3647{
4fc6441a 3648 struct bio *bio = device->flush_bio;
387125fc 3649
1c3063b6 3650 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3651 return BLK_STS_OK;
387125fc 3652
1c3063b6 3653 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3654 wait_for_completion_io(&device->flush_wait);
387125fc 3655
8c27cb35 3656 return bio->bi_status;
387125fc 3657}
387125fc 3658
d10b82fe 3659static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3660{
6528b99d 3661 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3662 return -EIO;
387125fc
CM
3663 return 0;
3664}
3665
3666/*
3667 * send an empty flush down to each device in parallel,
3668 * then wait for them
3669 */
3670static int barrier_all_devices(struct btrfs_fs_info *info)
3671{
3672 struct list_head *head;
3673 struct btrfs_device *dev;
5af3e8cc 3674 int errors_wait = 0;
4e4cbee9 3675 blk_status_t ret;
387125fc 3676
1538e6c5 3677 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3678 /* send down all the barriers */
3679 head = &info->fs_devices->devices;
1538e6c5 3680 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3681 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3682 continue;
cea7c8bf 3683 if (!dev->bdev)
387125fc 3684 continue;
e12c9621 3685 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3686 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3687 continue;
3688
4fc6441a 3689 write_dev_flush(dev);
58efbc9f 3690 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3691 }
3692
3693 /* wait for all the barriers */
1538e6c5 3694 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3695 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3696 continue;
387125fc 3697 if (!dev->bdev) {
5af3e8cc 3698 errors_wait++;
387125fc
CM
3699 continue;
3700 }
e12c9621 3701 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3702 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3703 continue;
3704
4fc6441a 3705 ret = wait_dev_flush(dev);
401b41e5
AJ
3706 if (ret) {
3707 dev->last_flush_error = ret;
66b4993e
DS
3708 btrfs_dev_stat_inc_and_print(dev,
3709 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3710 errors_wait++;
401b41e5
AJ
3711 }
3712 }
3713
cea7c8bf 3714 if (errors_wait) {
401b41e5
AJ
3715 /*
3716 * At some point we need the status of all disks
3717 * to arrive at the volume status. So error checking
3718 * is being pushed to a separate loop.
3719 */
d10b82fe 3720 return check_barrier_error(info);
387125fc 3721 }
387125fc
CM
3722 return 0;
3723}
3724
943c6e99
ZL
3725int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3726{
8789f4fe
ZL
3727 int raid_type;
3728 int min_tolerated = INT_MAX;
943c6e99 3729
8789f4fe
ZL
3730 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3731 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3732 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3733 btrfs_raid_array[BTRFS_RAID_SINGLE].
3734 tolerated_failures);
943c6e99 3735
8789f4fe
ZL
3736 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3737 if (raid_type == BTRFS_RAID_SINGLE)
3738 continue;
41a6e891 3739 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3740 continue;
8c3e3582 3741 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3742 btrfs_raid_array[raid_type].
3743 tolerated_failures);
3744 }
943c6e99 3745
8789f4fe 3746 if (min_tolerated == INT_MAX) {
ab8d0fc4 3747 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3748 min_tolerated = 0;
3749 }
3750
3751 return min_tolerated;
943c6e99
ZL
3752}
3753
eece6a9c 3754int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3755{
e5e9a520 3756 struct list_head *head;
f2984462 3757 struct btrfs_device *dev;
a061fc8d 3758 struct btrfs_super_block *sb;
f2984462 3759 struct btrfs_dev_item *dev_item;
f2984462
CM
3760 int ret;
3761 int do_barriers;
a236aed1
CM
3762 int max_errors;
3763 int total_errors = 0;
a061fc8d 3764 u64 flags;
f2984462 3765
0b246afa 3766 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3767
3768 /*
3769 * max_mirrors == 0 indicates we're from commit_transaction,
3770 * not from fsync where the tree roots in fs_info have not
3771 * been consistent on disk.
3772 */
3773 if (max_mirrors == 0)
3774 backup_super_roots(fs_info);
f2984462 3775
0b246afa 3776 sb = fs_info->super_for_commit;
a061fc8d 3777 dev_item = &sb->dev_item;
e5e9a520 3778
0b246afa
JM
3779 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3780 head = &fs_info->fs_devices->devices;
3781 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3782
5af3e8cc 3783 if (do_barriers) {
0b246afa 3784 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3785 if (ret) {
3786 mutex_unlock(
0b246afa
JM
3787 &fs_info->fs_devices->device_list_mutex);
3788 btrfs_handle_fs_error(fs_info, ret,
3789 "errors while submitting device barriers.");
5af3e8cc
SB
3790 return ret;
3791 }
3792 }
387125fc 3793
1538e6c5 3794 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3795 if (!dev->bdev) {
3796 total_errors++;
3797 continue;
3798 }
e12c9621 3799 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3800 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3801 continue;
3802
2b82032c 3803 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3804 btrfs_set_stack_device_type(dev_item, dev->type);
3805 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3806 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3807 dev->commit_total_bytes);
ce7213c7
MX
3808 btrfs_set_stack_device_bytes_used(dev_item,
3809 dev->commit_bytes_used);
a061fc8d
CM
3810 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3811 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3812 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3813 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3814 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3815 BTRFS_FSID_SIZE);
a512bbf8 3816
a061fc8d
CM
3817 flags = btrfs_super_flags(sb);
3818 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3819
75cb857d
QW
3820 ret = btrfs_validate_write_super(fs_info, sb);
3821 if (ret < 0) {
3822 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3823 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3824 "unexpected superblock corruption detected");
3825 return -EUCLEAN;
3826 }
3827
abbb3b8e 3828 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3829 if (ret)
3830 total_errors++;
f2984462 3831 }
a236aed1 3832 if (total_errors > max_errors) {
0b246afa
JM
3833 btrfs_err(fs_info, "%d errors while writing supers",
3834 total_errors);
3835 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3836
9d565ba4 3837 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3838 btrfs_handle_fs_error(fs_info, -EIO,
3839 "%d errors while writing supers",
3840 total_errors);
9d565ba4 3841 return -EIO;
a236aed1 3842 }
f2984462 3843
a512bbf8 3844 total_errors = 0;
1538e6c5 3845 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3846 if (!dev->bdev)
3847 continue;
e12c9621 3848 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3849 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3850 continue;
3851
abbb3b8e 3852 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3853 if (ret)
3854 total_errors++;
f2984462 3855 }
0b246afa 3856 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3857 if (total_errors > max_errors) {
0b246afa
JM
3858 btrfs_handle_fs_error(fs_info, -EIO,
3859 "%d errors while writing supers",
3860 total_errors);
79787eaa 3861 return -EIO;
a236aed1 3862 }
f2984462
CM
3863 return 0;
3864}
3865
cb517eab
MX
3866/* Drop a fs root from the radix tree and free it. */
3867void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3868 struct btrfs_root *root)
2619ba1f 3869{
4785e24f
JB
3870 bool drop_ref = false;
3871
4df27c4d 3872 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3873 radix_tree_delete(&fs_info->fs_roots_radix,
3874 (unsigned long)root->root_key.objectid);
af01d2e5 3875 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3876 drop_ref = true;
4df27c4d 3877 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3878
1c1ea4f7 3879 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3880 ASSERT(root->log_root == NULL);
1c1ea4f7 3881 if (root->reloc_root) {
00246528 3882 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3883 root->reloc_root = NULL;
3884 }
3885 }
3321719e 3886
faa2dbf0
JB
3887 if (root->free_ino_pinned)
3888 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3889 if (root->free_ino_ctl)
3890 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3891 if (root->ino_cache_inode) {
3892 iput(root->ino_cache_inode);
3893 root->ino_cache_inode = NULL;
3894 }
4785e24f
JB
3895 if (drop_ref)
3896 btrfs_put_root(root);
2619ba1f
CM
3897}
3898
c146afad 3899int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3900{
c146afad
YZ
3901 u64 root_objectid = 0;
3902 struct btrfs_root *gang[8];
65d33fd7
QW
3903 int i = 0;
3904 int err = 0;
3905 unsigned int ret = 0;
e089f05c 3906
c146afad 3907 while (1) {
efc34534 3908 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3909 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3910 (void **)gang, root_objectid,
3911 ARRAY_SIZE(gang));
65d33fd7 3912 if (!ret) {
efc34534 3913 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3914 break;
65d33fd7 3915 }
5d4f98a2 3916 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3917
c146afad 3918 for (i = 0; i < ret; i++) {
65d33fd7
QW
3919 /* Avoid to grab roots in dead_roots */
3920 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3921 gang[i] = NULL;
3922 continue;
3923 }
3924 /* grab all the search result for later use */
00246528 3925 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 3926 }
efc34534 3927 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 3928
65d33fd7
QW
3929 for (i = 0; i < ret; i++) {
3930 if (!gang[i])
3931 continue;
c146afad 3932 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3933 err = btrfs_orphan_cleanup(gang[i]);
3934 if (err)
65d33fd7 3935 break;
00246528 3936 btrfs_put_root(gang[i]);
c146afad
YZ
3937 }
3938 root_objectid++;
3939 }
65d33fd7
QW
3940
3941 /* release the uncleaned roots due to error */
3942 for (; i < ret; i++) {
3943 if (gang[i])
00246528 3944 btrfs_put_root(gang[i]);
65d33fd7
QW
3945 }
3946 return err;
c146afad 3947}
a2135011 3948
6bccf3ab 3949int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3950{
6bccf3ab 3951 struct btrfs_root *root = fs_info->tree_root;
c146afad 3952 struct btrfs_trans_handle *trans;
a74a4b97 3953
0b246afa 3954 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3955 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3956 mutex_unlock(&fs_info->cleaner_mutex);
3957 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3958
3959 /* wait until ongoing cleanup work done */
0b246afa
JM
3960 down_write(&fs_info->cleanup_work_sem);
3961 up_write(&fs_info->cleanup_work_sem);
c71bf099 3962
7a7eaa40 3963 trans = btrfs_join_transaction(root);
3612b495
TI
3964 if (IS_ERR(trans))
3965 return PTR_ERR(trans);
3a45bb20 3966 return btrfs_commit_transaction(trans);
c146afad
YZ
3967}
3968
b105e927 3969void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3970{
c146afad
YZ
3971 int ret;
3972
afcdd129 3973 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3974 /*
3975 * We don't want the cleaner to start new transactions, add more delayed
3976 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3977 * because that frees the task_struct, and the transaction kthread might
3978 * still try to wake up the cleaner.
3979 */
3980 kthread_park(fs_info->cleaner_kthread);
c146afad 3981
7343dd61 3982 /* wait for the qgroup rescan worker to stop */
d06f23d6 3983 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3984
803b2f54
SB
3985 /* wait for the uuid_scan task to finish */
3986 down(&fs_info->uuid_tree_rescan_sem);
3987 /* avoid complains from lockdep et al., set sem back to initial state */
3988 up(&fs_info->uuid_tree_rescan_sem);
3989
837d5b6e 3990 /* pause restriper - we want to resume on mount */
aa1b8cd4 3991 btrfs_pause_balance(fs_info);
837d5b6e 3992
8dabb742
SB
3993 btrfs_dev_replace_suspend_for_unmount(fs_info);
3994
aa1b8cd4 3995 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3996
3997 /* wait for any defraggers to finish */
3998 wait_event(fs_info->transaction_wait,
3999 (atomic_read(&fs_info->defrag_running) == 0));
4000
4001 /* clear out the rbtree of defraggable inodes */
26176e7c 4002 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4003
21c7e756 4004 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4005 cancel_work_sync(&fs_info->async_data_reclaim_work);
21c7e756 4006
b0643e59
DZ
4007 /* Cancel or finish ongoing discard work */
4008 btrfs_discard_cleanup(fs_info);
4009
bc98a42c 4010 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4011 /*
d6fd0ae2
OS
4012 * The cleaner kthread is stopped, so do one final pass over
4013 * unused block groups.
e44163e1 4014 */
0b246afa 4015 btrfs_delete_unused_bgs(fs_info);
e44163e1 4016
f0cc2cd7
FM
4017 /*
4018 * There might be existing delayed inode workers still running
4019 * and holding an empty delayed inode item. We must wait for
4020 * them to complete first because they can create a transaction.
4021 * This happens when someone calls btrfs_balance_delayed_items()
4022 * and then a transaction commit runs the same delayed nodes
4023 * before any delayed worker has done something with the nodes.
4024 * We must wait for any worker here and not at transaction
4025 * commit time since that could cause a deadlock.
4026 * This is a very rare case.
4027 */
4028 btrfs_flush_workqueue(fs_info->delayed_workers);
4029
6bccf3ab 4030 ret = btrfs_commit_super(fs_info);
acce952b 4031 if (ret)
04892340 4032 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4033 }
4034
af722733
LB
4035 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4036 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4037 btrfs_error_commit_super(fs_info);
0f7d52f4 4038
e3029d9f
AV
4039 kthread_stop(fs_info->transaction_kthread);
4040 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4041
e187831e 4042 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4043 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4044
5958253c
QW
4045 if (btrfs_check_quota_leak(fs_info)) {
4046 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4047 btrfs_err(fs_info, "qgroup reserved space leaked");
4048 }
4049
04892340 4050 btrfs_free_qgroup_config(fs_info);
fe816d0f 4051 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4052
963d678b 4053 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4054 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4055 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4056 }
bcc63abb 4057
4297ff84
JB
4058 if (percpu_counter_sum(&fs_info->dio_bytes))
4059 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4060 percpu_counter_sum(&fs_info->dio_bytes));
4061
6618a59b 4062 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4063 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4064
1a4319cc
LB
4065 btrfs_put_block_group_cache(fs_info);
4066
de348ee0
WS
4067 /*
4068 * we must make sure there is not any read request to
4069 * submit after we stopping all workers.
4070 */
4071 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4072 btrfs_stop_all_workers(fs_info);
4073
afcdd129 4074 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4075 free_root_pointers(fs_info, true);
8c38938c 4076 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4077
4e19443d
JB
4078 /*
4079 * We must free the block groups after dropping the fs_roots as we could
4080 * have had an IO error and have left over tree log blocks that aren't
4081 * cleaned up until the fs roots are freed. This makes the block group
4082 * accounting appear to be wrong because there's pending reserved bytes,
4083 * so make sure we do the block group cleanup afterwards.
4084 */
4085 btrfs_free_block_groups(fs_info);
4086
13e6c37b 4087 iput(fs_info->btree_inode);
d6bfde87 4088
21adbd5c 4089#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4090 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4091 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4092#endif
4093
0b86a832 4094 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4095 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4096}
4097
b9fab919
CM
4098int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4099 int atomic)
5f39d397 4100{
1259ab75 4101 int ret;
727011e0 4102 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4103
0b32f4bb 4104 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4105 if (!ret)
4106 return ret;
4107
4108 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4109 parent_transid, atomic);
4110 if (ret == -EAGAIN)
4111 return ret;
1259ab75 4112 return !ret;
5f39d397
CM
4113}
4114
5f39d397
CM
4115void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4116{
0b246afa 4117 struct btrfs_fs_info *fs_info;
06ea65a3 4118 struct btrfs_root *root;
5f39d397 4119 u64 transid = btrfs_header_generation(buf);
b9473439 4120 int was_dirty;
b4ce94de 4121
06ea65a3
JB
4122#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4123 /*
4124 * This is a fast path so only do this check if we have sanity tests
52042d8e 4125 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4126 * outside of the sanity tests.
4127 */
b0132a3b 4128 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4129 return;
4130#endif
4131 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4132 fs_info = root->fs_info;
b9447ef8 4133 btrfs_assert_tree_locked(buf);
0b246afa 4134 if (transid != fs_info->generation)
5d163e0e 4135 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4136 buf->start, transid, fs_info->generation);
0b32f4bb 4137 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4138 if (!was_dirty)
104b4e51
NB
4139 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4140 buf->len,
4141 fs_info->dirty_metadata_batch);
1f21ef0a 4142#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4143 /*
4144 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4145 * but item data not updated.
4146 * So here we should only check item pointers, not item data.
4147 */
4148 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4149 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4150 btrfs_print_leaf(buf);
1f21ef0a
FM
4151 ASSERT(0);
4152 }
4153#endif
eb60ceac
CM
4154}
4155
2ff7e61e 4156static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4157 int flush_delayed)
16cdcec7
MX
4158{
4159 /*
4160 * looks as though older kernels can get into trouble with
4161 * this code, they end up stuck in balance_dirty_pages forever
4162 */
e2d84521 4163 int ret;
16cdcec7
MX
4164
4165 if (current->flags & PF_MEMALLOC)
4166 return;
4167
b53d3f5d 4168 if (flush_delayed)
2ff7e61e 4169 btrfs_balance_delayed_items(fs_info);
16cdcec7 4170
d814a491
EL
4171 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4172 BTRFS_DIRTY_METADATA_THRESH,
4173 fs_info->dirty_metadata_batch);
e2d84521 4174 if (ret > 0) {
0b246afa 4175 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4176 }
16cdcec7
MX
4177}
4178
2ff7e61e 4179void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4180{
2ff7e61e 4181 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4182}
585ad2c3 4183
2ff7e61e 4184void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4185{
2ff7e61e 4186 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4187}
6b80053d 4188
581c1760
QW
4189int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4190 struct btrfs_key *first_key)
6b80053d 4191{
5ab12d1f 4192 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4193 level, first_key);
6b80053d 4194}
0da5468f 4195
2ff7e61e 4196static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4197{
fe816d0f
NB
4198 /* cleanup FS via transaction */
4199 btrfs_cleanup_transaction(fs_info);
4200
0b246afa 4201 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4202 btrfs_run_delayed_iputs(fs_info);
0b246afa 4203 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4204
0b246afa
JM
4205 down_write(&fs_info->cleanup_work_sem);
4206 up_write(&fs_info->cleanup_work_sem);
acce952b 4207}
4208
ef67963d
JB
4209static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4210{
4211 struct btrfs_root *gang[8];
4212 u64 root_objectid = 0;
4213 int ret;
4214
4215 spin_lock(&fs_info->fs_roots_radix_lock);
4216 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4217 (void **)gang, root_objectid,
4218 ARRAY_SIZE(gang))) != 0) {
4219 int i;
4220
4221 for (i = 0; i < ret; i++)
4222 gang[i] = btrfs_grab_root(gang[i]);
4223 spin_unlock(&fs_info->fs_roots_radix_lock);
4224
4225 for (i = 0; i < ret; i++) {
4226 if (!gang[i])
4227 continue;
4228 root_objectid = gang[i]->root_key.objectid;
4229 btrfs_free_log(NULL, gang[i]);
4230 btrfs_put_root(gang[i]);
4231 }
4232 root_objectid++;
4233 spin_lock(&fs_info->fs_roots_radix_lock);
4234 }
4235 spin_unlock(&fs_info->fs_roots_radix_lock);
4236 btrfs_free_log_root_tree(NULL, fs_info);
4237}
4238
143bede5 4239static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4240{
acce952b 4241 struct btrfs_ordered_extent *ordered;
acce952b 4242
199c2a9c 4243 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4244 /*
4245 * This will just short circuit the ordered completion stuff which will
4246 * make sure the ordered extent gets properly cleaned up.
4247 */
199c2a9c 4248 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4249 root_extent_list)
4250 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4251 spin_unlock(&root->ordered_extent_lock);
4252}
4253
4254static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4255{
4256 struct btrfs_root *root;
4257 struct list_head splice;
4258
4259 INIT_LIST_HEAD(&splice);
4260
4261 spin_lock(&fs_info->ordered_root_lock);
4262 list_splice_init(&fs_info->ordered_roots, &splice);
4263 while (!list_empty(&splice)) {
4264 root = list_first_entry(&splice, struct btrfs_root,
4265 ordered_root);
1de2cfde
JB
4266 list_move_tail(&root->ordered_root,
4267 &fs_info->ordered_roots);
199c2a9c 4268
2a85d9ca 4269 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4270 btrfs_destroy_ordered_extents(root);
4271
2a85d9ca
LB
4272 cond_resched();
4273 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4274 }
4275 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4276
4277 /*
4278 * We need this here because if we've been flipped read-only we won't
4279 * get sync() from the umount, so we need to make sure any ordered
4280 * extents that haven't had their dirty pages IO start writeout yet
4281 * actually get run and error out properly.
4282 */
4283 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4284}
4285
35a3621b 4286static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4287 struct btrfs_fs_info *fs_info)
acce952b 4288{
4289 struct rb_node *node;
4290 struct btrfs_delayed_ref_root *delayed_refs;
4291 struct btrfs_delayed_ref_node *ref;
4292 int ret = 0;
4293
4294 delayed_refs = &trans->delayed_refs;
4295
4296 spin_lock(&delayed_refs->lock);
d7df2c79 4297 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4298 spin_unlock(&delayed_refs->lock);
b79ce3dd 4299 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4300 return ret;
4301 }
4302
5c9d028b 4303 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4304 struct btrfs_delayed_ref_head *head;
0e0adbcf 4305 struct rb_node *n;
e78417d1 4306 bool pin_bytes = false;
acce952b 4307
d7df2c79
JB
4308 head = rb_entry(node, struct btrfs_delayed_ref_head,
4309 href_node);
3069bd26 4310 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4311 continue;
3069bd26 4312
d7df2c79 4313 spin_lock(&head->lock);
e3d03965 4314 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4315 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4316 ref_node);
d7df2c79 4317 ref->in_tree = 0;
e3d03965 4318 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4319 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4320 if (!list_empty(&ref->add_list))
4321 list_del(&ref->add_list);
d7df2c79
JB
4322 atomic_dec(&delayed_refs->num_entries);
4323 btrfs_put_delayed_ref(ref);
e78417d1 4324 }
d7df2c79
JB
4325 if (head->must_insert_reserved)
4326 pin_bytes = true;
4327 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4328 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4329 spin_unlock(&head->lock);
4330 spin_unlock(&delayed_refs->lock);
4331 mutex_unlock(&head->mutex);
acce952b 4332
f603bb94
NB
4333 if (pin_bytes) {
4334 struct btrfs_block_group *cache;
4335
4336 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4337 BUG_ON(!cache);
4338
4339 spin_lock(&cache->space_info->lock);
4340 spin_lock(&cache->lock);
4341 cache->pinned += head->num_bytes;
4342 btrfs_space_info_update_bytes_pinned(fs_info,
4343 cache->space_info, head->num_bytes);
4344 cache->reserved -= head->num_bytes;
4345 cache->space_info->bytes_reserved -= head->num_bytes;
4346 spin_unlock(&cache->lock);
4347 spin_unlock(&cache->space_info->lock);
4348 percpu_counter_add_batch(
4349 &cache->space_info->total_bytes_pinned,
4350 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4351
4352 btrfs_put_block_group(cache);
4353
4354 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4355 head->bytenr + head->num_bytes - 1);
4356 }
31890da0 4357 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4358 btrfs_put_delayed_ref_head(head);
acce952b 4359 cond_resched();
4360 spin_lock(&delayed_refs->lock);
4361 }
81f7eb00 4362 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4363
4364 spin_unlock(&delayed_refs->lock);
4365
4366 return ret;
4367}
4368
143bede5 4369static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4370{
4371 struct btrfs_inode *btrfs_inode;
4372 struct list_head splice;
4373
4374 INIT_LIST_HEAD(&splice);
4375
eb73c1b7
MX
4376 spin_lock(&root->delalloc_lock);
4377 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4378
4379 while (!list_empty(&splice)) {
fe816d0f 4380 struct inode *inode = NULL;
eb73c1b7
MX
4381 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4382 delalloc_inodes);
fe816d0f 4383 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4384 spin_unlock(&root->delalloc_lock);
acce952b 4385
fe816d0f
NB
4386 /*
4387 * Make sure we get a live inode and that it'll not disappear
4388 * meanwhile.
4389 */
4390 inode = igrab(&btrfs_inode->vfs_inode);
4391 if (inode) {
4392 invalidate_inode_pages2(inode->i_mapping);
4393 iput(inode);
4394 }
eb73c1b7 4395 spin_lock(&root->delalloc_lock);
acce952b 4396 }
eb73c1b7
MX
4397 spin_unlock(&root->delalloc_lock);
4398}
4399
4400static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4401{
4402 struct btrfs_root *root;
4403 struct list_head splice;
4404
4405 INIT_LIST_HEAD(&splice);
4406
4407 spin_lock(&fs_info->delalloc_root_lock);
4408 list_splice_init(&fs_info->delalloc_roots, &splice);
4409 while (!list_empty(&splice)) {
4410 root = list_first_entry(&splice, struct btrfs_root,
4411 delalloc_root);
00246528 4412 root = btrfs_grab_root(root);
eb73c1b7
MX
4413 BUG_ON(!root);
4414 spin_unlock(&fs_info->delalloc_root_lock);
4415
4416 btrfs_destroy_delalloc_inodes(root);
00246528 4417 btrfs_put_root(root);
eb73c1b7
MX
4418
4419 spin_lock(&fs_info->delalloc_root_lock);
4420 }
4421 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4422}
4423
2ff7e61e 4424static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4425 struct extent_io_tree *dirty_pages,
4426 int mark)
4427{
4428 int ret;
acce952b 4429 struct extent_buffer *eb;
4430 u64 start = 0;
4431 u64 end;
acce952b 4432
4433 while (1) {
4434 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4435 mark, NULL);
acce952b 4436 if (ret)
4437 break;
4438
91166212 4439 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4440 while (start <= end) {
0b246afa
JM
4441 eb = find_extent_buffer(fs_info, start);
4442 start += fs_info->nodesize;
fd8b2b61 4443 if (!eb)
acce952b 4444 continue;
fd8b2b61 4445 wait_on_extent_buffer_writeback(eb);
acce952b 4446
fd8b2b61
JB
4447 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4448 &eb->bflags))
4449 clear_extent_buffer_dirty(eb);
4450 free_extent_buffer_stale(eb);
acce952b 4451 }
4452 }
4453
4454 return ret;
4455}
4456
2ff7e61e 4457static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4458 struct extent_io_tree *unpin)
acce952b 4459{
acce952b 4460 u64 start;
4461 u64 end;
4462 int ret;
4463
acce952b 4464 while (1) {
0e6ec385
FM
4465 struct extent_state *cached_state = NULL;
4466
fcd5e742
LF
4467 /*
4468 * The btrfs_finish_extent_commit() may get the same range as
4469 * ours between find_first_extent_bit and clear_extent_dirty.
4470 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4471 * the same extent range.
4472 */
4473 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4474 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4475 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4476 if (ret) {
4477 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4478 break;
fcd5e742 4479 }
acce952b 4480
0e6ec385
FM
4481 clear_extent_dirty(unpin, start, end, &cached_state);
4482 free_extent_state(cached_state);
2ff7e61e 4483 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4484 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4485 cond_resched();
4486 }
4487
4488 return 0;
4489}
4490
32da5386 4491static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4492{
4493 struct inode *inode;
4494
4495 inode = cache->io_ctl.inode;
4496 if (inode) {
4497 invalidate_inode_pages2(inode->i_mapping);
4498 BTRFS_I(inode)->generation = 0;
4499 cache->io_ctl.inode = NULL;
4500 iput(inode);
4501 }
bbc37d6e 4502 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4503 btrfs_put_block_group(cache);
4504}
4505
4506void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4507 struct btrfs_fs_info *fs_info)
c79a1751 4508{
32da5386 4509 struct btrfs_block_group *cache;
c79a1751
LB
4510
4511 spin_lock(&cur_trans->dirty_bgs_lock);
4512 while (!list_empty(&cur_trans->dirty_bgs)) {
4513 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4514 struct btrfs_block_group,
c79a1751 4515 dirty_list);
c79a1751
LB
4516
4517 if (!list_empty(&cache->io_list)) {
4518 spin_unlock(&cur_trans->dirty_bgs_lock);
4519 list_del_init(&cache->io_list);
4520 btrfs_cleanup_bg_io(cache);
4521 spin_lock(&cur_trans->dirty_bgs_lock);
4522 }
4523
4524 list_del_init(&cache->dirty_list);
4525 spin_lock(&cache->lock);
4526 cache->disk_cache_state = BTRFS_DC_ERROR;
4527 spin_unlock(&cache->lock);
4528
4529 spin_unlock(&cur_trans->dirty_bgs_lock);
4530 btrfs_put_block_group(cache);
ba2c4d4e 4531 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4532 spin_lock(&cur_trans->dirty_bgs_lock);
4533 }
4534 spin_unlock(&cur_trans->dirty_bgs_lock);
4535
45ae2c18
NB
4536 /*
4537 * Refer to the definition of io_bgs member for details why it's safe
4538 * to use it without any locking
4539 */
c79a1751
LB
4540 while (!list_empty(&cur_trans->io_bgs)) {
4541 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4542 struct btrfs_block_group,
c79a1751 4543 io_list);
c79a1751
LB
4544
4545 list_del_init(&cache->io_list);
4546 spin_lock(&cache->lock);
4547 cache->disk_cache_state = BTRFS_DC_ERROR;
4548 spin_unlock(&cache->lock);
4549 btrfs_cleanup_bg_io(cache);
4550 }
4551}
4552
49b25e05 4553void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4554 struct btrfs_fs_info *fs_info)
49b25e05 4555{
bbbf7243
NB
4556 struct btrfs_device *dev, *tmp;
4557
2ff7e61e 4558 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4559 ASSERT(list_empty(&cur_trans->dirty_bgs));
4560 ASSERT(list_empty(&cur_trans->io_bgs));
4561
bbbf7243
NB
4562 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4563 post_commit_list) {
4564 list_del_init(&dev->post_commit_list);
4565 }
4566
2ff7e61e 4567 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4568
4a9d8bde 4569 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4570 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4571
4a9d8bde 4572 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4573 wake_up(&fs_info->transaction_wait);
49b25e05 4574
ccdf9b30 4575 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4576
2ff7e61e 4577 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4578 EXTENT_DIRTY);
fe119a6e 4579 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4580
4a9d8bde
MX
4581 cur_trans->state =TRANS_STATE_COMPLETED;
4582 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4583}
4584
2ff7e61e 4585static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4586{
4587 struct btrfs_transaction *t;
acce952b 4588
0b246afa 4589 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4590
0b246afa
JM
4591 spin_lock(&fs_info->trans_lock);
4592 while (!list_empty(&fs_info->trans_list)) {
4593 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4594 struct btrfs_transaction, list);
4595 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4596 refcount_inc(&t->use_count);
0b246afa 4597 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4598 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4599 btrfs_put_transaction(t);
0b246afa 4600 spin_lock(&fs_info->trans_lock);
724e2315
JB
4601 continue;
4602 }
0b246afa 4603 if (t == fs_info->running_transaction) {
724e2315 4604 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4605 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4606 /*
4607 * We wait for 0 num_writers since we don't hold a trans
4608 * handle open currently for this transaction.
4609 */
4610 wait_event(t->writer_wait,
4611 atomic_read(&t->num_writers) == 0);
4612 } else {
0b246afa 4613 spin_unlock(&fs_info->trans_lock);
724e2315 4614 }
2ff7e61e 4615 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4616
0b246afa
JM
4617 spin_lock(&fs_info->trans_lock);
4618 if (t == fs_info->running_transaction)
4619 fs_info->running_transaction = NULL;
acce952b 4620 list_del_init(&t->list);
0b246afa 4621 spin_unlock(&fs_info->trans_lock);
acce952b 4622
724e2315 4623 btrfs_put_transaction(t);
2ff7e61e 4624 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4625 spin_lock(&fs_info->trans_lock);
724e2315 4626 }
0b246afa
JM
4627 spin_unlock(&fs_info->trans_lock);
4628 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4629 btrfs_destroy_delayed_inodes(fs_info);
4630 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4631 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4632 btrfs_drop_all_logs(fs_info);
0b246afa 4633 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4634
4635 return 0;
4636}
4637
e8c9f186 4638static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4639 /* mandatory callbacks */
0b86a832 4640 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4641 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4642};