]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: add boilerplate code for directly including the crypto framework
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
eb60ceac 43
319e4d06
QW
44#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
45 BTRFS_HEADER_FLAG_RELOC |\
46 BTRFS_SUPER_FLAG_ERROR |\
47 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
48 BTRFS_SUPER_FLAG_METADUMP |\
49 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 50
e8c9f186 51static const struct extent_io_ops btree_extent_io_ops;
8b712842 52static void end_workqueue_fn(struct btrfs_work *work);
143bede5 53static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 54static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 55 struct btrfs_fs_info *fs_info);
143bede5 56static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 57static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 58 struct extent_io_tree *dirty_pages,
59 int mark);
2ff7e61e 60static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
62static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 64
d352ac68 65/*
97eb6b69
DS
66 * btrfs_end_io_wq structs are used to do processing in task context when an IO
67 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
97eb6b69 70struct btrfs_end_io_wq {
ce9adaa5
CM
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
4e4cbee9 75 blk_status_t status;
bfebd8b5 76 enum btrfs_wq_endio_type metadata;
8b712842 77 struct btrfs_work work;
ce9adaa5 78};
0da5468f 79
97eb6b69
DS
80static struct kmem_cache *btrfs_end_io_wq_cache;
81
82int __init btrfs_end_io_wq_init(void)
83{
84 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
85 sizeof(struct btrfs_end_io_wq),
86 0,
fba4b697 87 SLAB_MEM_SPREAD,
97eb6b69
DS
88 NULL);
89 if (!btrfs_end_io_wq_cache)
90 return -ENOMEM;
91 return 0;
92}
93
e67c718b 94void __cold btrfs_end_io_wq_exit(void)
97eb6b69 95{
5598e900 96 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
97}
98
d352ac68
CM
99/*
100 * async submit bios are used to offload expensive checksumming
101 * onto the worker threads. They checksum file and metadata bios
102 * just before they are sent down the IO stack.
103 */
44b8bd7e 104struct async_submit_bio {
c6100a4b 105 void *private_data;
44b8bd7e 106 struct bio *bio;
a758781d 107 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 108 int mirror_num;
eaf25d93
CM
109 /*
110 * bio_offset is optional, can be used if the pages in the bio
111 * can't tell us where in the file the bio should go
112 */
113 u64 bio_offset;
8b712842 114 struct btrfs_work work;
4e4cbee9 115 blk_status_t status;
44b8bd7e
CM
116};
117
85d4e461
CM
118/*
119 * Lockdep class keys for extent_buffer->lock's in this root. For a given
120 * eb, the lockdep key is determined by the btrfs_root it belongs to and
121 * the level the eb occupies in the tree.
122 *
123 * Different roots are used for different purposes and may nest inside each
124 * other and they require separate keysets. As lockdep keys should be
125 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
126 * by btrfs_root->root_key.objectid. This ensures that all special purpose
127 * roots have separate keysets.
4008c04a 128 *
85d4e461
CM
129 * Lock-nesting across peer nodes is always done with the immediate parent
130 * node locked thus preventing deadlock. As lockdep doesn't know this, use
131 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 132 *
85d4e461
CM
133 * The key is set by the readpage_end_io_hook after the buffer has passed
134 * csum validation but before the pages are unlocked. It is also set by
135 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 136 *
85d4e461
CM
137 * We also add a check to make sure the highest level of the tree is the
138 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
139 * needs update as well.
4008c04a
CM
140 */
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142# if BTRFS_MAX_LEVEL != 8
143# error
144# endif
85d4e461
CM
145
146static struct btrfs_lockdep_keyset {
147 u64 id; /* root objectid */
148 const char *name_stem; /* lock name stem */
149 char names[BTRFS_MAX_LEVEL + 1][20];
150 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
151} btrfs_lockdep_keysets[] = {
152 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
153 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
154 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
155 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
156 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
157 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 158 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
159 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
160 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
161 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 162 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 163 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 164 { .id = 0, .name_stem = "tree" },
4008c04a 165};
85d4e461
CM
166
167void __init btrfs_init_lockdep(void)
168{
169 int i, j;
170
171 /* initialize lockdep class names */
172 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
173 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
174
175 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
176 snprintf(ks->names[j], sizeof(ks->names[j]),
177 "btrfs-%s-%02d", ks->name_stem, j);
178 }
179}
180
181void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
182 int level)
183{
184 struct btrfs_lockdep_keyset *ks;
185
186 BUG_ON(level >= ARRAY_SIZE(ks->keys));
187
188 /* find the matching keyset, id 0 is the default entry */
189 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
190 if (ks->id == objectid)
191 break;
192
193 lockdep_set_class_and_name(&eb->lock,
194 &ks->keys[level], ks->names[level]);
195}
196
4008c04a
CM
197#endif
198
d352ac68
CM
199/*
200 * extents on the btree inode are pretty simple, there's one extent
201 * that covers the entire device
202 */
6af49dbd 203struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 204 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 205 int create)
7eccb903 206{
3ffbd68c 207 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 208 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
209 struct extent_map *em;
210 int ret;
211
890871be 212 read_lock(&em_tree->lock);
d1310b2e 213 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 214 if (em) {
0b246afa 215 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 216 read_unlock(&em_tree->lock);
5f39d397 217 goto out;
a061fc8d 218 }
890871be 219 read_unlock(&em_tree->lock);
7b13b7b1 220
172ddd60 221 em = alloc_extent_map();
5f39d397
CM
222 if (!em) {
223 em = ERR_PTR(-ENOMEM);
224 goto out;
225 }
226 em->start = 0;
0afbaf8c 227 em->len = (u64)-1;
c8b97818 228 em->block_len = (u64)-1;
5f39d397 229 em->block_start = 0;
0b246afa 230 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 231
890871be 232 write_lock(&em_tree->lock);
09a2a8f9 233 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
234 if (ret == -EEXIST) {
235 free_extent_map(em);
7b13b7b1 236 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 237 if (!em)
0433f20d 238 em = ERR_PTR(-EIO);
5f39d397 239 } else if (ret) {
7b13b7b1 240 free_extent_map(em);
0433f20d 241 em = ERR_PTR(ret);
5f39d397 242 }
890871be 243 write_unlock(&em_tree->lock);
7b13b7b1 244
5f39d397
CM
245out:
246 return em;
7eccb903
CM
247}
248
9ed57367 249u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 250{
9678c543 251 return crc32c(seed, data, len);
19c00ddc
CM
252}
253
0b5e3daf 254void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 255{
7e75bf3f 256 put_unaligned_le32(~crc, result);
19c00ddc
CM
257}
258
d352ac68 259/*
2996e1f8
JT
260 * Compute the csum of a btree block and store the result to provided buffer.
261 *
262 * Returns error if the extent buffer cannot be mapped.
d352ac68 263 */
2996e1f8 264static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 265{
19c00ddc
CM
266 unsigned long len;
267 unsigned long cur_len;
268 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
269 char *kaddr;
270 unsigned long map_start;
271 unsigned long map_len;
272 int err;
273 u32 crc = ~(u32)0;
274
275 len = buf->len - offset;
d397712b 276 while (len > 0) {
d2e174d5
JT
277 /*
278 * Note: we don't need to check for the err == 1 case here, as
279 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
280 * and 'min_len = 32' and the currently implemented mapping
281 * algorithm we cannot cross a page boundary.
282 */
19c00ddc 283 err = map_private_extent_buffer(buf, offset, 32,
a6591715 284 &kaddr, &map_start, &map_len);
c53839fc 285 if (WARN_ON(err))
8bd98f0e 286 return err;
19c00ddc 287 cur_len = min(len, map_len - (offset - map_start));
b0496686 288 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
289 crc, cur_len);
290 len -= cur_len;
291 offset += cur_len;
19c00ddc 292 }
71a63551 293 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 294
19c00ddc
CM
295 btrfs_csum_final(crc, result);
296
19c00ddc
CM
297 return 0;
298}
299
d352ac68
CM
300/*
301 * we can't consider a given block up to date unless the transid of the
302 * block matches the transid in the parent node's pointer. This is how we
303 * detect blocks that either didn't get written at all or got written
304 * in the wrong place.
305 */
1259ab75 306static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
307 struct extent_buffer *eb, u64 parent_transid,
308 int atomic)
1259ab75 309{
2ac55d41 310 struct extent_state *cached_state = NULL;
1259ab75 311 int ret;
2755a0de 312 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
313
314 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
315 return 0;
316
b9fab919
CM
317 if (atomic)
318 return -EAGAIN;
319
a26e8c9f
JB
320 if (need_lock) {
321 btrfs_tree_read_lock(eb);
300aa896 322 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
323 }
324
2ac55d41 325 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 326 &cached_state);
0b32f4bb 327 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
328 btrfs_header_generation(eb) == parent_transid) {
329 ret = 0;
330 goto out;
331 }
94647322
DS
332 btrfs_err_rl(eb->fs_info,
333 "parent transid verify failed on %llu wanted %llu found %llu",
334 eb->start,
29549aec 335 parent_transid, btrfs_header_generation(eb));
1259ab75 336 ret = 1;
a26e8c9f
JB
337
338 /*
339 * Things reading via commit roots that don't have normal protection,
340 * like send, can have a really old block in cache that may point at a
01327610 341 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
342 * if we find an eb that is under IO (dirty/writeback) because we could
343 * end up reading in the stale data and then writing it back out and
344 * making everybody very sad.
345 */
346 if (!extent_buffer_under_io(eb))
347 clear_extent_buffer_uptodate(eb);
33958dc6 348out:
2ac55d41 349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 350 &cached_state);
472b909f
JB
351 if (need_lock)
352 btrfs_tree_read_unlock_blocking(eb);
1259ab75 353 return ret;
1259ab75
CM
354}
355
e7e16f48
JT
356static bool btrfs_supported_super_csum(u16 csum_type)
357{
358 switch (csum_type) {
359 case BTRFS_CSUM_TYPE_CRC32:
360 return true;
361 default:
362 return false;
363 }
364}
365
1104a885
DS
366/*
367 * Return 0 if the superblock checksum type matches the checksum value of that
368 * algorithm. Pass the raw disk superblock data.
369 */
ab8d0fc4
JM
370static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
371 char *raw_disk_sb)
1104a885
DS
372{
373 struct btrfs_super_block *disk_sb =
374 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9
JT
375 u32 crc = ~(u32)0;
376 char result[BTRFS_CSUM_SIZE];
1104a885 377
51bce6c9
JT
378 /*
379 * The super_block structure does not span the whole
380 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
381 * filled with zeros and is included in the checksum.
382 */
383 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
384 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
385 btrfs_csum_final(crc, result);
1104a885 386
51bce6c9
JT
387 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
388 return 1;
1104a885 389
e7e16f48 390 return 0;
1104a885
DS
391}
392
e064d5e9 393int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 394 struct btrfs_key *first_key, u64 parent_transid)
581c1760 395{
e064d5e9 396 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
397 int found_level;
398 struct btrfs_key found_key;
399 int ret;
400
401 found_level = btrfs_header_level(eb);
402 if (found_level != level) {
63489055
QW
403 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
404 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
405 btrfs_err(fs_info,
406"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
407 eb->start, level, found_level);
581c1760
QW
408 return -EIO;
409 }
410
411 if (!first_key)
412 return 0;
413
5d41be6f
QW
414 /*
415 * For live tree block (new tree blocks in current transaction),
416 * we need proper lock context to avoid race, which is impossible here.
417 * So we only checks tree blocks which is read from disk, whose
418 * generation <= fs_info->last_trans_committed.
419 */
420 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
421 return 0;
581c1760
QW
422 if (found_level)
423 btrfs_node_key_to_cpu(eb, &found_key, 0);
424 else
425 btrfs_item_key_to_cpu(eb, &found_key, 0);
426 ret = btrfs_comp_cpu_keys(first_key, &found_key);
427
581c1760 428 if (ret) {
63489055
QW
429 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
430 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 431 btrfs_err(fs_info,
ff76a864
LB
432"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
433 eb->start, parent_transid, first_key->objectid,
434 first_key->type, first_key->offset,
435 found_key.objectid, found_key.type,
436 found_key.offset);
581c1760 437 }
581c1760
QW
438 return ret;
439}
440
d352ac68
CM
441/*
442 * helper to read a given tree block, doing retries as required when
443 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
444 *
445 * @parent_transid: expected transid, skip check if 0
446 * @level: expected level, mandatory check
447 * @first_key: expected key of first slot, skip check if NULL
d352ac68 448 */
5ab12d1f 449static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
450 u64 parent_transid, int level,
451 struct btrfs_key *first_key)
f188591e 452{
5ab12d1f 453 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 454 struct extent_io_tree *io_tree;
ea466794 455 int failed = 0;
f188591e
CM
456 int ret;
457 int num_copies = 0;
458 int mirror_num = 0;
ea466794 459 int failed_mirror = 0;
f188591e 460
0b246afa 461 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 462 while (1) {
f8397d69 463 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 464 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 465 if (!ret) {
581c1760 466 if (verify_parent_transid(io_tree, eb,
b9fab919 467 parent_transid, 0))
256dd1bb 468 ret = -EIO;
e064d5e9 469 else if (btrfs_verify_level_key(eb, level,
448de471 470 first_key, parent_transid))
581c1760
QW
471 ret = -EUCLEAN;
472 else
473 break;
256dd1bb 474 }
d397712b 475
0b246afa 476 num_copies = btrfs_num_copies(fs_info,
f188591e 477 eb->start, eb->len);
4235298e 478 if (num_copies == 1)
ea466794 479 break;
4235298e 480
5cf1ab56
JB
481 if (!failed_mirror) {
482 failed = 1;
483 failed_mirror = eb->read_mirror;
484 }
485
f188591e 486 mirror_num++;
ea466794
JB
487 if (mirror_num == failed_mirror)
488 mirror_num++;
489
4235298e 490 if (mirror_num > num_copies)
ea466794 491 break;
f188591e 492 }
ea466794 493
c0901581 494 if (failed && !ret && failed_mirror)
20a1fbf9 495 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
496
497 return ret;
f188591e 498}
19c00ddc 499
d352ac68 500/*
d397712b
CM
501 * checksum a dirty tree block before IO. This has extra checks to make sure
502 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 503 */
d397712b 504
01d58472 505static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 506{
4eee4fa4 507 u64 start = page_offset(page);
19c00ddc 508 u64 found_start;
2996e1f8
JT
509 u8 result[BTRFS_CSUM_SIZE];
510 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 511 struct extent_buffer *eb;
8d47a0d8 512 int ret;
f188591e 513
4f2de97a
JB
514 eb = (struct extent_buffer *)page->private;
515 if (page != eb->pages[0])
516 return 0;
0f805531 517
19c00ddc 518 found_start = btrfs_header_bytenr(eb);
0f805531
AL
519 /*
520 * Please do not consolidate these warnings into a single if.
521 * It is useful to know what went wrong.
522 */
523 if (WARN_ON(found_start != start))
524 return -EUCLEAN;
525 if (WARN_ON(!PageUptodate(page)))
526 return -EUCLEAN;
527
de37aa51 528 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
529 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
530
2996e1f8
JT
531 if (csum_tree_block(eb, result))
532 return -EINVAL;
533
8d47a0d8
QW
534 if (btrfs_header_level(eb))
535 ret = btrfs_check_node(eb);
536 else
537 ret = btrfs_check_leaf_full(eb);
538
539 if (ret < 0) {
540 btrfs_err(fs_info,
541 "block=%llu write time tree block corruption detected",
542 eb->start);
543 return ret;
544 }
2996e1f8 545 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 546
2996e1f8 547 return 0;
19c00ddc
CM
548}
549
b0c9b3b0 550static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 551{
b0c9b3b0 552 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 553 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 554 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
555 int ret = 1;
556
0a4e5586 557 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 558 while (fs_devices) {
7239ff4b
NB
559 u8 *metadata_uuid;
560
561 /*
562 * Checking the incompat flag is only valid for the current
563 * fs. For seed devices it's forbidden to have their uuid
564 * changed so reading ->fsid in this case is fine
565 */
566 if (fs_devices == fs_info->fs_devices &&
567 btrfs_fs_incompat(fs_info, METADATA_UUID))
568 metadata_uuid = fs_devices->metadata_uuid;
569 else
570 metadata_uuid = fs_devices->fsid;
571
572 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
573 ret = 0;
574 break;
575 }
576 fs_devices = fs_devices->seed;
577 }
578 return ret;
579}
580
facc8a22
MX
581static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
582 u64 phy_offset, struct page *page,
583 u64 start, u64 end, int mirror)
ce9adaa5 584{
ce9adaa5
CM
585 u64 found_start;
586 int found_level;
ce9adaa5
CM
587 struct extent_buffer *eb;
588 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 589 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 590 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 591 int ret = 0;
2996e1f8 592 u8 result[BTRFS_CSUM_SIZE];
727011e0 593 int reads_done;
ce9adaa5 594
ce9adaa5
CM
595 if (!page->private)
596 goto out;
d397712b 597
4f2de97a 598 eb = (struct extent_buffer *)page->private;
d397712b 599
0b32f4bb
JB
600 /* the pending IO might have been the only thing that kept this buffer
601 * in memory. Make sure we have a ref for all this other checks
602 */
603 extent_buffer_get(eb);
604
605 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
606 if (!reads_done)
607 goto err;
f188591e 608
5cf1ab56 609 eb->read_mirror = mirror;
656f30db 610 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
611 ret = -EIO;
612 goto err;
613 }
614
ce9adaa5 615 found_start = btrfs_header_bytenr(eb);
727011e0 616 if (found_start != eb->start) {
893bf4b1
SY
617 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
618 eb->start, found_start);
f188591e 619 ret = -EIO;
ce9adaa5
CM
620 goto err;
621 }
b0c9b3b0 622 if (check_tree_block_fsid(eb)) {
02873e43
ZL
623 btrfs_err_rl(fs_info, "bad fsid on block %llu",
624 eb->start);
1259ab75
CM
625 ret = -EIO;
626 goto err;
627 }
ce9adaa5 628 found_level = btrfs_header_level(eb);
1c24c3ce 629 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
630 btrfs_err(fs_info, "bad tree block level %d on %llu",
631 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
632 ret = -EIO;
633 goto err;
634 }
ce9adaa5 635
85d4e461
CM
636 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
637 eb, found_level);
4008c04a 638
2996e1f8 639 ret = csum_tree_block(eb, result);
8bd98f0e 640 if (ret)
a826d6dc 641 goto err;
a826d6dc 642
2996e1f8
JT
643 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
644 u32 val;
645 u32 found = 0;
646
647 memcpy(&found, result, csum_size);
648
649 read_extent_buffer(eb, &val, 0, csum_size);
650 btrfs_warn_rl(fs_info,
651 "%s checksum verify failed on %llu wanted %x found %x level %d",
652 fs_info->sb->s_id, eb->start,
653 val, found, btrfs_header_level(eb));
654 ret = -EUCLEAN;
655 goto err;
656 }
657
a826d6dc
JB
658 /*
659 * If this is a leaf block and it is corrupt, set the corrupt bit so
660 * that we don't try and read the other copies of this block, just
661 * return -EIO.
662 */
1c4360ee 663 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
664 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
665 ret = -EIO;
666 }
ce9adaa5 667
813fd1dc 668 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
669 ret = -EIO;
670
0b32f4bb
JB
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
75391f0d
QW
673 else
674 btrfs_err(fs_info,
675 "block=%llu read time tree block corruption detected",
676 eb->start);
ce9adaa5 677err:
79fb65a1
JB
678 if (reads_done &&
679 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 680 btree_readahead_hook(eb, ret);
4bb31e92 681
53b381b3
DW
682 if (ret) {
683 /*
684 * our io error hook is going to dec the io pages
685 * again, we have to make sure it has something
686 * to decrement
687 */
688 atomic_inc(&eb->io_pages);
0b32f4bb 689 clear_extent_buffer_uptodate(eb);
53b381b3 690 }
0b32f4bb 691 free_extent_buffer(eb);
ce9adaa5 692out:
f188591e 693 return ret;
ce9adaa5
CM
694}
695
4246a0b6 696static void end_workqueue_bio(struct bio *bio)
ce9adaa5 697{
97eb6b69 698 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 699 struct btrfs_fs_info *fs_info;
9e0af237
LB
700 struct btrfs_workqueue *wq;
701 btrfs_work_func_t func;
ce9adaa5 702
ce9adaa5 703 fs_info = end_io_wq->info;
4e4cbee9 704 end_io_wq->status = bio->bi_status;
d20f7043 705
37226b21 706 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
707 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
708 wq = fs_info->endio_meta_write_workers;
709 func = btrfs_endio_meta_write_helper;
710 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
711 wq = fs_info->endio_freespace_worker;
712 func = btrfs_freespace_write_helper;
713 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
714 wq = fs_info->endio_raid56_workers;
715 func = btrfs_endio_raid56_helper;
716 } else {
717 wq = fs_info->endio_write_workers;
718 func = btrfs_endio_write_helper;
719 }
d20f7043 720 } else {
8b110e39
MX
721 if (unlikely(end_io_wq->metadata ==
722 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
723 wq = fs_info->endio_repair_workers;
724 func = btrfs_endio_repair_helper;
725 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
726 wq = fs_info->endio_raid56_workers;
727 func = btrfs_endio_raid56_helper;
728 } else if (end_io_wq->metadata) {
729 wq = fs_info->endio_meta_workers;
730 func = btrfs_endio_meta_helper;
731 } else {
732 wq = fs_info->endio_workers;
733 func = btrfs_endio_helper;
734 }
d20f7043 735 }
9e0af237
LB
736
737 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
738 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
739}
740
4e4cbee9 741blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 742 enum btrfs_wq_endio_type metadata)
0b86a832 743{
97eb6b69 744 struct btrfs_end_io_wq *end_io_wq;
8b110e39 745
97eb6b69 746 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 747 if (!end_io_wq)
4e4cbee9 748 return BLK_STS_RESOURCE;
ce9adaa5
CM
749
750 end_io_wq->private = bio->bi_private;
751 end_io_wq->end_io = bio->bi_end_io;
22c59948 752 end_io_wq->info = info;
4e4cbee9 753 end_io_wq->status = 0;
ce9adaa5 754 end_io_wq->bio = bio;
22c59948 755 end_io_wq->metadata = metadata;
ce9adaa5
CM
756
757 bio->bi_private = end_io_wq;
758 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
759 return 0;
760}
761
4a69a410
CM
762static void run_one_async_start(struct btrfs_work *work)
763{
4a69a410 764 struct async_submit_bio *async;
4e4cbee9 765 blk_status_t ret;
4a69a410
CM
766
767 async = container_of(work, struct async_submit_bio, work);
c6100a4b 768 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
769 async->bio_offset);
770 if (ret)
4e4cbee9 771 async->status = ret;
4a69a410
CM
772}
773
06ea01b1
DS
774/*
775 * In order to insert checksums into the metadata in large chunks, we wait
776 * until bio submission time. All the pages in the bio are checksummed and
777 * sums are attached onto the ordered extent record.
778 *
779 * At IO completion time the csums attached on the ordered extent record are
780 * inserted into the tree.
781 */
4a69a410 782static void run_one_async_done(struct btrfs_work *work)
8b712842 783{
8b712842 784 struct async_submit_bio *async;
06ea01b1
DS
785 struct inode *inode;
786 blk_status_t ret;
8b712842
CM
787
788 async = container_of(work, struct async_submit_bio, work);
06ea01b1 789 inode = async->private_data;
4854ddd0 790
bb7ab3b9 791 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
792 if (async->status) {
793 async->bio->bi_status = async->status;
4246a0b6 794 bio_endio(async->bio);
79787eaa
JM
795 return;
796 }
797
06ea01b1
DS
798 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
799 async->mirror_num, 1);
800 if (ret) {
801 async->bio->bi_status = ret;
802 bio_endio(async->bio);
803 }
4a69a410
CM
804}
805
806static void run_one_async_free(struct btrfs_work *work)
807{
808 struct async_submit_bio *async;
809
810 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
811 kfree(async);
812}
813
8c27cb35
LT
814blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
815 int mirror_num, unsigned long bio_flags,
816 u64 bio_offset, void *private_data,
e288c080 817 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
818{
819 struct async_submit_bio *async;
820
821 async = kmalloc(sizeof(*async), GFP_NOFS);
822 if (!async)
4e4cbee9 823 return BLK_STS_RESOURCE;
44b8bd7e 824
c6100a4b 825 async->private_data = private_data;
44b8bd7e
CM
826 async->bio = bio;
827 async->mirror_num = mirror_num;
4a69a410 828 async->submit_bio_start = submit_bio_start;
4a69a410 829
9e0af237 830 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 831 run_one_async_done, run_one_async_free);
4a69a410 832
eaf25d93 833 async->bio_offset = bio_offset;
8c8bee1d 834
4e4cbee9 835 async->status = 0;
79787eaa 836
67f055c7 837 if (op_is_sync(bio->bi_opf))
5cdc7ad3 838 btrfs_set_work_high_priority(&async->work);
d313d7a3 839
5cdc7ad3 840 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
841 return 0;
842}
843
4e4cbee9 844static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 845{
2c30c71b 846 struct bio_vec *bvec;
ce3ed71a 847 struct btrfs_root *root;
2b070cfe 848 int ret = 0;
6dc4f100 849 struct bvec_iter_all iter_all;
ce3ed71a 850
c09abff8 851 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 852 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 853 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 854 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
855 if (ret)
856 break;
ce3ed71a 857 }
2c30c71b 858
4e4cbee9 859 return errno_to_blk_status(ret);
ce3ed71a
CM
860}
861
d0ee3934 862static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 863 u64 bio_offset)
22c59948 864{
8b712842
CM
865 /*
866 * when we're called for a write, we're already in the async
5443be45 867 * submission context. Just jump into btrfs_map_bio
8b712842 868 */
79787eaa 869 return btree_csum_one_bio(bio);
4a69a410 870}
22c59948 871
9b4e675a
DS
872static int check_async_write(struct btrfs_fs_info *fs_info,
873 struct btrfs_inode *bi)
de0022b9 874{
6300463b
LB
875 if (atomic_read(&bi->sync_writers))
876 return 0;
9b4e675a 877 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 878 return 0;
de0022b9
JB
879 return 1;
880}
881
a56b1c7b 882static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
883 int mirror_num,
884 unsigned long bio_flags)
44b8bd7e 885{
0b246afa 886 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 887 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 888 blk_status_t ret;
cad321ad 889
37226b21 890 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
891 /*
892 * called for a read, do the setup so that checksum validation
893 * can happen in the async kernel threads
894 */
0b246afa
JM
895 ret = btrfs_bio_wq_end_io(fs_info, bio,
896 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 897 if (ret)
61891923 898 goto out_w_error;
2ff7e61e 899 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
900 } else if (!async) {
901 ret = btree_csum_one_bio(bio);
902 if (ret)
61891923 903 goto out_w_error;
2ff7e61e 904 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
905 } else {
906 /*
907 * kthread helpers are used to submit writes so that
908 * checksumming can happen in parallel across all CPUs
909 */
c6100a4b 910 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 911 0, inode, btree_submit_bio_start);
44b8bd7e 912 }
d313d7a3 913
4246a0b6
CH
914 if (ret)
915 goto out_w_error;
916 return 0;
917
61891923 918out_w_error:
4e4cbee9 919 bio->bi_status = ret;
4246a0b6 920 bio_endio(bio);
61891923 921 return ret;
44b8bd7e
CM
922}
923
3dd1462e 924#ifdef CONFIG_MIGRATION
784b4e29 925static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
926 struct page *newpage, struct page *page,
927 enum migrate_mode mode)
784b4e29
CM
928{
929 /*
930 * we can't safely write a btree page from here,
931 * we haven't done the locking hook
932 */
933 if (PageDirty(page))
934 return -EAGAIN;
935 /*
936 * Buffers may be managed in a filesystem specific way.
937 * We must have no buffers or drop them.
938 */
939 if (page_has_private(page) &&
940 !try_to_release_page(page, GFP_KERNEL))
941 return -EAGAIN;
a6bc32b8 942 return migrate_page(mapping, newpage, page, mode);
784b4e29 943}
3dd1462e 944#endif
784b4e29 945
0da5468f
CM
946
947static int btree_writepages(struct address_space *mapping,
948 struct writeback_control *wbc)
949{
e2d84521
MX
950 struct btrfs_fs_info *fs_info;
951 int ret;
952
d8d5f3e1 953 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
954
955 if (wbc->for_kupdate)
956 return 0;
957
e2d84521 958 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 959 /* this is a bit racy, but that's ok */
d814a491
EL
960 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
961 BTRFS_DIRTY_METADATA_THRESH,
962 fs_info->dirty_metadata_batch);
e2d84521 963 if (ret < 0)
793955bc 964 return 0;
793955bc 965 }
0b32f4bb 966 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
967}
968
b2950863 969static int btree_readpage(struct file *file, struct page *page)
5f39d397 970{
d1310b2e
CM
971 struct extent_io_tree *tree;
972 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 973 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 974}
22b0ebda 975
70dec807 976static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 977{
98509cfc 978 if (PageWriteback(page) || PageDirty(page))
d397712b 979 return 0;
0c4e538b 980
f7a52a40 981 return try_release_extent_buffer(page);
d98237b3
CM
982}
983
d47992f8
LC
984static void btree_invalidatepage(struct page *page, unsigned int offset,
985 unsigned int length)
d98237b3 986{
d1310b2e
CM
987 struct extent_io_tree *tree;
988 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
989 extent_invalidatepage(tree, page, offset);
990 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 991 if (PagePrivate(page)) {
efe120a0
FH
992 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
993 "page private not zero on page %llu",
994 (unsigned long long)page_offset(page));
9ad6b7bc
CM
995 ClearPagePrivate(page);
996 set_page_private(page, 0);
09cbfeaf 997 put_page(page);
9ad6b7bc 998 }
d98237b3
CM
999}
1000
0b32f4bb
JB
1001static int btree_set_page_dirty(struct page *page)
1002{
bb146eb2 1003#ifdef DEBUG
0b32f4bb
JB
1004 struct extent_buffer *eb;
1005
1006 BUG_ON(!PagePrivate(page));
1007 eb = (struct extent_buffer *)page->private;
1008 BUG_ON(!eb);
1009 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1010 BUG_ON(!atomic_read(&eb->refs));
1011 btrfs_assert_tree_locked(eb);
bb146eb2 1012#endif
0b32f4bb
JB
1013 return __set_page_dirty_nobuffers(page);
1014}
1015
7f09410b 1016static const struct address_space_operations btree_aops = {
d98237b3 1017 .readpage = btree_readpage,
0da5468f 1018 .writepages = btree_writepages,
5f39d397
CM
1019 .releasepage = btree_releasepage,
1020 .invalidatepage = btree_invalidatepage,
5a92bc88 1021#ifdef CONFIG_MIGRATION
784b4e29 1022 .migratepage = btree_migratepage,
5a92bc88 1023#endif
0b32f4bb 1024 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1025};
1026
2ff7e61e 1027void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1028{
5f39d397 1029 struct extent_buffer *buf = NULL;
537f38f0 1030 int ret;
090d1875 1031
2ff7e61e 1032 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1033 if (IS_ERR(buf))
6197d86e 1034 return;
537f38f0 1035
c2ccfbc6 1036 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1037 if (ret < 0)
1038 free_extent_buffer_stale(buf);
1039 else
1040 free_extent_buffer(buf);
090d1875
CM
1041}
1042
2ff7e61e 1043int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1044 int mirror_num, struct extent_buffer **eb)
1045{
1046 struct extent_buffer *buf = NULL;
ab0fff03
AJ
1047 int ret;
1048
2ff7e61e 1049 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1050 if (IS_ERR(buf))
ab0fff03
AJ
1051 return 0;
1052
1053 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1054
c2ccfbc6 1055 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
ab0fff03 1056 if (ret) {
537f38f0 1057 free_extent_buffer_stale(buf);
ab0fff03
AJ
1058 return ret;
1059 }
1060
1061 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
537f38f0 1062 free_extent_buffer_stale(buf);
ab0fff03 1063 return -EIO;
0b32f4bb 1064 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1065 *eb = buf;
1066 } else {
1067 free_extent_buffer(buf);
1068 }
1069 return 0;
1070}
1071
2ff7e61e
JM
1072struct extent_buffer *btrfs_find_create_tree_block(
1073 struct btrfs_fs_info *fs_info,
1074 u64 bytenr)
0999df54 1075{
0b246afa
JM
1076 if (btrfs_is_testing(fs_info))
1077 return alloc_test_extent_buffer(fs_info, bytenr);
1078 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1079}
1080
581c1760
QW
1081/*
1082 * Read tree block at logical address @bytenr and do variant basic but critical
1083 * verification.
1084 *
1085 * @parent_transid: expected transid of this tree block, skip check if 0
1086 * @level: expected level, mandatory check
1087 * @first_key: expected key in slot 0, skip check if NULL
1088 */
2ff7e61e 1089struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1090 u64 parent_transid, int level,
1091 struct btrfs_key *first_key)
0999df54
CM
1092{
1093 struct extent_buffer *buf = NULL;
0999df54
CM
1094 int ret;
1095
2ff7e61e 1096 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1097 if (IS_ERR(buf))
1098 return buf;
0999df54 1099
5ab12d1f 1100 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1101 level, first_key);
0f0fe8f7 1102 if (ret) {
537f38f0 1103 free_extent_buffer_stale(buf);
64c043de 1104 return ERR_PTR(ret);
0f0fe8f7 1105 }
5f39d397 1106 return buf;
ce9adaa5 1107
eb60ceac
CM
1108}
1109
6a884d7d 1110void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1111{
6a884d7d 1112 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1113 if (btrfs_header_generation(buf) ==
e2d84521 1114 fs_info->running_transaction->transid) {
b9447ef8 1115 btrfs_assert_tree_locked(buf);
b4ce94de 1116
b9473439 1117 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1118 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1119 -buf->len,
1120 fs_info->dirty_metadata_batch);
ed7b63eb 1121 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1122 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1123 clear_extent_buffer_dirty(buf);
1124 }
925baedd 1125 }
5f39d397
CM
1126}
1127
8257b2dc
MX
1128static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1129{
1130 struct btrfs_subvolume_writers *writers;
1131 int ret;
1132
1133 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1134 if (!writers)
1135 return ERR_PTR(-ENOMEM);
1136
8a5a916d 1137 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1138 if (ret < 0) {
1139 kfree(writers);
1140 return ERR_PTR(ret);
1141 }
1142
1143 init_waitqueue_head(&writers->wait);
1144 return writers;
1145}
1146
1147static void
1148btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1149{
1150 percpu_counter_destroy(&writers->counter);
1151 kfree(writers);
1152}
1153
da17066c 1154static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1155 u64 objectid)
d97e63b6 1156{
7c0260ee 1157 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1158 root->node = NULL;
a28ec197 1159 root->commit_root = NULL;
27cdeb70 1160 root->state = 0;
d68fc57b 1161 root->orphan_cleanup_state = 0;
0b86a832 1162
0f7d52f4 1163 root->last_trans = 0;
13a8a7c8 1164 root->highest_objectid = 0;
eb73c1b7 1165 root->nr_delalloc_inodes = 0;
199c2a9c 1166 root->nr_ordered_extents = 0;
6bef4d31 1167 root->inode_tree = RB_ROOT;
16cdcec7 1168 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1169 root->block_rsv = NULL;
0b86a832
CM
1170
1171 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1172 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1173 INIT_LIST_HEAD(&root->delalloc_inodes);
1174 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1175 INIT_LIST_HEAD(&root->ordered_extents);
1176 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1177 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1178 INIT_LIST_HEAD(&root->logged_list[0]);
1179 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1180 spin_lock_init(&root->inode_lock);
eb73c1b7 1181 spin_lock_init(&root->delalloc_lock);
199c2a9c 1182 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1183 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1184 spin_lock_init(&root->log_extents_lock[0]);
1185 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1186 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1187 mutex_init(&root->objectid_mutex);
e02119d5 1188 mutex_init(&root->log_mutex);
31f3d255 1189 mutex_init(&root->ordered_extent_mutex);
573bfb72 1190 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1191 init_waitqueue_head(&root->log_writer_wait);
1192 init_waitqueue_head(&root->log_commit_wait[0]);
1193 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1194 INIT_LIST_HEAD(&root->log_ctxs[0]);
1195 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1196 atomic_set(&root->log_commit[0], 0);
1197 atomic_set(&root->log_commit[1], 0);
1198 atomic_set(&root->log_writers, 0);
2ecb7923 1199 atomic_set(&root->log_batch, 0);
0700cea7 1200 refcount_set(&root->refs, 1);
ea14b57f 1201 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1202 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1203 atomic_set(&root->nr_swapfiles, 0);
7237f183 1204 root->log_transid = 0;
d1433deb 1205 root->log_transid_committed = -1;
257c62e1 1206 root->last_log_commit = 0;
7c0260ee 1207 if (!dummy)
43eb5f29
QW
1208 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1209 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1210
3768f368
CM
1211 memset(&root->root_key, 0, sizeof(root->root_key));
1212 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1213 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1214 if (!dummy)
06ea65a3
JB
1215 root->defrag_trans_start = fs_info->generation;
1216 else
1217 root->defrag_trans_start = 0;
4d775673 1218 root->root_key.objectid = objectid;
0ee5dc67 1219 root->anon_dev = 0;
8ea05e3a 1220
5f3ab90a 1221 spin_lock_init(&root->root_item_lock);
370a11b8 1222 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1223}
1224
74e4d827
DS
1225static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1226 gfp_t flags)
6f07e42e 1227{
74e4d827 1228 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1229 if (root)
1230 root->fs_info = fs_info;
1231 return root;
1232}
1233
06ea65a3
JB
1234#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1235/* Should only be used by the testing infrastructure */
da17066c 1236struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1237{
1238 struct btrfs_root *root;
1239
7c0260ee
JM
1240 if (!fs_info)
1241 return ERR_PTR(-EINVAL);
1242
1243 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1244 if (!root)
1245 return ERR_PTR(-ENOMEM);
da17066c 1246
b9ef22de 1247 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1248 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1249 root->alloc_bytenr = 0;
06ea65a3
JB
1250
1251 return root;
1252}
1253#endif
1254
20897f5c 1255struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1256 u64 objectid)
1257{
9b7a2440 1258 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1259 struct extent_buffer *leaf;
1260 struct btrfs_root *tree_root = fs_info->tree_root;
1261 struct btrfs_root *root;
1262 struct btrfs_key key;
b89f6d1f 1263 unsigned int nofs_flag;
20897f5c 1264 int ret = 0;
33d85fda 1265 uuid_le uuid = NULL_UUID_LE;
20897f5c 1266
b89f6d1f
FM
1267 /*
1268 * We're holding a transaction handle, so use a NOFS memory allocation
1269 * context to avoid deadlock if reclaim happens.
1270 */
1271 nofs_flag = memalloc_nofs_save();
74e4d827 1272 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1273 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1274 if (!root)
1275 return ERR_PTR(-ENOMEM);
1276
da17066c 1277 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1278 root->root_key.objectid = objectid;
1279 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1280 root->root_key.offset = 0;
1281
4d75f8a9 1282 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1283 if (IS_ERR(leaf)) {
1284 ret = PTR_ERR(leaf);
1dd05682 1285 leaf = NULL;
20897f5c
AJ
1286 goto fail;
1287 }
1288
20897f5c 1289 root->node = leaf;
20897f5c
AJ
1290 btrfs_mark_buffer_dirty(leaf);
1291
1292 root->commit_root = btrfs_root_node(root);
27cdeb70 1293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1294
1295 root->root_item.flags = 0;
1296 root->root_item.byte_limit = 0;
1297 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1298 btrfs_set_root_generation(&root->root_item, trans->transid);
1299 btrfs_set_root_level(&root->root_item, 0);
1300 btrfs_set_root_refs(&root->root_item, 1);
1301 btrfs_set_root_used(&root->root_item, leaf->len);
1302 btrfs_set_root_last_snapshot(&root->root_item, 0);
1303 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1304 if (is_fstree(objectid))
1305 uuid_le_gen(&uuid);
6463fe58 1306 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1307 root->root_item.drop_level = 0;
1308
1309 key.objectid = objectid;
1310 key.type = BTRFS_ROOT_ITEM_KEY;
1311 key.offset = 0;
1312 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1313 if (ret)
1314 goto fail;
1315
1316 btrfs_tree_unlock(leaf);
1317
1dd05682
TI
1318 return root;
1319
20897f5c 1320fail:
1dd05682
TI
1321 if (leaf) {
1322 btrfs_tree_unlock(leaf);
59885b39 1323 free_extent_buffer(root->commit_root);
1dd05682
TI
1324 free_extent_buffer(leaf);
1325 }
1326 kfree(root);
20897f5c 1327
1dd05682 1328 return ERR_PTR(ret);
20897f5c
AJ
1329}
1330
7237f183
YZ
1331static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1332 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1333{
1334 struct btrfs_root *root;
7237f183 1335 struct extent_buffer *leaf;
e02119d5 1336
74e4d827 1337 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1338 if (!root)
7237f183 1339 return ERR_PTR(-ENOMEM);
e02119d5 1340
da17066c 1341 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1342
1343 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1344 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1345 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1346
7237f183 1347 /*
27cdeb70
MX
1348 * DON'T set REF_COWS for log trees
1349 *
7237f183
YZ
1350 * log trees do not get reference counted because they go away
1351 * before a real commit is actually done. They do store pointers
1352 * to file data extents, and those reference counts still get
1353 * updated (along with back refs to the log tree).
1354 */
e02119d5 1355
4d75f8a9
DS
1356 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1357 NULL, 0, 0, 0);
7237f183
YZ
1358 if (IS_ERR(leaf)) {
1359 kfree(root);
1360 return ERR_CAST(leaf);
1361 }
e02119d5 1362
7237f183 1363 root->node = leaf;
e02119d5 1364
e02119d5
CM
1365 btrfs_mark_buffer_dirty(root->node);
1366 btrfs_tree_unlock(root->node);
7237f183
YZ
1367 return root;
1368}
1369
1370int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info)
1372{
1373 struct btrfs_root *log_root;
1374
1375 log_root = alloc_log_tree(trans, fs_info);
1376 if (IS_ERR(log_root))
1377 return PTR_ERR(log_root);
1378 WARN_ON(fs_info->log_root_tree);
1379 fs_info->log_root_tree = log_root;
1380 return 0;
1381}
1382
1383int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1384 struct btrfs_root *root)
1385{
0b246afa 1386 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1387 struct btrfs_root *log_root;
1388 struct btrfs_inode_item *inode_item;
1389
0b246afa 1390 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1391 if (IS_ERR(log_root))
1392 return PTR_ERR(log_root);
1393
1394 log_root->last_trans = trans->transid;
1395 log_root->root_key.offset = root->root_key.objectid;
1396
1397 inode_item = &log_root->root_item.inode;
3cae210f
QW
1398 btrfs_set_stack_inode_generation(inode_item, 1);
1399 btrfs_set_stack_inode_size(inode_item, 3);
1400 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1401 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1402 fs_info->nodesize);
3cae210f 1403 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1404
5d4f98a2 1405 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1406
1407 WARN_ON(root->log_root);
1408 root->log_root = log_root;
1409 root->log_transid = 0;
d1433deb 1410 root->log_transid_committed = -1;
257c62e1 1411 root->last_log_commit = 0;
e02119d5
CM
1412 return 0;
1413}
1414
35a3621b
SB
1415static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1416 struct btrfs_key *key)
e02119d5
CM
1417{
1418 struct btrfs_root *root;
1419 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1420 struct btrfs_path *path;
84234f3a 1421 u64 generation;
cb517eab 1422 int ret;
581c1760 1423 int level;
0f7d52f4 1424
cb517eab
MX
1425 path = btrfs_alloc_path();
1426 if (!path)
0f7d52f4 1427 return ERR_PTR(-ENOMEM);
cb517eab 1428
74e4d827 1429 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1430 if (!root) {
1431 ret = -ENOMEM;
1432 goto alloc_fail;
0f7d52f4
CM
1433 }
1434
da17066c 1435 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1436
cb517eab
MX
1437 ret = btrfs_find_root(tree_root, key, path,
1438 &root->root_item, &root->root_key);
0f7d52f4 1439 if (ret) {
13a8a7c8
YZ
1440 if (ret > 0)
1441 ret = -ENOENT;
cb517eab 1442 goto find_fail;
0f7d52f4 1443 }
13a8a7c8 1444
84234f3a 1445 generation = btrfs_root_generation(&root->root_item);
581c1760 1446 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1447 root->node = read_tree_block(fs_info,
1448 btrfs_root_bytenr(&root->root_item),
581c1760 1449 generation, level, NULL);
64c043de
LB
1450 if (IS_ERR(root->node)) {
1451 ret = PTR_ERR(root->node);
cb517eab
MX
1452 goto find_fail;
1453 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1454 ret = -EIO;
64c043de
LB
1455 free_extent_buffer(root->node);
1456 goto find_fail;
416bc658 1457 }
5d4f98a2 1458 root->commit_root = btrfs_root_node(root);
13a8a7c8 1459out:
cb517eab
MX
1460 btrfs_free_path(path);
1461 return root;
1462
cb517eab
MX
1463find_fail:
1464 kfree(root);
1465alloc_fail:
1466 root = ERR_PTR(ret);
1467 goto out;
1468}
1469
1470struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1471 struct btrfs_key *location)
1472{
1473 struct btrfs_root *root;
1474
1475 root = btrfs_read_tree_root(tree_root, location);
1476 if (IS_ERR(root))
1477 return root;
1478
1479 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1480 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1481 btrfs_check_and_init_root_item(&root->root_item);
1482 }
13a8a7c8 1483
5eda7b5e
CM
1484 return root;
1485}
1486
cb517eab
MX
1487int btrfs_init_fs_root(struct btrfs_root *root)
1488{
1489 int ret;
8257b2dc 1490 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1491
1492 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1493 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1494 GFP_NOFS);
1495 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1496 ret = -ENOMEM;
1497 goto fail;
1498 }
1499
8257b2dc
MX
1500 writers = btrfs_alloc_subvolume_writers();
1501 if (IS_ERR(writers)) {
1502 ret = PTR_ERR(writers);
1503 goto fail;
1504 }
1505 root->subv_writers = writers;
1506
cb517eab 1507 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1508 spin_lock_init(&root->ino_cache_lock);
1509 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1510
1511 ret = get_anon_bdev(&root->anon_dev);
1512 if (ret)
876d2cf1 1513 goto fail;
f32e48e9
CR
1514
1515 mutex_lock(&root->objectid_mutex);
1516 ret = btrfs_find_highest_objectid(root,
1517 &root->highest_objectid);
1518 if (ret) {
1519 mutex_unlock(&root->objectid_mutex);
876d2cf1 1520 goto fail;
f32e48e9
CR
1521 }
1522
1523 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1524
1525 mutex_unlock(&root->objectid_mutex);
1526
cb517eab
MX
1527 return 0;
1528fail:
84db5ccf 1529 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1530 return ret;
1531}
1532
35bbb97f
JM
1533struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1534 u64 root_id)
cb517eab
MX
1535{
1536 struct btrfs_root *root;
1537
1538 spin_lock(&fs_info->fs_roots_radix_lock);
1539 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1540 (unsigned long)root_id);
1541 spin_unlock(&fs_info->fs_roots_radix_lock);
1542 return root;
1543}
1544
1545int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1546 struct btrfs_root *root)
1547{
1548 int ret;
1549
e1860a77 1550 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1551 if (ret)
1552 return ret;
1553
1554 spin_lock(&fs_info->fs_roots_radix_lock);
1555 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1556 (unsigned long)root->root_key.objectid,
1557 root);
1558 if (ret == 0)
27cdeb70 1559 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1560 spin_unlock(&fs_info->fs_roots_radix_lock);
1561 radix_tree_preload_end();
1562
1563 return ret;
1564}
1565
c00869f1
MX
1566struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1567 struct btrfs_key *location,
1568 bool check_ref)
5eda7b5e
CM
1569{
1570 struct btrfs_root *root;
381cf658 1571 struct btrfs_path *path;
1d4c08e0 1572 struct btrfs_key key;
5eda7b5e
CM
1573 int ret;
1574
edbd8d4e
CM
1575 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1576 return fs_info->tree_root;
1577 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1578 return fs_info->extent_root;
8f18cf13
CM
1579 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1580 return fs_info->chunk_root;
1581 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1582 return fs_info->dev_root;
0403e47e
YZ
1583 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1584 return fs_info->csum_root;
bcef60f2
AJ
1585 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1586 return fs_info->quota_root ? fs_info->quota_root :
1587 ERR_PTR(-ENOENT);
f7a81ea4
SB
1588 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1589 return fs_info->uuid_root ? fs_info->uuid_root :
1590 ERR_PTR(-ENOENT);
70f6d82e
OS
1591 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1592 return fs_info->free_space_root ? fs_info->free_space_root :
1593 ERR_PTR(-ENOENT);
4df27c4d 1594again:
cb517eab 1595 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1596 if (root) {
c00869f1 1597 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1598 return ERR_PTR(-ENOENT);
5eda7b5e 1599 return root;
48475471 1600 }
5eda7b5e 1601
cb517eab 1602 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1603 if (IS_ERR(root))
1604 return root;
3394e160 1605
c00869f1 1606 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1607 ret = -ENOENT;
581bb050 1608 goto fail;
35a30d7c 1609 }
581bb050 1610
cb517eab 1611 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1612 if (ret)
1613 goto fail;
3394e160 1614
381cf658
DS
1615 path = btrfs_alloc_path();
1616 if (!path) {
1617 ret = -ENOMEM;
1618 goto fail;
1619 }
1d4c08e0
DS
1620 key.objectid = BTRFS_ORPHAN_OBJECTID;
1621 key.type = BTRFS_ORPHAN_ITEM_KEY;
1622 key.offset = location->objectid;
1623
1624 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1625 btrfs_free_path(path);
d68fc57b
YZ
1626 if (ret < 0)
1627 goto fail;
1628 if (ret == 0)
27cdeb70 1629 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1630
cb517eab 1631 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1632 if (ret) {
4df27c4d 1633 if (ret == -EEXIST) {
84db5ccf 1634 btrfs_free_fs_root(root);
4df27c4d
YZ
1635 goto again;
1636 }
1637 goto fail;
0f7d52f4 1638 }
edbd8d4e 1639 return root;
4df27c4d 1640fail:
84db5ccf 1641 btrfs_free_fs_root(root);
4df27c4d 1642 return ERR_PTR(ret);
edbd8d4e
CM
1643}
1644
04160088
CM
1645static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1646{
1647 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1648 int ret = 0;
04160088
CM
1649 struct btrfs_device *device;
1650 struct backing_dev_info *bdi;
b7967db7 1651
1f78160c
XG
1652 rcu_read_lock();
1653 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1654 if (!device->bdev)
1655 continue;
efa7c9f9 1656 bdi = device->bdev->bd_bdi;
ff9ea323 1657 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1658 ret = 1;
1659 break;
1660 }
1661 }
1f78160c 1662 rcu_read_unlock();
04160088
CM
1663 return ret;
1664}
1665
8b712842
CM
1666/*
1667 * called by the kthread helper functions to finally call the bio end_io
1668 * functions. This is where read checksum verification actually happens
1669 */
1670static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1671{
ce9adaa5 1672 struct bio *bio;
97eb6b69 1673 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1674
97eb6b69 1675 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1676 bio = end_io_wq->bio;
ce9adaa5 1677
4e4cbee9 1678 bio->bi_status = end_io_wq->status;
8b712842
CM
1679 bio->bi_private = end_io_wq->private;
1680 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1681 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1682 bio_endio(bio);
44b8bd7e
CM
1683}
1684
a74a4b97
CM
1685static int cleaner_kthread(void *arg)
1686{
1687 struct btrfs_root *root = arg;
0b246afa 1688 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1689 int again;
a74a4b97 1690
d6fd0ae2 1691 while (1) {
d0278245 1692 again = 0;
a74a4b97 1693
fd340d0f
JB
1694 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1695
d0278245 1696 /* Make the cleaner go to sleep early. */
2ff7e61e 1697 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1698 goto sleep;
1699
90c711ab
ZB
1700 /*
1701 * Do not do anything if we might cause open_ctree() to block
1702 * before we have finished mounting the filesystem.
1703 */
0b246afa 1704 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1705 goto sleep;
1706
0b246afa 1707 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1708 goto sleep;
1709
dc7f370c
MX
1710 /*
1711 * Avoid the problem that we change the status of the fs
1712 * during the above check and trylock.
1713 */
2ff7e61e 1714 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1715 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1716 goto sleep;
76dda93c 1717 }
a74a4b97 1718
2ff7e61e 1719 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1720
d0278245 1721 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1722 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1723
1724 /*
05323cd1
MX
1725 * The defragger has dealt with the R/O remount and umount,
1726 * needn't do anything special here.
d0278245 1727 */
0b246afa 1728 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1729
1730 /*
1731 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1732 * with relocation (btrfs_relocate_chunk) and relocation
1733 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1734 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1735 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1736 * unused block groups.
1737 */
0b246afa 1738 btrfs_delete_unused_bgs(fs_info);
d0278245 1739sleep:
fd340d0f 1740 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1741 if (kthread_should_park())
1742 kthread_parkme();
1743 if (kthread_should_stop())
1744 return 0;
838fe188 1745 if (!again) {
a74a4b97 1746 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1747 schedule();
a74a4b97
CM
1748 __set_current_state(TASK_RUNNING);
1749 }
da288d28 1750 }
a74a4b97
CM
1751}
1752
1753static int transaction_kthread(void *arg)
1754{
1755 struct btrfs_root *root = arg;
0b246afa 1756 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1757 struct btrfs_trans_handle *trans;
1758 struct btrfs_transaction *cur;
8929ecfa 1759 u64 transid;
a944442c 1760 time64_t now;
a74a4b97 1761 unsigned long delay;
914b2007 1762 bool cannot_commit;
a74a4b97
CM
1763
1764 do {
914b2007 1765 cannot_commit = false;
0b246afa
JM
1766 delay = HZ * fs_info->commit_interval;
1767 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1768
0b246afa
JM
1769 spin_lock(&fs_info->trans_lock);
1770 cur = fs_info->running_transaction;
a74a4b97 1771 if (!cur) {
0b246afa 1772 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1773 goto sleep;
1774 }
31153d81 1775
afd48513 1776 now = ktime_get_seconds();
4a9d8bde 1777 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1778 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1779 (now < cur->start_time ||
0b246afa
JM
1780 now - cur->start_time < fs_info->commit_interval)) {
1781 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1782 delay = HZ * 5;
1783 goto sleep;
1784 }
8929ecfa 1785 transid = cur->transid;
0b246afa 1786 spin_unlock(&fs_info->trans_lock);
56bec294 1787
79787eaa 1788 /* If the file system is aborted, this will always fail. */
354aa0fb 1789 trans = btrfs_attach_transaction(root);
914b2007 1790 if (IS_ERR(trans)) {
354aa0fb
MX
1791 if (PTR_ERR(trans) != -ENOENT)
1792 cannot_commit = true;
79787eaa 1793 goto sleep;
914b2007 1794 }
8929ecfa 1795 if (transid == trans->transid) {
3a45bb20 1796 btrfs_commit_transaction(trans);
8929ecfa 1797 } else {
3a45bb20 1798 btrfs_end_transaction(trans);
8929ecfa 1799 }
a74a4b97 1800sleep:
0b246afa
JM
1801 wake_up_process(fs_info->cleaner_kthread);
1802 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1803
4e121c06 1804 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1805 &fs_info->fs_state)))
2ff7e61e 1806 btrfs_cleanup_transaction(fs_info);
ce63f891 1807 if (!kthread_should_stop() &&
0b246afa 1808 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1809 cannot_commit))
bc5511d0 1810 schedule_timeout_interruptible(delay);
a74a4b97
CM
1811 } while (!kthread_should_stop());
1812 return 0;
1813}
1814
af31f5e5
CM
1815/*
1816 * this will find the highest generation in the array of
1817 * root backups. The index of the highest array is returned,
1818 * or -1 if we can't find anything.
1819 *
1820 * We check to make sure the array is valid by comparing the
1821 * generation of the latest root in the array with the generation
1822 * in the super block. If they don't match we pitch it.
1823 */
1824static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1825{
1826 u64 cur;
1827 int newest_index = -1;
1828 struct btrfs_root_backup *root_backup;
1829 int i;
1830
1831 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1832 root_backup = info->super_copy->super_roots + i;
1833 cur = btrfs_backup_tree_root_gen(root_backup);
1834 if (cur == newest_gen)
1835 newest_index = i;
1836 }
1837
1838 /* check to see if we actually wrapped around */
1839 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1840 root_backup = info->super_copy->super_roots;
1841 cur = btrfs_backup_tree_root_gen(root_backup);
1842 if (cur == newest_gen)
1843 newest_index = 0;
1844 }
1845 return newest_index;
1846}
1847
1848
1849/*
1850 * find the oldest backup so we know where to store new entries
1851 * in the backup array. This will set the backup_root_index
1852 * field in the fs_info struct
1853 */
1854static void find_oldest_super_backup(struct btrfs_fs_info *info,
1855 u64 newest_gen)
1856{
1857 int newest_index = -1;
1858
1859 newest_index = find_newest_super_backup(info, newest_gen);
1860 /* if there was garbage in there, just move along */
1861 if (newest_index == -1) {
1862 info->backup_root_index = 0;
1863 } else {
1864 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1865 }
1866}
1867
1868/*
1869 * copy all the root pointers into the super backup array.
1870 * this will bump the backup pointer by one when it is
1871 * done
1872 */
1873static void backup_super_roots(struct btrfs_fs_info *info)
1874{
1875 int next_backup;
1876 struct btrfs_root_backup *root_backup;
1877 int last_backup;
1878
1879 next_backup = info->backup_root_index;
1880 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1881 BTRFS_NUM_BACKUP_ROOTS;
1882
1883 /*
1884 * just overwrite the last backup if we're at the same generation
1885 * this happens only at umount
1886 */
1887 root_backup = info->super_for_commit->super_roots + last_backup;
1888 if (btrfs_backup_tree_root_gen(root_backup) ==
1889 btrfs_header_generation(info->tree_root->node))
1890 next_backup = last_backup;
1891
1892 root_backup = info->super_for_commit->super_roots + next_backup;
1893
1894 /*
1895 * make sure all of our padding and empty slots get zero filled
1896 * regardless of which ones we use today
1897 */
1898 memset(root_backup, 0, sizeof(*root_backup));
1899
1900 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1901
1902 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1903 btrfs_set_backup_tree_root_gen(root_backup,
1904 btrfs_header_generation(info->tree_root->node));
1905
1906 btrfs_set_backup_tree_root_level(root_backup,
1907 btrfs_header_level(info->tree_root->node));
1908
1909 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1910 btrfs_set_backup_chunk_root_gen(root_backup,
1911 btrfs_header_generation(info->chunk_root->node));
1912 btrfs_set_backup_chunk_root_level(root_backup,
1913 btrfs_header_level(info->chunk_root->node));
1914
1915 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1916 btrfs_set_backup_extent_root_gen(root_backup,
1917 btrfs_header_generation(info->extent_root->node));
1918 btrfs_set_backup_extent_root_level(root_backup,
1919 btrfs_header_level(info->extent_root->node));
1920
7c7e82a7
CM
1921 /*
1922 * we might commit during log recovery, which happens before we set
1923 * the fs_root. Make sure it is valid before we fill it in.
1924 */
1925 if (info->fs_root && info->fs_root->node) {
1926 btrfs_set_backup_fs_root(root_backup,
1927 info->fs_root->node->start);
1928 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1929 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1930 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1931 btrfs_header_level(info->fs_root->node));
7c7e82a7 1932 }
af31f5e5
CM
1933
1934 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1935 btrfs_set_backup_dev_root_gen(root_backup,
1936 btrfs_header_generation(info->dev_root->node));
1937 btrfs_set_backup_dev_root_level(root_backup,
1938 btrfs_header_level(info->dev_root->node));
1939
1940 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1941 btrfs_set_backup_csum_root_gen(root_backup,
1942 btrfs_header_generation(info->csum_root->node));
1943 btrfs_set_backup_csum_root_level(root_backup,
1944 btrfs_header_level(info->csum_root->node));
1945
1946 btrfs_set_backup_total_bytes(root_backup,
1947 btrfs_super_total_bytes(info->super_copy));
1948 btrfs_set_backup_bytes_used(root_backup,
1949 btrfs_super_bytes_used(info->super_copy));
1950 btrfs_set_backup_num_devices(root_backup,
1951 btrfs_super_num_devices(info->super_copy));
1952
1953 /*
1954 * if we don't copy this out to the super_copy, it won't get remembered
1955 * for the next commit
1956 */
1957 memcpy(&info->super_copy->super_roots,
1958 &info->super_for_commit->super_roots,
1959 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1960}
1961
1962/*
1963 * this copies info out of the root backup array and back into
1964 * the in-memory super block. It is meant to help iterate through
1965 * the array, so you send it the number of backups you've already
1966 * tried and the last backup index you used.
1967 *
1968 * this returns -1 when it has tried all the backups
1969 */
1970static noinline int next_root_backup(struct btrfs_fs_info *info,
1971 struct btrfs_super_block *super,
1972 int *num_backups_tried, int *backup_index)
1973{
1974 struct btrfs_root_backup *root_backup;
1975 int newest = *backup_index;
1976
1977 if (*num_backups_tried == 0) {
1978 u64 gen = btrfs_super_generation(super);
1979
1980 newest = find_newest_super_backup(info, gen);
1981 if (newest == -1)
1982 return -1;
1983
1984 *backup_index = newest;
1985 *num_backups_tried = 1;
1986 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1987 /* we've tried all the backups, all done */
1988 return -1;
1989 } else {
1990 /* jump to the next oldest backup */
1991 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1992 BTRFS_NUM_BACKUP_ROOTS;
1993 *backup_index = newest;
1994 *num_backups_tried += 1;
1995 }
1996 root_backup = super->super_roots + newest;
1997
1998 btrfs_set_super_generation(super,
1999 btrfs_backup_tree_root_gen(root_backup));
2000 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2001 btrfs_set_super_root_level(super,
2002 btrfs_backup_tree_root_level(root_backup));
2003 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2004
2005 /*
2006 * fixme: the total bytes and num_devices need to match or we should
2007 * need a fsck
2008 */
2009 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2010 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2011 return 0;
2012}
2013
7abadb64
LB
2014/* helper to cleanup workers */
2015static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2016{
dc6e3209 2017 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2018 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2019 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2020 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2021 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2022 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2023 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2024 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2025 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2026 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2027 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2028 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2029 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2030 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2031 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2032 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2033 /*
2034 * Now that all other work queues are destroyed, we can safely destroy
2035 * the queues used for metadata I/O, since tasks from those other work
2036 * queues can do metadata I/O operations.
2037 */
2038 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2039 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2040}
2041
2e9f5954
R
2042static void free_root_extent_buffers(struct btrfs_root *root)
2043{
2044 if (root) {
2045 free_extent_buffer(root->node);
2046 free_extent_buffer(root->commit_root);
2047 root->node = NULL;
2048 root->commit_root = NULL;
2049 }
2050}
2051
af31f5e5
CM
2052/* helper to cleanup tree roots */
2053static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2054{
2e9f5954 2055 free_root_extent_buffers(info->tree_root);
655b09fe 2056
2e9f5954
R
2057 free_root_extent_buffers(info->dev_root);
2058 free_root_extent_buffers(info->extent_root);
2059 free_root_extent_buffers(info->csum_root);
2060 free_root_extent_buffers(info->quota_root);
2061 free_root_extent_buffers(info->uuid_root);
2062 if (chunk_root)
2063 free_root_extent_buffers(info->chunk_root);
70f6d82e 2064 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2065}
2066
faa2dbf0 2067void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2068{
2069 int ret;
2070 struct btrfs_root *gang[8];
2071 int i;
2072
2073 while (!list_empty(&fs_info->dead_roots)) {
2074 gang[0] = list_entry(fs_info->dead_roots.next,
2075 struct btrfs_root, root_list);
2076 list_del(&gang[0]->root_list);
2077
27cdeb70 2078 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2079 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2080 } else {
2081 free_extent_buffer(gang[0]->node);
2082 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2083 btrfs_put_fs_root(gang[0]);
171f6537
JB
2084 }
2085 }
2086
2087 while (1) {
2088 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2089 (void **)gang, 0,
2090 ARRAY_SIZE(gang));
2091 if (!ret)
2092 break;
2093 for (i = 0; i < ret; i++)
cb517eab 2094 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2095 }
1a4319cc
LB
2096
2097 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2098 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2099 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2100 }
171f6537 2101}
af31f5e5 2102
638aa7ed
ES
2103static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2104{
2105 mutex_init(&fs_info->scrub_lock);
2106 atomic_set(&fs_info->scrubs_running, 0);
2107 atomic_set(&fs_info->scrub_pause_req, 0);
2108 atomic_set(&fs_info->scrubs_paused, 0);
2109 atomic_set(&fs_info->scrub_cancel_req, 0);
2110 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2111 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2112}
2113
779a65a4
ES
2114static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2115{
2116 spin_lock_init(&fs_info->balance_lock);
2117 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2118 atomic_set(&fs_info->balance_pause_req, 0);
2119 atomic_set(&fs_info->balance_cancel_req, 0);
2120 fs_info->balance_ctl = NULL;
2121 init_waitqueue_head(&fs_info->balance_wait_q);
2122}
2123
6bccf3ab 2124static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2125{
2ff7e61e
JM
2126 struct inode *inode = fs_info->btree_inode;
2127
2128 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2129 set_nlink(inode, 1);
f37938e0
ES
2130 /*
2131 * we set the i_size on the btree inode to the max possible int.
2132 * the real end of the address space is determined by all of
2133 * the devices in the system
2134 */
2ff7e61e
JM
2135 inode->i_size = OFFSET_MAX;
2136 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2137
2ff7e61e 2138 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2139 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2140 IO_TREE_INODE_IO, inode);
7b439738 2141 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2142 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2143
2ff7e61e 2144 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2145
2ff7e61e
JM
2146 BTRFS_I(inode)->root = fs_info->tree_root;
2147 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2148 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2149 btrfs_insert_inode_hash(inode);
f37938e0
ES
2150}
2151
ad618368
ES
2152static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2153{
ad618368 2154 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2155 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2156 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2157}
2158
f9e92e40
ES
2159static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2160{
2161 spin_lock_init(&fs_info->qgroup_lock);
2162 mutex_init(&fs_info->qgroup_ioctl_lock);
2163 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2164 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2165 fs_info->qgroup_seq = 1;
f9e92e40 2166 fs_info->qgroup_ulist = NULL;
d2c609b8 2167 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2168 mutex_init(&fs_info->qgroup_rescan_lock);
2169}
2170
2a458198
ES
2171static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2172 struct btrfs_fs_devices *fs_devices)
2173{
f7b885be 2174 u32 max_active = fs_info->thread_pool_size;
6f011058 2175 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2176
2177 fs_info->workers =
cb001095
JM
2178 btrfs_alloc_workqueue(fs_info, "worker",
2179 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2180
2181 fs_info->delalloc_workers =
cb001095
JM
2182 btrfs_alloc_workqueue(fs_info, "delalloc",
2183 flags, max_active, 2);
2a458198
ES
2184
2185 fs_info->flush_workers =
cb001095
JM
2186 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2187 flags, max_active, 0);
2a458198
ES
2188
2189 fs_info->caching_workers =
cb001095 2190 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2191
2192 /*
2193 * a higher idle thresh on the submit workers makes it much more
2194 * likely that bios will be send down in a sane order to the
2195 * devices
2196 */
2197 fs_info->submit_workers =
cb001095 2198 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2199 min_t(u64, fs_devices->num_devices,
2200 max_active), 64);
2201
2202 fs_info->fixup_workers =
cb001095 2203 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2204
2205 /*
2206 * endios are largely parallel and should have a very
2207 * low idle thresh
2208 */
2209 fs_info->endio_workers =
cb001095 2210 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2211 fs_info->endio_meta_workers =
cb001095
JM
2212 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2213 max_active, 4);
2a458198 2214 fs_info->endio_meta_write_workers =
cb001095
JM
2215 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2216 max_active, 2);
2a458198 2217 fs_info->endio_raid56_workers =
cb001095
JM
2218 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2219 max_active, 4);
2a458198 2220 fs_info->endio_repair_workers =
cb001095 2221 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2222 fs_info->rmw_workers =
cb001095 2223 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2224 fs_info->endio_write_workers =
cb001095
JM
2225 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2226 max_active, 2);
2a458198 2227 fs_info->endio_freespace_worker =
cb001095
JM
2228 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2229 max_active, 0);
2a458198 2230 fs_info->delayed_workers =
cb001095
JM
2231 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2232 max_active, 0);
2a458198 2233 fs_info->readahead_workers =
cb001095
JM
2234 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2235 max_active, 2);
2a458198 2236 fs_info->qgroup_rescan_workers =
cb001095 2237 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2238 fs_info->extent_workers =
cb001095 2239 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2240 min_t(u64, fs_devices->num_devices,
2241 max_active), 8);
2242
2243 if (!(fs_info->workers && fs_info->delalloc_workers &&
2244 fs_info->submit_workers && fs_info->flush_workers &&
2245 fs_info->endio_workers && fs_info->endio_meta_workers &&
2246 fs_info->endio_meta_write_workers &&
2247 fs_info->endio_repair_workers &&
2248 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2249 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2250 fs_info->caching_workers && fs_info->readahead_workers &&
2251 fs_info->fixup_workers && fs_info->delayed_workers &&
2252 fs_info->extent_workers &&
2253 fs_info->qgroup_rescan_workers)) {
2254 return -ENOMEM;
2255 }
2256
2257 return 0;
2258}
2259
6d97c6e3
JT
2260static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2261{
2262 struct crypto_shash *csum_shash;
2263 const char *csum_name = btrfs_super_csum_name(csum_type);
2264
2265 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2266
2267 if (IS_ERR(csum_shash)) {
2268 btrfs_err(fs_info, "error allocating %s hash for checksum",
2269 csum_name);
2270 return PTR_ERR(csum_shash);
2271 }
2272
2273 fs_info->csum_shash = csum_shash;
2274
2275 return 0;
2276}
2277
2278static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2279{
2280 crypto_free_shash(fs_info->csum_shash);
2281}
2282
63443bf5
ES
2283static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2284 struct btrfs_fs_devices *fs_devices)
2285{
2286 int ret;
63443bf5
ES
2287 struct btrfs_root *log_tree_root;
2288 struct btrfs_super_block *disk_super = fs_info->super_copy;
2289 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2290 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2291
2292 if (fs_devices->rw_devices == 0) {
f14d104d 2293 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2294 return -EIO;
2295 }
2296
74e4d827 2297 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2298 if (!log_tree_root)
2299 return -ENOMEM;
2300
da17066c 2301 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2302
2ff7e61e 2303 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2304 fs_info->generation + 1,
2305 level, NULL);
64c043de 2306 if (IS_ERR(log_tree_root->node)) {
f14d104d 2307 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2308 ret = PTR_ERR(log_tree_root->node);
64c043de 2309 kfree(log_tree_root);
0eeff236 2310 return ret;
64c043de 2311 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2312 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2313 free_extent_buffer(log_tree_root->node);
2314 kfree(log_tree_root);
2315 return -EIO;
2316 }
2317 /* returns with log_tree_root freed on success */
2318 ret = btrfs_recover_log_trees(log_tree_root);
2319 if (ret) {
0b246afa
JM
2320 btrfs_handle_fs_error(fs_info, ret,
2321 "Failed to recover log tree");
63443bf5
ES
2322 free_extent_buffer(log_tree_root->node);
2323 kfree(log_tree_root);
2324 return ret;
2325 }
2326
bc98a42c 2327 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2328 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2329 if (ret)
2330 return ret;
2331 }
2332
2333 return 0;
2334}
2335
6bccf3ab 2336static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2337{
6bccf3ab 2338 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2339 struct btrfs_root *root;
4bbcaa64
ES
2340 struct btrfs_key location;
2341 int ret;
2342
6bccf3ab
JM
2343 BUG_ON(!fs_info->tree_root);
2344
4bbcaa64
ES
2345 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2346 location.type = BTRFS_ROOT_ITEM_KEY;
2347 location.offset = 0;
2348
a4f3d2c4 2349 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2350 if (IS_ERR(root)) {
2351 ret = PTR_ERR(root);
2352 goto out;
2353 }
a4f3d2c4
DS
2354 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355 fs_info->extent_root = root;
4bbcaa64
ES
2356
2357 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2358 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2359 if (IS_ERR(root)) {
2360 ret = PTR_ERR(root);
2361 goto out;
2362 }
a4f3d2c4
DS
2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 fs_info->dev_root = root;
4bbcaa64
ES
2365 btrfs_init_devices_late(fs_info);
2366
2367 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2368 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2369 if (IS_ERR(root)) {
2370 ret = PTR_ERR(root);
2371 goto out;
2372 }
a4f3d2c4
DS
2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 fs_info->csum_root = root;
4bbcaa64
ES
2375
2376 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2377 root = btrfs_read_tree_root(tree_root, &location);
2378 if (!IS_ERR(root)) {
2379 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2380 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2381 fs_info->quota_root = root;
4bbcaa64
ES
2382 }
2383
2384 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2385 root = btrfs_read_tree_root(tree_root, &location);
2386 if (IS_ERR(root)) {
2387 ret = PTR_ERR(root);
4bbcaa64 2388 if (ret != -ENOENT)
f50f4353 2389 goto out;
4bbcaa64 2390 } else {
a4f3d2c4
DS
2391 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2392 fs_info->uuid_root = root;
4bbcaa64
ES
2393 }
2394
70f6d82e
OS
2395 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2396 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2397 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2398 if (IS_ERR(root)) {
2399 ret = PTR_ERR(root);
2400 goto out;
2401 }
70f6d82e
OS
2402 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2403 fs_info->free_space_root = root;
2404 }
2405
4bbcaa64 2406 return 0;
f50f4353
LB
2407out:
2408 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2409 location.objectid, ret);
2410 return ret;
4bbcaa64
ES
2411}
2412
069ec957
QW
2413/*
2414 * Real super block validation
2415 * NOTE: super csum type and incompat features will not be checked here.
2416 *
2417 * @sb: super block to check
2418 * @mirror_num: the super block number to check its bytenr:
2419 * 0 the primary (1st) sb
2420 * 1, 2 2nd and 3rd backup copy
2421 * -1 skip bytenr check
2422 */
2423static int validate_super(struct btrfs_fs_info *fs_info,
2424 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2425{
21a852b0
QW
2426 u64 nodesize = btrfs_super_nodesize(sb);
2427 u64 sectorsize = btrfs_super_sectorsize(sb);
2428 int ret = 0;
2429
2430 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2431 btrfs_err(fs_info, "no valid FS found");
2432 ret = -EINVAL;
2433 }
2434 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2435 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2436 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2437 ret = -EINVAL;
2438 }
2439 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2440 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2441 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2442 ret = -EINVAL;
2443 }
2444 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2445 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2446 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2447 ret = -EINVAL;
2448 }
2449 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2450 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2451 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2452 ret = -EINVAL;
2453 }
2454
2455 /*
2456 * Check sectorsize and nodesize first, other check will need it.
2457 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2458 */
2459 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2460 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2461 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2462 ret = -EINVAL;
2463 }
2464 /* Only PAGE SIZE is supported yet */
2465 if (sectorsize != PAGE_SIZE) {
2466 btrfs_err(fs_info,
2467 "sectorsize %llu not supported yet, only support %lu",
2468 sectorsize, PAGE_SIZE);
2469 ret = -EINVAL;
2470 }
2471 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2472 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2473 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2474 ret = -EINVAL;
2475 }
2476 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2477 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2478 le32_to_cpu(sb->__unused_leafsize), nodesize);
2479 ret = -EINVAL;
2480 }
2481
2482 /* Root alignment check */
2483 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2484 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2485 btrfs_super_root(sb));
2486 ret = -EINVAL;
2487 }
2488 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2489 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2490 btrfs_super_chunk_root(sb));
2491 ret = -EINVAL;
2492 }
2493 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2494 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2495 btrfs_super_log_root(sb));
2496 ret = -EINVAL;
2497 }
2498
de37aa51 2499 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2500 BTRFS_FSID_SIZE) != 0) {
21a852b0 2501 btrfs_err(fs_info,
7239ff4b 2502 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2503 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2504 ret = -EINVAL;
2505 }
2506
2507 /*
2508 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2509 * done later
2510 */
2511 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2512 btrfs_err(fs_info, "bytes_used is too small %llu",
2513 btrfs_super_bytes_used(sb));
2514 ret = -EINVAL;
2515 }
2516 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2517 btrfs_err(fs_info, "invalid stripesize %u",
2518 btrfs_super_stripesize(sb));
2519 ret = -EINVAL;
2520 }
2521 if (btrfs_super_num_devices(sb) > (1UL << 31))
2522 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2523 btrfs_super_num_devices(sb));
2524 if (btrfs_super_num_devices(sb) == 0) {
2525 btrfs_err(fs_info, "number of devices is 0");
2526 ret = -EINVAL;
2527 }
2528
069ec957
QW
2529 if (mirror_num >= 0 &&
2530 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2531 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2532 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2533 ret = -EINVAL;
2534 }
2535
2536 /*
2537 * Obvious sys_chunk_array corruptions, it must hold at least one key
2538 * and one chunk
2539 */
2540 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2541 btrfs_err(fs_info, "system chunk array too big %u > %u",
2542 btrfs_super_sys_array_size(sb),
2543 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2544 ret = -EINVAL;
2545 }
2546 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2547 + sizeof(struct btrfs_chunk)) {
2548 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2549 btrfs_super_sys_array_size(sb),
2550 sizeof(struct btrfs_disk_key)
2551 + sizeof(struct btrfs_chunk));
2552 ret = -EINVAL;
2553 }
2554
2555 /*
2556 * The generation is a global counter, we'll trust it more than the others
2557 * but it's still possible that it's the one that's wrong.
2558 */
2559 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2560 btrfs_warn(fs_info,
2561 "suspicious: generation < chunk_root_generation: %llu < %llu",
2562 btrfs_super_generation(sb),
2563 btrfs_super_chunk_root_generation(sb));
2564 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2565 && btrfs_super_cache_generation(sb) != (u64)-1)
2566 btrfs_warn(fs_info,
2567 "suspicious: generation < cache_generation: %llu < %llu",
2568 btrfs_super_generation(sb),
2569 btrfs_super_cache_generation(sb));
2570
2571 return ret;
2572}
2573
069ec957
QW
2574/*
2575 * Validation of super block at mount time.
2576 * Some checks already done early at mount time, like csum type and incompat
2577 * flags will be skipped.
2578 */
2579static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2580{
2581 return validate_super(fs_info, fs_info->super_copy, 0);
2582}
2583
75cb857d
QW
2584/*
2585 * Validation of super block at write time.
2586 * Some checks like bytenr check will be skipped as their values will be
2587 * overwritten soon.
2588 * Extra checks like csum type and incompat flags will be done here.
2589 */
2590static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2591 struct btrfs_super_block *sb)
2592{
2593 int ret;
2594
2595 ret = validate_super(fs_info, sb, -1);
2596 if (ret < 0)
2597 goto out;
e7e16f48 2598 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2599 ret = -EUCLEAN;
2600 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2601 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2602 goto out;
2603 }
2604 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2605 ret = -EUCLEAN;
2606 btrfs_err(fs_info,
2607 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2608 btrfs_super_incompat_flags(sb),
2609 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2610 goto out;
2611 }
2612out:
2613 if (ret < 0)
2614 btrfs_err(fs_info,
2615 "super block corruption detected before writing it to disk");
2616 return ret;
2617}
2618
ad2b2c80
AV
2619int open_ctree(struct super_block *sb,
2620 struct btrfs_fs_devices *fs_devices,
2621 char *options)
2e635a27 2622{
db94535d
CM
2623 u32 sectorsize;
2624 u32 nodesize;
87ee04eb 2625 u32 stripesize;
84234f3a 2626 u64 generation;
f2b636e8 2627 u64 features;
51bce6c9 2628 u16 csum_type;
3de4586c 2629 struct btrfs_key location;
a061fc8d 2630 struct buffer_head *bh;
4d34b278 2631 struct btrfs_super_block *disk_super;
815745cf 2632 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2633 struct btrfs_root *tree_root;
4d34b278 2634 struct btrfs_root *chunk_root;
eb60ceac 2635 int ret;
e58ca020 2636 int err = -EINVAL;
af31f5e5
CM
2637 int num_backups_tried = 0;
2638 int backup_index = 0;
6675df31 2639 int clear_free_space_tree = 0;
581c1760 2640 int level;
4543df7e 2641
74e4d827
DS
2642 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2643 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2644 if (!tree_root || !chunk_root) {
39279cc3
CM
2645 err = -ENOMEM;
2646 goto fail;
2647 }
76dda93c
YZ
2648
2649 ret = init_srcu_struct(&fs_info->subvol_srcu);
2650 if (ret) {
2651 err = ret;
2652 goto fail;
2653 }
2654
4297ff84 2655 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2656 if (ret) {
2657 err = ret;
9e11ceee 2658 goto fail_srcu;
e2d84521 2659 }
4297ff84
JB
2660
2661 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2662 if (ret) {
2663 err = ret;
2664 goto fail_dio_bytes;
2665 }
09cbfeaf 2666 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2667 (1 + ilog2(nr_cpu_ids));
2668
908c7f19 2669 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2670 if (ret) {
2671 err = ret;
2672 goto fail_dirty_metadata_bytes;
2673 }
2674
7f8d236a
DS
2675 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2676 GFP_KERNEL);
c404e0dc
MX
2677 if (ret) {
2678 err = ret;
2679 goto fail_delalloc_bytes;
2680 }
2681
76dda93c 2682 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2683 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2684 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2685 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2686 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2687 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2688 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2689 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2690 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2691 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2692 spin_lock_init(&fs_info->trans_lock);
76dda93c 2693 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2694 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2695 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2696 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2697 spin_lock_init(&fs_info->super_lock);
f28491e0 2698 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2699 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2700 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2701 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2702 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2703 mutex_init(&fs_info->reloc_mutex);
573bfb72 2704 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2705 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2706
0b86a832 2707 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2708 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2709 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2710 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2711 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2712 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2713 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2714 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2715 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2716 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2717 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2718 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2719 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2720 BTRFS_BLOCK_RSV_DELREFS);
2721
771ed689 2722 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2723 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2724 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2725 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2726 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2727 fs_info->sb = sb;
95ac567a 2728 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2729 fs_info->metadata_ratio = 0;
4cb5300b 2730 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2731 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2732 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2733 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2734 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2735 /* readahead state */
d0164adc 2736 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2737 spin_lock_init(&fs_info->reada_lock);
fd708b81 2738 btrfs_init_ref_verify(fs_info);
c8b97818 2739
b34b086c
CM
2740 fs_info->thread_pool_size = min_t(unsigned long,
2741 num_online_cpus() + 2, 8);
0afbaf8c 2742
199c2a9c
MX
2743 INIT_LIST_HEAD(&fs_info->ordered_roots);
2744 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2745
2746 fs_info->btree_inode = new_inode(sb);
2747 if (!fs_info->btree_inode) {
2748 err = -ENOMEM;
2749 goto fail_bio_counter;
2750 }
2751 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2752
16cdcec7 2753 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2754 GFP_KERNEL);
16cdcec7
MX
2755 if (!fs_info->delayed_root) {
2756 err = -ENOMEM;
2757 goto fail_iput;
2758 }
2759 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2760
638aa7ed 2761 btrfs_init_scrub(fs_info);
21adbd5c
SB
2762#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2763 fs_info->check_integrity_print_mask = 0;
2764#endif
779a65a4 2765 btrfs_init_balance(fs_info);
21c7e756 2766 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2767
9f6d2510
DS
2768 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2769 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2770
6bccf3ab 2771 btrfs_init_btree_inode(fs_info);
76dda93c 2772
0f9dd46c 2773 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2774 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2775 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2776
43eb5f29
QW
2777 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2778 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2779 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2780 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2781 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2782 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2783
5a3f23d5 2784 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2785 mutex_init(&fs_info->tree_log_mutex);
925baedd 2786 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2787 mutex_init(&fs_info->transaction_kthread_mutex);
2788 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2789 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2790 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2791 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2792 init_rwsem(&fs_info->subvol_sem);
803b2f54 2793 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2794
ad618368 2795 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2796 btrfs_init_qgroup(fs_info);
416ac51d 2797
fa9c0d79
CM
2798 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2799 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2800
e6dcd2dc 2801 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2802 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2803 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2804 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2805 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2806
da17066c
JM
2807 /* Usable values until the real ones are cached from the superblock */
2808 fs_info->nodesize = 4096;
2809 fs_info->sectorsize = 4096;
2810 fs_info->stripesize = 4096;
2811
eede2bf3
OS
2812 spin_lock_init(&fs_info->swapfile_pins_lock);
2813 fs_info->swapfile_pins = RB_ROOT;
2814
53b381b3
DW
2815 ret = btrfs_alloc_stripe_hash_table(fs_info);
2816 if (ret) {
83c8266a 2817 err = ret;
53b381b3
DW
2818 goto fail_alloc;
2819 }
2820
da17066c 2821 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2822
3c4bb26b 2823 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2824
2825 /*
2826 * Read super block and check the signature bytes only
2827 */
a512bbf8 2828 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2829 if (IS_ERR(bh)) {
2830 err = PTR_ERR(bh);
16cdcec7 2831 goto fail_alloc;
20b45077 2832 }
39279cc3 2833
8dc3f22c
JT
2834 /*
2835 * Verify the type first, if that or the the checksum value are
2836 * corrupted, we'll find out
2837 */
51bce6c9
JT
2838 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2839 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2840 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2841 csum_type);
8dc3f22c
JT
2842 err = -EINVAL;
2843 brelse(bh);
2844 goto fail_alloc;
2845 }
2846
6d97c6e3
JT
2847 ret = btrfs_init_csum_hash(fs_info, csum_type);
2848 if (ret) {
2849 err = ret;
2850 goto fail_alloc;
2851 }
2852
1104a885
DS
2853 /*
2854 * We want to check superblock checksum, the type is stored inside.
2855 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2856 */
ab8d0fc4 2857 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2858 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2859 err = -EINVAL;
b2acdddf 2860 brelse(bh);
6d97c6e3 2861 goto fail_csum;
1104a885
DS
2862 }
2863
2864 /*
2865 * super_copy is zeroed at allocation time and we never touch the
2866 * following bytes up to INFO_SIZE, the checksum is calculated from
2867 * the whole block of INFO_SIZE
2868 */
6c41761f 2869 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2870 brelse(bh);
5f39d397 2871
fbc6feae
NB
2872 disk_super = fs_info->super_copy;
2873
de37aa51
NB
2874 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2875 BTRFS_FSID_SIZE));
2876
7239ff4b 2877 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2878 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2879 fs_info->super_copy->metadata_uuid,
2880 BTRFS_FSID_SIZE));
7239ff4b 2881 }
0b86a832 2882
fbc6feae
NB
2883 features = btrfs_super_flags(disk_super);
2884 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2885 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2886 btrfs_set_super_flags(disk_super, features);
2887 btrfs_info(fs_info,
2888 "found metadata UUID change in progress flag, clearing");
2889 }
2890
2891 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2892 sizeof(*fs_info->super_for_commit));
de37aa51 2893
069ec957 2894 ret = btrfs_validate_mount_super(fs_info);
1104a885 2895 if (ret) {
05135f59 2896 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2897 err = -EINVAL;
6d97c6e3 2898 goto fail_csum;
1104a885
DS
2899 }
2900
0f7d52f4 2901 if (!btrfs_super_root(disk_super))
6d97c6e3 2902 goto fail_csum;
0f7d52f4 2903
acce952b 2904 /* check FS state, whether FS is broken. */
87533c47
MX
2905 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2906 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2907
af31f5e5
CM
2908 /*
2909 * run through our array of backup supers and setup
2910 * our ring pointer to the oldest one
2911 */
2912 generation = btrfs_super_generation(disk_super);
2913 find_oldest_super_backup(fs_info, generation);
2914
75e7cb7f
LB
2915 /*
2916 * In the long term, we'll store the compression type in the super
2917 * block, and it'll be used for per file compression control.
2918 */
2919 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2920
2ff7e61e 2921 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2922 if (ret) {
2923 err = ret;
6d97c6e3 2924 goto fail_csum;
2b82032c 2925 }
dfe25020 2926
f2b636e8
JB
2927 features = btrfs_super_incompat_flags(disk_super) &
2928 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2929 if (features) {
05135f59
DS
2930 btrfs_err(fs_info,
2931 "cannot mount because of unsupported optional features (%llx)",
2932 features);
f2b636e8 2933 err = -EINVAL;
6d97c6e3 2934 goto fail_csum;
f2b636e8
JB
2935 }
2936
5d4f98a2 2937 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2938 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2939 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2940 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2941 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2942 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2943
3173a18f 2944 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2945 btrfs_info(fs_info, "has skinny extents");
3173a18f 2946
727011e0
CM
2947 /*
2948 * flag our filesystem as having big metadata blocks if
2949 * they are bigger than the page size
2950 */
09cbfeaf 2951 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2952 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2953 btrfs_info(fs_info,
2954 "flagging fs with big metadata feature");
727011e0
CM
2955 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2956 }
2957
bc3f116f 2958 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2959 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2960 stripesize = sectorsize;
707e8a07 2961 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2962 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2963
da17066c
JM
2964 /* Cache block sizes */
2965 fs_info->nodesize = nodesize;
2966 fs_info->sectorsize = sectorsize;
2967 fs_info->stripesize = stripesize;
2968
bc3f116f
CM
2969 /*
2970 * mixed block groups end up with duplicate but slightly offset
2971 * extent buffers for the same range. It leads to corruptions
2972 */
2973 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2974 (sectorsize != nodesize)) {
05135f59
DS
2975 btrfs_err(fs_info,
2976"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2977 nodesize, sectorsize);
6d97c6e3 2978 goto fail_csum;
bc3f116f
CM
2979 }
2980
ceda0864
MX
2981 /*
2982 * Needn't use the lock because there is no other task which will
2983 * update the flag.
2984 */
a6fa6fae 2985 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2986
f2b636e8
JB
2987 features = btrfs_super_compat_ro_flags(disk_super) &
2988 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2989 if (!sb_rdonly(sb) && features) {
05135f59
DS
2990 btrfs_err(fs_info,
2991 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2992 features);
f2b636e8 2993 err = -EINVAL;
6d97c6e3 2994 goto fail_csum;
f2b636e8 2995 }
61d92c32 2996
2a458198
ES
2997 ret = btrfs_init_workqueues(fs_info, fs_devices);
2998 if (ret) {
2999 err = ret;
0dc3b84a
JB
3000 goto fail_sb_buffer;
3001 }
4543df7e 3002
9e11ceee
JK
3003 sb->s_bdi->congested_fn = btrfs_congested_fn;
3004 sb->s_bdi->congested_data = fs_info;
3005 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3006 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3007 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3008 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3009
a061fc8d
CM
3010 sb->s_blocksize = sectorsize;
3011 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3012 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3013
925baedd 3014 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3015 ret = btrfs_read_sys_array(fs_info);
925baedd 3016 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3017 if (ret) {
05135f59 3018 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3019 goto fail_sb_buffer;
84eed90f 3020 }
0b86a832 3021
84234f3a 3022 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3023 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3024
da17066c 3025 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 3026
2ff7e61e 3027 chunk_root->node = read_tree_block(fs_info,
0b86a832 3028 btrfs_super_chunk_root(disk_super),
581c1760 3029 generation, level, NULL);
64c043de
LB
3030 if (IS_ERR(chunk_root->node) ||
3031 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3032 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3033 if (!IS_ERR(chunk_root->node))
3034 free_extent_buffer(chunk_root->node);
95ab1f64 3035 chunk_root->node = NULL;
af31f5e5 3036 goto fail_tree_roots;
83121942 3037 }
5d4f98a2
YZ
3038 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3039 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3040
e17cade2 3041 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3042 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3043
5b4aacef 3044 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3045 if (ret) {
05135f59 3046 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3047 goto fail_tree_roots;
2b82032c 3048 }
0b86a832 3049
8dabb742 3050 /*
9b99b115
AJ
3051 * Keep the devid that is marked to be the target device for the
3052 * device replace procedure
8dabb742 3053 */
9b99b115 3054 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3055
a6b0d5c8 3056 if (!fs_devices->latest_bdev) {
05135f59 3057 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3058 goto fail_tree_roots;
3059 }
3060
af31f5e5 3061retry_root_backup:
84234f3a 3062 generation = btrfs_super_generation(disk_super);
581c1760 3063 level = btrfs_super_root_level(disk_super);
0b86a832 3064
2ff7e61e 3065 tree_root->node = read_tree_block(fs_info,
db94535d 3066 btrfs_super_root(disk_super),
581c1760 3067 generation, level, NULL);
64c043de
LB
3068 if (IS_ERR(tree_root->node) ||
3069 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3070 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3071 if (!IS_ERR(tree_root->node))
3072 free_extent_buffer(tree_root->node);
95ab1f64 3073 tree_root->node = NULL;
af31f5e5 3074 goto recovery_tree_root;
83121942 3075 }
af31f5e5 3076
5d4f98a2
YZ
3077 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3078 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3079 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3080
f32e48e9
CR
3081 mutex_lock(&tree_root->objectid_mutex);
3082 ret = btrfs_find_highest_objectid(tree_root,
3083 &tree_root->highest_objectid);
3084 if (ret) {
3085 mutex_unlock(&tree_root->objectid_mutex);
3086 goto recovery_tree_root;
3087 }
3088
3089 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3090
3091 mutex_unlock(&tree_root->objectid_mutex);
3092
6bccf3ab 3093 ret = btrfs_read_roots(fs_info);
4bbcaa64 3094 if (ret)
af31f5e5 3095 goto recovery_tree_root;
f7a81ea4 3096
8929ecfa
YZ
3097 fs_info->generation = generation;
3098 fs_info->last_trans_committed = generation;
8929ecfa 3099
cf90d884
QW
3100 ret = btrfs_verify_dev_extents(fs_info);
3101 if (ret) {
3102 btrfs_err(fs_info,
3103 "failed to verify dev extents against chunks: %d",
3104 ret);
3105 goto fail_block_groups;
3106 }
68310a5e
ID
3107 ret = btrfs_recover_balance(fs_info);
3108 if (ret) {
05135f59 3109 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3110 goto fail_block_groups;
3111 }
3112
733f4fbb
SB
3113 ret = btrfs_init_dev_stats(fs_info);
3114 if (ret) {
05135f59 3115 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3116 goto fail_block_groups;
3117 }
3118
8dabb742
SB
3119 ret = btrfs_init_dev_replace(fs_info);
3120 if (ret) {
05135f59 3121 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3122 goto fail_block_groups;
3123 }
3124
9b99b115 3125 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3126
b7c35e81
AJ
3127 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3128 if (ret) {
05135f59
DS
3129 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3130 ret);
b7c35e81
AJ
3131 goto fail_block_groups;
3132 }
3133
3134 ret = btrfs_sysfs_add_device(fs_devices);
3135 if (ret) {
05135f59
DS
3136 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3137 ret);
b7c35e81
AJ
3138 goto fail_fsdev_sysfs;
3139 }
3140
96f3136e 3141 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3142 if (ret) {
05135f59 3143 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3144 goto fail_fsdev_sysfs;
c59021f8 3145 }
3146
c59021f8 3147 ret = btrfs_init_space_info(fs_info);
3148 if (ret) {
05135f59 3149 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3150 goto fail_sysfs;
c59021f8 3151 }
3152
5b4aacef 3153 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3154 if (ret) {
05135f59 3155 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3156 goto fail_sysfs;
1b1d1f66 3157 }
4330e183 3158
6528b99d 3159 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3160 btrfs_warn(fs_info,
52042d8e 3161 "writable mount is not allowed due to too many missing devices");
2365dd3c 3162 goto fail_sysfs;
292fd7fc 3163 }
9078a3e1 3164
a74a4b97
CM
3165 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3166 "btrfs-cleaner");
57506d50 3167 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3168 goto fail_sysfs;
a74a4b97
CM
3169
3170 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3171 tree_root,
3172 "btrfs-transaction");
57506d50 3173 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3174 goto fail_cleaner;
a74a4b97 3175
583b7231 3176 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3177 !fs_info->fs_devices->rotating) {
583b7231 3178 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3179 }
3180
572d9ab7 3181 /*
01327610 3182 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3183 * not have to wait for transaction commit
3184 */
3185 btrfs_apply_pending_changes(fs_info);
3818aea2 3186
21adbd5c 3187#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3188 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3189 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3190 btrfs_test_opt(fs_info,
21adbd5c
SB
3191 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3192 1 : 0,
3193 fs_info->check_integrity_print_mask);
3194 if (ret)
05135f59
DS
3195 btrfs_warn(fs_info,
3196 "failed to initialize integrity check module: %d",
3197 ret);
21adbd5c
SB
3198 }
3199#endif
bcef60f2
AJ
3200 ret = btrfs_read_qgroup_config(fs_info);
3201 if (ret)
3202 goto fail_trans_kthread;
21adbd5c 3203
fd708b81
JB
3204 if (btrfs_build_ref_tree(fs_info))
3205 btrfs_err(fs_info, "couldn't build ref tree");
3206
96da0919
QW
3207 /* do not make disk changes in broken FS or nologreplay is given */
3208 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3209 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3210 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3211 if (ret) {
63443bf5 3212 err = ret;
28c16cbb 3213 goto fail_qgroup;
79787eaa 3214 }
e02119d5 3215 }
1a40e23b 3216
6bccf3ab 3217 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3218 if (ret)
28c16cbb 3219 goto fail_qgroup;
76dda93c 3220
bc98a42c 3221 if (!sb_rdonly(sb)) {
d68fc57b 3222 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3223 if (ret)
28c16cbb 3224 goto fail_qgroup;
90c711ab
ZB
3225
3226 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3227 ret = btrfs_recover_relocation(tree_root);
90c711ab 3228 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3229 if (ret < 0) {
05135f59
DS
3230 btrfs_warn(fs_info, "failed to recover relocation: %d",
3231 ret);
d7ce5843 3232 err = -EINVAL;
bcef60f2 3233 goto fail_qgroup;
d7ce5843 3234 }
7c2ca468 3235 }
1a40e23b 3236
3de4586c
CM
3237 location.objectid = BTRFS_FS_TREE_OBJECTID;
3238 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3239 location.offset = 0;
3de4586c 3240
3de4586c 3241 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3242 if (IS_ERR(fs_info->fs_root)) {
3243 err = PTR_ERR(fs_info->fs_root);
f50f4353 3244 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3245 goto fail_qgroup;
3140c9a3 3246 }
c289811c 3247
bc98a42c 3248 if (sb_rdonly(sb))
2b6ba629 3249 return 0;
59641015 3250
f8d468a1
OS
3251 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3252 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3253 clear_free_space_tree = 1;
3254 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3255 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3256 btrfs_warn(fs_info, "free space tree is invalid");
3257 clear_free_space_tree = 1;
3258 }
3259
3260 if (clear_free_space_tree) {
f8d468a1
OS
3261 btrfs_info(fs_info, "clearing free space tree");
3262 ret = btrfs_clear_free_space_tree(fs_info);
3263 if (ret) {
3264 btrfs_warn(fs_info,
3265 "failed to clear free space tree: %d", ret);
6bccf3ab 3266 close_ctree(fs_info);
f8d468a1
OS
3267 return ret;
3268 }
3269 }
3270
0b246afa 3271 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3272 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3273 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3274 ret = btrfs_create_free_space_tree(fs_info);
3275 if (ret) {
05135f59
DS
3276 btrfs_warn(fs_info,
3277 "failed to create free space tree: %d", ret);
6bccf3ab 3278 close_ctree(fs_info);
511711af
CM
3279 return ret;
3280 }
3281 }
3282
2b6ba629
ID
3283 down_read(&fs_info->cleanup_work_sem);
3284 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3285 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3286 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3287 close_ctree(fs_info);
2b6ba629
ID
3288 return ret;
3289 }
3290 up_read(&fs_info->cleanup_work_sem);
59641015 3291
2b6ba629
ID
3292 ret = btrfs_resume_balance_async(fs_info);
3293 if (ret) {
05135f59 3294 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3295 close_ctree(fs_info);
2b6ba629 3296 return ret;
e3acc2a6
JB
3297 }
3298
8dabb742
SB
3299 ret = btrfs_resume_dev_replace_async(fs_info);
3300 if (ret) {
05135f59 3301 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3302 close_ctree(fs_info);
8dabb742
SB
3303 return ret;
3304 }
3305
b382a324
JS
3306 btrfs_qgroup_rescan_resume(fs_info);
3307
4bbcaa64 3308 if (!fs_info->uuid_root) {
05135f59 3309 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3310 ret = btrfs_create_uuid_tree(fs_info);
3311 if (ret) {
05135f59
DS
3312 btrfs_warn(fs_info,
3313 "failed to create the UUID tree: %d", ret);
6bccf3ab 3314 close_ctree(fs_info);
f7a81ea4
SB
3315 return ret;
3316 }
0b246afa 3317 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3318 fs_info->generation !=
3319 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3320 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3321 ret = btrfs_check_uuid_tree(fs_info);
3322 if (ret) {
05135f59
DS
3323 btrfs_warn(fs_info,
3324 "failed to check the UUID tree: %d", ret);
6bccf3ab 3325 close_ctree(fs_info);
70f80175
SB
3326 return ret;
3327 }
3328 } else {
afcdd129 3329 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3330 }
afcdd129 3331 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3332
8dcddfa0
QW
3333 /*
3334 * backuproot only affect mount behavior, and if open_ctree succeeded,
3335 * no need to keep the flag
3336 */
3337 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3338
ad2b2c80 3339 return 0;
39279cc3 3340
bcef60f2
AJ
3341fail_qgroup:
3342 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3343fail_trans_kthread:
3344 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3345 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3346 btrfs_free_fs_roots(fs_info);
3f157a2f 3347fail_cleaner:
a74a4b97 3348 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3349
3350 /*
3351 * make sure we're done with the btree inode before we stop our
3352 * kthreads
3353 */
3354 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3355
2365dd3c 3356fail_sysfs:
6618a59b 3357 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3358
b7c35e81
AJ
3359fail_fsdev_sysfs:
3360 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3361
1b1d1f66 3362fail_block_groups:
54067ae9 3363 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3364
3365fail_tree_roots:
3366 free_root_pointers(fs_info, 1);
2b8195bb 3367 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3368
39279cc3 3369fail_sb_buffer:
7abadb64 3370 btrfs_stop_all_workers(fs_info);
5cdd7db6 3371 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3372fail_csum:
3373 btrfs_free_csum_hash(fs_info);
16cdcec7 3374fail_alloc:
4543df7e 3375fail_iput:
586e46e2
ID
3376 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3377
4543df7e 3378 iput(fs_info->btree_inode);
c404e0dc 3379fail_bio_counter:
7f8d236a 3380 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3381fail_delalloc_bytes:
3382 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3383fail_dirty_metadata_bytes:
3384 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3385fail_dio_bytes:
3386 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3387fail_srcu:
3388 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3389fail:
53b381b3 3390 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3391 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3392 return err;
af31f5e5
CM
3393
3394recovery_tree_root:
0b246afa 3395 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3396 goto fail_tree_roots;
3397
3398 free_root_pointers(fs_info, 0);
3399
3400 /* don't use the log in recovery mode, it won't be valid */
3401 btrfs_set_super_log_root(disk_super, 0);
3402
3403 /* we can't trust the free space cache either */
3404 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3405
3406 ret = next_root_backup(fs_info, fs_info->super_copy,
3407 &num_backups_tried, &backup_index);
3408 if (ret == -1)
3409 goto fail_block_groups;
3410 goto retry_root_backup;
eb60ceac 3411}
663faf9f 3412ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3413
f2984462
CM
3414static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3415{
f2984462
CM
3416 if (uptodate) {
3417 set_buffer_uptodate(bh);
3418 } else {
442a4f63
SB
3419 struct btrfs_device *device = (struct btrfs_device *)
3420 bh->b_private;
3421
fb456252 3422 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3423 "lost page write due to IO error on %s",
606686ee 3424 rcu_str_deref(device->name));
01327610 3425 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3426 * our own ways of dealing with the IO errors
3427 */
f2984462 3428 clear_buffer_uptodate(bh);
442a4f63 3429 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3430 }
3431 unlock_buffer(bh);
3432 put_bh(bh);
3433}
3434
29c36d72
AJ
3435int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3436 struct buffer_head **bh_ret)
3437{
3438 struct buffer_head *bh;
3439 struct btrfs_super_block *super;
3440 u64 bytenr;
3441
3442 bytenr = btrfs_sb_offset(copy_num);
3443 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3444 return -EINVAL;
3445
9f6d2510 3446 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3447 /*
3448 * If we fail to read from the underlying devices, as of now
3449 * the best option we have is to mark it EIO.
3450 */
3451 if (!bh)
3452 return -EIO;
3453
3454 super = (struct btrfs_super_block *)bh->b_data;
3455 if (btrfs_super_bytenr(super) != bytenr ||
3456 btrfs_super_magic(super) != BTRFS_MAGIC) {
3457 brelse(bh);
3458 return -EINVAL;
3459 }
3460
3461 *bh_ret = bh;
3462 return 0;
3463}
3464
3465
a512bbf8
YZ
3466struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3467{
3468 struct buffer_head *bh;
3469 struct buffer_head *latest = NULL;
3470 struct btrfs_super_block *super;
3471 int i;
3472 u64 transid = 0;
92fc03fb 3473 int ret = -EINVAL;
a512bbf8
YZ
3474
3475 /* we would like to check all the supers, but that would make
3476 * a btrfs mount succeed after a mkfs from a different FS.
3477 * So, we need to add a special mount option to scan for
3478 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3479 */
3480 for (i = 0; i < 1; i++) {
29c36d72
AJ
3481 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3482 if (ret)
a512bbf8
YZ
3483 continue;
3484
3485 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3486
3487 if (!latest || btrfs_super_generation(super) > transid) {
3488 brelse(latest);
3489 latest = bh;
3490 transid = btrfs_super_generation(super);
3491 } else {
3492 brelse(bh);
3493 }
3494 }
92fc03fb
AJ
3495
3496 if (!latest)
3497 return ERR_PTR(ret);
3498
a512bbf8
YZ
3499 return latest;
3500}
3501
4eedeb75 3502/*
abbb3b8e
DS
3503 * Write superblock @sb to the @device. Do not wait for completion, all the
3504 * buffer heads we write are pinned.
4eedeb75 3505 *
abbb3b8e
DS
3506 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3507 * the expected device size at commit time. Note that max_mirrors must be
3508 * same for write and wait phases.
4eedeb75 3509 *
abbb3b8e 3510 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3511 */
a512bbf8 3512static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3513 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3514{
3515 struct buffer_head *bh;
3516 int i;
3517 int ret;
3518 int errors = 0;
3519 u32 crc;
3520 u64 bytenr;
1b9e619c 3521 int op_flags;
a512bbf8
YZ
3522
3523 if (max_mirrors == 0)
3524 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3525
a512bbf8
YZ
3526 for (i = 0; i < max_mirrors; i++) {
3527 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3528 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3529 device->commit_total_bytes)
a512bbf8
YZ
3530 break;
3531
abbb3b8e 3532 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3533
abbb3b8e
DS
3534 crc = ~(u32)0;
3535 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3536 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3537 btrfs_csum_final(crc, sb->csum);
4eedeb75 3538
abbb3b8e 3539 /* One reference for us, and we leave it for the caller */
9f6d2510 3540 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3541 BTRFS_SUPER_INFO_SIZE);
3542 if (!bh) {
3543 btrfs_err(device->fs_info,
3544 "couldn't get super buffer head for bytenr %llu",
3545 bytenr);
3546 errors++;
4eedeb75 3547 continue;
abbb3b8e 3548 }
634554dc 3549
abbb3b8e 3550 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3551
abbb3b8e
DS
3552 /* one reference for submit_bh */
3553 get_bh(bh);
4eedeb75 3554
abbb3b8e
DS
3555 set_buffer_uptodate(bh);
3556 lock_buffer(bh);
3557 bh->b_end_io = btrfs_end_buffer_write_sync;
3558 bh->b_private = device;
a512bbf8 3559
387125fc
CM
3560 /*
3561 * we fua the first super. The others we allow
3562 * to go down lazy.
3563 */
1b9e619c
OS
3564 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3565 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3566 op_flags |= REQ_FUA;
3567 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3568 if (ret)
a512bbf8 3569 errors++;
a512bbf8
YZ
3570 }
3571 return errors < i ? 0 : -1;
3572}
3573
abbb3b8e
DS
3574/*
3575 * Wait for write completion of superblocks done by write_dev_supers,
3576 * @max_mirrors same for write and wait phases.
3577 *
3578 * Return number of errors when buffer head is not found or not marked up to
3579 * date.
3580 */
3581static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3582{
3583 struct buffer_head *bh;
3584 int i;
3585 int errors = 0;
b6a535fa 3586 bool primary_failed = false;
abbb3b8e
DS
3587 u64 bytenr;
3588
3589 if (max_mirrors == 0)
3590 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3591
3592 for (i = 0; i < max_mirrors; i++) {
3593 bytenr = btrfs_sb_offset(i);
3594 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3595 device->commit_total_bytes)
3596 break;
3597
9f6d2510
DS
3598 bh = __find_get_block(device->bdev,
3599 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3600 BTRFS_SUPER_INFO_SIZE);
3601 if (!bh) {
3602 errors++;
b6a535fa
HM
3603 if (i == 0)
3604 primary_failed = true;
abbb3b8e
DS
3605 continue;
3606 }
3607 wait_on_buffer(bh);
b6a535fa 3608 if (!buffer_uptodate(bh)) {
abbb3b8e 3609 errors++;
b6a535fa
HM
3610 if (i == 0)
3611 primary_failed = true;
3612 }
abbb3b8e
DS
3613
3614 /* drop our reference */
3615 brelse(bh);
3616
3617 /* drop the reference from the writing run */
3618 brelse(bh);
3619 }
3620
b6a535fa
HM
3621 /* log error, force error return */
3622 if (primary_failed) {
3623 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3624 device->devid);
3625 return -1;
3626 }
3627
abbb3b8e
DS
3628 return errors < i ? 0 : -1;
3629}
3630
387125fc
CM
3631/*
3632 * endio for the write_dev_flush, this will wake anyone waiting
3633 * for the barrier when it is done
3634 */
4246a0b6 3635static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3636{
e0ae9994 3637 complete(bio->bi_private);
387125fc
CM
3638}
3639
3640/*
4fc6441a
AJ
3641 * Submit a flush request to the device if it supports it. Error handling is
3642 * done in the waiting counterpart.
387125fc 3643 */
4fc6441a 3644static void write_dev_flush(struct btrfs_device *device)
387125fc 3645{
c2a9c7ab 3646 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3647 struct bio *bio = device->flush_bio;
387125fc 3648
c2a9c7ab 3649 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3650 return;
387125fc 3651
e0ae9994 3652 bio_reset(bio);
387125fc 3653 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3654 bio_set_dev(bio, device->bdev);
8d910125 3655 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3656 init_completion(&device->flush_wait);
3657 bio->bi_private = &device->flush_wait;
387125fc 3658
43a01111 3659 btrfsic_submit_bio(bio);
1c3063b6 3660 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3661}
387125fc 3662
4fc6441a
AJ
3663/*
3664 * If the flush bio has been submitted by write_dev_flush, wait for it.
3665 */
8c27cb35 3666static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3667{
4fc6441a 3668 struct bio *bio = device->flush_bio;
387125fc 3669
1c3063b6 3670 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3671 return BLK_STS_OK;
387125fc 3672
1c3063b6 3673 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3674 wait_for_completion_io(&device->flush_wait);
387125fc 3675
8c27cb35 3676 return bio->bi_status;
387125fc 3677}
387125fc 3678
d10b82fe 3679static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3680{
6528b99d 3681 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3682 return -EIO;
387125fc
CM
3683 return 0;
3684}
3685
3686/*
3687 * send an empty flush down to each device in parallel,
3688 * then wait for them
3689 */
3690static int barrier_all_devices(struct btrfs_fs_info *info)
3691{
3692 struct list_head *head;
3693 struct btrfs_device *dev;
5af3e8cc 3694 int errors_wait = 0;
4e4cbee9 3695 blk_status_t ret;
387125fc 3696
1538e6c5 3697 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3698 /* send down all the barriers */
3699 head = &info->fs_devices->devices;
1538e6c5 3700 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3701 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3702 continue;
cea7c8bf 3703 if (!dev->bdev)
387125fc 3704 continue;
e12c9621 3705 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3706 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3707 continue;
3708
4fc6441a 3709 write_dev_flush(dev);
58efbc9f 3710 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3711 }
3712
3713 /* wait for all the barriers */
1538e6c5 3714 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3715 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3716 continue;
387125fc 3717 if (!dev->bdev) {
5af3e8cc 3718 errors_wait++;
387125fc
CM
3719 continue;
3720 }
e12c9621 3721 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3722 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3723 continue;
3724
4fc6441a 3725 ret = wait_dev_flush(dev);
401b41e5
AJ
3726 if (ret) {
3727 dev->last_flush_error = ret;
66b4993e
DS
3728 btrfs_dev_stat_inc_and_print(dev,
3729 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3730 errors_wait++;
401b41e5
AJ
3731 }
3732 }
3733
cea7c8bf 3734 if (errors_wait) {
401b41e5
AJ
3735 /*
3736 * At some point we need the status of all disks
3737 * to arrive at the volume status. So error checking
3738 * is being pushed to a separate loop.
3739 */
d10b82fe 3740 return check_barrier_error(info);
387125fc 3741 }
387125fc
CM
3742 return 0;
3743}
3744
943c6e99
ZL
3745int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3746{
8789f4fe
ZL
3747 int raid_type;
3748 int min_tolerated = INT_MAX;
943c6e99 3749
8789f4fe
ZL
3750 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3751 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3752 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3753 btrfs_raid_array[BTRFS_RAID_SINGLE].
3754 tolerated_failures);
943c6e99 3755
8789f4fe
ZL
3756 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3757 if (raid_type == BTRFS_RAID_SINGLE)
3758 continue;
41a6e891 3759 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3760 continue;
8c3e3582 3761 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3762 btrfs_raid_array[raid_type].
3763 tolerated_failures);
3764 }
943c6e99 3765
8789f4fe 3766 if (min_tolerated == INT_MAX) {
ab8d0fc4 3767 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3768 min_tolerated = 0;
3769 }
3770
3771 return min_tolerated;
943c6e99
ZL
3772}
3773
eece6a9c 3774int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3775{
e5e9a520 3776 struct list_head *head;
f2984462 3777 struct btrfs_device *dev;
a061fc8d 3778 struct btrfs_super_block *sb;
f2984462 3779 struct btrfs_dev_item *dev_item;
f2984462
CM
3780 int ret;
3781 int do_barriers;
a236aed1
CM
3782 int max_errors;
3783 int total_errors = 0;
a061fc8d 3784 u64 flags;
f2984462 3785
0b246afa 3786 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3787
3788 /*
3789 * max_mirrors == 0 indicates we're from commit_transaction,
3790 * not from fsync where the tree roots in fs_info have not
3791 * been consistent on disk.
3792 */
3793 if (max_mirrors == 0)
3794 backup_super_roots(fs_info);
f2984462 3795
0b246afa 3796 sb = fs_info->super_for_commit;
a061fc8d 3797 dev_item = &sb->dev_item;
e5e9a520 3798
0b246afa
JM
3799 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3800 head = &fs_info->fs_devices->devices;
3801 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3802
5af3e8cc 3803 if (do_barriers) {
0b246afa 3804 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3805 if (ret) {
3806 mutex_unlock(
0b246afa
JM
3807 &fs_info->fs_devices->device_list_mutex);
3808 btrfs_handle_fs_error(fs_info, ret,
3809 "errors while submitting device barriers.");
5af3e8cc
SB
3810 return ret;
3811 }
3812 }
387125fc 3813
1538e6c5 3814 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3815 if (!dev->bdev) {
3816 total_errors++;
3817 continue;
3818 }
e12c9621 3819 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3820 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3821 continue;
3822
2b82032c 3823 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3824 btrfs_set_stack_device_type(dev_item, dev->type);
3825 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3826 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3827 dev->commit_total_bytes);
ce7213c7
MX
3828 btrfs_set_stack_device_bytes_used(dev_item,
3829 dev->commit_bytes_used);
a061fc8d
CM
3830 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3831 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3832 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3833 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3834 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3835 BTRFS_FSID_SIZE);
a512bbf8 3836
a061fc8d
CM
3837 flags = btrfs_super_flags(sb);
3838 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3839
75cb857d
QW
3840 ret = btrfs_validate_write_super(fs_info, sb);
3841 if (ret < 0) {
3842 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3843 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3844 "unexpected superblock corruption detected");
3845 return -EUCLEAN;
3846 }
3847
abbb3b8e 3848 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3849 if (ret)
3850 total_errors++;
f2984462 3851 }
a236aed1 3852 if (total_errors > max_errors) {
0b246afa
JM
3853 btrfs_err(fs_info, "%d errors while writing supers",
3854 total_errors);
3855 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3856
9d565ba4 3857 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3858 btrfs_handle_fs_error(fs_info, -EIO,
3859 "%d errors while writing supers",
3860 total_errors);
9d565ba4 3861 return -EIO;
a236aed1 3862 }
f2984462 3863
a512bbf8 3864 total_errors = 0;
1538e6c5 3865 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3866 if (!dev->bdev)
3867 continue;
e12c9621 3868 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3869 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3870 continue;
3871
abbb3b8e 3872 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3873 if (ret)
3874 total_errors++;
f2984462 3875 }
0b246afa 3876 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3877 if (total_errors > max_errors) {
0b246afa
JM
3878 btrfs_handle_fs_error(fs_info, -EIO,
3879 "%d errors while writing supers",
3880 total_errors);
79787eaa 3881 return -EIO;
a236aed1 3882 }
f2984462
CM
3883 return 0;
3884}
3885
cb517eab
MX
3886/* Drop a fs root from the radix tree and free it. */
3887void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3888 struct btrfs_root *root)
2619ba1f 3889{
4df27c4d 3890 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3891 radix_tree_delete(&fs_info->fs_roots_radix,
3892 (unsigned long)root->root_key.objectid);
4df27c4d 3893 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3894
3895 if (btrfs_root_refs(&root->root_item) == 0)
3896 synchronize_srcu(&fs_info->subvol_srcu);
3897
1c1ea4f7 3898 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3899 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3900 if (root->reloc_root) {
3901 free_extent_buffer(root->reloc_root->node);
3902 free_extent_buffer(root->reloc_root->commit_root);
3903 btrfs_put_fs_root(root->reloc_root);
3904 root->reloc_root = NULL;
3905 }
3906 }
3321719e 3907
faa2dbf0
JB
3908 if (root->free_ino_pinned)
3909 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3910 if (root->free_ino_ctl)
3911 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3912 btrfs_free_fs_root(root);
4df27c4d
YZ
3913}
3914
84db5ccf 3915void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3916{
57cdc8db 3917 iput(root->ino_cache_inode);
4df27c4d 3918 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3919 if (root->anon_dev)
3920 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3921 if (root->subv_writers)
3922 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3923 free_extent_buffer(root->node);
3924 free_extent_buffer(root->commit_root);
581bb050
LZ
3925 kfree(root->free_ino_ctl);
3926 kfree(root->free_ino_pinned);
b0feb9d9 3927 btrfs_put_fs_root(root);
2619ba1f
CM
3928}
3929
c146afad 3930int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3931{
c146afad
YZ
3932 u64 root_objectid = 0;
3933 struct btrfs_root *gang[8];
65d33fd7
QW
3934 int i = 0;
3935 int err = 0;
3936 unsigned int ret = 0;
3937 int index;
e089f05c 3938
c146afad 3939 while (1) {
65d33fd7 3940 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3941 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3942 (void **)gang, root_objectid,
3943 ARRAY_SIZE(gang));
65d33fd7
QW
3944 if (!ret) {
3945 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3946 break;
65d33fd7 3947 }
5d4f98a2 3948 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3949
c146afad 3950 for (i = 0; i < ret; i++) {
65d33fd7
QW
3951 /* Avoid to grab roots in dead_roots */
3952 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3953 gang[i] = NULL;
3954 continue;
3955 }
3956 /* grab all the search result for later use */
3957 gang[i] = btrfs_grab_fs_root(gang[i]);
3958 }
3959 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3960
65d33fd7
QW
3961 for (i = 0; i < ret; i++) {
3962 if (!gang[i])
3963 continue;
c146afad 3964 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3965 err = btrfs_orphan_cleanup(gang[i]);
3966 if (err)
65d33fd7
QW
3967 break;
3968 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3969 }
3970 root_objectid++;
3971 }
65d33fd7
QW
3972
3973 /* release the uncleaned roots due to error */
3974 for (; i < ret; i++) {
3975 if (gang[i])
3976 btrfs_put_fs_root(gang[i]);
3977 }
3978 return err;
c146afad 3979}
a2135011 3980
6bccf3ab 3981int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3982{
6bccf3ab 3983 struct btrfs_root *root = fs_info->tree_root;
c146afad 3984 struct btrfs_trans_handle *trans;
a74a4b97 3985
0b246afa 3986 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3987 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3988 mutex_unlock(&fs_info->cleaner_mutex);
3989 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3990
3991 /* wait until ongoing cleanup work done */
0b246afa
JM
3992 down_write(&fs_info->cleanup_work_sem);
3993 up_write(&fs_info->cleanup_work_sem);
c71bf099 3994
7a7eaa40 3995 trans = btrfs_join_transaction(root);
3612b495
TI
3996 if (IS_ERR(trans))
3997 return PTR_ERR(trans);
3a45bb20 3998 return btrfs_commit_transaction(trans);
c146afad
YZ
3999}
4000
6bccf3ab 4001void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4002{
c146afad
YZ
4003 int ret;
4004
afcdd129 4005 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4006 /*
4007 * We don't want the cleaner to start new transactions, add more delayed
4008 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4009 * because that frees the task_struct, and the transaction kthread might
4010 * still try to wake up the cleaner.
4011 */
4012 kthread_park(fs_info->cleaner_kthread);
c146afad 4013
7343dd61 4014 /* wait for the qgroup rescan worker to stop */
d06f23d6 4015 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4016
803b2f54
SB
4017 /* wait for the uuid_scan task to finish */
4018 down(&fs_info->uuid_tree_rescan_sem);
4019 /* avoid complains from lockdep et al., set sem back to initial state */
4020 up(&fs_info->uuid_tree_rescan_sem);
4021
837d5b6e 4022 /* pause restriper - we want to resume on mount */
aa1b8cd4 4023 btrfs_pause_balance(fs_info);
837d5b6e 4024
8dabb742
SB
4025 btrfs_dev_replace_suspend_for_unmount(fs_info);
4026
aa1b8cd4 4027 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4028
4029 /* wait for any defraggers to finish */
4030 wait_event(fs_info->transaction_wait,
4031 (atomic_read(&fs_info->defrag_running) == 0));
4032
4033 /* clear out the rbtree of defraggable inodes */
26176e7c 4034 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4035
21c7e756
MX
4036 cancel_work_sync(&fs_info->async_reclaim_work);
4037
bc98a42c 4038 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4039 /*
d6fd0ae2
OS
4040 * The cleaner kthread is stopped, so do one final pass over
4041 * unused block groups.
e44163e1 4042 */
0b246afa 4043 btrfs_delete_unused_bgs(fs_info);
e44163e1 4044
6bccf3ab 4045 ret = btrfs_commit_super(fs_info);
acce952b 4046 if (ret)
04892340 4047 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4048 }
4049
af722733
LB
4050 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4051 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4052 btrfs_error_commit_super(fs_info);
0f7d52f4 4053
e3029d9f
AV
4054 kthread_stop(fs_info->transaction_kthread);
4055 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4056
e187831e 4057 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4058 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4059
04892340 4060 btrfs_free_qgroup_config(fs_info);
fe816d0f 4061 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4062
963d678b 4063 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4064 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4065 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4066 }
bcc63abb 4067
4297ff84
JB
4068 if (percpu_counter_sum(&fs_info->dio_bytes))
4069 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4070 percpu_counter_sum(&fs_info->dio_bytes));
4071
6618a59b 4072 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4073 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4074
faa2dbf0 4075 btrfs_free_fs_roots(fs_info);
d10c5f31 4076
1a4319cc
LB
4077 btrfs_put_block_group_cache(fs_info);
4078
de348ee0
WS
4079 /*
4080 * we must make sure there is not any read request to
4081 * submit after we stopping all workers.
4082 */
4083 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4084 btrfs_stop_all_workers(fs_info);
4085
5cdd7db6
FM
4086 btrfs_free_block_groups(fs_info);
4087
afcdd129 4088 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4089 free_root_pointers(fs_info, 1);
9ad6b7bc 4090
13e6c37b 4091 iput(fs_info->btree_inode);
d6bfde87 4092
21adbd5c 4093#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4094 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4095 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4096#endif
4097
0b86a832 4098 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4099 btrfs_close_devices(fs_info->fs_devices);
b248a415 4100
e2d84521 4101 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4102 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4103 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4104 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4105 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4106
53b381b3 4107 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4108 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4109}
4110
b9fab919
CM
4111int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4112 int atomic)
5f39d397 4113{
1259ab75 4114 int ret;
727011e0 4115 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4116
0b32f4bb 4117 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4118 if (!ret)
4119 return ret;
4120
4121 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4122 parent_transid, atomic);
4123 if (ret == -EAGAIN)
4124 return ret;
1259ab75 4125 return !ret;
5f39d397
CM
4126}
4127
5f39d397
CM
4128void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4129{
0b246afa 4130 struct btrfs_fs_info *fs_info;
06ea65a3 4131 struct btrfs_root *root;
5f39d397 4132 u64 transid = btrfs_header_generation(buf);
b9473439 4133 int was_dirty;
b4ce94de 4134
06ea65a3
JB
4135#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4136 /*
4137 * This is a fast path so only do this check if we have sanity tests
52042d8e 4138 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4139 * outside of the sanity tests.
4140 */
b0132a3b 4141 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4142 return;
4143#endif
4144 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4145 fs_info = root->fs_info;
b9447ef8 4146 btrfs_assert_tree_locked(buf);
0b246afa 4147 if (transid != fs_info->generation)
5d163e0e 4148 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4149 buf->start, transid, fs_info->generation);
0b32f4bb 4150 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4151 if (!was_dirty)
104b4e51
NB
4152 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4153 buf->len,
4154 fs_info->dirty_metadata_batch);
1f21ef0a 4155#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4156 /*
4157 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4158 * but item data not updated.
4159 * So here we should only check item pointers, not item data.
4160 */
4161 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4162 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4163 btrfs_print_leaf(buf);
1f21ef0a
FM
4164 ASSERT(0);
4165 }
4166#endif
eb60ceac
CM
4167}
4168
2ff7e61e 4169static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4170 int flush_delayed)
16cdcec7
MX
4171{
4172 /*
4173 * looks as though older kernels can get into trouble with
4174 * this code, they end up stuck in balance_dirty_pages forever
4175 */
e2d84521 4176 int ret;
16cdcec7
MX
4177
4178 if (current->flags & PF_MEMALLOC)
4179 return;
4180
b53d3f5d 4181 if (flush_delayed)
2ff7e61e 4182 btrfs_balance_delayed_items(fs_info);
16cdcec7 4183
d814a491
EL
4184 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4185 BTRFS_DIRTY_METADATA_THRESH,
4186 fs_info->dirty_metadata_batch);
e2d84521 4187 if (ret > 0) {
0b246afa 4188 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4189 }
16cdcec7
MX
4190}
4191
2ff7e61e 4192void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4193{
2ff7e61e 4194 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4195}
585ad2c3 4196
2ff7e61e 4197void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4198{
2ff7e61e 4199 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4200}
6b80053d 4201
581c1760
QW
4202int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4203 struct btrfs_key *first_key)
6b80053d 4204{
5ab12d1f 4205 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4206 level, first_key);
6b80053d 4207}
0da5468f 4208
2ff7e61e 4209static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4210{
fe816d0f
NB
4211 /* cleanup FS via transaction */
4212 btrfs_cleanup_transaction(fs_info);
4213
0b246afa 4214 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4215 btrfs_run_delayed_iputs(fs_info);
0b246afa 4216 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4217
0b246afa
JM
4218 down_write(&fs_info->cleanup_work_sem);
4219 up_write(&fs_info->cleanup_work_sem);
acce952b 4220}
4221
143bede5 4222static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4223{
acce952b 4224 struct btrfs_ordered_extent *ordered;
acce952b 4225
199c2a9c 4226 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4227 /*
4228 * This will just short circuit the ordered completion stuff which will
4229 * make sure the ordered extent gets properly cleaned up.
4230 */
199c2a9c 4231 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4232 root_extent_list)
4233 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4234 spin_unlock(&root->ordered_extent_lock);
4235}
4236
4237static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4238{
4239 struct btrfs_root *root;
4240 struct list_head splice;
4241
4242 INIT_LIST_HEAD(&splice);
4243
4244 spin_lock(&fs_info->ordered_root_lock);
4245 list_splice_init(&fs_info->ordered_roots, &splice);
4246 while (!list_empty(&splice)) {
4247 root = list_first_entry(&splice, struct btrfs_root,
4248 ordered_root);
1de2cfde
JB
4249 list_move_tail(&root->ordered_root,
4250 &fs_info->ordered_roots);
199c2a9c 4251
2a85d9ca 4252 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4253 btrfs_destroy_ordered_extents(root);
4254
2a85d9ca
LB
4255 cond_resched();
4256 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4257 }
4258 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4259
4260 /*
4261 * We need this here because if we've been flipped read-only we won't
4262 * get sync() from the umount, so we need to make sure any ordered
4263 * extents that haven't had their dirty pages IO start writeout yet
4264 * actually get run and error out properly.
4265 */
4266 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4267}
4268
35a3621b 4269static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4270 struct btrfs_fs_info *fs_info)
acce952b 4271{
4272 struct rb_node *node;
4273 struct btrfs_delayed_ref_root *delayed_refs;
4274 struct btrfs_delayed_ref_node *ref;
4275 int ret = 0;
4276
4277 delayed_refs = &trans->delayed_refs;
4278
4279 spin_lock(&delayed_refs->lock);
d7df2c79 4280 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4281 spin_unlock(&delayed_refs->lock);
0b246afa 4282 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4283 return ret;
4284 }
4285
5c9d028b 4286 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4287 struct btrfs_delayed_ref_head *head;
0e0adbcf 4288 struct rb_node *n;
e78417d1 4289 bool pin_bytes = false;
acce952b 4290
d7df2c79
JB
4291 head = rb_entry(node, struct btrfs_delayed_ref_head,
4292 href_node);
3069bd26 4293 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4294 continue;
3069bd26 4295
d7df2c79 4296 spin_lock(&head->lock);
e3d03965 4297 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4298 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4299 ref_node);
d7df2c79 4300 ref->in_tree = 0;
e3d03965 4301 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4302 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4303 if (!list_empty(&ref->add_list))
4304 list_del(&ref->add_list);
d7df2c79
JB
4305 atomic_dec(&delayed_refs->num_entries);
4306 btrfs_put_delayed_ref(ref);
e78417d1 4307 }
d7df2c79
JB
4308 if (head->must_insert_reserved)
4309 pin_bytes = true;
4310 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4311 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4312 spin_unlock(&head->lock);
4313 spin_unlock(&delayed_refs->lock);
4314 mutex_unlock(&head->mutex);
acce952b 4315
d7df2c79 4316 if (pin_bytes)
d278850e
JB
4317 btrfs_pin_extent(fs_info, head->bytenr,
4318 head->num_bytes, 1);
31890da0 4319 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4320 btrfs_put_delayed_ref_head(head);
acce952b 4321 cond_resched();
4322 spin_lock(&delayed_refs->lock);
4323 }
4324
4325 spin_unlock(&delayed_refs->lock);
4326
4327 return ret;
4328}
4329
143bede5 4330static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4331{
4332 struct btrfs_inode *btrfs_inode;
4333 struct list_head splice;
4334
4335 INIT_LIST_HEAD(&splice);
4336
eb73c1b7
MX
4337 spin_lock(&root->delalloc_lock);
4338 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4339
4340 while (!list_empty(&splice)) {
fe816d0f 4341 struct inode *inode = NULL;
eb73c1b7
MX
4342 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4343 delalloc_inodes);
fe816d0f 4344 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4345 spin_unlock(&root->delalloc_lock);
acce952b 4346
fe816d0f
NB
4347 /*
4348 * Make sure we get a live inode and that it'll not disappear
4349 * meanwhile.
4350 */
4351 inode = igrab(&btrfs_inode->vfs_inode);
4352 if (inode) {
4353 invalidate_inode_pages2(inode->i_mapping);
4354 iput(inode);
4355 }
eb73c1b7 4356 spin_lock(&root->delalloc_lock);
acce952b 4357 }
eb73c1b7
MX
4358 spin_unlock(&root->delalloc_lock);
4359}
4360
4361static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4362{
4363 struct btrfs_root *root;
4364 struct list_head splice;
4365
4366 INIT_LIST_HEAD(&splice);
4367
4368 spin_lock(&fs_info->delalloc_root_lock);
4369 list_splice_init(&fs_info->delalloc_roots, &splice);
4370 while (!list_empty(&splice)) {
4371 root = list_first_entry(&splice, struct btrfs_root,
4372 delalloc_root);
eb73c1b7
MX
4373 root = btrfs_grab_fs_root(root);
4374 BUG_ON(!root);
4375 spin_unlock(&fs_info->delalloc_root_lock);
4376
4377 btrfs_destroy_delalloc_inodes(root);
4378 btrfs_put_fs_root(root);
4379
4380 spin_lock(&fs_info->delalloc_root_lock);
4381 }
4382 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4383}
4384
2ff7e61e 4385static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4386 struct extent_io_tree *dirty_pages,
4387 int mark)
4388{
4389 int ret;
acce952b 4390 struct extent_buffer *eb;
4391 u64 start = 0;
4392 u64 end;
acce952b 4393
4394 while (1) {
4395 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4396 mark, NULL);
acce952b 4397 if (ret)
4398 break;
4399
91166212 4400 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4401 while (start <= end) {
0b246afa
JM
4402 eb = find_extent_buffer(fs_info, start);
4403 start += fs_info->nodesize;
fd8b2b61 4404 if (!eb)
acce952b 4405 continue;
fd8b2b61 4406 wait_on_extent_buffer_writeback(eb);
acce952b 4407
fd8b2b61
JB
4408 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4409 &eb->bflags))
4410 clear_extent_buffer_dirty(eb);
4411 free_extent_buffer_stale(eb);
acce952b 4412 }
4413 }
4414
4415 return ret;
4416}
4417
2ff7e61e 4418static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4419 struct extent_io_tree *pinned_extents)
4420{
4421 struct extent_io_tree *unpin;
4422 u64 start;
4423 u64 end;
4424 int ret;
ed0eaa14 4425 bool loop = true;
acce952b 4426
4427 unpin = pinned_extents;
ed0eaa14 4428again:
acce952b 4429 while (1) {
0e6ec385
FM
4430 struct extent_state *cached_state = NULL;
4431
fcd5e742
LF
4432 /*
4433 * The btrfs_finish_extent_commit() may get the same range as
4434 * ours between find_first_extent_bit and clear_extent_dirty.
4435 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4436 * the same extent range.
4437 */
4438 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4439 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4440 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4441 if (ret) {
4442 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4443 break;
fcd5e742 4444 }
acce952b 4445
0e6ec385
FM
4446 clear_extent_dirty(unpin, start, end, &cached_state);
4447 free_extent_state(cached_state);
2ff7e61e 4448 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4449 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4450 cond_resched();
4451 }
4452
ed0eaa14 4453 if (loop) {
0b246afa
JM
4454 if (unpin == &fs_info->freed_extents[0])
4455 unpin = &fs_info->freed_extents[1];
ed0eaa14 4456 else
0b246afa 4457 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4458 loop = false;
4459 goto again;
4460 }
4461
acce952b 4462 return 0;
4463}
4464
c79a1751
LB
4465static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4466{
4467 struct inode *inode;
4468
4469 inode = cache->io_ctl.inode;
4470 if (inode) {
4471 invalidate_inode_pages2(inode->i_mapping);
4472 BTRFS_I(inode)->generation = 0;
4473 cache->io_ctl.inode = NULL;
4474 iput(inode);
4475 }
4476 btrfs_put_block_group(cache);
4477}
4478
4479void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4480 struct btrfs_fs_info *fs_info)
c79a1751
LB
4481{
4482 struct btrfs_block_group_cache *cache;
4483
4484 spin_lock(&cur_trans->dirty_bgs_lock);
4485 while (!list_empty(&cur_trans->dirty_bgs)) {
4486 cache = list_first_entry(&cur_trans->dirty_bgs,
4487 struct btrfs_block_group_cache,
4488 dirty_list);
c79a1751
LB
4489
4490 if (!list_empty(&cache->io_list)) {
4491 spin_unlock(&cur_trans->dirty_bgs_lock);
4492 list_del_init(&cache->io_list);
4493 btrfs_cleanup_bg_io(cache);
4494 spin_lock(&cur_trans->dirty_bgs_lock);
4495 }
4496
4497 list_del_init(&cache->dirty_list);
4498 spin_lock(&cache->lock);
4499 cache->disk_cache_state = BTRFS_DC_ERROR;
4500 spin_unlock(&cache->lock);
4501
4502 spin_unlock(&cur_trans->dirty_bgs_lock);
4503 btrfs_put_block_group(cache);
ba2c4d4e 4504 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4505 spin_lock(&cur_trans->dirty_bgs_lock);
4506 }
4507 spin_unlock(&cur_trans->dirty_bgs_lock);
4508
45ae2c18
NB
4509 /*
4510 * Refer to the definition of io_bgs member for details why it's safe
4511 * to use it without any locking
4512 */
c79a1751
LB
4513 while (!list_empty(&cur_trans->io_bgs)) {
4514 cache = list_first_entry(&cur_trans->io_bgs,
4515 struct btrfs_block_group_cache,
4516 io_list);
c79a1751
LB
4517
4518 list_del_init(&cache->io_list);
4519 spin_lock(&cache->lock);
4520 cache->disk_cache_state = BTRFS_DC_ERROR;
4521 spin_unlock(&cache->lock);
4522 btrfs_cleanup_bg_io(cache);
4523 }
4524}
4525
49b25e05 4526void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4527 struct btrfs_fs_info *fs_info)
49b25e05 4528{
bbbf7243
NB
4529 struct btrfs_device *dev, *tmp;
4530
2ff7e61e 4531 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4532 ASSERT(list_empty(&cur_trans->dirty_bgs));
4533 ASSERT(list_empty(&cur_trans->io_bgs));
4534
bbbf7243
NB
4535 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4536 post_commit_list) {
4537 list_del_init(&dev->post_commit_list);
4538 }
4539
2ff7e61e 4540 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4541
4a9d8bde 4542 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4543 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4544
4a9d8bde 4545 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4546 wake_up(&fs_info->transaction_wait);
49b25e05 4547
ccdf9b30
JM
4548 btrfs_destroy_delayed_inodes(fs_info);
4549 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4550
2ff7e61e 4551 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4552 EXTENT_DIRTY);
2ff7e61e 4553 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4554 fs_info->pinned_extents);
49b25e05 4555
4a9d8bde
MX
4556 cur_trans->state =TRANS_STATE_COMPLETED;
4557 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4558}
4559
2ff7e61e 4560static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4561{
4562 struct btrfs_transaction *t;
acce952b 4563
0b246afa 4564 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4565
0b246afa
JM
4566 spin_lock(&fs_info->trans_lock);
4567 while (!list_empty(&fs_info->trans_list)) {
4568 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4569 struct btrfs_transaction, list);
4570 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4571 refcount_inc(&t->use_count);
0b246afa 4572 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4573 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4574 btrfs_put_transaction(t);
0b246afa 4575 spin_lock(&fs_info->trans_lock);
724e2315
JB
4576 continue;
4577 }
0b246afa 4578 if (t == fs_info->running_transaction) {
724e2315 4579 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4580 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4581 /*
4582 * We wait for 0 num_writers since we don't hold a trans
4583 * handle open currently for this transaction.
4584 */
4585 wait_event(t->writer_wait,
4586 atomic_read(&t->num_writers) == 0);
4587 } else {
0b246afa 4588 spin_unlock(&fs_info->trans_lock);
724e2315 4589 }
2ff7e61e 4590 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4591
0b246afa
JM
4592 spin_lock(&fs_info->trans_lock);
4593 if (t == fs_info->running_transaction)
4594 fs_info->running_transaction = NULL;
acce952b 4595 list_del_init(&t->list);
0b246afa 4596 spin_unlock(&fs_info->trans_lock);
acce952b 4597
724e2315 4598 btrfs_put_transaction(t);
2ff7e61e 4599 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4600 spin_lock(&fs_info->trans_lock);
724e2315 4601 }
0b246afa
JM
4602 spin_unlock(&fs_info->trans_lock);
4603 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4604 btrfs_destroy_delayed_inodes(fs_info);
4605 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4606 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4607 btrfs_destroy_all_delalloc_inodes(fs_info);
4608 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4609
4610 return 0;
4611}
4612
e8c9f186 4613static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4614 /* mandatory callbacks */
0b86a832 4615 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4616 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4617};