]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: extract extent buffer verification from btrfs_validate_metadata_buffer()
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
141386e1
JB
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
d352ac68
CM
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
44b8bd7e 111struct async_submit_bio {
8896a08d 112 struct inode *inode;
44b8bd7e 113 struct bio *bio;
a758781d 114 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 115 int mirror_num;
eaf25d93
CM
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
8b712842 121 struct btrfs_work work;
4e4cbee9 122 blk_status_t status;
44b8bd7e
CM
123};
124
85d4e461
CM
125/*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
4008c04a 135 *
85d4e461
CM
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 139 *
85d4e461
CM
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 143 *
85d4e461
CM
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
4008c04a
CM
147 */
148#ifdef CONFIG_DEBUG_LOCK_ALLOC
149# if BTRFS_MAX_LEVEL != 8
150# error
151# endif
85d4e461 152
ab1405aa
DS
153#define DEFINE_LEVEL(stem, level) \
154 .names[level] = "btrfs-" stem "-0" #level,
155
156#define DEFINE_NAME(stem) \
157 DEFINE_LEVEL(stem, 0) \
158 DEFINE_LEVEL(stem, 1) \
159 DEFINE_LEVEL(stem, 2) \
160 DEFINE_LEVEL(stem, 3) \
161 DEFINE_LEVEL(stem, 4) \
162 DEFINE_LEVEL(stem, 5) \
163 DEFINE_LEVEL(stem, 6) \
164 DEFINE_LEVEL(stem, 7)
165
85d4e461
CM
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
ab1405aa 168 /* Longest entry: btrfs-free-space-00 */
387824af
DS
169 char names[BTRFS_MAX_LEVEL][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 171} btrfs_lockdep_keysets[] = {
ab1405aa
DS
172 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
175 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
176 { .id = BTRFS_FS_TREE_OBJECTID, DEFINE_NAME("fs") },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
179 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
182 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
184 { .id = 0, DEFINE_NAME("tree") },
4008c04a 185};
85d4e461 186
ab1405aa
DS
187#undef DEFINE_LEVEL
188#undef DEFINE_NAME
85d4e461
CM
189
190void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
191 int level)
192{
193 struct btrfs_lockdep_keyset *ks;
194
195 BUG_ON(level >= ARRAY_SIZE(ks->keys));
196
197 /* find the matching keyset, id 0 is the default entry */
198 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
199 if (ks->id == objectid)
200 break;
201
202 lockdep_set_class_and_name(&eb->lock,
203 &ks->keys[level], ks->names[level]);
204}
205
4008c04a
CM
206#endif
207
d352ac68 208/*
2996e1f8 209 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 210 */
c67b3892 211static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 212{
d5178578 213 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 214 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
a26663e7 215 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 216 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 217 char *kaddr;
e9be5a30 218 int i;
d5178578
JT
219
220 shash->tfm = fs_info->csum_shash;
221 crypto_shash_init(shash);
a26663e7 222 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 223 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 224 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 225
e9be5a30
DS
226 for (i = 1; i < num_pages; i++) {
227 kaddr = page_address(buf->pages[i]);
228 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 229 }
71a63551 230 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 231 crypto_shash_final(shash, result);
19c00ddc
CM
232}
233
d352ac68
CM
234/*
235 * we can't consider a given block up to date unless the transid of the
236 * block matches the transid in the parent node's pointer. This is how we
237 * detect blocks that either didn't get written at all or got written
238 * in the wrong place.
239 */
1259ab75 240static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
241 struct extent_buffer *eb, u64 parent_transid,
242 int atomic)
1259ab75 243{
2ac55d41 244 struct extent_state *cached_state = NULL;
1259ab75 245 int ret;
2755a0de 246 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
247
248 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
249 return 0;
250
b9fab919
CM
251 if (atomic)
252 return -EAGAIN;
253
ac5887c8 254 if (need_lock)
a26e8c9f 255 btrfs_tree_read_lock(eb);
a26e8c9f 256
2ac55d41 257 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 258 &cached_state);
0b32f4bb 259 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
260 btrfs_header_generation(eb) == parent_transid) {
261 ret = 0;
262 goto out;
263 }
94647322
DS
264 btrfs_err_rl(eb->fs_info,
265 "parent transid verify failed on %llu wanted %llu found %llu",
266 eb->start,
29549aec 267 parent_transid, btrfs_header_generation(eb));
1259ab75 268 ret = 1;
a26e8c9f
JB
269
270 /*
271 * Things reading via commit roots that don't have normal protection,
272 * like send, can have a really old block in cache that may point at a
01327610 273 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
274 * if we find an eb that is under IO (dirty/writeback) because we could
275 * end up reading in the stale data and then writing it back out and
276 * making everybody very sad.
277 */
278 if (!extent_buffer_under_io(eb))
279 clear_extent_buffer_uptodate(eb);
33958dc6 280out:
2ac55d41 281 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 282 &cached_state);
472b909f 283 if (need_lock)
ac5887c8 284 btrfs_tree_read_unlock(eb);
1259ab75 285 return ret;
1259ab75
CM
286}
287
e7e16f48
JT
288static bool btrfs_supported_super_csum(u16 csum_type)
289{
290 switch (csum_type) {
291 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 292 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 293 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 294 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
295 return true;
296 default:
297 return false;
298 }
299}
300
1104a885
DS
301/*
302 * Return 0 if the superblock checksum type matches the checksum value of that
303 * algorithm. Pass the raw disk superblock data.
304 */
ab8d0fc4
JM
305static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
306 char *raw_disk_sb)
1104a885
DS
307{
308 struct btrfs_super_block *disk_sb =
309 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 310 char result[BTRFS_CSUM_SIZE];
d5178578
JT
311 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
312
313 shash->tfm = fs_info->csum_shash;
1104a885 314
51bce6c9
JT
315 /*
316 * The super_block structure does not span the whole
317 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
318 * filled with zeros and is included in the checksum.
319 */
fd08001f
EB
320 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
321 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 322
55fc29be 323 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 324 return 1;
1104a885 325
e7e16f48 326 return 0;
1104a885
DS
327}
328
e064d5e9 329int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 330 struct btrfs_key *first_key, u64 parent_transid)
581c1760 331{
e064d5e9 332 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
333 int found_level;
334 struct btrfs_key found_key;
335 int ret;
336
337 found_level = btrfs_header_level(eb);
338 if (found_level != level) {
63489055
QW
339 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
340 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
341 btrfs_err(fs_info,
342"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
343 eb->start, level, found_level);
581c1760
QW
344 return -EIO;
345 }
346
347 if (!first_key)
348 return 0;
349
5d41be6f
QW
350 /*
351 * For live tree block (new tree blocks in current transaction),
352 * we need proper lock context to avoid race, which is impossible here.
353 * So we only checks tree blocks which is read from disk, whose
354 * generation <= fs_info->last_trans_committed.
355 */
356 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
357 return 0;
62fdaa52
QW
358
359 /* We have @first_key, so this @eb must have at least one item */
360 if (btrfs_header_nritems(eb) == 0) {
361 btrfs_err(fs_info,
362 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
363 eb->start);
364 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
365 return -EUCLEAN;
366 }
367
581c1760
QW
368 if (found_level)
369 btrfs_node_key_to_cpu(eb, &found_key, 0);
370 else
371 btrfs_item_key_to_cpu(eb, &found_key, 0);
372 ret = btrfs_comp_cpu_keys(first_key, &found_key);
373
581c1760 374 if (ret) {
63489055
QW
375 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
376 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 377 btrfs_err(fs_info,
ff76a864
LB
378"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
379 eb->start, parent_transid, first_key->objectid,
380 first_key->type, first_key->offset,
381 found_key.objectid, found_key.type,
382 found_key.offset);
581c1760 383 }
581c1760
QW
384 return ret;
385}
386
d352ac68
CM
387/*
388 * helper to read a given tree block, doing retries as required when
389 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
390 *
391 * @parent_transid: expected transid, skip check if 0
392 * @level: expected level, mandatory check
393 * @first_key: expected key of first slot, skip check if NULL
d352ac68 394 */
5ab12d1f 395static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
396 u64 parent_transid, int level,
397 struct btrfs_key *first_key)
f188591e 398{
5ab12d1f 399 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 400 struct extent_io_tree *io_tree;
ea466794 401 int failed = 0;
f188591e
CM
402 int ret;
403 int num_copies = 0;
404 int mirror_num = 0;
ea466794 405 int failed_mirror = 0;
f188591e 406
0b246afa 407 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 408 while (1) {
f8397d69 409 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 410 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 411 if (!ret) {
581c1760 412 if (verify_parent_transid(io_tree, eb,
b9fab919 413 parent_transid, 0))
256dd1bb 414 ret = -EIO;
e064d5e9 415 else if (btrfs_verify_level_key(eb, level,
448de471 416 first_key, parent_transid))
581c1760
QW
417 ret = -EUCLEAN;
418 else
419 break;
256dd1bb 420 }
d397712b 421
0b246afa 422 num_copies = btrfs_num_copies(fs_info,
f188591e 423 eb->start, eb->len);
4235298e 424 if (num_copies == 1)
ea466794 425 break;
4235298e 426
5cf1ab56
JB
427 if (!failed_mirror) {
428 failed = 1;
429 failed_mirror = eb->read_mirror;
430 }
431
f188591e 432 mirror_num++;
ea466794
JB
433 if (mirror_num == failed_mirror)
434 mirror_num++;
435
4235298e 436 if (mirror_num > num_copies)
ea466794 437 break;
f188591e 438 }
ea466794 439
c0901581 440 if (failed && !ret && failed_mirror)
20a1fbf9 441 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
442
443 return ret;
f188591e 444}
19c00ddc 445
d352ac68 446/*
d397712b
CM
447 * checksum a dirty tree block before IO. This has extra checks to make sure
448 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 449 */
d397712b 450
01d58472 451static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 452{
4eee4fa4 453 u64 start = page_offset(page);
19c00ddc 454 u64 found_start;
2996e1f8 455 u8 result[BTRFS_CSUM_SIZE];
19c00ddc 456 struct extent_buffer *eb;
8d47a0d8 457 int ret;
f188591e 458
4f2de97a
JB
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
0f805531 462
19c00ddc 463 found_start = btrfs_header_bytenr(eb);
0f805531
AL
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
de37aa51 473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
0f805531 476
c67b3892 477 csum_tree_block(eb, result);
2996e1f8 478
8d47a0d8
QW
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
c06631b0 485 btrfs_print_tree(eb, 0);
8d47a0d8
QW
486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
c06631b0 489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
490 return ret;
491 }
713cebfb 492 write_extent_buffer(eb, result, 0, fs_info->csum_size);
8d47a0d8 493
2996e1f8 494 return 0;
19c00ddc
CM
495}
496
b0c9b3b0 497static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 498{
b0c9b3b0 499 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 501 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 502 u8 *metadata_uuid;
2b82032c 503
9a8658e3
DS
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
944d3f9f
NB
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
515
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
518
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
2b82032c
YZ
524}
525
77bf40a2
QW
526/* Do basic extent buffer checks at read time */
527static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 528{
77bf40a2 529 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 530 u64 found_start;
77bf40a2
QW
531 const u32 csum_size = fs_info->csum_size;
532 u8 found_level;
2996e1f8 533 u8 result[BTRFS_CSUM_SIZE];
77bf40a2 534 int ret = 0;
ea466794 535
ce9adaa5 536 found_start = btrfs_header_bytenr(eb);
727011e0 537 if (found_start != eb->start) {
893bf4b1
SY
538 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
539 eb->start, found_start);
f188591e 540 ret = -EIO;
77bf40a2 541 goto out;
ce9adaa5 542 }
b0c9b3b0 543 if (check_tree_block_fsid(eb)) {
02873e43
ZL
544 btrfs_err_rl(fs_info, "bad fsid on block %llu",
545 eb->start);
1259ab75 546 ret = -EIO;
77bf40a2 547 goto out;
1259ab75 548 }
ce9adaa5 549 found_level = btrfs_header_level(eb);
1c24c3ce 550 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
551 btrfs_err(fs_info, "bad tree block level %d on %llu",
552 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 553 ret = -EIO;
77bf40a2 554 goto out;
1c24c3ce 555 }
ce9adaa5 556
85d4e461
CM
557 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
558 eb, found_level);
4008c04a 559
c67b3892 560 csum_tree_block(eb, result);
a826d6dc 561
2996e1f8 562 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 563 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
564
565 read_extent_buffer(eb, &val, 0, csum_size);
566 btrfs_warn_rl(fs_info,
35be8851 567 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 568 fs_info->sb->s_id, eb->start,
35be8851
JT
569 CSUM_FMT_VALUE(csum_size, val),
570 CSUM_FMT_VALUE(csum_size, result),
571 btrfs_header_level(eb));
2996e1f8 572 ret = -EUCLEAN;
77bf40a2 573 goto out;
2996e1f8
JT
574 }
575
a826d6dc
JB
576 /*
577 * If this is a leaf block and it is corrupt, set the corrupt bit so
578 * that we don't try and read the other copies of this block, just
579 * return -EIO.
580 */
1c4360ee 581 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
582 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
583 ret = -EIO;
584 }
ce9adaa5 585
813fd1dc 586 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
587 ret = -EIO;
588
0b32f4bb
JB
589 if (!ret)
590 set_extent_buffer_uptodate(eb);
75391f0d
QW
591 else
592 btrfs_err(fs_info,
593 "block=%llu read time tree block corruption detected",
594 eb->start);
77bf40a2
QW
595out:
596 return ret;
597}
598
599int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
600 struct page *page, u64 start, u64 end,
601 int mirror)
602{
603 struct extent_buffer *eb;
604 int ret = 0;
605 int reads_done;
606
607 ASSERT(page->private);
608 eb = (struct extent_buffer *)page->private;
609
610 /*
611 * The pending IO might have been the only thing that kept this buffer
612 * in memory. Make sure we have a ref for all this other checks
613 */
614 atomic_inc(&eb->refs);
615
616 reads_done = atomic_dec_and_test(&eb->io_pages);
617 if (!reads_done)
618 goto err;
619
620 eb->read_mirror = mirror;
621 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
622 ret = -EIO;
623 goto err;
624 }
625 ret = validate_extent_buffer(eb);
ce9adaa5 626err:
79fb65a1
JB
627 if (reads_done &&
628 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 629 btree_readahead_hook(eb, ret);
4bb31e92 630
53b381b3
DW
631 if (ret) {
632 /*
633 * our io error hook is going to dec the io pages
634 * again, we have to make sure it has something
635 * to decrement
636 */
637 atomic_inc(&eb->io_pages);
0b32f4bb 638 clear_extent_buffer_uptodate(eb);
53b381b3 639 }
0b32f4bb 640 free_extent_buffer(eb);
77bf40a2 641
f188591e 642 return ret;
ce9adaa5
CM
643}
644
4246a0b6 645static void end_workqueue_bio(struct bio *bio)
ce9adaa5 646{
97eb6b69 647 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 648 struct btrfs_fs_info *fs_info;
9e0af237 649 struct btrfs_workqueue *wq;
ce9adaa5 650
ce9adaa5 651 fs_info = end_io_wq->info;
4e4cbee9 652 end_io_wq->status = bio->bi_status;
d20f7043 653
37226b21 654 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 655 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 656 wq = fs_info->endio_meta_write_workers;
a0cac0ec 657 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 658 wq = fs_info->endio_freespace_worker;
a0cac0ec 659 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 660 wq = fs_info->endio_raid56_workers;
a0cac0ec 661 else
9e0af237 662 wq = fs_info->endio_write_workers;
d20f7043 663 } else {
5c047a69 664 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 665 wq = fs_info->endio_raid56_workers;
a0cac0ec 666 else if (end_io_wq->metadata)
9e0af237 667 wq = fs_info->endio_meta_workers;
a0cac0ec 668 else
9e0af237 669 wq = fs_info->endio_workers;
d20f7043 670 }
9e0af237 671
a0cac0ec 672 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 673 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
674}
675
4e4cbee9 676blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 677 enum btrfs_wq_endio_type metadata)
0b86a832 678{
97eb6b69 679 struct btrfs_end_io_wq *end_io_wq;
8b110e39 680
97eb6b69 681 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 682 if (!end_io_wq)
4e4cbee9 683 return BLK_STS_RESOURCE;
ce9adaa5
CM
684
685 end_io_wq->private = bio->bi_private;
686 end_io_wq->end_io = bio->bi_end_io;
22c59948 687 end_io_wq->info = info;
4e4cbee9 688 end_io_wq->status = 0;
ce9adaa5 689 end_io_wq->bio = bio;
22c59948 690 end_io_wq->metadata = metadata;
ce9adaa5
CM
691
692 bio->bi_private = end_io_wq;
693 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
694 return 0;
695}
696
4a69a410
CM
697static void run_one_async_start(struct btrfs_work *work)
698{
4a69a410 699 struct async_submit_bio *async;
4e4cbee9 700 blk_status_t ret;
4a69a410
CM
701
702 async = container_of(work, struct async_submit_bio, work);
8896a08d 703 ret = async->submit_bio_start(async->inode, async->bio, async->bio_offset);
79787eaa 704 if (ret)
4e4cbee9 705 async->status = ret;
4a69a410
CM
706}
707
06ea01b1
DS
708/*
709 * In order to insert checksums into the metadata in large chunks, we wait
710 * until bio submission time. All the pages in the bio are checksummed and
711 * sums are attached onto the ordered extent record.
712 *
713 * At IO completion time the csums attached on the ordered extent record are
714 * inserted into the tree.
715 */
4a69a410 716static void run_one_async_done(struct btrfs_work *work)
8b712842 717{
8b712842 718 struct async_submit_bio *async;
06ea01b1
DS
719 struct inode *inode;
720 blk_status_t ret;
8b712842
CM
721
722 async = container_of(work, struct async_submit_bio, work);
8896a08d 723 inode = async->inode;
4854ddd0 724
bb7ab3b9 725 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
726 if (async->status) {
727 async->bio->bi_status = async->status;
4246a0b6 728 bio_endio(async->bio);
79787eaa
JM
729 return;
730 }
731
ec39f769
CM
732 /*
733 * All of the bios that pass through here are from async helpers.
734 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
735 * This changes nothing when cgroups aren't in use.
736 */
737 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 738 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
739 if (ret) {
740 async->bio->bi_status = ret;
741 bio_endio(async->bio);
742 }
4a69a410
CM
743}
744
745static void run_one_async_free(struct btrfs_work *work)
746{
747 struct async_submit_bio *async;
748
749 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
750 kfree(async);
751}
752
8896a08d 753blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 754 int mirror_num, unsigned long bio_flags,
8896a08d 755 u64 bio_offset,
e288c080 756 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 757{
8896a08d 758 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
759 struct async_submit_bio *async;
760
761 async = kmalloc(sizeof(*async), GFP_NOFS);
762 if (!async)
4e4cbee9 763 return BLK_STS_RESOURCE;
44b8bd7e 764
8896a08d 765 async->inode = inode;
44b8bd7e
CM
766 async->bio = bio;
767 async->mirror_num = mirror_num;
4a69a410 768 async->submit_bio_start = submit_bio_start;
4a69a410 769
a0cac0ec
OS
770 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
771 run_one_async_free);
4a69a410 772
eaf25d93 773 async->bio_offset = bio_offset;
8c8bee1d 774
4e4cbee9 775 async->status = 0;
79787eaa 776
67f055c7 777 if (op_is_sync(bio->bi_opf))
5cdc7ad3 778 btrfs_set_work_high_priority(&async->work);
d313d7a3 779
5cdc7ad3 780 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
781 return 0;
782}
783
4e4cbee9 784static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 785{
2c30c71b 786 struct bio_vec *bvec;
ce3ed71a 787 struct btrfs_root *root;
2b070cfe 788 int ret = 0;
6dc4f100 789 struct bvec_iter_all iter_all;
ce3ed71a 790
c09abff8 791 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 792 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 793 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 794 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
795 if (ret)
796 break;
ce3ed71a 797 }
2c30c71b 798
4e4cbee9 799 return errno_to_blk_status(ret);
ce3ed71a
CM
800}
801
8896a08d
QW
802static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
803 u64 bio_offset)
22c59948 804{
8b712842
CM
805 /*
806 * when we're called for a write, we're already in the async
5443be45 807 * submission context. Just jump into btrfs_map_bio
8b712842 808 */
79787eaa 809 return btree_csum_one_bio(bio);
4a69a410 810}
22c59948 811
9b4e675a
DS
812static int check_async_write(struct btrfs_fs_info *fs_info,
813 struct btrfs_inode *bi)
de0022b9 814{
6300463b
LB
815 if (atomic_read(&bi->sync_writers))
816 return 0;
9b4e675a 817 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 818 return 0;
de0022b9
JB
819 return 1;
820}
821
1b36294a
NB
822blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
823 int mirror_num, unsigned long bio_flags)
44b8bd7e 824{
0b246afa 825 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 826 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 827 blk_status_t ret;
cad321ad 828
37226b21 829 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
830 /*
831 * called for a read, do the setup so that checksum validation
832 * can happen in the async kernel threads
833 */
0b246afa
JM
834 ret = btrfs_bio_wq_end_io(fs_info, bio,
835 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 836 if (ret)
61891923 837 goto out_w_error;
08635bae 838 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
839 } else if (!async) {
840 ret = btree_csum_one_bio(bio);
841 if (ret)
61891923 842 goto out_w_error;
08635bae 843 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
844 } else {
845 /*
846 * kthread helpers are used to submit writes so that
847 * checksumming can happen in parallel across all CPUs
848 */
8896a08d
QW
849 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
850 0, btree_submit_bio_start);
44b8bd7e 851 }
d313d7a3 852
4246a0b6
CH
853 if (ret)
854 goto out_w_error;
855 return 0;
856
61891923 857out_w_error:
4e4cbee9 858 bio->bi_status = ret;
4246a0b6 859 bio_endio(bio);
61891923 860 return ret;
44b8bd7e
CM
861}
862
3dd1462e 863#ifdef CONFIG_MIGRATION
784b4e29 864static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
865 struct page *newpage, struct page *page,
866 enum migrate_mode mode)
784b4e29
CM
867{
868 /*
869 * we can't safely write a btree page from here,
870 * we haven't done the locking hook
871 */
872 if (PageDirty(page))
873 return -EAGAIN;
874 /*
875 * Buffers may be managed in a filesystem specific way.
876 * We must have no buffers or drop them.
877 */
878 if (page_has_private(page) &&
879 !try_to_release_page(page, GFP_KERNEL))
880 return -EAGAIN;
a6bc32b8 881 return migrate_page(mapping, newpage, page, mode);
784b4e29 882}
3dd1462e 883#endif
784b4e29 884
0da5468f
CM
885
886static int btree_writepages(struct address_space *mapping,
887 struct writeback_control *wbc)
888{
e2d84521
MX
889 struct btrfs_fs_info *fs_info;
890 int ret;
891
d8d5f3e1 892 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
893
894 if (wbc->for_kupdate)
895 return 0;
896
e2d84521 897 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 898 /* this is a bit racy, but that's ok */
d814a491
EL
899 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
900 BTRFS_DIRTY_METADATA_THRESH,
901 fs_info->dirty_metadata_batch);
e2d84521 902 if (ret < 0)
793955bc 903 return 0;
793955bc 904 }
0b32f4bb 905 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
906}
907
70dec807 908static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 909{
98509cfc 910 if (PageWriteback(page) || PageDirty(page))
d397712b 911 return 0;
0c4e538b 912
f7a52a40 913 return try_release_extent_buffer(page);
d98237b3
CM
914}
915
d47992f8
LC
916static void btree_invalidatepage(struct page *page, unsigned int offset,
917 unsigned int length)
d98237b3 918{
d1310b2e
CM
919 struct extent_io_tree *tree;
920 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
921 extent_invalidatepage(tree, page, offset);
922 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 923 if (PagePrivate(page)) {
efe120a0
FH
924 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
925 "page private not zero on page %llu",
926 (unsigned long long)page_offset(page));
d1b89bc0 927 detach_page_private(page);
9ad6b7bc 928 }
d98237b3
CM
929}
930
0b32f4bb
JB
931static int btree_set_page_dirty(struct page *page)
932{
bb146eb2 933#ifdef DEBUG
0b32f4bb
JB
934 struct extent_buffer *eb;
935
936 BUG_ON(!PagePrivate(page));
937 eb = (struct extent_buffer *)page->private;
938 BUG_ON(!eb);
939 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
940 BUG_ON(!atomic_read(&eb->refs));
941 btrfs_assert_tree_locked(eb);
bb146eb2 942#endif
0b32f4bb
JB
943 return __set_page_dirty_nobuffers(page);
944}
945
7f09410b 946static const struct address_space_operations btree_aops = {
0da5468f 947 .writepages = btree_writepages,
5f39d397
CM
948 .releasepage = btree_releasepage,
949 .invalidatepage = btree_invalidatepage,
5a92bc88 950#ifdef CONFIG_MIGRATION
784b4e29 951 .migratepage = btree_migratepage,
5a92bc88 952#endif
0b32f4bb 953 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
954};
955
2ff7e61e 956void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 957{
5f39d397 958 struct extent_buffer *buf = NULL;
537f38f0 959 int ret;
090d1875 960
2ff7e61e 961 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 962 if (IS_ERR(buf))
6197d86e 963 return;
537f38f0 964
c2ccfbc6 965 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
966 if (ret < 0)
967 free_extent_buffer_stale(buf);
968 else
969 free_extent_buffer(buf);
090d1875
CM
970}
971
2ff7e61e
JM
972struct extent_buffer *btrfs_find_create_tree_block(
973 struct btrfs_fs_info *fs_info,
974 u64 bytenr)
0999df54 975{
0b246afa
JM
976 if (btrfs_is_testing(fs_info))
977 return alloc_test_extent_buffer(fs_info, bytenr);
978 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
979}
980
581c1760
QW
981/*
982 * Read tree block at logical address @bytenr and do variant basic but critical
983 * verification.
984 *
985 * @parent_transid: expected transid of this tree block, skip check if 0
986 * @level: expected level, mandatory check
987 * @first_key: expected key in slot 0, skip check if NULL
988 */
2ff7e61e 989struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
990 u64 parent_transid, int level,
991 struct btrfs_key *first_key)
0999df54
CM
992{
993 struct extent_buffer *buf = NULL;
0999df54
CM
994 int ret;
995
2ff7e61e 996 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
997 if (IS_ERR(buf))
998 return buf;
0999df54 999
5ab12d1f 1000 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1001 level, first_key);
0f0fe8f7 1002 if (ret) {
537f38f0 1003 free_extent_buffer_stale(buf);
64c043de 1004 return ERR_PTR(ret);
0f0fe8f7 1005 }
5f39d397 1006 return buf;
ce9adaa5 1007
eb60ceac
CM
1008}
1009
6a884d7d 1010void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1011{
6a884d7d 1012 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1013 if (btrfs_header_generation(buf) ==
e2d84521 1014 fs_info->running_transaction->transid) {
b9447ef8 1015 btrfs_assert_tree_locked(buf);
b4ce94de 1016
b9473439 1017 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1018 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1019 -buf->len,
1020 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1021 clear_extent_buffer_dirty(buf);
1022 }
925baedd 1023 }
5f39d397
CM
1024}
1025
da17066c 1026static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1027 u64 objectid)
d97e63b6 1028{
7c0260ee 1029 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1030 root->fs_info = fs_info;
cfaa7295 1031 root->node = NULL;
a28ec197 1032 root->commit_root = NULL;
27cdeb70 1033 root->state = 0;
d68fc57b 1034 root->orphan_cleanup_state = 0;
0b86a832 1035
0f7d52f4 1036 root->last_trans = 0;
13a8a7c8 1037 root->highest_objectid = 0;
eb73c1b7 1038 root->nr_delalloc_inodes = 0;
199c2a9c 1039 root->nr_ordered_extents = 0;
6bef4d31 1040 root->inode_tree = RB_ROOT;
16cdcec7 1041 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1042 root->block_rsv = NULL;
0b86a832
CM
1043
1044 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1045 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1046 INIT_LIST_HEAD(&root->delalloc_inodes);
1047 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1048 INIT_LIST_HEAD(&root->ordered_extents);
1049 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1050 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1051 INIT_LIST_HEAD(&root->logged_list[0]);
1052 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1053 spin_lock_init(&root->inode_lock);
eb73c1b7 1054 spin_lock_init(&root->delalloc_lock);
199c2a9c 1055 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1056 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1057 spin_lock_init(&root->log_extents_lock[0]);
1058 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1059 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1060 mutex_init(&root->objectid_mutex);
e02119d5 1061 mutex_init(&root->log_mutex);
31f3d255 1062 mutex_init(&root->ordered_extent_mutex);
573bfb72 1063 mutex_init(&root->delalloc_mutex);
c53e9653 1064 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1065 init_waitqueue_head(&root->log_writer_wait);
1066 init_waitqueue_head(&root->log_commit_wait[0]);
1067 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1068 INIT_LIST_HEAD(&root->log_ctxs[0]);
1069 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1070 atomic_set(&root->log_commit[0], 0);
1071 atomic_set(&root->log_commit[1], 0);
1072 atomic_set(&root->log_writers, 0);
2ecb7923 1073 atomic_set(&root->log_batch, 0);
0700cea7 1074 refcount_set(&root->refs, 1);
8ecebf4d 1075 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1076 atomic_set(&root->nr_swapfiles, 0);
7237f183 1077 root->log_transid = 0;
d1433deb 1078 root->log_transid_committed = -1;
257c62e1 1079 root->last_log_commit = 0;
e289f03e 1080 if (!dummy) {
43eb5f29
QW
1081 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1082 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1083 extent_io_tree_init(fs_info, &root->log_csum_range,
1084 IO_TREE_LOG_CSUM_RANGE, NULL);
1085 }
017e5369 1086
3768f368
CM
1087 memset(&root->root_key, 0, sizeof(root->root_key));
1088 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1089 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1090 root->root_key.objectid = objectid;
0ee5dc67 1091 root->anon_dev = 0;
8ea05e3a 1092
5f3ab90a 1093 spin_lock_init(&root->root_item_lock);
370a11b8 1094 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1095#ifdef CONFIG_BTRFS_DEBUG
1096 INIT_LIST_HEAD(&root->leak_list);
1097 spin_lock(&fs_info->fs_roots_radix_lock);
1098 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1099 spin_unlock(&fs_info->fs_roots_radix_lock);
1100#endif
3768f368
CM
1101}
1102
74e4d827 1103static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1104 u64 objectid, gfp_t flags)
6f07e42e 1105{
74e4d827 1106 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1107 if (root)
96dfcb46 1108 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1109 return root;
1110}
1111
06ea65a3
JB
1112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1113/* Should only be used by the testing infrastructure */
da17066c 1114struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1115{
1116 struct btrfs_root *root;
1117
7c0260ee
JM
1118 if (!fs_info)
1119 return ERR_PTR(-EINVAL);
1120
96dfcb46 1121 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1122 if (!root)
1123 return ERR_PTR(-ENOMEM);
da17066c 1124
b9ef22de 1125 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1126 root->alloc_bytenr = 0;
06ea65a3
JB
1127
1128 return root;
1129}
1130#endif
1131
20897f5c 1132struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1133 u64 objectid)
1134{
9b7a2440 1135 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1136 struct extent_buffer *leaf;
1137 struct btrfs_root *tree_root = fs_info->tree_root;
1138 struct btrfs_root *root;
1139 struct btrfs_key key;
b89f6d1f 1140 unsigned int nofs_flag;
20897f5c 1141 int ret = 0;
20897f5c 1142
b89f6d1f
FM
1143 /*
1144 * We're holding a transaction handle, so use a NOFS memory allocation
1145 * context to avoid deadlock if reclaim happens.
1146 */
1147 nofs_flag = memalloc_nofs_save();
96dfcb46 1148 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1149 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1150 if (!root)
1151 return ERR_PTR(-ENOMEM);
1152
20897f5c
AJ
1153 root->root_key.objectid = objectid;
1154 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1155 root->root_key.offset = 0;
1156
9631e4cc
JB
1157 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1158 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1159 if (IS_ERR(leaf)) {
1160 ret = PTR_ERR(leaf);
1dd05682 1161 leaf = NULL;
20897f5c
AJ
1162 goto fail;
1163 }
1164
20897f5c 1165 root->node = leaf;
20897f5c
AJ
1166 btrfs_mark_buffer_dirty(leaf);
1167
1168 root->commit_root = btrfs_root_node(root);
27cdeb70 1169 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1170
f944d2cb
DS
1171 btrfs_set_root_flags(&root->root_item, 0);
1172 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1173 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1174 btrfs_set_root_generation(&root->root_item, trans->transid);
1175 btrfs_set_root_level(&root->root_item, 0);
1176 btrfs_set_root_refs(&root->root_item, 1);
1177 btrfs_set_root_used(&root->root_item, leaf->len);
1178 btrfs_set_root_last_snapshot(&root->root_item, 0);
1179 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1180 if (is_fstree(objectid))
807fc790
AS
1181 generate_random_guid(root->root_item.uuid);
1182 else
1183 export_guid(root->root_item.uuid, &guid_null);
c8422684 1184 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c
AJ
1185
1186 key.objectid = objectid;
1187 key.type = BTRFS_ROOT_ITEM_KEY;
1188 key.offset = 0;
1189 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1190 if (ret)
1191 goto fail;
1192
1193 btrfs_tree_unlock(leaf);
1194
1dd05682
TI
1195 return root;
1196
20897f5c 1197fail:
8c38938c 1198 if (leaf)
1dd05682 1199 btrfs_tree_unlock(leaf);
00246528 1200 btrfs_put_root(root);
20897f5c 1201
1dd05682 1202 return ERR_PTR(ret);
20897f5c
AJ
1203}
1204
7237f183
YZ
1205static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1206 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1207{
1208 struct btrfs_root *root;
7237f183 1209 struct extent_buffer *leaf;
e02119d5 1210
96dfcb46 1211 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1212 if (!root)
7237f183 1213 return ERR_PTR(-ENOMEM);
e02119d5 1214
e02119d5
CM
1215 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1216 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1217 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1218
7237f183 1219 /*
92a7cc42 1220 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1221 *
92a7cc42
QW
1222 * Log trees are not exposed to user space thus can't be snapshotted,
1223 * and they go away before a real commit is actually done.
1224 *
1225 * They do store pointers to file data extents, and those reference
1226 * counts still get updated (along with back refs to the log tree).
7237f183 1227 */
e02119d5 1228
4d75f8a9 1229 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1230 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
7237f183 1231 if (IS_ERR(leaf)) {
00246528 1232 btrfs_put_root(root);
7237f183
YZ
1233 return ERR_CAST(leaf);
1234 }
e02119d5 1235
7237f183 1236 root->node = leaf;
e02119d5 1237
e02119d5
CM
1238 btrfs_mark_buffer_dirty(root->node);
1239 btrfs_tree_unlock(root->node);
7237f183
YZ
1240 return root;
1241}
1242
1243int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1244 struct btrfs_fs_info *fs_info)
1245{
1246 struct btrfs_root *log_root;
1247
1248 log_root = alloc_log_tree(trans, fs_info);
1249 if (IS_ERR(log_root))
1250 return PTR_ERR(log_root);
1251 WARN_ON(fs_info->log_root_tree);
1252 fs_info->log_root_tree = log_root;
1253 return 0;
1254}
1255
1256int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1257 struct btrfs_root *root)
1258{
0b246afa 1259 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1260 struct btrfs_root *log_root;
1261 struct btrfs_inode_item *inode_item;
1262
0b246afa 1263 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1264 if (IS_ERR(log_root))
1265 return PTR_ERR(log_root);
1266
1267 log_root->last_trans = trans->transid;
1268 log_root->root_key.offset = root->root_key.objectid;
1269
1270 inode_item = &log_root->root_item.inode;
3cae210f
QW
1271 btrfs_set_stack_inode_generation(inode_item, 1);
1272 btrfs_set_stack_inode_size(inode_item, 3);
1273 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1274 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1275 fs_info->nodesize);
3cae210f 1276 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1277
5d4f98a2 1278 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1279
1280 WARN_ON(root->log_root);
1281 root->log_root = log_root;
1282 root->log_transid = 0;
d1433deb 1283 root->log_transid_committed = -1;
257c62e1 1284 root->last_log_commit = 0;
e02119d5
CM
1285 return 0;
1286}
1287
49d11bea
JB
1288static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1289 struct btrfs_path *path,
1290 struct btrfs_key *key)
e02119d5
CM
1291{
1292 struct btrfs_root *root;
1293 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1294 u64 generation;
cb517eab 1295 int ret;
581c1760 1296 int level;
0f7d52f4 1297
96dfcb46 1298 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1299 if (!root)
1300 return ERR_PTR(-ENOMEM);
0f7d52f4 1301
cb517eab
MX
1302 ret = btrfs_find_root(tree_root, key, path,
1303 &root->root_item, &root->root_key);
0f7d52f4 1304 if (ret) {
13a8a7c8
YZ
1305 if (ret > 0)
1306 ret = -ENOENT;
49d11bea 1307 goto fail;
0f7d52f4 1308 }
13a8a7c8 1309
84234f3a 1310 generation = btrfs_root_generation(&root->root_item);
581c1760 1311 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1312 root->node = read_tree_block(fs_info,
1313 btrfs_root_bytenr(&root->root_item),
581c1760 1314 generation, level, NULL);
64c043de
LB
1315 if (IS_ERR(root->node)) {
1316 ret = PTR_ERR(root->node);
8c38938c 1317 root->node = NULL;
49d11bea 1318 goto fail;
cb517eab
MX
1319 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1320 ret = -EIO;
49d11bea 1321 goto fail;
416bc658 1322 }
5d4f98a2 1323 root->commit_root = btrfs_root_node(root);
cb517eab 1324 return root;
49d11bea 1325fail:
00246528 1326 btrfs_put_root(root);
49d11bea
JB
1327 return ERR_PTR(ret);
1328}
1329
1330struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1331 struct btrfs_key *key)
1332{
1333 struct btrfs_root *root;
1334 struct btrfs_path *path;
1335
1336 path = btrfs_alloc_path();
1337 if (!path)
1338 return ERR_PTR(-ENOMEM);
1339 root = read_tree_root_path(tree_root, path, key);
1340 btrfs_free_path(path);
1341
1342 return root;
cb517eab
MX
1343}
1344
2dfb1e43
QW
1345/*
1346 * Initialize subvolume root in-memory structure
1347 *
1348 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1349 */
1350static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1351{
1352 int ret;
dcc3eb96 1353 unsigned int nofs_flag;
cb517eab
MX
1354
1355 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1356 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1357 GFP_NOFS);
1358 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1359 ret = -ENOMEM;
1360 goto fail;
1361 }
1362
dcc3eb96
NB
1363 /*
1364 * We might be called under a transaction (e.g. indirect backref
1365 * resolution) which could deadlock if it triggers memory reclaim
1366 */
1367 nofs_flag = memalloc_nofs_save();
1368 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1369 memalloc_nofs_restore(nofs_flag);
1370 if (ret)
8257b2dc 1371 goto fail;
8257b2dc 1372
aeb935a4
QW
1373 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1374 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1375 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1376 btrfs_check_and_init_root_item(&root->root_item);
1377 }
1378
cb517eab 1379 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1380 spin_lock_init(&root->ino_cache_lock);
1381 init_waitqueue_head(&root->ino_cache_wait);
cb517eab 1382
851fd730
QW
1383 /*
1384 * Don't assign anonymous block device to roots that are not exposed to
1385 * userspace, the id pool is limited to 1M
1386 */
1387 if (is_fstree(root->root_key.objectid) &&
1388 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1389 if (!anon_dev) {
1390 ret = get_anon_bdev(&root->anon_dev);
1391 if (ret)
1392 goto fail;
1393 } else {
1394 root->anon_dev = anon_dev;
1395 }
851fd730 1396 }
f32e48e9
CR
1397
1398 mutex_lock(&root->objectid_mutex);
1399 ret = btrfs_find_highest_objectid(root,
1400 &root->highest_objectid);
1401 if (ret) {
1402 mutex_unlock(&root->objectid_mutex);
876d2cf1 1403 goto fail;
f32e48e9
CR
1404 }
1405
1406 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1407
1408 mutex_unlock(&root->objectid_mutex);
1409
cb517eab
MX
1410 return 0;
1411fail:
84db5ccf 1412 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1413 return ret;
1414}
1415
a98db0f3
JB
1416static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1417 u64 root_id)
cb517eab
MX
1418{
1419 struct btrfs_root *root;
1420
1421 spin_lock(&fs_info->fs_roots_radix_lock);
1422 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1423 (unsigned long)root_id);
bc44d7c4 1424 if (root)
00246528 1425 root = btrfs_grab_root(root);
cb517eab
MX
1426 spin_unlock(&fs_info->fs_roots_radix_lock);
1427 return root;
1428}
1429
49d11bea
JB
1430static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1431 u64 objectid)
1432{
1433 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->tree_root);
1435 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->extent_root);
1437 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->chunk_root);
1439 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->dev_root);
1441 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1442 return btrfs_grab_root(fs_info->csum_root);
1443 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1444 return btrfs_grab_root(fs_info->quota_root) ?
1445 fs_info->quota_root : ERR_PTR(-ENOENT);
1446 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1447 return btrfs_grab_root(fs_info->uuid_root) ?
1448 fs_info->uuid_root : ERR_PTR(-ENOENT);
1449 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1450 return btrfs_grab_root(fs_info->free_space_root) ?
1451 fs_info->free_space_root : ERR_PTR(-ENOENT);
1452 return NULL;
1453}
1454
cb517eab
MX
1455int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1456 struct btrfs_root *root)
1457{
1458 int ret;
1459
e1860a77 1460 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1461 if (ret)
1462 return ret;
1463
1464 spin_lock(&fs_info->fs_roots_radix_lock);
1465 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1466 (unsigned long)root->root_key.objectid,
1467 root);
af01d2e5 1468 if (ret == 0) {
00246528 1469 btrfs_grab_root(root);
27cdeb70 1470 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1471 }
cb517eab
MX
1472 spin_unlock(&fs_info->fs_roots_radix_lock);
1473 radix_tree_preload_end();
1474
1475 return ret;
1476}
1477
bd647ce3
JB
1478void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1479{
1480#ifdef CONFIG_BTRFS_DEBUG
1481 struct btrfs_root *root;
1482
1483 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1484 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1485
bd647ce3
JB
1486 root = list_first_entry(&fs_info->allocated_roots,
1487 struct btrfs_root, leak_list);
457f1864
JB
1488 btrfs_err(fs_info, "leaked root %s refcount %d",
1489 btrfs_root_name(root->root_key.objectid, buf),
bd647ce3
JB
1490 refcount_read(&root->refs));
1491 while (refcount_read(&root->refs) > 1)
00246528
JB
1492 btrfs_put_root(root);
1493 btrfs_put_root(root);
bd647ce3
JB
1494 }
1495#endif
1496}
1497
0d4b0463
JB
1498void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1499{
141386e1
JB
1500 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1501 percpu_counter_destroy(&fs_info->delalloc_bytes);
1502 percpu_counter_destroy(&fs_info->dio_bytes);
1503 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1504 btrfs_free_csum_hash(fs_info);
1505 btrfs_free_stripe_hash_table(fs_info);
1506 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1507 kfree(fs_info->balance_ctl);
1508 kfree(fs_info->delayed_root);
00246528
JB
1509 btrfs_put_root(fs_info->extent_root);
1510 btrfs_put_root(fs_info->tree_root);
1511 btrfs_put_root(fs_info->chunk_root);
1512 btrfs_put_root(fs_info->dev_root);
1513 btrfs_put_root(fs_info->csum_root);
1514 btrfs_put_root(fs_info->quota_root);
1515 btrfs_put_root(fs_info->uuid_root);
1516 btrfs_put_root(fs_info->free_space_root);
1517 btrfs_put_root(fs_info->fs_root);
aeb935a4 1518 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1519 btrfs_check_leaked_roots(fs_info);
3fd63727 1520 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1521 kfree(fs_info->super_copy);
1522 kfree(fs_info->super_for_commit);
1523 kvfree(fs_info);
1524}
1525
1526
2dfb1e43
QW
1527/*
1528 * Get an in-memory reference of a root structure.
1529 *
1530 * For essential trees like root/extent tree, we grab it from fs_info directly.
1531 * For subvolume trees, we check the cached filesystem roots first. If not
1532 * found, then read it from disk and add it to cached fs roots.
1533 *
1534 * Caller should release the root by calling btrfs_put_root() after the usage.
1535 *
1536 * NOTE: Reloc and log trees can't be read by this function as they share the
1537 * same root objectid.
1538 *
1539 * @objectid: root id
1540 * @anon_dev: preallocated anonymous block device number for new roots,
1541 * pass 0 for new allocation.
1542 * @check_ref: whether to check root item references, If true, return -ENOENT
1543 * for orphan roots
1544 */
1545static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1546 u64 objectid, dev_t anon_dev,
1547 bool check_ref)
5eda7b5e
CM
1548{
1549 struct btrfs_root *root;
381cf658 1550 struct btrfs_path *path;
1d4c08e0 1551 struct btrfs_key key;
5eda7b5e
CM
1552 int ret;
1553
49d11bea
JB
1554 root = btrfs_get_global_root(fs_info, objectid);
1555 if (root)
1556 return root;
4df27c4d 1557again:
56e9357a 1558 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1559 if (root) {
2dfb1e43
QW
1560 /* Shouldn't get preallocated anon_dev for cached roots */
1561 ASSERT(!anon_dev);
bc44d7c4 1562 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1563 btrfs_put_root(root);
48475471 1564 return ERR_PTR(-ENOENT);
bc44d7c4 1565 }
5eda7b5e 1566 return root;
48475471 1567 }
5eda7b5e 1568
56e9357a
DS
1569 key.objectid = objectid;
1570 key.type = BTRFS_ROOT_ITEM_KEY;
1571 key.offset = (u64)-1;
1572 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1573 if (IS_ERR(root))
1574 return root;
3394e160 1575
c00869f1 1576 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1577 ret = -ENOENT;
581bb050 1578 goto fail;
35a30d7c 1579 }
581bb050 1580
2dfb1e43 1581 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1582 if (ret)
1583 goto fail;
3394e160 1584
381cf658
DS
1585 path = btrfs_alloc_path();
1586 if (!path) {
1587 ret = -ENOMEM;
1588 goto fail;
1589 }
1d4c08e0
DS
1590 key.objectid = BTRFS_ORPHAN_OBJECTID;
1591 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1592 key.offset = objectid;
1d4c08e0
DS
1593
1594 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1595 btrfs_free_path(path);
d68fc57b
YZ
1596 if (ret < 0)
1597 goto fail;
1598 if (ret == 0)
27cdeb70 1599 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1600
cb517eab 1601 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1602 if (ret) {
00246528 1603 btrfs_put_root(root);
4785e24f 1604 if (ret == -EEXIST)
4df27c4d 1605 goto again;
4df27c4d 1606 goto fail;
0f7d52f4 1607 }
edbd8d4e 1608 return root;
4df27c4d 1609fail:
8c38938c 1610 btrfs_put_root(root);
4df27c4d 1611 return ERR_PTR(ret);
edbd8d4e
CM
1612}
1613
2dfb1e43
QW
1614/*
1615 * Get in-memory reference of a root structure
1616 *
1617 * @objectid: tree objectid
1618 * @check_ref: if set, verify that the tree exists and the item has at least
1619 * one reference
1620 */
1621struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1622 u64 objectid, bool check_ref)
1623{
1624 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1625}
1626
1627/*
1628 * Get in-memory reference of a root structure, created as new, optionally pass
1629 * the anonymous block device id
1630 *
1631 * @objectid: tree objectid
1632 * @anon_dev: if zero, allocate a new anonymous block device or use the
1633 * parameter value
1634 */
1635struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1636 u64 objectid, dev_t anon_dev)
1637{
1638 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1639}
1640
49d11bea
JB
1641/*
1642 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1643 * @fs_info: the fs_info
1644 * @objectid: the objectid we need to lookup
1645 *
1646 * This is exclusively used for backref walking, and exists specifically because
1647 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1648 * creation time, which means we may have to read the tree_root in order to look
1649 * up a fs root that is not in memory. If the root is not in memory we will
1650 * read the tree root commit root and look up the fs root from there. This is a
1651 * temporary root, it will not be inserted into the radix tree as it doesn't
1652 * have the most uptodate information, it'll simply be discarded once the
1653 * backref code is finished using the root.
1654 */
1655struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1656 struct btrfs_path *path,
1657 u64 objectid)
1658{
1659 struct btrfs_root *root;
1660 struct btrfs_key key;
1661
1662 ASSERT(path->search_commit_root && path->skip_locking);
1663
1664 /*
1665 * This can return -ENOENT if we ask for a root that doesn't exist, but
1666 * since this is called via the backref walking code we won't be looking
1667 * up a root that doesn't exist, unless there's corruption. So if root
1668 * != NULL just return it.
1669 */
1670 root = btrfs_get_global_root(fs_info, objectid);
1671 if (root)
1672 return root;
1673
1674 root = btrfs_lookup_fs_root(fs_info, objectid);
1675 if (root)
1676 return root;
1677
1678 key.objectid = objectid;
1679 key.type = BTRFS_ROOT_ITEM_KEY;
1680 key.offset = (u64)-1;
1681 root = read_tree_root_path(fs_info->tree_root, path, &key);
1682 btrfs_release_path(path);
1683
1684 return root;
1685}
1686
8b712842
CM
1687/*
1688 * called by the kthread helper functions to finally call the bio end_io
1689 * functions. This is where read checksum verification actually happens
1690 */
1691static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1692{
ce9adaa5 1693 struct bio *bio;
97eb6b69 1694 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1695
97eb6b69 1696 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1697 bio = end_io_wq->bio;
ce9adaa5 1698
4e4cbee9 1699 bio->bi_status = end_io_wq->status;
8b712842
CM
1700 bio->bi_private = end_io_wq->private;
1701 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1702 bio_endio(bio);
9be490f1 1703 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1704}
1705
a74a4b97
CM
1706static int cleaner_kthread(void *arg)
1707{
1708 struct btrfs_root *root = arg;
0b246afa 1709 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1710 int again;
a74a4b97 1711
d6fd0ae2 1712 while (1) {
d0278245 1713 again = 0;
a74a4b97 1714
fd340d0f
JB
1715 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1716
d0278245 1717 /* Make the cleaner go to sleep early. */
2ff7e61e 1718 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1719 goto sleep;
1720
90c711ab
ZB
1721 /*
1722 * Do not do anything if we might cause open_ctree() to block
1723 * before we have finished mounting the filesystem.
1724 */
0b246afa 1725 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1726 goto sleep;
1727
0b246afa 1728 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1729 goto sleep;
1730
dc7f370c
MX
1731 /*
1732 * Avoid the problem that we change the status of the fs
1733 * during the above check and trylock.
1734 */
2ff7e61e 1735 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1736 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1737 goto sleep;
76dda93c 1738 }
a74a4b97 1739
2ff7e61e 1740 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1741
d0278245 1742 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1743 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1744
1745 /*
05323cd1
MX
1746 * The defragger has dealt with the R/O remount and umount,
1747 * needn't do anything special here.
d0278245 1748 */
0b246afa 1749 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1750
1751 /*
1752 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1753 * with relocation (btrfs_relocate_chunk) and relocation
1754 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1755 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1756 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1757 * unused block groups.
1758 */
0b246afa 1759 btrfs_delete_unused_bgs(fs_info);
d0278245 1760sleep:
fd340d0f 1761 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1762 if (kthread_should_park())
1763 kthread_parkme();
1764 if (kthread_should_stop())
1765 return 0;
838fe188 1766 if (!again) {
a74a4b97 1767 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1768 schedule();
a74a4b97
CM
1769 __set_current_state(TASK_RUNNING);
1770 }
da288d28 1771 }
a74a4b97
CM
1772}
1773
1774static int transaction_kthread(void *arg)
1775{
1776 struct btrfs_root *root = arg;
0b246afa 1777 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1778 struct btrfs_trans_handle *trans;
1779 struct btrfs_transaction *cur;
8929ecfa 1780 u64 transid;
643900be 1781 time64_t delta;
a74a4b97 1782 unsigned long delay;
914b2007 1783 bool cannot_commit;
a74a4b97
CM
1784
1785 do {
914b2007 1786 cannot_commit = false;
ba1bc00f 1787 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1788 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1789
0b246afa
JM
1790 spin_lock(&fs_info->trans_lock);
1791 cur = fs_info->running_transaction;
a74a4b97 1792 if (!cur) {
0b246afa 1793 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1794 goto sleep;
1795 }
31153d81 1796
643900be 1797 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1798 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1799 delta < fs_info->commit_interval) {
0b246afa 1800 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1801 delay -= msecs_to_jiffies((delta - 1) * 1000);
1802 delay = min(delay,
1803 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1804 goto sleep;
1805 }
8929ecfa 1806 transid = cur->transid;
0b246afa 1807 spin_unlock(&fs_info->trans_lock);
56bec294 1808
79787eaa 1809 /* If the file system is aborted, this will always fail. */
354aa0fb 1810 trans = btrfs_attach_transaction(root);
914b2007 1811 if (IS_ERR(trans)) {
354aa0fb
MX
1812 if (PTR_ERR(trans) != -ENOENT)
1813 cannot_commit = true;
79787eaa 1814 goto sleep;
914b2007 1815 }
8929ecfa 1816 if (transid == trans->transid) {
3a45bb20 1817 btrfs_commit_transaction(trans);
8929ecfa 1818 } else {
3a45bb20 1819 btrfs_end_transaction(trans);
8929ecfa 1820 }
a74a4b97 1821sleep:
0b246afa
JM
1822 wake_up_process(fs_info->cleaner_kthread);
1823 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1824
4e121c06 1825 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1826 &fs_info->fs_state)))
2ff7e61e 1827 btrfs_cleanup_transaction(fs_info);
ce63f891 1828 if (!kthread_should_stop() &&
0b246afa 1829 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1830 cannot_commit))
bc5511d0 1831 schedule_timeout_interruptible(delay);
a74a4b97
CM
1832 } while (!kthread_should_stop());
1833 return 0;
1834}
1835
af31f5e5 1836/*
01f0f9da
NB
1837 * This will find the highest generation in the array of root backups. The
1838 * index of the highest array is returned, or -EINVAL if we can't find
1839 * anything.
af31f5e5
CM
1840 *
1841 * We check to make sure the array is valid by comparing the
1842 * generation of the latest root in the array with the generation
1843 * in the super block. If they don't match we pitch it.
1844 */
01f0f9da 1845static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1846{
01f0f9da 1847 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1848 u64 cur;
af31f5e5
CM
1849 struct btrfs_root_backup *root_backup;
1850 int i;
1851
1852 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1853 root_backup = info->super_copy->super_roots + i;
1854 cur = btrfs_backup_tree_root_gen(root_backup);
1855 if (cur == newest_gen)
01f0f9da 1856 return i;
af31f5e5
CM
1857 }
1858
01f0f9da 1859 return -EINVAL;
af31f5e5
CM
1860}
1861
af31f5e5
CM
1862/*
1863 * copy all the root pointers into the super backup array.
1864 * this will bump the backup pointer by one when it is
1865 * done
1866 */
1867static void backup_super_roots(struct btrfs_fs_info *info)
1868{
6ef108dd 1869 const int next_backup = info->backup_root_index;
af31f5e5 1870 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1871
1872 root_backup = info->super_for_commit->super_roots + next_backup;
1873
1874 /*
1875 * make sure all of our padding and empty slots get zero filled
1876 * regardless of which ones we use today
1877 */
1878 memset(root_backup, 0, sizeof(*root_backup));
1879
1880 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1881
1882 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1883 btrfs_set_backup_tree_root_gen(root_backup,
1884 btrfs_header_generation(info->tree_root->node));
1885
1886 btrfs_set_backup_tree_root_level(root_backup,
1887 btrfs_header_level(info->tree_root->node));
1888
1889 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1890 btrfs_set_backup_chunk_root_gen(root_backup,
1891 btrfs_header_generation(info->chunk_root->node));
1892 btrfs_set_backup_chunk_root_level(root_backup,
1893 btrfs_header_level(info->chunk_root->node));
1894
1895 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1896 btrfs_set_backup_extent_root_gen(root_backup,
1897 btrfs_header_generation(info->extent_root->node));
1898 btrfs_set_backup_extent_root_level(root_backup,
1899 btrfs_header_level(info->extent_root->node));
1900
7c7e82a7
CM
1901 /*
1902 * we might commit during log recovery, which happens before we set
1903 * the fs_root. Make sure it is valid before we fill it in.
1904 */
1905 if (info->fs_root && info->fs_root->node) {
1906 btrfs_set_backup_fs_root(root_backup,
1907 info->fs_root->node->start);
1908 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1909 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1910 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1911 btrfs_header_level(info->fs_root->node));
7c7e82a7 1912 }
af31f5e5
CM
1913
1914 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1915 btrfs_set_backup_dev_root_gen(root_backup,
1916 btrfs_header_generation(info->dev_root->node));
1917 btrfs_set_backup_dev_root_level(root_backup,
1918 btrfs_header_level(info->dev_root->node));
1919
1920 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1921 btrfs_set_backup_csum_root_gen(root_backup,
1922 btrfs_header_generation(info->csum_root->node));
1923 btrfs_set_backup_csum_root_level(root_backup,
1924 btrfs_header_level(info->csum_root->node));
1925
1926 btrfs_set_backup_total_bytes(root_backup,
1927 btrfs_super_total_bytes(info->super_copy));
1928 btrfs_set_backup_bytes_used(root_backup,
1929 btrfs_super_bytes_used(info->super_copy));
1930 btrfs_set_backup_num_devices(root_backup,
1931 btrfs_super_num_devices(info->super_copy));
1932
1933 /*
1934 * if we don't copy this out to the super_copy, it won't get remembered
1935 * for the next commit
1936 */
1937 memcpy(&info->super_copy->super_roots,
1938 &info->super_for_commit->super_roots,
1939 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1940}
1941
bd2336b2
NB
1942/*
1943 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1944 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1945 *
1946 * fs_info - filesystem whose backup roots need to be read
1947 * priority - priority of backup root required
1948 *
1949 * Returns backup root index on success and -EINVAL otherwise.
1950 */
1951static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1952{
1953 int backup_index = find_newest_super_backup(fs_info);
1954 struct btrfs_super_block *super = fs_info->super_copy;
1955 struct btrfs_root_backup *root_backup;
1956
1957 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1958 if (priority == 0)
1959 return backup_index;
1960
1961 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1962 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1963 } else {
1964 return -EINVAL;
1965 }
1966
1967 root_backup = super->super_roots + backup_index;
1968
1969 btrfs_set_super_generation(super,
1970 btrfs_backup_tree_root_gen(root_backup));
1971 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1972 btrfs_set_super_root_level(super,
1973 btrfs_backup_tree_root_level(root_backup));
1974 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1975
1976 /*
1977 * Fixme: the total bytes and num_devices need to match or we should
1978 * need a fsck
1979 */
1980 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1981 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1982
1983 return backup_index;
1984}
1985
7abadb64
LB
1986/* helper to cleanup workers */
1987static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1988{
dc6e3209 1989 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1990 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1991 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1992 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1993 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1994 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1995 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1996 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1997 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1998 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1999 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2000 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2001 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2002 if (fs_info->discard_ctl.discard_workers)
2003 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2004 /*
2005 * Now that all other work queues are destroyed, we can safely destroy
2006 * the queues used for metadata I/O, since tasks from those other work
2007 * queues can do metadata I/O operations.
2008 */
2009 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2010 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2011}
2012
2e9f5954
R
2013static void free_root_extent_buffers(struct btrfs_root *root)
2014{
2015 if (root) {
2016 free_extent_buffer(root->node);
2017 free_extent_buffer(root->commit_root);
2018 root->node = NULL;
2019 root->commit_root = NULL;
2020 }
2021}
2022
af31f5e5 2023/* helper to cleanup tree roots */
4273eaff 2024static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2025{
2e9f5954 2026 free_root_extent_buffers(info->tree_root);
655b09fe 2027
2e9f5954
R
2028 free_root_extent_buffers(info->dev_root);
2029 free_root_extent_buffers(info->extent_root);
2030 free_root_extent_buffers(info->csum_root);
2031 free_root_extent_buffers(info->quota_root);
2032 free_root_extent_buffers(info->uuid_root);
8c38938c 2033 free_root_extent_buffers(info->fs_root);
aeb935a4 2034 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2035 if (free_chunk_root)
2e9f5954 2036 free_root_extent_buffers(info->chunk_root);
70f6d82e 2037 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2038}
2039
8c38938c
JB
2040void btrfs_put_root(struct btrfs_root *root)
2041{
2042 if (!root)
2043 return;
2044
2045 if (refcount_dec_and_test(&root->refs)) {
2046 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2047 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2048 if (root->anon_dev)
2049 free_anon_bdev(root->anon_dev);
2050 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2051 free_root_extent_buffers(root);
8c38938c
JB
2052 kfree(root->free_ino_ctl);
2053 kfree(root->free_ino_pinned);
2054#ifdef CONFIG_BTRFS_DEBUG
2055 spin_lock(&root->fs_info->fs_roots_radix_lock);
2056 list_del_init(&root->leak_list);
2057 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2058#endif
2059 kfree(root);
2060 }
2061}
2062
faa2dbf0 2063void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2064{
2065 int ret;
2066 struct btrfs_root *gang[8];
2067 int i;
2068
2069 while (!list_empty(&fs_info->dead_roots)) {
2070 gang[0] = list_entry(fs_info->dead_roots.next,
2071 struct btrfs_root, root_list);
2072 list_del(&gang[0]->root_list);
2073
8c38938c 2074 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2075 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2076 btrfs_put_root(gang[0]);
171f6537
JB
2077 }
2078
2079 while (1) {
2080 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2081 (void **)gang, 0,
2082 ARRAY_SIZE(gang));
2083 if (!ret)
2084 break;
2085 for (i = 0; i < ret; i++)
cb517eab 2086 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2087 }
2088}
af31f5e5 2089
638aa7ed
ES
2090static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2091{
2092 mutex_init(&fs_info->scrub_lock);
2093 atomic_set(&fs_info->scrubs_running, 0);
2094 atomic_set(&fs_info->scrub_pause_req, 0);
2095 atomic_set(&fs_info->scrubs_paused, 0);
2096 atomic_set(&fs_info->scrub_cancel_req, 0);
2097 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2098 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2099}
2100
779a65a4
ES
2101static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2102{
2103 spin_lock_init(&fs_info->balance_lock);
2104 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2105 atomic_set(&fs_info->balance_pause_req, 0);
2106 atomic_set(&fs_info->balance_cancel_req, 0);
2107 fs_info->balance_ctl = NULL;
2108 init_waitqueue_head(&fs_info->balance_wait_q);
2109}
2110
6bccf3ab 2111static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2112{
2ff7e61e
JM
2113 struct inode *inode = fs_info->btree_inode;
2114
2115 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2116 set_nlink(inode, 1);
f37938e0
ES
2117 /*
2118 * we set the i_size on the btree inode to the max possible int.
2119 * the real end of the address space is determined by all of
2120 * the devices in the system
2121 */
2ff7e61e
JM
2122 inode->i_size = OFFSET_MAX;
2123 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2124
2ff7e61e 2125 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2126 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2127 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2128 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2129 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2130
5c8fd99f 2131 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2132 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2133 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2134 btrfs_insert_inode_hash(inode);
f37938e0
ES
2135}
2136
ad618368
ES
2137static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2138{
ad618368 2139 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2140 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2141 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2142}
2143
f9e92e40
ES
2144static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2145{
2146 spin_lock_init(&fs_info->qgroup_lock);
2147 mutex_init(&fs_info->qgroup_ioctl_lock);
2148 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2149 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2150 fs_info->qgroup_seq = 1;
f9e92e40 2151 fs_info->qgroup_ulist = NULL;
d2c609b8 2152 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2153 mutex_init(&fs_info->qgroup_rescan_lock);
2154}
2155
2a458198
ES
2156static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2157 struct btrfs_fs_devices *fs_devices)
2158{
f7b885be 2159 u32 max_active = fs_info->thread_pool_size;
6f011058 2160 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2161
2162 fs_info->workers =
cb001095
JM
2163 btrfs_alloc_workqueue(fs_info, "worker",
2164 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2165
2166 fs_info->delalloc_workers =
cb001095
JM
2167 btrfs_alloc_workqueue(fs_info, "delalloc",
2168 flags, max_active, 2);
2a458198
ES
2169
2170 fs_info->flush_workers =
cb001095
JM
2171 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2172 flags, max_active, 0);
2a458198
ES
2173
2174 fs_info->caching_workers =
cb001095 2175 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2176
2a458198 2177 fs_info->fixup_workers =
cb001095 2178 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2179
2180 /*
2181 * endios are largely parallel and should have a very
2182 * low idle thresh
2183 */
2184 fs_info->endio_workers =
cb001095 2185 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2186 fs_info->endio_meta_workers =
cb001095
JM
2187 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2188 max_active, 4);
2a458198 2189 fs_info->endio_meta_write_workers =
cb001095
JM
2190 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2191 max_active, 2);
2a458198 2192 fs_info->endio_raid56_workers =
cb001095
JM
2193 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2194 max_active, 4);
2a458198 2195 fs_info->rmw_workers =
cb001095 2196 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2197 fs_info->endio_write_workers =
cb001095
JM
2198 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2199 max_active, 2);
2a458198 2200 fs_info->endio_freespace_worker =
cb001095
JM
2201 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2202 max_active, 0);
2a458198 2203 fs_info->delayed_workers =
cb001095
JM
2204 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2205 max_active, 0);
2a458198 2206 fs_info->readahead_workers =
cb001095
JM
2207 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2208 max_active, 2);
2a458198 2209 fs_info->qgroup_rescan_workers =
cb001095 2210 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2211 fs_info->discard_ctl.discard_workers =
2212 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2213
2214 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2215 fs_info->flush_workers &&
2a458198
ES
2216 fs_info->endio_workers && fs_info->endio_meta_workers &&
2217 fs_info->endio_meta_write_workers &&
2a458198
ES
2218 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2219 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2220 fs_info->caching_workers && fs_info->readahead_workers &&
2221 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2222 fs_info->qgroup_rescan_workers &&
2223 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2224 return -ENOMEM;
2225 }
2226
2227 return 0;
2228}
2229
6d97c6e3
JT
2230static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2231{
2232 struct crypto_shash *csum_shash;
b4e967be 2233 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2234
b4e967be 2235 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2236
2237 if (IS_ERR(csum_shash)) {
2238 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2239 csum_driver);
6d97c6e3
JT
2240 return PTR_ERR(csum_shash);
2241 }
2242
2243 fs_info->csum_shash = csum_shash;
2244
2245 return 0;
2246}
2247
63443bf5
ES
2248static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2249 struct btrfs_fs_devices *fs_devices)
2250{
2251 int ret;
63443bf5
ES
2252 struct btrfs_root *log_tree_root;
2253 struct btrfs_super_block *disk_super = fs_info->super_copy;
2254 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2255 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2256
2257 if (fs_devices->rw_devices == 0) {
f14d104d 2258 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2259 return -EIO;
2260 }
2261
96dfcb46
JB
2262 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2263 GFP_KERNEL);
63443bf5
ES
2264 if (!log_tree_root)
2265 return -ENOMEM;
2266
2ff7e61e 2267 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2268 fs_info->generation + 1,
2269 level, NULL);
64c043de 2270 if (IS_ERR(log_tree_root->node)) {
f14d104d 2271 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2272 ret = PTR_ERR(log_tree_root->node);
8c38938c 2273 log_tree_root->node = NULL;
00246528 2274 btrfs_put_root(log_tree_root);
0eeff236 2275 return ret;
64c043de 2276 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2277 btrfs_err(fs_info, "failed to read log tree");
00246528 2278 btrfs_put_root(log_tree_root);
63443bf5
ES
2279 return -EIO;
2280 }
2281 /* returns with log_tree_root freed on success */
2282 ret = btrfs_recover_log_trees(log_tree_root);
2283 if (ret) {
0b246afa
JM
2284 btrfs_handle_fs_error(fs_info, ret,
2285 "Failed to recover log tree");
00246528 2286 btrfs_put_root(log_tree_root);
63443bf5
ES
2287 return ret;
2288 }
2289
bc98a42c 2290 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2291 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2292 if (ret)
2293 return ret;
2294 }
2295
2296 return 0;
2297}
2298
6bccf3ab 2299static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2300{
6bccf3ab 2301 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2302 struct btrfs_root *root;
4bbcaa64
ES
2303 struct btrfs_key location;
2304 int ret;
2305
6bccf3ab
JM
2306 BUG_ON(!fs_info->tree_root);
2307
4bbcaa64
ES
2308 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2309 location.type = BTRFS_ROOT_ITEM_KEY;
2310 location.offset = 0;
2311
a4f3d2c4 2312 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2313 if (IS_ERR(root)) {
42437a63
JB
2314 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2315 ret = PTR_ERR(root);
2316 goto out;
2317 }
2318 } else {
2319 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320 fs_info->extent_root = root;
f50f4353 2321 }
4bbcaa64
ES
2322
2323 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2324 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2325 if (IS_ERR(root)) {
42437a63
JB
2326 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2327 ret = PTR_ERR(root);
2328 goto out;
2329 }
2330 } else {
2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332 fs_info->dev_root = root;
2333 btrfs_init_devices_late(fs_info);
f50f4353 2334 }
4bbcaa64 2335
882dbe0c
JB
2336 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2337 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2338 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2339 root = btrfs_read_tree_root(tree_root, &location);
2340 if (IS_ERR(root)) {
2341 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2342 ret = PTR_ERR(root);
2343 goto out;
2344 }
2345 } else {
2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 fs_info->csum_root = root;
42437a63 2348 }
f50f4353 2349 }
4bbcaa64 2350
aeb935a4
QW
2351 /*
2352 * This tree can share blocks with some other fs tree during relocation
2353 * and we need a proper setup by btrfs_get_fs_root
2354 */
56e9357a
DS
2355 root = btrfs_get_fs_root(tree_root->fs_info,
2356 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2357 if (IS_ERR(root)) {
42437a63
JB
2358 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2359 ret = PTR_ERR(root);
2360 goto out;
2361 }
2362 } else {
2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 fs_info->data_reloc_root = root;
aeb935a4 2365 }
aeb935a4 2366
4bbcaa64 2367 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2368 root = btrfs_read_tree_root(tree_root, &location);
2369 if (!IS_ERR(root)) {
2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2371 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2372 fs_info->quota_root = root;
4bbcaa64
ES
2373 }
2374
2375 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2376 root = btrfs_read_tree_root(tree_root, &location);
2377 if (IS_ERR(root)) {
42437a63
JB
2378 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2379 ret = PTR_ERR(root);
2380 if (ret != -ENOENT)
2381 goto out;
2382 }
4bbcaa64 2383 } else {
a4f3d2c4
DS
2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 fs_info->uuid_root = root;
4bbcaa64
ES
2386 }
2387
70f6d82e
OS
2388 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2389 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2390 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2391 if (IS_ERR(root)) {
42437a63
JB
2392 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2393 ret = PTR_ERR(root);
2394 goto out;
2395 }
2396 } else {
2397 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2398 fs_info->free_space_root = root;
f50f4353 2399 }
70f6d82e
OS
2400 }
2401
4bbcaa64 2402 return 0;
f50f4353
LB
2403out:
2404 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2405 location.objectid, ret);
2406 return ret;
4bbcaa64
ES
2407}
2408
069ec957
QW
2409/*
2410 * Real super block validation
2411 * NOTE: super csum type and incompat features will not be checked here.
2412 *
2413 * @sb: super block to check
2414 * @mirror_num: the super block number to check its bytenr:
2415 * 0 the primary (1st) sb
2416 * 1, 2 2nd and 3rd backup copy
2417 * -1 skip bytenr check
2418 */
2419static int validate_super(struct btrfs_fs_info *fs_info,
2420 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2421{
21a852b0
QW
2422 u64 nodesize = btrfs_super_nodesize(sb);
2423 u64 sectorsize = btrfs_super_sectorsize(sb);
2424 int ret = 0;
2425
2426 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2427 btrfs_err(fs_info, "no valid FS found");
2428 ret = -EINVAL;
2429 }
2430 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2431 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2432 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2433 ret = -EINVAL;
2434 }
2435 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2436 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2437 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2438 ret = -EINVAL;
2439 }
2440 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2441 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2442 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2443 ret = -EINVAL;
2444 }
2445 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2446 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2447 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2448 ret = -EINVAL;
2449 }
2450
2451 /*
2452 * Check sectorsize and nodesize first, other check will need it.
2453 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2454 */
2455 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2456 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2457 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2458 ret = -EINVAL;
2459 }
2460 /* Only PAGE SIZE is supported yet */
2461 if (sectorsize != PAGE_SIZE) {
2462 btrfs_err(fs_info,
2463 "sectorsize %llu not supported yet, only support %lu",
2464 sectorsize, PAGE_SIZE);
2465 ret = -EINVAL;
2466 }
2467 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2468 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2469 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2470 ret = -EINVAL;
2471 }
2472 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2473 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2474 le32_to_cpu(sb->__unused_leafsize), nodesize);
2475 ret = -EINVAL;
2476 }
2477
2478 /* Root alignment check */
2479 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2480 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2481 btrfs_super_root(sb));
2482 ret = -EINVAL;
2483 }
2484 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2485 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2486 btrfs_super_chunk_root(sb));
2487 ret = -EINVAL;
2488 }
2489 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2490 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2491 btrfs_super_log_root(sb));
2492 ret = -EINVAL;
2493 }
2494
de37aa51 2495 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2496 BTRFS_FSID_SIZE) != 0) {
21a852b0 2497 btrfs_err(fs_info,
7239ff4b 2498 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2499 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2500 ret = -EINVAL;
2501 }
2502
2503 /*
2504 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2505 * done later
2506 */
2507 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2508 btrfs_err(fs_info, "bytes_used is too small %llu",
2509 btrfs_super_bytes_used(sb));
2510 ret = -EINVAL;
2511 }
2512 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2513 btrfs_err(fs_info, "invalid stripesize %u",
2514 btrfs_super_stripesize(sb));
2515 ret = -EINVAL;
2516 }
2517 if (btrfs_super_num_devices(sb) > (1UL << 31))
2518 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2519 btrfs_super_num_devices(sb));
2520 if (btrfs_super_num_devices(sb) == 0) {
2521 btrfs_err(fs_info, "number of devices is 0");
2522 ret = -EINVAL;
2523 }
2524
069ec957
QW
2525 if (mirror_num >= 0 &&
2526 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2527 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2528 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2529 ret = -EINVAL;
2530 }
2531
2532 /*
2533 * Obvious sys_chunk_array corruptions, it must hold at least one key
2534 * and one chunk
2535 */
2536 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2537 btrfs_err(fs_info, "system chunk array too big %u > %u",
2538 btrfs_super_sys_array_size(sb),
2539 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2540 ret = -EINVAL;
2541 }
2542 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2543 + sizeof(struct btrfs_chunk)) {
2544 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2545 btrfs_super_sys_array_size(sb),
2546 sizeof(struct btrfs_disk_key)
2547 + sizeof(struct btrfs_chunk));
2548 ret = -EINVAL;
2549 }
2550
2551 /*
2552 * The generation is a global counter, we'll trust it more than the others
2553 * but it's still possible that it's the one that's wrong.
2554 */
2555 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2556 btrfs_warn(fs_info,
2557 "suspicious: generation < chunk_root_generation: %llu < %llu",
2558 btrfs_super_generation(sb),
2559 btrfs_super_chunk_root_generation(sb));
2560 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2561 && btrfs_super_cache_generation(sb) != (u64)-1)
2562 btrfs_warn(fs_info,
2563 "suspicious: generation < cache_generation: %llu < %llu",
2564 btrfs_super_generation(sb),
2565 btrfs_super_cache_generation(sb));
2566
2567 return ret;
2568}
2569
069ec957
QW
2570/*
2571 * Validation of super block at mount time.
2572 * Some checks already done early at mount time, like csum type and incompat
2573 * flags will be skipped.
2574 */
2575static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2576{
2577 return validate_super(fs_info, fs_info->super_copy, 0);
2578}
2579
75cb857d
QW
2580/*
2581 * Validation of super block at write time.
2582 * Some checks like bytenr check will be skipped as their values will be
2583 * overwritten soon.
2584 * Extra checks like csum type and incompat flags will be done here.
2585 */
2586static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2587 struct btrfs_super_block *sb)
2588{
2589 int ret;
2590
2591 ret = validate_super(fs_info, sb, -1);
2592 if (ret < 0)
2593 goto out;
e7e16f48 2594 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2595 ret = -EUCLEAN;
2596 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2597 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2598 goto out;
2599 }
2600 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2601 ret = -EUCLEAN;
2602 btrfs_err(fs_info,
2603 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2604 btrfs_super_incompat_flags(sb),
2605 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2606 goto out;
2607 }
2608out:
2609 if (ret < 0)
2610 btrfs_err(fs_info,
2611 "super block corruption detected before writing it to disk");
2612 return ret;
2613}
2614
6ef108dd 2615static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2616{
6ef108dd 2617 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2618 struct btrfs_super_block *sb = fs_info->super_copy;
2619 struct btrfs_root *tree_root = fs_info->tree_root;
2620 bool handle_error = false;
2621 int ret = 0;
2622 int i;
2623
2624 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2625 u64 generation;
2626 int level;
2627
2628 if (handle_error) {
2629 if (!IS_ERR(tree_root->node))
2630 free_extent_buffer(tree_root->node);
2631 tree_root->node = NULL;
2632
2633 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2634 break;
2635
2636 free_root_pointers(fs_info, 0);
2637
2638 /*
2639 * Don't use the log in recovery mode, it won't be
2640 * valid
2641 */
2642 btrfs_set_super_log_root(sb, 0);
2643
2644 /* We can't trust the free space cache either */
2645 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2646
2647 ret = read_backup_root(fs_info, i);
6ef108dd 2648 backup_index = ret;
b8522a1e
NB
2649 if (ret < 0)
2650 return ret;
2651 }
2652 generation = btrfs_super_generation(sb);
2653 level = btrfs_super_root_level(sb);
2654 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2655 generation, level, NULL);
217f5004 2656 if (IS_ERR(tree_root->node)) {
b8522a1e 2657 handle_error = true;
217f5004
NB
2658 ret = PTR_ERR(tree_root->node);
2659 tree_root->node = NULL;
2660 btrfs_warn(fs_info, "couldn't read tree root");
2661 continue;
b8522a1e 2662
217f5004
NB
2663 } else if (!extent_buffer_uptodate(tree_root->node)) {
2664 handle_error = true;
2665 ret = -EIO;
2666 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2667 continue;
2668 }
2669
2670 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2671 tree_root->commit_root = btrfs_root_node(tree_root);
2672 btrfs_set_root_refs(&tree_root->root_item, 1);
2673
336a0d8d
NB
2674 /*
2675 * No need to hold btrfs_root::objectid_mutex since the fs
2676 * hasn't been fully initialised and we are the only user
2677 */
b8522a1e
NB
2678 ret = btrfs_find_highest_objectid(tree_root,
2679 &tree_root->highest_objectid);
2680 if (ret < 0) {
b8522a1e
NB
2681 handle_error = true;
2682 continue;
2683 }
2684
2685 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2686
2687 ret = btrfs_read_roots(fs_info);
2688 if (ret < 0) {
2689 handle_error = true;
2690 continue;
2691 }
2692
2693 /* All successful */
2694 fs_info->generation = generation;
2695 fs_info->last_trans_committed = generation;
6ef108dd
NB
2696
2697 /* Always begin writing backup roots after the one being used */
2698 if (backup_index < 0) {
2699 fs_info->backup_root_index = 0;
2700 } else {
2701 fs_info->backup_root_index = backup_index + 1;
2702 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2703 }
b8522a1e
NB
2704 break;
2705 }
2706
2707 return ret;
2708}
2709
8260edba 2710void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2711{
76dda93c 2712 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2713 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2714 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2715 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2716 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2717 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2718 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2719 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2720 spin_lock_init(&fs_info->trans_lock);
76dda93c 2721 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2722 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2723 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2724 spin_lock_init(&fs_info->super_lock);
f28491e0 2725 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2726 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2727 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2728 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2729 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2730 mutex_init(&fs_info->reloc_mutex);
573bfb72 2731 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2732 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2733
0b86a832 2734 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2735 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2736 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2737 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2738#ifdef CONFIG_BTRFS_DEBUG
2739 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2740 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2741 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2742#endif
c8bf1b67 2743 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2744 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2745 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2746 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2747 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2748 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2749 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2750 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2751 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2752 BTRFS_BLOCK_RSV_DELREFS);
2753
771ed689 2754 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2755 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2756 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2757 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2758 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2759 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2760 fs_info->metadata_ratio = 0;
4cb5300b 2761 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2762 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2763 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2764 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2765 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2766 /* readahead state */
d0164adc 2767 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2768 spin_lock_init(&fs_info->reada_lock);
fd708b81 2769 btrfs_init_ref_verify(fs_info);
c8b97818 2770
b34b086c
CM
2771 fs_info->thread_pool_size = min_t(unsigned long,
2772 num_online_cpus() + 2, 8);
0afbaf8c 2773
199c2a9c
MX
2774 INIT_LIST_HEAD(&fs_info->ordered_roots);
2775 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2776
638aa7ed 2777 btrfs_init_scrub(fs_info);
21adbd5c
SB
2778#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2779 fs_info->check_integrity_print_mask = 0;
2780#endif
779a65a4 2781 btrfs_init_balance(fs_info);
57056740 2782 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2783
0f9dd46c 2784 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2785 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2786 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2787
fe119a6e
NB
2788 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2789 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2790 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2791
5a3f23d5 2792 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2793 mutex_init(&fs_info->tree_log_mutex);
925baedd 2794 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2795 mutex_init(&fs_info->transaction_kthread_mutex);
2796 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2797 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2798 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2799 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2800 init_rwsem(&fs_info->subvol_sem);
803b2f54 2801 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2802
ad618368 2803 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2804 btrfs_init_qgroup(fs_info);
b0643e59 2805 btrfs_discard_init(fs_info);
416ac51d 2806
fa9c0d79
CM
2807 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2808 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2809
e6dcd2dc 2810 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2811 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2812 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2813 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2814 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2815
da17066c
JM
2816 /* Usable values until the real ones are cached from the superblock */
2817 fs_info->nodesize = 4096;
2818 fs_info->sectorsize = 4096;
ab108d99 2819 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2820 fs_info->stripesize = 4096;
2821
eede2bf3
OS
2822 spin_lock_init(&fs_info->swapfile_pins_lock);
2823 fs_info->swapfile_pins = RB_ROOT;
2824
9e967495 2825 fs_info->send_in_progress = 0;
8260edba
JB
2826}
2827
2828static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2829{
2830 int ret;
2831
2832 fs_info->sb = sb;
2833 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2834 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2835
ae18c37a
JB
2836 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2837 if (ret)
c75e8394 2838 return ret;
ae18c37a
JB
2839
2840 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2841 if (ret)
c75e8394 2842 return ret;
ae18c37a
JB
2843
2844 fs_info->dirty_metadata_batch = PAGE_SIZE *
2845 (1 + ilog2(nr_cpu_ids));
2846
2847 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2848 if (ret)
c75e8394 2849 return ret;
ae18c37a
JB
2850
2851 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2852 GFP_KERNEL);
2853 if (ret)
c75e8394 2854 return ret;
ae18c37a
JB
2855
2856 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2857 GFP_KERNEL);
c75e8394
JB
2858 if (!fs_info->delayed_root)
2859 return -ENOMEM;
ae18c37a
JB
2860 btrfs_init_delayed_root(fs_info->delayed_root);
2861
c75e8394 2862 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2863}
2864
97f4dd09
NB
2865static int btrfs_uuid_rescan_kthread(void *data)
2866{
2867 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2868 int ret;
2869
2870 /*
2871 * 1st step is to iterate through the existing UUID tree and
2872 * to delete all entries that contain outdated data.
2873 * 2nd step is to add all missing entries to the UUID tree.
2874 */
2875 ret = btrfs_uuid_tree_iterate(fs_info);
2876 if (ret < 0) {
c94bec2c
JB
2877 if (ret != -EINTR)
2878 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2879 ret);
97f4dd09
NB
2880 up(&fs_info->uuid_tree_rescan_sem);
2881 return ret;
2882 }
2883 return btrfs_uuid_scan_kthread(data);
2884}
2885
2886static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2887{
2888 struct task_struct *task;
2889
2890 down(&fs_info->uuid_tree_rescan_sem);
2891 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2892 if (IS_ERR(task)) {
2893 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2894 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2895 up(&fs_info->uuid_tree_rescan_sem);
2896 return PTR_ERR(task);
2897 }
2898
2899 return 0;
2900}
2901
ae18c37a
JB
2902int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2903 char *options)
2904{
2905 u32 sectorsize;
2906 u32 nodesize;
2907 u32 stripesize;
2908 u64 generation;
2909 u64 features;
2910 u16 csum_type;
ae18c37a
JB
2911 struct btrfs_super_block *disk_super;
2912 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2913 struct btrfs_root *tree_root;
2914 struct btrfs_root *chunk_root;
2915 int ret;
2916 int err = -EINVAL;
2917 int clear_free_space_tree = 0;
2918 int level;
2919
8260edba 2920 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2921 if (ret) {
83c8266a 2922 err = ret;
ae18c37a 2923 goto fail;
53b381b3
DW
2924 }
2925
ae18c37a
JB
2926 /* These need to be init'ed before we start creating inodes and such. */
2927 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2928 GFP_KERNEL);
2929 fs_info->tree_root = tree_root;
2930 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2931 GFP_KERNEL);
2932 fs_info->chunk_root = chunk_root;
2933 if (!tree_root || !chunk_root) {
2934 err = -ENOMEM;
c75e8394 2935 goto fail;
ae18c37a
JB
2936 }
2937
2938 fs_info->btree_inode = new_inode(sb);
2939 if (!fs_info->btree_inode) {
2940 err = -ENOMEM;
c75e8394 2941 goto fail;
ae18c37a
JB
2942 }
2943 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2944 btrfs_init_btree_inode(fs_info);
2945
3c4bb26b 2946 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2947
2948 /*
2949 * Read super block and check the signature bytes only
2950 */
8f32380d
JT
2951 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2952 if (IS_ERR(disk_super)) {
2953 err = PTR_ERR(disk_super);
16cdcec7 2954 goto fail_alloc;
20b45077 2955 }
39279cc3 2956
8dc3f22c 2957 /*
260db43c 2958 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
2959 * corrupted, we'll find out
2960 */
8f32380d 2961 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2962 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2963 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2964 csum_type);
8dc3f22c 2965 err = -EINVAL;
8f32380d 2966 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2967 goto fail_alloc;
2968 }
2969
6d97c6e3
JT
2970 ret = btrfs_init_csum_hash(fs_info, csum_type);
2971 if (ret) {
2972 err = ret;
8f32380d 2973 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2974 goto fail_alloc;
2975 }
2976
1104a885
DS
2977 /*
2978 * We want to check superblock checksum, the type is stored inside.
2979 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2980 */
8f32380d 2981 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2982 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2983 err = -EINVAL;
8f32380d 2984 btrfs_release_disk_super(disk_super);
141386e1 2985 goto fail_alloc;
1104a885
DS
2986 }
2987
2988 /*
2989 * super_copy is zeroed at allocation time and we never touch the
2990 * following bytes up to INFO_SIZE, the checksum is calculated from
2991 * the whole block of INFO_SIZE
2992 */
8f32380d
JT
2993 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2994 btrfs_release_disk_super(disk_super);
5f39d397 2995
fbc6feae
NB
2996 disk_super = fs_info->super_copy;
2997
de37aa51
NB
2998 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2999 BTRFS_FSID_SIZE));
3000
7239ff4b 3001 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
3002 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3003 fs_info->super_copy->metadata_uuid,
3004 BTRFS_FSID_SIZE));
7239ff4b 3005 }
0b86a832 3006
fbc6feae
NB
3007 features = btrfs_super_flags(disk_super);
3008 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3009 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3010 btrfs_set_super_flags(disk_super, features);
3011 btrfs_info(fs_info,
3012 "found metadata UUID change in progress flag, clearing");
3013 }
3014
3015 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3016 sizeof(*fs_info->super_for_commit));
de37aa51 3017
069ec957 3018 ret = btrfs_validate_mount_super(fs_info);
1104a885 3019 if (ret) {
05135f59 3020 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3021 err = -EINVAL;
141386e1 3022 goto fail_alloc;
1104a885
DS
3023 }
3024
0f7d52f4 3025 if (!btrfs_super_root(disk_super))
141386e1 3026 goto fail_alloc;
0f7d52f4 3027
acce952b 3028 /* check FS state, whether FS is broken. */
87533c47
MX
3029 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3030 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3031
75e7cb7f
LB
3032 /*
3033 * In the long term, we'll store the compression type in the super
3034 * block, and it'll be used for per file compression control.
3035 */
3036 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3037
2ff7e61e 3038 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3039 if (ret) {
3040 err = ret;
141386e1 3041 goto fail_alloc;
2b82032c 3042 }
dfe25020 3043
f2b636e8
JB
3044 features = btrfs_super_incompat_flags(disk_super) &
3045 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3046 if (features) {
05135f59
DS
3047 btrfs_err(fs_info,
3048 "cannot mount because of unsupported optional features (%llx)",
3049 features);
f2b636e8 3050 err = -EINVAL;
141386e1 3051 goto fail_alloc;
f2b636e8
JB
3052 }
3053
5d4f98a2 3054 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3055 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3056 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3057 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3058 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3059 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3060
3173a18f 3061 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3062 btrfs_info(fs_info, "has skinny extents");
3173a18f 3063
727011e0
CM
3064 /*
3065 * flag our filesystem as having big metadata blocks if
3066 * they are bigger than the page size
3067 */
09cbfeaf 3068 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3069 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3070 btrfs_info(fs_info,
3071 "flagging fs with big metadata feature");
727011e0
CM
3072 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3073 }
3074
bc3f116f 3075 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3076 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3077 stripesize = sectorsize;
707e8a07 3078 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3079 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3080
da17066c
JM
3081 /* Cache block sizes */
3082 fs_info->nodesize = nodesize;
3083 fs_info->sectorsize = sectorsize;
ab108d99 3084 fs_info->sectorsize_bits = ilog2(sectorsize);
22b6331d 3085 fs_info->csum_size = btrfs_super_csum_size(disk_super);
fe5ecbe8 3086 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
da17066c
JM
3087 fs_info->stripesize = stripesize;
3088
bc3f116f
CM
3089 /*
3090 * mixed block groups end up with duplicate but slightly offset
3091 * extent buffers for the same range. It leads to corruptions
3092 */
3093 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3094 (sectorsize != nodesize)) {
05135f59
DS
3095 btrfs_err(fs_info,
3096"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3097 nodesize, sectorsize);
141386e1 3098 goto fail_alloc;
bc3f116f
CM
3099 }
3100
ceda0864
MX
3101 /*
3102 * Needn't use the lock because there is no other task which will
3103 * update the flag.
3104 */
a6fa6fae 3105 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3106
f2b636e8
JB
3107 features = btrfs_super_compat_ro_flags(disk_super) &
3108 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3109 if (!sb_rdonly(sb) && features) {
05135f59
DS
3110 btrfs_err(fs_info,
3111 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3112 features);
f2b636e8 3113 err = -EINVAL;
141386e1 3114 goto fail_alloc;
f2b636e8 3115 }
61d92c32 3116
2a458198
ES
3117 ret = btrfs_init_workqueues(fs_info, fs_devices);
3118 if (ret) {
3119 err = ret;
0dc3b84a
JB
3120 goto fail_sb_buffer;
3121 }
4543df7e 3122
9e11ceee
JK
3123 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3124 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3125
a061fc8d
CM
3126 sb->s_blocksize = sectorsize;
3127 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3128 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3129
925baedd 3130 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3131 ret = btrfs_read_sys_array(fs_info);
925baedd 3132 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3133 if (ret) {
05135f59 3134 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3135 goto fail_sb_buffer;
84eed90f 3136 }
0b86a832 3137
84234f3a 3138 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3139 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3140
2ff7e61e 3141 chunk_root->node = read_tree_block(fs_info,
0b86a832 3142 btrfs_super_chunk_root(disk_super),
581c1760 3143 generation, level, NULL);
64c043de
LB
3144 if (IS_ERR(chunk_root->node) ||
3145 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3146 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3147 if (!IS_ERR(chunk_root->node))
3148 free_extent_buffer(chunk_root->node);
95ab1f64 3149 chunk_root->node = NULL;
af31f5e5 3150 goto fail_tree_roots;
83121942 3151 }
5d4f98a2
YZ
3152 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3153 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3154
e17cade2 3155 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3156 offsetof(struct btrfs_header, chunk_tree_uuid),
3157 BTRFS_UUID_SIZE);
e17cade2 3158
5b4aacef 3159 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3160 if (ret) {
05135f59 3161 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3162 goto fail_tree_roots;
2b82032c 3163 }
0b86a832 3164
8dabb742 3165 /*
9b99b115
AJ
3166 * Keep the devid that is marked to be the target device for the
3167 * device replace procedure
8dabb742 3168 */
9b99b115 3169 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3170
a6b0d5c8 3171 if (!fs_devices->latest_bdev) {
05135f59 3172 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3173 goto fail_tree_roots;
3174 }
3175
b8522a1e 3176 ret = init_tree_roots(fs_info);
4bbcaa64 3177 if (ret)
b8522a1e 3178 goto fail_tree_roots;
8929ecfa 3179
75ec1db8
JB
3180 /*
3181 * If we have a uuid root and we're not being told to rescan we need to
3182 * check the generation here so we can set the
3183 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3184 * transaction during a balance or the log replay without updating the
3185 * uuid generation, and then if we crash we would rescan the uuid tree,
3186 * even though it was perfectly fine.
3187 */
3188 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3189 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3190 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3191
cf90d884
QW
3192 ret = btrfs_verify_dev_extents(fs_info);
3193 if (ret) {
3194 btrfs_err(fs_info,
3195 "failed to verify dev extents against chunks: %d",
3196 ret);
3197 goto fail_block_groups;
3198 }
68310a5e
ID
3199 ret = btrfs_recover_balance(fs_info);
3200 if (ret) {
05135f59 3201 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3202 goto fail_block_groups;
3203 }
3204
733f4fbb
SB
3205 ret = btrfs_init_dev_stats(fs_info);
3206 if (ret) {
05135f59 3207 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3208 goto fail_block_groups;
3209 }
3210
8dabb742
SB
3211 ret = btrfs_init_dev_replace(fs_info);
3212 if (ret) {
05135f59 3213 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3214 goto fail_block_groups;
3215 }
3216
9b99b115 3217 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3218
c6761a9e 3219 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3220 if (ret) {
05135f59
DS
3221 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3222 ret);
b7c35e81
AJ
3223 goto fail_block_groups;
3224 }
3225
96f3136e 3226 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3227 if (ret) {
05135f59 3228 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3229 goto fail_fsdev_sysfs;
c59021f8 3230 }
3231
c59021f8 3232 ret = btrfs_init_space_info(fs_info);
3233 if (ret) {
05135f59 3234 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3235 goto fail_sysfs;
c59021f8 3236 }
3237
5b4aacef 3238 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3239 if (ret) {
05135f59 3240 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3241 goto fail_sysfs;
1b1d1f66 3242 }
4330e183 3243
6528b99d 3244 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3245 btrfs_warn(fs_info,
52042d8e 3246 "writable mount is not allowed due to too many missing devices");
2365dd3c 3247 goto fail_sysfs;
292fd7fc 3248 }
9078a3e1 3249
a74a4b97
CM
3250 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3251 "btrfs-cleaner");
57506d50 3252 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3253 goto fail_sysfs;
a74a4b97
CM
3254
3255 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3256 tree_root,
3257 "btrfs-transaction");
57506d50 3258 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3259 goto fail_cleaner;
a74a4b97 3260
583b7231 3261 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3262 !fs_info->fs_devices->rotating) {
583b7231 3263 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3264 }
3265
572d9ab7 3266 /*
01327610 3267 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3268 * not have to wait for transaction commit
3269 */
3270 btrfs_apply_pending_changes(fs_info);
3818aea2 3271
21adbd5c 3272#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3273 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3274 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3275 btrfs_test_opt(fs_info,
21adbd5c
SB
3276 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3277 1 : 0,
3278 fs_info->check_integrity_print_mask);
3279 if (ret)
05135f59
DS
3280 btrfs_warn(fs_info,
3281 "failed to initialize integrity check module: %d",
3282 ret);
21adbd5c
SB
3283 }
3284#endif
bcef60f2
AJ
3285 ret = btrfs_read_qgroup_config(fs_info);
3286 if (ret)
3287 goto fail_trans_kthread;
21adbd5c 3288
fd708b81
JB
3289 if (btrfs_build_ref_tree(fs_info))
3290 btrfs_err(fs_info, "couldn't build ref tree");
3291
96da0919
QW
3292 /* do not make disk changes in broken FS or nologreplay is given */
3293 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3294 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3295 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3296 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3297 if (ret) {
63443bf5 3298 err = ret;
28c16cbb 3299 goto fail_qgroup;
79787eaa 3300 }
e02119d5 3301 }
1a40e23b 3302
6bccf3ab 3303 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3304 if (ret)
28c16cbb 3305 goto fail_qgroup;
76dda93c 3306
bc98a42c 3307 if (!sb_rdonly(sb)) {
d68fc57b 3308 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3309 if (ret)
28c16cbb 3310 goto fail_qgroup;
90c711ab
ZB
3311
3312 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3313 ret = btrfs_recover_relocation(tree_root);
90c711ab 3314 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3315 if (ret < 0) {
05135f59
DS
3316 btrfs_warn(fs_info, "failed to recover relocation: %d",
3317 ret);
d7ce5843 3318 err = -EINVAL;
bcef60f2 3319 goto fail_qgroup;
d7ce5843 3320 }
7c2ca468 3321 }
1a40e23b 3322
56e9357a 3323 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3324 if (IS_ERR(fs_info->fs_root)) {
3325 err = PTR_ERR(fs_info->fs_root);
f50f4353 3326 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3327 fs_info->fs_root = NULL;
bcef60f2 3328 goto fail_qgroup;
3140c9a3 3329 }
c289811c 3330
bc98a42c 3331 if (sb_rdonly(sb))
2b6ba629 3332 return 0;
59641015 3333
f8d468a1
OS
3334 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3335 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3336 clear_free_space_tree = 1;
3337 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3338 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3339 btrfs_warn(fs_info, "free space tree is invalid");
3340 clear_free_space_tree = 1;
3341 }
3342
3343 if (clear_free_space_tree) {
f8d468a1
OS
3344 btrfs_info(fs_info, "clearing free space tree");
3345 ret = btrfs_clear_free_space_tree(fs_info);
3346 if (ret) {
3347 btrfs_warn(fs_info,
3348 "failed to clear free space tree: %d", ret);
6bccf3ab 3349 close_ctree(fs_info);
f8d468a1
OS
3350 return ret;
3351 }
3352 }
3353
0b246afa 3354 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3355 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3356 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3357 ret = btrfs_create_free_space_tree(fs_info);
3358 if (ret) {
05135f59
DS
3359 btrfs_warn(fs_info,
3360 "failed to create free space tree: %d", ret);
6bccf3ab 3361 close_ctree(fs_info);
511711af
CM
3362 return ret;
3363 }
3364 }
3365
2b6ba629
ID
3366 down_read(&fs_info->cleanup_work_sem);
3367 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3368 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3369 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3370 close_ctree(fs_info);
2b6ba629
ID
3371 return ret;
3372 }
3373 up_read(&fs_info->cleanup_work_sem);
59641015 3374
2b6ba629
ID
3375 ret = btrfs_resume_balance_async(fs_info);
3376 if (ret) {
05135f59 3377 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3378 close_ctree(fs_info);
2b6ba629 3379 return ret;
e3acc2a6
JB
3380 }
3381
8dabb742
SB
3382 ret = btrfs_resume_dev_replace_async(fs_info);
3383 if (ret) {
05135f59 3384 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3385 close_ctree(fs_info);
8dabb742
SB
3386 return ret;
3387 }
3388
b382a324 3389 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3390 btrfs_discard_resume(fs_info);
b382a324 3391
4bbcaa64 3392 if (!fs_info->uuid_root) {
05135f59 3393 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3394 ret = btrfs_create_uuid_tree(fs_info);
3395 if (ret) {
05135f59
DS
3396 btrfs_warn(fs_info,
3397 "failed to create the UUID tree: %d", ret);
6bccf3ab 3398 close_ctree(fs_info);
f7a81ea4
SB
3399 return ret;
3400 }
0b246afa 3401 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3402 fs_info->generation !=
3403 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3404 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3405 ret = btrfs_check_uuid_tree(fs_info);
3406 if (ret) {
05135f59
DS
3407 btrfs_warn(fs_info,
3408 "failed to check the UUID tree: %d", ret);
6bccf3ab 3409 close_ctree(fs_info);
70f80175
SB
3410 return ret;
3411 }
f7a81ea4 3412 }
afcdd129 3413 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3414
ad2b2c80 3415 return 0;
39279cc3 3416
bcef60f2
AJ
3417fail_qgroup:
3418 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3419fail_trans_kthread:
3420 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3421 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3422 btrfs_free_fs_roots(fs_info);
3f157a2f 3423fail_cleaner:
a74a4b97 3424 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3425
3426 /*
3427 * make sure we're done with the btree inode before we stop our
3428 * kthreads
3429 */
3430 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3431
2365dd3c 3432fail_sysfs:
6618a59b 3433 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3434
b7c35e81
AJ
3435fail_fsdev_sysfs:
3436 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3437
1b1d1f66 3438fail_block_groups:
54067ae9 3439 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3440
3441fail_tree_roots:
9e3aa805
JB
3442 if (fs_info->data_reloc_root)
3443 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3444 free_root_pointers(fs_info, true);
2b8195bb 3445 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3446
39279cc3 3447fail_sb_buffer:
7abadb64 3448 btrfs_stop_all_workers(fs_info);
5cdd7db6 3449 btrfs_free_block_groups(fs_info);
16cdcec7 3450fail_alloc:
586e46e2
ID
3451 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3452
4543df7e 3453 iput(fs_info->btree_inode);
7e662854 3454fail:
586e46e2 3455 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3456 return err;
eb60ceac 3457}
663faf9f 3458ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3459
314b6dd0 3460static void btrfs_end_super_write(struct bio *bio)
f2984462 3461{
314b6dd0
JT
3462 struct btrfs_device *device = bio->bi_private;
3463 struct bio_vec *bvec;
3464 struct bvec_iter_all iter_all;
3465 struct page *page;
3466
3467 bio_for_each_segment_all(bvec, bio, iter_all) {
3468 page = bvec->bv_page;
3469
3470 if (bio->bi_status) {
3471 btrfs_warn_rl_in_rcu(device->fs_info,
3472 "lost page write due to IO error on %s (%d)",
3473 rcu_str_deref(device->name),
3474 blk_status_to_errno(bio->bi_status));
3475 ClearPageUptodate(page);
3476 SetPageError(page);
3477 btrfs_dev_stat_inc_and_print(device,
3478 BTRFS_DEV_STAT_WRITE_ERRS);
3479 } else {
3480 SetPageUptodate(page);
3481 }
3482
3483 put_page(page);
3484 unlock_page(page);
f2984462 3485 }
314b6dd0
JT
3486
3487 bio_put(bio);
f2984462
CM
3488}
3489
8f32380d
JT
3490struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3491 int copy_num)
29c36d72 3492{
29c36d72 3493 struct btrfs_super_block *super;
8f32380d 3494 struct page *page;
29c36d72 3495 u64 bytenr;
8f32380d 3496 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3497
3498 bytenr = btrfs_sb_offset(copy_num);
3499 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3500 return ERR_PTR(-EINVAL);
29c36d72 3501
8f32380d
JT
3502 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3503 if (IS_ERR(page))
3504 return ERR_CAST(page);
29c36d72 3505
8f32380d 3506 super = page_address(page);
96c2e067
AJ
3507 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3508 btrfs_release_disk_super(super);
3509 return ERR_PTR(-ENODATA);
3510 }
3511
3512 if (btrfs_super_bytenr(super) != bytenr) {
8f32380d
JT
3513 btrfs_release_disk_super(super);
3514 return ERR_PTR(-EINVAL);
29c36d72
AJ
3515 }
3516
8f32380d 3517 return super;
29c36d72
AJ
3518}
3519
3520
8f32380d 3521struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3522{
8f32380d 3523 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3524 int i;
3525 u64 transid = 0;
a512bbf8
YZ
3526
3527 /* we would like to check all the supers, but that would make
3528 * a btrfs mount succeed after a mkfs from a different FS.
3529 * So, we need to add a special mount option to scan for
3530 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3531 */
3532 for (i = 0; i < 1; i++) {
8f32380d
JT
3533 super = btrfs_read_dev_one_super(bdev, i);
3534 if (IS_ERR(super))
a512bbf8
YZ
3535 continue;
3536
a512bbf8 3537 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3538 if (latest)
3539 btrfs_release_disk_super(super);
3540
3541 latest = super;
a512bbf8 3542 transid = btrfs_super_generation(super);
a512bbf8
YZ
3543 }
3544 }
92fc03fb 3545
8f32380d 3546 return super;
a512bbf8
YZ
3547}
3548
4eedeb75 3549/*
abbb3b8e 3550 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3551 * pages we use for writing are locked.
4eedeb75 3552 *
abbb3b8e
DS
3553 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3554 * the expected device size at commit time. Note that max_mirrors must be
3555 * same for write and wait phases.
4eedeb75 3556 *
314b6dd0 3557 * Return number of errors when page is not found or submission fails.
4eedeb75 3558 */
a512bbf8 3559static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3560 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3561{
d5178578 3562 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3563 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3564 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3565 int i;
a512bbf8 3566 int errors = 0;
a512bbf8 3567 u64 bytenr;
a512bbf8
YZ
3568
3569 if (max_mirrors == 0)
3570 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3571
d5178578
JT
3572 shash->tfm = fs_info->csum_shash;
3573
a512bbf8 3574 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3575 struct page *page;
3576 struct bio *bio;
3577 struct btrfs_super_block *disk_super;
3578
a512bbf8 3579 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3580 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3581 device->commit_total_bytes)
a512bbf8
YZ
3582 break;
3583
abbb3b8e 3584 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3585
fd08001f
EB
3586 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3587 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3588 sb->csum);
4eedeb75 3589
314b6dd0
JT
3590 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3591 GFP_NOFS);
3592 if (!page) {
abbb3b8e 3593 btrfs_err(device->fs_info,
314b6dd0 3594 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3595 bytenr);
3596 errors++;
4eedeb75 3597 continue;
abbb3b8e 3598 }
634554dc 3599
314b6dd0
JT
3600 /* Bump the refcount for wait_dev_supers() */
3601 get_page(page);
a512bbf8 3602
314b6dd0
JT
3603 disk_super = page_address(page);
3604 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3605
314b6dd0
JT
3606 /*
3607 * Directly use bios here instead of relying on the page cache
3608 * to do I/O, so we don't lose the ability to do integrity
3609 * checking.
3610 */
3611 bio = bio_alloc(GFP_NOFS, 1);
3612 bio_set_dev(bio, device->bdev);
3613 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3614 bio->bi_private = device;
3615 bio->bi_end_io = btrfs_end_super_write;
3616 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3617 offset_in_page(bytenr));
a512bbf8 3618
387125fc 3619 /*
314b6dd0
JT
3620 * We FUA only the first super block. The others we allow to
3621 * go down lazy and there's a short window where the on-disk
3622 * copies might still contain the older version.
387125fc 3623 */
314b6dd0 3624 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3625 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3626 bio->bi_opf |= REQ_FUA;
3627
3628 btrfsic_submit_bio(bio);
a512bbf8
YZ
3629 }
3630 return errors < i ? 0 : -1;
3631}
3632
abbb3b8e
DS
3633/*
3634 * Wait for write completion of superblocks done by write_dev_supers,
3635 * @max_mirrors same for write and wait phases.
3636 *
314b6dd0 3637 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3638 * date.
3639 */
3640static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3641{
abbb3b8e
DS
3642 int i;
3643 int errors = 0;
b6a535fa 3644 bool primary_failed = false;
abbb3b8e
DS
3645 u64 bytenr;
3646
3647 if (max_mirrors == 0)
3648 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3649
3650 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3651 struct page *page;
3652
abbb3b8e
DS
3653 bytenr = btrfs_sb_offset(i);
3654 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3655 device->commit_total_bytes)
3656 break;
3657
314b6dd0
JT
3658 page = find_get_page(device->bdev->bd_inode->i_mapping,
3659 bytenr >> PAGE_SHIFT);
3660 if (!page) {
abbb3b8e 3661 errors++;
b6a535fa
HM
3662 if (i == 0)
3663 primary_failed = true;
abbb3b8e
DS
3664 continue;
3665 }
314b6dd0
JT
3666 /* Page is submitted locked and unlocked once the IO completes */
3667 wait_on_page_locked(page);
3668 if (PageError(page)) {
abbb3b8e 3669 errors++;
b6a535fa
HM
3670 if (i == 0)
3671 primary_failed = true;
3672 }
abbb3b8e 3673
314b6dd0
JT
3674 /* Drop our reference */
3675 put_page(page);
abbb3b8e 3676
314b6dd0
JT
3677 /* Drop the reference from the writing run */
3678 put_page(page);
abbb3b8e
DS
3679 }
3680
b6a535fa
HM
3681 /* log error, force error return */
3682 if (primary_failed) {
3683 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3684 device->devid);
3685 return -1;
3686 }
3687
abbb3b8e
DS
3688 return errors < i ? 0 : -1;
3689}
3690
387125fc
CM
3691/*
3692 * endio for the write_dev_flush, this will wake anyone waiting
3693 * for the barrier when it is done
3694 */
4246a0b6 3695static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3696{
e0ae9994 3697 complete(bio->bi_private);
387125fc
CM
3698}
3699
3700/*
4fc6441a
AJ
3701 * Submit a flush request to the device if it supports it. Error handling is
3702 * done in the waiting counterpart.
387125fc 3703 */
4fc6441a 3704static void write_dev_flush(struct btrfs_device *device)
387125fc 3705{
c2a9c7ab 3706 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3707 struct bio *bio = device->flush_bio;
387125fc 3708
c2a9c7ab 3709 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3710 return;
387125fc 3711
e0ae9994 3712 bio_reset(bio);
387125fc 3713 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3714 bio_set_dev(bio, device->bdev);
8d910125 3715 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3716 init_completion(&device->flush_wait);
3717 bio->bi_private = &device->flush_wait;
387125fc 3718
43a01111 3719 btrfsic_submit_bio(bio);
1c3063b6 3720 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3721}
387125fc 3722
4fc6441a
AJ
3723/*
3724 * If the flush bio has been submitted by write_dev_flush, wait for it.
3725 */
8c27cb35 3726static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3727{
4fc6441a 3728 struct bio *bio = device->flush_bio;
387125fc 3729
1c3063b6 3730 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3731 return BLK_STS_OK;
387125fc 3732
1c3063b6 3733 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3734 wait_for_completion_io(&device->flush_wait);
387125fc 3735
8c27cb35 3736 return bio->bi_status;
387125fc 3737}
387125fc 3738
d10b82fe 3739static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3740{
6528b99d 3741 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3742 return -EIO;
387125fc
CM
3743 return 0;
3744}
3745
3746/*
3747 * send an empty flush down to each device in parallel,
3748 * then wait for them
3749 */
3750static int barrier_all_devices(struct btrfs_fs_info *info)
3751{
3752 struct list_head *head;
3753 struct btrfs_device *dev;
5af3e8cc 3754 int errors_wait = 0;
4e4cbee9 3755 blk_status_t ret;
387125fc 3756
1538e6c5 3757 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3758 /* send down all the barriers */
3759 head = &info->fs_devices->devices;
1538e6c5 3760 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3761 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3762 continue;
cea7c8bf 3763 if (!dev->bdev)
387125fc 3764 continue;
e12c9621 3765 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3766 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3767 continue;
3768
4fc6441a 3769 write_dev_flush(dev);
58efbc9f 3770 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3771 }
3772
3773 /* wait for all the barriers */
1538e6c5 3774 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3775 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3776 continue;
387125fc 3777 if (!dev->bdev) {
5af3e8cc 3778 errors_wait++;
387125fc
CM
3779 continue;
3780 }
e12c9621 3781 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3782 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3783 continue;
3784
4fc6441a 3785 ret = wait_dev_flush(dev);
401b41e5
AJ
3786 if (ret) {
3787 dev->last_flush_error = ret;
66b4993e
DS
3788 btrfs_dev_stat_inc_and_print(dev,
3789 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3790 errors_wait++;
401b41e5
AJ
3791 }
3792 }
3793
cea7c8bf 3794 if (errors_wait) {
401b41e5
AJ
3795 /*
3796 * At some point we need the status of all disks
3797 * to arrive at the volume status. So error checking
3798 * is being pushed to a separate loop.
3799 */
d10b82fe 3800 return check_barrier_error(info);
387125fc 3801 }
387125fc
CM
3802 return 0;
3803}
3804
943c6e99
ZL
3805int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3806{
8789f4fe
ZL
3807 int raid_type;
3808 int min_tolerated = INT_MAX;
943c6e99 3809
8789f4fe
ZL
3810 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3811 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3812 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3813 btrfs_raid_array[BTRFS_RAID_SINGLE].
3814 tolerated_failures);
943c6e99 3815
8789f4fe
ZL
3816 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3817 if (raid_type == BTRFS_RAID_SINGLE)
3818 continue;
41a6e891 3819 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3820 continue;
8c3e3582 3821 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3822 btrfs_raid_array[raid_type].
3823 tolerated_failures);
3824 }
943c6e99 3825
8789f4fe 3826 if (min_tolerated == INT_MAX) {
ab8d0fc4 3827 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3828 min_tolerated = 0;
3829 }
3830
3831 return min_tolerated;
943c6e99
ZL
3832}
3833
eece6a9c 3834int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3835{
e5e9a520 3836 struct list_head *head;
f2984462 3837 struct btrfs_device *dev;
a061fc8d 3838 struct btrfs_super_block *sb;
f2984462 3839 struct btrfs_dev_item *dev_item;
f2984462
CM
3840 int ret;
3841 int do_barriers;
a236aed1
CM
3842 int max_errors;
3843 int total_errors = 0;
a061fc8d 3844 u64 flags;
f2984462 3845
0b246afa 3846 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3847
3848 /*
3849 * max_mirrors == 0 indicates we're from commit_transaction,
3850 * not from fsync where the tree roots in fs_info have not
3851 * been consistent on disk.
3852 */
3853 if (max_mirrors == 0)
3854 backup_super_roots(fs_info);
f2984462 3855
0b246afa 3856 sb = fs_info->super_for_commit;
a061fc8d 3857 dev_item = &sb->dev_item;
e5e9a520 3858
0b246afa
JM
3859 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3860 head = &fs_info->fs_devices->devices;
3861 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3862
5af3e8cc 3863 if (do_barriers) {
0b246afa 3864 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3865 if (ret) {
3866 mutex_unlock(
0b246afa
JM
3867 &fs_info->fs_devices->device_list_mutex);
3868 btrfs_handle_fs_error(fs_info, ret,
3869 "errors while submitting device barriers.");
5af3e8cc
SB
3870 return ret;
3871 }
3872 }
387125fc 3873
1538e6c5 3874 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3875 if (!dev->bdev) {
3876 total_errors++;
3877 continue;
3878 }
e12c9621 3879 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3880 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3881 continue;
3882
2b82032c 3883 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3884 btrfs_set_stack_device_type(dev_item, dev->type);
3885 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3886 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3887 dev->commit_total_bytes);
ce7213c7
MX
3888 btrfs_set_stack_device_bytes_used(dev_item,
3889 dev->commit_bytes_used);
a061fc8d
CM
3890 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3891 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3892 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3893 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3894 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3895 BTRFS_FSID_SIZE);
a512bbf8 3896
a061fc8d
CM
3897 flags = btrfs_super_flags(sb);
3898 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3899
75cb857d
QW
3900 ret = btrfs_validate_write_super(fs_info, sb);
3901 if (ret < 0) {
3902 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3903 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3904 "unexpected superblock corruption detected");
3905 return -EUCLEAN;
3906 }
3907
abbb3b8e 3908 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3909 if (ret)
3910 total_errors++;
f2984462 3911 }
a236aed1 3912 if (total_errors > max_errors) {
0b246afa
JM
3913 btrfs_err(fs_info, "%d errors while writing supers",
3914 total_errors);
3915 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3916
9d565ba4 3917 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3918 btrfs_handle_fs_error(fs_info, -EIO,
3919 "%d errors while writing supers",
3920 total_errors);
9d565ba4 3921 return -EIO;
a236aed1 3922 }
f2984462 3923
a512bbf8 3924 total_errors = 0;
1538e6c5 3925 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3926 if (!dev->bdev)
3927 continue;
e12c9621 3928 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3929 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3930 continue;
3931
abbb3b8e 3932 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3933 if (ret)
3934 total_errors++;
f2984462 3935 }
0b246afa 3936 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3937 if (total_errors > max_errors) {
0b246afa
JM
3938 btrfs_handle_fs_error(fs_info, -EIO,
3939 "%d errors while writing supers",
3940 total_errors);
79787eaa 3941 return -EIO;
a236aed1 3942 }
f2984462
CM
3943 return 0;
3944}
3945
cb517eab
MX
3946/* Drop a fs root from the radix tree and free it. */
3947void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3948 struct btrfs_root *root)
2619ba1f 3949{
4785e24f
JB
3950 bool drop_ref = false;
3951
4df27c4d 3952 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3953 radix_tree_delete(&fs_info->fs_roots_radix,
3954 (unsigned long)root->root_key.objectid);
af01d2e5 3955 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3956 drop_ref = true;
4df27c4d 3957 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3958
1c1ea4f7 3959 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3960 ASSERT(root->log_root == NULL);
1c1ea4f7 3961 if (root->reloc_root) {
00246528 3962 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3963 root->reloc_root = NULL;
3964 }
3965 }
3321719e 3966
faa2dbf0
JB
3967 if (root->free_ino_pinned)
3968 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3969 if (root->free_ino_ctl)
3970 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3971 if (root->ino_cache_inode) {
3972 iput(root->ino_cache_inode);
3973 root->ino_cache_inode = NULL;
3974 }
4785e24f
JB
3975 if (drop_ref)
3976 btrfs_put_root(root);
2619ba1f
CM
3977}
3978
c146afad 3979int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3980{
c146afad
YZ
3981 u64 root_objectid = 0;
3982 struct btrfs_root *gang[8];
65d33fd7
QW
3983 int i = 0;
3984 int err = 0;
3985 unsigned int ret = 0;
e089f05c 3986
c146afad 3987 while (1) {
efc34534 3988 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3989 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3990 (void **)gang, root_objectid,
3991 ARRAY_SIZE(gang));
65d33fd7 3992 if (!ret) {
efc34534 3993 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3994 break;
65d33fd7 3995 }
5d4f98a2 3996 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3997
c146afad 3998 for (i = 0; i < ret; i++) {
65d33fd7
QW
3999 /* Avoid to grab roots in dead_roots */
4000 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4001 gang[i] = NULL;
4002 continue;
4003 }
4004 /* grab all the search result for later use */
00246528 4005 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4006 }
efc34534 4007 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4008
65d33fd7
QW
4009 for (i = 0; i < ret; i++) {
4010 if (!gang[i])
4011 continue;
c146afad 4012 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4013 err = btrfs_orphan_cleanup(gang[i]);
4014 if (err)
65d33fd7 4015 break;
00246528 4016 btrfs_put_root(gang[i]);
c146afad
YZ
4017 }
4018 root_objectid++;
4019 }
65d33fd7
QW
4020
4021 /* release the uncleaned roots due to error */
4022 for (; i < ret; i++) {
4023 if (gang[i])
00246528 4024 btrfs_put_root(gang[i]);
65d33fd7
QW
4025 }
4026 return err;
c146afad 4027}
a2135011 4028
6bccf3ab 4029int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4030{
6bccf3ab 4031 struct btrfs_root *root = fs_info->tree_root;
c146afad 4032 struct btrfs_trans_handle *trans;
a74a4b97 4033
0b246afa 4034 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4035 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4036 mutex_unlock(&fs_info->cleaner_mutex);
4037 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4038
4039 /* wait until ongoing cleanup work done */
0b246afa
JM
4040 down_write(&fs_info->cleanup_work_sem);
4041 up_write(&fs_info->cleanup_work_sem);
c71bf099 4042
7a7eaa40 4043 trans = btrfs_join_transaction(root);
3612b495
TI
4044 if (IS_ERR(trans))
4045 return PTR_ERR(trans);
3a45bb20 4046 return btrfs_commit_transaction(trans);
c146afad
YZ
4047}
4048
b105e927 4049void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4050{
c146afad
YZ
4051 int ret;
4052
afcdd129 4053 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4054 /*
4055 * We don't want the cleaner to start new transactions, add more delayed
4056 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4057 * because that frees the task_struct, and the transaction kthread might
4058 * still try to wake up the cleaner.
4059 */
4060 kthread_park(fs_info->cleaner_kthread);
c146afad 4061
7343dd61 4062 /* wait for the qgroup rescan worker to stop */
d06f23d6 4063 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4064
803b2f54
SB
4065 /* wait for the uuid_scan task to finish */
4066 down(&fs_info->uuid_tree_rescan_sem);
4067 /* avoid complains from lockdep et al., set sem back to initial state */
4068 up(&fs_info->uuid_tree_rescan_sem);
4069
837d5b6e 4070 /* pause restriper - we want to resume on mount */
aa1b8cd4 4071 btrfs_pause_balance(fs_info);
837d5b6e 4072
8dabb742
SB
4073 btrfs_dev_replace_suspend_for_unmount(fs_info);
4074
aa1b8cd4 4075 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4076
4077 /* wait for any defraggers to finish */
4078 wait_event(fs_info->transaction_wait,
4079 (atomic_read(&fs_info->defrag_running) == 0));
4080
4081 /* clear out the rbtree of defraggable inodes */
26176e7c 4082 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4083
21c7e756 4084 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4085 cancel_work_sync(&fs_info->async_data_reclaim_work);
21c7e756 4086
b0643e59
DZ
4087 /* Cancel or finish ongoing discard work */
4088 btrfs_discard_cleanup(fs_info);
4089
bc98a42c 4090 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4091 /*
d6fd0ae2
OS
4092 * The cleaner kthread is stopped, so do one final pass over
4093 * unused block groups.
e44163e1 4094 */
0b246afa 4095 btrfs_delete_unused_bgs(fs_info);
e44163e1 4096
f0cc2cd7
FM
4097 /*
4098 * There might be existing delayed inode workers still running
4099 * and holding an empty delayed inode item. We must wait for
4100 * them to complete first because they can create a transaction.
4101 * This happens when someone calls btrfs_balance_delayed_items()
4102 * and then a transaction commit runs the same delayed nodes
4103 * before any delayed worker has done something with the nodes.
4104 * We must wait for any worker here and not at transaction
4105 * commit time since that could cause a deadlock.
4106 * This is a very rare case.
4107 */
4108 btrfs_flush_workqueue(fs_info->delayed_workers);
4109
6bccf3ab 4110 ret = btrfs_commit_super(fs_info);
acce952b 4111 if (ret)
04892340 4112 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4113 }
4114
af722733
LB
4115 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4116 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4117 btrfs_error_commit_super(fs_info);
0f7d52f4 4118
e3029d9f
AV
4119 kthread_stop(fs_info->transaction_kthread);
4120 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4121
e187831e 4122 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4123 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4124
5958253c
QW
4125 if (btrfs_check_quota_leak(fs_info)) {
4126 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4127 btrfs_err(fs_info, "qgroup reserved space leaked");
4128 }
4129
04892340 4130 btrfs_free_qgroup_config(fs_info);
fe816d0f 4131 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4132
963d678b 4133 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4134 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4135 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4136 }
bcc63abb 4137
4297ff84
JB
4138 if (percpu_counter_sum(&fs_info->dio_bytes))
4139 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4140 percpu_counter_sum(&fs_info->dio_bytes));
4141
6618a59b 4142 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4143 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4144
1a4319cc
LB
4145 btrfs_put_block_group_cache(fs_info);
4146
de348ee0
WS
4147 /*
4148 * we must make sure there is not any read request to
4149 * submit after we stopping all workers.
4150 */
4151 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4152 btrfs_stop_all_workers(fs_info);
4153
afcdd129 4154 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4155 free_root_pointers(fs_info, true);
8c38938c 4156 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4157
4e19443d
JB
4158 /*
4159 * We must free the block groups after dropping the fs_roots as we could
4160 * have had an IO error and have left over tree log blocks that aren't
4161 * cleaned up until the fs roots are freed. This makes the block group
4162 * accounting appear to be wrong because there's pending reserved bytes,
4163 * so make sure we do the block group cleanup afterwards.
4164 */
4165 btrfs_free_block_groups(fs_info);
4166
13e6c37b 4167 iput(fs_info->btree_inode);
d6bfde87 4168
21adbd5c 4169#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4170 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4171 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4172#endif
4173
0b86a832 4174 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4175 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4176}
4177
b9fab919
CM
4178int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4179 int atomic)
5f39d397 4180{
1259ab75 4181 int ret;
727011e0 4182 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4183
0b32f4bb 4184 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4185 if (!ret)
4186 return ret;
4187
4188 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4189 parent_transid, atomic);
4190 if (ret == -EAGAIN)
4191 return ret;
1259ab75 4192 return !ret;
5f39d397
CM
4193}
4194
5f39d397
CM
4195void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4196{
2f4d60df 4197 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4198 u64 transid = btrfs_header_generation(buf);
b9473439 4199 int was_dirty;
b4ce94de 4200
06ea65a3
JB
4201#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4202 /*
4203 * This is a fast path so only do this check if we have sanity tests
52042d8e 4204 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4205 * outside of the sanity tests.
4206 */
b0132a3b 4207 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4208 return;
4209#endif
b9447ef8 4210 btrfs_assert_tree_locked(buf);
0b246afa 4211 if (transid != fs_info->generation)
5d163e0e 4212 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4213 buf->start, transid, fs_info->generation);
0b32f4bb 4214 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4215 if (!was_dirty)
104b4e51
NB
4216 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4217 buf->len,
4218 fs_info->dirty_metadata_batch);
1f21ef0a 4219#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4220 /*
4221 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4222 * but item data not updated.
4223 * So here we should only check item pointers, not item data.
4224 */
4225 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4226 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4227 btrfs_print_leaf(buf);
1f21ef0a
FM
4228 ASSERT(0);
4229 }
4230#endif
eb60ceac
CM
4231}
4232
2ff7e61e 4233static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4234 int flush_delayed)
16cdcec7
MX
4235{
4236 /*
4237 * looks as though older kernels can get into trouble with
4238 * this code, they end up stuck in balance_dirty_pages forever
4239 */
e2d84521 4240 int ret;
16cdcec7
MX
4241
4242 if (current->flags & PF_MEMALLOC)
4243 return;
4244
b53d3f5d 4245 if (flush_delayed)
2ff7e61e 4246 btrfs_balance_delayed_items(fs_info);
16cdcec7 4247
d814a491
EL
4248 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4249 BTRFS_DIRTY_METADATA_THRESH,
4250 fs_info->dirty_metadata_batch);
e2d84521 4251 if (ret > 0) {
0b246afa 4252 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4253 }
16cdcec7
MX
4254}
4255
2ff7e61e 4256void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4257{
2ff7e61e 4258 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4259}
585ad2c3 4260
2ff7e61e 4261void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4262{
2ff7e61e 4263 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4264}
6b80053d 4265
581c1760
QW
4266int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4267 struct btrfs_key *first_key)
6b80053d 4268{
5ab12d1f 4269 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4270 level, first_key);
6b80053d 4271}
0da5468f 4272
2ff7e61e 4273static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4274{
fe816d0f
NB
4275 /* cleanup FS via transaction */
4276 btrfs_cleanup_transaction(fs_info);
4277
0b246afa 4278 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4279 btrfs_run_delayed_iputs(fs_info);
0b246afa 4280 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4281
0b246afa
JM
4282 down_write(&fs_info->cleanup_work_sem);
4283 up_write(&fs_info->cleanup_work_sem);
acce952b 4284}
4285
ef67963d
JB
4286static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4287{
4288 struct btrfs_root *gang[8];
4289 u64 root_objectid = 0;
4290 int ret;
4291
4292 spin_lock(&fs_info->fs_roots_radix_lock);
4293 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4294 (void **)gang, root_objectid,
4295 ARRAY_SIZE(gang))) != 0) {
4296 int i;
4297
4298 for (i = 0; i < ret; i++)
4299 gang[i] = btrfs_grab_root(gang[i]);
4300 spin_unlock(&fs_info->fs_roots_radix_lock);
4301
4302 for (i = 0; i < ret; i++) {
4303 if (!gang[i])
4304 continue;
4305 root_objectid = gang[i]->root_key.objectid;
4306 btrfs_free_log(NULL, gang[i]);
4307 btrfs_put_root(gang[i]);
4308 }
4309 root_objectid++;
4310 spin_lock(&fs_info->fs_roots_radix_lock);
4311 }
4312 spin_unlock(&fs_info->fs_roots_radix_lock);
4313 btrfs_free_log_root_tree(NULL, fs_info);
4314}
4315
143bede5 4316static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4317{
acce952b 4318 struct btrfs_ordered_extent *ordered;
acce952b 4319
199c2a9c 4320 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4321 /*
4322 * This will just short circuit the ordered completion stuff which will
4323 * make sure the ordered extent gets properly cleaned up.
4324 */
199c2a9c 4325 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4326 root_extent_list)
4327 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4328 spin_unlock(&root->ordered_extent_lock);
4329}
4330
4331static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4332{
4333 struct btrfs_root *root;
4334 struct list_head splice;
4335
4336 INIT_LIST_HEAD(&splice);
4337
4338 spin_lock(&fs_info->ordered_root_lock);
4339 list_splice_init(&fs_info->ordered_roots, &splice);
4340 while (!list_empty(&splice)) {
4341 root = list_first_entry(&splice, struct btrfs_root,
4342 ordered_root);
1de2cfde
JB
4343 list_move_tail(&root->ordered_root,
4344 &fs_info->ordered_roots);
199c2a9c 4345
2a85d9ca 4346 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4347 btrfs_destroy_ordered_extents(root);
4348
2a85d9ca
LB
4349 cond_resched();
4350 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4351 }
4352 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4353
4354 /*
4355 * We need this here because if we've been flipped read-only we won't
4356 * get sync() from the umount, so we need to make sure any ordered
4357 * extents that haven't had their dirty pages IO start writeout yet
4358 * actually get run and error out properly.
4359 */
4360 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4361}
4362
35a3621b 4363static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4364 struct btrfs_fs_info *fs_info)
acce952b 4365{
4366 struct rb_node *node;
4367 struct btrfs_delayed_ref_root *delayed_refs;
4368 struct btrfs_delayed_ref_node *ref;
4369 int ret = 0;
4370
4371 delayed_refs = &trans->delayed_refs;
4372
4373 spin_lock(&delayed_refs->lock);
d7df2c79 4374 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4375 spin_unlock(&delayed_refs->lock);
b79ce3dd 4376 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4377 return ret;
4378 }
4379
5c9d028b 4380 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4381 struct btrfs_delayed_ref_head *head;
0e0adbcf 4382 struct rb_node *n;
e78417d1 4383 bool pin_bytes = false;
acce952b 4384
d7df2c79
JB
4385 head = rb_entry(node, struct btrfs_delayed_ref_head,
4386 href_node);
3069bd26 4387 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4388 continue;
3069bd26 4389
d7df2c79 4390 spin_lock(&head->lock);
e3d03965 4391 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4392 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4393 ref_node);
d7df2c79 4394 ref->in_tree = 0;
e3d03965 4395 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4396 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4397 if (!list_empty(&ref->add_list))
4398 list_del(&ref->add_list);
d7df2c79
JB
4399 atomic_dec(&delayed_refs->num_entries);
4400 btrfs_put_delayed_ref(ref);
e78417d1 4401 }
d7df2c79
JB
4402 if (head->must_insert_reserved)
4403 pin_bytes = true;
4404 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4405 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4406 spin_unlock(&head->lock);
4407 spin_unlock(&delayed_refs->lock);
4408 mutex_unlock(&head->mutex);
acce952b 4409
f603bb94
NB
4410 if (pin_bytes) {
4411 struct btrfs_block_group *cache;
4412
4413 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4414 BUG_ON(!cache);
4415
4416 spin_lock(&cache->space_info->lock);
4417 spin_lock(&cache->lock);
4418 cache->pinned += head->num_bytes;
4419 btrfs_space_info_update_bytes_pinned(fs_info,
4420 cache->space_info, head->num_bytes);
4421 cache->reserved -= head->num_bytes;
4422 cache->space_info->bytes_reserved -= head->num_bytes;
4423 spin_unlock(&cache->lock);
4424 spin_unlock(&cache->space_info->lock);
4425 percpu_counter_add_batch(
4426 &cache->space_info->total_bytes_pinned,
4427 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4428
4429 btrfs_put_block_group(cache);
4430
4431 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4432 head->bytenr + head->num_bytes - 1);
4433 }
31890da0 4434 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4435 btrfs_put_delayed_ref_head(head);
acce952b 4436 cond_resched();
4437 spin_lock(&delayed_refs->lock);
4438 }
81f7eb00 4439 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4440
4441 spin_unlock(&delayed_refs->lock);
4442
4443 return ret;
4444}
4445
143bede5 4446static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4447{
4448 struct btrfs_inode *btrfs_inode;
4449 struct list_head splice;
4450
4451 INIT_LIST_HEAD(&splice);
4452
eb73c1b7
MX
4453 spin_lock(&root->delalloc_lock);
4454 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4455
4456 while (!list_empty(&splice)) {
fe816d0f 4457 struct inode *inode = NULL;
eb73c1b7
MX
4458 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4459 delalloc_inodes);
fe816d0f 4460 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4461 spin_unlock(&root->delalloc_lock);
acce952b 4462
fe816d0f
NB
4463 /*
4464 * Make sure we get a live inode and that it'll not disappear
4465 * meanwhile.
4466 */
4467 inode = igrab(&btrfs_inode->vfs_inode);
4468 if (inode) {
4469 invalidate_inode_pages2(inode->i_mapping);
4470 iput(inode);
4471 }
eb73c1b7 4472 spin_lock(&root->delalloc_lock);
acce952b 4473 }
eb73c1b7
MX
4474 spin_unlock(&root->delalloc_lock);
4475}
4476
4477static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4478{
4479 struct btrfs_root *root;
4480 struct list_head splice;
4481
4482 INIT_LIST_HEAD(&splice);
4483
4484 spin_lock(&fs_info->delalloc_root_lock);
4485 list_splice_init(&fs_info->delalloc_roots, &splice);
4486 while (!list_empty(&splice)) {
4487 root = list_first_entry(&splice, struct btrfs_root,
4488 delalloc_root);
00246528 4489 root = btrfs_grab_root(root);
eb73c1b7
MX
4490 BUG_ON(!root);
4491 spin_unlock(&fs_info->delalloc_root_lock);
4492
4493 btrfs_destroy_delalloc_inodes(root);
00246528 4494 btrfs_put_root(root);
eb73c1b7
MX
4495
4496 spin_lock(&fs_info->delalloc_root_lock);
4497 }
4498 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4499}
4500
2ff7e61e 4501static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4502 struct extent_io_tree *dirty_pages,
4503 int mark)
4504{
4505 int ret;
acce952b 4506 struct extent_buffer *eb;
4507 u64 start = 0;
4508 u64 end;
acce952b 4509
4510 while (1) {
4511 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4512 mark, NULL);
acce952b 4513 if (ret)
4514 break;
4515
91166212 4516 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4517 while (start <= end) {
0b246afa
JM
4518 eb = find_extent_buffer(fs_info, start);
4519 start += fs_info->nodesize;
fd8b2b61 4520 if (!eb)
acce952b 4521 continue;
fd8b2b61 4522 wait_on_extent_buffer_writeback(eb);
acce952b 4523
fd8b2b61
JB
4524 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4525 &eb->bflags))
4526 clear_extent_buffer_dirty(eb);
4527 free_extent_buffer_stale(eb);
acce952b 4528 }
4529 }
4530
4531 return ret;
4532}
4533
2ff7e61e 4534static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4535 struct extent_io_tree *unpin)
acce952b 4536{
acce952b 4537 u64 start;
4538 u64 end;
4539 int ret;
4540
acce952b 4541 while (1) {
0e6ec385
FM
4542 struct extent_state *cached_state = NULL;
4543
fcd5e742
LF
4544 /*
4545 * The btrfs_finish_extent_commit() may get the same range as
4546 * ours between find_first_extent_bit and clear_extent_dirty.
4547 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4548 * the same extent range.
4549 */
4550 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4551 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4552 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4553 if (ret) {
4554 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4555 break;
fcd5e742 4556 }
acce952b 4557
0e6ec385
FM
4558 clear_extent_dirty(unpin, start, end, &cached_state);
4559 free_extent_state(cached_state);
2ff7e61e 4560 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4561 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4562 cond_resched();
4563 }
4564
4565 return 0;
4566}
4567
32da5386 4568static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4569{
4570 struct inode *inode;
4571
4572 inode = cache->io_ctl.inode;
4573 if (inode) {
4574 invalidate_inode_pages2(inode->i_mapping);
4575 BTRFS_I(inode)->generation = 0;
4576 cache->io_ctl.inode = NULL;
4577 iput(inode);
4578 }
bbc37d6e 4579 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4580 btrfs_put_block_group(cache);
4581}
4582
4583void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4584 struct btrfs_fs_info *fs_info)
c79a1751 4585{
32da5386 4586 struct btrfs_block_group *cache;
c79a1751
LB
4587
4588 spin_lock(&cur_trans->dirty_bgs_lock);
4589 while (!list_empty(&cur_trans->dirty_bgs)) {
4590 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4591 struct btrfs_block_group,
c79a1751 4592 dirty_list);
c79a1751
LB
4593
4594 if (!list_empty(&cache->io_list)) {
4595 spin_unlock(&cur_trans->dirty_bgs_lock);
4596 list_del_init(&cache->io_list);
4597 btrfs_cleanup_bg_io(cache);
4598 spin_lock(&cur_trans->dirty_bgs_lock);
4599 }
4600
4601 list_del_init(&cache->dirty_list);
4602 spin_lock(&cache->lock);
4603 cache->disk_cache_state = BTRFS_DC_ERROR;
4604 spin_unlock(&cache->lock);
4605
4606 spin_unlock(&cur_trans->dirty_bgs_lock);
4607 btrfs_put_block_group(cache);
ba2c4d4e 4608 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4609 spin_lock(&cur_trans->dirty_bgs_lock);
4610 }
4611 spin_unlock(&cur_trans->dirty_bgs_lock);
4612
45ae2c18
NB
4613 /*
4614 * Refer to the definition of io_bgs member for details why it's safe
4615 * to use it without any locking
4616 */
c79a1751
LB
4617 while (!list_empty(&cur_trans->io_bgs)) {
4618 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4619 struct btrfs_block_group,
c79a1751 4620 io_list);
c79a1751
LB
4621
4622 list_del_init(&cache->io_list);
4623 spin_lock(&cache->lock);
4624 cache->disk_cache_state = BTRFS_DC_ERROR;
4625 spin_unlock(&cache->lock);
4626 btrfs_cleanup_bg_io(cache);
4627 }
4628}
4629
49b25e05 4630void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4631 struct btrfs_fs_info *fs_info)
49b25e05 4632{
bbbf7243
NB
4633 struct btrfs_device *dev, *tmp;
4634
2ff7e61e 4635 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4636 ASSERT(list_empty(&cur_trans->dirty_bgs));
4637 ASSERT(list_empty(&cur_trans->io_bgs));
4638
bbbf7243
NB
4639 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4640 post_commit_list) {
4641 list_del_init(&dev->post_commit_list);
4642 }
4643
2ff7e61e 4644 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4645
4a9d8bde 4646 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4647 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4648
4a9d8bde 4649 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4650 wake_up(&fs_info->transaction_wait);
49b25e05 4651
ccdf9b30 4652 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4653
2ff7e61e 4654 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4655 EXTENT_DIRTY);
fe119a6e 4656 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4657
4a9d8bde
MX
4658 cur_trans->state =TRANS_STATE_COMPLETED;
4659 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4660}
4661
2ff7e61e 4662static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4663{
4664 struct btrfs_transaction *t;
acce952b 4665
0b246afa 4666 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4667
0b246afa
JM
4668 spin_lock(&fs_info->trans_lock);
4669 while (!list_empty(&fs_info->trans_list)) {
4670 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4671 struct btrfs_transaction, list);
4672 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4673 refcount_inc(&t->use_count);
0b246afa 4674 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4675 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4676 btrfs_put_transaction(t);
0b246afa 4677 spin_lock(&fs_info->trans_lock);
724e2315
JB
4678 continue;
4679 }
0b246afa 4680 if (t == fs_info->running_transaction) {
724e2315 4681 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4682 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4683 /*
4684 * We wait for 0 num_writers since we don't hold a trans
4685 * handle open currently for this transaction.
4686 */
4687 wait_event(t->writer_wait,
4688 atomic_read(&t->num_writers) == 0);
4689 } else {
0b246afa 4690 spin_unlock(&fs_info->trans_lock);
724e2315 4691 }
2ff7e61e 4692 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4693
0b246afa
JM
4694 spin_lock(&fs_info->trans_lock);
4695 if (t == fs_info->running_transaction)
4696 fs_info->running_transaction = NULL;
acce952b 4697 list_del_init(&t->list);
0b246afa 4698 spin_unlock(&fs_info->trans_lock);
acce952b 4699
724e2315 4700 btrfs_put_transaction(t);
2ff7e61e 4701 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4702 spin_lock(&fs_info->trans_lock);
724e2315 4703 }
0b246afa
JM
4704 spin_unlock(&fs_info->trans_lock);
4705 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4706 btrfs_destroy_delayed_inodes(fs_info);
4707 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4708 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4709 btrfs_drop_all_logs(fs_info);
0b246afa 4710 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4711
4712 return 0;
4713}