]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: factor out prepare_allocation() for extent allocation
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8
JT
255 * Compute the csum of a btree block and store the result to provided buffer.
256 *
257 * Returns error if the extent buffer cannot be mapped.
d352ac68 258 */
2996e1f8 259static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 260{
d5178578
JT
261 struct btrfs_fs_info *fs_info = buf->fs_info;
262 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
d5178578
JT
270
271 shash->tfm = fs_info->csum_shash;
272 crypto_shash_init(shash);
19c00ddc
CM
273
274 len = buf->len - offset;
d5178578 275
d397712b 276 while (len > 0) {
d2e174d5
JT
277 /*
278 * Note: we don't need to check for the err == 1 case here, as
279 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
280 * and 'min_len = 32' and the currently implemented mapping
281 * algorithm we cannot cross a page boundary.
282 */
19c00ddc 283 err = map_private_extent_buffer(buf, offset, 32,
a6591715 284 &kaddr, &map_start, &map_len);
c53839fc 285 if (WARN_ON(err))
8bd98f0e 286 return err;
19c00ddc 287 cur_len = min(len, map_len - (offset - map_start));
d5178578 288 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
289 len -= cur_len;
290 offset += cur_len;
19c00ddc 291 }
71a63551 292 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 293
d5178578 294 crypto_shash_final(shash, result);
19c00ddc 295
19c00ddc
CM
296 return 0;
297}
298
d352ac68
CM
299/*
300 * we can't consider a given block up to date unless the transid of the
301 * block matches the transid in the parent node's pointer. This is how we
302 * detect blocks that either didn't get written at all or got written
303 * in the wrong place.
304 */
1259ab75 305static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
306 struct extent_buffer *eb, u64 parent_transid,
307 int atomic)
1259ab75 308{
2ac55d41 309 struct extent_state *cached_state = NULL;
1259ab75 310 int ret;
2755a0de 311 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
312
313 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
314 return 0;
315
b9fab919
CM
316 if (atomic)
317 return -EAGAIN;
318
a26e8c9f
JB
319 if (need_lock) {
320 btrfs_tree_read_lock(eb);
300aa896 321 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
322 }
323
2ac55d41 324 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 325 &cached_state);
0b32f4bb 326 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
327 btrfs_header_generation(eb) == parent_transid) {
328 ret = 0;
329 goto out;
330 }
94647322
DS
331 btrfs_err_rl(eb->fs_info,
332 "parent transid verify failed on %llu wanted %llu found %llu",
333 eb->start,
29549aec 334 parent_transid, btrfs_header_generation(eb));
1259ab75 335 ret = 1;
a26e8c9f
JB
336
337 /*
338 * Things reading via commit roots that don't have normal protection,
339 * like send, can have a really old block in cache that may point at a
01327610 340 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
341 * if we find an eb that is under IO (dirty/writeback) because we could
342 * end up reading in the stale data and then writing it back out and
343 * making everybody very sad.
344 */
345 if (!extent_buffer_under_io(eb))
346 clear_extent_buffer_uptodate(eb);
33958dc6 347out:
2ac55d41 348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 349 &cached_state);
472b909f
JB
350 if (need_lock)
351 btrfs_tree_read_unlock_blocking(eb);
1259ab75 352 return ret;
1259ab75
CM
353}
354
e7e16f48
JT
355static bool btrfs_supported_super_csum(u16 csum_type)
356{
357 switch (csum_type) {
358 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 359 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 360 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 361 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
362 return true;
363 default:
364 return false;
365 }
366}
367
1104a885
DS
368/*
369 * Return 0 if the superblock checksum type matches the checksum value of that
370 * algorithm. Pass the raw disk superblock data.
371 */
ab8d0fc4
JM
372static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
373 char *raw_disk_sb)
1104a885
DS
374{
375 struct btrfs_super_block *disk_sb =
376 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 377 char result[BTRFS_CSUM_SIZE];
d5178578
JT
378 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
379
380 shash->tfm = fs_info->csum_shash;
381 crypto_shash_init(shash);
1104a885 382
51bce6c9
JT
383 /*
384 * The super_block structure does not span the whole
385 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
386 * filled with zeros and is included in the checksum.
387 */
d5178578
JT
388 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
389 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
390 crypto_shash_final(shash, result);
1104a885 391
51bce6c9
JT
392 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
393 return 1;
1104a885 394
e7e16f48 395 return 0;
1104a885
DS
396}
397
e064d5e9 398int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 399 struct btrfs_key *first_key, u64 parent_transid)
581c1760 400{
e064d5e9 401 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
402 int found_level;
403 struct btrfs_key found_key;
404 int ret;
405
406 found_level = btrfs_header_level(eb);
407 if (found_level != level) {
63489055
QW
408 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
409 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
410 btrfs_err(fs_info,
411"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
412 eb->start, level, found_level);
581c1760
QW
413 return -EIO;
414 }
415
416 if (!first_key)
417 return 0;
418
5d41be6f
QW
419 /*
420 * For live tree block (new tree blocks in current transaction),
421 * we need proper lock context to avoid race, which is impossible here.
422 * So we only checks tree blocks which is read from disk, whose
423 * generation <= fs_info->last_trans_committed.
424 */
425 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
426 return 0;
62fdaa52
QW
427
428 /* We have @first_key, so this @eb must have at least one item */
429 if (btrfs_header_nritems(eb) == 0) {
430 btrfs_err(fs_info,
431 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
432 eb->start);
433 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
434 return -EUCLEAN;
435 }
436
581c1760
QW
437 if (found_level)
438 btrfs_node_key_to_cpu(eb, &found_key, 0);
439 else
440 btrfs_item_key_to_cpu(eb, &found_key, 0);
441 ret = btrfs_comp_cpu_keys(first_key, &found_key);
442
581c1760 443 if (ret) {
63489055
QW
444 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
445 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 446 btrfs_err(fs_info,
ff76a864
LB
447"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
448 eb->start, parent_transid, first_key->objectid,
449 first_key->type, first_key->offset,
450 found_key.objectid, found_key.type,
451 found_key.offset);
581c1760 452 }
581c1760
QW
453 return ret;
454}
455
d352ac68
CM
456/*
457 * helper to read a given tree block, doing retries as required when
458 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
459 *
460 * @parent_transid: expected transid, skip check if 0
461 * @level: expected level, mandatory check
462 * @first_key: expected key of first slot, skip check if NULL
d352ac68 463 */
5ab12d1f 464static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
465 u64 parent_transid, int level,
466 struct btrfs_key *first_key)
f188591e 467{
5ab12d1f 468 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 469 struct extent_io_tree *io_tree;
ea466794 470 int failed = 0;
f188591e
CM
471 int ret;
472 int num_copies = 0;
473 int mirror_num = 0;
ea466794 474 int failed_mirror = 0;
f188591e 475
0b246afa 476 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 477 while (1) {
f8397d69 478 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 479 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 480 if (!ret) {
581c1760 481 if (verify_parent_transid(io_tree, eb,
b9fab919 482 parent_transid, 0))
256dd1bb 483 ret = -EIO;
e064d5e9 484 else if (btrfs_verify_level_key(eb, level,
448de471 485 first_key, parent_transid))
581c1760
QW
486 ret = -EUCLEAN;
487 else
488 break;
256dd1bb 489 }
d397712b 490
0b246afa 491 num_copies = btrfs_num_copies(fs_info,
f188591e 492 eb->start, eb->len);
4235298e 493 if (num_copies == 1)
ea466794 494 break;
4235298e 495
5cf1ab56
JB
496 if (!failed_mirror) {
497 failed = 1;
498 failed_mirror = eb->read_mirror;
499 }
500
f188591e 501 mirror_num++;
ea466794
JB
502 if (mirror_num == failed_mirror)
503 mirror_num++;
504
4235298e 505 if (mirror_num > num_copies)
ea466794 506 break;
f188591e 507 }
ea466794 508
c0901581 509 if (failed && !ret && failed_mirror)
20a1fbf9 510 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
511
512 return ret;
f188591e 513}
19c00ddc 514
d352ac68 515/*
d397712b
CM
516 * checksum a dirty tree block before IO. This has extra checks to make sure
517 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 518 */
d397712b 519
01d58472 520static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 521{
4eee4fa4 522 u64 start = page_offset(page);
19c00ddc 523 u64 found_start;
2996e1f8
JT
524 u8 result[BTRFS_CSUM_SIZE];
525 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 526 struct extent_buffer *eb;
8d47a0d8 527 int ret;
f188591e 528
4f2de97a
JB
529 eb = (struct extent_buffer *)page->private;
530 if (page != eb->pages[0])
531 return 0;
0f805531 532
19c00ddc 533 found_start = btrfs_header_bytenr(eb);
0f805531
AL
534 /*
535 * Please do not consolidate these warnings into a single if.
536 * It is useful to know what went wrong.
537 */
538 if (WARN_ON(found_start != start))
539 return -EUCLEAN;
540 if (WARN_ON(!PageUptodate(page)))
541 return -EUCLEAN;
542
de37aa51 543 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
544 offsetof(struct btrfs_header, fsid),
545 BTRFS_FSID_SIZE) == 0);
0f805531 546
2996e1f8
JT
547 if (csum_tree_block(eb, result))
548 return -EINVAL;
549
8d47a0d8
QW
550 if (btrfs_header_level(eb))
551 ret = btrfs_check_node(eb);
552 else
553 ret = btrfs_check_leaf_full(eb);
554
555 if (ret < 0) {
c06631b0 556 btrfs_print_tree(eb, 0);
8d47a0d8
QW
557 btrfs_err(fs_info,
558 "block=%llu write time tree block corruption detected",
559 eb->start);
c06631b0 560 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
561 return ret;
562 }
2996e1f8 563 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 564
2996e1f8 565 return 0;
19c00ddc
CM
566}
567
b0c9b3b0 568static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 569{
b0c9b3b0 570 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 571 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 572 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
573 int ret = 1;
574
9a8658e3
DS
575 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
576 BTRFS_FSID_SIZE);
2b82032c 577 while (fs_devices) {
7239ff4b
NB
578 u8 *metadata_uuid;
579
580 /*
581 * Checking the incompat flag is only valid for the current
582 * fs. For seed devices it's forbidden to have their uuid
583 * changed so reading ->fsid in this case is fine
584 */
585 if (fs_devices == fs_info->fs_devices &&
586 btrfs_fs_incompat(fs_info, METADATA_UUID))
587 metadata_uuid = fs_devices->metadata_uuid;
588 else
589 metadata_uuid = fs_devices->fsid;
590
591 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
592 ret = 0;
593 break;
594 }
595 fs_devices = fs_devices->seed;
596 }
597 return ret;
598}
599
facc8a22
MX
600static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
601 u64 phy_offset, struct page *page,
602 u64 start, u64 end, int mirror)
ce9adaa5 603{
ce9adaa5
CM
604 u64 found_start;
605 int found_level;
ce9adaa5 606 struct extent_buffer *eb;
15b6e8a8
DS
607 struct btrfs_fs_info *fs_info;
608 u16 csum_size;
f188591e 609 int ret = 0;
2996e1f8 610 u8 result[BTRFS_CSUM_SIZE];
727011e0 611 int reads_done;
ce9adaa5 612
ce9adaa5
CM
613 if (!page->private)
614 goto out;
d397712b 615
4f2de97a 616 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
617 fs_info = eb->fs_info;
618 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 619
0b32f4bb
JB
620 /* the pending IO might have been the only thing that kept this buffer
621 * in memory. Make sure we have a ref for all this other checks
622 */
67439dad 623 atomic_inc(&eb->refs);
0b32f4bb
JB
624
625 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
626 if (!reads_done)
627 goto err;
f188591e 628
5cf1ab56 629 eb->read_mirror = mirror;
656f30db 630 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
631 ret = -EIO;
632 goto err;
633 }
634
ce9adaa5 635 found_start = btrfs_header_bytenr(eb);
727011e0 636 if (found_start != eb->start) {
893bf4b1
SY
637 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
638 eb->start, found_start);
f188591e 639 ret = -EIO;
ce9adaa5
CM
640 goto err;
641 }
b0c9b3b0 642 if (check_tree_block_fsid(eb)) {
02873e43
ZL
643 btrfs_err_rl(fs_info, "bad fsid on block %llu",
644 eb->start);
1259ab75
CM
645 ret = -EIO;
646 goto err;
647 }
ce9adaa5 648 found_level = btrfs_header_level(eb);
1c24c3ce 649 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
650 btrfs_err(fs_info, "bad tree block level %d on %llu",
651 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
652 ret = -EIO;
653 goto err;
654 }
ce9adaa5 655
85d4e461
CM
656 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
657 eb, found_level);
4008c04a 658
2996e1f8 659 ret = csum_tree_block(eb, result);
8bd98f0e 660 if (ret)
a826d6dc 661 goto err;
a826d6dc 662
2996e1f8
JT
663 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
664 u32 val;
665 u32 found = 0;
666
667 memcpy(&found, result, csum_size);
668
669 read_extent_buffer(eb, &val, 0, csum_size);
670 btrfs_warn_rl(fs_info,
671 "%s checksum verify failed on %llu wanted %x found %x level %d",
672 fs_info->sb->s_id, eb->start,
673 val, found, btrfs_header_level(eb));
674 ret = -EUCLEAN;
675 goto err;
676 }
677
a826d6dc
JB
678 /*
679 * If this is a leaf block and it is corrupt, set the corrupt bit so
680 * that we don't try and read the other copies of this block, just
681 * return -EIO.
682 */
1c4360ee 683 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
684 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
685 ret = -EIO;
686 }
ce9adaa5 687
813fd1dc 688 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
689 ret = -EIO;
690
0b32f4bb
JB
691 if (!ret)
692 set_extent_buffer_uptodate(eb);
75391f0d
QW
693 else
694 btrfs_err(fs_info,
695 "block=%llu read time tree block corruption detected",
696 eb->start);
ce9adaa5 697err:
79fb65a1
JB
698 if (reads_done &&
699 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 700 btree_readahead_hook(eb, ret);
4bb31e92 701
53b381b3
DW
702 if (ret) {
703 /*
704 * our io error hook is going to dec the io pages
705 * again, we have to make sure it has something
706 * to decrement
707 */
708 atomic_inc(&eb->io_pages);
0b32f4bb 709 clear_extent_buffer_uptodate(eb);
53b381b3 710 }
0b32f4bb 711 free_extent_buffer(eb);
ce9adaa5 712out:
f188591e 713 return ret;
ce9adaa5
CM
714}
715
4246a0b6 716static void end_workqueue_bio(struct bio *bio)
ce9adaa5 717{
97eb6b69 718 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 719 struct btrfs_fs_info *fs_info;
9e0af237 720 struct btrfs_workqueue *wq;
ce9adaa5 721
ce9adaa5 722 fs_info = end_io_wq->info;
4e4cbee9 723 end_io_wq->status = bio->bi_status;
d20f7043 724
37226b21 725 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 726 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 727 wq = fs_info->endio_meta_write_workers;
a0cac0ec 728 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 729 wq = fs_info->endio_freespace_worker;
a0cac0ec 730 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 731 wq = fs_info->endio_raid56_workers;
a0cac0ec 732 else
9e0af237 733 wq = fs_info->endio_write_workers;
d20f7043 734 } else {
a0cac0ec 735 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 736 wq = fs_info->endio_repair_workers;
a0cac0ec 737 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 738 wq = fs_info->endio_raid56_workers;
a0cac0ec 739 else if (end_io_wq->metadata)
9e0af237 740 wq = fs_info->endio_meta_workers;
a0cac0ec 741 else
9e0af237 742 wq = fs_info->endio_workers;
d20f7043 743 }
9e0af237 744
a0cac0ec 745 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 746 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
747}
748
4e4cbee9 749blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 750 enum btrfs_wq_endio_type metadata)
0b86a832 751{
97eb6b69 752 struct btrfs_end_io_wq *end_io_wq;
8b110e39 753
97eb6b69 754 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 755 if (!end_io_wq)
4e4cbee9 756 return BLK_STS_RESOURCE;
ce9adaa5
CM
757
758 end_io_wq->private = bio->bi_private;
759 end_io_wq->end_io = bio->bi_end_io;
22c59948 760 end_io_wq->info = info;
4e4cbee9 761 end_io_wq->status = 0;
ce9adaa5 762 end_io_wq->bio = bio;
22c59948 763 end_io_wq->metadata = metadata;
ce9adaa5
CM
764
765 bio->bi_private = end_io_wq;
766 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
767 return 0;
768}
769
4a69a410
CM
770static void run_one_async_start(struct btrfs_work *work)
771{
4a69a410 772 struct async_submit_bio *async;
4e4cbee9 773 blk_status_t ret;
4a69a410
CM
774
775 async = container_of(work, struct async_submit_bio, work);
c6100a4b 776 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
777 async->bio_offset);
778 if (ret)
4e4cbee9 779 async->status = ret;
4a69a410
CM
780}
781
06ea01b1
DS
782/*
783 * In order to insert checksums into the metadata in large chunks, we wait
784 * until bio submission time. All the pages in the bio are checksummed and
785 * sums are attached onto the ordered extent record.
786 *
787 * At IO completion time the csums attached on the ordered extent record are
788 * inserted into the tree.
789 */
4a69a410 790static void run_one_async_done(struct btrfs_work *work)
8b712842 791{
8b712842 792 struct async_submit_bio *async;
06ea01b1
DS
793 struct inode *inode;
794 blk_status_t ret;
8b712842
CM
795
796 async = container_of(work, struct async_submit_bio, work);
06ea01b1 797 inode = async->private_data;
4854ddd0 798
bb7ab3b9 799 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
800 if (async->status) {
801 async->bio->bi_status = async->status;
4246a0b6 802 bio_endio(async->bio);
79787eaa
JM
803 return;
804 }
805
ec39f769
CM
806 /*
807 * All of the bios that pass through here are from async helpers.
808 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
809 * This changes nothing when cgroups aren't in use.
810 */
811 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 812 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
813 if (ret) {
814 async->bio->bi_status = ret;
815 bio_endio(async->bio);
816 }
4a69a410
CM
817}
818
819static void run_one_async_free(struct btrfs_work *work)
820{
821 struct async_submit_bio *async;
822
823 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
824 kfree(async);
825}
826
8c27cb35
LT
827blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
828 int mirror_num, unsigned long bio_flags,
829 u64 bio_offset, void *private_data,
e288c080 830 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
831{
832 struct async_submit_bio *async;
833
834 async = kmalloc(sizeof(*async), GFP_NOFS);
835 if (!async)
4e4cbee9 836 return BLK_STS_RESOURCE;
44b8bd7e 837
c6100a4b 838 async->private_data = private_data;
44b8bd7e
CM
839 async->bio = bio;
840 async->mirror_num = mirror_num;
4a69a410 841 async->submit_bio_start = submit_bio_start;
4a69a410 842
a0cac0ec
OS
843 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
844 run_one_async_free);
4a69a410 845
eaf25d93 846 async->bio_offset = bio_offset;
8c8bee1d 847
4e4cbee9 848 async->status = 0;
79787eaa 849
67f055c7 850 if (op_is_sync(bio->bi_opf))
5cdc7ad3 851 btrfs_set_work_high_priority(&async->work);
d313d7a3 852
5cdc7ad3 853 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
854 return 0;
855}
856
4e4cbee9 857static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 858{
2c30c71b 859 struct bio_vec *bvec;
ce3ed71a 860 struct btrfs_root *root;
2b070cfe 861 int ret = 0;
6dc4f100 862 struct bvec_iter_all iter_all;
ce3ed71a 863
c09abff8 864 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 865 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 866 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 867 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
868 if (ret)
869 break;
ce3ed71a 870 }
2c30c71b 871
4e4cbee9 872 return errno_to_blk_status(ret);
ce3ed71a
CM
873}
874
d0ee3934 875static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 876 u64 bio_offset)
22c59948 877{
8b712842
CM
878 /*
879 * when we're called for a write, we're already in the async
5443be45 880 * submission context. Just jump into btrfs_map_bio
8b712842 881 */
79787eaa 882 return btree_csum_one_bio(bio);
4a69a410 883}
22c59948 884
9b4e675a
DS
885static int check_async_write(struct btrfs_fs_info *fs_info,
886 struct btrfs_inode *bi)
de0022b9 887{
6300463b
LB
888 if (atomic_read(&bi->sync_writers))
889 return 0;
9b4e675a 890 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 891 return 0;
de0022b9
JB
892 return 1;
893}
894
a56b1c7b 895static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
896 int mirror_num,
897 unsigned long bio_flags)
44b8bd7e 898{
0b246afa 899 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 900 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 901 blk_status_t ret;
cad321ad 902
37226b21 903 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
904 /*
905 * called for a read, do the setup so that checksum validation
906 * can happen in the async kernel threads
907 */
0b246afa
JM
908 ret = btrfs_bio_wq_end_io(fs_info, bio,
909 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 910 if (ret)
61891923 911 goto out_w_error;
08635bae 912 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
913 } else if (!async) {
914 ret = btree_csum_one_bio(bio);
915 if (ret)
61891923 916 goto out_w_error;
08635bae 917 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
918 } else {
919 /*
920 * kthread helpers are used to submit writes so that
921 * checksumming can happen in parallel across all CPUs
922 */
c6100a4b 923 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 924 0, inode, btree_submit_bio_start);
44b8bd7e 925 }
d313d7a3 926
4246a0b6
CH
927 if (ret)
928 goto out_w_error;
929 return 0;
930
61891923 931out_w_error:
4e4cbee9 932 bio->bi_status = ret;
4246a0b6 933 bio_endio(bio);
61891923 934 return ret;
44b8bd7e
CM
935}
936
3dd1462e 937#ifdef CONFIG_MIGRATION
784b4e29 938static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
939 struct page *newpage, struct page *page,
940 enum migrate_mode mode)
784b4e29
CM
941{
942 /*
943 * we can't safely write a btree page from here,
944 * we haven't done the locking hook
945 */
946 if (PageDirty(page))
947 return -EAGAIN;
948 /*
949 * Buffers may be managed in a filesystem specific way.
950 * We must have no buffers or drop them.
951 */
952 if (page_has_private(page) &&
953 !try_to_release_page(page, GFP_KERNEL))
954 return -EAGAIN;
a6bc32b8 955 return migrate_page(mapping, newpage, page, mode);
784b4e29 956}
3dd1462e 957#endif
784b4e29 958
0da5468f
CM
959
960static int btree_writepages(struct address_space *mapping,
961 struct writeback_control *wbc)
962{
e2d84521
MX
963 struct btrfs_fs_info *fs_info;
964 int ret;
965
d8d5f3e1 966 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
967
968 if (wbc->for_kupdate)
969 return 0;
970
e2d84521 971 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 972 /* this is a bit racy, but that's ok */
d814a491
EL
973 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
974 BTRFS_DIRTY_METADATA_THRESH,
975 fs_info->dirty_metadata_batch);
e2d84521 976 if (ret < 0)
793955bc 977 return 0;
793955bc 978 }
0b32f4bb 979 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
980}
981
b2950863 982static int btree_readpage(struct file *file, struct page *page)
5f39d397 983{
71ad38b4 984 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 985}
22b0ebda 986
70dec807 987static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 988{
98509cfc 989 if (PageWriteback(page) || PageDirty(page))
d397712b 990 return 0;
0c4e538b 991
f7a52a40 992 return try_release_extent_buffer(page);
d98237b3
CM
993}
994
d47992f8
LC
995static void btree_invalidatepage(struct page *page, unsigned int offset,
996 unsigned int length)
d98237b3 997{
d1310b2e
CM
998 struct extent_io_tree *tree;
999 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1000 extent_invalidatepage(tree, page, offset);
1001 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1002 if (PagePrivate(page)) {
efe120a0
FH
1003 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1004 "page private not zero on page %llu",
1005 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1006 ClearPagePrivate(page);
1007 set_page_private(page, 0);
09cbfeaf 1008 put_page(page);
9ad6b7bc 1009 }
d98237b3
CM
1010}
1011
0b32f4bb
JB
1012static int btree_set_page_dirty(struct page *page)
1013{
bb146eb2 1014#ifdef DEBUG
0b32f4bb
JB
1015 struct extent_buffer *eb;
1016
1017 BUG_ON(!PagePrivate(page));
1018 eb = (struct extent_buffer *)page->private;
1019 BUG_ON(!eb);
1020 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1021 BUG_ON(!atomic_read(&eb->refs));
1022 btrfs_assert_tree_locked(eb);
bb146eb2 1023#endif
0b32f4bb
JB
1024 return __set_page_dirty_nobuffers(page);
1025}
1026
7f09410b 1027static const struct address_space_operations btree_aops = {
d98237b3 1028 .readpage = btree_readpage,
0da5468f 1029 .writepages = btree_writepages,
5f39d397
CM
1030 .releasepage = btree_releasepage,
1031 .invalidatepage = btree_invalidatepage,
5a92bc88 1032#ifdef CONFIG_MIGRATION
784b4e29 1033 .migratepage = btree_migratepage,
5a92bc88 1034#endif
0b32f4bb 1035 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1036};
1037
2ff7e61e 1038void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1039{
5f39d397 1040 struct extent_buffer *buf = NULL;
537f38f0 1041 int ret;
090d1875 1042
2ff7e61e 1043 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1044 if (IS_ERR(buf))
6197d86e 1045 return;
537f38f0 1046
c2ccfbc6 1047 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1048 if (ret < 0)
1049 free_extent_buffer_stale(buf);
1050 else
1051 free_extent_buffer(buf);
090d1875
CM
1052}
1053
2ff7e61e
JM
1054struct extent_buffer *btrfs_find_create_tree_block(
1055 struct btrfs_fs_info *fs_info,
1056 u64 bytenr)
0999df54 1057{
0b246afa
JM
1058 if (btrfs_is_testing(fs_info))
1059 return alloc_test_extent_buffer(fs_info, bytenr);
1060 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1061}
1062
581c1760
QW
1063/*
1064 * Read tree block at logical address @bytenr and do variant basic but critical
1065 * verification.
1066 *
1067 * @parent_transid: expected transid of this tree block, skip check if 0
1068 * @level: expected level, mandatory check
1069 * @first_key: expected key in slot 0, skip check if NULL
1070 */
2ff7e61e 1071struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1072 u64 parent_transid, int level,
1073 struct btrfs_key *first_key)
0999df54
CM
1074{
1075 struct extent_buffer *buf = NULL;
0999df54
CM
1076 int ret;
1077
2ff7e61e 1078 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1079 if (IS_ERR(buf))
1080 return buf;
0999df54 1081
5ab12d1f 1082 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1083 level, first_key);
0f0fe8f7 1084 if (ret) {
537f38f0 1085 free_extent_buffer_stale(buf);
64c043de 1086 return ERR_PTR(ret);
0f0fe8f7 1087 }
5f39d397 1088 return buf;
ce9adaa5 1089
eb60ceac
CM
1090}
1091
6a884d7d 1092void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1093{
6a884d7d 1094 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1095 if (btrfs_header_generation(buf) ==
e2d84521 1096 fs_info->running_transaction->transid) {
b9447ef8 1097 btrfs_assert_tree_locked(buf);
b4ce94de 1098
b9473439 1099 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1100 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1101 -buf->len,
1102 fs_info->dirty_metadata_batch);
ed7b63eb 1103 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1104 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1105 clear_extent_buffer_dirty(buf);
1106 }
925baedd 1107 }
5f39d397
CM
1108}
1109
da17066c 1110static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1111 u64 objectid)
d97e63b6 1112{
7c0260ee 1113 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1114 root->fs_info = fs_info;
cfaa7295 1115 root->node = NULL;
a28ec197 1116 root->commit_root = NULL;
27cdeb70 1117 root->state = 0;
d68fc57b 1118 root->orphan_cleanup_state = 0;
0b86a832 1119
0f7d52f4 1120 root->last_trans = 0;
13a8a7c8 1121 root->highest_objectid = 0;
eb73c1b7 1122 root->nr_delalloc_inodes = 0;
199c2a9c 1123 root->nr_ordered_extents = 0;
6bef4d31 1124 root->inode_tree = RB_ROOT;
16cdcec7 1125 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1126 root->block_rsv = NULL;
0b86a832
CM
1127
1128 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1129 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1130 INIT_LIST_HEAD(&root->delalloc_inodes);
1131 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1132 INIT_LIST_HEAD(&root->ordered_extents);
1133 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1134 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1135 INIT_LIST_HEAD(&root->logged_list[0]);
1136 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1137 spin_lock_init(&root->inode_lock);
eb73c1b7 1138 spin_lock_init(&root->delalloc_lock);
199c2a9c 1139 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1140 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1141 spin_lock_init(&root->log_extents_lock[0]);
1142 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1143 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1144 mutex_init(&root->objectid_mutex);
e02119d5 1145 mutex_init(&root->log_mutex);
31f3d255 1146 mutex_init(&root->ordered_extent_mutex);
573bfb72 1147 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1148 init_waitqueue_head(&root->log_writer_wait);
1149 init_waitqueue_head(&root->log_commit_wait[0]);
1150 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1151 INIT_LIST_HEAD(&root->log_ctxs[0]);
1152 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1153 atomic_set(&root->log_commit[0], 0);
1154 atomic_set(&root->log_commit[1], 0);
1155 atomic_set(&root->log_writers, 0);
2ecb7923 1156 atomic_set(&root->log_batch, 0);
0700cea7 1157 refcount_set(&root->refs, 1);
8ecebf4d 1158 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1159 atomic_set(&root->nr_swapfiles, 0);
7237f183 1160 root->log_transid = 0;
d1433deb 1161 root->log_transid_committed = -1;
257c62e1 1162 root->last_log_commit = 0;
7c0260ee 1163 if (!dummy)
43eb5f29
QW
1164 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1165 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1166
3768f368
CM
1167 memset(&root->root_key, 0, sizeof(root->root_key));
1168 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1169 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1170 if (!dummy)
06ea65a3
JB
1171 root->defrag_trans_start = fs_info->generation;
1172 else
1173 root->defrag_trans_start = 0;
4d775673 1174 root->root_key.objectid = objectid;
0ee5dc67 1175 root->anon_dev = 0;
8ea05e3a 1176
5f3ab90a 1177 spin_lock_init(&root->root_item_lock);
370a11b8 1178 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1179#ifdef CONFIG_BTRFS_DEBUG
1180 INIT_LIST_HEAD(&root->leak_list);
1181 spin_lock(&fs_info->fs_roots_radix_lock);
1182 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1183 spin_unlock(&fs_info->fs_roots_radix_lock);
1184#endif
3768f368
CM
1185}
1186
74e4d827 1187static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1188 u64 objectid, gfp_t flags)
6f07e42e 1189{
74e4d827 1190 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1191 if (root)
96dfcb46 1192 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1193 return root;
1194}
1195
06ea65a3
JB
1196#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1197/* Should only be used by the testing infrastructure */
da17066c 1198struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1199{
1200 struct btrfs_root *root;
1201
7c0260ee
JM
1202 if (!fs_info)
1203 return ERR_PTR(-EINVAL);
1204
96dfcb46 1205 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1206 if (!root)
1207 return ERR_PTR(-ENOMEM);
da17066c 1208
b9ef22de 1209 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1210 root->alloc_bytenr = 0;
06ea65a3
JB
1211
1212 return root;
1213}
1214#endif
1215
20897f5c 1216struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1217 u64 objectid)
1218{
9b7a2440 1219 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1220 struct extent_buffer *leaf;
1221 struct btrfs_root *tree_root = fs_info->tree_root;
1222 struct btrfs_root *root;
1223 struct btrfs_key key;
b89f6d1f 1224 unsigned int nofs_flag;
20897f5c 1225 int ret = 0;
20897f5c 1226
b89f6d1f
FM
1227 /*
1228 * We're holding a transaction handle, so use a NOFS memory allocation
1229 * context to avoid deadlock if reclaim happens.
1230 */
1231 nofs_flag = memalloc_nofs_save();
96dfcb46 1232 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1233 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1234 if (!root)
1235 return ERR_PTR(-ENOMEM);
1236
20897f5c
AJ
1237 root->root_key.objectid = objectid;
1238 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1239 root->root_key.offset = 0;
1240
4d75f8a9 1241 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1242 if (IS_ERR(leaf)) {
1243 ret = PTR_ERR(leaf);
1dd05682 1244 leaf = NULL;
20897f5c
AJ
1245 goto fail;
1246 }
1247
20897f5c 1248 root->node = leaf;
20897f5c
AJ
1249 btrfs_mark_buffer_dirty(leaf);
1250
1251 root->commit_root = btrfs_root_node(root);
27cdeb70 1252 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1253
1254 root->root_item.flags = 0;
1255 root->root_item.byte_limit = 0;
1256 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1257 btrfs_set_root_generation(&root->root_item, trans->transid);
1258 btrfs_set_root_level(&root->root_item, 0);
1259 btrfs_set_root_refs(&root->root_item, 1);
1260 btrfs_set_root_used(&root->root_item, leaf->len);
1261 btrfs_set_root_last_snapshot(&root->root_item, 0);
1262 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1263 if (is_fstree(objectid))
807fc790
AS
1264 generate_random_guid(root->root_item.uuid);
1265 else
1266 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1267 root->root_item.drop_level = 0;
1268
1269 key.objectid = objectid;
1270 key.type = BTRFS_ROOT_ITEM_KEY;
1271 key.offset = 0;
1272 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1273 if (ret)
1274 goto fail;
1275
1276 btrfs_tree_unlock(leaf);
1277
1dd05682
TI
1278 return root;
1279
20897f5c 1280fail:
1dd05682
TI
1281 if (leaf) {
1282 btrfs_tree_unlock(leaf);
59885b39 1283 free_extent_buffer(root->commit_root);
1dd05682
TI
1284 free_extent_buffer(leaf);
1285 }
00246528 1286 btrfs_put_root(root);
20897f5c 1287
1dd05682 1288 return ERR_PTR(ret);
20897f5c
AJ
1289}
1290
7237f183
YZ
1291static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1292 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1293{
1294 struct btrfs_root *root;
7237f183 1295 struct extent_buffer *leaf;
e02119d5 1296
96dfcb46 1297 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1298 if (!root)
7237f183 1299 return ERR_PTR(-ENOMEM);
e02119d5 1300
e02119d5
CM
1301 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1302 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1303 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1304
7237f183 1305 /*
27cdeb70
MX
1306 * DON'T set REF_COWS for log trees
1307 *
7237f183
YZ
1308 * log trees do not get reference counted because they go away
1309 * before a real commit is actually done. They do store pointers
1310 * to file data extents, and those reference counts still get
1311 * updated (along with back refs to the log tree).
1312 */
e02119d5 1313
4d75f8a9
DS
1314 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1315 NULL, 0, 0, 0);
7237f183 1316 if (IS_ERR(leaf)) {
00246528 1317 btrfs_put_root(root);
7237f183
YZ
1318 return ERR_CAST(leaf);
1319 }
e02119d5 1320
7237f183 1321 root->node = leaf;
e02119d5 1322
e02119d5
CM
1323 btrfs_mark_buffer_dirty(root->node);
1324 btrfs_tree_unlock(root->node);
7237f183
YZ
1325 return root;
1326}
1327
1328int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1329 struct btrfs_fs_info *fs_info)
1330{
1331 struct btrfs_root *log_root;
1332
1333 log_root = alloc_log_tree(trans, fs_info);
1334 if (IS_ERR(log_root))
1335 return PTR_ERR(log_root);
1336 WARN_ON(fs_info->log_root_tree);
1337 fs_info->log_root_tree = log_root;
1338 return 0;
1339}
1340
1341int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1342 struct btrfs_root *root)
1343{
0b246afa 1344 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1345 struct btrfs_root *log_root;
1346 struct btrfs_inode_item *inode_item;
1347
0b246afa 1348 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1349 if (IS_ERR(log_root))
1350 return PTR_ERR(log_root);
1351
1352 log_root->last_trans = trans->transid;
1353 log_root->root_key.offset = root->root_key.objectid;
1354
1355 inode_item = &log_root->root_item.inode;
3cae210f
QW
1356 btrfs_set_stack_inode_generation(inode_item, 1);
1357 btrfs_set_stack_inode_size(inode_item, 3);
1358 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1359 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1360 fs_info->nodesize);
3cae210f 1361 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1362
5d4f98a2 1363 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1364
1365 WARN_ON(root->log_root);
1366 root->log_root = log_root;
1367 root->log_transid = 0;
d1433deb 1368 root->log_transid_committed = -1;
257c62e1 1369 root->last_log_commit = 0;
e02119d5
CM
1370 return 0;
1371}
1372
62a2c73e
JB
1373struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1374 struct btrfs_key *key)
e02119d5
CM
1375{
1376 struct btrfs_root *root;
1377 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1378 struct btrfs_path *path;
84234f3a 1379 u64 generation;
cb517eab 1380 int ret;
581c1760 1381 int level;
0f7d52f4 1382
cb517eab
MX
1383 path = btrfs_alloc_path();
1384 if (!path)
0f7d52f4 1385 return ERR_PTR(-ENOMEM);
cb517eab 1386
96dfcb46 1387 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1388 if (!root) {
1389 ret = -ENOMEM;
1390 goto alloc_fail;
0f7d52f4
CM
1391 }
1392
cb517eab
MX
1393 ret = btrfs_find_root(tree_root, key, path,
1394 &root->root_item, &root->root_key);
0f7d52f4 1395 if (ret) {
13a8a7c8
YZ
1396 if (ret > 0)
1397 ret = -ENOENT;
cb517eab 1398 goto find_fail;
0f7d52f4 1399 }
13a8a7c8 1400
84234f3a 1401 generation = btrfs_root_generation(&root->root_item);
581c1760 1402 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1403 root->node = read_tree_block(fs_info,
1404 btrfs_root_bytenr(&root->root_item),
581c1760 1405 generation, level, NULL);
64c043de
LB
1406 if (IS_ERR(root->node)) {
1407 ret = PTR_ERR(root->node);
cb517eab
MX
1408 goto find_fail;
1409 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1410 ret = -EIO;
64c043de
LB
1411 free_extent_buffer(root->node);
1412 goto find_fail;
416bc658 1413 }
5d4f98a2 1414 root->commit_root = btrfs_root_node(root);
13a8a7c8 1415out:
cb517eab
MX
1416 btrfs_free_path(path);
1417 return root;
1418
cb517eab 1419find_fail:
00246528 1420 btrfs_put_root(root);
cb517eab
MX
1421alloc_fail:
1422 root = ERR_PTR(ret);
1423 goto out;
1424}
1425
a98db0f3 1426static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1427{
1428 int ret;
dcc3eb96 1429 unsigned int nofs_flag;
cb517eab
MX
1430
1431 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1432 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1433 GFP_NOFS);
1434 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1435 ret = -ENOMEM;
1436 goto fail;
1437 }
1438
dcc3eb96
NB
1439 /*
1440 * We might be called under a transaction (e.g. indirect backref
1441 * resolution) which could deadlock if it triggers memory reclaim
1442 */
1443 nofs_flag = memalloc_nofs_save();
1444 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1445 memalloc_nofs_restore(nofs_flag);
1446 if (ret)
8257b2dc 1447 goto fail;
8257b2dc 1448
f39e4571
JB
1449 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1450 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1451 btrfs_check_and_init_root_item(&root->root_item);
1452 }
1453
cb517eab 1454 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1455 spin_lock_init(&root->ino_cache_lock);
1456 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1457
1458 ret = get_anon_bdev(&root->anon_dev);
1459 if (ret)
876d2cf1 1460 goto fail;
f32e48e9
CR
1461
1462 mutex_lock(&root->objectid_mutex);
1463 ret = btrfs_find_highest_objectid(root,
1464 &root->highest_objectid);
1465 if (ret) {
1466 mutex_unlock(&root->objectid_mutex);
876d2cf1 1467 goto fail;
f32e48e9
CR
1468 }
1469
1470 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1471
1472 mutex_unlock(&root->objectid_mutex);
1473
cb517eab
MX
1474 return 0;
1475fail:
84db5ccf 1476 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1477 return ret;
1478}
1479
a98db0f3
JB
1480static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1481 u64 root_id)
cb517eab
MX
1482{
1483 struct btrfs_root *root;
1484
1485 spin_lock(&fs_info->fs_roots_radix_lock);
1486 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1487 (unsigned long)root_id);
bc44d7c4 1488 if (root)
00246528 1489 root = btrfs_grab_root(root);
cb517eab
MX
1490 spin_unlock(&fs_info->fs_roots_radix_lock);
1491 return root;
1492}
1493
1494int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1495 struct btrfs_root *root)
1496{
1497 int ret;
1498
e1860a77 1499 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1500 if (ret)
1501 return ret;
1502
1503 spin_lock(&fs_info->fs_roots_radix_lock);
1504 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1505 (unsigned long)root->root_key.objectid,
1506 root);
af01d2e5 1507 if (ret == 0) {
00246528 1508 btrfs_grab_root(root);
27cdeb70 1509 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1510 }
cb517eab
MX
1511 spin_unlock(&fs_info->fs_roots_radix_lock);
1512 radix_tree_preload_end();
1513
1514 return ret;
1515}
1516
bd647ce3
JB
1517void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1518{
1519#ifdef CONFIG_BTRFS_DEBUG
1520 struct btrfs_root *root;
1521
1522 while (!list_empty(&fs_info->allocated_roots)) {
1523 root = list_first_entry(&fs_info->allocated_roots,
1524 struct btrfs_root, leak_list);
1525 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1526 root->root_key.objectid, root->root_key.offset,
1527 refcount_read(&root->refs));
1528 while (refcount_read(&root->refs) > 1)
00246528
JB
1529 btrfs_put_root(root);
1530 btrfs_put_root(root);
bd647ce3
JB
1531 }
1532#endif
1533}
1534
0d4b0463
JB
1535void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1536{
141386e1
JB
1537 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1538 percpu_counter_destroy(&fs_info->delalloc_bytes);
1539 percpu_counter_destroy(&fs_info->dio_bytes);
1540 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1541 btrfs_free_csum_hash(fs_info);
1542 btrfs_free_stripe_hash_table(fs_info);
1543 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1544 kfree(fs_info->balance_ctl);
1545 kfree(fs_info->delayed_root);
00246528
JB
1546 btrfs_put_root(fs_info->extent_root);
1547 btrfs_put_root(fs_info->tree_root);
1548 btrfs_put_root(fs_info->chunk_root);
1549 btrfs_put_root(fs_info->dev_root);
1550 btrfs_put_root(fs_info->csum_root);
1551 btrfs_put_root(fs_info->quota_root);
1552 btrfs_put_root(fs_info->uuid_root);
1553 btrfs_put_root(fs_info->free_space_root);
1554 btrfs_put_root(fs_info->fs_root);
bd647ce3 1555 btrfs_check_leaked_roots(fs_info);
0d4b0463
JB
1556 kfree(fs_info->super_copy);
1557 kfree(fs_info->super_for_commit);
1558 kvfree(fs_info);
1559}
1560
1561
c00869f1
MX
1562struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1563 struct btrfs_key *location,
1564 bool check_ref)
5eda7b5e
CM
1565{
1566 struct btrfs_root *root;
381cf658 1567 struct btrfs_path *path;
1d4c08e0 1568 struct btrfs_key key;
5eda7b5e
CM
1569 int ret;
1570
edbd8d4e 1571 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1572 return btrfs_grab_root(fs_info->tree_root);
edbd8d4e 1573 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1574 return btrfs_grab_root(fs_info->extent_root);
8f18cf13 1575 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1576 return btrfs_grab_root(fs_info->chunk_root);
8f18cf13 1577 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1578 return btrfs_grab_root(fs_info->dev_root);
0403e47e 1579 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1580 return btrfs_grab_root(fs_info->csum_root);
bcef60f2 1581 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1582 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1583 fs_info->quota_root : ERR_PTR(-ENOENT);
f7a81ea4 1584 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1585 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1586 fs_info->uuid_root : ERR_PTR(-ENOENT);
70f6d82e 1587 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1588 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1589 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1590again:
cb517eab 1591 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1592 if (root) {
bc44d7c4 1593 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1594 btrfs_put_root(root);
48475471 1595 return ERR_PTR(-ENOENT);
bc44d7c4 1596 }
5eda7b5e 1597 return root;
48475471 1598 }
5eda7b5e 1599
83db2aad 1600 root = btrfs_read_tree_root(fs_info->tree_root, location);
5eda7b5e
CM
1601 if (IS_ERR(root))
1602 return root;
3394e160 1603
c00869f1 1604 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1605 ret = -ENOENT;
581bb050 1606 goto fail;
35a30d7c 1607 }
581bb050 1608
cb517eab 1609 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1610 if (ret)
1611 goto fail;
3394e160 1612
381cf658
DS
1613 path = btrfs_alloc_path();
1614 if (!path) {
1615 ret = -ENOMEM;
1616 goto fail;
1617 }
1d4c08e0
DS
1618 key.objectid = BTRFS_ORPHAN_OBJECTID;
1619 key.type = BTRFS_ORPHAN_ITEM_KEY;
1620 key.offset = location->objectid;
1621
1622 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1623 btrfs_free_path(path);
d68fc57b
YZ
1624 if (ret < 0)
1625 goto fail;
1626 if (ret == 0)
27cdeb70 1627 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1628
bc44d7c4
JB
1629 /*
1630 * All roots have two refs on them at all times, one for the mounted fs,
1631 * and one for being in the radix tree. This way we only free the root
1632 * when we are unmounting or deleting the subvolume. We get one ref
1633 * from __setup_root, one for inserting it into the radix tree, and then
1634 * we have the third for returning it, and the caller will put it when
1635 * it's done with the root.
1636 */
00246528 1637 btrfs_grab_root(root);
cb517eab 1638 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1639 if (ret) {
00246528 1640 btrfs_put_root(root);
4df27c4d 1641 if (ret == -EEXIST) {
84db5ccf 1642 btrfs_free_fs_root(root);
4df27c4d
YZ
1643 goto again;
1644 }
1645 goto fail;
0f7d52f4 1646 }
edbd8d4e 1647 return root;
4df27c4d 1648fail:
84db5ccf 1649 btrfs_free_fs_root(root);
4df27c4d 1650 return ERR_PTR(ret);
edbd8d4e
CM
1651}
1652
04160088
CM
1653static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1654{
1655 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1656 int ret = 0;
04160088
CM
1657 struct btrfs_device *device;
1658 struct backing_dev_info *bdi;
b7967db7 1659
1f78160c
XG
1660 rcu_read_lock();
1661 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1662 if (!device->bdev)
1663 continue;
efa7c9f9 1664 bdi = device->bdev->bd_bdi;
ff9ea323 1665 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1666 ret = 1;
1667 break;
1668 }
1669 }
1f78160c 1670 rcu_read_unlock();
04160088
CM
1671 return ret;
1672}
1673
8b712842
CM
1674/*
1675 * called by the kthread helper functions to finally call the bio end_io
1676 * functions. This is where read checksum verification actually happens
1677 */
1678static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1679{
ce9adaa5 1680 struct bio *bio;
97eb6b69 1681 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1682
97eb6b69 1683 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1684 bio = end_io_wq->bio;
ce9adaa5 1685
4e4cbee9 1686 bio->bi_status = end_io_wq->status;
8b712842
CM
1687 bio->bi_private = end_io_wq->private;
1688 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1689 bio_endio(bio);
9be490f1 1690 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1691}
1692
a74a4b97
CM
1693static int cleaner_kthread(void *arg)
1694{
1695 struct btrfs_root *root = arg;
0b246afa 1696 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1697 int again;
a74a4b97 1698
d6fd0ae2 1699 while (1) {
d0278245 1700 again = 0;
a74a4b97 1701
fd340d0f
JB
1702 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1703
d0278245 1704 /* Make the cleaner go to sleep early. */
2ff7e61e 1705 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1706 goto sleep;
1707
90c711ab
ZB
1708 /*
1709 * Do not do anything if we might cause open_ctree() to block
1710 * before we have finished mounting the filesystem.
1711 */
0b246afa 1712 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1713 goto sleep;
1714
0b246afa 1715 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1716 goto sleep;
1717
dc7f370c
MX
1718 /*
1719 * Avoid the problem that we change the status of the fs
1720 * during the above check and trylock.
1721 */
2ff7e61e 1722 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1723 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1724 goto sleep;
76dda93c 1725 }
a74a4b97 1726
2ff7e61e 1727 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1728
d0278245 1729 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1730 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1731
1732 /*
05323cd1
MX
1733 * The defragger has dealt with the R/O remount and umount,
1734 * needn't do anything special here.
d0278245 1735 */
0b246afa 1736 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1737
1738 /*
1739 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1740 * with relocation (btrfs_relocate_chunk) and relocation
1741 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1742 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1743 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1744 * unused block groups.
1745 */
0b246afa 1746 btrfs_delete_unused_bgs(fs_info);
d0278245 1747sleep:
fd340d0f 1748 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1749 if (kthread_should_park())
1750 kthread_parkme();
1751 if (kthread_should_stop())
1752 return 0;
838fe188 1753 if (!again) {
a74a4b97 1754 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1755 schedule();
a74a4b97
CM
1756 __set_current_state(TASK_RUNNING);
1757 }
da288d28 1758 }
a74a4b97
CM
1759}
1760
1761static int transaction_kthread(void *arg)
1762{
1763 struct btrfs_root *root = arg;
0b246afa 1764 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1765 struct btrfs_trans_handle *trans;
1766 struct btrfs_transaction *cur;
8929ecfa 1767 u64 transid;
a944442c 1768 time64_t now;
a74a4b97 1769 unsigned long delay;
914b2007 1770 bool cannot_commit;
a74a4b97
CM
1771
1772 do {
914b2007 1773 cannot_commit = false;
0b246afa
JM
1774 delay = HZ * fs_info->commit_interval;
1775 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1776
0b246afa
JM
1777 spin_lock(&fs_info->trans_lock);
1778 cur = fs_info->running_transaction;
a74a4b97 1779 if (!cur) {
0b246afa 1780 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1781 goto sleep;
1782 }
31153d81 1783
afd48513 1784 now = ktime_get_seconds();
3296bf56 1785 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1786 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1787 (now < cur->start_time ||
0b246afa
JM
1788 now - cur->start_time < fs_info->commit_interval)) {
1789 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1790 delay = HZ * 5;
1791 goto sleep;
1792 }
8929ecfa 1793 transid = cur->transid;
0b246afa 1794 spin_unlock(&fs_info->trans_lock);
56bec294 1795
79787eaa 1796 /* If the file system is aborted, this will always fail. */
354aa0fb 1797 trans = btrfs_attach_transaction(root);
914b2007 1798 if (IS_ERR(trans)) {
354aa0fb
MX
1799 if (PTR_ERR(trans) != -ENOENT)
1800 cannot_commit = true;
79787eaa 1801 goto sleep;
914b2007 1802 }
8929ecfa 1803 if (transid == trans->transid) {
3a45bb20 1804 btrfs_commit_transaction(trans);
8929ecfa 1805 } else {
3a45bb20 1806 btrfs_end_transaction(trans);
8929ecfa 1807 }
a74a4b97 1808sleep:
0b246afa
JM
1809 wake_up_process(fs_info->cleaner_kthread);
1810 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1811
4e121c06 1812 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1813 &fs_info->fs_state)))
2ff7e61e 1814 btrfs_cleanup_transaction(fs_info);
ce63f891 1815 if (!kthread_should_stop() &&
0b246afa 1816 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1817 cannot_commit))
bc5511d0 1818 schedule_timeout_interruptible(delay);
a74a4b97
CM
1819 } while (!kthread_should_stop());
1820 return 0;
1821}
1822
af31f5e5 1823/*
01f0f9da
NB
1824 * This will find the highest generation in the array of root backups. The
1825 * index of the highest array is returned, or -EINVAL if we can't find
1826 * anything.
af31f5e5
CM
1827 *
1828 * We check to make sure the array is valid by comparing the
1829 * generation of the latest root in the array with the generation
1830 * in the super block. If they don't match we pitch it.
1831 */
01f0f9da 1832static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1833{
01f0f9da 1834 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1835 u64 cur;
af31f5e5
CM
1836 struct btrfs_root_backup *root_backup;
1837 int i;
1838
1839 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1840 root_backup = info->super_copy->super_roots + i;
1841 cur = btrfs_backup_tree_root_gen(root_backup);
1842 if (cur == newest_gen)
01f0f9da 1843 return i;
af31f5e5
CM
1844 }
1845
01f0f9da 1846 return -EINVAL;
af31f5e5
CM
1847}
1848
af31f5e5
CM
1849/*
1850 * copy all the root pointers into the super backup array.
1851 * this will bump the backup pointer by one when it is
1852 * done
1853 */
1854static void backup_super_roots(struct btrfs_fs_info *info)
1855{
6ef108dd 1856 const int next_backup = info->backup_root_index;
af31f5e5 1857 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1858
1859 root_backup = info->super_for_commit->super_roots + next_backup;
1860
1861 /*
1862 * make sure all of our padding and empty slots get zero filled
1863 * regardless of which ones we use today
1864 */
1865 memset(root_backup, 0, sizeof(*root_backup));
1866
1867 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1868
1869 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1870 btrfs_set_backup_tree_root_gen(root_backup,
1871 btrfs_header_generation(info->tree_root->node));
1872
1873 btrfs_set_backup_tree_root_level(root_backup,
1874 btrfs_header_level(info->tree_root->node));
1875
1876 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1877 btrfs_set_backup_chunk_root_gen(root_backup,
1878 btrfs_header_generation(info->chunk_root->node));
1879 btrfs_set_backup_chunk_root_level(root_backup,
1880 btrfs_header_level(info->chunk_root->node));
1881
1882 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1883 btrfs_set_backup_extent_root_gen(root_backup,
1884 btrfs_header_generation(info->extent_root->node));
1885 btrfs_set_backup_extent_root_level(root_backup,
1886 btrfs_header_level(info->extent_root->node));
1887
7c7e82a7
CM
1888 /*
1889 * we might commit during log recovery, which happens before we set
1890 * the fs_root. Make sure it is valid before we fill it in.
1891 */
1892 if (info->fs_root && info->fs_root->node) {
1893 btrfs_set_backup_fs_root(root_backup,
1894 info->fs_root->node->start);
1895 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1896 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1897 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1898 btrfs_header_level(info->fs_root->node));
7c7e82a7 1899 }
af31f5e5
CM
1900
1901 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1902 btrfs_set_backup_dev_root_gen(root_backup,
1903 btrfs_header_generation(info->dev_root->node));
1904 btrfs_set_backup_dev_root_level(root_backup,
1905 btrfs_header_level(info->dev_root->node));
1906
1907 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1908 btrfs_set_backup_csum_root_gen(root_backup,
1909 btrfs_header_generation(info->csum_root->node));
1910 btrfs_set_backup_csum_root_level(root_backup,
1911 btrfs_header_level(info->csum_root->node));
1912
1913 btrfs_set_backup_total_bytes(root_backup,
1914 btrfs_super_total_bytes(info->super_copy));
1915 btrfs_set_backup_bytes_used(root_backup,
1916 btrfs_super_bytes_used(info->super_copy));
1917 btrfs_set_backup_num_devices(root_backup,
1918 btrfs_super_num_devices(info->super_copy));
1919
1920 /*
1921 * if we don't copy this out to the super_copy, it won't get remembered
1922 * for the next commit
1923 */
1924 memcpy(&info->super_copy->super_roots,
1925 &info->super_for_commit->super_roots,
1926 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1927}
1928
bd2336b2
NB
1929/*
1930 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1931 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1932 *
1933 * fs_info - filesystem whose backup roots need to be read
1934 * priority - priority of backup root required
1935 *
1936 * Returns backup root index on success and -EINVAL otherwise.
1937 */
1938static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1939{
1940 int backup_index = find_newest_super_backup(fs_info);
1941 struct btrfs_super_block *super = fs_info->super_copy;
1942 struct btrfs_root_backup *root_backup;
1943
1944 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1945 if (priority == 0)
1946 return backup_index;
1947
1948 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1949 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1950 } else {
1951 return -EINVAL;
1952 }
1953
1954 root_backup = super->super_roots + backup_index;
1955
1956 btrfs_set_super_generation(super,
1957 btrfs_backup_tree_root_gen(root_backup));
1958 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1959 btrfs_set_super_root_level(super,
1960 btrfs_backup_tree_root_level(root_backup));
1961 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1962
1963 /*
1964 * Fixme: the total bytes and num_devices need to match or we should
1965 * need a fsck
1966 */
1967 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1968 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1969
1970 return backup_index;
1971}
1972
7abadb64
LB
1973/* helper to cleanup workers */
1974static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1975{
dc6e3209 1976 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1977 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1978 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1979 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1980 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1981 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1982 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1983 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1984 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1985 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1986 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1987 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1988 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1989 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1990 if (fs_info->discard_ctl.discard_workers)
1991 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1992 /*
1993 * Now that all other work queues are destroyed, we can safely destroy
1994 * the queues used for metadata I/O, since tasks from those other work
1995 * queues can do metadata I/O operations.
1996 */
1997 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1998 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1999}
2000
2e9f5954
R
2001static void free_root_extent_buffers(struct btrfs_root *root)
2002{
2003 if (root) {
2004 free_extent_buffer(root->node);
2005 free_extent_buffer(root->commit_root);
2006 root->node = NULL;
2007 root->commit_root = NULL;
2008 }
2009}
2010
af31f5e5 2011/* helper to cleanup tree roots */
4273eaff 2012static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2013{
2e9f5954 2014 free_root_extent_buffers(info->tree_root);
655b09fe 2015
2e9f5954
R
2016 free_root_extent_buffers(info->dev_root);
2017 free_root_extent_buffers(info->extent_root);
2018 free_root_extent_buffers(info->csum_root);
2019 free_root_extent_buffers(info->quota_root);
2020 free_root_extent_buffers(info->uuid_root);
4273eaff 2021 if (free_chunk_root)
2e9f5954 2022 free_root_extent_buffers(info->chunk_root);
70f6d82e 2023 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2024}
2025
faa2dbf0 2026void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2027{
2028 int ret;
2029 struct btrfs_root *gang[8];
2030 int i;
2031
2032 while (!list_empty(&fs_info->dead_roots)) {
2033 gang[0] = list_entry(fs_info->dead_roots.next,
2034 struct btrfs_root, root_list);
2035 list_del(&gang[0]->root_list);
2036
27cdeb70 2037 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2038 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2039 } else {
2040 free_extent_buffer(gang[0]->node);
2041 free_extent_buffer(gang[0]->commit_root);
00246528 2042 btrfs_put_root(gang[0]);
171f6537
JB
2043 }
2044 }
2045
2046 while (1) {
2047 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2048 (void **)gang, 0,
2049 ARRAY_SIZE(gang));
2050 if (!ret)
2051 break;
2052 for (i = 0; i < ret; i++)
cb517eab 2053 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2054 }
1a4319cc 2055
fe119a6e 2056 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
1a4319cc 2057 btrfs_free_log_root_tree(NULL, fs_info);
171f6537 2058}
af31f5e5 2059
638aa7ed
ES
2060static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2061{
2062 mutex_init(&fs_info->scrub_lock);
2063 atomic_set(&fs_info->scrubs_running, 0);
2064 atomic_set(&fs_info->scrub_pause_req, 0);
2065 atomic_set(&fs_info->scrubs_paused, 0);
2066 atomic_set(&fs_info->scrub_cancel_req, 0);
2067 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2068 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2069}
2070
779a65a4
ES
2071static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2072{
2073 spin_lock_init(&fs_info->balance_lock);
2074 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2075 atomic_set(&fs_info->balance_pause_req, 0);
2076 atomic_set(&fs_info->balance_cancel_req, 0);
2077 fs_info->balance_ctl = NULL;
2078 init_waitqueue_head(&fs_info->balance_wait_q);
2079}
2080
6bccf3ab 2081static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2082{
2ff7e61e
JM
2083 struct inode *inode = fs_info->btree_inode;
2084
2085 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2086 set_nlink(inode, 1);
f37938e0
ES
2087 /*
2088 * we set the i_size on the btree inode to the max possible int.
2089 * the real end of the address space is determined by all of
2090 * the devices in the system
2091 */
2ff7e61e
JM
2092 inode->i_size = OFFSET_MAX;
2093 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2094
2ff7e61e 2095 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2096 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2097 IO_TREE_INODE_IO, inode);
7b439738 2098 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2099 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2100
2ff7e61e 2101 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2102
2ff7e61e
JM
2103 BTRFS_I(inode)->root = fs_info->tree_root;
2104 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2105 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2106 btrfs_insert_inode_hash(inode);
f37938e0
ES
2107}
2108
ad618368
ES
2109static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2110{
ad618368 2111 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2112 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2113 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2114}
2115
f9e92e40
ES
2116static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2117{
2118 spin_lock_init(&fs_info->qgroup_lock);
2119 mutex_init(&fs_info->qgroup_ioctl_lock);
2120 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2121 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2122 fs_info->qgroup_seq = 1;
f9e92e40 2123 fs_info->qgroup_ulist = NULL;
d2c609b8 2124 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2125 mutex_init(&fs_info->qgroup_rescan_lock);
2126}
2127
2a458198
ES
2128static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2129 struct btrfs_fs_devices *fs_devices)
2130{
f7b885be 2131 u32 max_active = fs_info->thread_pool_size;
6f011058 2132 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2133
2134 fs_info->workers =
cb001095
JM
2135 btrfs_alloc_workqueue(fs_info, "worker",
2136 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2137
2138 fs_info->delalloc_workers =
cb001095
JM
2139 btrfs_alloc_workqueue(fs_info, "delalloc",
2140 flags, max_active, 2);
2a458198
ES
2141
2142 fs_info->flush_workers =
cb001095
JM
2143 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2144 flags, max_active, 0);
2a458198
ES
2145
2146 fs_info->caching_workers =
cb001095 2147 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2148
2a458198 2149 fs_info->fixup_workers =
cb001095 2150 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2151
2152 /*
2153 * endios are largely parallel and should have a very
2154 * low idle thresh
2155 */
2156 fs_info->endio_workers =
cb001095 2157 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2158 fs_info->endio_meta_workers =
cb001095
JM
2159 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2160 max_active, 4);
2a458198 2161 fs_info->endio_meta_write_workers =
cb001095
JM
2162 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2163 max_active, 2);
2a458198 2164 fs_info->endio_raid56_workers =
cb001095
JM
2165 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2166 max_active, 4);
2a458198 2167 fs_info->endio_repair_workers =
cb001095 2168 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2169 fs_info->rmw_workers =
cb001095 2170 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2171 fs_info->endio_write_workers =
cb001095
JM
2172 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2173 max_active, 2);
2a458198 2174 fs_info->endio_freespace_worker =
cb001095
JM
2175 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2176 max_active, 0);
2a458198 2177 fs_info->delayed_workers =
cb001095
JM
2178 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2179 max_active, 0);
2a458198 2180 fs_info->readahead_workers =
cb001095
JM
2181 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2182 max_active, 2);
2a458198 2183 fs_info->qgroup_rescan_workers =
cb001095 2184 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2185 fs_info->discard_ctl.discard_workers =
2186 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2187
2188 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2189 fs_info->flush_workers &&
2a458198
ES
2190 fs_info->endio_workers && fs_info->endio_meta_workers &&
2191 fs_info->endio_meta_write_workers &&
2192 fs_info->endio_repair_workers &&
2193 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2194 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2195 fs_info->caching_workers && fs_info->readahead_workers &&
2196 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2197 fs_info->qgroup_rescan_workers &&
2198 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2199 return -ENOMEM;
2200 }
2201
2202 return 0;
2203}
2204
6d97c6e3
JT
2205static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2206{
2207 struct crypto_shash *csum_shash;
b4e967be 2208 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2209
b4e967be 2210 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2211
2212 if (IS_ERR(csum_shash)) {
2213 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2214 csum_driver);
6d97c6e3
JT
2215 return PTR_ERR(csum_shash);
2216 }
2217
2218 fs_info->csum_shash = csum_shash;
2219
2220 return 0;
2221}
2222
63443bf5
ES
2223static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2224 struct btrfs_fs_devices *fs_devices)
2225{
2226 int ret;
63443bf5
ES
2227 struct btrfs_root *log_tree_root;
2228 struct btrfs_super_block *disk_super = fs_info->super_copy;
2229 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2230 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2231
2232 if (fs_devices->rw_devices == 0) {
f14d104d 2233 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2234 return -EIO;
2235 }
2236
96dfcb46
JB
2237 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2238 GFP_KERNEL);
63443bf5
ES
2239 if (!log_tree_root)
2240 return -ENOMEM;
2241
2ff7e61e 2242 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2243 fs_info->generation + 1,
2244 level, NULL);
64c043de 2245 if (IS_ERR(log_tree_root->node)) {
f14d104d 2246 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2247 ret = PTR_ERR(log_tree_root->node);
00246528 2248 btrfs_put_root(log_tree_root);
0eeff236 2249 return ret;
64c043de 2250 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2251 btrfs_err(fs_info, "failed to read log tree");
63443bf5 2252 free_extent_buffer(log_tree_root->node);
00246528 2253 btrfs_put_root(log_tree_root);
63443bf5
ES
2254 return -EIO;
2255 }
2256 /* returns with log_tree_root freed on success */
2257 ret = btrfs_recover_log_trees(log_tree_root);
2258 if (ret) {
0b246afa
JM
2259 btrfs_handle_fs_error(fs_info, ret,
2260 "Failed to recover log tree");
63443bf5 2261 free_extent_buffer(log_tree_root->node);
00246528 2262 btrfs_put_root(log_tree_root);
63443bf5
ES
2263 return ret;
2264 }
2265
bc98a42c 2266 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2267 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2268 if (ret)
2269 return ret;
2270 }
2271
2272 return 0;
2273}
2274
6bccf3ab 2275static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2276{
6bccf3ab 2277 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2278 struct btrfs_root *root;
4bbcaa64
ES
2279 struct btrfs_key location;
2280 int ret;
2281
6bccf3ab
JM
2282 BUG_ON(!fs_info->tree_root);
2283
4bbcaa64
ES
2284 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2285 location.type = BTRFS_ROOT_ITEM_KEY;
2286 location.offset = 0;
2287
a4f3d2c4 2288 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2289 if (IS_ERR(root)) {
2290 ret = PTR_ERR(root);
2291 goto out;
2292 }
a4f3d2c4
DS
2293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2294 fs_info->extent_root = root;
4bbcaa64
ES
2295
2296 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2297 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2298 if (IS_ERR(root)) {
2299 ret = PTR_ERR(root);
2300 goto out;
2301 }
a4f3d2c4
DS
2302 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2303 fs_info->dev_root = root;
4bbcaa64
ES
2304 btrfs_init_devices_late(fs_info);
2305
2306 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2307 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2308 if (IS_ERR(root)) {
2309 ret = PTR_ERR(root);
2310 goto out;
2311 }
a4f3d2c4
DS
2312 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2313 fs_info->csum_root = root;
4bbcaa64
ES
2314
2315 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2316 root = btrfs_read_tree_root(tree_root, &location);
2317 if (!IS_ERR(root)) {
2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2319 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2320 fs_info->quota_root = root;
4bbcaa64
ES
2321 }
2322
2323 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2324 root = btrfs_read_tree_root(tree_root, &location);
2325 if (IS_ERR(root)) {
2326 ret = PTR_ERR(root);
4bbcaa64 2327 if (ret != -ENOENT)
f50f4353 2328 goto out;
4bbcaa64 2329 } else {
a4f3d2c4
DS
2330 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331 fs_info->uuid_root = root;
4bbcaa64
ES
2332 }
2333
70f6d82e
OS
2334 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2335 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2336 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2337 if (IS_ERR(root)) {
2338 ret = PTR_ERR(root);
2339 goto out;
2340 }
70f6d82e
OS
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->free_space_root = root;
2343 }
2344
4bbcaa64 2345 return 0;
f50f4353
LB
2346out:
2347 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2348 location.objectid, ret);
2349 return ret;
4bbcaa64
ES
2350}
2351
069ec957
QW
2352/*
2353 * Real super block validation
2354 * NOTE: super csum type and incompat features will not be checked here.
2355 *
2356 * @sb: super block to check
2357 * @mirror_num: the super block number to check its bytenr:
2358 * 0 the primary (1st) sb
2359 * 1, 2 2nd and 3rd backup copy
2360 * -1 skip bytenr check
2361 */
2362static int validate_super(struct btrfs_fs_info *fs_info,
2363 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2364{
21a852b0
QW
2365 u64 nodesize = btrfs_super_nodesize(sb);
2366 u64 sectorsize = btrfs_super_sectorsize(sb);
2367 int ret = 0;
2368
2369 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2370 btrfs_err(fs_info, "no valid FS found");
2371 ret = -EINVAL;
2372 }
2373 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2374 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2375 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2376 ret = -EINVAL;
2377 }
2378 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2379 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2380 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2381 ret = -EINVAL;
2382 }
2383 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2384 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2385 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2386 ret = -EINVAL;
2387 }
2388 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2389 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2390 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2391 ret = -EINVAL;
2392 }
2393
2394 /*
2395 * Check sectorsize and nodesize first, other check will need it.
2396 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2397 */
2398 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2399 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2400 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2401 ret = -EINVAL;
2402 }
2403 /* Only PAGE SIZE is supported yet */
2404 if (sectorsize != PAGE_SIZE) {
2405 btrfs_err(fs_info,
2406 "sectorsize %llu not supported yet, only support %lu",
2407 sectorsize, PAGE_SIZE);
2408 ret = -EINVAL;
2409 }
2410 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2411 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2412 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2413 ret = -EINVAL;
2414 }
2415 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2416 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2417 le32_to_cpu(sb->__unused_leafsize), nodesize);
2418 ret = -EINVAL;
2419 }
2420
2421 /* Root alignment check */
2422 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2423 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2424 btrfs_super_root(sb));
2425 ret = -EINVAL;
2426 }
2427 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2428 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2429 btrfs_super_chunk_root(sb));
2430 ret = -EINVAL;
2431 }
2432 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2433 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2434 btrfs_super_log_root(sb));
2435 ret = -EINVAL;
2436 }
2437
de37aa51 2438 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2439 BTRFS_FSID_SIZE) != 0) {
21a852b0 2440 btrfs_err(fs_info,
7239ff4b 2441 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2442 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2443 ret = -EINVAL;
2444 }
2445
2446 /*
2447 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2448 * done later
2449 */
2450 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2451 btrfs_err(fs_info, "bytes_used is too small %llu",
2452 btrfs_super_bytes_used(sb));
2453 ret = -EINVAL;
2454 }
2455 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2456 btrfs_err(fs_info, "invalid stripesize %u",
2457 btrfs_super_stripesize(sb));
2458 ret = -EINVAL;
2459 }
2460 if (btrfs_super_num_devices(sb) > (1UL << 31))
2461 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2462 btrfs_super_num_devices(sb));
2463 if (btrfs_super_num_devices(sb) == 0) {
2464 btrfs_err(fs_info, "number of devices is 0");
2465 ret = -EINVAL;
2466 }
2467
069ec957
QW
2468 if (mirror_num >= 0 &&
2469 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2470 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2471 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2472 ret = -EINVAL;
2473 }
2474
2475 /*
2476 * Obvious sys_chunk_array corruptions, it must hold at least one key
2477 * and one chunk
2478 */
2479 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2480 btrfs_err(fs_info, "system chunk array too big %u > %u",
2481 btrfs_super_sys_array_size(sb),
2482 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2483 ret = -EINVAL;
2484 }
2485 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2486 + sizeof(struct btrfs_chunk)) {
2487 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2488 btrfs_super_sys_array_size(sb),
2489 sizeof(struct btrfs_disk_key)
2490 + sizeof(struct btrfs_chunk));
2491 ret = -EINVAL;
2492 }
2493
2494 /*
2495 * The generation is a global counter, we'll trust it more than the others
2496 * but it's still possible that it's the one that's wrong.
2497 */
2498 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2499 btrfs_warn(fs_info,
2500 "suspicious: generation < chunk_root_generation: %llu < %llu",
2501 btrfs_super_generation(sb),
2502 btrfs_super_chunk_root_generation(sb));
2503 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2504 && btrfs_super_cache_generation(sb) != (u64)-1)
2505 btrfs_warn(fs_info,
2506 "suspicious: generation < cache_generation: %llu < %llu",
2507 btrfs_super_generation(sb),
2508 btrfs_super_cache_generation(sb));
2509
2510 return ret;
2511}
2512
069ec957
QW
2513/*
2514 * Validation of super block at mount time.
2515 * Some checks already done early at mount time, like csum type and incompat
2516 * flags will be skipped.
2517 */
2518static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2519{
2520 return validate_super(fs_info, fs_info->super_copy, 0);
2521}
2522
75cb857d
QW
2523/*
2524 * Validation of super block at write time.
2525 * Some checks like bytenr check will be skipped as their values will be
2526 * overwritten soon.
2527 * Extra checks like csum type and incompat flags will be done here.
2528 */
2529static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2530 struct btrfs_super_block *sb)
2531{
2532 int ret;
2533
2534 ret = validate_super(fs_info, sb, -1);
2535 if (ret < 0)
2536 goto out;
e7e16f48 2537 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2538 ret = -EUCLEAN;
2539 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2540 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2541 goto out;
2542 }
2543 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2544 ret = -EUCLEAN;
2545 btrfs_err(fs_info,
2546 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2547 btrfs_super_incompat_flags(sb),
2548 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2549 goto out;
2550 }
2551out:
2552 if (ret < 0)
2553 btrfs_err(fs_info,
2554 "super block corruption detected before writing it to disk");
2555 return ret;
2556}
2557
6ef108dd 2558static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2559{
6ef108dd 2560 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2561 struct btrfs_super_block *sb = fs_info->super_copy;
2562 struct btrfs_root *tree_root = fs_info->tree_root;
2563 bool handle_error = false;
2564 int ret = 0;
2565 int i;
2566
2567 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2568 u64 generation;
2569 int level;
2570
2571 if (handle_error) {
2572 if (!IS_ERR(tree_root->node))
2573 free_extent_buffer(tree_root->node);
2574 tree_root->node = NULL;
2575
2576 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2577 break;
2578
2579 free_root_pointers(fs_info, 0);
2580
2581 /*
2582 * Don't use the log in recovery mode, it won't be
2583 * valid
2584 */
2585 btrfs_set_super_log_root(sb, 0);
2586
2587 /* We can't trust the free space cache either */
2588 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2589
2590 ret = read_backup_root(fs_info, i);
6ef108dd 2591 backup_index = ret;
b8522a1e
NB
2592 if (ret < 0)
2593 return ret;
2594 }
2595 generation = btrfs_super_generation(sb);
2596 level = btrfs_super_root_level(sb);
2597 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2598 generation, level, NULL);
2599 if (IS_ERR(tree_root->node) ||
2600 !extent_buffer_uptodate(tree_root->node)) {
2601 handle_error = true;
2602
2603 if (IS_ERR(tree_root->node))
2604 ret = PTR_ERR(tree_root->node);
2605 else if (!extent_buffer_uptodate(tree_root->node))
2606 ret = -EUCLEAN;
2607
2608 btrfs_warn(fs_info, "failed to read tree root");
2609 continue;
2610 }
2611
2612 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2613 tree_root->commit_root = btrfs_root_node(tree_root);
2614 btrfs_set_root_refs(&tree_root->root_item, 1);
2615
336a0d8d
NB
2616 /*
2617 * No need to hold btrfs_root::objectid_mutex since the fs
2618 * hasn't been fully initialised and we are the only user
2619 */
b8522a1e
NB
2620 ret = btrfs_find_highest_objectid(tree_root,
2621 &tree_root->highest_objectid);
2622 if (ret < 0) {
b8522a1e
NB
2623 handle_error = true;
2624 continue;
2625 }
2626
2627 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2628
2629 ret = btrfs_read_roots(fs_info);
2630 if (ret < 0) {
2631 handle_error = true;
2632 continue;
2633 }
2634
2635 /* All successful */
2636 fs_info->generation = generation;
2637 fs_info->last_trans_committed = generation;
6ef108dd
NB
2638
2639 /* Always begin writing backup roots after the one being used */
2640 if (backup_index < 0) {
2641 fs_info->backup_root_index = 0;
2642 } else {
2643 fs_info->backup_root_index = backup_index + 1;
2644 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2645 }
b8522a1e
NB
2646 break;
2647 }
2648
2649 return ret;
2650}
2651
8260edba 2652void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2653{
76dda93c 2654 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2655 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2656 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2657 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2658 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2659 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2660 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2661 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2662 spin_lock_init(&fs_info->trans_lock);
76dda93c 2663 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2664 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2665 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2666 spin_lock_init(&fs_info->super_lock);
f28491e0 2667 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2668 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2669 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2670 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2671 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2672 mutex_init(&fs_info->reloc_mutex);
573bfb72 2673 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2674 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2675
0b86a832 2676 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2677 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2678 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2679 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2680#ifdef CONFIG_BTRFS_DEBUG
2681 INIT_LIST_HEAD(&fs_info->allocated_roots);
2682#endif
c8bf1b67 2683 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2684 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2685 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2686 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2687 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2688 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2689 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2690 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2691 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2692 BTRFS_BLOCK_RSV_DELREFS);
2693
771ed689 2694 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2695 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2696 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2697 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2698 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2699 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2700 fs_info->metadata_ratio = 0;
4cb5300b 2701 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2702 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2703 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2704 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2705 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2706 /* readahead state */
d0164adc 2707 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2708 spin_lock_init(&fs_info->reada_lock);
fd708b81 2709 btrfs_init_ref_verify(fs_info);
c8b97818 2710
b34b086c
CM
2711 fs_info->thread_pool_size = min_t(unsigned long,
2712 num_online_cpus() + 2, 8);
0afbaf8c 2713
199c2a9c
MX
2714 INIT_LIST_HEAD(&fs_info->ordered_roots);
2715 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2716
638aa7ed 2717 btrfs_init_scrub(fs_info);
21adbd5c
SB
2718#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2719 fs_info->check_integrity_print_mask = 0;
2720#endif
779a65a4 2721 btrfs_init_balance(fs_info);
21c7e756 2722 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2723
0f9dd46c 2724 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2725 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2726 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2727
fe119a6e
NB
2728 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2729 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2730 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2731
5a3f23d5 2732 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2733 mutex_init(&fs_info->tree_log_mutex);
925baedd 2734 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2735 mutex_init(&fs_info->transaction_kthread_mutex);
2736 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2737 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2738 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2739 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2740 init_rwsem(&fs_info->subvol_sem);
803b2f54 2741 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2742
ad618368 2743 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2744 btrfs_init_qgroup(fs_info);
b0643e59 2745 btrfs_discard_init(fs_info);
416ac51d 2746
fa9c0d79
CM
2747 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2748 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2749
e6dcd2dc 2750 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2751 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2752 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2753 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2754 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2755
da17066c
JM
2756 /* Usable values until the real ones are cached from the superblock */
2757 fs_info->nodesize = 4096;
2758 fs_info->sectorsize = 4096;
2759 fs_info->stripesize = 4096;
2760
eede2bf3
OS
2761 spin_lock_init(&fs_info->swapfile_pins_lock);
2762 fs_info->swapfile_pins = RB_ROOT;
2763
9e967495 2764 fs_info->send_in_progress = 0;
8260edba
JB
2765}
2766
2767static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2768{
2769 int ret;
2770
2771 fs_info->sb = sb;
2772 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2773 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2774
ae18c37a
JB
2775 ret = init_srcu_struct(&fs_info->subvol_srcu);
2776 if (ret)
2777 return ret;
2778
2779 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2780 if (ret)
2781 goto fail;
2782
2783 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2784 if (ret)
2785 goto fail;
2786
2787 fs_info->dirty_metadata_batch = PAGE_SIZE *
2788 (1 + ilog2(nr_cpu_ids));
2789
2790 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2791 if (ret)
2792 goto fail;
2793
2794 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2795 GFP_KERNEL);
2796 if (ret)
2797 goto fail;
2798
2799 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2800 GFP_KERNEL);
2801 if (!fs_info->delayed_root) {
2802 ret = -ENOMEM;
2803 goto fail;
2804 }
2805 btrfs_init_delayed_root(fs_info->delayed_root);
2806
53b381b3 2807 ret = btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2808 if (ret)
2809 goto fail;
2810
2811 return 0;
2812fail:
2813 cleanup_srcu_struct(&fs_info->subvol_srcu);
2814 return ret;
2815}
2816
97f4dd09
NB
2817static int btrfs_uuid_rescan_kthread(void *data)
2818{
2819 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2820 int ret;
2821
2822 /*
2823 * 1st step is to iterate through the existing UUID tree and
2824 * to delete all entries that contain outdated data.
2825 * 2nd step is to add all missing entries to the UUID tree.
2826 */
2827 ret = btrfs_uuid_tree_iterate(fs_info);
2828 if (ret < 0) {
c94bec2c
JB
2829 if (ret != -EINTR)
2830 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2831 ret);
97f4dd09
NB
2832 up(&fs_info->uuid_tree_rescan_sem);
2833 return ret;
2834 }
2835 return btrfs_uuid_scan_kthread(data);
2836}
2837
2838static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2839{
2840 struct task_struct *task;
2841
2842 down(&fs_info->uuid_tree_rescan_sem);
2843 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2844 if (IS_ERR(task)) {
2845 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2846 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2847 up(&fs_info->uuid_tree_rescan_sem);
2848 return PTR_ERR(task);
2849 }
2850
2851 return 0;
2852}
2853
ae18c37a
JB
2854int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2855 char *options)
2856{
2857 u32 sectorsize;
2858 u32 nodesize;
2859 u32 stripesize;
2860 u64 generation;
2861 u64 features;
2862 u16 csum_type;
2863 struct btrfs_key location;
ae18c37a
JB
2864 struct btrfs_super_block *disk_super;
2865 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2866 struct btrfs_root *tree_root;
2867 struct btrfs_root *chunk_root;
2868 int ret;
2869 int err = -EINVAL;
2870 int clear_free_space_tree = 0;
2871 int level;
2872
8260edba 2873 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2874 if (ret) {
83c8266a 2875 err = ret;
ae18c37a 2876 goto fail;
53b381b3
DW
2877 }
2878
ae18c37a
JB
2879 /* These need to be init'ed before we start creating inodes and such. */
2880 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2881 GFP_KERNEL);
2882 fs_info->tree_root = tree_root;
2883 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2884 GFP_KERNEL);
2885 fs_info->chunk_root = chunk_root;
2886 if (!tree_root || !chunk_root) {
2887 err = -ENOMEM;
2888 goto fail_srcu;
2889 }
2890
2891 fs_info->btree_inode = new_inode(sb);
2892 if (!fs_info->btree_inode) {
2893 err = -ENOMEM;
2894 goto fail_srcu;
2895 }
2896 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2897 btrfs_init_btree_inode(fs_info);
2898
3c4bb26b 2899 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2900
2901 /*
2902 * Read super block and check the signature bytes only
2903 */
8f32380d
JT
2904 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2905 if (IS_ERR(disk_super)) {
2906 err = PTR_ERR(disk_super);
16cdcec7 2907 goto fail_alloc;
20b45077 2908 }
39279cc3 2909
8dc3f22c
JT
2910 /*
2911 * Verify the type first, if that or the the checksum value are
2912 * corrupted, we'll find out
2913 */
8f32380d 2914 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2915 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2916 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2917 csum_type);
8dc3f22c 2918 err = -EINVAL;
8f32380d 2919 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2920 goto fail_alloc;
2921 }
2922
6d97c6e3
JT
2923 ret = btrfs_init_csum_hash(fs_info, csum_type);
2924 if (ret) {
2925 err = ret;
8f32380d 2926 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2927 goto fail_alloc;
2928 }
2929
1104a885
DS
2930 /*
2931 * We want to check superblock checksum, the type is stored inside.
2932 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2933 */
8f32380d 2934 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2935 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2936 err = -EINVAL;
8f32380d 2937 btrfs_release_disk_super(disk_super);
141386e1 2938 goto fail_alloc;
1104a885
DS
2939 }
2940
2941 /*
2942 * super_copy is zeroed at allocation time and we never touch the
2943 * following bytes up to INFO_SIZE, the checksum is calculated from
2944 * the whole block of INFO_SIZE
2945 */
8f32380d
JT
2946 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2947 btrfs_release_disk_super(disk_super);
5f39d397 2948
fbc6feae
NB
2949 disk_super = fs_info->super_copy;
2950
de37aa51
NB
2951 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2952 BTRFS_FSID_SIZE));
2953
7239ff4b 2954 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2955 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2956 fs_info->super_copy->metadata_uuid,
2957 BTRFS_FSID_SIZE));
7239ff4b 2958 }
0b86a832 2959
fbc6feae
NB
2960 features = btrfs_super_flags(disk_super);
2961 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2962 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2963 btrfs_set_super_flags(disk_super, features);
2964 btrfs_info(fs_info,
2965 "found metadata UUID change in progress flag, clearing");
2966 }
2967
2968 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2969 sizeof(*fs_info->super_for_commit));
de37aa51 2970
069ec957 2971 ret = btrfs_validate_mount_super(fs_info);
1104a885 2972 if (ret) {
05135f59 2973 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2974 err = -EINVAL;
141386e1 2975 goto fail_alloc;
1104a885
DS
2976 }
2977
0f7d52f4 2978 if (!btrfs_super_root(disk_super))
141386e1 2979 goto fail_alloc;
0f7d52f4 2980
acce952b 2981 /* check FS state, whether FS is broken. */
87533c47
MX
2982 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2983 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2984
75e7cb7f
LB
2985 /*
2986 * In the long term, we'll store the compression type in the super
2987 * block, and it'll be used for per file compression control.
2988 */
2989 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2990
2ff7e61e 2991 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2992 if (ret) {
2993 err = ret;
141386e1 2994 goto fail_alloc;
2b82032c 2995 }
dfe25020 2996
f2b636e8
JB
2997 features = btrfs_super_incompat_flags(disk_super) &
2998 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2999 if (features) {
05135f59
DS
3000 btrfs_err(fs_info,
3001 "cannot mount because of unsupported optional features (%llx)",
3002 features);
f2b636e8 3003 err = -EINVAL;
141386e1 3004 goto fail_alloc;
f2b636e8
JB
3005 }
3006
5d4f98a2 3007 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3008 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3009 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3010 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3011 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3012 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3013
3173a18f 3014 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3015 btrfs_info(fs_info, "has skinny extents");
3173a18f 3016
727011e0
CM
3017 /*
3018 * flag our filesystem as having big metadata blocks if
3019 * they are bigger than the page size
3020 */
09cbfeaf 3021 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3022 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3023 btrfs_info(fs_info,
3024 "flagging fs with big metadata feature");
727011e0
CM
3025 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3026 }
3027
bc3f116f 3028 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3029 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3030 stripesize = sectorsize;
707e8a07 3031 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3032 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3033
da17066c
JM
3034 /* Cache block sizes */
3035 fs_info->nodesize = nodesize;
3036 fs_info->sectorsize = sectorsize;
3037 fs_info->stripesize = stripesize;
3038
bc3f116f
CM
3039 /*
3040 * mixed block groups end up with duplicate but slightly offset
3041 * extent buffers for the same range. It leads to corruptions
3042 */
3043 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3044 (sectorsize != nodesize)) {
05135f59
DS
3045 btrfs_err(fs_info,
3046"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3047 nodesize, sectorsize);
141386e1 3048 goto fail_alloc;
bc3f116f
CM
3049 }
3050
ceda0864
MX
3051 /*
3052 * Needn't use the lock because there is no other task which will
3053 * update the flag.
3054 */
a6fa6fae 3055 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3056
f2b636e8
JB
3057 features = btrfs_super_compat_ro_flags(disk_super) &
3058 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3059 if (!sb_rdonly(sb) && features) {
05135f59
DS
3060 btrfs_err(fs_info,
3061 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3062 features);
f2b636e8 3063 err = -EINVAL;
141386e1 3064 goto fail_alloc;
f2b636e8 3065 }
61d92c32 3066
2a458198
ES
3067 ret = btrfs_init_workqueues(fs_info, fs_devices);
3068 if (ret) {
3069 err = ret;
0dc3b84a
JB
3070 goto fail_sb_buffer;
3071 }
4543df7e 3072
9e11ceee
JK
3073 sb->s_bdi->congested_fn = btrfs_congested_fn;
3074 sb->s_bdi->congested_data = fs_info;
3075 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3076 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3077 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3078 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3079
a061fc8d
CM
3080 sb->s_blocksize = sectorsize;
3081 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3082 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3083
925baedd 3084 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3085 ret = btrfs_read_sys_array(fs_info);
925baedd 3086 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3087 if (ret) {
05135f59 3088 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3089 goto fail_sb_buffer;
84eed90f 3090 }
0b86a832 3091
84234f3a 3092 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3093 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3094
2ff7e61e 3095 chunk_root->node = read_tree_block(fs_info,
0b86a832 3096 btrfs_super_chunk_root(disk_super),
581c1760 3097 generation, level, NULL);
64c043de
LB
3098 if (IS_ERR(chunk_root->node) ||
3099 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3100 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3101 if (!IS_ERR(chunk_root->node))
3102 free_extent_buffer(chunk_root->node);
95ab1f64 3103 chunk_root->node = NULL;
af31f5e5 3104 goto fail_tree_roots;
83121942 3105 }
5d4f98a2
YZ
3106 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3107 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3108
e17cade2 3109 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3110 offsetof(struct btrfs_header, chunk_tree_uuid),
3111 BTRFS_UUID_SIZE);
e17cade2 3112
5b4aacef 3113 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3114 if (ret) {
05135f59 3115 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3116 goto fail_tree_roots;
2b82032c 3117 }
0b86a832 3118
8dabb742 3119 /*
9b99b115
AJ
3120 * Keep the devid that is marked to be the target device for the
3121 * device replace procedure
8dabb742 3122 */
9b99b115 3123 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3124
a6b0d5c8 3125 if (!fs_devices->latest_bdev) {
05135f59 3126 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3127 goto fail_tree_roots;
3128 }
3129
b8522a1e 3130 ret = init_tree_roots(fs_info);
4bbcaa64 3131 if (ret)
b8522a1e 3132 goto fail_tree_roots;
8929ecfa 3133
75ec1db8
JB
3134 /*
3135 * If we have a uuid root and we're not being told to rescan we need to
3136 * check the generation here so we can set the
3137 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3138 * transaction during a balance or the log replay without updating the
3139 * uuid generation, and then if we crash we would rescan the uuid tree,
3140 * even though it was perfectly fine.
3141 */
3142 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3143 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3144 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3145
cf90d884
QW
3146 ret = btrfs_verify_dev_extents(fs_info);
3147 if (ret) {
3148 btrfs_err(fs_info,
3149 "failed to verify dev extents against chunks: %d",
3150 ret);
3151 goto fail_block_groups;
3152 }
68310a5e
ID
3153 ret = btrfs_recover_balance(fs_info);
3154 if (ret) {
05135f59 3155 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3156 goto fail_block_groups;
3157 }
3158
733f4fbb
SB
3159 ret = btrfs_init_dev_stats(fs_info);
3160 if (ret) {
05135f59 3161 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3162 goto fail_block_groups;
3163 }
3164
8dabb742
SB
3165 ret = btrfs_init_dev_replace(fs_info);
3166 if (ret) {
05135f59 3167 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3168 goto fail_block_groups;
3169 }
3170
9b99b115 3171 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3172
c6761a9e 3173 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3174 if (ret) {
05135f59
DS
3175 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3176 ret);
b7c35e81
AJ
3177 goto fail_block_groups;
3178 }
3179
96f3136e 3180 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3181 if (ret) {
05135f59 3182 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3183 goto fail_fsdev_sysfs;
c59021f8 3184 }
3185
c59021f8 3186 ret = btrfs_init_space_info(fs_info);
3187 if (ret) {
05135f59 3188 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3189 goto fail_sysfs;
c59021f8 3190 }
3191
5b4aacef 3192 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3193 if (ret) {
05135f59 3194 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3195 goto fail_sysfs;
1b1d1f66 3196 }
4330e183 3197
6528b99d 3198 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3199 btrfs_warn(fs_info,
52042d8e 3200 "writable mount is not allowed due to too many missing devices");
2365dd3c 3201 goto fail_sysfs;
292fd7fc 3202 }
9078a3e1 3203
a74a4b97
CM
3204 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3205 "btrfs-cleaner");
57506d50 3206 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3207 goto fail_sysfs;
a74a4b97
CM
3208
3209 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3210 tree_root,
3211 "btrfs-transaction");
57506d50 3212 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3213 goto fail_cleaner;
a74a4b97 3214
583b7231 3215 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3216 !fs_info->fs_devices->rotating) {
583b7231 3217 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3218 }
3219
572d9ab7 3220 /*
01327610 3221 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3222 * not have to wait for transaction commit
3223 */
3224 btrfs_apply_pending_changes(fs_info);
3818aea2 3225
21adbd5c 3226#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3227 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3228 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3229 btrfs_test_opt(fs_info,
21adbd5c
SB
3230 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3231 1 : 0,
3232 fs_info->check_integrity_print_mask);
3233 if (ret)
05135f59
DS
3234 btrfs_warn(fs_info,
3235 "failed to initialize integrity check module: %d",
3236 ret);
21adbd5c
SB
3237 }
3238#endif
bcef60f2
AJ
3239 ret = btrfs_read_qgroup_config(fs_info);
3240 if (ret)
3241 goto fail_trans_kthread;
21adbd5c 3242
fd708b81
JB
3243 if (btrfs_build_ref_tree(fs_info))
3244 btrfs_err(fs_info, "couldn't build ref tree");
3245
96da0919
QW
3246 /* do not make disk changes in broken FS or nologreplay is given */
3247 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3248 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3249 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3250 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3251 if (ret) {
63443bf5 3252 err = ret;
28c16cbb 3253 goto fail_qgroup;
79787eaa 3254 }
e02119d5 3255 }
1a40e23b 3256
6bccf3ab 3257 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3258 if (ret)
28c16cbb 3259 goto fail_qgroup;
76dda93c 3260
bc98a42c 3261 if (!sb_rdonly(sb)) {
d68fc57b 3262 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3263 if (ret)
28c16cbb 3264 goto fail_qgroup;
90c711ab
ZB
3265
3266 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3267 ret = btrfs_recover_relocation(tree_root);
90c711ab 3268 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3269 if (ret < 0) {
05135f59
DS
3270 btrfs_warn(fs_info, "failed to recover relocation: %d",
3271 ret);
d7ce5843 3272 err = -EINVAL;
bcef60f2 3273 goto fail_qgroup;
d7ce5843 3274 }
7c2ca468 3275 }
1a40e23b 3276
3de4586c
CM
3277 location.objectid = BTRFS_FS_TREE_OBJECTID;
3278 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3279 location.offset = 0;
3de4586c 3280
3619c94f 3281 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3140c9a3
DC
3282 if (IS_ERR(fs_info->fs_root)) {
3283 err = PTR_ERR(fs_info->fs_root);
f50f4353 3284 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3285 fs_info->fs_root = NULL;
bcef60f2 3286 goto fail_qgroup;
3140c9a3 3287 }
c289811c 3288
bc98a42c 3289 if (sb_rdonly(sb))
2b6ba629 3290 return 0;
59641015 3291
f8d468a1
OS
3292 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3293 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3294 clear_free_space_tree = 1;
3295 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3296 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3297 btrfs_warn(fs_info, "free space tree is invalid");
3298 clear_free_space_tree = 1;
3299 }
3300
3301 if (clear_free_space_tree) {
f8d468a1
OS
3302 btrfs_info(fs_info, "clearing free space tree");
3303 ret = btrfs_clear_free_space_tree(fs_info);
3304 if (ret) {
3305 btrfs_warn(fs_info,
3306 "failed to clear free space tree: %d", ret);
6bccf3ab 3307 close_ctree(fs_info);
f8d468a1
OS
3308 return ret;
3309 }
3310 }
3311
0b246afa 3312 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3313 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3314 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3315 ret = btrfs_create_free_space_tree(fs_info);
3316 if (ret) {
05135f59
DS
3317 btrfs_warn(fs_info,
3318 "failed to create free space tree: %d", ret);
6bccf3ab 3319 close_ctree(fs_info);
511711af
CM
3320 return ret;
3321 }
3322 }
3323
2b6ba629
ID
3324 down_read(&fs_info->cleanup_work_sem);
3325 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3326 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3327 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3328 close_ctree(fs_info);
2b6ba629
ID
3329 return ret;
3330 }
3331 up_read(&fs_info->cleanup_work_sem);
59641015 3332
2b6ba629
ID
3333 ret = btrfs_resume_balance_async(fs_info);
3334 if (ret) {
05135f59 3335 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3336 close_ctree(fs_info);
2b6ba629 3337 return ret;
e3acc2a6
JB
3338 }
3339
8dabb742
SB
3340 ret = btrfs_resume_dev_replace_async(fs_info);
3341 if (ret) {
05135f59 3342 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3343 close_ctree(fs_info);
8dabb742
SB
3344 return ret;
3345 }
3346
b382a324 3347 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3348 btrfs_discard_resume(fs_info);
b382a324 3349
4bbcaa64 3350 if (!fs_info->uuid_root) {
05135f59 3351 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3352 ret = btrfs_create_uuid_tree(fs_info);
3353 if (ret) {
05135f59
DS
3354 btrfs_warn(fs_info,
3355 "failed to create the UUID tree: %d", ret);
6bccf3ab 3356 close_ctree(fs_info);
f7a81ea4
SB
3357 return ret;
3358 }
0b246afa 3359 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3360 fs_info->generation !=
3361 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3362 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3363 ret = btrfs_check_uuid_tree(fs_info);
3364 if (ret) {
05135f59
DS
3365 btrfs_warn(fs_info,
3366 "failed to check the UUID tree: %d", ret);
6bccf3ab 3367 close_ctree(fs_info);
70f80175
SB
3368 return ret;
3369 }
f7a81ea4 3370 }
afcdd129 3371 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3372
8dcddfa0
QW
3373 /*
3374 * backuproot only affect mount behavior, and if open_ctree succeeded,
3375 * no need to keep the flag
3376 */
3377 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3378
ad2b2c80 3379 return 0;
39279cc3 3380
bcef60f2
AJ
3381fail_qgroup:
3382 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3383fail_trans_kthread:
3384 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3385 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3386 btrfs_free_fs_roots(fs_info);
3f157a2f 3387fail_cleaner:
a74a4b97 3388 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3389
3390 /*
3391 * make sure we're done with the btree inode before we stop our
3392 * kthreads
3393 */
3394 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3395
2365dd3c 3396fail_sysfs:
6618a59b 3397 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3398
b7c35e81
AJ
3399fail_fsdev_sysfs:
3400 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3401
1b1d1f66 3402fail_block_groups:
54067ae9 3403 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3404
3405fail_tree_roots:
4273eaff 3406 free_root_pointers(fs_info, true);
2b8195bb 3407 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3408
39279cc3 3409fail_sb_buffer:
7abadb64 3410 btrfs_stop_all_workers(fs_info);
5cdd7db6 3411 btrfs_free_block_groups(fs_info);
16cdcec7 3412fail_alloc:
586e46e2
ID
3413 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3414
4543df7e 3415 iput(fs_info->btree_inode);
76dda93c
YZ
3416fail_srcu:
3417 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3418fail:
586e46e2 3419 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3420 return err;
eb60ceac 3421}
663faf9f 3422ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3423
314b6dd0 3424static void btrfs_end_super_write(struct bio *bio)
f2984462 3425{
314b6dd0
JT
3426 struct btrfs_device *device = bio->bi_private;
3427 struct bio_vec *bvec;
3428 struct bvec_iter_all iter_all;
3429 struct page *page;
3430
3431 bio_for_each_segment_all(bvec, bio, iter_all) {
3432 page = bvec->bv_page;
3433
3434 if (bio->bi_status) {
3435 btrfs_warn_rl_in_rcu(device->fs_info,
3436 "lost page write due to IO error on %s (%d)",
3437 rcu_str_deref(device->name),
3438 blk_status_to_errno(bio->bi_status));
3439 ClearPageUptodate(page);
3440 SetPageError(page);
3441 btrfs_dev_stat_inc_and_print(device,
3442 BTRFS_DEV_STAT_WRITE_ERRS);
3443 } else {
3444 SetPageUptodate(page);
3445 }
3446
3447 put_page(page);
3448 unlock_page(page);
f2984462 3449 }
314b6dd0
JT
3450
3451 bio_put(bio);
f2984462
CM
3452}
3453
8f32380d
JT
3454struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3455 int copy_num)
29c36d72 3456{
29c36d72 3457 struct btrfs_super_block *super;
8f32380d 3458 struct page *page;
29c36d72 3459 u64 bytenr;
8f32380d 3460 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3461
3462 bytenr = btrfs_sb_offset(copy_num);
3463 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3464 return ERR_PTR(-EINVAL);
29c36d72 3465
8f32380d
JT
3466 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3467 if (IS_ERR(page))
3468 return ERR_CAST(page);
29c36d72 3469
8f32380d 3470 super = page_address(page);
29c36d72
AJ
3471 if (btrfs_super_bytenr(super) != bytenr ||
3472 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3473 btrfs_release_disk_super(super);
3474 return ERR_PTR(-EINVAL);
29c36d72
AJ
3475 }
3476
8f32380d 3477 return super;
29c36d72
AJ
3478}
3479
3480
8f32380d 3481struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3482{
8f32380d 3483 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3484 int i;
3485 u64 transid = 0;
a512bbf8
YZ
3486
3487 /* we would like to check all the supers, but that would make
3488 * a btrfs mount succeed after a mkfs from a different FS.
3489 * So, we need to add a special mount option to scan for
3490 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3491 */
3492 for (i = 0; i < 1; i++) {
8f32380d
JT
3493 super = btrfs_read_dev_one_super(bdev, i);
3494 if (IS_ERR(super))
a512bbf8
YZ
3495 continue;
3496
a512bbf8 3497 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3498 if (latest)
3499 btrfs_release_disk_super(super);
3500
3501 latest = super;
a512bbf8 3502 transid = btrfs_super_generation(super);
a512bbf8
YZ
3503 }
3504 }
92fc03fb 3505
8f32380d 3506 return super;
a512bbf8
YZ
3507}
3508
4eedeb75 3509/*
abbb3b8e 3510 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3511 * pages we use for writing are locked.
4eedeb75 3512 *
abbb3b8e
DS
3513 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3514 * the expected device size at commit time. Note that max_mirrors must be
3515 * same for write and wait phases.
4eedeb75 3516 *
314b6dd0 3517 * Return number of errors when page is not found or submission fails.
4eedeb75 3518 */
a512bbf8 3519static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3520 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3521{
d5178578 3522 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3523 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3524 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3525 int i;
a512bbf8 3526 int errors = 0;
a512bbf8 3527 u64 bytenr;
a512bbf8
YZ
3528
3529 if (max_mirrors == 0)
3530 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3531
d5178578
JT
3532 shash->tfm = fs_info->csum_shash;
3533
a512bbf8 3534 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3535 struct page *page;
3536 struct bio *bio;
3537 struct btrfs_super_block *disk_super;
3538
a512bbf8 3539 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3540 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3541 device->commit_total_bytes)
a512bbf8
YZ
3542 break;
3543
abbb3b8e 3544 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3545
d5178578
JT
3546 crypto_shash_init(shash);
3547 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3548 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3549 crypto_shash_final(shash, sb->csum);
4eedeb75 3550
314b6dd0
JT
3551 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3552 GFP_NOFS);
3553 if (!page) {
abbb3b8e 3554 btrfs_err(device->fs_info,
314b6dd0 3555 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3556 bytenr);
3557 errors++;
4eedeb75 3558 continue;
abbb3b8e 3559 }
634554dc 3560
314b6dd0
JT
3561 /* Bump the refcount for wait_dev_supers() */
3562 get_page(page);
a512bbf8 3563
314b6dd0
JT
3564 disk_super = page_address(page);
3565 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3566
314b6dd0
JT
3567 /*
3568 * Directly use bios here instead of relying on the page cache
3569 * to do I/O, so we don't lose the ability to do integrity
3570 * checking.
3571 */
3572 bio = bio_alloc(GFP_NOFS, 1);
3573 bio_set_dev(bio, device->bdev);
3574 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3575 bio->bi_private = device;
3576 bio->bi_end_io = btrfs_end_super_write;
3577 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3578 offset_in_page(bytenr));
a512bbf8 3579
387125fc 3580 /*
314b6dd0
JT
3581 * We FUA only the first super block. The others we allow to
3582 * go down lazy and there's a short window where the on-disk
3583 * copies might still contain the older version.
387125fc 3584 */
314b6dd0 3585 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3586 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3587 bio->bi_opf |= REQ_FUA;
3588
3589 btrfsic_submit_bio(bio);
a512bbf8
YZ
3590 }
3591 return errors < i ? 0 : -1;
3592}
3593
abbb3b8e
DS
3594/*
3595 * Wait for write completion of superblocks done by write_dev_supers,
3596 * @max_mirrors same for write and wait phases.
3597 *
314b6dd0 3598 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3599 * date.
3600 */
3601static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3602{
abbb3b8e
DS
3603 int i;
3604 int errors = 0;
b6a535fa 3605 bool primary_failed = false;
abbb3b8e
DS
3606 u64 bytenr;
3607
3608 if (max_mirrors == 0)
3609 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3610
3611 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3612 struct page *page;
3613
abbb3b8e
DS
3614 bytenr = btrfs_sb_offset(i);
3615 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3616 device->commit_total_bytes)
3617 break;
3618
314b6dd0
JT
3619 page = find_get_page(device->bdev->bd_inode->i_mapping,
3620 bytenr >> PAGE_SHIFT);
3621 if (!page) {
abbb3b8e 3622 errors++;
b6a535fa
HM
3623 if (i == 0)
3624 primary_failed = true;
abbb3b8e
DS
3625 continue;
3626 }
314b6dd0
JT
3627 /* Page is submitted locked and unlocked once the IO completes */
3628 wait_on_page_locked(page);
3629 if (PageError(page)) {
abbb3b8e 3630 errors++;
b6a535fa
HM
3631 if (i == 0)
3632 primary_failed = true;
3633 }
abbb3b8e 3634
314b6dd0
JT
3635 /* Drop our reference */
3636 put_page(page);
abbb3b8e 3637
314b6dd0
JT
3638 /* Drop the reference from the writing run */
3639 put_page(page);
abbb3b8e
DS
3640 }
3641
b6a535fa
HM
3642 /* log error, force error return */
3643 if (primary_failed) {
3644 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3645 device->devid);
3646 return -1;
3647 }
3648
abbb3b8e
DS
3649 return errors < i ? 0 : -1;
3650}
3651
387125fc
CM
3652/*
3653 * endio for the write_dev_flush, this will wake anyone waiting
3654 * for the barrier when it is done
3655 */
4246a0b6 3656static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3657{
e0ae9994 3658 complete(bio->bi_private);
387125fc
CM
3659}
3660
3661/*
4fc6441a
AJ
3662 * Submit a flush request to the device if it supports it. Error handling is
3663 * done in the waiting counterpart.
387125fc 3664 */
4fc6441a 3665static void write_dev_flush(struct btrfs_device *device)
387125fc 3666{
c2a9c7ab 3667 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3668 struct bio *bio = device->flush_bio;
387125fc 3669
c2a9c7ab 3670 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3671 return;
387125fc 3672
e0ae9994 3673 bio_reset(bio);
387125fc 3674 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3675 bio_set_dev(bio, device->bdev);
8d910125 3676 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3677 init_completion(&device->flush_wait);
3678 bio->bi_private = &device->flush_wait;
387125fc 3679
43a01111 3680 btrfsic_submit_bio(bio);
1c3063b6 3681 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3682}
387125fc 3683
4fc6441a
AJ
3684/*
3685 * If the flush bio has been submitted by write_dev_flush, wait for it.
3686 */
8c27cb35 3687static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3688{
4fc6441a 3689 struct bio *bio = device->flush_bio;
387125fc 3690
1c3063b6 3691 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3692 return BLK_STS_OK;
387125fc 3693
1c3063b6 3694 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3695 wait_for_completion_io(&device->flush_wait);
387125fc 3696
8c27cb35 3697 return bio->bi_status;
387125fc 3698}
387125fc 3699
d10b82fe 3700static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3701{
6528b99d 3702 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3703 return -EIO;
387125fc
CM
3704 return 0;
3705}
3706
3707/*
3708 * send an empty flush down to each device in parallel,
3709 * then wait for them
3710 */
3711static int barrier_all_devices(struct btrfs_fs_info *info)
3712{
3713 struct list_head *head;
3714 struct btrfs_device *dev;
5af3e8cc 3715 int errors_wait = 0;
4e4cbee9 3716 blk_status_t ret;
387125fc 3717
1538e6c5 3718 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3719 /* send down all the barriers */
3720 head = &info->fs_devices->devices;
1538e6c5 3721 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3722 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3723 continue;
cea7c8bf 3724 if (!dev->bdev)
387125fc 3725 continue;
e12c9621 3726 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3727 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3728 continue;
3729
4fc6441a 3730 write_dev_flush(dev);
58efbc9f 3731 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3732 }
3733
3734 /* wait for all the barriers */
1538e6c5 3735 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3736 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3737 continue;
387125fc 3738 if (!dev->bdev) {
5af3e8cc 3739 errors_wait++;
387125fc
CM
3740 continue;
3741 }
e12c9621 3742 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3743 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3744 continue;
3745
4fc6441a 3746 ret = wait_dev_flush(dev);
401b41e5
AJ
3747 if (ret) {
3748 dev->last_flush_error = ret;
66b4993e
DS
3749 btrfs_dev_stat_inc_and_print(dev,
3750 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3751 errors_wait++;
401b41e5
AJ
3752 }
3753 }
3754
cea7c8bf 3755 if (errors_wait) {
401b41e5
AJ
3756 /*
3757 * At some point we need the status of all disks
3758 * to arrive at the volume status. So error checking
3759 * is being pushed to a separate loop.
3760 */
d10b82fe 3761 return check_barrier_error(info);
387125fc 3762 }
387125fc
CM
3763 return 0;
3764}
3765
943c6e99
ZL
3766int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3767{
8789f4fe
ZL
3768 int raid_type;
3769 int min_tolerated = INT_MAX;
943c6e99 3770
8789f4fe
ZL
3771 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3772 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3773 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3774 btrfs_raid_array[BTRFS_RAID_SINGLE].
3775 tolerated_failures);
943c6e99 3776
8789f4fe
ZL
3777 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3778 if (raid_type == BTRFS_RAID_SINGLE)
3779 continue;
41a6e891 3780 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3781 continue;
8c3e3582 3782 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3783 btrfs_raid_array[raid_type].
3784 tolerated_failures);
3785 }
943c6e99 3786
8789f4fe 3787 if (min_tolerated == INT_MAX) {
ab8d0fc4 3788 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3789 min_tolerated = 0;
3790 }
3791
3792 return min_tolerated;
943c6e99
ZL
3793}
3794
eece6a9c 3795int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3796{
e5e9a520 3797 struct list_head *head;
f2984462 3798 struct btrfs_device *dev;
a061fc8d 3799 struct btrfs_super_block *sb;
f2984462 3800 struct btrfs_dev_item *dev_item;
f2984462
CM
3801 int ret;
3802 int do_barriers;
a236aed1
CM
3803 int max_errors;
3804 int total_errors = 0;
a061fc8d 3805 u64 flags;
f2984462 3806
0b246afa 3807 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3808
3809 /*
3810 * max_mirrors == 0 indicates we're from commit_transaction,
3811 * not from fsync where the tree roots in fs_info have not
3812 * been consistent on disk.
3813 */
3814 if (max_mirrors == 0)
3815 backup_super_roots(fs_info);
f2984462 3816
0b246afa 3817 sb = fs_info->super_for_commit;
a061fc8d 3818 dev_item = &sb->dev_item;
e5e9a520 3819
0b246afa
JM
3820 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3821 head = &fs_info->fs_devices->devices;
3822 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3823
5af3e8cc 3824 if (do_barriers) {
0b246afa 3825 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3826 if (ret) {
3827 mutex_unlock(
0b246afa
JM
3828 &fs_info->fs_devices->device_list_mutex);
3829 btrfs_handle_fs_error(fs_info, ret,
3830 "errors while submitting device barriers.");
5af3e8cc
SB
3831 return ret;
3832 }
3833 }
387125fc 3834
1538e6c5 3835 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3836 if (!dev->bdev) {
3837 total_errors++;
3838 continue;
3839 }
e12c9621 3840 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3841 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3842 continue;
3843
2b82032c 3844 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3845 btrfs_set_stack_device_type(dev_item, dev->type);
3846 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3847 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3848 dev->commit_total_bytes);
ce7213c7
MX
3849 btrfs_set_stack_device_bytes_used(dev_item,
3850 dev->commit_bytes_used);
a061fc8d
CM
3851 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3852 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3853 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3854 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3855 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3856 BTRFS_FSID_SIZE);
a512bbf8 3857
a061fc8d
CM
3858 flags = btrfs_super_flags(sb);
3859 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3860
75cb857d
QW
3861 ret = btrfs_validate_write_super(fs_info, sb);
3862 if (ret < 0) {
3863 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3864 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3865 "unexpected superblock corruption detected");
3866 return -EUCLEAN;
3867 }
3868
abbb3b8e 3869 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3870 if (ret)
3871 total_errors++;
f2984462 3872 }
a236aed1 3873 if (total_errors > max_errors) {
0b246afa
JM
3874 btrfs_err(fs_info, "%d errors while writing supers",
3875 total_errors);
3876 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3877
9d565ba4 3878 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3879 btrfs_handle_fs_error(fs_info, -EIO,
3880 "%d errors while writing supers",
3881 total_errors);
9d565ba4 3882 return -EIO;
a236aed1 3883 }
f2984462 3884
a512bbf8 3885 total_errors = 0;
1538e6c5 3886 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3887 if (!dev->bdev)
3888 continue;
e12c9621 3889 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3890 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3891 continue;
3892
abbb3b8e 3893 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3894 if (ret)
3895 total_errors++;
f2984462 3896 }
0b246afa 3897 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3898 if (total_errors > max_errors) {
0b246afa
JM
3899 btrfs_handle_fs_error(fs_info, -EIO,
3900 "%d errors while writing supers",
3901 total_errors);
79787eaa 3902 return -EIO;
a236aed1 3903 }
f2984462
CM
3904 return 0;
3905}
3906
cb517eab
MX
3907/* Drop a fs root from the radix tree and free it. */
3908void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3909 struct btrfs_root *root)
2619ba1f 3910{
4df27c4d 3911 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3912 radix_tree_delete(&fs_info->fs_roots_radix,
3913 (unsigned long)root->root_key.objectid);
af01d2e5 3914 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
00246528 3915 btrfs_put_root(root);
4df27c4d 3916 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3917
3918 if (btrfs_root_refs(&root->root_item) == 0)
3919 synchronize_srcu(&fs_info->subvol_srcu);
3920
1c1ea4f7 3921 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3922 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3923 if (root->reloc_root) {
3924 free_extent_buffer(root->reloc_root->node);
3925 free_extent_buffer(root->reloc_root->commit_root);
00246528 3926 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3927 root->reloc_root = NULL;
3928 }
3929 }
3321719e 3930
faa2dbf0
JB
3931 if (root->free_ino_pinned)
3932 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3933 if (root->free_ino_ctl)
3934 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3935 btrfs_free_fs_root(root);
4df27c4d
YZ
3936}
3937
84db5ccf 3938void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3939{
57cdc8db 3940 iput(root->ino_cache_inode);
4df27c4d 3941 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3942 if (root->anon_dev)
3943 free_anon_bdev(root->anon_dev);
dcc3eb96 3944 btrfs_drew_lock_destroy(&root->snapshot_lock);
4df27c4d
YZ
3945 free_extent_buffer(root->node);
3946 free_extent_buffer(root->commit_root);
581bb050
LZ
3947 kfree(root->free_ino_ctl);
3948 kfree(root->free_ino_pinned);
00246528 3949 btrfs_put_root(root);
2619ba1f
CM
3950}
3951
c146afad 3952int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3953{
c146afad
YZ
3954 u64 root_objectid = 0;
3955 struct btrfs_root *gang[8];
65d33fd7
QW
3956 int i = 0;
3957 int err = 0;
3958 unsigned int ret = 0;
3959 int index;
e089f05c 3960
c146afad 3961 while (1) {
65d33fd7 3962 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3963 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3964 (void **)gang, root_objectid,
3965 ARRAY_SIZE(gang));
65d33fd7
QW
3966 if (!ret) {
3967 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3968 break;
65d33fd7 3969 }
5d4f98a2 3970 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3971
c146afad 3972 for (i = 0; i < ret; i++) {
65d33fd7
QW
3973 /* Avoid to grab roots in dead_roots */
3974 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3975 gang[i] = NULL;
3976 continue;
3977 }
3978 /* grab all the search result for later use */
00246528 3979 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7
QW
3980 }
3981 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3982
65d33fd7
QW
3983 for (i = 0; i < ret; i++) {
3984 if (!gang[i])
3985 continue;
c146afad 3986 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3987 err = btrfs_orphan_cleanup(gang[i]);
3988 if (err)
65d33fd7 3989 break;
00246528 3990 btrfs_put_root(gang[i]);
c146afad
YZ
3991 }
3992 root_objectid++;
3993 }
65d33fd7
QW
3994
3995 /* release the uncleaned roots due to error */
3996 for (; i < ret; i++) {
3997 if (gang[i])
00246528 3998 btrfs_put_root(gang[i]);
65d33fd7
QW
3999 }
4000 return err;
c146afad 4001}
a2135011 4002
6bccf3ab 4003int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4004{
6bccf3ab 4005 struct btrfs_root *root = fs_info->tree_root;
c146afad 4006 struct btrfs_trans_handle *trans;
a74a4b97 4007
0b246afa 4008 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4009 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4010 mutex_unlock(&fs_info->cleaner_mutex);
4011 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4012
4013 /* wait until ongoing cleanup work done */
0b246afa
JM
4014 down_write(&fs_info->cleanup_work_sem);
4015 up_write(&fs_info->cleanup_work_sem);
c71bf099 4016
7a7eaa40 4017 trans = btrfs_join_transaction(root);
3612b495
TI
4018 if (IS_ERR(trans))
4019 return PTR_ERR(trans);
3a45bb20 4020 return btrfs_commit_transaction(trans);
c146afad
YZ
4021}
4022
b105e927 4023void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4024{
c146afad
YZ
4025 int ret;
4026
afcdd129 4027 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4028 /*
4029 * We don't want the cleaner to start new transactions, add more delayed
4030 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4031 * because that frees the task_struct, and the transaction kthread might
4032 * still try to wake up the cleaner.
4033 */
4034 kthread_park(fs_info->cleaner_kthread);
c146afad 4035
7343dd61 4036 /* wait for the qgroup rescan worker to stop */
d06f23d6 4037 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4038
803b2f54
SB
4039 /* wait for the uuid_scan task to finish */
4040 down(&fs_info->uuid_tree_rescan_sem);
4041 /* avoid complains from lockdep et al., set sem back to initial state */
4042 up(&fs_info->uuid_tree_rescan_sem);
4043
837d5b6e 4044 /* pause restriper - we want to resume on mount */
aa1b8cd4 4045 btrfs_pause_balance(fs_info);
837d5b6e 4046
8dabb742
SB
4047 btrfs_dev_replace_suspend_for_unmount(fs_info);
4048
aa1b8cd4 4049 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4050
4051 /* wait for any defraggers to finish */
4052 wait_event(fs_info->transaction_wait,
4053 (atomic_read(&fs_info->defrag_running) == 0));
4054
4055 /* clear out the rbtree of defraggable inodes */
26176e7c 4056 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4057
21c7e756
MX
4058 cancel_work_sync(&fs_info->async_reclaim_work);
4059
b0643e59
DZ
4060 /* Cancel or finish ongoing discard work */
4061 btrfs_discard_cleanup(fs_info);
4062
bc98a42c 4063 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4064 /*
d6fd0ae2
OS
4065 * The cleaner kthread is stopped, so do one final pass over
4066 * unused block groups.
e44163e1 4067 */
0b246afa 4068 btrfs_delete_unused_bgs(fs_info);
e44163e1 4069
6bccf3ab 4070 ret = btrfs_commit_super(fs_info);
acce952b 4071 if (ret)
04892340 4072 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4073 }
4074
af722733
LB
4075 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4076 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4077 btrfs_error_commit_super(fs_info);
0f7d52f4 4078
e3029d9f
AV
4079 kthread_stop(fs_info->transaction_kthread);
4080 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4081
e187831e 4082 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4083 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4084
04892340 4085 btrfs_free_qgroup_config(fs_info);
fe816d0f 4086 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4087
963d678b 4088 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4089 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4090 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4091 }
bcc63abb 4092
4297ff84
JB
4093 if (percpu_counter_sum(&fs_info->dio_bytes))
4094 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4095 percpu_counter_sum(&fs_info->dio_bytes));
4096
6618a59b 4097 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4098 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4099
faa2dbf0 4100 btrfs_free_fs_roots(fs_info);
d10c5f31 4101
1a4319cc
LB
4102 btrfs_put_block_group_cache(fs_info);
4103
de348ee0
WS
4104 /*
4105 * we must make sure there is not any read request to
4106 * submit after we stopping all workers.
4107 */
4108 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4109 btrfs_stop_all_workers(fs_info);
4110
afcdd129 4111 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4112 free_root_pointers(fs_info, true);
9ad6b7bc 4113
4e19443d
JB
4114 /*
4115 * We must free the block groups after dropping the fs_roots as we could
4116 * have had an IO error and have left over tree log blocks that aren't
4117 * cleaned up until the fs roots are freed. This makes the block group
4118 * accounting appear to be wrong because there's pending reserved bytes,
4119 * so make sure we do the block group cleanup afterwards.
4120 */
4121 btrfs_free_block_groups(fs_info);
4122
13e6c37b 4123 iput(fs_info->btree_inode);
d6bfde87 4124
21adbd5c 4125#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4126 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4127 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4128#endif
4129
0b86a832 4130 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4131 btrfs_close_devices(fs_info->fs_devices);
76dda93c 4132 cleanup_srcu_struct(&fs_info->subvol_srcu);
eb60ceac
CM
4133}
4134
b9fab919
CM
4135int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4136 int atomic)
5f39d397 4137{
1259ab75 4138 int ret;
727011e0 4139 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4140
0b32f4bb 4141 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4142 if (!ret)
4143 return ret;
4144
4145 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4146 parent_transid, atomic);
4147 if (ret == -EAGAIN)
4148 return ret;
1259ab75 4149 return !ret;
5f39d397
CM
4150}
4151
5f39d397
CM
4152void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4153{
0b246afa 4154 struct btrfs_fs_info *fs_info;
06ea65a3 4155 struct btrfs_root *root;
5f39d397 4156 u64 transid = btrfs_header_generation(buf);
b9473439 4157 int was_dirty;
b4ce94de 4158
06ea65a3
JB
4159#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4160 /*
4161 * This is a fast path so only do this check if we have sanity tests
52042d8e 4162 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4163 * outside of the sanity tests.
4164 */
b0132a3b 4165 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4166 return;
4167#endif
4168 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4169 fs_info = root->fs_info;
b9447ef8 4170 btrfs_assert_tree_locked(buf);
0b246afa 4171 if (transid != fs_info->generation)
5d163e0e 4172 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4173 buf->start, transid, fs_info->generation);
0b32f4bb 4174 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4175 if (!was_dirty)
104b4e51
NB
4176 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4177 buf->len,
4178 fs_info->dirty_metadata_batch);
1f21ef0a 4179#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4180 /*
4181 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4182 * but item data not updated.
4183 * So here we should only check item pointers, not item data.
4184 */
4185 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4186 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4187 btrfs_print_leaf(buf);
1f21ef0a
FM
4188 ASSERT(0);
4189 }
4190#endif
eb60ceac
CM
4191}
4192
2ff7e61e 4193static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4194 int flush_delayed)
16cdcec7
MX
4195{
4196 /*
4197 * looks as though older kernels can get into trouble with
4198 * this code, they end up stuck in balance_dirty_pages forever
4199 */
e2d84521 4200 int ret;
16cdcec7
MX
4201
4202 if (current->flags & PF_MEMALLOC)
4203 return;
4204
b53d3f5d 4205 if (flush_delayed)
2ff7e61e 4206 btrfs_balance_delayed_items(fs_info);
16cdcec7 4207
d814a491
EL
4208 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4209 BTRFS_DIRTY_METADATA_THRESH,
4210 fs_info->dirty_metadata_batch);
e2d84521 4211 if (ret > 0) {
0b246afa 4212 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4213 }
16cdcec7
MX
4214}
4215
2ff7e61e 4216void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4217{
2ff7e61e 4218 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4219}
585ad2c3 4220
2ff7e61e 4221void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4222{
2ff7e61e 4223 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4224}
6b80053d 4225
581c1760
QW
4226int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4227 struct btrfs_key *first_key)
6b80053d 4228{
5ab12d1f 4229 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4230 level, first_key);
6b80053d 4231}
0da5468f 4232
2ff7e61e 4233static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4234{
fe816d0f
NB
4235 /* cleanup FS via transaction */
4236 btrfs_cleanup_transaction(fs_info);
4237
0b246afa 4238 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4239 btrfs_run_delayed_iputs(fs_info);
0b246afa 4240 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4241
0b246afa
JM
4242 down_write(&fs_info->cleanup_work_sem);
4243 up_write(&fs_info->cleanup_work_sem);
acce952b 4244}
4245
143bede5 4246static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4247{
acce952b 4248 struct btrfs_ordered_extent *ordered;
acce952b 4249
199c2a9c 4250 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4251 /*
4252 * This will just short circuit the ordered completion stuff which will
4253 * make sure the ordered extent gets properly cleaned up.
4254 */
199c2a9c 4255 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4256 root_extent_list)
4257 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4258 spin_unlock(&root->ordered_extent_lock);
4259}
4260
4261static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4262{
4263 struct btrfs_root *root;
4264 struct list_head splice;
4265
4266 INIT_LIST_HEAD(&splice);
4267
4268 spin_lock(&fs_info->ordered_root_lock);
4269 list_splice_init(&fs_info->ordered_roots, &splice);
4270 while (!list_empty(&splice)) {
4271 root = list_first_entry(&splice, struct btrfs_root,
4272 ordered_root);
1de2cfde
JB
4273 list_move_tail(&root->ordered_root,
4274 &fs_info->ordered_roots);
199c2a9c 4275
2a85d9ca 4276 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4277 btrfs_destroy_ordered_extents(root);
4278
2a85d9ca
LB
4279 cond_resched();
4280 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4281 }
4282 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4283
4284 /*
4285 * We need this here because if we've been flipped read-only we won't
4286 * get sync() from the umount, so we need to make sure any ordered
4287 * extents that haven't had their dirty pages IO start writeout yet
4288 * actually get run and error out properly.
4289 */
4290 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4291}
4292
35a3621b 4293static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4294 struct btrfs_fs_info *fs_info)
acce952b 4295{
4296 struct rb_node *node;
4297 struct btrfs_delayed_ref_root *delayed_refs;
4298 struct btrfs_delayed_ref_node *ref;
4299 int ret = 0;
4300
4301 delayed_refs = &trans->delayed_refs;
4302
4303 spin_lock(&delayed_refs->lock);
d7df2c79 4304 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4305 spin_unlock(&delayed_refs->lock);
b79ce3dd 4306 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4307 return ret;
4308 }
4309
5c9d028b 4310 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4311 struct btrfs_delayed_ref_head *head;
0e0adbcf 4312 struct rb_node *n;
e78417d1 4313 bool pin_bytes = false;
acce952b 4314
d7df2c79
JB
4315 head = rb_entry(node, struct btrfs_delayed_ref_head,
4316 href_node);
3069bd26 4317 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4318 continue;
3069bd26 4319
d7df2c79 4320 spin_lock(&head->lock);
e3d03965 4321 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4322 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4323 ref_node);
d7df2c79 4324 ref->in_tree = 0;
e3d03965 4325 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4326 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4327 if (!list_empty(&ref->add_list))
4328 list_del(&ref->add_list);
d7df2c79
JB
4329 atomic_dec(&delayed_refs->num_entries);
4330 btrfs_put_delayed_ref(ref);
e78417d1 4331 }
d7df2c79
JB
4332 if (head->must_insert_reserved)
4333 pin_bytes = true;
4334 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4335 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4336 spin_unlock(&head->lock);
4337 spin_unlock(&delayed_refs->lock);
4338 mutex_unlock(&head->mutex);
acce952b 4339
f603bb94
NB
4340 if (pin_bytes) {
4341 struct btrfs_block_group *cache;
4342
4343 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4344 BUG_ON(!cache);
4345
4346 spin_lock(&cache->space_info->lock);
4347 spin_lock(&cache->lock);
4348 cache->pinned += head->num_bytes;
4349 btrfs_space_info_update_bytes_pinned(fs_info,
4350 cache->space_info, head->num_bytes);
4351 cache->reserved -= head->num_bytes;
4352 cache->space_info->bytes_reserved -= head->num_bytes;
4353 spin_unlock(&cache->lock);
4354 spin_unlock(&cache->space_info->lock);
4355 percpu_counter_add_batch(
4356 &cache->space_info->total_bytes_pinned,
4357 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4358
4359 btrfs_put_block_group(cache);
4360
4361 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4362 head->bytenr + head->num_bytes - 1);
4363 }
31890da0 4364 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4365 btrfs_put_delayed_ref_head(head);
acce952b 4366 cond_resched();
4367 spin_lock(&delayed_refs->lock);
4368 }
81f7eb00 4369 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4370
4371 spin_unlock(&delayed_refs->lock);
4372
4373 return ret;
4374}
4375
143bede5 4376static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4377{
4378 struct btrfs_inode *btrfs_inode;
4379 struct list_head splice;
4380
4381 INIT_LIST_HEAD(&splice);
4382
eb73c1b7
MX
4383 spin_lock(&root->delalloc_lock);
4384 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4385
4386 while (!list_empty(&splice)) {
fe816d0f 4387 struct inode *inode = NULL;
eb73c1b7
MX
4388 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4389 delalloc_inodes);
fe816d0f 4390 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4391 spin_unlock(&root->delalloc_lock);
acce952b 4392
fe816d0f
NB
4393 /*
4394 * Make sure we get a live inode and that it'll not disappear
4395 * meanwhile.
4396 */
4397 inode = igrab(&btrfs_inode->vfs_inode);
4398 if (inode) {
4399 invalidate_inode_pages2(inode->i_mapping);
4400 iput(inode);
4401 }
eb73c1b7 4402 spin_lock(&root->delalloc_lock);
acce952b 4403 }
eb73c1b7
MX
4404 spin_unlock(&root->delalloc_lock);
4405}
4406
4407static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4408{
4409 struct btrfs_root *root;
4410 struct list_head splice;
4411
4412 INIT_LIST_HEAD(&splice);
4413
4414 spin_lock(&fs_info->delalloc_root_lock);
4415 list_splice_init(&fs_info->delalloc_roots, &splice);
4416 while (!list_empty(&splice)) {
4417 root = list_first_entry(&splice, struct btrfs_root,
4418 delalloc_root);
00246528 4419 root = btrfs_grab_root(root);
eb73c1b7
MX
4420 BUG_ON(!root);
4421 spin_unlock(&fs_info->delalloc_root_lock);
4422
4423 btrfs_destroy_delalloc_inodes(root);
00246528 4424 btrfs_put_root(root);
eb73c1b7
MX
4425
4426 spin_lock(&fs_info->delalloc_root_lock);
4427 }
4428 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4429}
4430
2ff7e61e 4431static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4432 struct extent_io_tree *dirty_pages,
4433 int mark)
4434{
4435 int ret;
acce952b 4436 struct extent_buffer *eb;
4437 u64 start = 0;
4438 u64 end;
acce952b 4439
4440 while (1) {
4441 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4442 mark, NULL);
acce952b 4443 if (ret)
4444 break;
4445
91166212 4446 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4447 while (start <= end) {
0b246afa
JM
4448 eb = find_extent_buffer(fs_info, start);
4449 start += fs_info->nodesize;
fd8b2b61 4450 if (!eb)
acce952b 4451 continue;
fd8b2b61 4452 wait_on_extent_buffer_writeback(eb);
acce952b 4453
fd8b2b61
JB
4454 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4455 &eb->bflags))
4456 clear_extent_buffer_dirty(eb);
4457 free_extent_buffer_stale(eb);
acce952b 4458 }
4459 }
4460
4461 return ret;
4462}
4463
2ff7e61e 4464static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4465 struct extent_io_tree *unpin)
acce952b 4466{
acce952b 4467 u64 start;
4468 u64 end;
4469 int ret;
4470
acce952b 4471 while (1) {
0e6ec385
FM
4472 struct extent_state *cached_state = NULL;
4473
fcd5e742
LF
4474 /*
4475 * The btrfs_finish_extent_commit() may get the same range as
4476 * ours between find_first_extent_bit and clear_extent_dirty.
4477 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4478 * the same extent range.
4479 */
4480 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4481 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4482 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4483 if (ret) {
4484 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4485 break;
fcd5e742 4486 }
acce952b 4487
0e6ec385
FM
4488 clear_extent_dirty(unpin, start, end, &cached_state);
4489 free_extent_state(cached_state);
2ff7e61e 4490 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4491 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4492 cond_resched();
4493 }
4494
4495 return 0;
4496}
4497
32da5386 4498static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4499{
4500 struct inode *inode;
4501
4502 inode = cache->io_ctl.inode;
4503 if (inode) {
4504 invalidate_inode_pages2(inode->i_mapping);
4505 BTRFS_I(inode)->generation = 0;
4506 cache->io_ctl.inode = NULL;
4507 iput(inode);
4508 }
4509 btrfs_put_block_group(cache);
4510}
4511
4512void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4513 struct btrfs_fs_info *fs_info)
c79a1751 4514{
32da5386 4515 struct btrfs_block_group *cache;
c79a1751
LB
4516
4517 spin_lock(&cur_trans->dirty_bgs_lock);
4518 while (!list_empty(&cur_trans->dirty_bgs)) {
4519 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4520 struct btrfs_block_group,
c79a1751 4521 dirty_list);
c79a1751
LB
4522
4523 if (!list_empty(&cache->io_list)) {
4524 spin_unlock(&cur_trans->dirty_bgs_lock);
4525 list_del_init(&cache->io_list);
4526 btrfs_cleanup_bg_io(cache);
4527 spin_lock(&cur_trans->dirty_bgs_lock);
4528 }
4529
4530 list_del_init(&cache->dirty_list);
4531 spin_lock(&cache->lock);
4532 cache->disk_cache_state = BTRFS_DC_ERROR;
4533 spin_unlock(&cache->lock);
4534
4535 spin_unlock(&cur_trans->dirty_bgs_lock);
4536 btrfs_put_block_group(cache);
ba2c4d4e 4537 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4538 spin_lock(&cur_trans->dirty_bgs_lock);
4539 }
4540 spin_unlock(&cur_trans->dirty_bgs_lock);
4541
45ae2c18
NB
4542 /*
4543 * Refer to the definition of io_bgs member for details why it's safe
4544 * to use it without any locking
4545 */
c79a1751
LB
4546 while (!list_empty(&cur_trans->io_bgs)) {
4547 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4548 struct btrfs_block_group,
c79a1751 4549 io_list);
c79a1751
LB
4550
4551 list_del_init(&cache->io_list);
4552 spin_lock(&cache->lock);
4553 cache->disk_cache_state = BTRFS_DC_ERROR;
4554 spin_unlock(&cache->lock);
4555 btrfs_cleanup_bg_io(cache);
4556 }
4557}
4558
49b25e05 4559void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4560 struct btrfs_fs_info *fs_info)
49b25e05 4561{
bbbf7243
NB
4562 struct btrfs_device *dev, *tmp;
4563
2ff7e61e 4564 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4565 ASSERT(list_empty(&cur_trans->dirty_bgs));
4566 ASSERT(list_empty(&cur_trans->io_bgs));
4567
bbbf7243
NB
4568 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4569 post_commit_list) {
4570 list_del_init(&dev->post_commit_list);
4571 }
4572
2ff7e61e 4573 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4574
4a9d8bde 4575 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4576 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4577
4a9d8bde 4578 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4579 wake_up(&fs_info->transaction_wait);
49b25e05 4580
ccdf9b30 4581 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4582
2ff7e61e 4583 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4584 EXTENT_DIRTY);
fe119a6e 4585 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4586
4a9d8bde
MX
4587 cur_trans->state =TRANS_STATE_COMPLETED;
4588 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4589}
4590
2ff7e61e 4591static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4592{
4593 struct btrfs_transaction *t;
acce952b 4594
0b246afa 4595 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4596
0b246afa
JM
4597 spin_lock(&fs_info->trans_lock);
4598 while (!list_empty(&fs_info->trans_list)) {
4599 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4600 struct btrfs_transaction, list);
4601 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4602 refcount_inc(&t->use_count);
0b246afa 4603 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4604 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4605 btrfs_put_transaction(t);
0b246afa 4606 spin_lock(&fs_info->trans_lock);
724e2315
JB
4607 continue;
4608 }
0b246afa 4609 if (t == fs_info->running_transaction) {
724e2315 4610 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4611 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4612 /*
4613 * We wait for 0 num_writers since we don't hold a trans
4614 * handle open currently for this transaction.
4615 */
4616 wait_event(t->writer_wait,
4617 atomic_read(&t->num_writers) == 0);
4618 } else {
0b246afa 4619 spin_unlock(&fs_info->trans_lock);
724e2315 4620 }
2ff7e61e 4621 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4622
0b246afa
JM
4623 spin_lock(&fs_info->trans_lock);
4624 if (t == fs_info->running_transaction)
4625 fs_info->running_transaction = NULL;
acce952b 4626 list_del_init(&t->list);
0b246afa 4627 spin_unlock(&fs_info->trans_lock);
acce952b 4628
724e2315 4629 btrfs_put_transaction(t);
2ff7e61e 4630 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4631 spin_lock(&fs_info->trans_lock);
724e2315 4632 }
0b246afa
JM
4633 spin_unlock(&fs_info->trans_lock);
4634 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4635 btrfs_destroy_delayed_inodes(fs_info);
4636 btrfs_assert_delayed_root_empty(fs_info);
0b246afa
JM
4637 btrfs_destroy_all_delalloc_inodes(fs_info);
4638 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4639
4640 return 0;
4641}
4642
e8c9f186 4643static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4644 /* mandatory callbacks */
0b86a832 4645 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4646 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4647};