]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: fix lockdep warning when creating free space tree
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
141386e1
JB
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
d352ac68
CM
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
44b8bd7e 111struct async_submit_bio {
8896a08d 112 struct inode *inode;
44b8bd7e 113 struct bio *bio;
a758781d 114 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 115 int mirror_num;
eaf25d93
CM
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
8b712842 121 struct btrfs_work work;
4e4cbee9 122 blk_status_t status;
44b8bd7e
CM
123};
124
85d4e461
CM
125/*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
4008c04a 135 *
85d4e461
CM
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 139 *
85d4e461
CM
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 143 *
85d4e461
CM
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
4008c04a
CM
147 */
148#ifdef CONFIG_DEBUG_LOCK_ALLOC
149# if BTRFS_MAX_LEVEL != 8
150# error
151# endif
85d4e461 152
ab1405aa
DS
153#define DEFINE_LEVEL(stem, level) \
154 .names[level] = "btrfs-" stem "-0" #level,
155
156#define DEFINE_NAME(stem) \
157 DEFINE_LEVEL(stem, 0) \
158 DEFINE_LEVEL(stem, 1) \
159 DEFINE_LEVEL(stem, 2) \
160 DEFINE_LEVEL(stem, 3) \
161 DEFINE_LEVEL(stem, 4) \
162 DEFINE_LEVEL(stem, 5) \
163 DEFINE_LEVEL(stem, 6) \
164 DEFINE_LEVEL(stem, 7)
165
85d4e461
CM
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
ab1405aa 168 /* Longest entry: btrfs-free-space-00 */
387824af
DS
169 char names[BTRFS_MAX_LEVEL][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 171} btrfs_lockdep_keysets[] = {
ab1405aa
DS
172 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
175 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
176 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
177 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
178 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
179 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
180 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
181 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
182 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
183 { .id = 0, DEFINE_NAME("tree") },
4008c04a 184};
85d4e461 185
ab1405aa
DS
186#undef DEFINE_LEVEL
187#undef DEFINE_NAME
85d4e461
CM
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68 207/*
2996e1f8 208 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 209 */
c67b3892 210static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 211{
d5178578 212 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 213 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
a26663e7 214 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 215 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 216 char *kaddr;
e9be5a30 217 int i;
d5178578
JT
218
219 shash->tfm = fs_info->csum_shash;
220 crypto_shash_init(shash);
a26663e7 221 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 222 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 223 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 224
e9be5a30
DS
225 for (i = 1; i < num_pages; i++) {
226 kaddr = page_address(buf->pages[i]);
227 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 228 }
71a63551 229 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 230 crypto_shash_final(shash, result);
19c00ddc
CM
231}
232
d352ac68
CM
233/*
234 * we can't consider a given block up to date unless the transid of the
235 * block matches the transid in the parent node's pointer. This is how we
236 * detect blocks that either didn't get written at all or got written
237 * in the wrong place.
238 */
1259ab75 239static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
240 struct extent_buffer *eb, u64 parent_transid,
241 int atomic)
1259ab75 242{
2ac55d41 243 struct extent_state *cached_state = NULL;
1259ab75 244 int ret;
2755a0de 245 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
246
247 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
248 return 0;
249
b9fab919
CM
250 if (atomic)
251 return -EAGAIN;
252
ac5887c8 253 if (need_lock)
a26e8c9f 254 btrfs_tree_read_lock(eb);
a26e8c9f 255
2ac55d41 256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 257 &cached_state);
0b32f4bb 258 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
259 btrfs_header_generation(eb) == parent_transid) {
260 ret = 0;
261 goto out;
262 }
94647322
DS
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
265 eb->start,
29549aec 266 parent_transid, btrfs_header_generation(eb));
1259ab75 267 ret = 1;
a26e8c9f
JB
268
269 /*
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
01327610 272 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
276 */
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
33958dc6 279out:
2ac55d41 280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 281 &cached_state);
472b909f 282 if (need_lock)
ac5887c8 283 btrfs_tree_read_unlock(eb);
1259ab75 284 return ret;
1259ab75
CM
285}
286
e7e16f48
JT
287static bool btrfs_supported_super_csum(u16 csum_type)
288{
289 switch (csum_type) {
290 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 291 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 292 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 293 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
294 return true;
295 default:
296 return false;
297 }
298}
299
1104a885
DS
300/*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
ab8d0fc4
JM
304static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 char *raw_disk_sb)
1104a885
DS
306{
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 309 char result[BTRFS_CSUM_SIZE];
d5178578
JT
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312 shash->tfm = fs_info->csum_shash;
1104a885 313
51bce6c9
JT
314 /*
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
318 */
fd08001f
EB
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 321
55fc29be 322 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 323 return 1;
1104a885 324
e7e16f48 325 return 0;
1104a885
DS
326}
327
e064d5e9 328int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 329 struct btrfs_key *first_key, u64 parent_transid)
581c1760 330{
e064d5e9 331 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
332 int found_level;
333 struct btrfs_key found_key;
334 int ret;
335
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
63489055
QW
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
340 btrfs_err(fs_info,
341"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
581c1760
QW
343 return -EIO;
344 }
345
346 if (!first_key)
347 return 0;
348
5d41be6f
QW
349 /*
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
354 */
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 return 0;
62fdaa52
QW
357
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
360 btrfs_err(fs_info,
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 eb->start);
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 return -EUCLEAN;
365 }
366
581c1760
QW
367 if (found_level)
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
369 else
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
581c1760 373 if (ret) {
63489055
QW
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 376 btrfs_err(fs_info,
ff76a864
LB
377"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
381 found_key.offset);
581c1760 382 }
581c1760
QW
383 return ret;
384}
385
d352ac68
CM
386/*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
389 *
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
d352ac68 393 */
5ab12d1f 394static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
f188591e 397{
5ab12d1f 398 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 399 struct extent_io_tree *io_tree;
ea466794 400 int failed = 0;
f188591e
CM
401 int ret;
402 int num_copies = 0;
403 int mirror_num = 0;
ea466794 404 int failed_mirror = 0;
f188591e 405
0b246afa 406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 407 while (1) {
f8397d69 408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 410 if (!ret) {
581c1760 411 if (verify_parent_transid(io_tree, eb,
b9fab919 412 parent_transid, 0))
256dd1bb 413 ret = -EIO;
e064d5e9 414 else if (btrfs_verify_level_key(eb, level,
448de471 415 first_key, parent_transid))
581c1760
QW
416 ret = -EUCLEAN;
417 else
418 break;
256dd1bb 419 }
d397712b 420
0b246afa 421 num_copies = btrfs_num_copies(fs_info,
f188591e 422 eb->start, eb->len);
4235298e 423 if (num_copies == 1)
ea466794 424 break;
4235298e 425
5cf1ab56
JB
426 if (!failed_mirror) {
427 failed = 1;
428 failed_mirror = eb->read_mirror;
429 }
430
f188591e 431 mirror_num++;
ea466794
JB
432 if (mirror_num == failed_mirror)
433 mirror_num++;
434
4235298e 435 if (mirror_num > num_copies)
ea466794 436 break;
f188591e 437 }
ea466794 438
c0901581 439 if (failed && !ret && failed_mirror)
20a1fbf9 440 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
441
442 return ret;
f188591e 443}
19c00ddc 444
d352ac68 445/*
ac303b69
QW
446 * Checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block.
448 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 449 */
ac303b69 450static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 451{
ac303b69 452 struct page *page = bvec->bv_page;
4eee4fa4 453 u64 start = page_offset(page);
19c00ddc 454 u64 found_start;
2996e1f8 455 u8 result[BTRFS_CSUM_SIZE];
19c00ddc 456 struct extent_buffer *eb;
8d47a0d8 457 int ret;
f188591e 458
4f2de97a
JB
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
0f805531 462
19c00ddc 463 found_start = btrfs_header_bytenr(eb);
0f805531
AL
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
de37aa51 473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
0f805531 476
c67b3892 477 csum_tree_block(eb, result);
2996e1f8 478
8d47a0d8
QW
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
c06631b0 485 btrfs_print_tree(eb, 0);
8d47a0d8
QW
486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
c06631b0 489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
490 return ret;
491 }
713cebfb 492 write_extent_buffer(eb, result, 0, fs_info->csum_size);
8d47a0d8 493
2996e1f8 494 return 0;
19c00ddc
CM
495}
496
b0c9b3b0 497static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 498{
b0c9b3b0 499 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 501 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 502 u8 *metadata_uuid;
2b82032c 503
9a8658e3
DS
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
944d3f9f
NB
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
515
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
518
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
2b82032c
YZ
524}
525
77bf40a2
QW
526/* Do basic extent buffer checks at read time */
527static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 528{
77bf40a2 529 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 530 u64 found_start;
77bf40a2
QW
531 const u32 csum_size = fs_info->csum_size;
532 u8 found_level;
2996e1f8 533 u8 result[BTRFS_CSUM_SIZE];
77bf40a2 534 int ret = 0;
ea466794 535
ce9adaa5 536 found_start = btrfs_header_bytenr(eb);
727011e0 537 if (found_start != eb->start) {
893bf4b1
SY
538 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
539 eb->start, found_start);
f188591e 540 ret = -EIO;
77bf40a2 541 goto out;
ce9adaa5 542 }
b0c9b3b0 543 if (check_tree_block_fsid(eb)) {
02873e43
ZL
544 btrfs_err_rl(fs_info, "bad fsid on block %llu",
545 eb->start);
1259ab75 546 ret = -EIO;
77bf40a2 547 goto out;
1259ab75 548 }
ce9adaa5 549 found_level = btrfs_header_level(eb);
1c24c3ce 550 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
551 btrfs_err(fs_info, "bad tree block level %d on %llu",
552 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 553 ret = -EIO;
77bf40a2 554 goto out;
1c24c3ce 555 }
ce9adaa5 556
c67b3892 557 csum_tree_block(eb, result);
a826d6dc 558
2996e1f8 559 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 560 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
561
562 read_extent_buffer(eb, &val, 0, csum_size);
563 btrfs_warn_rl(fs_info,
35be8851 564 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 565 fs_info->sb->s_id, eb->start,
35be8851
JT
566 CSUM_FMT_VALUE(csum_size, val),
567 CSUM_FMT_VALUE(csum_size, result),
568 btrfs_header_level(eb));
2996e1f8 569 ret = -EUCLEAN;
77bf40a2 570 goto out;
2996e1f8
JT
571 }
572
a826d6dc
JB
573 /*
574 * If this is a leaf block and it is corrupt, set the corrupt bit so
575 * that we don't try and read the other copies of this block, just
576 * return -EIO.
577 */
1c4360ee 578 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
579 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
580 ret = -EIO;
581 }
ce9adaa5 582
813fd1dc 583 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
584 ret = -EIO;
585
0b32f4bb
JB
586 if (!ret)
587 set_extent_buffer_uptodate(eb);
75391f0d
QW
588 else
589 btrfs_err(fs_info,
590 "block=%llu read time tree block corruption detected",
591 eb->start);
77bf40a2
QW
592out:
593 return ret;
594}
595
8e1dc982 596int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
77bf40a2
QW
597 struct page *page, u64 start, u64 end,
598 int mirror)
599{
600 struct extent_buffer *eb;
601 int ret = 0;
602 int reads_done;
603
604 ASSERT(page->private);
605 eb = (struct extent_buffer *)page->private;
606
607 /*
608 * The pending IO might have been the only thing that kept this buffer
609 * in memory. Make sure we have a ref for all this other checks
610 */
611 atomic_inc(&eb->refs);
612
613 reads_done = atomic_dec_and_test(&eb->io_pages);
614 if (!reads_done)
615 goto err;
616
617 eb->read_mirror = mirror;
618 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619 ret = -EIO;
620 goto err;
621 }
622 ret = validate_extent_buffer(eb);
ce9adaa5 623err:
79fb65a1
JB
624 if (reads_done &&
625 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 626 btree_readahead_hook(eb, ret);
4bb31e92 627
53b381b3
DW
628 if (ret) {
629 /*
630 * our io error hook is going to dec the io pages
631 * again, we have to make sure it has something
632 * to decrement
633 */
634 atomic_inc(&eb->io_pages);
0b32f4bb 635 clear_extent_buffer_uptodate(eb);
53b381b3 636 }
0b32f4bb 637 free_extent_buffer(eb);
77bf40a2 638
f188591e 639 return ret;
ce9adaa5
CM
640}
641
4246a0b6 642static void end_workqueue_bio(struct bio *bio)
ce9adaa5 643{
97eb6b69 644 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 645 struct btrfs_fs_info *fs_info;
9e0af237 646 struct btrfs_workqueue *wq;
ce9adaa5 647
ce9adaa5 648 fs_info = end_io_wq->info;
4e4cbee9 649 end_io_wq->status = bio->bi_status;
d20f7043 650
37226b21 651 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 652 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 653 wq = fs_info->endio_meta_write_workers;
a0cac0ec 654 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 655 wq = fs_info->endio_freespace_worker;
a0cac0ec 656 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 657 wq = fs_info->endio_raid56_workers;
a0cac0ec 658 else
9e0af237 659 wq = fs_info->endio_write_workers;
d20f7043 660 } else {
5c047a69 661 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 662 wq = fs_info->endio_raid56_workers;
a0cac0ec 663 else if (end_io_wq->metadata)
9e0af237 664 wq = fs_info->endio_meta_workers;
a0cac0ec 665 else
9e0af237 666 wq = fs_info->endio_workers;
d20f7043 667 }
9e0af237 668
a0cac0ec 669 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 670 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
671}
672
4e4cbee9 673blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 674 enum btrfs_wq_endio_type metadata)
0b86a832 675{
97eb6b69 676 struct btrfs_end_io_wq *end_io_wq;
8b110e39 677
97eb6b69 678 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 679 if (!end_io_wq)
4e4cbee9 680 return BLK_STS_RESOURCE;
ce9adaa5
CM
681
682 end_io_wq->private = bio->bi_private;
683 end_io_wq->end_io = bio->bi_end_io;
22c59948 684 end_io_wq->info = info;
4e4cbee9 685 end_io_wq->status = 0;
ce9adaa5 686 end_io_wq->bio = bio;
22c59948 687 end_io_wq->metadata = metadata;
ce9adaa5
CM
688
689 bio->bi_private = end_io_wq;
690 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
691 return 0;
692}
693
4a69a410
CM
694static void run_one_async_start(struct btrfs_work *work)
695{
4a69a410 696 struct async_submit_bio *async;
4e4cbee9 697 blk_status_t ret;
4a69a410
CM
698
699 async = container_of(work, struct async_submit_bio, work);
8896a08d 700 ret = async->submit_bio_start(async->inode, async->bio, async->bio_offset);
79787eaa 701 if (ret)
4e4cbee9 702 async->status = ret;
4a69a410
CM
703}
704
06ea01b1
DS
705/*
706 * In order to insert checksums into the metadata in large chunks, we wait
707 * until bio submission time. All the pages in the bio are checksummed and
708 * sums are attached onto the ordered extent record.
709 *
710 * At IO completion time the csums attached on the ordered extent record are
711 * inserted into the tree.
712 */
4a69a410 713static void run_one_async_done(struct btrfs_work *work)
8b712842 714{
8b712842 715 struct async_submit_bio *async;
06ea01b1
DS
716 struct inode *inode;
717 blk_status_t ret;
8b712842
CM
718
719 async = container_of(work, struct async_submit_bio, work);
8896a08d 720 inode = async->inode;
4854ddd0 721
bb7ab3b9 722 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
723 if (async->status) {
724 async->bio->bi_status = async->status;
4246a0b6 725 bio_endio(async->bio);
79787eaa
JM
726 return;
727 }
728
ec39f769
CM
729 /*
730 * All of the bios that pass through here are from async helpers.
731 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
732 * This changes nothing when cgroups aren't in use.
733 */
734 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 735 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
736 if (ret) {
737 async->bio->bi_status = ret;
738 bio_endio(async->bio);
739 }
4a69a410
CM
740}
741
742static void run_one_async_free(struct btrfs_work *work)
743{
744 struct async_submit_bio *async;
745
746 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
747 kfree(async);
748}
749
8896a08d 750blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 751 int mirror_num, unsigned long bio_flags,
8896a08d 752 u64 bio_offset,
e288c080 753 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 754{
8896a08d 755 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
756 struct async_submit_bio *async;
757
758 async = kmalloc(sizeof(*async), GFP_NOFS);
759 if (!async)
4e4cbee9 760 return BLK_STS_RESOURCE;
44b8bd7e 761
8896a08d 762 async->inode = inode;
44b8bd7e
CM
763 async->bio = bio;
764 async->mirror_num = mirror_num;
4a69a410 765 async->submit_bio_start = submit_bio_start;
4a69a410 766
a0cac0ec
OS
767 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
768 run_one_async_free);
4a69a410 769
eaf25d93 770 async->bio_offset = bio_offset;
8c8bee1d 771
4e4cbee9 772 async->status = 0;
79787eaa 773
67f055c7 774 if (op_is_sync(bio->bi_opf))
5cdc7ad3 775 btrfs_set_work_high_priority(&async->work);
d313d7a3 776
5cdc7ad3 777 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
778 return 0;
779}
780
4e4cbee9 781static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 782{
2c30c71b 783 struct bio_vec *bvec;
ce3ed71a 784 struct btrfs_root *root;
2b070cfe 785 int ret = 0;
6dc4f100 786 struct bvec_iter_all iter_all;
ce3ed71a 787
c09abff8 788 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 789 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 790 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 791 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
792 if (ret)
793 break;
ce3ed71a 794 }
2c30c71b 795
4e4cbee9 796 return errno_to_blk_status(ret);
ce3ed71a
CM
797}
798
8896a08d
QW
799static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
800 u64 bio_offset)
22c59948 801{
8b712842
CM
802 /*
803 * when we're called for a write, we're already in the async
5443be45 804 * submission context. Just jump into btrfs_map_bio
8b712842 805 */
79787eaa 806 return btree_csum_one_bio(bio);
4a69a410 807}
22c59948 808
9b4e675a
DS
809static int check_async_write(struct btrfs_fs_info *fs_info,
810 struct btrfs_inode *bi)
de0022b9 811{
6300463b
LB
812 if (atomic_read(&bi->sync_writers))
813 return 0;
9b4e675a 814 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 815 return 0;
de0022b9
JB
816 return 1;
817}
818
1b36294a
NB
819blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
820 int mirror_num, unsigned long bio_flags)
44b8bd7e 821{
0b246afa 822 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 823 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 824 blk_status_t ret;
cad321ad 825
37226b21 826 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
827 /*
828 * called for a read, do the setup so that checksum validation
829 * can happen in the async kernel threads
830 */
0b246afa
JM
831 ret = btrfs_bio_wq_end_io(fs_info, bio,
832 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 833 if (ret)
61891923 834 goto out_w_error;
08635bae 835 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
836 } else if (!async) {
837 ret = btree_csum_one_bio(bio);
838 if (ret)
61891923 839 goto out_w_error;
08635bae 840 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
841 } else {
842 /*
843 * kthread helpers are used to submit writes so that
844 * checksumming can happen in parallel across all CPUs
845 */
8896a08d
QW
846 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
847 0, btree_submit_bio_start);
44b8bd7e 848 }
d313d7a3 849
4246a0b6
CH
850 if (ret)
851 goto out_w_error;
852 return 0;
853
61891923 854out_w_error:
4e4cbee9 855 bio->bi_status = ret;
4246a0b6 856 bio_endio(bio);
61891923 857 return ret;
44b8bd7e
CM
858}
859
3dd1462e 860#ifdef CONFIG_MIGRATION
784b4e29 861static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
862 struct page *newpage, struct page *page,
863 enum migrate_mode mode)
784b4e29
CM
864{
865 /*
866 * we can't safely write a btree page from here,
867 * we haven't done the locking hook
868 */
869 if (PageDirty(page))
870 return -EAGAIN;
871 /*
872 * Buffers may be managed in a filesystem specific way.
873 * We must have no buffers or drop them.
874 */
875 if (page_has_private(page) &&
876 !try_to_release_page(page, GFP_KERNEL))
877 return -EAGAIN;
a6bc32b8 878 return migrate_page(mapping, newpage, page, mode);
784b4e29 879}
3dd1462e 880#endif
784b4e29 881
0da5468f
CM
882
883static int btree_writepages(struct address_space *mapping,
884 struct writeback_control *wbc)
885{
e2d84521
MX
886 struct btrfs_fs_info *fs_info;
887 int ret;
888
d8d5f3e1 889 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
890
891 if (wbc->for_kupdate)
892 return 0;
893
e2d84521 894 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 895 /* this is a bit racy, but that's ok */
d814a491
EL
896 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
897 BTRFS_DIRTY_METADATA_THRESH,
898 fs_info->dirty_metadata_batch);
e2d84521 899 if (ret < 0)
793955bc 900 return 0;
793955bc 901 }
0b32f4bb 902 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
903}
904
70dec807 905static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 906{
98509cfc 907 if (PageWriteback(page) || PageDirty(page))
d397712b 908 return 0;
0c4e538b 909
f7a52a40 910 return try_release_extent_buffer(page);
d98237b3
CM
911}
912
d47992f8
LC
913static void btree_invalidatepage(struct page *page, unsigned int offset,
914 unsigned int length)
d98237b3 915{
d1310b2e
CM
916 struct extent_io_tree *tree;
917 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
918 extent_invalidatepage(tree, page, offset);
919 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 920 if (PagePrivate(page)) {
efe120a0
FH
921 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
922 "page private not zero on page %llu",
923 (unsigned long long)page_offset(page));
d1b89bc0 924 detach_page_private(page);
9ad6b7bc 925 }
d98237b3
CM
926}
927
0b32f4bb
JB
928static int btree_set_page_dirty(struct page *page)
929{
bb146eb2 930#ifdef DEBUG
0b32f4bb
JB
931 struct extent_buffer *eb;
932
933 BUG_ON(!PagePrivate(page));
934 eb = (struct extent_buffer *)page->private;
935 BUG_ON(!eb);
936 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
937 BUG_ON(!atomic_read(&eb->refs));
938 btrfs_assert_tree_locked(eb);
bb146eb2 939#endif
0b32f4bb
JB
940 return __set_page_dirty_nobuffers(page);
941}
942
7f09410b 943static const struct address_space_operations btree_aops = {
0da5468f 944 .writepages = btree_writepages,
5f39d397
CM
945 .releasepage = btree_releasepage,
946 .invalidatepage = btree_invalidatepage,
5a92bc88 947#ifdef CONFIG_MIGRATION
784b4e29 948 .migratepage = btree_migratepage,
5a92bc88 949#endif
0b32f4bb 950 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
951};
952
2ff7e61e
JM
953struct extent_buffer *btrfs_find_create_tree_block(
954 struct btrfs_fs_info *fs_info,
3fbaf258
JB
955 u64 bytenr, u64 owner_root,
956 int level)
0999df54 957{
0b246afa
JM
958 if (btrfs_is_testing(fs_info))
959 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 960 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
961}
962
581c1760
QW
963/*
964 * Read tree block at logical address @bytenr and do variant basic but critical
965 * verification.
966 *
1b7ec85e 967 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
968 * @parent_transid: expected transid of this tree block, skip check if 0
969 * @level: expected level, mandatory check
970 * @first_key: expected key in slot 0, skip check if NULL
971 */
2ff7e61e 972struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
973 u64 owner_root, u64 parent_transid,
974 int level, struct btrfs_key *first_key)
0999df54
CM
975{
976 struct extent_buffer *buf = NULL;
0999df54
CM
977 int ret;
978
3fbaf258 979 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
980 if (IS_ERR(buf))
981 return buf;
0999df54 982
5ab12d1f 983 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 984 level, first_key);
0f0fe8f7 985 if (ret) {
537f38f0 986 free_extent_buffer_stale(buf);
64c043de 987 return ERR_PTR(ret);
0f0fe8f7 988 }
5f39d397 989 return buf;
ce9adaa5 990
eb60ceac
CM
991}
992
6a884d7d 993void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 994{
6a884d7d 995 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 996 if (btrfs_header_generation(buf) ==
e2d84521 997 fs_info->running_transaction->transid) {
b9447ef8 998 btrfs_assert_tree_locked(buf);
b4ce94de 999
b9473439 1000 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1001 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1002 -buf->len,
1003 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1004 clear_extent_buffer_dirty(buf);
1005 }
925baedd 1006 }
5f39d397
CM
1007}
1008
da17066c 1009static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1010 u64 objectid)
d97e63b6 1011{
7c0260ee 1012 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1013 root->fs_info = fs_info;
cfaa7295 1014 root->node = NULL;
a28ec197 1015 root->commit_root = NULL;
27cdeb70 1016 root->state = 0;
d68fc57b 1017 root->orphan_cleanup_state = 0;
0b86a832 1018
0f7d52f4 1019 root->last_trans = 0;
13a8a7c8 1020 root->highest_objectid = 0;
eb73c1b7 1021 root->nr_delalloc_inodes = 0;
199c2a9c 1022 root->nr_ordered_extents = 0;
6bef4d31 1023 root->inode_tree = RB_ROOT;
16cdcec7 1024 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1025 root->block_rsv = NULL;
0b86a832
CM
1026
1027 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1028 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1029 INIT_LIST_HEAD(&root->delalloc_inodes);
1030 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1031 INIT_LIST_HEAD(&root->ordered_extents);
1032 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1033 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1034 INIT_LIST_HEAD(&root->logged_list[0]);
1035 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1036 spin_lock_init(&root->inode_lock);
eb73c1b7 1037 spin_lock_init(&root->delalloc_lock);
199c2a9c 1038 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1039 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1040 spin_lock_init(&root->log_extents_lock[0]);
1041 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1042 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1043 mutex_init(&root->objectid_mutex);
e02119d5 1044 mutex_init(&root->log_mutex);
31f3d255 1045 mutex_init(&root->ordered_extent_mutex);
573bfb72 1046 mutex_init(&root->delalloc_mutex);
c53e9653 1047 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1048 init_waitqueue_head(&root->log_writer_wait);
1049 init_waitqueue_head(&root->log_commit_wait[0]);
1050 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1051 INIT_LIST_HEAD(&root->log_ctxs[0]);
1052 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1053 atomic_set(&root->log_commit[0], 0);
1054 atomic_set(&root->log_commit[1], 0);
1055 atomic_set(&root->log_writers, 0);
2ecb7923 1056 atomic_set(&root->log_batch, 0);
0700cea7 1057 refcount_set(&root->refs, 1);
8ecebf4d 1058 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1059 atomic_set(&root->nr_swapfiles, 0);
7237f183 1060 root->log_transid = 0;
d1433deb 1061 root->log_transid_committed = -1;
257c62e1 1062 root->last_log_commit = 0;
e289f03e 1063 if (!dummy) {
43eb5f29
QW
1064 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1065 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1066 extent_io_tree_init(fs_info, &root->log_csum_range,
1067 IO_TREE_LOG_CSUM_RANGE, NULL);
1068 }
017e5369 1069
3768f368
CM
1070 memset(&root->root_key, 0, sizeof(root->root_key));
1071 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1072 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1073 root->root_key.objectid = objectid;
0ee5dc67 1074 root->anon_dev = 0;
8ea05e3a 1075
5f3ab90a 1076 spin_lock_init(&root->root_item_lock);
370a11b8 1077 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1078#ifdef CONFIG_BTRFS_DEBUG
1079 INIT_LIST_HEAD(&root->leak_list);
1080 spin_lock(&fs_info->fs_roots_radix_lock);
1081 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1082 spin_unlock(&fs_info->fs_roots_radix_lock);
1083#endif
3768f368
CM
1084}
1085
74e4d827 1086static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1087 u64 objectid, gfp_t flags)
6f07e42e 1088{
74e4d827 1089 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1090 if (root)
96dfcb46 1091 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1092 return root;
1093}
1094
06ea65a3
JB
1095#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1096/* Should only be used by the testing infrastructure */
da17066c 1097struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1098{
1099 struct btrfs_root *root;
1100
7c0260ee
JM
1101 if (!fs_info)
1102 return ERR_PTR(-EINVAL);
1103
96dfcb46 1104 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1105 if (!root)
1106 return ERR_PTR(-ENOMEM);
da17066c 1107
b9ef22de 1108 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1109 root->alloc_bytenr = 0;
06ea65a3
JB
1110
1111 return root;
1112}
1113#endif
1114
20897f5c 1115struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1116 u64 objectid)
1117{
9b7a2440 1118 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1119 struct extent_buffer *leaf;
1120 struct btrfs_root *tree_root = fs_info->tree_root;
1121 struct btrfs_root *root;
1122 struct btrfs_key key;
b89f6d1f 1123 unsigned int nofs_flag;
20897f5c 1124 int ret = 0;
20897f5c 1125
b89f6d1f
FM
1126 /*
1127 * We're holding a transaction handle, so use a NOFS memory allocation
1128 * context to avoid deadlock if reclaim happens.
1129 */
1130 nofs_flag = memalloc_nofs_save();
96dfcb46 1131 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1132 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1133 if (!root)
1134 return ERR_PTR(-ENOMEM);
1135
20897f5c
AJ
1136 root->root_key.objectid = objectid;
1137 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1138 root->root_key.offset = 0;
1139
9631e4cc
JB
1140 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1141 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1142 if (IS_ERR(leaf)) {
1143 ret = PTR_ERR(leaf);
1dd05682 1144 leaf = NULL;
8a6a87cd 1145 goto fail_unlock;
20897f5c
AJ
1146 }
1147
20897f5c 1148 root->node = leaf;
20897f5c
AJ
1149 btrfs_mark_buffer_dirty(leaf);
1150
1151 root->commit_root = btrfs_root_node(root);
27cdeb70 1152 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1153
f944d2cb
DS
1154 btrfs_set_root_flags(&root->root_item, 0);
1155 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1156 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1157 btrfs_set_root_generation(&root->root_item, trans->transid);
1158 btrfs_set_root_level(&root->root_item, 0);
1159 btrfs_set_root_refs(&root->root_item, 1);
1160 btrfs_set_root_used(&root->root_item, leaf->len);
1161 btrfs_set_root_last_snapshot(&root->root_item, 0);
1162 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1163 if (is_fstree(objectid))
807fc790
AS
1164 generate_random_guid(root->root_item.uuid);
1165 else
1166 export_guid(root->root_item.uuid, &guid_null);
c8422684 1167 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1168
8a6a87cd
BB
1169 btrfs_tree_unlock(leaf);
1170
20897f5c
AJ
1171 key.objectid = objectid;
1172 key.type = BTRFS_ROOT_ITEM_KEY;
1173 key.offset = 0;
1174 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1175 if (ret)
1176 goto fail;
1177
1dd05682
TI
1178 return root;
1179
8a6a87cd 1180fail_unlock:
8c38938c 1181 if (leaf)
1dd05682 1182 btrfs_tree_unlock(leaf);
8a6a87cd 1183fail:
00246528 1184 btrfs_put_root(root);
20897f5c 1185
1dd05682 1186 return ERR_PTR(ret);
20897f5c
AJ
1187}
1188
7237f183
YZ
1189static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1190 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1191{
1192 struct btrfs_root *root;
7237f183 1193 struct extent_buffer *leaf;
e02119d5 1194
96dfcb46 1195 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1196 if (!root)
7237f183 1197 return ERR_PTR(-ENOMEM);
e02119d5 1198
e02119d5
CM
1199 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1200 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1201 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1202
7237f183 1203 /*
92a7cc42 1204 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1205 *
92a7cc42
QW
1206 * Log trees are not exposed to user space thus can't be snapshotted,
1207 * and they go away before a real commit is actually done.
1208 *
1209 * They do store pointers to file data extents, and those reference
1210 * counts still get updated (along with back refs to the log tree).
7237f183 1211 */
e02119d5 1212
4d75f8a9 1213 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1214 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
7237f183 1215 if (IS_ERR(leaf)) {
00246528 1216 btrfs_put_root(root);
7237f183
YZ
1217 return ERR_CAST(leaf);
1218 }
e02119d5 1219
7237f183 1220 root->node = leaf;
e02119d5 1221
e02119d5
CM
1222 btrfs_mark_buffer_dirty(root->node);
1223 btrfs_tree_unlock(root->node);
7237f183
YZ
1224 return root;
1225}
1226
1227int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1228 struct btrfs_fs_info *fs_info)
1229{
1230 struct btrfs_root *log_root;
1231
1232 log_root = alloc_log_tree(trans, fs_info);
1233 if (IS_ERR(log_root))
1234 return PTR_ERR(log_root);
1235 WARN_ON(fs_info->log_root_tree);
1236 fs_info->log_root_tree = log_root;
1237 return 0;
1238}
1239
1240int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1241 struct btrfs_root *root)
1242{
0b246afa 1243 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1244 struct btrfs_root *log_root;
1245 struct btrfs_inode_item *inode_item;
1246
0b246afa 1247 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1248 if (IS_ERR(log_root))
1249 return PTR_ERR(log_root);
1250
1251 log_root->last_trans = trans->transid;
1252 log_root->root_key.offset = root->root_key.objectid;
1253
1254 inode_item = &log_root->root_item.inode;
3cae210f
QW
1255 btrfs_set_stack_inode_generation(inode_item, 1);
1256 btrfs_set_stack_inode_size(inode_item, 3);
1257 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1258 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1259 fs_info->nodesize);
3cae210f 1260 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1261
5d4f98a2 1262 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1263
1264 WARN_ON(root->log_root);
1265 root->log_root = log_root;
1266 root->log_transid = 0;
d1433deb 1267 root->log_transid_committed = -1;
257c62e1 1268 root->last_log_commit = 0;
e02119d5
CM
1269 return 0;
1270}
1271
49d11bea
JB
1272static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1273 struct btrfs_path *path,
1274 struct btrfs_key *key)
e02119d5
CM
1275{
1276 struct btrfs_root *root;
1277 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1278 u64 generation;
cb517eab 1279 int ret;
581c1760 1280 int level;
0f7d52f4 1281
96dfcb46 1282 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1283 if (!root)
1284 return ERR_PTR(-ENOMEM);
0f7d52f4 1285
cb517eab
MX
1286 ret = btrfs_find_root(tree_root, key, path,
1287 &root->root_item, &root->root_key);
0f7d52f4 1288 if (ret) {
13a8a7c8
YZ
1289 if (ret > 0)
1290 ret = -ENOENT;
49d11bea 1291 goto fail;
0f7d52f4 1292 }
13a8a7c8 1293
84234f3a 1294 generation = btrfs_root_generation(&root->root_item);
581c1760 1295 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1296 root->node = read_tree_block(fs_info,
1297 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1298 key->objectid, generation, level, NULL);
64c043de
LB
1299 if (IS_ERR(root->node)) {
1300 ret = PTR_ERR(root->node);
8c38938c 1301 root->node = NULL;
49d11bea 1302 goto fail;
cb517eab
MX
1303 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1304 ret = -EIO;
49d11bea 1305 goto fail;
416bc658 1306 }
5d4f98a2 1307 root->commit_root = btrfs_root_node(root);
cb517eab 1308 return root;
49d11bea 1309fail:
00246528 1310 btrfs_put_root(root);
49d11bea
JB
1311 return ERR_PTR(ret);
1312}
1313
1314struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1315 struct btrfs_key *key)
1316{
1317 struct btrfs_root *root;
1318 struct btrfs_path *path;
1319
1320 path = btrfs_alloc_path();
1321 if (!path)
1322 return ERR_PTR(-ENOMEM);
1323 root = read_tree_root_path(tree_root, path, key);
1324 btrfs_free_path(path);
1325
1326 return root;
cb517eab
MX
1327}
1328
2dfb1e43
QW
1329/*
1330 * Initialize subvolume root in-memory structure
1331 *
1332 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1333 */
1334static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1335{
1336 int ret;
dcc3eb96 1337 unsigned int nofs_flag;
cb517eab 1338
dcc3eb96
NB
1339 /*
1340 * We might be called under a transaction (e.g. indirect backref
1341 * resolution) which could deadlock if it triggers memory reclaim
1342 */
1343 nofs_flag = memalloc_nofs_save();
1344 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1345 memalloc_nofs_restore(nofs_flag);
1346 if (ret)
8257b2dc 1347 goto fail;
8257b2dc 1348
aeb935a4
QW
1349 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1350 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1351 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1352 btrfs_check_and_init_root_item(&root->root_item);
1353 }
1354
851fd730
QW
1355 /*
1356 * Don't assign anonymous block device to roots that are not exposed to
1357 * userspace, the id pool is limited to 1M
1358 */
1359 if (is_fstree(root->root_key.objectid) &&
1360 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1361 if (!anon_dev) {
1362 ret = get_anon_bdev(&root->anon_dev);
1363 if (ret)
1364 goto fail;
1365 } else {
1366 root->anon_dev = anon_dev;
1367 }
851fd730 1368 }
f32e48e9
CR
1369
1370 mutex_lock(&root->objectid_mutex);
1371 ret = btrfs_find_highest_objectid(root,
1372 &root->highest_objectid);
1373 if (ret) {
1374 mutex_unlock(&root->objectid_mutex);
876d2cf1 1375 goto fail;
f32e48e9
CR
1376 }
1377
1378 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1379
1380 mutex_unlock(&root->objectid_mutex);
1381
cb517eab
MX
1382 return 0;
1383fail:
84db5ccf 1384 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1385 return ret;
1386}
1387
a98db0f3
JB
1388static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1389 u64 root_id)
cb517eab
MX
1390{
1391 struct btrfs_root *root;
1392
1393 spin_lock(&fs_info->fs_roots_radix_lock);
1394 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1395 (unsigned long)root_id);
bc44d7c4 1396 if (root)
00246528 1397 root = btrfs_grab_root(root);
cb517eab
MX
1398 spin_unlock(&fs_info->fs_roots_radix_lock);
1399 return root;
1400}
1401
49d11bea
JB
1402static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1403 u64 objectid)
1404{
1405 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1406 return btrfs_grab_root(fs_info->tree_root);
1407 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1408 return btrfs_grab_root(fs_info->extent_root);
1409 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1410 return btrfs_grab_root(fs_info->chunk_root);
1411 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1412 return btrfs_grab_root(fs_info->dev_root);
1413 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1414 return btrfs_grab_root(fs_info->csum_root);
1415 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1416 return btrfs_grab_root(fs_info->quota_root) ?
1417 fs_info->quota_root : ERR_PTR(-ENOENT);
1418 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1419 return btrfs_grab_root(fs_info->uuid_root) ?
1420 fs_info->uuid_root : ERR_PTR(-ENOENT);
1421 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1422 return btrfs_grab_root(fs_info->free_space_root) ?
1423 fs_info->free_space_root : ERR_PTR(-ENOENT);
1424 return NULL;
1425}
1426
cb517eab
MX
1427int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1428 struct btrfs_root *root)
1429{
1430 int ret;
1431
e1860a77 1432 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1433 if (ret)
1434 return ret;
1435
1436 spin_lock(&fs_info->fs_roots_radix_lock);
1437 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1438 (unsigned long)root->root_key.objectid,
1439 root);
af01d2e5 1440 if (ret == 0) {
00246528 1441 btrfs_grab_root(root);
27cdeb70 1442 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1443 }
cb517eab
MX
1444 spin_unlock(&fs_info->fs_roots_radix_lock);
1445 radix_tree_preload_end();
1446
1447 return ret;
1448}
1449
bd647ce3
JB
1450void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1451{
1452#ifdef CONFIG_BTRFS_DEBUG
1453 struct btrfs_root *root;
1454
1455 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1456 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1457
bd647ce3
JB
1458 root = list_first_entry(&fs_info->allocated_roots,
1459 struct btrfs_root, leak_list);
457f1864
JB
1460 btrfs_err(fs_info, "leaked root %s refcount %d",
1461 btrfs_root_name(root->root_key.objectid, buf),
bd647ce3
JB
1462 refcount_read(&root->refs));
1463 while (refcount_read(&root->refs) > 1)
00246528
JB
1464 btrfs_put_root(root);
1465 btrfs_put_root(root);
bd647ce3
JB
1466 }
1467#endif
1468}
1469
0d4b0463
JB
1470void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1471{
141386e1
JB
1472 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1473 percpu_counter_destroy(&fs_info->delalloc_bytes);
1474 percpu_counter_destroy(&fs_info->dio_bytes);
1475 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1476 btrfs_free_csum_hash(fs_info);
1477 btrfs_free_stripe_hash_table(fs_info);
1478 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1479 kfree(fs_info->balance_ctl);
1480 kfree(fs_info->delayed_root);
00246528
JB
1481 btrfs_put_root(fs_info->extent_root);
1482 btrfs_put_root(fs_info->tree_root);
1483 btrfs_put_root(fs_info->chunk_root);
1484 btrfs_put_root(fs_info->dev_root);
1485 btrfs_put_root(fs_info->csum_root);
1486 btrfs_put_root(fs_info->quota_root);
1487 btrfs_put_root(fs_info->uuid_root);
1488 btrfs_put_root(fs_info->free_space_root);
1489 btrfs_put_root(fs_info->fs_root);
aeb935a4 1490 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1491 btrfs_check_leaked_roots(fs_info);
3fd63727 1492 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1493 kfree(fs_info->super_copy);
1494 kfree(fs_info->super_for_commit);
1495 kvfree(fs_info);
1496}
1497
1498
2dfb1e43
QW
1499/*
1500 * Get an in-memory reference of a root structure.
1501 *
1502 * For essential trees like root/extent tree, we grab it from fs_info directly.
1503 * For subvolume trees, we check the cached filesystem roots first. If not
1504 * found, then read it from disk and add it to cached fs roots.
1505 *
1506 * Caller should release the root by calling btrfs_put_root() after the usage.
1507 *
1508 * NOTE: Reloc and log trees can't be read by this function as they share the
1509 * same root objectid.
1510 *
1511 * @objectid: root id
1512 * @anon_dev: preallocated anonymous block device number for new roots,
1513 * pass 0 for new allocation.
1514 * @check_ref: whether to check root item references, If true, return -ENOENT
1515 * for orphan roots
1516 */
1517static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1518 u64 objectid, dev_t anon_dev,
1519 bool check_ref)
5eda7b5e
CM
1520{
1521 struct btrfs_root *root;
381cf658 1522 struct btrfs_path *path;
1d4c08e0 1523 struct btrfs_key key;
5eda7b5e
CM
1524 int ret;
1525
49d11bea
JB
1526 root = btrfs_get_global_root(fs_info, objectid);
1527 if (root)
1528 return root;
4df27c4d 1529again:
56e9357a 1530 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1531 if (root) {
2dfb1e43
QW
1532 /* Shouldn't get preallocated anon_dev for cached roots */
1533 ASSERT(!anon_dev);
bc44d7c4 1534 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1535 btrfs_put_root(root);
48475471 1536 return ERR_PTR(-ENOENT);
bc44d7c4 1537 }
5eda7b5e 1538 return root;
48475471 1539 }
5eda7b5e 1540
56e9357a
DS
1541 key.objectid = objectid;
1542 key.type = BTRFS_ROOT_ITEM_KEY;
1543 key.offset = (u64)-1;
1544 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1545 if (IS_ERR(root))
1546 return root;
3394e160 1547
c00869f1 1548 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1549 ret = -ENOENT;
581bb050 1550 goto fail;
35a30d7c 1551 }
581bb050 1552
2dfb1e43 1553 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1554 if (ret)
1555 goto fail;
3394e160 1556
381cf658
DS
1557 path = btrfs_alloc_path();
1558 if (!path) {
1559 ret = -ENOMEM;
1560 goto fail;
1561 }
1d4c08e0
DS
1562 key.objectid = BTRFS_ORPHAN_OBJECTID;
1563 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1564 key.offset = objectid;
1d4c08e0
DS
1565
1566 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1567 btrfs_free_path(path);
d68fc57b
YZ
1568 if (ret < 0)
1569 goto fail;
1570 if (ret == 0)
27cdeb70 1571 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1572
cb517eab 1573 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1574 if (ret) {
00246528 1575 btrfs_put_root(root);
4785e24f 1576 if (ret == -EEXIST)
4df27c4d 1577 goto again;
4df27c4d 1578 goto fail;
0f7d52f4 1579 }
edbd8d4e 1580 return root;
4df27c4d 1581fail:
8c38938c 1582 btrfs_put_root(root);
4df27c4d 1583 return ERR_PTR(ret);
edbd8d4e
CM
1584}
1585
2dfb1e43
QW
1586/*
1587 * Get in-memory reference of a root structure
1588 *
1589 * @objectid: tree objectid
1590 * @check_ref: if set, verify that the tree exists and the item has at least
1591 * one reference
1592 */
1593struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1594 u64 objectid, bool check_ref)
1595{
1596 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1597}
1598
1599/*
1600 * Get in-memory reference of a root structure, created as new, optionally pass
1601 * the anonymous block device id
1602 *
1603 * @objectid: tree objectid
1604 * @anon_dev: if zero, allocate a new anonymous block device or use the
1605 * parameter value
1606 */
1607struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1608 u64 objectid, dev_t anon_dev)
1609{
1610 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1611}
1612
49d11bea
JB
1613/*
1614 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1615 * @fs_info: the fs_info
1616 * @objectid: the objectid we need to lookup
1617 *
1618 * This is exclusively used for backref walking, and exists specifically because
1619 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1620 * creation time, which means we may have to read the tree_root in order to look
1621 * up a fs root that is not in memory. If the root is not in memory we will
1622 * read the tree root commit root and look up the fs root from there. This is a
1623 * temporary root, it will not be inserted into the radix tree as it doesn't
1624 * have the most uptodate information, it'll simply be discarded once the
1625 * backref code is finished using the root.
1626 */
1627struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1628 struct btrfs_path *path,
1629 u64 objectid)
1630{
1631 struct btrfs_root *root;
1632 struct btrfs_key key;
1633
1634 ASSERT(path->search_commit_root && path->skip_locking);
1635
1636 /*
1637 * This can return -ENOENT if we ask for a root that doesn't exist, but
1638 * since this is called via the backref walking code we won't be looking
1639 * up a root that doesn't exist, unless there's corruption. So if root
1640 * != NULL just return it.
1641 */
1642 root = btrfs_get_global_root(fs_info, objectid);
1643 if (root)
1644 return root;
1645
1646 root = btrfs_lookup_fs_root(fs_info, objectid);
1647 if (root)
1648 return root;
1649
1650 key.objectid = objectid;
1651 key.type = BTRFS_ROOT_ITEM_KEY;
1652 key.offset = (u64)-1;
1653 root = read_tree_root_path(fs_info->tree_root, path, &key);
1654 btrfs_release_path(path);
1655
1656 return root;
1657}
1658
8b712842
CM
1659/*
1660 * called by the kthread helper functions to finally call the bio end_io
1661 * functions. This is where read checksum verification actually happens
1662 */
1663static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1664{
ce9adaa5 1665 struct bio *bio;
97eb6b69 1666 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1667
97eb6b69 1668 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1669 bio = end_io_wq->bio;
ce9adaa5 1670
4e4cbee9 1671 bio->bi_status = end_io_wq->status;
8b712842
CM
1672 bio->bi_private = end_io_wq->private;
1673 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1674 bio_endio(bio);
9be490f1 1675 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1676}
1677
a74a4b97
CM
1678static int cleaner_kthread(void *arg)
1679{
1680 struct btrfs_root *root = arg;
0b246afa 1681 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1682 int again;
a74a4b97 1683
d6fd0ae2 1684 while (1) {
d0278245 1685 again = 0;
a74a4b97 1686
fd340d0f
JB
1687 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1688
d0278245 1689 /* Make the cleaner go to sleep early. */
2ff7e61e 1690 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1691 goto sleep;
1692
90c711ab
ZB
1693 /*
1694 * Do not do anything if we might cause open_ctree() to block
1695 * before we have finished mounting the filesystem.
1696 */
0b246afa 1697 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1698 goto sleep;
1699
0b246afa 1700 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1701 goto sleep;
1702
dc7f370c
MX
1703 /*
1704 * Avoid the problem that we change the status of the fs
1705 * during the above check and trylock.
1706 */
2ff7e61e 1707 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1708 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1709 goto sleep;
76dda93c 1710 }
a74a4b97 1711
2ff7e61e 1712 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1713
d0278245 1714 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1715 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1716
1717 /*
05323cd1
MX
1718 * The defragger has dealt with the R/O remount and umount,
1719 * needn't do anything special here.
d0278245 1720 */
0b246afa 1721 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1722
1723 /*
1724 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1725 * with relocation (btrfs_relocate_chunk) and relocation
1726 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1727 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1728 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1729 * unused block groups.
1730 */
0b246afa 1731 btrfs_delete_unused_bgs(fs_info);
d0278245 1732sleep:
fd340d0f 1733 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1734 if (kthread_should_park())
1735 kthread_parkme();
1736 if (kthread_should_stop())
1737 return 0;
838fe188 1738 if (!again) {
a74a4b97 1739 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1740 schedule();
a74a4b97
CM
1741 __set_current_state(TASK_RUNNING);
1742 }
da288d28 1743 }
a74a4b97
CM
1744}
1745
1746static int transaction_kthread(void *arg)
1747{
1748 struct btrfs_root *root = arg;
0b246afa 1749 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1750 struct btrfs_trans_handle *trans;
1751 struct btrfs_transaction *cur;
8929ecfa 1752 u64 transid;
643900be 1753 time64_t delta;
a74a4b97 1754 unsigned long delay;
914b2007 1755 bool cannot_commit;
a74a4b97
CM
1756
1757 do {
914b2007 1758 cannot_commit = false;
ba1bc00f 1759 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1760 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1761
0b246afa
JM
1762 spin_lock(&fs_info->trans_lock);
1763 cur = fs_info->running_transaction;
a74a4b97 1764 if (!cur) {
0b246afa 1765 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1766 goto sleep;
1767 }
31153d81 1768
643900be 1769 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1770 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1771 delta < fs_info->commit_interval) {
0b246afa 1772 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1773 delay -= msecs_to_jiffies((delta - 1) * 1000);
1774 delay = min(delay,
1775 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1776 goto sleep;
1777 }
8929ecfa 1778 transid = cur->transid;
0b246afa 1779 spin_unlock(&fs_info->trans_lock);
56bec294 1780
79787eaa 1781 /* If the file system is aborted, this will always fail. */
354aa0fb 1782 trans = btrfs_attach_transaction(root);
914b2007 1783 if (IS_ERR(trans)) {
354aa0fb
MX
1784 if (PTR_ERR(trans) != -ENOENT)
1785 cannot_commit = true;
79787eaa 1786 goto sleep;
914b2007 1787 }
8929ecfa 1788 if (transid == trans->transid) {
3a45bb20 1789 btrfs_commit_transaction(trans);
8929ecfa 1790 } else {
3a45bb20 1791 btrfs_end_transaction(trans);
8929ecfa 1792 }
a74a4b97 1793sleep:
0b246afa
JM
1794 wake_up_process(fs_info->cleaner_kthread);
1795 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1796
4e121c06 1797 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1798 &fs_info->fs_state)))
2ff7e61e 1799 btrfs_cleanup_transaction(fs_info);
ce63f891 1800 if (!kthread_should_stop() &&
0b246afa 1801 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1802 cannot_commit))
bc5511d0 1803 schedule_timeout_interruptible(delay);
a74a4b97
CM
1804 } while (!kthread_should_stop());
1805 return 0;
1806}
1807
af31f5e5 1808/*
01f0f9da
NB
1809 * This will find the highest generation in the array of root backups. The
1810 * index of the highest array is returned, or -EINVAL if we can't find
1811 * anything.
af31f5e5
CM
1812 *
1813 * We check to make sure the array is valid by comparing the
1814 * generation of the latest root in the array with the generation
1815 * in the super block. If they don't match we pitch it.
1816 */
01f0f9da 1817static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1818{
01f0f9da 1819 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1820 u64 cur;
af31f5e5
CM
1821 struct btrfs_root_backup *root_backup;
1822 int i;
1823
1824 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1825 root_backup = info->super_copy->super_roots + i;
1826 cur = btrfs_backup_tree_root_gen(root_backup);
1827 if (cur == newest_gen)
01f0f9da 1828 return i;
af31f5e5
CM
1829 }
1830
01f0f9da 1831 return -EINVAL;
af31f5e5
CM
1832}
1833
af31f5e5
CM
1834/*
1835 * copy all the root pointers into the super backup array.
1836 * this will bump the backup pointer by one when it is
1837 * done
1838 */
1839static void backup_super_roots(struct btrfs_fs_info *info)
1840{
6ef108dd 1841 const int next_backup = info->backup_root_index;
af31f5e5 1842 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1843
1844 root_backup = info->super_for_commit->super_roots + next_backup;
1845
1846 /*
1847 * make sure all of our padding and empty slots get zero filled
1848 * regardless of which ones we use today
1849 */
1850 memset(root_backup, 0, sizeof(*root_backup));
1851
1852 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1853
1854 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1855 btrfs_set_backup_tree_root_gen(root_backup,
1856 btrfs_header_generation(info->tree_root->node));
1857
1858 btrfs_set_backup_tree_root_level(root_backup,
1859 btrfs_header_level(info->tree_root->node));
1860
1861 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1862 btrfs_set_backup_chunk_root_gen(root_backup,
1863 btrfs_header_generation(info->chunk_root->node));
1864 btrfs_set_backup_chunk_root_level(root_backup,
1865 btrfs_header_level(info->chunk_root->node));
1866
1867 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1868 btrfs_set_backup_extent_root_gen(root_backup,
1869 btrfs_header_generation(info->extent_root->node));
1870 btrfs_set_backup_extent_root_level(root_backup,
1871 btrfs_header_level(info->extent_root->node));
1872
7c7e82a7
CM
1873 /*
1874 * we might commit during log recovery, which happens before we set
1875 * the fs_root. Make sure it is valid before we fill it in.
1876 */
1877 if (info->fs_root && info->fs_root->node) {
1878 btrfs_set_backup_fs_root(root_backup,
1879 info->fs_root->node->start);
1880 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1881 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1882 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1883 btrfs_header_level(info->fs_root->node));
7c7e82a7 1884 }
af31f5e5
CM
1885
1886 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1887 btrfs_set_backup_dev_root_gen(root_backup,
1888 btrfs_header_generation(info->dev_root->node));
1889 btrfs_set_backup_dev_root_level(root_backup,
1890 btrfs_header_level(info->dev_root->node));
1891
1892 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1893 btrfs_set_backup_csum_root_gen(root_backup,
1894 btrfs_header_generation(info->csum_root->node));
1895 btrfs_set_backup_csum_root_level(root_backup,
1896 btrfs_header_level(info->csum_root->node));
1897
1898 btrfs_set_backup_total_bytes(root_backup,
1899 btrfs_super_total_bytes(info->super_copy));
1900 btrfs_set_backup_bytes_used(root_backup,
1901 btrfs_super_bytes_used(info->super_copy));
1902 btrfs_set_backup_num_devices(root_backup,
1903 btrfs_super_num_devices(info->super_copy));
1904
1905 /*
1906 * if we don't copy this out to the super_copy, it won't get remembered
1907 * for the next commit
1908 */
1909 memcpy(&info->super_copy->super_roots,
1910 &info->super_for_commit->super_roots,
1911 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1912}
1913
bd2336b2
NB
1914/*
1915 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1916 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1917 *
1918 * fs_info - filesystem whose backup roots need to be read
1919 * priority - priority of backup root required
1920 *
1921 * Returns backup root index on success and -EINVAL otherwise.
1922 */
1923static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1924{
1925 int backup_index = find_newest_super_backup(fs_info);
1926 struct btrfs_super_block *super = fs_info->super_copy;
1927 struct btrfs_root_backup *root_backup;
1928
1929 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1930 if (priority == 0)
1931 return backup_index;
1932
1933 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1934 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1935 } else {
1936 return -EINVAL;
1937 }
1938
1939 root_backup = super->super_roots + backup_index;
1940
1941 btrfs_set_super_generation(super,
1942 btrfs_backup_tree_root_gen(root_backup));
1943 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1944 btrfs_set_super_root_level(super,
1945 btrfs_backup_tree_root_level(root_backup));
1946 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1947
1948 /*
1949 * Fixme: the total bytes and num_devices need to match or we should
1950 * need a fsck
1951 */
1952 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1953 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1954
1955 return backup_index;
1956}
1957
7abadb64
LB
1958/* helper to cleanup workers */
1959static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1960{
dc6e3209 1961 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1962 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1963 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1964 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1965 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1966 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1967 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1968 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1969 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1970 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1971 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1972 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1973 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1974 if (fs_info->discard_ctl.discard_workers)
1975 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1976 /*
1977 * Now that all other work queues are destroyed, we can safely destroy
1978 * the queues used for metadata I/O, since tasks from those other work
1979 * queues can do metadata I/O operations.
1980 */
1981 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1982 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1983}
1984
2e9f5954
R
1985static void free_root_extent_buffers(struct btrfs_root *root)
1986{
1987 if (root) {
1988 free_extent_buffer(root->node);
1989 free_extent_buffer(root->commit_root);
1990 root->node = NULL;
1991 root->commit_root = NULL;
1992 }
1993}
1994
af31f5e5 1995/* helper to cleanup tree roots */
4273eaff 1996static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1997{
2e9f5954 1998 free_root_extent_buffers(info->tree_root);
655b09fe 1999
2e9f5954
R
2000 free_root_extent_buffers(info->dev_root);
2001 free_root_extent_buffers(info->extent_root);
2002 free_root_extent_buffers(info->csum_root);
2003 free_root_extent_buffers(info->quota_root);
2004 free_root_extent_buffers(info->uuid_root);
8c38938c 2005 free_root_extent_buffers(info->fs_root);
aeb935a4 2006 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2007 if (free_chunk_root)
2e9f5954 2008 free_root_extent_buffers(info->chunk_root);
70f6d82e 2009 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2010}
2011
8c38938c
JB
2012void btrfs_put_root(struct btrfs_root *root)
2013{
2014 if (!root)
2015 return;
2016
2017 if (refcount_dec_and_test(&root->refs)) {
2018 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2019 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2020 if (root->anon_dev)
2021 free_anon_bdev(root->anon_dev);
2022 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2023 free_root_extent_buffers(root);
8c38938c
JB
2024#ifdef CONFIG_BTRFS_DEBUG
2025 spin_lock(&root->fs_info->fs_roots_radix_lock);
2026 list_del_init(&root->leak_list);
2027 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2028#endif
2029 kfree(root);
2030 }
2031}
2032
faa2dbf0 2033void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2034{
2035 int ret;
2036 struct btrfs_root *gang[8];
2037 int i;
2038
2039 while (!list_empty(&fs_info->dead_roots)) {
2040 gang[0] = list_entry(fs_info->dead_roots.next,
2041 struct btrfs_root, root_list);
2042 list_del(&gang[0]->root_list);
2043
8c38938c 2044 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2045 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2046 btrfs_put_root(gang[0]);
171f6537
JB
2047 }
2048
2049 while (1) {
2050 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2051 (void **)gang, 0,
2052 ARRAY_SIZE(gang));
2053 if (!ret)
2054 break;
2055 for (i = 0; i < ret; i++)
cb517eab 2056 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2057 }
2058}
af31f5e5 2059
638aa7ed
ES
2060static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2061{
2062 mutex_init(&fs_info->scrub_lock);
2063 atomic_set(&fs_info->scrubs_running, 0);
2064 atomic_set(&fs_info->scrub_pause_req, 0);
2065 atomic_set(&fs_info->scrubs_paused, 0);
2066 atomic_set(&fs_info->scrub_cancel_req, 0);
2067 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2068 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2069}
2070
779a65a4
ES
2071static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2072{
2073 spin_lock_init(&fs_info->balance_lock);
2074 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2075 atomic_set(&fs_info->balance_pause_req, 0);
2076 atomic_set(&fs_info->balance_cancel_req, 0);
2077 fs_info->balance_ctl = NULL;
2078 init_waitqueue_head(&fs_info->balance_wait_q);
2079}
2080
6bccf3ab 2081static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2082{
2ff7e61e
JM
2083 struct inode *inode = fs_info->btree_inode;
2084
2085 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2086 set_nlink(inode, 1);
f37938e0
ES
2087 /*
2088 * we set the i_size on the btree inode to the max possible int.
2089 * the real end of the address space is determined by all of
2090 * the devices in the system
2091 */
2ff7e61e
JM
2092 inode->i_size = OFFSET_MAX;
2093 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2094
2ff7e61e 2095 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2096 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2097 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2098 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2099 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2100
5c8fd99f 2101 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2102 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2103 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2104 btrfs_insert_inode_hash(inode);
f37938e0
ES
2105}
2106
ad618368
ES
2107static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2108{
ad618368 2109 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2110 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2111 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2112}
2113
f9e92e40
ES
2114static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2115{
2116 spin_lock_init(&fs_info->qgroup_lock);
2117 mutex_init(&fs_info->qgroup_ioctl_lock);
2118 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2119 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2120 fs_info->qgroup_seq = 1;
f9e92e40 2121 fs_info->qgroup_ulist = NULL;
d2c609b8 2122 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2123 mutex_init(&fs_info->qgroup_rescan_lock);
2124}
2125
2a458198
ES
2126static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2127 struct btrfs_fs_devices *fs_devices)
2128{
f7b885be 2129 u32 max_active = fs_info->thread_pool_size;
6f011058 2130 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2131
2132 fs_info->workers =
cb001095
JM
2133 btrfs_alloc_workqueue(fs_info, "worker",
2134 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2135
2136 fs_info->delalloc_workers =
cb001095
JM
2137 btrfs_alloc_workqueue(fs_info, "delalloc",
2138 flags, max_active, 2);
2a458198
ES
2139
2140 fs_info->flush_workers =
cb001095
JM
2141 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2142 flags, max_active, 0);
2a458198
ES
2143
2144 fs_info->caching_workers =
cb001095 2145 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2146
2a458198 2147 fs_info->fixup_workers =
cb001095 2148 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2149
2150 /*
2151 * endios are largely parallel and should have a very
2152 * low idle thresh
2153 */
2154 fs_info->endio_workers =
cb001095 2155 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2156 fs_info->endio_meta_workers =
cb001095
JM
2157 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2158 max_active, 4);
2a458198 2159 fs_info->endio_meta_write_workers =
cb001095
JM
2160 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2161 max_active, 2);
2a458198 2162 fs_info->endio_raid56_workers =
cb001095
JM
2163 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2164 max_active, 4);
2a458198 2165 fs_info->rmw_workers =
cb001095 2166 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2167 fs_info->endio_write_workers =
cb001095
JM
2168 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2169 max_active, 2);
2a458198 2170 fs_info->endio_freespace_worker =
cb001095
JM
2171 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2172 max_active, 0);
2a458198 2173 fs_info->delayed_workers =
cb001095
JM
2174 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2175 max_active, 0);
2a458198 2176 fs_info->readahead_workers =
cb001095
JM
2177 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2178 max_active, 2);
2a458198 2179 fs_info->qgroup_rescan_workers =
cb001095 2180 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2181 fs_info->discard_ctl.discard_workers =
2182 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2183
2184 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2185 fs_info->flush_workers &&
2a458198
ES
2186 fs_info->endio_workers && fs_info->endio_meta_workers &&
2187 fs_info->endio_meta_write_workers &&
2a458198
ES
2188 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2189 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2190 fs_info->caching_workers && fs_info->readahead_workers &&
2191 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2192 fs_info->qgroup_rescan_workers &&
2193 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2194 return -ENOMEM;
2195 }
2196
2197 return 0;
2198}
2199
6d97c6e3
JT
2200static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2201{
2202 struct crypto_shash *csum_shash;
b4e967be 2203 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2204
b4e967be 2205 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2206
2207 if (IS_ERR(csum_shash)) {
2208 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2209 csum_driver);
6d97c6e3
JT
2210 return PTR_ERR(csum_shash);
2211 }
2212
2213 fs_info->csum_shash = csum_shash;
2214
2215 return 0;
2216}
2217
63443bf5
ES
2218static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2219 struct btrfs_fs_devices *fs_devices)
2220{
2221 int ret;
63443bf5
ES
2222 struct btrfs_root *log_tree_root;
2223 struct btrfs_super_block *disk_super = fs_info->super_copy;
2224 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2225 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2226
2227 if (fs_devices->rw_devices == 0) {
f14d104d 2228 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2229 return -EIO;
2230 }
2231
96dfcb46
JB
2232 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2233 GFP_KERNEL);
63443bf5
ES
2234 if (!log_tree_root)
2235 return -ENOMEM;
2236
2ff7e61e 2237 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2238 BTRFS_TREE_LOG_OBJECTID,
2239 fs_info->generation + 1, level,
2240 NULL);
64c043de 2241 if (IS_ERR(log_tree_root->node)) {
f14d104d 2242 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2243 ret = PTR_ERR(log_tree_root->node);
8c38938c 2244 log_tree_root->node = NULL;
00246528 2245 btrfs_put_root(log_tree_root);
0eeff236 2246 return ret;
64c043de 2247 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2248 btrfs_err(fs_info, "failed to read log tree");
00246528 2249 btrfs_put_root(log_tree_root);
63443bf5
ES
2250 return -EIO;
2251 }
2252 /* returns with log_tree_root freed on success */
2253 ret = btrfs_recover_log_trees(log_tree_root);
2254 if (ret) {
0b246afa
JM
2255 btrfs_handle_fs_error(fs_info, ret,
2256 "Failed to recover log tree");
00246528 2257 btrfs_put_root(log_tree_root);
63443bf5
ES
2258 return ret;
2259 }
2260
bc98a42c 2261 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2262 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2263 if (ret)
2264 return ret;
2265 }
2266
2267 return 0;
2268}
2269
6bccf3ab 2270static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2271{
6bccf3ab 2272 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2273 struct btrfs_root *root;
4bbcaa64
ES
2274 struct btrfs_key location;
2275 int ret;
2276
6bccf3ab
JM
2277 BUG_ON(!fs_info->tree_root);
2278
4bbcaa64
ES
2279 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2280 location.type = BTRFS_ROOT_ITEM_KEY;
2281 location.offset = 0;
2282
a4f3d2c4 2283 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2284 if (IS_ERR(root)) {
42437a63
JB
2285 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2286 ret = PTR_ERR(root);
2287 goto out;
2288 }
2289 } else {
2290 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2291 fs_info->extent_root = root;
f50f4353 2292 }
4bbcaa64
ES
2293
2294 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2295 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2296 if (IS_ERR(root)) {
42437a63
JB
2297 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2298 ret = PTR_ERR(root);
2299 goto out;
2300 }
2301 } else {
2302 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2303 fs_info->dev_root = root;
2304 btrfs_init_devices_late(fs_info);
f50f4353 2305 }
4bbcaa64 2306
882dbe0c
JB
2307 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2308 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2309 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2310 root = btrfs_read_tree_root(tree_root, &location);
2311 if (IS_ERR(root)) {
2312 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2313 ret = PTR_ERR(root);
2314 goto out;
2315 }
2316 } else {
2317 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2318 fs_info->csum_root = root;
42437a63 2319 }
f50f4353 2320 }
4bbcaa64 2321
aeb935a4
QW
2322 /*
2323 * This tree can share blocks with some other fs tree during relocation
2324 * and we need a proper setup by btrfs_get_fs_root
2325 */
56e9357a
DS
2326 root = btrfs_get_fs_root(tree_root->fs_info,
2327 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2328 if (IS_ERR(root)) {
42437a63
JB
2329 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2330 ret = PTR_ERR(root);
2331 goto out;
2332 }
2333 } else {
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 fs_info->data_reloc_root = root;
aeb935a4 2336 }
aeb935a4 2337
4bbcaa64 2338 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2339 root = btrfs_read_tree_root(tree_root, &location);
2340 if (!IS_ERR(root)) {
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2342 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2343 fs_info->quota_root = root;
4bbcaa64
ES
2344 }
2345
2346 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2347 root = btrfs_read_tree_root(tree_root, &location);
2348 if (IS_ERR(root)) {
42437a63
JB
2349 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2350 ret = PTR_ERR(root);
2351 if (ret != -ENOENT)
2352 goto out;
2353 }
4bbcaa64 2354 } else {
a4f3d2c4
DS
2355 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2356 fs_info->uuid_root = root;
4bbcaa64
ES
2357 }
2358
70f6d82e
OS
2359 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2360 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2361 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2362 if (IS_ERR(root)) {
42437a63
JB
2363 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2364 ret = PTR_ERR(root);
2365 goto out;
2366 }
2367 } else {
2368 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2369 fs_info->free_space_root = root;
f50f4353 2370 }
70f6d82e
OS
2371 }
2372
4bbcaa64 2373 return 0;
f50f4353
LB
2374out:
2375 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2376 location.objectid, ret);
2377 return ret;
4bbcaa64
ES
2378}
2379
069ec957
QW
2380/*
2381 * Real super block validation
2382 * NOTE: super csum type and incompat features will not be checked here.
2383 *
2384 * @sb: super block to check
2385 * @mirror_num: the super block number to check its bytenr:
2386 * 0 the primary (1st) sb
2387 * 1, 2 2nd and 3rd backup copy
2388 * -1 skip bytenr check
2389 */
2390static int validate_super(struct btrfs_fs_info *fs_info,
2391 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2392{
21a852b0
QW
2393 u64 nodesize = btrfs_super_nodesize(sb);
2394 u64 sectorsize = btrfs_super_sectorsize(sb);
2395 int ret = 0;
2396
2397 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2398 btrfs_err(fs_info, "no valid FS found");
2399 ret = -EINVAL;
2400 }
2401 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2402 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2403 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2404 ret = -EINVAL;
2405 }
2406 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2407 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2408 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2409 ret = -EINVAL;
2410 }
2411 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2412 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2413 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2414 ret = -EINVAL;
2415 }
2416 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2417 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2418 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2419 ret = -EINVAL;
2420 }
2421
2422 /*
2423 * Check sectorsize and nodesize first, other check will need it.
2424 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2425 */
2426 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2427 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2428 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2429 ret = -EINVAL;
2430 }
2431 /* Only PAGE SIZE is supported yet */
2432 if (sectorsize != PAGE_SIZE) {
2433 btrfs_err(fs_info,
2434 "sectorsize %llu not supported yet, only support %lu",
2435 sectorsize, PAGE_SIZE);
2436 ret = -EINVAL;
2437 }
2438 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2439 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2441 ret = -EINVAL;
2442 }
2443 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2444 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2445 le32_to_cpu(sb->__unused_leafsize), nodesize);
2446 ret = -EINVAL;
2447 }
2448
2449 /* Root alignment check */
2450 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2451 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2452 btrfs_super_root(sb));
2453 ret = -EINVAL;
2454 }
2455 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2456 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2457 btrfs_super_chunk_root(sb));
2458 ret = -EINVAL;
2459 }
2460 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2461 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2462 btrfs_super_log_root(sb));
2463 ret = -EINVAL;
2464 }
2465
de37aa51 2466 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2467 BTRFS_FSID_SIZE) != 0) {
21a852b0 2468 btrfs_err(fs_info,
7239ff4b 2469 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2470 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2471 ret = -EINVAL;
2472 }
2473
2474 /*
2475 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2476 * done later
2477 */
2478 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2479 btrfs_err(fs_info, "bytes_used is too small %llu",
2480 btrfs_super_bytes_used(sb));
2481 ret = -EINVAL;
2482 }
2483 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2484 btrfs_err(fs_info, "invalid stripesize %u",
2485 btrfs_super_stripesize(sb));
2486 ret = -EINVAL;
2487 }
2488 if (btrfs_super_num_devices(sb) > (1UL << 31))
2489 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2490 btrfs_super_num_devices(sb));
2491 if (btrfs_super_num_devices(sb) == 0) {
2492 btrfs_err(fs_info, "number of devices is 0");
2493 ret = -EINVAL;
2494 }
2495
069ec957
QW
2496 if (mirror_num >= 0 &&
2497 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2498 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2499 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2500 ret = -EINVAL;
2501 }
2502
2503 /*
2504 * Obvious sys_chunk_array corruptions, it must hold at least one key
2505 * and one chunk
2506 */
2507 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2508 btrfs_err(fs_info, "system chunk array too big %u > %u",
2509 btrfs_super_sys_array_size(sb),
2510 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2511 ret = -EINVAL;
2512 }
2513 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2514 + sizeof(struct btrfs_chunk)) {
2515 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2516 btrfs_super_sys_array_size(sb),
2517 sizeof(struct btrfs_disk_key)
2518 + sizeof(struct btrfs_chunk));
2519 ret = -EINVAL;
2520 }
2521
2522 /*
2523 * The generation is a global counter, we'll trust it more than the others
2524 * but it's still possible that it's the one that's wrong.
2525 */
2526 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2527 btrfs_warn(fs_info,
2528 "suspicious: generation < chunk_root_generation: %llu < %llu",
2529 btrfs_super_generation(sb),
2530 btrfs_super_chunk_root_generation(sb));
2531 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2532 && btrfs_super_cache_generation(sb) != (u64)-1)
2533 btrfs_warn(fs_info,
2534 "suspicious: generation < cache_generation: %llu < %llu",
2535 btrfs_super_generation(sb),
2536 btrfs_super_cache_generation(sb));
2537
2538 return ret;
2539}
2540
069ec957
QW
2541/*
2542 * Validation of super block at mount time.
2543 * Some checks already done early at mount time, like csum type and incompat
2544 * flags will be skipped.
2545 */
2546static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2547{
2548 return validate_super(fs_info, fs_info->super_copy, 0);
2549}
2550
75cb857d
QW
2551/*
2552 * Validation of super block at write time.
2553 * Some checks like bytenr check will be skipped as their values will be
2554 * overwritten soon.
2555 * Extra checks like csum type and incompat flags will be done here.
2556 */
2557static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2558 struct btrfs_super_block *sb)
2559{
2560 int ret;
2561
2562 ret = validate_super(fs_info, sb, -1);
2563 if (ret < 0)
2564 goto out;
e7e16f48 2565 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2566 ret = -EUCLEAN;
2567 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2568 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2569 goto out;
2570 }
2571 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2572 ret = -EUCLEAN;
2573 btrfs_err(fs_info,
2574 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2575 btrfs_super_incompat_flags(sb),
2576 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2577 goto out;
2578 }
2579out:
2580 if (ret < 0)
2581 btrfs_err(fs_info,
2582 "super block corruption detected before writing it to disk");
2583 return ret;
2584}
2585
6ef108dd 2586static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2587{
6ef108dd 2588 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2589 struct btrfs_super_block *sb = fs_info->super_copy;
2590 struct btrfs_root *tree_root = fs_info->tree_root;
2591 bool handle_error = false;
2592 int ret = 0;
2593 int i;
2594
2595 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2596 u64 generation;
2597 int level;
2598
2599 if (handle_error) {
2600 if (!IS_ERR(tree_root->node))
2601 free_extent_buffer(tree_root->node);
2602 tree_root->node = NULL;
2603
2604 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2605 break;
2606
2607 free_root_pointers(fs_info, 0);
2608
2609 /*
2610 * Don't use the log in recovery mode, it won't be
2611 * valid
2612 */
2613 btrfs_set_super_log_root(sb, 0);
2614
2615 /* We can't trust the free space cache either */
2616 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2617
2618 ret = read_backup_root(fs_info, i);
6ef108dd 2619 backup_index = ret;
b8522a1e
NB
2620 if (ret < 0)
2621 return ret;
2622 }
2623 generation = btrfs_super_generation(sb);
2624 level = btrfs_super_root_level(sb);
2625 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
1b7ec85e 2626 BTRFS_ROOT_TREE_OBJECTID,
b8522a1e 2627 generation, level, NULL);
217f5004 2628 if (IS_ERR(tree_root->node)) {
b8522a1e 2629 handle_error = true;
217f5004
NB
2630 ret = PTR_ERR(tree_root->node);
2631 tree_root->node = NULL;
2632 btrfs_warn(fs_info, "couldn't read tree root");
2633 continue;
b8522a1e 2634
217f5004
NB
2635 } else if (!extent_buffer_uptodate(tree_root->node)) {
2636 handle_error = true;
2637 ret = -EIO;
2638 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2639 continue;
2640 }
2641
2642 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2643 tree_root->commit_root = btrfs_root_node(tree_root);
2644 btrfs_set_root_refs(&tree_root->root_item, 1);
2645
336a0d8d
NB
2646 /*
2647 * No need to hold btrfs_root::objectid_mutex since the fs
2648 * hasn't been fully initialised and we are the only user
2649 */
b8522a1e
NB
2650 ret = btrfs_find_highest_objectid(tree_root,
2651 &tree_root->highest_objectid);
2652 if (ret < 0) {
b8522a1e
NB
2653 handle_error = true;
2654 continue;
2655 }
2656
2657 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2658
2659 ret = btrfs_read_roots(fs_info);
2660 if (ret < 0) {
2661 handle_error = true;
2662 continue;
2663 }
2664
2665 /* All successful */
2666 fs_info->generation = generation;
2667 fs_info->last_trans_committed = generation;
6ef108dd
NB
2668
2669 /* Always begin writing backup roots after the one being used */
2670 if (backup_index < 0) {
2671 fs_info->backup_root_index = 0;
2672 } else {
2673 fs_info->backup_root_index = backup_index + 1;
2674 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2675 }
b8522a1e
NB
2676 break;
2677 }
2678
2679 return ret;
2680}
2681
8260edba 2682void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2683{
76dda93c 2684 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2685 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2686 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2687 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2688 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2689 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2690 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2691 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2692 spin_lock_init(&fs_info->trans_lock);
76dda93c 2693 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2694 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2695 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2696 spin_lock_init(&fs_info->super_lock);
f28491e0 2697 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2698 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2699 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2700 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2701 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2702 mutex_init(&fs_info->reloc_mutex);
573bfb72 2703 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2704 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2705
0b86a832 2706 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2707 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2708 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2709 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2710#ifdef CONFIG_BTRFS_DEBUG
2711 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2712 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2713 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2714#endif
c8bf1b67 2715 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2716 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2717 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2718 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2719 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2720 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2721 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2722 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2723 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2724 BTRFS_BLOCK_RSV_DELREFS);
2725
771ed689 2726 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2727 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2728 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2729 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2730 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2731 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2732 fs_info->metadata_ratio = 0;
4cb5300b 2733 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2734 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2735 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2736 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2737 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2738 /* readahead state */
d0164adc 2739 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2740 spin_lock_init(&fs_info->reada_lock);
fd708b81 2741 btrfs_init_ref_verify(fs_info);
c8b97818 2742
b34b086c
CM
2743 fs_info->thread_pool_size = min_t(unsigned long,
2744 num_online_cpus() + 2, 8);
0afbaf8c 2745
199c2a9c
MX
2746 INIT_LIST_HEAD(&fs_info->ordered_roots);
2747 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2748
638aa7ed 2749 btrfs_init_scrub(fs_info);
21adbd5c
SB
2750#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2751 fs_info->check_integrity_print_mask = 0;
2752#endif
779a65a4 2753 btrfs_init_balance(fs_info);
57056740 2754 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2755
0f9dd46c 2756 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2757 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2758 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2759
fe119a6e
NB
2760 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2761 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2762 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2763
5a3f23d5 2764 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2765 mutex_init(&fs_info->tree_log_mutex);
925baedd 2766 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2767 mutex_init(&fs_info->transaction_kthread_mutex);
2768 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2769 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2770 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2771 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2772 init_rwsem(&fs_info->subvol_sem);
803b2f54 2773 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2774
ad618368 2775 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2776 btrfs_init_qgroup(fs_info);
b0643e59 2777 btrfs_discard_init(fs_info);
416ac51d 2778
fa9c0d79
CM
2779 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2780 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2781
e6dcd2dc 2782 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2783 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2784 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2785 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2786 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2787
da17066c
JM
2788 /* Usable values until the real ones are cached from the superblock */
2789 fs_info->nodesize = 4096;
2790 fs_info->sectorsize = 4096;
ab108d99 2791 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2792 fs_info->stripesize = 4096;
2793
eede2bf3
OS
2794 spin_lock_init(&fs_info->swapfile_pins_lock);
2795 fs_info->swapfile_pins = RB_ROOT;
2796
9e967495 2797 fs_info->send_in_progress = 0;
8260edba
JB
2798}
2799
2800static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2801{
2802 int ret;
2803
2804 fs_info->sb = sb;
2805 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2806 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2807
ae18c37a
JB
2808 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2809 if (ret)
c75e8394 2810 return ret;
ae18c37a
JB
2811
2812 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2813 if (ret)
c75e8394 2814 return ret;
ae18c37a
JB
2815
2816 fs_info->dirty_metadata_batch = PAGE_SIZE *
2817 (1 + ilog2(nr_cpu_ids));
2818
2819 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2820 if (ret)
c75e8394 2821 return ret;
ae18c37a
JB
2822
2823 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2824 GFP_KERNEL);
2825 if (ret)
c75e8394 2826 return ret;
ae18c37a
JB
2827
2828 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2829 GFP_KERNEL);
c75e8394
JB
2830 if (!fs_info->delayed_root)
2831 return -ENOMEM;
ae18c37a
JB
2832 btrfs_init_delayed_root(fs_info->delayed_root);
2833
c75e8394 2834 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2835}
2836
97f4dd09
NB
2837static int btrfs_uuid_rescan_kthread(void *data)
2838{
2839 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2840 int ret;
2841
2842 /*
2843 * 1st step is to iterate through the existing UUID tree and
2844 * to delete all entries that contain outdated data.
2845 * 2nd step is to add all missing entries to the UUID tree.
2846 */
2847 ret = btrfs_uuid_tree_iterate(fs_info);
2848 if (ret < 0) {
c94bec2c
JB
2849 if (ret != -EINTR)
2850 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2851 ret);
97f4dd09
NB
2852 up(&fs_info->uuid_tree_rescan_sem);
2853 return ret;
2854 }
2855 return btrfs_uuid_scan_kthread(data);
2856}
2857
2858static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2859{
2860 struct task_struct *task;
2861
2862 down(&fs_info->uuid_tree_rescan_sem);
2863 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2864 if (IS_ERR(task)) {
2865 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2866 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2867 up(&fs_info->uuid_tree_rescan_sem);
2868 return PTR_ERR(task);
2869 }
2870
2871 return 0;
2872}
2873
8cd29088
BB
2874/*
2875 * Some options only have meaning at mount time and shouldn't persist across
2876 * remounts, or be displayed. Clear these at the end of mount and remount
2877 * code paths.
2878 */
2879void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2880{
2881 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 2882 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
2883}
2884
44c0ca21
BB
2885/*
2886 * Mounting logic specific to read-write file systems. Shared by open_ctree
2887 * and btrfs_remount when remounting from read-only to read-write.
2888 */
2889int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2890{
2891 int ret;
94846229 2892 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
2893 bool clear_free_space_tree = false;
2894
2895 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2896 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2897 clear_free_space_tree = true;
2898 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2899 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2900 btrfs_warn(fs_info, "free space tree is invalid");
2901 clear_free_space_tree = true;
2902 }
2903
2904 if (clear_free_space_tree) {
2905 btrfs_info(fs_info, "clearing free space tree");
2906 ret = btrfs_clear_free_space_tree(fs_info);
2907 if (ret) {
2908 btrfs_warn(fs_info,
2909 "failed to clear free space tree: %d", ret);
2910 goto out;
2911 }
2912 }
44c0ca21
BB
2913
2914 ret = btrfs_cleanup_fs_roots(fs_info);
2915 if (ret)
2916 goto out;
2917
8f1c21d7
BB
2918 down_read(&fs_info->cleanup_work_sem);
2919 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2920 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2921 up_read(&fs_info->cleanup_work_sem);
2922 goto out;
2923 }
2924 up_read(&fs_info->cleanup_work_sem);
2925
44c0ca21
BB
2926 mutex_lock(&fs_info->cleaner_mutex);
2927 ret = btrfs_recover_relocation(fs_info->tree_root);
2928 mutex_unlock(&fs_info->cleaner_mutex);
2929 if (ret < 0) {
2930 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2931 goto out;
2932 }
2933
5011139a
BB
2934 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2935 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2936 btrfs_info(fs_info, "creating free space tree");
2937 ret = btrfs_create_free_space_tree(fs_info);
2938 if (ret) {
2939 btrfs_warn(fs_info,
2940 "failed to create free space tree: %d", ret);
2941 goto out;
2942 }
2943 }
2944
94846229
BB
2945 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
2946 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
2947 if (ret)
2948 goto out;
2949 }
2950
44c0ca21
BB
2951 ret = btrfs_resume_balance_async(fs_info);
2952 if (ret)
2953 goto out;
2954
2955 ret = btrfs_resume_dev_replace_async(fs_info);
2956 if (ret) {
2957 btrfs_warn(fs_info, "failed to resume dev_replace");
2958 goto out;
2959 }
2960
2961 btrfs_qgroup_rescan_resume(fs_info);
2962
2963 if (!fs_info->uuid_root) {
2964 btrfs_info(fs_info, "creating UUID tree");
2965 ret = btrfs_create_uuid_tree(fs_info);
2966 if (ret) {
2967 btrfs_warn(fs_info,
2968 "failed to create the UUID tree %d", ret);
2969 goto out;
2970 }
2971 }
2972
2973out:
2974 return ret;
2975}
2976
ae18c37a
JB
2977int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2978 char *options)
2979{
2980 u32 sectorsize;
2981 u32 nodesize;
2982 u32 stripesize;
2983 u64 generation;
2984 u64 features;
2985 u16 csum_type;
ae18c37a
JB
2986 struct btrfs_super_block *disk_super;
2987 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2988 struct btrfs_root *tree_root;
2989 struct btrfs_root *chunk_root;
2990 int ret;
2991 int err = -EINVAL;
ae18c37a
JB
2992 int level;
2993
8260edba 2994 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2995 if (ret) {
83c8266a 2996 err = ret;
ae18c37a 2997 goto fail;
53b381b3
DW
2998 }
2999
ae18c37a
JB
3000 /* These need to be init'ed before we start creating inodes and such. */
3001 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3002 GFP_KERNEL);
3003 fs_info->tree_root = tree_root;
3004 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3005 GFP_KERNEL);
3006 fs_info->chunk_root = chunk_root;
3007 if (!tree_root || !chunk_root) {
3008 err = -ENOMEM;
c75e8394 3009 goto fail;
ae18c37a
JB
3010 }
3011
3012 fs_info->btree_inode = new_inode(sb);
3013 if (!fs_info->btree_inode) {
3014 err = -ENOMEM;
c75e8394 3015 goto fail;
ae18c37a
JB
3016 }
3017 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3018 btrfs_init_btree_inode(fs_info);
3019
3c4bb26b 3020 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
3021
3022 /*
3023 * Read super block and check the signature bytes only
3024 */
8f32380d
JT
3025 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3026 if (IS_ERR(disk_super)) {
3027 err = PTR_ERR(disk_super);
16cdcec7 3028 goto fail_alloc;
20b45077 3029 }
39279cc3 3030
8dc3f22c 3031 /*
260db43c 3032 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3033 * corrupted, we'll find out
3034 */
8f32380d 3035 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3036 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3037 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3038 csum_type);
8dc3f22c 3039 err = -EINVAL;
8f32380d 3040 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3041 goto fail_alloc;
3042 }
3043
6d97c6e3
JT
3044 ret = btrfs_init_csum_hash(fs_info, csum_type);
3045 if (ret) {
3046 err = ret;
8f32380d 3047 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3048 goto fail_alloc;
3049 }
3050
1104a885
DS
3051 /*
3052 * We want to check superblock checksum, the type is stored inside.
3053 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3054 */
8f32380d 3055 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3056 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3057 err = -EINVAL;
8f32380d 3058 btrfs_release_disk_super(disk_super);
141386e1 3059 goto fail_alloc;
1104a885
DS
3060 }
3061
3062 /*
3063 * super_copy is zeroed at allocation time and we never touch the
3064 * following bytes up to INFO_SIZE, the checksum is calculated from
3065 * the whole block of INFO_SIZE
3066 */
8f32380d
JT
3067 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3068 btrfs_release_disk_super(disk_super);
5f39d397 3069
fbc6feae
NB
3070 disk_super = fs_info->super_copy;
3071
de37aa51
NB
3072 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3073 BTRFS_FSID_SIZE));
3074
7239ff4b 3075 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
3076 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3077 fs_info->super_copy->metadata_uuid,
3078 BTRFS_FSID_SIZE));
7239ff4b 3079 }
0b86a832 3080
fbc6feae
NB
3081 features = btrfs_super_flags(disk_super);
3082 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3083 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3084 btrfs_set_super_flags(disk_super, features);
3085 btrfs_info(fs_info,
3086 "found metadata UUID change in progress flag, clearing");
3087 }
3088
3089 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3090 sizeof(*fs_info->super_for_commit));
de37aa51 3091
069ec957 3092 ret = btrfs_validate_mount_super(fs_info);
1104a885 3093 if (ret) {
05135f59 3094 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3095 err = -EINVAL;
141386e1 3096 goto fail_alloc;
1104a885
DS
3097 }
3098
0f7d52f4 3099 if (!btrfs_super_root(disk_super))
141386e1 3100 goto fail_alloc;
0f7d52f4 3101
acce952b 3102 /* check FS state, whether FS is broken. */
87533c47
MX
3103 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3104 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3105
75e7cb7f
LB
3106 /*
3107 * In the long term, we'll store the compression type in the super
3108 * block, and it'll be used for per file compression control.
3109 */
3110 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3111
2ff7e61e 3112 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3113 if (ret) {
3114 err = ret;
141386e1 3115 goto fail_alloc;
2b82032c 3116 }
dfe25020 3117
f2b636e8
JB
3118 features = btrfs_super_incompat_flags(disk_super) &
3119 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3120 if (features) {
05135f59
DS
3121 btrfs_err(fs_info,
3122 "cannot mount because of unsupported optional features (%llx)",
3123 features);
f2b636e8 3124 err = -EINVAL;
141386e1 3125 goto fail_alloc;
f2b636e8
JB
3126 }
3127
5d4f98a2 3128 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3129 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3130 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3131 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3132 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3133 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3134
3173a18f 3135 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3136 btrfs_info(fs_info, "has skinny extents");
3173a18f 3137
b70f5097
NA
3138 fs_info->zoned = (features & BTRFS_FEATURE_INCOMPAT_ZONED);
3139
727011e0
CM
3140 /*
3141 * flag our filesystem as having big metadata blocks if
3142 * they are bigger than the page size
3143 */
09cbfeaf 3144 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3145 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3146 btrfs_info(fs_info,
3147 "flagging fs with big metadata feature");
727011e0
CM
3148 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3149 }
3150
bc3f116f 3151 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3152 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3153 stripesize = sectorsize;
707e8a07 3154 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3155 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3156
da17066c
JM
3157 /* Cache block sizes */
3158 fs_info->nodesize = nodesize;
3159 fs_info->sectorsize = sectorsize;
ab108d99 3160 fs_info->sectorsize_bits = ilog2(sectorsize);
22b6331d 3161 fs_info->csum_size = btrfs_super_csum_size(disk_super);
fe5ecbe8 3162 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
da17066c
JM
3163 fs_info->stripesize = stripesize;
3164
bc3f116f
CM
3165 /*
3166 * mixed block groups end up with duplicate but slightly offset
3167 * extent buffers for the same range. It leads to corruptions
3168 */
3169 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3170 (sectorsize != nodesize)) {
05135f59
DS
3171 btrfs_err(fs_info,
3172"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3173 nodesize, sectorsize);
141386e1 3174 goto fail_alloc;
bc3f116f
CM
3175 }
3176
ceda0864
MX
3177 /*
3178 * Needn't use the lock because there is no other task which will
3179 * update the flag.
3180 */
a6fa6fae 3181 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3182
f2b636e8
JB
3183 features = btrfs_super_compat_ro_flags(disk_super) &
3184 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3185 if (!sb_rdonly(sb) && features) {
05135f59
DS
3186 btrfs_err(fs_info,
3187 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3188 features);
f2b636e8 3189 err = -EINVAL;
141386e1 3190 goto fail_alloc;
f2b636e8 3191 }
61d92c32 3192
2a458198
ES
3193 ret = btrfs_init_workqueues(fs_info, fs_devices);
3194 if (ret) {
3195 err = ret;
0dc3b84a
JB
3196 goto fail_sb_buffer;
3197 }
4543df7e 3198
9e11ceee
JK
3199 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3200 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3201
a061fc8d
CM
3202 sb->s_blocksize = sectorsize;
3203 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3204 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3205
925baedd 3206 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3207 ret = btrfs_read_sys_array(fs_info);
925baedd 3208 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3209 if (ret) {
05135f59 3210 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3211 goto fail_sb_buffer;
84eed90f 3212 }
0b86a832 3213
84234f3a 3214 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3215 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3216
2ff7e61e 3217 chunk_root->node = read_tree_block(fs_info,
0b86a832 3218 btrfs_super_chunk_root(disk_super),
1b7ec85e 3219 BTRFS_CHUNK_TREE_OBJECTID,
581c1760 3220 generation, level, NULL);
64c043de
LB
3221 if (IS_ERR(chunk_root->node) ||
3222 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3223 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3224 if (!IS_ERR(chunk_root->node))
3225 free_extent_buffer(chunk_root->node);
95ab1f64 3226 chunk_root->node = NULL;
af31f5e5 3227 goto fail_tree_roots;
83121942 3228 }
5d4f98a2
YZ
3229 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3230 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3231
e17cade2 3232 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3233 offsetof(struct btrfs_header, chunk_tree_uuid),
3234 BTRFS_UUID_SIZE);
e17cade2 3235
5b4aacef 3236 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3237 if (ret) {
05135f59 3238 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3239 goto fail_tree_roots;
2b82032c 3240 }
0b86a832 3241
8dabb742 3242 /*
bacce86a
AJ
3243 * At this point we know all the devices that make this filesystem,
3244 * including the seed devices but we don't know yet if the replace
3245 * target is required. So free devices that are not part of this
3246 * filesystem but skip the replace traget device which is checked
3247 * below in btrfs_init_dev_replace().
8dabb742 3248 */
bacce86a 3249 btrfs_free_extra_devids(fs_devices);
a6b0d5c8 3250 if (!fs_devices->latest_bdev) {
05135f59 3251 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3252 goto fail_tree_roots;
3253 }
3254
b8522a1e 3255 ret = init_tree_roots(fs_info);
4bbcaa64 3256 if (ret)
b8522a1e 3257 goto fail_tree_roots;
8929ecfa 3258
75ec1db8
JB
3259 /*
3260 * If we have a uuid root and we're not being told to rescan we need to
3261 * check the generation here so we can set the
3262 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3263 * transaction during a balance or the log replay without updating the
3264 * uuid generation, and then if we crash we would rescan the uuid tree,
3265 * even though it was perfectly fine.
3266 */
3267 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3268 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3269 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3270
cf90d884
QW
3271 ret = btrfs_verify_dev_extents(fs_info);
3272 if (ret) {
3273 btrfs_err(fs_info,
3274 "failed to verify dev extents against chunks: %d",
3275 ret);
3276 goto fail_block_groups;
3277 }
68310a5e
ID
3278 ret = btrfs_recover_balance(fs_info);
3279 if (ret) {
05135f59 3280 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3281 goto fail_block_groups;
3282 }
3283
733f4fbb
SB
3284 ret = btrfs_init_dev_stats(fs_info);
3285 if (ret) {
05135f59 3286 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3287 goto fail_block_groups;
3288 }
3289
8dabb742
SB
3290 ret = btrfs_init_dev_replace(fs_info);
3291 if (ret) {
05135f59 3292 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3293 goto fail_block_groups;
3294 }
3295
b70f5097
NA
3296 ret = btrfs_check_zoned_mode(fs_info);
3297 if (ret) {
3298 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3299 ret);
3300 goto fail_block_groups;
3301 }
3302
c6761a9e 3303 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3304 if (ret) {
05135f59
DS
3305 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3306 ret);
b7c35e81
AJ
3307 goto fail_block_groups;
3308 }
3309
96f3136e 3310 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3311 if (ret) {
05135f59 3312 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3313 goto fail_fsdev_sysfs;
c59021f8 3314 }
3315
c59021f8 3316 ret = btrfs_init_space_info(fs_info);
3317 if (ret) {
05135f59 3318 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3319 goto fail_sysfs;
c59021f8 3320 }
3321
5b4aacef 3322 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3323 if (ret) {
05135f59 3324 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3325 goto fail_sysfs;
1b1d1f66 3326 }
4330e183 3327
6528b99d 3328 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3329 btrfs_warn(fs_info,
52042d8e 3330 "writable mount is not allowed due to too many missing devices");
2365dd3c 3331 goto fail_sysfs;
292fd7fc 3332 }
9078a3e1 3333
a74a4b97
CM
3334 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3335 "btrfs-cleaner");
57506d50 3336 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3337 goto fail_sysfs;
a74a4b97
CM
3338
3339 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3340 tree_root,
3341 "btrfs-transaction");
57506d50 3342 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3343 goto fail_cleaner;
a74a4b97 3344
583b7231 3345 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3346 !fs_info->fs_devices->rotating) {
583b7231 3347 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3348 }
3349
572d9ab7 3350 /*
01327610 3351 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3352 * not have to wait for transaction commit
3353 */
3354 btrfs_apply_pending_changes(fs_info);
3818aea2 3355
21adbd5c 3356#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3357 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3358 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3359 btrfs_test_opt(fs_info,
21adbd5c
SB
3360 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3361 1 : 0,
3362 fs_info->check_integrity_print_mask);
3363 if (ret)
05135f59
DS
3364 btrfs_warn(fs_info,
3365 "failed to initialize integrity check module: %d",
3366 ret);
21adbd5c
SB
3367 }
3368#endif
bcef60f2
AJ
3369 ret = btrfs_read_qgroup_config(fs_info);
3370 if (ret)
3371 goto fail_trans_kthread;
21adbd5c 3372
fd708b81
JB
3373 if (btrfs_build_ref_tree(fs_info))
3374 btrfs_err(fs_info, "couldn't build ref tree");
3375
96da0919
QW
3376 /* do not make disk changes in broken FS or nologreplay is given */
3377 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3378 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3379 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3380 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3381 if (ret) {
63443bf5 3382 err = ret;
28c16cbb 3383 goto fail_qgroup;
79787eaa 3384 }
e02119d5 3385 }
1a40e23b 3386
6bccf3ab 3387 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3388 if (ret)
28c16cbb 3389 goto fail_qgroup;
76dda93c 3390
56e9357a 3391 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3392 if (IS_ERR(fs_info->fs_root)) {
3393 err = PTR_ERR(fs_info->fs_root);
f50f4353 3394 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3395 fs_info->fs_root = NULL;
bcef60f2 3396 goto fail_qgroup;
3140c9a3 3397 }
c289811c 3398
bc98a42c 3399 if (sb_rdonly(sb))
8cd29088 3400 goto clear_oneshot;
59641015 3401
44c0ca21 3402 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3403 if (ret) {
6bccf3ab 3404 close_ctree(fs_info);
2b6ba629 3405 return ret;
e3acc2a6 3406 }
b0643e59 3407 btrfs_discard_resume(fs_info);
b382a324 3408
44c0ca21
BB
3409 if (fs_info->uuid_root &&
3410 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3411 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3412 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3413 ret = btrfs_check_uuid_tree(fs_info);
3414 if (ret) {
05135f59
DS
3415 btrfs_warn(fs_info,
3416 "failed to check the UUID tree: %d", ret);
6bccf3ab 3417 close_ctree(fs_info);
70f80175
SB
3418 return ret;
3419 }
f7a81ea4 3420 }
94846229 3421
afcdd129 3422 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3423
8cd29088
BB
3424clear_oneshot:
3425 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3426 return 0;
39279cc3 3427
bcef60f2
AJ
3428fail_qgroup:
3429 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3430fail_trans_kthread:
3431 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3432 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3433 btrfs_free_fs_roots(fs_info);
3f157a2f 3434fail_cleaner:
a74a4b97 3435 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3436
3437 /*
3438 * make sure we're done with the btree inode before we stop our
3439 * kthreads
3440 */
3441 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3442
2365dd3c 3443fail_sysfs:
6618a59b 3444 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3445
b7c35e81
AJ
3446fail_fsdev_sysfs:
3447 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3448
1b1d1f66 3449fail_block_groups:
54067ae9 3450 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3451
3452fail_tree_roots:
9e3aa805
JB
3453 if (fs_info->data_reloc_root)
3454 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3455 free_root_pointers(fs_info, true);
2b8195bb 3456 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3457
39279cc3 3458fail_sb_buffer:
7abadb64 3459 btrfs_stop_all_workers(fs_info);
5cdd7db6 3460 btrfs_free_block_groups(fs_info);
16cdcec7 3461fail_alloc:
586e46e2
ID
3462 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3463
4543df7e 3464 iput(fs_info->btree_inode);
7e662854 3465fail:
586e46e2 3466 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3467 return err;
eb60ceac 3468}
663faf9f 3469ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3470
314b6dd0 3471static void btrfs_end_super_write(struct bio *bio)
f2984462 3472{
314b6dd0
JT
3473 struct btrfs_device *device = bio->bi_private;
3474 struct bio_vec *bvec;
3475 struct bvec_iter_all iter_all;
3476 struct page *page;
3477
3478 bio_for_each_segment_all(bvec, bio, iter_all) {
3479 page = bvec->bv_page;
3480
3481 if (bio->bi_status) {
3482 btrfs_warn_rl_in_rcu(device->fs_info,
3483 "lost page write due to IO error on %s (%d)",
3484 rcu_str_deref(device->name),
3485 blk_status_to_errno(bio->bi_status));
3486 ClearPageUptodate(page);
3487 SetPageError(page);
3488 btrfs_dev_stat_inc_and_print(device,
3489 BTRFS_DEV_STAT_WRITE_ERRS);
3490 } else {
3491 SetPageUptodate(page);
3492 }
3493
3494 put_page(page);
3495 unlock_page(page);
f2984462 3496 }
314b6dd0
JT
3497
3498 bio_put(bio);
f2984462
CM
3499}
3500
8f32380d
JT
3501struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3502 int copy_num)
29c36d72 3503{
29c36d72 3504 struct btrfs_super_block *super;
8f32380d 3505 struct page *page;
12659251 3506 u64 bytenr, bytenr_orig;
8f32380d 3507 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3508 int ret;
3509
3510 bytenr_orig = btrfs_sb_offset(copy_num);
3511 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3512 if (ret == -ENOENT)
3513 return ERR_PTR(-EINVAL);
3514 else if (ret)
3515 return ERR_PTR(ret);
29c36d72 3516
29c36d72 3517 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3518 return ERR_PTR(-EINVAL);
29c36d72 3519
8f32380d
JT
3520 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3521 if (IS_ERR(page))
3522 return ERR_CAST(page);
29c36d72 3523
8f32380d 3524 super = page_address(page);
96c2e067
AJ
3525 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3526 btrfs_release_disk_super(super);
3527 return ERR_PTR(-ENODATA);
3528 }
3529
12659251 3530 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3531 btrfs_release_disk_super(super);
3532 return ERR_PTR(-EINVAL);
29c36d72
AJ
3533 }
3534
8f32380d 3535 return super;
29c36d72
AJ
3536}
3537
3538
8f32380d 3539struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3540{
8f32380d 3541 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3542 int i;
3543 u64 transid = 0;
a512bbf8
YZ
3544
3545 /* we would like to check all the supers, but that would make
3546 * a btrfs mount succeed after a mkfs from a different FS.
3547 * So, we need to add a special mount option to scan for
3548 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3549 */
3550 for (i = 0; i < 1; i++) {
8f32380d
JT
3551 super = btrfs_read_dev_one_super(bdev, i);
3552 if (IS_ERR(super))
a512bbf8
YZ
3553 continue;
3554
a512bbf8 3555 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3556 if (latest)
3557 btrfs_release_disk_super(super);
3558
3559 latest = super;
a512bbf8 3560 transid = btrfs_super_generation(super);
a512bbf8
YZ
3561 }
3562 }
92fc03fb 3563
8f32380d 3564 return super;
a512bbf8
YZ
3565}
3566
4eedeb75 3567/*
abbb3b8e 3568 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3569 * pages we use for writing are locked.
4eedeb75 3570 *
abbb3b8e
DS
3571 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3572 * the expected device size at commit time. Note that max_mirrors must be
3573 * same for write and wait phases.
4eedeb75 3574 *
314b6dd0 3575 * Return number of errors when page is not found or submission fails.
4eedeb75 3576 */
a512bbf8 3577static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3578 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3579{
d5178578 3580 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3581 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3582 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3583 int i;
a512bbf8 3584 int errors = 0;
12659251
NA
3585 int ret;
3586 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3587
3588 if (max_mirrors == 0)
3589 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3590
d5178578
JT
3591 shash->tfm = fs_info->csum_shash;
3592
a512bbf8 3593 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3594 struct page *page;
3595 struct bio *bio;
3596 struct btrfs_super_block *disk_super;
3597
12659251
NA
3598 bytenr_orig = btrfs_sb_offset(i);
3599 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3600 if (ret == -ENOENT) {
3601 continue;
3602 } else if (ret < 0) {
3603 btrfs_err(device->fs_info,
3604 "couldn't get super block location for mirror %d",
3605 i);
3606 errors++;
3607 continue;
3608 }
935e5cc9
MX
3609 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3610 device->commit_total_bytes)
a512bbf8
YZ
3611 break;
3612
12659251 3613 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3614
fd08001f
EB
3615 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3616 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3617 sb->csum);
4eedeb75 3618
314b6dd0
JT
3619 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3620 GFP_NOFS);
3621 if (!page) {
abbb3b8e 3622 btrfs_err(device->fs_info,
314b6dd0 3623 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3624 bytenr);
3625 errors++;
4eedeb75 3626 continue;
abbb3b8e 3627 }
634554dc 3628
314b6dd0
JT
3629 /* Bump the refcount for wait_dev_supers() */
3630 get_page(page);
a512bbf8 3631
314b6dd0
JT
3632 disk_super = page_address(page);
3633 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3634
314b6dd0
JT
3635 /*
3636 * Directly use bios here instead of relying on the page cache
3637 * to do I/O, so we don't lose the ability to do integrity
3638 * checking.
3639 */
3640 bio = bio_alloc(GFP_NOFS, 1);
3641 bio_set_dev(bio, device->bdev);
3642 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3643 bio->bi_private = device;
3644 bio->bi_end_io = btrfs_end_super_write;
3645 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3646 offset_in_page(bytenr));
a512bbf8 3647
387125fc 3648 /*
314b6dd0
JT
3649 * We FUA only the first super block. The others we allow to
3650 * go down lazy and there's a short window where the on-disk
3651 * copies might still contain the older version.
387125fc 3652 */
314b6dd0 3653 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3654 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3655 bio->bi_opf |= REQ_FUA;
3656
3657 btrfsic_submit_bio(bio);
12659251 3658 btrfs_advance_sb_log(device, i);
a512bbf8
YZ
3659 }
3660 return errors < i ? 0 : -1;
3661}
3662
abbb3b8e
DS
3663/*
3664 * Wait for write completion of superblocks done by write_dev_supers,
3665 * @max_mirrors same for write and wait phases.
3666 *
314b6dd0 3667 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3668 * date.
3669 */
3670static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3671{
abbb3b8e
DS
3672 int i;
3673 int errors = 0;
b6a535fa 3674 bool primary_failed = false;
12659251 3675 int ret;
abbb3b8e
DS
3676 u64 bytenr;
3677
3678 if (max_mirrors == 0)
3679 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3680
3681 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3682 struct page *page;
3683
12659251
NA
3684 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3685 if (ret == -ENOENT) {
3686 break;
3687 } else if (ret < 0) {
3688 errors++;
3689 if (i == 0)
3690 primary_failed = true;
3691 continue;
3692 }
abbb3b8e
DS
3693 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3694 device->commit_total_bytes)
3695 break;
3696
314b6dd0
JT
3697 page = find_get_page(device->bdev->bd_inode->i_mapping,
3698 bytenr >> PAGE_SHIFT);
3699 if (!page) {
abbb3b8e 3700 errors++;
b6a535fa
HM
3701 if (i == 0)
3702 primary_failed = true;
abbb3b8e
DS
3703 continue;
3704 }
314b6dd0
JT
3705 /* Page is submitted locked and unlocked once the IO completes */
3706 wait_on_page_locked(page);
3707 if (PageError(page)) {
abbb3b8e 3708 errors++;
b6a535fa
HM
3709 if (i == 0)
3710 primary_failed = true;
3711 }
abbb3b8e 3712
314b6dd0
JT
3713 /* Drop our reference */
3714 put_page(page);
abbb3b8e 3715
314b6dd0
JT
3716 /* Drop the reference from the writing run */
3717 put_page(page);
abbb3b8e
DS
3718 }
3719
b6a535fa
HM
3720 /* log error, force error return */
3721 if (primary_failed) {
3722 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3723 device->devid);
3724 return -1;
3725 }
3726
abbb3b8e
DS
3727 return errors < i ? 0 : -1;
3728}
3729
387125fc
CM
3730/*
3731 * endio for the write_dev_flush, this will wake anyone waiting
3732 * for the barrier when it is done
3733 */
4246a0b6 3734static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3735{
e0ae9994 3736 complete(bio->bi_private);
387125fc
CM
3737}
3738
3739/*
4fc6441a
AJ
3740 * Submit a flush request to the device if it supports it. Error handling is
3741 * done in the waiting counterpart.
387125fc 3742 */
4fc6441a 3743static void write_dev_flush(struct btrfs_device *device)
387125fc 3744{
c2a9c7ab 3745 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3746 struct bio *bio = device->flush_bio;
387125fc 3747
c2a9c7ab 3748 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3749 return;
387125fc 3750
e0ae9994 3751 bio_reset(bio);
387125fc 3752 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3753 bio_set_dev(bio, device->bdev);
8d910125 3754 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3755 init_completion(&device->flush_wait);
3756 bio->bi_private = &device->flush_wait;
387125fc 3757
43a01111 3758 btrfsic_submit_bio(bio);
1c3063b6 3759 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3760}
387125fc 3761
4fc6441a
AJ
3762/*
3763 * If the flush bio has been submitted by write_dev_flush, wait for it.
3764 */
8c27cb35 3765static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3766{
4fc6441a 3767 struct bio *bio = device->flush_bio;
387125fc 3768
1c3063b6 3769 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3770 return BLK_STS_OK;
387125fc 3771
1c3063b6 3772 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3773 wait_for_completion_io(&device->flush_wait);
387125fc 3774
8c27cb35 3775 return bio->bi_status;
387125fc 3776}
387125fc 3777
d10b82fe 3778static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3779{
6528b99d 3780 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3781 return -EIO;
387125fc
CM
3782 return 0;
3783}
3784
3785/*
3786 * send an empty flush down to each device in parallel,
3787 * then wait for them
3788 */
3789static int barrier_all_devices(struct btrfs_fs_info *info)
3790{
3791 struct list_head *head;
3792 struct btrfs_device *dev;
5af3e8cc 3793 int errors_wait = 0;
4e4cbee9 3794 blk_status_t ret;
387125fc 3795
1538e6c5 3796 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3797 /* send down all the barriers */
3798 head = &info->fs_devices->devices;
1538e6c5 3799 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3800 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3801 continue;
cea7c8bf 3802 if (!dev->bdev)
387125fc 3803 continue;
e12c9621 3804 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3805 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3806 continue;
3807
4fc6441a 3808 write_dev_flush(dev);
58efbc9f 3809 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3810 }
3811
3812 /* wait for all the barriers */
1538e6c5 3813 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3814 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3815 continue;
387125fc 3816 if (!dev->bdev) {
5af3e8cc 3817 errors_wait++;
387125fc
CM
3818 continue;
3819 }
e12c9621 3820 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3821 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3822 continue;
3823
4fc6441a 3824 ret = wait_dev_flush(dev);
401b41e5
AJ
3825 if (ret) {
3826 dev->last_flush_error = ret;
66b4993e
DS
3827 btrfs_dev_stat_inc_and_print(dev,
3828 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3829 errors_wait++;
401b41e5
AJ
3830 }
3831 }
3832
cea7c8bf 3833 if (errors_wait) {
401b41e5
AJ
3834 /*
3835 * At some point we need the status of all disks
3836 * to arrive at the volume status. So error checking
3837 * is being pushed to a separate loop.
3838 */
d10b82fe 3839 return check_barrier_error(info);
387125fc 3840 }
387125fc
CM
3841 return 0;
3842}
3843
943c6e99
ZL
3844int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3845{
8789f4fe
ZL
3846 int raid_type;
3847 int min_tolerated = INT_MAX;
943c6e99 3848
8789f4fe
ZL
3849 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3850 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3851 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3852 btrfs_raid_array[BTRFS_RAID_SINGLE].
3853 tolerated_failures);
943c6e99 3854
8789f4fe
ZL
3855 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3856 if (raid_type == BTRFS_RAID_SINGLE)
3857 continue;
41a6e891 3858 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3859 continue;
8c3e3582 3860 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3861 btrfs_raid_array[raid_type].
3862 tolerated_failures);
3863 }
943c6e99 3864
8789f4fe 3865 if (min_tolerated == INT_MAX) {
ab8d0fc4 3866 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3867 min_tolerated = 0;
3868 }
3869
3870 return min_tolerated;
943c6e99
ZL
3871}
3872
eece6a9c 3873int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3874{
e5e9a520 3875 struct list_head *head;
f2984462 3876 struct btrfs_device *dev;
a061fc8d 3877 struct btrfs_super_block *sb;
f2984462 3878 struct btrfs_dev_item *dev_item;
f2984462
CM
3879 int ret;
3880 int do_barriers;
a236aed1
CM
3881 int max_errors;
3882 int total_errors = 0;
a061fc8d 3883 u64 flags;
f2984462 3884
0b246afa 3885 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3886
3887 /*
3888 * max_mirrors == 0 indicates we're from commit_transaction,
3889 * not from fsync where the tree roots in fs_info have not
3890 * been consistent on disk.
3891 */
3892 if (max_mirrors == 0)
3893 backup_super_roots(fs_info);
f2984462 3894
0b246afa 3895 sb = fs_info->super_for_commit;
a061fc8d 3896 dev_item = &sb->dev_item;
e5e9a520 3897
0b246afa
JM
3898 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3899 head = &fs_info->fs_devices->devices;
3900 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3901
5af3e8cc 3902 if (do_barriers) {
0b246afa 3903 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3904 if (ret) {
3905 mutex_unlock(
0b246afa
JM
3906 &fs_info->fs_devices->device_list_mutex);
3907 btrfs_handle_fs_error(fs_info, ret,
3908 "errors while submitting device barriers.");
5af3e8cc
SB
3909 return ret;
3910 }
3911 }
387125fc 3912
1538e6c5 3913 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3914 if (!dev->bdev) {
3915 total_errors++;
3916 continue;
3917 }
e12c9621 3918 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3919 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3920 continue;
3921
2b82032c 3922 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3923 btrfs_set_stack_device_type(dev_item, dev->type);
3924 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3925 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3926 dev->commit_total_bytes);
ce7213c7
MX
3927 btrfs_set_stack_device_bytes_used(dev_item,
3928 dev->commit_bytes_used);
a061fc8d
CM
3929 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3930 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3931 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3932 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3933 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3934 BTRFS_FSID_SIZE);
a512bbf8 3935
a061fc8d
CM
3936 flags = btrfs_super_flags(sb);
3937 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3938
75cb857d
QW
3939 ret = btrfs_validate_write_super(fs_info, sb);
3940 if (ret < 0) {
3941 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3942 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3943 "unexpected superblock corruption detected");
3944 return -EUCLEAN;
3945 }
3946
abbb3b8e 3947 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3948 if (ret)
3949 total_errors++;
f2984462 3950 }
a236aed1 3951 if (total_errors > max_errors) {
0b246afa
JM
3952 btrfs_err(fs_info, "%d errors while writing supers",
3953 total_errors);
3954 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3955
9d565ba4 3956 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3957 btrfs_handle_fs_error(fs_info, -EIO,
3958 "%d errors while writing supers",
3959 total_errors);
9d565ba4 3960 return -EIO;
a236aed1 3961 }
f2984462 3962
a512bbf8 3963 total_errors = 0;
1538e6c5 3964 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3965 if (!dev->bdev)
3966 continue;
e12c9621 3967 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3968 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3969 continue;
3970
abbb3b8e 3971 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3972 if (ret)
3973 total_errors++;
f2984462 3974 }
0b246afa 3975 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3976 if (total_errors > max_errors) {
0b246afa
JM
3977 btrfs_handle_fs_error(fs_info, -EIO,
3978 "%d errors while writing supers",
3979 total_errors);
79787eaa 3980 return -EIO;
a236aed1 3981 }
f2984462
CM
3982 return 0;
3983}
3984
cb517eab
MX
3985/* Drop a fs root from the radix tree and free it. */
3986void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3987 struct btrfs_root *root)
2619ba1f 3988{
4785e24f
JB
3989 bool drop_ref = false;
3990
4df27c4d 3991 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3992 radix_tree_delete(&fs_info->fs_roots_radix,
3993 (unsigned long)root->root_key.objectid);
af01d2e5 3994 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3995 drop_ref = true;
4df27c4d 3996 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3997
1c1ea4f7 3998 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3999 ASSERT(root->log_root == NULL);
1c1ea4f7 4000 if (root->reloc_root) {
00246528 4001 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4002 root->reloc_root = NULL;
4003 }
4004 }
3321719e 4005
4785e24f
JB
4006 if (drop_ref)
4007 btrfs_put_root(root);
2619ba1f
CM
4008}
4009
c146afad 4010int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4011{
c146afad
YZ
4012 u64 root_objectid = 0;
4013 struct btrfs_root *gang[8];
65d33fd7
QW
4014 int i = 0;
4015 int err = 0;
4016 unsigned int ret = 0;
e089f05c 4017
c146afad 4018 while (1) {
efc34534 4019 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4020 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4021 (void **)gang, root_objectid,
4022 ARRAY_SIZE(gang));
65d33fd7 4023 if (!ret) {
efc34534 4024 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4025 break;
65d33fd7 4026 }
5d4f98a2 4027 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4028
c146afad 4029 for (i = 0; i < ret; i++) {
65d33fd7
QW
4030 /* Avoid to grab roots in dead_roots */
4031 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4032 gang[i] = NULL;
4033 continue;
4034 }
4035 /* grab all the search result for later use */
00246528 4036 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4037 }
efc34534 4038 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4039
65d33fd7
QW
4040 for (i = 0; i < ret; i++) {
4041 if (!gang[i])
4042 continue;
c146afad 4043 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4044 err = btrfs_orphan_cleanup(gang[i]);
4045 if (err)
65d33fd7 4046 break;
00246528 4047 btrfs_put_root(gang[i]);
c146afad
YZ
4048 }
4049 root_objectid++;
4050 }
65d33fd7
QW
4051
4052 /* release the uncleaned roots due to error */
4053 for (; i < ret; i++) {
4054 if (gang[i])
00246528 4055 btrfs_put_root(gang[i]);
65d33fd7
QW
4056 }
4057 return err;
c146afad 4058}
a2135011 4059
6bccf3ab 4060int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4061{
6bccf3ab 4062 struct btrfs_root *root = fs_info->tree_root;
c146afad 4063 struct btrfs_trans_handle *trans;
a74a4b97 4064
0b246afa 4065 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4066 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4067 mutex_unlock(&fs_info->cleaner_mutex);
4068 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4069
4070 /* wait until ongoing cleanup work done */
0b246afa
JM
4071 down_write(&fs_info->cleanup_work_sem);
4072 up_write(&fs_info->cleanup_work_sem);
c71bf099 4073
7a7eaa40 4074 trans = btrfs_join_transaction(root);
3612b495
TI
4075 if (IS_ERR(trans))
4076 return PTR_ERR(trans);
3a45bb20 4077 return btrfs_commit_transaction(trans);
c146afad
YZ
4078}
4079
b105e927 4080void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4081{
c146afad
YZ
4082 int ret;
4083
afcdd129 4084 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4085 /*
4086 * We don't want the cleaner to start new transactions, add more delayed
4087 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4088 * because that frees the task_struct, and the transaction kthread might
4089 * still try to wake up the cleaner.
4090 */
4091 kthread_park(fs_info->cleaner_kthread);
c146afad 4092
7343dd61 4093 /* wait for the qgroup rescan worker to stop */
d06f23d6 4094 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4095
803b2f54
SB
4096 /* wait for the uuid_scan task to finish */
4097 down(&fs_info->uuid_tree_rescan_sem);
4098 /* avoid complains from lockdep et al., set sem back to initial state */
4099 up(&fs_info->uuid_tree_rescan_sem);
4100
837d5b6e 4101 /* pause restriper - we want to resume on mount */
aa1b8cd4 4102 btrfs_pause_balance(fs_info);
837d5b6e 4103
8dabb742
SB
4104 btrfs_dev_replace_suspend_for_unmount(fs_info);
4105
aa1b8cd4 4106 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4107
4108 /* wait for any defraggers to finish */
4109 wait_event(fs_info->transaction_wait,
4110 (atomic_read(&fs_info->defrag_running) == 0));
4111
4112 /* clear out the rbtree of defraggable inodes */
26176e7c 4113 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4114
21c7e756 4115 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4116 cancel_work_sync(&fs_info->async_data_reclaim_work);
21c7e756 4117
b0643e59
DZ
4118 /* Cancel or finish ongoing discard work */
4119 btrfs_discard_cleanup(fs_info);
4120
bc98a42c 4121 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4122 /*
d6fd0ae2
OS
4123 * The cleaner kthread is stopped, so do one final pass over
4124 * unused block groups.
e44163e1 4125 */
0b246afa 4126 btrfs_delete_unused_bgs(fs_info);
e44163e1 4127
f0cc2cd7
FM
4128 /*
4129 * There might be existing delayed inode workers still running
4130 * and holding an empty delayed inode item. We must wait for
4131 * them to complete first because they can create a transaction.
4132 * This happens when someone calls btrfs_balance_delayed_items()
4133 * and then a transaction commit runs the same delayed nodes
4134 * before any delayed worker has done something with the nodes.
4135 * We must wait for any worker here and not at transaction
4136 * commit time since that could cause a deadlock.
4137 * This is a very rare case.
4138 */
4139 btrfs_flush_workqueue(fs_info->delayed_workers);
4140
6bccf3ab 4141 ret = btrfs_commit_super(fs_info);
acce952b 4142 if (ret)
04892340 4143 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4144 }
4145
af722733
LB
4146 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4147 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4148 btrfs_error_commit_super(fs_info);
0f7d52f4 4149
e3029d9f
AV
4150 kthread_stop(fs_info->transaction_kthread);
4151 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4152
e187831e 4153 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4154 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4155
5958253c
QW
4156 if (btrfs_check_quota_leak(fs_info)) {
4157 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4158 btrfs_err(fs_info, "qgroup reserved space leaked");
4159 }
4160
04892340 4161 btrfs_free_qgroup_config(fs_info);
fe816d0f 4162 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4163
963d678b 4164 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4165 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4166 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4167 }
bcc63abb 4168
4297ff84
JB
4169 if (percpu_counter_sum(&fs_info->dio_bytes))
4170 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4171 percpu_counter_sum(&fs_info->dio_bytes));
4172
6618a59b 4173 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4174 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4175
1a4319cc
LB
4176 btrfs_put_block_group_cache(fs_info);
4177
de348ee0
WS
4178 /*
4179 * we must make sure there is not any read request to
4180 * submit after we stopping all workers.
4181 */
4182 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4183 btrfs_stop_all_workers(fs_info);
4184
afcdd129 4185 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4186 free_root_pointers(fs_info, true);
8c38938c 4187 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4188
4e19443d
JB
4189 /*
4190 * We must free the block groups after dropping the fs_roots as we could
4191 * have had an IO error and have left over tree log blocks that aren't
4192 * cleaned up until the fs roots are freed. This makes the block group
4193 * accounting appear to be wrong because there's pending reserved bytes,
4194 * so make sure we do the block group cleanup afterwards.
4195 */
4196 btrfs_free_block_groups(fs_info);
4197
13e6c37b 4198 iput(fs_info->btree_inode);
d6bfde87 4199
21adbd5c 4200#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4201 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4202 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4203#endif
4204
0b86a832 4205 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4206 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4207}
4208
b9fab919
CM
4209int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4210 int atomic)
5f39d397 4211{
1259ab75 4212 int ret;
727011e0 4213 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4214
0b32f4bb 4215 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4216 if (!ret)
4217 return ret;
4218
4219 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4220 parent_transid, atomic);
4221 if (ret == -EAGAIN)
4222 return ret;
1259ab75 4223 return !ret;
5f39d397
CM
4224}
4225
5f39d397
CM
4226void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4227{
2f4d60df 4228 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4229 u64 transid = btrfs_header_generation(buf);
b9473439 4230 int was_dirty;
b4ce94de 4231
06ea65a3
JB
4232#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4233 /*
4234 * This is a fast path so only do this check if we have sanity tests
52042d8e 4235 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4236 * outside of the sanity tests.
4237 */
b0132a3b 4238 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4239 return;
4240#endif
b9447ef8 4241 btrfs_assert_tree_locked(buf);
0b246afa 4242 if (transid != fs_info->generation)
5d163e0e 4243 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4244 buf->start, transid, fs_info->generation);
0b32f4bb 4245 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4246 if (!was_dirty)
104b4e51
NB
4247 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4248 buf->len,
4249 fs_info->dirty_metadata_batch);
1f21ef0a 4250#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4251 /*
4252 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4253 * but item data not updated.
4254 * So here we should only check item pointers, not item data.
4255 */
4256 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4257 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4258 btrfs_print_leaf(buf);
1f21ef0a
FM
4259 ASSERT(0);
4260 }
4261#endif
eb60ceac
CM
4262}
4263
2ff7e61e 4264static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4265 int flush_delayed)
16cdcec7
MX
4266{
4267 /*
4268 * looks as though older kernels can get into trouble with
4269 * this code, they end up stuck in balance_dirty_pages forever
4270 */
e2d84521 4271 int ret;
16cdcec7
MX
4272
4273 if (current->flags & PF_MEMALLOC)
4274 return;
4275
b53d3f5d 4276 if (flush_delayed)
2ff7e61e 4277 btrfs_balance_delayed_items(fs_info);
16cdcec7 4278
d814a491
EL
4279 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4280 BTRFS_DIRTY_METADATA_THRESH,
4281 fs_info->dirty_metadata_batch);
e2d84521 4282 if (ret > 0) {
0b246afa 4283 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4284 }
16cdcec7
MX
4285}
4286
2ff7e61e 4287void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4288{
2ff7e61e 4289 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4290}
585ad2c3 4291
2ff7e61e 4292void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4293{
2ff7e61e 4294 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4295}
6b80053d 4296
581c1760
QW
4297int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4298 struct btrfs_key *first_key)
6b80053d 4299{
5ab12d1f 4300 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4301 level, first_key);
6b80053d 4302}
0da5468f 4303
2ff7e61e 4304static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4305{
fe816d0f
NB
4306 /* cleanup FS via transaction */
4307 btrfs_cleanup_transaction(fs_info);
4308
0b246afa 4309 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4310 btrfs_run_delayed_iputs(fs_info);
0b246afa 4311 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4312
0b246afa
JM
4313 down_write(&fs_info->cleanup_work_sem);
4314 up_write(&fs_info->cleanup_work_sem);
acce952b 4315}
4316
ef67963d
JB
4317static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4318{
4319 struct btrfs_root *gang[8];
4320 u64 root_objectid = 0;
4321 int ret;
4322
4323 spin_lock(&fs_info->fs_roots_radix_lock);
4324 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4325 (void **)gang, root_objectid,
4326 ARRAY_SIZE(gang))) != 0) {
4327 int i;
4328
4329 for (i = 0; i < ret; i++)
4330 gang[i] = btrfs_grab_root(gang[i]);
4331 spin_unlock(&fs_info->fs_roots_radix_lock);
4332
4333 for (i = 0; i < ret; i++) {
4334 if (!gang[i])
4335 continue;
4336 root_objectid = gang[i]->root_key.objectid;
4337 btrfs_free_log(NULL, gang[i]);
4338 btrfs_put_root(gang[i]);
4339 }
4340 root_objectid++;
4341 spin_lock(&fs_info->fs_roots_radix_lock);
4342 }
4343 spin_unlock(&fs_info->fs_roots_radix_lock);
4344 btrfs_free_log_root_tree(NULL, fs_info);
4345}
4346
143bede5 4347static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4348{
acce952b 4349 struct btrfs_ordered_extent *ordered;
acce952b 4350
199c2a9c 4351 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4352 /*
4353 * This will just short circuit the ordered completion stuff which will
4354 * make sure the ordered extent gets properly cleaned up.
4355 */
199c2a9c 4356 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4357 root_extent_list)
4358 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4359 spin_unlock(&root->ordered_extent_lock);
4360}
4361
4362static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4363{
4364 struct btrfs_root *root;
4365 struct list_head splice;
4366
4367 INIT_LIST_HEAD(&splice);
4368
4369 spin_lock(&fs_info->ordered_root_lock);
4370 list_splice_init(&fs_info->ordered_roots, &splice);
4371 while (!list_empty(&splice)) {
4372 root = list_first_entry(&splice, struct btrfs_root,
4373 ordered_root);
1de2cfde
JB
4374 list_move_tail(&root->ordered_root,
4375 &fs_info->ordered_roots);
199c2a9c 4376
2a85d9ca 4377 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4378 btrfs_destroy_ordered_extents(root);
4379
2a85d9ca
LB
4380 cond_resched();
4381 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4382 }
4383 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4384
4385 /*
4386 * We need this here because if we've been flipped read-only we won't
4387 * get sync() from the umount, so we need to make sure any ordered
4388 * extents that haven't had their dirty pages IO start writeout yet
4389 * actually get run and error out properly.
4390 */
4391 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4392}
4393
35a3621b 4394static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4395 struct btrfs_fs_info *fs_info)
acce952b 4396{
4397 struct rb_node *node;
4398 struct btrfs_delayed_ref_root *delayed_refs;
4399 struct btrfs_delayed_ref_node *ref;
4400 int ret = 0;
4401
4402 delayed_refs = &trans->delayed_refs;
4403
4404 spin_lock(&delayed_refs->lock);
d7df2c79 4405 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4406 spin_unlock(&delayed_refs->lock);
b79ce3dd 4407 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4408 return ret;
4409 }
4410
5c9d028b 4411 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4412 struct btrfs_delayed_ref_head *head;
0e0adbcf 4413 struct rb_node *n;
e78417d1 4414 bool pin_bytes = false;
acce952b 4415
d7df2c79
JB
4416 head = rb_entry(node, struct btrfs_delayed_ref_head,
4417 href_node);
3069bd26 4418 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4419 continue;
3069bd26 4420
d7df2c79 4421 spin_lock(&head->lock);
e3d03965 4422 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4423 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4424 ref_node);
d7df2c79 4425 ref->in_tree = 0;
e3d03965 4426 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4427 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4428 if (!list_empty(&ref->add_list))
4429 list_del(&ref->add_list);
d7df2c79
JB
4430 atomic_dec(&delayed_refs->num_entries);
4431 btrfs_put_delayed_ref(ref);
e78417d1 4432 }
d7df2c79
JB
4433 if (head->must_insert_reserved)
4434 pin_bytes = true;
4435 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4436 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4437 spin_unlock(&head->lock);
4438 spin_unlock(&delayed_refs->lock);
4439 mutex_unlock(&head->mutex);
acce952b 4440
f603bb94
NB
4441 if (pin_bytes) {
4442 struct btrfs_block_group *cache;
4443
4444 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4445 BUG_ON(!cache);
4446
4447 spin_lock(&cache->space_info->lock);
4448 spin_lock(&cache->lock);
4449 cache->pinned += head->num_bytes;
4450 btrfs_space_info_update_bytes_pinned(fs_info,
4451 cache->space_info, head->num_bytes);
4452 cache->reserved -= head->num_bytes;
4453 cache->space_info->bytes_reserved -= head->num_bytes;
4454 spin_unlock(&cache->lock);
4455 spin_unlock(&cache->space_info->lock);
4456 percpu_counter_add_batch(
4457 &cache->space_info->total_bytes_pinned,
4458 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4459
4460 btrfs_put_block_group(cache);
4461
4462 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4463 head->bytenr + head->num_bytes - 1);
4464 }
31890da0 4465 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4466 btrfs_put_delayed_ref_head(head);
acce952b 4467 cond_resched();
4468 spin_lock(&delayed_refs->lock);
4469 }
81f7eb00 4470 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4471
4472 spin_unlock(&delayed_refs->lock);
4473
4474 return ret;
4475}
4476
143bede5 4477static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4478{
4479 struct btrfs_inode *btrfs_inode;
4480 struct list_head splice;
4481
4482 INIT_LIST_HEAD(&splice);
4483
eb73c1b7
MX
4484 spin_lock(&root->delalloc_lock);
4485 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4486
4487 while (!list_empty(&splice)) {
fe816d0f 4488 struct inode *inode = NULL;
eb73c1b7
MX
4489 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4490 delalloc_inodes);
fe816d0f 4491 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4492 spin_unlock(&root->delalloc_lock);
acce952b 4493
fe816d0f
NB
4494 /*
4495 * Make sure we get a live inode and that it'll not disappear
4496 * meanwhile.
4497 */
4498 inode = igrab(&btrfs_inode->vfs_inode);
4499 if (inode) {
4500 invalidate_inode_pages2(inode->i_mapping);
4501 iput(inode);
4502 }
eb73c1b7 4503 spin_lock(&root->delalloc_lock);
acce952b 4504 }
eb73c1b7
MX
4505 spin_unlock(&root->delalloc_lock);
4506}
4507
4508static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4509{
4510 struct btrfs_root *root;
4511 struct list_head splice;
4512
4513 INIT_LIST_HEAD(&splice);
4514
4515 spin_lock(&fs_info->delalloc_root_lock);
4516 list_splice_init(&fs_info->delalloc_roots, &splice);
4517 while (!list_empty(&splice)) {
4518 root = list_first_entry(&splice, struct btrfs_root,
4519 delalloc_root);
00246528 4520 root = btrfs_grab_root(root);
eb73c1b7
MX
4521 BUG_ON(!root);
4522 spin_unlock(&fs_info->delalloc_root_lock);
4523
4524 btrfs_destroy_delalloc_inodes(root);
00246528 4525 btrfs_put_root(root);
eb73c1b7
MX
4526
4527 spin_lock(&fs_info->delalloc_root_lock);
4528 }
4529 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4530}
4531
2ff7e61e 4532static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4533 struct extent_io_tree *dirty_pages,
4534 int mark)
4535{
4536 int ret;
acce952b 4537 struct extent_buffer *eb;
4538 u64 start = 0;
4539 u64 end;
acce952b 4540
4541 while (1) {
4542 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4543 mark, NULL);
acce952b 4544 if (ret)
4545 break;
4546
91166212 4547 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4548 while (start <= end) {
0b246afa
JM
4549 eb = find_extent_buffer(fs_info, start);
4550 start += fs_info->nodesize;
fd8b2b61 4551 if (!eb)
acce952b 4552 continue;
fd8b2b61 4553 wait_on_extent_buffer_writeback(eb);
acce952b 4554
fd8b2b61
JB
4555 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4556 &eb->bflags))
4557 clear_extent_buffer_dirty(eb);
4558 free_extent_buffer_stale(eb);
acce952b 4559 }
4560 }
4561
4562 return ret;
4563}
4564
2ff7e61e 4565static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4566 struct extent_io_tree *unpin)
acce952b 4567{
acce952b 4568 u64 start;
4569 u64 end;
4570 int ret;
4571
acce952b 4572 while (1) {
0e6ec385
FM
4573 struct extent_state *cached_state = NULL;
4574
fcd5e742
LF
4575 /*
4576 * The btrfs_finish_extent_commit() may get the same range as
4577 * ours between find_first_extent_bit and clear_extent_dirty.
4578 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4579 * the same extent range.
4580 */
4581 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4582 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4583 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4584 if (ret) {
4585 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4586 break;
fcd5e742 4587 }
acce952b 4588
0e6ec385
FM
4589 clear_extent_dirty(unpin, start, end, &cached_state);
4590 free_extent_state(cached_state);
2ff7e61e 4591 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4592 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4593 cond_resched();
4594 }
4595
4596 return 0;
4597}
4598
32da5386 4599static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4600{
4601 struct inode *inode;
4602
4603 inode = cache->io_ctl.inode;
4604 if (inode) {
4605 invalidate_inode_pages2(inode->i_mapping);
4606 BTRFS_I(inode)->generation = 0;
4607 cache->io_ctl.inode = NULL;
4608 iput(inode);
4609 }
bbc37d6e 4610 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4611 btrfs_put_block_group(cache);
4612}
4613
4614void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4615 struct btrfs_fs_info *fs_info)
c79a1751 4616{
32da5386 4617 struct btrfs_block_group *cache;
c79a1751
LB
4618
4619 spin_lock(&cur_trans->dirty_bgs_lock);
4620 while (!list_empty(&cur_trans->dirty_bgs)) {
4621 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4622 struct btrfs_block_group,
c79a1751 4623 dirty_list);
c79a1751
LB
4624
4625 if (!list_empty(&cache->io_list)) {
4626 spin_unlock(&cur_trans->dirty_bgs_lock);
4627 list_del_init(&cache->io_list);
4628 btrfs_cleanup_bg_io(cache);
4629 spin_lock(&cur_trans->dirty_bgs_lock);
4630 }
4631
4632 list_del_init(&cache->dirty_list);
4633 spin_lock(&cache->lock);
4634 cache->disk_cache_state = BTRFS_DC_ERROR;
4635 spin_unlock(&cache->lock);
4636
4637 spin_unlock(&cur_trans->dirty_bgs_lock);
4638 btrfs_put_block_group(cache);
ba2c4d4e 4639 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4640 spin_lock(&cur_trans->dirty_bgs_lock);
4641 }
4642 spin_unlock(&cur_trans->dirty_bgs_lock);
4643
45ae2c18
NB
4644 /*
4645 * Refer to the definition of io_bgs member for details why it's safe
4646 * to use it without any locking
4647 */
c79a1751
LB
4648 while (!list_empty(&cur_trans->io_bgs)) {
4649 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4650 struct btrfs_block_group,
c79a1751 4651 io_list);
c79a1751
LB
4652
4653 list_del_init(&cache->io_list);
4654 spin_lock(&cache->lock);
4655 cache->disk_cache_state = BTRFS_DC_ERROR;
4656 spin_unlock(&cache->lock);
4657 btrfs_cleanup_bg_io(cache);
4658 }
4659}
4660
49b25e05 4661void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4662 struct btrfs_fs_info *fs_info)
49b25e05 4663{
bbbf7243
NB
4664 struct btrfs_device *dev, *tmp;
4665
2ff7e61e 4666 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4667 ASSERT(list_empty(&cur_trans->dirty_bgs));
4668 ASSERT(list_empty(&cur_trans->io_bgs));
4669
bbbf7243
NB
4670 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4671 post_commit_list) {
4672 list_del_init(&dev->post_commit_list);
4673 }
4674
2ff7e61e 4675 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4676
4a9d8bde 4677 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4678 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4679
4a9d8bde 4680 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4681 wake_up(&fs_info->transaction_wait);
49b25e05 4682
ccdf9b30 4683 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4684
2ff7e61e 4685 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4686 EXTENT_DIRTY);
fe119a6e 4687 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4688
4a9d8bde
MX
4689 cur_trans->state =TRANS_STATE_COMPLETED;
4690 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4691}
4692
2ff7e61e 4693static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4694{
4695 struct btrfs_transaction *t;
acce952b 4696
0b246afa 4697 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4698
0b246afa
JM
4699 spin_lock(&fs_info->trans_lock);
4700 while (!list_empty(&fs_info->trans_list)) {
4701 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4702 struct btrfs_transaction, list);
4703 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4704 refcount_inc(&t->use_count);
0b246afa 4705 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4706 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4707 btrfs_put_transaction(t);
0b246afa 4708 spin_lock(&fs_info->trans_lock);
724e2315
JB
4709 continue;
4710 }
0b246afa 4711 if (t == fs_info->running_transaction) {
724e2315 4712 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4713 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4714 /*
4715 * We wait for 0 num_writers since we don't hold a trans
4716 * handle open currently for this transaction.
4717 */
4718 wait_event(t->writer_wait,
4719 atomic_read(&t->num_writers) == 0);
4720 } else {
0b246afa 4721 spin_unlock(&fs_info->trans_lock);
724e2315 4722 }
2ff7e61e 4723 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4724
0b246afa
JM
4725 spin_lock(&fs_info->trans_lock);
4726 if (t == fs_info->running_transaction)
4727 fs_info->running_transaction = NULL;
acce952b 4728 list_del_init(&t->list);
0b246afa 4729 spin_unlock(&fs_info->trans_lock);
acce952b 4730
724e2315 4731 btrfs_put_transaction(t);
2ff7e61e 4732 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4733 spin_lock(&fs_info->trans_lock);
724e2315 4734 }
0b246afa
JM
4735 spin_unlock(&fs_info->trans_lock);
4736 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4737 btrfs_destroy_delayed_inodes(fs_info);
4738 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4739 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4740 btrfs_drop_all_logs(fs_info);
0b246afa 4741 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4742
4743 return 0;
4744}
ec7d6dfd
NB
4745
4746int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
4747{
4748 struct btrfs_path *path;
4749 int ret;
4750 struct extent_buffer *l;
4751 struct btrfs_key search_key;
4752 struct btrfs_key found_key;
4753 int slot;
4754
4755 path = btrfs_alloc_path();
4756 if (!path)
4757 return -ENOMEM;
4758
4759 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4760 search_key.type = -1;
4761 search_key.offset = (u64)-1;
4762 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4763 if (ret < 0)
4764 goto error;
4765 BUG_ON(ret == 0); /* Corruption */
4766 if (path->slots[0] > 0) {
4767 slot = path->slots[0] - 1;
4768 l = path->nodes[0];
4769 btrfs_item_key_to_cpu(l, &found_key, slot);
4770 *objectid = max_t(u64, found_key.objectid,
4771 BTRFS_FIRST_FREE_OBJECTID - 1);
4772 } else {
4773 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
4774 }
4775 ret = 0;
4776error:
4777 btrfs_free_path(path);
4778 return ret;
4779}
4780
4781int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
4782{
4783 int ret;
4784 mutex_lock(&root->objectid_mutex);
4785
4786 if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4787 btrfs_warn(root->fs_info,
4788 "the objectid of root %llu reaches its highest value",
4789 root->root_key.objectid);
4790 ret = -ENOSPC;
4791 goto out;
4792 }
4793
4794 *objectid = ++root->highest_objectid;
4795 ret = 0;
4796out:
4797 mutex_unlock(&root->objectid_mutex);
4798 return ret;
4799}