]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: move the root freeing stuff into btrfs_put_root
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8 255 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 256 */
c67b3892 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 258{
d5178578 259 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 262 char *kaddr;
e9be5a30 263 int i;
d5178578
JT
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
e9be5a30
DS
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 270
e9be5a30
DS
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 274 }
71a63551 275 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 276 crypto_shash_final(shash, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
1259ab75 285static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
1259ab75 288{
2ac55d41 289 struct extent_state *cached_state = NULL;
1259ab75 290 int ret;
2755a0de 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
b9fab919
CM
296 if (atomic)
297 return -EAGAIN;
298
a26e8c9f
JB
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
300aa896 301 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
302 }
303
2ac55d41 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 305 &cached_state);
0b32f4bb 306 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
94647322
DS
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
29549aec 314 parent_transid, btrfs_header_generation(eb));
1259ab75 315 ret = 1;
a26e8c9f
JB
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
01327610 320 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
33958dc6 327out:
2ac55d41 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 329 &cached_state);
472b909f
JB
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
1259ab75 332 return ret;
1259ab75
CM
333}
334
e7e16f48
JT
335static bool btrfs_supported_super_csum(u16 csum_type)
336{
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 339 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 340 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 341 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
342 return true;
343 default:
344 return false;
345 }
346}
347
1104a885
DS
348/*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
ab8d0fc4
JM
352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
1104a885
DS
354{
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 357 char result[BTRFS_CSUM_SIZE];
d5178578
JT
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
361 crypto_shash_init(shash);
1104a885 362
51bce6c9
JT
363 /*
364 * The super_block structure does not span the whole
365 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
366 * filled with zeros and is included in the checksum.
367 */
d5178578
JT
368 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
369 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
370 crypto_shash_final(shash, result);
1104a885 371
51bce6c9
JT
372 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
373 return 1;
1104a885 374
e7e16f48 375 return 0;
1104a885
DS
376}
377
e064d5e9 378int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 379 struct btrfs_key *first_key, u64 parent_transid)
581c1760 380{
e064d5e9 381 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
382 int found_level;
383 struct btrfs_key found_key;
384 int ret;
385
386 found_level = btrfs_header_level(eb);
387 if (found_level != level) {
63489055
QW
388 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
389 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
390 btrfs_err(fs_info,
391"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
392 eb->start, level, found_level);
581c1760
QW
393 return -EIO;
394 }
395
396 if (!first_key)
397 return 0;
398
5d41be6f
QW
399 /*
400 * For live tree block (new tree blocks in current transaction),
401 * we need proper lock context to avoid race, which is impossible here.
402 * So we only checks tree blocks which is read from disk, whose
403 * generation <= fs_info->last_trans_committed.
404 */
405 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
406 return 0;
62fdaa52
QW
407
408 /* We have @first_key, so this @eb must have at least one item */
409 if (btrfs_header_nritems(eb) == 0) {
410 btrfs_err(fs_info,
411 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
412 eb->start);
413 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
414 return -EUCLEAN;
415 }
416
581c1760
QW
417 if (found_level)
418 btrfs_node_key_to_cpu(eb, &found_key, 0);
419 else
420 btrfs_item_key_to_cpu(eb, &found_key, 0);
421 ret = btrfs_comp_cpu_keys(first_key, &found_key);
422
581c1760 423 if (ret) {
63489055
QW
424 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
425 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 426 btrfs_err(fs_info,
ff76a864
LB
427"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
428 eb->start, parent_transid, first_key->objectid,
429 first_key->type, first_key->offset,
430 found_key.objectid, found_key.type,
431 found_key.offset);
581c1760 432 }
581c1760
QW
433 return ret;
434}
435
d352ac68
CM
436/*
437 * helper to read a given tree block, doing retries as required when
438 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
439 *
440 * @parent_transid: expected transid, skip check if 0
441 * @level: expected level, mandatory check
442 * @first_key: expected key of first slot, skip check if NULL
d352ac68 443 */
5ab12d1f 444static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
445 u64 parent_transid, int level,
446 struct btrfs_key *first_key)
f188591e 447{
5ab12d1f 448 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 449 struct extent_io_tree *io_tree;
ea466794 450 int failed = 0;
f188591e
CM
451 int ret;
452 int num_copies = 0;
453 int mirror_num = 0;
ea466794 454 int failed_mirror = 0;
f188591e 455
0b246afa 456 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 457 while (1) {
f8397d69 458 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 459 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 460 if (!ret) {
581c1760 461 if (verify_parent_transid(io_tree, eb,
b9fab919 462 parent_transid, 0))
256dd1bb 463 ret = -EIO;
e064d5e9 464 else if (btrfs_verify_level_key(eb, level,
448de471 465 first_key, parent_transid))
581c1760
QW
466 ret = -EUCLEAN;
467 else
468 break;
256dd1bb 469 }
d397712b 470
0b246afa 471 num_copies = btrfs_num_copies(fs_info,
f188591e 472 eb->start, eb->len);
4235298e 473 if (num_copies == 1)
ea466794 474 break;
4235298e 475
5cf1ab56
JB
476 if (!failed_mirror) {
477 failed = 1;
478 failed_mirror = eb->read_mirror;
479 }
480
f188591e 481 mirror_num++;
ea466794
JB
482 if (mirror_num == failed_mirror)
483 mirror_num++;
484
4235298e 485 if (mirror_num > num_copies)
ea466794 486 break;
f188591e 487 }
ea466794 488
c0901581 489 if (failed && !ret && failed_mirror)
20a1fbf9 490 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
491
492 return ret;
f188591e 493}
19c00ddc 494
d352ac68 495/*
d397712b
CM
496 * checksum a dirty tree block before IO. This has extra checks to make sure
497 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 498 */
d397712b 499
01d58472 500static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 501{
4eee4fa4 502 u64 start = page_offset(page);
19c00ddc 503 u64 found_start;
2996e1f8
JT
504 u8 result[BTRFS_CSUM_SIZE];
505 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 506 struct extent_buffer *eb;
8d47a0d8 507 int ret;
f188591e 508
4f2de97a
JB
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
511 return 0;
0f805531 512
19c00ddc 513 found_start = btrfs_header_bytenr(eb);
0f805531
AL
514 /*
515 * Please do not consolidate these warnings into a single if.
516 * It is useful to know what went wrong.
517 */
518 if (WARN_ON(found_start != start))
519 return -EUCLEAN;
520 if (WARN_ON(!PageUptodate(page)))
521 return -EUCLEAN;
522
de37aa51 523 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
524 offsetof(struct btrfs_header, fsid),
525 BTRFS_FSID_SIZE) == 0);
0f805531 526
c67b3892 527 csum_tree_block(eb, result);
2996e1f8 528
8d47a0d8
QW
529 if (btrfs_header_level(eb))
530 ret = btrfs_check_node(eb);
531 else
532 ret = btrfs_check_leaf_full(eb);
533
534 if (ret < 0) {
c06631b0 535 btrfs_print_tree(eb, 0);
8d47a0d8
QW
536 btrfs_err(fs_info,
537 "block=%llu write time tree block corruption detected",
538 eb->start);
c06631b0 539 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
540 return ret;
541 }
2996e1f8 542 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 543
2996e1f8 544 return 0;
19c00ddc
CM
545}
546
b0c9b3b0 547static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 548{
b0c9b3b0 549 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 551 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
552 int ret = 1;
553
9a8658e3
DS
554 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
555 BTRFS_FSID_SIZE);
2b82032c 556 while (fs_devices) {
7239ff4b
NB
557 u8 *metadata_uuid;
558
559 /*
560 * Checking the incompat flag is only valid for the current
561 * fs. For seed devices it's forbidden to have their uuid
562 * changed so reading ->fsid in this case is fine
563 */
564 if (fs_devices == fs_info->fs_devices &&
565 btrfs_fs_incompat(fs_info, METADATA_UUID))
566 metadata_uuid = fs_devices->metadata_uuid;
567 else
568 metadata_uuid = fs_devices->fsid;
569
570 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
571 ret = 0;
572 break;
573 }
574 fs_devices = fs_devices->seed;
575 }
576 return ret;
577}
578
facc8a22
MX
579static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
580 u64 phy_offset, struct page *page,
581 u64 start, u64 end, int mirror)
ce9adaa5 582{
ce9adaa5
CM
583 u64 found_start;
584 int found_level;
ce9adaa5 585 struct extent_buffer *eb;
15b6e8a8
DS
586 struct btrfs_fs_info *fs_info;
587 u16 csum_size;
f188591e 588 int ret = 0;
2996e1f8 589 u8 result[BTRFS_CSUM_SIZE];
727011e0 590 int reads_done;
ce9adaa5 591
ce9adaa5
CM
592 if (!page->private)
593 goto out;
d397712b 594
4f2de97a 595 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
596 fs_info = eb->fs_info;
597 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 598
0b32f4bb
JB
599 /* the pending IO might have been the only thing that kept this buffer
600 * in memory. Make sure we have a ref for all this other checks
601 */
67439dad 602 atomic_inc(&eb->refs);
0b32f4bb
JB
603
604 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
605 if (!reads_done)
606 goto err;
f188591e 607
5cf1ab56 608 eb->read_mirror = mirror;
656f30db 609 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
610 ret = -EIO;
611 goto err;
612 }
613
ce9adaa5 614 found_start = btrfs_header_bytenr(eb);
727011e0 615 if (found_start != eb->start) {
893bf4b1
SY
616 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
617 eb->start, found_start);
f188591e 618 ret = -EIO;
ce9adaa5
CM
619 goto err;
620 }
b0c9b3b0 621 if (check_tree_block_fsid(eb)) {
02873e43
ZL
622 btrfs_err_rl(fs_info, "bad fsid on block %llu",
623 eb->start);
1259ab75
CM
624 ret = -EIO;
625 goto err;
626 }
ce9adaa5 627 found_level = btrfs_header_level(eb);
1c24c3ce 628 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
629 btrfs_err(fs_info, "bad tree block level %d on %llu",
630 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
631 ret = -EIO;
632 goto err;
633 }
ce9adaa5 634
85d4e461
CM
635 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636 eb, found_level);
4008c04a 637
c67b3892 638 csum_tree_block(eb, result);
a826d6dc 639
2996e1f8
JT
640 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
641 u32 val;
642 u32 found = 0;
643
644 memcpy(&found, result, csum_size);
645
646 read_extent_buffer(eb, &val, 0, csum_size);
647 btrfs_warn_rl(fs_info,
648 "%s checksum verify failed on %llu wanted %x found %x level %d",
649 fs_info->sb->s_id, eb->start,
650 val, found, btrfs_header_level(eb));
651 ret = -EUCLEAN;
652 goto err;
653 }
654
a826d6dc
JB
655 /*
656 * If this is a leaf block and it is corrupt, set the corrupt bit so
657 * that we don't try and read the other copies of this block, just
658 * return -EIO.
659 */
1c4360ee 660 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
661 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
662 ret = -EIO;
663 }
ce9adaa5 664
813fd1dc 665 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
666 ret = -EIO;
667
0b32f4bb
JB
668 if (!ret)
669 set_extent_buffer_uptodate(eb);
75391f0d
QW
670 else
671 btrfs_err(fs_info,
672 "block=%llu read time tree block corruption detected",
673 eb->start);
ce9adaa5 674err:
79fb65a1
JB
675 if (reads_done &&
676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 677 btree_readahead_hook(eb, ret);
4bb31e92 678
53b381b3
DW
679 if (ret) {
680 /*
681 * our io error hook is going to dec the io pages
682 * again, we have to make sure it has something
683 * to decrement
684 */
685 atomic_inc(&eb->io_pages);
0b32f4bb 686 clear_extent_buffer_uptodate(eb);
53b381b3 687 }
0b32f4bb 688 free_extent_buffer(eb);
ce9adaa5 689out:
f188591e 690 return ret;
ce9adaa5
CM
691}
692
4246a0b6 693static void end_workqueue_bio(struct bio *bio)
ce9adaa5 694{
97eb6b69 695 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 696 struct btrfs_fs_info *fs_info;
9e0af237 697 struct btrfs_workqueue *wq;
ce9adaa5 698
ce9adaa5 699 fs_info = end_io_wq->info;
4e4cbee9 700 end_io_wq->status = bio->bi_status;
d20f7043 701
37226b21 702 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 703 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 704 wq = fs_info->endio_meta_write_workers;
a0cac0ec 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 706 wq = fs_info->endio_freespace_worker;
a0cac0ec 707 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 708 wq = fs_info->endio_raid56_workers;
a0cac0ec 709 else
9e0af237 710 wq = fs_info->endio_write_workers;
d20f7043 711 } else {
a0cac0ec 712 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 713 wq = fs_info->endio_repair_workers;
a0cac0ec 714 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 715 wq = fs_info->endio_raid56_workers;
a0cac0ec 716 else if (end_io_wq->metadata)
9e0af237 717 wq = fs_info->endio_meta_workers;
a0cac0ec 718 else
9e0af237 719 wq = fs_info->endio_workers;
d20f7043 720 }
9e0af237 721
a0cac0ec 722 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 723 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
724}
725
4e4cbee9 726blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 727 enum btrfs_wq_endio_type metadata)
0b86a832 728{
97eb6b69 729 struct btrfs_end_io_wq *end_io_wq;
8b110e39 730
97eb6b69 731 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 732 if (!end_io_wq)
4e4cbee9 733 return BLK_STS_RESOURCE;
ce9adaa5
CM
734
735 end_io_wq->private = bio->bi_private;
736 end_io_wq->end_io = bio->bi_end_io;
22c59948 737 end_io_wq->info = info;
4e4cbee9 738 end_io_wq->status = 0;
ce9adaa5 739 end_io_wq->bio = bio;
22c59948 740 end_io_wq->metadata = metadata;
ce9adaa5
CM
741
742 bio->bi_private = end_io_wq;
743 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
744 return 0;
745}
746
4a69a410
CM
747static void run_one_async_start(struct btrfs_work *work)
748{
4a69a410 749 struct async_submit_bio *async;
4e4cbee9 750 blk_status_t ret;
4a69a410
CM
751
752 async = container_of(work, struct async_submit_bio, work);
c6100a4b 753 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
754 async->bio_offset);
755 if (ret)
4e4cbee9 756 async->status = ret;
4a69a410
CM
757}
758
06ea01b1
DS
759/*
760 * In order to insert checksums into the metadata in large chunks, we wait
761 * until bio submission time. All the pages in the bio are checksummed and
762 * sums are attached onto the ordered extent record.
763 *
764 * At IO completion time the csums attached on the ordered extent record are
765 * inserted into the tree.
766 */
4a69a410 767static void run_one_async_done(struct btrfs_work *work)
8b712842 768{
8b712842 769 struct async_submit_bio *async;
06ea01b1
DS
770 struct inode *inode;
771 blk_status_t ret;
8b712842
CM
772
773 async = container_of(work, struct async_submit_bio, work);
06ea01b1 774 inode = async->private_data;
4854ddd0 775
bb7ab3b9 776 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
777 if (async->status) {
778 async->bio->bi_status = async->status;
4246a0b6 779 bio_endio(async->bio);
79787eaa
JM
780 return;
781 }
782
ec39f769
CM
783 /*
784 * All of the bios that pass through here are from async helpers.
785 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
786 * This changes nothing when cgroups aren't in use.
787 */
788 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 789 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
790 if (ret) {
791 async->bio->bi_status = ret;
792 bio_endio(async->bio);
793 }
4a69a410
CM
794}
795
796static void run_one_async_free(struct btrfs_work *work)
797{
798 struct async_submit_bio *async;
799
800 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
801 kfree(async);
802}
803
8c27cb35
LT
804blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
805 int mirror_num, unsigned long bio_flags,
806 u64 bio_offset, void *private_data,
e288c080 807 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
808{
809 struct async_submit_bio *async;
810
811 async = kmalloc(sizeof(*async), GFP_NOFS);
812 if (!async)
4e4cbee9 813 return BLK_STS_RESOURCE;
44b8bd7e 814
c6100a4b 815 async->private_data = private_data;
44b8bd7e
CM
816 async->bio = bio;
817 async->mirror_num = mirror_num;
4a69a410 818 async->submit_bio_start = submit_bio_start;
4a69a410 819
a0cac0ec
OS
820 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
821 run_one_async_free);
4a69a410 822
eaf25d93 823 async->bio_offset = bio_offset;
8c8bee1d 824
4e4cbee9 825 async->status = 0;
79787eaa 826
67f055c7 827 if (op_is_sync(bio->bi_opf))
5cdc7ad3 828 btrfs_set_work_high_priority(&async->work);
d313d7a3 829
5cdc7ad3 830 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
831 return 0;
832}
833
4e4cbee9 834static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 835{
2c30c71b 836 struct bio_vec *bvec;
ce3ed71a 837 struct btrfs_root *root;
2b070cfe 838 int ret = 0;
6dc4f100 839 struct bvec_iter_all iter_all;
ce3ed71a 840
c09abff8 841 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 842 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 843 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 844 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
845 if (ret)
846 break;
ce3ed71a 847 }
2c30c71b 848
4e4cbee9 849 return errno_to_blk_status(ret);
ce3ed71a
CM
850}
851
d0ee3934 852static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 853 u64 bio_offset)
22c59948 854{
8b712842
CM
855 /*
856 * when we're called for a write, we're already in the async
5443be45 857 * submission context. Just jump into btrfs_map_bio
8b712842 858 */
79787eaa 859 return btree_csum_one_bio(bio);
4a69a410 860}
22c59948 861
9b4e675a
DS
862static int check_async_write(struct btrfs_fs_info *fs_info,
863 struct btrfs_inode *bi)
de0022b9 864{
6300463b
LB
865 if (atomic_read(&bi->sync_writers))
866 return 0;
9b4e675a 867 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 868 return 0;
de0022b9
JB
869 return 1;
870}
871
a56b1c7b 872static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
873 int mirror_num,
874 unsigned long bio_flags)
44b8bd7e 875{
0b246afa 876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 877 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 878 blk_status_t ret;
cad321ad 879
37226b21 880 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
881 /*
882 * called for a read, do the setup so that checksum validation
883 * can happen in the async kernel threads
884 */
0b246afa
JM
885 ret = btrfs_bio_wq_end_io(fs_info, bio,
886 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 887 if (ret)
61891923 888 goto out_w_error;
08635bae 889 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
890 } else if (!async) {
891 ret = btree_csum_one_bio(bio);
892 if (ret)
61891923 893 goto out_w_error;
08635bae 894 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
895 } else {
896 /*
897 * kthread helpers are used to submit writes so that
898 * checksumming can happen in parallel across all CPUs
899 */
c6100a4b 900 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 901 0, inode, btree_submit_bio_start);
44b8bd7e 902 }
d313d7a3 903
4246a0b6
CH
904 if (ret)
905 goto out_w_error;
906 return 0;
907
61891923 908out_w_error:
4e4cbee9 909 bio->bi_status = ret;
4246a0b6 910 bio_endio(bio);
61891923 911 return ret;
44b8bd7e
CM
912}
913
3dd1462e 914#ifdef CONFIG_MIGRATION
784b4e29 915static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
916 struct page *newpage, struct page *page,
917 enum migrate_mode mode)
784b4e29
CM
918{
919 /*
920 * we can't safely write a btree page from here,
921 * we haven't done the locking hook
922 */
923 if (PageDirty(page))
924 return -EAGAIN;
925 /*
926 * Buffers may be managed in a filesystem specific way.
927 * We must have no buffers or drop them.
928 */
929 if (page_has_private(page) &&
930 !try_to_release_page(page, GFP_KERNEL))
931 return -EAGAIN;
a6bc32b8 932 return migrate_page(mapping, newpage, page, mode);
784b4e29 933}
3dd1462e 934#endif
784b4e29 935
0da5468f
CM
936
937static int btree_writepages(struct address_space *mapping,
938 struct writeback_control *wbc)
939{
e2d84521
MX
940 struct btrfs_fs_info *fs_info;
941 int ret;
942
d8d5f3e1 943 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
944
945 if (wbc->for_kupdate)
946 return 0;
947
e2d84521 948 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 949 /* this is a bit racy, but that's ok */
d814a491
EL
950 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
951 BTRFS_DIRTY_METADATA_THRESH,
952 fs_info->dirty_metadata_batch);
e2d84521 953 if (ret < 0)
793955bc 954 return 0;
793955bc 955 }
0b32f4bb 956 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
957}
958
b2950863 959static int btree_readpage(struct file *file, struct page *page)
5f39d397 960{
71ad38b4 961 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 962}
22b0ebda 963
70dec807 964static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 965{
98509cfc 966 if (PageWriteback(page) || PageDirty(page))
d397712b 967 return 0;
0c4e538b 968
f7a52a40 969 return try_release_extent_buffer(page);
d98237b3
CM
970}
971
d47992f8
LC
972static void btree_invalidatepage(struct page *page, unsigned int offset,
973 unsigned int length)
d98237b3 974{
d1310b2e
CM
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
977 extent_invalidatepage(tree, page, offset);
978 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 979 if (PagePrivate(page)) {
efe120a0
FH
980 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
981 "page private not zero on page %llu",
982 (unsigned long long)page_offset(page));
9ad6b7bc
CM
983 ClearPagePrivate(page);
984 set_page_private(page, 0);
09cbfeaf 985 put_page(page);
9ad6b7bc 986 }
d98237b3
CM
987}
988
0b32f4bb
JB
989static int btree_set_page_dirty(struct page *page)
990{
bb146eb2 991#ifdef DEBUG
0b32f4bb
JB
992 struct extent_buffer *eb;
993
994 BUG_ON(!PagePrivate(page));
995 eb = (struct extent_buffer *)page->private;
996 BUG_ON(!eb);
997 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
998 BUG_ON(!atomic_read(&eb->refs));
999 btrfs_assert_tree_locked(eb);
bb146eb2 1000#endif
0b32f4bb
JB
1001 return __set_page_dirty_nobuffers(page);
1002}
1003
7f09410b 1004static const struct address_space_operations btree_aops = {
d98237b3 1005 .readpage = btree_readpage,
0da5468f 1006 .writepages = btree_writepages,
5f39d397
CM
1007 .releasepage = btree_releasepage,
1008 .invalidatepage = btree_invalidatepage,
5a92bc88 1009#ifdef CONFIG_MIGRATION
784b4e29 1010 .migratepage = btree_migratepage,
5a92bc88 1011#endif
0b32f4bb 1012 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1013};
1014
2ff7e61e 1015void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1016{
5f39d397 1017 struct extent_buffer *buf = NULL;
537f38f0 1018 int ret;
090d1875 1019
2ff7e61e 1020 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1021 if (IS_ERR(buf))
6197d86e 1022 return;
537f38f0 1023
c2ccfbc6 1024 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1025 if (ret < 0)
1026 free_extent_buffer_stale(buf);
1027 else
1028 free_extent_buffer(buf);
090d1875
CM
1029}
1030
2ff7e61e
JM
1031struct extent_buffer *btrfs_find_create_tree_block(
1032 struct btrfs_fs_info *fs_info,
1033 u64 bytenr)
0999df54 1034{
0b246afa
JM
1035 if (btrfs_is_testing(fs_info))
1036 return alloc_test_extent_buffer(fs_info, bytenr);
1037 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1038}
1039
581c1760
QW
1040/*
1041 * Read tree block at logical address @bytenr and do variant basic but critical
1042 * verification.
1043 *
1044 * @parent_transid: expected transid of this tree block, skip check if 0
1045 * @level: expected level, mandatory check
1046 * @first_key: expected key in slot 0, skip check if NULL
1047 */
2ff7e61e 1048struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1049 u64 parent_transid, int level,
1050 struct btrfs_key *first_key)
0999df54
CM
1051{
1052 struct extent_buffer *buf = NULL;
0999df54
CM
1053 int ret;
1054
2ff7e61e 1055 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1056 if (IS_ERR(buf))
1057 return buf;
0999df54 1058
5ab12d1f 1059 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1060 level, first_key);
0f0fe8f7 1061 if (ret) {
537f38f0 1062 free_extent_buffer_stale(buf);
64c043de 1063 return ERR_PTR(ret);
0f0fe8f7 1064 }
5f39d397 1065 return buf;
ce9adaa5 1066
eb60ceac
CM
1067}
1068
6a884d7d 1069void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1070{
6a884d7d 1071 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1072 if (btrfs_header_generation(buf) ==
e2d84521 1073 fs_info->running_transaction->transid) {
b9447ef8 1074 btrfs_assert_tree_locked(buf);
b4ce94de 1075
b9473439 1076 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1077 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1078 -buf->len,
1079 fs_info->dirty_metadata_batch);
ed7b63eb 1080 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1081 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1082 clear_extent_buffer_dirty(buf);
1083 }
925baedd 1084 }
5f39d397
CM
1085}
1086
da17066c 1087static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1088 u64 objectid)
d97e63b6 1089{
7c0260ee 1090 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1091 root->fs_info = fs_info;
cfaa7295 1092 root->node = NULL;
a28ec197 1093 root->commit_root = NULL;
27cdeb70 1094 root->state = 0;
d68fc57b 1095 root->orphan_cleanup_state = 0;
0b86a832 1096
0f7d52f4 1097 root->last_trans = 0;
13a8a7c8 1098 root->highest_objectid = 0;
eb73c1b7 1099 root->nr_delalloc_inodes = 0;
199c2a9c 1100 root->nr_ordered_extents = 0;
6bef4d31 1101 root->inode_tree = RB_ROOT;
16cdcec7 1102 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1103 root->block_rsv = NULL;
0b86a832
CM
1104
1105 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1106 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1107 INIT_LIST_HEAD(&root->delalloc_inodes);
1108 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1109 INIT_LIST_HEAD(&root->ordered_extents);
1110 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1111 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1112 INIT_LIST_HEAD(&root->logged_list[0]);
1113 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1114 spin_lock_init(&root->inode_lock);
eb73c1b7 1115 spin_lock_init(&root->delalloc_lock);
199c2a9c 1116 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1117 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1118 spin_lock_init(&root->log_extents_lock[0]);
1119 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1120 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1121 mutex_init(&root->objectid_mutex);
e02119d5 1122 mutex_init(&root->log_mutex);
31f3d255 1123 mutex_init(&root->ordered_extent_mutex);
573bfb72 1124 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1125 init_waitqueue_head(&root->log_writer_wait);
1126 init_waitqueue_head(&root->log_commit_wait[0]);
1127 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1128 INIT_LIST_HEAD(&root->log_ctxs[0]);
1129 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1130 atomic_set(&root->log_commit[0], 0);
1131 atomic_set(&root->log_commit[1], 0);
1132 atomic_set(&root->log_writers, 0);
2ecb7923 1133 atomic_set(&root->log_batch, 0);
0700cea7 1134 refcount_set(&root->refs, 1);
8ecebf4d 1135 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1136 atomic_set(&root->nr_swapfiles, 0);
7237f183 1137 root->log_transid = 0;
d1433deb 1138 root->log_transid_committed = -1;
257c62e1 1139 root->last_log_commit = 0;
7c0260ee 1140 if (!dummy)
43eb5f29
QW
1141 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1142 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1143
3768f368
CM
1144 memset(&root->root_key, 0, sizeof(root->root_key));
1145 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1146 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1147 if (!dummy)
06ea65a3
JB
1148 root->defrag_trans_start = fs_info->generation;
1149 else
1150 root->defrag_trans_start = 0;
4d775673 1151 root->root_key.objectid = objectid;
0ee5dc67 1152 root->anon_dev = 0;
8ea05e3a 1153
5f3ab90a 1154 spin_lock_init(&root->root_item_lock);
370a11b8 1155 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1156#ifdef CONFIG_BTRFS_DEBUG
1157 INIT_LIST_HEAD(&root->leak_list);
1158 spin_lock(&fs_info->fs_roots_radix_lock);
1159 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1160 spin_unlock(&fs_info->fs_roots_radix_lock);
1161#endif
3768f368
CM
1162}
1163
74e4d827 1164static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1165 u64 objectid, gfp_t flags)
6f07e42e 1166{
74e4d827 1167 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1168 if (root)
96dfcb46 1169 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1170 return root;
1171}
1172
06ea65a3
JB
1173#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1174/* Should only be used by the testing infrastructure */
da17066c 1175struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1176{
1177 struct btrfs_root *root;
1178
7c0260ee
JM
1179 if (!fs_info)
1180 return ERR_PTR(-EINVAL);
1181
96dfcb46 1182 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1183 if (!root)
1184 return ERR_PTR(-ENOMEM);
da17066c 1185
b9ef22de 1186 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1187 root->alloc_bytenr = 0;
06ea65a3
JB
1188
1189 return root;
1190}
1191#endif
1192
20897f5c 1193struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1194 u64 objectid)
1195{
9b7a2440 1196 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1197 struct extent_buffer *leaf;
1198 struct btrfs_root *tree_root = fs_info->tree_root;
1199 struct btrfs_root *root;
1200 struct btrfs_key key;
b89f6d1f 1201 unsigned int nofs_flag;
20897f5c 1202 int ret = 0;
20897f5c 1203
b89f6d1f
FM
1204 /*
1205 * We're holding a transaction handle, so use a NOFS memory allocation
1206 * context to avoid deadlock if reclaim happens.
1207 */
1208 nofs_flag = memalloc_nofs_save();
96dfcb46 1209 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1210 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1211 if (!root)
1212 return ERR_PTR(-ENOMEM);
1213
20897f5c
AJ
1214 root->root_key.objectid = objectid;
1215 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1216 root->root_key.offset = 0;
1217
4d75f8a9 1218 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1219 if (IS_ERR(leaf)) {
1220 ret = PTR_ERR(leaf);
1dd05682 1221 leaf = NULL;
20897f5c
AJ
1222 goto fail;
1223 }
1224
20897f5c 1225 root->node = leaf;
20897f5c
AJ
1226 btrfs_mark_buffer_dirty(leaf);
1227
1228 root->commit_root = btrfs_root_node(root);
27cdeb70 1229 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1230
1231 root->root_item.flags = 0;
1232 root->root_item.byte_limit = 0;
1233 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1234 btrfs_set_root_generation(&root->root_item, trans->transid);
1235 btrfs_set_root_level(&root->root_item, 0);
1236 btrfs_set_root_refs(&root->root_item, 1);
1237 btrfs_set_root_used(&root->root_item, leaf->len);
1238 btrfs_set_root_last_snapshot(&root->root_item, 0);
1239 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1240 if (is_fstree(objectid))
807fc790
AS
1241 generate_random_guid(root->root_item.uuid);
1242 else
1243 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1244 root->root_item.drop_level = 0;
1245
1246 key.objectid = objectid;
1247 key.type = BTRFS_ROOT_ITEM_KEY;
1248 key.offset = 0;
1249 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1250 if (ret)
1251 goto fail;
1252
1253 btrfs_tree_unlock(leaf);
1254
1dd05682
TI
1255 return root;
1256
20897f5c 1257fail:
8c38938c 1258 if (leaf)
1dd05682 1259 btrfs_tree_unlock(leaf);
00246528 1260 btrfs_put_root(root);
20897f5c 1261
1dd05682 1262 return ERR_PTR(ret);
20897f5c
AJ
1263}
1264
7237f183
YZ
1265static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1266 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1267{
1268 struct btrfs_root *root;
7237f183 1269 struct extent_buffer *leaf;
e02119d5 1270
96dfcb46 1271 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1272 if (!root)
7237f183 1273 return ERR_PTR(-ENOMEM);
e02119d5 1274
e02119d5
CM
1275 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1278
7237f183 1279 /*
27cdeb70
MX
1280 * DON'T set REF_COWS for log trees
1281 *
7237f183
YZ
1282 * log trees do not get reference counted because they go away
1283 * before a real commit is actually done. They do store pointers
1284 * to file data extents, and those reference counts still get
1285 * updated (along with back refs to the log tree).
1286 */
e02119d5 1287
4d75f8a9
DS
1288 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1289 NULL, 0, 0, 0);
7237f183 1290 if (IS_ERR(leaf)) {
00246528 1291 btrfs_put_root(root);
7237f183
YZ
1292 return ERR_CAST(leaf);
1293 }
e02119d5 1294
7237f183 1295 root->node = leaf;
e02119d5 1296
e02119d5
CM
1297 btrfs_mark_buffer_dirty(root->node);
1298 btrfs_tree_unlock(root->node);
7237f183
YZ
1299 return root;
1300}
1301
1302int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1303 struct btrfs_fs_info *fs_info)
1304{
1305 struct btrfs_root *log_root;
1306
1307 log_root = alloc_log_tree(trans, fs_info);
1308 if (IS_ERR(log_root))
1309 return PTR_ERR(log_root);
1310 WARN_ON(fs_info->log_root_tree);
1311 fs_info->log_root_tree = log_root;
1312 return 0;
1313}
1314
1315int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1316 struct btrfs_root *root)
1317{
0b246afa 1318 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1319 struct btrfs_root *log_root;
1320 struct btrfs_inode_item *inode_item;
1321
0b246afa 1322 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1323 if (IS_ERR(log_root))
1324 return PTR_ERR(log_root);
1325
1326 log_root->last_trans = trans->transid;
1327 log_root->root_key.offset = root->root_key.objectid;
1328
1329 inode_item = &log_root->root_item.inode;
3cae210f
QW
1330 btrfs_set_stack_inode_generation(inode_item, 1);
1331 btrfs_set_stack_inode_size(inode_item, 3);
1332 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1333 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1334 fs_info->nodesize);
3cae210f 1335 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1336
5d4f98a2 1337 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1338
1339 WARN_ON(root->log_root);
1340 root->log_root = log_root;
1341 root->log_transid = 0;
d1433deb 1342 root->log_transid_committed = -1;
257c62e1 1343 root->last_log_commit = 0;
e02119d5
CM
1344 return 0;
1345}
1346
62a2c73e
JB
1347struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1348 struct btrfs_key *key)
e02119d5
CM
1349{
1350 struct btrfs_root *root;
1351 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1352 struct btrfs_path *path;
84234f3a 1353 u64 generation;
cb517eab 1354 int ret;
581c1760 1355 int level;
0f7d52f4 1356
cb517eab
MX
1357 path = btrfs_alloc_path();
1358 if (!path)
0f7d52f4 1359 return ERR_PTR(-ENOMEM);
cb517eab 1360
96dfcb46 1361 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1362 if (!root) {
1363 ret = -ENOMEM;
1364 goto alloc_fail;
0f7d52f4
CM
1365 }
1366
cb517eab
MX
1367 ret = btrfs_find_root(tree_root, key, path,
1368 &root->root_item, &root->root_key);
0f7d52f4 1369 if (ret) {
13a8a7c8
YZ
1370 if (ret > 0)
1371 ret = -ENOENT;
cb517eab 1372 goto find_fail;
0f7d52f4 1373 }
13a8a7c8 1374
84234f3a 1375 generation = btrfs_root_generation(&root->root_item);
581c1760 1376 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1377 root->node = read_tree_block(fs_info,
1378 btrfs_root_bytenr(&root->root_item),
581c1760 1379 generation, level, NULL);
64c043de
LB
1380 if (IS_ERR(root->node)) {
1381 ret = PTR_ERR(root->node);
8c38938c 1382 root->node = NULL;
cb517eab
MX
1383 goto find_fail;
1384 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1385 ret = -EIO;
64c043de 1386 goto find_fail;
416bc658 1387 }
5d4f98a2 1388 root->commit_root = btrfs_root_node(root);
13a8a7c8 1389out:
cb517eab
MX
1390 btrfs_free_path(path);
1391 return root;
1392
cb517eab 1393find_fail:
00246528 1394 btrfs_put_root(root);
cb517eab
MX
1395alloc_fail:
1396 root = ERR_PTR(ret);
1397 goto out;
1398}
1399
a98db0f3 1400static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1401{
1402 int ret;
dcc3eb96 1403 unsigned int nofs_flag;
cb517eab
MX
1404
1405 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407 GFP_NOFS);
1408 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409 ret = -ENOMEM;
1410 goto fail;
1411 }
1412
dcc3eb96
NB
1413 /*
1414 * We might be called under a transaction (e.g. indirect backref
1415 * resolution) which could deadlock if it triggers memory reclaim
1416 */
1417 nofs_flag = memalloc_nofs_save();
1418 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1419 memalloc_nofs_restore(nofs_flag);
1420 if (ret)
8257b2dc 1421 goto fail;
8257b2dc 1422
f39e4571
JB
1423 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1424 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1425 btrfs_check_and_init_root_item(&root->root_item);
1426 }
1427
cb517eab 1428 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1429 spin_lock_init(&root->ino_cache_lock);
1430 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1431
1432 ret = get_anon_bdev(&root->anon_dev);
1433 if (ret)
876d2cf1 1434 goto fail;
f32e48e9
CR
1435
1436 mutex_lock(&root->objectid_mutex);
1437 ret = btrfs_find_highest_objectid(root,
1438 &root->highest_objectid);
1439 if (ret) {
1440 mutex_unlock(&root->objectid_mutex);
876d2cf1 1441 goto fail;
f32e48e9
CR
1442 }
1443
1444 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1445
1446 mutex_unlock(&root->objectid_mutex);
1447
cb517eab
MX
1448 return 0;
1449fail:
84db5ccf 1450 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1451 return ret;
1452}
1453
a98db0f3
JB
1454static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1455 u64 root_id)
cb517eab
MX
1456{
1457 struct btrfs_root *root;
1458
1459 spin_lock(&fs_info->fs_roots_radix_lock);
1460 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1461 (unsigned long)root_id);
bc44d7c4 1462 if (root)
00246528 1463 root = btrfs_grab_root(root);
cb517eab
MX
1464 spin_unlock(&fs_info->fs_roots_radix_lock);
1465 return root;
1466}
1467
1468int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1469 struct btrfs_root *root)
1470{
1471 int ret;
1472
e1860a77 1473 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1474 if (ret)
1475 return ret;
1476
1477 spin_lock(&fs_info->fs_roots_radix_lock);
1478 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1479 (unsigned long)root->root_key.objectid,
1480 root);
af01d2e5 1481 if (ret == 0) {
00246528 1482 btrfs_grab_root(root);
27cdeb70 1483 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1484 }
cb517eab
MX
1485 spin_unlock(&fs_info->fs_roots_radix_lock);
1486 radix_tree_preload_end();
1487
1488 return ret;
1489}
1490
bd647ce3
JB
1491void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1492{
1493#ifdef CONFIG_BTRFS_DEBUG
1494 struct btrfs_root *root;
1495
1496 while (!list_empty(&fs_info->allocated_roots)) {
1497 root = list_first_entry(&fs_info->allocated_roots,
1498 struct btrfs_root, leak_list);
1499 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1500 root->root_key.objectid, root->root_key.offset,
1501 refcount_read(&root->refs));
1502 while (refcount_read(&root->refs) > 1)
00246528
JB
1503 btrfs_put_root(root);
1504 btrfs_put_root(root);
bd647ce3
JB
1505 }
1506#endif
1507}
1508
0d4b0463
JB
1509void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1510{
141386e1
JB
1511 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1512 percpu_counter_destroy(&fs_info->delalloc_bytes);
1513 percpu_counter_destroy(&fs_info->dio_bytes);
1514 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1515 btrfs_free_csum_hash(fs_info);
1516 btrfs_free_stripe_hash_table(fs_info);
1517 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1518 kfree(fs_info->balance_ctl);
1519 kfree(fs_info->delayed_root);
00246528
JB
1520 btrfs_put_root(fs_info->extent_root);
1521 btrfs_put_root(fs_info->tree_root);
1522 btrfs_put_root(fs_info->chunk_root);
1523 btrfs_put_root(fs_info->dev_root);
1524 btrfs_put_root(fs_info->csum_root);
1525 btrfs_put_root(fs_info->quota_root);
1526 btrfs_put_root(fs_info->uuid_root);
1527 btrfs_put_root(fs_info->free_space_root);
1528 btrfs_put_root(fs_info->fs_root);
bd647ce3 1529 btrfs_check_leaked_roots(fs_info);
3fd63727 1530 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1531 kfree(fs_info->super_copy);
1532 kfree(fs_info->super_for_commit);
1533 kvfree(fs_info);
1534}
1535
1536
c00869f1
MX
1537struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1538 struct btrfs_key *location,
1539 bool check_ref)
5eda7b5e
CM
1540{
1541 struct btrfs_root *root;
381cf658 1542 struct btrfs_path *path;
1d4c08e0 1543 struct btrfs_key key;
5eda7b5e
CM
1544 int ret;
1545
edbd8d4e 1546 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1547 return btrfs_grab_root(fs_info->tree_root);
edbd8d4e 1548 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1549 return btrfs_grab_root(fs_info->extent_root);
8f18cf13 1550 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1551 return btrfs_grab_root(fs_info->chunk_root);
8f18cf13 1552 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1553 return btrfs_grab_root(fs_info->dev_root);
0403e47e 1554 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1555 return btrfs_grab_root(fs_info->csum_root);
bcef60f2 1556 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1557 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1558 fs_info->quota_root : ERR_PTR(-ENOENT);
f7a81ea4 1559 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1560 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1561 fs_info->uuid_root : ERR_PTR(-ENOENT);
70f6d82e 1562 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1563 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1564 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1565again:
cb517eab 1566 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1567 if (root) {
bc44d7c4 1568 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1569 btrfs_put_root(root);
48475471 1570 return ERR_PTR(-ENOENT);
bc44d7c4 1571 }
5eda7b5e 1572 return root;
48475471 1573 }
5eda7b5e 1574
83db2aad 1575 root = btrfs_read_tree_root(fs_info->tree_root, location);
5eda7b5e
CM
1576 if (IS_ERR(root))
1577 return root;
3394e160 1578
c00869f1 1579 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1580 ret = -ENOENT;
581bb050 1581 goto fail;
35a30d7c 1582 }
581bb050 1583
cb517eab 1584 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1585 if (ret)
1586 goto fail;
3394e160 1587
381cf658
DS
1588 path = btrfs_alloc_path();
1589 if (!path) {
1590 ret = -ENOMEM;
1591 goto fail;
1592 }
1d4c08e0
DS
1593 key.objectid = BTRFS_ORPHAN_OBJECTID;
1594 key.type = BTRFS_ORPHAN_ITEM_KEY;
1595 key.offset = location->objectid;
1596
1597 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1598 btrfs_free_path(path);
d68fc57b
YZ
1599 if (ret < 0)
1600 goto fail;
1601 if (ret == 0)
27cdeb70 1602 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1603
bc44d7c4
JB
1604 /*
1605 * All roots have two refs on them at all times, one for the mounted fs,
1606 * and one for being in the radix tree. This way we only free the root
1607 * when we are unmounting or deleting the subvolume. We get one ref
1608 * from __setup_root, one for inserting it into the radix tree, and then
1609 * we have the third for returning it, and the caller will put it when
1610 * it's done with the root.
1611 */
00246528 1612 btrfs_grab_root(root);
cb517eab 1613 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1614 if (ret) {
00246528 1615 btrfs_put_root(root);
4df27c4d 1616 if (ret == -EEXIST) {
8c38938c 1617 btrfs_put_root(root);
4df27c4d
YZ
1618 goto again;
1619 }
1620 goto fail;
0f7d52f4 1621 }
edbd8d4e 1622 return root;
4df27c4d 1623fail:
8c38938c 1624 btrfs_put_root(root);
4df27c4d 1625 return ERR_PTR(ret);
edbd8d4e
CM
1626}
1627
04160088
CM
1628static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1629{
1630 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1631 int ret = 0;
04160088
CM
1632 struct btrfs_device *device;
1633 struct backing_dev_info *bdi;
b7967db7 1634
1f78160c
XG
1635 rcu_read_lock();
1636 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1637 if (!device->bdev)
1638 continue;
efa7c9f9 1639 bdi = device->bdev->bd_bdi;
ff9ea323 1640 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1641 ret = 1;
1642 break;
1643 }
1644 }
1f78160c 1645 rcu_read_unlock();
04160088
CM
1646 return ret;
1647}
1648
8b712842
CM
1649/*
1650 * called by the kthread helper functions to finally call the bio end_io
1651 * functions. This is where read checksum verification actually happens
1652 */
1653static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1654{
ce9adaa5 1655 struct bio *bio;
97eb6b69 1656 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1657
97eb6b69 1658 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1659 bio = end_io_wq->bio;
ce9adaa5 1660
4e4cbee9 1661 bio->bi_status = end_io_wq->status;
8b712842
CM
1662 bio->bi_private = end_io_wq->private;
1663 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1664 bio_endio(bio);
9be490f1 1665 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1666}
1667
a74a4b97
CM
1668static int cleaner_kthread(void *arg)
1669{
1670 struct btrfs_root *root = arg;
0b246afa 1671 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1672 int again;
a74a4b97 1673
d6fd0ae2 1674 while (1) {
d0278245 1675 again = 0;
a74a4b97 1676
fd340d0f
JB
1677 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1678
d0278245 1679 /* Make the cleaner go to sleep early. */
2ff7e61e 1680 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1681 goto sleep;
1682
90c711ab
ZB
1683 /*
1684 * Do not do anything if we might cause open_ctree() to block
1685 * before we have finished mounting the filesystem.
1686 */
0b246afa 1687 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1688 goto sleep;
1689
0b246afa 1690 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1691 goto sleep;
1692
dc7f370c
MX
1693 /*
1694 * Avoid the problem that we change the status of the fs
1695 * during the above check and trylock.
1696 */
2ff7e61e 1697 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1698 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1699 goto sleep;
76dda93c 1700 }
a74a4b97 1701
2ff7e61e 1702 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1703
d0278245 1704 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1705 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1706
1707 /*
05323cd1
MX
1708 * The defragger has dealt with the R/O remount and umount,
1709 * needn't do anything special here.
d0278245 1710 */
0b246afa 1711 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1712
1713 /*
1714 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1715 * with relocation (btrfs_relocate_chunk) and relocation
1716 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1717 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1718 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1719 * unused block groups.
1720 */
0b246afa 1721 btrfs_delete_unused_bgs(fs_info);
d0278245 1722sleep:
fd340d0f 1723 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1724 if (kthread_should_park())
1725 kthread_parkme();
1726 if (kthread_should_stop())
1727 return 0;
838fe188 1728 if (!again) {
a74a4b97 1729 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1730 schedule();
a74a4b97
CM
1731 __set_current_state(TASK_RUNNING);
1732 }
da288d28 1733 }
a74a4b97
CM
1734}
1735
1736static int transaction_kthread(void *arg)
1737{
1738 struct btrfs_root *root = arg;
0b246afa 1739 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1740 struct btrfs_trans_handle *trans;
1741 struct btrfs_transaction *cur;
8929ecfa 1742 u64 transid;
a944442c 1743 time64_t now;
a74a4b97 1744 unsigned long delay;
914b2007 1745 bool cannot_commit;
a74a4b97
CM
1746
1747 do {
914b2007 1748 cannot_commit = false;
0b246afa
JM
1749 delay = HZ * fs_info->commit_interval;
1750 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1751
0b246afa
JM
1752 spin_lock(&fs_info->trans_lock);
1753 cur = fs_info->running_transaction;
a74a4b97 1754 if (!cur) {
0b246afa 1755 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1756 goto sleep;
1757 }
31153d81 1758
afd48513 1759 now = ktime_get_seconds();
3296bf56 1760 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1761 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1762 (now < cur->start_time ||
0b246afa
JM
1763 now - cur->start_time < fs_info->commit_interval)) {
1764 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1765 delay = HZ * 5;
1766 goto sleep;
1767 }
8929ecfa 1768 transid = cur->transid;
0b246afa 1769 spin_unlock(&fs_info->trans_lock);
56bec294 1770
79787eaa 1771 /* If the file system is aborted, this will always fail. */
354aa0fb 1772 trans = btrfs_attach_transaction(root);
914b2007 1773 if (IS_ERR(trans)) {
354aa0fb
MX
1774 if (PTR_ERR(trans) != -ENOENT)
1775 cannot_commit = true;
79787eaa 1776 goto sleep;
914b2007 1777 }
8929ecfa 1778 if (transid == trans->transid) {
3a45bb20 1779 btrfs_commit_transaction(trans);
8929ecfa 1780 } else {
3a45bb20 1781 btrfs_end_transaction(trans);
8929ecfa 1782 }
a74a4b97 1783sleep:
0b246afa
JM
1784 wake_up_process(fs_info->cleaner_kthread);
1785 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1786
4e121c06 1787 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1788 &fs_info->fs_state)))
2ff7e61e 1789 btrfs_cleanup_transaction(fs_info);
ce63f891 1790 if (!kthread_should_stop() &&
0b246afa 1791 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1792 cannot_commit))
bc5511d0 1793 schedule_timeout_interruptible(delay);
a74a4b97
CM
1794 } while (!kthread_should_stop());
1795 return 0;
1796}
1797
af31f5e5 1798/*
01f0f9da
NB
1799 * This will find the highest generation in the array of root backups. The
1800 * index of the highest array is returned, or -EINVAL if we can't find
1801 * anything.
af31f5e5
CM
1802 *
1803 * We check to make sure the array is valid by comparing the
1804 * generation of the latest root in the array with the generation
1805 * in the super block. If they don't match we pitch it.
1806 */
01f0f9da 1807static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1808{
01f0f9da 1809 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1810 u64 cur;
af31f5e5
CM
1811 struct btrfs_root_backup *root_backup;
1812 int i;
1813
1814 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1815 root_backup = info->super_copy->super_roots + i;
1816 cur = btrfs_backup_tree_root_gen(root_backup);
1817 if (cur == newest_gen)
01f0f9da 1818 return i;
af31f5e5
CM
1819 }
1820
01f0f9da 1821 return -EINVAL;
af31f5e5
CM
1822}
1823
af31f5e5
CM
1824/*
1825 * copy all the root pointers into the super backup array.
1826 * this will bump the backup pointer by one when it is
1827 * done
1828 */
1829static void backup_super_roots(struct btrfs_fs_info *info)
1830{
6ef108dd 1831 const int next_backup = info->backup_root_index;
af31f5e5 1832 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1833
1834 root_backup = info->super_for_commit->super_roots + next_backup;
1835
1836 /*
1837 * make sure all of our padding and empty slots get zero filled
1838 * regardless of which ones we use today
1839 */
1840 memset(root_backup, 0, sizeof(*root_backup));
1841
1842 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1843
1844 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1845 btrfs_set_backup_tree_root_gen(root_backup,
1846 btrfs_header_generation(info->tree_root->node));
1847
1848 btrfs_set_backup_tree_root_level(root_backup,
1849 btrfs_header_level(info->tree_root->node));
1850
1851 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1852 btrfs_set_backup_chunk_root_gen(root_backup,
1853 btrfs_header_generation(info->chunk_root->node));
1854 btrfs_set_backup_chunk_root_level(root_backup,
1855 btrfs_header_level(info->chunk_root->node));
1856
1857 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1858 btrfs_set_backup_extent_root_gen(root_backup,
1859 btrfs_header_generation(info->extent_root->node));
1860 btrfs_set_backup_extent_root_level(root_backup,
1861 btrfs_header_level(info->extent_root->node));
1862
7c7e82a7
CM
1863 /*
1864 * we might commit during log recovery, which happens before we set
1865 * the fs_root. Make sure it is valid before we fill it in.
1866 */
1867 if (info->fs_root && info->fs_root->node) {
1868 btrfs_set_backup_fs_root(root_backup,
1869 info->fs_root->node->start);
1870 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1871 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1872 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1873 btrfs_header_level(info->fs_root->node));
7c7e82a7 1874 }
af31f5e5
CM
1875
1876 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1877 btrfs_set_backup_dev_root_gen(root_backup,
1878 btrfs_header_generation(info->dev_root->node));
1879 btrfs_set_backup_dev_root_level(root_backup,
1880 btrfs_header_level(info->dev_root->node));
1881
1882 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1883 btrfs_set_backup_csum_root_gen(root_backup,
1884 btrfs_header_generation(info->csum_root->node));
1885 btrfs_set_backup_csum_root_level(root_backup,
1886 btrfs_header_level(info->csum_root->node));
1887
1888 btrfs_set_backup_total_bytes(root_backup,
1889 btrfs_super_total_bytes(info->super_copy));
1890 btrfs_set_backup_bytes_used(root_backup,
1891 btrfs_super_bytes_used(info->super_copy));
1892 btrfs_set_backup_num_devices(root_backup,
1893 btrfs_super_num_devices(info->super_copy));
1894
1895 /*
1896 * if we don't copy this out to the super_copy, it won't get remembered
1897 * for the next commit
1898 */
1899 memcpy(&info->super_copy->super_roots,
1900 &info->super_for_commit->super_roots,
1901 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1902}
1903
bd2336b2
NB
1904/*
1905 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1906 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1907 *
1908 * fs_info - filesystem whose backup roots need to be read
1909 * priority - priority of backup root required
1910 *
1911 * Returns backup root index on success and -EINVAL otherwise.
1912 */
1913static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1914{
1915 int backup_index = find_newest_super_backup(fs_info);
1916 struct btrfs_super_block *super = fs_info->super_copy;
1917 struct btrfs_root_backup *root_backup;
1918
1919 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1920 if (priority == 0)
1921 return backup_index;
1922
1923 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1924 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1925 } else {
1926 return -EINVAL;
1927 }
1928
1929 root_backup = super->super_roots + backup_index;
1930
1931 btrfs_set_super_generation(super,
1932 btrfs_backup_tree_root_gen(root_backup));
1933 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1934 btrfs_set_super_root_level(super,
1935 btrfs_backup_tree_root_level(root_backup));
1936 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1937
1938 /*
1939 * Fixme: the total bytes and num_devices need to match or we should
1940 * need a fsck
1941 */
1942 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1943 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1944
1945 return backup_index;
1946}
1947
7abadb64
LB
1948/* helper to cleanup workers */
1949static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1950{
dc6e3209 1951 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1952 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1953 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1954 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1955 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1956 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1957 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1958 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1959 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1960 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1961 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1962 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1963 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1964 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1965 if (fs_info->discard_ctl.discard_workers)
1966 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1967 /*
1968 * Now that all other work queues are destroyed, we can safely destroy
1969 * the queues used for metadata I/O, since tasks from those other work
1970 * queues can do metadata I/O operations.
1971 */
1972 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1973 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1974}
1975
2e9f5954
R
1976static void free_root_extent_buffers(struct btrfs_root *root)
1977{
1978 if (root) {
1979 free_extent_buffer(root->node);
1980 free_extent_buffer(root->commit_root);
1981 root->node = NULL;
1982 root->commit_root = NULL;
1983 }
1984}
1985
af31f5e5 1986/* helper to cleanup tree roots */
4273eaff 1987static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1988{
2e9f5954 1989 free_root_extent_buffers(info->tree_root);
655b09fe 1990
2e9f5954
R
1991 free_root_extent_buffers(info->dev_root);
1992 free_root_extent_buffers(info->extent_root);
1993 free_root_extent_buffers(info->csum_root);
1994 free_root_extent_buffers(info->quota_root);
1995 free_root_extent_buffers(info->uuid_root);
8c38938c 1996 free_root_extent_buffers(info->fs_root);
4273eaff 1997 if (free_chunk_root)
2e9f5954 1998 free_root_extent_buffers(info->chunk_root);
70f6d82e 1999 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2000}
2001
8c38938c
JB
2002void btrfs_put_root(struct btrfs_root *root)
2003{
2004 if (!root)
2005 return;
2006
2007 if (refcount_dec_and_test(&root->refs)) {
2008 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2009 if (root->anon_dev)
2010 free_anon_bdev(root->anon_dev);
2011 btrfs_drew_lock_destroy(&root->snapshot_lock);
2012 free_extent_buffer(root->node);
2013 free_extent_buffer(root->commit_root);
2014 kfree(root->free_ino_ctl);
2015 kfree(root->free_ino_pinned);
2016#ifdef CONFIG_BTRFS_DEBUG
2017 spin_lock(&root->fs_info->fs_roots_radix_lock);
2018 list_del_init(&root->leak_list);
2019 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2020#endif
2021 kfree(root);
2022 }
2023}
2024
faa2dbf0 2025void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2026{
2027 int ret;
2028 struct btrfs_root *gang[8];
2029 int i;
2030
2031 while (!list_empty(&fs_info->dead_roots)) {
2032 gang[0] = list_entry(fs_info->dead_roots.next,
2033 struct btrfs_root, root_list);
2034 list_del(&gang[0]->root_list);
2035
8c38938c 2036 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2037 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
8c38938c 2038 else
00246528 2039 btrfs_put_root(gang[0]);
171f6537
JB
2040 }
2041
2042 while (1) {
2043 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2044 (void **)gang, 0,
2045 ARRAY_SIZE(gang));
2046 if (!ret)
2047 break;
2048 for (i = 0; i < ret; i++)
cb517eab 2049 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2050 }
1a4319cc 2051
fe119a6e 2052 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
1a4319cc 2053 btrfs_free_log_root_tree(NULL, fs_info);
171f6537 2054}
af31f5e5 2055
638aa7ed
ES
2056static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2057{
2058 mutex_init(&fs_info->scrub_lock);
2059 atomic_set(&fs_info->scrubs_running, 0);
2060 atomic_set(&fs_info->scrub_pause_req, 0);
2061 atomic_set(&fs_info->scrubs_paused, 0);
2062 atomic_set(&fs_info->scrub_cancel_req, 0);
2063 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2064 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2065}
2066
779a65a4
ES
2067static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2068{
2069 spin_lock_init(&fs_info->balance_lock);
2070 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2071 atomic_set(&fs_info->balance_pause_req, 0);
2072 atomic_set(&fs_info->balance_cancel_req, 0);
2073 fs_info->balance_ctl = NULL;
2074 init_waitqueue_head(&fs_info->balance_wait_q);
2075}
2076
6bccf3ab 2077static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2078{
2ff7e61e
JM
2079 struct inode *inode = fs_info->btree_inode;
2080
2081 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2082 set_nlink(inode, 1);
f37938e0
ES
2083 /*
2084 * we set the i_size on the btree inode to the max possible int.
2085 * the real end of the address space is determined by all of
2086 * the devices in the system
2087 */
2ff7e61e
JM
2088 inode->i_size = OFFSET_MAX;
2089 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2090
2ff7e61e 2091 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2092 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2093 IO_TREE_INODE_IO, inode);
7b439738 2094 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2095 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2096
2ff7e61e 2097 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2098
2ff7e61e
JM
2099 BTRFS_I(inode)->root = fs_info->tree_root;
2100 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2101 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2102 btrfs_insert_inode_hash(inode);
f37938e0
ES
2103}
2104
ad618368
ES
2105static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2106{
ad618368 2107 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2108 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2109 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2110}
2111
f9e92e40
ES
2112static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2113{
2114 spin_lock_init(&fs_info->qgroup_lock);
2115 mutex_init(&fs_info->qgroup_ioctl_lock);
2116 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2117 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2118 fs_info->qgroup_seq = 1;
f9e92e40 2119 fs_info->qgroup_ulist = NULL;
d2c609b8 2120 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2121 mutex_init(&fs_info->qgroup_rescan_lock);
2122}
2123
2a458198
ES
2124static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2125 struct btrfs_fs_devices *fs_devices)
2126{
f7b885be 2127 u32 max_active = fs_info->thread_pool_size;
6f011058 2128 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2129
2130 fs_info->workers =
cb001095
JM
2131 btrfs_alloc_workqueue(fs_info, "worker",
2132 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2133
2134 fs_info->delalloc_workers =
cb001095
JM
2135 btrfs_alloc_workqueue(fs_info, "delalloc",
2136 flags, max_active, 2);
2a458198
ES
2137
2138 fs_info->flush_workers =
cb001095
JM
2139 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2140 flags, max_active, 0);
2a458198
ES
2141
2142 fs_info->caching_workers =
cb001095 2143 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2144
2a458198 2145 fs_info->fixup_workers =
cb001095 2146 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2147
2148 /*
2149 * endios are largely parallel and should have a very
2150 * low idle thresh
2151 */
2152 fs_info->endio_workers =
cb001095 2153 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2154 fs_info->endio_meta_workers =
cb001095
JM
2155 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2156 max_active, 4);
2a458198 2157 fs_info->endio_meta_write_workers =
cb001095
JM
2158 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2159 max_active, 2);
2a458198 2160 fs_info->endio_raid56_workers =
cb001095
JM
2161 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2162 max_active, 4);
2a458198 2163 fs_info->endio_repair_workers =
cb001095 2164 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2165 fs_info->rmw_workers =
cb001095 2166 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2167 fs_info->endio_write_workers =
cb001095
JM
2168 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2169 max_active, 2);
2a458198 2170 fs_info->endio_freespace_worker =
cb001095
JM
2171 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2172 max_active, 0);
2a458198 2173 fs_info->delayed_workers =
cb001095
JM
2174 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2175 max_active, 0);
2a458198 2176 fs_info->readahead_workers =
cb001095
JM
2177 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2178 max_active, 2);
2a458198 2179 fs_info->qgroup_rescan_workers =
cb001095 2180 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2181 fs_info->discard_ctl.discard_workers =
2182 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2183
2184 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2185 fs_info->flush_workers &&
2a458198
ES
2186 fs_info->endio_workers && fs_info->endio_meta_workers &&
2187 fs_info->endio_meta_write_workers &&
2188 fs_info->endio_repair_workers &&
2189 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2190 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2191 fs_info->caching_workers && fs_info->readahead_workers &&
2192 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2193 fs_info->qgroup_rescan_workers &&
2194 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2195 return -ENOMEM;
2196 }
2197
2198 return 0;
2199}
2200
6d97c6e3
JT
2201static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2202{
2203 struct crypto_shash *csum_shash;
b4e967be 2204 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2205
b4e967be 2206 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2207
2208 if (IS_ERR(csum_shash)) {
2209 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2210 csum_driver);
6d97c6e3
JT
2211 return PTR_ERR(csum_shash);
2212 }
2213
2214 fs_info->csum_shash = csum_shash;
2215
2216 return 0;
2217}
2218
63443bf5
ES
2219static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2220 struct btrfs_fs_devices *fs_devices)
2221{
2222 int ret;
63443bf5
ES
2223 struct btrfs_root *log_tree_root;
2224 struct btrfs_super_block *disk_super = fs_info->super_copy;
2225 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2226 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2227
2228 if (fs_devices->rw_devices == 0) {
f14d104d 2229 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2230 return -EIO;
2231 }
2232
96dfcb46
JB
2233 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2234 GFP_KERNEL);
63443bf5
ES
2235 if (!log_tree_root)
2236 return -ENOMEM;
2237
2ff7e61e 2238 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2239 fs_info->generation + 1,
2240 level, NULL);
64c043de 2241 if (IS_ERR(log_tree_root->node)) {
f14d104d 2242 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2243 ret = PTR_ERR(log_tree_root->node);
8c38938c 2244 log_tree_root->node = NULL;
00246528 2245 btrfs_put_root(log_tree_root);
0eeff236 2246 return ret;
64c043de 2247 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2248 btrfs_err(fs_info, "failed to read log tree");
00246528 2249 btrfs_put_root(log_tree_root);
63443bf5
ES
2250 return -EIO;
2251 }
2252 /* returns with log_tree_root freed on success */
2253 ret = btrfs_recover_log_trees(log_tree_root);
2254 if (ret) {
0b246afa
JM
2255 btrfs_handle_fs_error(fs_info, ret,
2256 "Failed to recover log tree");
00246528 2257 btrfs_put_root(log_tree_root);
63443bf5
ES
2258 return ret;
2259 }
2260
bc98a42c 2261 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2262 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2263 if (ret)
2264 return ret;
2265 }
2266
2267 return 0;
2268}
2269
6bccf3ab 2270static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2271{
6bccf3ab 2272 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2273 struct btrfs_root *root;
4bbcaa64
ES
2274 struct btrfs_key location;
2275 int ret;
2276
6bccf3ab
JM
2277 BUG_ON(!fs_info->tree_root);
2278
4bbcaa64
ES
2279 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2280 location.type = BTRFS_ROOT_ITEM_KEY;
2281 location.offset = 0;
2282
a4f3d2c4 2283 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2284 if (IS_ERR(root)) {
2285 ret = PTR_ERR(root);
2286 goto out;
2287 }
a4f3d2c4
DS
2288 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2289 fs_info->extent_root = root;
4bbcaa64
ES
2290
2291 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2292 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2293 if (IS_ERR(root)) {
2294 ret = PTR_ERR(root);
2295 goto out;
2296 }
a4f3d2c4
DS
2297 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2298 fs_info->dev_root = root;
4bbcaa64
ES
2299 btrfs_init_devices_late(fs_info);
2300
2301 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2302 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2303 if (IS_ERR(root)) {
2304 ret = PTR_ERR(root);
2305 goto out;
2306 }
a4f3d2c4
DS
2307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2308 fs_info->csum_root = root;
4bbcaa64
ES
2309
2310 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2311 root = btrfs_read_tree_root(tree_root, &location);
2312 if (!IS_ERR(root)) {
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2314 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2315 fs_info->quota_root = root;
4bbcaa64
ES
2316 }
2317
2318 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2319 root = btrfs_read_tree_root(tree_root, &location);
2320 if (IS_ERR(root)) {
2321 ret = PTR_ERR(root);
4bbcaa64 2322 if (ret != -ENOENT)
f50f4353 2323 goto out;
4bbcaa64 2324 } else {
a4f3d2c4
DS
2325 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2326 fs_info->uuid_root = root;
4bbcaa64
ES
2327 }
2328
70f6d82e
OS
2329 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2330 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2331 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2332 if (IS_ERR(root)) {
2333 ret = PTR_ERR(root);
2334 goto out;
2335 }
70f6d82e
OS
2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337 fs_info->free_space_root = root;
2338 }
2339
4bbcaa64 2340 return 0;
f50f4353
LB
2341out:
2342 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2343 location.objectid, ret);
2344 return ret;
4bbcaa64
ES
2345}
2346
069ec957
QW
2347/*
2348 * Real super block validation
2349 * NOTE: super csum type and incompat features will not be checked here.
2350 *
2351 * @sb: super block to check
2352 * @mirror_num: the super block number to check its bytenr:
2353 * 0 the primary (1st) sb
2354 * 1, 2 2nd and 3rd backup copy
2355 * -1 skip bytenr check
2356 */
2357static int validate_super(struct btrfs_fs_info *fs_info,
2358 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2359{
21a852b0
QW
2360 u64 nodesize = btrfs_super_nodesize(sb);
2361 u64 sectorsize = btrfs_super_sectorsize(sb);
2362 int ret = 0;
2363
2364 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2365 btrfs_err(fs_info, "no valid FS found");
2366 ret = -EINVAL;
2367 }
2368 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2369 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2370 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2371 ret = -EINVAL;
2372 }
2373 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2374 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2375 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2376 ret = -EINVAL;
2377 }
2378 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2379 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2380 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2381 ret = -EINVAL;
2382 }
2383 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2384 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2385 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2386 ret = -EINVAL;
2387 }
2388
2389 /*
2390 * Check sectorsize and nodesize first, other check will need it.
2391 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2392 */
2393 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2394 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2395 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2396 ret = -EINVAL;
2397 }
2398 /* Only PAGE SIZE is supported yet */
2399 if (sectorsize != PAGE_SIZE) {
2400 btrfs_err(fs_info,
2401 "sectorsize %llu not supported yet, only support %lu",
2402 sectorsize, PAGE_SIZE);
2403 ret = -EINVAL;
2404 }
2405 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408 ret = -EINVAL;
2409 }
2410 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412 le32_to_cpu(sb->__unused_leafsize), nodesize);
2413 ret = -EINVAL;
2414 }
2415
2416 /* Root alignment check */
2417 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419 btrfs_super_root(sb));
2420 ret = -EINVAL;
2421 }
2422 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424 btrfs_super_chunk_root(sb));
2425 ret = -EINVAL;
2426 }
2427 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429 btrfs_super_log_root(sb));
2430 ret = -EINVAL;
2431 }
2432
de37aa51 2433 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2434 BTRFS_FSID_SIZE) != 0) {
21a852b0 2435 btrfs_err(fs_info,
7239ff4b 2436 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2437 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2438 ret = -EINVAL;
2439 }
2440
2441 /*
2442 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2443 * done later
2444 */
2445 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2446 btrfs_err(fs_info, "bytes_used is too small %llu",
2447 btrfs_super_bytes_used(sb));
2448 ret = -EINVAL;
2449 }
2450 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2451 btrfs_err(fs_info, "invalid stripesize %u",
2452 btrfs_super_stripesize(sb));
2453 ret = -EINVAL;
2454 }
2455 if (btrfs_super_num_devices(sb) > (1UL << 31))
2456 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2457 btrfs_super_num_devices(sb));
2458 if (btrfs_super_num_devices(sb) == 0) {
2459 btrfs_err(fs_info, "number of devices is 0");
2460 ret = -EINVAL;
2461 }
2462
069ec957
QW
2463 if (mirror_num >= 0 &&
2464 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2465 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2466 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2467 ret = -EINVAL;
2468 }
2469
2470 /*
2471 * Obvious sys_chunk_array corruptions, it must hold at least one key
2472 * and one chunk
2473 */
2474 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2475 btrfs_err(fs_info, "system chunk array too big %u > %u",
2476 btrfs_super_sys_array_size(sb),
2477 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2478 ret = -EINVAL;
2479 }
2480 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2481 + sizeof(struct btrfs_chunk)) {
2482 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2483 btrfs_super_sys_array_size(sb),
2484 sizeof(struct btrfs_disk_key)
2485 + sizeof(struct btrfs_chunk));
2486 ret = -EINVAL;
2487 }
2488
2489 /*
2490 * The generation is a global counter, we'll trust it more than the others
2491 * but it's still possible that it's the one that's wrong.
2492 */
2493 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2494 btrfs_warn(fs_info,
2495 "suspicious: generation < chunk_root_generation: %llu < %llu",
2496 btrfs_super_generation(sb),
2497 btrfs_super_chunk_root_generation(sb));
2498 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2499 && btrfs_super_cache_generation(sb) != (u64)-1)
2500 btrfs_warn(fs_info,
2501 "suspicious: generation < cache_generation: %llu < %llu",
2502 btrfs_super_generation(sb),
2503 btrfs_super_cache_generation(sb));
2504
2505 return ret;
2506}
2507
069ec957
QW
2508/*
2509 * Validation of super block at mount time.
2510 * Some checks already done early at mount time, like csum type and incompat
2511 * flags will be skipped.
2512 */
2513static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2514{
2515 return validate_super(fs_info, fs_info->super_copy, 0);
2516}
2517
75cb857d
QW
2518/*
2519 * Validation of super block at write time.
2520 * Some checks like bytenr check will be skipped as their values will be
2521 * overwritten soon.
2522 * Extra checks like csum type and incompat flags will be done here.
2523 */
2524static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2525 struct btrfs_super_block *sb)
2526{
2527 int ret;
2528
2529 ret = validate_super(fs_info, sb, -1);
2530 if (ret < 0)
2531 goto out;
e7e16f48 2532 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2533 ret = -EUCLEAN;
2534 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2535 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2536 goto out;
2537 }
2538 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2539 ret = -EUCLEAN;
2540 btrfs_err(fs_info,
2541 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2542 btrfs_super_incompat_flags(sb),
2543 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2544 goto out;
2545 }
2546out:
2547 if (ret < 0)
2548 btrfs_err(fs_info,
2549 "super block corruption detected before writing it to disk");
2550 return ret;
2551}
2552
6ef108dd 2553static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2554{
6ef108dd 2555 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2556 struct btrfs_super_block *sb = fs_info->super_copy;
2557 struct btrfs_root *tree_root = fs_info->tree_root;
2558 bool handle_error = false;
2559 int ret = 0;
2560 int i;
2561
2562 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2563 u64 generation;
2564 int level;
2565
2566 if (handle_error) {
2567 if (!IS_ERR(tree_root->node))
2568 free_extent_buffer(tree_root->node);
2569 tree_root->node = NULL;
2570
2571 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2572 break;
2573
2574 free_root_pointers(fs_info, 0);
2575
2576 /*
2577 * Don't use the log in recovery mode, it won't be
2578 * valid
2579 */
2580 btrfs_set_super_log_root(sb, 0);
2581
2582 /* We can't trust the free space cache either */
2583 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2584
2585 ret = read_backup_root(fs_info, i);
6ef108dd 2586 backup_index = ret;
b8522a1e
NB
2587 if (ret < 0)
2588 return ret;
2589 }
2590 generation = btrfs_super_generation(sb);
2591 level = btrfs_super_root_level(sb);
2592 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2593 generation, level, NULL);
2594 if (IS_ERR(tree_root->node) ||
2595 !extent_buffer_uptodate(tree_root->node)) {
2596 handle_error = true;
2597
2598 if (IS_ERR(tree_root->node))
2599 ret = PTR_ERR(tree_root->node);
2600 else if (!extent_buffer_uptodate(tree_root->node))
2601 ret = -EUCLEAN;
2602
2603 btrfs_warn(fs_info, "failed to read tree root");
2604 continue;
2605 }
2606
2607 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2608 tree_root->commit_root = btrfs_root_node(tree_root);
2609 btrfs_set_root_refs(&tree_root->root_item, 1);
2610
336a0d8d
NB
2611 /*
2612 * No need to hold btrfs_root::objectid_mutex since the fs
2613 * hasn't been fully initialised and we are the only user
2614 */
b8522a1e
NB
2615 ret = btrfs_find_highest_objectid(tree_root,
2616 &tree_root->highest_objectid);
2617 if (ret < 0) {
b8522a1e
NB
2618 handle_error = true;
2619 continue;
2620 }
2621
2622 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2623
2624 ret = btrfs_read_roots(fs_info);
2625 if (ret < 0) {
2626 handle_error = true;
2627 continue;
2628 }
2629
2630 /* All successful */
2631 fs_info->generation = generation;
2632 fs_info->last_trans_committed = generation;
6ef108dd
NB
2633
2634 /* Always begin writing backup roots after the one being used */
2635 if (backup_index < 0) {
2636 fs_info->backup_root_index = 0;
2637 } else {
2638 fs_info->backup_root_index = backup_index + 1;
2639 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2640 }
b8522a1e
NB
2641 break;
2642 }
2643
2644 return ret;
2645}
2646
8260edba 2647void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2648{
76dda93c 2649 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2650 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2651 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2652 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2653 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2654 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2655 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2656 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2657 spin_lock_init(&fs_info->trans_lock);
76dda93c 2658 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2659 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2660 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2661 spin_lock_init(&fs_info->super_lock);
f28491e0 2662 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2663 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2664 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2665 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2666 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2667 mutex_init(&fs_info->reloc_mutex);
573bfb72 2668 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2669 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2670
0b86a832 2671 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2672 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2673 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2674 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2675#ifdef CONFIG_BTRFS_DEBUG
2676 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2677 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2678 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2679#endif
c8bf1b67 2680 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2681 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2682 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2683 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2684 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2685 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2686 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2687 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2688 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2689 BTRFS_BLOCK_RSV_DELREFS);
2690
771ed689 2691 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2692 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2693 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2694 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2695 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2696 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2697 fs_info->metadata_ratio = 0;
4cb5300b 2698 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2699 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2700 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2701 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2702 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2703 /* readahead state */
d0164adc 2704 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2705 spin_lock_init(&fs_info->reada_lock);
fd708b81 2706 btrfs_init_ref_verify(fs_info);
c8b97818 2707
b34b086c
CM
2708 fs_info->thread_pool_size = min_t(unsigned long,
2709 num_online_cpus() + 2, 8);
0afbaf8c 2710
199c2a9c
MX
2711 INIT_LIST_HEAD(&fs_info->ordered_roots);
2712 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2713
638aa7ed 2714 btrfs_init_scrub(fs_info);
21adbd5c
SB
2715#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2716 fs_info->check_integrity_print_mask = 0;
2717#endif
779a65a4 2718 btrfs_init_balance(fs_info);
21c7e756 2719 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2720
0f9dd46c 2721 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2722 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2723 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2724
fe119a6e
NB
2725 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2726 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2727 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2728
5a3f23d5 2729 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2730 mutex_init(&fs_info->tree_log_mutex);
925baedd 2731 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2732 mutex_init(&fs_info->transaction_kthread_mutex);
2733 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2734 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2735 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2736 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2737 init_rwsem(&fs_info->subvol_sem);
803b2f54 2738 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2739
ad618368 2740 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2741 btrfs_init_qgroup(fs_info);
b0643e59 2742 btrfs_discard_init(fs_info);
416ac51d 2743
fa9c0d79
CM
2744 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2745 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2746
e6dcd2dc 2747 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2748 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2749 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2750 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2751 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2752
da17066c
JM
2753 /* Usable values until the real ones are cached from the superblock */
2754 fs_info->nodesize = 4096;
2755 fs_info->sectorsize = 4096;
2756 fs_info->stripesize = 4096;
2757
eede2bf3
OS
2758 spin_lock_init(&fs_info->swapfile_pins_lock);
2759 fs_info->swapfile_pins = RB_ROOT;
2760
9e967495 2761 fs_info->send_in_progress = 0;
8260edba
JB
2762}
2763
2764static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2765{
2766 int ret;
2767
2768 fs_info->sb = sb;
2769 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2770 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2771
ae18c37a
JB
2772 ret = init_srcu_struct(&fs_info->subvol_srcu);
2773 if (ret)
2774 return ret;
2775
2776 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2777 if (ret)
2778 goto fail;
2779
2780 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2781 if (ret)
2782 goto fail;
2783
2784 fs_info->dirty_metadata_batch = PAGE_SIZE *
2785 (1 + ilog2(nr_cpu_ids));
2786
2787 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2788 if (ret)
2789 goto fail;
2790
2791 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2792 GFP_KERNEL);
2793 if (ret)
2794 goto fail;
2795
2796 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2797 GFP_KERNEL);
2798 if (!fs_info->delayed_root) {
2799 ret = -ENOMEM;
2800 goto fail;
2801 }
2802 btrfs_init_delayed_root(fs_info->delayed_root);
2803
53b381b3 2804 ret = btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2805 if (ret)
2806 goto fail;
2807
2808 return 0;
2809fail:
2810 cleanup_srcu_struct(&fs_info->subvol_srcu);
2811 return ret;
2812}
2813
97f4dd09
NB
2814static int btrfs_uuid_rescan_kthread(void *data)
2815{
2816 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2817 int ret;
2818
2819 /*
2820 * 1st step is to iterate through the existing UUID tree and
2821 * to delete all entries that contain outdated data.
2822 * 2nd step is to add all missing entries to the UUID tree.
2823 */
2824 ret = btrfs_uuid_tree_iterate(fs_info);
2825 if (ret < 0) {
c94bec2c
JB
2826 if (ret != -EINTR)
2827 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2828 ret);
97f4dd09
NB
2829 up(&fs_info->uuid_tree_rescan_sem);
2830 return ret;
2831 }
2832 return btrfs_uuid_scan_kthread(data);
2833}
2834
2835static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2836{
2837 struct task_struct *task;
2838
2839 down(&fs_info->uuid_tree_rescan_sem);
2840 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2841 if (IS_ERR(task)) {
2842 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2843 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2844 up(&fs_info->uuid_tree_rescan_sem);
2845 return PTR_ERR(task);
2846 }
2847
2848 return 0;
2849}
2850
ae18c37a
JB
2851int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2852 char *options)
2853{
2854 u32 sectorsize;
2855 u32 nodesize;
2856 u32 stripesize;
2857 u64 generation;
2858 u64 features;
2859 u16 csum_type;
2860 struct btrfs_key location;
ae18c37a
JB
2861 struct btrfs_super_block *disk_super;
2862 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2863 struct btrfs_root *tree_root;
2864 struct btrfs_root *chunk_root;
2865 int ret;
2866 int err = -EINVAL;
2867 int clear_free_space_tree = 0;
2868 int level;
2869
8260edba 2870 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2871 if (ret) {
83c8266a 2872 err = ret;
ae18c37a 2873 goto fail;
53b381b3
DW
2874 }
2875
ae18c37a
JB
2876 /* These need to be init'ed before we start creating inodes and such. */
2877 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2878 GFP_KERNEL);
2879 fs_info->tree_root = tree_root;
2880 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2881 GFP_KERNEL);
2882 fs_info->chunk_root = chunk_root;
2883 if (!tree_root || !chunk_root) {
2884 err = -ENOMEM;
2885 goto fail_srcu;
2886 }
2887
2888 fs_info->btree_inode = new_inode(sb);
2889 if (!fs_info->btree_inode) {
2890 err = -ENOMEM;
2891 goto fail_srcu;
2892 }
2893 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2894 btrfs_init_btree_inode(fs_info);
2895
3c4bb26b 2896 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2897
2898 /*
2899 * Read super block and check the signature bytes only
2900 */
8f32380d
JT
2901 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2902 if (IS_ERR(disk_super)) {
2903 err = PTR_ERR(disk_super);
16cdcec7 2904 goto fail_alloc;
20b45077 2905 }
39279cc3 2906
8dc3f22c
JT
2907 /*
2908 * Verify the type first, if that or the the checksum value are
2909 * corrupted, we'll find out
2910 */
8f32380d 2911 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2912 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2913 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2914 csum_type);
8dc3f22c 2915 err = -EINVAL;
8f32380d 2916 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2917 goto fail_alloc;
2918 }
2919
6d97c6e3
JT
2920 ret = btrfs_init_csum_hash(fs_info, csum_type);
2921 if (ret) {
2922 err = ret;
8f32380d 2923 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2924 goto fail_alloc;
2925 }
2926
1104a885
DS
2927 /*
2928 * We want to check superblock checksum, the type is stored inside.
2929 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2930 */
8f32380d 2931 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2932 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2933 err = -EINVAL;
8f32380d 2934 btrfs_release_disk_super(disk_super);
141386e1 2935 goto fail_alloc;
1104a885
DS
2936 }
2937
2938 /*
2939 * super_copy is zeroed at allocation time and we never touch the
2940 * following bytes up to INFO_SIZE, the checksum is calculated from
2941 * the whole block of INFO_SIZE
2942 */
8f32380d
JT
2943 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2944 btrfs_release_disk_super(disk_super);
5f39d397 2945
fbc6feae
NB
2946 disk_super = fs_info->super_copy;
2947
de37aa51
NB
2948 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2949 BTRFS_FSID_SIZE));
2950
7239ff4b 2951 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2952 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2953 fs_info->super_copy->metadata_uuid,
2954 BTRFS_FSID_SIZE));
7239ff4b 2955 }
0b86a832 2956
fbc6feae
NB
2957 features = btrfs_super_flags(disk_super);
2958 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2959 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2960 btrfs_set_super_flags(disk_super, features);
2961 btrfs_info(fs_info,
2962 "found metadata UUID change in progress flag, clearing");
2963 }
2964
2965 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2966 sizeof(*fs_info->super_for_commit));
de37aa51 2967
069ec957 2968 ret = btrfs_validate_mount_super(fs_info);
1104a885 2969 if (ret) {
05135f59 2970 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2971 err = -EINVAL;
141386e1 2972 goto fail_alloc;
1104a885
DS
2973 }
2974
0f7d52f4 2975 if (!btrfs_super_root(disk_super))
141386e1 2976 goto fail_alloc;
0f7d52f4 2977
acce952b 2978 /* check FS state, whether FS is broken. */
87533c47
MX
2979 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2980 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2981
75e7cb7f
LB
2982 /*
2983 * In the long term, we'll store the compression type in the super
2984 * block, and it'll be used for per file compression control.
2985 */
2986 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2987
2ff7e61e 2988 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2989 if (ret) {
2990 err = ret;
141386e1 2991 goto fail_alloc;
2b82032c 2992 }
dfe25020 2993
f2b636e8
JB
2994 features = btrfs_super_incompat_flags(disk_super) &
2995 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2996 if (features) {
05135f59
DS
2997 btrfs_err(fs_info,
2998 "cannot mount because of unsupported optional features (%llx)",
2999 features);
f2b636e8 3000 err = -EINVAL;
141386e1 3001 goto fail_alloc;
f2b636e8
JB
3002 }
3003
5d4f98a2 3004 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3005 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3006 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3007 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3008 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3009 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3010
3173a18f 3011 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3012 btrfs_info(fs_info, "has skinny extents");
3173a18f 3013
727011e0
CM
3014 /*
3015 * flag our filesystem as having big metadata blocks if
3016 * they are bigger than the page size
3017 */
09cbfeaf 3018 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3019 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3020 btrfs_info(fs_info,
3021 "flagging fs with big metadata feature");
727011e0
CM
3022 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3023 }
3024
bc3f116f 3025 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3026 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3027 stripesize = sectorsize;
707e8a07 3028 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3029 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3030
da17066c
JM
3031 /* Cache block sizes */
3032 fs_info->nodesize = nodesize;
3033 fs_info->sectorsize = sectorsize;
3034 fs_info->stripesize = stripesize;
3035
bc3f116f
CM
3036 /*
3037 * mixed block groups end up with duplicate but slightly offset
3038 * extent buffers for the same range. It leads to corruptions
3039 */
3040 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3041 (sectorsize != nodesize)) {
05135f59
DS
3042 btrfs_err(fs_info,
3043"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3044 nodesize, sectorsize);
141386e1 3045 goto fail_alloc;
bc3f116f
CM
3046 }
3047
ceda0864
MX
3048 /*
3049 * Needn't use the lock because there is no other task which will
3050 * update the flag.
3051 */
a6fa6fae 3052 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3053
f2b636e8
JB
3054 features = btrfs_super_compat_ro_flags(disk_super) &
3055 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3056 if (!sb_rdonly(sb) && features) {
05135f59
DS
3057 btrfs_err(fs_info,
3058 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3059 features);
f2b636e8 3060 err = -EINVAL;
141386e1 3061 goto fail_alloc;
f2b636e8 3062 }
61d92c32 3063
2a458198
ES
3064 ret = btrfs_init_workqueues(fs_info, fs_devices);
3065 if (ret) {
3066 err = ret;
0dc3b84a
JB
3067 goto fail_sb_buffer;
3068 }
4543df7e 3069
9e11ceee
JK
3070 sb->s_bdi->congested_fn = btrfs_congested_fn;
3071 sb->s_bdi->congested_data = fs_info;
3072 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3073 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3074 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3075 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3076
a061fc8d
CM
3077 sb->s_blocksize = sectorsize;
3078 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3079 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3080
925baedd 3081 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3082 ret = btrfs_read_sys_array(fs_info);
925baedd 3083 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3084 if (ret) {
05135f59 3085 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3086 goto fail_sb_buffer;
84eed90f 3087 }
0b86a832 3088
84234f3a 3089 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3090 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3091
2ff7e61e 3092 chunk_root->node = read_tree_block(fs_info,
0b86a832 3093 btrfs_super_chunk_root(disk_super),
581c1760 3094 generation, level, NULL);
64c043de
LB
3095 if (IS_ERR(chunk_root->node) ||
3096 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3097 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3098 if (!IS_ERR(chunk_root->node))
3099 free_extent_buffer(chunk_root->node);
95ab1f64 3100 chunk_root->node = NULL;
af31f5e5 3101 goto fail_tree_roots;
83121942 3102 }
5d4f98a2
YZ
3103 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3104 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3105
e17cade2 3106 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3107 offsetof(struct btrfs_header, chunk_tree_uuid),
3108 BTRFS_UUID_SIZE);
e17cade2 3109
5b4aacef 3110 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3111 if (ret) {
05135f59 3112 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3113 goto fail_tree_roots;
2b82032c 3114 }
0b86a832 3115
8dabb742 3116 /*
9b99b115
AJ
3117 * Keep the devid that is marked to be the target device for the
3118 * device replace procedure
8dabb742 3119 */
9b99b115 3120 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3121
a6b0d5c8 3122 if (!fs_devices->latest_bdev) {
05135f59 3123 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3124 goto fail_tree_roots;
3125 }
3126
b8522a1e 3127 ret = init_tree_roots(fs_info);
4bbcaa64 3128 if (ret)
b8522a1e 3129 goto fail_tree_roots;
8929ecfa 3130
75ec1db8
JB
3131 /*
3132 * If we have a uuid root and we're not being told to rescan we need to
3133 * check the generation here so we can set the
3134 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3135 * transaction during a balance or the log replay without updating the
3136 * uuid generation, and then if we crash we would rescan the uuid tree,
3137 * even though it was perfectly fine.
3138 */
3139 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3140 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3141 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3142
cf90d884
QW
3143 ret = btrfs_verify_dev_extents(fs_info);
3144 if (ret) {
3145 btrfs_err(fs_info,
3146 "failed to verify dev extents against chunks: %d",
3147 ret);
3148 goto fail_block_groups;
3149 }
68310a5e
ID
3150 ret = btrfs_recover_balance(fs_info);
3151 if (ret) {
05135f59 3152 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3153 goto fail_block_groups;
3154 }
3155
733f4fbb
SB
3156 ret = btrfs_init_dev_stats(fs_info);
3157 if (ret) {
05135f59 3158 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3159 goto fail_block_groups;
3160 }
3161
8dabb742
SB
3162 ret = btrfs_init_dev_replace(fs_info);
3163 if (ret) {
05135f59 3164 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3165 goto fail_block_groups;
3166 }
3167
9b99b115 3168 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3169
c6761a9e 3170 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3171 if (ret) {
05135f59
DS
3172 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3173 ret);
b7c35e81
AJ
3174 goto fail_block_groups;
3175 }
3176
96f3136e 3177 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3178 if (ret) {
05135f59 3179 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3180 goto fail_fsdev_sysfs;
c59021f8 3181 }
3182
c59021f8 3183 ret = btrfs_init_space_info(fs_info);
3184 if (ret) {
05135f59 3185 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3186 goto fail_sysfs;
c59021f8 3187 }
3188
5b4aacef 3189 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3190 if (ret) {
05135f59 3191 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3192 goto fail_sysfs;
1b1d1f66 3193 }
4330e183 3194
6528b99d 3195 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3196 btrfs_warn(fs_info,
52042d8e 3197 "writable mount is not allowed due to too many missing devices");
2365dd3c 3198 goto fail_sysfs;
292fd7fc 3199 }
9078a3e1 3200
a74a4b97
CM
3201 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3202 "btrfs-cleaner");
57506d50 3203 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3204 goto fail_sysfs;
a74a4b97
CM
3205
3206 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3207 tree_root,
3208 "btrfs-transaction");
57506d50 3209 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3210 goto fail_cleaner;
a74a4b97 3211
583b7231 3212 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3213 !fs_info->fs_devices->rotating) {
583b7231 3214 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3215 }
3216
572d9ab7 3217 /*
01327610 3218 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3219 * not have to wait for transaction commit
3220 */
3221 btrfs_apply_pending_changes(fs_info);
3818aea2 3222
21adbd5c 3223#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3224 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3225 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3226 btrfs_test_opt(fs_info,
21adbd5c
SB
3227 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3228 1 : 0,
3229 fs_info->check_integrity_print_mask);
3230 if (ret)
05135f59
DS
3231 btrfs_warn(fs_info,
3232 "failed to initialize integrity check module: %d",
3233 ret);
21adbd5c
SB
3234 }
3235#endif
bcef60f2
AJ
3236 ret = btrfs_read_qgroup_config(fs_info);
3237 if (ret)
3238 goto fail_trans_kthread;
21adbd5c 3239
fd708b81
JB
3240 if (btrfs_build_ref_tree(fs_info))
3241 btrfs_err(fs_info, "couldn't build ref tree");
3242
96da0919
QW
3243 /* do not make disk changes in broken FS or nologreplay is given */
3244 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3245 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3246 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3247 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3248 if (ret) {
63443bf5 3249 err = ret;
28c16cbb 3250 goto fail_qgroup;
79787eaa 3251 }
e02119d5 3252 }
1a40e23b 3253
6bccf3ab 3254 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3255 if (ret)
28c16cbb 3256 goto fail_qgroup;
76dda93c 3257
bc98a42c 3258 if (!sb_rdonly(sb)) {
d68fc57b 3259 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3260 if (ret)
28c16cbb 3261 goto fail_qgroup;
90c711ab
ZB
3262
3263 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3264 ret = btrfs_recover_relocation(tree_root);
90c711ab 3265 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3266 if (ret < 0) {
05135f59
DS
3267 btrfs_warn(fs_info, "failed to recover relocation: %d",
3268 ret);
d7ce5843 3269 err = -EINVAL;
bcef60f2 3270 goto fail_qgroup;
d7ce5843 3271 }
7c2ca468 3272 }
1a40e23b 3273
3de4586c
CM
3274 location.objectid = BTRFS_FS_TREE_OBJECTID;
3275 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3276 location.offset = 0;
3de4586c 3277
3619c94f 3278 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3140c9a3
DC
3279 if (IS_ERR(fs_info->fs_root)) {
3280 err = PTR_ERR(fs_info->fs_root);
f50f4353 3281 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3282 fs_info->fs_root = NULL;
bcef60f2 3283 goto fail_qgroup;
3140c9a3 3284 }
c289811c 3285
bc98a42c 3286 if (sb_rdonly(sb))
2b6ba629 3287 return 0;
59641015 3288
f8d468a1
OS
3289 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3290 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3291 clear_free_space_tree = 1;
3292 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3293 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3294 btrfs_warn(fs_info, "free space tree is invalid");
3295 clear_free_space_tree = 1;
3296 }
3297
3298 if (clear_free_space_tree) {
f8d468a1
OS
3299 btrfs_info(fs_info, "clearing free space tree");
3300 ret = btrfs_clear_free_space_tree(fs_info);
3301 if (ret) {
3302 btrfs_warn(fs_info,
3303 "failed to clear free space tree: %d", ret);
6bccf3ab 3304 close_ctree(fs_info);
f8d468a1
OS
3305 return ret;
3306 }
3307 }
3308
0b246afa 3309 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3310 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3311 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3312 ret = btrfs_create_free_space_tree(fs_info);
3313 if (ret) {
05135f59
DS
3314 btrfs_warn(fs_info,
3315 "failed to create free space tree: %d", ret);
6bccf3ab 3316 close_ctree(fs_info);
511711af
CM
3317 return ret;
3318 }
3319 }
3320
2b6ba629
ID
3321 down_read(&fs_info->cleanup_work_sem);
3322 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3323 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3324 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3325 close_ctree(fs_info);
2b6ba629
ID
3326 return ret;
3327 }
3328 up_read(&fs_info->cleanup_work_sem);
59641015 3329
2b6ba629
ID
3330 ret = btrfs_resume_balance_async(fs_info);
3331 if (ret) {
05135f59 3332 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3333 close_ctree(fs_info);
2b6ba629 3334 return ret;
e3acc2a6
JB
3335 }
3336
8dabb742
SB
3337 ret = btrfs_resume_dev_replace_async(fs_info);
3338 if (ret) {
05135f59 3339 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3340 close_ctree(fs_info);
8dabb742
SB
3341 return ret;
3342 }
3343
b382a324 3344 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3345 btrfs_discard_resume(fs_info);
b382a324 3346
4bbcaa64 3347 if (!fs_info->uuid_root) {
05135f59 3348 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3349 ret = btrfs_create_uuid_tree(fs_info);
3350 if (ret) {
05135f59
DS
3351 btrfs_warn(fs_info,
3352 "failed to create the UUID tree: %d", ret);
6bccf3ab 3353 close_ctree(fs_info);
f7a81ea4
SB
3354 return ret;
3355 }
0b246afa 3356 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3357 fs_info->generation !=
3358 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3359 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3360 ret = btrfs_check_uuid_tree(fs_info);
3361 if (ret) {
05135f59
DS
3362 btrfs_warn(fs_info,
3363 "failed to check the UUID tree: %d", ret);
6bccf3ab 3364 close_ctree(fs_info);
70f80175
SB
3365 return ret;
3366 }
f7a81ea4 3367 }
afcdd129 3368 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3369
8dcddfa0
QW
3370 /*
3371 * backuproot only affect mount behavior, and if open_ctree succeeded,
3372 * no need to keep the flag
3373 */
3374 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3375
ad2b2c80 3376 return 0;
39279cc3 3377
bcef60f2
AJ
3378fail_qgroup:
3379 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3380fail_trans_kthread:
3381 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3382 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3383 btrfs_free_fs_roots(fs_info);
3f157a2f 3384fail_cleaner:
a74a4b97 3385 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3386
3387 /*
3388 * make sure we're done with the btree inode before we stop our
3389 * kthreads
3390 */
3391 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3392
2365dd3c 3393fail_sysfs:
6618a59b 3394 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3395
b7c35e81
AJ
3396fail_fsdev_sysfs:
3397 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3398
1b1d1f66 3399fail_block_groups:
54067ae9 3400 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3401
3402fail_tree_roots:
4273eaff 3403 free_root_pointers(fs_info, true);
2b8195bb 3404 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3405
39279cc3 3406fail_sb_buffer:
7abadb64 3407 btrfs_stop_all_workers(fs_info);
5cdd7db6 3408 btrfs_free_block_groups(fs_info);
16cdcec7 3409fail_alloc:
586e46e2
ID
3410 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3411
4543df7e 3412 iput(fs_info->btree_inode);
76dda93c
YZ
3413fail_srcu:
3414 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3415fail:
586e46e2 3416 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3417 return err;
eb60ceac 3418}
663faf9f 3419ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3420
314b6dd0 3421static void btrfs_end_super_write(struct bio *bio)
f2984462 3422{
314b6dd0
JT
3423 struct btrfs_device *device = bio->bi_private;
3424 struct bio_vec *bvec;
3425 struct bvec_iter_all iter_all;
3426 struct page *page;
3427
3428 bio_for_each_segment_all(bvec, bio, iter_all) {
3429 page = bvec->bv_page;
3430
3431 if (bio->bi_status) {
3432 btrfs_warn_rl_in_rcu(device->fs_info,
3433 "lost page write due to IO error on %s (%d)",
3434 rcu_str_deref(device->name),
3435 blk_status_to_errno(bio->bi_status));
3436 ClearPageUptodate(page);
3437 SetPageError(page);
3438 btrfs_dev_stat_inc_and_print(device,
3439 BTRFS_DEV_STAT_WRITE_ERRS);
3440 } else {
3441 SetPageUptodate(page);
3442 }
3443
3444 put_page(page);
3445 unlock_page(page);
f2984462 3446 }
314b6dd0
JT
3447
3448 bio_put(bio);
f2984462
CM
3449}
3450
8f32380d
JT
3451struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3452 int copy_num)
29c36d72 3453{
29c36d72 3454 struct btrfs_super_block *super;
8f32380d 3455 struct page *page;
29c36d72 3456 u64 bytenr;
8f32380d 3457 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3458
3459 bytenr = btrfs_sb_offset(copy_num);
3460 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3461 return ERR_PTR(-EINVAL);
29c36d72 3462
8f32380d
JT
3463 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3464 if (IS_ERR(page))
3465 return ERR_CAST(page);
29c36d72 3466
8f32380d 3467 super = page_address(page);
29c36d72
AJ
3468 if (btrfs_super_bytenr(super) != bytenr ||
3469 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3470 btrfs_release_disk_super(super);
3471 return ERR_PTR(-EINVAL);
29c36d72
AJ
3472 }
3473
8f32380d 3474 return super;
29c36d72
AJ
3475}
3476
3477
8f32380d 3478struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3479{
8f32380d 3480 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3481 int i;
3482 u64 transid = 0;
a512bbf8
YZ
3483
3484 /* we would like to check all the supers, but that would make
3485 * a btrfs mount succeed after a mkfs from a different FS.
3486 * So, we need to add a special mount option to scan for
3487 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3488 */
3489 for (i = 0; i < 1; i++) {
8f32380d
JT
3490 super = btrfs_read_dev_one_super(bdev, i);
3491 if (IS_ERR(super))
a512bbf8
YZ
3492 continue;
3493
a512bbf8 3494 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3495 if (latest)
3496 btrfs_release_disk_super(super);
3497
3498 latest = super;
a512bbf8 3499 transid = btrfs_super_generation(super);
a512bbf8
YZ
3500 }
3501 }
92fc03fb 3502
8f32380d 3503 return super;
a512bbf8
YZ
3504}
3505
4eedeb75 3506/*
abbb3b8e 3507 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3508 * pages we use for writing are locked.
4eedeb75 3509 *
abbb3b8e
DS
3510 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3511 * the expected device size at commit time. Note that max_mirrors must be
3512 * same for write and wait phases.
4eedeb75 3513 *
314b6dd0 3514 * Return number of errors when page is not found or submission fails.
4eedeb75 3515 */
a512bbf8 3516static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3517 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3518{
d5178578 3519 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3520 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3521 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3522 int i;
a512bbf8 3523 int errors = 0;
a512bbf8 3524 u64 bytenr;
a512bbf8
YZ
3525
3526 if (max_mirrors == 0)
3527 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3528
d5178578
JT
3529 shash->tfm = fs_info->csum_shash;
3530
a512bbf8 3531 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3532 struct page *page;
3533 struct bio *bio;
3534 struct btrfs_super_block *disk_super;
3535
a512bbf8 3536 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3537 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3538 device->commit_total_bytes)
a512bbf8
YZ
3539 break;
3540
abbb3b8e 3541 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3542
d5178578
JT
3543 crypto_shash_init(shash);
3544 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3545 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3546 crypto_shash_final(shash, sb->csum);
4eedeb75 3547
314b6dd0
JT
3548 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3549 GFP_NOFS);
3550 if (!page) {
abbb3b8e 3551 btrfs_err(device->fs_info,
314b6dd0 3552 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3553 bytenr);
3554 errors++;
4eedeb75 3555 continue;
abbb3b8e 3556 }
634554dc 3557
314b6dd0
JT
3558 /* Bump the refcount for wait_dev_supers() */
3559 get_page(page);
a512bbf8 3560
314b6dd0
JT
3561 disk_super = page_address(page);
3562 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3563
314b6dd0
JT
3564 /*
3565 * Directly use bios here instead of relying on the page cache
3566 * to do I/O, so we don't lose the ability to do integrity
3567 * checking.
3568 */
3569 bio = bio_alloc(GFP_NOFS, 1);
3570 bio_set_dev(bio, device->bdev);
3571 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3572 bio->bi_private = device;
3573 bio->bi_end_io = btrfs_end_super_write;
3574 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3575 offset_in_page(bytenr));
a512bbf8 3576
387125fc 3577 /*
314b6dd0
JT
3578 * We FUA only the first super block. The others we allow to
3579 * go down lazy and there's a short window where the on-disk
3580 * copies might still contain the older version.
387125fc 3581 */
314b6dd0 3582 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3583 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3584 bio->bi_opf |= REQ_FUA;
3585
3586 btrfsic_submit_bio(bio);
a512bbf8
YZ
3587 }
3588 return errors < i ? 0 : -1;
3589}
3590
abbb3b8e
DS
3591/*
3592 * Wait for write completion of superblocks done by write_dev_supers,
3593 * @max_mirrors same for write and wait phases.
3594 *
314b6dd0 3595 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3596 * date.
3597 */
3598static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3599{
abbb3b8e
DS
3600 int i;
3601 int errors = 0;
b6a535fa 3602 bool primary_failed = false;
abbb3b8e
DS
3603 u64 bytenr;
3604
3605 if (max_mirrors == 0)
3606 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3607
3608 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3609 struct page *page;
3610
abbb3b8e
DS
3611 bytenr = btrfs_sb_offset(i);
3612 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3613 device->commit_total_bytes)
3614 break;
3615
314b6dd0
JT
3616 page = find_get_page(device->bdev->bd_inode->i_mapping,
3617 bytenr >> PAGE_SHIFT);
3618 if (!page) {
abbb3b8e 3619 errors++;
b6a535fa
HM
3620 if (i == 0)
3621 primary_failed = true;
abbb3b8e
DS
3622 continue;
3623 }
314b6dd0
JT
3624 /* Page is submitted locked and unlocked once the IO completes */
3625 wait_on_page_locked(page);
3626 if (PageError(page)) {
abbb3b8e 3627 errors++;
b6a535fa
HM
3628 if (i == 0)
3629 primary_failed = true;
3630 }
abbb3b8e 3631
314b6dd0
JT
3632 /* Drop our reference */
3633 put_page(page);
abbb3b8e 3634
314b6dd0
JT
3635 /* Drop the reference from the writing run */
3636 put_page(page);
abbb3b8e
DS
3637 }
3638
b6a535fa
HM
3639 /* log error, force error return */
3640 if (primary_failed) {
3641 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3642 device->devid);
3643 return -1;
3644 }
3645
abbb3b8e
DS
3646 return errors < i ? 0 : -1;
3647}
3648
387125fc
CM
3649/*
3650 * endio for the write_dev_flush, this will wake anyone waiting
3651 * for the barrier when it is done
3652 */
4246a0b6 3653static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3654{
e0ae9994 3655 complete(bio->bi_private);
387125fc
CM
3656}
3657
3658/*
4fc6441a
AJ
3659 * Submit a flush request to the device if it supports it. Error handling is
3660 * done in the waiting counterpart.
387125fc 3661 */
4fc6441a 3662static void write_dev_flush(struct btrfs_device *device)
387125fc 3663{
c2a9c7ab 3664 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3665 struct bio *bio = device->flush_bio;
387125fc 3666
c2a9c7ab 3667 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3668 return;
387125fc 3669
e0ae9994 3670 bio_reset(bio);
387125fc 3671 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3672 bio_set_dev(bio, device->bdev);
8d910125 3673 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3674 init_completion(&device->flush_wait);
3675 bio->bi_private = &device->flush_wait;
387125fc 3676
43a01111 3677 btrfsic_submit_bio(bio);
1c3063b6 3678 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3679}
387125fc 3680
4fc6441a
AJ
3681/*
3682 * If the flush bio has been submitted by write_dev_flush, wait for it.
3683 */
8c27cb35 3684static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3685{
4fc6441a 3686 struct bio *bio = device->flush_bio;
387125fc 3687
1c3063b6 3688 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3689 return BLK_STS_OK;
387125fc 3690
1c3063b6 3691 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3692 wait_for_completion_io(&device->flush_wait);
387125fc 3693
8c27cb35 3694 return bio->bi_status;
387125fc 3695}
387125fc 3696
d10b82fe 3697static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3698{
6528b99d 3699 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3700 return -EIO;
387125fc
CM
3701 return 0;
3702}
3703
3704/*
3705 * send an empty flush down to each device in parallel,
3706 * then wait for them
3707 */
3708static int barrier_all_devices(struct btrfs_fs_info *info)
3709{
3710 struct list_head *head;
3711 struct btrfs_device *dev;
5af3e8cc 3712 int errors_wait = 0;
4e4cbee9 3713 blk_status_t ret;
387125fc 3714
1538e6c5 3715 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3716 /* send down all the barriers */
3717 head = &info->fs_devices->devices;
1538e6c5 3718 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3719 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3720 continue;
cea7c8bf 3721 if (!dev->bdev)
387125fc 3722 continue;
e12c9621 3723 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3724 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3725 continue;
3726
4fc6441a 3727 write_dev_flush(dev);
58efbc9f 3728 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3729 }
3730
3731 /* wait for all the barriers */
1538e6c5 3732 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3733 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3734 continue;
387125fc 3735 if (!dev->bdev) {
5af3e8cc 3736 errors_wait++;
387125fc
CM
3737 continue;
3738 }
e12c9621 3739 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3740 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3741 continue;
3742
4fc6441a 3743 ret = wait_dev_flush(dev);
401b41e5
AJ
3744 if (ret) {
3745 dev->last_flush_error = ret;
66b4993e
DS
3746 btrfs_dev_stat_inc_and_print(dev,
3747 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3748 errors_wait++;
401b41e5
AJ
3749 }
3750 }
3751
cea7c8bf 3752 if (errors_wait) {
401b41e5
AJ
3753 /*
3754 * At some point we need the status of all disks
3755 * to arrive at the volume status. So error checking
3756 * is being pushed to a separate loop.
3757 */
d10b82fe 3758 return check_barrier_error(info);
387125fc 3759 }
387125fc
CM
3760 return 0;
3761}
3762
943c6e99
ZL
3763int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3764{
8789f4fe
ZL
3765 int raid_type;
3766 int min_tolerated = INT_MAX;
943c6e99 3767
8789f4fe
ZL
3768 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3769 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3770 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3771 btrfs_raid_array[BTRFS_RAID_SINGLE].
3772 tolerated_failures);
943c6e99 3773
8789f4fe
ZL
3774 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3775 if (raid_type == BTRFS_RAID_SINGLE)
3776 continue;
41a6e891 3777 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3778 continue;
8c3e3582 3779 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3780 btrfs_raid_array[raid_type].
3781 tolerated_failures);
3782 }
943c6e99 3783
8789f4fe 3784 if (min_tolerated == INT_MAX) {
ab8d0fc4 3785 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3786 min_tolerated = 0;
3787 }
3788
3789 return min_tolerated;
943c6e99
ZL
3790}
3791
eece6a9c 3792int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3793{
e5e9a520 3794 struct list_head *head;
f2984462 3795 struct btrfs_device *dev;
a061fc8d 3796 struct btrfs_super_block *sb;
f2984462 3797 struct btrfs_dev_item *dev_item;
f2984462
CM
3798 int ret;
3799 int do_barriers;
a236aed1
CM
3800 int max_errors;
3801 int total_errors = 0;
a061fc8d 3802 u64 flags;
f2984462 3803
0b246afa 3804 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3805
3806 /*
3807 * max_mirrors == 0 indicates we're from commit_transaction,
3808 * not from fsync where the tree roots in fs_info have not
3809 * been consistent on disk.
3810 */
3811 if (max_mirrors == 0)
3812 backup_super_roots(fs_info);
f2984462 3813
0b246afa 3814 sb = fs_info->super_for_commit;
a061fc8d 3815 dev_item = &sb->dev_item;
e5e9a520 3816
0b246afa
JM
3817 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3818 head = &fs_info->fs_devices->devices;
3819 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3820
5af3e8cc 3821 if (do_barriers) {
0b246afa 3822 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3823 if (ret) {
3824 mutex_unlock(
0b246afa
JM
3825 &fs_info->fs_devices->device_list_mutex);
3826 btrfs_handle_fs_error(fs_info, ret,
3827 "errors while submitting device barriers.");
5af3e8cc
SB
3828 return ret;
3829 }
3830 }
387125fc 3831
1538e6c5 3832 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3833 if (!dev->bdev) {
3834 total_errors++;
3835 continue;
3836 }
e12c9621 3837 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3838 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3839 continue;
3840
2b82032c 3841 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3842 btrfs_set_stack_device_type(dev_item, dev->type);
3843 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3844 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3845 dev->commit_total_bytes);
ce7213c7
MX
3846 btrfs_set_stack_device_bytes_used(dev_item,
3847 dev->commit_bytes_used);
a061fc8d
CM
3848 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3849 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3850 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3851 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3852 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3853 BTRFS_FSID_SIZE);
a512bbf8 3854
a061fc8d
CM
3855 flags = btrfs_super_flags(sb);
3856 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3857
75cb857d
QW
3858 ret = btrfs_validate_write_super(fs_info, sb);
3859 if (ret < 0) {
3860 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3861 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3862 "unexpected superblock corruption detected");
3863 return -EUCLEAN;
3864 }
3865
abbb3b8e 3866 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3867 if (ret)
3868 total_errors++;
f2984462 3869 }
a236aed1 3870 if (total_errors > max_errors) {
0b246afa
JM
3871 btrfs_err(fs_info, "%d errors while writing supers",
3872 total_errors);
3873 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3874
9d565ba4 3875 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3876 btrfs_handle_fs_error(fs_info, -EIO,
3877 "%d errors while writing supers",
3878 total_errors);
9d565ba4 3879 return -EIO;
a236aed1 3880 }
f2984462 3881
a512bbf8 3882 total_errors = 0;
1538e6c5 3883 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3884 if (!dev->bdev)
3885 continue;
e12c9621 3886 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3887 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3888 continue;
3889
abbb3b8e 3890 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3891 if (ret)
3892 total_errors++;
f2984462 3893 }
0b246afa 3894 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3895 if (total_errors > max_errors) {
0b246afa
JM
3896 btrfs_handle_fs_error(fs_info, -EIO,
3897 "%d errors while writing supers",
3898 total_errors);
79787eaa 3899 return -EIO;
a236aed1 3900 }
f2984462
CM
3901 return 0;
3902}
3903
cb517eab
MX
3904/* Drop a fs root from the radix tree and free it. */
3905void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3906 struct btrfs_root *root)
2619ba1f 3907{
4df27c4d 3908 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3909 radix_tree_delete(&fs_info->fs_roots_radix,
3910 (unsigned long)root->root_key.objectid);
af01d2e5 3911 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
00246528 3912 btrfs_put_root(root);
4df27c4d 3913 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3914
3915 if (btrfs_root_refs(&root->root_item) == 0)
3916 synchronize_srcu(&fs_info->subvol_srcu);
3917
1c1ea4f7 3918 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3919 btrfs_free_log(NULL, root);
1c1ea4f7 3920 if (root->reloc_root) {
00246528 3921 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3922 root->reloc_root = NULL;
3923 }
3924 }
3321719e 3925
faa2dbf0
JB
3926 if (root->free_ino_pinned)
3927 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3928 if (root->free_ino_ctl)
3929 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3930 if (root->ino_cache_inode) {
3931 iput(root->ino_cache_inode);
3932 root->ino_cache_inode = NULL;
3933 }
00246528 3934 btrfs_put_root(root);
2619ba1f
CM
3935}
3936
c146afad 3937int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3938{
c146afad
YZ
3939 u64 root_objectid = 0;
3940 struct btrfs_root *gang[8];
65d33fd7
QW
3941 int i = 0;
3942 int err = 0;
3943 unsigned int ret = 0;
3944 int index;
e089f05c 3945
c146afad 3946 while (1) {
65d33fd7 3947 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3948 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3949 (void **)gang, root_objectid,
3950 ARRAY_SIZE(gang));
65d33fd7
QW
3951 if (!ret) {
3952 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3953 break;
65d33fd7 3954 }
5d4f98a2 3955 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3956
c146afad 3957 for (i = 0; i < ret; i++) {
65d33fd7
QW
3958 /* Avoid to grab roots in dead_roots */
3959 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3960 gang[i] = NULL;
3961 continue;
3962 }
3963 /* grab all the search result for later use */
00246528 3964 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7
QW
3965 }
3966 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3967
65d33fd7
QW
3968 for (i = 0; i < ret; i++) {
3969 if (!gang[i])
3970 continue;
c146afad 3971 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3972 err = btrfs_orphan_cleanup(gang[i]);
3973 if (err)
65d33fd7 3974 break;
00246528 3975 btrfs_put_root(gang[i]);
c146afad
YZ
3976 }
3977 root_objectid++;
3978 }
65d33fd7
QW
3979
3980 /* release the uncleaned roots due to error */
3981 for (; i < ret; i++) {
3982 if (gang[i])
00246528 3983 btrfs_put_root(gang[i]);
65d33fd7
QW
3984 }
3985 return err;
c146afad 3986}
a2135011 3987
6bccf3ab 3988int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3989{
6bccf3ab 3990 struct btrfs_root *root = fs_info->tree_root;
c146afad 3991 struct btrfs_trans_handle *trans;
a74a4b97 3992
0b246afa 3993 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3994 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3995 mutex_unlock(&fs_info->cleaner_mutex);
3996 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3997
3998 /* wait until ongoing cleanup work done */
0b246afa
JM
3999 down_write(&fs_info->cleanup_work_sem);
4000 up_write(&fs_info->cleanup_work_sem);
c71bf099 4001
7a7eaa40 4002 trans = btrfs_join_transaction(root);
3612b495
TI
4003 if (IS_ERR(trans))
4004 return PTR_ERR(trans);
3a45bb20 4005 return btrfs_commit_transaction(trans);
c146afad
YZ
4006}
4007
b105e927 4008void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4009{
c146afad
YZ
4010 int ret;
4011
afcdd129 4012 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4013 /*
4014 * We don't want the cleaner to start new transactions, add more delayed
4015 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4016 * because that frees the task_struct, and the transaction kthread might
4017 * still try to wake up the cleaner.
4018 */
4019 kthread_park(fs_info->cleaner_kthread);
c146afad 4020
7343dd61 4021 /* wait for the qgroup rescan worker to stop */
d06f23d6 4022 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4023
803b2f54
SB
4024 /* wait for the uuid_scan task to finish */
4025 down(&fs_info->uuid_tree_rescan_sem);
4026 /* avoid complains from lockdep et al., set sem back to initial state */
4027 up(&fs_info->uuid_tree_rescan_sem);
4028
837d5b6e 4029 /* pause restriper - we want to resume on mount */
aa1b8cd4 4030 btrfs_pause_balance(fs_info);
837d5b6e 4031
8dabb742
SB
4032 btrfs_dev_replace_suspend_for_unmount(fs_info);
4033
aa1b8cd4 4034 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4035
4036 /* wait for any defraggers to finish */
4037 wait_event(fs_info->transaction_wait,
4038 (atomic_read(&fs_info->defrag_running) == 0));
4039
4040 /* clear out the rbtree of defraggable inodes */
26176e7c 4041 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4042
21c7e756
MX
4043 cancel_work_sync(&fs_info->async_reclaim_work);
4044
b0643e59
DZ
4045 /* Cancel or finish ongoing discard work */
4046 btrfs_discard_cleanup(fs_info);
4047
bc98a42c 4048 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4049 /*
d6fd0ae2
OS
4050 * The cleaner kthread is stopped, so do one final pass over
4051 * unused block groups.
e44163e1 4052 */
0b246afa 4053 btrfs_delete_unused_bgs(fs_info);
e44163e1 4054
f0cc2cd7
FM
4055 /*
4056 * There might be existing delayed inode workers still running
4057 * and holding an empty delayed inode item. We must wait for
4058 * them to complete first because they can create a transaction.
4059 * This happens when someone calls btrfs_balance_delayed_items()
4060 * and then a transaction commit runs the same delayed nodes
4061 * before any delayed worker has done something with the nodes.
4062 * We must wait for any worker here and not at transaction
4063 * commit time since that could cause a deadlock.
4064 * This is a very rare case.
4065 */
4066 btrfs_flush_workqueue(fs_info->delayed_workers);
4067
6bccf3ab 4068 ret = btrfs_commit_super(fs_info);
acce952b 4069 if (ret)
04892340 4070 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4071 }
4072
af722733
LB
4073 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4074 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4075 btrfs_error_commit_super(fs_info);
0f7d52f4 4076
e3029d9f
AV
4077 kthread_stop(fs_info->transaction_kthread);
4078 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4079
e187831e 4080 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4081 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4082
04892340 4083 btrfs_free_qgroup_config(fs_info);
fe816d0f 4084 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4085
963d678b 4086 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4087 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4088 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4089 }
bcc63abb 4090
4297ff84
JB
4091 if (percpu_counter_sum(&fs_info->dio_bytes))
4092 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4093 percpu_counter_sum(&fs_info->dio_bytes));
4094
6618a59b 4095 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4096 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4097
1a4319cc
LB
4098 btrfs_put_block_group_cache(fs_info);
4099
de348ee0
WS
4100 /*
4101 * we must make sure there is not any read request to
4102 * submit after we stopping all workers.
4103 */
4104 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4105 btrfs_stop_all_workers(fs_info);
4106
afcdd129 4107 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4108 free_root_pointers(fs_info, true);
8c38938c 4109 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4110
4e19443d
JB
4111 /*
4112 * We must free the block groups after dropping the fs_roots as we could
4113 * have had an IO error and have left over tree log blocks that aren't
4114 * cleaned up until the fs roots are freed. This makes the block group
4115 * accounting appear to be wrong because there's pending reserved bytes,
4116 * so make sure we do the block group cleanup afterwards.
4117 */
4118 btrfs_free_block_groups(fs_info);
4119
13e6c37b 4120 iput(fs_info->btree_inode);
d6bfde87 4121
21adbd5c 4122#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4123 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4124 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4125#endif
4126
0b86a832 4127 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4128 btrfs_close_devices(fs_info->fs_devices);
76dda93c 4129 cleanup_srcu_struct(&fs_info->subvol_srcu);
eb60ceac
CM
4130}
4131
b9fab919
CM
4132int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4133 int atomic)
5f39d397 4134{
1259ab75 4135 int ret;
727011e0 4136 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4137
0b32f4bb 4138 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4139 if (!ret)
4140 return ret;
4141
4142 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4143 parent_transid, atomic);
4144 if (ret == -EAGAIN)
4145 return ret;
1259ab75 4146 return !ret;
5f39d397
CM
4147}
4148
5f39d397
CM
4149void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4150{
0b246afa 4151 struct btrfs_fs_info *fs_info;
06ea65a3 4152 struct btrfs_root *root;
5f39d397 4153 u64 transid = btrfs_header_generation(buf);
b9473439 4154 int was_dirty;
b4ce94de 4155
06ea65a3
JB
4156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4157 /*
4158 * This is a fast path so only do this check if we have sanity tests
52042d8e 4159 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4160 * outside of the sanity tests.
4161 */
b0132a3b 4162 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4163 return;
4164#endif
4165 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4166 fs_info = root->fs_info;
b9447ef8 4167 btrfs_assert_tree_locked(buf);
0b246afa 4168 if (transid != fs_info->generation)
5d163e0e 4169 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4170 buf->start, transid, fs_info->generation);
0b32f4bb 4171 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4172 if (!was_dirty)
104b4e51
NB
4173 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4174 buf->len,
4175 fs_info->dirty_metadata_batch);
1f21ef0a 4176#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4177 /*
4178 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4179 * but item data not updated.
4180 * So here we should only check item pointers, not item data.
4181 */
4182 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4183 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4184 btrfs_print_leaf(buf);
1f21ef0a
FM
4185 ASSERT(0);
4186 }
4187#endif
eb60ceac
CM
4188}
4189
2ff7e61e 4190static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4191 int flush_delayed)
16cdcec7
MX
4192{
4193 /*
4194 * looks as though older kernels can get into trouble with
4195 * this code, they end up stuck in balance_dirty_pages forever
4196 */
e2d84521 4197 int ret;
16cdcec7
MX
4198
4199 if (current->flags & PF_MEMALLOC)
4200 return;
4201
b53d3f5d 4202 if (flush_delayed)
2ff7e61e 4203 btrfs_balance_delayed_items(fs_info);
16cdcec7 4204
d814a491
EL
4205 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4206 BTRFS_DIRTY_METADATA_THRESH,
4207 fs_info->dirty_metadata_batch);
e2d84521 4208 if (ret > 0) {
0b246afa 4209 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4210 }
16cdcec7
MX
4211}
4212
2ff7e61e 4213void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4214{
2ff7e61e 4215 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4216}
585ad2c3 4217
2ff7e61e 4218void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4219{
2ff7e61e 4220 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4221}
6b80053d 4222
581c1760
QW
4223int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4224 struct btrfs_key *first_key)
6b80053d 4225{
5ab12d1f 4226 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4227 level, first_key);
6b80053d 4228}
0da5468f 4229
2ff7e61e 4230static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4231{
fe816d0f
NB
4232 /* cleanup FS via transaction */
4233 btrfs_cleanup_transaction(fs_info);
4234
0b246afa 4235 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4236 btrfs_run_delayed_iputs(fs_info);
0b246afa 4237 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4238
0b246afa
JM
4239 down_write(&fs_info->cleanup_work_sem);
4240 up_write(&fs_info->cleanup_work_sem);
acce952b 4241}
4242
143bede5 4243static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4244{
acce952b 4245 struct btrfs_ordered_extent *ordered;
acce952b 4246
199c2a9c 4247 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4248 /*
4249 * This will just short circuit the ordered completion stuff which will
4250 * make sure the ordered extent gets properly cleaned up.
4251 */
199c2a9c 4252 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4253 root_extent_list)
4254 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4255 spin_unlock(&root->ordered_extent_lock);
4256}
4257
4258static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4259{
4260 struct btrfs_root *root;
4261 struct list_head splice;
4262
4263 INIT_LIST_HEAD(&splice);
4264
4265 spin_lock(&fs_info->ordered_root_lock);
4266 list_splice_init(&fs_info->ordered_roots, &splice);
4267 while (!list_empty(&splice)) {
4268 root = list_first_entry(&splice, struct btrfs_root,
4269 ordered_root);
1de2cfde
JB
4270 list_move_tail(&root->ordered_root,
4271 &fs_info->ordered_roots);
199c2a9c 4272
2a85d9ca 4273 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4274 btrfs_destroy_ordered_extents(root);
4275
2a85d9ca
LB
4276 cond_resched();
4277 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4278 }
4279 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4280
4281 /*
4282 * We need this here because if we've been flipped read-only we won't
4283 * get sync() from the umount, so we need to make sure any ordered
4284 * extents that haven't had their dirty pages IO start writeout yet
4285 * actually get run and error out properly.
4286 */
4287 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4288}
4289
35a3621b 4290static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4291 struct btrfs_fs_info *fs_info)
acce952b 4292{
4293 struct rb_node *node;
4294 struct btrfs_delayed_ref_root *delayed_refs;
4295 struct btrfs_delayed_ref_node *ref;
4296 int ret = 0;
4297
4298 delayed_refs = &trans->delayed_refs;
4299
4300 spin_lock(&delayed_refs->lock);
d7df2c79 4301 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4302 spin_unlock(&delayed_refs->lock);
b79ce3dd 4303 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4304 return ret;
4305 }
4306
5c9d028b 4307 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4308 struct btrfs_delayed_ref_head *head;
0e0adbcf 4309 struct rb_node *n;
e78417d1 4310 bool pin_bytes = false;
acce952b 4311
d7df2c79
JB
4312 head = rb_entry(node, struct btrfs_delayed_ref_head,
4313 href_node);
3069bd26 4314 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4315 continue;
3069bd26 4316
d7df2c79 4317 spin_lock(&head->lock);
e3d03965 4318 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4319 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4320 ref_node);
d7df2c79 4321 ref->in_tree = 0;
e3d03965 4322 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4323 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4324 if (!list_empty(&ref->add_list))
4325 list_del(&ref->add_list);
d7df2c79
JB
4326 atomic_dec(&delayed_refs->num_entries);
4327 btrfs_put_delayed_ref(ref);
e78417d1 4328 }
d7df2c79
JB
4329 if (head->must_insert_reserved)
4330 pin_bytes = true;
4331 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4332 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4333 spin_unlock(&head->lock);
4334 spin_unlock(&delayed_refs->lock);
4335 mutex_unlock(&head->mutex);
acce952b 4336
f603bb94
NB
4337 if (pin_bytes) {
4338 struct btrfs_block_group *cache;
4339
4340 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4341 BUG_ON(!cache);
4342
4343 spin_lock(&cache->space_info->lock);
4344 spin_lock(&cache->lock);
4345 cache->pinned += head->num_bytes;
4346 btrfs_space_info_update_bytes_pinned(fs_info,
4347 cache->space_info, head->num_bytes);
4348 cache->reserved -= head->num_bytes;
4349 cache->space_info->bytes_reserved -= head->num_bytes;
4350 spin_unlock(&cache->lock);
4351 spin_unlock(&cache->space_info->lock);
4352 percpu_counter_add_batch(
4353 &cache->space_info->total_bytes_pinned,
4354 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4355
4356 btrfs_put_block_group(cache);
4357
4358 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4359 head->bytenr + head->num_bytes - 1);
4360 }
31890da0 4361 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4362 btrfs_put_delayed_ref_head(head);
acce952b 4363 cond_resched();
4364 spin_lock(&delayed_refs->lock);
4365 }
81f7eb00 4366 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4367
4368 spin_unlock(&delayed_refs->lock);
4369
4370 return ret;
4371}
4372
143bede5 4373static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4374{
4375 struct btrfs_inode *btrfs_inode;
4376 struct list_head splice;
4377
4378 INIT_LIST_HEAD(&splice);
4379
eb73c1b7
MX
4380 spin_lock(&root->delalloc_lock);
4381 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4382
4383 while (!list_empty(&splice)) {
fe816d0f 4384 struct inode *inode = NULL;
eb73c1b7
MX
4385 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4386 delalloc_inodes);
fe816d0f 4387 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4388 spin_unlock(&root->delalloc_lock);
acce952b 4389
fe816d0f
NB
4390 /*
4391 * Make sure we get a live inode and that it'll not disappear
4392 * meanwhile.
4393 */
4394 inode = igrab(&btrfs_inode->vfs_inode);
4395 if (inode) {
4396 invalidate_inode_pages2(inode->i_mapping);
4397 iput(inode);
4398 }
eb73c1b7 4399 spin_lock(&root->delalloc_lock);
acce952b 4400 }
eb73c1b7
MX
4401 spin_unlock(&root->delalloc_lock);
4402}
4403
4404static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4405{
4406 struct btrfs_root *root;
4407 struct list_head splice;
4408
4409 INIT_LIST_HEAD(&splice);
4410
4411 spin_lock(&fs_info->delalloc_root_lock);
4412 list_splice_init(&fs_info->delalloc_roots, &splice);
4413 while (!list_empty(&splice)) {
4414 root = list_first_entry(&splice, struct btrfs_root,
4415 delalloc_root);
00246528 4416 root = btrfs_grab_root(root);
eb73c1b7
MX
4417 BUG_ON(!root);
4418 spin_unlock(&fs_info->delalloc_root_lock);
4419
4420 btrfs_destroy_delalloc_inodes(root);
00246528 4421 btrfs_put_root(root);
eb73c1b7
MX
4422
4423 spin_lock(&fs_info->delalloc_root_lock);
4424 }
4425 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4426}
4427
2ff7e61e 4428static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4429 struct extent_io_tree *dirty_pages,
4430 int mark)
4431{
4432 int ret;
acce952b 4433 struct extent_buffer *eb;
4434 u64 start = 0;
4435 u64 end;
acce952b 4436
4437 while (1) {
4438 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4439 mark, NULL);
acce952b 4440 if (ret)
4441 break;
4442
91166212 4443 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4444 while (start <= end) {
0b246afa
JM
4445 eb = find_extent_buffer(fs_info, start);
4446 start += fs_info->nodesize;
fd8b2b61 4447 if (!eb)
acce952b 4448 continue;
fd8b2b61 4449 wait_on_extent_buffer_writeback(eb);
acce952b 4450
fd8b2b61
JB
4451 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4452 &eb->bflags))
4453 clear_extent_buffer_dirty(eb);
4454 free_extent_buffer_stale(eb);
acce952b 4455 }
4456 }
4457
4458 return ret;
4459}
4460
2ff7e61e 4461static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4462 struct extent_io_tree *unpin)
acce952b 4463{
acce952b 4464 u64 start;
4465 u64 end;
4466 int ret;
4467
acce952b 4468 while (1) {
0e6ec385
FM
4469 struct extent_state *cached_state = NULL;
4470
fcd5e742
LF
4471 /*
4472 * The btrfs_finish_extent_commit() may get the same range as
4473 * ours between find_first_extent_bit and clear_extent_dirty.
4474 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4475 * the same extent range.
4476 */
4477 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4478 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4479 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4480 if (ret) {
4481 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4482 break;
fcd5e742 4483 }
acce952b 4484
0e6ec385
FM
4485 clear_extent_dirty(unpin, start, end, &cached_state);
4486 free_extent_state(cached_state);
2ff7e61e 4487 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4488 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4489 cond_resched();
4490 }
4491
4492 return 0;
4493}
4494
32da5386 4495static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4496{
4497 struct inode *inode;
4498
4499 inode = cache->io_ctl.inode;
4500 if (inode) {
4501 invalidate_inode_pages2(inode->i_mapping);
4502 BTRFS_I(inode)->generation = 0;
4503 cache->io_ctl.inode = NULL;
4504 iput(inode);
4505 }
4506 btrfs_put_block_group(cache);
4507}
4508
4509void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4510 struct btrfs_fs_info *fs_info)
c79a1751 4511{
32da5386 4512 struct btrfs_block_group *cache;
c79a1751
LB
4513
4514 spin_lock(&cur_trans->dirty_bgs_lock);
4515 while (!list_empty(&cur_trans->dirty_bgs)) {
4516 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4517 struct btrfs_block_group,
c79a1751 4518 dirty_list);
c79a1751
LB
4519
4520 if (!list_empty(&cache->io_list)) {
4521 spin_unlock(&cur_trans->dirty_bgs_lock);
4522 list_del_init(&cache->io_list);
4523 btrfs_cleanup_bg_io(cache);
4524 spin_lock(&cur_trans->dirty_bgs_lock);
4525 }
4526
4527 list_del_init(&cache->dirty_list);
4528 spin_lock(&cache->lock);
4529 cache->disk_cache_state = BTRFS_DC_ERROR;
4530 spin_unlock(&cache->lock);
4531
4532 spin_unlock(&cur_trans->dirty_bgs_lock);
4533 btrfs_put_block_group(cache);
ba2c4d4e 4534 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4535 spin_lock(&cur_trans->dirty_bgs_lock);
4536 }
4537 spin_unlock(&cur_trans->dirty_bgs_lock);
4538
45ae2c18
NB
4539 /*
4540 * Refer to the definition of io_bgs member for details why it's safe
4541 * to use it without any locking
4542 */
c79a1751
LB
4543 while (!list_empty(&cur_trans->io_bgs)) {
4544 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4545 struct btrfs_block_group,
c79a1751 4546 io_list);
c79a1751
LB
4547
4548 list_del_init(&cache->io_list);
4549 spin_lock(&cache->lock);
4550 cache->disk_cache_state = BTRFS_DC_ERROR;
4551 spin_unlock(&cache->lock);
4552 btrfs_cleanup_bg_io(cache);
4553 }
4554}
4555
49b25e05 4556void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4557 struct btrfs_fs_info *fs_info)
49b25e05 4558{
bbbf7243
NB
4559 struct btrfs_device *dev, *tmp;
4560
2ff7e61e 4561 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4562 ASSERT(list_empty(&cur_trans->dirty_bgs));
4563 ASSERT(list_empty(&cur_trans->io_bgs));
4564
bbbf7243
NB
4565 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4566 post_commit_list) {
4567 list_del_init(&dev->post_commit_list);
4568 }
4569
2ff7e61e 4570 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4571
4a9d8bde 4572 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4573 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4574
4a9d8bde 4575 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4576 wake_up(&fs_info->transaction_wait);
49b25e05 4577
ccdf9b30 4578 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4579
2ff7e61e 4580 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4581 EXTENT_DIRTY);
fe119a6e 4582 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4583
4a9d8bde
MX
4584 cur_trans->state =TRANS_STATE_COMPLETED;
4585 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4586}
4587
2ff7e61e 4588static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4589{
4590 struct btrfs_transaction *t;
acce952b 4591
0b246afa 4592 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4593
0b246afa
JM
4594 spin_lock(&fs_info->trans_lock);
4595 while (!list_empty(&fs_info->trans_list)) {
4596 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4597 struct btrfs_transaction, list);
4598 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4599 refcount_inc(&t->use_count);
0b246afa 4600 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4601 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4602 btrfs_put_transaction(t);
0b246afa 4603 spin_lock(&fs_info->trans_lock);
724e2315
JB
4604 continue;
4605 }
0b246afa 4606 if (t == fs_info->running_transaction) {
724e2315 4607 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4608 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4609 /*
4610 * We wait for 0 num_writers since we don't hold a trans
4611 * handle open currently for this transaction.
4612 */
4613 wait_event(t->writer_wait,
4614 atomic_read(&t->num_writers) == 0);
4615 } else {
0b246afa 4616 spin_unlock(&fs_info->trans_lock);
724e2315 4617 }
2ff7e61e 4618 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4619
0b246afa
JM
4620 spin_lock(&fs_info->trans_lock);
4621 if (t == fs_info->running_transaction)
4622 fs_info->running_transaction = NULL;
acce952b 4623 list_del_init(&t->list);
0b246afa 4624 spin_unlock(&fs_info->trans_lock);
acce952b 4625
724e2315 4626 btrfs_put_transaction(t);
2ff7e61e 4627 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4628 spin_lock(&fs_info->trans_lock);
724e2315 4629 }
0b246afa
JM
4630 spin_unlock(&fs_info->trans_lock);
4631 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4632 btrfs_destroy_delayed_inodes(fs_info);
4633 btrfs_assert_delayed_root_empty(fs_info);
0b246afa
JM
4634 btrfs_destroy_all_delalloc_inodes(fs_info);
4635 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4636
4637 return 0;
4638}
4639
e8c9f186 4640static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4641 /* mandatory callbacks */
0b86a832 4642 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4643 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4644};