]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
Btrfs: fix race between using extent maps and merging them
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
aac0023c 43#include "block-group.h"
b0643e59 44#include "discard.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
d352ac68
CM
101/*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
44b8bd7e 106struct async_submit_bio {
c6100a4b 107 void *private_data;
44b8bd7e 108 struct bio *bio;
a758781d 109 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 110 int mirror_num;
eaf25d93
CM
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
8b712842 116 struct btrfs_work work;
4e4cbee9 117 blk_status_t status;
44b8bd7e
CM
118};
119
85d4e461
CM
120/*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
4008c04a 130 *
85d4e461
CM
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 134 *
85d4e461
CM
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 138 *
85d4e461
CM
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
4008c04a
CM
142 */
143#ifdef CONFIG_DEBUG_LOCK_ALLOC
144# if BTRFS_MAX_LEVEL != 8
145# error
146# endif
85d4e461
CM
147
148static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153} btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 166 { .id = 0, .name_stem = "tree" },
4008c04a 167};
85d4e461
CM
168
169void __init btrfs_init_lockdep(void)
170{
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181}
182
183void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185{
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197}
198
4008c04a
CM
199#endif
200
d352ac68
CM
201/*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
6af49dbd 205struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
206 struct page *page, size_t pg_offset,
207 u64 start, u64 len)
7eccb903 208{
fc4f21b1 209 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
210 struct extent_map *em;
211 int ret;
212
890871be 213 read_lock(&em_tree->lock);
d1310b2e 214 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 215 if (em) {
890871be 216 read_unlock(&em_tree->lock);
5f39d397 217 goto out;
a061fc8d 218 }
890871be 219 read_unlock(&em_tree->lock);
7b13b7b1 220
172ddd60 221 em = alloc_extent_map();
5f39d397
CM
222 if (!em) {
223 em = ERR_PTR(-ENOMEM);
224 goto out;
225 }
226 em->start = 0;
0afbaf8c 227 em->len = (u64)-1;
c8b97818 228 em->block_len = (u64)-1;
5f39d397 229 em->block_start = 0;
d1310b2e 230
890871be 231 write_lock(&em_tree->lock);
09a2a8f9 232 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
233 if (ret == -EEXIST) {
234 free_extent_map(em);
7b13b7b1 235 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 236 if (!em)
0433f20d 237 em = ERR_PTR(-EIO);
5f39d397 238 } else if (ret) {
7b13b7b1 239 free_extent_map(em);
0433f20d 240 em = ERR_PTR(ret);
5f39d397 241 }
890871be 242 write_unlock(&em_tree->lock);
7b13b7b1 243
5f39d397
CM
244out:
245 return em;
7eccb903
CM
246}
247
d352ac68 248/*
2996e1f8
JT
249 * Compute the csum of a btree block and store the result to provided buffer.
250 *
251 * Returns error if the extent buffer cannot be mapped.
d352ac68 252 */
2996e1f8 253static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 254{
d5178578
JT
255 struct btrfs_fs_info *fs_info = buf->fs_info;
256 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
257 unsigned long len;
258 unsigned long cur_len;
259 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
260 char *kaddr;
261 unsigned long map_start;
262 unsigned long map_len;
263 int err;
d5178578
JT
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
19c00ddc
CM
267
268 len = buf->len - offset;
d5178578 269
d397712b 270 while (len > 0) {
d2e174d5
JT
271 /*
272 * Note: we don't need to check for the err == 1 case here, as
273 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
274 * and 'min_len = 32' and the currently implemented mapping
275 * algorithm we cannot cross a page boundary.
276 */
19c00ddc 277 err = map_private_extent_buffer(buf, offset, 32,
a6591715 278 &kaddr, &map_start, &map_len);
c53839fc 279 if (WARN_ON(err))
8bd98f0e 280 return err;
19c00ddc 281 cur_len = min(len, map_len - (offset - map_start));
d5178578 282 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
71a63551 286 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 287
d5178578 288 crypto_shash_final(shash, result);
19c00ddc 289
19c00ddc
CM
290 return 0;
291}
292
d352ac68
CM
293/*
294 * we can't consider a given block up to date unless the transid of the
295 * block matches the transid in the parent node's pointer. This is how we
296 * detect blocks that either didn't get written at all or got written
297 * in the wrong place.
298 */
1259ab75 299static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
300 struct extent_buffer *eb, u64 parent_transid,
301 int atomic)
1259ab75 302{
2ac55d41 303 struct extent_state *cached_state = NULL;
1259ab75 304 int ret;
2755a0de 305 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
306
307 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
308 return 0;
309
b9fab919
CM
310 if (atomic)
311 return -EAGAIN;
312
a26e8c9f
JB
313 if (need_lock) {
314 btrfs_tree_read_lock(eb);
300aa896 315 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
316 }
317
2ac55d41 318 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 319 &cached_state);
0b32f4bb 320 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
321 btrfs_header_generation(eb) == parent_transid) {
322 ret = 0;
323 goto out;
324 }
94647322
DS
325 btrfs_err_rl(eb->fs_info,
326 "parent transid verify failed on %llu wanted %llu found %llu",
327 eb->start,
29549aec 328 parent_transid, btrfs_header_generation(eb));
1259ab75 329 ret = 1;
a26e8c9f
JB
330
331 /*
332 * Things reading via commit roots that don't have normal protection,
333 * like send, can have a really old block in cache that may point at a
01327610 334 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
335 * if we find an eb that is under IO (dirty/writeback) because we could
336 * end up reading in the stale data and then writing it back out and
337 * making everybody very sad.
338 */
339 if (!extent_buffer_under_io(eb))
340 clear_extent_buffer_uptodate(eb);
33958dc6 341out:
2ac55d41 342 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 343 &cached_state);
472b909f
JB
344 if (need_lock)
345 btrfs_tree_read_unlock_blocking(eb);
1259ab75 346 return ret;
1259ab75
CM
347}
348
e7e16f48
JT
349static bool btrfs_supported_super_csum(u16 csum_type)
350{
351 switch (csum_type) {
352 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 353 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 354 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 355 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
356 return true;
357 default:
358 return false;
359 }
360}
361
1104a885
DS
362/*
363 * Return 0 if the superblock checksum type matches the checksum value of that
364 * algorithm. Pass the raw disk superblock data.
365 */
ab8d0fc4
JM
366static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
367 char *raw_disk_sb)
1104a885
DS
368{
369 struct btrfs_super_block *disk_sb =
370 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 371 char result[BTRFS_CSUM_SIZE];
d5178578
JT
372 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
373
374 shash->tfm = fs_info->csum_shash;
375 crypto_shash_init(shash);
1104a885 376
51bce6c9
JT
377 /*
378 * The super_block structure does not span the whole
379 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
380 * filled with zeros and is included in the checksum.
381 */
d5178578
JT
382 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
383 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
384 crypto_shash_final(shash, result);
1104a885 385
51bce6c9
JT
386 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
387 return 1;
1104a885 388
e7e16f48 389 return 0;
1104a885
DS
390}
391
e064d5e9 392int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 393 struct btrfs_key *first_key, u64 parent_transid)
581c1760 394{
e064d5e9 395 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
396 int found_level;
397 struct btrfs_key found_key;
398 int ret;
399
400 found_level = btrfs_header_level(eb);
401 if (found_level != level) {
63489055
QW
402 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
403 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
404 btrfs_err(fs_info,
405"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
406 eb->start, level, found_level);
581c1760
QW
407 return -EIO;
408 }
409
410 if (!first_key)
411 return 0;
412
5d41be6f
QW
413 /*
414 * For live tree block (new tree blocks in current transaction),
415 * we need proper lock context to avoid race, which is impossible here.
416 * So we only checks tree blocks which is read from disk, whose
417 * generation <= fs_info->last_trans_committed.
418 */
419 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
420 return 0;
62fdaa52
QW
421
422 /* We have @first_key, so this @eb must have at least one item */
423 if (btrfs_header_nritems(eb) == 0) {
424 btrfs_err(fs_info,
425 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
426 eb->start);
427 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
428 return -EUCLEAN;
429 }
430
581c1760
QW
431 if (found_level)
432 btrfs_node_key_to_cpu(eb, &found_key, 0);
433 else
434 btrfs_item_key_to_cpu(eb, &found_key, 0);
435 ret = btrfs_comp_cpu_keys(first_key, &found_key);
436
581c1760 437 if (ret) {
63489055
QW
438 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
439 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 440 btrfs_err(fs_info,
ff76a864
LB
441"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442 eb->start, parent_transid, first_key->objectid,
443 first_key->type, first_key->offset,
444 found_key.objectid, found_key.type,
445 found_key.offset);
581c1760 446 }
581c1760
QW
447 return ret;
448}
449
d352ac68
CM
450/*
451 * helper to read a given tree block, doing retries as required when
452 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
453 *
454 * @parent_transid: expected transid, skip check if 0
455 * @level: expected level, mandatory check
456 * @first_key: expected key of first slot, skip check if NULL
d352ac68 457 */
5ab12d1f 458static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
459 u64 parent_transid, int level,
460 struct btrfs_key *first_key)
f188591e 461{
5ab12d1f 462 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 463 struct extent_io_tree *io_tree;
ea466794 464 int failed = 0;
f188591e
CM
465 int ret;
466 int num_copies = 0;
467 int mirror_num = 0;
ea466794 468 int failed_mirror = 0;
f188591e 469
0b246afa 470 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 471 while (1) {
f8397d69 472 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 473 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 474 if (!ret) {
581c1760 475 if (verify_parent_transid(io_tree, eb,
b9fab919 476 parent_transid, 0))
256dd1bb 477 ret = -EIO;
e064d5e9 478 else if (btrfs_verify_level_key(eb, level,
448de471 479 first_key, parent_transid))
581c1760
QW
480 ret = -EUCLEAN;
481 else
482 break;
256dd1bb 483 }
d397712b 484
0b246afa 485 num_copies = btrfs_num_copies(fs_info,
f188591e 486 eb->start, eb->len);
4235298e 487 if (num_copies == 1)
ea466794 488 break;
4235298e 489
5cf1ab56
JB
490 if (!failed_mirror) {
491 failed = 1;
492 failed_mirror = eb->read_mirror;
493 }
494
f188591e 495 mirror_num++;
ea466794
JB
496 if (mirror_num == failed_mirror)
497 mirror_num++;
498
4235298e 499 if (mirror_num > num_copies)
ea466794 500 break;
f188591e 501 }
ea466794 502
c0901581 503 if (failed && !ret && failed_mirror)
20a1fbf9 504 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
505
506 return ret;
f188591e 507}
19c00ddc 508
d352ac68 509/*
d397712b
CM
510 * checksum a dirty tree block before IO. This has extra checks to make sure
511 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 512 */
d397712b 513
01d58472 514static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 515{
4eee4fa4 516 u64 start = page_offset(page);
19c00ddc 517 u64 found_start;
2996e1f8
JT
518 u8 result[BTRFS_CSUM_SIZE];
519 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 520 struct extent_buffer *eb;
8d47a0d8 521 int ret;
f188591e 522
4f2de97a
JB
523 eb = (struct extent_buffer *)page->private;
524 if (page != eb->pages[0])
525 return 0;
0f805531 526
19c00ddc 527 found_start = btrfs_header_bytenr(eb);
0f805531
AL
528 /*
529 * Please do not consolidate these warnings into a single if.
530 * It is useful to know what went wrong.
531 */
532 if (WARN_ON(found_start != start))
533 return -EUCLEAN;
534 if (WARN_ON(!PageUptodate(page)))
535 return -EUCLEAN;
536
de37aa51 537 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
538 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
539
2996e1f8
JT
540 if (csum_tree_block(eb, result))
541 return -EINVAL;
542
8d47a0d8
QW
543 if (btrfs_header_level(eb))
544 ret = btrfs_check_node(eb);
545 else
546 ret = btrfs_check_leaf_full(eb);
547
548 if (ret < 0) {
c06631b0 549 btrfs_print_tree(eb, 0);
8d47a0d8
QW
550 btrfs_err(fs_info,
551 "block=%llu write time tree block corruption detected",
552 eb->start);
c06631b0 553 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
554 return ret;
555 }
2996e1f8 556 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 557
2996e1f8 558 return 0;
19c00ddc
CM
559}
560
b0c9b3b0 561static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 562{
b0c9b3b0 563 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 564 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 565 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
566 int ret = 1;
567
0a4e5586 568 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 569 while (fs_devices) {
7239ff4b
NB
570 u8 *metadata_uuid;
571
572 /*
573 * Checking the incompat flag is only valid for the current
574 * fs. For seed devices it's forbidden to have their uuid
575 * changed so reading ->fsid in this case is fine
576 */
577 if (fs_devices == fs_info->fs_devices &&
578 btrfs_fs_incompat(fs_info, METADATA_UUID))
579 metadata_uuid = fs_devices->metadata_uuid;
580 else
581 metadata_uuid = fs_devices->fsid;
582
583 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
584 ret = 0;
585 break;
586 }
587 fs_devices = fs_devices->seed;
588 }
589 return ret;
590}
591
facc8a22
MX
592static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
593 u64 phy_offset, struct page *page,
594 u64 start, u64 end, int mirror)
ce9adaa5 595{
ce9adaa5
CM
596 u64 found_start;
597 int found_level;
ce9adaa5
CM
598 struct extent_buffer *eb;
599 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 600 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 601 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 602 int ret = 0;
2996e1f8 603 u8 result[BTRFS_CSUM_SIZE];
727011e0 604 int reads_done;
ce9adaa5 605
ce9adaa5
CM
606 if (!page->private)
607 goto out;
d397712b 608
4f2de97a 609 eb = (struct extent_buffer *)page->private;
d397712b 610
0b32f4bb
JB
611 /* the pending IO might have been the only thing that kept this buffer
612 * in memory. Make sure we have a ref for all this other checks
613 */
67439dad 614 atomic_inc(&eb->refs);
0b32f4bb
JB
615
616 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
617 if (!reads_done)
618 goto err;
f188591e 619
5cf1ab56 620 eb->read_mirror = mirror;
656f30db 621 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
622 ret = -EIO;
623 goto err;
624 }
625
ce9adaa5 626 found_start = btrfs_header_bytenr(eb);
727011e0 627 if (found_start != eb->start) {
893bf4b1
SY
628 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
629 eb->start, found_start);
f188591e 630 ret = -EIO;
ce9adaa5
CM
631 goto err;
632 }
b0c9b3b0 633 if (check_tree_block_fsid(eb)) {
02873e43
ZL
634 btrfs_err_rl(fs_info, "bad fsid on block %llu",
635 eb->start);
1259ab75
CM
636 ret = -EIO;
637 goto err;
638 }
ce9adaa5 639 found_level = btrfs_header_level(eb);
1c24c3ce 640 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
641 btrfs_err(fs_info, "bad tree block level %d on %llu",
642 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
643 ret = -EIO;
644 goto err;
645 }
ce9adaa5 646
85d4e461
CM
647 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
648 eb, found_level);
4008c04a 649
2996e1f8 650 ret = csum_tree_block(eb, result);
8bd98f0e 651 if (ret)
a826d6dc 652 goto err;
a826d6dc 653
2996e1f8
JT
654 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
655 u32 val;
656 u32 found = 0;
657
658 memcpy(&found, result, csum_size);
659
660 read_extent_buffer(eb, &val, 0, csum_size);
661 btrfs_warn_rl(fs_info,
662 "%s checksum verify failed on %llu wanted %x found %x level %d",
663 fs_info->sb->s_id, eb->start,
664 val, found, btrfs_header_level(eb));
665 ret = -EUCLEAN;
666 goto err;
667 }
668
a826d6dc
JB
669 /*
670 * If this is a leaf block and it is corrupt, set the corrupt bit so
671 * that we don't try and read the other copies of this block, just
672 * return -EIO.
673 */
1c4360ee 674 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
675 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676 ret = -EIO;
677 }
ce9adaa5 678
813fd1dc 679 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
680 ret = -EIO;
681
0b32f4bb
JB
682 if (!ret)
683 set_extent_buffer_uptodate(eb);
75391f0d
QW
684 else
685 btrfs_err(fs_info,
686 "block=%llu read time tree block corruption detected",
687 eb->start);
ce9adaa5 688err:
79fb65a1
JB
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 691 btree_readahead_hook(eb, ret);
4bb31e92 692
53b381b3
DW
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
0b32f4bb 700 clear_extent_buffer_uptodate(eb);
53b381b3 701 }
0b32f4bb 702 free_extent_buffer(eb);
ce9adaa5 703out:
f188591e 704 return ret;
ce9adaa5
CM
705}
706
4246a0b6 707static void end_workqueue_bio(struct bio *bio)
ce9adaa5 708{
97eb6b69 709 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 710 struct btrfs_fs_info *fs_info;
9e0af237 711 struct btrfs_workqueue *wq;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
4e4cbee9 714 end_io_wq->status = bio->bi_status;
d20f7043 715
37226b21 716 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 718 wq = fs_info->endio_meta_write_workers;
a0cac0ec 719 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 720 wq = fs_info->endio_freespace_worker;
a0cac0ec 721 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 722 wq = fs_info->endio_raid56_workers;
a0cac0ec 723 else
9e0af237 724 wq = fs_info->endio_write_workers;
d20f7043 725 } else {
a0cac0ec 726 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 727 wq = fs_info->endio_repair_workers;
a0cac0ec 728 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 729 wq = fs_info->endio_raid56_workers;
a0cac0ec 730 else if (end_io_wq->metadata)
9e0af237 731 wq = fs_info->endio_meta_workers;
a0cac0ec 732 else
9e0af237 733 wq = fs_info->endio_workers;
d20f7043 734 }
9e0af237 735
a0cac0ec 736 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 737 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
738}
739
4e4cbee9 740blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 741 enum btrfs_wq_endio_type metadata)
0b86a832 742{
97eb6b69 743 struct btrfs_end_io_wq *end_io_wq;
8b110e39 744
97eb6b69 745 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 746 if (!end_io_wq)
4e4cbee9 747 return BLK_STS_RESOURCE;
ce9adaa5
CM
748
749 end_io_wq->private = bio->bi_private;
750 end_io_wq->end_io = bio->bi_end_io;
22c59948 751 end_io_wq->info = info;
4e4cbee9 752 end_io_wq->status = 0;
ce9adaa5 753 end_io_wq->bio = bio;
22c59948 754 end_io_wq->metadata = metadata;
ce9adaa5
CM
755
756 bio->bi_private = end_io_wq;
757 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
758 return 0;
759}
760
4a69a410
CM
761static void run_one_async_start(struct btrfs_work *work)
762{
4a69a410 763 struct async_submit_bio *async;
4e4cbee9 764 blk_status_t ret;
4a69a410
CM
765
766 async = container_of(work, struct async_submit_bio, work);
c6100a4b 767 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
768 async->bio_offset);
769 if (ret)
4e4cbee9 770 async->status = ret;
4a69a410
CM
771}
772
06ea01b1
DS
773/*
774 * In order to insert checksums into the metadata in large chunks, we wait
775 * until bio submission time. All the pages in the bio are checksummed and
776 * sums are attached onto the ordered extent record.
777 *
778 * At IO completion time the csums attached on the ordered extent record are
779 * inserted into the tree.
780 */
4a69a410 781static void run_one_async_done(struct btrfs_work *work)
8b712842 782{
8b712842 783 struct async_submit_bio *async;
06ea01b1
DS
784 struct inode *inode;
785 blk_status_t ret;
8b712842
CM
786
787 async = container_of(work, struct async_submit_bio, work);
06ea01b1 788 inode = async->private_data;
4854ddd0 789
bb7ab3b9 790 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
791 if (async->status) {
792 async->bio->bi_status = async->status;
4246a0b6 793 bio_endio(async->bio);
79787eaa
JM
794 return;
795 }
796
ec39f769
CM
797 /*
798 * All of the bios that pass through here are from async helpers.
799 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
800 * This changes nothing when cgroups aren't in use.
801 */
802 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 803 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
804 if (ret) {
805 async->bio->bi_status = ret;
806 bio_endio(async->bio);
807 }
4a69a410
CM
808}
809
810static void run_one_async_free(struct btrfs_work *work)
811{
812 struct async_submit_bio *async;
813
814 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
815 kfree(async);
816}
817
8c27cb35
LT
818blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819 int mirror_num, unsigned long bio_flags,
820 u64 bio_offset, void *private_data,
e288c080 821 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
822{
823 struct async_submit_bio *async;
824
825 async = kmalloc(sizeof(*async), GFP_NOFS);
826 if (!async)
4e4cbee9 827 return BLK_STS_RESOURCE;
44b8bd7e 828
c6100a4b 829 async->private_data = private_data;
44b8bd7e
CM
830 async->bio = bio;
831 async->mirror_num = mirror_num;
4a69a410 832 async->submit_bio_start = submit_bio_start;
4a69a410 833
a0cac0ec
OS
834 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
835 run_one_async_free);
4a69a410 836
eaf25d93 837 async->bio_offset = bio_offset;
8c8bee1d 838
4e4cbee9 839 async->status = 0;
79787eaa 840
67f055c7 841 if (op_is_sync(bio->bi_opf))
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
845 return 0;
846}
847
4e4cbee9 848static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 849{
2c30c71b 850 struct bio_vec *bvec;
ce3ed71a 851 struct btrfs_root *root;
2b070cfe 852 int ret = 0;
6dc4f100 853 struct bvec_iter_all iter_all;
ce3ed71a 854
c09abff8 855 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 856 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 857 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 858 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
859 if (ret)
860 break;
ce3ed71a 861 }
2c30c71b 862
4e4cbee9 863 return errno_to_blk_status(ret);
ce3ed71a
CM
864}
865
d0ee3934 866static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 867 u64 bio_offset)
22c59948 868{
8b712842
CM
869 /*
870 * when we're called for a write, we're already in the async
5443be45 871 * submission context. Just jump into btrfs_map_bio
8b712842 872 */
79787eaa 873 return btree_csum_one_bio(bio);
4a69a410 874}
22c59948 875
9b4e675a
DS
876static int check_async_write(struct btrfs_fs_info *fs_info,
877 struct btrfs_inode *bi)
de0022b9 878{
6300463b
LB
879 if (atomic_read(&bi->sync_writers))
880 return 0;
9b4e675a 881 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 882 return 0;
de0022b9
JB
883 return 1;
884}
885
a56b1c7b 886static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
887 int mirror_num,
888 unsigned long bio_flags)
44b8bd7e 889{
0b246afa 890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 891 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 892 blk_status_t ret;
cad321ad 893
37226b21 894 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
895 /*
896 * called for a read, do the setup so that checksum validation
897 * can happen in the async kernel threads
898 */
0b246afa
JM
899 ret = btrfs_bio_wq_end_io(fs_info, bio,
900 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 901 if (ret)
61891923 902 goto out_w_error;
08635bae 903 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
904 } else if (!async) {
905 ret = btree_csum_one_bio(bio);
906 if (ret)
61891923 907 goto out_w_error;
08635bae 908 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
909 } else {
910 /*
911 * kthread helpers are used to submit writes so that
912 * checksumming can happen in parallel across all CPUs
913 */
c6100a4b 914 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 915 0, inode, btree_submit_bio_start);
44b8bd7e 916 }
d313d7a3 917
4246a0b6
CH
918 if (ret)
919 goto out_w_error;
920 return 0;
921
61891923 922out_w_error:
4e4cbee9 923 bio->bi_status = ret;
4246a0b6 924 bio_endio(bio);
61891923 925 return ret;
44b8bd7e
CM
926}
927
3dd1462e 928#ifdef CONFIG_MIGRATION
784b4e29 929static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
930 struct page *newpage, struct page *page,
931 enum migrate_mode mode)
784b4e29
CM
932{
933 /*
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
936 */
937 if (PageDirty(page))
938 return -EAGAIN;
939 /*
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
942 */
943 if (page_has_private(page) &&
944 !try_to_release_page(page, GFP_KERNEL))
945 return -EAGAIN;
a6bc32b8 946 return migrate_page(mapping, newpage, page, mode);
784b4e29 947}
3dd1462e 948#endif
784b4e29 949
0da5468f
CM
950
951static int btree_writepages(struct address_space *mapping,
952 struct writeback_control *wbc)
953{
e2d84521
MX
954 struct btrfs_fs_info *fs_info;
955 int ret;
956
d8d5f3e1 957 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
958
959 if (wbc->for_kupdate)
960 return 0;
961
e2d84521 962 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 963 /* this is a bit racy, but that's ok */
d814a491
EL
964 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965 BTRFS_DIRTY_METADATA_THRESH,
966 fs_info->dirty_metadata_batch);
e2d84521 967 if (ret < 0)
793955bc 968 return 0;
793955bc 969 }
0b32f4bb 970 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
971}
972
b2950863 973static int btree_readpage(struct file *file, struct page *page)
5f39d397 974{
d1310b2e
CM
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 977 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 978}
22b0ebda 979
70dec807 980static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 981{
98509cfc 982 if (PageWriteback(page) || PageDirty(page))
d397712b 983 return 0;
0c4e538b 984
f7a52a40 985 return try_release_extent_buffer(page);
d98237b3
CM
986}
987
d47992f8
LC
988static void btree_invalidatepage(struct page *page, unsigned int offset,
989 unsigned int length)
d98237b3 990{
d1310b2e
CM
991 struct extent_io_tree *tree;
992 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
993 extent_invalidatepage(tree, page, offset);
994 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 995 if (PagePrivate(page)) {
efe120a0
FH
996 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997 "page private not zero on page %llu",
998 (unsigned long long)page_offset(page));
9ad6b7bc
CM
999 ClearPagePrivate(page);
1000 set_page_private(page, 0);
09cbfeaf 1001 put_page(page);
9ad6b7bc 1002 }
d98237b3
CM
1003}
1004
0b32f4bb
JB
1005static int btree_set_page_dirty(struct page *page)
1006{
bb146eb2 1007#ifdef DEBUG
0b32f4bb
JB
1008 struct extent_buffer *eb;
1009
1010 BUG_ON(!PagePrivate(page));
1011 eb = (struct extent_buffer *)page->private;
1012 BUG_ON(!eb);
1013 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014 BUG_ON(!atomic_read(&eb->refs));
1015 btrfs_assert_tree_locked(eb);
bb146eb2 1016#endif
0b32f4bb
JB
1017 return __set_page_dirty_nobuffers(page);
1018}
1019
7f09410b 1020static const struct address_space_operations btree_aops = {
d98237b3 1021 .readpage = btree_readpage,
0da5468f 1022 .writepages = btree_writepages,
5f39d397
CM
1023 .releasepage = btree_releasepage,
1024 .invalidatepage = btree_invalidatepage,
5a92bc88 1025#ifdef CONFIG_MIGRATION
784b4e29 1026 .migratepage = btree_migratepage,
5a92bc88 1027#endif
0b32f4bb 1028 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1029};
1030
2ff7e61e 1031void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1032{
5f39d397 1033 struct extent_buffer *buf = NULL;
537f38f0 1034 int ret;
090d1875 1035
2ff7e61e 1036 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1037 if (IS_ERR(buf))
6197d86e 1038 return;
537f38f0 1039
c2ccfbc6 1040 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1041 if (ret < 0)
1042 free_extent_buffer_stale(buf);
1043 else
1044 free_extent_buffer(buf);
090d1875
CM
1045}
1046
2ff7e61e
JM
1047struct extent_buffer *btrfs_find_create_tree_block(
1048 struct btrfs_fs_info *fs_info,
1049 u64 bytenr)
0999df54 1050{
0b246afa
JM
1051 if (btrfs_is_testing(fs_info))
1052 return alloc_test_extent_buffer(fs_info, bytenr);
1053 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1054}
1055
581c1760
QW
1056/*
1057 * Read tree block at logical address @bytenr and do variant basic but critical
1058 * verification.
1059 *
1060 * @parent_transid: expected transid of this tree block, skip check if 0
1061 * @level: expected level, mandatory check
1062 * @first_key: expected key in slot 0, skip check if NULL
1063 */
2ff7e61e 1064struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1065 u64 parent_transid, int level,
1066 struct btrfs_key *first_key)
0999df54
CM
1067{
1068 struct extent_buffer *buf = NULL;
0999df54
CM
1069 int ret;
1070
2ff7e61e 1071 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1072 if (IS_ERR(buf))
1073 return buf;
0999df54 1074
5ab12d1f 1075 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1076 level, first_key);
0f0fe8f7 1077 if (ret) {
537f38f0 1078 free_extent_buffer_stale(buf);
64c043de 1079 return ERR_PTR(ret);
0f0fe8f7 1080 }
5f39d397 1081 return buf;
ce9adaa5 1082
eb60ceac
CM
1083}
1084
6a884d7d 1085void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1086{
6a884d7d 1087 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1088 if (btrfs_header_generation(buf) ==
e2d84521 1089 fs_info->running_transaction->transid) {
b9447ef8 1090 btrfs_assert_tree_locked(buf);
b4ce94de 1091
b9473439 1092 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1093 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1094 -buf->len,
1095 fs_info->dirty_metadata_batch);
ed7b63eb 1096 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1097 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1098 clear_extent_buffer_dirty(buf);
1099 }
925baedd 1100 }
5f39d397
CM
1101}
1102
8257b2dc
MX
1103static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1104{
1105 struct btrfs_subvolume_writers *writers;
1106 int ret;
1107
1108 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1109 if (!writers)
1110 return ERR_PTR(-ENOMEM);
1111
8a5a916d 1112 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1113 if (ret < 0) {
1114 kfree(writers);
1115 return ERR_PTR(ret);
1116 }
1117
1118 init_waitqueue_head(&writers->wait);
1119 return writers;
1120}
1121
1122static void
1123btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1124{
1125 percpu_counter_destroy(&writers->counter);
1126 kfree(writers);
1127}
1128
da17066c 1129static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1130 u64 objectid)
d97e63b6 1131{
7c0260ee 1132 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1133 root->node = NULL;
a28ec197 1134 root->commit_root = NULL;
27cdeb70 1135 root->state = 0;
d68fc57b 1136 root->orphan_cleanup_state = 0;
0b86a832 1137
0f7d52f4 1138 root->last_trans = 0;
13a8a7c8 1139 root->highest_objectid = 0;
eb73c1b7 1140 root->nr_delalloc_inodes = 0;
199c2a9c 1141 root->nr_ordered_extents = 0;
6bef4d31 1142 root->inode_tree = RB_ROOT;
16cdcec7 1143 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1144 root->block_rsv = NULL;
0b86a832
CM
1145
1146 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1147 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1148 INIT_LIST_HEAD(&root->delalloc_inodes);
1149 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1150 INIT_LIST_HEAD(&root->ordered_extents);
1151 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1152 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1153 INIT_LIST_HEAD(&root->logged_list[0]);
1154 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1155 spin_lock_init(&root->inode_lock);
eb73c1b7 1156 spin_lock_init(&root->delalloc_lock);
199c2a9c 1157 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1158 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1159 spin_lock_init(&root->log_extents_lock[0]);
1160 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1161 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1162 mutex_init(&root->objectid_mutex);
e02119d5 1163 mutex_init(&root->log_mutex);
31f3d255 1164 mutex_init(&root->ordered_extent_mutex);
573bfb72 1165 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1166 init_waitqueue_head(&root->log_writer_wait);
1167 init_waitqueue_head(&root->log_commit_wait[0]);
1168 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1169 INIT_LIST_HEAD(&root->log_ctxs[0]);
1170 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1171 atomic_set(&root->log_commit[0], 0);
1172 atomic_set(&root->log_commit[1], 0);
1173 atomic_set(&root->log_writers, 0);
2ecb7923 1174 atomic_set(&root->log_batch, 0);
0700cea7 1175 refcount_set(&root->refs, 1);
ea14b57f 1176 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1177 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1178 atomic_set(&root->nr_swapfiles, 0);
7237f183 1179 root->log_transid = 0;
d1433deb 1180 root->log_transid_committed = -1;
257c62e1 1181 root->last_log_commit = 0;
7c0260ee 1182 if (!dummy)
43eb5f29
QW
1183 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1184 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1185
3768f368
CM
1186 memset(&root->root_key, 0, sizeof(root->root_key));
1187 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1188 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1189 if (!dummy)
06ea65a3
JB
1190 root->defrag_trans_start = fs_info->generation;
1191 else
1192 root->defrag_trans_start = 0;
4d775673 1193 root->root_key.objectid = objectid;
0ee5dc67 1194 root->anon_dev = 0;
8ea05e3a 1195
5f3ab90a 1196 spin_lock_init(&root->root_item_lock);
370a11b8 1197 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1198}
1199
74e4d827
DS
1200static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1201 gfp_t flags)
6f07e42e 1202{
74e4d827 1203 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1204 if (root)
1205 root->fs_info = fs_info;
1206 return root;
1207}
1208
06ea65a3
JB
1209#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1210/* Should only be used by the testing infrastructure */
da17066c 1211struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1212{
1213 struct btrfs_root *root;
1214
7c0260ee
JM
1215 if (!fs_info)
1216 return ERR_PTR(-EINVAL);
1217
1218 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1219 if (!root)
1220 return ERR_PTR(-ENOMEM);
da17066c 1221
b9ef22de 1222 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1223 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1224 root->alloc_bytenr = 0;
06ea65a3
JB
1225
1226 return root;
1227}
1228#endif
1229
20897f5c 1230struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1231 u64 objectid)
1232{
9b7a2440 1233 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1234 struct extent_buffer *leaf;
1235 struct btrfs_root *tree_root = fs_info->tree_root;
1236 struct btrfs_root *root;
1237 struct btrfs_key key;
b89f6d1f 1238 unsigned int nofs_flag;
20897f5c 1239 int ret = 0;
33d85fda 1240 uuid_le uuid = NULL_UUID_LE;
20897f5c 1241
b89f6d1f
FM
1242 /*
1243 * We're holding a transaction handle, so use a NOFS memory allocation
1244 * context to avoid deadlock if reclaim happens.
1245 */
1246 nofs_flag = memalloc_nofs_save();
74e4d827 1247 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1248 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1249 if (!root)
1250 return ERR_PTR(-ENOMEM);
1251
da17066c 1252 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1253 root->root_key.objectid = objectid;
1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255 root->root_key.offset = 0;
1256
4d75f8a9 1257 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1258 if (IS_ERR(leaf)) {
1259 ret = PTR_ERR(leaf);
1dd05682 1260 leaf = NULL;
20897f5c
AJ
1261 goto fail;
1262 }
1263
20897f5c 1264 root->node = leaf;
20897f5c
AJ
1265 btrfs_mark_buffer_dirty(leaf);
1266
1267 root->commit_root = btrfs_root_node(root);
27cdeb70 1268 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1269
1270 root->root_item.flags = 0;
1271 root->root_item.byte_limit = 0;
1272 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1273 btrfs_set_root_generation(&root->root_item, trans->transid);
1274 btrfs_set_root_level(&root->root_item, 0);
1275 btrfs_set_root_refs(&root->root_item, 1);
1276 btrfs_set_root_used(&root->root_item, leaf->len);
1277 btrfs_set_root_last_snapshot(&root->root_item, 0);
1278 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1279 if (is_fstree(objectid))
1280 uuid_le_gen(&uuid);
6463fe58 1281 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1282 root->root_item.drop_level = 0;
1283
1284 key.objectid = objectid;
1285 key.type = BTRFS_ROOT_ITEM_KEY;
1286 key.offset = 0;
1287 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1288 if (ret)
1289 goto fail;
1290
1291 btrfs_tree_unlock(leaf);
1292
1dd05682
TI
1293 return root;
1294
20897f5c 1295fail:
1dd05682
TI
1296 if (leaf) {
1297 btrfs_tree_unlock(leaf);
59885b39 1298 free_extent_buffer(root->commit_root);
1dd05682
TI
1299 free_extent_buffer(leaf);
1300 }
1301 kfree(root);
20897f5c 1302
1dd05682 1303 return ERR_PTR(ret);
20897f5c
AJ
1304}
1305
7237f183
YZ
1306static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1308{
1309 struct btrfs_root *root;
7237f183 1310 struct extent_buffer *leaf;
e02119d5 1311
74e4d827 1312 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1313 if (!root)
7237f183 1314 return ERR_PTR(-ENOMEM);
e02119d5 1315
da17066c 1316 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1317
1318 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1319 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1320 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1321
7237f183 1322 /*
27cdeb70
MX
1323 * DON'T set REF_COWS for log trees
1324 *
7237f183
YZ
1325 * log trees do not get reference counted because they go away
1326 * before a real commit is actually done. They do store pointers
1327 * to file data extents, and those reference counts still get
1328 * updated (along with back refs to the log tree).
1329 */
e02119d5 1330
4d75f8a9
DS
1331 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1332 NULL, 0, 0, 0);
7237f183
YZ
1333 if (IS_ERR(leaf)) {
1334 kfree(root);
1335 return ERR_CAST(leaf);
1336 }
e02119d5 1337
7237f183 1338 root->node = leaf;
e02119d5 1339
e02119d5
CM
1340 btrfs_mark_buffer_dirty(root->node);
1341 btrfs_tree_unlock(root->node);
7237f183
YZ
1342 return root;
1343}
1344
1345int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1346 struct btrfs_fs_info *fs_info)
1347{
1348 struct btrfs_root *log_root;
1349
1350 log_root = alloc_log_tree(trans, fs_info);
1351 if (IS_ERR(log_root))
1352 return PTR_ERR(log_root);
1353 WARN_ON(fs_info->log_root_tree);
1354 fs_info->log_root_tree = log_root;
1355 return 0;
1356}
1357
1358int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1359 struct btrfs_root *root)
1360{
0b246afa 1361 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1362 struct btrfs_root *log_root;
1363 struct btrfs_inode_item *inode_item;
1364
0b246afa 1365 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1366 if (IS_ERR(log_root))
1367 return PTR_ERR(log_root);
1368
1369 log_root->last_trans = trans->transid;
1370 log_root->root_key.offset = root->root_key.objectid;
1371
1372 inode_item = &log_root->root_item.inode;
3cae210f
QW
1373 btrfs_set_stack_inode_generation(inode_item, 1);
1374 btrfs_set_stack_inode_size(inode_item, 3);
1375 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1376 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1377 fs_info->nodesize);
3cae210f 1378 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1379
5d4f98a2 1380 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1381
1382 WARN_ON(root->log_root);
1383 root->log_root = log_root;
1384 root->log_transid = 0;
d1433deb 1385 root->log_transid_committed = -1;
257c62e1 1386 root->last_log_commit = 0;
e02119d5
CM
1387 return 0;
1388}
1389
35a3621b
SB
1390static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1391 struct btrfs_key *key)
e02119d5
CM
1392{
1393 struct btrfs_root *root;
1394 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1395 struct btrfs_path *path;
84234f3a 1396 u64 generation;
cb517eab 1397 int ret;
581c1760 1398 int level;
0f7d52f4 1399
cb517eab
MX
1400 path = btrfs_alloc_path();
1401 if (!path)
0f7d52f4 1402 return ERR_PTR(-ENOMEM);
cb517eab 1403
74e4d827 1404 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1405 if (!root) {
1406 ret = -ENOMEM;
1407 goto alloc_fail;
0f7d52f4
CM
1408 }
1409
da17066c 1410 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1411
cb517eab
MX
1412 ret = btrfs_find_root(tree_root, key, path,
1413 &root->root_item, &root->root_key);
0f7d52f4 1414 if (ret) {
13a8a7c8
YZ
1415 if (ret > 0)
1416 ret = -ENOENT;
cb517eab 1417 goto find_fail;
0f7d52f4 1418 }
13a8a7c8 1419
84234f3a 1420 generation = btrfs_root_generation(&root->root_item);
581c1760 1421 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1422 root->node = read_tree_block(fs_info,
1423 btrfs_root_bytenr(&root->root_item),
581c1760 1424 generation, level, NULL);
64c043de
LB
1425 if (IS_ERR(root->node)) {
1426 ret = PTR_ERR(root->node);
cb517eab
MX
1427 goto find_fail;
1428 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1429 ret = -EIO;
64c043de
LB
1430 free_extent_buffer(root->node);
1431 goto find_fail;
416bc658 1432 }
5d4f98a2 1433 root->commit_root = btrfs_root_node(root);
13a8a7c8 1434out:
cb517eab
MX
1435 btrfs_free_path(path);
1436 return root;
1437
cb517eab
MX
1438find_fail:
1439 kfree(root);
1440alloc_fail:
1441 root = ERR_PTR(ret);
1442 goto out;
1443}
1444
1445struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1446 struct btrfs_key *location)
1447{
1448 struct btrfs_root *root;
1449
1450 root = btrfs_read_tree_root(tree_root, location);
1451 if (IS_ERR(root))
1452 return root;
1453
1454 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1455 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1456 btrfs_check_and_init_root_item(&root->root_item);
1457 }
13a8a7c8 1458
5eda7b5e
CM
1459 return root;
1460}
1461
cb517eab
MX
1462int btrfs_init_fs_root(struct btrfs_root *root)
1463{
1464 int ret;
8257b2dc 1465 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1466
1467 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1468 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1469 GFP_NOFS);
1470 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1471 ret = -ENOMEM;
1472 goto fail;
1473 }
1474
8257b2dc
MX
1475 writers = btrfs_alloc_subvolume_writers();
1476 if (IS_ERR(writers)) {
1477 ret = PTR_ERR(writers);
1478 goto fail;
1479 }
1480 root->subv_writers = writers;
1481
cb517eab 1482 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1483 spin_lock_init(&root->ino_cache_lock);
1484 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1485
1486 ret = get_anon_bdev(&root->anon_dev);
1487 if (ret)
876d2cf1 1488 goto fail;
f32e48e9
CR
1489
1490 mutex_lock(&root->objectid_mutex);
1491 ret = btrfs_find_highest_objectid(root,
1492 &root->highest_objectid);
1493 if (ret) {
1494 mutex_unlock(&root->objectid_mutex);
876d2cf1 1495 goto fail;
f32e48e9
CR
1496 }
1497
1498 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1499
1500 mutex_unlock(&root->objectid_mutex);
1501
cb517eab
MX
1502 return 0;
1503fail:
84db5ccf 1504 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1505 return ret;
1506}
1507
35bbb97f
JM
1508struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1509 u64 root_id)
cb517eab
MX
1510{
1511 struct btrfs_root *root;
1512
1513 spin_lock(&fs_info->fs_roots_radix_lock);
1514 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1515 (unsigned long)root_id);
1516 spin_unlock(&fs_info->fs_roots_radix_lock);
1517 return root;
1518}
1519
1520int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1521 struct btrfs_root *root)
1522{
1523 int ret;
1524
e1860a77 1525 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1526 if (ret)
1527 return ret;
1528
1529 spin_lock(&fs_info->fs_roots_radix_lock);
1530 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1531 (unsigned long)root->root_key.objectid,
1532 root);
1533 if (ret == 0)
27cdeb70 1534 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1535 spin_unlock(&fs_info->fs_roots_radix_lock);
1536 radix_tree_preload_end();
1537
1538 return ret;
1539}
1540
c00869f1
MX
1541struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1542 struct btrfs_key *location,
1543 bool check_ref)
5eda7b5e
CM
1544{
1545 struct btrfs_root *root;
381cf658 1546 struct btrfs_path *path;
1d4c08e0 1547 struct btrfs_key key;
5eda7b5e
CM
1548 int ret;
1549
edbd8d4e
CM
1550 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1551 return fs_info->tree_root;
1552 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1553 return fs_info->extent_root;
8f18cf13
CM
1554 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1555 return fs_info->chunk_root;
1556 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1557 return fs_info->dev_root;
0403e47e
YZ
1558 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1559 return fs_info->csum_root;
bcef60f2
AJ
1560 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1561 return fs_info->quota_root ? fs_info->quota_root :
1562 ERR_PTR(-ENOENT);
f7a81ea4
SB
1563 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1564 return fs_info->uuid_root ? fs_info->uuid_root :
1565 ERR_PTR(-ENOENT);
70f6d82e
OS
1566 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1567 return fs_info->free_space_root ? fs_info->free_space_root :
1568 ERR_PTR(-ENOENT);
4df27c4d 1569again:
cb517eab 1570 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1571 if (root) {
c00869f1 1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1573 return ERR_PTR(-ENOENT);
5eda7b5e 1574 return root;
48475471 1575 }
5eda7b5e 1576
cb517eab 1577 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1578 if (IS_ERR(root))
1579 return root;
3394e160 1580
c00869f1 1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1582 ret = -ENOENT;
581bb050 1583 goto fail;
35a30d7c 1584 }
581bb050 1585
cb517eab 1586 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1587 if (ret)
1588 goto fail;
3394e160 1589
381cf658
DS
1590 path = btrfs_alloc_path();
1591 if (!path) {
1592 ret = -ENOMEM;
1593 goto fail;
1594 }
1d4c08e0
DS
1595 key.objectid = BTRFS_ORPHAN_OBJECTID;
1596 key.type = BTRFS_ORPHAN_ITEM_KEY;
1597 key.offset = location->objectid;
1598
1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1600 btrfs_free_path(path);
d68fc57b
YZ
1601 if (ret < 0)
1602 goto fail;
1603 if (ret == 0)
27cdeb70 1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1605
cb517eab 1606 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1607 if (ret) {
4df27c4d 1608 if (ret == -EEXIST) {
84db5ccf 1609 btrfs_free_fs_root(root);
4df27c4d
YZ
1610 goto again;
1611 }
1612 goto fail;
0f7d52f4 1613 }
edbd8d4e 1614 return root;
4df27c4d 1615fail:
84db5ccf 1616 btrfs_free_fs_root(root);
4df27c4d 1617 return ERR_PTR(ret);
edbd8d4e
CM
1618}
1619
04160088
CM
1620static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1621{
1622 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1623 int ret = 0;
04160088
CM
1624 struct btrfs_device *device;
1625 struct backing_dev_info *bdi;
b7967db7 1626
1f78160c
XG
1627 rcu_read_lock();
1628 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1629 if (!device->bdev)
1630 continue;
efa7c9f9 1631 bdi = device->bdev->bd_bdi;
ff9ea323 1632 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1633 ret = 1;
1634 break;
1635 }
1636 }
1f78160c 1637 rcu_read_unlock();
04160088
CM
1638 return ret;
1639}
1640
8b712842
CM
1641/*
1642 * called by the kthread helper functions to finally call the bio end_io
1643 * functions. This is where read checksum verification actually happens
1644 */
1645static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1646{
ce9adaa5 1647 struct bio *bio;
97eb6b69 1648 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1649
97eb6b69 1650 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1651 bio = end_io_wq->bio;
ce9adaa5 1652
4e4cbee9 1653 bio->bi_status = end_io_wq->status;
8b712842
CM
1654 bio->bi_private = end_io_wq->private;
1655 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1656 bio_endio(bio);
9be490f1 1657 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1658}
1659
a74a4b97
CM
1660static int cleaner_kthread(void *arg)
1661{
1662 struct btrfs_root *root = arg;
0b246afa 1663 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1664 int again;
a74a4b97 1665
d6fd0ae2 1666 while (1) {
d0278245 1667 again = 0;
a74a4b97 1668
fd340d0f
JB
1669 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1670
d0278245 1671 /* Make the cleaner go to sleep early. */
2ff7e61e 1672 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1673 goto sleep;
1674
90c711ab
ZB
1675 /*
1676 * Do not do anything if we might cause open_ctree() to block
1677 * before we have finished mounting the filesystem.
1678 */
0b246afa 1679 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1680 goto sleep;
1681
0b246afa 1682 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1683 goto sleep;
1684
dc7f370c
MX
1685 /*
1686 * Avoid the problem that we change the status of the fs
1687 * during the above check and trylock.
1688 */
2ff7e61e 1689 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1690 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1691 goto sleep;
76dda93c 1692 }
a74a4b97 1693
2ff7e61e 1694 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1695
d0278245 1696 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1697 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1698
1699 /*
05323cd1
MX
1700 * The defragger has dealt with the R/O remount and umount,
1701 * needn't do anything special here.
d0278245 1702 */
0b246afa 1703 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1704
1705 /*
1706 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1707 * with relocation (btrfs_relocate_chunk) and relocation
1708 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1709 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1710 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1711 * unused block groups.
1712 */
0b246afa 1713 btrfs_delete_unused_bgs(fs_info);
d0278245 1714sleep:
fd340d0f 1715 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1716 if (kthread_should_park())
1717 kthread_parkme();
1718 if (kthread_should_stop())
1719 return 0;
838fe188 1720 if (!again) {
a74a4b97 1721 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1722 schedule();
a74a4b97
CM
1723 __set_current_state(TASK_RUNNING);
1724 }
da288d28 1725 }
a74a4b97
CM
1726}
1727
1728static int transaction_kthread(void *arg)
1729{
1730 struct btrfs_root *root = arg;
0b246afa 1731 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1732 struct btrfs_trans_handle *trans;
1733 struct btrfs_transaction *cur;
8929ecfa 1734 u64 transid;
a944442c 1735 time64_t now;
a74a4b97 1736 unsigned long delay;
914b2007 1737 bool cannot_commit;
a74a4b97
CM
1738
1739 do {
914b2007 1740 cannot_commit = false;
0b246afa
JM
1741 delay = HZ * fs_info->commit_interval;
1742 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1743
0b246afa
JM
1744 spin_lock(&fs_info->trans_lock);
1745 cur = fs_info->running_transaction;
a74a4b97 1746 if (!cur) {
0b246afa 1747 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1748 goto sleep;
1749 }
31153d81 1750
afd48513 1751 now = ktime_get_seconds();
3296bf56 1752 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1753 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1754 (now < cur->start_time ||
0b246afa
JM
1755 now - cur->start_time < fs_info->commit_interval)) {
1756 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1757 delay = HZ * 5;
1758 goto sleep;
1759 }
8929ecfa 1760 transid = cur->transid;
0b246afa 1761 spin_unlock(&fs_info->trans_lock);
56bec294 1762
79787eaa 1763 /* If the file system is aborted, this will always fail. */
354aa0fb 1764 trans = btrfs_attach_transaction(root);
914b2007 1765 if (IS_ERR(trans)) {
354aa0fb
MX
1766 if (PTR_ERR(trans) != -ENOENT)
1767 cannot_commit = true;
79787eaa 1768 goto sleep;
914b2007 1769 }
8929ecfa 1770 if (transid == trans->transid) {
3a45bb20 1771 btrfs_commit_transaction(trans);
8929ecfa 1772 } else {
3a45bb20 1773 btrfs_end_transaction(trans);
8929ecfa 1774 }
a74a4b97 1775sleep:
0b246afa
JM
1776 wake_up_process(fs_info->cleaner_kthread);
1777 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1778
4e121c06 1779 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1780 &fs_info->fs_state)))
2ff7e61e 1781 btrfs_cleanup_transaction(fs_info);
ce63f891 1782 if (!kthread_should_stop() &&
0b246afa 1783 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1784 cannot_commit))
bc5511d0 1785 schedule_timeout_interruptible(delay);
a74a4b97
CM
1786 } while (!kthread_should_stop());
1787 return 0;
1788}
1789
af31f5e5 1790/*
01f0f9da
NB
1791 * This will find the highest generation in the array of root backups. The
1792 * index of the highest array is returned, or -EINVAL if we can't find
1793 * anything.
af31f5e5
CM
1794 *
1795 * We check to make sure the array is valid by comparing the
1796 * generation of the latest root in the array with the generation
1797 * in the super block. If they don't match we pitch it.
1798 */
01f0f9da 1799static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1800{
01f0f9da 1801 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1802 u64 cur;
af31f5e5
CM
1803 struct btrfs_root_backup *root_backup;
1804 int i;
1805
1806 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1807 root_backup = info->super_copy->super_roots + i;
1808 cur = btrfs_backup_tree_root_gen(root_backup);
1809 if (cur == newest_gen)
01f0f9da 1810 return i;
af31f5e5
CM
1811 }
1812
01f0f9da 1813 return -EINVAL;
af31f5e5
CM
1814}
1815
af31f5e5
CM
1816/*
1817 * copy all the root pointers into the super backup array.
1818 * this will bump the backup pointer by one when it is
1819 * done
1820 */
1821static void backup_super_roots(struct btrfs_fs_info *info)
1822{
6ef108dd 1823 const int next_backup = info->backup_root_index;
af31f5e5 1824 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1825
1826 root_backup = info->super_for_commit->super_roots + next_backup;
1827
1828 /*
1829 * make sure all of our padding and empty slots get zero filled
1830 * regardless of which ones we use today
1831 */
1832 memset(root_backup, 0, sizeof(*root_backup));
1833
1834 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1835
1836 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1837 btrfs_set_backup_tree_root_gen(root_backup,
1838 btrfs_header_generation(info->tree_root->node));
1839
1840 btrfs_set_backup_tree_root_level(root_backup,
1841 btrfs_header_level(info->tree_root->node));
1842
1843 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1844 btrfs_set_backup_chunk_root_gen(root_backup,
1845 btrfs_header_generation(info->chunk_root->node));
1846 btrfs_set_backup_chunk_root_level(root_backup,
1847 btrfs_header_level(info->chunk_root->node));
1848
1849 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1850 btrfs_set_backup_extent_root_gen(root_backup,
1851 btrfs_header_generation(info->extent_root->node));
1852 btrfs_set_backup_extent_root_level(root_backup,
1853 btrfs_header_level(info->extent_root->node));
1854
7c7e82a7
CM
1855 /*
1856 * we might commit during log recovery, which happens before we set
1857 * the fs_root. Make sure it is valid before we fill it in.
1858 */
1859 if (info->fs_root && info->fs_root->node) {
1860 btrfs_set_backup_fs_root(root_backup,
1861 info->fs_root->node->start);
1862 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1863 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1864 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1865 btrfs_header_level(info->fs_root->node));
7c7e82a7 1866 }
af31f5e5
CM
1867
1868 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1869 btrfs_set_backup_dev_root_gen(root_backup,
1870 btrfs_header_generation(info->dev_root->node));
1871 btrfs_set_backup_dev_root_level(root_backup,
1872 btrfs_header_level(info->dev_root->node));
1873
1874 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1875 btrfs_set_backup_csum_root_gen(root_backup,
1876 btrfs_header_generation(info->csum_root->node));
1877 btrfs_set_backup_csum_root_level(root_backup,
1878 btrfs_header_level(info->csum_root->node));
1879
1880 btrfs_set_backup_total_bytes(root_backup,
1881 btrfs_super_total_bytes(info->super_copy));
1882 btrfs_set_backup_bytes_used(root_backup,
1883 btrfs_super_bytes_used(info->super_copy));
1884 btrfs_set_backup_num_devices(root_backup,
1885 btrfs_super_num_devices(info->super_copy));
1886
1887 /*
1888 * if we don't copy this out to the super_copy, it won't get remembered
1889 * for the next commit
1890 */
1891 memcpy(&info->super_copy->super_roots,
1892 &info->super_for_commit->super_roots,
1893 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1894}
1895
bd2336b2
NB
1896/*
1897 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1898 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1899 *
1900 * fs_info - filesystem whose backup roots need to be read
1901 * priority - priority of backup root required
1902 *
1903 * Returns backup root index on success and -EINVAL otherwise.
1904 */
1905static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1906{
1907 int backup_index = find_newest_super_backup(fs_info);
1908 struct btrfs_super_block *super = fs_info->super_copy;
1909 struct btrfs_root_backup *root_backup;
1910
1911 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1912 if (priority == 0)
1913 return backup_index;
1914
1915 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1916 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1917 } else {
1918 return -EINVAL;
1919 }
1920
1921 root_backup = super->super_roots + backup_index;
1922
1923 btrfs_set_super_generation(super,
1924 btrfs_backup_tree_root_gen(root_backup));
1925 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1926 btrfs_set_super_root_level(super,
1927 btrfs_backup_tree_root_level(root_backup));
1928 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1929
1930 /*
1931 * Fixme: the total bytes and num_devices need to match or we should
1932 * need a fsck
1933 */
1934 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1935 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1936
1937 return backup_index;
1938}
1939
7abadb64
LB
1940/* helper to cleanup workers */
1941static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1942{
dc6e3209 1943 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1944 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1945 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1946 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1947 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1948 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1949 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1950 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1951 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1952 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1953 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1954 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1955 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1956 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1957 if (fs_info->discard_ctl.discard_workers)
1958 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1959 /*
1960 * Now that all other work queues are destroyed, we can safely destroy
1961 * the queues used for metadata I/O, since tasks from those other work
1962 * queues can do metadata I/O operations.
1963 */
1964 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1965 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1966}
1967
2e9f5954
R
1968static void free_root_extent_buffers(struct btrfs_root *root)
1969{
1970 if (root) {
1971 free_extent_buffer(root->node);
1972 free_extent_buffer(root->commit_root);
1973 root->node = NULL;
1974 root->commit_root = NULL;
1975 }
1976}
1977
af31f5e5 1978/* helper to cleanup tree roots */
4273eaff 1979static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1980{
2e9f5954 1981 free_root_extent_buffers(info->tree_root);
655b09fe 1982
2e9f5954
R
1983 free_root_extent_buffers(info->dev_root);
1984 free_root_extent_buffers(info->extent_root);
1985 free_root_extent_buffers(info->csum_root);
1986 free_root_extent_buffers(info->quota_root);
1987 free_root_extent_buffers(info->uuid_root);
4273eaff 1988 if (free_chunk_root)
2e9f5954 1989 free_root_extent_buffers(info->chunk_root);
70f6d82e 1990 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
1991}
1992
faa2dbf0 1993void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
1994{
1995 int ret;
1996 struct btrfs_root *gang[8];
1997 int i;
1998
1999 while (!list_empty(&fs_info->dead_roots)) {
2000 gang[0] = list_entry(fs_info->dead_roots.next,
2001 struct btrfs_root, root_list);
2002 list_del(&gang[0]->root_list);
2003
27cdeb70 2004 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2005 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2006 } else {
2007 free_extent_buffer(gang[0]->node);
2008 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2009 btrfs_put_fs_root(gang[0]);
171f6537
JB
2010 }
2011 }
2012
2013 while (1) {
2014 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2015 (void **)gang, 0,
2016 ARRAY_SIZE(gang));
2017 if (!ret)
2018 break;
2019 for (i = 0; i < ret; i++)
cb517eab 2020 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2021 }
1a4319cc
LB
2022
2023 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2024 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2025 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2026 }
171f6537 2027}
af31f5e5 2028
638aa7ed
ES
2029static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2030{
2031 mutex_init(&fs_info->scrub_lock);
2032 atomic_set(&fs_info->scrubs_running, 0);
2033 atomic_set(&fs_info->scrub_pause_req, 0);
2034 atomic_set(&fs_info->scrubs_paused, 0);
2035 atomic_set(&fs_info->scrub_cancel_req, 0);
2036 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2037 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2038}
2039
779a65a4
ES
2040static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2041{
2042 spin_lock_init(&fs_info->balance_lock);
2043 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2044 atomic_set(&fs_info->balance_pause_req, 0);
2045 atomic_set(&fs_info->balance_cancel_req, 0);
2046 fs_info->balance_ctl = NULL;
2047 init_waitqueue_head(&fs_info->balance_wait_q);
2048}
2049
6bccf3ab 2050static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2051{
2ff7e61e
JM
2052 struct inode *inode = fs_info->btree_inode;
2053
2054 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2055 set_nlink(inode, 1);
f37938e0
ES
2056 /*
2057 * we set the i_size on the btree inode to the max possible int.
2058 * the real end of the address space is determined by all of
2059 * the devices in the system
2060 */
2ff7e61e
JM
2061 inode->i_size = OFFSET_MAX;
2062 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2063
2ff7e61e 2064 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2065 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2066 IO_TREE_INODE_IO, inode);
7b439738 2067 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2068 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2069
2ff7e61e 2070 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2071
2ff7e61e
JM
2072 BTRFS_I(inode)->root = fs_info->tree_root;
2073 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2074 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2075 btrfs_insert_inode_hash(inode);
f37938e0
ES
2076}
2077
ad618368
ES
2078static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2079{
ad618368 2080 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2081 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2082 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2083}
2084
f9e92e40
ES
2085static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2086{
2087 spin_lock_init(&fs_info->qgroup_lock);
2088 mutex_init(&fs_info->qgroup_ioctl_lock);
2089 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2090 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2091 fs_info->qgroup_seq = 1;
f9e92e40 2092 fs_info->qgroup_ulist = NULL;
d2c609b8 2093 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2094 mutex_init(&fs_info->qgroup_rescan_lock);
2095}
2096
2a458198
ES
2097static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2098 struct btrfs_fs_devices *fs_devices)
2099{
f7b885be 2100 u32 max_active = fs_info->thread_pool_size;
6f011058 2101 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2102
2103 fs_info->workers =
cb001095
JM
2104 btrfs_alloc_workqueue(fs_info, "worker",
2105 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2106
2107 fs_info->delalloc_workers =
cb001095
JM
2108 btrfs_alloc_workqueue(fs_info, "delalloc",
2109 flags, max_active, 2);
2a458198
ES
2110
2111 fs_info->flush_workers =
cb001095
JM
2112 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2113 flags, max_active, 0);
2a458198
ES
2114
2115 fs_info->caching_workers =
cb001095 2116 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2117
2a458198 2118 fs_info->fixup_workers =
cb001095 2119 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2120
2121 /*
2122 * endios are largely parallel and should have a very
2123 * low idle thresh
2124 */
2125 fs_info->endio_workers =
cb001095 2126 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2127 fs_info->endio_meta_workers =
cb001095
JM
2128 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2129 max_active, 4);
2a458198 2130 fs_info->endio_meta_write_workers =
cb001095
JM
2131 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2132 max_active, 2);
2a458198 2133 fs_info->endio_raid56_workers =
cb001095
JM
2134 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2135 max_active, 4);
2a458198 2136 fs_info->endio_repair_workers =
cb001095 2137 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2138 fs_info->rmw_workers =
cb001095 2139 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2140 fs_info->endio_write_workers =
cb001095
JM
2141 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2142 max_active, 2);
2a458198 2143 fs_info->endio_freespace_worker =
cb001095
JM
2144 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2145 max_active, 0);
2a458198 2146 fs_info->delayed_workers =
cb001095
JM
2147 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2148 max_active, 0);
2a458198 2149 fs_info->readahead_workers =
cb001095
JM
2150 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2151 max_active, 2);
2a458198 2152 fs_info->qgroup_rescan_workers =
cb001095 2153 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2154 fs_info->discard_ctl.discard_workers =
2155 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2156
2157 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2158 fs_info->flush_workers &&
2a458198
ES
2159 fs_info->endio_workers && fs_info->endio_meta_workers &&
2160 fs_info->endio_meta_write_workers &&
2161 fs_info->endio_repair_workers &&
2162 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2163 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2164 fs_info->caching_workers && fs_info->readahead_workers &&
2165 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2166 fs_info->qgroup_rescan_workers &&
2167 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2168 return -ENOMEM;
2169 }
2170
2171 return 0;
2172}
2173
6d97c6e3
JT
2174static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2175{
2176 struct crypto_shash *csum_shash;
b4e967be 2177 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2178
b4e967be 2179 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2180
2181 if (IS_ERR(csum_shash)) {
2182 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2183 csum_driver);
6d97c6e3
JT
2184 return PTR_ERR(csum_shash);
2185 }
2186
2187 fs_info->csum_shash = csum_shash;
2188
2189 return 0;
2190}
2191
2192static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2193{
2194 crypto_free_shash(fs_info->csum_shash);
2195}
2196
63443bf5
ES
2197static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2198 struct btrfs_fs_devices *fs_devices)
2199{
2200 int ret;
63443bf5
ES
2201 struct btrfs_root *log_tree_root;
2202 struct btrfs_super_block *disk_super = fs_info->super_copy;
2203 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2204 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2205
2206 if (fs_devices->rw_devices == 0) {
f14d104d 2207 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2208 return -EIO;
2209 }
2210
74e4d827 2211 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2212 if (!log_tree_root)
2213 return -ENOMEM;
2214
da17066c 2215 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2216
2ff7e61e 2217 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2218 fs_info->generation + 1,
2219 level, NULL);
64c043de 2220 if (IS_ERR(log_tree_root->node)) {
f14d104d 2221 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2222 ret = PTR_ERR(log_tree_root->node);
64c043de 2223 kfree(log_tree_root);
0eeff236 2224 return ret;
64c043de 2225 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2226 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2227 free_extent_buffer(log_tree_root->node);
2228 kfree(log_tree_root);
2229 return -EIO;
2230 }
2231 /* returns with log_tree_root freed on success */
2232 ret = btrfs_recover_log_trees(log_tree_root);
2233 if (ret) {
0b246afa
JM
2234 btrfs_handle_fs_error(fs_info, ret,
2235 "Failed to recover log tree");
63443bf5
ES
2236 free_extent_buffer(log_tree_root->node);
2237 kfree(log_tree_root);
2238 return ret;
2239 }
2240
bc98a42c 2241 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2242 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2243 if (ret)
2244 return ret;
2245 }
2246
2247 return 0;
2248}
2249
6bccf3ab 2250static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2251{
6bccf3ab 2252 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2253 struct btrfs_root *root;
4bbcaa64
ES
2254 struct btrfs_key location;
2255 int ret;
2256
6bccf3ab
JM
2257 BUG_ON(!fs_info->tree_root);
2258
4bbcaa64
ES
2259 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2260 location.type = BTRFS_ROOT_ITEM_KEY;
2261 location.offset = 0;
2262
a4f3d2c4 2263 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2264 if (IS_ERR(root)) {
2265 ret = PTR_ERR(root);
2266 goto out;
2267 }
a4f3d2c4
DS
2268 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2269 fs_info->extent_root = root;
4bbcaa64
ES
2270
2271 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2272 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2273 if (IS_ERR(root)) {
2274 ret = PTR_ERR(root);
2275 goto out;
2276 }
a4f3d2c4
DS
2277 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2278 fs_info->dev_root = root;
4bbcaa64
ES
2279 btrfs_init_devices_late(fs_info);
2280
2281 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2282 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2283 if (IS_ERR(root)) {
2284 ret = PTR_ERR(root);
2285 goto out;
2286 }
a4f3d2c4
DS
2287 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288 fs_info->csum_root = root;
4bbcaa64
ES
2289
2290 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2291 root = btrfs_read_tree_root(tree_root, &location);
2292 if (!IS_ERR(root)) {
2293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2294 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2295 fs_info->quota_root = root;
4bbcaa64
ES
2296 }
2297
2298 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2299 root = btrfs_read_tree_root(tree_root, &location);
2300 if (IS_ERR(root)) {
2301 ret = PTR_ERR(root);
4bbcaa64 2302 if (ret != -ENOENT)
f50f4353 2303 goto out;
4bbcaa64 2304 } else {
a4f3d2c4
DS
2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306 fs_info->uuid_root = root;
4bbcaa64
ES
2307 }
2308
70f6d82e
OS
2309 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2310 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2311 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2312 if (IS_ERR(root)) {
2313 ret = PTR_ERR(root);
2314 goto out;
2315 }
70f6d82e
OS
2316 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2317 fs_info->free_space_root = root;
2318 }
2319
4bbcaa64 2320 return 0;
f50f4353
LB
2321out:
2322 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2323 location.objectid, ret);
2324 return ret;
4bbcaa64
ES
2325}
2326
069ec957
QW
2327/*
2328 * Real super block validation
2329 * NOTE: super csum type and incompat features will not be checked here.
2330 *
2331 * @sb: super block to check
2332 * @mirror_num: the super block number to check its bytenr:
2333 * 0 the primary (1st) sb
2334 * 1, 2 2nd and 3rd backup copy
2335 * -1 skip bytenr check
2336 */
2337static int validate_super(struct btrfs_fs_info *fs_info,
2338 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2339{
21a852b0
QW
2340 u64 nodesize = btrfs_super_nodesize(sb);
2341 u64 sectorsize = btrfs_super_sectorsize(sb);
2342 int ret = 0;
2343
2344 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2345 btrfs_err(fs_info, "no valid FS found");
2346 ret = -EINVAL;
2347 }
2348 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2349 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2350 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2351 ret = -EINVAL;
2352 }
2353 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2354 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2355 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2356 ret = -EINVAL;
2357 }
2358 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2359 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2360 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2361 ret = -EINVAL;
2362 }
2363 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2364 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2365 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2366 ret = -EINVAL;
2367 }
2368
2369 /*
2370 * Check sectorsize and nodesize first, other check will need it.
2371 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2372 */
2373 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2374 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2375 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2376 ret = -EINVAL;
2377 }
2378 /* Only PAGE SIZE is supported yet */
2379 if (sectorsize != PAGE_SIZE) {
2380 btrfs_err(fs_info,
2381 "sectorsize %llu not supported yet, only support %lu",
2382 sectorsize, PAGE_SIZE);
2383 ret = -EINVAL;
2384 }
2385 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2386 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2387 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2388 ret = -EINVAL;
2389 }
2390 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2391 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2392 le32_to_cpu(sb->__unused_leafsize), nodesize);
2393 ret = -EINVAL;
2394 }
2395
2396 /* Root alignment check */
2397 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2398 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2399 btrfs_super_root(sb));
2400 ret = -EINVAL;
2401 }
2402 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2403 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2404 btrfs_super_chunk_root(sb));
2405 ret = -EINVAL;
2406 }
2407 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2408 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2409 btrfs_super_log_root(sb));
2410 ret = -EINVAL;
2411 }
2412
de37aa51 2413 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2414 BTRFS_FSID_SIZE) != 0) {
21a852b0 2415 btrfs_err(fs_info,
7239ff4b 2416 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2417 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2418 ret = -EINVAL;
2419 }
2420
2421 /*
2422 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2423 * done later
2424 */
2425 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2426 btrfs_err(fs_info, "bytes_used is too small %llu",
2427 btrfs_super_bytes_used(sb));
2428 ret = -EINVAL;
2429 }
2430 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2431 btrfs_err(fs_info, "invalid stripesize %u",
2432 btrfs_super_stripesize(sb));
2433 ret = -EINVAL;
2434 }
2435 if (btrfs_super_num_devices(sb) > (1UL << 31))
2436 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2437 btrfs_super_num_devices(sb));
2438 if (btrfs_super_num_devices(sb) == 0) {
2439 btrfs_err(fs_info, "number of devices is 0");
2440 ret = -EINVAL;
2441 }
2442
069ec957
QW
2443 if (mirror_num >= 0 &&
2444 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2445 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2446 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2447 ret = -EINVAL;
2448 }
2449
2450 /*
2451 * Obvious sys_chunk_array corruptions, it must hold at least one key
2452 * and one chunk
2453 */
2454 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2455 btrfs_err(fs_info, "system chunk array too big %u > %u",
2456 btrfs_super_sys_array_size(sb),
2457 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2458 ret = -EINVAL;
2459 }
2460 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2461 + sizeof(struct btrfs_chunk)) {
2462 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2463 btrfs_super_sys_array_size(sb),
2464 sizeof(struct btrfs_disk_key)
2465 + sizeof(struct btrfs_chunk));
2466 ret = -EINVAL;
2467 }
2468
2469 /*
2470 * The generation is a global counter, we'll trust it more than the others
2471 * but it's still possible that it's the one that's wrong.
2472 */
2473 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2474 btrfs_warn(fs_info,
2475 "suspicious: generation < chunk_root_generation: %llu < %llu",
2476 btrfs_super_generation(sb),
2477 btrfs_super_chunk_root_generation(sb));
2478 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2479 && btrfs_super_cache_generation(sb) != (u64)-1)
2480 btrfs_warn(fs_info,
2481 "suspicious: generation < cache_generation: %llu < %llu",
2482 btrfs_super_generation(sb),
2483 btrfs_super_cache_generation(sb));
2484
2485 return ret;
2486}
2487
069ec957
QW
2488/*
2489 * Validation of super block at mount time.
2490 * Some checks already done early at mount time, like csum type and incompat
2491 * flags will be skipped.
2492 */
2493static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2494{
2495 return validate_super(fs_info, fs_info->super_copy, 0);
2496}
2497
75cb857d
QW
2498/*
2499 * Validation of super block at write time.
2500 * Some checks like bytenr check will be skipped as their values will be
2501 * overwritten soon.
2502 * Extra checks like csum type and incompat flags will be done here.
2503 */
2504static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2505 struct btrfs_super_block *sb)
2506{
2507 int ret;
2508
2509 ret = validate_super(fs_info, sb, -1);
2510 if (ret < 0)
2511 goto out;
e7e16f48 2512 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2513 ret = -EUCLEAN;
2514 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2515 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2516 goto out;
2517 }
2518 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2519 ret = -EUCLEAN;
2520 btrfs_err(fs_info,
2521 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2522 btrfs_super_incompat_flags(sb),
2523 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2524 goto out;
2525 }
2526out:
2527 if (ret < 0)
2528 btrfs_err(fs_info,
2529 "super block corruption detected before writing it to disk");
2530 return ret;
2531}
2532
6ef108dd 2533static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2534{
6ef108dd 2535 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2536 struct btrfs_super_block *sb = fs_info->super_copy;
2537 struct btrfs_root *tree_root = fs_info->tree_root;
2538 bool handle_error = false;
2539 int ret = 0;
2540 int i;
2541
2542 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2543 u64 generation;
2544 int level;
2545
2546 if (handle_error) {
2547 if (!IS_ERR(tree_root->node))
2548 free_extent_buffer(tree_root->node);
2549 tree_root->node = NULL;
2550
2551 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2552 break;
2553
2554 free_root_pointers(fs_info, 0);
2555
2556 /*
2557 * Don't use the log in recovery mode, it won't be
2558 * valid
2559 */
2560 btrfs_set_super_log_root(sb, 0);
2561
2562 /* We can't trust the free space cache either */
2563 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2564
2565 ret = read_backup_root(fs_info, i);
6ef108dd 2566 backup_index = ret;
b8522a1e
NB
2567 if (ret < 0)
2568 return ret;
2569 }
2570 generation = btrfs_super_generation(sb);
2571 level = btrfs_super_root_level(sb);
2572 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2573 generation, level, NULL);
2574 if (IS_ERR(tree_root->node) ||
2575 !extent_buffer_uptodate(tree_root->node)) {
2576 handle_error = true;
2577
2578 if (IS_ERR(tree_root->node))
2579 ret = PTR_ERR(tree_root->node);
2580 else if (!extent_buffer_uptodate(tree_root->node))
2581 ret = -EUCLEAN;
2582
2583 btrfs_warn(fs_info, "failed to read tree root");
2584 continue;
2585 }
2586
2587 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2588 tree_root->commit_root = btrfs_root_node(tree_root);
2589 btrfs_set_root_refs(&tree_root->root_item, 1);
2590
336a0d8d
NB
2591 /*
2592 * No need to hold btrfs_root::objectid_mutex since the fs
2593 * hasn't been fully initialised and we are the only user
2594 */
b8522a1e
NB
2595 ret = btrfs_find_highest_objectid(tree_root,
2596 &tree_root->highest_objectid);
2597 if (ret < 0) {
b8522a1e
NB
2598 handle_error = true;
2599 continue;
2600 }
2601
2602 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2603
2604 ret = btrfs_read_roots(fs_info);
2605 if (ret < 0) {
2606 handle_error = true;
2607 continue;
2608 }
2609
2610 /* All successful */
2611 fs_info->generation = generation;
2612 fs_info->last_trans_committed = generation;
6ef108dd
NB
2613
2614 /* Always begin writing backup roots after the one being used */
2615 if (backup_index < 0) {
2616 fs_info->backup_root_index = 0;
2617 } else {
2618 fs_info->backup_root_index = backup_index + 1;
2619 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2620 }
b8522a1e
NB
2621 break;
2622 }
2623
2624 return ret;
2625}
2626
b105e927 2627int __cold open_ctree(struct super_block *sb,
ad2b2c80
AV
2628 struct btrfs_fs_devices *fs_devices,
2629 char *options)
2e635a27 2630{
db94535d
CM
2631 u32 sectorsize;
2632 u32 nodesize;
87ee04eb 2633 u32 stripesize;
84234f3a 2634 u64 generation;
f2b636e8 2635 u64 features;
51bce6c9 2636 u16 csum_type;
3de4586c 2637 struct btrfs_key location;
a061fc8d 2638 struct buffer_head *bh;
4d34b278 2639 struct btrfs_super_block *disk_super;
815745cf 2640 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2641 struct btrfs_root *tree_root;
4d34b278 2642 struct btrfs_root *chunk_root;
eb60ceac 2643 int ret;
e58ca020 2644 int err = -EINVAL;
6675df31 2645 int clear_free_space_tree = 0;
581c1760 2646 int level;
4543df7e 2647
74e4d827
DS
2648 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2649 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2650 if (!tree_root || !chunk_root) {
39279cc3
CM
2651 err = -ENOMEM;
2652 goto fail;
2653 }
76dda93c
YZ
2654
2655 ret = init_srcu_struct(&fs_info->subvol_srcu);
2656 if (ret) {
2657 err = ret;
2658 goto fail;
2659 }
2660
4297ff84 2661 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2662 if (ret) {
2663 err = ret;
9e11ceee 2664 goto fail_srcu;
e2d84521 2665 }
4297ff84
JB
2666
2667 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2668 if (ret) {
2669 err = ret;
2670 goto fail_dio_bytes;
2671 }
09cbfeaf 2672 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2673 (1 + ilog2(nr_cpu_ids));
2674
908c7f19 2675 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2676 if (ret) {
2677 err = ret;
2678 goto fail_dirty_metadata_bytes;
2679 }
2680
7f8d236a
DS
2681 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2682 GFP_KERNEL);
c404e0dc
MX
2683 if (ret) {
2684 err = ret;
2685 goto fail_delalloc_bytes;
2686 }
2687
76dda93c 2688 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2689 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2690 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2691 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2692 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2693 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2694 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2695 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2696 spin_lock_init(&fs_info->trans_lock);
76dda93c 2697 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2698 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2699 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2700 spin_lock_init(&fs_info->super_lock);
f28491e0 2701 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2702 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2703 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2704 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2705 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2706 mutex_init(&fs_info->reloc_mutex);
573bfb72 2707 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2708 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2709
0b86a832 2710 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2711 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2712 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2713 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2714 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2715 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2716 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2717 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2718 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2719 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2720 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2721 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2722 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2723 BTRFS_BLOCK_RSV_DELREFS);
2724
771ed689 2725 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2726 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2727 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2728 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2729 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2730 fs_info->sb = sb;
95ac567a 2731 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2732 fs_info->metadata_ratio = 0;
4cb5300b 2733 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2734 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2735 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2736 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2737 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2738 /* readahead state */
d0164adc 2739 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2740 spin_lock_init(&fs_info->reada_lock);
fd708b81 2741 btrfs_init_ref_verify(fs_info);
c8b97818 2742
b34b086c
CM
2743 fs_info->thread_pool_size = min_t(unsigned long,
2744 num_online_cpus() + 2, 8);
0afbaf8c 2745
199c2a9c
MX
2746 INIT_LIST_HEAD(&fs_info->ordered_roots);
2747 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2748
2749 fs_info->btree_inode = new_inode(sb);
2750 if (!fs_info->btree_inode) {
2751 err = -ENOMEM;
2752 goto fail_bio_counter;
2753 }
2754 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2755
16cdcec7 2756 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2757 GFP_KERNEL);
16cdcec7
MX
2758 if (!fs_info->delayed_root) {
2759 err = -ENOMEM;
2760 goto fail_iput;
2761 }
2762 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2763
638aa7ed 2764 btrfs_init_scrub(fs_info);
21adbd5c
SB
2765#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2766 fs_info->check_integrity_print_mask = 0;
2767#endif
779a65a4 2768 btrfs_init_balance(fs_info);
21c7e756 2769 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2770
9f6d2510
DS
2771 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2772 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2773
6bccf3ab 2774 btrfs_init_btree_inode(fs_info);
76dda93c 2775
0f9dd46c 2776 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2777 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2778 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2779
43eb5f29
QW
2780 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2781 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2782 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2783 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2784 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2785 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2786
5a3f23d5 2787 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2788 mutex_init(&fs_info->tree_log_mutex);
925baedd 2789 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2790 mutex_init(&fs_info->transaction_kthread_mutex);
2791 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2792 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2793 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2794 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2795 init_rwsem(&fs_info->subvol_sem);
803b2f54 2796 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2797
ad618368 2798 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2799 btrfs_init_qgroup(fs_info);
b0643e59 2800 btrfs_discard_init(fs_info);
416ac51d 2801
fa9c0d79
CM
2802 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2803 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2804
e6dcd2dc 2805 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2806 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2807 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2808 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2809 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2810
da17066c
JM
2811 /* Usable values until the real ones are cached from the superblock */
2812 fs_info->nodesize = 4096;
2813 fs_info->sectorsize = 4096;
2814 fs_info->stripesize = 4096;
2815
eede2bf3
OS
2816 spin_lock_init(&fs_info->swapfile_pins_lock);
2817 fs_info->swapfile_pins = RB_ROOT;
2818
9e967495
FM
2819 fs_info->send_in_progress = 0;
2820
53b381b3
DW
2821 ret = btrfs_alloc_stripe_hash_table(fs_info);
2822 if (ret) {
83c8266a 2823 err = ret;
53b381b3
DW
2824 goto fail_alloc;
2825 }
2826
da17066c 2827 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2828
3c4bb26b 2829 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2830
2831 /*
2832 * Read super block and check the signature bytes only
2833 */
a512bbf8 2834 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2835 if (IS_ERR(bh)) {
2836 err = PTR_ERR(bh);
16cdcec7 2837 goto fail_alloc;
20b45077 2838 }
39279cc3 2839
8dc3f22c
JT
2840 /*
2841 * Verify the type first, if that or the the checksum value are
2842 * corrupted, we'll find out
2843 */
51bce6c9
JT
2844 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2845 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2846 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2847 csum_type);
8dc3f22c
JT
2848 err = -EINVAL;
2849 brelse(bh);
2850 goto fail_alloc;
2851 }
2852
6d97c6e3
JT
2853 ret = btrfs_init_csum_hash(fs_info, csum_type);
2854 if (ret) {
2855 err = ret;
2856 goto fail_alloc;
2857 }
2858
1104a885
DS
2859 /*
2860 * We want to check superblock checksum, the type is stored inside.
2861 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2862 */
ab8d0fc4 2863 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2864 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2865 err = -EINVAL;
b2acdddf 2866 brelse(bh);
6d97c6e3 2867 goto fail_csum;
1104a885
DS
2868 }
2869
2870 /*
2871 * super_copy is zeroed at allocation time and we never touch the
2872 * following bytes up to INFO_SIZE, the checksum is calculated from
2873 * the whole block of INFO_SIZE
2874 */
6c41761f 2875 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2876 brelse(bh);
5f39d397 2877
fbc6feae
NB
2878 disk_super = fs_info->super_copy;
2879
de37aa51
NB
2880 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2881 BTRFS_FSID_SIZE));
2882
7239ff4b 2883 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2884 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2885 fs_info->super_copy->metadata_uuid,
2886 BTRFS_FSID_SIZE));
7239ff4b 2887 }
0b86a832 2888
fbc6feae
NB
2889 features = btrfs_super_flags(disk_super);
2890 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2891 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2892 btrfs_set_super_flags(disk_super, features);
2893 btrfs_info(fs_info,
2894 "found metadata UUID change in progress flag, clearing");
2895 }
2896
2897 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2898 sizeof(*fs_info->super_for_commit));
de37aa51 2899
069ec957 2900 ret = btrfs_validate_mount_super(fs_info);
1104a885 2901 if (ret) {
05135f59 2902 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2903 err = -EINVAL;
6d97c6e3 2904 goto fail_csum;
1104a885
DS
2905 }
2906
0f7d52f4 2907 if (!btrfs_super_root(disk_super))
6d97c6e3 2908 goto fail_csum;
0f7d52f4 2909
acce952b 2910 /* check FS state, whether FS is broken. */
87533c47
MX
2911 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2912 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2913
75e7cb7f
LB
2914 /*
2915 * In the long term, we'll store the compression type in the super
2916 * block, and it'll be used for per file compression control.
2917 */
2918 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2919
2ff7e61e 2920 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2921 if (ret) {
2922 err = ret;
6d97c6e3 2923 goto fail_csum;
2b82032c 2924 }
dfe25020 2925
f2b636e8
JB
2926 features = btrfs_super_incompat_flags(disk_super) &
2927 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2928 if (features) {
05135f59
DS
2929 btrfs_err(fs_info,
2930 "cannot mount because of unsupported optional features (%llx)",
2931 features);
f2b636e8 2932 err = -EINVAL;
6d97c6e3 2933 goto fail_csum;
f2b636e8
JB
2934 }
2935
5d4f98a2 2936 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2937 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2938 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2939 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2940 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2941 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2942
3173a18f 2943 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2944 btrfs_info(fs_info, "has skinny extents");
3173a18f 2945
727011e0
CM
2946 /*
2947 * flag our filesystem as having big metadata blocks if
2948 * they are bigger than the page size
2949 */
09cbfeaf 2950 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2951 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2952 btrfs_info(fs_info,
2953 "flagging fs with big metadata feature");
727011e0
CM
2954 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2955 }
2956
bc3f116f 2957 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2958 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2959 stripesize = sectorsize;
707e8a07 2960 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2961 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2962
da17066c
JM
2963 /* Cache block sizes */
2964 fs_info->nodesize = nodesize;
2965 fs_info->sectorsize = sectorsize;
2966 fs_info->stripesize = stripesize;
2967
bc3f116f
CM
2968 /*
2969 * mixed block groups end up with duplicate but slightly offset
2970 * extent buffers for the same range. It leads to corruptions
2971 */
2972 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2973 (sectorsize != nodesize)) {
05135f59
DS
2974 btrfs_err(fs_info,
2975"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2976 nodesize, sectorsize);
6d97c6e3 2977 goto fail_csum;
bc3f116f
CM
2978 }
2979
ceda0864
MX
2980 /*
2981 * Needn't use the lock because there is no other task which will
2982 * update the flag.
2983 */
a6fa6fae 2984 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2985
f2b636e8
JB
2986 features = btrfs_super_compat_ro_flags(disk_super) &
2987 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2988 if (!sb_rdonly(sb) && features) {
05135f59
DS
2989 btrfs_err(fs_info,
2990 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2991 features);
f2b636e8 2992 err = -EINVAL;
6d97c6e3 2993 goto fail_csum;
f2b636e8 2994 }
61d92c32 2995
2a458198
ES
2996 ret = btrfs_init_workqueues(fs_info, fs_devices);
2997 if (ret) {
2998 err = ret;
0dc3b84a
JB
2999 goto fail_sb_buffer;
3000 }
4543df7e 3001
9e11ceee
JK
3002 sb->s_bdi->congested_fn = btrfs_congested_fn;
3003 sb->s_bdi->congested_data = fs_info;
3004 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3005 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3006 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3007 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3008
a061fc8d
CM
3009 sb->s_blocksize = sectorsize;
3010 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3011 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3012
925baedd 3013 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3014 ret = btrfs_read_sys_array(fs_info);
925baedd 3015 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3016 if (ret) {
05135f59 3017 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3018 goto fail_sb_buffer;
84eed90f 3019 }
0b86a832 3020
84234f3a 3021 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3022 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3023
da17066c 3024 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 3025
2ff7e61e 3026 chunk_root->node = read_tree_block(fs_info,
0b86a832 3027 btrfs_super_chunk_root(disk_super),
581c1760 3028 generation, level, NULL);
64c043de
LB
3029 if (IS_ERR(chunk_root->node) ||
3030 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3031 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3032 if (!IS_ERR(chunk_root->node))
3033 free_extent_buffer(chunk_root->node);
95ab1f64 3034 chunk_root->node = NULL;
af31f5e5 3035 goto fail_tree_roots;
83121942 3036 }
5d4f98a2
YZ
3037 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3038 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3039
e17cade2 3040 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3041 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3042
5b4aacef 3043 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3044 if (ret) {
05135f59 3045 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3046 goto fail_tree_roots;
2b82032c 3047 }
0b86a832 3048
8dabb742 3049 /*
9b99b115
AJ
3050 * Keep the devid that is marked to be the target device for the
3051 * device replace procedure
8dabb742 3052 */
9b99b115 3053 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3054
a6b0d5c8 3055 if (!fs_devices->latest_bdev) {
05135f59 3056 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3057 goto fail_tree_roots;
3058 }
3059
b8522a1e 3060 ret = init_tree_roots(fs_info);
4bbcaa64 3061 if (ret)
b8522a1e 3062 goto fail_tree_roots;
8929ecfa 3063
cf90d884
QW
3064 ret = btrfs_verify_dev_extents(fs_info);
3065 if (ret) {
3066 btrfs_err(fs_info,
3067 "failed to verify dev extents against chunks: %d",
3068 ret);
3069 goto fail_block_groups;
3070 }
68310a5e
ID
3071 ret = btrfs_recover_balance(fs_info);
3072 if (ret) {
05135f59 3073 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3074 goto fail_block_groups;
3075 }
3076
733f4fbb
SB
3077 ret = btrfs_init_dev_stats(fs_info);
3078 if (ret) {
05135f59 3079 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3080 goto fail_block_groups;
3081 }
3082
8dabb742
SB
3083 ret = btrfs_init_dev_replace(fs_info);
3084 if (ret) {
05135f59 3085 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3086 goto fail_block_groups;
3087 }
3088
9b99b115 3089 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3090
c6761a9e 3091 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3092 if (ret) {
05135f59
DS
3093 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3094 ret);
b7c35e81
AJ
3095 goto fail_block_groups;
3096 }
3097
96f3136e 3098 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3099 if (ret) {
05135f59 3100 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3101 goto fail_fsdev_sysfs;
c59021f8 3102 }
3103
c59021f8 3104 ret = btrfs_init_space_info(fs_info);
3105 if (ret) {
05135f59 3106 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3107 goto fail_sysfs;
c59021f8 3108 }
3109
5b4aacef 3110 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3111 if (ret) {
05135f59 3112 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3113 goto fail_sysfs;
1b1d1f66 3114 }
4330e183 3115
6528b99d 3116 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3117 btrfs_warn(fs_info,
52042d8e 3118 "writable mount is not allowed due to too many missing devices");
2365dd3c 3119 goto fail_sysfs;
292fd7fc 3120 }
9078a3e1 3121
a74a4b97
CM
3122 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3123 "btrfs-cleaner");
57506d50 3124 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3125 goto fail_sysfs;
a74a4b97
CM
3126
3127 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3128 tree_root,
3129 "btrfs-transaction");
57506d50 3130 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3131 goto fail_cleaner;
a74a4b97 3132
583b7231 3133 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3134 !fs_info->fs_devices->rotating) {
583b7231 3135 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3136 }
3137
572d9ab7 3138 /*
01327610 3139 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3140 * not have to wait for transaction commit
3141 */
3142 btrfs_apply_pending_changes(fs_info);
3818aea2 3143
21adbd5c 3144#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3145 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3146 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3147 btrfs_test_opt(fs_info,
21adbd5c
SB
3148 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3149 1 : 0,
3150 fs_info->check_integrity_print_mask);
3151 if (ret)
05135f59
DS
3152 btrfs_warn(fs_info,
3153 "failed to initialize integrity check module: %d",
3154 ret);
21adbd5c
SB
3155 }
3156#endif
bcef60f2
AJ
3157 ret = btrfs_read_qgroup_config(fs_info);
3158 if (ret)
3159 goto fail_trans_kthread;
21adbd5c 3160
fd708b81
JB
3161 if (btrfs_build_ref_tree(fs_info))
3162 btrfs_err(fs_info, "couldn't build ref tree");
3163
96da0919
QW
3164 /* do not make disk changes in broken FS or nologreplay is given */
3165 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3166 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3167 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3168 if (ret) {
63443bf5 3169 err = ret;
28c16cbb 3170 goto fail_qgroup;
79787eaa 3171 }
e02119d5 3172 }
1a40e23b 3173
6bccf3ab 3174 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3175 if (ret)
28c16cbb 3176 goto fail_qgroup;
76dda93c 3177
bc98a42c 3178 if (!sb_rdonly(sb)) {
d68fc57b 3179 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3180 if (ret)
28c16cbb 3181 goto fail_qgroup;
90c711ab
ZB
3182
3183 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3184 ret = btrfs_recover_relocation(tree_root);
90c711ab 3185 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3186 if (ret < 0) {
05135f59
DS
3187 btrfs_warn(fs_info, "failed to recover relocation: %d",
3188 ret);
d7ce5843 3189 err = -EINVAL;
bcef60f2 3190 goto fail_qgroup;
d7ce5843 3191 }
7c2ca468 3192 }
1a40e23b 3193
3de4586c
CM
3194 location.objectid = BTRFS_FS_TREE_OBJECTID;
3195 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3196 location.offset = 0;
3de4586c 3197
3de4586c 3198 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3199 if (IS_ERR(fs_info->fs_root)) {
3200 err = PTR_ERR(fs_info->fs_root);
f50f4353 3201 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3202 goto fail_qgroup;
3140c9a3 3203 }
c289811c 3204
bc98a42c 3205 if (sb_rdonly(sb))
2b6ba629 3206 return 0;
59641015 3207
f8d468a1
OS
3208 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3209 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3210 clear_free_space_tree = 1;
3211 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3212 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3213 btrfs_warn(fs_info, "free space tree is invalid");
3214 clear_free_space_tree = 1;
3215 }
3216
3217 if (clear_free_space_tree) {
f8d468a1
OS
3218 btrfs_info(fs_info, "clearing free space tree");
3219 ret = btrfs_clear_free_space_tree(fs_info);
3220 if (ret) {
3221 btrfs_warn(fs_info,
3222 "failed to clear free space tree: %d", ret);
6bccf3ab 3223 close_ctree(fs_info);
f8d468a1
OS
3224 return ret;
3225 }
3226 }
3227
0b246afa 3228 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3229 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3230 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3231 ret = btrfs_create_free_space_tree(fs_info);
3232 if (ret) {
05135f59
DS
3233 btrfs_warn(fs_info,
3234 "failed to create free space tree: %d", ret);
6bccf3ab 3235 close_ctree(fs_info);
511711af
CM
3236 return ret;
3237 }
3238 }
3239
2b6ba629
ID
3240 down_read(&fs_info->cleanup_work_sem);
3241 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3242 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3243 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3244 close_ctree(fs_info);
2b6ba629
ID
3245 return ret;
3246 }
3247 up_read(&fs_info->cleanup_work_sem);
59641015 3248
2b6ba629
ID
3249 ret = btrfs_resume_balance_async(fs_info);
3250 if (ret) {
05135f59 3251 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3252 close_ctree(fs_info);
2b6ba629 3253 return ret;
e3acc2a6
JB
3254 }
3255
8dabb742
SB
3256 ret = btrfs_resume_dev_replace_async(fs_info);
3257 if (ret) {
05135f59 3258 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3259 close_ctree(fs_info);
8dabb742
SB
3260 return ret;
3261 }
3262
b382a324 3263 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3264 btrfs_discard_resume(fs_info);
b382a324 3265
4bbcaa64 3266 if (!fs_info->uuid_root) {
05135f59 3267 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3268 ret = btrfs_create_uuid_tree(fs_info);
3269 if (ret) {
05135f59
DS
3270 btrfs_warn(fs_info,
3271 "failed to create the UUID tree: %d", ret);
6bccf3ab 3272 close_ctree(fs_info);
f7a81ea4
SB
3273 return ret;
3274 }
0b246afa 3275 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3276 fs_info->generation !=
3277 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3278 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3279 ret = btrfs_check_uuid_tree(fs_info);
3280 if (ret) {
05135f59
DS
3281 btrfs_warn(fs_info,
3282 "failed to check the UUID tree: %d", ret);
6bccf3ab 3283 close_ctree(fs_info);
70f80175
SB
3284 return ret;
3285 }
3286 } else {
afcdd129 3287 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3288 }
afcdd129 3289 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3290
8dcddfa0
QW
3291 /*
3292 * backuproot only affect mount behavior, and if open_ctree succeeded,
3293 * no need to keep the flag
3294 */
3295 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3296
ad2b2c80 3297 return 0;
39279cc3 3298
bcef60f2
AJ
3299fail_qgroup:
3300 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3301fail_trans_kthread:
3302 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3303 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3304 btrfs_free_fs_roots(fs_info);
3f157a2f 3305fail_cleaner:
a74a4b97 3306 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3307
3308 /*
3309 * make sure we're done with the btree inode before we stop our
3310 * kthreads
3311 */
3312 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3313
2365dd3c 3314fail_sysfs:
6618a59b 3315 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3316
b7c35e81
AJ
3317fail_fsdev_sysfs:
3318 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3319
1b1d1f66 3320fail_block_groups:
54067ae9 3321 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3322
3323fail_tree_roots:
4273eaff 3324 free_root_pointers(fs_info, true);
2b8195bb 3325 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3326
39279cc3 3327fail_sb_buffer:
7abadb64 3328 btrfs_stop_all_workers(fs_info);
5cdd7db6 3329 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3330fail_csum:
3331 btrfs_free_csum_hash(fs_info);
16cdcec7 3332fail_alloc:
4543df7e 3333fail_iput:
586e46e2
ID
3334 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3335
4543df7e 3336 iput(fs_info->btree_inode);
c404e0dc 3337fail_bio_counter:
7f8d236a 3338 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3339fail_delalloc_bytes:
3340 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3341fail_dirty_metadata_bytes:
3342 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3343fail_dio_bytes:
3344 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3345fail_srcu:
3346 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3347fail:
53b381b3 3348 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3349 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3350 return err;
eb60ceac 3351}
663faf9f 3352ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3353
f2984462
CM
3354static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3355{
f2984462
CM
3356 if (uptodate) {
3357 set_buffer_uptodate(bh);
3358 } else {
442a4f63
SB
3359 struct btrfs_device *device = (struct btrfs_device *)
3360 bh->b_private;
3361
fb456252 3362 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3363 "lost page write due to IO error on %s",
606686ee 3364 rcu_str_deref(device->name));
01327610 3365 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3366 * our own ways of dealing with the IO errors
3367 */
f2984462 3368 clear_buffer_uptodate(bh);
442a4f63 3369 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3370 }
3371 unlock_buffer(bh);
3372 put_bh(bh);
3373}
3374
29c36d72
AJ
3375int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3376 struct buffer_head **bh_ret)
3377{
3378 struct buffer_head *bh;
3379 struct btrfs_super_block *super;
3380 u64 bytenr;
3381
3382 bytenr = btrfs_sb_offset(copy_num);
3383 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3384 return -EINVAL;
3385
9f6d2510 3386 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3387 /*
3388 * If we fail to read from the underlying devices, as of now
3389 * the best option we have is to mark it EIO.
3390 */
3391 if (!bh)
3392 return -EIO;
3393
3394 super = (struct btrfs_super_block *)bh->b_data;
3395 if (btrfs_super_bytenr(super) != bytenr ||
3396 btrfs_super_magic(super) != BTRFS_MAGIC) {
3397 brelse(bh);
3398 return -EINVAL;
3399 }
3400
3401 *bh_ret = bh;
3402 return 0;
3403}
3404
3405
a512bbf8
YZ
3406struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3407{
3408 struct buffer_head *bh;
3409 struct buffer_head *latest = NULL;
3410 struct btrfs_super_block *super;
3411 int i;
3412 u64 transid = 0;
92fc03fb 3413 int ret = -EINVAL;
a512bbf8
YZ
3414
3415 /* we would like to check all the supers, but that would make
3416 * a btrfs mount succeed after a mkfs from a different FS.
3417 * So, we need to add a special mount option to scan for
3418 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3419 */
3420 for (i = 0; i < 1; i++) {
29c36d72
AJ
3421 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3422 if (ret)
a512bbf8
YZ
3423 continue;
3424
3425 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3426
3427 if (!latest || btrfs_super_generation(super) > transid) {
3428 brelse(latest);
3429 latest = bh;
3430 transid = btrfs_super_generation(super);
3431 } else {
3432 brelse(bh);
3433 }
3434 }
92fc03fb
AJ
3435
3436 if (!latest)
3437 return ERR_PTR(ret);
3438
a512bbf8
YZ
3439 return latest;
3440}
3441
4eedeb75 3442/*
abbb3b8e
DS
3443 * Write superblock @sb to the @device. Do not wait for completion, all the
3444 * buffer heads we write are pinned.
4eedeb75 3445 *
abbb3b8e
DS
3446 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3447 * the expected device size at commit time. Note that max_mirrors must be
3448 * same for write and wait phases.
4eedeb75 3449 *
abbb3b8e 3450 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3451 */
a512bbf8 3452static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3453 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3454{
d5178578
JT
3455 struct btrfs_fs_info *fs_info = device->fs_info;
3456 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3457 struct buffer_head *bh;
3458 int i;
3459 int ret;
3460 int errors = 0;
a512bbf8 3461 u64 bytenr;
1b9e619c 3462 int op_flags;
a512bbf8
YZ
3463
3464 if (max_mirrors == 0)
3465 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3466
d5178578
JT
3467 shash->tfm = fs_info->csum_shash;
3468
a512bbf8
YZ
3469 for (i = 0; i < max_mirrors; i++) {
3470 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3471 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3472 device->commit_total_bytes)
a512bbf8
YZ
3473 break;
3474
abbb3b8e 3475 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3476
d5178578
JT
3477 crypto_shash_init(shash);
3478 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3479 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3480 crypto_shash_final(shash, sb->csum);
4eedeb75 3481
abbb3b8e 3482 /* One reference for us, and we leave it for the caller */
9f6d2510 3483 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3484 BTRFS_SUPER_INFO_SIZE);
3485 if (!bh) {
3486 btrfs_err(device->fs_info,
3487 "couldn't get super buffer head for bytenr %llu",
3488 bytenr);
3489 errors++;
4eedeb75 3490 continue;
abbb3b8e 3491 }
634554dc 3492
abbb3b8e 3493 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3494
abbb3b8e
DS
3495 /* one reference for submit_bh */
3496 get_bh(bh);
4eedeb75 3497
abbb3b8e
DS
3498 set_buffer_uptodate(bh);
3499 lock_buffer(bh);
3500 bh->b_end_io = btrfs_end_buffer_write_sync;
3501 bh->b_private = device;
a512bbf8 3502
387125fc
CM
3503 /*
3504 * we fua the first super. The others we allow
3505 * to go down lazy.
3506 */
1b9e619c
OS
3507 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3508 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3509 op_flags |= REQ_FUA;
3510 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3511 if (ret)
a512bbf8 3512 errors++;
a512bbf8
YZ
3513 }
3514 return errors < i ? 0 : -1;
3515}
3516
abbb3b8e
DS
3517/*
3518 * Wait for write completion of superblocks done by write_dev_supers,
3519 * @max_mirrors same for write and wait phases.
3520 *
3521 * Return number of errors when buffer head is not found or not marked up to
3522 * date.
3523 */
3524static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3525{
3526 struct buffer_head *bh;
3527 int i;
3528 int errors = 0;
b6a535fa 3529 bool primary_failed = false;
abbb3b8e
DS
3530 u64 bytenr;
3531
3532 if (max_mirrors == 0)
3533 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3534
3535 for (i = 0; i < max_mirrors; i++) {
3536 bytenr = btrfs_sb_offset(i);
3537 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3538 device->commit_total_bytes)
3539 break;
3540
9f6d2510
DS
3541 bh = __find_get_block(device->bdev,
3542 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3543 BTRFS_SUPER_INFO_SIZE);
3544 if (!bh) {
3545 errors++;
b6a535fa
HM
3546 if (i == 0)
3547 primary_failed = true;
abbb3b8e
DS
3548 continue;
3549 }
3550 wait_on_buffer(bh);
b6a535fa 3551 if (!buffer_uptodate(bh)) {
abbb3b8e 3552 errors++;
b6a535fa
HM
3553 if (i == 0)
3554 primary_failed = true;
3555 }
abbb3b8e
DS
3556
3557 /* drop our reference */
3558 brelse(bh);
3559
3560 /* drop the reference from the writing run */
3561 brelse(bh);
3562 }
3563
b6a535fa
HM
3564 /* log error, force error return */
3565 if (primary_failed) {
3566 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3567 device->devid);
3568 return -1;
3569 }
3570
abbb3b8e
DS
3571 return errors < i ? 0 : -1;
3572}
3573
387125fc
CM
3574/*
3575 * endio for the write_dev_flush, this will wake anyone waiting
3576 * for the barrier when it is done
3577 */
4246a0b6 3578static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3579{
e0ae9994 3580 complete(bio->bi_private);
387125fc
CM
3581}
3582
3583/*
4fc6441a
AJ
3584 * Submit a flush request to the device if it supports it. Error handling is
3585 * done in the waiting counterpart.
387125fc 3586 */
4fc6441a 3587static void write_dev_flush(struct btrfs_device *device)
387125fc 3588{
c2a9c7ab 3589 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3590 struct bio *bio = device->flush_bio;
387125fc 3591
c2a9c7ab 3592 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3593 return;
387125fc 3594
e0ae9994 3595 bio_reset(bio);
387125fc 3596 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3597 bio_set_dev(bio, device->bdev);
8d910125 3598 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3599 init_completion(&device->flush_wait);
3600 bio->bi_private = &device->flush_wait;
387125fc 3601
43a01111 3602 btrfsic_submit_bio(bio);
1c3063b6 3603 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3604}
387125fc 3605
4fc6441a
AJ
3606/*
3607 * If the flush bio has been submitted by write_dev_flush, wait for it.
3608 */
8c27cb35 3609static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3610{
4fc6441a 3611 struct bio *bio = device->flush_bio;
387125fc 3612
1c3063b6 3613 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3614 return BLK_STS_OK;
387125fc 3615
1c3063b6 3616 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3617 wait_for_completion_io(&device->flush_wait);
387125fc 3618
8c27cb35 3619 return bio->bi_status;
387125fc 3620}
387125fc 3621
d10b82fe 3622static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3623{
6528b99d 3624 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3625 return -EIO;
387125fc
CM
3626 return 0;
3627}
3628
3629/*
3630 * send an empty flush down to each device in parallel,
3631 * then wait for them
3632 */
3633static int barrier_all_devices(struct btrfs_fs_info *info)
3634{
3635 struct list_head *head;
3636 struct btrfs_device *dev;
5af3e8cc 3637 int errors_wait = 0;
4e4cbee9 3638 blk_status_t ret;
387125fc 3639
1538e6c5 3640 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3641 /* send down all the barriers */
3642 head = &info->fs_devices->devices;
1538e6c5 3643 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3644 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3645 continue;
cea7c8bf 3646 if (!dev->bdev)
387125fc 3647 continue;
e12c9621 3648 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3649 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3650 continue;
3651
4fc6441a 3652 write_dev_flush(dev);
58efbc9f 3653 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3654 }
3655
3656 /* wait for all the barriers */
1538e6c5 3657 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3658 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3659 continue;
387125fc 3660 if (!dev->bdev) {
5af3e8cc 3661 errors_wait++;
387125fc
CM
3662 continue;
3663 }
e12c9621 3664 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3665 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3666 continue;
3667
4fc6441a 3668 ret = wait_dev_flush(dev);
401b41e5
AJ
3669 if (ret) {
3670 dev->last_flush_error = ret;
66b4993e
DS
3671 btrfs_dev_stat_inc_and_print(dev,
3672 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3673 errors_wait++;
401b41e5
AJ
3674 }
3675 }
3676
cea7c8bf 3677 if (errors_wait) {
401b41e5
AJ
3678 /*
3679 * At some point we need the status of all disks
3680 * to arrive at the volume status. So error checking
3681 * is being pushed to a separate loop.
3682 */
d10b82fe 3683 return check_barrier_error(info);
387125fc 3684 }
387125fc
CM
3685 return 0;
3686}
3687
943c6e99
ZL
3688int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3689{
8789f4fe
ZL
3690 int raid_type;
3691 int min_tolerated = INT_MAX;
943c6e99 3692
8789f4fe
ZL
3693 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3694 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3695 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3696 btrfs_raid_array[BTRFS_RAID_SINGLE].
3697 tolerated_failures);
943c6e99 3698
8789f4fe
ZL
3699 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3700 if (raid_type == BTRFS_RAID_SINGLE)
3701 continue;
41a6e891 3702 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3703 continue;
8c3e3582 3704 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3705 btrfs_raid_array[raid_type].
3706 tolerated_failures);
3707 }
943c6e99 3708
8789f4fe 3709 if (min_tolerated == INT_MAX) {
ab8d0fc4 3710 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3711 min_tolerated = 0;
3712 }
3713
3714 return min_tolerated;
943c6e99
ZL
3715}
3716
eece6a9c 3717int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3718{
e5e9a520 3719 struct list_head *head;
f2984462 3720 struct btrfs_device *dev;
a061fc8d 3721 struct btrfs_super_block *sb;
f2984462 3722 struct btrfs_dev_item *dev_item;
f2984462
CM
3723 int ret;
3724 int do_barriers;
a236aed1
CM
3725 int max_errors;
3726 int total_errors = 0;
a061fc8d 3727 u64 flags;
f2984462 3728
0b246afa 3729 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3730
3731 /*
3732 * max_mirrors == 0 indicates we're from commit_transaction,
3733 * not from fsync where the tree roots in fs_info have not
3734 * been consistent on disk.
3735 */
3736 if (max_mirrors == 0)
3737 backup_super_roots(fs_info);
f2984462 3738
0b246afa 3739 sb = fs_info->super_for_commit;
a061fc8d 3740 dev_item = &sb->dev_item;
e5e9a520 3741
0b246afa
JM
3742 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3743 head = &fs_info->fs_devices->devices;
3744 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3745
5af3e8cc 3746 if (do_barriers) {
0b246afa 3747 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3748 if (ret) {
3749 mutex_unlock(
0b246afa
JM
3750 &fs_info->fs_devices->device_list_mutex);
3751 btrfs_handle_fs_error(fs_info, ret,
3752 "errors while submitting device barriers.");
5af3e8cc
SB
3753 return ret;
3754 }
3755 }
387125fc 3756
1538e6c5 3757 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3758 if (!dev->bdev) {
3759 total_errors++;
3760 continue;
3761 }
e12c9621 3762 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3763 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3764 continue;
3765
2b82032c 3766 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3767 btrfs_set_stack_device_type(dev_item, dev->type);
3768 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3769 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3770 dev->commit_total_bytes);
ce7213c7
MX
3771 btrfs_set_stack_device_bytes_used(dev_item,
3772 dev->commit_bytes_used);
a061fc8d
CM
3773 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3774 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3775 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3776 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3777 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3778 BTRFS_FSID_SIZE);
a512bbf8 3779
a061fc8d
CM
3780 flags = btrfs_super_flags(sb);
3781 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3782
75cb857d
QW
3783 ret = btrfs_validate_write_super(fs_info, sb);
3784 if (ret < 0) {
3785 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3786 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3787 "unexpected superblock corruption detected");
3788 return -EUCLEAN;
3789 }
3790
abbb3b8e 3791 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3792 if (ret)
3793 total_errors++;
f2984462 3794 }
a236aed1 3795 if (total_errors > max_errors) {
0b246afa
JM
3796 btrfs_err(fs_info, "%d errors while writing supers",
3797 total_errors);
3798 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3799
9d565ba4 3800 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3801 btrfs_handle_fs_error(fs_info, -EIO,
3802 "%d errors while writing supers",
3803 total_errors);
9d565ba4 3804 return -EIO;
a236aed1 3805 }
f2984462 3806
a512bbf8 3807 total_errors = 0;
1538e6c5 3808 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3809 if (!dev->bdev)
3810 continue;
e12c9621 3811 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3812 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3813 continue;
3814
abbb3b8e 3815 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3816 if (ret)
3817 total_errors++;
f2984462 3818 }
0b246afa 3819 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3820 if (total_errors > max_errors) {
0b246afa
JM
3821 btrfs_handle_fs_error(fs_info, -EIO,
3822 "%d errors while writing supers",
3823 total_errors);
79787eaa 3824 return -EIO;
a236aed1 3825 }
f2984462
CM
3826 return 0;
3827}
3828
cb517eab
MX
3829/* Drop a fs root from the radix tree and free it. */
3830void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3831 struct btrfs_root *root)
2619ba1f 3832{
4df27c4d 3833 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3834 radix_tree_delete(&fs_info->fs_roots_radix,
3835 (unsigned long)root->root_key.objectid);
4df27c4d 3836 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3837
3838 if (btrfs_root_refs(&root->root_item) == 0)
3839 synchronize_srcu(&fs_info->subvol_srcu);
3840
1c1ea4f7 3841 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3842 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3843 if (root->reloc_root) {
3844 free_extent_buffer(root->reloc_root->node);
3845 free_extent_buffer(root->reloc_root->commit_root);
3846 btrfs_put_fs_root(root->reloc_root);
3847 root->reloc_root = NULL;
3848 }
3849 }
3321719e 3850
faa2dbf0
JB
3851 if (root->free_ino_pinned)
3852 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3853 if (root->free_ino_ctl)
3854 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3855 btrfs_free_fs_root(root);
4df27c4d
YZ
3856}
3857
84db5ccf 3858void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3859{
57cdc8db 3860 iput(root->ino_cache_inode);
4df27c4d 3861 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3862 if (root->anon_dev)
3863 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3864 if (root->subv_writers)
3865 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3866 free_extent_buffer(root->node);
3867 free_extent_buffer(root->commit_root);
581bb050
LZ
3868 kfree(root->free_ino_ctl);
3869 kfree(root->free_ino_pinned);
b0feb9d9 3870 btrfs_put_fs_root(root);
2619ba1f
CM
3871}
3872
c146afad 3873int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3874{
c146afad
YZ
3875 u64 root_objectid = 0;
3876 struct btrfs_root *gang[8];
65d33fd7
QW
3877 int i = 0;
3878 int err = 0;
3879 unsigned int ret = 0;
3880 int index;
e089f05c 3881
c146afad 3882 while (1) {
65d33fd7 3883 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3884 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3885 (void **)gang, root_objectid,
3886 ARRAY_SIZE(gang));
65d33fd7
QW
3887 if (!ret) {
3888 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3889 break;
65d33fd7 3890 }
5d4f98a2 3891 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3892
c146afad 3893 for (i = 0; i < ret; i++) {
65d33fd7
QW
3894 /* Avoid to grab roots in dead_roots */
3895 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3896 gang[i] = NULL;
3897 continue;
3898 }
3899 /* grab all the search result for later use */
3900 gang[i] = btrfs_grab_fs_root(gang[i]);
3901 }
3902 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3903
65d33fd7
QW
3904 for (i = 0; i < ret; i++) {
3905 if (!gang[i])
3906 continue;
c146afad 3907 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3908 err = btrfs_orphan_cleanup(gang[i]);
3909 if (err)
65d33fd7
QW
3910 break;
3911 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3912 }
3913 root_objectid++;
3914 }
65d33fd7
QW
3915
3916 /* release the uncleaned roots due to error */
3917 for (; i < ret; i++) {
3918 if (gang[i])
3919 btrfs_put_fs_root(gang[i]);
3920 }
3921 return err;
c146afad 3922}
a2135011 3923
6bccf3ab 3924int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3925{
6bccf3ab 3926 struct btrfs_root *root = fs_info->tree_root;
c146afad 3927 struct btrfs_trans_handle *trans;
a74a4b97 3928
0b246afa 3929 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3930 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3931 mutex_unlock(&fs_info->cleaner_mutex);
3932 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3933
3934 /* wait until ongoing cleanup work done */
0b246afa
JM
3935 down_write(&fs_info->cleanup_work_sem);
3936 up_write(&fs_info->cleanup_work_sem);
c71bf099 3937
7a7eaa40 3938 trans = btrfs_join_transaction(root);
3612b495
TI
3939 if (IS_ERR(trans))
3940 return PTR_ERR(trans);
3a45bb20 3941 return btrfs_commit_transaction(trans);
c146afad
YZ
3942}
3943
b105e927 3944void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3945{
c146afad
YZ
3946 int ret;
3947
afcdd129 3948 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3949 /*
3950 * We don't want the cleaner to start new transactions, add more delayed
3951 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3952 * because that frees the task_struct, and the transaction kthread might
3953 * still try to wake up the cleaner.
3954 */
3955 kthread_park(fs_info->cleaner_kthread);
c146afad 3956
7343dd61 3957 /* wait for the qgroup rescan worker to stop */
d06f23d6 3958 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3959
803b2f54
SB
3960 /* wait for the uuid_scan task to finish */
3961 down(&fs_info->uuid_tree_rescan_sem);
3962 /* avoid complains from lockdep et al., set sem back to initial state */
3963 up(&fs_info->uuid_tree_rescan_sem);
3964
837d5b6e 3965 /* pause restriper - we want to resume on mount */
aa1b8cd4 3966 btrfs_pause_balance(fs_info);
837d5b6e 3967
8dabb742
SB
3968 btrfs_dev_replace_suspend_for_unmount(fs_info);
3969
aa1b8cd4 3970 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3971
3972 /* wait for any defraggers to finish */
3973 wait_event(fs_info->transaction_wait,
3974 (atomic_read(&fs_info->defrag_running) == 0));
3975
3976 /* clear out the rbtree of defraggable inodes */
26176e7c 3977 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3978
21c7e756
MX
3979 cancel_work_sync(&fs_info->async_reclaim_work);
3980
b0643e59
DZ
3981 /* Cancel or finish ongoing discard work */
3982 btrfs_discard_cleanup(fs_info);
3983
bc98a42c 3984 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3985 /*
d6fd0ae2
OS
3986 * The cleaner kthread is stopped, so do one final pass over
3987 * unused block groups.
e44163e1 3988 */
0b246afa 3989 btrfs_delete_unused_bgs(fs_info);
e44163e1 3990
6bccf3ab 3991 ret = btrfs_commit_super(fs_info);
acce952b 3992 if (ret)
04892340 3993 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3994 }
3995
af722733
LB
3996 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3997 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 3998 btrfs_error_commit_super(fs_info);
0f7d52f4 3999
e3029d9f
AV
4000 kthread_stop(fs_info->transaction_kthread);
4001 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4002
e187831e 4003 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4004 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4005
04892340 4006 btrfs_free_qgroup_config(fs_info);
fe816d0f 4007 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4008
963d678b 4009 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4010 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4011 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4012 }
bcc63abb 4013
4297ff84
JB
4014 if (percpu_counter_sum(&fs_info->dio_bytes))
4015 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4016 percpu_counter_sum(&fs_info->dio_bytes));
4017
6618a59b 4018 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4019 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4020
faa2dbf0 4021 btrfs_free_fs_roots(fs_info);
d10c5f31 4022
1a4319cc
LB
4023 btrfs_put_block_group_cache(fs_info);
4024
de348ee0
WS
4025 /*
4026 * we must make sure there is not any read request to
4027 * submit after we stopping all workers.
4028 */
4029 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4030 btrfs_stop_all_workers(fs_info);
4031
afcdd129 4032 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4033 free_root_pointers(fs_info, true);
9ad6b7bc 4034
4e19443d
JB
4035 /*
4036 * We must free the block groups after dropping the fs_roots as we could
4037 * have had an IO error and have left over tree log blocks that aren't
4038 * cleaned up until the fs roots are freed. This makes the block group
4039 * accounting appear to be wrong because there's pending reserved bytes,
4040 * so make sure we do the block group cleanup afterwards.
4041 */
4042 btrfs_free_block_groups(fs_info);
4043
13e6c37b 4044 iput(fs_info->btree_inode);
d6bfde87 4045
21adbd5c 4046#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4047 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4048 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4049#endif
4050
0b86a832 4051 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4052 btrfs_close_devices(fs_info->fs_devices);
b248a415 4053
e2d84521 4054 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4055 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4056 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4057 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4058 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4059
bfcea1c6 4060 btrfs_free_csum_hash(fs_info);
53b381b3 4061 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4062 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4063}
4064
b9fab919
CM
4065int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4066 int atomic)
5f39d397 4067{
1259ab75 4068 int ret;
727011e0 4069 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4070
0b32f4bb 4071 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4072 if (!ret)
4073 return ret;
4074
4075 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4076 parent_transid, atomic);
4077 if (ret == -EAGAIN)
4078 return ret;
1259ab75 4079 return !ret;
5f39d397
CM
4080}
4081
5f39d397
CM
4082void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4083{
0b246afa 4084 struct btrfs_fs_info *fs_info;
06ea65a3 4085 struct btrfs_root *root;
5f39d397 4086 u64 transid = btrfs_header_generation(buf);
b9473439 4087 int was_dirty;
b4ce94de 4088
06ea65a3
JB
4089#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4090 /*
4091 * This is a fast path so only do this check if we have sanity tests
52042d8e 4092 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4093 * outside of the sanity tests.
4094 */
b0132a3b 4095 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4096 return;
4097#endif
4098 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4099 fs_info = root->fs_info;
b9447ef8 4100 btrfs_assert_tree_locked(buf);
0b246afa 4101 if (transid != fs_info->generation)
5d163e0e 4102 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4103 buf->start, transid, fs_info->generation);
0b32f4bb 4104 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4105 if (!was_dirty)
104b4e51
NB
4106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4107 buf->len,
4108 fs_info->dirty_metadata_batch);
1f21ef0a 4109#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4110 /*
4111 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4112 * but item data not updated.
4113 * So here we should only check item pointers, not item data.
4114 */
4115 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4116 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4117 btrfs_print_leaf(buf);
1f21ef0a
FM
4118 ASSERT(0);
4119 }
4120#endif
eb60ceac
CM
4121}
4122
2ff7e61e 4123static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4124 int flush_delayed)
16cdcec7
MX
4125{
4126 /*
4127 * looks as though older kernels can get into trouble with
4128 * this code, they end up stuck in balance_dirty_pages forever
4129 */
e2d84521 4130 int ret;
16cdcec7
MX
4131
4132 if (current->flags & PF_MEMALLOC)
4133 return;
4134
b53d3f5d 4135 if (flush_delayed)
2ff7e61e 4136 btrfs_balance_delayed_items(fs_info);
16cdcec7 4137
d814a491
EL
4138 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4139 BTRFS_DIRTY_METADATA_THRESH,
4140 fs_info->dirty_metadata_batch);
e2d84521 4141 if (ret > 0) {
0b246afa 4142 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4143 }
16cdcec7
MX
4144}
4145
2ff7e61e 4146void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4147{
2ff7e61e 4148 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4149}
585ad2c3 4150
2ff7e61e 4151void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4152{
2ff7e61e 4153 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4154}
6b80053d 4155
581c1760
QW
4156int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4157 struct btrfs_key *first_key)
6b80053d 4158{
5ab12d1f 4159 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4160 level, first_key);
6b80053d 4161}
0da5468f 4162
2ff7e61e 4163static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4164{
fe816d0f
NB
4165 /* cleanup FS via transaction */
4166 btrfs_cleanup_transaction(fs_info);
4167
0b246afa 4168 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4169 btrfs_run_delayed_iputs(fs_info);
0b246afa 4170 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4171
0b246afa
JM
4172 down_write(&fs_info->cleanup_work_sem);
4173 up_write(&fs_info->cleanup_work_sem);
acce952b 4174}
4175
143bede5 4176static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4177{
acce952b 4178 struct btrfs_ordered_extent *ordered;
acce952b 4179
199c2a9c 4180 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4181 /*
4182 * This will just short circuit the ordered completion stuff which will
4183 * make sure the ordered extent gets properly cleaned up.
4184 */
199c2a9c 4185 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4186 root_extent_list)
4187 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4188 spin_unlock(&root->ordered_extent_lock);
4189}
4190
4191static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4192{
4193 struct btrfs_root *root;
4194 struct list_head splice;
4195
4196 INIT_LIST_HEAD(&splice);
4197
4198 spin_lock(&fs_info->ordered_root_lock);
4199 list_splice_init(&fs_info->ordered_roots, &splice);
4200 while (!list_empty(&splice)) {
4201 root = list_first_entry(&splice, struct btrfs_root,
4202 ordered_root);
1de2cfde
JB
4203 list_move_tail(&root->ordered_root,
4204 &fs_info->ordered_roots);
199c2a9c 4205
2a85d9ca 4206 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4207 btrfs_destroy_ordered_extents(root);
4208
2a85d9ca
LB
4209 cond_resched();
4210 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4211 }
4212 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4213
4214 /*
4215 * We need this here because if we've been flipped read-only we won't
4216 * get sync() from the umount, so we need to make sure any ordered
4217 * extents that haven't had their dirty pages IO start writeout yet
4218 * actually get run and error out properly.
4219 */
4220 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4221}
4222
35a3621b 4223static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4224 struct btrfs_fs_info *fs_info)
acce952b 4225{
4226 struct rb_node *node;
4227 struct btrfs_delayed_ref_root *delayed_refs;
4228 struct btrfs_delayed_ref_node *ref;
4229 int ret = 0;
4230
4231 delayed_refs = &trans->delayed_refs;
4232
4233 spin_lock(&delayed_refs->lock);
d7df2c79 4234 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4235 spin_unlock(&delayed_refs->lock);
0b246afa 4236 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4237 return ret;
4238 }
4239
5c9d028b 4240 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4241 struct btrfs_delayed_ref_head *head;
0e0adbcf 4242 struct rb_node *n;
e78417d1 4243 bool pin_bytes = false;
acce952b 4244
d7df2c79
JB
4245 head = rb_entry(node, struct btrfs_delayed_ref_head,
4246 href_node);
3069bd26 4247 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4248 continue;
3069bd26 4249
d7df2c79 4250 spin_lock(&head->lock);
e3d03965 4251 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4252 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4253 ref_node);
d7df2c79 4254 ref->in_tree = 0;
e3d03965 4255 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4256 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4257 if (!list_empty(&ref->add_list))
4258 list_del(&ref->add_list);
d7df2c79
JB
4259 atomic_dec(&delayed_refs->num_entries);
4260 btrfs_put_delayed_ref(ref);
e78417d1 4261 }
d7df2c79
JB
4262 if (head->must_insert_reserved)
4263 pin_bytes = true;
4264 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4265 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4266 spin_unlock(&head->lock);
4267 spin_unlock(&delayed_refs->lock);
4268 mutex_unlock(&head->mutex);
acce952b 4269
d7df2c79 4270 if (pin_bytes)
d278850e
JB
4271 btrfs_pin_extent(fs_info, head->bytenr,
4272 head->num_bytes, 1);
31890da0 4273 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4274 btrfs_put_delayed_ref_head(head);
acce952b 4275 cond_resched();
4276 spin_lock(&delayed_refs->lock);
4277 }
4278
4279 spin_unlock(&delayed_refs->lock);
4280
4281 return ret;
4282}
4283
143bede5 4284static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4285{
4286 struct btrfs_inode *btrfs_inode;
4287 struct list_head splice;
4288
4289 INIT_LIST_HEAD(&splice);
4290
eb73c1b7
MX
4291 spin_lock(&root->delalloc_lock);
4292 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4293
4294 while (!list_empty(&splice)) {
fe816d0f 4295 struct inode *inode = NULL;
eb73c1b7
MX
4296 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4297 delalloc_inodes);
fe816d0f 4298 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4299 spin_unlock(&root->delalloc_lock);
acce952b 4300
fe816d0f
NB
4301 /*
4302 * Make sure we get a live inode and that it'll not disappear
4303 * meanwhile.
4304 */
4305 inode = igrab(&btrfs_inode->vfs_inode);
4306 if (inode) {
4307 invalidate_inode_pages2(inode->i_mapping);
4308 iput(inode);
4309 }
eb73c1b7 4310 spin_lock(&root->delalloc_lock);
acce952b 4311 }
eb73c1b7
MX
4312 spin_unlock(&root->delalloc_lock);
4313}
4314
4315static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4316{
4317 struct btrfs_root *root;
4318 struct list_head splice;
4319
4320 INIT_LIST_HEAD(&splice);
4321
4322 spin_lock(&fs_info->delalloc_root_lock);
4323 list_splice_init(&fs_info->delalloc_roots, &splice);
4324 while (!list_empty(&splice)) {
4325 root = list_first_entry(&splice, struct btrfs_root,
4326 delalloc_root);
eb73c1b7
MX
4327 root = btrfs_grab_fs_root(root);
4328 BUG_ON(!root);
4329 spin_unlock(&fs_info->delalloc_root_lock);
4330
4331 btrfs_destroy_delalloc_inodes(root);
4332 btrfs_put_fs_root(root);
4333
4334 spin_lock(&fs_info->delalloc_root_lock);
4335 }
4336 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4337}
4338
2ff7e61e 4339static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4340 struct extent_io_tree *dirty_pages,
4341 int mark)
4342{
4343 int ret;
acce952b 4344 struct extent_buffer *eb;
4345 u64 start = 0;
4346 u64 end;
acce952b 4347
4348 while (1) {
4349 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4350 mark, NULL);
acce952b 4351 if (ret)
4352 break;
4353
91166212 4354 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4355 while (start <= end) {
0b246afa
JM
4356 eb = find_extent_buffer(fs_info, start);
4357 start += fs_info->nodesize;
fd8b2b61 4358 if (!eb)
acce952b 4359 continue;
fd8b2b61 4360 wait_on_extent_buffer_writeback(eb);
acce952b 4361
fd8b2b61
JB
4362 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4363 &eb->bflags))
4364 clear_extent_buffer_dirty(eb);
4365 free_extent_buffer_stale(eb);
acce952b 4366 }
4367 }
4368
4369 return ret;
4370}
4371
2ff7e61e 4372static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4373 struct extent_io_tree *pinned_extents)
4374{
4375 struct extent_io_tree *unpin;
4376 u64 start;
4377 u64 end;
4378 int ret;
ed0eaa14 4379 bool loop = true;
acce952b 4380
4381 unpin = pinned_extents;
ed0eaa14 4382again:
acce952b 4383 while (1) {
0e6ec385
FM
4384 struct extent_state *cached_state = NULL;
4385
fcd5e742
LF
4386 /*
4387 * The btrfs_finish_extent_commit() may get the same range as
4388 * ours between find_first_extent_bit and clear_extent_dirty.
4389 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4390 * the same extent range.
4391 */
4392 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4393 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4394 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4395 if (ret) {
4396 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4397 break;
fcd5e742 4398 }
acce952b 4399
0e6ec385
FM
4400 clear_extent_dirty(unpin, start, end, &cached_state);
4401 free_extent_state(cached_state);
2ff7e61e 4402 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4403 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4404 cond_resched();
4405 }
4406
ed0eaa14 4407 if (loop) {
0b246afa
JM
4408 if (unpin == &fs_info->freed_extents[0])
4409 unpin = &fs_info->freed_extents[1];
ed0eaa14 4410 else
0b246afa 4411 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4412 loop = false;
4413 goto again;
4414 }
4415
acce952b 4416 return 0;
4417}
4418
32da5386 4419static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4420{
4421 struct inode *inode;
4422
4423 inode = cache->io_ctl.inode;
4424 if (inode) {
4425 invalidate_inode_pages2(inode->i_mapping);
4426 BTRFS_I(inode)->generation = 0;
4427 cache->io_ctl.inode = NULL;
4428 iput(inode);
4429 }
4430 btrfs_put_block_group(cache);
4431}
4432
4433void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4434 struct btrfs_fs_info *fs_info)
c79a1751 4435{
32da5386 4436 struct btrfs_block_group *cache;
c79a1751
LB
4437
4438 spin_lock(&cur_trans->dirty_bgs_lock);
4439 while (!list_empty(&cur_trans->dirty_bgs)) {
4440 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4441 struct btrfs_block_group,
c79a1751 4442 dirty_list);
c79a1751
LB
4443
4444 if (!list_empty(&cache->io_list)) {
4445 spin_unlock(&cur_trans->dirty_bgs_lock);
4446 list_del_init(&cache->io_list);
4447 btrfs_cleanup_bg_io(cache);
4448 spin_lock(&cur_trans->dirty_bgs_lock);
4449 }
4450
4451 list_del_init(&cache->dirty_list);
4452 spin_lock(&cache->lock);
4453 cache->disk_cache_state = BTRFS_DC_ERROR;
4454 spin_unlock(&cache->lock);
4455
4456 spin_unlock(&cur_trans->dirty_bgs_lock);
4457 btrfs_put_block_group(cache);
ba2c4d4e 4458 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4459 spin_lock(&cur_trans->dirty_bgs_lock);
4460 }
4461 spin_unlock(&cur_trans->dirty_bgs_lock);
4462
45ae2c18
NB
4463 /*
4464 * Refer to the definition of io_bgs member for details why it's safe
4465 * to use it without any locking
4466 */
c79a1751
LB
4467 while (!list_empty(&cur_trans->io_bgs)) {
4468 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4469 struct btrfs_block_group,
c79a1751 4470 io_list);
c79a1751
LB
4471
4472 list_del_init(&cache->io_list);
4473 spin_lock(&cache->lock);
4474 cache->disk_cache_state = BTRFS_DC_ERROR;
4475 spin_unlock(&cache->lock);
4476 btrfs_cleanup_bg_io(cache);
4477 }
4478}
4479
49b25e05 4480void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4481 struct btrfs_fs_info *fs_info)
49b25e05 4482{
bbbf7243
NB
4483 struct btrfs_device *dev, *tmp;
4484
2ff7e61e 4485 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4486 ASSERT(list_empty(&cur_trans->dirty_bgs));
4487 ASSERT(list_empty(&cur_trans->io_bgs));
4488
bbbf7243
NB
4489 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4490 post_commit_list) {
4491 list_del_init(&dev->post_commit_list);
4492 }
4493
2ff7e61e 4494 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4495
4a9d8bde 4496 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4497 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4498
4a9d8bde 4499 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4500 wake_up(&fs_info->transaction_wait);
49b25e05 4501
ccdf9b30
JM
4502 btrfs_destroy_delayed_inodes(fs_info);
4503 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4504
2ff7e61e 4505 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4506 EXTENT_DIRTY);
2ff7e61e 4507 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4508 fs_info->pinned_extents);
49b25e05 4509
4a9d8bde
MX
4510 cur_trans->state =TRANS_STATE_COMPLETED;
4511 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4512}
4513
2ff7e61e 4514static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4515{
4516 struct btrfs_transaction *t;
acce952b 4517
0b246afa 4518 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4519
0b246afa
JM
4520 spin_lock(&fs_info->trans_lock);
4521 while (!list_empty(&fs_info->trans_list)) {
4522 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4523 struct btrfs_transaction, list);
4524 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4525 refcount_inc(&t->use_count);
0b246afa 4526 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4527 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4528 btrfs_put_transaction(t);
0b246afa 4529 spin_lock(&fs_info->trans_lock);
724e2315
JB
4530 continue;
4531 }
0b246afa 4532 if (t == fs_info->running_transaction) {
724e2315 4533 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4534 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4535 /*
4536 * We wait for 0 num_writers since we don't hold a trans
4537 * handle open currently for this transaction.
4538 */
4539 wait_event(t->writer_wait,
4540 atomic_read(&t->num_writers) == 0);
4541 } else {
0b246afa 4542 spin_unlock(&fs_info->trans_lock);
724e2315 4543 }
2ff7e61e 4544 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4545
0b246afa
JM
4546 spin_lock(&fs_info->trans_lock);
4547 if (t == fs_info->running_transaction)
4548 fs_info->running_transaction = NULL;
acce952b 4549 list_del_init(&t->list);
0b246afa 4550 spin_unlock(&fs_info->trans_lock);
acce952b 4551
724e2315 4552 btrfs_put_transaction(t);
2ff7e61e 4553 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4554 spin_lock(&fs_info->trans_lock);
724e2315 4555 }
0b246afa
JM
4556 spin_unlock(&fs_info->trans_lock);
4557 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4558 btrfs_destroy_delayed_inodes(fs_info);
4559 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4560 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4561 btrfs_destroy_all_delalloc_inodes(fs_info);
4562 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4563
4564 return 0;
4565}
4566
e8c9f186 4567static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4568 /* mandatory callbacks */
0b86a832 4569 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4570 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4571};