]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: drop stale reference to volume_mutex
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8 255 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 256 */
c67b3892 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 258{
d5178578 259 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 262 char *kaddr;
e9be5a30 263 int i;
d5178578
JT
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
e9be5a30
DS
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 270
e9be5a30
DS
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 274 }
71a63551 275 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 276 crypto_shash_final(shash, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
1259ab75 285static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
1259ab75 288{
2ac55d41 289 struct extent_state *cached_state = NULL;
1259ab75 290 int ret;
2755a0de 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
b9fab919
CM
296 if (atomic)
297 return -EAGAIN;
298
a26e8c9f
JB
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
300aa896 301 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
302 }
303
2ac55d41 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 305 &cached_state);
0b32f4bb 306 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
94647322
DS
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
29549aec 314 parent_transid, btrfs_header_generation(eb));
1259ab75 315 ret = 1;
a26e8c9f
JB
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
01327610 320 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
33958dc6 327out:
2ac55d41 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 329 &cached_state);
472b909f
JB
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
1259ab75 332 return ret;
1259ab75
CM
333}
334
e7e16f48
JT
335static bool btrfs_supported_super_csum(u16 csum_type)
336{
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 339 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 340 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 341 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
342 return true;
343 default:
344 return false;
345 }
346}
347
1104a885
DS
348/*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
ab8d0fc4
JM
352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
1104a885
DS
354{
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 357 char result[BTRFS_CSUM_SIZE];
d5178578
JT
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
1104a885 361
51bce6c9
JT
362 /*
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
366 */
fd08001f
EB
367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 369
51bce6c9
JT
370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 return 1;
1104a885 372
e7e16f48 373 return 0;
1104a885
DS
374}
375
e064d5e9 376int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 377 struct btrfs_key *first_key, u64 parent_transid)
581c1760 378{
e064d5e9 379 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
380 int found_level;
381 struct btrfs_key found_key;
382 int ret;
383
384 found_level = btrfs_header_level(eb);
385 if (found_level != level) {
63489055
QW
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
388 btrfs_err(fs_info,
389"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb->start, level, found_level);
581c1760
QW
391 return -EIO;
392 }
393
394 if (!first_key)
395 return 0;
396
5d41be6f
QW
397 /*
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
402 */
403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 return 0;
62fdaa52
QW
405
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb) == 0) {
408 btrfs_err(fs_info,
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 eb->start);
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 return -EUCLEAN;
413 }
414
581c1760
QW
415 if (found_level)
416 btrfs_node_key_to_cpu(eb, &found_key, 0);
417 else
418 btrfs_item_key_to_cpu(eb, &found_key, 0);
419 ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
581c1760 421 if (ret) {
63489055
QW
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 424 btrfs_err(fs_info,
ff76a864
LB
425"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb->start, parent_transid, first_key->objectid,
427 first_key->type, first_key->offset,
428 found_key.objectid, found_key.type,
429 found_key.offset);
581c1760 430 }
581c1760
QW
431 return ret;
432}
433
d352ac68
CM
434/*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
437 *
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
d352ac68 441 */
5ab12d1f 442static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
443 u64 parent_transid, int level,
444 struct btrfs_key *first_key)
f188591e 445{
5ab12d1f 446 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 447 struct extent_io_tree *io_tree;
ea466794 448 int failed = 0;
f188591e
CM
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
ea466794 452 int failed_mirror = 0;
f188591e 453
0b246afa 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 455 while (1) {
f8397d69 456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 458 if (!ret) {
581c1760 459 if (verify_parent_transid(io_tree, eb,
b9fab919 460 parent_transid, 0))
256dd1bb 461 ret = -EIO;
e064d5e9 462 else if (btrfs_verify_level_key(eb, level,
448de471 463 first_key, parent_transid))
581c1760
QW
464 ret = -EUCLEAN;
465 else
466 break;
256dd1bb 467 }
d397712b 468
0b246afa 469 num_copies = btrfs_num_copies(fs_info,
f188591e 470 eb->start, eb->len);
4235298e 471 if (num_copies == 1)
ea466794 472 break;
4235298e 473
5cf1ab56
JB
474 if (!failed_mirror) {
475 failed = 1;
476 failed_mirror = eb->read_mirror;
477 }
478
f188591e 479 mirror_num++;
ea466794
JB
480 if (mirror_num == failed_mirror)
481 mirror_num++;
482
4235298e 483 if (mirror_num > num_copies)
ea466794 484 break;
f188591e 485 }
ea466794 486
c0901581 487 if (failed && !ret && failed_mirror)
20a1fbf9 488 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
489
490 return ret;
f188591e 491}
19c00ddc 492
d352ac68 493/*
d397712b
CM
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 496 */
d397712b 497
01d58472 498static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 499{
4eee4fa4 500 u64 start = page_offset(page);
19c00ddc 501 u64 found_start;
2996e1f8
JT
502 u8 result[BTRFS_CSUM_SIZE];
503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 504 struct extent_buffer *eb;
8d47a0d8 505 int ret;
f188591e 506
4f2de97a
JB
507 eb = (struct extent_buffer *)page->private;
508 if (page != eb->pages[0])
509 return 0;
0f805531 510
19c00ddc 511 found_start = btrfs_header_bytenr(eb);
0f805531
AL
512 /*
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
515 */
516 if (WARN_ON(found_start != start))
517 return -EUCLEAN;
518 if (WARN_ON(!PageUptodate(page)))
519 return -EUCLEAN;
520
de37aa51 521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
522 offsetof(struct btrfs_header, fsid),
523 BTRFS_FSID_SIZE) == 0);
0f805531 524
c67b3892 525 csum_tree_block(eb, result);
2996e1f8 526
8d47a0d8
QW
527 if (btrfs_header_level(eb))
528 ret = btrfs_check_node(eb);
529 else
530 ret = btrfs_check_leaf_full(eb);
531
532 if (ret < 0) {
c06631b0 533 btrfs_print_tree(eb, 0);
8d47a0d8
QW
534 btrfs_err(fs_info,
535 "block=%llu write time tree block corruption detected",
536 eb->start);
c06631b0 537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
538 return ret;
539 }
2996e1f8 540 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 541
2996e1f8 542 return 0;
19c00ddc
CM
543}
544
b0c9b3b0 545static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 546{
b0c9b3b0 547 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 549 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
550 int ret = 1;
551
9a8658e3
DS
552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 BTRFS_FSID_SIZE);
2b82032c 554 while (fs_devices) {
7239ff4b
NB
555 u8 *metadata_uuid;
556
557 /*
558 * Checking the incompat flag is only valid for the current
559 * fs. For seed devices it's forbidden to have their uuid
560 * changed so reading ->fsid in this case is fine
561 */
562 if (fs_devices == fs_info->fs_devices &&
563 btrfs_fs_incompat(fs_info, METADATA_UUID))
564 metadata_uuid = fs_devices->metadata_uuid;
565 else
566 metadata_uuid = fs_devices->fsid;
567
568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
569 ret = 0;
570 break;
571 }
572 fs_devices = fs_devices->seed;
573 }
574 return ret;
575}
576
facc8a22
MX
577static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 u64 phy_offset, struct page *page,
579 u64 start, u64 end, int mirror)
ce9adaa5 580{
ce9adaa5
CM
581 u64 found_start;
582 int found_level;
ce9adaa5 583 struct extent_buffer *eb;
15b6e8a8
DS
584 struct btrfs_fs_info *fs_info;
585 u16 csum_size;
f188591e 586 int ret = 0;
2996e1f8 587 u8 result[BTRFS_CSUM_SIZE];
727011e0 588 int reads_done;
ce9adaa5 589
ce9adaa5
CM
590 if (!page->private)
591 goto out;
d397712b 592
4f2de97a 593 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
594 fs_info = eb->fs_info;
595 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 596
0b32f4bb
JB
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
67439dad 600 atomic_inc(&eb->refs);
0b32f4bb
JB
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
603 if (!reads_done)
604 goto err;
f188591e 605
5cf1ab56 606 eb->read_mirror = mirror;
656f30db 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
608 ret = -EIO;
609 goto err;
610 }
611
ce9adaa5 612 found_start = btrfs_header_bytenr(eb);
727011e0 613 if (found_start != eb->start) {
893bf4b1
SY
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
f188591e 616 ret = -EIO;
ce9adaa5
CM
617 goto err;
618 }
b0c9b3b0 619 if (check_tree_block_fsid(eb)) {
02873e43
ZL
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
1259ab75
CM
622 ret = -EIO;
623 goto err;
624 }
ce9adaa5 625 found_level = btrfs_header_level(eb);
1c24c3ce 626 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632
85d4e461
CM
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
4008c04a 635
c67b3892 636 csum_tree_block(eb, result);
a826d6dc 637
2996e1f8
JT
638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 u32 val;
640 u32 found = 0;
641
642 memcpy(&found, result, csum_size);
643
644 read_extent_buffer(eb, &val, 0, csum_size);
645 btrfs_warn_rl(fs_info,
646 "%s checksum verify failed on %llu wanted %x found %x level %d",
647 fs_info->sb->s_id, eb->start,
648 val, found, btrfs_header_level(eb));
649 ret = -EUCLEAN;
650 goto err;
651 }
652
a826d6dc
JB
653 /*
654 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 * that we don't try and read the other copies of this block, just
656 * return -EIO.
657 */
1c4360ee 658 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
659 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660 ret = -EIO;
661 }
ce9adaa5 662
813fd1dc 663 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
664 ret = -EIO;
665
0b32f4bb
JB
666 if (!ret)
667 set_extent_buffer_uptodate(eb);
75391f0d
QW
668 else
669 btrfs_err(fs_info,
670 "block=%llu read time tree block corruption detected",
671 eb->start);
ce9adaa5 672err:
79fb65a1
JB
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 675 btree_readahead_hook(eb, ret);
4bb31e92 676
53b381b3
DW
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
0b32f4bb 684 clear_extent_buffer_uptodate(eb);
53b381b3 685 }
0b32f4bb 686 free_extent_buffer(eb);
ce9adaa5 687out:
f188591e 688 return ret;
ce9adaa5
CM
689}
690
4246a0b6 691static void end_workqueue_bio(struct bio *bio)
ce9adaa5 692{
97eb6b69 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 694 struct btrfs_fs_info *fs_info;
9e0af237 695 struct btrfs_workqueue *wq;
ce9adaa5 696
ce9adaa5 697 fs_info = end_io_wq->info;
4e4cbee9 698 end_io_wq->status = bio->bi_status;
d20f7043 699
37226b21 700 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 702 wq = fs_info->endio_meta_write_workers;
a0cac0ec 703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 704 wq = fs_info->endio_freespace_worker;
a0cac0ec 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 706 wq = fs_info->endio_raid56_workers;
a0cac0ec 707 else
9e0af237 708 wq = fs_info->endio_write_workers;
d20f7043 709 } else {
5c047a69 710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 711 wq = fs_info->endio_raid56_workers;
a0cac0ec 712 else if (end_io_wq->metadata)
9e0af237 713 wq = fs_info->endio_meta_workers;
a0cac0ec 714 else
9e0af237 715 wq = fs_info->endio_workers;
d20f7043 716 }
9e0af237 717
a0cac0ec 718 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 719 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
720}
721
4e4cbee9 722blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 723 enum btrfs_wq_endio_type metadata)
0b86a832 724{
97eb6b69 725 struct btrfs_end_io_wq *end_io_wq;
8b110e39 726
97eb6b69 727 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 728 if (!end_io_wq)
4e4cbee9 729 return BLK_STS_RESOURCE;
ce9adaa5
CM
730
731 end_io_wq->private = bio->bi_private;
732 end_io_wq->end_io = bio->bi_end_io;
22c59948 733 end_io_wq->info = info;
4e4cbee9 734 end_io_wq->status = 0;
ce9adaa5 735 end_io_wq->bio = bio;
22c59948 736 end_io_wq->metadata = metadata;
ce9adaa5
CM
737
738 bio->bi_private = end_io_wq;
739 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
740 return 0;
741}
742
4a69a410
CM
743static void run_one_async_start(struct btrfs_work *work)
744{
4a69a410 745 struct async_submit_bio *async;
4e4cbee9 746 blk_status_t ret;
4a69a410
CM
747
748 async = container_of(work, struct async_submit_bio, work);
c6100a4b 749 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
750 async->bio_offset);
751 if (ret)
4e4cbee9 752 async->status = ret;
4a69a410
CM
753}
754
06ea01b1
DS
755/*
756 * In order to insert checksums into the metadata in large chunks, we wait
757 * until bio submission time. All the pages in the bio are checksummed and
758 * sums are attached onto the ordered extent record.
759 *
760 * At IO completion time the csums attached on the ordered extent record are
761 * inserted into the tree.
762 */
4a69a410 763static void run_one_async_done(struct btrfs_work *work)
8b712842 764{
8b712842 765 struct async_submit_bio *async;
06ea01b1
DS
766 struct inode *inode;
767 blk_status_t ret;
8b712842
CM
768
769 async = container_of(work, struct async_submit_bio, work);
06ea01b1 770 inode = async->private_data;
4854ddd0 771
bb7ab3b9 772 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
773 if (async->status) {
774 async->bio->bi_status = async->status;
4246a0b6 775 bio_endio(async->bio);
79787eaa
JM
776 return;
777 }
778
ec39f769
CM
779 /*
780 * All of the bios that pass through here are from async helpers.
781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 * This changes nothing when cgroups aren't in use.
783 */
784 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
786 if (ret) {
787 async->bio->bi_status = ret;
788 bio_endio(async->bio);
789 }
4a69a410
CM
790}
791
792static void run_one_async_free(struct btrfs_work *work)
793{
794 struct async_submit_bio *async;
795
796 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
797 kfree(async);
798}
799
8c27cb35
LT
800blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 int mirror_num, unsigned long bio_flags,
802 u64 bio_offset, void *private_data,
e288c080 803 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
804{
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
4e4cbee9 809 return BLK_STS_RESOURCE;
44b8bd7e 810
c6100a4b 811 async->private_data = private_data;
44b8bd7e
CM
812 async->bio = bio;
813 async->mirror_num = mirror_num;
4a69a410 814 async->submit_bio_start = submit_bio_start;
4a69a410 815
a0cac0ec
OS
816 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817 run_one_async_free);
4a69a410 818
eaf25d93 819 async->bio_offset = bio_offset;
8c8bee1d 820
4e4cbee9 821 async->status = 0;
79787eaa 822
67f055c7 823 if (op_is_sync(bio->bi_opf))
5cdc7ad3 824 btrfs_set_work_high_priority(&async->work);
d313d7a3 825
5cdc7ad3 826 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
827 return 0;
828}
829
4e4cbee9 830static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 831{
2c30c71b 832 struct bio_vec *bvec;
ce3ed71a 833 struct btrfs_root *root;
2b070cfe 834 int ret = 0;
6dc4f100 835 struct bvec_iter_all iter_all;
ce3ed71a 836
c09abff8 837 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 838 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
841 if (ret)
842 break;
ce3ed71a 843 }
2c30c71b 844
4e4cbee9 845 return errno_to_blk_status(ret);
ce3ed71a
CM
846}
847
d0ee3934 848static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 849 u64 bio_offset)
22c59948 850{
8b712842
CM
851 /*
852 * when we're called for a write, we're already in the async
5443be45 853 * submission context. Just jump into btrfs_map_bio
8b712842 854 */
79787eaa 855 return btree_csum_one_bio(bio);
4a69a410 856}
22c59948 857
9b4e675a
DS
858static int check_async_write(struct btrfs_fs_info *fs_info,
859 struct btrfs_inode *bi)
de0022b9 860{
6300463b
LB
861 if (atomic_read(&bi->sync_writers))
862 return 0;
9b4e675a 863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 864 return 0;
de0022b9
JB
865 return 1;
866}
867
a56b1c7b 868static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
869 int mirror_num,
870 unsigned long bio_flags)
44b8bd7e 871{
0b246afa 872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 873 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 874 blk_status_t ret;
cad321ad 875
37226b21 876 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
877 /*
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
880 */
0b246afa
JM
881 ret = btrfs_bio_wq_end_io(fs_info, bio,
882 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 883 if (ret)
61891923 884 goto out_w_error;
08635bae 885 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
886 } else if (!async) {
887 ret = btree_csum_one_bio(bio);
888 if (ret)
61891923 889 goto out_w_error;
08635bae 890 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
891 } else {
892 /*
893 * kthread helpers are used to submit writes so that
894 * checksumming can happen in parallel across all CPUs
895 */
c6100a4b 896 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 897 0, inode, btree_submit_bio_start);
44b8bd7e 898 }
d313d7a3 899
4246a0b6
CH
900 if (ret)
901 goto out_w_error;
902 return 0;
903
61891923 904out_w_error:
4e4cbee9 905 bio->bi_status = ret;
4246a0b6 906 bio_endio(bio);
61891923 907 return ret;
44b8bd7e
CM
908}
909
3dd1462e 910#ifdef CONFIG_MIGRATION
784b4e29 911static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
912 struct page *newpage, struct page *page,
913 enum migrate_mode mode)
784b4e29
CM
914{
915 /*
916 * we can't safely write a btree page from here,
917 * we haven't done the locking hook
918 */
919 if (PageDirty(page))
920 return -EAGAIN;
921 /*
922 * Buffers may be managed in a filesystem specific way.
923 * We must have no buffers or drop them.
924 */
925 if (page_has_private(page) &&
926 !try_to_release_page(page, GFP_KERNEL))
927 return -EAGAIN;
a6bc32b8 928 return migrate_page(mapping, newpage, page, mode);
784b4e29 929}
3dd1462e 930#endif
784b4e29 931
0da5468f
CM
932
933static int btree_writepages(struct address_space *mapping,
934 struct writeback_control *wbc)
935{
e2d84521
MX
936 struct btrfs_fs_info *fs_info;
937 int ret;
938
d8d5f3e1 939 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
940
941 if (wbc->for_kupdate)
942 return 0;
943
e2d84521 944 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 945 /* this is a bit racy, but that's ok */
d814a491
EL
946 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947 BTRFS_DIRTY_METADATA_THRESH,
948 fs_info->dirty_metadata_batch);
e2d84521 949 if (ret < 0)
793955bc 950 return 0;
793955bc 951 }
0b32f4bb 952 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
953}
954
b2950863 955static int btree_readpage(struct file *file, struct page *page)
5f39d397 956{
71ad38b4 957 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 958}
22b0ebda 959
70dec807 960static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 961{
98509cfc 962 if (PageWriteback(page) || PageDirty(page))
d397712b 963 return 0;
0c4e538b 964
f7a52a40 965 return try_release_extent_buffer(page);
d98237b3
CM
966}
967
d47992f8
LC
968static void btree_invalidatepage(struct page *page, unsigned int offset,
969 unsigned int length)
d98237b3 970{
d1310b2e
CM
971 struct extent_io_tree *tree;
972 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
973 extent_invalidatepage(tree, page, offset);
974 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 975 if (PagePrivate(page)) {
efe120a0
FH
976 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977 "page private not zero on page %llu",
978 (unsigned long long)page_offset(page));
9ad6b7bc
CM
979 ClearPagePrivate(page);
980 set_page_private(page, 0);
09cbfeaf 981 put_page(page);
9ad6b7bc 982 }
d98237b3
CM
983}
984
0b32f4bb
JB
985static int btree_set_page_dirty(struct page *page)
986{
bb146eb2 987#ifdef DEBUG
0b32f4bb
JB
988 struct extent_buffer *eb;
989
990 BUG_ON(!PagePrivate(page));
991 eb = (struct extent_buffer *)page->private;
992 BUG_ON(!eb);
993 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
994 BUG_ON(!atomic_read(&eb->refs));
995 btrfs_assert_tree_locked(eb);
bb146eb2 996#endif
0b32f4bb
JB
997 return __set_page_dirty_nobuffers(page);
998}
999
7f09410b 1000static const struct address_space_operations btree_aops = {
d98237b3 1001 .readpage = btree_readpage,
0da5468f 1002 .writepages = btree_writepages,
5f39d397
CM
1003 .releasepage = btree_releasepage,
1004 .invalidatepage = btree_invalidatepage,
5a92bc88 1005#ifdef CONFIG_MIGRATION
784b4e29 1006 .migratepage = btree_migratepage,
5a92bc88 1007#endif
0b32f4bb 1008 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1009};
1010
2ff7e61e 1011void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1012{
5f39d397 1013 struct extent_buffer *buf = NULL;
537f38f0 1014 int ret;
090d1875 1015
2ff7e61e 1016 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1017 if (IS_ERR(buf))
6197d86e 1018 return;
537f38f0 1019
c2ccfbc6 1020 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1021 if (ret < 0)
1022 free_extent_buffer_stale(buf);
1023 else
1024 free_extent_buffer(buf);
090d1875
CM
1025}
1026
2ff7e61e
JM
1027struct extent_buffer *btrfs_find_create_tree_block(
1028 struct btrfs_fs_info *fs_info,
1029 u64 bytenr)
0999df54 1030{
0b246afa
JM
1031 if (btrfs_is_testing(fs_info))
1032 return alloc_test_extent_buffer(fs_info, bytenr);
1033 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1034}
1035
581c1760
QW
1036/*
1037 * Read tree block at logical address @bytenr and do variant basic but critical
1038 * verification.
1039 *
1040 * @parent_transid: expected transid of this tree block, skip check if 0
1041 * @level: expected level, mandatory check
1042 * @first_key: expected key in slot 0, skip check if NULL
1043 */
2ff7e61e 1044struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1045 u64 parent_transid, int level,
1046 struct btrfs_key *first_key)
0999df54
CM
1047{
1048 struct extent_buffer *buf = NULL;
0999df54
CM
1049 int ret;
1050
2ff7e61e 1051 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1052 if (IS_ERR(buf))
1053 return buf;
0999df54 1054
5ab12d1f 1055 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1056 level, first_key);
0f0fe8f7 1057 if (ret) {
537f38f0 1058 free_extent_buffer_stale(buf);
64c043de 1059 return ERR_PTR(ret);
0f0fe8f7 1060 }
5f39d397 1061 return buf;
ce9adaa5 1062
eb60ceac
CM
1063}
1064
6a884d7d 1065void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1066{
6a884d7d 1067 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1068 if (btrfs_header_generation(buf) ==
e2d84521 1069 fs_info->running_transaction->transid) {
b9447ef8 1070 btrfs_assert_tree_locked(buf);
b4ce94de 1071
b9473439 1072 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1073 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1074 -buf->len,
1075 fs_info->dirty_metadata_batch);
ed7b63eb 1076 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1077 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1078 clear_extent_buffer_dirty(buf);
1079 }
925baedd 1080 }
5f39d397
CM
1081}
1082
da17066c 1083static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1084 u64 objectid)
d97e63b6 1085{
7c0260ee 1086 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1087 root->fs_info = fs_info;
cfaa7295 1088 root->node = NULL;
a28ec197 1089 root->commit_root = NULL;
27cdeb70 1090 root->state = 0;
d68fc57b 1091 root->orphan_cleanup_state = 0;
0b86a832 1092
0f7d52f4 1093 root->last_trans = 0;
13a8a7c8 1094 root->highest_objectid = 0;
eb73c1b7 1095 root->nr_delalloc_inodes = 0;
199c2a9c 1096 root->nr_ordered_extents = 0;
6bef4d31 1097 root->inode_tree = RB_ROOT;
16cdcec7 1098 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1099 root->block_rsv = NULL;
0b86a832
CM
1100
1101 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1102 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1103 INIT_LIST_HEAD(&root->delalloc_inodes);
1104 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1105 INIT_LIST_HEAD(&root->ordered_extents);
1106 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1107 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1108 INIT_LIST_HEAD(&root->logged_list[0]);
1109 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1110 spin_lock_init(&root->inode_lock);
eb73c1b7 1111 spin_lock_init(&root->delalloc_lock);
199c2a9c 1112 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1113 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1114 spin_lock_init(&root->log_extents_lock[0]);
1115 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1116 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1117 mutex_init(&root->objectid_mutex);
e02119d5 1118 mutex_init(&root->log_mutex);
31f3d255 1119 mutex_init(&root->ordered_extent_mutex);
573bfb72 1120 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1121 init_waitqueue_head(&root->log_writer_wait);
1122 init_waitqueue_head(&root->log_commit_wait[0]);
1123 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1124 INIT_LIST_HEAD(&root->log_ctxs[0]);
1125 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1126 atomic_set(&root->log_commit[0], 0);
1127 atomic_set(&root->log_commit[1], 0);
1128 atomic_set(&root->log_writers, 0);
2ecb7923 1129 atomic_set(&root->log_batch, 0);
0700cea7 1130 refcount_set(&root->refs, 1);
8ecebf4d 1131 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1132 atomic_set(&root->nr_swapfiles, 0);
7237f183 1133 root->log_transid = 0;
d1433deb 1134 root->log_transid_committed = -1;
257c62e1 1135 root->last_log_commit = 0;
7c0260ee 1136 if (!dummy)
43eb5f29
QW
1137 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1138 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1139
3768f368
CM
1140 memset(&root->root_key, 0, sizeof(root->root_key));
1141 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1142 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1143 if (!dummy)
06ea65a3
JB
1144 root->defrag_trans_start = fs_info->generation;
1145 else
1146 root->defrag_trans_start = 0;
4d775673 1147 root->root_key.objectid = objectid;
0ee5dc67 1148 root->anon_dev = 0;
8ea05e3a 1149
5f3ab90a 1150 spin_lock_init(&root->root_item_lock);
370a11b8 1151 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1152#ifdef CONFIG_BTRFS_DEBUG
1153 INIT_LIST_HEAD(&root->leak_list);
1154 spin_lock(&fs_info->fs_roots_radix_lock);
1155 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1156 spin_unlock(&fs_info->fs_roots_radix_lock);
1157#endif
3768f368
CM
1158}
1159
74e4d827 1160static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1161 u64 objectid, gfp_t flags)
6f07e42e 1162{
74e4d827 1163 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1164 if (root)
96dfcb46 1165 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1166 return root;
1167}
1168
06ea65a3
JB
1169#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1170/* Should only be used by the testing infrastructure */
da17066c 1171struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1172{
1173 struct btrfs_root *root;
1174
7c0260ee
JM
1175 if (!fs_info)
1176 return ERR_PTR(-EINVAL);
1177
96dfcb46 1178 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1179 if (!root)
1180 return ERR_PTR(-ENOMEM);
da17066c 1181
b9ef22de 1182 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1183 root->alloc_bytenr = 0;
06ea65a3
JB
1184
1185 return root;
1186}
1187#endif
1188
20897f5c 1189struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1190 u64 objectid)
1191{
9b7a2440 1192 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1193 struct extent_buffer *leaf;
1194 struct btrfs_root *tree_root = fs_info->tree_root;
1195 struct btrfs_root *root;
1196 struct btrfs_key key;
b89f6d1f 1197 unsigned int nofs_flag;
20897f5c 1198 int ret = 0;
20897f5c 1199
b89f6d1f
FM
1200 /*
1201 * We're holding a transaction handle, so use a NOFS memory allocation
1202 * context to avoid deadlock if reclaim happens.
1203 */
1204 nofs_flag = memalloc_nofs_save();
96dfcb46 1205 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1206 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1207 if (!root)
1208 return ERR_PTR(-ENOMEM);
1209
20897f5c
AJ
1210 root->root_key.objectid = objectid;
1211 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1212 root->root_key.offset = 0;
1213
4d75f8a9 1214 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1215 if (IS_ERR(leaf)) {
1216 ret = PTR_ERR(leaf);
1dd05682 1217 leaf = NULL;
20897f5c
AJ
1218 goto fail;
1219 }
1220
20897f5c 1221 root->node = leaf;
20897f5c
AJ
1222 btrfs_mark_buffer_dirty(leaf);
1223
1224 root->commit_root = btrfs_root_node(root);
27cdeb70 1225 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1226
1227 root->root_item.flags = 0;
1228 root->root_item.byte_limit = 0;
1229 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1230 btrfs_set_root_generation(&root->root_item, trans->transid);
1231 btrfs_set_root_level(&root->root_item, 0);
1232 btrfs_set_root_refs(&root->root_item, 1);
1233 btrfs_set_root_used(&root->root_item, leaf->len);
1234 btrfs_set_root_last_snapshot(&root->root_item, 0);
1235 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1236 if (is_fstree(objectid))
807fc790
AS
1237 generate_random_guid(root->root_item.uuid);
1238 else
1239 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1240 root->root_item.drop_level = 0;
1241
1242 key.objectid = objectid;
1243 key.type = BTRFS_ROOT_ITEM_KEY;
1244 key.offset = 0;
1245 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1246 if (ret)
1247 goto fail;
1248
1249 btrfs_tree_unlock(leaf);
1250
1dd05682
TI
1251 return root;
1252
20897f5c 1253fail:
8c38938c 1254 if (leaf)
1dd05682 1255 btrfs_tree_unlock(leaf);
00246528 1256 btrfs_put_root(root);
20897f5c 1257
1dd05682 1258 return ERR_PTR(ret);
20897f5c
AJ
1259}
1260
7237f183
YZ
1261static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1262 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1263{
1264 struct btrfs_root *root;
7237f183 1265 struct extent_buffer *leaf;
e02119d5 1266
96dfcb46 1267 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1268 if (!root)
7237f183 1269 return ERR_PTR(-ENOMEM);
e02119d5 1270
e02119d5
CM
1271 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1272 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1273 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1274
7237f183 1275 /*
27cdeb70
MX
1276 * DON'T set REF_COWS for log trees
1277 *
7237f183
YZ
1278 * log trees do not get reference counted because they go away
1279 * before a real commit is actually done. They do store pointers
1280 * to file data extents, and those reference counts still get
1281 * updated (along with back refs to the log tree).
1282 */
e02119d5 1283
4d75f8a9
DS
1284 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1285 NULL, 0, 0, 0);
7237f183 1286 if (IS_ERR(leaf)) {
00246528 1287 btrfs_put_root(root);
7237f183
YZ
1288 return ERR_CAST(leaf);
1289 }
e02119d5 1290
7237f183 1291 root->node = leaf;
e02119d5 1292
e02119d5
CM
1293 btrfs_mark_buffer_dirty(root->node);
1294 btrfs_tree_unlock(root->node);
7237f183
YZ
1295 return root;
1296}
1297
1298int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1299 struct btrfs_fs_info *fs_info)
1300{
1301 struct btrfs_root *log_root;
1302
1303 log_root = alloc_log_tree(trans, fs_info);
1304 if (IS_ERR(log_root))
1305 return PTR_ERR(log_root);
1306 WARN_ON(fs_info->log_root_tree);
1307 fs_info->log_root_tree = log_root;
1308 return 0;
1309}
1310
1311int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1312 struct btrfs_root *root)
1313{
0b246afa 1314 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1315 struct btrfs_root *log_root;
1316 struct btrfs_inode_item *inode_item;
1317
0b246afa 1318 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1319 if (IS_ERR(log_root))
1320 return PTR_ERR(log_root);
1321
1322 log_root->last_trans = trans->transid;
1323 log_root->root_key.offset = root->root_key.objectid;
1324
1325 inode_item = &log_root->root_item.inode;
3cae210f
QW
1326 btrfs_set_stack_inode_generation(inode_item, 1);
1327 btrfs_set_stack_inode_size(inode_item, 3);
1328 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1329 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1330 fs_info->nodesize);
3cae210f 1331 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1332
5d4f98a2 1333 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1334
1335 WARN_ON(root->log_root);
1336 root->log_root = log_root;
1337 root->log_transid = 0;
d1433deb 1338 root->log_transid_committed = -1;
257c62e1 1339 root->last_log_commit = 0;
e02119d5
CM
1340 return 0;
1341}
1342
62a2c73e
JB
1343struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1344 struct btrfs_key *key)
e02119d5
CM
1345{
1346 struct btrfs_root *root;
1347 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1348 struct btrfs_path *path;
84234f3a 1349 u64 generation;
cb517eab 1350 int ret;
581c1760 1351 int level;
0f7d52f4 1352
cb517eab
MX
1353 path = btrfs_alloc_path();
1354 if (!path)
0f7d52f4 1355 return ERR_PTR(-ENOMEM);
cb517eab 1356
96dfcb46 1357 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1358 if (!root) {
1359 ret = -ENOMEM;
1360 goto alloc_fail;
0f7d52f4
CM
1361 }
1362
cb517eab
MX
1363 ret = btrfs_find_root(tree_root, key, path,
1364 &root->root_item, &root->root_key);
0f7d52f4 1365 if (ret) {
13a8a7c8
YZ
1366 if (ret > 0)
1367 ret = -ENOENT;
cb517eab 1368 goto find_fail;
0f7d52f4 1369 }
13a8a7c8 1370
84234f3a 1371 generation = btrfs_root_generation(&root->root_item);
581c1760 1372 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1373 root->node = read_tree_block(fs_info,
1374 btrfs_root_bytenr(&root->root_item),
581c1760 1375 generation, level, NULL);
64c043de
LB
1376 if (IS_ERR(root->node)) {
1377 ret = PTR_ERR(root->node);
8c38938c 1378 root->node = NULL;
cb517eab
MX
1379 goto find_fail;
1380 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1381 ret = -EIO;
64c043de 1382 goto find_fail;
416bc658 1383 }
5d4f98a2 1384 root->commit_root = btrfs_root_node(root);
13a8a7c8 1385out:
cb517eab
MX
1386 btrfs_free_path(path);
1387 return root;
1388
cb517eab 1389find_fail:
00246528 1390 btrfs_put_root(root);
cb517eab
MX
1391alloc_fail:
1392 root = ERR_PTR(ret);
1393 goto out;
1394}
1395
a98db0f3 1396static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1397{
1398 int ret;
dcc3eb96 1399 unsigned int nofs_flag;
cb517eab
MX
1400
1401 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1402 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1403 GFP_NOFS);
1404 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1405 ret = -ENOMEM;
1406 goto fail;
1407 }
1408
dcc3eb96
NB
1409 /*
1410 * We might be called under a transaction (e.g. indirect backref
1411 * resolution) which could deadlock if it triggers memory reclaim
1412 */
1413 nofs_flag = memalloc_nofs_save();
1414 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1415 memalloc_nofs_restore(nofs_flag);
1416 if (ret)
8257b2dc 1417 goto fail;
8257b2dc 1418
f39e4571
JB
1419 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1420 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1421 btrfs_check_and_init_root_item(&root->root_item);
1422 }
1423
cb517eab 1424 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1425 spin_lock_init(&root->ino_cache_lock);
1426 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1427
1428 ret = get_anon_bdev(&root->anon_dev);
1429 if (ret)
876d2cf1 1430 goto fail;
f32e48e9
CR
1431
1432 mutex_lock(&root->objectid_mutex);
1433 ret = btrfs_find_highest_objectid(root,
1434 &root->highest_objectid);
1435 if (ret) {
1436 mutex_unlock(&root->objectid_mutex);
876d2cf1 1437 goto fail;
f32e48e9
CR
1438 }
1439
1440 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1441
1442 mutex_unlock(&root->objectid_mutex);
1443
cb517eab
MX
1444 return 0;
1445fail:
84db5ccf 1446 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1447 return ret;
1448}
1449
a98db0f3
JB
1450static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1451 u64 root_id)
cb517eab
MX
1452{
1453 struct btrfs_root *root;
1454
1455 spin_lock(&fs_info->fs_roots_radix_lock);
1456 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1457 (unsigned long)root_id);
bc44d7c4 1458 if (root)
00246528 1459 root = btrfs_grab_root(root);
cb517eab
MX
1460 spin_unlock(&fs_info->fs_roots_radix_lock);
1461 return root;
1462}
1463
1464int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1465 struct btrfs_root *root)
1466{
1467 int ret;
1468
e1860a77 1469 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1470 if (ret)
1471 return ret;
1472
1473 spin_lock(&fs_info->fs_roots_radix_lock);
1474 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1475 (unsigned long)root->root_key.objectid,
1476 root);
af01d2e5 1477 if (ret == 0) {
00246528 1478 btrfs_grab_root(root);
27cdeb70 1479 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1480 }
cb517eab
MX
1481 spin_unlock(&fs_info->fs_roots_radix_lock);
1482 radix_tree_preload_end();
1483
1484 return ret;
1485}
1486
bd647ce3
JB
1487void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1488{
1489#ifdef CONFIG_BTRFS_DEBUG
1490 struct btrfs_root *root;
1491
1492 while (!list_empty(&fs_info->allocated_roots)) {
1493 root = list_first_entry(&fs_info->allocated_roots,
1494 struct btrfs_root, leak_list);
1495 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1496 root->root_key.objectid, root->root_key.offset,
1497 refcount_read(&root->refs));
1498 while (refcount_read(&root->refs) > 1)
00246528
JB
1499 btrfs_put_root(root);
1500 btrfs_put_root(root);
bd647ce3
JB
1501 }
1502#endif
1503}
1504
0d4b0463
JB
1505void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1506{
141386e1
JB
1507 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1508 percpu_counter_destroy(&fs_info->delalloc_bytes);
1509 percpu_counter_destroy(&fs_info->dio_bytes);
1510 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1511 btrfs_free_csum_hash(fs_info);
1512 btrfs_free_stripe_hash_table(fs_info);
1513 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1514 kfree(fs_info->balance_ctl);
1515 kfree(fs_info->delayed_root);
00246528
JB
1516 btrfs_put_root(fs_info->extent_root);
1517 btrfs_put_root(fs_info->tree_root);
1518 btrfs_put_root(fs_info->chunk_root);
1519 btrfs_put_root(fs_info->dev_root);
1520 btrfs_put_root(fs_info->csum_root);
1521 btrfs_put_root(fs_info->quota_root);
1522 btrfs_put_root(fs_info->uuid_root);
1523 btrfs_put_root(fs_info->free_space_root);
1524 btrfs_put_root(fs_info->fs_root);
bd647ce3 1525 btrfs_check_leaked_roots(fs_info);
3fd63727 1526 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1527 kfree(fs_info->super_copy);
1528 kfree(fs_info->super_for_commit);
1529 kvfree(fs_info);
1530}
1531
1532
c00869f1
MX
1533struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1534 struct btrfs_key *location,
1535 bool check_ref)
5eda7b5e
CM
1536{
1537 struct btrfs_root *root;
381cf658 1538 struct btrfs_path *path;
1d4c08e0 1539 struct btrfs_key key;
5eda7b5e
CM
1540 int ret;
1541
edbd8d4e 1542 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1543 return btrfs_grab_root(fs_info->tree_root);
edbd8d4e 1544 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1545 return btrfs_grab_root(fs_info->extent_root);
8f18cf13 1546 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1547 return btrfs_grab_root(fs_info->chunk_root);
8f18cf13 1548 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1549 return btrfs_grab_root(fs_info->dev_root);
0403e47e 1550 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1551 return btrfs_grab_root(fs_info->csum_root);
bcef60f2 1552 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1553 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1554 fs_info->quota_root : ERR_PTR(-ENOENT);
f7a81ea4 1555 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1556 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1557 fs_info->uuid_root : ERR_PTR(-ENOENT);
70f6d82e 1558 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1559 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1560 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1561again:
cb517eab 1562 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1563 if (root) {
bc44d7c4 1564 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1565 btrfs_put_root(root);
48475471 1566 return ERR_PTR(-ENOENT);
bc44d7c4 1567 }
5eda7b5e 1568 return root;
48475471 1569 }
5eda7b5e 1570
83db2aad 1571 root = btrfs_read_tree_root(fs_info->tree_root, location);
5eda7b5e
CM
1572 if (IS_ERR(root))
1573 return root;
3394e160 1574
c00869f1 1575 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1576 ret = -ENOENT;
581bb050 1577 goto fail;
35a30d7c 1578 }
581bb050 1579
cb517eab 1580 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1581 if (ret)
1582 goto fail;
3394e160 1583
381cf658
DS
1584 path = btrfs_alloc_path();
1585 if (!path) {
1586 ret = -ENOMEM;
1587 goto fail;
1588 }
1d4c08e0
DS
1589 key.objectid = BTRFS_ORPHAN_OBJECTID;
1590 key.type = BTRFS_ORPHAN_ITEM_KEY;
1591 key.offset = location->objectid;
1592
1593 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1594 btrfs_free_path(path);
d68fc57b
YZ
1595 if (ret < 0)
1596 goto fail;
1597 if (ret == 0)
27cdeb70 1598 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1599
cb517eab 1600 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1601 if (ret) {
00246528 1602 btrfs_put_root(root);
4785e24f 1603 if (ret == -EEXIST)
4df27c4d 1604 goto again;
4df27c4d 1605 goto fail;
0f7d52f4 1606 }
edbd8d4e 1607 return root;
4df27c4d 1608fail:
8c38938c 1609 btrfs_put_root(root);
4df27c4d 1610 return ERR_PTR(ret);
edbd8d4e
CM
1611}
1612
04160088
CM
1613static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1614{
1615 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1616 int ret = 0;
04160088
CM
1617 struct btrfs_device *device;
1618 struct backing_dev_info *bdi;
b7967db7 1619
1f78160c
XG
1620 rcu_read_lock();
1621 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1622 if (!device->bdev)
1623 continue;
efa7c9f9 1624 bdi = device->bdev->bd_bdi;
ff9ea323 1625 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1626 ret = 1;
1627 break;
1628 }
1629 }
1f78160c 1630 rcu_read_unlock();
04160088
CM
1631 return ret;
1632}
1633
8b712842
CM
1634/*
1635 * called by the kthread helper functions to finally call the bio end_io
1636 * functions. This is where read checksum verification actually happens
1637 */
1638static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1639{
ce9adaa5 1640 struct bio *bio;
97eb6b69 1641 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1642
97eb6b69 1643 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1644 bio = end_io_wq->bio;
ce9adaa5 1645
4e4cbee9 1646 bio->bi_status = end_io_wq->status;
8b712842
CM
1647 bio->bi_private = end_io_wq->private;
1648 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1649 bio_endio(bio);
9be490f1 1650 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1651}
1652
a74a4b97
CM
1653static int cleaner_kthread(void *arg)
1654{
1655 struct btrfs_root *root = arg;
0b246afa 1656 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1657 int again;
a74a4b97 1658
d6fd0ae2 1659 while (1) {
d0278245 1660 again = 0;
a74a4b97 1661
fd340d0f
JB
1662 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1663
d0278245 1664 /* Make the cleaner go to sleep early. */
2ff7e61e 1665 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1666 goto sleep;
1667
90c711ab
ZB
1668 /*
1669 * Do not do anything if we might cause open_ctree() to block
1670 * before we have finished mounting the filesystem.
1671 */
0b246afa 1672 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1673 goto sleep;
1674
0b246afa 1675 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1676 goto sleep;
1677
dc7f370c
MX
1678 /*
1679 * Avoid the problem that we change the status of the fs
1680 * during the above check and trylock.
1681 */
2ff7e61e 1682 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1683 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1684 goto sleep;
76dda93c 1685 }
a74a4b97 1686
2ff7e61e 1687 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1688
d0278245 1689 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1690 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1691
1692 /*
05323cd1
MX
1693 * The defragger has dealt with the R/O remount and umount,
1694 * needn't do anything special here.
d0278245 1695 */
0b246afa 1696 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1697
1698 /*
1699 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1700 * with relocation (btrfs_relocate_chunk) and relocation
1701 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1702 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1703 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1704 * unused block groups.
1705 */
0b246afa 1706 btrfs_delete_unused_bgs(fs_info);
d0278245 1707sleep:
fd340d0f 1708 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1709 if (kthread_should_park())
1710 kthread_parkme();
1711 if (kthread_should_stop())
1712 return 0;
838fe188 1713 if (!again) {
a74a4b97 1714 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1715 schedule();
a74a4b97
CM
1716 __set_current_state(TASK_RUNNING);
1717 }
da288d28 1718 }
a74a4b97
CM
1719}
1720
1721static int transaction_kthread(void *arg)
1722{
1723 struct btrfs_root *root = arg;
0b246afa 1724 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1725 struct btrfs_trans_handle *trans;
1726 struct btrfs_transaction *cur;
8929ecfa 1727 u64 transid;
a944442c 1728 time64_t now;
a74a4b97 1729 unsigned long delay;
914b2007 1730 bool cannot_commit;
a74a4b97
CM
1731
1732 do {
914b2007 1733 cannot_commit = false;
0b246afa
JM
1734 delay = HZ * fs_info->commit_interval;
1735 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1736
0b246afa
JM
1737 spin_lock(&fs_info->trans_lock);
1738 cur = fs_info->running_transaction;
a74a4b97 1739 if (!cur) {
0b246afa 1740 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1741 goto sleep;
1742 }
31153d81 1743
afd48513 1744 now = ktime_get_seconds();
3296bf56 1745 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1746 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1747 (now < cur->start_time ||
0b246afa
JM
1748 now - cur->start_time < fs_info->commit_interval)) {
1749 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1750 delay = HZ * 5;
1751 goto sleep;
1752 }
8929ecfa 1753 transid = cur->transid;
0b246afa 1754 spin_unlock(&fs_info->trans_lock);
56bec294 1755
79787eaa 1756 /* If the file system is aborted, this will always fail. */
354aa0fb 1757 trans = btrfs_attach_transaction(root);
914b2007 1758 if (IS_ERR(trans)) {
354aa0fb
MX
1759 if (PTR_ERR(trans) != -ENOENT)
1760 cannot_commit = true;
79787eaa 1761 goto sleep;
914b2007 1762 }
8929ecfa 1763 if (transid == trans->transid) {
3a45bb20 1764 btrfs_commit_transaction(trans);
8929ecfa 1765 } else {
3a45bb20 1766 btrfs_end_transaction(trans);
8929ecfa 1767 }
a74a4b97 1768sleep:
0b246afa
JM
1769 wake_up_process(fs_info->cleaner_kthread);
1770 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1771
4e121c06 1772 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1773 &fs_info->fs_state)))
2ff7e61e 1774 btrfs_cleanup_transaction(fs_info);
ce63f891 1775 if (!kthread_should_stop() &&
0b246afa 1776 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1777 cannot_commit))
bc5511d0 1778 schedule_timeout_interruptible(delay);
a74a4b97
CM
1779 } while (!kthread_should_stop());
1780 return 0;
1781}
1782
af31f5e5 1783/*
01f0f9da
NB
1784 * This will find the highest generation in the array of root backups. The
1785 * index of the highest array is returned, or -EINVAL if we can't find
1786 * anything.
af31f5e5
CM
1787 *
1788 * We check to make sure the array is valid by comparing the
1789 * generation of the latest root in the array with the generation
1790 * in the super block. If they don't match we pitch it.
1791 */
01f0f9da 1792static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1793{
01f0f9da 1794 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1795 u64 cur;
af31f5e5
CM
1796 struct btrfs_root_backup *root_backup;
1797 int i;
1798
1799 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1800 root_backup = info->super_copy->super_roots + i;
1801 cur = btrfs_backup_tree_root_gen(root_backup);
1802 if (cur == newest_gen)
01f0f9da 1803 return i;
af31f5e5
CM
1804 }
1805
01f0f9da 1806 return -EINVAL;
af31f5e5
CM
1807}
1808
af31f5e5
CM
1809/*
1810 * copy all the root pointers into the super backup array.
1811 * this will bump the backup pointer by one when it is
1812 * done
1813 */
1814static void backup_super_roots(struct btrfs_fs_info *info)
1815{
6ef108dd 1816 const int next_backup = info->backup_root_index;
af31f5e5 1817 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1818
1819 root_backup = info->super_for_commit->super_roots + next_backup;
1820
1821 /*
1822 * make sure all of our padding and empty slots get zero filled
1823 * regardless of which ones we use today
1824 */
1825 memset(root_backup, 0, sizeof(*root_backup));
1826
1827 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1828
1829 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1830 btrfs_set_backup_tree_root_gen(root_backup,
1831 btrfs_header_generation(info->tree_root->node));
1832
1833 btrfs_set_backup_tree_root_level(root_backup,
1834 btrfs_header_level(info->tree_root->node));
1835
1836 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1837 btrfs_set_backup_chunk_root_gen(root_backup,
1838 btrfs_header_generation(info->chunk_root->node));
1839 btrfs_set_backup_chunk_root_level(root_backup,
1840 btrfs_header_level(info->chunk_root->node));
1841
1842 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1843 btrfs_set_backup_extent_root_gen(root_backup,
1844 btrfs_header_generation(info->extent_root->node));
1845 btrfs_set_backup_extent_root_level(root_backup,
1846 btrfs_header_level(info->extent_root->node));
1847
7c7e82a7
CM
1848 /*
1849 * we might commit during log recovery, which happens before we set
1850 * the fs_root. Make sure it is valid before we fill it in.
1851 */
1852 if (info->fs_root && info->fs_root->node) {
1853 btrfs_set_backup_fs_root(root_backup,
1854 info->fs_root->node->start);
1855 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1856 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1857 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1858 btrfs_header_level(info->fs_root->node));
7c7e82a7 1859 }
af31f5e5
CM
1860
1861 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1862 btrfs_set_backup_dev_root_gen(root_backup,
1863 btrfs_header_generation(info->dev_root->node));
1864 btrfs_set_backup_dev_root_level(root_backup,
1865 btrfs_header_level(info->dev_root->node));
1866
1867 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1868 btrfs_set_backup_csum_root_gen(root_backup,
1869 btrfs_header_generation(info->csum_root->node));
1870 btrfs_set_backup_csum_root_level(root_backup,
1871 btrfs_header_level(info->csum_root->node));
1872
1873 btrfs_set_backup_total_bytes(root_backup,
1874 btrfs_super_total_bytes(info->super_copy));
1875 btrfs_set_backup_bytes_used(root_backup,
1876 btrfs_super_bytes_used(info->super_copy));
1877 btrfs_set_backup_num_devices(root_backup,
1878 btrfs_super_num_devices(info->super_copy));
1879
1880 /*
1881 * if we don't copy this out to the super_copy, it won't get remembered
1882 * for the next commit
1883 */
1884 memcpy(&info->super_copy->super_roots,
1885 &info->super_for_commit->super_roots,
1886 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1887}
1888
bd2336b2
NB
1889/*
1890 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1891 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1892 *
1893 * fs_info - filesystem whose backup roots need to be read
1894 * priority - priority of backup root required
1895 *
1896 * Returns backup root index on success and -EINVAL otherwise.
1897 */
1898static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1899{
1900 int backup_index = find_newest_super_backup(fs_info);
1901 struct btrfs_super_block *super = fs_info->super_copy;
1902 struct btrfs_root_backup *root_backup;
1903
1904 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1905 if (priority == 0)
1906 return backup_index;
1907
1908 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1909 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1910 } else {
1911 return -EINVAL;
1912 }
1913
1914 root_backup = super->super_roots + backup_index;
1915
1916 btrfs_set_super_generation(super,
1917 btrfs_backup_tree_root_gen(root_backup));
1918 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1919 btrfs_set_super_root_level(super,
1920 btrfs_backup_tree_root_level(root_backup));
1921 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1922
1923 /*
1924 * Fixme: the total bytes and num_devices need to match or we should
1925 * need a fsck
1926 */
1927 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1928 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1929
1930 return backup_index;
1931}
1932
7abadb64
LB
1933/* helper to cleanup workers */
1934static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1935{
dc6e3209 1936 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1937 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1938 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1939 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1940 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1941 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1942 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1943 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1944 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1945 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1946 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1947 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1948 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1949 if (fs_info->discard_ctl.discard_workers)
1950 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1951 /*
1952 * Now that all other work queues are destroyed, we can safely destroy
1953 * the queues used for metadata I/O, since tasks from those other work
1954 * queues can do metadata I/O operations.
1955 */
1956 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1957 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1958}
1959
2e9f5954
R
1960static void free_root_extent_buffers(struct btrfs_root *root)
1961{
1962 if (root) {
1963 free_extent_buffer(root->node);
1964 free_extent_buffer(root->commit_root);
1965 root->node = NULL;
1966 root->commit_root = NULL;
1967 }
1968}
1969
af31f5e5 1970/* helper to cleanup tree roots */
4273eaff 1971static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1972{
2e9f5954 1973 free_root_extent_buffers(info->tree_root);
655b09fe 1974
2e9f5954
R
1975 free_root_extent_buffers(info->dev_root);
1976 free_root_extent_buffers(info->extent_root);
1977 free_root_extent_buffers(info->csum_root);
1978 free_root_extent_buffers(info->quota_root);
1979 free_root_extent_buffers(info->uuid_root);
8c38938c 1980 free_root_extent_buffers(info->fs_root);
4273eaff 1981 if (free_chunk_root)
2e9f5954 1982 free_root_extent_buffers(info->chunk_root);
70f6d82e 1983 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
1984}
1985
8c38938c
JB
1986void btrfs_put_root(struct btrfs_root *root)
1987{
1988 if (!root)
1989 return;
1990
1991 if (refcount_dec_and_test(&root->refs)) {
1992 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1993 if (root->anon_dev)
1994 free_anon_bdev(root->anon_dev);
1995 btrfs_drew_lock_destroy(&root->snapshot_lock);
1996 free_extent_buffer(root->node);
1997 free_extent_buffer(root->commit_root);
1998 kfree(root->free_ino_ctl);
1999 kfree(root->free_ino_pinned);
2000#ifdef CONFIG_BTRFS_DEBUG
2001 spin_lock(&root->fs_info->fs_roots_radix_lock);
2002 list_del_init(&root->leak_list);
2003 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2004#endif
2005 kfree(root);
2006 }
2007}
2008
faa2dbf0 2009void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2010{
2011 int ret;
2012 struct btrfs_root *gang[8];
2013 int i;
2014
2015 while (!list_empty(&fs_info->dead_roots)) {
2016 gang[0] = list_entry(fs_info->dead_roots.next,
2017 struct btrfs_root, root_list);
2018 list_del(&gang[0]->root_list);
2019
8c38938c 2020 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2021 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2022 btrfs_put_root(gang[0]);
171f6537
JB
2023 }
2024
2025 while (1) {
2026 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2027 (void **)gang, 0,
2028 ARRAY_SIZE(gang));
2029 if (!ret)
2030 break;
2031 for (i = 0; i < ret; i++)
cb517eab 2032 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2033 }
2034}
af31f5e5 2035
638aa7ed
ES
2036static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2037{
2038 mutex_init(&fs_info->scrub_lock);
2039 atomic_set(&fs_info->scrubs_running, 0);
2040 atomic_set(&fs_info->scrub_pause_req, 0);
2041 atomic_set(&fs_info->scrubs_paused, 0);
2042 atomic_set(&fs_info->scrub_cancel_req, 0);
2043 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2044 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2045}
2046
779a65a4
ES
2047static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2048{
2049 spin_lock_init(&fs_info->balance_lock);
2050 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2051 atomic_set(&fs_info->balance_pause_req, 0);
2052 atomic_set(&fs_info->balance_cancel_req, 0);
2053 fs_info->balance_ctl = NULL;
2054 init_waitqueue_head(&fs_info->balance_wait_q);
2055}
2056
6bccf3ab 2057static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2058{
2ff7e61e
JM
2059 struct inode *inode = fs_info->btree_inode;
2060
2061 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2062 set_nlink(inode, 1);
f37938e0
ES
2063 /*
2064 * we set the i_size on the btree inode to the max possible int.
2065 * the real end of the address space is determined by all of
2066 * the devices in the system
2067 */
2ff7e61e
JM
2068 inode->i_size = OFFSET_MAX;
2069 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2070
2ff7e61e 2071 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2072 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2073 IO_TREE_INODE_IO, inode);
7b439738 2074 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2075 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2076
2ff7e61e 2077 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2078
5c8fd99f 2079 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2080 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2081 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2082 btrfs_insert_inode_hash(inode);
f37938e0
ES
2083}
2084
ad618368
ES
2085static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2086{
ad618368 2087 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2088 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2089 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2090}
2091
f9e92e40
ES
2092static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2093{
2094 spin_lock_init(&fs_info->qgroup_lock);
2095 mutex_init(&fs_info->qgroup_ioctl_lock);
2096 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2097 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2098 fs_info->qgroup_seq = 1;
f9e92e40 2099 fs_info->qgroup_ulist = NULL;
d2c609b8 2100 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2101 mutex_init(&fs_info->qgroup_rescan_lock);
2102}
2103
2a458198
ES
2104static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2105 struct btrfs_fs_devices *fs_devices)
2106{
f7b885be 2107 u32 max_active = fs_info->thread_pool_size;
6f011058 2108 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2109
2110 fs_info->workers =
cb001095
JM
2111 btrfs_alloc_workqueue(fs_info, "worker",
2112 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2113
2114 fs_info->delalloc_workers =
cb001095
JM
2115 btrfs_alloc_workqueue(fs_info, "delalloc",
2116 flags, max_active, 2);
2a458198
ES
2117
2118 fs_info->flush_workers =
cb001095
JM
2119 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2120 flags, max_active, 0);
2a458198
ES
2121
2122 fs_info->caching_workers =
cb001095 2123 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2124
2a458198 2125 fs_info->fixup_workers =
cb001095 2126 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2127
2128 /*
2129 * endios are largely parallel and should have a very
2130 * low idle thresh
2131 */
2132 fs_info->endio_workers =
cb001095 2133 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2134 fs_info->endio_meta_workers =
cb001095
JM
2135 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2136 max_active, 4);
2a458198 2137 fs_info->endio_meta_write_workers =
cb001095
JM
2138 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2139 max_active, 2);
2a458198 2140 fs_info->endio_raid56_workers =
cb001095
JM
2141 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2142 max_active, 4);
2a458198 2143 fs_info->rmw_workers =
cb001095 2144 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2145 fs_info->endio_write_workers =
cb001095
JM
2146 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2147 max_active, 2);
2a458198 2148 fs_info->endio_freespace_worker =
cb001095
JM
2149 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2150 max_active, 0);
2a458198 2151 fs_info->delayed_workers =
cb001095
JM
2152 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2153 max_active, 0);
2a458198 2154 fs_info->readahead_workers =
cb001095
JM
2155 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2156 max_active, 2);
2a458198 2157 fs_info->qgroup_rescan_workers =
cb001095 2158 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2159 fs_info->discard_ctl.discard_workers =
2160 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2161
2162 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2163 fs_info->flush_workers &&
2a458198
ES
2164 fs_info->endio_workers && fs_info->endio_meta_workers &&
2165 fs_info->endio_meta_write_workers &&
2a458198
ES
2166 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2167 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2168 fs_info->caching_workers && fs_info->readahead_workers &&
2169 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2170 fs_info->qgroup_rescan_workers &&
2171 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2172 return -ENOMEM;
2173 }
2174
2175 return 0;
2176}
2177
6d97c6e3
JT
2178static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2179{
2180 struct crypto_shash *csum_shash;
b4e967be 2181 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2182
b4e967be 2183 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2184
2185 if (IS_ERR(csum_shash)) {
2186 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2187 csum_driver);
6d97c6e3
JT
2188 return PTR_ERR(csum_shash);
2189 }
2190
2191 fs_info->csum_shash = csum_shash;
2192
2193 return 0;
2194}
2195
63443bf5
ES
2196static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2197 struct btrfs_fs_devices *fs_devices)
2198{
2199 int ret;
63443bf5
ES
2200 struct btrfs_root *log_tree_root;
2201 struct btrfs_super_block *disk_super = fs_info->super_copy;
2202 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2203 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2204
2205 if (fs_devices->rw_devices == 0) {
f14d104d 2206 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2207 return -EIO;
2208 }
2209
96dfcb46
JB
2210 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2211 GFP_KERNEL);
63443bf5
ES
2212 if (!log_tree_root)
2213 return -ENOMEM;
2214
2ff7e61e 2215 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2216 fs_info->generation + 1,
2217 level, NULL);
64c043de 2218 if (IS_ERR(log_tree_root->node)) {
f14d104d 2219 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2220 ret = PTR_ERR(log_tree_root->node);
8c38938c 2221 log_tree_root->node = NULL;
00246528 2222 btrfs_put_root(log_tree_root);
0eeff236 2223 return ret;
64c043de 2224 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2225 btrfs_err(fs_info, "failed to read log tree");
00246528 2226 btrfs_put_root(log_tree_root);
63443bf5
ES
2227 return -EIO;
2228 }
2229 /* returns with log_tree_root freed on success */
2230 ret = btrfs_recover_log_trees(log_tree_root);
2231 if (ret) {
0b246afa
JM
2232 btrfs_handle_fs_error(fs_info, ret,
2233 "Failed to recover log tree");
00246528 2234 btrfs_put_root(log_tree_root);
63443bf5
ES
2235 return ret;
2236 }
2237
bc98a42c 2238 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2239 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2240 if (ret)
2241 return ret;
2242 }
2243
2244 return 0;
2245}
2246
6bccf3ab 2247static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2248{
6bccf3ab 2249 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2250 struct btrfs_root *root;
4bbcaa64
ES
2251 struct btrfs_key location;
2252 int ret;
2253
6bccf3ab
JM
2254 BUG_ON(!fs_info->tree_root);
2255
4bbcaa64
ES
2256 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2257 location.type = BTRFS_ROOT_ITEM_KEY;
2258 location.offset = 0;
2259
a4f3d2c4 2260 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2261 if (IS_ERR(root)) {
2262 ret = PTR_ERR(root);
2263 goto out;
2264 }
a4f3d2c4
DS
2265 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266 fs_info->extent_root = root;
4bbcaa64
ES
2267
2268 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2269 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2270 if (IS_ERR(root)) {
2271 ret = PTR_ERR(root);
2272 goto out;
2273 }
a4f3d2c4
DS
2274 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2275 fs_info->dev_root = root;
4bbcaa64
ES
2276 btrfs_init_devices_late(fs_info);
2277
2278 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2279 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2280 if (IS_ERR(root)) {
2281 ret = PTR_ERR(root);
2282 goto out;
2283 }
a4f3d2c4
DS
2284 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2285 fs_info->csum_root = root;
4bbcaa64
ES
2286
2287 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2288 root = btrfs_read_tree_root(tree_root, &location);
2289 if (!IS_ERR(root)) {
2290 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2291 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2292 fs_info->quota_root = root;
4bbcaa64
ES
2293 }
2294
2295 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2296 root = btrfs_read_tree_root(tree_root, &location);
2297 if (IS_ERR(root)) {
2298 ret = PTR_ERR(root);
4bbcaa64 2299 if (ret != -ENOENT)
f50f4353 2300 goto out;
4bbcaa64 2301 } else {
a4f3d2c4
DS
2302 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2303 fs_info->uuid_root = root;
4bbcaa64
ES
2304 }
2305
70f6d82e
OS
2306 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2307 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2308 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2309 if (IS_ERR(root)) {
2310 ret = PTR_ERR(root);
2311 goto out;
2312 }
70f6d82e
OS
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 fs_info->free_space_root = root;
2315 }
2316
4bbcaa64 2317 return 0;
f50f4353
LB
2318out:
2319 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2320 location.objectid, ret);
2321 return ret;
4bbcaa64
ES
2322}
2323
069ec957
QW
2324/*
2325 * Real super block validation
2326 * NOTE: super csum type and incompat features will not be checked here.
2327 *
2328 * @sb: super block to check
2329 * @mirror_num: the super block number to check its bytenr:
2330 * 0 the primary (1st) sb
2331 * 1, 2 2nd and 3rd backup copy
2332 * -1 skip bytenr check
2333 */
2334static int validate_super(struct btrfs_fs_info *fs_info,
2335 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2336{
21a852b0
QW
2337 u64 nodesize = btrfs_super_nodesize(sb);
2338 u64 sectorsize = btrfs_super_sectorsize(sb);
2339 int ret = 0;
2340
2341 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2342 btrfs_err(fs_info, "no valid FS found");
2343 ret = -EINVAL;
2344 }
2345 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2346 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2347 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2348 ret = -EINVAL;
2349 }
2350 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2351 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2352 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2353 ret = -EINVAL;
2354 }
2355 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2356 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2357 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2358 ret = -EINVAL;
2359 }
2360 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2361 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2362 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2363 ret = -EINVAL;
2364 }
2365
2366 /*
2367 * Check sectorsize and nodesize first, other check will need it.
2368 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2369 */
2370 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2371 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2372 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2373 ret = -EINVAL;
2374 }
2375 /* Only PAGE SIZE is supported yet */
2376 if (sectorsize != PAGE_SIZE) {
2377 btrfs_err(fs_info,
2378 "sectorsize %llu not supported yet, only support %lu",
2379 sectorsize, PAGE_SIZE);
2380 ret = -EINVAL;
2381 }
2382 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2383 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2384 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2385 ret = -EINVAL;
2386 }
2387 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2388 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2389 le32_to_cpu(sb->__unused_leafsize), nodesize);
2390 ret = -EINVAL;
2391 }
2392
2393 /* Root alignment check */
2394 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2395 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2396 btrfs_super_root(sb));
2397 ret = -EINVAL;
2398 }
2399 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2400 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2401 btrfs_super_chunk_root(sb));
2402 ret = -EINVAL;
2403 }
2404 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2405 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2406 btrfs_super_log_root(sb));
2407 ret = -EINVAL;
2408 }
2409
de37aa51 2410 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2411 BTRFS_FSID_SIZE) != 0) {
21a852b0 2412 btrfs_err(fs_info,
7239ff4b 2413 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2414 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2415 ret = -EINVAL;
2416 }
2417
2418 /*
2419 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2420 * done later
2421 */
2422 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2423 btrfs_err(fs_info, "bytes_used is too small %llu",
2424 btrfs_super_bytes_used(sb));
2425 ret = -EINVAL;
2426 }
2427 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2428 btrfs_err(fs_info, "invalid stripesize %u",
2429 btrfs_super_stripesize(sb));
2430 ret = -EINVAL;
2431 }
2432 if (btrfs_super_num_devices(sb) > (1UL << 31))
2433 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2434 btrfs_super_num_devices(sb));
2435 if (btrfs_super_num_devices(sb) == 0) {
2436 btrfs_err(fs_info, "number of devices is 0");
2437 ret = -EINVAL;
2438 }
2439
069ec957
QW
2440 if (mirror_num >= 0 &&
2441 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2442 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2443 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2444 ret = -EINVAL;
2445 }
2446
2447 /*
2448 * Obvious sys_chunk_array corruptions, it must hold at least one key
2449 * and one chunk
2450 */
2451 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2452 btrfs_err(fs_info, "system chunk array too big %u > %u",
2453 btrfs_super_sys_array_size(sb),
2454 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2455 ret = -EINVAL;
2456 }
2457 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2458 + sizeof(struct btrfs_chunk)) {
2459 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2460 btrfs_super_sys_array_size(sb),
2461 sizeof(struct btrfs_disk_key)
2462 + sizeof(struct btrfs_chunk));
2463 ret = -EINVAL;
2464 }
2465
2466 /*
2467 * The generation is a global counter, we'll trust it more than the others
2468 * but it's still possible that it's the one that's wrong.
2469 */
2470 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2471 btrfs_warn(fs_info,
2472 "suspicious: generation < chunk_root_generation: %llu < %llu",
2473 btrfs_super_generation(sb),
2474 btrfs_super_chunk_root_generation(sb));
2475 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2476 && btrfs_super_cache_generation(sb) != (u64)-1)
2477 btrfs_warn(fs_info,
2478 "suspicious: generation < cache_generation: %llu < %llu",
2479 btrfs_super_generation(sb),
2480 btrfs_super_cache_generation(sb));
2481
2482 return ret;
2483}
2484
069ec957
QW
2485/*
2486 * Validation of super block at mount time.
2487 * Some checks already done early at mount time, like csum type and incompat
2488 * flags will be skipped.
2489 */
2490static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2491{
2492 return validate_super(fs_info, fs_info->super_copy, 0);
2493}
2494
75cb857d
QW
2495/*
2496 * Validation of super block at write time.
2497 * Some checks like bytenr check will be skipped as their values will be
2498 * overwritten soon.
2499 * Extra checks like csum type and incompat flags will be done here.
2500 */
2501static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2502 struct btrfs_super_block *sb)
2503{
2504 int ret;
2505
2506 ret = validate_super(fs_info, sb, -1);
2507 if (ret < 0)
2508 goto out;
e7e16f48 2509 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2510 ret = -EUCLEAN;
2511 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2512 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2513 goto out;
2514 }
2515 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2516 ret = -EUCLEAN;
2517 btrfs_err(fs_info,
2518 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2519 btrfs_super_incompat_flags(sb),
2520 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2521 goto out;
2522 }
2523out:
2524 if (ret < 0)
2525 btrfs_err(fs_info,
2526 "super block corruption detected before writing it to disk");
2527 return ret;
2528}
2529
6ef108dd 2530static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2531{
6ef108dd 2532 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2533 struct btrfs_super_block *sb = fs_info->super_copy;
2534 struct btrfs_root *tree_root = fs_info->tree_root;
2535 bool handle_error = false;
2536 int ret = 0;
2537 int i;
2538
2539 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2540 u64 generation;
2541 int level;
2542
2543 if (handle_error) {
2544 if (!IS_ERR(tree_root->node))
2545 free_extent_buffer(tree_root->node);
2546 tree_root->node = NULL;
2547
2548 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2549 break;
2550
2551 free_root_pointers(fs_info, 0);
2552
2553 /*
2554 * Don't use the log in recovery mode, it won't be
2555 * valid
2556 */
2557 btrfs_set_super_log_root(sb, 0);
2558
2559 /* We can't trust the free space cache either */
2560 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2561
2562 ret = read_backup_root(fs_info, i);
6ef108dd 2563 backup_index = ret;
b8522a1e
NB
2564 if (ret < 0)
2565 return ret;
2566 }
2567 generation = btrfs_super_generation(sb);
2568 level = btrfs_super_root_level(sb);
2569 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2570 generation, level, NULL);
2571 if (IS_ERR(tree_root->node) ||
2572 !extent_buffer_uptodate(tree_root->node)) {
2573 handle_error = true;
2574
2575 if (IS_ERR(tree_root->node))
2576 ret = PTR_ERR(tree_root->node);
2577 else if (!extent_buffer_uptodate(tree_root->node))
2578 ret = -EUCLEAN;
2579
2580 btrfs_warn(fs_info, "failed to read tree root");
2581 continue;
2582 }
2583
2584 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2585 tree_root->commit_root = btrfs_root_node(tree_root);
2586 btrfs_set_root_refs(&tree_root->root_item, 1);
2587
336a0d8d
NB
2588 /*
2589 * No need to hold btrfs_root::objectid_mutex since the fs
2590 * hasn't been fully initialised and we are the only user
2591 */
b8522a1e
NB
2592 ret = btrfs_find_highest_objectid(tree_root,
2593 &tree_root->highest_objectid);
2594 if (ret < 0) {
b8522a1e
NB
2595 handle_error = true;
2596 continue;
2597 }
2598
2599 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2600
2601 ret = btrfs_read_roots(fs_info);
2602 if (ret < 0) {
2603 handle_error = true;
2604 continue;
2605 }
2606
2607 /* All successful */
2608 fs_info->generation = generation;
2609 fs_info->last_trans_committed = generation;
6ef108dd
NB
2610
2611 /* Always begin writing backup roots after the one being used */
2612 if (backup_index < 0) {
2613 fs_info->backup_root_index = 0;
2614 } else {
2615 fs_info->backup_root_index = backup_index + 1;
2616 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2617 }
b8522a1e
NB
2618 break;
2619 }
2620
2621 return ret;
2622}
2623
8260edba 2624void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2625{
76dda93c 2626 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2627 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2628 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2629 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2630 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2631 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2632 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2633 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2634 spin_lock_init(&fs_info->trans_lock);
76dda93c 2635 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2636 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2637 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2638 spin_lock_init(&fs_info->super_lock);
f28491e0 2639 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2640 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2641 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2642 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2643 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2644 mutex_init(&fs_info->reloc_mutex);
573bfb72 2645 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2646 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2647
0b86a832 2648 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2649 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2650 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2651 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2652#ifdef CONFIG_BTRFS_DEBUG
2653 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2654 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2655 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2656#endif
c8bf1b67 2657 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2658 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2659 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2660 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2661 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2662 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2663 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2664 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2665 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2666 BTRFS_BLOCK_RSV_DELREFS);
2667
771ed689 2668 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2669 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2670 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2671 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2672 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2673 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2674 fs_info->metadata_ratio = 0;
4cb5300b 2675 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2676 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2677 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2678 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2679 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2680 /* readahead state */
d0164adc 2681 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2682 spin_lock_init(&fs_info->reada_lock);
fd708b81 2683 btrfs_init_ref_verify(fs_info);
c8b97818 2684
b34b086c
CM
2685 fs_info->thread_pool_size = min_t(unsigned long,
2686 num_online_cpus() + 2, 8);
0afbaf8c 2687
199c2a9c
MX
2688 INIT_LIST_HEAD(&fs_info->ordered_roots);
2689 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2690
638aa7ed 2691 btrfs_init_scrub(fs_info);
21adbd5c
SB
2692#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2693 fs_info->check_integrity_print_mask = 0;
2694#endif
779a65a4 2695 btrfs_init_balance(fs_info);
21c7e756 2696 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2697
0f9dd46c 2698 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2699 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2700 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2701
fe119a6e
NB
2702 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2703 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2704 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2705
5a3f23d5 2706 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2707 mutex_init(&fs_info->tree_log_mutex);
925baedd 2708 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2709 mutex_init(&fs_info->transaction_kthread_mutex);
2710 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2711 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2712 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2713 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2714 init_rwsem(&fs_info->subvol_sem);
803b2f54 2715 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2716
ad618368 2717 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2718 btrfs_init_qgroup(fs_info);
b0643e59 2719 btrfs_discard_init(fs_info);
416ac51d 2720
fa9c0d79
CM
2721 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2722 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2723
e6dcd2dc 2724 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2725 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2726 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2727 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2728 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2729
da17066c
JM
2730 /* Usable values until the real ones are cached from the superblock */
2731 fs_info->nodesize = 4096;
2732 fs_info->sectorsize = 4096;
2733 fs_info->stripesize = 4096;
2734
eede2bf3
OS
2735 spin_lock_init(&fs_info->swapfile_pins_lock);
2736 fs_info->swapfile_pins = RB_ROOT;
2737
9e967495 2738 fs_info->send_in_progress = 0;
8260edba
JB
2739}
2740
2741static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2742{
2743 int ret;
2744
2745 fs_info->sb = sb;
2746 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2747 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2748
ae18c37a
JB
2749 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2750 if (ret)
c75e8394 2751 return ret;
ae18c37a
JB
2752
2753 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2754 if (ret)
c75e8394 2755 return ret;
ae18c37a
JB
2756
2757 fs_info->dirty_metadata_batch = PAGE_SIZE *
2758 (1 + ilog2(nr_cpu_ids));
2759
2760 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2761 if (ret)
c75e8394 2762 return ret;
ae18c37a
JB
2763
2764 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2765 GFP_KERNEL);
2766 if (ret)
c75e8394 2767 return ret;
ae18c37a
JB
2768
2769 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2770 GFP_KERNEL);
c75e8394
JB
2771 if (!fs_info->delayed_root)
2772 return -ENOMEM;
ae18c37a
JB
2773 btrfs_init_delayed_root(fs_info->delayed_root);
2774
c75e8394 2775 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2776}
2777
97f4dd09
NB
2778static int btrfs_uuid_rescan_kthread(void *data)
2779{
2780 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2781 int ret;
2782
2783 /*
2784 * 1st step is to iterate through the existing UUID tree and
2785 * to delete all entries that contain outdated data.
2786 * 2nd step is to add all missing entries to the UUID tree.
2787 */
2788 ret = btrfs_uuid_tree_iterate(fs_info);
2789 if (ret < 0) {
c94bec2c
JB
2790 if (ret != -EINTR)
2791 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2792 ret);
97f4dd09
NB
2793 up(&fs_info->uuid_tree_rescan_sem);
2794 return ret;
2795 }
2796 return btrfs_uuid_scan_kthread(data);
2797}
2798
2799static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2800{
2801 struct task_struct *task;
2802
2803 down(&fs_info->uuid_tree_rescan_sem);
2804 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2805 if (IS_ERR(task)) {
2806 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2807 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2808 up(&fs_info->uuid_tree_rescan_sem);
2809 return PTR_ERR(task);
2810 }
2811
2812 return 0;
2813}
2814
ae18c37a
JB
2815int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2816 char *options)
2817{
2818 u32 sectorsize;
2819 u32 nodesize;
2820 u32 stripesize;
2821 u64 generation;
2822 u64 features;
2823 u16 csum_type;
2824 struct btrfs_key location;
ae18c37a
JB
2825 struct btrfs_super_block *disk_super;
2826 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2827 struct btrfs_root *tree_root;
2828 struct btrfs_root *chunk_root;
2829 int ret;
2830 int err = -EINVAL;
2831 int clear_free_space_tree = 0;
2832 int level;
2833
8260edba 2834 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2835 if (ret) {
83c8266a 2836 err = ret;
ae18c37a 2837 goto fail;
53b381b3
DW
2838 }
2839
ae18c37a
JB
2840 /* These need to be init'ed before we start creating inodes and such. */
2841 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2842 GFP_KERNEL);
2843 fs_info->tree_root = tree_root;
2844 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2845 GFP_KERNEL);
2846 fs_info->chunk_root = chunk_root;
2847 if (!tree_root || !chunk_root) {
2848 err = -ENOMEM;
c75e8394 2849 goto fail;
ae18c37a
JB
2850 }
2851
2852 fs_info->btree_inode = new_inode(sb);
2853 if (!fs_info->btree_inode) {
2854 err = -ENOMEM;
c75e8394 2855 goto fail;
ae18c37a
JB
2856 }
2857 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2858 btrfs_init_btree_inode(fs_info);
2859
3c4bb26b 2860 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2861
2862 /*
2863 * Read super block and check the signature bytes only
2864 */
8f32380d
JT
2865 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2866 if (IS_ERR(disk_super)) {
2867 err = PTR_ERR(disk_super);
16cdcec7 2868 goto fail_alloc;
20b45077 2869 }
39279cc3 2870
8dc3f22c
JT
2871 /*
2872 * Verify the type first, if that or the the checksum value are
2873 * corrupted, we'll find out
2874 */
8f32380d 2875 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2876 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2877 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2878 csum_type);
8dc3f22c 2879 err = -EINVAL;
8f32380d 2880 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2881 goto fail_alloc;
2882 }
2883
6d97c6e3
JT
2884 ret = btrfs_init_csum_hash(fs_info, csum_type);
2885 if (ret) {
2886 err = ret;
8f32380d 2887 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2888 goto fail_alloc;
2889 }
2890
1104a885
DS
2891 /*
2892 * We want to check superblock checksum, the type is stored inside.
2893 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2894 */
8f32380d 2895 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2896 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2897 err = -EINVAL;
8f32380d 2898 btrfs_release_disk_super(disk_super);
141386e1 2899 goto fail_alloc;
1104a885
DS
2900 }
2901
2902 /*
2903 * super_copy is zeroed at allocation time and we never touch the
2904 * following bytes up to INFO_SIZE, the checksum is calculated from
2905 * the whole block of INFO_SIZE
2906 */
8f32380d
JT
2907 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2908 btrfs_release_disk_super(disk_super);
5f39d397 2909
fbc6feae
NB
2910 disk_super = fs_info->super_copy;
2911
de37aa51
NB
2912 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2913 BTRFS_FSID_SIZE));
2914
7239ff4b 2915 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2916 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2917 fs_info->super_copy->metadata_uuid,
2918 BTRFS_FSID_SIZE));
7239ff4b 2919 }
0b86a832 2920
fbc6feae
NB
2921 features = btrfs_super_flags(disk_super);
2922 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2923 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2924 btrfs_set_super_flags(disk_super, features);
2925 btrfs_info(fs_info,
2926 "found metadata UUID change in progress flag, clearing");
2927 }
2928
2929 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2930 sizeof(*fs_info->super_for_commit));
de37aa51 2931
069ec957 2932 ret = btrfs_validate_mount_super(fs_info);
1104a885 2933 if (ret) {
05135f59 2934 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2935 err = -EINVAL;
141386e1 2936 goto fail_alloc;
1104a885
DS
2937 }
2938
0f7d52f4 2939 if (!btrfs_super_root(disk_super))
141386e1 2940 goto fail_alloc;
0f7d52f4 2941
acce952b 2942 /* check FS state, whether FS is broken. */
87533c47
MX
2943 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2944 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2945
75e7cb7f
LB
2946 /*
2947 * In the long term, we'll store the compression type in the super
2948 * block, and it'll be used for per file compression control.
2949 */
2950 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2951
2ff7e61e 2952 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2953 if (ret) {
2954 err = ret;
141386e1 2955 goto fail_alloc;
2b82032c 2956 }
dfe25020 2957
f2b636e8
JB
2958 features = btrfs_super_incompat_flags(disk_super) &
2959 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2960 if (features) {
05135f59
DS
2961 btrfs_err(fs_info,
2962 "cannot mount because of unsupported optional features (%llx)",
2963 features);
f2b636e8 2964 err = -EINVAL;
141386e1 2965 goto fail_alloc;
f2b636e8
JB
2966 }
2967
5d4f98a2 2968 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2969 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2970 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2971 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2972 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2973 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2974
3173a18f 2975 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2976 btrfs_info(fs_info, "has skinny extents");
3173a18f 2977
727011e0
CM
2978 /*
2979 * flag our filesystem as having big metadata blocks if
2980 * they are bigger than the page size
2981 */
09cbfeaf 2982 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2983 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2984 btrfs_info(fs_info,
2985 "flagging fs with big metadata feature");
727011e0
CM
2986 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2987 }
2988
bc3f116f 2989 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2990 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2991 stripesize = sectorsize;
707e8a07 2992 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2993 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2994
da17066c
JM
2995 /* Cache block sizes */
2996 fs_info->nodesize = nodesize;
2997 fs_info->sectorsize = sectorsize;
2998 fs_info->stripesize = stripesize;
2999
bc3f116f
CM
3000 /*
3001 * mixed block groups end up with duplicate but slightly offset
3002 * extent buffers for the same range. It leads to corruptions
3003 */
3004 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3005 (sectorsize != nodesize)) {
05135f59
DS
3006 btrfs_err(fs_info,
3007"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3008 nodesize, sectorsize);
141386e1 3009 goto fail_alloc;
bc3f116f
CM
3010 }
3011
ceda0864
MX
3012 /*
3013 * Needn't use the lock because there is no other task which will
3014 * update the flag.
3015 */
a6fa6fae 3016 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3017
f2b636e8
JB
3018 features = btrfs_super_compat_ro_flags(disk_super) &
3019 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3020 if (!sb_rdonly(sb) && features) {
05135f59
DS
3021 btrfs_err(fs_info,
3022 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3023 features);
f2b636e8 3024 err = -EINVAL;
141386e1 3025 goto fail_alloc;
f2b636e8 3026 }
61d92c32 3027
2a458198
ES
3028 ret = btrfs_init_workqueues(fs_info, fs_devices);
3029 if (ret) {
3030 err = ret;
0dc3b84a
JB
3031 goto fail_sb_buffer;
3032 }
4543df7e 3033
9e11ceee
JK
3034 sb->s_bdi->congested_fn = btrfs_congested_fn;
3035 sb->s_bdi->congested_data = fs_info;
3036 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3037 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3038 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3039 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3040
a061fc8d
CM
3041 sb->s_blocksize = sectorsize;
3042 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3043 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3044
925baedd 3045 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3046 ret = btrfs_read_sys_array(fs_info);
925baedd 3047 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3048 if (ret) {
05135f59 3049 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3050 goto fail_sb_buffer;
84eed90f 3051 }
0b86a832 3052
84234f3a 3053 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3054 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3055
2ff7e61e 3056 chunk_root->node = read_tree_block(fs_info,
0b86a832 3057 btrfs_super_chunk_root(disk_super),
581c1760 3058 generation, level, NULL);
64c043de
LB
3059 if (IS_ERR(chunk_root->node) ||
3060 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3061 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3062 if (!IS_ERR(chunk_root->node))
3063 free_extent_buffer(chunk_root->node);
95ab1f64 3064 chunk_root->node = NULL;
af31f5e5 3065 goto fail_tree_roots;
83121942 3066 }
5d4f98a2
YZ
3067 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3068 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3069
e17cade2 3070 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3071 offsetof(struct btrfs_header, chunk_tree_uuid),
3072 BTRFS_UUID_SIZE);
e17cade2 3073
5b4aacef 3074 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3075 if (ret) {
05135f59 3076 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3077 goto fail_tree_roots;
2b82032c 3078 }
0b86a832 3079
8dabb742 3080 /*
9b99b115
AJ
3081 * Keep the devid that is marked to be the target device for the
3082 * device replace procedure
8dabb742 3083 */
9b99b115 3084 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3085
a6b0d5c8 3086 if (!fs_devices->latest_bdev) {
05135f59 3087 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3088 goto fail_tree_roots;
3089 }
3090
b8522a1e 3091 ret = init_tree_roots(fs_info);
4bbcaa64 3092 if (ret)
b8522a1e 3093 goto fail_tree_roots;
8929ecfa 3094
75ec1db8
JB
3095 /*
3096 * If we have a uuid root and we're not being told to rescan we need to
3097 * check the generation here so we can set the
3098 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3099 * transaction during a balance or the log replay without updating the
3100 * uuid generation, and then if we crash we would rescan the uuid tree,
3101 * even though it was perfectly fine.
3102 */
3103 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3104 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3105 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3106
cf90d884
QW
3107 ret = btrfs_verify_dev_extents(fs_info);
3108 if (ret) {
3109 btrfs_err(fs_info,
3110 "failed to verify dev extents against chunks: %d",
3111 ret);
3112 goto fail_block_groups;
3113 }
68310a5e
ID
3114 ret = btrfs_recover_balance(fs_info);
3115 if (ret) {
05135f59 3116 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3117 goto fail_block_groups;
3118 }
3119
733f4fbb
SB
3120 ret = btrfs_init_dev_stats(fs_info);
3121 if (ret) {
05135f59 3122 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3123 goto fail_block_groups;
3124 }
3125
8dabb742
SB
3126 ret = btrfs_init_dev_replace(fs_info);
3127 if (ret) {
05135f59 3128 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3129 goto fail_block_groups;
3130 }
3131
9b99b115 3132 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3133
c6761a9e 3134 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3135 if (ret) {
05135f59
DS
3136 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3137 ret);
b7c35e81
AJ
3138 goto fail_block_groups;
3139 }
3140
96f3136e 3141 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3142 if (ret) {
05135f59 3143 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3144 goto fail_fsdev_sysfs;
c59021f8 3145 }
3146
c59021f8 3147 ret = btrfs_init_space_info(fs_info);
3148 if (ret) {
05135f59 3149 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3150 goto fail_sysfs;
c59021f8 3151 }
3152
5b4aacef 3153 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3154 if (ret) {
05135f59 3155 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3156 goto fail_sysfs;
1b1d1f66 3157 }
4330e183 3158
6528b99d 3159 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3160 btrfs_warn(fs_info,
52042d8e 3161 "writable mount is not allowed due to too many missing devices");
2365dd3c 3162 goto fail_sysfs;
292fd7fc 3163 }
9078a3e1 3164
a74a4b97
CM
3165 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3166 "btrfs-cleaner");
57506d50 3167 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3168 goto fail_sysfs;
a74a4b97
CM
3169
3170 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3171 tree_root,
3172 "btrfs-transaction");
57506d50 3173 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3174 goto fail_cleaner;
a74a4b97 3175
583b7231 3176 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3177 !fs_info->fs_devices->rotating) {
583b7231 3178 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3179 }
3180
572d9ab7 3181 /*
01327610 3182 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3183 * not have to wait for transaction commit
3184 */
3185 btrfs_apply_pending_changes(fs_info);
3818aea2 3186
21adbd5c 3187#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3188 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3189 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3190 btrfs_test_opt(fs_info,
21adbd5c
SB
3191 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3192 1 : 0,
3193 fs_info->check_integrity_print_mask);
3194 if (ret)
05135f59
DS
3195 btrfs_warn(fs_info,
3196 "failed to initialize integrity check module: %d",
3197 ret);
21adbd5c
SB
3198 }
3199#endif
bcef60f2
AJ
3200 ret = btrfs_read_qgroup_config(fs_info);
3201 if (ret)
3202 goto fail_trans_kthread;
21adbd5c 3203
fd708b81
JB
3204 if (btrfs_build_ref_tree(fs_info))
3205 btrfs_err(fs_info, "couldn't build ref tree");
3206
96da0919
QW
3207 /* do not make disk changes in broken FS or nologreplay is given */
3208 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3209 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3210 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3211 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3212 if (ret) {
63443bf5 3213 err = ret;
28c16cbb 3214 goto fail_qgroup;
79787eaa 3215 }
e02119d5 3216 }
1a40e23b 3217
6bccf3ab 3218 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3219 if (ret)
28c16cbb 3220 goto fail_qgroup;
76dda93c 3221
bc98a42c 3222 if (!sb_rdonly(sb)) {
d68fc57b 3223 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3224 if (ret)
28c16cbb 3225 goto fail_qgroup;
90c711ab
ZB
3226
3227 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3228 ret = btrfs_recover_relocation(tree_root);
90c711ab 3229 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3230 if (ret < 0) {
05135f59
DS
3231 btrfs_warn(fs_info, "failed to recover relocation: %d",
3232 ret);
d7ce5843 3233 err = -EINVAL;
bcef60f2 3234 goto fail_qgroup;
d7ce5843 3235 }
7c2ca468 3236 }
1a40e23b 3237
3de4586c
CM
3238 location.objectid = BTRFS_FS_TREE_OBJECTID;
3239 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3240 location.offset = 0;
3de4586c 3241
3619c94f 3242 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3140c9a3
DC
3243 if (IS_ERR(fs_info->fs_root)) {
3244 err = PTR_ERR(fs_info->fs_root);
f50f4353 3245 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3246 fs_info->fs_root = NULL;
bcef60f2 3247 goto fail_qgroup;
3140c9a3 3248 }
c289811c 3249
bc98a42c 3250 if (sb_rdonly(sb))
2b6ba629 3251 return 0;
59641015 3252
f8d468a1
OS
3253 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3254 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3255 clear_free_space_tree = 1;
3256 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3257 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3258 btrfs_warn(fs_info, "free space tree is invalid");
3259 clear_free_space_tree = 1;
3260 }
3261
3262 if (clear_free_space_tree) {
f8d468a1
OS
3263 btrfs_info(fs_info, "clearing free space tree");
3264 ret = btrfs_clear_free_space_tree(fs_info);
3265 if (ret) {
3266 btrfs_warn(fs_info,
3267 "failed to clear free space tree: %d", ret);
6bccf3ab 3268 close_ctree(fs_info);
f8d468a1
OS
3269 return ret;
3270 }
3271 }
3272
0b246afa 3273 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3274 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3275 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3276 ret = btrfs_create_free_space_tree(fs_info);
3277 if (ret) {
05135f59
DS
3278 btrfs_warn(fs_info,
3279 "failed to create free space tree: %d", ret);
6bccf3ab 3280 close_ctree(fs_info);
511711af
CM
3281 return ret;
3282 }
3283 }
3284
2b6ba629
ID
3285 down_read(&fs_info->cleanup_work_sem);
3286 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3287 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3288 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3289 close_ctree(fs_info);
2b6ba629
ID
3290 return ret;
3291 }
3292 up_read(&fs_info->cleanup_work_sem);
59641015 3293
2b6ba629
ID
3294 ret = btrfs_resume_balance_async(fs_info);
3295 if (ret) {
05135f59 3296 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3297 close_ctree(fs_info);
2b6ba629 3298 return ret;
e3acc2a6
JB
3299 }
3300
8dabb742
SB
3301 ret = btrfs_resume_dev_replace_async(fs_info);
3302 if (ret) {
05135f59 3303 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3304 close_ctree(fs_info);
8dabb742
SB
3305 return ret;
3306 }
3307
b382a324 3308 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3309 btrfs_discard_resume(fs_info);
b382a324 3310
4bbcaa64 3311 if (!fs_info->uuid_root) {
05135f59 3312 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3313 ret = btrfs_create_uuid_tree(fs_info);
3314 if (ret) {
05135f59
DS
3315 btrfs_warn(fs_info,
3316 "failed to create the UUID tree: %d", ret);
6bccf3ab 3317 close_ctree(fs_info);
f7a81ea4
SB
3318 return ret;
3319 }
0b246afa 3320 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3321 fs_info->generation !=
3322 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3323 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3324 ret = btrfs_check_uuid_tree(fs_info);
3325 if (ret) {
05135f59
DS
3326 btrfs_warn(fs_info,
3327 "failed to check the UUID tree: %d", ret);
6bccf3ab 3328 close_ctree(fs_info);
70f80175
SB
3329 return ret;
3330 }
f7a81ea4 3331 }
afcdd129 3332 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3333
8dcddfa0
QW
3334 /*
3335 * backuproot only affect mount behavior, and if open_ctree succeeded,
3336 * no need to keep the flag
3337 */
3338 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3339
ad2b2c80 3340 return 0;
39279cc3 3341
bcef60f2
AJ
3342fail_qgroup:
3343 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3344fail_trans_kthread:
3345 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3346 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3347 btrfs_free_fs_roots(fs_info);
3f157a2f 3348fail_cleaner:
a74a4b97 3349 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3350
3351 /*
3352 * make sure we're done with the btree inode before we stop our
3353 * kthreads
3354 */
3355 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3356
2365dd3c 3357fail_sysfs:
6618a59b 3358 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3359
b7c35e81
AJ
3360fail_fsdev_sysfs:
3361 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3362
1b1d1f66 3363fail_block_groups:
54067ae9 3364 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3365
3366fail_tree_roots:
4273eaff 3367 free_root_pointers(fs_info, true);
2b8195bb 3368 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3369
39279cc3 3370fail_sb_buffer:
7abadb64 3371 btrfs_stop_all_workers(fs_info);
5cdd7db6 3372 btrfs_free_block_groups(fs_info);
16cdcec7 3373fail_alloc:
586e46e2
ID
3374 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3375
4543df7e 3376 iput(fs_info->btree_inode);
7e662854 3377fail:
586e46e2 3378 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3379 return err;
eb60ceac 3380}
663faf9f 3381ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3382
314b6dd0 3383static void btrfs_end_super_write(struct bio *bio)
f2984462 3384{
314b6dd0
JT
3385 struct btrfs_device *device = bio->bi_private;
3386 struct bio_vec *bvec;
3387 struct bvec_iter_all iter_all;
3388 struct page *page;
3389
3390 bio_for_each_segment_all(bvec, bio, iter_all) {
3391 page = bvec->bv_page;
3392
3393 if (bio->bi_status) {
3394 btrfs_warn_rl_in_rcu(device->fs_info,
3395 "lost page write due to IO error on %s (%d)",
3396 rcu_str_deref(device->name),
3397 blk_status_to_errno(bio->bi_status));
3398 ClearPageUptodate(page);
3399 SetPageError(page);
3400 btrfs_dev_stat_inc_and_print(device,
3401 BTRFS_DEV_STAT_WRITE_ERRS);
3402 } else {
3403 SetPageUptodate(page);
3404 }
3405
3406 put_page(page);
3407 unlock_page(page);
f2984462 3408 }
314b6dd0
JT
3409
3410 bio_put(bio);
f2984462
CM
3411}
3412
8f32380d
JT
3413struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3414 int copy_num)
29c36d72 3415{
29c36d72 3416 struct btrfs_super_block *super;
8f32380d 3417 struct page *page;
29c36d72 3418 u64 bytenr;
8f32380d 3419 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3420
3421 bytenr = btrfs_sb_offset(copy_num);
3422 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3423 return ERR_PTR(-EINVAL);
29c36d72 3424
8f32380d
JT
3425 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3426 if (IS_ERR(page))
3427 return ERR_CAST(page);
29c36d72 3428
8f32380d 3429 super = page_address(page);
29c36d72
AJ
3430 if (btrfs_super_bytenr(super) != bytenr ||
3431 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3432 btrfs_release_disk_super(super);
3433 return ERR_PTR(-EINVAL);
29c36d72
AJ
3434 }
3435
8f32380d 3436 return super;
29c36d72
AJ
3437}
3438
3439
8f32380d 3440struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3441{
8f32380d 3442 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3443 int i;
3444 u64 transid = 0;
a512bbf8
YZ
3445
3446 /* we would like to check all the supers, but that would make
3447 * a btrfs mount succeed after a mkfs from a different FS.
3448 * So, we need to add a special mount option to scan for
3449 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3450 */
3451 for (i = 0; i < 1; i++) {
8f32380d
JT
3452 super = btrfs_read_dev_one_super(bdev, i);
3453 if (IS_ERR(super))
a512bbf8
YZ
3454 continue;
3455
a512bbf8 3456 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3457 if (latest)
3458 btrfs_release_disk_super(super);
3459
3460 latest = super;
a512bbf8 3461 transid = btrfs_super_generation(super);
a512bbf8
YZ
3462 }
3463 }
92fc03fb 3464
8f32380d 3465 return super;
a512bbf8
YZ
3466}
3467
4eedeb75 3468/*
abbb3b8e 3469 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3470 * pages we use for writing are locked.
4eedeb75 3471 *
abbb3b8e
DS
3472 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3473 * the expected device size at commit time. Note that max_mirrors must be
3474 * same for write and wait phases.
4eedeb75 3475 *
314b6dd0 3476 * Return number of errors when page is not found or submission fails.
4eedeb75 3477 */
a512bbf8 3478static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3479 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3480{
d5178578 3481 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3482 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3483 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3484 int i;
a512bbf8 3485 int errors = 0;
a512bbf8 3486 u64 bytenr;
a512bbf8
YZ
3487
3488 if (max_mirrors == 0)
3489 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3490
d5178578
JT
3491 shash->tfm = fs_info->csum_shash;
3492
a512bbf8 3493 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3494 struct page *page;
3495 struct bio *bio;
3496 struct btrfs_super_block *disk_super;
3497
a512bbf8 3498 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3499 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3500 device->commit_total_bytes)
a512bbf8
YZ
3501 break;
3502
abbb3b8e 3503 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3504
fd08001f
EB
3505 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3506 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3507 sb->csum);
4eedeb75 3508
314b6dd0
JT
3509 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3510 GFP_NOFS);
3511 if (!page) {
abbb3b8e 3512 btrfs_err(device->fs_info,
314b6dd0 3513 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3514 bytenr);
3515 errors++;
4eedeb75 3516 continue;
abbb3b8e 3517 }
634554dc 3518
314b6dd0
JT
3519 /* Bump the refcount for wait_dev_supers() */
3520 get_page(page);
a512bbf8 3521
314b6dd0
JT
3522 disk_super = page_address(page);
3523 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3524
314b6dd0
JT
3525 /*
3526 * Directly use bios here instead of relying on the page cache
3527 * to do I/O, so we don't lose the ability to do integrity
3528 * checking.
3529 */
3530 bio = bio_alloc(GFP_NOFS, 1);
3531 bio_set_dev(bio, device->bdev);
3532 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3533 bio->bi_private = device;
3534 bio->bi_end_io = btrfs_end_super_write;
3535 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3536 offset_in_page(bytenr));
a512bbf8 3537
387125fc 3538 /*
314b6dd0
JT
3539 * We FUA only the first super block. The others we allow to
3540 * go down lazy and there's a short window where the on-disk
3541 * copies might still contain the older version.
387125fc 3542 */
314b6dd0 3543 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3544 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3545 bio->bi_opf |= REQ_FUA;
3546
3547 btrfsic_submit_bio(bio);
a512bbf8
YZ
3548 }
3549 return errors < i ? 0 : -1;
3550}
3551
abbb3b8e
DS
3552/*
3553 * Wait for write completion of superblocks done by write_dev_supers,
3554 * @max_mirrors same for write and wait phases.
3555 *
314b6dd0 3556 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3557 * date.
3558 */
3559static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3560{
abbb3b8e
DS
3561 int i;
3562 int errors = 0;
b6a535fa 3563 bool primary_failed = false;
abbb3b8e
DS
3564 u64 bytenr;
3565
3566 if (max_mirrors == 0)
3567 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3568
3569 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3570 struct page *page;
3571
abbb3b8e
DS
3572 bytenr = btrfs_sb_offset(i);
3573 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3574 device->commit_total_bytes)
3575 break;
3576
314b6dd0
JT
3577 page = find_get_page(device->bdev->bd_inode->i_mapping,
3578 bytenr >> PAGE_SHIFT);
3579 if (!page) {
abbb3b8e 3580 errors++;
b6a535fa
HM
3581 if (i == 0)
3582 primary_failed = true;
abbb3b8e
DS
3583 continue;
3584 }
314b6dd0
JT
3585 /* Page is submitted locked and unlocked once the IO completes */
3586 wait_on_page_locked(page);
3587 if (PageError(page)) {
abbb3b8e 3588 errors++;
b6a535fa
HM
3589 if (i == 0)
3590 primary_failed = true;
3591 }
abbb3b8e 3592
314b6dd0
JT
3593 /* Drop our reference */
3594 put_page(page);
abbb3b8e 3595
314b6dd0
JT
3596 /* Drop the reference from the writing run */
3597 put_page(page);
abbb3b8e
DS
3598 }
3599
b6a535fa
HM
3600 /* log error, force error return */
3601 if (primary_failed) {
3602 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3603 device->devid);
3604 return -1;
3605 }
3606
abbb3b8e
DS
3607 return errors < i ? 0 : -1;
3608}
3609
387125fc
CM
3610/*
3611 * endio for the write_dev_flush, this will wake anyone waiting
3612 * for the barrier when it is done
3613 */
4246a0b6 3614static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3615{
e0ae9994 3616 complete(bio->bi_private);
387125fc
CM
3617}
3618
3619/*
4fc6441a
AJ
3620 * Submit a flush request to the device if it supports it. Error handling is
3621 * done in the waiting counterpart.
387125fc 3622 */
4fc6441a 3623static void write_dev_flush(struct btrfs_device *device)
387125fc 3624{
c2a9c7ab 3625 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3626 struct bio *bio = device->flush_bio;
387125fc 3627
c2a9c7ab 3628 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3629 return;
387125fc 3630
e0ae9994 3631 bio_reset(bio);
387125fc 3632 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3633 bio_set_dev(bio, device->bdev);
8d910125 3634 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3635 init_completion(&device->flush_wait);
3636 bio->bi_private = &device->flush_wait;
387125fc 3637
43a01111 3638 btrfsic_submit_bio(bio);
1c3063b6 3639 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3640}
387125fc 3641
4fc6441a
AJ
3642/*
3643 * If the flush bio has been submitted by write_dev_flush, wait for it.
3644 */
8c27cb35 3645static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3646{
4fc6441a 3647 struct bio *bio = device->flush_bio;
387125fc 3648
1c3063b6 3649 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3650 return BLK_STS_OK;
387125fc 3651
1c3063b6 3652 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3653 wait_for_completion_io(&device->flush_wait);
387125fc 3654
8c27cb35 3655 return bio->bi_status;
387125fc 3656}
387125fc 3657
d10b82fe 3658static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3659{
6528b99d 3660 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3661 return -EIO;
387125fc
CM
3662 return 0;
3663}
3664
3665/*
3666 * send an empty flush down to each device in parallel,
3667 * then wait for them
3668 */
3669static int barrier_all_devices(struct btrfs_fs_info *info)
3670{
3671 struct list_head *head;
3672 struct btrfs_device *dev;
5af3e8cc 3673 int errors_wait = 0;
4e4cbee9 3674 blk_status_t ret;
387125fc 3675
1538e6c5 3676 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3677 /* send down all the barriers */
3678 head = &info->fs_devices->devices;
1538e6c5 3679 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3680 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3681 continue;
cea7c8bf 3682 if (!dev->bdev)
387125fc 3683 continue;
e12c9621 3684 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3685 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3686 continue;
3687
4fc6441a 3688 write_dev_flush(dev);
58efbc9f 3689 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3690 }
3691
3692 /* wait for all the barriers */
1538e6c5 3693 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3694 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3695 continue;
387125fc 3696 if (!dev->bdev) {
5af3e8cc 3697 errors_wait++;
387125fc
CM
3698 continue;
3699 }
e12c9621 3700 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3701 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3702 continue;
3703
4fc6441a 3704 ret = wait_dev_flush(dev);
401b41e5
AJ
3705 if (ret) {
3706 dev->last_flush_error = ret;
66b4993e
DS
3707 btrfs_dev_stat_inc_and_print(dev,
3708 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3709 errors_wait++;
401b41e5
AJ
3710 }
3711 }
3712
cea7c8bf 3713 if (errors_wait) {
401b41e5
AJ
3714 /*
3715 * At some point we need the status of all disks
3716 * to arrive at the volume status. So error checking
3717 * is being pushed to a separate loop.
3718 */
d10b82fe 3719 return check_barrier_error(info);
387125fc 3720 }
387125fc
CM
3721 return 0;
3722}
3723
943c6e99
ZL
3724int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3725{
8789f4fe
ZL
3726 int raid_type;
3727 int min_tolerated = INT_MAX;
943c6e99 3728
8789f4fe
ZL
3729 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3730 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3731 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3732 btrfs_raid_array[BTRFS_RAID_SINGLE].
3733 tolerated_failures);
943c6e99 3734
8789f4fe
ZL
3735 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3736 if (raid_type == BTRFS_RAID_SINGLE)
3737 continue;
41a6e891 3738 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3739 continue;
8c3e3582 3740 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3741 btrfs_raid_array[raid_type].
3742 tolerated_failures);
3743 }
943c6e99 3744
8789f4fe 3745 if (min_tolerated == INT_MAX) {
ab8d0fc4 3746 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3747 min_tolerated = 0;
3748 }
3749
3750 return min_tolerated;
943c6e99
ZL
3751}
3752
eece6a9c 3753int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3754{
e5e9a520 3755 struct list_head *head;
f2984462 3756 struct btrfs_device *dev;
a061fc8d 3757 struct btrfs_super_block *sb;
f2984462 3758 struct btrfs_dev_item *dev_item;
f2984462
CM
3759 int ret;
3760 int do_barriers;
a236aed1
CM
3761 int max_errors;
3762 int total_errors = 0;
a061fc8d 3763 u64 flags;
f2984462 3764
0b246afa 3765 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3766
3767 /*
3768 * max_mirrors == 0 indicates we're from commit_transaction,
3769 * not from fsync where the tree roots in fs_info have not
3770 * been consistent on disk.
3771 */
3772 if (max_mirrors == 0)
3773 backup_super_roots(fs_info);
f2984462 3774
0b246afa 3775 sb = fs_info->super_for_commit;
a061fc8d 3776 dev_item = &sb->dev_item;
e5e9a520 3777
0b246afa
JM
3778 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3779 head = &fs_info->fs_devices->devices;
3780 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3781
5af3e8cc 3782 if (do_barriers) {
0b246afa 3783 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3784 if (ret) {
3785 mutex_unlock(
0b246afa
JM
3786 &fs_info->fs_devices->device_list_mutex);
3787 btrfs_handle_fs_error(fs_info, ret,
3788 "errors while submitting device barriers.");
5af3e8cc
SB
3789 return ret;
3790 }
3791 }
387125fc 3792
1538e6c5 3793 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3794 if (!dev->bdev) {
3795 total_errors++;
3796 continue;
3797 }
e12c9621 3798 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3799 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3800 continue;
3801
2b82032c 3802 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3803 btrfs_set_stack_device_type(dev_item, dev->type);
3804 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3805 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3806 dev->commit_total_bytes);
ce7213c7
MX
3807 btrfs_set_stack_device_bytes_used(dev_item,
3808 dev->commit_bytes_used);
a061fc8d
CM
3809 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3810 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3811 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3812 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3813 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3814 BTRFS_FSID_SIZE);
a512bbf8 3815
a061fc8d
CM
3816 flags = btrfs_super_flags(sb);
3817 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3818
75cb857d
QW
3819 ret = btrfs_validate_write_super(fs_info, sb);
3820 if (ret < 0) {
3821 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3822 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3823 "unexpected superblock corruption detected");
3824 return -EUCLEAN;
3825 }
3826
abbb3b8e 3827 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3828 if (ret)
3829 total_errors++;
f2984462 3830 }
a236aed1 3831 if (total_errors > max_errors) {
0b246afa
JM
3832 btrfs_err(fs_info, "%d errors while writing supers",
3833 total_errors);
3834 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3835
9d565ba4 3836 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3837 btrfs_handle_fs_error(fs_info, -EIO,
3838 "%d errors while writing supers",
3839 total_errors);
9d565ba4 3840 return -EIO;
a236aed1 3841 }
f2984462 3842
a512bbf8 3843 total_errors = 0;
1538e6c5 3844 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3845 if (!dev->bdev)
3846 continue;
e12c9621 3847 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3848 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3849 continue;
3850
abbb3b8e 3851 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3852 if (ret)
3853 total_errors++;
f2984462 3854 }
0b246afa 3855 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3856 if (total_errors > max_errors) {
0b246afa
JM
3857 btrfs_handle_fs_error(fs_info, -EIO,
3858 "%d errors while writing supers",
3859 total_errors);
79787eaa 3860 return -EIO;
a236aed1 3861 }
f2984462
CM
3862 return 0;
3863}
3864
cb517eab
MX
3865/* Drop a fs root from the radix tree and free it. */
3866void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3867 struct btrfs_root *root)
2619ba1f 3868{
4785e24f
JB
3869 bool drop_ref = false;
3870
4df27c4d 3871 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3872 radix_tree_delete(&fs_info->fs_roots_radix,
3873 (unsigned long)root->root_key.objectid);
af01d2e5 3874 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3875 drop_ref = true;
4df27c4d 3876 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3877
1c1ea4f7 3878 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3879 ASSERT(root->log_root == NULL);
1c1ea4f7 3880 if (root->reloc_root) {
00246528 3881 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3882 root->reloc_root = NULL;
3883 }
3884 }
3321719e 3885
faa2dbf0
JB
3886 if (root->free_ino_pinned)
3887 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3888 if (root->free_ino_ctl)
3889 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3890 if (root->ino_cache_inode) {
3891 iput(root->ino_cache_inode);
3892 root->ino_cache_inode = NULL;
3893 }
4785e24f
JB
3894 if (drop_ref)
3895 btrfs_put_root(root);
2619ba1f
CM
3896}
3897
c146afad 3898int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3899{
c146afad
YZ
3900 u64 root_objectid = 0;
3901 struct btrfs_root *gang[8];
65d33fd7
QW
3902 int i = 0;
3903 int err = 0;
3904 unsigned int ret = 0;
e089f05c 3905
c146afad 3906 while (1) {
efc34534 3907 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3908 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3909 (void **)gang, root_objectid,
3910 ARRAY_SIZE(gang));
65d33fd7 3911 if (!ret) {
efc34534 3912 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3913 break;
65d33fd7 3914 }
5d4f98a2 3915 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3916
c146afad 3917 for (i = 0; i < ret; i++) {
65d33fd7
QW
3918 /* Avoid to grab roots in dead_roots */
3919 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3920 gang[i] = NULL;
3921 continue;
3922 }
3923 /* grab all the search result for later use */
00246528 3924 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 3925 }
efc34534 3926 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 3927
65d33fd7
QW
3928 for (i = 0; i < ret; i++) {
3929 if (!gang[i])
3930 continue;
c146afad 3931 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3932 err = btrfs_orphan_cleanup(gang[i]);
3933 if (err)
65d33fd7 3934 break;
00246528 3935 btrfs_put_root(gang[i]);
c146afad
YZ
3936 }
3937 root_objectid++;
3938 }
65d33fd7
QW
3939
3940 /* release the uncleaned roots due to error */
3941 for (; i < ret; i++) {
3942 if (gang[i])
00246528 3943 btrfs_put_root(gang[i]);
65d33fd7
QW
3944 }
3945 return err;
c146afad 3946}
a2135011 3947
6bccf3ab 3948int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3949{
6bccf3ab 3950 struct btrfs_root *root = fs_info->tree_root;
c146afad 3951 struct btrfs_trans_handle *trans;
a74a4b97 3952
0b246afa 3953 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3954 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3955 mutex_unlock(&fs_info->cleaner_mutex);
3956 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3957
3958 /* wait until ongoing cleanup work done */
0b246afa
JM
3959 down_write(&fs_info->cleanup_work_sem);
3960 up_write(&fs_info->cleanup_work_sem);
c71bf099 3961
7a7eaa40 3962 trans = btrfs_join_transaction(root);
3612b495
TI
3963 if (IS_ERR(trans))
3964 return PTR_ERR(trans);
3a45bb20 3965 return btrfs_commit_transaction(trans);
c146afad
YZ
3966}
3967
b105e927 3968void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3969{
c146afad
YZ
3970 int ret;
3971
afcdd129 3972 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3973 /*
3974 * We don't want the cleaner to start new transactions, add more delayed
3975 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3976 * because that frees the task_struct, and the transaction kthread might
3977 * still try to wake up the cleaner.
3978 */
3979 kthread_park(fs_info->cleaner_kthread);
c146afad 3980
7343dd61 3981 /* wait for the qgroup rescan worker to stop */
d06f23d6 3982 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3983
803b2f54
SB
3984 /* wait for the uuid_scan task to finish */
3985 down(&fs_info->uuid_tree_rescan_sem);
3986 /* avoid complains from lockdep et al., set sem back to initial state */
3987 up(&fs_info->uuid_tree_rescan_sem);
3988
837d5b6e 3989 /* pause restriper - we want to resume on mount */
aa1b8cd4 3990 btrfs_pause_balance(fs_info);
837d5b6e 3991
8dabb742
SB
3992 btrfs_dev_replace_suspend_for_unmount(fs_info);
3993
aa1b8cd4 3994 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3995
3996 /* wait for any defraggers to finish */
3997 wait_event(fs_info->transaction_wait,
3998 (atomic_read(&fs_info->defrag_running) == 0));
3999
4000 /* clear out the rbtree of defraggable inodes */
26176e7c 4001 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4002
21c7e756
MX
4003 cancel_work_sync(&fs_info->async_reclaim_work);
4004
b0643e59
DZ
4005 /* Cancel or finish ongoing discard work */
4006 btrfs_discard_cleanup(fs_info);
4007
bc98a42c 4008 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4009 /*
d6fd0ae2
OS
4010 * The cleaner kthread is stopped, so do one final pass over
4011 * unused block groups.
e44163e1 4012 */
0b246afa 4013 btrfs_delete_unused_bgs(fs_info);
e44163e1 4014
f0cc2cd7
FM
4015 /*
4016 * There might be existing delayed inode workers still running
4017 * and holding an empty delayed inode item. We must wait for
4018 * them to complete first because they can create a transaction.
4019 * This happens when someone calls btrfs_balance_delayed_items()
4020 * and then a transaction commit runs the same delayed nodes
4021 * before any delayed worker has done something with the nodes.
4022 * We must wait for any worker here and not at transaction
4023 * commit time since that could cause a deadlock.
4024 * This is a very rare case.
4025 */
4026 btrfs_flush_workqueue(fs_info->delayed_workers);
4027
6bccf3ab 4028 ret = btrfs_commit_super(fs_info);
acce952b 4029 if (ret)
04892340 4030 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4031 }
4032
af722733
LB
4033 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4034 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4035 btrfs_error_commit_super(fs_info);
0f7d52f4 4036
e3029d9f
AV
4037 kthread_stop(fs_info->transaction_kthread);
4038 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4039
e187831e 4040 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4041 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4042
04892340 4043 btrfs_free_qgroup_config(fs_info);
fe816d0f 4044 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4045
963d678b 4046 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4047 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4048 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4049 }
bcc63abb 4050
4297ff84
JB
4051 if (percpu_counter_sum(&fs_info->dio_bytes))
4052 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4053 percpu_counter_sum(&fs_info->dio_bytes));
4054
6618a59b 4055 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4056 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4057
1a4319cc
LB
4058 btrfs_put_block_group_cache(fs_info);
4059
de348ee0
WS
4060 /*
4061 * we must make sure there is not any read request to
4062 * submit after we stopping all workers.
4063 */
4064 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4065 btrfs_stop_all_workers(fs_info);
4066
afcdd129 4067 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4068 free_root_pointers(fs_info, true);
8c38938c 4069 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4070
4e19443d
JB
4071 /*
4072 * We must free the block groups after dropping the fs_roots as we could
4073 * have had an IO error and have left over tree log blocks that aren't
4074 * cleaned up until the fs roots are freed. This makes the block group
4075 * accounting appear to be wrong because there's pending reserved bytes,
4076 * so make sure we do the block group cleanup afterwards.
4077 */
4078 btrfs_free_block_groups(fs_info);
4079
13e6c37b 4080 iput(fs_info->btree_inode);
d6bfde87 4081
21adbd5c 4082#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4083 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4084 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4085#endif
4086
0b86a832 4087 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4088 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4089}
4090
b9fab919
CM
4091int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4092 int atomic)
5f39d397 4093{
1259ab75 4094 int ret;
727011e0 4095 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4096
0b32f4bb 4097 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4098 if (!ret)
4099 return ret;
4100
4101 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4102 parent_transid, atomic);
4103 if (ret == -EAGAIN)
4104 return ret;
1259ab75 4105 return !ret;
5f39d397
CM
4106}
4107
5f39d397
CM
4108void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4109{
0b246afa 4110 struct btrfs_fs_info *fs_info;
06ea65a3 4111 struct btrfs_root *root;
5f39d397 4112 u64 transid = btrfs_header_generation(buf);
b9473439 4113 int was_dirty;
b4ce94de 4114
06ea65a3
JB
4115#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4116 /*
4117 * This is a fast path so only do this check if we have sanity tests
52042d8e 4118 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4119 * outside of the sanity tests.
4120 */
b0132a3b 4121 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4122 return;
4123#endif
4124 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4125 fs_info = root->fs_info;
b9447ef8 4126 btrfs_assert_tree_locked(buf);
0b246afa 4127 if (transid != fs_info->generation)
5d163e0e 4128 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4129 buf->start, transid, fs_info->generation);
0b32f4bb 4130 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4131 if (!was_dirty)
104b4e51
NB
4132 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4133 buf->len,
4134 fs_info->dirty_metadata_batch);
1f21ef0a 4135#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4136 /*
4137 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4138 * but item data not updated.
4139 * So here we should only check item pointers, not item data.
4140 */
4141 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4142 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4143 btrfs_print_leaf(buf);
1f21ef0a
FM
4144 ASSERT(0);
4145 }
4146#endif
eb60ceac
CM
4147}
4148
2ff7e61e 4149static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4150 int flush_delayed)
16cdcec7
MX
4151{
4152 /*
4153 * looks as though older kernels can get into trouble with
4154 * this code, they end up stuck in balance_dirty_pages forever
4155 */
e2d84521 4156 int ret;
16cdcec7
MX
4157
4158 if (current->flags & PF_MEMALLOC)
4159 return;
4160
b53d3f5d 4161 if (flush_delayed)
2ff7e61e 4162 btrfs_balance_delayed_items(fs_info);
16cdcec7 4163
d814a491
EL
4164 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4165 BTRFS_DIRTY_METADATA_THRESH,
4166 fs_info->dirty_metadata_batch);
e2d84521 4167 if (ret > 0) {
0b246afa 4168 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4169 }
16cdcec7
MX
4170}
4171
2ff7e61e 4172void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4173{
2ff7e61e 4174 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4175}
585ad2c3 4176
2ff7e61e 4177void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4178{
2ff7e61e 4179 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4180}
6b80053d 4181
581c1760
QW
4182int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4183 struct btrfs_key *first_key)
6b80053d 4184{
5ab12d1f 4185 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4186 level, first_key);
6b80053d 4187}
0da5468f 4188
2ff7e61e 4189static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4190{
fe816d0f
NB
4191 /* cleanup FS via transaction */
4192 btrfs_cleanup_transaction(fs_info);
4193
0b246afa 4194 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4195 btrfs_run_delayed_iputs(fs_info);
0b246afa 4196 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4197
0b246afa
JM
4198 down_write(&fs_info->cleanup_work_sem);
4199 up_write(&fs_info->cleanup_work_sem);
acce952b 4200}
4201
ef67963d
JB
4202static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4203{
4204 struct btrfs_root *gang[8];
4205 u64 root_objectid = 0;
4206 int ret;
4207
4208 spin_lock(&fs_info->fs_roots_radix_lock);
4209 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4210 (void **)gang, root_objectid,
4211 ARRAY_SIZE(gang))) != 0) {
4212 int i;
4213
4214 for (i = 0; i < ret; i++)
4215 gang[i] = btrfs_grab_root(gang[i]);
4216 spin_unlock(&fs_info->fs_roots_radix_lock);
4217
4218 for (i = 0; i < ret; i++) {
4219 if (!gang[i])
4220 continue;
4221 root_objectid = gang[i]->root_key.objectid;
4222 btrfs_free_log(NULL, gang[i]);
4223 btrfs_put_root(gang[i]);
4224 }
4225 root_objectid++;
4226 spin_lock(&fs_info->fs_roots_radix_lock);
4227 }
4228 spin_unlock(&fs_info->fs_roots_radix_lock);
4229 btrfs_free_log_root_tree(NULL, fs_info);
4230}
4231
143bede5 4232static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4233{
acce952b 4234 struct btrfs_ordered_extent *ordered;
acce952b 4235
199c2a9c 4236 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4237 /*
4238 * This will just short circuit the ordered completion stuff which will
4239 * make sure the ordered extent gets properly cleaned up.
4240 */
199c2a9c 4241 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4242 root_extent_list)
4243 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4244 spin_unlock(&root->ordered_extent_lock);
4245}
4246
4247static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4248{
4249 struct btrfs_root *root;
4250 struct list_head splice;
4251
4252 INIT_LIST_HEAD(&splice);
4253
4254 spin_lock(&fs_info->ordered_root_lock);
4255 list_splice_init(&fs_info->ordered_roots, &splice);
4256 while (!list_empty(&splice)) {
4257 root = list_first_entry(&splice, struct btrfs_root,
4258 ordered_root);
1de2cfde
JB
4259 list_move_tail(&root->ordered_root,
4260 &fs_info->ordered_roots);
199c2a9c 4261
2a85d9ca 4262 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4263 btrfs_destroy_ordered_extents(root);
4264
2a85d9ca
LB
4265 cond_resched();
4266 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4267 }
4268 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4269
4270 /*
4271 * We need this here because if we've been flipped read-only we won't
4272 * get sync() from the umount, so we need to make sure any ordered
4273 * extents that haven't had their dirty pages IO start writeout yet
4274 * actually get run and error out properly.
4275 */
4276 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4277}
4278
35a3621b 4279static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4280 struct btrfs_fs_info *fs_info)
acce952b 4281{
4282 struct rb_node *node;
4283 struct btrfs_delayed_ref_root *delayed_refs;
4284 struct btrfs_delayed_ref_node *ref;
4285 int ret = 0;
4286
4287 delayed_refs = &trans->delayed_refs;
4288
4289 spin_lock(&delayed_refs->lock);
d7df2c79 4290 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4291 spin_unlock(&delayed_refs->lock);
b79ce3dd 4292 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4293 return ret;
4294 }
4295
5c9d028b 4296 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4297 struct btrfs_delayed_ref_head *head;
0e0adbcf 4298 struct rb_node *n;
e78417d1 4299 bool pin_bytes = false;
acce952b 4300
d7df2c79
JB
4301 head = rb_entry(node, struct btrfs_delayed_ref_head,
4302 href_node);
3069bd26 4303 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4304 continue;
3069bd26 4305
d7df2c79 4306 spin_lock(&head->lock);
e3d03965 4307 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4308 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4309 ref_node);
d7df2c79 4310 ref->in_tree = 0;
e3d03965 4311 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4312 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4313 if (!list_empty(&ref->add_list))
4314 list_del(&ref->add_list);
d7df2c79
JB
4315 atomic_dec(&delayed_refs->num_entries);
4316 btrfs_put_delayed_ref(ref);
e78417d1 4317 }
d7df2c79
JB
4318 if (head->must_insert_reserved)
4319 pin_bytes = true;
4320 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4321 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4322 spin_unlock(&head->lock);
4323 spin_unlock(&delayed_refs->lock);
4324 mutex_unlock(&head->mutex);
acce952b 4325
f603bb94
NB
4326 if (pin_bytes) {
4327 struct btrfs_block_group *cache;
4328
4329 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4330 BUG_ON(!cache);
4331
4332 spin_lock(&cache->space_info->lock);
4333 spin_lock(&cache->lock);
4334 cache->pinned += head->num_bytes;
4335 btrfs_space_info_update_bytes_pinned(fs_info,
4336 cache->space_info, head->num_bytes);
4337 cache->reserved -= head->num_bytes;
4338 cache->space_info->bytes_reserved -= head->num_bytes;
4339 spin_unlock(&cache->lock);
4340 spin_unlock(&cache->space_info->lock);
4341 percpu_counter_add_batch(
4342 &cache->space_info->total_bytes_pinned,
4343 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4344
4345 btrfs_put_block_group(cache);
4346
4347 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4348 head->bytenr + head->num_bytes - 1);
4349 }
31890da0 4350 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4351 btrfs_put_delayed_ref_head(head);
acce952b 4352 cond_resched();
4353 spin_lock(&delayed_refs->lock);
4354 }
81f7eb00 4355 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4356
4357 spin_unlock(&delayed_refs->lock);
4358
4359 return ret;
4360}
4361
143bede5 4362static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4363{
4364 struct btrfs_inode *btrfs_inode;
4365 struct list_head splice;
4366
4367 INIT_LIST_HEAD(&splice);
4368
eb73c1b7
MX
4369 spin_lock(&root->delalloc_lock);
4370 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4371
4372 while (!list_empty(&splice)) {
fe816d0f 4373 struct inode *inode = NULL;
eb73c1b7
MX
4374 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4375 delalloc_inodes);
fe816d0f 4376 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4377 spin_unlock(&root->delalloc_lock);
acce952b 4378
fe816d0f
NB
4379 /*
4380 * Make sure we get a live inode and that it'll not disappear
4381 * meanwhile.
4382 */
4383 inode = igrab(&btrfs_inode->vfs_inode);
4384 if (inode) {
4385 invalidate_inode_pages2(inode->i_mapping);
4386 iput(inode);
4387 }
eb73c1b7 4388 spin_lock(&root->delalloc_lock);
acce952b 4389 }
eb73c1b7
MX
4390 spin_unlock(&root->delalloc_lock);
4391}
4392
4393static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4394{
4395 struct btrfs_root *root;
4396 struct list_head splice;
4397
4398 INIT_LIST_HEAD(&splice);
4399
4400 spin_lock(&fs_info->delalloc_root_lock);
4401 list_splice_init(&fs_info->delalloc_roots, &splice);
4402 while (!list_empty(&splice)) {
4403 root = list_first_entry(&splice, struct btrfs_root,
4404 delalloc_root);
00246528 4405 root = btrfs_grab_root(root);
eb73c1b7
MX
4406 BUG_ON(!root);
4407 spin_unlock(&fs_info->delalloc_root_lock);
4408
4409 btrfs_destroy_delalloc_inodes(root);
00246528 4410 btrfs_put_root(root);
eb73c1b7
MX
4411
4412 spin_lock(&fs_info->delalloc_root_lock);
4413 }
4414 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4415}
4416
2ff7e61e 4417static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4418 struct extent_io_tree *dirty_pages,
4419 int mark)
4420{
4421 int ret;
acce952b 4422 struct extent_buffer *eb;
4423 u64 start = 0;
4424 u64 end;
acce952b 4425
4426 while (1) {
4427 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4428 mark, NULL);
acce952b 4429 if (ret)
4430 break;
4431
91166212 4432 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4433 while (start <= end) {
0b246afa
JM
4434 eb = find_extent_buffer(fs_info, start);
4435 start += fs_info->nodesize;
fd8b2b61 4436 if (!eb)
acce952b 4437 continue;
fd8b2b61 4438 wait_on_extent_buffer_writeback(eb);
acce952b 4439
fd8b2b61
JB
4440 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4441 &eb->bflags))
4442 clear_extent_buffer_dirty(eb);
4443 free_extent_buffer_stale(eb);
acce952b 4444 }
4445 }
4446
4447 return ret;
4448}
4449
2ff7e61e 4450static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4451 struct extent_io_tree *unpin)
acce952b 4452{
acce952b 4453 u64 start;
4454 u64 end;
4455 int ret;
4456
acce952b 4457 while (1) {
0e6ec385
FM
4458 struct extent_state *cached_state = NULL;
4459
fcd5e742
LF
4460 /*
4461 * The btrfs_finish_extent_commit() may get the same range as
4462 * ours between find_first_extent_bit and clear_extent_dirty.
4463 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4464 * the same extent range.
4465 */
4466 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4467 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4468 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4469 if (ret) {
4470 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4471 break;
fcd5e742 4472 }
acce952b 4473
0e6ec385
FM
4474 clear_extent_dirty(unpin, start, end, &cached_state);
4475 free_extent_state(cached_state);
2ff7e61e 4476 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4477 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4478 cond_resched();
4479 }
4480
4481 return 0;
4482}
4483
32da5386 4484static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4485{
4486 struct inode *inode;
4487
4488 inode = cache->io_ctl.inode;
4489 if (inode) {
4490 invalidate_inode_pages2(inode->i_mapping);
4491 BTRFS_I(inode)->generation = 0;
4492 cache->io_ctl.inode = NULL;
4493 iput(inode);
4494 }
4495 btrfs_put_block_group(cache);
4496}
4497
4498void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4499 struct btrfs_fs_info *fs_info)
c79a1751 4500{
32da5386 4501 struct btrfs_block_group *cache;
c79a1751
LB
4502
4503 spin_lock(&cur_trans->dirty_bgs_lock);
4504 while (!list_empty(&cur_trans->dirty_bgs)) {
4505 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4506 struct btrfs_block_group,
c79a1751 4507 dirty_list);
c79a1751
LB
4508
4509 if (!list_empty(&cache->io_list)) {
4510 spin_unlock(&cur_trans->dirty_bgs_lock);
4511 list_del_init(&cache->io_list);
4512 btrfs_cleanup_bg_io(cache);
4513 spin_lock(&cur_trans->dirty_bgs_lock);
4514 }
4515
4516 list_del_init(&cache->dirty_list);
4517 spin_lock(&cache->lock);
4518 cache->disk_cache_state = BTRFS_DC_ERROR;
4519 spin_unlock(&cache->lock);
4520
4521 spin_unlock(&cur_trans->dirty_bgs_lock);
4522 btrfs_put_block_group(cache);
ba2c4d4e 4523 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4524 spin_lock(&cur_trans->dirty_bgs_lock);
4525 }
4526 spin_unlock(&cur_trans->dirty_bgs_lock);
4527
45ae2c18
NB
4528 /*
4529 * Refer to the definition of io_bgs member for details why it's safe
4530 * to use it without any locking
4531 */
c79a1751
LB
4532 while (!list_empty(&cur_trans->io_bgs)) {
4533 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4534 struct btrfs_block_group,
c79a1751 4535 io_list);
c79a1751
LB
4536
4537 list_del_init(&cache->io_list);
4538 spin_lock(&cache->lock);
4539 cache->disk_cache_state = BTRFS_DC_ERROR;
4540 spin_unlock(&cache->lock);
4541 btrfs_cleanup_bg_io(cache);
4542 }
4543}
4544
49b25e05 4545void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4546 struct btrfs_fs_info *fs_info)
49b25e05 4547{
bbbf7243
NB
4548 struct btrfs_device *dev, *tmp;
4549
2ff7e61e 4550 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4551 ASSERT(list_empty(&cur_trans->dirty_bgs));
4552 ASSERT(list_empty(&cur_trans->io_bgs));
4553
bbbf7243
NB
4554 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4555 post_commit_list) {
4556 list_del_init(&dev->post_commit_list);
4557 }
4558
2ff7e61e 4559 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4560
4a9d8bde 4561 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4562 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4563
4a9d8bde 4564 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4565 wake_up(&fs_info->transaction_wait);
49b25e05 4566
ccdf9b30 4567 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4568
2ff7e61e 4569 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4570 EXTENT_DIRTY);
fe119a6e 4571 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4572
4a9d8bde
MX
4573 cur_trans->state =TRANS_STATE_COMPLETED;
4574 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4575}
4576
2ff7e61e 4577static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4578{
4579 struct btrfs_transaction *t;
acce952b 4580
0b246afa 4581 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4582
0b246afa
JM
4583 spin_lock(&fs_info->trans_lock);
4584 while (!list_empty(&fs_info->trans_list)) {
4585 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4586 struct btrfs_transaction, list);
4587 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4588 refcount_inc(&t->use_count);
0b246afa 4589 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4590 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4591 btrfs_put_transaction(t);
0b246afa 4592 spin_lock(&fs_info->trans_lock);
724e2315
JB
4593 continue;
4594 }
0b246afa 4595 if (t == fs_info->running_transaction) {
724e2315 4596 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4597 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4598 /*
4599 * We wait for 0 num_writers since we don't hold a trans
4600 * handle open currently for this transaction.
4601 */
4602 wait_event(t->writer_wait,
4603 atomic_read(&t->num_writers) == 0);
4604 } else {
0b246afa 4605 spin_unlock(&fs_info->trans_lock);
724e2315 4606 }
2ff7e61e 4607 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4608
0b246afa
JM
4609 spin_lock(&fs_info->trans_lock);
4610 if (t == fs_info->running_transaction)
4611 fs_info->running_transaction = NULL;
acce952b 4612 list_del_init(&t->list);
0b246afa 4613 spin_unlock(&fs_info->trans_lock);
acce952b 4614
724e2315 4615 btrfs_put_transaction(t);
2ff7e61e 4616 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4617 spin_lock(&fs_info->trans_lock);
724e2315 4618 }
0b246afa
JM
4619 spin_unlock(&fs_info->trans_lock);
4620 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4621 btrfs_destroy_delayed_inodes(fs_info);
4622 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4623 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4624 btrfs_drop_all_logs(fs_info);
0b246afa 4625 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4626
4627 return 0;
4628}
4629
e8c9f186 4630static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4631 /* mandatory callbacks */
0b86a832 4632 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4633 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4634};