]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: remove redundant null bdev counting during flush submission
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
3d3a126a 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
143bede5 68static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 69static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 70 struct btrfs_fs_info *fs_info);
143bede5 71static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 72static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 73 struct extent_io_tree *dirty_pages,
74 int mark);
2ff7e61e 75static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 76 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
77static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
78static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 79
d352ac68 80/*
97eb6b69
DS
81 * btrfs_end_io_wq structs are used to do processing in task context when an IO
82 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
83 * by writes to insert metadata for new file extents after IO is complete.
84 */
97eb6b69 85struct btrfs_end_io_wq {
ce9adaa5
CM
86 struct bio *bio;
87 bio_end_io_t *end_io;
88 void *private;
89 struct btrfs_fs_info *info;
90 int error;
bfebd8b5 91 enum btrfs_wq_endio_type metadata;
8b712842 92 struct btrfs_work work;
ce9adaa5 93};
0da5468f 94
97eb6b69
DS
95static struct kmem_cache *btrfs_end_io_wq_cache;
96
97int __init btrfs_end_io_wq_init(void)
98{
99 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
100 sizeof(struct btrfs_end_io_wq),
101 0,
fba4b697 102 SLAB_MEM_SPREAD,
97eb6b69
DS
103 NULL);
104 if (!btrfs_end_io_wq_cache)
105 return -ENOMEM;
106 return 0;
107}
108
109void btrfs_end_io_wq_exit(void)
110{
5598e900 111 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
112}
113
d352ac68
CM
114/*
115 * async submit bios are used to offload expensive checksumming
116 * onto the worker threads. They checksum file and metadata bios
117 * just before they are sent down the IO stack.
118 */
44b8bd7e 119struct async_submit_bio {
c6100a4b
JB
120 void *private_data;
121 struct btrfs_fs_info *fs_info;
44b8bd7e 122 struct bio *bio;
4a69a410
CM
123 extent_submit_bio_hook_t *submit_bio_start;
124 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 125 int mirror_num;
c8b97818 126 unsigned long bio_flags;
eaf25d93
CM
127 /*
128 * bio_offset is optional, can be used if the pages in the bio
129 * can't tell us where in the file the bio should go
130 */
131 u64 bio_offset;
8b712842 132 struct btrfs_work work;
79787eaa 133 int error;
44b8bd7e
CM
134};
135
85d4e461
CM
136/*
137 * Lockdep class keys for extent_buffer->lock's in this root. For a given
138 * eb, the lockdep key is determined by the btrfs_root it belongs to and
139 * the level the eb occupies in the tree.
140 *
141 * Different roots are used for different purposes and may nest inside each
142 * other and they require separate keysets. As lockdep keys should be
143 * static, assign keysets according to the purpose of the root as indicated
144 * by btrfs_root->objectid. This ensures that all special purpose roots
145 * have separate keysets.
4008c04a 146 *
85d4e461
CM
147 * Lock-nesting across peer nodes is always done with the immediate parent
148 * node locked thus preventing deadlock. As lockdep doesn't know this, use
149 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 150 *
85d4e461
CM
151 * The key is set by the readpage_end_io_hook after the buffer has passed
152 * csum validation but before the pages are unlocked. It is also set by
153 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 154 *
85d4e461
CM
155 * We also add a check to make sure the highest level of the tree is the
156 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
157 * needs update as well.
4008c04a
CM
158 */
159#ifdef CONFIG_DEBUG_LOCK_ALLOC
160# if BTRFS_MAX_LEVEL != 8
161# error
162# endif
85d4e461
CM
163
164static struct btrfs_lockdep_keyset {
165 u64 id; /* root objectid */
166 const char *name_stem; /* lock name stem */
167 char names[BTRFS_MAX_LEVEL + 1][20];
168 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
169} btrfs_lockdep_keysets[] = {
170 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
171 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
172 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
173 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
174 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
175 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 176 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
177 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 180 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 182 { .id = 0, .name_stem = "tree" },
4008c04a 183};
85d4e461
CM
184
185void __init btrfs_init_lockdep(void)
186{
187 int i, j;
188
189 /* initialize lockdep class names */
190 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
191 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
192
193 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
194 snprintf(ks->names[j], sizeof(ks->names[j]),
195 "btrfs-%s-%02d", ks->name_stem, j);
196 }
197}
198
199void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
200 int level)
201{
202 struct btrfs_lockdep_keyset *ks;
203
204 BUG_ON(level >= ARRAY_SIZE(ks->keys));
205
206 /* find the matching keyset, id 0 is the default entry */
207 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
208 if (ks->id == objectid)
209 break;
210
211 lockdep_set_class_and_name(&eb->lock,
212 &ks->keys[level], ks->names[level]);
213}
214
4008c04a
CM
215#endif
216
d352ac68
CM
217/*
218 * extents on the btree inode are pretty simple, there's one extent
219 * that covers the entire device
220 */
fc4f21b1 221static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 222 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 223 int create)
7eccb903 224{
fc4f21b1
NB
225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
226 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
227 struct extent_map *em;
228 int ret;
229
890871be 230 read_lock(&em_tree->lock);
d1310b2e 231 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 232 if (em) {
0b246afa 233 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 234 read_unlock(&em_tree->lock);
5f39d397 235 goto out;
a061fc8d 236 }
890871be 237 read_unlock(&em_tree->lock);
7b13b7b1 238
172ddd60 239 em = alloc_extent_map();
5f39d397
CM
240 if (!em) {
241 em = ERR_PTR(-ENOMEM);
242 goto out;
243 }
244 em->start = 0;
0afbaf8c 245 em->len = (u64)-1;
c8b97818 246 em->block_len = (u64)-1;
5f39d397 247 em->block_start = 0;
0b246afa 248 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 249
890871be 250 write_lock(&em_tree->lock);
09a2a8f9 251 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
252 if (ret == -EEXIST) {
253 free_extent_map(em);
7b13b7b1 254 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 255 if (!em)
0433f20d 256 em = ERR_PTR(-EIO);
5f39d397 257 } else if (ret) {
7b13b7b1 258 free_extent_map(em);
0433f20d 259 em = ERR_PTR(ret);
5f39d397 260 }
890871be 261 write_unlock(&em_tree->lock);
7b13b7b1 262
5f39d397
CM
263out:
264 return em;
7eccb903
CM
265}
266
9ed57367 267u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 268{
0b947aff 269 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
270}
271
0b5e3daf 272void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 273{
7e75bf3f 274 put_unaligned_le32(~crc, result);
19c00ddc
CM
275}
276
d352ac68
CM
277/*
278 * compute the csum for a btree block, and either verify it or write it
279 * into the csum field of the block.
280 */
01d58472
DD
281static int csum_tree_block(struct btrfs_fs_info *fs_info,
282 struct extent_buffer *buf,
19c00ddc
CM
283 int verify)
284{
01d58472 285 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 286 char *result = NULL;
19c00ddc
CM
287 unsigned long len;
288 unsigned long cur_len;
289 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
290 char *kaddr;
291 unsigned long map_start;
292 unsigned long map_len;
293 int err;
294 u32 crc = ~(u32)0;
607d432d 295 unsigned long inline_result;
19c00ddc
CM
296
297 len = buf->len - offset;
d397712b 298 while (len > 0) {
19c00ddc 299 err = map_private_extent_buffer(buf, offset, 32,
a6591715 300 &kaddr, &map_start, &map_len);
d397712b 301 if (err)
8bd98f0e 302 return err;
19c00ddc 303 cur_len = min(len, map_len - (offset - map_start));
b0496686 304 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
305 crc, cur_len);
306 len -= cur_len;
307 offset += cur_len;
19c00ddc 308 }
607d432d 309 if (csum_size > sizeof(inline_result)) {
31e818fe 310 result = kzalloc(csum_size, GFP_NOFS);
607d432d 311 if (!result)
8bd98f0e 312 return -ENOMEM;
607d432d
JB
313 } else {
314 result = (char *)&inline_result;
315 }
316
19c00ddc
CM
317 btrfs_csum_final(crc, result);
318
319 if (verify) {
607d432d 320 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
321 u32 val;
322 u32 found = 0;
607d432d 323 memcpy(&found, result, csum_size);
e4204ded 324
607d432d 325 read_extent_buffer(buf, &val, 0, csum_size);
94647322 326 btrfs_warn_rl(fs_info,
5d163e0e 327 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 328 fs_info->sb->s_id, buf->start,
efe120a0 329 val, found, btrfs_header_level(buf));
607d432d
JB
330 if (result != (char *)&inline_result)
331 kfree(result);
8bd98f0e 332 return -EUCLEAN;
19c00ddc
CM
333 }
334 } else {
607d432d 335 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 336 }
607d432d
JB
337 if (result != (char *)&inline_result)
338 kfree(result);
19c00ddc
CM
339 return 0;
340}
341
d352ac68
CM
342/*
343 * we can't consider a given block up to date unless the transid of the
344 * block matches the transid in the parent node's pointer. This is how we
345 * detect blocks that either didn't get written at all or got written
346 * in the wrong place.
347 */
1259ab75 348static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
349 struct extent_buffer *eb, u64 parent_transid,
350 int atomic)
1259ab75 351{
2ac55d41 352 struct extent_state *cached_state = NULL;
1259ab75 353 int ret;
2755a0de 354 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
355
356 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
357 return 0;
358
b9fab919
CM
359 if (atomic)
360 return -EAGAIN;
361
a26e8c9f
JB
362 if (need_lock) {
363 btrfs_tree_read_lock(eb);
364 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
365 }
366
2ac55d41 367 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 368 &cached_state);
0b32f4bb 369 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
370 btrfs_header_generation(eb) == parent_transid) {
371 ret = 0;
372 goto out;
373 }
94647322
DS
374 btrfs_err_rl(eb->fs_info,
375 "parent transid verify failed on %llu wanted %llu found %llu",
376 eb->start,
29549aec 377 parent_transid, btrfs_header_generation(eb));
1259ab75 378 ret = 1;
a26e8c9f
JB
379
380 /*
381 * Things reading via commit roots that don't have normal protection,
382 * like send, can have a really old block in cache that may point at a
01327610 383 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
384 * if we find an eb that is under IO (dirty/writeback) because we could
385 * end up reading in the stale data and then writing it back out and
386 * making everybody very sad.
387 */
388 if (!extent_buffer_under_io(eb))
389 clear_extent_buffer_uptodate(eb);
33958dc6 390out:
2ac55d41
JB
391 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
392 &cached_state, GFP_NOFS);
472b909f
JB
393 if (need_lock)
394 btrfs_tree_read_unlock_blocking(eb);
1259ab75 395 return ret;
1259ab75
CM
396}
397
1104a885
DS
398/*
399 * Return 0 if the superblock checksum type matches the checksum value of that
400 * algorithm. Pass the raw disk superblock data.
401 */
ab8d0fc4
JM
402static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
403 char *raw_disk_sb)
1104a885
DS
404{
405 struct btrfs_super_block *disk_sb =
406 (struct btrfs_super_block *)raw_disk_sb;
407 u16 csum_type = btrfs_super_csum_type(disk_sb);
408 int ret = 0;
409
410 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
411 u32 crc = ~(u32)0;
412 const int csum_size = sizeof(crc);
413 char result[csum_size];
414
415 /*
416 * The super_block structure does not span the whole
417 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 418 * is filled with zeros and is included in the checksum.
1104a885
DS
419 */
420 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
421 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
422 btrfs_csum_final(crc, result);
423
424 if (memcmp(raw_disk_sb, result, csum_size))
425 ret = 1;
426 }
427
428 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 429 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
430 csum_type);
431 ret = 1;
432 }
433
434 return ret;
435}
436
d352ac68
CM
437/*
438 * helper to read a given tree block, doing retries as required when
439 * the checksums don't match and we have alternate mirrors to try.
440 */
2ff7e61e 441static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 442 struct extent_buffer *eb,
8436ea91 443 u64 parent_transid)
f188591e
CM
444{
445 struct extent_io_tree *io_tree;
ea466794 446 int failed = 0;
f188591e
CM
447 int ret;
448 int num_copies = 0;
449 int mirror_num = 0;
ea466794 450 int failed_mirror = 0;
f188591e 451
a826d6dc 452 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 453 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 454 while (1) {
8436ea91 455 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
f188591e 456 btree_get_extent, mirror_num);
256dd1bb
SB
457 if (!ret) {
458 if (!verify_parent_transid(io_tree, eb,
b9fab919 459 parent_transid, 0))
256dd1bb
SB
460 break;
461 else
462 ret = -EIO;
463 }
d397712b 464
a826d6dc
JB
465 /*
466 * This buffer's crc is fine, but its contents are corrupted, so
467 * there is no reason to read the other copies, they won't be
468 * any less wrong.
469 */
470 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
471 break;
472
0b246afa 473 num_copies = btrfs_num_copies(fs_info,
f188591e 474 eb->start, eb->len);
4235298e 475 if (num_copies == 1)
ea466794 476 break;
4235298e 477
5cf1ab56
JB
478 if (!failed_mirror) {
479 failed = 1;
480 failed_mirror = eb->read_mirror;
481 }
482
f188591e 483 mirror_num++;
ea466794
JB
484 if (mirror_num == failed_mirror)
485 mirror_num++;
486
4235298e 487 if (mirror_num > num_copies)
ea466794 488 break;
f188591e 489 }
ea466794 490
c0901581 491 if (failed && !ret && failed_mirror)
2ff7e61e 492 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
493
494 return ret;
f188591e 495}
19c00ddc 496
d352ac68 497/*
d397712b
CM
498 * checksum a dirty tree block before IO. This has extra checks to make sure
499 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 500 */
d397712b 501
01d58472 502static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 503{
4eee4fa4 504 u64 start = page_offset(page);
19c00ddc 505 u64 found_start;
19c00ddc 506 struct extent_buffer *eb;
f188591e 507
4f2de97a
JB
508 eb = (struct extent_buffer *)page->private;
509 if (page != eb->pages[0])
510 return 0;
0f805531 511
19c00ddc 512 found_start = btrfs_header_bytenr(eb);
0f805531
AL
513 /*
514 * Please do not consolidate these warnings into a single if.
515 * It is useful to know what went wrong.
516 */
517 if (WARN_ON(found_start != start))
518 return -EUCLEAN;
519 if (WARN_ON(!PageUptodate(page)))
520 return -EUCLEAN;
521
522 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
523 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
524
8bd98f0e 525 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
526}
527
01d58472 528static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
529 struct extent_buffer *eb)
530{
01d58472 531 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
532 u8 fsid[BTRFS_UUID_SIZE];
533 int ret = 1;
534
0a4e5586 535 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
536 while (fs_devices) {
537 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
538 ret = 0;
539 break;
540 }
541 fs_devices = fs_devices->seed;
542 }
543 return ret;
544}
545
0b246afa
JM
546#define CORRUPT(reason, eb, root, slot) \
547 btrfs_crit(root->fs_info, \
548 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
549 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
6b722c17 550 reason, btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
551
552static noinline int check_leaf(struct btrfs_root *root,
553 struct extent_buffer *leaf)
554{
0b246afa 555 struct btrfs_fs_info *fs_info = root->fs_info;
a826d6dc
JB
556 struct btrfs_key key;
557 struct btrfs_key leaf_key;
558 u32 nritems = btrfs_header_nritems(leaf);
559 int slot;
560
f177d739
FM
561 /*
562 * Extent buffers from a relocation tree have a owner field that
563 * corresponds to the subvolume tree they are based on. So just from an
564 * extent buffer alone we can not find out what is the id of the
565 * corresponding subvolume tree, so we can not figure out if the extent
566 * buffer corresponds to the root of the relocation tree or not. So skip
567 * this check for relocation trees.
568 */
569 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1ba98d08
LB
570 struct btrfs_root *check_root;
571
572 key.objectid = btrfs_header_owner(leaf);
573 key.type = BTRFS_ROOT_ITEM_KEY;
574 key.offset = (u64)-1;
575
0b246afa 576 check_root = btrfs_get_fs_root(fs_info, &key, false);
1ba98d08
LB
577 /*
578 * The only reason we also check NULL here is that during
579 * open_ctree() some roots has not yet been set up.
580 */
581 if (!IS_ERR_OR_NULL(check_root)) {
ef85b25e
LB
582 struct extent_buffer *eb;
583
584 eb = btrfs_root_node(check_root);
1ba98d08 585 /* if leaf is the root, then it's fine */
ef85b25e 586 if (leaf != eb) {
1ba98d08 587 CORRUPT("non-root leaf's nritems is 0",
ef85b25e
LB
588 leaf, check_root, 0);
589 free_extent_buffer(eb);
1ba98d08
LB
590 return -EIO;
591 }
ef85b25e 592 free_extent_buffer(eb);
1ba98d08 593 }
a826d6dc 594 return 0;
1ba98d08 595 }
a826d6dc 596
f177d739
FM
597 if (nritems == 0)
598 return 0;
599
a826d6dc
JB
600 /* Check the 0 item */
601 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
0b246afa 602 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
603 CORRUPT("invalid item offset size pair", leaf, root, 0);
604 return -EIO;
605 }
606
607 /*
608 * Check to make sure each items keys are in the correct order and their
609 * offsets make sense. We only have to loop through nritems-1 because
610 * we check the current slot against the next slot, which verifies the
611 * next slot's offset+size makes sense and that the current's slot
612 * offset is correct.
613 */
614 for (slot = 0; slot < nritems - 1; slot++) {
615 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
616 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
617
618 /* Make sure the keys are in the right order */
619 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
620 CORRUPT("bad key order", leaf, root, slot);
621 return -EIO;
622 }
623
624 /*
625 * Make sure the offset and ends are right, remember that the
626 * item data starts at the end of the leaf and grows towards the
627 * front.
628 */
629 if (btrfs_item_offset_nr(leaf, slot) !=
630 btrfs_item_end_nr(leaf, slot + 1)) {
631 CORRUPT("slot offset bad", leaf, root, slot);
632 return -EIO;
633 }
634
635 /*
636 * Check to make sure that we don't point outside of the leaf,
01327610 637 * just in case all the items are consistent to each other, but
a826d6dc
JB
638 * all point outside of the leaf.
639 */
640 if (btrfs_item_end_nr(leaf, slot) >
0b246afa 641 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
642 CORRUPT("slot end outside of leaf", leaf, root, slot);
643 return -EIO;
644 }
645 }
646
647 return 0;
648}
649
053ab70f
LB
650static int check_node(struct btrfs_root *root, struct extent_buffer *node)
651{
652 unsigned long nr = btrfs_header_nritems(node);
6b722c17
LB
653 struct btrfs_key key, next_key;
654 int slot;
655 u64 bytenr;
656 int ret = 0;
053ab70f 657
da17066c 658 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
053ab70f
LB
659 btrfs_crit(root->fs_info,
660 "corrupt node: block %llu root %llu nritems %lu",
661 node->start, root->objectid, nr);
662 return -EIO;
663 }
6b722c17
LB
664
665 for (slot = 0; slot < nr - 1; slot++) {
666 bytenr = btrfs_node_blockptr(node, slot);
667 btrfs_node_key_to_cpu(node, &key, slot);
668 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
669
670 if (!bytenr) {
671 CORRUPT("invalid item slot", node, root, slot);
672 ret = -EIO;
673 goto out;
674 }
675
676 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
677 CORRUPT("bad key order", node, root, slot);
678 ret = -EIO;
679 goto out;
680 }
681 }
682out:
683 return ret;
053ab70f
LB
684}
685
facc8a22
MX
686static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
687 u64 phy_offset, struct page *page,
688 u64 start, u64 end, int mirror)
ce9adaa5 689{
ce9adaa5
CM
690 u64 found_start;
691 int found_level;
ce9adaa5
CM
692 struct extent_buffer *eb;
693 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 694 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 695 int ret = 0;
727011e0 696 int reads_done;
ce9adaa5 697
ce9adaa5
CM
698 if (!page->private)
699 goto out;
d397712b 700
4f2de97a 701 eb = (struct extent_buffer *)page->private;
d397712b 702
0b32f4bb
JB
703 /* the pending IO might have been the only thing that kept this buffer
704 * in memory. Make sure we have a ref for all this other checks
705 */
706 extent_buffer_get(eb);
707
708 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
709 if (!reads_done)
710 goto err;
f188591e 711
5cf1ab56 712 eb->read_mirror = mirror;
656f30db 713 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
714 ret = -EIO;
715 goto err;
716 }
717
ce9adaa5 718 found_start = btrfs_header_bytenr(eb);
727011e0 719 if (found_start != eb->start) {
02873e43
ZL
720 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
721 found_start, eb->start);
f188591e 722 ret = -EIO;
ce9adaa5
CM
723 goto err;
724 }
02873e43
ZL
725 if (check_tree_block_fsid(fs_info, eb)) {
726 btrfs_err_rl(fs_info, "bad fsid on block %llu",
727 eb->start);
1259ab75
CM
728 ret = -EIO;
729 goto err;
730 }
ce9adaa5 731 found_level = btrfs_header_level(eb);
1c24c3ce 732 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
733 btrfs_err(fs_info, "bad tree block level %d",
734 (int)btrfs_header_level(eb));
1c24c3ce
JB
735 ret = -EIO;
736 goto err;
737 }
ce9adaa5 738
85d4e461
CM
739 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
740 eb, found_level);
4008c04a 741
02873e43 742 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 743 if (ret)
a826d6dc 744 goto err;
a826d6dc
JB
745
746 /*
747 * If this is a leaf block and it is corrupt, set the corrupt bit so
748 * that we don't try and read the other copies of this block, just
749 * return -EIO.
750 */
751 if (found_level == 0 && check_leaf(root, eb)) {
752 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
753 ret = -EIO;
754 }
ce9adaa5 755
053ab70f
LB
756 if (found_level > 0 && check_node(root, eb))
757 ret = -EIO;
758
0b32f4bb
JB
759 if (!ret)
760 set_extent_buffer_uptodate(eb);
ce9adaa5 761err:
79fb65a1
JB
762 if (reads_done &&
763 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 764 btree_readahead_hook(eb, ret);
4bb31e92 765
53b381b3
DW
766 if (ret) {
767 /*
768 * our io error hook is going to dec the io pages
769 * again, we have to make sure it has something
770 * to decrement
771 */
772 atomic_inc(&eb->io_pages);
0b32f4bb 773 clear_extent_buffer_uptodate(eb);
53b381b3 774 }
0b32f4bb 775 free_extent_buffer(eb);
ce9adaa5 776out:
f188591e 777 return ret;
ce9adaa5
CM
778}
779
ea466794 780static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 781{
4bb31e92 782 struct extent_buffer *eb;
4bb31e92 783
4f2de97a 784 eb = (struct extent_buffer *)page->private;
656f30db 785 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 786 eb->read_mirror = failed_mirror;
53b381b3 787 atomic_dec(&eb->io_pages);
ea466794 788 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 789 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
790 return -EIO; /* we fixed nothing */
791}
792
4246a0b6 793static void end_workqueue_bio(struct bio *bio)
ce9adaa5 794{
97eb6b69 795 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 796 struct btrfs_fs_info *fs_info;
9e0af237
LB
797 struct btrfs_workqueue *wq;
798 btrfs_work_func_t func;
ce9adaa5 799
ce9adaa5 800 fs_info = end_io_wq->info;
4246a0b6 801 end_io_wq->error = bio->bi_error;
d20f7043 802
37226b21 803 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
804 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
805 wq = fs_info->endio_meta_write_workers;
806 func = btrfs_endio_meta_write_helper;
807 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
808 wq = fs_info->endio_freespace_worker;
809 func = btrfs_freespace_write_helper;
810 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
811 wq = fs_info->endio_raid56_workers;
812 func = btrfs_endio_raid56_helper;
813 } else {
814 wq = fs_info->endio_write_workers;
815 func = btrfs_endio_write_helper;
816 }
d20f7043 817 } else {
8b110e39
MX
818 if (unlikely(end_io_wq->metadata ==
819 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
820 wq = fs_info->endio_repair_workers;
821 func = btrfs_endio_repair_helper;
822 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
823 wq = fs_info->endio_raid56_workers;
824 func = btrfs_endio_raid56_helper;
825 } else if (end_io_wq->metadata) {
826 wq = fs_info->endio_meta_workers;
827 func = btrfs_endio_meta_helper;
828 } else {
829 wq = fs_info->endio_workers;
830 func = btrfs_endio_helper;
831 }
d20f7043 832 }
9e0af237
LB
833
834 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
835 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
836}
837
22c59948 838int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 839 enum btrfs_wq_endio_type metadata)
0b86a832 840{
97eb6b69 841 struct btrfs_end_io_wq *end_io_wq;
8b110e39 842
97eb6b69 843 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
844 if (!end_io_wq)
845 return -ENOMEM;
846
847 end_io_wq->private = bio->bi_private;
848 end_io_wq->end_io = bio->bi_end_io;
22c59948 849 end_io_wq->info = info;
ce9adaa5
CM
850 end_io_wq->error = 0;
851 end_io_wq->bio = bio;
22c59948 852 end_io_wq->metadata = metadata;
ce9adaa5
CM
853
854 bio->bi_private = end_io_wq;
855 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
856 return 0;
857}
858
b64a2851 859unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 860{
4854ddd0 861 unsigned long limit = min_t(unsigned long,
5cdc7ad3 862 info->thread_pool_size,
4854ddd0
CM
863 info->fs_devices->open_devices);
864 return 256 * limit;
865}
0986fe9e 866
4a69a410
CM
867static void run_one_async_start(struct btrfs_work *work)
868{
4a69a410 869 struct async_submit_bio *async;
79787eaa 870 int ret;
4a69a410
CM
871
872 async = container_of(work, struct async_submit_bio, work);
c6100a4b 873 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
874 async->mirror_num, async->bio_flags,
875 async->bio_offset);
876 if (ret)
877 async->error = ret;
4a69a410
CM
878}
879
880static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
881{
882 struct btrfs_fs_info *fs_info;
883 struct async_submit_bio *async;
4854ddd0 884 int limit;
8b712842
CM
885
886 async = container_of(work, struct async_submit_bio, work);
c6100a4b 887 fs_info = async->fs_info;
4854ddd0 888
b64a2851 889 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
890 limit = limit * 2 / 3;
891
ee863954
DS
892 /*
893 * atomic_dec_return implies a barrier for waitqueue_active
894 */
66657b31 895 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 896 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
897 wake_up(&fs_info->async_submit_wait);
898
bb7ab3b9 899 /* If an error occurred we just want to clean up the bio and move on */
79787eaa 900 if (async->error) {
4246a0b6
CH
901 async->bio->bi_error = async->error;
902 bio_endio(async->bio);
79787eaa
JM
903 return;
904 }
905
c6100a4b 906 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
81a75f67 907 async->bio_flags, async->bio_offset);
4a69a410
CM
908}
909
910static void run_one_async_free(struct btrfs_work *work)
911{
912 struct async_submit_bio *async;
913
914 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
915 kfree(async);
916}
917
c6100a4b
JB
918int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
919 int mirror_num, unsigned long bio_flags,
920 u64 bio_offset, void *private_data,
4a69a410
CM
921 extent_submit_bio_hook_t *submit_bio_start,
922 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
923{
924 struct async_submit_bio *async;
925
926 async = kmalloc(sizeof(*async), GFP_NOFS);
927 if (!async)
928 return -ENOMEM;
929
c6100a4b
JB
930 async->private_data = private_data;
931 async->fs_info = fs_info;
44b8bd7e
CM
932 async->bio = bio;
933 async->mirror_num = mirror_num;
4a69a410
CM
934 async->submit_bio_start = submit_bio_start;
935 async->submit_bio_done = submit_bio_done;
936
9e0af237 937 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 938 run_one_async_done, run_one_async_free);
4a69a410 939
c8b97818 940 async->bio_flags = bio_flags;
eaf25d93 941 async->bio_offset = bio_offset;
8c8bee1d 942
79787eaa
JM
943 async->error = 0;
944
cb03c743 945 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 946
67f055c7 947 if (op_is_sync(bio->bi_opf))
5cdc7ad3 948 btrfs_set_work_high_priority(&async->work);
d313d7a3 949
5cdc7ad3 950 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 951
d397712b 952 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
953 atomic_read(&fs_info->nr_async_submits)) {
954 wait_event(fs_info->async_submit_wait,
955 (atomic_read(&fs_info->nr_async_submits) == 0));
956 }
957
44b8bd7e
CM
958 return 0;
959}
960
ce3ed71a
CM
961static int btree_csum_one_bio(struct bio *bio)
962{
2c30c71b 963 struct bio_vec *bvec;
ce3ed71a 964 struct btrfs_root *root;
2c30c71b 965 int i, ret = 0;
ce3ed71a 966
2c30c71b 967 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 968 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 969 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
970 if (ret)
971 break;
ce3ed71a 972 }
2c30c71b 973
79787eaa 974 return ret;
ce3ed71a
CM
975}
976
c6100a4b 977static int __btree_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 978 int mirror_num, unsigned long bio_flags,
eaf25d93 979 u64 bio_offset)
22c59948 980{
8b712842
CM
981 /*
982 * when we're called for a write, we're already in the async
5443be45 983 * submission context. Just jump into btrfs_map_bio
8b712842 984 */
79787eaa 985 return btree_csum_one_bio(bio);
4a69a410 986}
22c59948 987
c6100a4b 988static int __btree_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
989 int mirror_num, unsigned long bio_flags,
990 u64 bio_offset)
4a69a410 991{
c6100a4b 992 struct inode *inode = private_data;
61891923
SB
993 int ret;
994
8b712842 995 /*
4a69a410
CM
996 * when we're called for a write, we're already in the async
997 * submission context. Just jump into btrfs_map_bio
8b712842 998 */
2ff7e61e 999 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6
CH
1000 if (ret) {
1001 bio->bi_error = ret;
1002 bio_endio(bio);
1003 }
61891923 1004 return ret;
0b86a832
CM
1005}
1006
e27f6265 1007static int check_async_write(unsigned long bio_flags)
de0022b9
JB
1008{
1009 if (bio_flags & EXTENT_BIO_TREE_LOG)
1010 return 0;
1011#ifdef CONFIG_X86
bc696ca0 1012 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
1013 return 0;
1014#endif
1015 return 1;
1016}
1017
c6100a4b 1018static int btree_submit_bio_hook(void *private_data, struct bio *bio,
eaf25d93
CM
1019 int mirror_num, unsigned long bio_flags,
1020 u64 bio_offset)
44b8bd7e 1021{
c6100a4b 1022 struct inode *inode = private_data;
0b246afa 1023 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e27f6265 1024 int async = check_async_write(bio_flags);
cad321ad
CM
1025 int ret;
1026
37226b21 1027 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
1028 /*
1029 * called for a read, do the setup so that checksum validation
1030 * can happen in the async kernel threads
1031 */
0b246afa
JM
1032 ret = btrfs_bio_wq_end_io(fs_info, bio,
1033 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 1034 if (ret)
61891923 1035 goto out_w_error;
2ff7e61e 1036 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
1037 } else if (!async) {
1038 ret = btree_csum_one_bio(bio);
1039 if (ret)
61891923 1040 goto out_w_error;
2ff7e61e 1041 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1042 } else {
1043 /*
1044 * kthread helpers are used to submit writes so that
1045 * checksumming can happen in parallel across all CPUs
1046 */
c6100a4b
JB
1047 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
1048 bio_offset, private_data,
61891923
SB
1049 __btree_submit_bio_start,
1050 __btree_submit_bio_done);
44b8bd7e 1051 }
d313d7a3 1052
4246a0b6
CH
1053 if (ret)
1054 goto out_w_error;
1055 return 0;
1056
61891923 1057out_w_error:
4246a0b6
CH
1058 bio->bi_error = ret;
1059 bio_endio(bio);
61891923 1060 return ret;
44b8bd7e
CM
1061}
1062
3dd1462e 1063#ifdef CONFIG_MIGRATION
784b4e29 1064static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
1065 struct page *newpage, struct page *page,
1066 enum migrate_mode mode)
784b4e29
CM
1067{
1068 /*
1069 * we can't safely write a btree page from here,
1070 * we haven't done the locking hook
1071 */
1072 if (PageDirty(page))
1073 return -EAGAIN;
1074 /*
1075 * Buffers may be managed in a filesystem specific way.
1076 * We must have no buffers or drop them.
1077 */
1078 if (page_has_private(page) &&
1079 !try_to_release_page(page, GFP_KERNEL))
1080 return -EAGAIN;
a6bc32b8 1081 return migrate_page(mapping, newpage, page, mode);
784b4e29 1082}
3dd1462e 1083#endif
784b4e29 1084
0da5468f
CM
1085
1086static int btree_writepages(struct address_space *mapping,
1087 struct writeback_control *wbc)
1088{
e2d84521
MX
1089 struct btrfs_fs_info *fs_info;
1090 int ret;
1091
d8d5f3e1 1092 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1093
1094 if (wbc->for_kupdate)
1095 return 0;
1096
e2d84521 1097 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1098 /* this is a bit racy, but that's ok */
e2d84521
MX
1099 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1100 BTRFS_DIRTY_METADATA_THRESH);
1101 if (ret < 0)
793955bc 1102 return 0;
793955bc 1103 }
0b32f4bb 1104 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1105}
1106
b2950863 1107static int btree_readpage(struct file *file, struct page *page)
5f39d397 1108{
d1310b2e
CM
1109 struct extent_io_tree *tree;
1110 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1111 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1112}
22b0ebda 1113
70dec807 1114static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1115{
98509cfc 1116 if (PageWriteback(page) || PageDirty(page))
d397712b 1117 return 0;
0c4e538b 1118
f7a52a40 1119 return try_release_extent_buffer(page);
d98237b3
CM
1120}
1121
d47992f8
LC
1122static void btree_invalidatepage(struct page *page, unsigned int offset,
1123 unsigned int length)
d98237b3 1124{
d1310b2e
CM
1125 struct extent_io_tree *tree;
1126 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1127 extent_invalidatepage(tree, page, offset);
1128 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1129 if (PagePrivate(page)) {
efe120a0
FH
1130 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1131 "page private not zero on page %llu",
1132 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1133 ClearPagePrivate(page);
1134 set_page_private(page, 0);
09cbfeaf 1135 put_page(page);
9ad6b7bc 1136 }
d98237b3
CM
1137}
1138
0b32f4bb
JB
1139static int btree_set_page_dirty(struct page *page)
1140{
bb146eb2 1141#ifdef DEBUG
0b32f4bb
JB
1142 struct extent_buffer *eb;
1143
1144 BUG_ON(!PagePrivate(page));
1145 eb = (struct extent_buffer *)page->private;
1146 BUG_ON(!eb);
1147 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1148 BUG_ON(!atomic_read(&eb->refs));
1149 btrfs_assert_tree_locked(eb);
bb146eb2 1150#endif
0b32f4bb
JB
1151 return __set_page_dirty_nobuffers(page);
1152}
1153
7f09410b 1154static const struct address_space_operations btree_aops = {
d98237b3 1155 .readpage = btree_readpage,
0da5468f 1156 .writepages = btree_writepages,
5f39d397
CM
1157 .releasepage = btree_releasepage,
1158 .invalidatepage = btree_invalidatepage,
5a92bc88 1159#ifdef CONFIG_MIGRATION
784b4e29 1160 .migratepage = btree_migratepage,
5a92bc88 1161#endif
0b32f4bb 1162 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1163};
1164
2ff7e61e 1165void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1166{
5f39d397 1167 struct extent_buffer *buf = NULL;
2ff7e61e 1168 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1169
2ff7e61e 1170 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1171 if (IS_ERR(buf))
6197d86e 1172 return;
d1310b2e 1173 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
8436ea91 1174 buf, WAIT_NONE, btree_get_extent, 0);
5f39d397 1175 free_extent_buffer(buf);
090d1875
CM
1176}
1177
2ff7e61e 1178int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1179 int mirror_num, struct extent_buffer **eb)
1180{
1181 struct extent_buffer *buf = NULL;
2ff7e61e 1182 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1183 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1184 int ret;
1185
2ff7e61e 1186 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1187 if (IS_ERR(buf))
ab0fff03
AJ
1188 return 0;
1189
1190 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191
8436ea91 1192 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
ab0fff03
AJ
1193 btree_get_extent, mirror_num);
1194 if (ret) {
1195 free_extent_buffer(buf);
1196 return ret;
1197 }
1198
1199 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1200 free_extent_buffer(buf);
1201 return -EIO;
0b32f4bb 1202 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1203 *eb = buf;
1204 } else {
1205 free_extent_buffer(buf);
1206 }
1207 return 0;
1208}
1209
2ff7e61e
JM
1210struct extent_buffer *btrfs_find_create_tree_block(
1211 struct btrfs_fs_info *fs_info,
1212 u64 bytenr)
0999df54 1213{
0b246afa
JM
1214 if (btrfs_is_testing(fs_info))
1215 return alloc_test_extent_buffer(fs_info, bytenr);
1216 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1217}
1218
1219
e02119d5
CM
1220int btrfs_write_tree_block(struct extent_buffer *buf)
1221{
727011e0 1222 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1223 buf->start + buf->len - 1);
e02119d5
CM
1224}
1225
3189ff77 1226void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1227{
3189ff77
JL
1228 filemap_fdatawait_range(buf->pages[0]->mapping,
1229 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1230}
1231
2ff7e61e 1232struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
ce86cd59 1233 u64 parent_transid)
0999df54
CM
1234{
1235 struct extent_buffer *buf = NULL;
0999df54
CM
1236 int ret;
1237
2ff7e61e 1238 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1239 if (IS_ERR(buf))
1240 return buf;
0999df54 1241
2ff7e61e 1242 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
0f0fe8f7
FDBM
1243 if (ret) {
1244 free_extent_buffer(buf);
64c043de 1245 return ERR_PTR(ret);
0f0fe8f7 1246 }
5f39d397 1247 return buf;
ce9adaa5 1248
eb60ceac
CM
1249}
1250
7c302b49 1251void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1252 struct extent_buffer *buf)
ed2ff2cb 1253{
55c69072 1254 if (btrfs_header_generation(buf) ==
e2d84521 1255 fs_info->running_transaction->transid) {
b9447ef8 1256 btrfs_assert_tree_locked(buf);
b4ce94de 1257
b9473439 1258 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1259 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1260 -buf->len,
1261 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1262 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1263 btrfs_set_lock_blocking(buf);
1264 clear_extent_buffer_dirty(buf);
1265 }
925baedd 1266 }
5f39d397
CM
1267}
1268
8257b2dc
MX
1269static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1270{
1271 struct btrfs_subvolume_writers *writers;
1272 int ret;
1273
1274 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1275 if (!writers)
1276 return ERR_PTR(-ENOMEM);
1277
908c7f19 1278 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1279 if (ret < 0) {
1280 kfree(writers);
1281 return ERR_PTR(ret);
1282 }
1283
1284 init_waitqueue_head(&writers->wait);
1285 return writers;
1286}
1287
1288static void
1289btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1290{
1291 percpu_counter_destroy(&writers->counter);
1292 kfree(writers);
1293}
1294
da17066c 1295static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1296 u64 objectid)
d97e63b6 1297{
7c0260ee 1298 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1299 root->node = NULL;
a28ec197 1300 root->commit_root = NULL;
27cdeb70 1301 root->state = 0;
d68fc57b 1302 root->orphan_cleanup_state = 0;
0b86a832 1303
0f7d52f4
CM
1304 root->objectid = objectid;
1305 root->last_trans = 0;
13a8a7c8 1306 root->highest_objectid = 0;
eb73c1b7 1307 root->nr_delalloc_inodes = 0;
199c2a9c 1308 root->nr_ordered_extents = 0;
58176a96 1309 root->name = NULL;
6bef4d31 1310 root->inode_tree = RB_ROOT;
16cdcec7 1311 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1312 root->block_rsv = NULL;
d68fc57b 1313 root->orphan_block_rsv = NULL;
0b86a832
CM
1314
1315 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1316 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1317 INIT_LIST_HEAD(&root->delalloc_inodes);
1318 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1319 INIT_LIST_HEAD(&root->ordered_extents);
1320 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1321 INIT_LIST_HEAD(&root->logged_list[0]);
1322 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1323 spin_lock_init(&root->orphan_lock);
5d4f98a2 1324 spin_lock_init(&root->inode_lock);
eb73c1b7 1325 spin_lock_init(&root->delalloc_lock);
199c2a9c 1326 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1327 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1328 spin_lock_init(&root->log_extents_lock[0]);
1329 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1330 mutex_init(&root->objectid_mutex);
e02119d5 1331 mutex_init(&root->log_mutex);
31f3d255 1332 mutex_init(&root->ordered_extent_mutex);
573bfb72 1333 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1334 init_waitqueue_head(&root->log_writer_wait);
1335 init_waitqueue_head(&root->log_commit_wait[0]);
1336 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1337 INIT_LIST_HEAD(&root->log_ctxs[0]);
1338 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1339 atomic_set(&root->log_commit[0], 0);
1340 atomic_set(&root->log_commit[1], 0);
1341 atomic_set(&root->log_writers, 0);
2ecb7923 1342 atomic_set(&root->log_batch, 0);
8a35d95f 1343 atomic_set(&root->orphan_inodes, 0);
0700cea7 1344 refcount_set(&root->refs, 1);
8257b2dc 1345 atomic_set(&root->will_be_snapshoted, 0);
ce0dcee6 1346 atomic64_set(&root->qgroup_meta_rsv, 0);
7237f183 1347 root->log_transid = 0;
d1433deb 1348 root->log_transid_committed = -1;
257c62e1 1349 root->last_log_commit = 0;
7c0260ee 1350 if (!dummy)
c6100a4b 1351 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1352
3768f368
CM
1353 memset(&root->root_key, 0, sizeof(root->root_key));
1354 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1355 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1356 if (!dummy)
06ea65a3
JB
1357 root->defrag_trans_start = fs_info->generation;
1358 else
1359 root->defrag_trans_start = 0;
4d775673 1360 root->root_key.objectid = objectid;
0ee5dc67 1361 root->anon_dev = 0;
8ea05e3a 1362
5f3ab90a 1363 spin_lock_init(&root->root_item_lock);
3768f368
CM
1364}
1365
74e4d827
DS
1366static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1367 gfp_t flags)
6f07e42e 1368{
74e4d827 1369 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1370 if (root)
1371 root->fs_info = fs_info;
1372 return root;
1373}
1374
06ea65a3
JB
1375#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1376/* Should only be used by the testing infrastructure */
da17066c 1377struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1378{
1379 struct btrfs_root *root;
1380
7c0260ee
JM
1381 if (!fs_info)
1382 return ERR_PTR(-EINVAL);
1383
1384 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1385 if (!root)
1386 return ERR_PTR(-ENOMEM);
da17066c 1387
b9ef22de 1388 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1389 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1390 root->alloc_bytenr = 0;
06ea65a3
JB
1391
1392 return root;
1393}
1394#endif
1395
20897f5c
AJ
1396struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1397 struct btrfs_fs_info *fs_info,
1398 u64 objectid)
1399{
1400 struct extent_buffer *leaf;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
1402 struct btrfs_root *root;
1403 struct btrfs_key key;
1404 int ret = 0;
6463fe58 1405 uuid_le uuid;
20897f5c 1406
74e4d827 1407 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
da17066c 1411 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1412 root->root_key.objectid = objectid;
1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1414 root->root_key.offset = 0;
1415
4d75f8a9 1416 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1417 if (IS_ERR(leaf)) {
1418 ret = PTR_ERR(leaf);
1dd05682 1419 leaf = NULL;
20897f5c
AJ
1420 goto fail;
1421 }
1422
b159fa28 1423 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1424 btrfs_set_header_bytenr(leaf, leaf->start);
1425 btrfs_set_header_generation(leaf, trans->transid);
1426 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1427 btrfs_set_header_owner(leaf, objectid);
1428 root->node = leaf;
1429
d24ee97b
DS
1430 write_extent_buffer_fsid(leaf, fs_info->fsid);
1431 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1432 btrfs_mark_buffer_dirty(leaf);
1433
1434 root->commit_root = btrfs_root_node(root);
27cdeb70 1435 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1436
1437 root->root_item.flags = 0;
1438 root->root_item.byte_limit = 0;
1439 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1440 btrfs_set_root_generation(&root->root_item, trans->transid);
1441 btrfs_set_root_level(&root->root_item, 0);
1442 btrfs_set_root_refs(&root->root_item, 1);
1443 btrfs_set_root_used(&root->root_item, leaf->len);
1444 btrfs_set_root_last_snapshot(&root->root_item, 0);
1445 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1446 uuid_le_gen(&uuid);
1447 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1448 root->root_item.drop_level = 0;
1449
1450 key.objectid = objectid;
1451 key.type = BTRFS_ROOT_ITEM_KEY;
1452 key.offset = 0;
1453 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1454 if (ret)
1455 goto fail;
1456
1457 btrfs_tree_unlock(leaf);
1458
1dd05682
TI
1459 return root;
1460
20897f5c 1461fail:
1dd05682
TI
1462 if (leaf) {
1463 btrfs_tree_unlock(leaf);
59885b39 1464 free_extent_buffer(root->commit_root);
1dd05682
TI
1465 free_extent_buffer(leaf);
1466 }
1467 kfree(root);
20897f5c 1468
1dd05682 1469 return ERR_PTR(ret);
20897f5c
AJ
1470}
1471
7237f183
YZ
1472static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1473 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1474{
1475 struct btrfs_root *root;
7237f183 1476 struct extent_buffer *leaf;
e02119d5 1477
74e4d827 1478 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1479 if (!root)
7237f183 1480 return ERR_PTR(-ENOMEM);
e02119d5 1481
da17066c 1482 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1483
1484 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1485 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1486 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1487
7237f183 1488 /*
27cdeb70
MX
1489 * DON'T set REF_COWS for log trees
1490 *
7237f183
YZ
1491 * log trees do not get reference counted because they go away
1492 * before a real commit is actually done. They do store pointers
1493 * to file data extents, and those reference counts still get
1494 * updated (along with back refs to the log tree).
1495 */
e02119d5 1496
4d75f8a9
DS
1497 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1498 NULL, 0, 0, 0);
7237f183
YZ
1499 if (IS_ERR(leaf)) {
1500 kfree(root);
1501 return ERR_CAST(leaf);
1502 }
e02119d5 1503
b159fa28 1504 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1505 btrfs_set_header_bytenr(leaf, leaf->start);
1506 btrfs_set_header_generation(leaf, trans->transid);
1507 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1508 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1509 root->node = leaf;
e02119d5 1510
0b246afa 1511 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1512 btrfs_mark_buffer_dirty(root->node);
1513 btrfs_tree_unlock(root->node);
7237f183
YZ
1514 return root;
1515}
1516
1517int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1518 struct btrfs_fs_info *fs_info)
1519{
1520 struct btrfs_root *log_root;
1521
1522 log_root = alloc_log_tree(trans, fs_info);
1523 if (IS_ERR(log_root))
1524 return PTR_ERR(log_root);
1525 WARN_ON(fs_info->log_root_tree);
1526 fs_info->log_root_tree = log_root;
1527 return 0;
1528}
1529
1530int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *root)
1532{
0b246afa 1533 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1534 struct btrfs_root *log_root;
1535 struct btrfs_inode_item *inode_item;
1536
0b246afa 1537 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1538 if (IS_ERR(log_root))
1539 return PTR_ERR(log_root);
1540
1541 log_root->last_trans = trans->transid;
1542 log_root->root_key.offset = root->root_key.objectid;
1543
1544 inode_item = &log_root->root_item.inode;
3cae210f
QW
1545 btrfs_set_stack_inode_generation(inode_item, 1);
1546 btrfs_set_stack_inode_size(inode_item, 3);
1547 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1548 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1549 fs_info->nodesize);
3cae210f 1550 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1551
5d4f98a2 1552 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1553
1554 WARN_ON(root->log_root);
1555 root->log_root = log_root;
1556 root->log_transid = 0;
d1433deb 1557 root->log_transid_committed = -1;
257c62e1 1558 root->last_log_commit = 0;
e02119d5
CM
1559 return 0;
1560}
1561
35a3621b
SB
1562static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1563 struct btrfs_key *key)
e02119d5
CM
1564{
1565 struct btrfs_root *root;
1566 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1567 struct btrfs_path *path;
84234f3a 1568 u64 generation;
cb517eab 1569 int ret;
0f7d52f4 1570
cb517eab
MX
1571 path = btrfs_alloc_path();
1572 if (!path)
0f7d52f4 1573 return ERR_PTR(-ENOMEM);
cb517eab 1574
74e4d827 1575 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1576 if (!root) {
1577 ret = -ENOMEM;
1578 goto alloc_fail;
0f7d52f4
CM
1579 }
1580
da17066c 1581 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1582
cb517eab
MX
1583 ret = btrfs_find_root(tree_root, key, path,
1584 &root->root_item, &root->root_key);
0f7d52f4 1585 if (ret) {
13a8a7c8
YZ
1586 if (ret > 0)
1587 ret = -ENOENT;
cb517eab 1588 goto find_fail;
0f7d52f4 1589 }
13a8a7c8 1590
84234f3a 1591 generation = btrfs_root_generation(&root->root_item);
2ff7e61e
JM
1592 root->node = read_tree_block(fs_info,
1593 btrfs_root_bytenr(&root->root_item),
ce86cd59 1594 generation);
64c043de
LB
1595 if (IS_ERR(root->node)) {
1596 ret = PTR_ERR(root->node);
cb517eab
MX
1597 goto find_fail;
1598 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1599 ret = -EIO;
64c043de
LB
1600 free_extent_buffer(root->node);
1601 goto find_fail;
416bc658 1602 }
5d4f98a2 1603 root->commit_root = btrfs_root_node(root);
13a8a7c8 1604out:
cb517eab
MX
1605 btrfs_free_path(path);
1606 return root;
1607
cb517eab
MX
1608find_fail:
1609 kfree(root);
1610alloc_fail:
1611 root = ERR_PTR(ret);
1612 goto out;
1613}
1614
1615struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1616 struct btrfs_key *location)
1617{
1618 struct btrfs_root *root;
1619
1620 root = btrfs_read_tree_root(tree_root, location);
1621 if (IS_ERR(root))
1622 return root;
1623
1624 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1625 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1626 btrfs_check_and_init_root_item(&root->root_item);
1627 }
13a8a7c8 1628
5eda7b5e
CM
1629 return root;
1630}
1631
cb517eab
MX
1632int btrfs_init_fs_root(struct btrfs_root *root)
1633{
1634 int ret;
8257b2dc 1635 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1636
1637 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1638 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1639 GFP_NOFS);
1640 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1641 ret = -ENOMEM;
1642 goto fail;
1643 }
1644
8257b2dc
MX
1645 writers = btrfs_alloc_subvolume_writers();
1646 if (IS_ERR(writers)) {
1647 ret = PTR_ERR(writers);
1648 goto fail;
1649 }
1650 root->subv_writers = writers;
1651
cb517eab 1652 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1653 spin_lock_init(&root->ino_cache_lock);
1654 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1655
1656 ret = get_anon_bdev(&root->anon_dev);
1657 if (ret)
876d2cf1 1658 goto fail;
f32e48e9
CR
1659
1660 mutex_lock(&root->objectid_mutex);
1661 ret = btrfs_find_highest_objectid(root,
1662 &root->highest_objectid);
1663 if (ret) {
1664 mutex_unlock(&root->objectid_mutex);
876d2cf1 1665 goto fail;
f32e48e9
CR
1666 }
1667
1668 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1669
1670 mutex_unlock(&root->objectid_mutex);
1671
cb517eab
MX
1672 return 0;
1673fail:
876d2cf1 1674 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1675 return ret;
1676}
1677
35bbb97f
JM
1678struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1679 u64 root_id)
cb517eab
MX
1680{
1681 struct btrfs_root *root;
1682
1683 spin_lock(&fs_info->fs_roots_radix_lock);
1684 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1685 (unsigned long)root_id);
1686 spin_unlock(&fs_info->fs_roots_radix_lock);
1687 return root;
1688}
1689
1690int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1691 struct btrfs_root *root)
1692{
1693 int ret;
1694
e1860a77 1695 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1696 if (ret)
1697 return ret;
1698
1699 spin_lock(&fs_info->fs_roots_radix_lock);
1700 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1701 (unsigned long)root->root_key.objectid,
1702 root);
1703 if (ret == 0)
27cdeb70 1704 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1705 spin_unlock(&fs_info->fs_roots_radix_lock);
1706 radix_tree_preload_end();
1707
1708 return ret;
1709}
1710
c00869f1
MX
1711struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1712 struct btrfs_key *location,
1713 bool check_ref)
5eda7b5e
CM
1714{
1715 struct btrfs_root *root;
381cf658 1716 struct btrfs_path *path;
1d4c08e0 1717 struct btrfs_key key;
5eda7b5e
CM
1718 int ret;
1719
edbd8d4e
CM
1720 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1721 return fs_info->tree_root;
1722 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1723 return fs_info->extent_root;
8f18cf13
CM
1724 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1725 return fs_info->chunk_root;
1726 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1727 return fs_info->dev_root;
0403e47e
YZ
1728 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1729 return fs_info->csum_root;
bcef60f2
AJ
1730 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1731 return fs_info->quota_root ? fs_info->quota_root :
1732 ERR_PTR(-ENOENT);
f7a81ea4
SB
1733 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1734 return fs_info->uuid_root ? fs_info->uuid_root :
1735 ERR_PTR(-ENOENT);
70f6d82e
OS
1736 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1737 return fs_info->free_space_root ? fs_info->free_space_root :
1738 ERR_PTR(-ENOENT);
4df27c4d 1739again:
cb517eab 1740 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1741 if (root) {
c00869f1 1742 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1743 return ERR_PTR(-ENOENT);
5eda7b5e 1744 return root;
48475471 1745 }
5eda7b5e 1746
cb517eab 1747 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1748 if (IS_ERR(root))
1749 return root;
3394e160 1750
c00869f1 1751 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1752 ret = -ENOENT;
581bb050 1753 goto fail;
35a30d7c 1754 }
581bb050 1755
cb517eab 1756 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1757 if (ret)
1758 goto fail;
3394e160 1759
381cf658
DS
1760 path = btrfs_alloc_path();
1761 if (!path) {
1762 ret = -ENOMEM;
1763 goto fail;
1764 }
1d4c08e0
DS
1765 key.objectid = BTRFS_ORPHAN_OBJECTID;
1766 key.type = BTRFS_ORPHAN_ITEM_KEY;
1767 key.offset = location->objectid;
1768
1769 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1770 btrfs_free_path(path);
d68fc57b
YZ
1771 if (ret < 0)
1772 goto fail;
1773 if (ret == 0)
27cdeb70 1774 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1775
cb517eab 1776 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1777 if (ret) {
4df27c4d
YZ
1778 if (ret == -EEXIST) {
1779 free_fs_root(root);
1780 goto again;
1781 }
1782 goto fail;
0f7d52f4 1783 }
edbd8d4e 1784 return root;
4df27c4d
YZ
1785fail:
1786 free_fs_root(root);
1787 return ERR_PTR(ret);
edbd8d4e
CM
1788}
1789
04160088
CM
1790static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1791{
1792 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1793 int ret = 0;
04160088
CM
1794 struct btrfs_device *device;
1795 struct backing_dev_info *bdi;
b7967db7 1796
1f78160c
XG
1797 rcu_read_lock();
1798 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1799 if (!device->bdev)
1800 continue;
efa7c9f9 1801 bdi = device->bdev->bd_bdi;
ff9ea323 1802 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1803 ret = 1;
1804 break;
1805 }
1806 }
1f78160c 1807 rcu_read_unlock();
04160088
CM
1808 return ret;
1809}
1810
8b712842
CM
1811/*
1812 * called by the kthread helper functions to finally call the bio end_io
1813 * functions. This is where read checksum verification actually happens
1814 */
1815static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1816{
ce9adaa5 1817 struct bio *bio;
97eb6b69 1818 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1819
97eb6b69 1820 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1821 bio = end_io_wq->bio;
ce9adaa5 1822
4246a0b6 1823 bio->bi_error = end_io_wq->error;
8b712842
CM
1824 bio->bi_private = end_io_wq->private;
1825 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1826 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1827 bio_endio(bio);
44b8bd7e
CM
1828}
1829
a74a4b97
CM
1830static int cleaner_kthread(void *arg)
1831{
1832 struct btrfs_root *root = arg;
0b246afa 1833 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1834 int again;
da288d28 1835 struct btrfs_trans_handle *trans;
a74a4b97
CM
1836
1837 do {
d0278245 1838 again = 0;
a74a4b97 1839
d0278245 1840 /* Make the cleaner go to sleep early. */
2ff7e61e 1841 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1842 goto sleep;
1843
90c711ab
ZB
1844 /*
1845 * Do not do anything if we might cause open_ctree() to block
1846 * before we have finished mounting the filesystem.
1847 */
0b246afa 1848 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1849 goto sleep;
1850
0b246afa 1851 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1852 goto sleep;
1853
dc7f370c
MX
1854 /*
1855 * Avoid the problem that we change the status of the fs
1856 * during the above check and trylock.
1857 */
2ff7e61e 1858 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1859 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1860 goto sleep;
76dda93c 1861 }
a74a4b97 1862
0b246afa 1863 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1864 btrfs_run_delayed_iputs(fs_info);
0b246afa 1865 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1866
d0278245 1867 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1868 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1869
1870 /*
05323cd1
MX
1871 * The defragger has dealt with the R/O remount and umount,
1872 * needn't do anything special here.
d0278245 1873 */
0b246afa 1874 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1875
1876 /*
1877 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1878 * with relocation (btrfs_relocate_chunk) and relocation
1879 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1880 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1881 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1882 * unused block groups.
1883 */
0b246afa 1884 btrfs_delete_unused_bgs(fs_info);
d0278245 1885sleep:
838fe188 1886 if (!again) {
a74a4b97 1887 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1888 if (!kthread_should_stop())
1889 schedule();
a74a4b97
CM
1890 __set_current_state(TASK_RUNNING);
1891 }
1892 } while (!kthread_should_stop());
da288d28
FM
1893
1894 /*
1895 * Transaction kthread is stopped before us and wakes us up.
1896 * However we might have started a new transaction and COWed some
1897 * tree blocks when deleting unused block groups for example. So
1898 * make sure we commit the transaction we started to have a clean
1899 * shutdown when evicting the btree inode - if it has dirty pages
1900 * when we do the final iput() on it, eviction will trigger a
1901 * writeback for it which will fail with null pointer dereferences
1902 * since work queues and other resources were already released and
1903 * destroyed by the time the iput/eviction/writeback is made.
1904 */
1905 trans = btrfs_attach_transaction(root);
1906 if (IS_ERR(trans)) {
1907 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1908 btrfs_err(fs_info,
da288d28
FM
1909 "cleaner transaction attach returned %ld",
1910 PTR_ERR(trans));
1911 } else {
1912 int ret;
1913
3a45bb20 1914 ret = btrfs_commit_transaction(trans);
da288d28 1915 if (ret)
0b246afa 1916 btrfs_err(fs_info,
da288d28
FM
1917 "cleaner open transaction commit returned %d",
1918 ret);
1919 }
1920
a74a4b97
CM
1921 return 0;
1922}
1923
1924static int transaction_kthread(void *arg)
1925{
1926 struct btrfs_root *root = arg;
0b246afa 1927 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1928 struct btrfs_trans_handle *trans;
1929 struct btrfs_transaction *cur;
8929ecfa 1930 u64 transid;
a74a4b97
CM
1931 unsigned long now;
1932 unsigned long delay;
914b2007 1933 bool cannot_commit;
a74a4b97
CM
1934
1935 do {
914b2007 1936 cannot_commit = false;
0b246afa
JM
1937 delay = HZ * fs_info->commit_interval;
1938 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1939
0b246afa
JM
1940 spin_lock(&fs_info->trans_lock);
1941 cur = fs_info->running_transaction;
a74a4b97 1942 if (!cur) {
0b246afa 1943 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1944 goto sleep;
1945 }
31153d81 1946
a74a4b97 1947 now = get_seconds();
4a9d8bde 1948 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17 1949 (now < cur->start_time ||
0b246afa
JM
1950 now - cur->start_time < fs_info->commit_interval)) {
1951 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1952 delay = HZ * 5;
1953 goto sleep;
1954 }
8929ecfa 1955 transid = cur->transid;
0b246afa 1956 spin_unlock(&fs_info->trans_lock);
56bec294 1957
79787eaa 1958 /* If the file system is aborted, this will always fail. */
354aa0fb 1959 trans = btrfs_attach_transaction(root);
914b2007 1960 if (IS_ERR(trans)) {
354aa0fb
MX
1961 if (PTR_ERR(trans) != -ENOENT)
1962 cannot_commit = true;
79787eaa 1963 goto sleep;
914b2007 1964 }
8929ecfa 1965 if (transid == trans->transid) {
3a45bb20 1966 btrfs_commit_transaction(trans);
8929ecfa 1967 } else {
3a45bb20 1968 btrfs_end_transaction(trans);
8929ecfa 1969 }
a74a4b97 1970sleep:
0b246afa
JM
1971 wake_up_process(fs_info->cleaner_kthread);
1972 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1973
4e121c06 1974 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1975 &fs_info->fs_state)))
2ff7e61e 1976 btrfs_cleanup_transaction(fs_info);
ce63f891
JK
1977 set_current_state(TASK_INTERRUPTIBLE);
1978 if (!kthread_should_stop() &&
0b246afa 1979 (!btrfs_transaction_blocked(fs_info) ||
ce63f891
JK
1980 cannot_commit))
1981 schedule_timeout(delay);
1982 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1983 } while (!kthread_should_stop());
1984 return 0;
1985}
1986
af31f5e5
CM
1987/*
1988 * this will find the highest generation in the array of
1989 * root backups. The index of the highest array is returned,
1990 * or -1 if we can't find anything.
1991 *
1992 * We check to make sure the array is valid by comparing the
1993 * generation of the latest root in the array with the generation
1994 * in the super block. If they don't match we pitch it.
1995 */
1996static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1997{
1998 u64 cur;
1999 int newest_index = -1;
2000 struct btrfs_root_backup *root_backup;
2001 int i;
2002
2003 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2004 root_backup = info->super_copy->super_roots + i;
2005 cur = btrfs_backup_tree_root_gen(root_backup);
2006 if (cur == newest_gen)
2007 newest_index = i;
2008 }
2009
2010 /* check to see if we actually wrapped around */
2011 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2012 root_backup = info->super_copy->super_roots;
2013 cur = btrfs_backup_tree_root_gen(root_backup);
2014 if (cur == newest_gen)
2015 newest_index = 0;
2016 }
2017 return newest_index;
2018}
2019
2020
2021/*
2022 * find the oldest backup so we know where to store new entries
2023 * in the backup array. This will set the backup_root_index
2024 * field in the fs_info struct
2025 */
2026static void find_oldest_super_backup(struct btrfs_fs_info *info,
2027 u64 newest_gen)
2028{
2029 int newest_index = -1;
2030
2031 newest_index = find_newest_super_backup(info, newest_gen);
2032 /* if there was garbage in there, just move along */
2033 if (newest_index == -1) {
2034 info->backup_root_index = 0;
2035 } else {
2036 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2037 }
2038}
2039
2040/*
2041 * copy all the root pointers into the super backup array.
2042 * this will bump the backup pointer by one when it is
2043 * done
2044 */
2045static void backup_super_roots(struct btrfs_fs_info *info)
2046{
2047 int next_backup;
2048 struct btrfs_root_backup *root_backup;
2049 int last_backup;
2050
2051 next_backup = info->backup_root_index;
2052 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2053 BTRFS_NUM_BACKUP_ROOTS;
2054
2055 /*
2056 * just overwrite the last backup if we're at the same generation
2057 * this happens only at umount
2058 */
2059 root_backup = info->super_for_commit->super_roots + last_backup;
2060 if (btrfs_backup_tree_root_gen(root_backup) ==
2061 btrfs_header_generation(info->tree_root->node))
2062 next_backup = last_backup;
2063
2064 root_backup = info->super_for_commit->super_roots + next_backup;
2065
2066 /*
2067 * make sure all of our padding and empty slots get zero filled
2068 * regardless of which ones we use today
2069 */
2070 memset(root_backup, 0, sizeof(*root_backup));
2071
2072 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2073
2074 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2075 btrfs_set_backup_tree_root_gen(root_backup,
2076 btrfs_header_generation(info->tree_root->node));
2077
2078 btrfs_set_backup_tree_root_level(root_backup,
2079 btrfs_header_level(info->tree_root->node));
2080
2081 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2082 btrfs_set_backup_chunk_root_gen(root_backup,
2083 btrfs_header_generation(info->chunk_root->node));
2084 btrfs_set_backup_chunk_root_level(root_backup,
2085 btrfs_header_level(info->chunk_root->node));
2086
2087 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2088 btrfs_set_backup_extent_root_gen(root_backup,
2089 btrfs_header_generation(info->extent_root->node));
2090 btrfs_set_backup_extent_root_level(root_backup,
2091 btrfs_header_level(info->extent_root->node));
2092
7c7e82a7
CM
2093 /*
2094 * we might commit during log recovery, which happens before we set
2095 * the fs_root. Make sure it is valid before we fill it in.
2096 */
2097 if (info->fs_root && info->fs_root->node) {
2098 btrfs_set_backup_fs_root(root_backup,
2099 info->fs_root->node->start);
2100 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2101 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2102 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2103 btrfs_header_level(info->fs_root->node));
7c7e82a7 2104 }
af31f5e5
CM
2105
2106 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2107 btrfs_set_backup_dev_root_gen(root_backup,
2108 btrfs_header_generation(info->dev_root->node));
2109 btrfs_set_backup_dev_root_level(root_backup,
2110 btrfs_header_level(info->dev_root->node));
2111
2112 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2113 btrfs_set_backup_csum_root_gen(root_backup,
2114 btrfs_header_generation(info->csum_root->node));
2115 btrfs_set_backup_csum_root_level(root_backup,
2116 btrfs_header_level(info->csum_root->node));
2117
2118 btrfs_set_backup_total_bytes(root_backup,
2119 btrfs_super_total_bytes(info->super_copy));
2120 btrfs_set_backup_bytes_used(root_backup,
2121 btrfs_super_bytes_used(info->super_copy));
2122 btrfs_set_backup_num_devices(root_backup,
2123 btrfs_super_num_devices(info->super_copy));
2124
2125 /*
2126 * if we don't copy this out to the super_copy, it won't get remembered
2127 * for the next commit
2128 */
2129 memcpy(&info->super_copy->super_roots,
2130 &info->super_for_commit->super_roots,
2131 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2132}
2133
2134/*
2135 * this copies info out of the root backup array and back into
2136 * the in-memory super block. It is meant to help iterate through
2137 * the array, so you send it the number of backups you've already
2138 * tried and the last backup index you used.
2139 *
2140 * this returns -1 when it has tried all the backups
2141 */
2142static noinline int next_root_backup(struct btrfs_fs_info *info,
2143 struct btrfs_super_block *super,
2144 int *num_backups_tried, int *backup_index)
2145{
2146 struct btrfs_root_backup *root_backup;
2147 int newest = *backup_index;
2148
2149 if (*num_backups_tried == 0) {
2150 u64 gen = btrfs_super_generation(super);
2151
2152 newest = find_newest_super_backup(info, gen);
2153 if (newest == -1)
2154 return -1;
2155
2156 *backup_index = newest;
2157 *num_backups_tried = 1;
2158 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2159 /* we've tried all the backups, all done */
2160 return -1;
2161 } else {
2162 /* jump to the next oldest backup */
2163 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2164 BTRFS_NUM_BACKUP_ROOTS;
2165 *backup_index = newest;
2166 *num_backups_tried += 1;
2167 }
2168 root_backup = super->super_roots + newest;
2169
2170 btrfs_set_super_generation(super,
2171 btrfs_backup_tree_root_gen(root_backup));
2172 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2173 btrfs_set_super_root_level(super,
2174 btrfs_backup_tree_root_level(root_backup));
2175 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2176
2177 /*
2178 * fixme: the total bytes and num_devices need to match or we should
2179 * need a fsck
2180 */
2181 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2182 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2183 return 0;
2184}
2185
7abadb64
LB
2186/* helper to cleanup workers */
2187static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2188{
dc6e3209 2189 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2190 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2191 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2192 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2193 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2194 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2195 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2196 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2197 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2198 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2199 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2200 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2201 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2202 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2203 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2204 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2205 /*
2206 * Now that all other work queues are destroyed, we can safely destroy
2207 * the queues used for metadata I/O, since tasks from those other work
2208 * queues can do metadata I/O operations.
2209 */
2210 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2211 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2212}
2213
2e9f5954
R
2214static void free_root_extent_buffers(struct btrfs_root *root)
2215{
2216 if (root) {
2217 free_extent_buffer(root->node);
2218 free_extent_buffer(root->commit_root);
2219 root->node = NULL;
2220 root->commit_root = NULL;
2221 }
2222}
2223
af31f5e5
CM
2224/* helper to cleanup tree roots */
2225static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2226{
2e9f5954 2227 free_root_extent_buffers(info->tree_root);
655b09fe 2228
2e9f5954
R
2229 free_root_extent_buffers(info->dev_root);
2230 free_root_extent_buffers(info->extent_root);
2231 free_root_extent_buffers(info->csum_root);
2232 free_root_extent_buffers(info->quota_root);
2233 free_root_extent_buffers(info->uuid_root);
2234 if (chunk_root)
2235 free_root_extent_buffers(info->chunk_root);
70f6d82e 2236 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2237}
2238
faa2dbf0 2239void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2240{
2241 int ret;
2242 struct btrfs_root *gang[8];
2243 int i;
2244
2245 while (!list_empty(&fs_info->dead_roots)) {
2246 gang[0] = list_entry(fs_info->dead_roots.next,
2247 struct btrfs_root, root_list);
2248 list_del(&gang[0]->root_list);
2249
27cdeb70 2250 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2251 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2252 } else {
2253 free_extent_buffer(gang[0]->node);
2254 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2255 btrfs_put_fs_root(gang[0]);
171f6537
JB
2256 }
2257 }
2258
2259 while (1) {
2260 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2261 (void **)gang, 0,
2262 ARRAY_SIZE(gang));
2263 if (!ret)
2264 break;
2265 for (i = 0; i < ret; i++)
cb517eab 2266 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2267 }
1a4319cc
LB
2268
2269 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2270 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2271 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2272 }
171f6537 2273}
af31f5e5 2274
638aa7ed
ES
2275static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2276{
2277 mutex_init(&fs_info->scrub_lock);
2278 atomic_set(&fs_info->scrubs_running, 0);
2279 atomic_set(&fs_info->scrub_pause_req, 0);
2280 atomic_set(&fs_info->scrubs_paused, 0);
2281 atomic_set(&fs_info->scrub_cancel_req, 0);
2282 init_waitqueue_head(&fs_info->scrub_pause_wait);
2283 fs_info->scrub_workers_refcnt = 0;
2284}
2285
779a65a4
ES
2286static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2287{
2288 spin_lock_init(&fs_info->balance_lock);
2289 mutex_init(&fs_info->balance_mutex);
2290 atomic_set(&fs_info->balance_running, 0);
2291 atomic_set(&fs_info->balance_pause_req, 0);
2292 atomic_set(&fs_info->balance_cancel_req, 0);
2293 fs_info->balance_ctl = NULL;
2294 init_waitqueue_head(&fs_info->balance_wait_q);
2295}
2296
6bccf3ab 2297static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2298{
2ff7e61e
JM
2299 struct inode *inode = fs_info->btree_inode;
2300
2301 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2302 set_nlink(inode, 1);
f37938e0
ES
2303 /*
2304 * we set the i_size on the btree inode to the max possible int.
2305 * the real end of the address space is determined by all of
2306 * the devices in the system
2307 */
2ff7e61e
JM
2308 inode->i_size = OFFSET_MAX;
2309 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2310
2ff7e61e 2311 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2312 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2313 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2314 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2315
2ff7e61e 2316 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2317
2ff7e61e
JM
2318 BTRFS_I(inode)->root = fs_info->tree_root;
2319 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2320 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2321 btrfs_insert_inode_hash(inode);
f37938e0
ES
2322}
2323
ad618368
ES
2324static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2325{
2326 fs_info->dev_replace.lock_owner = 0;
2327 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2328 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2329 rwlock_init(&fs_info->dev_replace.lock);
2330 atomic_set(&fs_info->dev_replace.read_locks, 0);
2331 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2332 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2333 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2334}
2335
f9e92e40
ES
2336static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2337{
2338 spin_lock_init(&fs_info->qgroup_lock);
2339 mutex_init(&fs_info->qgroup_ioctl_lock);
2340 fs_info->qgroup_tree = RB_ROOT;
2341 fs_info->qgroup_op_tree = RB_ROOT;
2342 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2343 fs_info->qgroup_seq = 1;
f9e92e40 2344 fs_info->qgroup_ulist = NULL;
d2c609b8 2345 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2346 mutex_init(&fs_info->qgroup_rescan_lock);
2347}
2348
2a458198
ES
2349static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2350 struct btrfs_fs_devices *fs_devices)
2351{
2352 int max_active = fs_info->thread_pool_size;
6f011058 2353 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2354
2355 fs_info->workers =
cb001095
JM
2356 btrfs_alloc_workqueue(fs_info, "worker",
2357 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2358
2359 fs_info->delalloc_workers =
cb001095
JM
2360 btrfs_alloc_workqueue(fs_info, "delalloc",
2361 flags, max_active, 2);
2a458198
ES
2362
2363 fs_info->flush_workers =
cb001095
JM
2364 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2365 flags, max_active, 0);
2a458198
ES
2366
2367 fs_info->caching_workers =
cb001095 2368 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2369
2370 /*
2371 * a higher idle thresh on the submit workers makes it much more
2372 * likely that bios will be send down in a sane order to the
2373 * devices
2374 */
2375 fs_info->submit_workers =
cb001095 2376 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2377 min_t(u64, fs_devices->num_devices,
2378 max_active), 64);
2379
2380 fs_info->fixup_workers =
cb001095 2381 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2382
2383 /*
2384 * endios are largely parallel and should have a very
2385 * low idle thresh
2386 */
2387 fs_info->endio_workers =
cb001095 2388 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2389 fs_info->endio_meta_workers =
cb001095
JM
2390 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2391 max_active, 4);
2a458198 2392 fs_info->endio_meta_write_workers =
cb001095
JM
2393 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2394 max_active, 2);
2a458198 2395 fs_info->endio_raid56_workers =
cb001095
JM
2396 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2397 max_active, 4);
2a458198 2398 fs_info->endio_repair_workers =
cb001095 2399 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2400 fs_info->rmw_workers =
cb001095 2401 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2402 fs_info->endio_write_workers =
cb001095
JM
2403 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2404 max_active, 2);
2a458198 2405 fs_info->endio_freespace_worker =
cb001095
JM
2406 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2407 max_active, 0);
2a458198 2408 fs_info->delayed_workers =
cb001095
JM
2409 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2410 max_active, 0);
2a458198 2411 fs_info->readahead_workers =
cb001095
JM
2412 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2413 max_active, 2);
2a458198 2414 fs_info->qgroup_rescan_workers =
cb001095 2415 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2416 fs_info->extent_workers =
cb001095 2417 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2418 min_t(u64, fs_devices->num_devices,
2419 max_active), 8);
2420
2421 if (!(fs_info->workers && fs_info->delalloc_workers &&
2422 fs_info->submit_workers && fs_info->flush_workers &&
2423 fs_info->endio_workers && fs_info->endio_meta_workers &&
2424 fs_info->endio_meta_write_workers &&
2425 fs_info->endio_repair_workers &&
2426 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2427 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2428 fs_info->caching_workers && fs_info->readahead_workers &&
2429 fs_info->fixup_workers && fs_info->delayed_workers &&
2430 fs_info->extent_workers &&
2431 fs_info->qgroup_rescan_workers)) {
2432 return -ENOMEM;
2433 }
2434
2435 return 0;
2436}
2437
63443bf5
ES
2438static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2439 struct btrfs_fs_devices *fs_devices)
2440{
2441 int ret;
63443bf5
ES
2442 struct btrfs_root *log_tree_root;
2443 struct btrfs_super_block *disk_super = fs_info->super_copy;
2444 u64 bytenr = btrfs_super_log_root(disk_super);
2445
2446 if (fs_devices->rw_devices == 0) {
f14d104d 2447 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2448 return -EIO;
2449 }
2450
74e4d827 2451 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2452 if (!log_tree_root)
2453 return -ENOMEM;
2454
da17066c 2455 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2456
2ff7e61e
JM
2457 log_tree_root->node = read_tree_block(fs_info, bytenr,
2458 fs_info->generation + 1);
64c043de 2459 if (IS_ERR(log_tree_root->node)) {
f14d104d 2460 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2461 ret = PTR_ERR(log_tree_root->node);
64c043de 2462 kfree(log_tree_root);
0eeff236 2463 return ret;
64c043de 2464 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2465 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2466 free_extent_buffer(log_tree_root->node);
2467 kfree(log_tree_root);
2468 return -EIO;
2469 }
2470 /* returns with log_tree_root freed on success */
2471 ret = btrfs_recover_log_trees(log_tree_root);
2472 if (ret) {
0b246afa
JM
2473 btrfs_handle_fs_error(fs_info, ret,
2474 "Failed to recover log tree");
63443bf5
ES
2475 free_extent_buffer(log_tree_root->node);
2476 kfree(log_tree_root);
2477 return ret;
2478 }
2479
2480 if (fs_info->sb->s_flags & MS_RDONLY) {
6bccf3ab 2481 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2482 if (ret)
2483 return ret;
2484 }
2485
2486 return 0;
2487}
2488
6bccf3ab 2489static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2490{
6bccf3ab 2491 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2492 struct btrfs_root *root;
4bbcaa64
ES
2493 struct btrfs_key location;
2494 int ret;
2495
6bccf3ab
JM
2496 BUG_ON(!fs_info->tree_root);
2497
4bbcaa64
ES
2498 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2499 location.type = BTRFS_ROOT_ITEM_KEY;
2500 location.offset = 0;
2501
a4f3d2c4
DS
2502 root = btrfs_read_tree_root(tree_root, &location);
2503 if (IS_ERR(root))
2504 return PTR_ERR(root);
2505 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2506 fs_info->extent_root = root;
4bbcaa64
ES
2507
2508 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2509 root = btrfs_read_tree_root(tree_root, &location);
2510 if (IS_ERR(root))
2511 return PTR_ERR(root);
2512 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2513 fs_info->dev_root = root;
4bbcaa64
ES
2514 btrfs_init_devices_late(fs_info);
2515
2516 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2517 root = btrfs_read_tree_root(tree_root, &location);
2518 if (IS_ERR(root))
2519 return PTR_ERR(root);
2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 fs_info->csum_root = root;
4bbcaa64
ES
2522
2523 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2524 root = btrfs_read_tree_root(tree_root, &location);
2525 if (!IS_ERR(root)) {
2526 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2527 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2528 fs_info->quota_root = root;
4bbcaa64
ES
2529 }
2530
2531 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2532 root = btrfs_read_tree_root(tree_root, &location);
2533 if (IS_ERR(root)) {
2534 ret = PTR_ERR(root);
4bbcaa64
ES
2535 if (ret != -ENOENT)
2536 return ret;
2537 } else {
a4f3d2c4
DS
2538 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2539 fs_info->uuid_root = root;
4bbcaa64
ES
2540 }
2541
70f6d82e
OS
2542 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2543 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2544 root = btrfs_read_tree_root(tree_root, &location);
2545 if (IS_ERR(root))
2546 return PTR_ERR(root);
2547 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2548 fs_info->free_space_root = root;
2549 }
2550
4bbcaa64
ES
2551 return 0;
2552}
2553
ad2b2c80
AV
2554int open_ctree(struct super_block *sb,
2555 struct btrfs_fs_devices *fs_devices,
2556 char *options)
2e635a27 2557{
db94535d
CM
2558 u32 sectorsize;
2559 u32 nodesize;
87ee04eb 2560 u32 stripesize;
84234f3a 2561 u64 generation;
f2b636e8 2562 u64 features;
3de4586c 2563 struct btrfs_key location;
a061fc8d 2564 struct buffer_head *bh;
4d34b278 2565 struct btrfs_super_block *disk_super;
815745cf 2566 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2567 struct btrfs_root *tree_root;
4d34b278 2568 struct btrfs_root *chunk_root;
eb60ceac 2569 int ret;
e58ca020 2570 int err = -EINVAL;
af31f5e5
CM
2571 int num_backups_tried = 0;
2572 int backup_index = 0;
5cdc7ad3 2573 int max_active;
6675df31 2574 int clear_free_space_tree = 0;
4543df7e 2575
74e4d827
DS
2576 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2577 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2578 if (!tree_root || !chunk_root) {
39279cc3
CM
2579 err = -ENOMEM;
2580 goto fail;
2581 }
76dda93c
YZ
2582
2583 ret = init_srcu_struct(&fs_info->subvol_srcu);
2584 if (ret) {
2585 err = ret;
2586 goto fail;
2587 }
2588
908c7f19 2589 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2590 if (ret) {
2591 err = ret;
9e11ceee 2592 goto fail_srcu;
e2d84521 2593 }
09cbfeaf 2594 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2595 (1 + ilog2(nr_cpu_ids));
2596
908c7f19 2597 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2598 if (ret) {
2599 err = ret;
2600 goto fail_dirty_metadata_bytes;
2601 }
2602
908c7f19 2603 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2604 if (ret) {
2605 err = ret;
2606 goto fail_delalloc_bytes;
2607 }
2608
76dda93c
YZ
2609 fs_info->btree_inode = new_inode(sb);
2610 if (!fs_info->btree_inode) {
2611 err = -ENOMEM;
c404e0dc 2612 goto fail_bio_counter;
76dda93c
YZ
2613 }
2614
a6591715 2615 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2616
76dda93c 2617 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2618 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2619 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2620 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2621 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2622 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2623 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2624 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2625 spin_lock_init(&fs_info->trans_lock);
76dda93c 2626 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2627 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2628 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2629 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2630 spin_lock_init(&fs_info->super_lock);
fcebe456 2631 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2632 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2633 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2634 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2635 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2636 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2637 mutex_init(&fs_info->reloc_mutex);
573bfb72 2638 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2639 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2640 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2641
0b86a832 2642 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2643 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2644 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2645 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2646 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2647 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2648 BTRFS_BLOCK_RSV_GLOBAL);
2649 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2650 BTRFS_BLOCK_RSV_DELALLOC);
2651 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2652 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2653 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2654 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2655 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2656 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2657 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2658 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2659 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2660 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2661 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2662 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2663 atomic64_set(&fs_info->tree_mod_seq, 0);
9e7cc91a 2664 fs_info->fs_frozen = 0;
e20d96d6 2665 fs_info->sb = sb;
95ac567a 2666 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2667 fs_info->metadata_ratio = 0;
4cb5300b 2668 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2669 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2670 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2671 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2672 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2673 /* readahead state */
d0164adc 2674 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2675 spin_lock_init(&fs_info->reada_lock);
c8b97818 2676
b34b086c
CM
2677 fs_info->thread_pool_size = min_t(unsigned long,
2678 num_online_cpus() + 2, 8);
0afbaf8c 2679
199c2a9c
MX
2680 INIT_LIST_HEAD(&fs_info->ordered_roots);
2681 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2682 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2683 GFP_KERNEL);
16cdcec7
MX
2684 if (!fs_info->delayed_root) {
2685 err = -ENOMEM;
2686 goto fail_iput;
2687 }
2688 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2689
638aa7ed 2690 btrfs_init_scrub(fs_info);
21adbd5c
SB
2691#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2692 fs_info->check_integrity_print_mask = 0;
2693#endif
779a65a4 2694 btrfs_init_balance(fs_info);
21c7e756 2695 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2696
a061fc8d
CM
2697 sb->s_blocksize = 4096;
2698 sb->s_blocksize_bits = blksize_bits(4096);
2699
6bccf3ab 2700 btrfs_init_btree_inode(fs_info);
76dda93c 2701
0f9dd46c 2702 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2703 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2704 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2705
c6100a4b
JB
2706 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2707 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2708 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2709 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2710
5a3f23d5 2711 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2712 mutex_init(&fs_info->tree_log_mutex);
925baedd 2713 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2714 mutex_init(&fs_info->transaction_kthread_mutex);
2715 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2716 mutex_init(&fs_info->volume_mutex);
1bbc621e 2717 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2718 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2719 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2720 init_rwsem(&fs_info->subvol_sem);
803b2f54 2721 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2722
ad618368 2723 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2724 btrfs_init_qgroup(fs_info);
416ac51d 2725
fa9c0d79
CM
2726 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2727 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2728
e6dcd2dc 2729 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2730 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2731 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2732 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2733
04216820
FM
2734 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2735
da17066c
JM
2736 /* Usable values until the real ones are cached from the superblock */
2737 fs_info->nodesize = 4096;
2738 fs_info->sectorsize = 4096;
2739 fs_info->stripesize = 4096;
2740
53b381b3
DW
2741 ret = btrfs_alloc_stripe_hash_table(fs_info);
2742 if (ret) {
83c8266a 2743 err = ret;
53b381b3
DW
2744 goto fail_alloc;
2745 }
2746
da17066c 2747 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2748
3c4bb26b 2749 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2750
2751 /*
2752 * Read super block and check the signature bytes only
2753 */
a512bbf8 2754 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2755 if (IS_ERR(bh)) {
2756 err = PTR_ERR(bh);
16cdcec7 2757 goto fail_alloc;
20b45077 2758 }
39279cc3 2759
1104a885
DS
2760 /*
2761 * We want to check superblock checksum, the type is stored inside.
2762 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2763 */
ab8d0fc4 2764 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2765 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2766 err = -EINVAL;
b2acdddf 2767 brelse(bh);
1104a885
DS
2768 goto fail_alloc;
2769 }
2770
2771 /*
2772 * super_copy is zeroed at allocation time and we never touch the
2773 * following bytes up to INFO_SIZE, the checksum is calculated from
2774 * the whole block of INFO_SIZE
2775 */
6c41761f
DS
2776 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2777 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2778 sizeof(*fs_info->super_for_commit));
a061fc8d 2779 brelse(bh);
5f39d397 2780
6c41761f 2781 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2782
3d3a126a 2783 ret = btrfs_check_super_valid(fs_info);
1104a885 2784 if (ret) {
05135f59 2785 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2786 err = -EINVAL;
2787 goto fail_alloc;
2788 }
2789
6c41761f 2790 disk_super = fs_info->super_copy;
0f7d52f4 2791 if (!btrfs_super_root(disk_super))
16cdcec7 2792 goto fail_alloc;
0f7d52f4 2793
acce952b 2794 /* check FS state, whether FS is broken. */
87533c47
MX
2795 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2796 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2797
af31f5e5
CM
2798 /*
2799 * run through our array of backup supers and setup
2800 * our ring pointer to the oldest one
2801 */
2802 generation = btrfs_super_generation(disk_super);
2803 find_oldest_super_backup(fs_info, generation);
2804
75e7cb7f
LB
2805 /*
2806 * In the long term, we'll store the compression type in the super
2807 * block, and it'll be used for per file compression control.
2808 */
2809 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2810
2ff7e61e 2811 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2812 if (ret) {
2813 err = ret;
16cdcec7 2814 goto fail_alloc;
2b82032c 2815 }
dfe25020 2816
f2b636e8
JB
2817 features = btrfs_super_incompat_flags(disk_super) &
2818 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2819 if (features) {
05135f59
DS
2820 btrfs_err(fs_info,
2821 "cannot mount because of unsupported optional features (%llx)",
2822 features);
f2b636e8 2823 err = -EINVAL;
16cdcec7 2824 goto fail_alloc;
f2b636e8
JB
2825 }
2826
5d4f98a2 2827 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2828 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2829 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2830 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2831
3173a18f 2832 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2833 btrfs_info(fs_info, "has skinny extents");
3173a18f 2834
727011e0
CM
2835 /*
2836 * flag our filesystem as having big metadata blocks if
2837 * they are bigger than the page size
2838 */
09cbfeaf 2839 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2840 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2841 btrfs_info(fs_info,
2842 "flagging fs with big metadata feature");
727011e0
CM
2843 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2844 }
2845
bc3f116f 2846 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2847 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2848 stripesize = sectorsize;
707e8a07 2849 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2850 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2851
da17066c
JM
2852 /* Cache block sizes */
2853 fs_info->nodesize = nodesize;
2854 fs_info->sectorsize = sectorsize;
2855 fs_info->stripesize = stripesize;
2856
bc3f116f
CM
2857 /*
2858 * mixed block groups end up with duplicate but slightly offset
2859 * extent buffers for the same range. It leads to corruptions
2860 */
2861 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2862 (sectorsize != nodesize)) {
05135f59
DS
2863 btrfs_err(fs_info,
2864"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2865 nodesize, sectorsize);
bc3f116f
CM
2866 goto fail_alloc;
2867 }
2868
ceda0864
MX
2869 /*
2870 * Needn't use the lock because there is no other task which will
2871 * update the flag.
2872 */
a6fa6fae 2873 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2874
f2b636e8
JB
2875 features = btrfs_super_compat_ro_flags(disk_super) &
2876 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2877 if (!(sb->s_flags & MS_RDONLY) && features) {
05135f59
DS
2878 btrfs_err(fs_info,
2879 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2880 features);
f2b636e8 2881 err = -EINVAL;
16cdcec7 2882 goto fail_alloc;
f2b636e8 2883 }
61d92c32 2884
5cdc7ad3 2885 max_active = fs_info->thread_pool_size;
61d92c32 2886
2a458198
ES
2887 ret = btrfs_init_workqueues(fs_info, fs_devices);
2888 if (ret) {
2889 err = ret;
0dc3b84a
JB
2890 goto fail_sb_buffer;
2891 }
4543df7e 2892
9e11ceee
JK
2893 sb->s_bdi->congested_fn = btrfs_congested_fn;
2894 sb->s_bdi->congested_data = fs_info;
2895 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2896 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2897 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2898 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2899
a061fc8d
CM
2900 sb->s_blocksize = sectorsize;
2901 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2902
925baedd 2903 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2904 ret = btrfs_read_sys_array(fs_info);
925baedd 2905 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2906 if (ret) {
05135f59 2907 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2908 goto fail_sb_buffer;
84eed90f 2909 }
0b86a832 2910
84234f3a 2911 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2912
da17066c 2913 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2914
2ff7e61e 2915 chunk_root->node = read_tree_block(fs_info,
0b86a832 2916 btrfs_super_chunk_root(disk_super),
ce86cd59 2917 generation);
64c043de
LB
2918 if (IS_ERR(chunk_root->node) ||
2919 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2920 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2921 if (!IS_ERR(chunk_root->node))
2922 free_extent_buffer(chunk_root->node);
95ab1f64 2923 chunk_root->node = NULL;
af31f5e5 2924 goto fail_tree_roots;
83121942 2925 }
5d4f98a2
YZ
2926 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2927 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2928
e17cade2 2929 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2930 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2931
5b4aacef 2932 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2933 if (ret) {
05135f59 2934 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2935 goto fail_tree_roots;
2b82032c 2936 }
0b86a832 2937
8dabb742
SB
2938 /*
2939 * keep the device that is marked to be the target device for the
2940 * dev_replace procedure
2941 */
9eaed21e 2942 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2943
a6b0d5c8 2944 if (!fs_devices->latest_bdev) {
05135f59 2945 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2946 goto fail_tree_roots;
2947 }
2948
af31f5e5 2949retry_root_backup:
84234f3a 2950 generation = btrfs_super_generation(disk_super);
0b86a832 2951
2ff7e61e 2952 tree_root->node = read_tree_block(fs_info,
db94535d 2953 btrfs_super_root(disk_super),
ce86cd59 2954 generation);
64c043de
LB
2955 if (IS_ERR(tree_root->node) ||
2956 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2957 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2958 if (!IS_ERR(tree_root->node))
2959 free_extent_buffer(tree_root->node);
95ab1f64 2960 tree_root->node = NULL;
af31f5e5 2961 goto recovery_tree_root;
83121942 2962 }
af31f5e5 2963
5d4f98a2
YZ
2964 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2965 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2966 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2967
f32e48e9
CR
2968 mutex_lock(&tree_root->objectid_mutex);
2969 ret = btrfs_find_highest_objectid(tree_root,
2970 &tree_root->highest_objectid);
2971 if (ret) {
2972 mutex_unlock(&tree_root->objectid_mutex);
2973 goto recovery_tree_root;
2974 }
2975
2976 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2977
2978 mutex_unlock(&tree_root->objectid_mutex);
2979
6bccf3ab 2980 ret = btrfs_read_roots(fs_info);
4bbcaa64 2981 if (ret)
af31f5e5 2982 goto recovery_tree_root;
f7a81ea4 2983
8929ecfa
YZ
2984 fs_info->generation = generation;
2985 fs_info->last_trans_committed = generation;
8929ecfa 2986
68310a5e
ID
2987 ret = btrfs_recover_balance(fs_info);
2988 if (ret) {
05135f59 2989 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2990 goto fail_block_groups;
2991 }
2992
733f4fbb
SB
2993 ret = btrfs_init_dev_stats(fs_info);
2994 if (ret) {
05135f59 2995 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
2996 goto fail_block_groups;
2997 }
2998
8dabb742
SB
2999 ret = btrfs_init_dev_replace(fs_info);
3000 if (ret) {
05135f59 3001 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3002 goto fail_block_groups;
3003 }
3004
9eaed21e 3005 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 3006
b7c35e81
AJ
3007 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3008 if (ret) {
05135f59
DS
3009 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3010 ret);
b7c35e81
AJ
3011 goto fail_block_groups;
3012 }
3013
3014 ret = btrfs_sysfs_add_device(fs_devices);
3015 if (ret) {
05135f59
DS
3016 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3017 ret);
b7c35e81
AJ
3018 goto fail_fsdev_sysfs;
3019 }
3020
96f3136e 3021 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3022 if (ret) {
05135f59 3023 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3024 goto fail_fsdev_sysfs;
c59021f8 3025 }
3026
c59021f8 3027 ret = btrfs_init_space_info(fs_info);
3028 if (ret) {
05135f59 3029 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3030 goto fail_sysfs;
c59021f8 3031 }
3032
5b4aacef 3033 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3034 if (ret) {
05135f59 3035 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3036 goto fail_sysfs;
1b1d1f66 3037 }
5af3e8cc
SB
3038 fs_info->num_tolerated_disk_barrier_failures =
3039 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3040 if (fs_info->fs_devices->missing_devices >
3041 fs_info->num_tolerated_disk_barrier_failures &&
3042 !(sb->s_flags & MS_RDONLY)) {
05135f59
DS
3043 btrfs_warn(fs_info,
3044"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
78fa1770
ZL
3045 fs_info->fs_devices->missing_devices,
3046 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3047 goto fail_sysfs;
292fd7fc 3048 }
9078a3e1 3049
a74a4b97
CM
3050 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3051 "btrfs-cleaner");
57506d50 3052 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3053 goto fail_sysfs;
a74a4b97
CM
3054
3055 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3056 tree_root,
3057 "btrfs-transaction");
57506d50 3058 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3059 goto fail_cleaner;
a74a4b97 3060
0b246afa
JM
3061 if (!btrfs_test_opt(fs_info, SSD) &&
3062 !btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3063 !fs_info->fs_devices->rotating) {
05135f59 3064 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
c289811c
CM
3065 btrfs_set_opt(fs_info->mount_opt, SSD);
3066 }
3067
572d9ab7 3068 /*
01327610 3069 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3070 * not have to wait for transaction commit
3071 */
3072 btrfs_apply_pending_changes(fs_info);
3818aea2 3073
21adbd5c 3074#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3075 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3076 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3077 btrfs_test_opt(fs_info,
21adbd5c
SB
3078 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3079 1 : 0,
3080 fs_info->check_integrity_print_mask);
3081 if (ret)
05135f59
DS
3082 btrfs_warn(fs_info,
3083 "failed to initialize integrity check module: %d",
3084 ret);
21adbd5c
SB
3085 }
3086#endif
bcef60f2
AJ
3087 ret = btrfs_read_qgroup_config(fs_info);
3088 if (ret)
3089 goto fail_trans_kthread;
21adbd5c 3090
96da0919
QW
3091 /* do not make disk changes in broken FS or nologreplay is given */
3092 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3093 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3094 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3095 if (ret) {
63443bf5 3096 err = ret;
28c16cbb 3097 goto fail_qgroup;
79787eaa 3098 }
e02119d5 3099 }
1a40e23b 3100
6bccf3ab 3101 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3102 if (ret)
28c16cbb 3103 goto fail_qgroup;
76dda93c 3104
7c2ca468 3105 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3106 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3107 if (ret)
28c16cbb 3108 goto fail_qgroup;
90c711ab
ZB
3109
3110 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3111 ret = btrfs_recover_relocation(tree_root);
90c711ab 3112 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3113 if (ret < 0) {
05135f59
DS
3114 btrfs_warn(fs_info, "failed to recover relocation: %d",
3115 ret);
d7ce5843 3116 err = -EINVAL;
bcef60f2 3117 goto fail_qgroup;
d7ce5843 3118 }
7c2ca468 3119 }
1a40e23b 3120
3de4586c
CM
3121 location.objectid = BTRFS_FS_TREE_OBJECTID;
3122 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3123 location.offset = 0;
3de4586c 3124
3de4586c 3125 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3126 if (IS_ERR(fs_info->fs_root)) {
3127 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3128 goto fail_qgroup;
3140c9a3 3129 }
c289811c 3130
2b6ba629
ID
3131 if (sb->s_flags & MS_RDONLY)
3132 return 0;
59641015 3133
f8d468a1
OS
3134 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3135 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3136 clear_free_space_tree = 1;
3137 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3138 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3139 btrfs_warn(fs_info, "free space tree is invalid");
3140 clear_free_space_tree = 1;
3141 }
3142
3143 if (clear_free_space_tree) {
f8d468a1
OS
3144 btrfs_info(fs_info, "clearing free space tree");
3145 ret = btrfs_clear_free_space_tree(fs_info);
3146 if (ret) {
3147 btrfs_warn(fs_info,
3148 "failed to clear free space tree: %d", ret);
6bccf3ab 3149 close_ctree(fs_info);
f8d468a1
OS
3150 return ret;
3151 }
3152 }
3153
0b246afa 3154 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3155 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3156 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3157 ret = btrfs_create_free_space_tree(fs_info);
3158 if (ret) {
05135f59
DS
3159 btrfs_warn(fs_info,
3160 "failed to create free space tree: %d", ret);
6bccf3ab 3161 close_ctree(fs_info);
511711af
CM
3162 return ret;
3163 }
3164 }
3165
2b6ba629
ID
3166 down_read(&fs_info->cleanup_work_sem);
3167 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3168 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3169 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3170 close_ctree(fs_info);
2b6ba629
ID
3171 return ret;
3172 }
3173 up_read(&fs_info->cleanup_work_sem);
59641015 3174
2b6ba629
ID
3175 ret = btrfs_resume_balance_async(fs_info);
3176 if (ret) {
05135f59 3177 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3178 close_ctree(fs_info);
2b6ba629 3179 return ret;
e3acc2a6
JB
3180 }
3181
8dabb742
SB
3182 ret = btrfs_resume_dev_replace_async(fs_info);
3183 if (ret) {
05135f59 3184 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3185 close_ctree(fs_info);
8dabb742
SB
3186 return ret;
3187 }
3188
b382a324
JS
3189 btrfs_qgroup_rescan_resume(fs_info);
3190
4bbcaa64 3191 if (!fs_info->uuid_root) {
05135f59 3192 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3193 ret = btrfs_create_uuid_tree(fs_info);
3194 if (ret) {
05135f59
DS
3195 btrfs_warn(fs_info,
3196 "failed to create the UUID tree: %d", ret);
6bccf3ab 3197 close_ctree(fs_info);
f7a81ea4
SB
3198 return ret;
3199 }
0b246afa 3200 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3201 fs_info->generation !=
3202 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3203 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3204 ret = btrfs_check_uuid_tree(fs_info);
3205 if (ret) {
05135f59
DS
3206 btrfs_warn(fs_info,
3207 "failed to check the UUID tree: %d", ret);
6bccf3ab 3208 close_ctree(fs_info);
70f80175
SB
3209 return ret;
3210 }
3211 } else {
afcdd129 3212 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3213 }
afcdd129 3214 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3215
8dcddfa0
QW
3216 /*
3217 * backuproot only affect mount behavior, and if open_ctree succeeded,
3218 * no need to keep the flag
3219 */
3220 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3221
ad2b2c80 3222 return 0;
39279cc3 3223
bcef60f2
AJ
3224fail_qgroup:
3225 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3226fail_trans_kthread:
3227 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3228 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3229 btrfs_free_fs_roots(fs_info);
3f157a2f 3230fail_cleaner:
a74a4b97 3231 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3232
3233 /*
3234 * make sure we're done with the btree inode before we stop our
3235 * kthreads
3236 */
3237 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3238
2365dd3c 3239fail_sysfs:
6618a59b 3240 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3241
b7c35e81
AJ
3242fail_fsdev_sysfs:
3243 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3244
1b1d1f66 3245fail_block_groups:
54067ae9 3246 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3247
3248fail_tree_roots:
3249 free_root_pointers(fs_info, 1);
2b8195bb 3250 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3251
39279cc3 3252fail_sb_buffer:
7abadb64 3253 btrfs_stop_all_workers(fs_info);
5cdd7db6 3254 btrfs_free_block_groups(fs_info);
16cdcec7 3255fail_alloc:
4543df7e 3256fail_iput:
586e46e2
ID
3257 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3258
4543df7e 3259 iput(fs_info->btree_inode);
c404e0dc
MX
3260fail_bio_counter:
3261 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3262fail_delalloc_bytes:
3263 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3264fail_dirty_metadata_bytes:
3265 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3266fail_srcu:
3267 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3268fail:
53b381b3 3269 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3270 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3271 return err;
af31f5e5
CM
3272
3273recovery_tree_root:
0b246afa 3274 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3275 goto fail_tree_roots;
3276
3277 free_root_pointers(fs_info, 0);
3278
3279 /* don't use the log in recovery mode, it won't be valid */
3280 btrfs_set_super_log_root(disk_super, 0);
3281
3282 /* we can't trust the free space cache either */
3283 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3284
3285 ret = next_root_backup(fs_info, fs_info->super_copy,
3286 &num_backups_tried, &backup_index);
3287 if (ret == -1)
3288 goto fail_block_groups;
3289 goto retry_root_backup;
eb60ceac
CM
3290}
3291
f2984462
CM
3292static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3293{
f2984462
CM
3294 if (uptodate) {
3295 set_buffer_uptodate(bh);
3296 } else {
442a4f63
SB
3297 struct btrfs_device *device = (struct btrfs_device *)
3298 bh->b_private;
3299
fb456252 3300 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3301 "lost page write due to IO error on %s",
606686ee 3302 rcu_str_deref(device->name));
01327610 3303 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3304 * our own ways of dealing with the IO errors
3305 */
f2984462 3306 clear_buffer_uptodate(bh);
442a4f63 3307 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3308 }
3309 unlock_buffer(bh);
3310 put_bh(bh);
3311}
3312
29c36d72
AJ
3313int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3314 struct buffer_head **bh_ret)
3315{
3316 struct buffer_head *bh;
3317 struct btrfs_super_block *super;
3318 u64 bytenr;
3319
3320 bytenr = btrfs_sb_offset(copy_num);
3321 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3322 return -EINVAL;
3323
3324 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3325 /*
3326 * If we fail to read from the underlying devices, as of now
3327 * the best option we have is to mark it EIO.
3328 */
3329 if (!bh)
3330 return -EIO;
3331
3332 super = (struct btrfs_super_block *)bh->b_data;
3333 if (btrfs_super_bytenr(super) != bytenr ||
3334 btrfs_super_magic(super) != BTRFS_MAGIC) {
3335 brelse(bh);
3336 return -EINVAL;
3337 }
3338
3339 *bh_ret = bh;
3340 return 0;
3341}
3342
3343
a512bbf8
YZ
3344struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3345{
3346 struct buffer_head *bh;
3347 struct buffer_head *latest = NULL;
3348 struct btrfs_super_block *super;
3349 int i;
3350 u64 transid = 0;
92fc03fb 3351 int ret = -EINVAL;
a512bbf8
YZ
3352
3353 /* we would like to check all the supers, but that would make
3354 * a btrfs mount succeed after a mkfs from a different FS.
3355 * So, we need to add a special mount option to scan for
3356 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3357 */
3358 for (i = 0; i < 1; i++) {
29c36d72
AJ
3359 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3360 if (ret)
a512bbf8
YZ
3361 continue;
3362
3363 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3364
3365 if (!latest || btrfs_super_generation(super) > transid) {
3366 brelse(latest);
3367 latest = bh;
3368 transid = btrfs_super_generation(super);
3369 } else {
3370 brelse(bh);
3371 }
3372 }
92fc03fb
AJ
3373
3374 if (!latest)
3375 return ERR_PTR(ret);
3376
a512bbf8
YZ
3377 return latest;
3378}
3379
4eedeb75
HH
3380/*
3381 * this should be called twice, once with wait == 0 and
3382 * once with wait == 1. When wait == 0 is done, all the buffer heads
3383 * we write are pinned.
3384 *
3385 * They are released when wait == 1 is done.
3386 * max_mirrors must be the same for both runs, and it indicates how
3387 * many supers on this one device should be written.
3388 *
3389 * max_mirrors == 0 means to write them all.
3390 */
a512bbf8
YZ
3391static int write_dev_supers(struct btrfs_device *device,
3392 struct btrfs_super_block *sb,
b75f5062 3393 int wait, int max_mirrors)
a512bbf8
YZ
3394{
3395 struct buffer_head *bh;
3396 int i;
3397 int ret;
3398 int errors = 0;
3399 u32 crc;
3400 u64 bytenr;
a512bbf8
YZ
3401
3402 if (max_mirrors == 0)
3403 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3404
a512bbf8
YZ
3405 for (i = 0; i < max_mirrors; i++) {
3406 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3407 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3408 device->commit_total_bytes)
a512bbf8
YZ
3409 break;
3410
3411 if (wait) {
3412 bh = __find_get_block(device->bdev, bytenr / 4096,
3413 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3414 if (!bh) {
3415 errors++;
3416 continue;
3417 }
a512bbf8 3418 wait_on_buffer(bh);
4eedeb75
HH
3419 if (!buffer_uptodate(bh))
3420 errors++;
3421
3422 /* drop our reference */
3423 brelse(bh);
3424
3425 /* drop the reference from the wait == 0 run */
3426 brelse(bh);
3427 continue;
a512bbf8
YZ
3428 } else {
3429 btrfs_set_super_bytenr(sb, bytenr);
3430
3431 crc = ~(u32)0;
9ed57367 3432 crc = btrfs_csum_data((const char *)sb +
a512bbf8
YZ
3433 BTRFS_CSUM_SIZE, crc,
3434 BTRFS_SUPER_INFO_SIZE -
3435 BTRFS_CSUM_SIZE);
3436 btrfs_csum_final(crc, sb->csum);
3437
4eedeb75
HH
3438 /*
3439 * one reference for us, and we leave it for the
3440 * caller
3441 */
a512bbf8
YZ
3442 bh = __getblk(device->bdev, bytenr / 4096,
3443 BTRFS_SUPER_INFO_SIZE);
634554dc 3444 if (!bh) {
fb456252 3445 btrfs_err(device->fs_info,
f14d104d
DS
3446 "couldn't get super buffer head for bytenr %llu",
3447 bytenr);
634554dc
JB
3448 errors++;
3449 continue;
3450 }
3451
a512bbf8
YZ
3452 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3453
4eedeb75 3454 /* one reference for submit_bh */
a512bbf8 3455 get_bh(bh);
4eedeb75
HH
3456
3457 set_buffer_uptodate(bh);
a512bbf8
YZ
3458 lock_buffer(bh);
3459 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3460 bh->b_private = device;
a512bbf8
YZ
3461 }
3462
387125fc
CM
3463 /*
3464 * we fua the first super. The others we allow
3465 * to go down lazy.
3466 */
8d910125
JK
3467 if (i == 0) {
3468 ret = btrfsic_submit_bh(REQ_OP_WRITE,
3469 REQ_SYNC | REQ_FUA, bh);
3470 } else {
70fd7614 3471 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
8d910125 3472 }
4eedeb75 3473 if (ret)
a512bbf8 3474 errors++;
a512bbf8
YZ
3475 }
3476 return errors < i ? 0 : -1;
3477}
3478
387125fc
CM
3479/*
3480 * endio for the write_dev_flush, this will wake anyone waiting
3481 * for the barrier when it is done
3482 */
4246a0b6 3483static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3484{
387125fc
CM
3485 if (bio->bi_private)
3486 complete(bio->bi_private);
3487 bio_put(bio);
3488}
3489
3490/*
3491 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3492 * sent down. With wait == 1, it waits for the previous flush.
3493 *
3494 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3495 * capable
3496 */
3497static int write_dev_flush(struct btrfs_device *device, int wait)
3498{
c2a9c7ab 3499 struct request_queue *q = bdev_get_queue(device->bdev);
387125fc
CM
3500 struct bio *bio;
3501 int ret = 0;
3502
c2a9c7ab 3503 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
387125fc
CM
3504 return 0;
3505
3506 if (wait) {
3507 bio = device->flush_bio;
387125fc
CM
3508 wait_for_completion(&device->flush_wait);
3509
4246a0b6
CH
3510 if (bio->bi_error) {
3511 ret = bio->bi_error;
5af3e8cc
SB
3512 btrfs_dev_stat_inc_and_print(device,
3513 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3514 }
3515
3516 /* drop the reference from the wait == 0 run */
3517 bio_put(bio);
3518 device->flush_bio = NULL;
3519
3520 return ret;
3521 }
3522
3523 /*
3524 * one reference for us, and we leave it for the
3525 * caller
3526 */
9c017abc 3527 device->flush_bio = NULL;
c5e4c3d7 3528 bio = btrfs_io_bio_alloc(0);
387125fc
CM
3529 bio->bi_end_io = btrfs_end_empty_barrier;
3530 bio->bi_bdev = device->bdev;
8d910125 3531 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3532 init_completion(&device->flush_wait);
3533 bio->bi_private = &device->flush_wait;
3534 device->flush_bio = bio;
3535
3536 bio_get(bio);
4e49ea4a 3537 btrfsic_submit_bio(bio);
387125fc
CM
3538
3539 return 0;
3540}
3541
401b41e5
AJ
3542static int check_barrier_error(struct btrfs_fs_devices *fsdevs)
3543{
401b41e5
AJ
3544 int dev_flush_error = 0;
3545 struct btrfs_device *dev;
401b41e5
AJ
3546
3547 list_for_each_entry_rcu(dev, &fsdevs->devices, dev_list) {
12b9bf0b 3548 if (!dev->bdev || dev->last_flush_error)
401b41e5
AJ
3549 dev_flush_error++;
3550 }
3551
12b9bf0b
AJ
3552 if (dev_flush_error >
3553 fsdevs->fs_info->num_tolerated_disk_barrier_failures)
401b41e5
AJ
3554 return -EIO;
3555
3556 return 0;
3557}
3558
387125fc
CM
3559/*
3560 * send an empty flush down to each device in parallel,
3561 * then wait for them
3562 */
3563static int barrier_all_devices(struct btrfs_fs_info *info)
3564{
3565 struct list_head *head;
3566 struct btrfs_device *dev;
5af3e8cc 3567 int errors_wait = 0;
387125fc
CM
3568 int ret;
3569
3570 /* send down all the barriers */
3571 head = &info->fs_devices->devices;
3572 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3573 if (dev->missing)
3574 continue;
cea7c8bf 3575 if (!dev->bdev)
387125fc 3576 continue;
387125fc
CM
3577 if (!dev->in_fs_metadata || !dev->writeable)
3578 continue;
3579
12b9bf0b
AJ
3580 write_dev_flush(dev, 0);
3581 dev->last_flush_error = 0;
387125fc
CM
3582 }
3583
3584 /* wait for all the barriers */
3585 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3586 if (dev->missing)
3587 continue;
387125fc 3588 if (!dev->bdev) {
5af3e8cc 3589 errors_wait++;
387125fc
CM
3590 continue;
3591 }
3592 if (!dev->in_fs_metadata || !dev->writeable)
3593 continue;
3594
3595 ret = write_dev_flush(dev, 1);
401b41e5
AJ
3596 if (ret) {
3597 dev->last_flush_error = ret;
5af3e8cc 3598 errors_wait++;
401b41e5
AJ
3599 }
3600 }
3601
cea7c8bf 3602 if (errors_wait) {
401b41e5
AJ
3603 /*
3604 * At some point we need the status of all disks
3605 * to arrive at the volume status. So error checking
3606 * is being pushed to a separate loop.
3607 */
3608 return check_barrier_error(info->fs_devices);
387125fc 3609 }
387125fc
CM
3610 return 0;
3611}
3612
943c6e99
ZL
3613int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3614{
8789f4fe
ZL
3615 int raid_type;
3616 int min_tolerated = INT_MAX;
943c6e99 3617
8789f4fe
ZL
3618 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3619 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3620 min_tolerated = min(min_tolerated,
3621 btrfs_raid_array[BTRFS_RAID_SINGLE].
3622 tolerated_failures);
943c6e99 3623
8789f4fe
ZL
3624 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3625 if (raid_type == BTRFS_RAID_SINGLE)
3626 continue;
3627 if (!(flags & btrfs_raid_group[raid_type]))
3628 continue;
3629 min_tolerated = min(min_tolerated,
3630 btrfs_raid_array[raid_type].
3631 tolerated_failures);
3632 }
943c6e99 3633
8789f4fe 3634 if (min_tolerated == INT_MAX) {
ab8d0fc4 3635 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3636 min_tolerated = 0;
3637 }
3638
3639 return min_tolerated;
943c6e99
ZL
3640}
3641
5af3e8cc
SB
3642int btrfs_calc_num_tolerated_disk_barrier_failures(
3643 struct btrfs_fs_info *fs_info)
3644{
3645 struct btrfs_ioctl_space_info space;
3646 struct btrfs_space_info *sinfo;
3647 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3648 BTRFS_BLOCK_GROUP_SYSTEM,
3649 BTRFS_BLOCK_GROUP_METADATA,
3650 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3651 int i;
3652 int c;
3653 int num_tolerated_disk_barrier_failures =
3654 (int)fs_info->fs_devices->num_devices;
3655
2c458045 3656 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3657 struct btrfs_space_info *tmp;
3658
3659 sinfo = NULL;
3660 rcu_read_lock();
3661 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3662 if (tmp->flags == types[i]) {
3663 sinfo = tmp;
3664 break;
3665 }
3666 }
3667 rcu_read_unlock();
3668
3669 if (!sinfo)
3670 continue;
3671
3672 down_read(&sinfo->groups_sem);
3673 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3674 u64 flags;
3675
3676 if (list_empty(&sinfo->block_groups[c]))
3677 continue;
3678
3679 btrfs_get_block_group_info(&sinfo->block_groups[c],
3680 &space);
3681 if (space.total_bytes == 0 || space.used_bytes == 0)
3682 continue;
3683 flags = space.flags;
943c6e99
ZL
3684
3685 num_tolerated_disk_barrier_failures = min(
3686 num_tolerated_disk_barrier_failures,
3687 btrfs_get_num_tolerated_disk_barrier_failures(
3688 flags));
5af3e8cc
SB
3689 }
3690 up_read(&sinfo->groups_sem);
3691 }
3692
3693 return num_tolerated_disk_barrier_failures;
3694}
3695
eece6a9c 3696int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3697{
e5e9a520 3698 struct list_head *head;
f2984462 3699 struct btrfs_device *dev;
a061fc8d 3700 struct btrfs_super_block *sb;
f2984462 3701 struct btrfs_dev_item *dev_item;
f2984462
CM
3702 int ret;
3703 int do_barriers;
a236aed1
CM
3704 int max_errors;
3705 int total_errors = 0;
a061fc8d 3706 u64 flags;
f2984462 3707
0b246afa
JM
3708 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3709 backup_super_roots(fs_info);
f2984462 3710
0b246afa 3711 sb = fs_info->super_for_commit;
a061fc8d 3712 dev_item = &sb->dev_item;
e5e9a520 3713
0b246afa
JM
3714 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3715 head = &fs_info->fs_devices->devices;
3716 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3717
5af3e8cc 3718 if (do_barriers) {
0b246afa 3719 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3720 if (ret) {
3721 mutex_unlock(
0b246afa
JM
3722 &fs_info->fs_devices->device_list_mutex);
3723 btrfs_handle_fs_error(fs_info, ret,
3724 "errors while submitting device barriers.");
5af3e8cc
SB
3725 return ret;
3726 }
3727 }
387125fc 3728
1f78160c 3729 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3730 if (!dev->bdev) {
3731 total_errors++;
3732 continue;
3733 }
2b82032c 3734 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3735 continue;
3736
2b82032c 3737 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3738 btrfs_set_stack_device_type(dev_item, dev->type);
3739 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3740 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3741 dev->commit_total_bytes);
ce7213c7
MX
3742 btrfs_set_stack_device_bytes_used(dev_item,
3743 dev->commit_bytes_used);
a061fc8d
CM
3744 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3745 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3746 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3747 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3748 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3749
a061fc8d
CM
3750 flags = btrfs_super_flags(sb);
3751 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3752
b75f5062 3753 ret = write_dev_supers(dev, sb, 0, max_mirrors);
a236aed1
CM
3754 if (ret)
3755 total_errors++;
f2984462 3756 }
a236aed1 3757 if (total_errors > max_errors) {
0b246afa
JM
3758 btrfs_err(fs_info, "%d errors while writing supers",
3759 total_errors);
3760 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3761
9d565ba4 3762 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3763 btrfs_handle_fs_error(fs_info, -EIO,
3764 "%d errors while writing supers",
3765 total_errors);
9d565ba4 3766 return -EIO;
a236aed1 3767 }
f2984462 3768
a512bbf8 3769 total_errors = 0;
1f78160c 3770 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3771 if (!dev->bdev)
3772 continue;
2b82032c 3773 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3774 continue;
3775
b75f5062 3776 ret = write_dev_supers(dev, sb, 1, max_mirrors);
a512bbf8
YZ
3777 if (ret)
3778 total_errors++;
f2984462 3779 }
0b246afa 3780 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3781 if (total_errors > max_errors) {
0b246afa
JM
3782 btrfs_handle_fs_error(fs_info, -EIO,
3783 "%d errors while writing supers",
3784 total_errors);
79787eaa 3785 return -EIO;
a236aed1 3786 }
f2984462
CM
3787 return 0;
3788}
3789
cb517eab
MX
3790/* Drop a fs root from the radix tree and free it. */
3791void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3792 struct btrfs_root *root)
2619ba1f 3793{
4df27c4d 3794 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3795 radix_tree_delete(&fs_info->fs_roots_radix,
3796 (unsigned long)root->root_key.objectid);
4df27c4d 3797 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3798
3799 if (btrfs_root_refs(&root->root_item) == 0)
3800 synchronize_srcu(&fs_info->subvol_srcu);
3801
1c1ea4f7 3802 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3803 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3804 if (root->reloc_root) {
3805 free_extent_buffer(root->reloc_root->node);
3806 free_extent_buffer(root->reloc_root->commit_root);
3807 btrfs_put_fs_root(root->reloc_root);
3808 root->reloc_root = NULL;
3809 }
3810 }
3321719e 3811
faa2dbf0
JB
3812 if (root->free_ino_pinned)
3813 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3814 if (root->free_ino_ctl)
3815 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3816 free_fs_root(root);
4df27c4d
YZ
3817}
3818
3819static void free_fs_root(struct btrfs_root *root)
3820{
57cdc8db 3821 iput(root->ino_cache_inode);
4df27c4d 3822 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2ff7e61e 3823 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
1cb048f5 3824 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3825 if (root->anon_dev)
3826 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3827 if (root->subv_writers)
3828 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3829 free_extent_buffer(root->node);
3830 free_extent_buffer(root->commit_root);
581bb050
LZ
3831 kfree(root->free_ino_ctl);
3832 kfree(root->free_ino_pinned);
d397712b 3833 kfree(root->name);
b0feb9d9 3834 btrfs_put_fs_root(root);
2619ba1f
CM
3835}
3836
cb517eab
MX
3837void btrfs_free_fs_root(struct btrfs_root *root)
3838{
3839 free_fs_root(root);
2619ba1f
CM
3840}
3841
c146afad 3842int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3843{
c146afad
YZ
3844 u64 root_objectid = 0;
3845 struct btrfs_root *gang[8];
65d33fd7
QW
3846 int i = 0;
3847 int err = 0;
3848 unsigned int ret = 0;
3849 int index;
e089f05c 3850
c146afad 3851 while (1) {
65d33fd7 3852 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3853 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3854 (void **)gang, root_objectid,
3855 ARRAY_SIZE(gang));
65d33fd7
QW
3856 if (!ret) {
3857 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3858 break;
65d33fd7 3859 }
5d4f98a2 3860 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3861
c146afad 3862 for (i = 0; i < ret; i++) {
65d33fd7
QW
3863 /* Avoid to grab roots in dead_roots */
3864 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3865 gang[i] = NULL;
3866 continue;
3867 }
3868 /* grab all the search result for later use */
3869 gang[i] = btrfs_grab_fs_root(gang[i]);
3870 }
3871 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3872
65d33fd7
QW
3873 for (i = 0; i < ret; i++) {
3874 if (!gang[i])
3875 continue;
c146afad 3876 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3877 err = btrfs_orphan_cleanup(gang[i]);
3878 if (err)
65d33fd7
QW
3879 break;
3880 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3881 }
3882 root_objectid++;
3883 }
65d33fd7
QW
3884
3885 /* release the uncleaned roots due to error */
3886 for (; i < ret; i++) {
3887 if (gang[i])
3888 btrfs_put_fs_root(gang[i]);
3889 }
3890 return err;
c146afad 3891}
a2135011 3892
6bccf3ab 3893int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3894{
6bccf3ab 3895 struct btrfs_root *root = fs_info->tree_root;
c146afad 3896 struct btrfs_trans_handle *trans;
a74a4b97 3897
0b246afa 3898 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3899 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3900 mutex_unlock(&fs_info->cleaner_mutex);
3901 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3902
3903 /* wait until ongoing cleanup work done */
0b246afa
JM
3904 down_write(&fs_info->cleanup_work_sem);
3905 up_write(&fs_info->cleanup_work_sem);
c71bf099 3906
7a7eaa40 3907 trans = btrfs_join_transaction(root);
3612b495
TI
3908 if (IS_ERR(trans))
3909 return PTR_ERR(trans);
3a45bb20 3910 return btrfs_commit_transaction(trans);
c146afad
YZ
3911}
3912
6bccf3ab 3913void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3914{
6bccf3ab 3915 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3916 int ret;
3917
afcdd129 3918 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3919
7343dd61 3920 /* wait for the qgroup rescan worker to stop */
d06f23d6 3921 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3922
803b2f54
SB
3923 /* wait for the uuid_scan task to finish */
3924 down(&fs_info->uuid_tree_rescan_sem);
3925 /* avoid complains from lockdep et al., set sem back to initial state */
3926 up(&fs_info->uuid_tree_rescan_sem);
3927
837d5b6e 3928 /* pause restriper - we want to resume on mount */
aa1b8cd4 3929 btrfs_pause_balance(fs_info);
837d5b6e 3930
8dabb742
SB
3931 btrfs_dev_replace_suspend_for_unmount(fs_info);
3932
aa1b8cd4 3933 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3934
3935 /* wait for any defraggers to finish */
3936 wait_event(fs_info->transaction_wait,
3937 (atomic_read(&fs_info->defrag_running) == 0));
3938
3939 /* clear out the rbtree of defraggable inodes */
26176e7c 3940 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3941
21c7e756
MX
3942 cancel_work_sync(&fs_info->async_reclaim_work);
3943
c146afad 3944 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3945 /*
3946 * If the cleaner thread is stopped and there are
3947 * block groups queued for removal, the deletion will be
3948 * skipped when we quit the cleaner thread.
3949 */
0b246afa 3950 btrfs_delete_unused_bgs(fs_info);
e44163e1 3951
6bccf3ab 3952 ret = btrfs_commit_super(fs_info);
acce952b 3953 if (ret)
04892340 3954 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3955 }
3956
87533c47 3957 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2ff7e61e 3958 btrfs_error_commit_super(fs_info);
0f7d52f4 3959
e3029d9f
AV
3960 kthread_stop(fs_info->transaction_kthread);
3961 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3962
afcdd129 3963 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3964
04892340 3965 btrfs_free_qgroup_config(fs_info);
bcef60f2 3966
963d678b 3967 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3968 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3969 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3970 }
bcc63abb 3971
6618a59b 3972 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3973 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3974
faa2dbf0 3975 btrfs_free_fs_roots(fs_info);
d10c5f31 3976
1a4319cc
LB
3977 btrfs_put_block_group_cache(fs_info);
3978
de348ee0
WS
3979 /*
3980 * we must make sure there is not any read request to
3981 * submit after we stopping all workers.
3982 */
3983 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3984 btrfs_stop_all_workers(fs_info);
3985
5cdd7db6
FM
3986 btrfs_free_block_groups(fs_info);
3987
afcdd129 3988 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3989 free_root_pointers(fs_info, 1);
9ad6b7bc 3990
13e6c37b 3991 iput(fs_info->btree_inode);
d6bfde87 3992
21adbd5c 3993#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3994 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3995 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3996#endif
3997
dfe25020 3998 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3999 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4000
e2d84521 4001 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4002 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 4003 percpu_counter_destroy(&fs_info->bio_counter);
76dda93c 4004 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4005
53b381b3
DW
4006 btrfs_free_stripe_hash_table(fs_info);
4007
cdfb080e 4008 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 4009 root->orphan_block_rsv = NULL;
04216820 4010
34441361 4011 mutex_lock(&fs_info->chunk_mutex);
04216820
FM
4012 while (!list_empty(&fs_info->pinned_chunks)) {
4013 struct extent_map *em;
4014
4015 em = list_first_entry(&fs_info->pinned_chunks,
4016 struct extent_map, list);
4017 list_del_init(&em->list);
4018 free_extent_map(em);
4019 }
34441361 4020 mutex_unlock(&fs_info->chunk_mutex);
eb60ceac
CM
4021}
4022
b9fab919
CM
4023int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4024 int atomic)
5f39d397 4025{
1259ab75 4026 int ret;
727011e0 4027 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4028
0b32f4bb 4029 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4030 if (!ret)
4031 return ret;
4032
4033 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4034 parent_transid, atomic);
4035 if (ret == -EAGAIN)
4036 return ret;
1259ab75 4037 return !ret;
5f39d397
CM
4038}
4039
5f39d397
CM
4040void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4041{
0b246afa 4042 struct btrfs_fs_info *fs_info;
06ea65a3 4043 struct btrfs_root *root;
5f39d397 4044 u64 transid = btrfs_header_generation(buf);
b9473439 4045 int was_dirty;
b4ce94de 4046
06ea65a3
JB
4047#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4048 /*
4049 * This is a fast path so only do this check if we have sanity tests
4050 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4051 * outside of the sanity tests.
4052 */
4053 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4054 return;
4055#endif
4056 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4057 fs_info = root->fs_info;
b9447ef8 4058 btrfs_assert_tree_locked(buf);
0b246afa 4059 if (transid != fs_info->generation)
5d163e0e 4060 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4061 buf->start, transid, fs_info->generation);
0b32f4bb 4062 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4063 if (!was_dirty)
0b246afa 4064 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
e2d84521 4065 buf->len,
0b246afa 4066 fs_info->dirty_metadata_batch);
1f21ef0a
FM
4067#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4068 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
2ff7e61e 4069 btrfs_print_leaf(fs_info, buf);
1f21ef0a
FM
4070 ASSERT(0);
4071 }
4072#endif
eb60ceac
CM
4073}
4074
2ff7e61e 4075static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4076 int flush_delayed)
16cdcec7
MX
4077{
4078 /*
4079 * looks as though older kernels can get into trouble with
4080 * this code, they end up stuck in balance_dirty_pages forever
4081 */
e2d84521 4082 int ret;
16cdcec7
MX
4083
4084 if (current->flags & PF_MEMALLOC)
4085 return;
4086
b53d3f5d 4087 if (flush_delayed)
2ff7e61e 4088 btrfs_balance_delayed_items(fs_info);
16cdcec7 4089
0b246afa 4090 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
4091 BTRFS_DIRTY_METADATA_THRESH);
4092 if (ret > 0) {
0b246afa 4093 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4094 }
16cdcec7
MX
4095}
4096
2ff7e61e 4097void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4098{
2ff7e61e 4099 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4100}
585ad2c3 4101
2ff7e61e 4102void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4103{
2ff7e61e 4104 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4105}
6b80053d 4106
ca7a79ad 4107int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4108{
727011e0 4109 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4110 struct btrfs_fs_info *fs_info = root->fs_info;
4111
4112 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
6b80053d 4113}
0da5468f 4114
3d3a126a 4115static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
acce952b 4116{
c926093e 4117 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4118 u64 nodesize = btrfs_super_nodesize(sb);
4119 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4120 int ret = 0;
4121
319e4d06 4122 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 4123 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
4124 ret = -EINVAL;
4125 }
4126 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
ab8d0fc4 4127 btrfs_warn(fs_info, "unrecognized super flag: %llu",
319e4d06 4128 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b 4129 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4130 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 4131 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4132 ret = -EINVAL;
4133 }
21e7626b 4134 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4135 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 4136 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4137 ret = -EINVAL;
4138 }
21e7626b 4139 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4140 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 4141 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4142 ret = -EINVAL;
4143 }
4144
1104a885 4145 /*
319e4d06
QW
4146 * Check sectorsize and nodesize first, other check will need it.
4147 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4148 */
319e4d06
QW
4149 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4150 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4151 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
4152 ret = -EINVAL;
4153 }
4154 /* Only PAGE SIZE is supported yet */
09cbfeaf 4155 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
4156 btrfs_err(fs_info,
4157 "sectorsize %llu not supported yet, only support %lu",
4158 sectorsize, PAGE_SIZE);
319e4d06
QW
4159 ret = -EINVAL;
4160 }
4161 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4162 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4163 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
4164 ret = -EINVAL;
4165 }
4166 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
4167 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4168 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
4169 ret = -EINVAL;
4170 }
4171
4172 /* Root alignment check */
4173 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
4174 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4175 btrfs_super_root(sb));
319e4d06
QW
4176 ret = -EINVAL;
4177 }
4178 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
4179 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4180 btrfs_super_chunk_root(sb));
75d6ad38
DS
4181 ret = -EINVAL;
4182 }
319e4d06 4183 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
4184 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4185 btrfs_super_log_root(sb));
75d6ad38
DS
4186 ret = -EINVAL;
4187 }
4188
c926093e 4189 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
ab8d0fc4
JM
4190 btrfs_err(fs_info,
4191 "dev_item UUID does not match fsid: %pU != %pU",
4192 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
4193 ret = -EINVAL;
4194 }
4195
4196 /*
4197 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4198 * done later
4199 */
99e3ecfc
LB
4200 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4201 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 4202 btrfs_super_bytes_used(sb));
99e3ecfc
LB
4203 ret = -EINVAL;
4204 }
b7f67055 4205 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 4206 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 4207 btrfs_super_stripesize(sb));
99e3ecfc
LB
4208 ret = -EINVAL;
4209 }
21e7626b 4210 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
4211 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4212 btrfs_super_num_devices(sb));
75d6ad38 4213 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 4214 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
4215 ret = -EINVAL;
4216 }
c926093e 4217
21e7626b 4218 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
4219 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4220 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4221 ret = -EINVAL;
4222 }
4223
ce7fca5f
DS
4224 /*
4225 * Obvious sys_chunk_array corruptions, it must hold at least one key
4226 * and one chunk
4227 */
4228 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4229 btrfs_err(fs_info, "system chunk array too big %u > %u",
4230 btrfs_super_sys_array_size(sb),
4231 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4232 ret = -EINVAL;
4233 }
4234 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4235 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4236 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4237 btrfs_super_sys_array_size(sb),
4238 sizeof(struct btrfs_disk_key)
4239 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4240 ret = -EINVAL;
4241 }
4242
c926093e
DS
4243 /*
4244 * The generation is a global counter, we'll trust it more than the others
4245 * but it's still possible that it's the one that's wrong.
4246 */
21e7626b 4247 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4248 btrfs_warn(fs_info,
4249 "suspicious: generation < chunk_root_generation: %llu < %llu",
4250 btrfs_super_generation(sb),
4251 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4252 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4253 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4254 btrfs_warn(fs_info,
4255 "suspicious: generation < cache_generation: %llu < %llu",
4256 btrfs_super_generation(sb),
4257 btrfs_super_cache_generation(sb));
c926093e
DS
4258
4259 return ret;
acce952b 4260}
4261
2ff7e61e 4262static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4263{
0b246afa 4264 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4265 btrfs_run_delayed_iputs(fs_info);
0b246afa 4266 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4267
0b246afa
JM
4268 down_write(&fs_info->cleanup_work_sem);
4269 up_write(&fs_info->cleanup_work_sem);
acce952b 4270
4271 /* cleanup FS via transaction */
2ff7e61e 4272 btrfs_cleanup_transaction(fs_info);
acce952b 4273}
4274
143bede5 4275static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4276{
acce952b 4277 struct btrfs_ordered_extent *ordered;
acce952b 4278
199c2a9c 4279 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4280 /*
4281 * This will just short circuit the ordered completion stuff which will
4282 * make sure the ordered extent gets properly cleaned up.
4283 */
199c2a9c 4284 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4285 root_extent_list)
4286 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4287 spin_unlock(&root->ordered_extent_lock);
4288}
4289
4290static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4291{
4292 struct btrfs_root *root;
4293 struct list_head splice;
4294
4295 INIT_LIST_HEAD(&splice);
4296
4297 spin_lock(&fs_info->ordered_root_lock);
4298 list_splice_init(&fs_info->ordered_roots, &splice);
4299 while (!list_empty(&splice)) {
4300 root = list_first_entry(&splice, struct btrfs_root,
4301 ordered_root);
1de2cfde
JB
4302 list_move_tail(&root->ordered_root,
4303 &fs_info->ordered_roots);
199c2a9c 4304
2a85d9ca 4305 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4306 btrfs_destroy_ordered_extents(root);
4307
2a85d9ca
LB
4308 cond_resched();
4309 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4310 }
4311 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4312}
4313
35a3621b 4314static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4315 struct btrfs_fs_info *fs_info)
acce952b 4316{
4317 struct rb_node *node;
4318 struct btrfs_delayed_ref_root *delayed_refs;
4319 struct btrfs_delayed_ref_node *ref;
4320 int ret = 0;
4321
4322 delayed_refs = &trans->delayed_refs;
4323
4324 spin_lock(&delayed_refs->lock);
d7df2c79 4325 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4326 spin_unlock(&delayed_refs->lock);
0b246afa 4327 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4328 return ret;
4329 }
4330
d7df2c79
JB
4331 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4332 struct btrfs_delayed_ref_head *head;
c6fc2454 4333 struct btrfs_delayed_ref_node *tmp;
e78417d1 4334 bool pin_bytes = false;
acce952b 4335
d7df2c79
JB
4336 head = rb_entry(node, struct btrfs_delayed_ref_head,
4337 href_node);
4338 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 4339 refcount_inc(&head->node.refs);
d7df2c79 4340 spin_unlock(&delayed_refs->lock);
eb12db69 4341
d7df2c79 4342 mutex_lock(&head->mutex);
e78417d1 4343 mutex_unlock(&head->mutex);
d7df2c79
JB
4344 btrfs_put_delayed_ref(&head->node);
4345 spin_lock(&delayed_refs->lock);
4346 continue;
4347 }
4348 spin_lock(&head->lock);
c6fc2454
QW
4349 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4350 list) {
d7df2c79 4351 ref->in_tree = 0;
c6fc2454 4352 list_del(&ref->list);
1d57ee94
WX
4353 if (!list_empty(&ref->add_list))
4354 list_del(&ref->add_list);
d7df2c79
JB
4355 atomic_dec(&delayed_refs->num_entries);
4356 btrfs_put_delayed_ref(ref);
e78417d1 4357 }
d7df2c79
JB
4358 if (head->must_insert_reserved)
4359 pin_bytes = true;
4360 btrfs_free_delayed_extent_op(head->extent_op);
4361 delayed_refs->num_heads--;
4362 if (head->processing == 0)
4363 delayed_refs->num_heads_ready--;
4364 atomic_dec(&delayed_refs->num_entries);
4365 head->node.in_tree = 0;
4366 rb_erase(&head->href_node, &delayed_refs->href_root);
4367 spin_unlock(&head->lock);
4368 spin_unlock(&delayed_refs->lock);
4369 mutex_unlock(&head->mutex);
acce952b 4370
d7df2c79 4371 if (pin_bytes)
2ff7e61e 4372 btrfs_pin_extent(fs_info, head->node.bytenr,
d7df2c79
JB
4373 head->node.num_bytes, 1);
4374 btrfs_put_delayed_ref(&head->node);
acce952b 4375 cond_resched();
4376 spin_lock(&delayed_refs->lock);
4377 }
4378
4379 spin_unlock(&delayed_refs->lock);
4380
4381 return ret;
4382}
4383
143bede5 4384static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4385{
4386 struct btrfs_inode *btrfs_inode;
4387 struct list_head splice;
4388
4389 INIT_LIST_HEAD(&splice);
4390
eb73c1b7
MX
4391 spin_lock(&root->delalloc_lock);
4392 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4393
4394 while (!list_empty(&splice)) {
eb73c1b7
MX
4395 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4396 delalloc_inodes);
acce952b 4397
4398 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4399 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4400 &btrfs_inode->runtime_flags);
eb73c1b7 4401 spin_unlock(&root->delalloc_lock);
acce952b 4402
4403 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4404
eb73c1b7 4405 spin_lock(&root->delalloc_lock);
acce952b 4406 }
4407
eb73c1b7
MX
4408 spin_unlock(&root->delalloc_lock);
4409}
4410
4411static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4412{
4413 struct btrfs_root *root;
4414 struct list_head splice;
4415
4416 INIT_LIST_HEAD(&splice);
4417
4418 spin_lock(&fs_info->delalloc_root_lock);
4419 list_splice_init(&fs_info->delalloc_roots, &splice);
4420 while (!list_empty(&splice)) {
4421 root = list_first_entry(&splice, struct btrfs_root,
4422 delalloc_root);
4423 list_del_init(&root->delalloc_root);
4424 root = btrfs_grab_fs_root(root);
4425 BUG_ON(!root);
4426 spin_unlock(&fs_info->delalloc_root_lock);
4427
4428 btrfs_destroy_delalloc_inodes(root);
4429 btrfs_put_fs_root(root);
4430
4431 spin_lock(&fs_info->delalloc_root_lock);
4432 }
4433 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4434}
4435
2ff7e61e 4436static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4437 struct extent_io_tree *dirty_pages,
4438 int mark)
4439{
4440 int ret;
acce952b 4441 struct extent_buffer *eb;
4442 u64 start = 0;
4443 u64 end;
acce952b 4444
4445 while (1) {
4446 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4447 mark, NULL);
acce952b 4448 if (ret)
4449 break;
4450
91166212 4451 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4452 while (start <= end) {
0b246afa
JM
4453 eb = find_extent_buffer(fs_info, start);
4454 start += fs_info->nodesize;
fd8b2b61 4455 if (!eb)
acce952b 4456 continue;
fd8b2b61 4457 wait_on_extent_buffer_writeback(eb);
acce952b 4458
fd8b2b61
JB
4459 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4460 &eb->bflags))
4461 clear_extent_buffer_dirty(eb);
4462 free_extent_buffer_stale(eb);
acce952b 4463 }
4464 }
4465
4466 return ret;
4467}
4468
2ff7e61e 4469static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4470 struct extent_io_tree *pinned_extents)
4471{
4472 struct extent_io_tree *unpin;
4473 u64 start;
4474 u64 end;
4475 int ret;
ed0eaa14 4476 bool loop = true;
acce952b 4477
4478 unpin = pinned_extents;
ed0eaa14 4479again:
acce952b 4480 while (1) {
4481 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4482 EXTENT_DIRTY, NULL);
acce952b 4483 if (ret)
4484 break;
4485
af6f8f60 4486 clear_extent_dirty(unpin, start, end);
2ff7e61e 4487 btrfs_error_unpin_extent_range(fs_info, start, end);
acce952b 4488 cond_resched();
4489 }
4490
ed0eaa14 4491 if (loop) {
0b246afa
JM
4492 if (unpin == &fs_info->freed_extents[0])
4493 unpin = &fs_info->freed_extents[1];
ed0eaa14 4494 else
0b246afa 4495 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4496 loop = false;
4497 goto again;
4498 }
4499
acce952b 4500 return 0;
4501}
4502
c79a1751
LB
4503static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4504{
4505 struct inode *inode;
4506
4507 inode = cache->io_ctl.inode;
4508 if (inode) {
4509 invalidate_inode_pages2(inode->i_mapping);
4510 BTRFS_I(inode)->generation = 0;
4511 cache->io_ctl.inode = NULL;
4512 iput(inode);
4513 }
4514 btrfs_put_block_group(cache);
4515}
4516
4517void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4518 struct btrfs_fs_info *fs_info)
c79a1751
LB
4519{
4520 struct btrfs_block_group_cache *cache;
4521
4522 spin_lock(&cur_trans->dirty_bgs_lock);
4523 while (!list_empty(&cur_trans->dirty_bgs)) {
4524 cache = list_first_entry(&cur_trans->dirty_bgs,
4525 struct btrfs_block_group_cache,
4526 dirty_list);
4527 if (!cache) {
0b246afa 4528 btrfs_err(fs_info, "orphan block group dirty_bgs list");
c79a1751
LB
4529 spin_unlock(&cur_trans->dirty_bgs_lock);
4530 return;
4531 }
4532
4533 if (!list_empty(&cache->io_list)) {
4534 spin_unlock(&cur_trans->dirty_bgs_lock);
4535 list_del_init(&cache->io_list);
4536 btrfs_cleanup_bg_io(cache);
4537 spin_lock(&cur_trans->dirty_bgs_lock);
4538 }
4539
4540 list_del_init(&cache->dirty_list);
4541 spin_lock(&cache->lock);
4542 cache->disk_cache_state = BTRFS_DC_ERROR;
4543 spin_unlock(&cache->lock);
4544
4545 spin_unlock(&cur_trans->dirty_bgs_lock);
4546 btrfs_put_block_group(cache);
4547 spin_lock(&cur_trans->dirty_bgs_lock);
4548 }
4549 spin_unlock(&cur_trans->dirty_bgs_lock);
4550
4551 while (!list_empty(&cur_trans->io_bgs)) {
4552 cache = list_first_entry(&cur_trans->io_bgs,
4553 struct btrfs_block_group_cache,
4554 io_list);
4555 if (!cache) {
0b246afa 4556 btrfs_err(fs_info, "orphan block group on io_bgs list");
c79a1751
LB
4557 return;
4558 }
4559
4560 list_del_init(&cache->io_list);
4561 spin_lock(&cache->lock);
4562 cache->disk_cache_state = BTRFS_DC_ERROR;
4563 spin_unlock(&cache->lock);
4564 btrfs_cleanup_bg_io(cache);
4565 }
4566}
4567
49b25e05 4568void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4569 struct btrfs_fs_info *fs_info)
49b25e05 4570{
2ff7e61e 4571 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4572 ASSERT(list_empty(&cur_trans->dirty_bgs));
4573 ASSERT(list_empty(&cur_trans->io_bgs));
4574
2ff7e61e 4575 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4576
4a9d8bde 4577 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4578 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4579
4a9d8bde 4580 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4581 wake_up(&fs_info->transaction_wait);
49b25e05 4582
ccdf9b30
JM
4583 btrfs_destroy_delayed_inodes(fs_info);
4584 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4585
2ff7e61e 4586 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4587 EXTENT_DIRTY);
2ff7e61e 4588 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4589 fs_info->pinned_extents);
49b25e05 4590
4a9d8bde
MX
4591 cur_trans->state =TRANS_STATE_COMPLETED;
4592 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4593}
4594
2ff7e61e 4595static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4596{
4597 struct btrfs_transaction *t;
acce952b 4598
0b246afa 4599 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4600
0b246afa
JM
4601 spin_lock(&fs_info->trans_lock);
4602 while (!list_empty(&fs_info->trans_list)) {
4603 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4604 struct btrfs_transaction, list);
4605 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4606 refcount_inc(&t->use_count);
0b246afa 4607 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4608 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4609 btrfs_put_transaction(t);
0b246afa 4610 spin_lock(&fs_info->trans_lock);
724e2315
JB
4611 continue;
4612 }
0b246afa 4613 if (t == fs_info->running_transaction) {
724e2315 4614 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4615 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4616 /*
4617 * We wait for 0 num_writers since we don't hold a trans
4618 * handle open currently for this transaction.
4619 */
4620 wait_event(t->writer_wait,
4621 atomic_read(&t->num_writers) == 0);
4622 } else {
0b246afa 4623 spin_unlock(&fs_info->trans_lock);
724e2315 4624 }
2ff7e61e 4625 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4626
0b246afa
JM
4627 spin_lock(&fs_info->trans_lock);
4628 if (t == fs_info->running_transaction)
4629 fs_info->running_transaction = NULL;
acce952b 4630 list_del_init(&t->list);
0b246afa 4631 spin_unlock(&fs_info->trans_lock);
acce952b 4632
724e2315 4633 btrfs_put_transaction(t);
2ff7e61e 4634 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4635 spin_lock(&fs_info->trans_lock);
724e2315 4636 }
0b246afa
JM
4637 spin_unlock(&fs_info->trans_lock);
4638 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4639 btrfs_destroy_delayed_inodes(fs_info);
4640 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4641 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4642 btrfs_destroy_all_delalloc_inodes(fs_info);
4643 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4644
4645 return 0;
4646}
4647
c6100a4b
JB
4648static struct btrfs_fs_info *btree_fs_info(void *private_data)
4649{
4650 struct inode *inode = private_data;
4651 return btrfs_sb(inode->i_sb);
4652}
4653
e8c9f186 4654static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4655 /* mandatory callbacks */
0b86a832 4656 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4657 .readpage_end_io_hook = btree_readpage_end_io_hook,
239b14b3
CM
4658 /* note we're sharing with inode.c for the merge bio hook */
4659 .merge_bio_hook = btrfs_merge_bio_hook,
20a7db8a 4660 .readpage_io_failed_hook = btree_io_failed_hook,
c6100a4b
JB
4661 .set_range_writeback = btrfs_set_range_writeback,
4662 .tree_fs_info = btree_fs_info,
4d53dddb
DS
4663
4664 /* optional callbacks */
0da5468f 4665};