]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: reada: reorder dev-replace locks before radix tree preload
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
7e75bf3f 20#include <asm/unaligned.h>
eb60ceac
CM
21#include "ctree.h"
22#include "disk-io.h"
e089f05c 23#include "transaction.h"
0f7d52f4 24#include "btrfs_inode.h"
0b86a832 25#include "volumes.h"
db94535d 26#include "print-tree.h"
925baedd 27#include "locking.h"
e02119d5 28#include "tree-log.h"
fa9c0d79 29#include "free-space-cache.h"
70f6d82e 30#include "free-space-tree.h"
581bb050 31#include "inode-map.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
eb60ceac 41
de0022b9
JB
42#ifdef CONFIG_X86
43#include <asm/cpufeature.h>
44#endif
45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
d352ac68
CM
101/*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
44b8bd7e 106struct async_submit_bio {
c6100a4b 107 void *private_data;
44b8bd7e 108 struct bio *bio;
a758781d 109 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 110 int mirror_num;
eaf25d93
CM
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
8b712842 116 struct btrfs_work work;
4e4cbee9 117 blk_status_t status;
44b8bd7e
CM
118};
119
85d4e461
CM
120/*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
4008c04a 130 *
85d4e461
CM
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 134 *
85d4e461
CM
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 138 *
85d4e461
CM
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
4008c04a
CM
142 */
143#ifdef CONFIG_DEBUG_LOCK_ALLOC
144# if BTRFS_MAX_LEVEL != 8
145# error
146# endif
85d4e461
CM
147
148static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153} btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 166 { .id = 0, .name_stem = "tree" },
4008c04a 167};
85d4e461
CM
168
169void __init btrfs_init_lockdep(void)
170{
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181}
182
183void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185{
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197}
198
4008c04a
CM
199#endif
200
d352ac68
CM
201/*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
6af49dbd 205struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 206 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 207 int create)
7eccb903 208{
3ffbd68c 209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 210 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
211 struct extent_map *em;
212 int ret;
213
890871be 214 read_lock(&em_tree->lock);
d1310b2e 215 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 216 if (em) {
0b246afa 217 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 218 read_unlock(&em_tree->lock);
5f39d397 219 goto out;
a061fc8d 220 }
890871be 221 read_unlock(&em_tree->lock);
7b13b7b1 222
172ddd60 223 em = alloc_extent_map();
5f39d397
CM
224 if (!em) {
225 em = ERR_PTR(-ENOMEM);
226 goto out;
227 }
228 em->start = 0;
0afbaf8c 229 em->len = (u64)-1;
c8b97818 230 em->block_len = (u64)-1;
5f39d397 231 em->block_start = 0;
0b246afa 232 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 233
890871be 234 write_lock(&em_tree->lock);
09a2a8f9 235 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
236 if (ret == -EEXIST) {
237 free_extent_map(em);
7b13b7b1 238 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 239 if (!em)
0433f20d 240 em = ERR_PTR(-EIO);
5f39d397 241 } else if (ret) {
7b13b7b1 242 free_extent_map(em);
0433f20d 243 em = ERR_PTR(ret);
5f39d397 244 }
890871be 245 write_unlock(&em_tree->lock);
7b13b7b1 246
5f39d397
CM
247out:
248 return em;
7eccb903
CM
249}
250
9ed57367 251u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 252{
9678c543 253 return crc32c(seed, data, len);
19c00ddc
CM
254}
255
0b5e3daf 256void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 257{
7e75bf3f 258 put_unaligned_le32(~crc, result);
19c00ddc
CM
259}
260
d352ac68
CM
261/*
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
264 */
01d58472
DD
265static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
19c00ddc
CM
267 int verify)
268{
01d58472 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 270 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
271 unsigned long len;
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
274 char *kaddr;
275 unsigned long map_start;
276 unsigned long map_len;
277 int err;
278 u32 crc = ~(u32)0;
279
280 len = buf->len - offset;
d397712b 281 while (len > 0) {
d2e174d5
JT
282 /*
283 * Note: we don't need to check for the err == 1 case here, as
284 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
285 * and 'min_len = 32' and the currently implemented mapping
286 * algorithm we cannot cross a page boundary.
287 */
19c00ddc 288 err = map_private_extent_buffer(buf, offset, 32,
a6591715 289 &kaddr, &map_start, &map_len);
d397712b 290 if (err)
8bd98f0e 291 return err;
19c00ddc 292 cur_len = min(len, map_len - (offset - map_start));
b0496686 293 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
294 crc, cur_len);
295 len -= cur_len;
296 offset += cur_len;
19c00ddc 297 }
71a63551 298 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 299
19c00ddc
CM
300 btrfs_csum_final(crc, result);
301
302 if (verify) {
607d432d 303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
304 u32 val;
305 u32 found = 0;
607d432d 306 memcpy(&found, result, csum_size);
e4204ded 307
607d432d 308 read_extent_buffer(buf, &val, 0, csum_size);
94647322 309 btrfs_warn_rl(fs_info,
5d163e0e 310 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 311 fs_info->sb->s_id, buf->start,
efe120a0 312 val, found, btrfs_header_level(buf));
8bd98f0e 313 return -EUCLEAN;
19c00ddc
CM
314 }
315 } else {
607d432d 316 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 317 }
71a63551 318
19c00ddc
CM
319 return 0;
320}
321
d352ac68
CM
322/*
323 * we can't consider a given block up to date unless the transid of the
324 * block matches the transid in the parent node's pointer. This is how we
325 * detect blocks that either didn't get written at all or got written
326 * in the wrong place.
327 */
1259ab75 328static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
329 struct extent_buffer *eb, u64 parent_transid,
330 int atomic)
1259ab75 331{
2ac55d41 332 struct extent_state *cached_state = NULL;
1259ab75 333 int ret;
2755a0de 334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
335
336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 return 0;
338
b9fab919
CM
339 if (atomic)
340 return -EAGAIN;
341
a26e8c9f
JB
342 if (need_lock) {
343 btrfs_tree_read_lock(eb);
344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345 }
346
2ac55d41 347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 348 &cached_state);
0b32f4bb 349 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
350 btrfs_header_generation(eb) == parent_transid) {
351 ret = 0;
352 goto out;
353 }
94647322
DS
354 btrfs_err_rl(eb->fs_info,
355 "parent transid verify failed on %llu wanted %llu found %llu",
356 eb->start,
29549aec 357 parent_transid, btrfs_header_generation(eb));
1259ab75 358 ret = 1;
a26e8c9f
JB
359
360 /*
361 * Things reading via commit roots that don't have normal protection,
362 * like send, can have a really old block in cache that may point at a
01327610 363 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
364 * if we find an eb that is under IO (dirty/writeback) because we could
365 * end up reading in the stale data and then writing it back out and
366 * making everybody very sad.
367 */
368 if (!extent_buffer_under_io(eb))
369 clear_extent_buffer_uptodate(eb);
33958dc6 370out:
2ac55d41 371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 372 &cached_state);
472b909f
JB
373 if (need_lock)
374 btrfs_tree_read_unlock_blocking(eb);
1259ab75 375 return ret;
1259ab75
CM
376}
377
1104a885
DS
378/*
379 * Return 0 if the superblock checksum type matches the checksum value of that
380 * algorithm. Pass the raw disk superblock data.
381 */
ab8d0fc4
JM
382static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383 char *raw_disk_sb)
1104a885
DS
384{
385 struct btrfs_super_block *disk_sb =
386 (struct btrfs_super_block *)raw_disk_sb;
387 u16 csum_type = btrfs_super_csum_type(disk_sb);
388 int ret = 0;
389
390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
391 u32 crc = ~(u32)0;
776c4a7c 392 char result[sizeof(crc)];
1104a885
DS
393
394 /*
395 * The super_block structure does not span the whole
396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 397 * is filled with zeros and is included in the checksum.
1104a885
DS
398 */
399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401 btrfs_csum_final(crc, result);
402
776c4a7c 403 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
404 ret = 1;
405 }
406
407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 408 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
409 csum_type);
410 ret = 1;
411 }
412
413 return ret;
414}
415
581c1760
QW
416static int verify_level_key(struct btrfs_fs_info *fs_info,
417 struct extent_buffer *eb, int level,
ff76a864 418 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
419{
420 int found_level;
421 struct btrfs_key found_key;
422 int ret;
423
424 found_level = btrfs_header_level(eb);
425 if (found_level != level) {
426#ifdef CONFIG_BTRFS_DEBUG
427 WARN_ON(1);
428 btrfs_err(fs_info,
429"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 eb->start, level, found_level);
431#endif
432 return -EIO;
433 }
434
435 if (!first_key)
436 return 0;
437
5d41be6f
QW
438 /*
439 * For live tree block (new tree blocks in current transaction),
440 * we need proper lock context to avoid race, which is impossible here.
441 * So we only checks tree blocks which is read from disk, whose
442 * generation <= fs_info->last_trans_committed.
443 */
444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445 return 0;
581c1760
QW
446 if (found_level)
447 btrfs_node_key_to_cpu(eb, &found_key, 0);
448 else
449 btrfs_item_key_to_cpu(eb, &found_key, 0);
450 ret = btrfs_comp_cpu_keys(first_key, &found_key);
451
452#ifdef CONFIG_BTRFS_DEBUG
453 if (ret) {
454 WARN_ON(1);
455 btrfs_err(fs_info,
ff76a864
LB
456"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457 eb->start, parent_transid, first_key->objectid,
458 first_key->type, first_key->offset,
459 found_key.objectid, found_key.type,
460 found_key.offset);
581c1760
QW
461 }
462#endif
463 return ret;
464}
465
d352ac68
CM
466/*
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
469 *
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
d352ac68 473 */
2ff7e61e 474static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 475 struct extent_buffer *eb,
581c1760
QW
476 u64 parent_transid, int level,
477 struct btrfs_key *first_key)
f188591e
CM
478{
479 struct extent_io_tree *io_tree;
ea466794 480 int failed = 0;
f188591e
CM
481 int ret;
482 int num_copies = 0;
483 int mirror_num = 0;
ea466794 484 int failed_mirror = 0;
f188591e 485
0b246afa 486 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 487 while (1) {
f8397d69 488 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 490 mirror_num);
256dd1bb 491 if (!ret) {
581c1760 492 if (verify_parent_transid(io_tree, eb,
b9fab919 493 parent_transid, 0))
256dd1bb 494 ret = -EIO;
581c1760 495 else if (verify_level_key(fs_info, eb, level,
ff76a864 496 first_key, parent_transid))
581c1760
QW
497 ret = -EUCLEAN;
498 else
499 break;
256dd1bb 500 }
d397712b 501
0b246afa 502 num_copies = btrfs_num_copies(fs_info,
f188591e 503 eb->start, eb->len);
4235298e 504 if (num_copies == 1)
ea466794 505 break;
4235298e 506
5cf1ab56
JB
507 if (!failed_mirror) {
508 failed = 1;
509 failed_mirror = eb->read_mirror;
510 }
511
f188591e 512 mirror_num++;
ea466794
JB
513 if (mirror_num == failed_mirror)
514 mirror_num++;
515
4235298e 516 if (mirror_num > num_copies)
ea466794 517 break;
f188591e 518 }
ea466794 519
c0901581 520 if (failed && !ret && failed_mirror)
2ff7e61e 521 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
522
523 return ret;
f188591e 524}
19c00ddc 525
d352ac68 526/*
d397712b
CM
527 * checksum a dirty tree block before IO. This has extra checks to make sure
528 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 529 */
d397712b 530
01d58472 531static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 532{
4eee4fa4 533 u64 start = page_offset(page);
19c00ddc 534 u64 found_start;
19c00ddc 535 struct extent_buffer *eb;
f188591e 536
4f2de97a
JB
537 eb = (struct extent_buffer *)page->private;
538 if (page != eb->pages[0])
539 return 0;
0f805531 540
19c00ddc 541 found_start = btrfs_header_bytenr(eb);
0f805531
AL
542 /*
543 * Please do not consolidate these warnings into a single if.
544 * It is useful to know what went wrong.
545 */
546 if (WARN_ON(found_start != start))
547 return -EUCLEAN;
548 if (WARN_ON(!PageUptodate(page)))
549 return -EUCLEAN;
550
de37aa51 551 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
552 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
553
8bd98f0e 554 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
555}
556
01d58472 557static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
558 struct extent_buffer *eb)
559{
01d58472 560 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 561 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
562 int ret = 1;
563
0a4e5586 564 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 565 while (fs_devices) {
7239ff4b
NB
566 u8 *metadata_uuid;
567
568 /*
569 * Checking the incompat flag is only valid for the current
570 * fs. For seed devices it's forbidden to have their uuid
571 * changed so reading ->fsid in this case is fine
572 */
573 if (fs_devices == fs_info->fs_devices &&
574 btrfs_fs_incompat(fs_info, METADATA_UUID))
575 metadata_uuid = fs_devices->metadata_uuid;
576 else
577 metadata_uuid = fs_devices->fsid;
578
579 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
580 ret = 0;
581 break;
582 }
583 fs_devices = fs_devices->seed;
584 }
585 return ret;
586}
587
facc8a22
MX
588static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
589 u64 phy_offset, struct page *page,
590 u64 start, u64 end, int mirror)
ce9adaa5 591{
ce9adaa5
CM
592 u64 found_start;
593 int found_level;
ce9adaa5
CM
594 struct extent_buffer *eb;
595 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 596 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 597 int ret = 0;
727011e0 598 int reads_done;
ce9adaa5 599
ce9adaa5
CM
600 if (!page->private)
601 goto out;
d397712b 602
4f2de97a 603 eb = (struct extent_buffer *)page->private;
d397712b 604
0b32f4bb
JB
605 /* the pending IO might have been the only thing that kept this buffer
606 * in memory. Make sure we have a ref for all this other checks
607 */
608 extent_buffer_get(eb);
609
610 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
611 if (!reads_done)
612 goto err;
f188591e 613
5cf1ab56 614 eb->read_mirror = mirror;
656f30db 615 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
616 ret = -EIO;
617 goto err;
618 }
619
ce9adaa5 620 found_start = btrfs_header_bytenr(eb);
727011e0 621 if (found_start != eb->start) {
893bf4b1
SY
622 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
623 eb->start, found_start);
f188591e 624 ret = -EIO;
ce9adaa5
CM
625 goto err;
626 }
02873e43
ZL
627 if (check_tree_block_fsid(fs_info, eb)) {
628 btrfs_err_rl(fs_info, "bad fsid on block %llu",
629 eb->start);
1259ab75
CM
630 ret = -EIO;
631 goto err;
632 }
ce9adaa5 633 found_level = btrfs_header_level(eb);
1c24c3ce 634 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
635 btrfs_err(fs_info, "bad tree block level %d on %llu",
636 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
637 ret = -EIO;
638 goto err;
639 }
ce9adaa5 640
85d4e461
CM
641 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
642 eb, found_level);
4008c04a 643
02873e43 644 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 645 if (ret)
a826d6dc 646 goto err;
a826d6dc
JB
647
648 /*
649 * If this is a leaf block and it is corrupt, set the corrupt bit so
650 * that we don't try and read the other copies of this block, just
651 * return -EIO.
652 */
2f659546 653 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
654 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
655 ret = -EIO;
656 }
ce9adaa5 657
2f659546 658 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
659 ret = -EIO;
660
0b32f4bb
JB
661 if (!ret)
662 set_extent_buffer_uptodate(eb);
ce9adaa5 663err:
79fb65a1
JB
664 if (reads_done &&
665 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 666 btree_readahead_hook(eb, ret);
4bb31e92 667
53b381b3
DW
668 if (ret) {
669 /*
670 * our io error hook is going to dec the io pages
671 * again, we have to make sure it has something
672 * to decrement
673 */
674 atomic_inc(&eb->io_pages);
0b32f4bb 675 clear_extent_buffer_uptodate(eb);
53b381b3 676 }
0b32f4bb 677 free_extent_buffer(eb);
ce9adaa5 678out:
f188591e 679 return ret;
ce9adaa5
CM
680}
681
4246a0b6 682static void end_workqueue_bio(struct bio *bio)
ce9adaa5 683{
97eb6b69 684 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 685 struct btrfs_fs_info *fs_info;
9e0af237
LB
686 struct btrfs_workqueue *wq;
687 btrfs_work_func_t func;
ce9adaa5 688
ce9adaa5 689 fs_info = end_io_wq->info;
4e4cbee9 690 end_io_wq->status = bio->bi_status;
d20f7043 691
37226b21 692 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
693 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
694 wq = fs_info->endio_meta_write_workers;
695 func = btrfs_endio_meta_write_helper;
696 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
697 wq = fs_info->endio_freespace_worker;
698 func = btrfs_freespace_write_helper;
699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
700 wq = fs_info->endio_raid56_workers;
701 func = btrfs_endio_raid56_helper;
702 } else {
703 wq = fs_info->endio_write_workers;
704 func = btrfs_endio_write_helper;
705 }
d20f7043 706 } else {
8b110e39
MX
707 if (unlikely(end_io_wq->metadata ==
708 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
709 wq = fs_info->endio_repair_workers;
710 func = btrfs_endio_repair_helper;
711 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
712 wq = fs_info->endio_raid56_workers;
713 func = btrfs_endio_raid56_helper;
714 } else if (end_io_wq->metadata) {
715 wq = fs_info->endio_meta_workers;
716 func = btrfs_endio_meta_helper;
717 } else {
718 wq = fs_info->endio_workers;
719 func = btrfs_endio_helper;
720 }
d20f7043 721 }
9e0af237
LB
722
723 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
724 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
725}
726
4e4cbee9 727blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 728 enum btrfs_wq_endio_type metadata)
0b86a832 729{
97eb6b69 730 struct btrfs_end_io_wq *end_io_wq;
8b110e39 731
97eb6b69 732 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 733 if (!end_io_wq)
4e4cbee9 734 return BLK_STS_RESOURCE;
ce9adaa5
CM
735
736 end_io_wq->private = bio->bi_private;
737 end_io_wq->end_io = bio->bi_end_io;
22c59948 738 end_io_wq->info = info;
4e4cbee9 739 end_io_wq->status = 0;
ce9adaa5 740 end_io_wq->bio = bio;
22c59948 741 end_io_wq->metadata = metadata;
ce9adaa5
CM
742
743 bio->bi_private = end_io_wq;
744 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
745 return 0;
746}
747
4a69a410
CM
748static void run_one_async_start(struct btrfs_work *work)
749{
4a69a410 750 struct async_submit_bio *async;
4e4cbee9 751 blk_status_t ret;
4a69a410
CM
752
753 async = container_of(work, struct async_submit_bio, work);
c6100a4b 754 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
755 async->bio_offset);
756 if (ret)
4e4cbee9 757 async->status = ret;
4a69a410
CM
758}
759
06ea01b1
DS
760/*
761 * In order to insert checksums into the metadata in large chunks, we wait
762 * until bio submission time. All the pages in the bio are checksummed and
763 * sums are attached onto the ordered extent record.
764 *
765 * At IO completion time the csums attached on the ordered extent record are
766 * inserted into the tree.
767 */
4a69a410 768static void run_one_async_done(struct btrfs_work *work)
8b712842 769{
8b712842 770 struct async_submit_bio *async;
06ea01b1
DS
771 struct inode *inode;
772 blk_status_t ret;
8b712842
CM
773
774 async = container_of(work, struct async_submit_bio, work);
06ea01b1 775 inode = async->private_data;
4854ddd0 776
bb7ab3b9 777 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
778 if (async->status) {
779 async->bio->bi_status = async->status;
4246a0b6 780 bio_endio(async->bio);
79787eaa
JM
781 return;
782 }
783
06ea01b1
DS
784 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
785 async->mirror_num, 1);
786 if (ret) {
787 async->bio->bi_status = ret;
788 bio_endio(async->bio);
789 }
4a69a410
CM
790}
791
792static void run_one_async_free(struct btrfs_work *work)
793{
794 struct async_submit_bio *async;
795
796 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
797 kfree(async);
798}
799
8c27cb35
LT
800blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 int mirror_num, unsigned long bio_flags,
802 u64 bio_offset, void *private_data,
e288c080 803 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
804{
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
4e4cbee9 809 return BLK_STS_RESOURCE;
44b8bd7e 810
c6100a4b 811 async->private_data = private_data;
44b8bd7e
CM
812 async->bio = bio;
813 async->mirror_num = mirror_num;
4a69a410 814 async->submit_bio_start = submit_bio_start;
4a69a410 815
9e0af237 816 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 817 run_one_async_done, run_one_async_free);
4a69a410 818
eaf25d93 819 async->bio_offset = bio_offset;
8c8bee1d 820
4e4cbee9 821 async->status = 0;
79787eaa 822
67f055c7 823 if (op_is_sync(bio->bi_opf))
5cdc7ad3 824 btrfs_set_work_high_priority(&async->work);
d313d7a3 825
5cdc7ad3 826 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
827 return 0;
828}
829
4e4cbee9 830static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 831{
2c30c71b 832 struct bio_vec *bvec;
ce3ed71a 833 struct btrfs_root *root;
2c30c71b 834 int i, ret = 0;
ce3ed71a 835
c09abff8 836 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 837 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 838 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 839 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
840 if (ret)
841 break;
ce3ed71a 842 }
2c30c71b 843
4e4cbee9 844 return errno_to_blk_status(ret);
ce3ed71a
CM
845}
846
d0ee3934 847static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 848 u64 bio_offset)
22c59948 849{
8b712842
CM
850 /*
851 * when we're called for a write, we're already in the async
5443be45 852 * submission context. Just jump into btrfs_map_bio
8b712842 853 */
79787eaa 854 return btree_csum_one_bio(bio);
4a69a410 855}
22c59948 856
18fdc679 857static int check_async_write(struct btrfs_inode *bi)
de0022b9 858{
6300463b
LB
859 if (atomic_read(&bi->sync_writers))
860 return 0;
de0022b9 861#ifdef CONFIG_X86
bc696ca0 862 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
863 return 0;
864#endif
865 return 1;
866}
867
8c27cb35
LT
868static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
869 int mirror_num, unsigned long bio_flags,
870 u64 bio_offset)
44b8bd7e 871{
c6100a4b 872 struct inode *inode = private_data;
0b246afa 873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 874 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 875 blk_status_t ret;
cad321ad 876
37226b21 877 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
0b246afa
JM
882 ret = btrfs_bio_wq_end_io(fs_info, bio,
883 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 884 if (ret)
61891923 885 goto out_w_error;
2ff7e61e 886 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
887 } else if (!async) {
888 ret = btree_csum_one_bio(bio);
889 if (ret)
61891923 890 goto out_w_error;
2ff7e61e 891 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
892 } else {
893 /*
894 * kthread helpers are used to submit writes so that
895 * checksumming can happen in parallel across all CPUs
896 */
c6100a4b
JB
897 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
898 bio_offset, private_data,
e288c080 899 btree_submit_bio_start);
44b8bd7e 900 }
d313d7a3 901
4246a0b6
CH
902 if (ret)
903 goto out_w_error;
904 return 0;
905
61891923 906out_w_error:
4e4cbee9 907 bio->bi_status = ret;
4246a0b6 908 bio_endio(bio);
61891923 909 return ret;
44b8bd7e
CM
910}
911
3dd1462e 912#ifdef CONFIG_MIGRATION
784b4e29 913static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
914 struct page *newpage, struct page *page,
915 enum migrate_mode mode)
784b4e29
CM
916{
917 /*
918 * we can't safely write a btree page from here,
919 * we haven't done the locking hook
920 */
921 if (PageDirty(page))
922 return -EAGAIN;
923 /*
924 * Buffers may be managed in a filesystem specific way.
925 * We must have no buffers or drop them.
926 */
927 if (page_has_private(page) &&
928 !try_to_release_page(page, GFP_KERNEL))
929 return -EAGAIN;
a6bc32b8 930 return migrate_page(mapping, newpage, page, mode);
784b4e29 931}
3dd1462e 932#endif
784b4e29 933
0da5468f
CM
934
935static int btree_writepages(struct address_space *mapping,
936 struct writeback_control *wbc)
937{
e2d84521
MX
938 struct btrfs_fs_info *fs_info;
939 int ret;
940
d8d5f3e1 941 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
942
943 if (wbc->for_kupdate)
944 return 0;
945
e2d84521 946 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 947 /* this is a bit racy, but that's ok */
d814a491
EL
948 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
949 BTRFS_DIRTY_METADATA_THRESH,
950 fs_info->dirty_metadata_batch);
e2d84521 951 if (ret < 0)
793955bc 952 return 0;
793955bc 953 }
0b32f4bb 954 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
955}
956
b2950863 957static int btree_readpage(struct file *file, struct page *page)
5f39d397 958{
d1310b2e
CM
959 struct extent_io_tree *tree;
960 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 961 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 962}
22b0ebda 963
70dec807 964static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 965{
98509cfc 966 if (PageWriteback(page) || PageDirty(page))
d397712b 967 return 0;
0c4e538b 968
f7a52a40 969 return try_release_extent_buffer(page);
d98237b3
CM
970}
971
d47992f8
LC
972static void btree_invalidatepage(struct page *page, unsigned int offset,
973 unsigned int length)
d98237b3 974{
d1310b2e
CM
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
977 extent_invalidatepage(tree, page, offset);
978 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 979 if (PagePrivate(page)) {
efe120a0
FH
980 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
981 "page private not zero on page %llu",
982 (unsigned long long)page_offset(page));
9ad6b7bc
CM
983 ClearPagePrivate(page);
984 set_page_private(page, 0);
09cbfeaf 985 put_page(page);
9ad6b7bc 986 }
d98237b3
CM
987}
988
0b32f4bb
JB
989static int btree_set_page_dirty(struct page *page)
990{
bb146eb2 991#ifdef DEBUG
0b32f4bb
JB
992 struct extent_buffer *eb;
993
994 BUG_ON(!PagePrivate(page));
995 eb = (struct extent_buffer *)page->private;
996 BUG_ON(!eb);
997 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
998 BUG_ON(!atomic_read(&eb->refs));
999 btrfs_assert_tree_locked(eb);
bb146eb2 1000#endif
0b32f4bb
JB
1001 return __set_page_dirty_nobuffers(page);
1002}
1003
7f09410b 1004static const struct address_space_operations btree_aops = {
d98237b3 1005 .readpage = btree_readpage,
0da5468f 1006 .writepages = btree_writepages,
5f39d397
CM
1007 .releasepage = btree_releasepage,
1008 .invalidatepage = btree_invalidatepage,
5a92bc88 1009#ifdef CONFIG_MIGRATION
784b4e29 1010 .migratepage = btree_migratepage,
5a92bc88 1011#endif
0b32f4bb 1012 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1013};
1014
2ff7e61e 1015void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1016{
5f39d397 1017 struct extent_buffer *buf = NULL;
2ff7e61e 1018 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1019
2ff7e61e 1020 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1021 if (IS_ERR(buf))
6197d86e 1022 return;
d1310b2e 1023 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1024 buf, WAIT_NONE, 0);
5f39d397 1025 free_extent_buffer(buf);
090d1875
CM
1026}
1027
2ff7e61e 1028int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1029 int mirror_num, struct extent_buffer **eb)
1030{
1031 struct extent_buffer *buf = NULL;
2ff7e61e 1032 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1033 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1034 int ret;
1035
2ff7e61e 1036 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1037 if (IS_ERR(buf))
ab0fff03
AJ
1038 return 0;
1039
1040 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1041
8436ea91 1042 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1043 mirror_num);
ab0fff03
AJ
1044 if (ret) {
1045 free_extent_buffer(buf);
1046 return ret;
1047 }
1048
1049 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1050 free_extent_buffer(buf);
1051 return -EIO;
0b32f4bb 1052 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1053 *eb = buf;
1054 } else {
1055 free_extent_buffer(buf);
1056 }
1057 return 0;
1058}
1059
2ff7e61e
JM
1060struct extent_buffer *btrfs_find_create_tree_block(
1061 struct btrfs_fs_info *fs_info,
1062 u64 bytenr)
0999df54 1063{
0b246afa
JM
1064 if (btrfs_is_testing(fs_info))
1065 return alloc_test_extent_buffer(fs_info, bytenr);
1066 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1067}
1068
1069
e02119d5
CM
1070int btrfs_write_tree_block(struct extent_buffer *buf)
1071{
727011e0 1072 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1073 buf->start + buf->len - 1);
e02119d5
CM
1074}
1075
3189ff77 1076void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1077{
3189ff77
JL
1078 filemap_fdatawait_range(buf->pages[0]->mapping,
1079 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1080}
1081
581c1760
QW
1082/*
1083 * Read tree block at logical address @bytenr and do variant basic but critical
1084 * verification.
1085 *
1086 * @parent_transid: expected transid of this tree block, skip check if 0
1087 * @level: expected level, mandatory check
1088 * @first_key: expected key in slot 0, skip check if NULL
1089 */
2ff7e61e 1090struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1091 u64 parent_transid, int level,
1092 struct btrfs_key *first_key)
0999df54
CM
1093{
1094 struct extent_buffer *buf = NULL;
0999df54
CM
1095 int ret;
1096
2ff7e61e 1097 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1098 if (IS_ERR(buf))
1099 return buf;
0999df54 1100
581c1760
QW
1101 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1102 level, first_key);
0f0fe8f7
FDBM
1103 if (ret) {
1104 free_extent_buffer(buf);
64c043de 1105 return ERR_PTR(ret);
0f0fe8f7 1106 }
5f39d397 1107 return buf;
ce9adaa5 1108
eb60ceac
CM
1109}
1110
7c302b49 1111void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1112 struct extent_buffer *buf)
ed2ff2cb 1113{
55c69072 1114 if (btrfs_header_generation(buf) ==
e2d84521 1115 fs_info->running_transaction->transid) {
b9447ef8 1116 btrfs_assert_tree_locked(buf);
b4ce94de 1117
b9473439 1118 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1119 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1120 -buf->len,
1121 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1122 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1123 btrfs_set_lock_blocking(buf);
1124 clear_extent_buffer_dirty(buf);
1125 }
925baedd 1126 }
5f39d397
CM
1127}
1128
8257b2dc
MX
1129static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1130{
1131 struct btrfs_subvolume_writers *writers;
1132 int ret;
1133
1134 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1135 if (!writers)
1136 return ERR_PTR(-ENOMEM);
1137
8a5a916d 1138 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1139 if (ret < 0) {
1140 kfree(writers);
1141 return ERR_PTR(ret);
1142 }
1143
1144 init_waitqueue_head(&writers->wait);
1145 return writers;
1146}
1147
1148static void
1149btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1150{
1151 percpu_counter_destroy(&writers->counter);
1152 kfree(writers);
1153}
1154
da17066c 1155static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1156 u64 objectid)
d97e63b6 1157{
7c0260ee 1158 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1159 root->node = NULL;
a28ec197 1160 root->commit_root = NULL;
27cdeb70 1161 root->state = 0;
d68fc57b 1162 root->orphan_cleanup_state = 0;
0b86a832 1163
0f7d52f4 1164 root->last_trans = 0;
13a8a7c8 1165 root->highest_objectid = 0;
eb73c1b7 1166 root->nr_delalloc_inodes = 0;
199c2a9c 1167 root->nr_ordered_extents = 0;
6bef4d31 1168 root->inode_tree = RB_ROOT;
16cdcec7 1169 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1170 root->block_rsv = NULL;
0b86a832
CM
1171
1172 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1173 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1174 INIT_LIST_HEAD(&root->delalloc_inodes);
1175 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1176 INIT_LIST_HEAD(&root->ordered_extents);
1177 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1178 INIT_LIST_HEAD(&root->logged_list[0]);
1179 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1180 spin_lock_init(&root->inode_lock);
eb73c1b7 1181 spin_lock_init(&root->delalloc_lock);
199c2a9c 1182 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1183 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1184 spin_lock_init(&root->log_extents_lock[0]);
1185 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1186 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1187 mutex_init(&root->objectid_mutex);
e02119d5 1188 mutex_init(&root->log_mutex);
31f3d255 1189 mutex_init(&root->ordered_extent_mutex);
573bfb72 1190 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1191 init_waitqueue_head(&root->log_writer_wait);
1192 init_waitqueue_head(&root->log_commit_wait[0]);
1193 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1194 INIT_LIST_HEAD(&root->log_ctxs[0]);
1195 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1196 atomic_set(&root->log_commit[0], 0);
1197 atomic_set(&root->log_commit[1], 0);
1198 atomic_set(&root->log_writers, 0);
2ecb7923 1199 atomic_set(&root->log_batch, 0);
0700cea7 1200 refcount_set(&root->refs, 1);
ea14b57f 1201 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1202 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1203 atomic_set(&root->nr_swapfiles, 0);
7237f183 1204 root->log_transid = 0;
d1433deb 1205 root->log_transid_committed = -1;
257c62e1 1206 root->last_log_commit = 0;
7c0260ee 1207 if (!dummy)
c6100a4b 1208 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1209
3768f368
CM
1210 memset(&root->root_key, 0, sizeof(root->root_key));
1211 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1212 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1213 if (!dummy)
06ea65a3
JB
1214 root->defrag_trans_start = fs_info->generation;
1215 else
1216 root->defrag_trans_start = 0;
4d775673 1217 root->root_key.objectid = objectid;
0ee5dc67 1218 root->anon_dev = 0;
8ea05e3a 1219
5f3ab90a 1220 spin_lock_init(&root->root_item_lock);
3768f368
CM
1221}
1222
74e4d827
DS
1223static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1224 gfp_t flags)
6f07e42e 1225{
74e4d827 1226 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1227 if (root)
1228 root->fs_info = fs_info;
1229 return root;
1230}
1231
06ea65a3
JB
1232#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1233/* Should only be used by the testing infrastructure */
da17066c 1234struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1235{
1236 struct btrfs_root *root;
1237
7c0260ee
JM
1238 if (!fs_info)
1239 return ERR_PTR(-EINVAL);
1240
1241 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1242 if (!root)
1243 return ERR_PTR(-ENOMEM);
da17066c 1244
b9ef22de 1245 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1246 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1247 root->alloc_bytenr = 0;
06ea65a3
JB
1248
1249 return root;
1250}
1251#endif
1252
20897f5c
AJ
1253struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info,
1255 u64 objectid)
1256{
1257 struct extent_buffer *leaf;
1258 struct btrfs_root *tree_root = fs_info->tree_root;
1259 struct btrfs_root *root;
1260 struct btrfs_key key;
1261 int ret = 0;
33d85fda 1262 uuid_le uuid = NULL_UUID_LE;
20897f5c 1263
74e4d827 1264 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1265 if (!root)
1266 return ERR_PTR(-ENOMEM);
1267
da17066c 1268 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1269 root->root_key.objectid = objectid;
1270 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271 root->root_key.offset = 0;
1272
4d75f8a9 1273 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1274 if (IS_ERR(leaf)) {
1275 ret = PTR_ERR(leaf);
1dd05682 1276 leaf = NULL;
20897f5c
AJ
1277 goto fail;
1278 }
1279
20897f5c 1280 root->node = leaf;
20897f5c
AJ
1281 btrfs_mark_buffer_dirty(leaf);
1282
1283 root->commit_root = btrfs_root_node(root);
27cdeb70 1284 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1285
1286 root->root_item.flags = 0;
1287 root->root_item.byte_limit = 0;
1288 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1289 btrfs_set_root_generation(&root->root_item, trans->transid);
1290 btrfs_set_root_level(&root->root_item, 0);
1291 btrfs_set_root_refs(&root->root_item, 1);
1292 btrfs_set_root_used(&root->root_item, leaf->len);
1293 btrfs_set_root_last_snapshot(&root->root_item, 0);
1294 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1295 if (is_fstree(objectid))
1296 uuid_le_gen(&uuid);
6463fe58 1297 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1298 root->root_item.drop_level = 0;
1299
1300 key.objectid = objectid;
1301 key.type = BTRFS_ROOT_ITEM_KEY;
1302 key.offset = 0;
1303 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1304 if (ret)
1305 goto fail;
1306
1307 btrfs_tree_unlock(leaf);
1308
1dd05682
TI
1309 return root;
1310
20897f5c 1311fail:
1dd05682
TI
1312 if (leaf) {
1313 btrfs_tree_unlock(leaf);
59885b39 1314 free_extent_buffer(root->commit_root);
1dd05682
TI
1315 free_extent_buffer(leaf);
1316 }
1317 kfree(root);
20897f5c 1318
1dd05682 1319 return ERR_PTR(ret);
20897f5c
AJ
1320}
1321
7237f183
YZ
1322static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1323 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1324{
1325 struct btrfs_root *root;
7237f183 1326 struct extent_buffer *leaf;
e02119d5 1327
74e4d827 1328 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1329 if (!root)
7237f183 1330 return ERR_PTR(-ENOMEM);
e02119d5 1331
da17066c 1332 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1333
1334 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1336 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1337
7237f183 1338 /*
27cdeb70
MX
1339 * DON'T set REF_COWS for log trees
1340 *
7237f183
YZ
1341 * log trees do not get reference counted because they go away
1342 * before a real commit is actually done. They do store pointers
1343 * to file data extents, and those reference counts still get
1344 * updated (along with back refs to the log tree).
1345 */
e02119d5 1346
4d75f8a9
DS
1347 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1348 NULL, 0, 0, 0);
7237f183
YZ
1349 if (IS_ERR(leaf)) {
1350 kfree(root);
1351 return ERR_CAST(leaf);
1352 }
e02119d5 1353
7237f183 1354 root->node = leaf;
e02119d5 1355
e02119d5
CM
1356 btrfs_mark_buffer_dirty(root->node);
1357 btrfs_tree_unlock(root->node);
7237f183
YZ
1358 return root;
1359}
1360
1361int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1362 struct btrfs_fs_info *fs_info)
1363{
1364 struct btrfs_root *log_root;
1365
1366 log_root = alloc_log_tree(trans, fs_info);
1367 if (IS_ERR(log_root))
1368 return PTR_ERR(log_root);
1369 WARN_ON(fs_info->log_root_tree);
1370 fs_info->log_root_tree = log_root;
1371 return 0;
1372}
1373
1374int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1375 struct btrfs_root *root)
1376{
0b246afa 1377 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1378 struct btrfs_root *log_root;
1379 struct btrfs_inode_item *inode_item;
1380
0b246afa 1381 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1382 if (IS_ERR(log_root))
1383 return PTR_ERR(log_root);
1384
1385 log_root->last_trans = trans->transid;
1386 log_root->root_key.offset = root->root_key.objectid;
1387
1388 inode_item = &log_root->root_item.inode;
3cae210f
QW
1389 btrfs_set_stack_inode_generation(inode_item, 1);
1390 btrfs_set_stack_inode_size(inode_item, 3);
1391 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1392 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1393 fs_info->nodesize);
3cae210f 1394 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1395
5d4f98a2 1396 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1397
1398 WARN_ON(root->log_root);
1399 root->log_root = log_root;
1400 root->log_transid = 0;
d1433deb 1401 root->log_transid_committed = -1;
257c62e1 1402 root->last_log_commit = 0;
e02119d5
CM
1403 return 0;
1404}
1405
35a3621b
SB
1406static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1407 struct btrfs_key *key)
e02119d5
CM
1408{
1409 struct btrfs_root *root;
1410 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1411 struct btrfs_path *path;
84234f3a 1412 u64 generation;
cb517eab 1413 int ret;
581c1760 1414 int level;
0f7d52f4 1415
cb517eab
MX
1416 path = btrfs_alloc_path();
1417 if (!path)
0f7d52f4 1418 return ERR_PTR(-ENOMEM);
cb517eab 1419
74e4d827 1420 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1421 if (!root) {
1422 ret = -ENOMEM;
1423 goto alloc_fail;
0f7d52f4
CM
1424 }
1425
da17066c 1426 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1427
cb517eab
MX
1428 ret = btrfs_find_root(tree_root, key, path,
1429 &root->root_item, &root->root_key);
0f7d52f4 1430 if (ret) {
13a8a7c8
YZ
1431 if (ret > 0)
1432 ret = -ENOENT;
cb517eab 1433 goto find_fail;
0f7d52f4 1434 }
13a8a7c8 1435
84234f3a 1436 generation = btrfs_root_generation(&root->root_item);
581c1760 1437 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1438 root->node = read_tree_block(fs_info,
1439 btrfs_root_bytenr(&root->root_item),
581c1760 1440 generation, level, NULL);
64c043de
LB
1441 if (IS_ERR(root->node)) {
1442 ret = PTR_ERR(root->node);
cb517eab
MX
1443 goto find_fail;
1444 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1445 ret = -EIO;
64c043de
LB
1446 free_extent_buffer(root->node);
1447 goto find_fail;
416bc658 1448 }
5d4f98a2 1449 root->commit_root = btrfs_root_node(root);
13a8a7c8 1450out:
cb517eab
MX
1451 btrfs_free_path(path);
1452 return root;
1453
cb517eab
MX
1454find_fail:
1455 kfree(root);
1456alloc_fail:
1457 root = ERR_PTR(ret);
1458 goto out;
1459}
1460
1461struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1462 struct btrfs_key *location)
1463{
1464 struct btrfs_root *root;
1465
1466 root = btrfs_read_tree_root(tree_root, location);
1467 if (IS_ERR(root))
1468 return root;
1469
1470 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1471 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1472 btrfs_check_and_init_root_item(&root->root_item);
1473 }
13a8a7c8 1474
5eda7b5e
CM
1475 return root;
1476}
1477
cb517eab
MX
1478int btrfs_init_fs_root(struct btrfs_root *root)
1479{
1480 int ret;
8257b2dc 1481 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1482
1483 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1484 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1485 GFP_NOFS);
1486 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1487 ret = -ENOMEM;
1488 goto fail;
1489 }
1490
8257b2dc
MX
1491 writers = btrfs_alloc_subvolume_writers();
1492 if (IS_ERR(writers)) {
1493 ret = PTR_ERR(writers);
1494 goto fail;
1495 }
1496 root->subv_writers = writers;
1497
cb517eab 1498 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1499 spin_lock_init(&root->ino_cache_lock);
1500 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1501
1502 ret = get_anon_bdev(&root->anon_dev);
1503 if (ret)
876d2cf1 1504 goto fail;
f32e48e9
CR
1505
1506 mutex_lock(&root->objectid_mutex);
1507 ret = btrfs_find_highest_objectid(root,
1508 &root->highest_objectid);
1509 if (ret) {
1510 mutex_unlock(&root->objectid_mutex);
876d2cf1 1511 goto fail;
f32e48e9
CR
1512 }
1513
1514 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1515
1516 mutex_unlock(&root->objectid_mutex);
1517
cb517eab
MX
1518 return 0;
1519fail:
84db5ccf 1520 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1521 return ret;
1522}
1523
35bbb97f
JM
1524struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1525 u64 root_id)
cb517eab
MX
1526{
1527 struct btrfs_root *root;
1528
1529 spin_lock(&fs_info->fs_roots_radix_lock);
1530 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1531 (unsigned long)root_id);
1532 spin_unlock(&fs_info->fs_roots_radix_lock);
1533 return root;
1534}
1535
1536int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1537 struct btrfs_root *root)
1538{
1539 int ret;
1540
e1860a77 1541 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1542 if (ret)
1543 return ret;
1544
1545 spin_lock(&fs_info->fs_roots_radix_lock);
1546 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1547 (unsigned long)root->root_key.objectid,
1548 root);
1549 if (ret == 0)
27cdeb70 1550 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1551 spin_unlock(&fs_info->fs_roots_radix_lock);
1552 radix_tree_preload_end();
1553
1554 return ret;
1555}
1556
c00869f1
MX
1557struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1558 struct btrfs_key *location,
1559 bool check_ref)
5eda7b5e
CM
1560{
1561 struct btrfs_root *root;
381cf658 1562 struct btrfs_path *path;
1d4c08e0 1563 struct btrfs_key key;
5eda7b5e
CM
1564 int ret;
1565
edbd8d4e
CM
1566 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1567 return fs_info->tree_root;
1568 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1569 return fs_info->extent_root;
8f18cf13
CM
1570 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1571 return fs_info->chunk_root;
1572 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1573 return fs_info->dev_root;
0403e47e
YZ
1574 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1575 return fs_info->csum_root;
bcef60f2
AJ
1576 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1577 return fs_info->quota_root ? fs_info->quota_root :
1578 ERR_PTR(-ENOENT);
f7a81ea4
SB
1579 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1580 return fs_info->uuid_root ? fs_info->uuid_root :
1581 ERR_PTR(-ENOENT);
70f6d82e
OS
1582 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1583 return fs_info->free_space_root ? fs_info->free_space_root :
1584 ERR_PTR(-ENOENT);
4df27c4d 1585again:
cb517eab 1586 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1587 if (root) {
c00869f1 1588 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1589 return ERR_PTR(-ENOENT);
5eda7b5e 1590 return root;
48475471 1591 }
5eda7b5e 1592
cb517eab 1593 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1594 if (IS_ERR(root))
1595 return root;
3394e160 1596
c00869f1 1597 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1598 ret = -ENOENT;
581bb050 1599 goto fail;
35a30d7c 1600 }
581bb050 1601
cb517eab 1602 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1603 if (ret)
1604 goto fail;
3394e160 1605
381cf658
DS
1606 path = btrfs_alloc_path();
1607 if (!path) {
1608 ret = -ENOMEM;
1609 goto fail;
1610 }
1d4c08e0
DS
1611 key.objectid = BTRFS_ORPHAN_OBJECTID;
1612 key.type = BTRFS_ORPHAN_ITEM_KEY;
1613 key.offset = location->objectid;
1614
1615 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1616 btrfs_free_path(path);
d68fc57b
YZ
1617 if (ret < 0)
1618 goto fail;
1619 if (ret == 0)
27cdeb70 1620 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1621
cb517eab 1622 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1623 if (ret) {
4df27c4d 1624 if (ret == -EEXIST) {
84db5ccf 1625 btrfs_free_fs_root(root);
4df27c4d
YZ
1626 goto again;
1627 }
1628 goto fail;
0f7d52f4 1629 }
edbd8d4e 1630 return root;
4df27c4d 1631fail:
84db5ccf 1632 btrfs_free_fs_root(root);
4df27c4d 1633 return ERR_PTR(ret);
edbd8d4e
CM
1634}
1635
04160088
CM
1636static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1637{
1638 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1639 int ret = 0;
04160088
CM
1640 struct btrfs_device *device;
1641 struct backing_dev_info *bdi;
b7967db7 1642
1f78160c
XG
1643 rcu_read_lock();
1644 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1645 if (!device->bdev)
1646 continue;
efa7c9f9 1647 bdi = device->bdev->bd_bdi;
ff9ea323 1648 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1649 ret = 1;
1650 break;
1651 }
1652 }
1f78160c 1653 rcu_read_unlock();
04160088
CM
1654 return ret;
1655}
1656
8b712842
CM
1657/*
1658 * called by the kthread helper functions to finally call the bio end_io
1659 * functions. This is where read checksum verification actually happens
1660 */
1661static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1662{
ce9adaa5 1663 struct bio *bio;
97eb6b69 1664 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1665
97eb6b69 1666 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1667 bio = end_io_wq->bio;
ce9adaa5 1668
4e4cbee9 1669 bio->bi_status = end_io_wq->status;
8b712842
CM
1670 bio->bi_private = end_io_wq->private;
1671 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1672 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1673 bio_endio(bio);
44b8bd7e
CM
1674}
1675
a74a4b97
CM
1676static int cleaner_kthread(void *arg)
1677{
1678 struct btrfs_root *root = arg;
0b246afa 1679 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1680 int again;
a74a4b97 1681
d6fd0ae2 1682 while (1) {
d0278245 1683 again = 0;
a74a4b97 1684
d0278245 1685 /* Make the cleaner go to sleep early. */
2ff7e61e 1686 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1687 goto sleep;
1688
90c711ab
ZB
1689 /*
1690 * Do not do anything if we might cause open_ctree() to block
1691 * before we have finished mounting the filesystem.
1692 */
0b246afa 1693 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1694 goto sleep;
1695
0b246afa 1696 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1697 goto sleep;
1698
dc7f370c
MX
1699 /*
1700 * Avoid the problem that we change the status of the fs
1701 * during the above check and trylock.
1702 */
2ff7e61e 1703 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1704 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1705 goto sleep;
76dda93c 1706 }
a74a4b97 1707
0b246afa 1708 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1709 btrfs_run_delayed_iputs(fs_info);
0b246afa 1710 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1711
d0278245 1712 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1713 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1714
1715 /*
05323cd1
MX
1716 * The defragger has dealt with the R/O remount and umount,
1717 * needn't do anything special here.
d0278245 1718 */
0b246afa 1719 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1720
1721 /*
1722 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1723 * with relocation (btrfs_relocate_chunk) and relocation
1724 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1725 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1726 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1727 * unused block groups.
1728 */
0b246afa 1729 btrfs_delete_unused_bgs(fs_info);
d0278245 1730sleep:
d6fd0ae2
OS
1731 if (kthread_should_park())
1732 kthread_parkme();
1733 if (kthread_should_stop())
1734 return 0;
838fe188 1735 if (!again) {
a74a4b97 1736 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1737 schedule();
a74a4b97
CM
1738 __set_current_state(TASK_RUNNING);
1739 }
da288d28 1740 }
a74a4b97
CM
1741}
1742
1743static int transaction_kthread(void *arg)
1744{
1745 struct btrfs_root *root = arg;
0b246afa 1746 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1747 struct btrfs_trans_handle *trans;
1748 struct btrfs_transaction *cur;
8929ecfa 1749 u64 transid;
a944442c 1750 time64_t now;
a74a4b97 1751 unsigned long delay;
914b2007 1752 bool cannot_commit;
a74a4b97
CM
1753
1754 do {
914b2007 1755 cannot_commit = false;
0b246afa
JM
1756 delay = HZ * fs_info->commit_interval;
1757 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1758
0b246afa
JM
1759 spin_lock(&fs_info->trans_lock);
1760 cur = fs_info->running_transaction;
a74a4b97 1761 if (!cur) {
0b246afa 1762 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1763 goto sleep;
1764 }
31153d81 1765
afd48513 1766 now = ktime_get_seconds();
4a9d8bde 1767 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1768 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1769 (now < cur->start_time ||
0b246afa
JM
1770 now - cur->start_time < fs_info->commit_interval)) {
1771 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1772 delay = HZ * 5;
1773 goto sleep;
1774 }
8929ecfa 1775 transid = cur->transid;
0b246afa 1776 spin_unlock(&fs_info->trans_lock);
56bec294 1777
79787eaa 1778 /* If the file system is aborted, this will always fail. */
354aa0fb 1779 trans = btrfs_attach_transaction(root);
914b2007 1780 if (IS_ERR(trans)) {
354aa0fb
MX
1781 if (PTR_ERR(trans) != -ENOENT)
1782 cannot_commit = true;
79787eaa 1783 goto sleep;
914b2007 1784 }
8929ecfa 1785 if (transid == trans->transid) {
3a45bb20 1786 btrfs_commit_transaction(trans);
8929ecfa 1787 } else {
3a45bb20 1788 btrfs_end_transaction(trans);
8929ecfa 1789 }
a74a4b97 1790sleep:
0b246afa
JM
1791 wake_up_process(fs_info->cleaner_kthread);
1792 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1793
4e121c06 1794 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1795 &fs_info->fs_state)))
2ff7e61e 1796 btrfs_cleanup_transaction(fs_info);
ce63f891 1797 if (!kthread_should_stop() &&
0b246afa 1798 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1799 cannot_commit))
bc5511d0 1800 schedule_timeout_interruptible(delay);
a74a4b97
CM
1801 } while (!kthread_should_stop());
1802 return 0;
1803}
1804
af31f5e5
CM
1805/*
1806 * this will find the highest generation in the array of
1807 * root backups. The index of the highest array is returned,
1808 * or -1 if we can't find anything.
1809 *
1810 * We check to make sure the array is valid by comparing the
1811 * generation of the latest root in the array with the generation
1812 * in the super block. If they don't match we pitch it.
1813 */
1814static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1815{
1816 u64 cur;
1817 int newest_index = -1;
1818 struct btrfs_root_backup *root_backup;
1819 int i;
1820
1821 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1822 root_backup = info->super_copy->super_roots + i;
1823 cur = btrfs_backup_tree_root_gen(root_backup);
1824 if (cur == newest_gen)
1825 newest_index = i;
1826 }
1827
1828 /* check to see if we actually wrapped around */
1829 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1830 root_backup = info->super_copy->super_roots;
1831 cur = btrfs_backup_tree_root_gen(root_backup);
1832 if (cur == newest_gen)
1833 newest_index = 0;
1834 }
1835 return newest_index;
1836}
1837
1838
1839/*
1840 * find the oldest backup so we know where to store new entries
1841 * in the backup array. This will set the backup_root_index
1842 * field in the fs_info struct
1843 */
1844static void find_oldest_super_backup(struct btrfs_fs_info *info,
1845 u64 newest_gen)
1846{
1847 int newest_index = -1;
1848
1849 newest_index = find_newest_super_backup(info, newest_gen);
1850 /* if there was garbage in there, just move along */
1851 if (newest_index == -1) {
1852 info->backup_root_index = 0;
1853 } else {
1854 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1855 }
1856}
1857
1858/*
1859 * copy all the root pointers into the super backup array.
1860 * this will bump the backup pointer by one when it is
1861 * done
1862 */
1863static void backup_super_roots(struct btrfs_fs_info *info)
1864{
1865 int next_backup;
1866 struct btrfs_root_backup *root_backup;
1867 int last_backup;
1868
1869 next_backup = info->backup_root_index;
1870 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1871 BTRFS_NUM_BACKUP_ROOTS;
1872
1873 /*
1874 * just overwrite the last backup if we're at the same generation
1875 * this happens only at umount
1876 */
1877 root_backup = info->super_for_commit->super_roots + last_backup;
1878 if (btrfs_backup_tree_root_gen(root_backup) ==
1879 btrfs_header_generation(info->tree_root->node))
1880 next_backup = last_backup;
1881
1882 root_backup = info->super_for_commit->super_roots + next_backup;
1883
1884 /*
1885 * make sure all of our padding and empty slots get zero filled
1886 * regardless of which ones we use today
1887 */
1888 memset(root_backup, 0, sizeof(*root_backup));
1889
1890 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1891
1892 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1893 btrfs_set_backup_tree_root_gen(root_backup,
1894 btrfs_header_generation(info->tree_root->node));
1895
1896 btrfs_set_backup_tree_root_level(root_backup,
1897 btrfs_header_level(info->tree_root->node));
1898
1899 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1900 btrfs_set_backup_chunk_root_gen(root_backup,
1901 btrfs_header_generation(info->chunk_root->node));
1902 btrfs_set_backup_chunk_root_level(root_backup,
1903 btrfs_header_level(info->chunk_root->node));
1904
1905 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1906 btrfs_set_backup_extent_root_gen(root_backup,
1907 btrfs_header_generation(info->extent_root->node));
1908 btrfs_set_backup_extent_root_level(root_backup,
1909 btrfs_header_level(info->extent_root->node));
1910
7c7e82a7
CM
1911 /*
1912 * we might commit during log recovery, which happens before we set
1913 * the fs_root. Make sure it is valid before we fill it in.
1914 */
1915 if (info->fs_root && info->fs_root->node) {
1916 btrfs_set_backup_fs_root(root_backup,
1917 info->fs_root->node->start);
1918 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1919 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1920 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1921 btrfs_header_level(info->fs_root->node));
7c7e82a7 1922 }
af31f5e5
CM
1923
1924 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1925 btrfs_set_backup_dev_root_gen(root_backup,
1926 btrfs_header_generation(info->dev_root->node));
1927 btrfs_set_backup_dev_root_level(root_backup,
1928 btrfs_header_level(info->dev_root->node));
1929
1930 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1931 btrfs_set_backup_csum_root_gen(root_backup,
1932 btrfs_header_generation(info->csum_root->node));
1933 btrfs_set_backup_csum_root_level(root_backup,
1934 btrfs_header_level(info->csum_root->node));
1935
1936 btrfs_set_backup_total_bytes(root_backup,
1937 btrfs_super_total_bytes(info->super_copy));
1938 btrfs_set_backup_bytes_used(root_backup,
1939 btrfs_super_bytes_used(info->super_copy));
1940 btrfs_set_backup_num_devices(root_backup,
1941 btrfs_super_num_devices(info->super_copy));
1942
1943 /*
1944 * if we don't copy this out to the super_copy, it won't get remembered
1945 * for the next commit
1946 */
1947 memcpy(&info->super_copy->super_roots,
1948 &info->super_for_commit->super_roots,
1949 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1950}
1951
1952/*
1953 * this copies info out of the root backup array and back into
1954 * the in-memory super block. It is meant to help iterate through
1955 * the array, so you send it the number of backups you've already
1956 * tried and the last backup index you used.
1957 *
1958 * this returns -1 when it has tried all the backups
1959 */
1960static noinline int next_root_backup(struct btrfs_fs_info *info,
1961 struct btrfs_super_block *super,
1962 int *num_backups_tried, int *backup_index)
1963{
1964 struct btrfs_root_backup *root_backup;
1965 int newest = *backup_index;
1966
1967 if (*num_backups_tried == 0) {
1968 u64 gen = btrfs_super_generation(super);
1969
1970 newest = find_newest_super_backup(info, gen);
1971 if (newest == -1)
1972 return -1;
1973
1974 *backup_index = newest;
1975 *num_backups_tried = 1;
1976 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1977 /* we've tried all the backups, all done */
1978 return -1;
1979 } else {
1980 /* jump to the next oldest backup */
1981 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1982 BTRFS_NUM_BACKUP_ROOTS;
1983 *backup_index = newest;
1984 *num_backups_tried += 1;
1985 }
1986 root_backup = super->super_roots + newest;
1987
1988 btrfs_set_super_generation(super,
1989 btrfs_backup_tree_root_gen(root_backup));
1990 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1991 btrfs_set_super_root_level(super,
1992 btrfs_backup_tree_root_level(root_backup));
1993 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1994
1995 /*
1996 * fixme: the total bytes and num_devices need to match or we should
1997 * need a fsck
1998 */
1999 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2000 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2001 return 0;
2002}
2003
7abadb64
LB
2004/* helper to cleanup workers */
2005static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2006{
dc6e3209 2007 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2008 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2009 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2010 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2011 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2012 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2013 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2014 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2015 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2016 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2017 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2018 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2019 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2020 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2021 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2022 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2023 /*
2024 * Now that all other work queues are destroyed, we can safely destroy
2025 * the queues used for metadata I/O, since tasks from those other work
2026 * queues can do metadata I/O operations.
2027 */
2028 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2029 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2030}
2031
2e9f5954
R
2032static void free_root_extent_buffers(struct btrfs_root *root)
2033{
2034 if (root) {
2035 free_extent_buffer(root->node);
2036 free_extent_buffer(root->commit_root);
2037 root->node = NULL;
2038 root->commit_root = NULL;
2039 }
2040}
2041
af31f5e5
CM
2042/* helper to cleanup tree roots */
2043static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2044{
2e9f5954 2045 free_root_extent_buffers(info->tree_root);
655b09fe 2046
2e9f5954
R
2047 free_root_extent_buffers(info->dev_root);
2048 free_root_extent_buffers(info->extent_root);
2049 free_root_extent_buffers(info->csum_root);
2050 free_root_extent_buffers(info->quota_root);
2051 free_root_extent_buffers(info->uuid_root);
2052 if (chunk_root)
2053 free_root_extent_buffers(info->chunk_root);
70f6d82e 2054 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2055}
2056
faa2dbf0 2057void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2058{
2059 int ret;
2060 struct btrfs_root *gang[8];
2061 int i;
2062
2063 while (!list_empty(&fs_info->dead_roots)) {
2064 gang[0] = list_entry(fs_info->dead_roots.next,
2065 struct btrfs_root, root_list);
2066 list_del(&gang[0]->root_list);
2067
27cdeb70 2068 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2069 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2070 } else {
2071 free_extent_buffer(gang[0]->node);
2072 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2073 btrfs_put_fs_root(gang[0]);
171f6537
JB
2074 }
2075 }
2076
2077 while (1) {
2078 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2079 (void **)gang, 0,
2080 ARRAY_SIZE(gang));
2081 if (!ret)
2082 break;
2083 for (i = 0; i < ret; i++)
cb517eab 2084 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2085 }
1a4319cc
LB
2086
2087 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2088 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2089 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2090 }
171f6537 2091}
af31f5e5 2092
638aa7ed
ES
2093static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2094{
2095 mutex_init(&fs_info->scrub_lock);
2096 atomic_set(&fs_info->scrubs_running, 0);
2097 atomic_set(&fs_info->scrub_pause_req, 0);
2098 atomic_set(&fs_info->scrubs_paused, 0);
2099 atomic_set(&fs_info->scrub_cancel_req, 0);
2100 init_waitqueue_head(&fs_info->scrub_pause_wait);
2101 fs_info->scrub_workers_refcnt = 0;
2102}
2103
779a65a4
ES
2104static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2105{
2106 spin_lock_init(&fs_info->balance_lock);
2107 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2108 atomic_set(&fs_info->balance_pause_req, 0);
2109 atomic_set(&fs_info->balance_cancel_req, 0);
2110 fs_info->balance_ctl = NULL;
2111 init_waitqueue_head(&fs_info->balance_wait_q);
2112}
2113
6bccf3ab 2114static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2115{
2ff7e61e
JM
2116 struct inode *inode = fs_info->btree_inode;
2117
2118 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2119 set_nlink(inode, 1);
f37938e0
ES
2120 /*
2121 * we set the i_size on the btree inode to the max possible int.
2122 * the real end of the address space is determined by all of
2123 * the devices in the system
2124 */
2ff7e61e
JM
2125 inode->i_size = OFFSET_MAX;
2126 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2127
2ff7e61e 2128 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2129 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2130 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2131 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2132
2ff7e61e 2133 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2134
2ff7e61e
JM
2135 BTRFS_I(inode)->root = fs_info->tree_root;
2136 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2137 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2138 btrfs_insert_inode_hash(inode);
f37938e0
ES
2139}
2140
ad618368
ES
2141static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2142{
ad618368 2143 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9 2144 rwlock_init(&fs_info->dev_replace.lock);
73beece9 2145 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
7f8d236a 2146 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
73beece9 2147 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2148}
2149
f9e92e40
ES
2150static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2151{
2152 spin_lock_init(&fs_info->qgroup_lock);
2153 mutex_init(&fs_info->qgroup_ioctl_lock);
2154 fs_info->qgroup_tree = RB_ROOT;
2155 fs_info->qgroup_op_tree = RB_ROOT;
2156 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2157 fs_info->qgroup_seq = 1;
f9e92e40 2158 fs_info->qgroup_ulist = NULL;
d2c609b8 2159 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2160 mutex_init(&fs_info->qgroup_rescan_lock);
2161}
2162
2a458198
ES
2163static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2164 struct btrfs_fs_devices *fs_devices)
2165{
f7b885be 2166 u32 max_active = fs_info->thread_pool_size;
6f011058 2167 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2168
2169 fs_info->workers =
cb001095
JM
2170 btrfs_alloc_workqueue(fs_info, "worker",
2171 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2172
2173 fs_info->delalloc_workers =
cb001095
JM
2174 btrfs_alloc_workqueue(fs_info, "delalloc",
2175 flags, max_active, 2);
2a458198
ES
2176
2177 fs_info->flush_workers =
cb001095
JM
2178 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2179 flags, max_active, 0);
2a458198
ES
2180
2181 fs_info->caching_workers =
cb001095 2182 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2183
2184 /*
2185 * a higher idle thresh on the submit workers makes it much more
2186 * likely that bios will be send down in a sane order to the
2187 * devices
2188 */
2189 fs_info->submit_workers =
cb001095 2190 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2191 min_t(u64, fs_devices->num_devices,
2192 max_active), 64);
2193
2194 fs_info->fixup_workers =
cb001095 2195 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2196
2197 /*
2198 * endios are largely parallel and should have a very
2199 * low idle thresh
2200 */
2201 fs_info->endio_workers =
cb001095 2202 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2203 fs_info->endio_meta_workers =
cb001095
JM
2204 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2205 max_active, 4);
2a458198 2206 fs_info->endio_meta_write_workers =
cb001095
JM
2207 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2208 max_active, 2);
2a458198 2209 fs_info->endio_raid56_workers =
cb001095
JM
2210 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2211 max_active, 4);
2a458198 2212 fs_info->endio_repair_workers =
cb001095 2213 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2214 fs_info->rmw_workers =
cb001095 2215 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2216 fs_info->endio_write_workers =
cb001095
JM
2217 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2218 max_active, 2);
2a458198 2219 fs_info->endio_freespace_worker =
cb001095
JM
2220 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2221 max_active, 0);
2a458198 2222 fs_info->delayed_workers =
cb001095
JM
2223 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2224 max_active, 0);
2a458198 2225 fs_info->readahead_workers =
cb001095
JM
2226 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2227 max_active, 2);
2a458198 2228 fs_info->qgroup_rescan_workers =
cb001095 2229 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2230 fs_info->extent_workers =
cb001095 2231 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2232 min_t(u64, fs_devices->num_devices,
2233 max_active), 8);
2234
2235 if (!(fs_info->workers && fs_info->delalloc_workers &&
2236 fs_info->submit_workers && fs_info->flush_workers &&
2237 fs_info->endio_workers && fs_info->endio_meta_workers &&
2238 fs_info->endio_meta_write_workers &&
2239 fs_info->endio_repair_workers &&
2240 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2241 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2242 fs_info->caching_workers && fs_info->readahead_workers &&
2243 fs_info->fixup_workers && fs_info->delayed_workers &&
2244 fs_info->extent_workers &&
2245 fs_info->qgroup_rescan_workers)) {
2246 return -ENOMEM;
2247 }
2248
2249 return 0;
2250}
2251
63443bf5
ES
2252static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2253 struct btrfs_fs_devices *fs_devices)
2254{
2255 int ret;
63443bf5
ES
2256 struct btrfs_root *log_tree_root;
2257 struct btrfs_super_block *disk_super = fs_info->super_copy;
2258 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2259 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2260
2261 if (fs_devices->rw_devices == 0) {
f14d104d 2262 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2263 return -EIO;
2264 }
2265
74e4d827 2266 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2267 if (!log_tree_root)
2268 return -ENOMEM;
2269
da17066c 2270 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2271
2ff7e61e 2272 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2273 fs_info->generation + 1,
2274 level, NULL);
64c043de 2275 if (IS_ERR(log_tree_root->node)) {
f14d104d 2276 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2277 ret = PTR_ERR(log_tree_root->node);
64c043de 2278 kfree(log_tree_root);
0eeff236 2279 return ret;
64c043de 2280 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2281 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2282 free_extent_buffer(log_tree_root->node);
2283 kfree(log_tree_root);
2284 return -EIO;
2285 }
2286 /* returns with log_tree_root freed on success */
2287 ret = btrfs_recover_log_trees(log_tree_root);
2288 if (ret) {
0b246afa
JM
2289 btrfs_handle_fs_error(fs_info, ret,
2290 "Failed to recover log tree");
63443bf5
ES
2291 free_extent_buffer(log_tree_root->node);
2292 kfree(log_tree_root);
2293 return ret;
2294 }
2295
bc98a42c 2296 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2297 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2298 if (ret)
2299 return ret;
2300 }
2301
2302 return 0;
2303}
2304
6bccf3ab 2305static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2306{
6bccf3ab 2307 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2308 struct btrfs_root *root;
4bbcaa64
ES
2309 struct btrfs_key location;
2310 int ret;
2311
6bccf3ab
JM
2312 BUG_ON(!fs_info->tree_root);
2313
4bbcaa64
ES
2314 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2315 location.type = BTRFS_ROOT_ITEM_KEY;
2316 location.offset = 0;
2317
a4f3d2c4 2318 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2319 if (IS_ERR(root)) {
2320 ret = PTR_ERR(root);
2321 goto out;
2322 }
a4f3d2c4
DS
2323 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2324 fs_info->extent_root = root;
4bbcaa64
ES
2325
2326 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2327 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2328 if (IS_ERR(root)) {
2329 ret = PTR_ERR(root);
2330 goto out;
2331 }
a4f3d2c4
DS
2332 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2333 fs_info->dev_root = root;
4bbcaa64
ES
2334 btrfs_init_devices_late(fs_info);
2335
2336 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2337 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2338 if (IS_ERR(root)) {
2339 ret = PTR_ERR(root);
2340 goto out;
2341 }
a4f3d2c4
DS
2342 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343 fs_info->csum_root = root;
4bbcaa64
ES
2344
2345 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2346 root = btrfs_read_tree_root(tree_root, &location);
2347 if (!IS_ERR(root)) {
2348 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2349 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2350 fs_info->quota_root = root;
4bbcaa64
ES
2351 }
2352
2353 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2354 root = btrfs_read_tree_root(tree_root, &location);
2355 if (IS_ERR(root)) {
2356 ret = PTR_ERR(root);
4bbcaa64 2357 if (ret != -ENOENT)
f50f4353 2358 goto out;
4bbcaa64 2359 } else {
a4f3d2c4
DS
2360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361 fs_info->uuid_root = root;
4bbcaa64
ES
2362 }
2363
70f6d82e
OS
2364 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2365 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2366 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2367 if (IS_ERR(root)) {
2368 ret = PTR_ERR(root);
2369 goto out;
2370 }
70f6d82e
OS
2371 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372 fs_info->free_space_root = root;
2373 }
2374
4bbcaa64 2375 return 0;
f50f4353
LB
2376out:
2377 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2378 location.objectid, ret);
2379 return ret;
4bbcaa64
ES
2380}
2381
069ec957
QW
2382/*
2383 * Real super block validation
2384 * NOTE: super csum type and incompat features will not be checked here.
2385 *
2386 * @sb: super block to check
2387 * @mirror_num: the super block number to check its bytenr:
2388 * 0 the primary (1st) sb
2389 * 1, 2 2nd and 3rd backup copy
2390 * -1 skip bytenr check
2391 */
2392static int validate_super(struct btrfs_fs_info *fs_info,
2393 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2394{
21a852b0
QW
2395 u64 nodesize = btrfs_super_nodesize(sb);
2396 u64 sectorsize = btrfs_super_sectorsize(sb);
2397 int ret = 0;
2398
2399 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2400 btrfs_err(fs_info, "no valid FS found");
2401 ret = -EINVAL;
2402 }
2403 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2404 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2405 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2406 ret = -EINVAL;
2407 }
2408 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2410 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2411 ret = -EINVAL;
2412 }
2413 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2414 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2415 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2416 ret = -EINVAL;
2417 }
2418 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2420 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2421 ret = -EINVAL;
2422 }
2423
2424 /*
2425 * Check sectorsize and nodesize first, other check will need it.
2426 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2427 */
2428 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2429 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2430 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2431 ret = -EINVAL;
2432 }
2433 /* Only PAGE SIZE is supported yet */
2434 if (sectorsize != PAGE_SIZE) {
2435 btrfs_err(fs_info,
2436 "sectorsize %llu not supported yet, only support %lu",
2437 sectorsize, PAGE_SIZE);
2438 ret = -EINVAL;
2439 }
2440 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2441 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2442 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2443 ret = -EINVAL;
2444 }
2445 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2446 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2447 le32_to_cpu(sb->__unused_leafsize), nodesize);
2448 ret = -EINVAL;
2449 }
2450
2451 /* Root alignment check */
2452 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2453 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2454 btrfs_super_root(sb));
2455 ret = -EINVAL;
2456 }
2457 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2458 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2459 btrfs_super_chunk_root(sb));
2460 ret = -EINVAL;
2461 }
2462 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2463 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2464 btrfs_super_log_root(sb));
2465 ret = -EINVAL;
2466 }
2467
de37aa51 2468 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2469 BTRFS_FSID_SIZE) != 0) {
21a852b0 2470 btrfs_err(fs_info,
7239ff4b 2471 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2472 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2473 ret = -EINVAL;
2474 }
2475
2476 /*
2477 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2478 * done later
2479 */
2480 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2481 btrfs_err(fs_info, "bytes_used is too small %llu",
2482 btrfs_super_bytes_used(sb));
2483 ret = -EINVAL;
2484 }
2485 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2486 btrfs_err(fs_info, "invalid stripesize %u",
2487 btrfs_super_stripesize(sb));
2488 ret = -EINVAL;
2489 }
2490 if (btrfs_super_num_devices(sb) > (1UL << 31))
2491 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2492 btrfs_super_num_devices(sb));
2493 if (btrfs_super_num_devices(sb) == 0) {
2494 btrfs_err(fs_info, "number of devices is 0");
2495 ret = -EINVAL;
2496 }
2497
069ec957
QW
2498 if (mirror_num >= 0 &&
2499 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2500 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2501 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2502 ret = -EINVAL;
2503 }
2504
2505 /*
2506 * Obvious sys_chunk_array corruptions, it must hold at least one key
2507 * and one chunk
2508 */
2509 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2510 btrfs_err(fs_info, "system chunk array too big %u > %u",
2511 btrfs_super_sys_array_size(sb),
2512 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2513 ret = -EINVAL;
2514 }
2515 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2516 + sizeof(struct btrfs_chunk)) {
2517 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2518 btrfs_super_sys_array_size(sb),
2519 sizeof(struct btrfs_disk_key)
2520 + sizeof(struct btrfs_chunk));
2521 ret = -EINVAL;
2522 }
2523
2524 /*
2525 * The generation is a global counter, we'll trust it more than the others
2526 * but it's still possible that it's the one that's wrong.
2527 */
2528 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2529 btrfs_warn(fs_info,
2530 "suspicious: generation < chunk_root_generation: %llu < %llu",
2531 btrfs_super_generation(sb),
2532 btrfs_super_chunk_root_generation(sb));
2533 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2534 && btrfs_super_cache_generation(sb) != (u64)-1)
2535 btrfs_warn(fs_info,
2536 "suspicious: generation < cache_generation: %llu < %llu",
2537 btrfs_super_generation(sb),
2538 btrfs_super_cache_generation(sb));
2539
2540 return ret;
2541}
2542
069ec957
QW
2543/*
2544 * Validation of super block at mount time.
2545 * Some checks already done early at mount time, like csum type and incompat
2546 * flags will be skipped.
2547 */
2548static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2549{
2550 return validate_super(fs_info, fs_info->super_copy, 0);
2551}
2552
75cb857d
QW
2553/*
2554 * Validation of super block at write time.
2555 * Some checks like bytenr check will be skipped as their values will be
2556 * overwritten soon.
2557 * Extra checks like csum type and incompat flags will be done here.
2558 */
2559static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2560 struct btrfs_super_block *sb)
2561{
2562 int ret;
2563
2564 ret = validate_super(fs_info, sb, -1);
2565 if (ret < 0)
2566 goto out;
2567 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2568 ret = -EUCLEAN;
2569 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2570 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2571 goto out;
2572 }
2573 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2574 ret = -EUCLEAN;
2575 btrfs_err(fs_info,
2576 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2577 btrfs_super_incompat_flags(sb),
2578 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2579 goto out;
2580 }
2581out:
2582 if (ret < 0)
2583 btrfs_err(fs_info,
2584 "super block corruption detected before writing it to disk");
2585 return ret;
2586}
2587
ad2b2c80
AV
2588int open_ctree(struct super_block *sb,
2589 struct btrfs_fs_devices *fs_devices,
2590 char *options)
2e635a27 2591{
db94535d
CM
2592 u32 sectorsize;
2593 u32 nodesize;
87ee04eb 2594 u32 stripesize;
84234f3a 2595 u64 generation;
f2b636e8 2596 u64 features;
3de4586c 2597 struct btrfs_key location;
a061fc8d 2598 struct buffer_head *bh;
4d34b278 2599 struct btrfs_super_block *disk_super;
815745cf 2600 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2601 struct btrfs_root *tree_root;
4d34b278 2602 struct btrfs_root *chunk_root;
eb60ceac 2603 int ret;
e58ca020 2604 int err = -EINVAL;
af31f5e5
CM
2605 int num_backups_tried = 0;
2606 int backup_index = 0;
6675df31 2607 int clear_free_space_tree = 0;
581c1760 2608 int level;
4543df7e 2609
74e4d827
DS
2610 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2611 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2612 if (!tree_root || !chunk_root) {
39279cc3
CM
2613 err = -ENOMEM;
2614 goto fail;
2615 }
76dda93c
YZ
2616
2617 ret = init_srcu_struct(&fs_info->subvol_srcu);
2618 if (ret) {
2619 err = ret;
2620 goto fail;
2621 }
2622
908c7f19 2623 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2624 if (ret) {
2625 err = ret;
9e11ceee 2626 goto fail_srcu;
e2d84521 2627 }
09cbfeaf 2628 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2629 (1 + ilog2(nr_cpu_ids));
2630
908c7f19 2631 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2632 if (ret) {
2633 err = ret;
2634 goto fail_dirty_metadata_bytes;
2635 }
2636
7f8d236a
DS
2637 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2638 GFP_KERNEL);
c404e0dc
MX
2639 if (ret) {
2640 err = ret;
2641 goto fail_delalloc_bytes;
2642 }
2643
76dda93c 2644 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2645 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2646 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2647 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2648 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2649 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2650 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2651 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2652 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2653 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2654 spin_lock_init(&fs_info->trans_lock);
76dda93c 2655 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2656 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2657 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2658 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2659 spin_lock_init(&fs_info->super_lock);
fcebe456 2660 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2661 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2662 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2663 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2664 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2665 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2666 mutex_init(&fs_info->reloc_mutex);
573bfb72 2667 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2668 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2669 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2670
0b86a832 2671 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2672 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2673 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2674 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2675 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2676 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2677 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2678 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2679 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2680 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2681 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2682 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2683 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2684 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2685 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2686 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2687 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2688 fs_info->sb = sb;
95ac567a 2689 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2690 fs_info->metadata_ratio = 0;
4cb5300b 2691 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2692 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2693 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2694 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2695 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2696 /* readahead state */
d0164adc 2697 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2698 spin_lock_init(&fs_info->reada_lock);
fd708b81 2699 btrfs_init_ref_verify(fs_info);
c8b97818 2700
b34b086c
CM
2701 fs_info->thread_pool_size = min_t(unsigned long,
2702 num_online_cpus() + 2, 8);
0afbaf8c 2703
199c2a9c
MX
2704 INIT_LIST_HEAD(&fs_info->ordered_roots);
2705 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2706
2707 fs_info->btree_inode = new_inode(sb);
2708 if (!fs_info->btree_inode) {
2709 err = -ENOMEM;
2710 goto fail_bio_counter;
2711 }
2712 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2713
16cdcec7 2714 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2715 GFP_KERNEL);
16cdcec7
MX
2716 if (!fs_info->delayed_root) {
2717 err = -ENOMEM;
2718 goto fail_iput;
2719 }
2720 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2721
638aa7ed 2722 btrfs_init_scrub(fs_info);
21adbd5c
SB
2723#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2724 fs_info->check_integrity_print_mask = 0;
2725#endif
779a65a4 2726 btrfs_init_balance(fs_info);
21c7e756 2727 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2728
9f6d2510
DS
2729 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2730 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2731
6bccf3ab 2732 btrfs_init_btree_inode(fs_info);
76dda93c 2733
0f9dd46c 2734 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2735 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2736 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2737
c6100a4b
JB
2738 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2739 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2740 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2741 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2742
5a3f23d5 2743 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2744 mutex_init(&fs_info->tree_log_mutex);
925baedd 2745 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2746 mutex_init(&fs_info->transaction_kthread_mutex);
2747 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2748 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2749 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2750 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2751 init_rwsem(&fs_info->subvol_sem);
803b2f54 2752 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2753
ad618368 2754 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2755 btrfs_init_qgroup(fs_info);
416ac51d 2756
fa9c0d79
CM
2757 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2758 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2759
e6dcd2dc 2760 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2761 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2762 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2763 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2764
04216820
FM
2765 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2766
da17066c
JM
2767 /* Usable values until the real ones are cached from the superblock */
2768 fs_info->nodesize = 4096;
2769 fs_info->sectorsize = 4096;
2770 fs_info->stripesize = 4096;
2771
eede2bf3
OS
2772 spin_lock_init(&fs_info->swapfile_pins_lock);
2773 fs_info->swapfile_pins = RB_ROOT;
2774
53b381b3
DW
2775 ret = btrfs_alloc_stripe_hash_table(fs_info);
2776 if (ret) {
83c8266a 2777 err = ret;
53b381b3
DW
2778 goto fail_alloc;
2779 }
2780
da17066c 2781 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2782
3c4bb26b 2783 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2784
2785 /*
2786 * Read super block and check the signature bytes only
2787 */
a512bbf8 2788 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2789 if (IS_ERR(bh)) {
2790 err = PTR_ERR(bh);
16cdcec7 2791 goto fail_alloc;
20b45077 2792 }
39279cc3 2793
1104a885
DS
2794 /*
2795 * We want to check superblock checksum, the type is stored inside.
2796 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2797 */
ab8d0fc4 2798 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2799 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2800 err = -EINVAL;
b2acdddf 2801 brelse(bh);
1104a885
DS
2802 goto fail_alloc;
2803 }
2804
2805 /*
2806 * super_copy is zeroed at allocation time and we never touch the
2807 * following bytes up to INFO_SIZE, the checksum is calculated from
2808 * the whole block of INFO_SIZE
2809 */
6c41761f 2810 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2811 brelse(bh);
5f39d397 2812
fbc6feae
NB
2813 disk_super = fs_info->super_copy;
2814
de37aa51
NB
2815 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2816 BTRFS_FSID_SIZE));
2817
7239ff4b 2818 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2819 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2820 fs_info->super_copy->metadata_uuid,
2821 BTRFS_FSID_SIZE));
7239ff4b 2822 }
0b86a832 2823
fbc6feae
NB
2824 features = btrfs_super_flags(disk_super);
2825 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2826 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2827 btrfs_set_super_flags(disk_super, features);
2828 btrfs_info(fs_info,
2829 "found metadata UUID change in progress flag, clearing");
2830 }
2831
2832 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2833 sizeof(*fs_info->super_for_commit));
de37aa51 2834
069ec957 2835 ret = btrfs_validate_mount_super(fs_info);
1104a885 2836 if (ret) {
05135f59 2837 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2838 err = -EINVAL;
2839 goto fail_alloc;
2840 }
2841
0f7d52f4 2842 if (!btrfs_super_root(disk_super))
16cdcec7 2843 goto fail_alloc;
0f7d52f4 2844
acce952b 2845 /* check FS state, whether FS is broken. */
87533c47
MX
2846 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2847 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2848
af31f5e5
CM
2849 /*
2850 * run through our array of backup supers and setup
2851 * our ring pointer to the oldest one
2852 */
2853 generation = btrfs_super_generation(disk_super);
2854 find_oldest_super_backup(fs_info, generation);
2855
75e7cb7f
LB
2856 /*
2857 * In the long term, we'll store the compression type in the super
2858 * block, and it'll be used for per file compression control.
2859 */
2860 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2861
2ff7e61e 2862 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2863 if (ret) {
2864 err = ret;
16cdcec7 2865 goto fail_alloc;
2b82032c 2866 }
dfe25020 2867
f2b636e8
JB
2868 features = btrfs_super_incompat_flags(disk_super) &
2869 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2870 if (features) {
05135f59
DS
2871 btrfs_err(fs_info,
2872 "cannot mount because of unsupported optional features (%llx)",
2873 features);
f2b636e8 2874 err = -EINVAL;
16cdcec7 2875 goto fail_alloc;
f2b636e8
JB
2876 }
2877
5d4f98a2 2878 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2879 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2880 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2881 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2882 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2883 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2884
3173a18f 2885 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2886 btrfs_info(fs_info, "has skinny extents");
3173a18f 2887
727011e0
CM
2888 /*
2889 * flag our filesystem as having big metadata blocks if
2890 * they are bigger than the page size
2891 */
09cbfeaf 2892 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2893 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2894 btrfs_info(fs_info,
2895 "flagging fs with big metadata feature");
727011e0
CM
2896 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2897 }
2898
bc3f116f 2899 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2900 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2901 stripesize = sectorsize;
707e8a07 2902 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2903 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2904
da17066c
JM
2905 /* Cache block sizes */
2906 fs_info->nodesize = nodesize;
2907 fs_info->sectorsize = sectorsize;
2908 fs_info->stripesize = stripesize;
2909
bc3f116f
CM
2910 /*
2911 * mixed block groups end up with duplicate but slightly offset
2912 * extent buffers for the same range. It leads to corruptions
2913 */
2914 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2915 (sectorsize != nodesize)) {
05135f59
DS
2916 btrfs_err(fs_info,
2917"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2918 nodesize, sectorsize);
bc3f116f
CM
2919 goto fail_alloc;
2920 }
2921
ceda0864
MX
2922 /*
2923 * Needn't use the lock because there is no other task which will
2924 * update the flag.
2925 */
a6fa6fae 2926 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2927
f2b636e8
JB
2928 features = btrfs_super_compat_ro_flags(disk_super) &
2929 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2930 if (!sb_rdonly(sb) && features) {
05135f59
DS
2931 btrfs_err(fs_info,
2932 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2933 features);
f2b636e8 2934 err = -EINVAL;
16cdcec7 2935 goto fail_alloc;
f2b636e8 2936 }
61d92c32 2937
2a458198
ES
2938 ret = btrfs_init_workqueues(fs_info, fs_devices);
2939 if (ret) {
2940 err = ret;
0dc3b84a
JB
2941 goto fail_sb_buffer;
2942 }
4543df7e 2943
9e11ceee
JK
2944 sb->s_bdi->congested_fn = btrfs_congested_fn;
2945 sb->s_bdi->congested_data = fs_info;
2946 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2947 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2948 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2949 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2950
a061fc8d
CM
2951 sb->s_blocksize = sectorsize;
2952 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2953 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2954
925baedd 2955 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2956 ret = btrfs_read_sys_array(fs_info);
925baedd 2957 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2958 if (ret) {
05135f59 2959 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2960 goto fail_sb_buffer;
84eed90f 2961 }
0b86a832 2962
84234f3a 2963 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2964 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2965
da17066c 2966 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2967
2ff7e61e 2968 chunk_root->node = read_tree_block(fs_info,
0b86a832 2969 btrfs_super_chunk_root(disk_super),
581c1760 2970 generation, level, NULL);
64c043de
LB
2971 if (IS_ERR(chunk_root->node) ||
2972 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2973 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2974 if (!IS_ERR(chunk_root->node))
2975 free_extent_buffer(chunk_root->node);
95ab1f64 2976 chunk_root->node = NULL;
af31f5e5 2977 goto fail_tree_roots;
83121942 2978 }
5d4f98a2
YZ
2979 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2980 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2981
e17cade2 2982 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2983 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2984
5b4aacef 2985 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2986 if (ret) {
05135f59 2987 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2988 goto fail_tree_roots;
2b82032c 2989 }
0b86a832 2990
8dabb742 2991 /*
9b99b115
AJ
2992 * Keep the devid that is marked to be the target device for the
2993 * device replace procedure
8dabb742 2994 */
9b99b115 2995 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 2996
a6b0d5c8 2997 if (!fs_devices->latest_bdev) {
05135f59 2998 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2999 goto fail_tree_roots;
3000 }
3001
af31f5e5 3002retry_root_backup:
84234f3a 3003 generation = btrfs_super_generation(disk_super);
581c1760 3004 level = btrfs_super_root_level(disk_super);
0b86a832 3005
2ff7e61e 3006 tree_root->node = read_tree_block(fs_info,
db94535d 3007 btrfs_super_root(disk_super),
581c1760 3008 generation, level, NULL);
64c043de
LB
3009 if (IS_ERR(tree_root->node) ||
3010 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3011 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3012 if (!IS_ERR(tree_root->node))
3013 free_extent_buffer(tree_root->node);
95ab1f64 3014 tree_root->node = NULL;
af31f5e5 3015 goto recovery_tree_root;
83121942 3016 }
af31f5e5 3017
5d4f98a2
YZ
3018 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3019 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3020 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3021
f32e48e9
CR
3022 mutex_lock(&tree_root->objectid_mutex);
3023 ret = btrfs_find_highest_objectid(tree_root,
3024 &tree_root->highest_objectid);
3025 if (ret) {
3026 mutex_unlock(&tree_root->objectid_mutex);
3027 goto recovery_tree_root;
3028 }
3029
3030 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3031
3032 mutex_unlock(&tree_root->objectid_mutex);
3033
6bccf3ab 3034 ret = btrfs_read_roots(fs_info);
4bbcaa64 3035 if (ret)
af31f5e5 3036 goto recovery_tree_root;
f7a81ea4 3037
8929ecfa
YZ
3038 fs_info->generation = generation;
3039 fs_info->last_trans_committed = generation;
8929ecfa 3040
cf90d884
QW
3041 ret = btrfs_verify_dev_extents(fs_info);
3042 if (ret) {
3043 btrfs_err(fs_info,
3044 "failed to verify dev extents against chunks: %d",
3045 ret);
3046 goto fail_block_groups;
3047 }
68310a5e
ID
3048 ret = btrfs_recover_balance(fs_info);
3049 if (ret) {
05135f59 3050 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3051 goto fail_block_groups;
3052 }
3053
733f4fbb
SB
3054 ret = btrfs_init_dev_stats(fs_info);
3055 if (ret) {
05135f59 3056 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3057 goto fail_block_groups;
3058 }
3059
8dabb742
SB
3060 ret = btrfs_init_dev_replace(fs_info);
3061 if (ret) {
05135f59 3062 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3063 goto fail_block_groups;
3064 }
3065
9b99b115 3066 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3067
b7c35e81
AJ
3068 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3069 if (ret) {
05135f59
DS
3070 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3071 ret);
b7c35e81
AJ
3072 goto fail_block_groups;
3073 }
3074
3075 ret = btrfs_sysfs_add_device(fs_devices);
3076 if (ret) {
05135f59
DS
3077 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3078 ret);
b7c35e81
AJ
3079 goto fail_fsdev_sysfs;
3080 }
3081
96f3136e 3082 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3083 if (ret) {
05135f59 3084 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3085 goto fail_fsdev_sysfs;
c59021f8 3086 }
3087
c59021f8 3088 ret = btrfs_init_space_info(fs_info);
3089 if (ret) {
05135f59 3090 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3091 goto fail_sysfs;
c59021f8 3092 }
3093
5b4aacef 3094 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3095 if (ret) {
05135f59 3096 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3097 goto fail_sysfs;
1b1d1f66 3098 }
4330e183 3099
6528b99d 3100 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3101 btrfs_warn(fs_info,
4330e183 3102 "writeable mount is not allowed due to too many missing devices");
2365dd3c 3103 goto fail_sysfs;
292fd7fc 3104 }
9078a3e1 3105
a74a4b97
CM
3106 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3107 "btrfs-cleaner");
57506d50 3108 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3109 goto fail_sysfs;
a74a4b97
CM
3110
3111 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3112 tree_root,
3113 "btrfs-transaction");
57506d50 3114 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3115 goto fail_cleaner;
a74a4b97 3116
583b7231 3117 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3118 !fs_info->fs_devices->rotating) {
583b7231 3119 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3120 }
3121
572d9ab7 3122 /*
01327610 3123 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3124 * not have to wait for transaction commit
3125 */
3126 btrfs_apply_pending_changes(fs_info);
3818aea2 3127
21adbd5c 3128#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3129 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3130 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3131 btrfs_test_opt(fs_info,
21adbd5c
SB
3132 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3133 1 : 0,
3134 fs_info->check_integrity_print_mask);
3135 if (ret)
05135f59
DS
3136 btrfs_warn(fs_info,
3137 "failed to initialize integrity check module: %d",
3138 ret);
21adbd5c
SB
3139 }
3140#endif
bcef60f2
AJ
3141 ret = btrfs_read_qgroup_config(fs_info);
3142 if (ret)
3143 goto fail_trans_kthread;
21adbd5c 3144
fd708b81
JB
3145 if (btrfs_build_ref_tree(fs_info))
3146 btrfs_err(fs_info, "couldn't build ref tree");
3147
96da0919
QW
3148 /* do not make disk changes in broken FS or nologreplay is given */
3149 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3150 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3151 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3152 if (ret) {
63443bf5 3153 err = ret;
28c16cbb 3154 goto fail_qgroup;
79787eaa 3155 }
e02119d5 3156 }
1a40e23b 3157
6bccf3ab 3158 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3159 if (ret)
28c16cbb 3160 goto fail_qgroup;
76dda93c 3161
bc98a42c 3162 if (!sb_rdonly(sb)) {
d68fc57b 3163 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3164 if (ret)
28c16cbb 3165 goto fail_qgroup;
90c711ab
ZB
3166
3167 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3168 ret = btrfs_recover_relocation(tree_root);
90c711ab 3169 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3170 if (ret < 0) {
05135f59
DS
3171 btrfs_warn(fs_info, "failed to recover relocation: %d",
3172 ret);
d7ce5843 3173 err = -EINVAL;
bcef60f2 3174 goto fail_qgroup;
d7ce5843 3175 }
7c2ca468 3176 }
1a40e23b 3177
3de4586c
CM
3178 location.objectid = BTRFS_FS_TREE_OBJECTID;
3179 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3180 location.offset = 0;
3de4586c 3181
3de4586c 3182 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3183 if (IS_ERR(fs_info->fs_root)) {
3184 err = PTR_ERR(fs_info->fs_root);
f50f4353 3185 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3186 goto fail_qgroup;
3140c9a3 3187 }
c289811c 3188
bc98a42c 3189 if (sb_rdonly(sb))
2b6ba629 3190 return 0;
59641015 3191
f8d468a1
OS
3192 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3193 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3194 clear_free_space_tree = 1;
3195 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3196 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3197 btrfs_warn(fs_info, "free space tree is invalid");
3198 clear_free_space_tree = 1;
3199 }
3200
3201 if (clear_free_space_tree) {
f8d468a1
OS
3202 btrfs_info(fs_info, "clearing free space tree");
3203 ret = btrfs_clear_free_space_tree(fs_info);
3204 if (ret) {
3205 btrfs_warn(fs_info,
3206 "failed to clear free space tree: %d", ret);
6bccf3ab 3207 close_ctree(fs_info);
f8d468a1
OS
3208 return ret;
3209 }
3210 }
3211
0b246afa 3212 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3213 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3214 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3215 ret = btrfs_create_free_space_tree(fs_info);
3216 if (ret) {
05135f59
DS
3217 btrfs_warn(fs_info,
3218 "failed to create free space tree: %d", ret);
6bccf3ab 3219 close_ctree(fs_info);
511711af
CM
3220 return ret;
3221 }
3222 }
3223
2b6ba629
ID
3224 down_read(&fs_info->cleanup_work_sem);
3225 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3226 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3227 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3228 close_ctree(fs_info);
2b6ba629
ID
3229 return ret;
3230 }
3231 up_read(&fs_info->cleanup_work_sem);
59641015 3232
2b6ba629
ID
3233 ret = btrfs_resume_balance_async(fs_info);
3234 if (ret) {
05135f59 3235 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3236 close_ctree(fs_info);
2b6ba629 3237 return ret;
e3acc2a6
JB
3238 }
3239
8dabb742
SB
3240 ret = btrfs_resume_dev_replace_async(fs_info);
3241 if (ret) {
05135f59 3242 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3243 close_ctree(fs_info);
8dabb742
SB
3244 return ret;
3245 }
3246
b382a324
JS
3247 btrfs_qgroup_rescan_resume(fs_info);
3248
4bbcaa64 3249 if (!fs_info->uuid_root) {
05135f59 3250 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3251 ret = btrfs_create_uuid_tree(fs_info);
3252 if (ret) {
05135f59
DS
3253 btrfs_warn(fs_info,
3254 "failed to create the UUID tree: %d", ret);
6bccf3ab 3255 close_ctree(fs_info);
f7a81ea4
SB
3256 return ret;
3257 }
0b246afa 3258 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3259 fs_info->generation !=
3260 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3261 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3262 ret = btrfs_check_uuid_tree(fs_info);
3263 if (ret) {
05135f59
DS
3264 btrfs_warn(fs_info,
3265 "failed to check the UUID tree: %d", ret);
6bccf3ab 3266 close_ctree(fs_info);
70f80175
SB
3267 return ret;
3268 }
3269 } else {
afcdd129 3270 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3271 }
afcdd129 3272 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3273
8dcddfa0
QW
3274 /*
3275 * backuproot only affect mount behavior, and if open_ctree succeeded,
3276 * no need to keep the flag
3277 */
3278 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3279
ad2b2c80 3280 return 0;
39279cc3 3281
bcef60f2
AJ
3282fail_qgroup:
3283 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3284fail_trans_kthread:
3285 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3286 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3287 btrfs_free_fs_roots(fs_info);
3f157a2f 3288fail_cleaner:
a74a4b97 3289 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3290
3291 /*
3292 * make sure we're done with the btree inode before we stop our
3293 * kthreads
3294 */
3295 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3296
2365dd3c 3297fail_sysfs:
6618a59b 3298 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3299
b7c35e81
AJ
3300fail_fsdev_sysfs:
3301 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3302
1b1d1f66 3303fail_block_groups:
54067ae9 3304 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3305
3306fail_tree_roots:
3307 free_root_pointers(fs_info, 1);
2b8195bb 3308 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3309
39279cc3 3310fail_sb_buffer:
7abadb64 3311 btrfs_stop_all_workers(fs_info);
5cdd7db6 3312 btrfs_free_block_groups(fs_info);
16cdcec7 3313fail_alloc:
4543df7e 3314fail_iput:
586e46e2
ID
3315 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3316
4543df7e 3317 iput(fs_info->btree_inode);
c404e0dc 3318fail_bio_counter:
7f8d236a 3319 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3320fail_delalloc_bytes:
3321 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3322fail_dirty_metadata_bytes:
3323 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3324fail_srcu:
3325 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3326fail:
53b381b3 3327 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3328 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3329 return err;
af31f5e5
CM
3330
3331recovery_tree_root:
0b246afa 3332 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3333 goto fail_tree_roots;
3334
3335 free_root_pointers(fs_info, 0);
3336
3337 /* don't use the log in recovery mode, it won't be valid */
3338 btrfs_set_super_log_root(disk_super, 0);
3339
3340 /* we can't trust the free space cache either */
3341 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3342
3343 ret = next_root_backup(fs_info, fs_info->super_copy,
3344 &num_backups_tried, &backup_index);
3345 if (ret == -1)
3346 goto fail_block_groups;
3347 goto retry_root_backup;
eb60ceac 3348}
663faf9f 3349ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3350
f2984462
CM
3351static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3352{
f2984462
CM
3353 if (uptodate) {
3354 set_buffer_uptodate(bh);
3355 } else {
442a4f63
SB
3356 struct btrfs_device *device = (struct btrfs_device *)
3357 bh->b_private;
3358
fb456252 3359 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3360 "lost page write due to IO error on %s",
606686ee 3361 rcu_str_deref(device->name));
01327610 3362 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3363 * our own ways of dealing with the IO errors
3364 */
f2984462 3365 clear_buffer_uptodate(bh);
442a4f63 3366 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3367 }
3368 unlock_buffer(bh);
3369 put_bh(bh);
3370}
3371
29c36d72
AJ
3372int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3373 struct buffer_head **bh_ret)
3374{
3375 struct buffer_head *bh;
3376 struct btrfs_super_block *super;
3377 u64 bytenr;
3378
3379 bytenr = btrfs_sb_offset(copy_num);
3380 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3381 return -EINVAL;
3382
9f6d2510 3383 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3384 /*
3385 * If we fail to read from the underlying devices, as of now
3386 * the best option we have is to mark it EIO.
3387 */
3388 if (!bh)
3389 return -EIO;
3390
3391 super = (struct btrfs_super_block *)bh->b_data;
3392 if (btrfs_super_bytenr(super) != bytenr ||
3393 btrfs_super_magic(super) != BTRFS_MAGIC) {
3394 brelse(bh);
3395 return -EINVAL;
3396 }
3397
3398 *bh_ret = bh;
3399 return 0;
3400}
3401
3402
a512bbf8
YZ
3403struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3404{
3405 struct buffer_head *bh;
3406 struct buffer_head *latest = NULL;
3407 struct btrfs_super_block *super;
3408 int i;
3409 u64 transid = 0;
92fc03fb 3410 int ret = -EINVAL;
a512bbf8
YZ
3411
3412 /* we would like to check all the supers, but that would make
3413 * a btrfs mount succeed after a mkfs from a different FS.
3414 * So, we need to add a special mount option to scan for
3415 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3416 */
3417 for (i = 0; i < 1; i++) {
29c36d72
AJ
3418 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3419 if (ret)
a512bbf8
YZ
3420 continue;
3421
3422 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3423
3424 if (!latest || btrfs_super_generation(super) > transid) {
3425 brelse(latest);
3426 latest = bh;
3427 transid = btrfs_super_generation(super);
3428 } else {
3429 brelse(bh);
3430 }
3431 }
92fc03fb
AJ
3432
3433 if (!latest)
3434 return ERR_PTR(ret);
3435
a512bbf8
YZ
3436 return latest;
3437}
3438
4eedeb75 3439/*
abbb3b8e
DS
3440 * Write superblock @sb to the @device. Do not wait for completion, all the
3441 * buffer heads we write are pinned.
4eedeb75 3442 *
abbb3b8e
DS
3443 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3444 * the expected device size at commit time. Note that max_mirrors must be
3445 * same for write and wait phases.
4eedeb75 3446 *
abbb3b8e 3447 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3448 */
a512bbf8 3449static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3450 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3451{
3452 struct buffer_head *bh;
3453 int i;
3454 int ret;
3455 int errors = 0;
3456 u32 crc;
3457 u64 bytenr;
1b9e619c 3458 int op_flags;
a512bbf8
YZ
3459
3460 if (max_mirrors == 0)
3461 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3462
a512bbf8
YZ
3463 for (i = 0; i < max_mirrors; i++) {
3464 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3465 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3466 device->commit_total_bytes)
a512bbf8
YZ
3467 break;
3468
abbb3b8e 3469 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3470
abbb3b8e
DS
3471 crc = ~(u32)0;
3472 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3473 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3474 btrfs_csum_final(crc, sb->csum);
4eedeb75 3475
abbb3b8e 3476 /* One reference for us, and we leave it for the caller */
9f6d2510 3477 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3478 BTRFS_SUPER_INFO_SIZE);
3479 if (!bh) {
3480 btrfs_err(device->fs_info,
3481 "couldn't get super buffer head for bytenr %llu",
3482 bytenr);
3483 errors++;
4eedeb75 3484 continue;
abbb3b8e 3485 }
634554dc 3486
abbb3b8e 3487 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3488
abbb3b8e
DS
3489 /* one reference for submit_bh */
3490 get_bh(bh);
4eedeb75 3491
abbb3b8e
DS
3492 set_buffer_uptodate(bh);
3493 lock_buffer(bh);
3494 bh->b_end_io = btrfs_end_buffer_write_sync;
3495 bh->b_private = device;
a512bbf8 3496
387125fc
CM
3497 /*
3498 * we fua the first super. The others we allow
3499 * to go down lazy.
3500 */
1b9e619c
OS
3501 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3502 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3503 op_flags |= REQ_FUA;
3504 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3505 if (ret)
a512bbf8 3506 errors++;
a512bbf8
YZ
3507 }
3508 return errors < i ? 0 : -1;
3509}
3510
abbb3b8e
DS
3511/*
3512 * Wait for write completion of superblocks done by write_dev_supers,
3513 * @max_mirrors same for write and wait phases.
3514 *
3515 * Return number of errors when buffer head is not found or not marked up to
3516 * date.
3517 */
3518static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3519{
3520 struct buffer_head *bh;
3521 int i;
3522 int errors = 0;
b6a535fa 3523 bool primary_failed = false;
abbb3b8e
DS
3524 u64 bytenr;
3525
3526 if (max_mirrors == 0)
3527 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3528
3529 for (i = 0; i < max_mirrors; i++) {
3530 bytenr = btrfs_sb_offset(i);
3531 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3532 device->commit_total_bytes)
3533 break;
3534
9f6d2510
DS
3535 bh = __find_get_block(device->bdev,
3536 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3537 BTRFS_SUPER_INFO_SIZE);
3538 if (!bh) {
3539 errors++;
b6a535fa
HM
3540 if (i == 0)
3541 primary_failed = true;
abbb3b8e
DS
3542 continue;
3543 }
3544 wait_on_buffer(bh);
b6a535fa 3545 if (!buffer_uptodate(bh)) {
abbb3b8e 3546 errors++;
b6a535fa
HM
3547 if (i == 0)
3548 primary_failed = true;
3549 }
abbb3b8e
DS
3550
3551 /* drop our reference */
3552 brelse(bh);
3553
3554 /* drop the reference from the writing run */
3555 brelse(bh);
3556 }
3557
b6a535fa
HM
3558 /* log error, force error return */
3559 if (primary_failed) {
3560 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3561 device->devid);
3562 return -1;
3563 }
3564
abbb3b8e
DS
3565 return errors < i ? 0 : -1;
3566}
3567
387125fc
CM
3568/*
3569 * endio for the write_dev_flush, this will wake anyone waiting
3570 * for the barrier when it is done
3571 */
4246a0b6 3572static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3573{
e0ae9994 3574 complete(bio->bi_private);
387125fc
CM
3575}
3576
3577/*
4fc6441a
AJ
3578 * Submit a flush request to the device if it supports it. Error handling is
3579 * done in the waiting counterpart.
387125fc 3580 */
4fc6441a 3581static void write_dev_flush(struct btrfs_device *device)
387125fc 3582{
c2a9c7ab 3583 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3584 struct bio *bio = device->flush_bio;
387125fc 3585
c2a9c7ab 3586 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3587 return;
387125fc 3588
e0ae9994 3589 bio_reset(bio);
387125fc 3590 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3591 bio_set_dev(bio, device->bdev);
8d910125 3592 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3593 init_completion(&device->flush_wait);
3594 bio->bi_private = &device->flush_wait;
387125fc 3595
43a01111 3596 btrfsic_submit_bio(bio);
1c3063b6 3597 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3598}
387125fc 3599
4fc6441a
AJ
3600/*
3601 * If the flush bio has been submitted by write_dev_flush, wait for it.
3602 */
8c27cb35 3603static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3604{
4fc6441a 3605 struct bio *bio = device->flush_bio;
387125fc 3606
1c3063b6 3607 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3608 return BLK_STS_OK;
387125fc 3609
1c3063b6 3610 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3611 wait_for_completion_io(&device->flush_wait);
387125fc 3612
8c27cb35 3613 return bio->bi_status;
387125fc 3614}
387125fc 3615
d10b82fe 3616static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3617{
6528b99d 3618 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3619 return -EIO;
387125fc
CM
3620 return 0;
3621}
3622
3623/*
3624 * send an empty flush down to each device in parallel,
3625 * then wait for them
3626 */
3627static int barrier_all_devices(struct btrfs_fs_info *info)
3628{
3629 struct list_head *head;
3630 struct btrfs_device *dev;
5af3e8cc 3631 int errors_wait = 0;
4e4cbee9 3632 blk_status_t ret;
387125fc 3633
1538e6c5 3634 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3635 /* send down all the barriers */
3636 head = &info->fs_devices->devices;
1538e6c5 3637 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3638 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3639 continue;
cea7c8bf 3640 if (!dev->bdev)
387125fc 3641 continue;
e12c9621 3642 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3643 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3644 continue;
3645
4fc6441a 3646 write_dev_flush(dev);
58efbc9f 3647 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3648 }
3649
3650 /* wait for all the barriers */
1538e6c5 3651 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3652 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3653 continue;
387125fc 3654 if (!dev->bdev) {
5af3e8cc 3655 errors_wait++;
387125fc
CM
3656 continue;
3657 }
e12c9621 3658 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3659 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3660 continue;
3661
4fc6441a 3662 ret = wait_dev_flush(dev);
401b41e5
AJ
3663 if (ret) {
3664 dev->last_flush_error = ret;
66b4993e
DS
3665 btrfs_dev_stat_inc_and_print(dev,
3666 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3667 errors_wait++;
401b41e5
AJ
3668 }
3669 }
3670
cea7c8bf 3671 if (errors_wait) {
401b41e5
AJ
3672 /*
3673 * At some point we need the status of all disks
3674 * to arrive at the volume status. So error checking
3675 * is being pushed to a separate loop.
3676 */
d10b82fe 3677 return check_barrier_error(info);
387125fc 3678 }
387125fc
CM
3679 return 0;
3680}
3681
943c6e99
ZL
3682int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3683{
8789f4fe
ZL
3684 int raid_type;
3685 int min_tolerated = INT_MAX;
943c6e99 3686
8789f4fe
ZL
3687 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3688 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3689 min_tolerated = min(min_tolerated,
3690 btrfs_raid_array[BTRFS_RAID_SINGLE].
3691 tolerated_failures);
943c6e99 3692
8789f4fe
ZL
3693 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3694 if (raid_type == BTRFS_RAID_SINGLE)
3695 continue;
41a6e891 3696 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3697 continue;
3698 min_tolerated = min(min_tolerated,
3699 btrfs_raid_array[raid_type].
3700 tolerated_failures);
3701 }
943c6e99 3702
8789f4fe 3703 if (min_tolerated == INT_MAX) {
ab8d0fc4 3704 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3705 min_tolerated = 0;
3706 }
3707
3708 return min_tolerated;
943c6e99
ZL
3709}
3710
eece6a9c 3711int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3712{
e5e9a520 3713 struct list_head *head;
f2984462 3714 struct btrfs_device *dev;
a061fc8d 3715 struct btrfs_super_block *sb;
f2984462 3716 struct btrfs_dev_item *dev_item;
f2984462
CM
3717 int ret;
3718 int do_barriers;
a236aed1
CM
3719 int max_errors;
3720 int total_errors = 0;
a061fc8d 3721 u64 flags;
f2984462 3722
0b246afa 3723 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3724
3725 /*
3726 * max_mirrors == 0 indicates we're from commit_transaction,
3727 * not from fsync where the tree roots in fs_info have not
3728 * been consistent on disk.
3729 */
3730 if (max_mirrors == 0)
3731 backup_super_roots(fs_info);
f2984462 3732
0b246afa 3733 sb = fs_info->super_for_commit;
a061fc8d 3734 dev_item = &sb->dev_item;
e5e9a520 3735
0b246afa
JM
3736 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3737 head = &fs_info->fs_devices->devices;
3738 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3739
5af3e8cc 3740 if (do_barriers) {
0b246afa 3741 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3742 if (ret) {
3743 mutex_unlock(
0b246afa
JM
3744 &fs_info->fs_devices->device_list_mutex);
3745 btrfs_handle_fs_error(fs_info, ret,
3746 "errors while submitting device barriers.");
5af3e8cc
SB
3747 return ret;
3748 }
3749 }
387125fc 3750
1538e6c5 3751 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3752 if (!dev->bdev) {
3753 total_errors++;
3754 continue;
3755 }
e12c9621 3756 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3757 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3758 continue;
3759
2b82032c 3760 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3761 btrfs_set_stack_device_type(dev_item, dev->type);
3762 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3763 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3764 dev->commit_total_bytes);
ce7213c7
MX
3765 btrfs_set_stack_device_bytes_used(dev_item,
3766 dev->commit_bytes_used);
a061fc8d
CM
3767 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3768 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3769 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3770 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3771 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3772 BTRFS_FSID_SIZE);
a512bbf8 3773
a061fc8d
CM
3774 flags = btrfs_super_flags(sb);
3775 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3776
75cb857d
QW
3777 ret = btrfs_validate_write_super(fs_info, sb);
3778 if (ret < 0) {
3779 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3780 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3781 "unexpected superblock corruption detected");
3782 return -EUCLEAN;
3783 }
3784
abbb3b8e 3785 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3786 if (ret)
3787 total_errors++;
f2984462 3788 }
a236aed1 3789 if (total_errors > max_errors) {
0b246afa
JM
3790 btrfs_err(fs_info, "%d errors while writing supers",
3791 total_errors);
3792 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3793
9d565ba4 3794 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3795 btrfs_handle_fs_error(fs_info, -EIO,
3796 "%d errors while writing supers",
3797 total_errors);
9d565ba4 3798 return -EIO;
a236aed1 3799 }
f2984462 3800
a512bbf8 3801 total_errors = 0;
1538e6c5 3802 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3803 if (!dev->bdev)
3804 continue;
e12c9621 3805 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3806 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3807 continue;
3808
abbb3b8e 3809 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3810 if (ret)
3811 total_errors++;
f2984462 3812 }
0b246afa 3813 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3814 if (total_errors > max_errors) {
0b246afa
JM
3815 btrfs_handle_fs_error(fs_info, -EIO,
3816 "%d errors while writing supers",
3817 total_errors);
79787eaa 3818 return -EIO;
a236aed1 3819 }
f2984462
CM
3820 return 0;
3821}
3822
cb517eab
MX
3823/* Drop a fs root from the radix tree and free it. */
3824void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3825 struct btrfs_root *root)
2619ba1f 3826{
4df27c4d 3827 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3828 radix_tree_delete(&fs_info->fs_roots_radix,
3829 (unsigned long)root->root_key.objectid);
4df27c4d 3830 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3831
3832 if (btrfs_root_refs(&root->root_item) == 0)
3833 synchronize_srcu(&fs_info->subvol_srcu);
3834
1c1ea4f7 3835 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3836 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3837 if (root->reloc_root) {
3838 free_extent_buffer(root->reloc_root->node);
3839 free_extent_buffer(root->reloc_root->commit_root);
3840 btrfs_put_fs_root(root->reloc_root);
3841 root->reloc_root = NULL;
3842 }
3843 }
3321719e 3844
faa2dbf0
JB
3845 if (root->free_ino_pinned)
3846 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3847 if (root->free_ino_ctl)
3848 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3849 btrfs_free_fs_root(root);
4df27c4d
YZ
3850}
3851
84db5ccf 3852void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3853{
57cdc8db 3854 iput(root->ino_cache_inode);
4df27c4d 3855 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3856 if (root->anon_dev)
3857 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3858 if (root->subv_writers)
3859 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3860 free_extent_buffer(root->node);
3861 free_extent_buffer(root->commit_root);
581bb050
LZ
3862 kfree(root->free_ino_ctl);
3863 kfree(root->free_ino_pinned);
b0feb9d9 3864 btrfs_put_fs_root(root);
2619ba1f
CM
3865}
3866
c146afad 3867int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3868{
c146afad
YZ
3869 u64 root_objectid = 0;
3870 struct btrfs_root *gang[8];
65d33fd7
QW
3871 int i = 0;
3872 int err = 0;
3873 unsigned int ret = 0;
3874 int index;
e089f05c 3875
c146afad 3876 while (1) {
65d33fd7 3877 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3878 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3879 (void **)gang, root_objectid,
3880 ARRAY_SIZE(gang));
65d33fd7
QW
3881 if (!ret) {
3882 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3883 break;
65d33fd7 3884 }
5d4f98a2 3885 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3886
c146afad 3887 for (i = 0; i < ret; i++) {
65d33fd7
QW
3888 /* Avoid to grab roots in dead_roots */
3889 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3890 gang[i] = NULL;
3891 continue;
3892 }
3893 /* grab all the search result for later use */
3894 gang[i] = btrfs_grab_fs_root(gang[i]);
3895 }
3896 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3897
65d33fd7
QW
3898 for (i = 0; i < ret; i++) {
3899 if (!gang[i])
3900 continue;
c146afad 3901 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3902 err = btrfs_orphan_cleanup(gang[i]);
3903 if (err)
65d33fd7
QW
3904 break;
3905 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3906 }
3907 root_objectid++;
3908 }
65d33fd7
QW
3909
3910 /* release the uncleaned roots due to error */
3911 for (; i < ret; i++) {
3912 if (gang[i])
3913 btrfs_put_fs_root(gang[i]);
3914 }
3915 return err;
c146afad 3916}
a2135011 3917
6bccf3ab 3918int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3919{
6bccf3ab 3920 struct btrfs_root *root = fs_info->tree_root;
c146afad 3921 struct btrfs_trans_handle *trans;
a74a4b97 3922
0b246afa 3923 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3924 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3925 mutex_unlock(&fs_info->cleaner_mutex);
3926 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3927
3928 /* wait until ongoing cleanup work done */
0b246afa
JM
3929 down_write(&fs_info->cleanup_work_sem);
3930 up_write(&fs_info->cleanup_work_sem);
c71bf099 3931
7a7eaa40 3932 trans = btrfs_join_transaction(root);
3612b495
TI
3933 if (IS_ERR(trans))
3934 return PTR_ERR(trans);
3a45bb20 3935 return btrfs_commit_transaction(trans);
c146afad
YZ
3936}
3937
6bccf3ab 3938void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3939{
c146afad
YZ
3940 int ret;
3941
afcdd129 3942 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3943 /*
3944 * We don't want the cleaner to start new transactions, add more delayed
3945 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3946 * because that frees the task_struct, and the transaction kthread might
3947 * still try to wake up the cleaner.
3948 */
3949 kthread_park(fs_info->cleaner_kthread);
c146afad 3950
7343dd61 3951 /* wait for the qgroup rescan worker to stop */
d06f23d6 3952 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3953
803b2f54
SB
3954 /* wait for the uuid_scan task to finish */
3955 down(&fs_info->uuid_tree_rescan_sem);
3956 /* avoid complains from lockdep et al., set sem back to initial state */
3957 up(&fs_info->uuid_tree_rescan_sem);
3958
837d5b6e 3959 /* pause restriper - we want to resume on mount */
aa1b8cd4 3960 btrfs_pause_balance(fs_info);
837d5b6e 3961
8dabb742
SB
3962 btrfs_dev_replace_suspend_for_unmount(fs_info);
3963
aa1b8cd4 3964 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3965
3966 /* wait for any defraggers to finish */
3967 wait_event(fs_info->transaction_wait,
3968 (atomic_read(&fs_info->defrag_running) == 0));
3969
3970 /* clear out the rbtree of defraggable inodes */
26176e7c 3971 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3972
21c7e756
MX
3973 cancel_work_sync(&fs_info->async_reclaim_work);
3974
bc98a42c 3975 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3976 /*
d6fd0ae2
OS
3977 * The cleaner kthread is stopped, so do one final pass over
3978 * unused block groups.
e44163e1 3979 */
0b246afa 3980 btrfs_delete_unused_bgs(fs_info);
e44163e1 3981
6bccf3ab 3982 ret = btrfs_commit_super(fs_info);
acce952b 3983 if (ret)
04892340 3984 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3985 }
3986
af722733
LB
3987 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3988 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 3989 btrfs_error_commit_super(fs_info);
0f7d52f4 3990
e3029d9f
AV
3991 kthread_stop(fs_info->transaction_kthread);
3992 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3993
e187831e 3994 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 3995 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3996
04892340 3997 btrfs_free_qgroup_config(fs_info);
fe816d0f 3998 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 3999
963d678b 4000 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4001 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4002 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4003 }
bcc63abb 4004
6618a59b 4005 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4006 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4007
faa2dbf0 4008 btrfs_free_fs_roots(fs_info);
d10c5f31 4009
1a4319cc
LB
4010 btrfs_put_block_group_cache(fs_info);
4011
de348ee0
WS
4012 /*
4013 * we must make sure there is not any read request to
4014 * submit after we stopping all workers.
4015 */
4016 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4017 btrfs_stop_all_workers(fs_info);
4018
5cdd7db6
FM
4019 btrfs_free_block_groups(fs_info);
4020
afcdd129 4021 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4022 free_root_pointers(fs_info, 1);
9ad6b7bc 4023
13e6c37b 4024 iput(fs_info->btree_inode);
d6bfde87 4025
21adbd5c 4026#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4027 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4028 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4029#endif
4030
dfe25020 4031 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4032 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4033
e2d84521 4034 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4035 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4036 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4037 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4038
53b381b3 4039 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4040 btrfs_free_ref_cache(fs_info);
53b381b3 4041
04216820
FM
4042 while (!list_empty(&fs_info->pinned_chunks)) {
4043 struct extent_map *em;
4044
4045 em = list_first_entry(&fs_info->pinned_chunks,
4046 struct extent_map, list);
4047 list_del_init(&em->list);
4048 free_extent_map(em);
4049 }
eb60ceac
CM
4050}
4051
b9fab919
CM
4052int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4053 int atomic)
5f39d397 4054{
1259ab75 4055 int ret;
727011e0 4056 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4057
0b32f4bb 4058 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4059 if (!ret)
4060 return ret;
4061
4062 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4063 parent_transid, atomic);
4064 if (ret == -EAGAIN)
4065 return ret;
1259ab75 4066 return !ret;
5f39d397
CM
4067}
4068
5f39d397
CM
4069void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4070{
0b246afa 4071 struct btrfs_fs_info *fs_info;
06ea65a3 4072 struct btrfs_root *root;
5f39d397 4073 u64 transid = btrfs_header_generation(buf);
b9473439 4074 int was_dirty;
b4ce94de 4075
06ea65a3
JB
4076#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4077 /*
4078 * This is a fast path so only do this check if we have sanity tests
b0132a3b 4079 * enabled. Normal people shouldn't be using umapped buffers as dirty
06ea65a3
JB
4080 * outside of the sanity tests.
4081 */
b0132a3b 4082 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4083 return;
4084#endif
4085 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4086 fs_info = root->fs_info;
b9447ef8 4087 btrfs_assert_tree_locked(buf);
0b246afa 4088 if (transid != fs_info->generation)
5d163e0e 4089 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4090 buf->start, transid, fs_info->generation);
0b32f4bb 4091 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4092 if (!was_dirty)
104b4e51
NB
4093 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4094 buf->len,
4095 fs_info->dirty_metadata_batch);
1f21ef0a 4096#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4097 /*
4098 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4099 * but item data not updated.
4100 * So here we should only check item pointers, not item data.
4101 */
4102 if (btrfs_header_level(buf) == 0 &&
2f659546 4103 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4104 btrfs_print_leaf(buf);
1f21ef0a
FM
4105 ASSERT(0);
4106 }
4107#endif
eb60ceac
CM
4108}
4109
2ff7e61e 4110static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4111 int flush_delayed)
16cdcec7
MX
4112{
4113 /*
4114 * looks as though older kernels can get into trouble with
4115 * this code, they end up stuck in balance_dirty_pages forever
4116 */
e2d84521 4117 int ret;
16cdcec7
MX
4118
4119 if (current->flags & PF_MEMALLOC)
4120 return;
4121
b53d3f5d 4122 if (flush_delayed)
2ff7e61e 4123 btrfs_balance_delayed_items(fs_info);
16cdcec7 4124
d814a491
EL
4125 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4126 BTRFS_DIRTY_METADATA_THRESH,
4127 fs_info->dirty_metadata_batch);
e2d84521 4128 if (ret > 0) {
0b246afa 4129 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4130 }
16cdcec7
MX
4131}
4132
2ff7e61e 4133void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4134{
2ff7e61e 4135 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4136}
585ad2c3 4137
2ff7e61e 4138void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4139{
2ff7e61e 4140 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4141}
6b80053d 4142
581c1760
QW
4143int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4144 struct btrfs_key *first_key)
6b80053d 4145{
727011e0 4146 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4147 struct btrfs_fs_info *fs_info = root->fs_info;
4148
581c1760
QW
4149 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4150 level, first_key);
6b80053d 4151}
0da5468f 4152
2ff7e61e 4153static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4154{
fe816d0f
NB
4155 /* cleanup FS via transaction */
4156 btrfs_cleanup_transaction(fs_info);
4157
0b246afa 4158 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4159 btrfs_run_delayed_iputs(fs_info);
0b246afa 4160 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4161
0b246afa
JM
4162 down_write(&fs_info->cleanup_work_sem);
4163 up_write(&fs_info->cleanup_work_sem);
acce952b 4164}
4165
143bede5 4166static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4167{
acce952b 4168 struct btrfs_ordered_extent *ordered;
acce952b 4169
199c2a9c 4170 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4171 /*
4172 * This will just short circuit the ordered completion stuff which will
4173 * make sure the ordered extent gets properly cleaned up.
4174 */
199c2a9c 4175 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4176 root_extent_list)
4177 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4178 spin_unlock(&root->ordered_extent_lock);
4179}
4180
4181static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4182{
4183 struct btrfs_root *root;
4184 struct list_head splice;
4185
4186 INIT_LIST_HEAD(&splice);
4187
4188 spin_lock(&fs_info->ordered_root_lock);
4189 list_splice_init(&fs_info->ordered_roots, &splice);
4190 while (!list_empty(&splice)) {
4191 root = list_first_entry(&splice, struct btrfs_root,
4192 ordered_root);
1de2cfde
JB
4193 list_move_tail(&root->ordered_root,
4194 &fs_info->ordered_roots);
199c2a9c 4195
2a85d9ca 4196 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4197 btrfs_destroy_ordered_extents(root);
4198
2a85d9ca
LB
4199 cond_resched();
4200 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4201 }
4202 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4203}
4204
35a3621b 4205static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4206 struct btrfs_fs_info *fs_info)
acce952b 4207{
4208 struct rb_node *node;
4209 struct btrfs_delayed_ref_root *delayed_refs;
4210 struct btrfs_delayed_ref_node *ref;
4211 int ret = 0;
4212
4213 delayed_refs = &trans->delayed_refs;
4214
4215 spin_lock(&delayed_refs->lock);
d7df2c79 4216 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4217 spin_unlock(&delayed_refs->lock);
0b246afa 4218 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4219 return ret;
4220 }
4221
5c9d028b 4222 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4223 struct btrfs_delayed_ref_head *head;
0e0adbcf 4224 struct rb_node *n;
e78417d1 4225 bool pin_bytes = false;
acce952b 4226
d7df2c79
JB
4227 head = rb_entry(node, struct btrfs_delayed_ref_head,
4228 href_node);
4229 if (!mutex_trylock(&head->mutex)) {
d278850e 4230 refcount_inc(&head->refs);
d7df2c79 4231 spin_unlock(&delayed_refs->lock);
eb12db69 4232
d7df2c79 4233 mutex_lock(&head->mutex);
e78417d1 4234 mutex_unlock(&head->mutex);
d278850e 4235 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4236 spin_lock(&delayed_refs->lock);
4237 continue;
4238 }
4239 spin_lock(&head->lock);
e3d03965 4240 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4241 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4242 ref_node);
d7df2c79 4243 ref->in_tree = 0;
e3d03965 4244 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4245 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4246 if (!list_empty(&ref->add_list))
4247 list_del(&ref->add_list);
d7df2c79
JB
4248 atomic_dec(&delayed_refs->num_entries);
4249 btrfs_put_delayed_ref(ref);
e78417d1 4250 }
d7df2c79
JB
4251 if (head->must_insert_reserved)
4252 pin_bytes = true;
4253 btrfs_free_delayed_extent_op(head->extent_op);
4254 delayed_refs->num_heads--;
4255 if (head->processing == 0)
4256 delayed_refs->num_heads_ready--;
4257 atomic_dec(&delayed_refs->num_entries);
5c9d028b 4258 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
d278850e 4259 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4260 spin_unlock(&head->lock);
4261 spin_unlock(&delayed_refs->lock);
4262 mutex_unlock(&head->mutex);
acce952b 4263
d7df2c79 4264 if (pin_bytes)
d278850e
JB
4265 btrfs_pin_extent(fs_info, head->bytenr,
4266 head->num_bytes, 1);
4267 btrfs_put_delayed_ref_head(head);
acce952b 4268 cond_resched();
4269 spin_lock(&delayed_refs->lock);
4270 }
4271
4272 spin_unlock(&delayed_refs->lock);
4273
4274 return ret;
4275}
4276
143bede5 4277static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4278{
4279 struct btrfs_inode *btrfs_inode;
4280 struct list_head splice;
4281
4282 INIT_LIST_HEAD(&splice);
4283
eb73c1b7
MX
4284 spin_lock(&root->delalloc_lock);
4285 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4286
4287 while (!list_empty(&splice)) {
fe816d0f 4288 struct inode *inode = NULL;
eb73c1b7
MX
4289 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4290 delalloc_inodes);
fe816d0f 4291 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4292 spin_unlock(&root->delalloc_lock);
acce952b 4293
fe816d0f
NB
4294 /*
4295 * Make sure we get a live inode and that it'll not disappear
4296 * meanwhile.
4297 */
4298 inode = igrab(&btrfs_inode->vfs_inode);
4299 if (inode) {
4300 invalidate_inode_pages2(inode->i_mapping);
4301 iput(inode);
4302 }
eb73c1b7 4303 spin_lock(&root->delalloc_lock);
acce952b 4304 }
eb73c1b7
MX
4305 spin_unlock(&root->delalloc_lock);
4306}
4307
4308static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4309{
4310 struct btrfs_root *root;
4311 struct list_head splice;
4312
4313 INIT_LIST_HEAD(&splice);
4314
4315 spin_lock(&fs_info->delalloc_root_lock);
4316 list_splice_init(&fs_info->delalloc_roots, &splice);
4317 while (!list_empty(&splice)) {
4318 root = list_first_entry(&splice, struct btrfs_root,
4319 delalloc_root);
eb73c1b7
MX
4320 root = btrfs_grab_fs_root(root);
4321 BUG_ON(!root);
4322 spin_unlock(&fs_info->delalloc_root_lock);
4323
4324 btrfs_destroy_delalloc_inodes(root);
4325 btrfs_put_fs_root(root);
4326
4327 spin_lock(&fs_info->delalloc_root_lock);
4328 }
4329 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4330}
4331
2ff7e61e 4332static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4333 struct extent_io_tree *dirty_pages,
4334 int mark)
4335{
4336 int ret;
acce952b 4337 struct extent_buffer *eb;
4338 u64 start = 0;
4339 u64 end;
acce952b 4340
4341 while (1) {
4342 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4343 mark, NULL);
acce952b 4344 if (ret)
4345 break;
4346
91166212 4347 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4348 while (start <= end) {
0b246afa
JM
4349 eb = find_extent_buffer(fs_info, start);
4350 start += fs_info->nodesize;
fd8b2b61 4351 if (!eb)
acce952b 4352 continue;
fd8b2b61 4353 wait_on_extent_buffer_writeback(eb);
acce952b 4354
fd8b2b61
JB
4355 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4356 &eb->bflags))
4357 clear_extent_buffer_dirty(eb);
4358 free_extent_buffer_stale(eb);
acce952b 4359 }
4360 }
4361
4362 return ret;
4363}
4364
2ff7e61e 4365static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4366 struct extent_io_tree *pinned_extents)
4367{
4368 struct extent_io_tree *unpin;
4369 u64 start;
4370 u64 end;
4371 int ret;
ed0eaa14 4372 bool loop = true;
acce952b 4373
4374 unpin = pinned_extents;
ed0eaa14 4375again:
acce952b 4376 while (1) {
0e6ec385
FM
4377 struct extent_state *cached_state = NULL;
4378
fcd5e742
LF
4379 /*
4380 * The btrfs_finish_extent_commit() may get the same range as
4381 * ours between find_first_extent_bit and clear_extent_dirty.
4382 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4383 * the same extent range.
4384 */
4385 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4386 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4387 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4388 if (ret) {
4389 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4390 break;
fcd5e742 4391 }
acce952b 4392
0e6ec385
FM
4393 clear_extent_dirty(unpin, start, end, &cached_state);
4394 free_extent_state(cached_state);
2ff7e61e 4395 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4396 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4397 cond_resched();
4398 }
4399
ed0eaa14 4400 if (loop) {
0b246afa
JM
4401 if (unpin == &fs_info->freed_extents[0])
4402 unpin = &fs_info->freed_extents[1];
ed0eaa14 4403 else
0b246afa 4404 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4405 loop = false;
4406 goto again;
4407 }
4408
acce952b 4409 return 0;
4410}
4411
c79a1751
LB
4412static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4413{
4414 struct inode *inode;
4415
4416 inode = cache->io_ctl.inode;
4417 if (inode) {
4418 invalidate_inode_pages2(inode->i_mapping);
4419 BTRFS_I(inode)->generation = 0;
4420 cache->io_ctl.inode = NULL;
4421 iput(inode);
4422 }
4423 btrfs_put_block_group(cache);
4424}
4425
4426void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4427 struct btrfs_fs_info *fs_info)
c79a1751
LB
4428{
4429 struct btrfs_block_group_cache *cache;
4430
4431 spin_lock(&cur_trans->dirty_bgs_lock);
4432 while (!list_empty(&cur_trans->dirty_bgs)) {
4433 cache = list_first_entry(&cur_trans->dirty_bgs,
4434 struct btrfs_block_group_cache,
4435 dirty_list);
c79a1751
LB
4436
4437 if (!list_empty(&cache->io_list)) {
4438 spin_unlock(&cur_trans->dirty_bgs_lock);
4439 list_del_init(&cache->io_list);
4440 btrfs_cleanup_bg_io(cache);
4441 spin_lock(&cur_trans->dirty_bgs_lock);
4442 }
4443
4444 list_del_init(&cache->dirty_list);
4445 spin_lock(&cache->lock);
4446 cache->disk_cache_state = BTRFS_DC_ERROR;
4447 spin_unlock(&cache->lock);
4448
4449 spin_unlock(&cur_trans->dirty_bgs_lock);
4450 btrfs_put_block_group(cache);
4451 spin_lock(&cur_trans->dirty_bgs_lock);
4452 }
4453 spin_unlock(&cur_trans->dirty_bgs_lock);
4454
45ae2c18
NB
4455 /*
4456 * Refer to the definition of io_bgs member for details why it's safe
4457 * to use it without any locking
4458 */
c79a1751
LB
4459 while (!list_empty(&cur_trans->io_bgs)) {
4460 cache = list_first_entry(&cur_trans->io_bgs,
4461 struct btrfs_block_group_cache,
4462 io_list);
c79a1751
LB
4463
4464 list_del_init(&cache->io_list);
4465 spin_lock(&cache->lock);
4466 cache->disk_cache_state = BTRFS_DC_ERROR;
4467 spin_unlock(&cache->lock);
4468 btrfs_cleanup_bg_io(cache);
4469 }
4470}
4471
49b25e05 4472void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4473 struct btrfs_fs_info *fs_info)
49b25e05 4474{
2ff7e61e 4475 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4476 ASSERT(list_empty(&cur_trans->dirty_bgs));
4477 ASSERT(list_empty(&cur_trans->io_bgs));
4478
2ff7e61e 4479 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4480
4a9d8bde 4481 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4482 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4483
4a9d8bde 4484 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4485 wake_up(&fs_info->transaction_wait);
49b25e05 4486
ccdf9b30
JM
4487 btrfs_destroy_delayed_inodes(fs_info);
4488 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4489
2ff7e61e 4490 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4491 EXTENT_DIRTY);
2ff7e61e 4492 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4493 fs_info->pinned_extents);
49b25e05 4494
4a9d8bde
MX
4495 cur_trans->state =TRANS_STATE_COMPLETED;
4496 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4497}
4498
2ff7e61e 4499static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4500{
4501 struct btrfs_transaction *t;
acce952b 4502
0b246afa 4503 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4504
0b246afa
JM
4505 spin_lock(&fs_info->trans_lock);
4506 while (!list_empty(&fs_info->trans_list)) {
4507 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4508 struct btrfs_transaction, list);
4509 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4510 refcount_inc(&t->use_count);
0b246afa 4511 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4512 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4513 btrfs_put_transaction(t);
0b246afa 4514 spin_lock(&fs_info->trans_lock);
724e2315
JB
4515 continue;
4516 }
0b246afa 4517 if (t == fs_info->running_transaction) {
724e2315 4518 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4519 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4520 /*
4521 * We wait for 0 num_writers since we don't hold a trans
4522 * handle open currently for this transaction.
4523 */
4524 wait_event(t->writer_wait,
4525 atomic_read(&t->num_writers) == 0);
4526 } else {
0b246afa 4527 spin_unlock(&fs_info->trans_lock);
724e2315 4528 }
2ff7e61e 4529 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4530
0b246afa
JM
4531 spin_lock(&fs_info->trans_lock);
4532 if (t == fs_info->running_transaction)
4533 fs_info->running_transaction = NULL;
acce952b 4534 list_del_init(&t->list);
0b246afa 4535 spin_unlock(&fs_info->trans_lock);
acce952b 4536
724e2315 4537 btrfs_put_transaction(t);
2ff7e61e 4538 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4539 spin_lock(&fs_info->trans_lock);
724e2315 4540 }
0b246afa
JM
4541 spin_unlock(&fs_info->trans_lock);
4542 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4543 btrfs_destroy_delayed_inodes(fs_info);
4544 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4545 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4546 btrfs_destroy_all_delalloc_inodes(fs_info);
4547 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4548
4549 return 0;
4550}
4551
e8c9f186 4552static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4553 /* mandatory callbacks */
0b86a832 4554 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4555 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4556};