]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
Btrfs: fix list_add corruption and soft lockups in fsync
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
557ea5dd 53#include "tree-checker.h"
fd708b81 54#include "ref-verify.h"
eb60ceac 55
de0022b9
JB
56#ifdef CONFIG_X86
57#include <asm/cpufeature.h>
58#endif
59
319e4d06
QW
60#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
61 BTRFS_HEADER_FLAG_RELOC |\
62 BTRFS_SUPER_FLAG_ERROR |\
63 BTRFS_SUPER_FLAG_SEEDING |\
64 BTRFS_SUPER_FLAG_METADUMP)
65
e8c9f186 66static const struct extent_io_ops btree_extent_io_ops;
8b712842 67static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 68static void free_fs_root(struct btrfs_root *root);
3d3a126a 69static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
143bede5 70static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 71static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 72 struct btrfs_fs_info *fs_info);
143bede5 73static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 74static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 75 struct extent_io_tree *dirty_pages,
76 int mark);
2ff7e61e 77static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 78 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
79static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
80static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 81
d352ac68 82/*
97eb6b69
DS
83 * btrfs_end_io_wq structs are used to do processing in task context when an IO
84 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
85 * by writes to insert metadata for new file extents after IO is complete.
86 */
97eb6b69 87struct btrfs_end_io_wq {
ce9adaa5
CM
88 struct bio *bio;
89 bio_end_io_t *end_io;
90 void *private;
91 struct btrfs_fs_info *info;
4e4cbee9 92 blk_status_t status;
bfebd8b5 93 enum btrfs_wq_endio_type metadata;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
fba4b697 104 SLAB_MEM_SPREAD,
97eb6b69
DS
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e 121struct async_submit_bio {
c6100a4b
JB
122 void *private_data;
123 struct btrfs_fs_info *fs_info;
44b8bd7e 124 struct bio *bio;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 127 int mirror_num;
c8b97818 128 unsigned long bio_flags;
eaf25d93
CM
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
8b712842 134 struct btrfs_work work;
4e4cbee9 135 blk_status_t status;
44b8bd7e
CM
136};
137
85d4e461
CM
138/*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
4008c04a 148 *
85d4e461
CM
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 152 *
85d4e461
CM
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 156 *
85d4e461
CM
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
4008c04a
CM
160 */
161#ifdef CONFIG_DEBUG_LOCK_ALLOC
162# if BTRFS_MAX_LEVEL != 8
163# error
164# endif
85d4e461
CM
165
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171} btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 184 { .id = 0, .name_stem = "tree" },
4008c04a 185};
85d4e461
CM
186
187void __init btrfs_init_lockdep(void)
188{
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199}
200
201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203{
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215}
216
4008c04a
CM
217#endif
218
d352ac68
CM
219/*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
fc4f21b1 223static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 224 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 225 int create)
7eccb903 226{
fc4f21b1
NB
227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
228 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
229 struct extent_map *em;
230 int ret;
231
890871be 232 read_lock(&em_tree->lock);
d1310b2e 233 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 234 if (em) {
0b246afa 235 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 236 read_unlock(&em_tree->lock);
5f39d397 237 goto out;
a061fc8d 238 }
890871be 239 read_unlock(&em_tree->lock);
7b13b7b1 240
172ddd60 241 em = alloc_extent_map();
5f39d397
CM
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
0afbaf8c 247 em->len = (u64)-1;
c8b97818 248 em->block_len = (u64)-1;
5f39d397 249 em->block_start = 0;
0b246afa 250 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 251
890871be 252 write_lock(&em_tree->lock);
09a2a8f9 253 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
254 if (ret == -EEXIST) {
255 free_extent_map(em);
7b13b7b1 256 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 257 if (!em)
0433f20d 258 em = ERR_PTR(-EIO);
5f39d397 259 } else if (ret) {
7b13b7b1 260 free_extent_map(em);
0433f20d 261 em = ERR_PTR(ret);
5f39d397 262 }
890871be 263 write_unlock(&em_tree->lock);
7b13b7b1 264
5f39d397
CM
265out:
266 return em;
7eccb903
CM
267}
268
9ed57367 269u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 270{
0b947aff 271 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
272}
273
0b5e3daf 274void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 275{
7e75bf3f 276 put_unaligned_le32(~crc, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
01d58472
DD
283static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
19c00ddc
CM
285 int verify)
286{
01d58472 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 288 char *result = NULL;
19c00ddc
CM
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
607d432d 297 unsigned long inline_result;
19c00ddc
CM
298
299 len = buf->len - offset;
d397712b 300 while (len > 0) {
19c00ddc 301 err = map_private_extent_buffer(buf, offset, 32,
a6591715 302 &kaddr, &map_start, &map_len);
d397712b 303 if (err)
8bd98f0e 304 return err;
19c00ddc 305 cur_len = min(len, map_len - (offset - map_start));
b0496686 306 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
19c00ddc 310 }
607d432d 311 if (csum_size > sizeof(inline_result)) {
31e818fe 312 result = kzalloc(csum_size, GFP_NOFS);
607d432d 313 if (!result)
8bd98f0e 314 return -ENOMEM;
607d432d
JB
315 } else {
316 result = (char *)&inline_result;
317 }
318
19c00ddc
CM
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
607d432d 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
323 u32 val;
324 u32 found = 0;
607d432d 325 memcpy(&found, result, csum_size);
e4204ded 326
607d432d 327 read_extent_buffer(buf, &val, 0, csum_size);
94647322 328 btrfs_warn_rl(fs_info,
5d163e0e 329 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 330 fs_info->sb->s_id, buf->start,
efe120a0 331 val, found, btrfs_header_level(buf));
607d432d
JB
332 if (result != (char *)&inline_result)
333 kfree(result);
8bd98f0e 334 return -EUCLEAN;
19c00ddc
CM
335 }
336 } else {
607d432d 337 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 338 }
607d432d
JB
339 if (result != (char *)&inline_result)
340 kfree(result);
19c00ddc
CM
341 return 0;
342}
343
d352ac68
CM
344/*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
1259ab75 350static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
1259ab75 353{
2ac55d41 354 struct extent_state *cached_state = NULL;
1259ab75 355 int ret;
2755a0de 356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
b9fab919
CM
361 if (atomic)
362 return -EAGAIN;
363
a26e8c9f
JB
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
2ac55d41 369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 370 &cached_state);
0b32f4bb 371 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
94647322
DS
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
29549aec 379 parent_transid, btrfs_header_generation(eb));
1259ab75 380 ret = 1;
a26e8c9f
JB
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
01327610 385 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
33958dc6 392out:
2ac55d41
JB
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
472b909f
JB
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
1259ab75 397 return ret;
1259ab75
CM
398}
399
1104a885
DS
400/*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
ab8d0fc4
JM
404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
1104a885
DS
406{
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 420 * is filled with zeros and is included in the checksum.
1104a885
DS
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437}
438
d352ac68
CM
439/*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
2ff7e61e 443static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 444 struct extent_buffer *eb,
8436ea91 445 u64 parent_transid)
f188591e
CM
446{
447 struct extent_io_tree *io_tree;
ea466794 448 int failed = 0;
f188591e
CM
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
ea466794 452 int failed_mirror = 0;
f188591e 453
a826d6dc 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 455 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 456 while (1) {
8436ea91 457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
f188591e 458 btree_get_extent, mirror_num);
256dd1bb
SB
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
b9fab919 461 parent_transid, 0))
256dd1bb
SB
462 break;
463 else
464 ret = -EIO;
465 }
d397712b 466
a826d6dc
JB
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
473 break;
474
0b246afa 475 num_copies = btrfs_num_copies(fs_info,
f188591e 476 eb->start, eb->len);
4235298e 477 if (num_copies == 1)
ea466794 478 break;
4235298e 479
5cf1ab56
JB
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
f188591e 485 mirror_num++;
ea466794
JB
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
4235298e 489 if (mirror_num > num_copies)
ea466794 490 break;
f188591e 491 }
ea466794 492
c0901581 493 if (failed && !ret && failed_mirror)
2ff7e61e 494 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
495
496 return ret;
f188591e 497}
19c00ddc 498
d352ac68 499/*
d397712b
CM
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 502 */
d397712b 503
01d58472 504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 505{
4eee4fa4 506 u64 start = page_offset(page);
19c00ddc 507 u64 found_start;
19c00ddc 508 struct extent_buffer *eb;
f188591e 509
4f2de97a
JB
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
0f805531 513
19c00ddc 514 found_start = btrfs_header_bytenr(eb);
0f805531
AL
515 /*
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
518 */
519 if (WARN_ON(found_start != start))
520 return -EUCLEAN;
521 if (WARN_ON(!PageUptodate(page)))
522 return -EUCLEAN;
523
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
8bd98f0e 527 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
528}
529
01d58472 530static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
531 struct extent_buffer *eb)
532{
01d58472 533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 534 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
535 int ret = 1;
536
0a4e5586 537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
538 while (fs_devices) {
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 ret = 0;
541 break;
542 }
543 fs_devices = fs_devices->seed;
544 }
545 return ret;
546}
547
facc8a22
MX
548static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
549 u64 phy_offset, struct page *page,
550 u64 start, u64 end, int mirror)
ce9adaa5 551{
ce9adaa5
CM
552 u64 found_start;
553 int found_level;
ce9adaa5
CM
554 struct extent_buffer *eb;
555 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 556 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 557 int ret = 0;
727011e0 558 int reads_done;
ce9adaa5 559
ce9adaa5
CM
560 if (!page->private)
561 goto out;
d397712b 562
4f2de97a 563 eb = (struct extent_buffer *)page->private;
d397712b 564
0b32f4bb
JB
565 /* the pending IO might have been the only thing that kept this buffer
566 * in memory. Make sure we have a ref for all this other checks
567 */
568 extent_buffer_get(eb);
569
570 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
571 if (!reads_done)
572 goto err;
f188591e 573
5cf1ab56 574 eb->read_mirror = mirror;
656f30db 575 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
576 ret = -EIO;
577 goto err;
578 }
579
ce9adaa5 580 found_start = btrfs_header_bytenr(eb);
727011e0 581 if (found_start != eb->start) {
02873e43
ZL
582 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
583 found_start, eb->start);
f188591e 584 ret = -EIO;
ce9adaa5
CM
585 goto err;
586 }
02873e43
ZL
587 if (check_tree_block_fsid(fs_info, eb)) {
588 btrfs_err_rl(fs_info, "bad fsid on block %llu",
589 eb->start);
1259ab75
CM
590 ret = -EIO;
591 goto err;
592 }
ce9adaa5 593 found_level = btrfs_header_level(eb);
1c24c3ce 594 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
595 btrfs_err(fs_info, "bad tree block level %d",
596 (int)btrfs_header_level(eb));
1c24c3ce
JB
597 ret = -EIO;
598 goto err;
599 }
ce9adaa5 600
85d4e461
CM
601 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
602 eb, found_level);
4008c04a 603
02873e43 604 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 605 if (ret)
a826d6dc 606 goto err;
a826d6dc
JB
607
608 /*
609 * If this is a leaf block and it is corrupt, set the corrupt bit so
610 * that we don't try and read the other copies of this block, just
611 * return -EIO.
612 */
557ea5dd 613 if (found_level == 0 && btrfs_check_leaf(root, eb)) {
a826d6dc
JB
614 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
615 ret = -EIO;
616 }
ce9adaa5 617
557ea5dd 618 if (found_level > 0 && btrfs_check_node(root, eb))
053ab70f
LB
619 ret = -EIO;
620
0b32f4bb
JB
621 if (!ret)
622 set_extent_buffer_uptodate(eb);
ce9adaa5 623err:
79fb65a1
JB
624 if (reads_done &&
625 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 626 btree_readahead_hook(eb, ret);
4bb31e92 627
53b381b3
DW
628 if (ret) {
629 /*
630 * our io error hook is going to dec the io pages
631 * again, we have to make sure it has something
632 * to decrement
633 */
634 atomic_inc(&eb->io_pages);
0b32f4bb 635 clear_extent_buffer_uptodate(eb);
53b381b3 636 }
0b32f4bb 637 free_extent_buffer(eb);
ce9adaa5 638out:
f188591e 639 return ret;
ce9adaa5
CM
640}
641
ea466794 642static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 643{
4bb31e92 644 struct extent_buffer *eb;
4bb31e92 645
4f2de97a 646 eb = (struct extent_buffer *)page->private;
656f30db 647 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 648 eb->read_mirror = failed_mirror;
53b381b3 649 atomic_dec(&eb->io_pages);
ea466794 650 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 651 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
652 return -EIO; /* we fixed nothing */
653}
654
4246a0b6 655static void end_workqueue_bio(struct bio *bio)
ce9adaa5 656{
97eb6b69 657 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 658 struct btrfs_fs_info *fs_info;
9e0af237
LB
659 struct btrfs_workqueue *wq;
660 btrfs_work_func_t func;
ce9adaa5 661
ce9adaa5 662 fs_info = end_io_wq->info;
4e4cbee9 663 end_io_wq->status = bio->bi_status;
d20f7043 664
37226b21 665 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
666 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
667 wq = fs_info->endio_meta_write_workers;
668 func = btrfs_endio_meta_write_helper;
669 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
670 wq = fs_info->endio_freespace_worker;
671 func = btrfs_freespace_write_helper;
672 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
673 wq = fs_info->endio_raid56_workers;
674 func = btrfs_endio_raid56_helper;
675 } else {
676 wq = fs_info->endio_write_workers;
677 func = btrfs_endio_write_helper;
678 }
d20f7043 679 } else {
8b110e39
MX
680 if (unlikely(end_io_wq->metadata ==
681 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
682 wq = fs_info->endio_repair_workers;
683 func = btrfs_endio_repair_helper;
684 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
685 wq = fs_info->endio_raid56_workers;
686 func = btrfs_endio_raid56_helper;
687 } else if (end_io_wq->metadata) {
688 wq = fs_info->endio_meta_workers;
689 func = btrfs_endio_meta_helper;
690 } else {
691 wq = fs_info->endio_workers;
692 func = btrfs_endio_helper;
693 }
d20f7043 694 }
9e0af237
LB
695
696 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
697 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
698}
699
4e4cbee9 700blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 701 enum btrfs_wq_endio_type metadata)
0b86a832 702{
97eb6b69 703 struct btrfs_end_io_wq *end_io_wq;
8b110e39 704
97eb6b69 705 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 706 if (!end_io_wq)
4e4cbee9 707 return BLK_STS_RESOURCE;
ce9adaa5
CM
708
709 end_io_wq->private = bio->bi_private;
710 end_io_wq->end_io = bio->bi_end_io;
22c59948 711 end_io_wq->info = info;
4e4cbee9 712 end_io_wq->status = 0;
ce9adaa5 713 end_io_wq->bio = bio;
22c59948 714 end_io_wq->metadata = metadata;
ce9adaa5
CM
715
716 bio->bi_private = end_io_wq;
717 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
718 return 0;
719}
720
b64a2851 721unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 722{
4854ddd0 723 unsigned long limit = min_t(unsigned long,
5cdc7ad3 724 info->thread_pool_size,
4854ddd0
CM
725 info->fs_devices->open_devices);
726 return 256 * limit;
727}
0986fe9e 728
4a69a410
CM
729static void run_one_async_start(struct btrfs_work *work)
730{
4a69a410 731 struct async_submit_bio *async;
4e4cbee9 732 blk_status_t ret;
4a69a410
CM
733
734 async = container_of(work, struct async_submit_bio, work);
c6100a4b 735 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
736 async->mirror_num, async->bio_flags,
737 async->bio_offset);
738 if (ret)
4e4cbee9 739 async->status = ret;
4a69a410
CM
740}
741
742static void run_one_async_done(struct btrfs_work *work)
8b712842 743{
8b712842
CM
744 struct async_submit_bio *async;
745
746 async = container_of(work, struct async_submit_bio, work);
4854ddd0 747
bb7ab3b9 748 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
749 if (async->status) {
750 async->bio->bi_status = async->status;
4246a0b6 751 bio_endio(async->bio);
79787eaa
JM
752 return;
753 }
754
c6100a4b 755 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
81a75f67 756 async->bio_flags, async->bio_offset);
4a69a410
CM
757}
758
759static void run_one_async_free(struct btrfs_work *work)
760{
761 struct async_submit_bio *async;
762
763 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
764 kfree(async);
765}
766
8c27cb35
LT
767blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
768 int mirror_num, unsigned long bio_flags,
769 u64 bio_offset, void *private_data,
770 extent_submit_bio_hook_t *submit_bio_start,
771 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
772{
773 struct async_submit_bio *async;
774
775 async = kmalloc(sizeof(*async), GFP_NOFS);
776 if (!async)
4e4cbee9 777 return BLK_STS_RESOURCE;
44b8bd7e 778
c6100a4b
JB
779 async->private_data = private_data;
780 async->fs_info = fs_info;
44b8bd7e
CM
781 async->bio = bio;
782 async->mirror_num = mirror_num;
4a69a410
CM
783 async->submit_bio_start = submit_bio_start;
784 async->submit_bio_done = submit_bio_done;
785
9e0af237 786 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 787 run_one_async_done, run_one_async_free);
4a69a410 788
c8b97818 789 async->bio_flags = bio_flags;
eaf25d93 790 async->bio_offset = bio_offset;
8c8bee1d 791
4e4cbee9 792 async->status = 0;
79787eaa 793
67f055c7 794 if (op_is_sync(bio->bi_opf))
5cdc7ad3 795 btrfs_set_work_high_priority(&async->work);
d313d7a3 796
5cdc7ad3 797 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
798 return 0;
799}
800
4e4cbee9 801static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 802{
2c30c71b 803 struct bio_vec *bvec;
ce3ed71a 804 struct btrfs_root *root;
2c30c71b 805 int i, ret = 0;
ce3ed71a 806
c09abff8 807 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 808 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 809 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 810 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
811 if (ret)
812 break;
ce3ed71a 813 }
2c30c71b 814
4e4cbee9 815 return errno_to_blk_status(ret);
ce3ed71a
CM
816}
817
8c27cb35
LT
818static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
819 int mirror_num, unsigned long bio_flags,
820 u64 bio_offset)
22c59948 821{
8b712842
CM
822 /*
823 * when we're called for a write, we're already in the async
5443be45 824 * submission context. Just jump into btrfs_map_bio
8b712842 825 */
79787eaa 826 return btree_csum_one_bio(bio);
4a69a410 827}
22c59948 828
8c27cb35
LT
829static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
830 int mirror_num, unsigned long bio_flags,
831 u64 bio_offset)
4a69a410 832{
c6100a4b 833 struct inode *inode = private_data;
4e4cbee9 834 blk_status_t ret;
61891923 835
8b712842 836 /*
4a69a410
CM
837 * when we're called for a write, we're already in the async
838 * submission context. Just jump into btrfs_map_bio
8b712842 839 */
2ff7e61e 840 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6 841 if (ret) {
4e4cbee9 842 bio->bi_status = ret;
4246a0b6
CH
843 bio_endio(bio);
844 }
61891923 845 return ret;
0b86a832
CM
846}
847
18fdc679 848static int check_async_write(struct btrfs_inode *bi)
de0022b9 849{
6300463b
LB
850 if (atomic_read(&bi->sync_writers))
851 return 0;
de0022b9 852#ifdef CONFIG_X86
bc696ca0 853 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
854 return 0;
855#endif
856 return 1;
857}
858
8c27cb35
LT
859static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
44b8bd7e 862{
c6100a4b 863 struct inode *inode = private_data;
0b246afa 864 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 865 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 866 blk_status_t ret;
cad321ad 867
37226b21 868 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
869 /*
870 * called for a read, do the setup so that checksum validation
871 * can happen in the async kernel threads
872 */
0b246afa
JM
873 ret = btrfs_bio_wq_end_io(fs_info, bio,
874 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 875 if (ret)
61891923 876 goto out_w_error;
2ff7e61e 877 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
878 } else if (!async) {
879 ret = btree_csum_one_bio(bio);
880 if (ret)
61891923 881 goto out_w_error;
2ff7e61e 882 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
883 } else {
884 /*
885 * kthread helpers are used to submit writes so that
886 * checksumming can happen in parallel across all CPUs
887 */
c6100a4b
JB
888 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
889 bio_offset, private_data,
61891923
SB
890 __btree_submit_bio_start,
891 __btree_submit_bio_done);
44b8bd7e 892 }
d313d7a3 893
4246a0b6
CH
894 if (ret)
895 goto out_w_error;
896 return 0;
897
61891923 898out_w_error:
4e4cbee9 899 bio->bi_status = ret;
4246a0b6 900 bio_endio(bio);
61891923 901 return ret;
44b8bd7e
CM
902}
903
3dd1462e 904#ifdef CONFIG_MIGRATION
784b4e29 905static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
906 struct page *newpage, struct page *page,
907 enum migrate_mode mode)
784b4e29
CM
908{
909 /*
910 * we can't safely write a btree page from here,
911 * we haven't done the locking hook
912 */
913 if (PageDirty(page))
914 return -EAGAIN;
915 /*
916 * Buffers may be managed in a filesystem specific way.
917 * We must have no buffers or drop them.
918 */
919 if (page_has_private(page) &&
920 !try_to_release_page(page, GFP_KERNEL))
921 return -EAGAIN;
a6bc32b8 922 return migrate_page(mapping, newpage, page, mode);
784b4e29 923}
3dd1462e 924#endif
784b4e29 925
0da5468f
CM
926
927static int btree_writepages(struct address_space *mapping,
928 struct writeback_control *wbc)
929{
e2d84521
MX
930 struct btrfs_fs_info *fs_info;
931 int ret;
932
d8d5f3e1 933 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
934
935 if (wbc->for_kupdate)
936 return 0;
937
e2d84521 938 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 939 /* this is a bit racy, but that's ok */
e2d84521
MX
940 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
941 BTRFS_DIRTY_METADATA_THRESH);
942 if (ret < 0)
793955bc 943 return 0;
793955bc 944 }
0b32f4bb 945 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
946}
947
b2950863 948static int btree_readpage(struct file *file, struct page *page)
5f39d397 949{
d1310b2e
CM
950 struct extent_io_tree *tree;
951 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 952 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 953}
22b0ebda 954
70dec807 955static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 956{
98509cfc 957 if (PageWriteback(page) || PageDirty(page))
d397712b 958 return 0;
0c4e538b 959
f7a52a40 960 return try_release_extent_buffer(page);
d98237b3
CM
961}
962
d47992f8
LC
963static void btree_invalidatepage(struct page *page, unsigned int offset,
964 unsigned int length)
d98237b3 965{
d1310b2e
CM
966 struct extent_io_tree *tree;
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
968 extent_invalidatepage(tree, page, offset);
969 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 970 if (PagePrivate(page)) {
efe120a0
FH
971 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
972 "page private not zero on page %llu",
973 (unsigned long long)page_offset(page));
9ad6b7bc
CM
974 ClearPagePrivate(page);
975 set_page_private(page, 0);
09cbfeaf 976 put_page(page);
9ad6b7bc 977 }
d98237b3
CM
978}
979
0b32f4bb
JB
980static int btree_set_page_dirty(struct page *page)
981{
bb146eb2 982#ifdef DEBUG
0b32f4bb
JB
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
bb146eb2 991#endif
0b32f4bb
JB
992 return __set_page_dirty_nobuffers(page);
993}
994
7f09410b 995static const struct address_space_operations btree_aops = {
d98237b3 996 .readpage = btree_readpage,
0da5468f 997 .writepages = btree_writepages,
5f39d397
CM
998 .releasepage = btree_releasepage,
999 .invalidatepage = btree_invalidatepage,
5a92bc88 1000#ifdef CONFIG_MIGRATION
784b4e29 1001 .migratepage = btree_migratepage,
5a92bc88 1002#endif
0b32f4bb 1003 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1004};
1005
2ff7e61e 1006void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1007{
5f39d397 1008 struct extent_buffer *buf = NULL;
2ff7e61e 1009 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1010
2ff7e61e 1011 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1012 if (IS_ERR(buf))
6197d86e 1013 return;
d1310b2e 1014 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
8436ea91 1015 buf, WAIT_NONE, btree_get_extent, 0);
5f39d397 1016 free_extent_buffer(buf);
090d1875
CM
1017}
1018
2ff7e61e 1019int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1020 int mirror_num, struct extent_buffer **eb)
1021{
1022 struct extent_buffer *buf = NULL;
2ff7e61e 1023 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025 int ret;
1026
2ff7e61e 1027 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1028 if (IS_ERR(buf))
ab0fff03
AJ
1029 return 0;
1030
1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032
8436ea91 1033 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
ab0fff03
AJ
1034 btree_get_extent, mirror_num);
1035 if (ret) {
1036 free_extent_buffer(buf);
1037 return ret;
1038 }
1039
1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041 free_extent_buffer(buf);
1042 return -EIO;
0b32f4bb 1043 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1044 *eb = buf;
1045 } else {
1046 free_extent_buffer(buf);
1047 }
1048 return 0;
1049}
1050
2ff7e61e
JM
1051struct extent_buffer *btrfs_find_create_tree_block(
1052 struct btrfs_fs_info *fs_info,
1053 u64 bytenr)
0999df54 1054{
0b246afa
JM
1055 if (btrfs_is_testing(fs_info))
1056 return alloc_test_extent_buffer(fs_info, bytenr);
1057 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1058}
1059
1060
e02119d5
CM
1061int btrfs_write_tree_block(struct extent_buffer *buf)
1062{
727011e0 1063 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1064 buf->start + buf->len - 1);
e02119d5
CM
1065}
1066
3189ff77 1067void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1068{
3189ff77
JL
1069 filemap_fdatawait_range(buf->pages[0]->mapping,
1070 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1071}
1072
2ff7e61e 1073struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
ce86cd59 1074 u64 parent_transid)
0999df54
CM
1075{
1076 struct extent_buffer *buf = NULL;
0999df54
CM
1077 int ret;
1078
2ff7e61e 1079 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1080 if (IS_ERR(buf))
1081 return buf;
0999df54 1082
2ff7e61e 1083 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
0f0fe8f7
FDBM
1084 if (ret) {
1085 free_extent_buffer(buf);
64c043de 1086 return ERR_PTR(ret);
0f0fe8f7 1087 }
5f39d397 1088 return buf;
ce9adaa5 1089
eb60ceac
CM
1090}
1091
7c302b49 1092void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1093 struct extent_buffer *buf)
ed2ff2cb 1094{
55c69072 1095 if (btrfs_header_generation(buf) ==
e2d84521 1096 fs_info->running_transaction->transid) {
b9447ef8 1097 btrfs_assert_tree_locked(buf);
b4ce94de 1098
b9473439 1099 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1100 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1101 -buf->len,
1102 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1103 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1104 btrfs_set_lock_blocking(buf);
1105 clear_extent_buffer_dirty(buf);
1106 }
925baedd 1107 }
5f39d397
CM
1108}
1109
8257b2dc
MX
1110static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1111{
1112 struct btrfs_subvolume_writers *writers;
1113 int ret;
1114
1115 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1116 if (!writers)
1117 return ERR_PTR(-ENOMEM);
1118
908c7f19 1119 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1120 if (ret < 0) {
1121 kfree(writers);
1122 return ERR_PTR(ret);
1123 }
1124
1125 init_waitqueue_head(&writers->wait);
1126 return writers;
1127}
1128
1129static void
1130btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1131{
1132 percpu_counter_destroy(&writers->counter);
1133 kfree(writers);
1134}
1135
da17066c 1136static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1137 u64 objectid)
d97e63b6 1138{
7c0260ee 1139 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1140 root->node = NULL;
a28ec197 1141 root->commit_root = NULL;
27cdeb70 1142 root->state = 0;
d68fc57b 1143 root->orphan_cleanup_state = 0;
0b86a832 1144
0f7d52f4
CM
1145 root->objectid = objectid;
1146 root->last_trans = 0;
13a8a7c8 1147 root->highest_objectid = 0;
eb73c1b7 1148 root->nr_delalloc_inodes = 0;
199c2a9c 1149 root->nr_ordered_extents = 0;
58176a96 1150 root->name = NULL;
6bef4d31 1151 root->inode_tree = RB_ROOT;
16cdcec7 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1153 root->block_rsv = NULL;
d68fc57b 1154 root->orphan_block_rsv = NULL;
0b86a832
CM
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1157 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1158 INIT_LIST_HEAD(&root->delalloc_inodes);
1159 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1160 INIT_LIST_HEAD(&root->ordered_extents);
1161 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1162 INIT_LIST_HEAD(&root->logged_list[0]);
1163 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1164 spin_lock_init(&root->orphan_lock);
5d4f98a2 1165 spin_lock_init(&root->inode_lock);
eb73c1b7 1166 spin_lock_init(&root->delalloc_lock);
199c2a9c 1167 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1168 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1169 spin_lock_init(&root->log_extents_lock[0]);
1170 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1171 mutex_init(&root->objectid_mutex);
e02119d5 1172 mutex_init(&root->log_mutex);
31f3d255 1173 mutex_init(&root->ordered_extent_mutex);
573bfb72 1174 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1175 init_waitqueue_head(&root->log_writer_wait);
1176 init_waitqueue_head(&root->log_commit_wait[0]);
1177 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1178 INIT_LIST_HEAD(&root->log_ctxs[0]);
1179 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1180 atomic_set(&root->log_commit[0], 0);
1181 atomic_set(&root->log_commit[1], 0);
1182 atomic_set(&root->log_writers, 0);
2ecb7923 1183 atomic_set(&root->log_batch, 0);
8a35d95f 1184 atomic_set(&root->orphan_inodes, 0);
0700cea7 1185 refcount_set(&root->refs, 1);
ea14b57f 1186 atomic_set(&root->will_be_snapshotted, 0);
ce0dcee6 1187 atomic64_set(&root->qgroup_meta_rsv, 0);
7237f183 1188 root->log_transid = 0;
d1433deb 1189 root->log_transid_committed = -1;
257c62e1 1190 root->last_log_commit = 0;
7c0260ee 1191 if (!dummy)
c6100a4b 1192 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1193
3768f368
CM
1194 memset(&root->root_key, 0, sizeof(root->root_key));
1195 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1196 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1197 if (!dummy)
06ea65a3
JB
1198 root->defrag_trans_start = fs_info->generation;
1199 else
1200 root->defrag_trans_start = 0;
4d775673 1201 root->root_key.objectid = objectid;
0ee5dc67 1202 root->anon_dev = 0;
8ea05e3a 1203
5f3ab90a 1204 spin_lock_init(&root->root_item_lock);
3768f368
CM
1205}
1206
74e4d827
DS
1207static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1208 gfp_t flags)
6f07e42e 1209{
74e4d827 1210 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1211 if (root)
1212 root->fs_info = fs_info;
1213 return root;
1214}
1215
06ea65a3
JB
1216#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1217/* Should only be used by the testing infrastructure */
da17066c 1218struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1219{
1220 struct btrfs_root *root;
1221
7c0260ee
JM
1222 if (!fs_info)
1223 return ERR_PTR(-EINVAL);
1224
1225 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1226 if (!root)
1227 return ERR_PTR(-ENOMEM);
da17066c 1228
b9ef22de 1229 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1230 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1231 root->alloc_bytenr = 0;
06ea65a3
JB
1232
1233 return root;
1234}
1235#endif
1236
20897f5c
AJ
1237struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1238 struct btrfs_fs_info *fs_info,
1239 u64 objectid)
1240{
1241 struct extent_buffer *leaf;
1242 struct btrfs_root *tree_root = fs_info->tree_root;
1243 struct btrfs_root *root;
1244 struct btrfs_key key;
1245 int ret = 0;
6463fe58 1246 uuid_le uuid;
20897f5c 1247
74e4d827 1248 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1249 if (!root)
1250 return ERR_PTR(-ENOMEM);
1251
da17066c 1252 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1253 root->root_key.objectid = objectid;
1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255 root->root_key.offset = 0;
1256
4d75f8a9 1257 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1258 if (IS_ERR(leaf)) {
1259 ret = PTR_ERR(leaf);
1dd05682 1260 leaf = NULL;
20897f5c
AJ
1261 goto fail;
1262 }
1263
b159fa28 1264 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1265 btrfs_set_header_bytenr(leaf, leaf->start);
1266 btrfs_set_header_generation(leaf, trans->transid);
1267 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1268 btrfs_set_header_owner(leaf, objectid);
1269 root->node = leaf;
1270
d24ee97b
DS
1271 write_extent_buffer_fsid(leaf, fs_info->fsid);
1272 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1273 btrfs_mark_buffer_dirty(leaf);
1274
1275 root->commit_root = btrfs_root_node(root);
27cdeb70 1276 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1277
1278 root->root_item.flags = 0;
1279 root->root_item.byte_limit = 0;
1280 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1281 btrfs_set_root_generation(&root->root_item, trans->transid);
1282 btrfs_set_root_level(&root->root_item, 0);
1283 btrfs_set_root_refs(&root->root_item, 1);
1284 btrfs_set_root_used(&root->root_item, leaf->len);
1285 btrfs_set_root_last_snapshot(&root->root_item, 0);
1286 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1287 uuid_le_gen(&uuid);
1288 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1289 root->root_item.drop_level = 0;
1290
1291 key.objectid = objectid;
1292 key.type = BTRFS_ROOT_ITEM_KEY;
1293 key.offset = 0;
1294 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1295 if (ret)
1296 goto fail;
1297
1298 btrfs_tree_unlock(leaf);
1299
1dd05682
TI
1300 return root;
1301
20897f5c 1302fail:
1dd05682
TI
1303 if (leaf) {
1304 btrfs_tree_unlock(leaf);
59885b39 1305 free_extent_buffer(root->commit_root);
1dd05682
TI
1306 free_extent_buffer(leaf);
1307 }
1308 kfree(root);
20897f5c 1309
1dd05682 1310 return ERR_PTR(ret);
20897f5c
AJ
1311}
1312
7237f183
YZ
1313static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1315{
1316 struct btrfs_root *root;
7237f183 1317 struct extent_buffer *leaf;
e02119d5 1318
74e4d827 1319 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1320 if (!root)
7237f183 1321 return ERR_PTR(-ENOMEM);
e02119d5 1322
da17066c 1323 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1324
1325 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1326 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1327 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1328
7237f183 1329 /*
27cdeb70
MX
1330 * DON'T set REF_COWS for log trees
1331 *
7237f183
YZ
1332 * log trees do not get reference counted because they go away
1333 * before a real commit is actually done. They do store pointers
1334 * to file data extents, and those reference counts still get
1335 * updated (along with back refs to the log tree).
1336 */
e02119d5 1337
4d75f8a9
DS
1338 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1339 NULL, 0, 0, 0);
7237f183
YZ
1340 if (IS_ERR(leaf)) {
1341 kfree(root);
1342 return ERR_CAST(leaf);
1343 }
e02119d5 1344
b159fa28 1345 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1346 btrfs_set_header_bytenr(leaf, leaf->start);
1347 btrfs_set_header_generation(leaf, trans->transid);
1348 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1349 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1350 root->node = leaf;
e02119d5 1351
0b246afa 1352 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1353 btrfs_mark_buffer_dirty(root->node);
1354 btrfs_tree_unlock(root->node);
7237f183
YZ
1355 return root;
1356}
1357
1358int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1359 struct btrfs_fs_info *fs_info)
1360{
1361 struct btrfs_root *log_root;
1362
1363 log_root = alloc_log_tree(trans, fs_info);
1364 if (IS_ERR(log_root))
1365 return PTR_ERR(log_root);
1366 WARN_ON(fs_info->log_root_tree);
1367 fs_info->log_root_tree = log_root;
1368 return 0;
1369}
1370
1371int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1372 struct btrfs_root *root)
1373{
0b246afa 1374 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1375 struct btrfs_root *log_root;
1376 struct btrfs_inode_item *inode_item;
1377
0b246afa 1378 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1379 if (IS_ERR(log_root))
1380 return PTR_ERR(log_root);
1381
1382 log_root->last_trans = trans->transid;
1383 log_root->root_key.offset = root->root_key.objectid;
1384
1385 inode_item = &log_root->root_item.inode;
3cae210f
QW
1386 btrfs_set_stack_inode_generation(inode_item, 1);
1387 btrfs_set_stack_inode_size(inode_item, 3);
1388 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1389 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1390 fs_info->nodesize);
3cae210f 1391 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1392
5d4f98a2 1393 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1394
1395 WARN_ON(root->log_root);
1396 root->log_root = log_root;
1397 root->log_transid = 0;
d1433deb 1398 root->log_transid_committed = -1;
257c62e1 1399 root->last_log_commit = 0;
e02119d5
CM
1400 return 0;
1401}
1402
35a3621b
SB
1403static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1404 struct btrfs_key *key)
e02119d5
CM
1405{
1406 struct btrfs_root *root;
1407 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1408 struct btrfs_path *path;
84234f3a 1409 u64 generation;
cb517eab 1410 int ret;
0f7d52f4 1411
cb517eab
MX
1412 path = btrfs_alloc_path();
1413 if (!path)
0f7d52f4 1414 return ERR_PTR(-ENOMEM);
cb517eab 1415
74e4d827 1416 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1417 if (!root) {
1418 ret = -ENOMEM;
1419 goto alloc_fail;
0f7d52f4
CM
1420 }
1421
da17066c 1422 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1423
cb517eab
MX
1424 ret = btrfs_find_root(tree_root, key, path,
1425 &root->root_item, &root->root_key);
0f7d52f4 1426 if (ret) {
13a8a7c8
YZ
1427 if (ret > 0)
1428 ret = -ENOENT;
cb517eab 1429 goto find_fail;
0f7d52f4 1430 }
13a8a7c8 1431
84234f3a 1432 generation = btrfs_root_generation(&root->root_item);
2ff7e61e
JM
1433 root->node = read_tree_block(fs_info,
1434 btrfs_root_bytenr(&root->root_item),
ce86cd59 1435 generation);
64c043de
LB
1436 if (IS_ERR(root->node)) {
1437 ret = PTR_ERR(root->node);
cb517eab
MX
1438 goto find_fail;
1439 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1440 ret = -EIO;
64c043de
LB
1441 free_extent_buffer(root->node);
1442 goto find_fail;
416bc658 1443 }
5d4f98a2 1444 root->commit_root = btrfs_root_node(root);
13a8a7c8 1445out:
cb517eab
MX
1446 btrfs_free_path(path);
1447 return root;
1448
cb517eab
MX
1449find_fail:
1450 kfree(root);
1451alloc_fail:
1452 root = ERR_PTR(ret);
1453 goto out;
1454}
1455
1456struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1457 struct btrfs_key *location)
1458{
1459 struct btrfs_root *root;
1460
1461 root = btrfs_read_tree_root(tree_root, location);
1462 if (IS_ERR(root))
1463 return root;
1464
1465 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1466 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1467 btrfs_check_and_init_root_item(&root->root_item);
1468 }
13a8a7c8 1469
5eda7b5e
CM
1470 return root;
1471}
1472
cb517eab
MX
1473int btrfs_init_fs_root(struct btrfs_root *root)
1474{
1475 int ret;
8257b2dc 1476 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1477
1478 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1479 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1480 GFP_NOFS);
1481 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1482 ret = -ENOMEM;
1483 goto fail;
1484 }
1485
8257b2dc
MX
1486 writers = btrfs_alloc_subvolume_writers();
1487 if (IS_ERR(writers)) {
1488 ret = PTR_ERR(writers);
1489 goto fail;
1490 }
1491 root->subv_writers = writers;
1492
cb517eab 1493 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1494 spin_lock_init(&root->ino_cache_lock);
1495 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1496
1497 ret = get_anon_bdev(&root->anon_dev);
1498 if (ret)
876d2cf1 1499 goto fail;
f32e48e9
CR
1500
1501 mutex_lock(&root->objectid_mutex);
1502 ret = btrfs_find_highest_objectid(root,
1503 &root->highest_objectid);
1504 if (ret) {
1505 mutex_unlock(&root->objectid_mutex);
876d2cf1 1506 goto fail;
f32e48e9
CR
1507 }
1508
1509 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1510
1511 mutex_unlock(&root->objectid_mutex);
1512
cb517eab
MX
1513 return 0;
1514fail:
876d2cf1 1515 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1516 return ret;
1517}
1518
35bbb97f
JM
1519struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1520 u64 root_id)
cb517eab
MX
1521{
1522 struct btrfs_root *root;
1523
1524 spin_lock(&fs_info->fs_roots_radix_lock);
1525 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1526 (unsigned long)root_id);
1527 spin_unlock(&fs_info->fs_roots_radix_lock);
1528 return root;
1529}
1530
1531int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1532 struct btrfs_root *root)
1533{
1534 int ret;
1535
e1860a77 1536 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1537 if (ret)
1538 return ret;
1539
1540 spin_lock(&fs_info->fs_roots_radix_lock);
1541 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1542 (unsigned long)root->root_key.objectid,
1543 root);
1544 if (ret == 0)
27cdeb70 1545 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1546 spin_unlock(&fs_info->fs_roots_radix_lock);
1547 radix_tree_preload_end();
1548
1549 return ret;
1550}
1551
c00869f1
MX
1552struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1553 struct btrfs_key *location,
1554 bool check_ref)
5eda7b5e
CM
1555{
1556 struct btrfs_root *root;
381cf658 1557 struct btrfs_path *path;
1d4c08e0 1558 struct btrfs_key key;
5eda7b5e
CM
1559 int ret;
1560
edbd8d4e
CM
1561 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1562 return fs_info->tree_root;
1563 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1564 return fs_info->extent_root;
8f18cf13
CM
1565 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1566 return fs_info->chunk_root;
1567 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1568 return fs_info->dev_root;
0403e47e
YZ
1569 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1570 return fs_info->csum_root;
bcef60f2
AJ
1571 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1572 return fs_info->quota_root ? fs_info->quota_root :
1573 ERR_PTR(-ENOENT);
f7a81ea4
SB
1574 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1575 return fs_info->uuid_root ? fs_info->uuid_root :
1576 ERR_PTR(-ENOENT);
70f6d82e
OS
1577 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1578 return fs_info->free_space_root ? fs_info->free_space_root :
1579 ERR_PTR(-ENOENT);
4df27c4d 1580again:
cb517eab 1581 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1582 if (root) {
c00869f1 1583 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1584 return ERR_PTR(-ENOENT);
5eda7b5e 1585 return root;
48475471 1586 }
5eda7b5e 1587
cb517eab 1588 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1589 if (IS_ERR(root))
1590 return root;
3394e160 1591
c00869f1 1592 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1593 ret = -ENOENT;
581bb050 1594 goto fail;
35a30d7c 1595 }
581bb050 1596
cb517eab 1597 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1598 if (ret)
1599 goto fail;
3394e160 1600
381cf658
DS
1601 path = btrfs_alloc_path();
1602 if (!path) {
1603 ret = -ENOMEM;
1604 goto fail;
1605 }
1d4c08e0
DS
1606 key.objectid = BTRFS_ORPHAN_OBJECTID;
1607 key.type = BTRFS_ORPHAN_ITEM_KEY;
1608 key.offset = location->objectid;
1609
1610 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1611 btrfs_free_path(path);
d68fc57b
YZ
1612 if (ret < 0)
1613 goto fail;
1614 if (ret == 0)
27cdeb70 1615 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1616
cb517eab 1617 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1618 if (ret) {
4df27c4d
YZ
1619 if (ret == -EEXIST) {
1620 free_fs_root(root);
1621 goto again;
1622 }
1623 goto fail;
0f7d52f4 1624 }
edbd8d4e 1625 return root;
4df27c4d
YZ
1626fail:
1627 free_fs_root(root);
1628 return ERR_PTR(ret);
edbd8d4e
CM
1629}
1630
04160088
CM
1631static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1632{
1633 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1634 int ret = 0;
04160088
CM
1635 struct btrfs_device *device;
1636 struct backing_dev_info *bdi;
b7967db7 1637
1f78160c
XG
1638 rcu_read_lock();
1639 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1640 if (!device->bdev)
1641 continue;
efa7c9f9 1642 bdi = device->bdev->bd_bdi;
ff9ea323 1643 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1644 ret = 1;
1645 break;
1646 }
1647 }
1f78160c 1648 rcu_read_unlock();
04160088
CM
1649 return ret;
1650}
1651
8b712842
CM
1652/*
1653 * called by the kthread helper functions to finally call the bio end_io
1654 * functions. This is where read checksum verification actually happens
1655 */
1656static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1657{
ce9adaa5 1658 struct bio *bio;
97eb6b69 1659 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1660
97eb6b69 1661 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1662 bio = end_io_wq->bio;
ce9adaa5 1663
4e4cbee9 1664 bio->bi_status = end_io_wq->status;
8b712842
CM
1665 bio->bi_private = end_io_wq->private;
1666 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1667 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1668 bio_endio(bio);
44b8bd7e
CM
1669}
1670
a74a4b97
CM
1671static int cleaner_kthread(void *arg)
1672{
1673 struct btrfs_root *root = arg;
0b246afa 1674 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1675 int again;
da288d28 1676 struct btrfs_trans_handle *trans;
a74a4b97
CM
1677
1678 do {
d0278245 1679 again = 0;
a74a4b97 1680
d0278245 1681 /* Make the cleaner go to sleep early. */
2ff7e61e 1682 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1683 goto sleep;
1684
90c711ab
ZB
1685 /*
1686 * Do not do anything if we might cause open_ctree() to block
1687 * before we have finished mounting the filesystem.
1688 */
0b246afa 1689 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1690 goto sleep;
1691
0b246afa 1692 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1693 goto sleep;
1694
dc7f370c
MX
1695 /*
1696 * Avoid the problem that we change the status of the fs
1697 * during the above check and trylock.
1698 */
2ff7e61e 1699 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1700 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1701 goto sleep;
76dda93c 1702 }
a74a4b97 1703
0b246afa 1704 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1705 btrfs_run_delayed_iputs(fs_info);
0b246afa 1706 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1707
d0278245 1708 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1709 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1710
1711 /*
05323cd1
MX
1712 * The defragger has dealt with the R/O remount and umount,
1713 * needn't do anything special here.
d0278245 1714 */
0b246afa 1715 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1716
1717 /*
1718 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1719 * with relocation (btrfs_relocate_chunk) and relocation
1720 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1721 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1722 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1723 * unused block groups.
1724 */
0b246afa 1725 btrfs_delete_unused_bgs(fs_info);
d0278245 1726sleep:
838fe188 1727 if (!again) {
a74a4b97 1728 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1729 if (!kthread_should_stop())
1730 schedule();
a74a4b97
CM
1731 __set_current_state(TASK_RUNNING);
1732 }
1733 } while (!kthread_should_stop());
da288d28
FM
1734
1735 /*
1736 * Transaction kthread is stopped before us and wakes us up.
1737 * However we might have started a new transaction and COWed some
1738 * tree blocks when deleting unused block groups for example. So
1739 * make sure we commit the transaction we started to have a clean
1740 * shutdown when evicting the btree inode - if it has dirty pages
1741 * when we do the final iput() on it, eviction will trigger a
1742 * writeback for it which will fail with null pointer dereferences
1743 * since work queues and other resources were already released and
1744 * destroyed by the time the iput/eviction/writeback is made.
1745 */
1746 trans = btrfs_attach_transaction(root);
1747 if (IS_ERR(trans)) {
1748 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1749 btrfs_err(fs_info,
da288d28
FM
1750 "cleaner transaction attach returned %ld",
1751 PTR_ERR(trans));
1752 } else {
1753 int ret;
1754
3a45bb20 1755 ret = btrfs_commit_transaction(trans);
da288d28 1756 if (ret)
0b246afa 1757 btrfs_err(fs_info,
da288d28
FM
1758 "cleaner open transaction commit returned %d",
1759 ret);
1760 }
1761
a74a4b97
CM
1762 return 0;
1763}
1764
1765static int transaction_kthread(void *arg)
1766{
1767 struct btrfs_root *root = arg;
0b246afa 1768 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1769 struct btrfs_trans_handle *trans;
1770 struct btrfs_transaction *cur;
8929ecfa 1771 u64 transid;
a74a4b97
CM
1772 unsigned long now;
1773 unsigned long delay;
914b2007 1774 bool cannot_commit;
a74a4b97
CM
1775
1776 do {
914b2007 1777 cannot_commit = false;
0b246afa
JM
1778 delay = HZ * fs_info->commit_interval;
1779 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1780
0b246afa
JM
1781 spin_lock(&fs_info->trans_lock);
1782 cur = fs_info->running_transaction;
a74a4b97 1783 if (!cur) {
0b246afa 1784 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1785 goto sleep;
1786 }
31153d81 1787
a74a4b97 1788 now = get_seconds();
4a9d8bde 1789 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17 1790 (now < cur->start_time ||
0b246afa
JM
1791 now - cur->start_time < fs_info->commit_interval)) {
1792 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1793 delay = HZ * 5;
1794 goto sleep;
1795 }
8929ecfa 1796 transid = cur->transid;
0b246afa 1797 spin_unlock(&fs_info->trans_lock);
56bec294 1798
79787eaa 1799 /* If the file system is aborted, this will always fail. */
354aa0fb 1800 trans = btrfs_attach_transaction(root);
914b2007 1801 if (IS_ERR(trans)) {
354aa0fb
MX
1802 if (PTR_ERR(trans) != -ENOENT)
1803 cannot_commit = true;
79787eaa 1804 goto sleep;
914b2007 1805 }
8929ecfa 1806 if (transid == trans->transid) {
3a45bb20 1807 btrfs_commit_transaction(trans);
8929ecfa 1808 } else {
3a45bb20 1809 btrfs_end_transaction(trans);
8929ecfa 1810 }
a74a4b97 1811sleep:
0b246afa
JM
1812 wake_up_process(fs_info->cleaner_kthread);
1813 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1814
4e121c06 1815 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1816 &fs_info->fs_state)))
2ff7e61e 1817 btrfs_cleanup_transaction(fs_info);
ce63f891
JK
1818 set_current_state(TASK_INTERRUPTIBLE);
1819 if (!kthread_should_stop() &&
0b246afa 1820 (!btrfs_transaction_blocked(fs_info) ||
ce63f891
JK
1821 cannot_commit))
1822 schedule_timeout(delay);
1823 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1824 } while (!kthread_should_stop());
1825 return 0;
1826}
1827
af31f5e5
CM
1828/*
1829 * this will find the highest generation in the array of
1830 * root backups. The index of the highest array is returned,
1831 * or -1 if we can't find anything.
1832 *
1833 * We check to make sure the array is valid by comparing the
1834 * generation of the latest root in the array with the generation
1835 * in the super block. If they don't match we pitch it.
1836 */
1837static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1838{
1839 u64 cur;
1840 int newest_index = -1;
1841 struct btrfs_root_backup *root_backup;
1842 int i;
1843
1844 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1845 root_backup = info->super_copy->super_roots + i;
1846 cur = btrfs_backup_tree_root_gen(root_backup);
1847 if (cur == newest_gen)
1848 newest_index = i;
1849 }
1850
1851 /* check to see if we actually wrapped around */
1852 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1853 root_backup = info->super_copy->super_roots;
1854 cur = btrfs_backup_tree_root_gen(root_backup);
1855 if (cur == newest_gen)
1856 newest_index = 0;
1857 }
1858 return newest_index;
1859}
1860
1861
1862/*
1863 * find the oldest backup so we know where to store new entries
1864 * in the backup array. This will set the backup_root_index
1865 * field in the fs_info struct
1866 */
1867static void find_oldest_super_backup(struct btrfs_fs_info *info,
1868 u64 newest_gen)
1869{
1870 int newest_index = -1;
1871
1872 newest_index = find_newest_super_backup(info, newest_gen);
1873 /* if there was garbage in there, just move along */
1874 if (newest_index == -1) {
1875 info->backup_root_index = 0;
1876 } else {
1877 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1878 }
1879}
1880
1881/*
1882 * copy all the root pointers into the super backup array.
1883 * this will bump the backup pointer by one when it is
1884 * done
1885 */
1886static void backup_super_roots(struct btrfs_fs_info *info)
1887{
1888 int next_backup;
1889 struct btrfs_root_backup *root_backup;
1890 int last_backup;
1891
1892 next_backup = info->backup_root_index;
1893 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1894 BTRFS_NUM_BACKUP_ROOTS;
1895
1896 /*
1897 * just overwrite the last backup if we're at the same generation
1898 * this happens only at umount
1899 */
1900 root_backup = info->super_for_commit->super_roots + last_backup;
1901 if (btrfs_backup_tree_root_gen(root_backup) ==
1902 btrfs_header_generation(info->tree_root->node))
1903 next_backup = last_backup;
1904
1905 root_backup = info->super_for_commit->super_roots + next_backup;
1906
1907 /*
1908 * make sure all of our padding and empty slots get zero filled
1909 * regardless of which ones we use today
1910 */
1911 memset(root_backup, 0, sizeof(*root_backup));
1912
1913 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1914
1915 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1916 btrfs_set_backup_tree_root_gen(root_backup,
1917 btrfs_header_generation(info->tree_root->node));
1918
1919 btrfs_set_backup_tree_root_level(root_backup,
1920 btrfs_header_level(info->tree_root->node));
1921
1922 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1923 btrfs_set_backup_chunk_root_gen(root_backup,
1924 btrfs_header_generation(info->chunk_root->node));
1925 btrfs_set_backup_chunk_root_level(root_backup,
1926 btrfs_header_level(info->chunk_root->node));
1927
1928 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1929 btrfs_set_backup_extent_root_gen(root_backup,
1930 btrfs_header_generation(info->extent_root->node));
1931 btrfs_set_backup_extent_root_level(root_backup,
1932 btrfs_header_level(info->extent_root->node));
1933
7c7e82a7
CM
1934 /*
1935 * we might commit during log recovery, which happens before we set
1936 * the fs_root. Make sure it is valid before we fill it in.
1937 */
1938 if (info->fs_root && info->fs_root->node) {
1939 btrfs_set_backup_fs_root(root_backup,
1940 info->fs_root->node->start);
1941 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1942 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1943 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1944 btrfs_header_level(info->fs_root->node));
7c7e82a7 1945 }
af31f5e5
CM
1946
1947 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1948 btrfs_set_backup_dev_root_gen(root_backup,
1949 btrfs_header_generation(info->dev_root->node));
1950 btrfs_set_backup_dev_root_level(root_backup,
1951 btrfs_header_level(info->dev_root->node));
1952
1953 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1954 btrfs_set_backup_csum_root_gen(root_backup,
1955 btrfs_header_generation(info->csum_root->node));
1956 btrfs_set_backup_csum_root_level(root_backup,
1957 btrfs_header_level(info->csum_root->node));
1958
1959 btrfs_set_backup_total_bytes(root_backup,
1960 btrfs_super_total_bytes(info->super_copy));
1961 btrfs_set_backup_bytes_used(root_backup,
1962 btrfs_super_bytes_used(info->super_copy));
1963 btrfs_set_backup_num_devices(root_backup,
1964 btrfs_super_num_devices(info->super_copy));
1965
1966 /*
1967 * if we don't copy this out to the super_copy, it won't get remembered
1968 * for the next commit
1969 */
1970 memcpy(&info->super_copy->super_roots,
1971 &info->super_for_commit->super_roots,
1972 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1973}
1974
1975/*
1976 * this copies info out of the root backup array and back into
1977 * the in-memory super block. It is meant to help iterate through
1978 * the array, so you send it the number of backups you've already
1979 * tried and the last backup index you used.
1980 *
1981 * this returns -1 when it has tried all the backups
1982 */
1983static noinline int next_root_backup(struct btrfs_fs_info *info,
1984 struct btrfs_super_block *super,
1985 int *num_backups_tried, int *backup_index)
1986{
1987 struct btrfs_root_backup *root_backup;
1988 int newest = *backup_index;
1989
1990 if (*num_backups_tried == 0) {
1991 u64 gen = btrfs_super_generation(super);
1992
1993 newest = find_newest_super_backup(info, gen);
1994 if (newest == -1)
1995 return -1;
1996
1997 *backup_index = newest;
1998 *num_backups_tried = 1;
1999 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2000 /* we've tried all the backups, all done */
2001 return -1;
2002 } else {
2003 /* jump to the next oldest backup */
2004 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2005 BTRFS_NUM_BACKUP_ROOTS;
2006 *backup_index = newest;
2007 *num_backups_tried += 1;
2008 }
2009 root_backup = super->super_roots + newest;
2010
2011 btrfs_set_super_generation(super,
2012 btrfs_backup_tree_root_gen(root_backup));
2013 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2014 btrfs_set_super_root_level(super,
2015 btrfs_backup_tree_root_level(root_backup));
2016 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2017
2018 /*
2019 * fixme: the total bytes and num_devices need to match or we should
2020 * need a fsck
2021 */
2022 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2023 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2024 return 0;
2025}
2026
7abadb64
LB
2027/* helper to cleanup workers */
2028static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2029{
dc6e3209 2030 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2031 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2032 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2033 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2034 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2035 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2036 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2037 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2038 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2039 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2040 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2041 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2042 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2043 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2044 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2045 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2046 /*
2047 * Now that all other work queues are destroyed, we can safely destroy
2048 * the queues used for metadata I/O, since tasks from those other work
2049 * queues can do metadata I/O operations.
2050 */
2051 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2052 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2053}
2054
2e9f5954
R
2055static void free_root_extent_buffers(struct btrfs_root *root)
2056{
2057 if (root) {
2058 free_extent_buffer(root->node);
2059 free_extent_buffer(root->commit_root);
2060 root->node = NULL;
2061 root->commit_root = NULL;
2062 }
2063}
2064
af31f5e5
CM
2065/* helper to cleanup tree roots */
2066static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2067{
2e9f5954 2068 free_root_extent_buffers(info->tree_root);
655b09fe 2069
2e9f5954
R
2070 free_root_extent_buffers(info->dev_root);
2071 free_root_extent_buffers(info->extent_root);
2072 free_root_extent_buffers(info->csum_root);
2073 free_root_extent_buffers(info->quota_root);
2074 free_root_extent_buffers(info->uuid_root);
2075 if (chunk_root)
2076 free_root_extent_buffers(info->chunk_root);
70f6d82e 2077 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2078}
2079
faa2dbf0 2080void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2081{
2082 int ret;
2083 struct btrfs_root *gang[8];
2084 int i;
2085
2086 while (!list_empty(&fs_info->dead_roots)) {
2087 gang[0] = list_entry(fs_info->dead_roots.next,
2088 struct btrfs_root, root_list);
2089 list_del(&gang[0]->root_list);
2090
27cdeb70 2091 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2092 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2093 } else {
2094 free_extent_buffer(gang[0]->node);
2095 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2096 btrfs_put_fs_root(gang[0]);
171f6537
JB
2097 }
2098 }
2099
2100 while (1) {
2101 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2102 (void **)gang, 0,
2103 ARRAY_SIZE(gang));
2104 if (!ret)
2105 break;
2106 for (i = 0; i < ret; i++)
cb517eab 2107 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2108 }
1a4319cc
LB
2109
2110 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2111 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2112 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2113 }
171f6537 2114}
af31f5e5 2115
638aa7ed
ES
2116static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2117{
2118 mutex_init(&fs_info->scrub_lock);
2119 atomic_set(&fs_info->scrubs_running, 0);
2120 atomic_set(&fs_info->scrub_pause_req, 0);
2121 atomic_set(&fs_info->scrubs_paused, 0);
2122 atomic_set(&fs_info->scrub_cancel_req, 0);
2123 init_waitqueue_head(&fs_info->scrub_pause_wait);
2124 fs_info->scrub_workers_refcnt = 0;
2125}
2126
779a65a4
ES
2127static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2128{
2129 spin_lock_init(&fs_info->balance_lock);
2130 mutex_init(&fs_info->balance_mutex);
2131 atomic_set(&fs_info->balance_running, 0);
2132 atomic_set(&fs_info->balance_pause_req, 0);
2133 atomic_set(&fs_info->balance_cancel_req, 0);
2134 fs_info->balance_ctl = NULL;
2135 init_waitqueue_head(&fs_info->balance_wait_q);
2136}
2137
6bccf3ab 2138static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2139{
2ff7e61e
JM
2140 struct inode *inode = fs_info->btree_inode;
2141
2142 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2143 set_nlink(inode, 1);
f37938e0
ES
2144 /*
2145 * we set the i_size on the btree inode to the max possible int.
2146 * the real end of the address space is determined by all of
2147 * the devices in the system
2148 */
2ff7e61e
JM
2149 inode->i_size = OFFSET_MAX;
2150 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2151
2ff7e61e 2152 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2153 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2154 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2155 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2156
2ff7e61e 2157 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2158
2ff7e61e
JM
2159 BTRFS_I(inode)->root = fs_info->tree_root;
2160 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2161 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2162 btrfs_insert_inode_hash(inode);
f37938e0
ES
2163}
2164
ad618368
ES
2165static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2166{
2167 fs_info->dev_replace.lock_owner = 0;
2168 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2169 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2170 rwlock_init(&fs_info->dev_replace.lock);
2171 atomic_set(&fs_info->dev_replace.read_locks, 0);
2172 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2173 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2174 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2175}
2176
f9e92e40
ES
2177static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2178{
2179 spin_lock_init(&fs_info->qgroup_lock);
2180 mutex_init(&fs_info->qgroup_ioctl_lock);
2181 fs_info->qgroup_tree = RB_ROOT;
2182 fs_info->qgroup_op_tree = RB_ROOT;
2183 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2184 fs_info->qgroup_seq = 1;
f9e92e40 2185 fs_info->qgroup_ulist = NULL;
d2c609b8 2186 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2187 mutex_init(&fs_info->qgroup_rescan_lock);
2188}
2189
2a458198
ES
2190static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2191 struct btrfs_fs_devices *fs_devices)
2192{
2193 int max_active = fs_info->thread_pool_size;
6f011058 2194 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2195
2196 fs_info->workers =
cb001095
JM
2197 btrfs_alloc_workqueue(fs_info, "worker",
2198 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2199
2200 fs_info->delalloc_workers =
cb001095
JM
2201 btrfs_alloc_workqueue(fs_info, "delalloc",
2202 flags, max_active, 2);
2a458198
ES
2203
2204 fs_info->flush_workers =
cb001095
JM
2205 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2206 flags, max_active, 0);
2a458198
ES
2207
2208 fs_info->caching_workers =
cb001095 2209 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2210
2211 /*
2212 * a higher idle thresh on the submit workers makes it much more
2213 * likely that bios will be send down in a sane order to the
2214 * devices
2215 */
2216 fs_info->submit_workers =
cb001095 2217 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2218 min_t(u64, fs_devices->num_devices,
2219 max_active), 64);
2220
2221 fs_info->fixup_workers =
cb001095 2222 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2223
2224 /*
2225 * endios are largely parallel and should have a very
2226 * low idle thresh
2227 */
2228 fs_info->endio_workers =
cb001095 2229 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2230 fs_info->endio_meta_workers =
cb001095
JM
2231 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2232 max_active, 4);
2a458198 2233 fs_info->endio_meta_write_workers =
cb001095
JM
2234 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2235 max_active, 2);
2a458198 2236 fs_info->endio_raid56_workers =
cb001095
JM
2237 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2238 max_active, 4);
2a458198 2239 fs_info->endio_repair_workers =
cb001095 2240 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2241 fs_info->rmw_workers =
cb001095 2242 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2243 fs_info->endio_write_workers =
cb001095
JM
2244 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2245 max_active, 2);
2a458198 2246 fs_info->endio_freespace_worker =
cb001095
JM
2247 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2248 max_active, 0);
2a458198 2249 fs_info->delayed_workers =
cb001095
JM
2250 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2251 max_active, 0);
2a458198 2252 fs_info->readahead_workers =
cb001095
JM
2253 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2254 max_active, 2);
2a458198 2255 fs_info->qgroup_rescan_workers =
cb001095 2256 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2257 fs_info->extent_workers =
cb001095 2258 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2259 min_t(u64, fs_devices->num_devices,
2260 max_active), 8);
2261
2262 if (!(fs_info->workers && fs_info->delalloc_workers &&
2263 fs_info->submit_workers && fs_info->flush_workers &&
2264 fs_info->endio_workers && fs_info->endio_meta_workers &&
2265 fs_info->endio_meta_write_workers &&
2266 fs_info->endio_repair_workers &&
2267 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2268 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2269 fs_info->caching_workers && fs_info->readahead_workers &&
2270 fs_info->fixup_workers && fs_info->delayed_workers &&
2271 fs_info->extent_workers &&
2272 fs_info->qgroup_rescan_workers)) {
2273 return -ENOMEM;
2274 }
2275
2276 return 0;
2277}
2278
63443bf5
ES
2279static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2280 struct btrfs_fs_devices *fs_devices)
2281{
2282 int ret;
63443bf5
ES
2283 struct btrfs_root *log_tree_root;
2284 struct btrfs_super_block *disk_super = fs_info->super_copy;
2285 u64 bytenr = btrfs_super_log_root(disk_super);
2286
2287 if (fs_devices->rw_devices == 0) {
f14d104d 2288 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2289 return -EIO;
2290 }
2291
74e4d827 2292 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2293 if (!log_tree_root)
2294 return -ENOMEM;
2295
da17066c 2296 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2297
2ff7e61e
JM
2298 log_tree_root->node = read_tree_block(fs_info, bytenr,
2299 fs_info->generation + 1);
64c043de 2300 if (IS_ERR(log_tree_root->node)) {
f14d104d 2301 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2302 ret = PTR_ERR(log_tree_root->node);
64c043de 2303 kfree(log_tree_root);
0eeff236 2304 return ret;
64c043de 2305 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2306 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2307 free_extent_buffer(log_tree_root->node);
2308 kfree(log_tree_root);
2309 return -EIO;
2310 }
2311 /* returns with log_tree_root freed on success */
2312 ret = btrfs_recover_log_trees(log_tree_root);
2313 if (ret) {
0b246afa
JM
2314 btrfs_handle_fs_error(fs_info, ret,
2315 "Failed to recover log tree");
63443bf5
ES
2316 free_extent_buffer(log_tree_root->node);
2317 kfree(log_tree_root);
2318 return ret;
2319 }
2320
bc98a42c 2321 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2322 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2323 if (ret)
2324 return ret;
2325 }
2326
2327 return 0;
2328}
2329
6bccf3ab 2330static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2331{
6bccf3ab 2332 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2333 struct btrfs_root *root;
4bbcaa64
ES
2334 struct btrfs_key location;
2335 int ret;
2336
6bccf3ab
JM
2337 BUG_ON(!fs_info->tree_root);
2338
4bbcaa64
ES
2339 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2340 location.type = BTRFS_ROOT_ITEM_KEY;
2341 location.offset = 0;
2342
a4f3d2c4
DS
2343 root = btrfs_read_tree_root(tree_root, &location);
2344 if (IS_ERR(root))
2345 return PTR_ERR(root);
2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 fs_info->extent_root = root;
4bbcaa64
ES
2348
2349 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2350 root = btrfs_read_tree_root(tree_root, &location);
2351 if (IS_ERR(root))
2352 return PTR_ERR(root);
2353 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2354 fs_info->dev_root = root;
4bbcaa64
ES
2355 btrfs_init_devices_late(fs_info);
2356
2357 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2358 root = btrfs_read_tree_root(tree_root, &location);
2359 if (IS_ERR(root))
2360 return PTR_ERR(root);
2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362 fs_info->csum_root = root;
4bbcaa64
ES
2363
2364 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2365 root = btrfs_read_tree_root(tree_root, &location);
2366 if (!IS_ERR(root)) {
2367 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2368 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2369 fs_info->quota_root = root;
4bbcaa64
ES
2370 }
2371
2372 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2373 root = btrfs_read_tree_root(tree_root, &location);
2374 if (IS_ERR(root)) {
2375 ret = PTR_ERR(root);
4bbcaa64
ES
2376 if (ret != -ENOENT)
2377 return ret;
2378 } else {
a4f3d2c4
DS
2379 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2380 fs_info->uuid_root = root;
4bbcaa64
ES
2381 }
2382
70f6d82e
OS
2383 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2384 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2385 root = btrfs_read_tree_root(tree_root, &location);
2386 if (IS_ERR(root))
2387 return PTR_ERR(root);
2388 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389 fs_info->free_space_root = root;
2390 }
2391
4bbcaa64
ES
2392 return 0;
2393}
2394
ad2b2c80
AV
2395int open_ctree(struct super_block *sb,
2396 struct btrfs_fs_devices *fs_devices,
2397 char *options)
2e635a27 2398{
db94535d
CM
2399 u32 sectorsize;
2400 u32 nodesize;
87ee04eb 2401 u32 stripesize;
84234f3a 2402 u64 generation;
f2b636e8 2403 u64 features;
3de4586c 2404 struct btrfs_key location;
a061fc8d 2405 struct buffer_head *bh;
4d34b278 2406 struct btrfs_super_block *disk_super;
815745cf 2407 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2408 struct btrfs_root *tree_root;
4d34b278 2409 struct btrfs_root *chunk_root;
eb60ceac 2410 int ret;
e58ca020 2411 int err = -EINVAL;
af31f5e5
CM
2412 int num_backups_tried = 0;
2413 int backup_index = 0;
5cdc7ad3 2414 int max_active;
6675df31 2415 int clear_free_space_tree = 0;
4543df7e 2416
74e4d827
DS
2417 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2418 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2419 if (!tree_root || !chunk_root) {
39279cc3
CM
2420 err = -ENOMEM;
2421 goto fail;
2422 }
76dda93c
YZ
2423
2424 ret = init_srcu_struct(&fs_info->subvol_srcu);
2425 if (ret) {
2426 err = ret;
2427 goto fail;
2428 }
2429
908c7f19 2430 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2431 if (ret) {
2432 err = ret;
9e11ceee 2433 goto fail_srcu;
e2d84521 2434 }
09cbfeaf 2435 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2436 (1 + ilog2(nr_cpu_ids));
2437
908c7f19 2438 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2439 if (ret) {
2440 err = ret;
2441 goto fail_dirty_metadata_bytes;
2442 }
2443
908c7f19 2444 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2445 if (ret) {
2446 err = ret;
2447 goto fail_delalloc_bytes;
2448 }
2449
76dda93c 2450 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2451 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2452 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2453 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2454 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2455 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2456 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2457 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2458 spin_lock_init(&fs_info->trans_lock);
76dda93c 2459 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2460 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2461 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2462 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2463 spin_lock_init(&fs_info->super_lock);
fcebe456 2464 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2465 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2466 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2467 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2468 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2469 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2470 mutex_init(&fs_info->reloc_mutex);
573bfb72 2471 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2472 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2473 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2474
0b86a832 2475 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2476 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2477 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2478 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2479 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2480 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2481 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2482 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2483 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2484 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2485 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2486 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2487 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2488 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2489 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2490 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2491 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2492 fs_info->sb = sb;
95ac567a 2493 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2494 fs_info->metadata_ratio = 0;
4cb5300b 2495 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2496 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2497 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2498 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2499 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2500 /* readahead state */
d0164adc 2501 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2502 spin_lock_init(&fs_info->reada_lock);
fd708b81 2503 btrfs_init_ref_verify(fs_info);
c8b97818 2504
b34b086c
CM
2505 fs_info->thread_pool_size = min_t(unsigned long,
2506 num_online_cpus() + 2, 8);
0afbaf8c 2507
199c2a9c
MX
2508 INIT_LIST_HEAD(&fs_info->ordered_roots);
2509 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2510
2511 fs_info->btree_inode = new_inode(sb);
2512 if (!fs_info->btree_inode) {
2513 err = -ENOMEM;
2514 goto fail_bio_counter;
2515 }
2516 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2517
16cdcec7 2518 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2519 GFP_KERNEL);
16cdcec7
MX
2520 if (!fs_info->delayed_root) {
2521 err = -ENOMEM;
2522 goto fail_iput;
2523 }
2524 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2525
638aa7ed 2526 btrfs_init_scrub(fs_info);
21adbd5c
SB
2527#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2528 fs_info->check_integrity_print_mask = 0;
2529#endif
779a65a4 2530 btrfs_init_balance(fs_info);
21c7e756 2531 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2532
9f6d2510
DS
2533 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2534 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2535
6bccf3ab 2536 btrfs_init_btree_inode(fs_info);
76dda93c 2537
0f9dd46c 2538 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2539 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2540 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2541
c6100a4b
JB
2542 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2543 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2544 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2545 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2546
5a3f23d5 2547 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2548 mutex_init(&fs_info->tree_log_mutex);
925baedd 2549 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2550 mutex_init(&fs_info->transaction_kthread_mutex);
2551 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2552 mutex_init(&fs_info->volume_mutex);
1bbc621e 2553 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2554 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2555 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2556 init_rwsem(&fs_info->subvol_sem);
803b2f54 2557 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2558
ad618368 2559 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2560 btrfs_init_qgroup(fs_info);
416ac51d 2561
fa9c0d79
CM
2562 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2563 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2564
e6dcd2dc 2565 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2566 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2567 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2568 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2569
04216820
FM
2570 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2571
da17066c
JM
2572 /* Usable values until the real ones are cached from the superblock */
2573 fs_info->nodesize = 4096;
2574 fs_info->sectorsize = 4096;
2575 fs_info->stripesize = 4096;
2576
53b381b3
DW
2577 ret = btrfs_alloc_stripe_hash_table(fs_info);
2578 if (ret) {
83c8266a 2579 err = ret;
53b381b3
DW
2580 goto fail_alloc;
2581 }
2582
da17066c 2583 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2584
3c4bb26b 2585 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2586
2587 /*
2588 * Read super block and check the signature bytes only
2589 */
a512bbf8 2590 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2591 if (IS_ERR(bh)) {
2592 err = PTR_ERR(bh);
16cdcec7 2593 goto fail_alloc;
20b45077 2594 }
39279cc3 2595
1104a885
DS
2596 /*
2597 * We want to check superblock checksum, the type is stored inside.
2598 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2599 */
ab8d0fc4 2600 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2601 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2602 err = -EINVAL;
b2acdddf 2603 brelse(bh);
1104a885
DS
2604 goto fail_alloc;
2605 }
2606
2607 /*
2608 * super_copy is zeroed at allocation time and we never touch the
2609 * following bytes up to INFO_SIZE, the checksum is calculated from
2610 * the whole block of INFO_SIZE
2611 */
6c41761f
DS
2612 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2613 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2614 sizeof(*fs_info->super_for_commit));
a061fc8d 2615 brelse(bh);
5f39d397 2616
6c41761f 2617 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2618
3d3a126a 2619 ret = btrfs_check_super_valid(fs_info);
1104a885 2620 if (ret) {
05135f59 2621 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2622 err = -EINVAL;
2623 goto fail_alloc;
2624 }
2625
6c41761f 2626 disk_super = fs_info->super_copy;
0f7d52f4 2627 if (!btrfs_super_root(disk_super))
16cdcec7 2628 goto fail_alloc;
0f7d52f4 2629
acce952b 2630 /* check FS state, whether FS is broken. */
87533c47
MX
2631 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2632 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2633
af31f5e5
CM
2634 /*
2635 * run through our array of backup supers and setup
2636 * our ring pointer to the oldest one
2637 */
2638 generation = btrfs_super_generation(disk_super);
2639 find_oldest_super_backup(fs_info, generation);
2640
75e7cb7f
LB
2641 /*
2642 * In the long term, we'll store the compression type in the super
2643 * block, and it'll be used for per file compression control.
2644 */
2645 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2646
2ff7e61e 2647 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2648 if (ret) {
2649 err = ret;
16cdcec7 2650 goto fail_alloc;
2b82032c 2651 }
dfe25020 2652
f2b636e8
JB
2653 features = btrfs_super_incompat_flags(disk_super) &
2654 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2655 if (features) {
05135f59
DS
2656 btrfs_err(fs_info,
2657 "cannot mount because of unsupported optional features (%llx)",
2658 features);
f2b636e8 2659 err = -EINVAL;
16cdcec7 2660 goto fail_alloc;
f2b636e8
JB
2661 }
2662
5d4f98a2 2663 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2664 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2665 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2666 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2667 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2668 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2669
3173a18f 2670 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2671 btrfs_info(fs_info, "has skinny extents");
3173a18f 2672
727011e0
CM
2673 /*
2674 * flag our filesystem as having big metadata blocks if
2675 * they are bigger than the page size
2676 */
09cbfeaf 2677 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2678 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2679 btrfs_info(fs_info,
2680 "flagging fs with big metadata feature");
727011e0
CM
2681 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2682 }
2683
bc3f116f 2684 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2685 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2686 stripesize = sectorsize;
707e8a07 2687 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2688 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2689
da17066c
JM
2690 /* Cache block sizes */
2691 fs_info->nodesize = nodesize;
2692 fs_info->sectorsize = sectorsize;
2693 fs_info->stripesize = stripesize;
2694
bc3f116f
CM
2695 /*
2696 * mixed block groups end up with duplicate but slightly offset
2697 * extent buffers for the same range. It leads to corruptions
2698 */
2699 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2700 (sectorsize != nodesize)) {
05135f59
DS
2701 btrfs_err(fs_info,
2702"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2703 nodesize, sectorsize);
bc3f116f
CM
2704 goto fail_alloc;
2705 }
2706
ceda0864
MX
2707 /*
2708 * Needn't use the lock because there is no other task which will
2709 * update the flag.
2710 */
a6fa6fae 2711 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2712
f2b636e8
JB
2713 features = btrfs_super_compat_ro_flags(disk_super) &
2714 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2715 if (!sb_rdonly(sb) && features) {
05135f59
DS
2716 btrfs_err(fs_info,
2717 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2718 features);
f2b636e8 2719 err = -EINVAL;
16cdcec7 2720 goto fail_alloc;
f2b636e8 2721 }
61d92c32 2722
5cdc7ad3 2723 max_active = fs_info->thread_pool_size;
61d92c32 2724
2a458198
ES
2725 ret = btrfs_init_workqueues(fs_info, fs_devices);
2726 if (ret) {
2727 err = ret;
0dc3b84a
JB
2728 goto fail_sb_buffer;
2729 }
4543df7e 2730
9e11ceee
JK
2731 sb->s_bdi->congested_fn = btrfs_congested_fn;
2732 sb->s_bdi->congested_data = fs_info;
2733 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2734 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2735 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2736 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2737
a061fc8d
CM
2738 sb->s_blocksize = sectorsize;
2739 sb->s_blocksize_bits = blksize_bits(sectorsize);
ee87cf5e 2740 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
db94535d 2741
925baedd 2742 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2743 ret = btrfs_read_sys_array(fs_info);
925baedd 2744 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2745 if (ret) {
05135f59 2746 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2747 goto fail_sb_buffer;
84eed90f 2748 }
0b86a832 2749
84234f3a 2750 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2751
da17066c 2752 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2753
2ff7e61e 2754 chunk_root->node = read_tree_block(fs_info,
0b86a832 2755 btrfs_super_chunk_root(disk_super),
ce86cd59 2756 generation);
64c043de
LB
2757 if (IS_ERR(chunk_root->node) ||
2758 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2759 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2760 if (!IS_ERR(chunk_root->node))
2761 free_extent_buffer(chunk_root->node);
95ab1f64 2762 chunk_root->node = NULL;
af31f5e5 2763 goto fail_tree_roots;
83121942 2764 }
5d4f98a2
YZ
2765 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2766 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2767
e17cade2 2768 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2769 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2770
5b4aacef 2771 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2772 if (ret) {
05135f59 2773 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2774 goto fail_tree_roots;
2b82032c 2775 }
0b86a832 2776
8dabb742
SB
2777 /*
2778 * keep the device that is marked to be the target device for the
2779 * dev_replace procedure
2780 */
9eaed21e 2781 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2782
a6b0d5c8 2783 if (!fs_devices->latest_bdev) {
05135f59 2784 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2785 goto fail_tree_roots;
2786 }
2787
af31f5e5 2788retry_root_backup:
84234f3a 2789 generation = btrfs_super_generation(disk_super);
0b86a832 2790
2ff7e61e 2791 tree_root->node = read_tree_block(fs_info,
db94535d 2792 btrfs_super_root(disk_super),
ce86cd59 2793 generation);
64c043de
LB
2794 if (IS_ERR(tree_root->node) ||
2795 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2796 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2797 if (!IS_ERR(tree_root->node))
2798 free_extent_buffer(tree_root->node);
95ab1f64 2799 tree_root->node = NULL;
af31f5e5 2800 goto recovery_tree_root;
83121942 2801 }
af31f5e5 2802
5d4f98a2
YZ
2803 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2804 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2805 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2806
f32e48e9
CR
2807 mutex_lock(&tree_root->objectid_mutex);
2808 ret = btrfs_find_highest_objectid(tree_root,
2809 &tree_root->highest_objectid);
2810 if (ret) {
2811 mutex_unlock(&tree_root->objectid_mutex);
2812 goto recovery_tree_root;
2813 }
2814
2815 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2816
2817 mutex_unlock(&tree_root->objectid_mutex);
2818
6bccf3ab 2819 ret = btrfs_read_roots(fs_info);
4bbcaa64 2820 if (ret)
af31f5e5 2821 goto recovery_tree_root;
f7a81ea4 2822
8929ecfa
YZ
2823 fs_info->generation = generation;
2824 fs_info->last_trans_committed = generation;
8929ecfa 2825
68310a5e
ID
2826 ret = btrfs_recover_balance(fs_info);
2827 if (ret) {
05135f59 2828 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2829 goto fail_block_groups;
2830 }
2831
733f4fbb
SB
2832 ret = btrfs_init_dev_stats(fs_info);
2833 if (ret) {
05135f59 2834 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
2835 goto fail_block_groups;
2836 }
2837
8dabb742
SB
2838 ret = btrfs_init_dev_replace(fs_info);
2839 if (ret) {
05135f59 2840 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
2841 goto fail_block_groups;
2842 }
2843
9eaed21e 2844 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2845
b7c35e81
AJ
2846 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2847 if (ret) {
05135f59
DS
2848 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2849 ret);
b7c35e81
AJ
2850 goto fail_block_groups;
2851 }
2852
2853 ret = btrfs_sysfs_add_device(fs_devices);
2854 if (ret) {
05135f59
DS
2855 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2856 ret);
b7c35e81
AJ
2857 goto fail_fsdev_sysfs;
2858 }
2859
96f3136e 2860 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2861 if (ret) {
05135f59 2862 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 2863 goto fail_fsdev_sysfs;
c59021f8 2864 }
2865
c59021f8 2866 ret = btrfs_init_space_info(fs_info);
2867 if (ret) {
05135f59 2868 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 2869 goto fail_sysfs;
c59021f8 2870 }
2871
5b4aacef 2872 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 2873 if (ret) {
05135f59 2874 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 2875 goto fail_sysfs;
1b1d1f66 2876 }
4330e183 2877
0f0d1272 2878 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
05135f59 2879 btrfs_warn(fs_info,
4330e183 2880 "writeable mount is not allowed due to too many missing devices");
2365dd3c 2881 goto fail_sysfs;
292fd7fc 2882 }
9078a3e1 2883
a74a4b97
CM
2884 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2885 "btrfs-cleaner");
57506d50 2886 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2887 goto fail_sysfs;
a74a4b97
CM
2888
2889 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2890 tree_root,
2891 "btrfs-transaction");
57506d50 2892 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2893 goto fail_cleaner;
a74a4b97 2894
583b7231 2895 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 2896 !fs_info->fs_devices->rotating) {
583b7231 2897 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
2898 }
2899
572d9ab7 2900 /*
01327610 2901 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
2902 * not have to wait for transaction commit
2903 */
2904 btrfs_apply_pending_changes(fs_info);
3818aea2 2905
21adbd5c 2906#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 2907 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 2908 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 2909 btrfs_test_opt(fs_info,
21adbd5c
SB
2910 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2911 1 : 0,
2912 fs_info->check_integrity_print_mask);
2913 if (ret)
05135f59
DS
2914 btrfs_warn(fs_info,
2915 "failed to initialize integrity check module: %d",
2916 ret);
21adbd5c
SB
2917 }
2918#endif
bcef60f2
AJ
2919 ret = btrfs_read_qgroup_config(fs_info);
2920 if (ret)
2921 goto fail_trans_kthread;
21adbd5c 2922
fd708b81
JB
2923 if (btrfs_build_ref_tree(fs_info))
2924 btrfs_err(fs_info, "couldn't build ref tree");
2925
96da0919
QW
2926 /* do not make disk changes in broken FS or nologreplay is given */
2927 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 2928 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 2929 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 2930 if (ret) {
63443bf5 2931 err = ret;
28c16cbb 2932 goto fail_qgroup;
79787eaa 2933 }
e02119d5 2934 }
1a40e23b 2935
6bccf3ab 2936 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 2937 if (ret)
28c16cbb 2938 goto fail_qgroup;
76dda93c 2939
bc98a42c 2940 if (!sb_rdonly(sb)) {
d68fc57b 2941 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2942 if (ret)
28c16cbb 2943 goto fail_qgroup;
90c711ab
ZB
2944
2945 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2946 ret = btrfs_recover_relocation(tree_root);
90c711ab 2947 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 2948 if (ret < 0) {
05135f59
DS
2949 btrfs_warn(fs_info, "failed to recover relocation: %d",
2950 ret);
d7ce5843 2951 err = -EINVAL;
bcef60f2 2952 goto fail_qgroup;
d7ce5843 2953 }
7c2ca468 2954 }
1a40e23b 2955
3de4586c
CM
2956 location.objectid = BTRFS_FS_TREE_OBJECTID;
2957 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2958 location.offset = 0;
3de4586c 2959
3de4586c 2960 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2961 if (IS_ERR(fs_info->fs_root)) {
2962 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2963 goto fail_qgroup;
3140c9a3 2964 }
c289811c 2965
bc98a42c 2966 if (sb_rdonly(sb))
2b6ba629 2967 return 0;
59641015 2968
f8d468a1
OS
2969 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2970 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
2971 clear_free_space_tree = 1;
2972 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2973 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2974 btrfs_warn(fs_info, "free space tree is invalid");
2975 clear_free_space_tree = 1;
2976 }
2977
2978 if (clear_free_space_tree) {
f8d468a1
OS
2979 btrfs_info(fs_info, "clearing free space tree");
2980 ret = btrfs_clear_free_space_tree(fs_info);
2981 if (ret) {
2982 btrfs_warn(fs_info,
2983 "failed to clear free space tree: %d", ret);
6bccf3ab 2984 close_ctree(fs_info);
f8d468a1
OS
2985 return ret;
2986 }
2987 }
2988
0b246afa 2989 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 2990 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 2991 btrfs_info(fs_info, "creating free space tree");
511711af
CM
2992 ret = btrfs_create_free_space_tree(fs_info);
2993 if (ret) {
05135f59
DS
2994 btrfs_warn(fs_info,
2995 "failed to create free space tree: %d", ret);
6bccf3ab 2996 close_ctree(fs_info);
511711af
CM
2997 return ret;
2998 }
2999 }
3000
2b6ba629
ID
3001 down_read(&fs_info->cleanup_work_sem);
3002 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3003 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3004 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3005 close_ctree(fs_info);
2b6ba629
ID
3006 return ret;
3007 }
3008 up_read(&fs_info->cleanup_work_sem);
59641015 3009
2b6ba629
ID
3010 ret = btrfs_resume_balance_async(fs_info);
3011 if (ret) {
05135f59 3012 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3013 close_ctree(fs_info);
2b6ba629 3014 return ret;
e3acc2a6
JB
3015 }
3016
8dabb742
SB
3017 ret = btrfs_resume_dev_replace_async(fs_info);
3018 if (ret) {
05135f59 3019 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3020 close_ctree(fs_info);
8dabb742
SB
3021 return ret;
3022 }
3023
b382a324
JS
3024 btrfs_qgroup_rescan_resume(fs_info);
3025
4bbcaa64 3026 if (!fs_info->uuid_root) {
05135f59 3027 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3028 ret = btrfs_create_uuid_tree(fs_info);
3029 if (ret) {
05135f59
DS
3030 btrfs_warn(fs_info,
3031 "failed to create the UUID tree: %d", ret);
6bccf3ab 3032 close_ctree(fs_info);
f7a81ea4
SB
3033 return ret;
3034 }
0b246afa 3035 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3036 fs_info->generation !=
3037 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3038 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3039 ret = btrfs_check_uuid_tree(fs_info);
3040 if (ret) {
05135f59
DS
3041 btrfs_warn(fs_info,
3042 "failed to check the UUID tree: %d", ret);
6bccf3ab 3043 close_ctree(fs_info);
70f80175
SB
3044 return ret;
3045 }
3046 } else {
afcdd129 3047 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3048 }
afcdd129 3049 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3050
8dcddfa0
QW
3051 /*
3052 * backuproot only affect mount behavior, and if open_ctree succeeded,
3053 * no need to keep the flag
3054 */
3055 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3056
ad2b2c80 3057 return 0;
39279cc3 3058
bcef60f2
AJ
3059fail_qgroup:
3060 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3061fail_trans_kthread:
3062 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3063 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3064 btrfs_free_fs_roots(fs_info);
3f157a2f 3065fail_cleaner:
a74a4b97 3066 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3067
3068 /*
3069 * make sure we're done with the btree inode before we stop our
3070 * kthreads
3071 */
3072 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3073
2365dd3c 3074fail_sysfs:
6618a59b 3075 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3076
b7c35e81
AJ
3077fail_fsdev_sysfs:
3078 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3079
1b1d1f66 3080fail_block_groups:
54067ae9 3081 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3082
3083fail_tree_roots:
3084 free_root_pointers(fs_info, 1);
2b8195bb 3085 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3086
39279cc3 3087fail_sb_buffer:
7abadb64 3088 btrfs_stop_all_workers(fs_info);
5cdd7db6 3089 btrfs_free_block_groups(fs_info);
16cdcec7 3090fail_alloc:
4543df7e 3091fail_iput:
586e46e2
ID
3092 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3093
4543df7e 3094 iput(fs_info->btree_inode);
c404e0dc
MX
3095fail_bio_counter:
3096 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3097fail_delalloc_bytes:
3098 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3099fail_dirty_metadata_bytes:
3100 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3101fail_srcu:
3102 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3103fail:
53b381b3 3104 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3105 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3106 return err;
af31f5e5
CM
3107
3108recovery_tree_root:
0b246afa 3109 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3110 goto fail_tree_roots;
3111
3112 free_root_pointers(fs_info, 0);
3113
3114 /* don't use the log in recovery mode, it won't be valid */
3115 btrfs_set_super_log_root(disk_super, 0);
3116
3117 /* we can't trust the free space cache either */
3118 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3119
3120 ret = next_root_backup(fs_info, fs_info->super_copy,
3121 &num_backups_tried, &backup_index);
3122 if (ret == -1)
3123 goto fail_block_groups;
3124 goto retry_root_backup;
eb60ceac
CM
3125}
3126
f2984462
CM
3127static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3128{
f2984462
CM
3129 if (uptodate) {
3130 set_buffer_uptodate(bh);
3131 } else {
442a4f63
SB
3132 struct btrfs_device *device = (struct btrfs_device *)
3133 bh->b_private;
3134
fb456252 3135 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3136 "lost page write due to IO error on %s",
606686ee 3137 rcu_str_deref(device->name));
01327610 3138 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3139 * our own ways of dealing with the IO errors
3140 */
f2984462 3141 clear_buffer_uptodate(bh);
442a4f63 3142 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3143 }
3144 unlock_buffer(bh);
3145 put_bh(bh);
3146}
3147
29c36d72
AJ
3148int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3149 struct buffer_head **bh_ret)
3150{
3151 struct buffer_head *bh;
3152 struct btrfs_super_block *super;
3153 u64 bytenr;
3154
3155 bytenr = btrfs_sb_offset(copy_num);
3156 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3157 return -EINVAL;
3158
9f6d2510 3159 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3160 /*
3161 * If we fail to read from the underlying devices, as of now
3162 * the best option we have is to mark it EIO.
3163 */
3164 if (!bh)
3165 return -EIO;
3166
3167 super = (struct btrfs_super_block *)bh->b_data;
3168 if (btrfs_super_bytenr(super) != bytenr ||
3169 btrfs_super_magic(super) != BTRFS_MAGIC) {
3170 brelse(bh);
3171 return -EINVAL;
3172 }
3173
3174 *bh_ret = bh;
3175 return 0;
3176}
3177
3178
a512bbf8
YZ
3179struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3180{
3181 struct buffer_head *bh;
3182 struct buffer_head *latest = NULL;
3183 struct btrfs_super_block *super;
3184 int i;
3185 u64 transid = 0;
92fc03fb 3186 int ret = -EINVAL;
a512bbf8
YZ
3187
3188 /* we would like to check all the supers, but that would make
3189 * a btrfs mount succeed after a mkfs from a different FS.
3190 * So, we need to add a special mount option to scan for
3191 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3192 */
3193 for (i = 0; i < 1; i++) {
29c36d72
AJ
3194 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3195 if (ret)
a512bbf8
YZ
3196 continue;
3197
3198 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3199
3200 if (!latest || btrfs_super_generation(super) > transid) {
3201 brelse(latest);
3202 latest = bh;
3203 transid = btrfs_super_generation(super);
3204 } else {
3205 brelse(bh);
3206 }
3207 }
92fc03fb
AJ
3208
3209 if (!latest)
3210 return ERR_PTR(ret);
3211
a512bbf8
YZ
3212 return latest;
3213}
3214
4eedeb75 3215/*
abbb3b8e
DS
3216 * Write superblock @sb to the @device. Do not wait for completion, all the
3217 * buffer heads we write are pinned.
4eedeb75 3218 *
abbb3b8e
DS
3219 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3220 * the expected device size at commit time. Note that max_mirrors must be
3221 * same for write and wait phases.
4eedeb75 3222 *
abbb3b8e 3223 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3224 */
a512bbf8 3225static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3226 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3227{
3228 struct buffer_head *bh;
3229 int i;
3230 int ret;
3231 int errors = 0;
3232 u32 crc;
3233 u64 bytenr;
a512bbf8
YZ
3234
3235 if (max_mirrors == 0)
3236 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3237
a512bbf8
YZ
3238 for (i = 0; i < max_mirrors; i++) {
3239 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3240 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3241 device->commit_total_bytes)
a512bbf8
YZ
3242 break;
3243
abbb3b8e 3244 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3245
abbb3b8e
DS
3246 crc = ~(u32)0;
3247 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3248 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3249 btrfs_csum_final(crc, sb->csum);
4eedeb75 3250
abbb3b8e 3251 /* One reference for us, and we leave it for the caller */
9f6d2510 3252 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3253 BTRFS_SUPER_INFO_SIZE);
3254 if (!bh) {
3255 btrfs_err(device->fs_info,
3256 "couldn't get super buffer head for bytenr %llu",
3257 bytenr);
3258 errors++;
4eedeb75 3259 continue;
abbb3b8e 3260 }
634554dc 3261
abbb3b8e 3262 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3263
abbb3b8e
DS
3264 /* one reference for submit_bh */
3265 get_bh(bh);
4eedeb75 3266
abbb3b8e
DS
3267 set_buffer_uptodate(bh);
3268 lock_buffer(bh);
3269 bh->b_end_io = btrfs_end_buffer_write_sync;
3270 bh->b_private = device;
a512bbf8 3271
387125fc
CM
3272 /*
3273 * we fua the first super. The others we allow
3274 * to go down lazy.
3275 */
8d910125
JK
3276 if (i == 0) {
3277 ret = btrfsic_submit_bh(REQ_OP_WRITE,
db95c876 3278 REQ_SYNC | REQ_FUA | REQ_META | REQ_PRIO, bh);
8d910125 3279 } else {
db95c876
DS
3280 ret = btrfsic_submit_bh(REQ_OP_WRITE,
3281 REQ_SYNC | REQ_META | REQ_PRIO, bh);
8d910125 3282 }
4eedeb75 3283 if (ret)
a512bbf8 3284 errors++;
a512bbf8
YZ
3285 }
3286 return errors < i ? 0 : -1;
3287}
3288
abbb3b8e
DS
3289/*
3290 * Wait for write completion of superblocks done by write_dev_supers,
3291 * @max_mirrors same for write and wait phases.
3292 *
3293 * Return number of errors when buffer head is not found or not marked up to
3294 * date.
3295 */
3296static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3297{
3298 struct buffer_head *bh;
3299 int i;
3300 int errors = 0;
3301 u64 bytenr;
3302
3303 if (max_mirrors == 0)
3304 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3305
3306 for (i = 0; i < max_mirrors; i++) {
3307 bytenr = btrfs_sb_offset(i);
3308 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3309 device->commit_total_bytes)
3310 break;
3311
9f6d2510
DS
3312 bh = __find_get_block(device->bdev,
3313 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3314 BTRFS_SUPER_INFO_SIZE);
3315 if (!bh) {
3316 errors++;
3317 continue;
3318 }
3319 wait_on_buffer(bh);
3320 if (!buffer_uptodate(bh))
3321 errors++;
3322
3323 /* drop our reference */
3324 brelse(bh);
3325
3326 /* drop the reference from the writing run */
3327 brelse(bh);
3328 }
3329
3330 return errors < i ? 0 : -1;
3331}
3332
387125fc
CM
3333/*
3334 * endio for the write_dev_flush, this will wake anyone waiting
3335 * for the barrier when it is done
3336 */
4246a0b6 3337static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3338{
e0ae9994 3339 complete(bio->bi_private);
387125fc
CM
3340}
3341
3342/*
4fc6441a
AJ
3343 * Submit a flush request to the device if it supports it. Error handling is
3344 * done in the waiting counterpart.
387125fc 3345 */
4fc6441a 3346static void write_dev_flush(struct btrfs_device *device)
387125fc 3347{
c2a9c7ab 3348 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3349 struct bio *bio = device->flush_bio;
387125fc 3350
c2a9c7ab 3351 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3352 return;
387125fc 3353
e0ae9994 3354 bio_reset(bio);
387125fc 3355 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3356 bio_set_dev(bio, device->bdev);
8d910125 3357 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3358 init_completion(&device->flush_wait);
3359 bio->bi_private = &device->flush_wait;
387125fc 3360
43a01111 3361 btrfsic_submit_bio(bio);
e0ae9994 3362 device->flush_bio_sent = 1;
4fc6441a 3363}
387125fc 3364
4fc6441a
AJ
3365/*
3366 * If the flush bio has been submitted by write_dev_flush, wait for it.
3367 */
8c27cb35 3368static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3369{
4fc6441a 3370 struct bio *bio = device->flush_bio;
387125fc 3371
e0ae9994 3372 if (!device->flush_bio_sent)
58efbc9f 3373 return BLK_STS_OK;
387125fc 3374
e0ae9994 3375 device->flush_bio_sent = 0;
2980d574 3376 wait_for_completion_io(&device->flush_wait);
387125fc 3377
8c27cb35 3378 return bio->bi_status;
387125fc 3379}
387125fc 3380
d10b82fe 3381static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3382{
d10b82fe 3383 if (!btrfs_check_rw_degradable(fs_info))
401b41e5 3384 return -EIO;
387125fc
CM
3385 return 0;
3386}
3387
3388/*
3389 * send an empty flush down to each device in parallel,
3390 * then wait for them
3391 */
3392static int barrier_all_devices(struct btrfs_fs_info *info)
3393{
3394 struct list_head *head;
3395 struct btrfs_device *dev;
5af3e8cc 3396 int errors_wait = 0;
4e4cbee9 3397 blk_status_t ret;
387125fc
CM
3398
3399 /* send down all the barriers */
3400 head = &info->fs_devices->devices;
3401 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3402 if (dev->missing)
3403 continue;
cea7c8bf 3404 if (!dev->bdev)
387125fc 3405 continue;
387125fc
CM
3406 if (!dev->in_fs_metadata || !dev->writeable)
3407 continue;
3408
4fc6441a 3409 write_dev_flush(dev);
58efbc9f 3410 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3411 }
3412
3413 /* wait for all the barriers */
3414 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3415 if (dev->missing)
3416 continue;
387125fc 3417 if (!dev->bdev) {
5af3e8cc 3418 errors_wait++;
387125fc
CM
3419 continue;
3420 }
3421 if (!dev->in_fs_metadata || !dev->writeable)
3422 continue;
3423
4fc6441a 3424 ret = wait_dev_flush(dev);
401b41e5
AJ
3425 if (ret) {
3426 dev->last_flush_error = ret;
66b4993e
DS
3427 btrfs_dev_stat_inc_and_print(dev,
3428 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3429 errors_wait++;
401b41e5
AJ
3430 }
3431 }
3432
cea7c8bf 3433 if (errors_wait) {
401b41e5
AJ
3434 /*
3435 * At some point we need the status of all disks
3436 * to arrive at the volume status. So error checking
3437 * is being pushed to a separate loop.
3438 */
d10b82fe 3439 return check_barrier_error(info);
387125fc 3440 }
387125fc
CM
3441 return 0;
3442}
3443
943c6e99
ZL
3444int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3445{
8789f4fe
ZL
3446 int raid_type;
3447 int min_tolerated = INT_MAX;
943c6e99 3448
8789f4fe
ZL
3449 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3450 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3451 min_tolerated = min(min_tolerated,
3452 btrfs_raid_array[BTRFS_RAID_SINGLE].
3453 tolerated_failures);
943c6e99 3454
8789f4fe
ZL
3455 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3456 if (raid_type == BTRFS_RAID_SINGLE)
3457 continue;
3458 if (!(flags & btrfs_raid_group[raid_type]))
3459 continue;
3460 min_tolerated = min(min_tolerated,
3461 btrfs_raid_array[raid_type].
3462 tolerated_failures);
3463 }
943c6e99 3464
8789f4fe 3465 if (min_tolerated == INT_MAX) {
ab8d0fc4 3466 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3467 min_tolerated = 0;
3468 }
3469
3470 return min_tolerated;
943c6e99
ZL
3471}
3472
eece6a9c 3473int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3474{
e5e9a520 3475 struct list_head *head;
f2984462 3476 struct btrfs_device *dev;
a061fc8d 3477 struct btrfs_super_block *sb;
f2984462 3478 struct btrfs_dev_item *dev_item;
f2984462
CM
3479 int ret;
3480 int do_barriers;
a236aed1
CM
3481 int max_errors;
3482 int total_errors = 0;
a061fc8d 3483 u64 flags;
f2984462 3484
0b246afa 3485 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3486
3487 /*
3488 * max_mirrors == 0 indicates we're from commit_transaction,
3489 * not from fsync where the tree roots in fs_info have not
3490 * been consistent on disk.
3491 */
3492 if (max_mirrors == 0)
3493 backup_super_roots(fs_info);
f2984462 3494
0b246afa 3495 sb = fs_info->super_for_commit;
a061fc8d 3496 dev_item = &sb->dev_item;
e5e9a520 3497
0b246afa
JM
3498 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3499 head = &fs_info->fs_devices->devices;
3500 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3501
5af3e8cc 3502 if (do_barriers) {
0b246afa 3503 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3504 if (ret) {
3505 mutex_unlock(
0b246afa
JM
3506 &fs_info->fs_devices->device_list_mutex);
3507 btrfs_handle_fs_error(fs_info, ret,
3508 "errors while submitting device barriers.");
5af3e8cc
SB
3509 return ret;
3510 }
3511 }
387125fc 3512
1f78160c 3513 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3514 if (!dev->bdev) {
3515 total_errors++;
3516 continue;
3517 }
2b82032c 3518 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3519 continue;
3520
2b82032c 3521 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3522 btrfs_set_stack_device_type(dev_item, dev->type);
3523 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3524 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3525 dev->commit_total_bytes);
ce7213c7
MX
3526 btrfs_set_stack_device_bytes_used(dev_item,
3527 dev->commit_bytes_used);
a061fc8d
CM
3528 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3529 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3530 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3531 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
44880fdc 3532 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
a512bbf8 3533
a061fc8d
CM
3534 flags = btrfs_super_flags(sb);
3535 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3536
abbb3b8e 3537 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3538 if (ret)
3539 total_errors++;
f2984462 3540 }
a236aed1 3541 if (total_errors > max_errors) {
0b246afa
JM
3542 btrfs_err(fs_info, "%d errors while writing supers",
3543 total_errors);
3544 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3545
9d565ba4 3546 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3547 btrfs_handle_fs_error(fs_info, -EIO,
3548 "%d errors while writing supers",
3549 total_errors);
9d565ba4 3550 return -EIO;
a236aed1 3551 }
f2984462 3552
a512bbf8 3553 total_errors = 0;
1f78160c 3554 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3555 if (!dev->bdev)
3556 continue;
2b82032c 3557 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3558 continue;
3559
abbb3b8e 3560 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3561 if (ret)
3562 total_errors++;
f2984462 3563 }
0b246afa 3564 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3565 if (total_errors > max_errors) {
0b246afa
JM
3566 btrfs_handle_fs_error(fs_info, -EIO,
3567 "%d errors while writing supers",
3568 total_errors);
79787eaa 3569 return -EIO;
a236aed1 3570 }
f2984462
CM
3571 return 0;
3572}
3573
cb517eab
MX
3574/* Drop a fs root from the radix tree and free it. */
3575void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3576 struct btrfs_root *root)
2619ba1f 3577{
4df27c4d 3578 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3579 radix_tree_delete(&fs_info->fs_roots_radix,
3580 (unsigned long)root->root_key.objectid);
4df27c4d 3581 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3582
3583 if (btrfs_root_refs(&root->root_item) == 0)
3584 synchronize_srcu(&fs_info->subvol_srcu);
3585
1c1ea4f7 3586 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3587 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3588 if (root->reloc_root) {
3589 free_extent_buffer(root->reloc_root->node);
3590 free_extent_buffer(root->reloc_root->commit_root);
3591 btrfs_put_fs_root(root->reloc_root);
3592 root->reloc_root = NULL;
3593 }
3594 }
3321719e 3595
faa2dbf0
JB
3596 if (root->free_ino_pinned)
3597 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3598 if (root->free_ino_ctl)
3599 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3600 free_fs_root(root);
4df27c4d
YZ
3601}
3602
3603static void free_fs_root(struct btrfs_root *root)
3604{
57cdc8db 3605 iput(root->ino_cache_inode);
4df27c4d 3606 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2ff7e61e 3607 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
1cb048f5 3608 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3609 if (root->anon_dev)
3610 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3611 if (root->subv_writers)
3612 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3613 free_extent_buffer(root->node);
3614 free_extent_buffer(root->commit_root);
581bb050
LZ
3615 kfree(root->free_ino_ctl);
3616 kfree(root->free_ino_pinned);
d397712b 3617 kfree(root->name);
b0feb9d9 3618 btrfs_put_fs_root(root);
2619ba1f
CM
3619}
3620
cb517eab
MX
3621void btrfs_free_fs_root(struct btrfs_root *root)
3622{
3623 free_fs_root(root);
2619ba1f
CM
3624}
3625
c146afad 3626int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3627{
c146afad
YZ
3628 u64 root_objectid = 0;
3629 struct btrfs_root *gang[8];
65d33fd7
QW
3630 int i = 0;
3631 int err = 0;
3632 unsigned int ret = 0;
3633 int index;
e089f05c 3634
c146afad 3635 while (1) {
65d33fd7 3636 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3637 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3638 (void **)gang, root_objectid,
3639 ARRAY_SIZE(gang));
65d33fd7
QW
3640 if (!ret) {
3641 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3642 break;
65d33fd7 3643 }
5d4f98a2 3644 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3645
c146afad 3646 for (i = 0; i < ret; i++) {
65d33fd7
QW
3647 /* Avoid to grab roots in dead_roots */
3648 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3649 gang[i] = NULL;
3650 continue;
3651 }
3652 /* grab all the search result for later use */
3653 gang[i] = btrfs_grab_fs_root(gang[i]);
3654 }
3655 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3656
65d33fd7
QW
3657 for (i = 0; i < ret; i++) {
3658 if (!gang[i])
3659 continue;
c146afad 3660 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3661 err = btrfs_orphan_cleanup(gang[i]);
3662 if (err)
65d33fd7
QW
3663 break;
3664 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3665 }
3666 root_objectid++;
3667 }
65d33fd7
QW
3668
3669 /* release the uncleaned roots due to error */
3670 for (; i < ret; i++) {
3671 if (gang[i])
3672 btrfs_put_fs_root(gang[i]);
3673 }
3674 return err;
c146afad 3675}
a2135011 3676
6bccf3ab 3677int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3678{
6bccf3ab 3679 struct btrfs_root *root = fs_info->tree_root;
c146afad 3680 struct btrfs_trans_handle *trans;
a74a4b97 3681
0b246afa 3682 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3683 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3684 mutex_unlock(&fs_info->cleaner_mutex);
3685 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3686
3687 /* wait until ongoing cleanup work done */
0b246afa
JM
3688 down_write(&fs_info->cleanup_work_sem);
3689 up_write(&fs_info->cleanup_work_sem);
c71bf099 3690
7a7eaa40 3691 trans = btrfs_join_transaction(root);
3612b495
TI
3692 if (IS_ERR(trans))
3693 return PTR_ERR(trans);
3a45bb20 3694 return btrfs_commit_transaction(trans);
c146afad
YZ
3695}
3696
6bccf3ab 3697void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3698{
6bccf3ab 3699 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3700 int ret;
3701
afcdd129 3702 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3703
7343dd61 3704 /* wait for the qgroup rescan worker to stop */
d06f23d6 3705 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3706
803b2f54
SB
3707 /* wait for the uuid_scan task to finish */
3708 down(&fs_info->uuid_tree_rescan_sem);
3709 /* avoid complains from lockdep et al., set sem back to initial state */
3710 up(&fs_info->uuid_tree_rescan_sem);
3711
837d5b6e 3712 /* pause restriper - we want to resume on mount */
aa1b8cd4 3713 btrfs_pause_balance(fs_info);
837d5b6e 3714
8dabb742
SB
3715 btrfs_dev_replace_suspend_for_unmount(fs_info);
3716
aa1b8cd4 3717 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3718
3719 /* wait for any defraggers to finish */
3720 wait_event(fs_info->transaction_wait,
3721 (atomic_read(&fs_info->defrag_running) == 0));
3722
3723 /* clear out the rbtree of defraggable inodes */
26176e7c 3724 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3725
21c7e756
MX
3726 cancel_work_sync(&fs_info->async_reclaim_work);
3727
bc98a42c 3728 if (!sb_rdonly(fs_info->sb)) {
e44163e1
JM
3729 /*
3730 * If the cleaner thread is stopped and there are
3731 * block groups queued for removal, the deletion will be
3732 * skipped when we quit the cleaner thread.
3733 */
0b246afa 3734 btrfs_delete_unused_bgs(fs_info);
e44163e1 3735
6bccf3ab 3736 ret = btrfs_commit_super(fs_info);
acce952b 3737 if (ret)
04892340 3738 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3739 }
3740
87533c47 3741 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2ff7e61e 3742 btrfs_error_commit_super(fs_info);
0f7d52f4 3743
e3029d9f
AV
3744 kthread_stop(fs_info->transaction_kthread);
3745 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3746
afcdd129 3747 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3748
04892340 3749 btrfs_free_qgroup_config(fs_info);
bcef60f2 3750
963d678b 3751 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3752 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3753 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3754 }
bcc63abb 3755
6618a59b 3756 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3757 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3758
faa2dbf0 3759 btrfs_free_fs_roots(fs_info);
d10c5f31 3760
1a4319cc
LB
3761 btrfs_put_block_group_cache(fs_info);
3762
de348ee0
WS
3763 /*
3764 * we must make sure there is not any read request to
3765 * submit after we stopping all workers.
3766 */
3767 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3768 btrfs_stop_all_workers(fs_info);
3769
5cdd7db6
FM
3770 btrfs_free_block_groups(fs_info);
3771
afcdd129 3772 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3773 free_root_pointers(fs_info, 1);
9ad6b7bc 3774
13e6c37b 3775 iput(fs_info->btree_inode);
d6bfde87 3776
21adbd5c 3777#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3778 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3779 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3780#endif
3781
dfe25020 3782 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3783 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3784
e2d84521 3785 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3786 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3787 percpu_counter_destroy(&fs_info->bio_counter);
76dda93c 3788 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3789
53b381b3 3790 btrfs_free_stripe_hash_table(fs_info);
fd708b81 3791 btrfs_free_ref_cache(fs_info);
53b381b3 3792
cdfb080e 3793 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3794 root->orphan_block_rsv = NULL;
04216820 3795
04216820
FM
3796 while (!list_empty(&fs_info->pinned_chunks)) {
3797 struct extent_map *em;
3798
3799 em = list_first_entry(&fs_info->pinned_chunks,
3800 struct extent_map, list);
3801 list_del_init(&em->list);
3802 free_extent_map(em);
3803 }
eb60ceac
CM
3804}
3805
b9fab919
CM
3806int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3807 int atomic)
5f39d397 3808{
1259ab75 3809 int ret;
727011e0 3810 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3811
0b32f4bb 3812 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3813 if (!ret)
3814 return ret;
3815
3816 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3817 parent_transid, atomic);
3818 if (ret == -EAGAIN)
3819 return ret;
1259ab75 3820 return !ret;
5f39d397
CM
3821}
3822
5f39d397
CM
3823void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3824{
0b246afa 3825 struct btrfs_fs_info *fs_info;
06ea65a3 3826 struct btrfs_root *root;
5f39d397 3827 u64 transid = btrfs_header_generation(buf);
b9473439 3828 int was_dirty;
b4ce94de 3829
06ea65a3
JB
3830#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3831 /*
3832 * This is a fast path so only do this check if we have sanity tests
3833 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3834 * outside of the sanity tests.
3835 */
3836 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3837 return;
3838#endif
3839 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 3840 fs_info = root->fs_info;
b9447ef8 3841 btrfs_assert_tree_locked(buf);
0b246afa 3842 if (transid != fs_info->generation)
5d163e0e 3843 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 3844 buf->start, transid, fs_info->generation);
0b32f4bb 3845 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 3846 if (!was_dirty)
104b4e51
NB
3847 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3848 buf->len,
3849 fs_info->dirty_metadata_batch);
1f21ef0a 3850#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
557ea5dd 3851 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(root, buf)) {
a4f78750 3852 btrfs_print_leaf(buf);
1f21ef0a
FM
3853 ASSERT(0);
3854 }
3855#endif
eb60ceac
CM
3856}
3857
2ff7e61e 3858static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 3859 int flush_delayed)
16cdcec7
MX
3860{
3861 /*
3862 * looks as though older kernels can get into trouble with
3863 * this code, they end up stuck in balance_dirty_pages forever
3864 */
e2d84521 3865 int ret;
16cdcec7
MX
3866
3867 if (current->flags & PF_MEMALLOC)
3868 return;
3869
b53d3f5d 3870 if (flush_delayed)
2ff7e61e 3871 btrfs_balance_delayed_items(fs_info);
16cdcec7 3872
0b246afa 3873 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
3874 BTRFS_DIRTY_METADATA_THRESH);
3875 if (ret > 0) {
0b246afa 3876 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 3877 }
16cdcec7
MX
3878}
3879
2ff7e61e 3880void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 3881{
2ff7e61e 3882 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 3883}
585ad2c3 3884
2ff7e61e 3885void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 3886{
2ff7e61e 3887 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 3888}
6b80053d 3889
ca7a79ad 3890int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3891{
727011e0 3892 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
3893 struct btrfs_fs_info *fs_info = root->fs_info;
3894
3895 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
6b80053d 3896}
0da5468f 3897
3d3a126a 3898static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
acce952b 3899{
c926093e 3900 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
3901 u64 nodesize = btrfs_super_nodesize(sb);
3902 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
3903 int ret = 0;
3904
319e4d06 3905 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 3906 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
3907 ret = -EINVAL;
3908 }
3909 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
ab8d0fc4 3910 btrfs_warn(fs_info, "unrecognized super flag: %llu",
319e4d06 3911 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b 3912 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 3913 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 3914 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3915 ret = -EINVAL;
3916 }
21e7626b 3917 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 3918 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 3919 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3920 ret = -EINVAL;
3921 }
21e7626b 3922 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 3923 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 3924 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3925 ret = -EINVAL;
3926 }
3927
1104a885 3928 /*
319e4d06
QW
3929 * Check sectorsize and nodesize first, other check will need it.
3930 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 3931 */
319e4d06
QW
3932 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3933 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 3934 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
3935 ret = -EINVAL;
3936 }
3937 /* Only PAGE SIZE is supported yet */
09cbfeaf 3938 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
3939 btrfs_err(fs_info,
3940 "sectorsize %llu not supported yet, only support %lu",
3941 sectorsize, PAGE_SIZE);
319e4d06
QW
3942 ret = -EINVAL;
3943 }
3944 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3945 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 3946 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
3947 ret = -EINVAL;
3948 }
3949 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
3950 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3951 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
3952 ret = -EINVAL;
3953 }
3954
3955 /* Root alignment check */
3956 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
3957 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3958 btrfs_super_root(sb));
319e4d06
QW
3959 ret = -EINVAL;
3960 }
3961 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
3962 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3963 btrfs_super_chunk_root(sb));
75d6ad38
DS
3964 ret = -EINVAL;
3965 }
319e4d06 3966 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
3967 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3968 btrfs_super_log_root(sb));
75d6ad38
DS
3969 ret = -EINVAL;
3970 }
3971
44880fdc 3972 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
ab8d0fc4
JM
3973 btrfs_err(fs_info,
3974 "dev_item UUID does not match fsid: %pU != %pU",
3975 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
3976 ret = -EINVAL;
3977 }
3978
3979 /*
3980 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3981 * done later
3982 */
99e3ecfc
LB
3983 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3984 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 3985 btrfs_super_bytes_used(sb));
99e3ecfc
LB
3986 ret = -EINVAL;
3987 }
b7f67055 3988 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 3989 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 3990 btrfs_super_stripesize(sb));
99e3ecfc
LB
3991 ret = -EINVAL;
3992 }
21e7626b 3993 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
3994 btrfs_warn(fs_info, "suspicious number of devices: %llu",
3995 btrfs_super_num_devices(sb));
75d6ad38 3996 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 3997 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
3998 ret = -EINVAL;
3999 }
c926093e 4000
21e7626b 4001 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
4002 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4003 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4004 ret = -EINVAL;
4005 }
4006
ce7fca5f
DS
4007 /*
4008 * Obvious sys_chunk_array corruptions, it must hold at least one key
4009 * and one chunk
4010 */
4011 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4012 btrfs_err(fs_info, "system chunk array too big %u > %u",
4013 btrfs_super_sys_array_size(sb),
4014 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4015 ret = -EINVAL;
4016 }
4017 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4018 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4019 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4020 btrfs_super_sys_array_size(sb),
4021 sizeof(struct btrfs_disk_key)
4022 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4023 ret = -EINVAL;
4024 }
4025
c926093e
DS
4026 /*
4027 * The generation is a global counter, we'll trust it more than the others
4028 * but it's still possible that it's the one that's wrong.
4029 */
21e7626b 4030 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4031 btrfs_warn(fs_info,
4032 "suspicious: generation < chunk_root_generation: %llu < %llu",
4033 btrfs_super_generation(sb),
4034 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4035 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4036 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4037 btrfs_warn(fs_info,
4038 "suspicious: generation < cache_generation: %llu < %llu",
4039 btrfs_super_generation(sb),
4040 btrfs_super_cache_generation(sb));
c926093e
DS
4041
4042 return ret;
acce952b 4043}
4044
2ff7e61e 4045static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4046{
0b246afa 4047 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4048 btrfs_run_delayed_iputs(fs_info);
0b246afa 4049 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4050
0b246afa
JM
4051 down_write(&fs_info->cleanup_work_sem);
4052 up_write(&fs_info->cleanup_work_sem);
acce952b 4053
4054 /* cleanup FS via transaction */
2ff7e61e 4055 btrfs_cleanup_transaction(fs_info);
acce952b 4056}
4057
143bede5 4058static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4059{
acce952b 4060 struct btrfs_ordered_extent *ordered;
acce952b 4061
199c2a9c 4062 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4063 /*
4064 * This will just short circuit the ordered completion stuff which will
4065 * make sure the ordered extent gets properly cleaned up.
4066 */
199c2a9c 4067 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4068 root_extent_list)
4069 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4070 spin_unlock(&root->ordered_extent_lock);
4071}
4072
4073static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4074{
4075 struct btrfs_root *root;
4076 struct list_head splice;
4077
4078 INIT_LIST_HEAD(&splice);
4079
4080 spin_lock(&fs_info->ordered_root_lock);
4081 list_splice_init(&fs_info->ordered_roots, &splice);
4082 while (!list_empty(&splice)) {
4083 root = list_first_entry(&splice, struct btrfs_root,
4084 ordered_root);
1de2cfde
JB
4085 list_move_tail(&root->ordered_root,
4086 &fs_info->ordered_roots);
199c2a9c 4087
2a85d9ca 4088 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4089 btrfs_destroy_ordered_extents(root);
4090
2a85d9ca
LB
4091 cond_resched();
4092 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4093 }
4094 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4095}
4096
35a3621b 4097static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4098 struct btrfs_fs_info *fs_info)
acce952b 4099{
4100 struct rb_node *node;
4101 struct btrfs_delayed_ref_root *delayed_refs;
4102 struct btrfs_delayed_ref_node *ref;
4103 int ret = 0;
4104
4105 delayed_refs = &trans->delayed_refs;
4106
4107 spin_lock(&delayed_refs->lock);
d7df2c79 4108 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4109 spin_unlock(&delayed_refs->lock);
0b246afa 4110 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4111 return ret;
4112 }
4113
d7df2c79
JB
4114 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4115 struct btrfs_delayed_ref_head *head;
0e0adbcf 4116 struct rb_node *n;
e78417d1 4117 bool pin_bytes = false;
acce952b 4118
d7df2c79
JB
4119 head = rb_entry(node, struct btrfs_delayed_ref_head,
4120 href_node);
4121 if (!mutex_trylock(&head->mutex)) {
d278850e 4122 refcount_inc(&head->refs);
d7df2c79 4123 spin_unlock(&delayed_refs->lock);
eb12db69 4124
d7df2c79 4125 mutex_lock(&head->mutex);
e78417d1 4126 mutex_unlock(&head->mutex);
d278850e 4127 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4128 spin_lock(&delayed_refs->lock);
4129 continue;
4130 }
4131 spin_lock(&head->lock);
0e0adbcf
JB
4132 while ((n = rb_first(&head->ref_tree)) != NULL) {
4133 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4134 ref_node);
d7df2c79 4135 ref->in_tree = 0;
0e0adbcf
JB
4136 rb_erase(&ref->ref_node, &head->ref_tree);
4137 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4138 if (!list_empty(&ref->add_list))
4139 list_del(&ref->add_list);
d7df2c79
JB
4140 atomic_dec(&delayed_refs->num_entries);
4141 btrfs_put_delayed_ref(ref);
e78417d1 4142 }
d7df2c79
JB
4143 if (head->must_insert_reserved)
4144 pin_bytes = true;
4145 btrfs_free_delayed_extent_op(head->extent_op);
4146 delayed_refs->num_heads--;
4147 if (head->processing == 0)
4148 delayed_refs->num_heads_ready--;
4149 atomic_dec(&delayed_refs->num_entries);
d7df2c79 4150 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 4151 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4152 spin_unlock(&head->lock);
4153 spin_unlock(&delayed_refs->lock);
4154 mutex_unlock(&head->mutex);
acce952b 4155
d7df2c79 4156 if (pin_bytes)
d278850e
JB
4157 btrfs_pin_extent(fs_info, head->bytenr,
4158 head->num_bytes, 1);
4159 btrfs_put_delayed_ref_head(head);
acce952b 4160 cond_resched();
4161 spin_lock(&delayed_refs->lock);
4162 }
4163
4164 spin_unlock(&delayed_refs->lock);
4165
4166 return ret;
4167}
4168
143bede5 4169static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4170{
4171 struct btrfs_inode *btrfs_inode;
4172 struct list_head splice;
4173
4174 INIT_LIST_HEAD(&splice);
4175
eb73c1b7
MX
4176 spin_lock(&root->delalloc_lock);
4177 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4178
4179 while (!list_empty(&splice)) {
eb73c1b7
MX
4180 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4181 delalloc_inodes);
acce952b 4182
4183 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4184 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4185 &btrfs_inode->runtime_flags);
eb73c1b7 4186 spin_unlock(&root->delalloc_lock);
acce952b 4187
4188 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4189
eb73c1b7 4190 spin_lock(&root->delalloc_lock);
acce952b 4191 }
4192
eb73c1b7
MX
4193 spin_unlock(&root->delalloc_lock);
4194}
4195
4196static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4197{
4198 struct btrfs_root *root;
4199 struct list_head splice;
4200
4201 INIT_LIST_HEAD(&splice);
4202
4203 spin_lock(&fs_info->delalloc_root_lock);
4204 list_splice_init(&fs_info->delalloc_roots, &splice);
4205 while (!list_empty(&splice)) {
4206 root = list_first_entry(&splice, struct btrfs_root,
4207 delalloc_root);
4208 list_del_init(&root->delalloc_root);
4209 root = btrfs_grab_fs_root(root);
4210 BUG_ON(!root);
4211 spin_unlock(&fs_info->delalloc_root_lock);
4212
4213 btrfs_destroy_delalloc_inodes(root);
4214 btrfs_put_fs_root(root);
4215
4216 spin_lock(&fs_info->delalloc_root_lock);
4217 }
4218 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4219}
4220
2ff7e61e 4221static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4222 struct extent_io_tree *dirty_pages,
4223 int mark)
4224{
4225 int ret;
acce952b 4226 struct extent_buffer *eb;
4227 u64 start = 0;
4228 u64 end;
acce952b 4229
4230 while (1) {
4231 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4232 mark, NULL);
acce952b 4233 if (ret)
4234 break;
4235
91166212 4236 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4237 while (start <= end) {
0b246afa
JM
4238 eb = find_extent_buffer(fs_info, start);
4239 start += fs_info->nodesize;
fd8b2b61 4240 if (!eb)
acce952b 4241 continue;
fd8b2b61 4242 wait_on_extent_buffer_writeback(eb);
acce952b 4243
fd8b2b61
JB
4244 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4245 &eb->bflags))
4246 clear_extent_buffer_dirty(eb);
4247 free_extent_buffer_stale(eb);
acce952b 4248 }
4249 }
4250
4251 return ret;
4252}
4253
2ff7e61e 4254static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4255 struct extent_io_tree *pinned_extents)
4256{
4257 struct extent_io_tree *unpin;
4258 u64 start;
4259 u64 end;
4260 int ret;
ed0eaa14 4261 bool loop = true;
acce952b 4262
4263 unpin = pinned_extents;
ed0eaa14 4264again:
acce952b 4265 while (1) {
4266 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4267 EXTENT_DIRTY, NULL);
acce952b 4268 if (ret)
4269 break;
4270
af6f8f60 4271 clear_extent_dirty(unpin, start, end);
2ff7e61e 4272 btrfs_error_unpin_extent_range(fs_info, start, end);
acce952b 4273 cond_resched();
4274 }
4275
ed0eaa14 4276 if (loop) {
0b246afa
JM
4277 if (unpin == &fs_info->freed_extents[0])
4278 unpin = &fs_info->freed_extents[1];
ed0eaa14 4279 else
0b246afa 4280 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4281 loop = false;
4282 goto again;
4283 }
4284
acce952b 4285 return 0;
4286}
4287
c79a1751
LB
4288static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4289{
4290 struct inode *inode;
4291
4292 inode = cache->io_ctl.inode;
4293 if (inode) {
4294 invalidate_inode_pages2(inode->i_mapping);
4295 BTRFS_I(inode)->generation = 0;
4296 cache->io_ctl.inode = NULL;
4297 iput(inode);
4298 }
4299 btrfs_put_block_group(cache);
4300}
4301
4302void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4303 struct btrfs_fs_info *fs_info)
c79a1751
LB
4304{
4305 struct btrfs_block_group_cache *cache;
4306
4307 spin_lock(&cur_trans->dirty_bgs_lock);
4308 while (!list_empty(&cur_trans->dirty_bgs)) {
4309 cache = list_first_entry(&cur_trans->dirty_bgs,
4310 struct btrfs_block_group_cache,
4311 dirty_list);
4312 if (!cache) {
0b246afa 4313 btrfs_err(fs_info, "orphan block group dirty_bgs list");
c79a1751
LB
4314 spin_unlock(&cur_trans->dirty_bgs_lock);
4315 return;
4316 }
4317
4318 if (!list_empty(&cache->io_list)) {
4319 spin_unlock(&cur_trans->dirty_bgs_lock);
4320 list_del_init(&cache->io_list);
4321 btrfs_cleanup_bg_io(cache);
4322 spin_lock(&cur_trans->dirty_bgs_lock);
4323 }
4324
4325 list_del_init(&cache->dirty_list);
4326 spin_lock(&cache->lock);
4327 cache->disk_cache_state = BTRFS_DC_ERROR;
4328 spin_unlock(&cache->lock);
4329
4330 spin_unlock(&cur_trans->dirty_bgs_lock);
4331 btrfs_put_block_group(cache);
4332 spin_lock(&cur_trans->dirty_bgs_lock);
4333 }
4334 spin_unlock(&cur_trans->dirty_bgs_lock);
4335
4336 while (!list_empty(&cur_trans->io_bgs)) {
4337 cache = list_first_entry(&cur_trans->io_bgs,
4338 struct btrfs_block_group_cache,
4339 io_list);
4340 if (!cache) {
0b246afa 4341 btrfs_err(fs_info, "orphan block group on io_bgs list");
c79a1751
LB
4342 return;
4343 }
4344
4345 list_del_init(&cache->io_list);
4346 spin_lock(&cache->lock);
4347 cache->disk_cache_state = BTRFS_DC_ERROR;
4348 spin_unlock(&cache->lock);
4349 btrfs_cleanup_bg_io(cache);
4350 }
4351}
4352
49b25e05 4353void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4354 struct btrfs_fs_info *fs_info)
49b25e05 4355{
2ff7e61e 4356 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4357 ASSERT(list_empty(&cur_trans->dirty_bgs));
4358 ASSERT(list_empty(&cur_trans->io_bgs));
4359
2ff7e61e 4360 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4361
4a9d8bde 4362 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4363 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4364
4a9d8bde 4365 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4366 wake_up(&fs_info->transaction_wait);
49b25e05 4367
ccdf9b30
JM
4368 btrfs_destroy_delayed_inodes(fs_info);
4369 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4370
2ff7e61e 4371 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4372 EXTENT_DIRTY);
2ff7e61e 4373 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4374 fs_info->pinned_extents);
49b25e05 4375
4a9d8bde
MX
4376 cur_trans->state =TRANS_STATE_COMPLETED;
4377 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4378}
4379
2ff7e61e 4380static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4381{
4382 struct btrfs_transaction *t;
acce952b 4383
0b246afa 4384 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4385
0b246afa
JM
4386 spin_lock(&fs_info->trans_lock);
4387 while (!list_empty(&fs_info->trans_list)) {
4388 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4389 struct btrfs_transaction, list);
4390 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4391 refcount_inc(&t->use_count);
0b246afa 4392 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4393 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4394 btrfs_put_transaction(t);
0b246afa 4395 spin_lock(&fs_info->trans_lock);
724e2315
JB
4396 continue;
4397 }
0b246afa 4398 if (t == fs_info->running_transaction) {
724e2315 4399 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4400 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4401 /*
4402 * We wait for 0 num_writers since we don't hold a trans
4403 * handle open currently for this transaction.
4404 */
4405 wait_event(t->writer_wait,
4406 atomic_read(&t->num_writers) == 0);
4407 } else {
0b246afa 4408 spin_unlock(&fs_info->trans_lock);
724e2315 4409 }
2ff7e61e 4410 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4411
0b246afa
JM
4412 spin_lock(&fs_info->trans_lock);
4413 if (t == fs_info->running_transaction)
4414 fs_info->running_transaction = NULL;
acce952b 4415 list_del_init(&t->list);
0b246afa 4416 spin_unlock(&fs_info->trans_lock);
acce952b 4417
724e2315 4418 btrfs_put_transaction(t);
2ff7e61e 4419 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4420 spin_lock(&fs_info->trans_lock);
724e2315 4421 }
0b246afa
JM
4422 spin_unlock(&fs_info->trans_lock);
4423 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4424 btrfs_destroy_delayed_inodes(fs_info);
4425 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4426 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4427 btrfs_destroy_all_delalloc_inodes(fs_info);
4428 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4429
4430 return 0;
4431}
4432
c6100a4b
JB
4433static struct btrfs_fs_info *btree_fs_info(void *private_data)
4434{
4435 struct inode *inode = private_data;
4436 return btrfs_sb(inode->i_sb);
4437}
4438
e8c9f186 4439static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4440 /* mandatory callbacks */
0b86a832 4441 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4442 .readpage_end_io_hook = btree_readpage_end_io_hook,
239b14b3
CM
4443 /* note we're sharing with inode.c for the merge bio hook */
4444 .merge_bio_hook = btrfs_merge_bio_hook,
20a7db8a 4445 .readpage_io_failed_hook = btree_io_failed_hook,
c6100a4b
JB
4446 .set_range_writeback = btrfs_set_range_writeback,
4447 .tree_fs_info = btree_fs_info,
4d53dddb
DS
4448
4449 /* optional callbacks */
0da5468f 4450};