]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
Revert "btrfs: turn fs_roots_radix in btrfs_fs_info into an XArray"
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
8896a08d 113 struct inode *inode;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
1941b64b
QW
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
8b712842 120 struct btrfs_work work;
4e4cbee9 121 blk_status_t status;
44b8bd7e
CM
122};
123
85d4e461
CM
124/*
125 * Lockdep class keys for extent_buffer->lock's in this root. For a given
126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
127 * the level the eb occupies in the tree.
128 *
129 * Different roots are used for different purposes and may nest inside each
130 * other and they require separate keysets. As lockdep keys should be
131 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
132 * by btrfs_root->root_key.objectid. This ensures that all special purpose
133 * roots have separate keysets.
4008c04a 134 *
85d4e461
CM
135 * Lock-nesting across peer nodes is always done with the immediate parent
136 * node locked thus preventing deadlock. As lockdep doesn't know this, use
137 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 138 *
85d4e461
CM
139 * The key is set by the readpage_end_io_hook after the buffer has passed
140 * csum validation but before the pages are unlocked. It is also set by
141 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 142 *
85d4e461
CM
143 * We also add a check to make sure the highest level of the tree is the
144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
145 * needs update as well.
4008c04a
CM
146 */
147#ifdef CONFIG_DEBUG_LOCK_ALLOC
148# if BTRFS_MAX_LEVEL != 8
149# error
150# endif
85d4e461 151
ab1405aa
DS
152#define DEFINE_LEVEL(stem, level) \
153 .names[level] = "btrfs-" stem "-0" #level,
154
155#define DEFINE_NAME(stem) \
156 DEFINE_LEVEL(stem, 0) \
157 DEFINE_LEVEL(stem, 1) \
158 DEFINE_LEVEL(stem, 2) \
159 DEFINE_LEVEL(stem, 3) \
160 DEFINE_LEVEL(stem, 4) \
161 DEFINE_LEVEL(stem, 5) \
162 DEFINE_LEVEL(stem, 6) \
163 DEFINE_LEVEL(stem, 7)
164
85d4e461
CM
165static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
ab1405aa 167 /* Longest entry: btrfs-free-space-00 */
387824af
DS
168 char names[BTRFS_MAX_LEVEL][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 170} btrfs_lockdep_keysets[] = {
ab1405aa
DS
171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182 { .id = 0, DEFINE_NAME("tree") },
4008c04a 183};
85d4e461 184
ab1405aa
DS
185#undef DEFINE_LEVEL
186#undef DEFINE_NAME
85d4e461
CM
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
4008c04a
CM
204#endif
205
d352ac68 206/*
2996e1f8 207 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 208 */
c67b3892 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 210{
d5178578 211 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 212 const int num_pages = num_extent_pages(buf);
a26663e7 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 215 char *kaddr;
e9be5a30 216 int i;
d5178578
JT
217
218 shash->tfm = fs_info->csum_shash;
219 crypto_shash_init(shash);
a26663e7 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 222 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 223
e9be5a30
DS
224 for (i = 1; i < num_pages; i++) {
225 kaddr = page_address(buf->pages[i]);
226 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 227 }
71a63551 228 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 229 crypto_shash_final(shash, result);
19c00ddc
CM
230}
231
d352ac68
CM
232/*
233 * we can't consider a given block up to date unless the transid of the
234 * block matches the transid in the parent node's pointer. This is how we
235 * detect blocks that either didn't get written at all or got written
236 * in the wrong place.
237 */
1259ab75 238static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
239 struct extent_buffer *eb, u64 parent_transid,
240 int atomic)
1259ab75 241{
2ac55d41 242 struct extent_state *cached_state = NULL;
1259ab75
CM
243 int ret;
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
2ac55d41 251 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 252 &cached_state);
0b32f4bb 253 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
254 btrfs_header_generation(eb) == parent_transid) {
255 ret = 0;
256 goto out;
257 }
94647322
DS
258 btrfs_err_rl(eb->fs_info,
259 "parent transid verify failed on %llu wanted %llu found %llu",
260 eb->start,
29549aec 261 parent_transid, btrfs_header_generation(eb));
1259ab75 262 ret = 1;
35b22c19 263 clear_extent_buffer_uptodate(eb);
33958dc6 264out:
2ac55d41 265 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 266 &cached_state);
1259ab75 267 return ret;
1259ab75
CM
268}
269
e7e16f48
JT
270static bool btrfs_supported_super_csum(u16 csum_type)
271{
272 switch (csum_type) {
273 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 274 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 275 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 276 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
277 return true;
278 default:
279 return false;
280 }
281}
282
1104a885
DS
283/*
284 * Return 0 if the superblock checksum type matches the checksum value of that
285 * algorithm. Pass the raw disk superblock data.
286 */
ab8d0fc4
JM
287static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288 char *raw_disk_sb)
1104a885
DS
289{
290 struct btrfs_super_block *disk_sb =
291 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 292 char result[BTRFS_CSUM_SIZE];
d5178578
JT
293 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295 shash->tfm = fs_info->csum_shash;
1104a885 296
51bce6c9
JT
297 /*
298 * The super_block structure does not span the whole
299 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300 * filled with zeros and is included in the checksum.
301 */
fd08001f
EB
302 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 304
55fc29be 305 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 306 return 1;
1104a885 307
e7e16f48 308 return 0;
1104a885
DS
309}
310
e064d5e9 311int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 312 struct btrfs_key *first_key, u64 parent_transid)
581c1760 313{
e064d5e9 314 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
315 int found_level;
316 struct btrfs_key found_key;
317 int ret;
318
319 found_level = btrfs_header_level(eb);
320 if (found_level != level) {
63489055
QW
321 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
323 btrfs_err(fs_info,
324"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325 eb->start, level, found_level);
581c1760
QW
326 return -EIO;
327 }
328
329 if (!first_key)
330 return 0;
331
5d41be6f
QW
332 /*
333 * For live tree block (new tree blocks in current transaction),
334 * we need proper lock context to avoid race, which is impossible here.
335 * So we only checks tree blocks which is read from disk, whose
336 * generation <= fs_info->last_trans_committed.
337 */
338 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339 return 0;
62fdaa52
QW
340
341 /* We have @first_key, so this @eb must have at least one item */
342 if (btrfs_header_nritems(eb) == 0) {
343 btrfs_err(fs_info,
344 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345 eb->start);
346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 return -EUCLEAN;
348 }
349
581c1760
QW
350 if (found_level)
351 btrfs_node_key_to_cpu(eb, &found_key, 0);
352 else
353 btrfs_item_key_to_cpu(eb, &found_key, 0);
354 ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
581c1760 356 if (ret) {
63489055
QW
357 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 359 btrfs_err(fs_info,
ff76a864
LB
360"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361 eb->start, parent_transid, first_key->objectid,
362 first_key->type, first_key->offset,
363 found_key.objectid, found_key.type,
364 found_key.offset);
581c1760 365 }
581c1760
QW
366 return ret;
367}
368
d352ac68
CM
369/*
370 * helper to read a given tree block, doing retries as required when
371 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
372 *
373 * @parent_transid: expected transid, skip check if 0
374 * @level: expected level, mandatory check
375 * @first_key: expected key of first slot, skip check if NULL
d352ac68 376 */
6a2e9dc4
FM
377int btrfs_read_extent_buffer(struct extent_buffer *eb,
378 u64 parent_transid, int level,
379 struct btrfs_key *first_key)
f188591e 380{
5ab12d1f 381 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 382 struct extent_io_tree *io_tree;
ea466794 383 int failed = 0;
f188591e
CM
384 int ret;
385 int num_copies = 0;
386 int mirror_num = 0;
ea466794 387 int failed_mirror = 0;
f188591e 388
0b246afa 389 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 390 while (1) {
f8397d69 391 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 392 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 393 if (!ret) {
581c1760 394 if (verify_parent_transid(io_tree, eb,
b9fab919 395 parent_transid, 0))
256dd1bb 396 ret = -EIO;
e064d5e9 397 else if (btrfs_verify_level_key(eb, level,
448de471 398 first_key, parent_transid))
581c1760
QW
399 ret = -EUCLEAN;
400 else
401 break;
256dd1bb 402 }
d397712b 403
0b246afa 404 num_copies = btrfs_num_copies(fs_info,
f188591e 405 eb->start, eb->len);
4235298e 406 if (num_copies == 1)
ea466794 407 break;
4235298e 408
5cf1ab56
JB
409 if (!failed_mirror) {
410 failed = 1;
411 failed_mirror = eb->read_mirror;
412 }
413
f188591e 414 mirror_num++;
ea466794
JB
415 if (mirror_num == failed_mirror)
416 mirror_num++;
417
4235298e 418 if (mirror_num > num_copies)
ea466794 419 break;
f188591e 420 }
ea466794 421
c0901581 422 if (failed && !ret && failed_mirror)
20a1fbf9 423 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
424
425 return ret;
f188591e 426}
19c00ddc 427
eca0f6f6
QW
428static int csum_one_extent_buffer(struct extent_buffer *eb)
429{
430 struct btrfs_fs_info *fs_info = eb->fs_info;
431 u8 result[BTRFS_CSUM_SIZE];
432 int ret;
433
434 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435 offsetof(struct btrfs_header, fsid),
436 BTRFS_FSID_SIZE) == 0);
437 csum_tree_block(eb, result);
438
439 if (btrfs_header_level(eb))
440 ret = btrfs_check_node(eb);
441 else
442 ret = btrfs_check_leaf_full(eb);
443
3777369f
QW
444 if (ret < 0)
445 goto error;
446
447 /*
448 * Also check the generation, the eb reached here must be newer than
449 * last committed. Or something seriously wrong happened.
450 */
451 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
452 ret = -EUCLEAN;
eca0f6f6 453 btrfs_err(fs_info,
3777369f
QW
454 "block=%llu bad generation, have %llu expect > %llu",
455 eb->start, btrfs_header_generation(eb),
456 fs_info->last_trans_committed);
457 goto error;
eca0f6f6
QW
458 }
459 write_extent_buffer(eb, result, 0, fs_info->csum_size);
460
461 return 0;
3777369f
QW
462
463error:
464 btrfs_print_tree(eb, 0);
465 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
466 eb->start);
467 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
468 return ret;
eca0f6f6
QW
469}
470
471/* Checksum all dirty extent buffers in one bio_vec */
472static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
473 struct bio_vec *bvec)
474{
475 struct page *page = bvec->bv_page;
476 u64 bvec_start = page_offset(page) + bvec->bv_offset;
477 u64 cur;
478 int ret = 0;
479
480 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
481 cur += fs_info->nodesize) {
482 struct extent_buffer *eb;
483 bool uptodate;
484
485 eb = find_extent_buffer(fs_info, cur);
486 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
487 fs_info->nodesize);
488
8ee92268 489 /* A dirty eb shouldn't disappear from extent_buffers */
eca0f6f6
QW
490 if (WARN_ON(!eb))
491 return -EUCLEAN;
492
493 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
494 free_extent_buffer(eb);
495 return -EUCLEAN;
496 }
497 if (WARN_ON(!uptodate)) {
498 free_extent_buffer(eb);
499 return -EUCLEAN;
500 }
501
502 ret = csum_one_extent_buffer(eb);
503 free_extent_buffer(eb);
504 if (ret < 0)
505 return ret;
506 }
507 return ret;
508}
509
d352ac68 510/*
ac303b69
QW
511 * Checksum a dirty tree block before IO. This has extra checks to make sure
512 * we only fill in the checksum field in the first page of a multi-page block.
513 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 514 */
ac303b69 515static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 516{
ac303b69 517 struct page *page = bvec->bv_page;
4eee4fa4 518 u64 start = page_offset(page);
19c00ddc 519 u64 found_start;
19c00ddc 520 struct extent_buffer *eb;
eca0f6f6 521
fbca46eb 522 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 523 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 524
4f2de97a
JB
525 eb = (struct extent_buffer *)page->private;
526 if (page != eb->pages[0])
527 return 0;
0f805531 528
19c00ddc 529 found_start = btrfs_header_bytenr(eb);
d3575156
NA
530
531 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
532 WARN_ON(found_start != 0);
533 return 0;
534 }
535
0f805531
AL
536 /*
537 * Please do not consolidate these warnings into a single if.
538 * It is useful to know what went wrong.
539 */
540 if (WARN_ON(found_start != start))
541 return -EUCLEAN;
542 if (WARN_ON(!PageUptodate(page)))
543 return -EUCLEAN;
544
eca0f6f6 545 return csum_one_extent_buffer(eb);
19c00ddc
CM
546}
547
b0c9b3b0 548static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 549{
b0c9b3b0 550 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 552 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 553 u8 *metadata_uuid;
2b82032c 554
9a8658e3
DS
555 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
556 BTRFS_FSID_SIZE);
944d3f9f
NB
557 /*
558 * Checking the incompat flag is only valid for the current fs. For
559 * seed devices it's forbidden to have their uuid changed so reading
560 * ->fsid in this case is fine
561 */
562 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
563 metadata_uuid = fs_devices->metadata_uuid;
564 else
565 metadata_uuid = fs_devices->fsid;
566
567 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
568 return 0;
569
570 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
571 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
572 return 0;
573
574 return 1;
2b82032c
YZ
575}
576
77bf40a2
QW
577/* Do basic extent buffer checks at read time */
578static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 579{
77bf40a2 580 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 581 u64 found_start;
77bf40a2
QW
582 const u32 csum_size = fs_info->csum_size;
583 u8 found_level;
2996e1f8 584 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 585 const u8 *header_csum;
77bf40a2 586 int ret = 0;
ea466794 587
ce9adaa5 588 found_start = btrfs_header_bytenr(eb);
727011e0 589 if (found_start != eb->start) {
893bf4b1
SY
590 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
591 eb->start, found_start);
f188591e 592 ret = -EIO;
77bf40a2 593 goto out;
ce9adaa5 594 }
b0c9b3b0 595 if (check_tree_block_fsid(eb)) {
02873e43
ZL
596 btrfs_err_rl(fs_info, "bad fsid on block %llu",
597 eb->start);
1259ab75 598 ret = -EIO;
77bf40a2 599 goto out;
1259ab75 600 }
ce9adaa5 601 found_level = btrfs_header_level(eb);
1c24c3ce 602 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
603 btrfs_err(fs_info, "bad tree block level %d on %llu",
604 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 605 ret = -EIO;
77bf40a2 606 goto out;
1c24c3ce 607 }
ce9adaa5 608
c67b3892 609 csum_tree_block(eb, result);
dfd29eed
DS
610 header_csum = page_address(eb->pages[0]) +
611 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 612
dfd29eed 613 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 614 btrfs_warn_rl(fs_info,
ff14aa79
DS
615 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
616 eb->start,
dfd29eed 617 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
618 CSUM_FMT_VALUE(csum_size, result),
619 btrfs_header_level(eb));
2996e1f8 620 ret = -EUCLEAN;
77bf40a2 621 goto out;
2996e1f8
JT
622 }
623
a826d6dc
JB
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
1c4360ee 629 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
ce9adaa5 633
813fd1dc 634 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
635 ret = -EIO;
636
0b32f4bb
JB
637 if (!ret)
638 set_extent_buffer_uptodate(eb);
75391f0d
QW
639 else
640 btrfs_err(fs_info,
641 "block=%llu read time tree block corruption detected",
642 eb->start);
77bf40a2
QW
643out:
644 return ret;
645}
646
371cdc07
QW
647static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
648 int mirror)
649{
650 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
651 struct extent_buffer *eb;
652 bool reads_done;
653 int ret = 0;
654
655 /*
656 * We don't allow bio merge for subpage metadata read, so we should
657 * only get one eb for each endio hook.
658 */
659 ASSERT(end == start + fs_info->nodesize - 1);
660 ASSERT(PagePrivate(page));
661
662 eb = find_extent_buffer(fs_info, start);
663 /*
664 * When we are reading one tree block, eb must have been inserted into
665 * the radix tree. If not, something is wrong.
666 */
667 ASSERT(eb);
668
669 reads_done = atomic_dec_and_test(&eb->io_pages);
670 /* Subpage read must finish in page read */
671 ASSERT(reads_done);
672
673 eb->read_mirror = mirror;
674 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
675 ret = -EIO;
676 goto err;
677 }
678 ret = validate_extent_buffer(eb);
679 if (ret < 0)
680 goto err;
681
371cdc07
QW
682 set_extent_buffer_uptodate(eb);
683
684 free_extent_buffer(eb);
685 return ret;
686err:
687 /*
688 * end_bio_extent_readpage decrements io_pages in case of error,
689 * make sure it has something to decrement.
690 */
691 atomic_inc(&eb->io_pages);
692 clear_extent_buffer_uptodate(eb);
693 free_extent_buffer(eb);
694 return ret;
695}
696
c3a3b19b 697int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
698 struct page *page, u64 start, u64 end,
699 int mirror)
700{
701 struct extent_buffer *eb;
702 int ret = 0;
703 int reads_done;
704
705 ASSERT(page->private);
371cdc07 706
fbca46eb 707 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
708 return validate_subpage_buffer(page, start, end, mirror);
709
77bf40a2
QW
710 eb = (struct extent_buffer *)page->private;
711
712 /*
713 * The pending IO might have been the only thing that kept this buffer
714 * in memory. Make sure we have a ref for all this other checks
715 */
716 atomic_inc(&eb->refs);
717
718 reads_done = atomic_dec_and_test(&eb->io_pages);
719 if (!reads_done)
720 goto err;
721
722 eb->read_mirror = mirror;
723 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
724 ret = -EIO;
725 goto err;
726 }
727 ret = validate_extent_buffer(eb);
ce9adaa5 728err:
53b381b3
DW
729 if (ret) {
730 /*
731 * our io error hook is going to dec the io pages
732 * again, we have to make sure it has something
733 * to decrement
734 */
735 atomic_inc(&eb->io_pages);
0b32f4bb 736 clear_extent_buffer_uptodate(eb);
53b381b3 737 }
0b32f4bb 738 free_extent_buffer(eb);
77bf40a2 739
f188591e 740 return ret;
ce9adaa5
CM
741}
742
4246a0b6 743static void end_workqueue_bio(struct bio *bio)
ce9adaa5 744{
97eb6b69 745 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 746 struct btrfs_fs_info *fs_info;
9e0af237 747 struct btrfs_workqueue *wq;
ce9adaa5 748
ce9adaa5 749 fs_info = end_io_wq->info;
4e4cbee9 750 end_io_wq->status = bio->bi_status;
d20f7043 751
cfe94440 752 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
a0cac0ec 753 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 754 wq = fs_info->endio_meta_write_workers;
a0cac0ec 755 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 756 wq = fs_info->endio_freespace_worker;
a0cac0ec 757 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 758 wq = fs_info->endio_raid56_workers;
a0cac0ec 759 else
9e0af237 760 wq = fs_info->endio_write_workers;
d20f7043 761 } else {
5c047a69 762 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 763 wq = fs_info->endio_raid56_workers;
a0cac0ec 764 else if (end_io_wq->metadata)
9e0af237 765 wq = fs_info->endio_meta_workers;
a0cac0ec 766 else
9e0af237 767 wq = fs_info->endio_workers;
d20f7043 768 }
9e0af237 769
a0cac0ec 770 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 771 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
772}
773
4e4cbee9 774blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 775 enum btrfs_wq_endio_type metadata)
0b86a832 776{
97eb6b69 777 struct btrfs_end_io_wq *end_io_wq;
8b110e39 778
97eb6b69 779 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 780 if (!end_io_wq)
4e4cbee9 781 return BLK_STS_RESOURCE;
ce9adaa5
CM
782
783 end_io_wq->private = bio->bi_private;
784 end_io_wq->end_io = bio->bi_end_io;
22c59948 785 end_io_wq->info = info;
4e4cbee9 786 end_io_wq->status = 0;
ce9adaa5 787 end_io_wq->bio = bio;
22c59948 788 end_io_wq->metadata = metadata;
ce9adaa5
CM
789
790 bio->bi_private = end_io_wq;
791 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
792 return 0;
793}
794
4a69a410
CM
795static void run_one_async_start(struct btrfs_work *work)
796{
4a69a410 797 struct async_submit_bio *async;
4e4cbee9 798 blk_status_t ret;
4a69a410
CM
799
800 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
801 ret = async->submit_bio_start(async->inode, async->bio,
802 async->dio_file_offset);
79787eaa 803 if (ret)
4e4cbee9 804 async->status = ret;
4a69a410
CM
805}
806
06ea01b1
DS
807/*
808 * In order to insert checksums into the metadata in large chunks, we wait
809 * until bio submission time. All the pages in the bio are checksummed and
810 * sums are attached onto the ordered extent record.
811 *
812 * At IO completion time the csums attached on the ordered extent record are
813 * inserted into the tree.
814 */
4a69a410 815static void run_one_async_done(struct btrfs_work *work)
8b712842 816{
8b712842 817 struct async_submit_bio *async;
06ea01b1
DS
818 struct inode *inode;
819 blk_status_t ret;
8b712842
CM
820
821 async = container_of(work, struct async_submit_bio, work);
8896a08d 822 inode = async->inode;
4854ddd0 823
bb7ab3b9 824 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
825 if (async->status) {
826 async->bio->bi_status = async->status;
4246a0b6 827 bio_endio(async->bio);
79787eaa
JM
828 return;
829 }
830
ec39f769
CM
831 /*
832 * All of the bios that pass through here are from async helpers.
833 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
834 * This changes nothing when cgroups aren't in use.
835 */
836 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 837 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
838 if (ret) {
839 async->bio->bi_status = ret;
840 bio_endio(async->bio);
841 }
4a69a410
CM
842}
843
844static void run_one_async_free(struct btrfs_work *work)
845{
846 struct async_submit_bio *async;
847
848 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
849 kfree(async);
850}
851
8896a08d 852blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
a6f5e39e 853 int mirror_num, u64 dio_file_offset,
e288c080 854 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 855{
8896a08d 856 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
857 struct async_submit_bio *async;
858
859 async = kmalloc(sizeof(*async), GFP_NOFS);
860 if (!async)
4e4cbee9 861 return BLK_STS_RESOURCE;
44b8bd7e 862
8896a08d 863 async->inode = inode;
44b8bd7e
CM
864 async->bio = bio;
865 async->mirror_num = mirror_num;
4a69a410 866 async->submit_bio_start = submit_bio_start;
4a69a410 867
a0cac0ec
OS
868 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
869 run_one_async_free);
4a69a410 870
1941b64b 871 async->dio_file_offset = dio_file_offset;
8c8bee1d 872
4e4cbee9 873 async->status = 0;
79787eaa 874
67f055c7 875 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
876 btrfs_queue_work(fs_info->hipri_workers, &async->work);
877 else
878 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
879 return 0;
880}
881
4e4cbee9 882static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 883{
2c30c71b 884 struct bio_vec *bvec;
ce3ed71a 885 struct btrfs_root *root;
2b070cfe 886 int ret = 0;
6dc4f100 887 struct bvec_iter_all iter_all;
ce3ed71a 888
c09abff8 889 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 890 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 891 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 892 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
893 if (ret)
894 break;
ce3ed71a 895 }
2c30c71b 896
4e4cbee9 897 return errno_to_blk_status(ret);
ce3ed71a
CM
898}
899
8896a08d 900static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 901 u64 dio_file_offset)
22c59948 902{
8b712842
CM
903 /*
904 * when we're called for a write, we're already in the async
5443be45 905 * submission context. Just jump into btrfs_map_bio
8b712842 906 */
79787eaa 907 return btree_csum_one_bio(bio);
4a69a410 908}
22c59948 909
f4dcfb30 910static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 911 struct btrfs_inode *bi)
de0022b9 912{
4eef29ef 913 if (btrfs_is_zoned(fs_info))
f4dcfb30 914 return false;
6300463b 915 if (atomic_read(&bi->sync_writers))
f4dcfb30 916 return false;
9b4e675a 917 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
918 return false;
919 return true;
de0022b9
JB
920}
921
94d9e11b 922void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 923{
0b246afa 924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 925 blk_status_t ret;
cad321ad 926
cfe94440 927 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
4a69a410
CM
928 /*
929 * called for a read, do the setup so that checksum validation
930 * can happen in the async kernel threads
931 */
0b246afa
JM
932 ret = btrfs_bio_wq_end_io(fs_info, bio,
933 BTRFS_WQ_ENDIO_METADATA);
94d9e11b
CH
934 if (!ret)
935 ret = btrfs_map_bio(fs_info, bio, mirror_num);
f4dcfb30 936 } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
de0022b9 937 ret = btree_csum_one_bio(bio);
94d9e11b
CH
938 if (!ret)
939 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
940 } else {
941 /*
942 * kthread helpers are used to submit writes so that
943 * checksumming can happen in parallel across all CPUs
944 */
8896a08d 945 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
a6f5e39e 946 btree_submit_bio_start);
44b8bd7e 947 }
d313d7a3 948
94d9e11b
CH
949 if (ret) {
950 bio->bi_status = ret;
951 bio_endio(bio);
952 }
44b8bd7e
CM
953}
954
3dd1462e 955#ifdef CONFIG_MIGRATION
784b4e29 956static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
784b4e29
CM
959{
960 /*
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
963 */
964 if (PageDirty(page))
965 return -EAGAIN;
966 /*
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
969 */
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
972 return -EAGAIN;
a6bc32b8 973 return migrate_page(mapping, newpage, page, mode);
784b4e29 974}
3dd1462e 975#endif
784b4e29 976
0da5468f
CM
977
978static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
980{
e2d84521
MX
981 struct btrfs_fs_info *fs_info;
982 int ret;
983
d8d5f3e1 984 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
985
986 if (wbc->for_kupdate)
987 return 0;
988
e2d84521 989 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 990 /* this is a bit racy, but that's ok */
d814a491
EL
991 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
992 BTRFS_DIRTY_METADATA_THRESH,
993 fs_info->dirty_metadata_batch);
e2d84521 994 if (ret < 0)
793955bc 995 return 0;
793955bc 996 }
0b32f4bb 997 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
998}
999
70dec807 1000static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1001{
98509cfc 1002 if (PageWriteback(page) || PageDirty(page))
d397712b 1003 return 0;
0c4e538b 1004
f7a52a40 1005 return try_release_extent_buffer(page);
d98237b3
CM
1006}
1007
895586eb
MWO
1008static void btree_invalidate_folio(struct folio *folio, size_t offset,
1009 size_t length)
d98237b3 1010{
d1310b2e 1011 struct extent_io_tree *tree;
895586eb
MWO
1012 tree = &BTRFS_I(folio->mapping->host)->io_tree;
1013 extent_invalidate_folio(tree, folio, offset);
1014 btree_releasepage(&folio->page, GFP_NOFS);
1015 if (folio_get_private(folio)) {
1016 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
1017 "folio private not zero on folio %llu",
1018 (unsigned long long)folio_pos(folio));
1019 folio_detach_private(folio);
9ad6b7bc 1020 }
d98237b3
CM
1021}
1022
bb146eb2 1023#ifdef DEBUG
0079c3b1
MWO
1024static bool btree_dirty_folio(struct address_space *mapping,
1025 struct folio *folio)
1026{
1027 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 1028 struct btrfs_subpage *subpage;
0b32f4bb 1029 struct extent_buffer *eb;
139e8cd3 1030 int cur_bit = 0;
0079c3b1 1031 u64 page_start = folio_pos(folio);
139e8cd3
QW
1032
1033 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 1034 eb = folio_get_private(folio);
139e8cd3
QW
1035 BUG_ON(!eb);
1036 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1037 BUG_ON(!atomic_read(&eb->refs));
49d0c642 1038 btrfs_assert_tree_write_locked(eb);
0079c3b1 1039 return filemap_dirty_folio(mapping, folio);
139e8cd3 1040 }
0079c3b1 1041 subpage = folio_get_private(folio);
139e8cd3
QW
1042
1043 ASSERT(subpage->dirty_bitmap);
1044 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1045 unsigned long flags;
1046 u64 cur;
1047 u16 tmp = (1 << cur_bit);
1048
1049 spin_lock_irqsave(&subpage->lock, flags);
1050 if (!(tmp & subpage->dirty_bitmap)) {
1051 spin_unlock_irqrestore(&subpage->lock, flags);
1052 cur_bit++;
1053 continue;
1054 }
1055 spin_unlock_irqrestore(&subpage->lock, flags);
1056 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 1057
139e8cd3
QW
1058 eb = find_extent_buffer(fs_info, cur);
1059 ASSERT(eb);
1060 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1061 ASSERT(atomic_read(&eb->refs));
49d0c642 1062 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
1063 free_extent_buffer(eb);
1064
1065 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1066 }
0079c3b1 1067 return filemap_dirty_folio(mapping, folio);
0b32f4bb 1068}
0079c3b1
MWO
1069#else
1070#define btree_dirty_folio filemap_dirty_folio
1071#endif
0b32f4bb 1072
7f09410b 1073static const struct address_space_operations btree_aops = {
0da5468f 1074 .writepages = btree_writepages,
5f39d397 1075 .releasepage = btree_releasepage,
895586eb 1076 .invalidate_folio = btree_invalidate_folio,
5a92bc88 1077#ifdef CONFIG_MIGRATION
784b4e29 1078 .migratepage = btree_migratepage,
5a92bc88 1079#endif
0079c3b1 1080 .dirty_folio = btree_dirty_folio,
d98237b3
CM
1081};
1082
2ff7e61e
JM
1083struct extent_buffer *btrfs_find_create_tree_block(
1084 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1085 u64 bytenr, u64 owner_root,
1086 int level)
0999df54 1087{
0b246afa
JM
1088 if (btrfs_is_testing(fs_info))
1089 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1090 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1091}
1092
581c1760
QW
1093/*
1094 * Read tree block at logical address @bytenr and do variant basic but critical
1095 * verification.
1096 *
1b7ec85e 1097 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1098 * @parent_transid: expected transid of this tree block, skip check if 0
1099 * @level: expected level, mandatory check
1100 * @first_key: expected key in slot 0, skip check if NULL
1101 */
2ff7e61e 1102struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1103 u64 owner_root, u64 parent_transid,
1104 int level, struct btrfs_key *first_key)
0999df54
CM
1105{
1106 struct extent_buffer *buf = NULL;
0999df54
CM
1107 int ret;
1108
3fbaf258 1109 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1110 if (IS_ERR(buf))
1111 return buf;
0999df54 1112
6a2e9dc4 1113 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 1114 if (ret) {
537f38f0 1115 free_extent_buffer_stale(buf);
64c043de 1116 return ERR_PTR(ret);
0f0fe8f7 1117 }
88c602ab
QW
1118 if (btrfs_check_eb_owner(buf, owner_root)) {
1119 free_extent_buffer_stale(buf);
1120 return ERR_PTR(-EUCLEAN);
1121 }
5f39d397 1122 return buf;
ce9adaa5 1123
eb60ceac
CM
1124}
1125
6a884d7d 1126void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1127{
6a884d7d 1128 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1129 if (btrfs_header_generation(buf) ==
e2d84521 1130 fs_info->running_transaction->transid) {
49d0c642 1131 btrfs_assert_tree_write_locked(buf);
b4ce94de 1132
b9473439 1133 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1134 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1135 -buf->len,
1136 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1137 clear_extent_buffer_dirty(buf);
1138 }
925baedd 1139 }
5f39d397
CM
1140}
1141
da17066c 1142static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1143 u64 objectid)
d97e63b6 1144{
7c0260ee 1145 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
1146
1147 memset(&root->root_key, 0, sizeof(root->root_key));
1148 memset(&root->root_item, 0, sizeof(root->root_item));
1149 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 1150 root->fs_info = fs_info;
2e608bd1 1151 root->root_key.objectid = objectid;
cfaa7295 1152 root->node = NULL;
a28ec197 1153 root->commit_root = NULL;
27cdeb70 1154 root->state = 0;
abed4aaa 1155 RB_CLEAR_NODE(&root->rb_node);
0b86a832 1156
0f7d52f4 1157 root->last_trans = 0;
6b8fad57 1158 root->free_objectid = 0;
eb73c1b7 1159 root->nr_delalloc_inodes = 0;
199c2a9c 1160 root->nr_ordered_extents = 0;
6bef4d31 1161 root->inode_tree = RB_ROOT;
253bf575 1162 xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
2e608bd1
JB
1163
1164 btrfs_init_root_block_rsv(root);
0b86a832
CM
1165
1166 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1167 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1168 INIT_LIST_HEAD(&root->delalloc_inodes);
1169 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1170 INIT_LIST_HEAD(&root->ordered_extents);
1171 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1172 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1173 INIT_LIST_HEAD(&root->logged_list[0]);
1174 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1175 spin_lock_init(&root->inode_lock);
eb73c1b7 1176 spin_lock_init(&root->delalloc_lock);
199c2a9c 1177 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1178 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1179 spin_lock_init(&root->log_extents_lock[0]);
1180 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1181 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1182 mutex_init(&root->objectid_mutex);
e02119d5 1183 mutex_init(&root->log_mutex);
31f3d255 1184 mutex_init(&root->ordered_extent_mutex);
573bfb72 1185 mutex_init(&root->delalloc_mutex);
c53e9653 1186 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1187 init_waitqueue_head(&root->log_writer_wait);
1188 init_waitqueue_head(&root->log_commit_wait[0]);
1189 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1190 INIT_LIST_HEAD(&root->log_ctxs[0]);
1191 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1192 atomic_set(&root->log_commit[0], 0);
1193 atomic_set(&root->log_commit[1], 0);
1194 atomic_set(&root->log_writers, 0);
2ecb7923 1195 atomic_set(&root->log_batch, 0);
0700cea7 1196 refcount_set(&root->refs, 1);
8ecebf4d 1197 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1198 atomic_set(&root->nr_swapfiles, 0);
7237f183 1199 root->log_transid = 0;
d1433deb 1200 root->log_transid_committed = -1;
257c62e1 1201 root->last_log_commit = 0;
2e608bd1 1202 root->anon_dev = 0;
e289f03e 1203 if (!dummy) {
43eb5f29
QW
1204 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1205 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1206 extent_io_tree_init(fs_info, &root->log_csum_range,
1207 IO_TREE_LOG_CSUM_RANGE, NULL);
1208 }
017e5369 1209
5f3ab90a 1210 spin_lock_init(&root->root_item_lock);
370a11b8 1211 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1212#ifdef CONFIG_BTRFS_DEBUG
1213 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1214 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1215 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1216 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1217#endif
3768f368
CM
1218}
1219
74e4d827 1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1221 u64 objectid, gfp_t flags)
6f07e42e 1222{
74e4d827 1223 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1224 if (root)
96dfcb46 1225 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1226 return root;
1227}
1228
06ea65a3
JB
1229#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1230/* Should only be used by the testing infrastructure */
da17066c 1231struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1232{
1233 struct btrfs_root *root;
1234
7c0260ee
JM
1235 if (!fs_info)
1236 return ERR_PTR(-EINVAL);
1237
96dfcb46 1238 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1239 if (!root)
1240 return ERR_PTR(-ENOMEM);
da17066c 1241
b9ef22de 1242 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1243 root->alloc_bytenr = 0;
06ea65a3
JB
1244
1245 return root;
1246}
1247#endif
1248
abed4aaa
JB
1249static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1250{
1251 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1252 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1253
1254 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1255}
1256
1257static int global_root_key_cmp(const void *k, const struct rb_node *node)
1258{
1259 const struct btrfs_key *key = k;
1260 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1261
1262 return btrfs_comp_cpu_keys(key, &root->root_key);
1263}
1264
1265int btrfs_global_root_insert(struct btrfs_root *root)
1266{
1267 struct btrfs_fs_info *fs_info = root->fs_info;
1268 struct rb_node *tmp;
1269
1270 write_lock(&fs_info->global_root_lock);
1271 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1272 write_unlock(&fs_info->global_root_lock);
1273 ASSERT(!tmp);
1274
1275 return tmp ? -EEXIST : 0;
1276}
1277
1278void btrfs_global_root_delete(struct btrfs_root *root)
1279{
1280 struct btrfs_fs_info *fs_info = root->fs_info;
1281
1282 write_lock(&fs_info->global_root_lock);
1283 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1284 write_unlock(&fs_info->global_root_lock);
1285}
1286
1287struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1288 struct btrfs_key *key)
1289{
1290 struct rb_node *node;
1291 struct btrfs_root *root = NULL;
1292
1293 read_lock(&fs_info->global_root_lock);
1294 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1295 if (node)
1296 root = container_of(node, struct btrfs_root, rb_node);
1297 read_unlock(&fs_info->global_root_lock);
1298
1299 return root;
1300}
1301
f7238e50
JB
1302static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1303{
1304 struct btrfs_block_group *block_group;
1305 u64 ret;
1306
1307 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1308 return 0;
1309
1310 if (bytenr)
1311 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1312 else
1313 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1314 ASSERT(block_group);
1315 if (!block_group)
1316 return 0;
1317 ret = block_group->global_root_id;
1318 btrfs_put_block_group(block_group);
1319
1320 return ret;
1321}
1322
abed4aaa
JB
1323struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1324{
1325 struct btrfs_key key = {
1326 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1327 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1328 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1329 };
1330
1331 return btrfs_global_root(fs_info, &key);
1332}
1333
1334struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1335{
1336 struct btrfs_key key = {
1337 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1338 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1339 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1340 };
1341
1342 return btrfs_global_root(fs_info, &key);
1343}
1344
20897f5c 1345struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1346 u64 objectid)
1347{
9b7a2440 1348 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1349 struct extent_buffer *leaf;
1350 struct btrfs_root *tree_root = fs_info->tree_root;
1351 struct btrfs_root *root;
1352 struct btrfs_key key;
b89f6d1f 1353 unsigned int nofs_flag;
20897f5c 1354 int ret = 0;
20897f5c 1355
b89f6d1f
FM
1356 /*
1357 * We're holding a transaction handle, so use a NOFS memory allocation
1358 * context to avoid deadlock if reclaim happens.
1359 */
1360 nofs_flag = memalloc_nofs_save();
96dfcb46 1361 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1362 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1363 if (!root)
1364 return ERR_PTR(-ENOMEM);
1365
20897f5c
AJ
1366 root->root_key.objectid = objectid;
1367 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1368 root->root_key.offset = 0;
1369
9631e4cc
JB
1370 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1371 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1372 if (IS_ERR(leaf)) {
1373 ret = PTR_ERR(leaf);
1dd05682 1374 leaf = NULL;
8a6a87cd 1375 goto fail_unlock;
20897f5c
AJ
1376 }
1377
20897f5c 1378 root->node = leaf;
20897f5c
AJ
1379 btrfs_mark_buffer_dirty(leaf);
1380
1381 root->commit_root = btrfs_root_node(root);
27cdeb70 1382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1383
f944d2cb
DS
1384 btrfs_set_root_flags(&root->root_item, 0);
1385 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1386 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1387 btrfs_set_root_generation(&root->root_item, trans->transid);
1388 btrfs_set_root_level(&root->root_item, 0);
1389 btrfs_set_root_refs(&root->root_item, 1);
1390 btrfs_set_root_used(&root->root_item, leaf->len);
1391 btrfs_set_root_last_snapshot(&root->root_item, 0);
1392 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1393 if (is_fstree(objectid))
807fc790
AS
1394 generate_random_guid(root->root_item.uuid);
1395 else
1396 export_guid(root->root_item.uuid, &guid_null);
c8422684 1397 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1398
8a6a87cd
BB
1399 btrfs_tree_unlock(leaf);
1400
20897f5c
AJ
1401 key.objectid = objectid;
1402 key.type = BTRFS_ROOT_ITEM_KEY;
1403 key.offset = 0;
1404 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1405 if (ret)
1406 goto fail;
1407
1dd05682
TI
1408 return root;
1409
8a6a87cd 1410fail_unlock:
8c38938c 1411 if (leaf)
1dd05682 1412 btrfs_tree_unlock(leaf);
8a6a87cd 1413fail:
00246528 1414 btrfs_put_root(root);
20897f5c 1415
1dd05682 1416 return ERR_PTR(ret);
20897f5c
AJ
1417}
1418
7237f183
YZ
1419static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1420 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1421{
1422 struct btrfs_root *root;
e02119d5 1423
96dfcb46 1424 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1425 if (!root)
7237f183 1426 return ERR_PTR(-ENOMEM);
e02119d5 1427
e02119d5
CM
1428 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1429 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1430 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1431
6ab6ebb7
NA
1432 return root;
1433}
1434
1435int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1436 struct btrfs_root *root)
1437{
1438 struct extent_buffer *leaf;
1439
7237f183 1440 /*
92a7cc42 1441 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1442 *
92a7cc42
QW
1443 * Log trees are not exposed to user space thus can't be snapshotted,
1444 * and they go away before a real commit is actually done.
1445 *
1446 * They do store pointers to file data extents, and those reference
1447 * counts still get updated (along with back refs to the log tree).
7237f183 1448 */
e02119d5 1449
4d75f8a9 1450 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1451 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1452 if (IS_ERR(leaf))
1453 return PTR_ERR(leaf);
e02119d5 1454
7237f183 1455 root->node = leaf;
e02119d5 1456
e02119d5
CM
1457 btrfs_mark_buffer_dirty(root->node);
1458 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1459
1460 return 0;
7237f183
YZ
1461}
1462
1463int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1464 struct btrfs_fs_info *fs_info)
1465{
1466 struct btrfs_root *log_root;
1467
1468 log_root = alloc_log_tree(trans, fs_info);
1469 if (IS_ERR(log_root))
1470 return PTR_ERR(log_root);
6ab6ebb7 1471
3ddebf27
NA
1472 if (!btrfs_is_zoned(fs_info)) {
1473 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1474
1475 if (ret) {
1476 btrfs_put_root(log_root);
1477 return ret;
1478 }
6ab6ebb7
NA
1479 }
1480
7237f183
YZ
1481 WARN_ON(fs_info->log_root_tree);
1482 fs_info->log_root_tree = log_root;
1483 return 0;
1484}
1485
1486int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1487 struct btrfs_root *root)
1488{
0b246afa 1489 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1490 struct btrfs_root *log_root;
1491 struct btrfs_inode_item *inode_item;
6ab6ebb7 1492 int ret;
7237f183 1493
0b246afa 1494 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1495 if (IS_ERR(log_root))
1496 return PTR_ERR(log_root);
1497
6ab6ebb7
NA
1498 ret = btrfs_alloc_log_tree_node(trans, log_root);
1499 if (ret) {
1500 btrfs_put_root(log_root);
1501 return ret;
1502 }
1503
7237f183
YZ
1504 log_root->last_trans = trans->transid;
1505 log_root->root_key.offset = root->root_key.objectid;
1506
1507 inode_item = &log_root->root_item.inode;
3cae210f
QW
1508 btrfs_set_stack_inode_generation(inode_item, 1);
1509 btrfs_set_stack_inode_size(inode_item, 3);
1510 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1511 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1512 fs_info->nodesize);
3cae210f 1513 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1514
5d4f98a2 1515 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1516
1517 WARN_ON(root->log_root);
1518 root->log_root = log_root;
1519 root->log_transid = 0;
d1433deb 1520 root->log_transid_committed = -1;
257c62e1 1521 root->last_log_commit = 0;
e02119d5
CM
1522 return 0;
1523}
1524
49d11bea
JB
1525static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1526 struct btrfs_path *path,
1527 struct btrfs_key *key)
e02119d5
CM
1528{
1529 struct btrfs_root *root;
1530 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1531 u64 generation;
cb517eab 1532 int ret;
581c1760 1533 int level;
0f7d52f4 1534
96dfcb46 1535 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1536 if (!root)
1537 return ERR_PTR(-ENOMEM);
0f7d52f4 1538
cb517eab
MX
1539 ret = btrfs_find_root(tree_root, key, path,
1540 &root->root_item, &root->root_key);
0f7d52f4 1541 if (ret) {
13a8a7c8
YZ
1542 if (ret > 0)
1543 ret = -ENOENT;
49d11bea 1544 goto fail;
0f7d52f4 1545 }
13a8a7c8 1546
84234f3a 1547 generation = btrfs_root_generation(&root->root_item);
581c1760 1548 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1549 root->node = read_tree_block(fs_info,
1550 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1551 key->objectid, generation, level, NULL);
64c043de
LB
1552 if (IS_ERR(root->node)) {
1553 ret = PTR_ERR(root->node);
8c38938c 1554 root->node = NULL;
49d11bea 1555 goto fail;
4eb150d6
QW
1556 }
1557 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1558 ret = -EIO;
49d11bea 1559 goto fail;
416bc658 1560 }
88c602ab
QW
1561
1562 /*
1563 * For real fs, and not log/reloc trees, root owner must
1564 * match its root node owner
1565 */
1566 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1567 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1568 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1569 root->root_key.objectid != btrfs_header_owner(root->node)) {
1570 btrfs_crit(fs_info,
1571"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1572 root->root_key.objectid, root->node->start,
1573 btrfs_header_owner(root->node),
1574 root->root_key.objectid);
1575 ret = -EUCLEAN;
1576 goto fail;
1577 }
5d4f98a2 1578 root->commit_root = btrfs_root_node(root);
cb517eab 1579 return root;
49d11bea 1580fail:
00246528 1581 btrfs_put_root(root);
49d11bea
JB
1582 return ERR_PTR(ret);
1583}
1584
1585struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1586 struct btrfs_key *key)
1587{
1588 struct btrfs_root *root;
1589 struct btrfs_path *path;
1590
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return ERR_PTR(-ENOMEM);
1594 root = read_tree_root_path(tree_root, path, key);
1595 btrfs_free_path(path);
1596
1597 return root;
cb517eab
MX
1598}
1599
2dfb1e43
QW
1600/*
1601 * Initialize subvolume root in-memory structure
1602 *
1603 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1604 */
1605static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1606{
1607 int ret;
dcc3eb96 1608 unsigned int nofs_flag;
cb517eab 1609
dcc3eb96
NB
1610 /*
1611 * We might be called under a transaction (e.g. indirect backref
1612 * resolution) which could deadlock if it triggers memory reclaim
1613 */
1614 nofs_flag = memalloc_nofs_save();
1615 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1616 memalloc_nofs_restore(nofs_flag);
1617 if (ret)
8257b2dc 1618 goto fail;
8257b2dc 1619
aeb935a4 1620 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1621 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1622 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1623 btrfs_check_and_init_root_item(&root->root_item);
1624 }
1625
851fd730
QW
1626 /*
1627 * Don't assign anonymous block device to roots that are not exposed to
1628 * userspace, the id pool is limited to 1M
1629 */
1630 if (is_fstree(root->root_key.objectid) &&
1631 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1632 if (!anon_dev) {
1633 ret = get_anon_bdev(&root->anon_dev);
1634 if (ret)
1635 goto fail;
1636 } else {
1637 root->anon_dev = anon_dev;
1638 }
851fd730 1639 }
f32e48e9
CR
1640
1641 mutex_lock(&root->objectid_mutex);
453e4873 1642 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1643 if (ret) {
1644 mutex_unlock(&root->objectid_mutex);
876d2cf1 1645 goto fail;
f32e48e9
CR
1646 }
1647
6b8fad57 1648 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1649
1650 mutex_unlock(&root->objectid_mutex);
1651
cb517eab
MX
1652 return 0;
1653fail:
84db5ccf 1654 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1655 return ret;
1656}
1657
a98db0f3
JB
1658static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1659 u64 root_id)
cb517eab
MX
1660{
1661 struct btrfs_root *root;
1662
fc7cbcd4
DS
1663 spin_lock(&fs_info->fs_roots_radix_lock);
1664 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1665 (unsigned long)root_id);
bc44d7c4 1666 if (root)
00246528 1667 root = btrfs_grab_root(root);
fc7cbcd4 1668 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1669 return root;
1670}
1671
49d11bea
JB
1672static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1673 u64 objectid)
1674{
abed4aaa
JB
1675 struct btrfs_key key = {
1676 .objectid = objectid,
1677 .type = BTRFS_ROOT_ITEM_KEY,
1678 .offset = 0,
1679 };
1680
49d11bea
JB
1681 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1682 return btrfs_grab_root(fs_info->tree_root);
1683 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1684 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1685 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1686 return btrfs_grab_root(fs_info->chunk_root);
1687 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1688 return btrfs_grab_root(fs_info->dev_root);
1689 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1690 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1691 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1692 return btrfs_grab_root(fs_info->quota_root) ?
1693 fs_info->quota_root : ERR_PTR(-ENOENT);
1694 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1695 return btrfs_grab_root(fs_info->uuid_root) ?
1696 fs_info->uuid_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1697 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1698 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1699
1700 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1701 }
49d11bea
JB
1702 return NULL;
1703}
1704
cb517eab
MX
1705int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1706 struct btrfs_root *root)
1707{
1708 int ret;
1709
fc7cbcd4
DS
1710 ret = radix_tree_preload(GFP_NOFS);
1711 if (ret)
1712 return ret;
1713
1714 spin_lock(&fs_info->fs_roots_radix_lock);
1715 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1716 (unsigned long)root->root_key.objectid,
1717 root);
af01d2e5 1718 if (ret == 0) {
00246528 1719 btrfs_grab_root(root);
fc7cbcd4 1720 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1721 }
fc7cbcd4
DS
1722 spin_unlock(&fs_info->fs_roots_radix_lock);
1723 radix_tree_preload_end();
cb517eab
MX
1724
1725 return ret;
1726}
1727
bd647ce3
JB
1728void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1729{
1730#ifdef CONFIG_BTRFS_DEBUG
1731 struct btrfs_root *root;
1732
1733 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1734 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1735
bd647ce3
JB
1736 root = list_first_entry(&fs_info->allocated_roots,
1737 struct btrfs_root, leak_list);
457f1864 1738 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1739 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1740 refcount_read(&root->refs));
1741 while (refcount_read(&root->refs) > 1)
00246528
JB
1742 btrfs_put_root(root);
1743 btrfs_put_root(root);
bd647ce3
JB
1744 }
1745#endif
1746}
1747
abed4aaa
JB
1748static void free_global_roots(struct btrfs_fs_info *fs_info)
1749{
1750 struct btrfs_root *root;
1751 struct rb_node *node;
1752
1753 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1754 root = rb_entry(node, struct btrfs_root, rb_node);
1755 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1756 btrfs_put_root(root);
1757 }
1758}
1759
0d4b0463
JB
1760void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1761{
141386e1
JB
1762 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1763 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1764 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1765 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1766 btrfs_free_csum_hash(fs_info);
1767 btrfs_free_stripe_hash_table(fs_info);
1768 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1769 kfree(fs_info->balance_ctl);
1770 kfree(fs_info->delayed_root);
abed4aaa 1771 free_global_roots(fs_info);
00246528
JB
1772 btrfs_put_root(fs_info->tree_root);
1773 btrfs_put_root(fs_info->chunk_root);
1774 btrfs_put_root(fs_info->dev_root);
00246528
JB
1775 btrfs_put_root(fs_info->quota_root);
1776 btrfs_put_root(fs_info->uuid_root);
00246528 1777 btrfs_put_root(fs_info->fs_root);
aeb935a4 1778 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1779 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1780 btrfs_check_leaked_roots(fs_info);
3fd63727 1781 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1782 kfree(fs_info->super_copy);
1783 kfree(fs_info->super_for_commit);
8481dd80 1784 kfree(fs_info->subpage_info);
0d4b0463
JB
1785 kvfree(fs_info);
1786}
1787
1788
2dfb1e43
QW
1789/*
1790 * Get an in-memory reference of a root structure.
1791 *
1792 * For essential trees like root/extent tree, we grab it from fs_info directly.
1793 * For subvolume trees, we check the cached filesystem roots first. If not
1794 * found, then read it from disk and add it to cached fs roots.
1795 *
1796 * Caller should release the root by calling btrfs_put_root() after the usage.
1797 *
1798 * NOTE: Reloc and log trees can't be read by this function as they share the
1799 * same root objectid.
1800 *
1801 * @objectid: root id
1802 * @anon_dev: preallocated anonymous block device number for new roots,
1803 * pass 0 for new allocation.
1804 * @check_ref: whether to check root item references, If true, return -ENOENT
1805 * for orphan roots
1806 */
1807static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1808 u64 objectid, dev_t anon_dev,
1809 bool check_ref)
5eda7b5e
CM
1810{
1811 struct btrfs_root *root;
381cf658 1812 struct btrfs_path *path;
1d4c08e0 1813 struct btrfs_key key;
5eda7b5e
CM
1814 int ret;
1815
49d11bea
JB
1816 root = btrfs_get_global_root(fs_info, objectid);
1817 if (root)
1818 return root;
4df27c4d 1819again:
56e9357a 1820 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1821 if (root) {
2dfb1e43
QW
1822 /* Shouldn't get preallocated anon_dev for cached roots */
1823 ASSERT(!anon_dev);
bc44d7c4 1824 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1825 btrfs_put_root(root);
48475471 1826 return ERR_PTR(-ENOENT);
bc44d7c4 1827 }
5eda7b5e 1828 return root;
48475471 1829 }
5eda7b5e 1830
56e9357a
DS
1831 key.objectid = objectid;
1832 key.type = BTRFS_ROOT_ITEM_KEY;
1833 key.offset = (u64)-1;
1834 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1835 if (IS_ERR(root))
1836 return root;
3394e160 1837
c00869f1 1838 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1839 ret = -ENOENT;
581bb050 1840 goto fail;
35a30d7c 1841 }
581bb050 1842
2dfb1e43 1843 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1844 if (ret)
1845 goto fail;
3394e160 1846
381cf658
DS
1847 path = btrfs_alloc_path();
1848 if (!path) {
1849 ret = -ENOMEM;
1850 goto fail;
1851 }
1d4c08e0
DS
1852 key.objectid = BTRFS_ORPHAN_OBJECTID;
1853 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1854 key.offset = objectid;
1d4c08e0
DS
1855
1856 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1857 btrfs_free_path(path);
d68fc57b
YZ
1858 if (ret < 0)
1859 goto fail;
1860 if (ret == 0)
27cdeb70 1861 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1862
cb517eab 1863 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1864 if (ret) {
168a2f77
JJB
1865 if (ret == -EEXIST) {
1866 btrfs_put_root(root);
4df27c4d 1867 goto again;
168a2f77 1868 }
4df27c4d 1869 goto fail;
0f7d52f4 1870 }
edbd8d4e 1871 return root;
4df27c4d 1872fail:
33fab972
FM
1873 /*
1874 * If our caller provided us an anonymous device, then it's his
1875 * responsability to free it in case we fail. So we have to set our
1876 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1877 * and once again by our caller.
1878 */
1879 if (anon_dev)
1880 root->anon_dev = 0;
8c38938c 1881 btrfs_put_root(root);
4df27c4d 1882 return ERR_PTR(ret);
edbd8d4e
CM
1883}
1884
2dfb1e43
QW
1885/*
1886 * Get in-memory reference of a root structure
1887 *
1888 * @objectid: tree objectid
1889 * @check_ref: if set, verify that the tree exists and the item has at least
1890 * one reference
1891 */
1892struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1893 u64 objectid, bool check_ref)
1894{
1895 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1896}
1897
1898/*
1899 * Get in-memory reference of a root structure, created as new, optionally pass
1900 * the anonymous block device id
1901 *
1902 * @objectid: tree objectid
1903 * @anon_dev: if zero, allocate a new anonymous block device or use the
1904 * parameter value
1905 */
1906struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1907 u64 objectid, dev_t anon_dev)
1908{
1909 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1910}
1911
49d11bea
JB
1912/*
1913 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1914 * @fs_info: the fs_info
1915 * @objectid: the objectid we need to lookup
1916 *
1917 * This is exclusively used for backref walking, and exists specifically because
1918 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1919 * creation time, which means we may have to read the tree_root in order to look
1920 * up a fs root that is not in memory. If the root is not in memory we will
1921 * read the tree root commit root and look up the fs root from there. This is a
1922 * temporary root, it will not be inserted into the radix tree as it doesn't
1923 * have the most uptodate information, it'll simply be discarded once the
1924 * backref code is finished using the root.
1925 */
1926struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1927 struct btrfs_path *path,
1928 u64 objectid)
1929{
1930 struct btrfs_root *root;
1931 struct btrfs_key key;
1932
1933 ASSERT(path->search_commit_root && path->skip_locking);
1934
1935 /*
1936 * This can return -ENOENT if we ask for a root that doesn't exist, but
1937 * since this is called via the backref walking code we won't be looking
1938 * up a root that doesn't exist, unless there's corruption. So if root
1939 * != NULL just return it.
1940 */
1941 root = btrfs_get_global_root(fs_info, objectid);
1942 if (root)
1943 return root;
1944
1945 root = btrfs_lookup_fs_root(fs_info, objectid);
1946 if (root)
1947 return root;
1948
1949 key.objectid = objectid;
1950 key.type = BTRFS_ROOT_ITEM_KEY;
1951 key.offset = (u64)-1;
1952 root = read_tree_root_path(fs_info->tree_root, path, &key);
1953 btrfs_release_path(path);
1954
1955 return root;
1956}
1957
8b712842
CM
1958/*
1959 * called by the kthread helper functions to finally call the bio end_io
1960 * functions. This is where read checksum verification actually happens
1961 */
1962static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1963{
ce9adaa5 1964 struct bio *bio;
97eb6b69 1965 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1966
97eb6b69 1967 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1968 bio = end_io_wq->bio;
ce9adaa5 1969
4e4cbee9 1970 bio->bi_status = end_io_wq->status;
8b712842
CM
1971 bio->bi_private = end_io_wq->private;
1972 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1973 bio_endio(bio);
9be490f1 1974 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1975}
1976
a74a4b97
CM
1977static int cleaner_kthread(void *arg)
1978{
0d031dc4 1979 struct btrfs_fs_info *fs_info = arg;
d0278245 1980 int again;
a74a4b97 1981
d6fd0ae2 1982 while (1) {
d0278245 1983 again = 0;
a74a4b97 1984
fd340d0f
JB
1985 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1986
d0278245 1987 /* Make the cleaner go to sleep early. */
2ff7e61e 1988 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1989 goto sleep;
1990
90c711ab
ZB
1991 /*
1992 * Do not do anything if we might cause open_ctree() to block
1993 * before we have finished mounting the filesystem.
1994 */
0b246afa 1995 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1996 goto sleep;
1997
0b246afa 1998 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1999 goto sleep;
2000
dc7f370c
MX
2001 /*
2002 * Avoid the problem that we change the status of the fs
2003 * during the above check and trylock.
2004 */
2ff7e61e 2005 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 2006 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 2007 goto sleep;
76dda93c 2008 }
a74a4b97 2009
2ff7e61e 2010 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 2011
33c44184 2012 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 2013 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
2014
2015 /*
05323cd1
MX
2016 * The defragger has dealt with the R/O remount and umount,
2017 * needn't do anything special here.
d0278245 2018 */
0b246afa 2019 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
2020
2021 /*
f3372065 2022 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
2023 * with relocation (btrfs_relocate_chunk) and relocation
2024 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 2025 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
2026 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
2027 * unused block groups.
2028 */
0b246afa 2029 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
2030
2031 /*
2032 * Reclaim block groups in the reclaim_bgs list after we deleted
2033 * all unused block_groups. This possibly gives us some more free
2034 * space.
2035 */
2036 btrfs_reclaim_bgs(fs_info);
d0278245 2037sleep:
a0a1db70 2038 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
2039 if (kthread_should_park())
2040 kthread_parkme();
2041 if (kthread_should_stop())
2042 return 0;
838fe188 2043 if (!again) {
a74a4b97 2044 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 2045 schedule();
a74a4b97
CM
2046 __set_current_state(TASK_RUNNING);
2047 }
da288d28 2048 }
a74a4b97
CM
2049}
2050
2051static int transaction_kthread(void *arg)
2052{
2053 struct btrfs_root *root = arg;
0b246afa 2054 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
2055 struct btrfs_trans_handle *trans;
2056 struct btrfs_transaction *cur;
8929ecfa 2057 u64 transid;
643900be 2058 time64_t delta;
a74a4b97 2059 unsigned long delay;
914b2007 2060 bool cannot_commit;
a74a4b97
CM
2061
2062 do {
914b2007 2063 cannot_commit = false;
ba1bc00f 2064 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 2065 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 2066
0b246afa
JM
2067 spin_lock(&fs_info->trans_lock);
2068 cur = fs_info->running_transaction;
a74a4b97 2069 if (!cur) {
0b246afa 2070 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
2071 goto sleep;
2072 }
31153d81 2073
643900be 2074 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
2075 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
2076 cur->state < TRANS_STATE_COMMIT_START &&
643900be 2077 delta < fs_info->commit_interval) {
0b246afa 2078 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
2079 delay -= msecs_to_jiffies((delta - 1) * 1000);
2080 delay = min(delay,
2081 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
2082 goto sleep;
2083 }
8929ecfa 2084 transid = cur->transid;
0b246afa 2085 spin_unlock(&fs_info->trans_lock);
56bec294 2086
79787eaa 2087 /* If the file system is aborted, this will always fail. */
354aa0fb 2088 trans = btrfs_attach_transaction(root);
914b2007 2089 if (IS_ERR(trans)) {
354aa0fb
MX
2090 if (PTR_ERR(trans) != -ENOENT)
2091 cannot_commit = true;
79787eaa 2092 goto sleep;
914b2007 2093 }
8929ecfa 2094 if (transid == trans->transid) {
3a45bb20 2095 btrfs_commit_transaction(trans);
8929ecfa 2096 } else {
3a45bb20 2097 btrfs_end_transaction(trans);
8929ecfa 2098 }
a74a4b97 2099sleep:
0b246afa
JM
2100 wake_up_process(fs_info->cleaner_kthread);
2101 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 2102
84961539 2103 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 2104 btrfs_cleanup_transaction(fs_info);
ce63f891 2105 if (!kthread_should_stop() &&
0b246afa 2106 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 2107 cannot_commit))
bc5511d0 2108 schedule_timeout_interruptible(delay);
a74a4b97
CM
2109 } while (!kthread_should_stop());
2110 return 0;
2111}
2112
af31f5e5 2113/*
01f0f9da
NB
2114 * This will find the highest generation in the array of root backups. The
2115 * index of the highest array is returned, or -EINVAL if we can't find
2116 * anything.
af31f5e5
CM
2117 *
2118 * We check to make sure the array is valid by comparing the
2119 * generation of the latest root in the array with the generation
2120 * in the super block. If they don't match we pitch it.
2121 */
01f0f9da 2122static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 2123{
01f0f9da 2124 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 2125 u64 cur;
af31f5e5
CM
2126 struct btrfs_root_backup *root_backup;
2127 int i;
2128
2129 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2130 root_backup = info->super_copy->super_roots + i;
2131 cur = btrfs_backup_tree_root_gen(root_backup);
2132 if (cur == newest_gen)
01f0f9da 2133 return i;
af31f5e5
CM
2134 }
2135
01f0f9da 2136 return -EINVAL;
af31f5e5
CM
2137}
2138
af31f5e5
CM
2139/*
2140 * copy all the root pointers into the super backup array.
2141 * this will bump the backup pointer by one when it is
2142 * done
2143 */
2144static void backup_super_roots(struct btrfs_fs_info *info)
2145{
6ef108dd 2146 const int next_backup = info->backup_root_index;
af31f5e5 2147 struct btrfs_root_backup *root_backup;
af31f5e5
CM
2148
2149 root_backup = info->super_for_commit->super_roots + next_backup;
2150
2151 /*
2152 * make sure all of our padding and empty slots get zero filled
2153 * regardless of which ones we use today
2154 */
2155 memset(root_backup, 0, sizeof(*root_backup));
2156
2157 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2158
2159 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2160 btrfs_set_backup_tree_root_gen(root_backup,
2161 btrfs_header_generation(info->tree_root->node));
2162
2163 btrfs_set_backup_tree_root_level(root_backup,
2164 btrfs_header_level(info->tree_root->node));
2165
2166 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2167 btrfs_set_backup_chunk_root_gen(root_backup,
2168 btrfs_header_generation(info->chunk_root->node));
2169 btrfs_set_backup_chunk_root_level(root_backup,
2170 btrfs_header_level(info->chunk_root->node));
2171
9c54e80d
JB
2172 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
2173 btrfs_set_backup_block_group_root(root_backup,
2174 info->block_group_root->node->start);
2175 btrfs_set_backup_block_group_root_gen(root_backup,
2176 btrfs_header_generation(info->block_group_root->node));
2177 btrfs_set_backup_block_group_root_level(root_backup,
2178 btrfs_header_level(info->block_group_root->node));
2179 } else {
2180 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 2181 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
2182
2183 btrfs_set_backup_extent_root(root_backup,
2184 extent_root->node->start);
2185 btrfs_set_backup_extent_root_gen(root_backup,
2186 btrfs_header_generation(extent_root->node));
2187 btrfs_set_backup_extent_root_level(root_backup,
2188 btrfs_header_level(extent_root->node));
f7238e50
JB
2189
2190 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2191 btrfs_set_backup_csum_root_gen(root_backup,
2192 btrfs_header_generation(csum_root->node));
2193 btrfs_set_backup_csum_root_level(root_backup,
2194 btrfs_header_level(csum_root->node));
9c54e80d 2195 }
af31f5e5 2196
7c7e82a7
CM
2197 /*
2198 * we might commit during log recovery, which happens before we set
2199 * the fs_root. Make sure it is valid before we fill it in.
2200 */
2201 if (info->fs_root && info->fs_root->node) {
2202 btrfs_set_backup_fs_root(root_backup,
2203 info->fs_root->node->start);
2204 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2205 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2206 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2207 btrfs_header_level(info->fs_root->node));
7c7e82a7 2208 }
af31f5e5
CM
2209
2210 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2211 btrfs_set_backup_dev_root_gen(root_backup,
2212 btrfs_header_generation(info->dev_root->node));
2213 btrfs_set_backup_dev_root_level(root_backup,
2214 btrfs_header_level(info->dev_root->node));
2215
af31f5e5
CM
2216 btrfs_set_backup_total_bytes(root_backup,
2217 btrfs_super_total_bytes(info->super_copy));
2218 btrfs_set_backup_bytes_used(root_backup,
2219 btrfs_super_bytes_used(info->super_copy));
2220 btrfs_set_backup_num_devices(root_backup,
2221 btrfs_super_num_devices(info->super_copy));
2222
2223 /*
2224 * if we don't copy this out to the super_copy, it won't get remembered
2225 * for the next commit
2226 */
2227 memcpy(&info->super_copy->super_roots,
2228 &info->super_for_commit->super_roots,
2229 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2230}
2231
bd2336b2
NB
2232/*
2233 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2234 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2235 *
2236 * fs_info - filesystem whose backup roots need to be read
2237 * priority - priority of backup root required
2238 *
2239 * Returns backup root index on success and -EINVAL otherwise.
2240 */
2241static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2242{
2243 int backup_index = find_newest_super_backup(fs_info);
2244 struct btrfs_super_block *super = fs_info->super_copy;
2245 struct btrfs_root_backup *root_backup;
2246
2247 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2248 if (priority == 0)
2249 return backup_index;
2250
2251 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2252 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2253 } else {
2254 return -EINVAL;
2255 }
2256
2257 root_backup = super->super_roots + backup_index;
2258
2259 btrfs_set_super_generation(super,
2260 btrfs_backup_tree_root_gen(root_backup));
2261 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2262 btrfs_set_super_root_level(super,
2263 btrfs_backup_tree_root_level(root_backup));
2264 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2265
2266 /*
2267 * Fixme: the total bytes and num_devices need to match or we should
2268 * need a fsck
2269 */
2270 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2271 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2272
2273 return backup_index;
2274}
2275
7abadb64
LB
2276/* helper to cleanup workers */
2277static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2278{
dc6e3209 2279 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2280 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2281 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2282 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2283 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2284 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2285 if (fs_info->rmw_workers)
2286 destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2287 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2288 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2289 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2290 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2291 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2292 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2293 if (fs_info->discard_ctl.discard_workers)
2294 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2295 /*
2296 * Now that all other work queues are destroyed, we can safely destroy
2297 * the queues used for metadata I/O, since tasks from those other work
2298 * queues can do metadata I/O operations.
2299 */
2300 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2301 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2302}
2303
2e9f5954
R
2304static void free_root_extent_buffers(struct btrfs_root *root)
2305{
2306 if (root) {
2307 free_extent_buffer(root->node);
2308 free_extent_buffer(root->commit_root);
2309 root->node = NULL;
2310 root->commit_root = NULL;
2311 }
2312}
2313
abed4aaa
JB
2314static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2315{
2316 struct btrfs_root *root, *tmp;
2317
2318 rbtree_postorder_for_each_entry_safe(root, tmp,
2319 &fs_info->global_root_tree,
2320 rb_node)
2321 free_root_extent_buffers(root);
2322}
2323
af31f5e5 2324/* helper to cleanup tree roots */
4273eaff 2325static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2326{
2e9f5954 2327 free_root_extent_buffers(info->tree_root);
655b09fe 2328
abed4aaa 2329 free_global_root_pointers(info);
2e9f5954 2330 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2331 free_root_extent_buffers(info->quota_root);
2332 free_root_extent_buffers(info->uuid_root);
8c38938c 2333 free_root_extent_buffers(info->fs_root);
aeb935a4 2334 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2335 free_root_extent_buffers(info->block_group_root);
4273eaff 2336 if (free_chunk_root)
2e9f5954 2337 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2338}
2339
8c38938c
JB
2340void btrfs_put_root(struct btrfs_root *root)
2341{
2342 if (!root)
2343 return;
2344
2345 if (refcount_dec_and_test(&root->refs)) {
2346 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2347 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2348 if (root->anon_dev)
2349 free_anon_bdev(root->anon_dev);
2350 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2351 free_root_extent_buffers(root);
8c38938c 2352#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2353 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2354 list_del_init(&root->leak_list);
fc7cbcd4 2355 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2356#endif
2357 kfree(root);
2358 }
2359}
2360
faa2dbf0 2361void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2362{
fc7cbcd4
DS
2363 int ret;
2364 struct btrfs_root *gang[8];
2365 int i;
171f6537
JB
2366
2367 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2368 gang[0] = list_entry(fs_info->dead_roots.next,
2369 struct btrfs_root, root_list);
2370 list_del(&gang[0]->root_list);
171f6537 2371
fc7cbcd4
DS
2372 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2373 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2374 btrfs_put_root(gang[0]);
171f6537
JB
2375 }
2376
fc7cbcd4
DS
2377 while (1) {
2378 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2379 (void **)gang, 0,
2380 ARRAY_SIZE(gang));
2381 if (!ret)
2382 break;
2383 for (i = 0; i < ret; i++)
2384 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2385 }
2386}
af31f5e5 2387
638aa7ed
ES
2388static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2389{
2390 mutex_init(&fs_info->scrub_lock);
2391 atomic_set(&fs_info->scrubs_running, 0);
2392 atomic_set(&fs_info->scrub_pause_req, 0);
2393 atomic_set(&fs_info->scrubs_paused, 0);
2394 atomic_set(&fs_info->scrub_cancel_req, 0);
2395 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2396 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2397}
2398
779a65a4
ES
2399static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2400{
2401 spin_lock_init(&fs_info->balance_lock);
2402 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2403 atomic_set(&fs_info->balance_pause_req, 0);
2404 atomic_set(&fs_info->balance_cancel_req, 0);
2405 fs_info->balance_ctl = NULL;
2406 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2407 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2408}
2409
6bccf3ab 2410static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2411{
2ff7e61e
JM
2412 struct inode *inode = fs_info->btree_inode;
2413
2414 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2415 set_nlink(inode, 1);
f37938e0
ES
2416 /*
2417 * we set the i_size on the btree inode to the max possible int.
2418 * the real end of the address space is determined by all of
2419 * the devices in the system
2420 */
2ff7e61e
JM
2421 inode->i_size = OFFSET_MAX;
2422 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2423
2ff7e61e 2424 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2425 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2426 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2427 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2428 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2429
5c8fd99f 2430 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2431 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2432 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2433 btrfs_insert_inode_hash(inode);
f37938e0
ES
2434}
2435
ad618368
ES
2436static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2437{
ad618368 2438 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2439 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2440 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2441}
2442
f9e92e40
ES
2443static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2444{
2445 spin_lock_init(&fs_info->qgroup_lock);
2446 mutex_init(&fs_info->qgroup_ioctl_lock);
2447 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2448 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2449 fs_info->qgroup_seq = 1;
f9e92e40 2450 fs_info->qgroup_ulist = NULL;
d2c609b8 2451 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2452 mutex_init(&fs_info->qgroup_rescan_lock);
2453}
2454
d21deec5 2455static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2456{
f7b885be 2457 u32 max_active = fs_info->thread_pool_size;
6f011058 2458 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2459
2460 fs_info->workers =
a31b4a43
CH
2461 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2462 fs_info->hipri_workers =
2463 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2464 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2465
2466 fs_info->delalloc_workers =
cb001095
JM
2467 btrfs_alloc_workqueue(fs_info, "delalloc",
2468 flags, max_active, 2);
2a458198
ES
2469
2470 fs_info->flush_workers =
cb001095
JM
2471 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2472 flags, max_active, 0);
2a458198
ES
2473
2474 fs_info->caching_workers =
cb001095 2475 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2476
2a458198 2477 fs_info->fixup_workers =
cb001095 2478 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2479
2480 /*
2481 * endios are largely parallel and should have a very
2482 * low idle thresh
2483 */
2484 fs_info->endio_workers =
cb001095 2485 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2486 fs_info->endio_meta_workers =
cb001095
JM
2487 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2488 max_active, 4);
2a458198 2489 fs_info->endio_meta_write_workers =
cb001095
JM
2490 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2491 max_active, 2);
2a458198 2492 fs_info->endio_raid56_workers =
cb001095
JM
2493 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2494 max_active, 4);
385de0ef 2495 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2496 fs_info->endio_write_workers =
cb001095
JM
2497 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2498 max_active, 2);
2a458198 2499 fs_info->endio_freespace_worker =
cb001095
JM
2500 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2501 max_active, 0);
2a458198 2502 fs_info->delayed_workers =
cb001095
JM
2503 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2504 max_active, 0);
2a458198 2505 fs_info->qgroup_rescan_workers =
cb001095 2506 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2507 fs_info->discard_ctl.discard_workers =
2508 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2509
a31b4a43
CH
2510 if (!(fs_info->workers && fs_info->hipri_workers &&
2511 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198
ES
2512 fs_info->endio_workers && fs_info->endio_meta_workers &&
2513 fs_info->endio_meta_write_workers &&
2a458198
ES
2514 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2515 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2516 fs_info->caching_workers && fs_info->fixup_workers &&
2517 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2518 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2519 return -ENOMEM;
2520 }
2521
2522 return 0;
2523}
2524
6d97c6e3
JT
2525static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2526{
2527 struct crypto_shash *csum_shash;
b4e967be 2528 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2529
b4e967be 2530 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2531
2532 if (IS_ERR(csum_shash)) {
2533 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2534 csum_driver);
6d97c6e3
JT
2535 return PTR_ERR(csum_shash);
2536 }
2537
2538 fs_info->csum_shash = csum_shash;
2539
2540 return 0;
2541}
2542
63443bf5
ES
2543static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2544 struct btrfs_fs_devices *fs_devices)
2545{
2546 int ret;
63443bf5
ES
2547 struct btrfs_root *log_tree_root;
2548 struct btrfs_super_block *disk_super = fs_info->super_copy;
2549 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2550 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2551
2552 if (fs_devices->rw_devices == 0) {
f14d104d 2553 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2554 return -EIO;
2555 }
2556
96dfcb46
JB
2557 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2558 GFP_KERNEL);
63443bf5
ES
2559 if (!log_tree_root)
2560 return -ENOMEM;
2561
2ff7e61e 2562 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2563 BTRFS_TREE_LOG_OBJECTID,
2564 fs_info->generation + 1, level,
2565 NULL);
64c043de 2566 if (IS_ERR(log_tree_root->node)) {
f14d104d 2567 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2568 ret = PTR_ERR(log_tree_root->node);
8c38938c 2569 log_tree_root->node = NULL;
00246528 2570 btrfs_put_root(log_tree_root);
0eeff236 2571 return ret;
4eb150d6
QW
2572 }
2573 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2574 btrfs_err(fs_info, "failed to read log tree");
00246528 2575 btrfs_put_root(log_tree_root);
63443bf5
ES
2576 return -EIO;
2577 }
4eb150d6 2578
63443bf5
ES
2579 /* returns with log_tree_root freed on success */
2580 ret = btrfs_recover_log_trees(log_tree_root);
2581 if (ret) {
0b246afa
JM
2582 btrfs_handle_fs_error(fs_info, ret,
2583 "Failed to recover log tree");
00246528 2584 btrfs_put_root(log_tree_root);
63443bf5
ES
2585 return ret;
2586 }
2587
bc98a42c 2588 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2589 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2590 if (ret)
2591 return ret;
2592 }
2593
2594 return 0;
2595}
2596
abed4aaa
JB
2597static int load_global_roots_objectid(struct btrfs_root *tree_root,
2598 struct btrfs_path *path, u64 objectid,
2599 const char *name)
2600{
2601 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2602 struct btrfs_root *root;
f7238e50 2603 u64 max_global_id = 0;
abed4aaa
JB
2604 int ret;
2605 struct btrfs_key key = {
2606 .objectid = objectid,
2607 .type = BTRFS_ROOT_ITEM_KEY,
2608 .offset = 0,
2609 };
2610 bool found = false;
2611
2612 /* If we have IGNOREDATACSUMS skip loading these roots. */
2613 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2614 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2615 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2616 return 0;
2617 }
2618
2619 while (1) {
2620 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2621 if (ret < 0)
2622 break;
2623
2624 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2625 ret = btrfs_next_leaf(tree_root, path);
2626 if (ret) {
2627 if (ret > 0)
2628 ret = 0;
2629 break;
2630 }
2631 }
2632 ret = 0;
2633
2634 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2635 if (key.objectid != objectid)
2636 break;
2637 btrfs_release_path(path);
2638
f7238e50
JB
2639 /*
2640 * Just worry about this for extent tree, it'll be the same for
2641 * everybody.
2642 */
2643 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2644 max_global_id = max(max_global_id, key.offset);
2645
abed4aaa
JB
2646 found = true;
2647 root = read_tree_root_path(tree_root, path, &key);
2648 if (IS_ERR(root)) {
2649 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2650 ret = PTR_ERR(root);
2651 break;
2652 }
2653 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2654 ret = btrfs_global_root_insert(root);
2655 if (ret) {
2656 btrfs_put_root(root);
2657 break;
2658 }
2659 key.offset++;
2660 }
2661 btrfs_release_path(path);
2662
f7238e50
JB
2663 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2664 fs_info->nr_global_roots = max_global_id + 1;
2665
abed4aaa
JB
2666 if (!found || ret) {
2667 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2668 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2669
2670 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2671 ret = ret ? ret : -ENOENT;
2672 else
2673 ret = 0;
2674 btrfs_err(fs_info, "failed to load root %s", name);
2675 }
2676 return ret;
2677}
2678
2679static int load_global_roots(struct btrfs_root *tree_root)
2680{
2681 struct btrfs_path *path;
2682 int ret = 0;
2683
2684 path = btrfs_alloc_path();
2685 if (!path)
2686 return -ENOMEM;
2687
2688 ret = load_global_roots_objectid(tree_root, path,
2689 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2690 if (ret)
2691 goto out;
2692 ret = load_global_roots_objectid(tree_root, path,
2693 BTRFS_CSUM_TREE_OBJECTID, "csum");
2694 if (ret)
2695 goto out;
2696 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2697 goto out;
2698 ret = load_global_roots_objectid(tree_root, path,
2699 BTRFS_FREE_SPACE_TREE_OBJECTID,
2700 "free space");
2701out:
2702 btrfs_free_path(path);
2703 return ret;
2704}
2705
6bccf3ab 2706static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2707{
6bccf3ab 2708 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2709 struct btrfs_root *root;
4bbcaa64
ES
2710 struct btrfs_key location;
2711 int ret;
2712
6bccf3ab
JM
2713 BUG_ON(!fs_info->tree_root);
2714
abed4aaa
JB
2715 ret = load_global_roots(tree_root);
2716 if (ret)
2717 return ret;
2718
2719 location.objectid = BTRFS_DEV_TREE_OBJECTID;
4bbcaa64
ES
2720 location.type = BTRFS_ROOT_ITEM_KEY;
2721 location.offset = 0;
2722
a4f3d2c4 2723 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2724 if (IS_ERR(root)) {
42437a63
JB
2725 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2726 ret = PTR_ERR(root);
2727 goto out;
2728 }
2729 } else {
2730 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2731 fs_info->dev_root = root;
f50f4353 2732 }
820a49da
JB
2733 /* Initialize fs_info for all devices in any case */
2734 btrfs_init_devices_late(fs_info);
4bbcaa64 2735
aeb935a4
QW
2736 /*
2737 * This tree can share blocks with some other fs tree during relocation
2738 * and we need a proper setup by btrfs_get_fs_root
2739 */
56e9357a
DS
2740 root = btrfs_get_fs_root(tree_root->fs_info,
2741 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2742 if (IS_ERR(root)) {
42437a63
JB
2743 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2744 ret = PTR_ERR(root);
2745 goto out;
2746 }
2747 } else {
2748 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2749 fs_info->data_reloc_root = root;
aeb935a4 2750 }
aeb935a4 2751
4bbcaa64 2752 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2753 root = btrfs_read_tree_root(tree_root, &location);
2754 if (!IS_ERR(root)) {
2755 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2756 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2757 fs_info->quota_root = root;
4bbcaa64
ES
2758 }
2759
2760 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2761 root = btrfs_read_tree_root(tree_root, &location);
2762 if (IS_ERR(root)) {
42437a63
JB
2763 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2764 ret = PTR_ERR(root);
2765 if (ret != -ENOENT)
2766 goto out;
2767 }
4bbcaa64 2768 } else {
a4f3d2c4
DS
2769 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2770 fs_info->uuid_root = root;
4bbcaa64
ES
2771 }
2772
2773 return 0;
f50f4353
LB
2774out:
2775 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2776 location.objectid, ret);
2777 return ret;
4bbcaa64
ES
2778}
2779
069ec957
QW
2780/*
2781 * Real super block validation
2782 * NOTE: super csum type and incompat features will not be checked here.
2783 *
2784 * @sb: super block to check
2785 * @mirror_num: the super block number to check its bytenr:
2786 * 0 the primary (1st) sb
2787 * 1, 2 2nd and 3rd backup copy
2788 * -1 skip bytenr check
2789 */
2790static int validate_super(struct btrfs_fs_info *fs_info,
2791 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2792{
21a852b0
QW
2793 u64 nodesize = btrfs_super_nodesize(sb);
2794 u64 sectorsize = btrfs_super_sectorsize(sb);
2795 int ret = 0;
2796
2797 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2798 btrfs_err(fs_info, "no valid FS found");
2799 ret = -EINVAL;
2800 }
2801 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2802 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2803 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2804 ret = -EINVAL;
2805 }
2806 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2807 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2808 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2809 ret = -EINVAL;
2810 }
2811 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2812 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2813 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2814 ret = -EINVAL;
2815 }
2816 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2817 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2818 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2819 ret = -EINVAL;
2820 }
2821
2822 /*
2823 * Check sectorsize and nodesize first, other check will need it.
2824 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2825 */
2826 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2827 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2828 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2829 ret = -EINVAL;
2830 }
0bb3eb3e
QW
2831
2832 /*
1a42daab
QW
2833 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2834 *
2835 * We can support 16K sectorsize with 64K page size without problem,
2836 * but such sectorsize/pagesize combination doesn't make much sense.
2837 * 4K will be our future standard, PAGE_SIZE is supported from the very
2838 * beginning.
0bb3eb3e 2839 */
1a42daab 2840 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2841 btrfs_err(fs_info,
0bb3eb3e 2842 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2843 sectorsize, PAGE_SIZE);
2844 ret = -EINVAL;
2845 }
0bb3eb3e 2846
21a852b0
QW
2847 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2848 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2849 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2850 ret = -EINVAL;
2851 }
2852 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2853 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2854 le32_to_cpu(sb->__unused_leafsize), nodesize);
2855 ret = -EINVAL;
2856 }
2857
2858 /* Root alignment check */
2859 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2860 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2861 btrfs_super_root(sb));
2862 ret = -EINVAL;
2863 }
2864 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2865 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2866 btrfs_super_chunk_root(sb));
2867 ret = -EINVAL;
2868 }
2869 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2870 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2871 btrfs_super_log_root(sb));
2872 ret = -EINVAL;
2873 }
2874
aefd7f70
NB
2875 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2876 BTRFS_FSID_SIZE)) {
2877 btrfs_err(fs_info,
2878 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2879 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2880 ret = -EINVAL;
2881 }
2882
2883 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2884 memcmp(fs_info->fs_devices->metadata_uuid,
2885 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2886 btrfs_err(fs_info,
2887"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2888 fs_info->super_copy->metadata_uuid,
2889 fs_info->fs_devices->metadata_uuid);
2890 ret = -EINVAL;
2891 }
2892
de37aa51 2893 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2894 BTRFS_FSID_SIZE) != 0) {
21a852b0 2895 btrfs_err(fs_info,
7239ff4b 2896 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2897 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2898 ret = -EINVAL;
2899 }
2900
2901 /*
2902 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2903 * done later
2904 */
2905 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2906 btrfs_err(fs_info, "bytes_used is too small %llu",
2907 btrfs_super_bytes_used(sb));
2908 ret = -EINVAL;
2909 }
2910 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2911 btrfs_err(fs_info, "invalid stripesize %u",
2912 btrfs_super_stripesize(sb));
2913 ret = -EINVAL;
2914 }
2915 if (btrfs_super_num_devices(sb) > (1UL << 31))
2916 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2917 btrfs_super_num_devices(sb));
2918 if (btrfs_super_num_devices(sb) == 0) {
2919 btrfs_err(fs_info, "number of devices is 0");
2920 ret = -EINVAL;
2921 }
2922
069ec957
QW
2923 if (mirror_num >= 0 &&
2924 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2925 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2926 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2927 ret = -EINVAL;
2928 }
2929
2930 /*
2931 * Obvious sys_chunk_array corruptions, it must hold at least one key
2932 * and one chunk
2933 */
2934 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2935 btrfs_err(fs_info, "system chunk array too big %u > %u",
2936 btrfs_super_sys_array_size(sb),
2937 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2938 ret = -EINVAL;
2939 }
2940 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2941 + sizeof(struct btrfs_chunk)) {
2942 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2943 btrfs_super_sys_array_size(sb),
2944 sizeof(struct btrfs_disk_key)
2945 + sizeof(struct btrfs_chunk));
2946 ret = -EINVAL;
2947 }
2948
2949 /*
2950 * The generation is a global counter, we'll trust it more than the others
2951 * but it's still possible that it's the one that's wrong.
2952 */
2953 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2954 btrfs_warn(fs_info,
2955 "suspicious: generation < chunk_root_generation: %llu < %llu",
2956 btrfs_super_generation(sb),
2957 btrfs_super_chunk_root_generation(sb));
2958 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2959 && btrfs_super_cache_generation(sb) != (u64)-1)
2960 btrfs_warn(fs_info,
2961 "suspicious: generation < cache_generation: %llu < %llu",
2962 btrfs_super_generation(sb),
2963 btrfs_super_cache_generation(sb));
2964
2965 return ret;
2966}
2967
069ec957
QW
2968/*
2969 * Validation of super block at mount time.
2970 * Some checks already done early at mount time, like csum type and incompat
2971 * flags will be skipped.
2972 */
2973static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2974{
2975 return validate_super(fs_info, fs_info->super_copy, 0);
2976}
2977
75cb857d
QW
2978/*
2979 * Validation of super block at write time.
2980 * Some checks like bytenr check will be skipped as their values will be
2981 * overwritten soon.
2982 * Extra checks like csum type and incompat flags will be done here.
2983 */
2984static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2985 struct btrfs_super_block *sb)
2986{
2987 int ret;
2988
2989 ret = validate_super(fs_info, sb, -1);
2990 if (ret < 0)
2991 goto out;
e7e16f48 2992 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2993 ret = -EUCLEAN;
2994 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2995 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2996 goto out;
2997 }
2998 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2999 ret = -EUCLEAN;
3000 btrfs_err(fs_info,
3001 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
3002 btrfs_super_incompat_flags(sb),
3003 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
3004 goto out;
3005 }
3006out:
3007 if (ret < 0)
3008 btrfs_err(fs_info,
3009 "super block corruption detected before writing it to disk");
3010 return ret;
3011}
3012
bd676446
JB
3013static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
3014{
3015 int ret = 0;
3016
3017 root->node = read_tree_block(root->fs_info, bytenr,
3018 root->root_key.objectid, gen, level, NULL);
3019 if (IS_ERR(root->node)) {
3020 ret = PTR_ERR(root->node);
3021 root->node = NULL;
4eb150d6
QW
3022 return ret;
3023 }
3024 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
3025 free_extent_buffer(root->node);
3026 root->node = NULL;
4eb150d6 3027 return -EIO;
bd676446
JB
3028 }
3029
bd676446
JB
3030 btrfs_set_root_node(&root->root_item, root->node);
3031 root->commit_root = btrfs_root_node(root);
3032 btrfs_set_root_refs(&root->root_item, 1);
3033 return ret;
3034}
3035
3036static int load_important_roots(struct btrfs_fs_info *fs_info)
3037{
3038 struct btrfs_super_block *sb = fs_info->super_copy;
3039 u64 gen, bytenr;
3040 int level, ret;
3041
3042 bytenr = btrfs_super_root(sb);
3043 gen = btrfs_super_generation(sb);
3044 level = btrfs_super_root_level(sb);
3045 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 3046 if (ret) {
bd676446 3047 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
3048 return ret;
3049 }
3050
3051 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3052 return 0;
3053
3054 bytenr = btrfs_super_block_group_root(sb);
3055 gen = btrfs_super_block_group_root_generation(sb);
3056 level = btrfs_super_block_group_root_level(sb);
3057 ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
3058 if (ret)
3059 btrfs_warn(fs_info, "couldn't read block group root");
bd676446
JB
3060 return ret;
3061}
3062
6ef108dd 3063static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 3064{
6ef108dd 3065 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
3066 struct btrfs_super_block *sb = fs_info->super_copy;
3067 struct btrfs_root *tree_root = fs_info->tree_root;
3068 bool handle_error = false;
3069 int ret = 0;
3070 int i;
3071
9c54e80d
JB
3072 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3073 struct btrfs_root *root;
3074
3075 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
3076 GFP_KERNEL);
3077 if (!root)
3078 return -ENOMEM;
3079 fs_info->block_group_root = root;
3080 }
b8522a1e 3081
b8522a1e 3082 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
3083 if (handle_error) {
3084 if (!IS_ERR(tree_root->node))
3085 free_extent_buffer(tree_root->node);
3086 tree_root->node = NULL;
3087
3088 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3089 break;
3090
3091 free_root_pointers(fs_info, 0);
3092
3093 /*
3094 * Don't use the log in recovery mode, it won't be
3095 * valid
3096 */
3097 btrfs_set_super_log_root(sb, 0);
3098
3099 /* We can't trust the free space cache either */
3100 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3101
3102 ret = read_backup_root(fs_info, i);
6ef108dd 3103 backup_index = ret;
b8522a1e
NB
3104 if (ret < 0)
3105 return ret;
3106 }
b8522a1e 3107
bd676446
JB
3108 ret = load_important_roots(fs_info);
3109 if (ret) {
217f5004 3110 handle_error = true;
b8522a1e
NB
3111 continue;
3112 }
3113
336a0d8d
NB
3114 /*
3115 * No need to hold btrfs_root::objectid_mutex since the fs
3116 * hasn't been fully initialised and we are the only user
3117 */
453e4873 3118 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 3119 if (ret < 0) {
b8522a1e
NB
3120 handle_error = true;
3121 continue;
3122 }
3123
6b8fad57 3124 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
3125
3126 ret = btrfs_read_roots(fs_info);
3127 if (ret < 0) {
3128 handle_error = true;
3129 continue;
3130 }
3131
3132 /* All successful */
bd676446
JB
3133 fs_info->generation = btrfs_header_generation(tree_root->node);
3134 fs_info->last_trans_committed = fs_info->generation;
d96b3424 3135 fs_info->last_reloc_trans = 0;
6ef108dd
NB
3136
3137 /* Always begin writing backup roots after the one being used */
3138 if (backup_index < 0) {
3139 fs_info->backup_root_index = 0;
3140 } else {
3141 fs_info->backup_root_index = backup_index + 1;
3142 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3143 }
b8522a1e
NB
3144 break;
3145 }
3146
3147 return ret;
3148}
3149
8260edba 3150void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 3151{
fc7cbcd4 3152 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8ee92268 3153 xa_init_flags(&fs_info->extent_buffers, GFP_ATOMIC);
8fd17795 3154 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 3155 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 3156 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 3157 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 3158 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 3159 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 3160 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 3161 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 3162 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 3163 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 3164 spin_lock_init(&fs_info->super_lock);
f28491e0 3165 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 3166 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 3167 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 3168 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 3169 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 3170 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 3171 rwlock_init(&fs_info->global_root_lock);
d7c15171 3172 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 3173 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 3174 mutex_init(&fs_info->reloc_mutex);
573bfb72 3175 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 3176 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 3177 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 3178 seqlock_init(&fs_info->profiles_lock);
19c00ddc 3179
0b86a832 3180 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3181 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3182 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3183 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3184 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3185 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3186#ifdef CONFIG_BTRFS_DEBUG
3187 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3188 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3189 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3190#endif
c8bf1b67 3191 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3192 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3193 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3194 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3195 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3196 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3197 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3198 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3199 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3200 BTRFS_BLOCK_RSV_DELREFS);
3201
771ed689 3202 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3203 atomic_set(&fs_info->defrag_running, 0);
034f784d 3204 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3205 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3206 fs_info->global_root_tree = RB_ROOT;
95ac567a 3207 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3208 fs_info->metadata_ratio = 0;
4cb5300b 3209 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3210 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3211 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3212 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3213 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3214 btrfs_init_ref_verify(fs_info);
c8b97818 3215
b34b086c
CM
3216 fs_info->thread_pool_size = min_t(unsigned long,
3217 num_online_cpus() + 2, 8);
0afbaf8c 3218
199c2a9c
MX
3219 INIT_LIST_HEAD(&fs_info->ordered_roots);
3220 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3221
638aa7ed 3222 btrfs_init_scrub(fs_info);
21adbd5c
SB
3223#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3224 fs_info->check_integrity_print_mask = 0;
3225#endif
779a65a4 3226 btrfs_init_balance(fs_info);
57056740 3227 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3228
16b0c258 3229 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3230 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3231
fe119a6e
NB
3232 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3233 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3234
5a3f23d5 3235 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3236 mutex_init(&fs_info->tree_log_mutex);
925baedd 3237 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3238 mutex_init(&fs_info->transaction_kthread_mutex);
3239 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3240 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3241 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3242 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3243 init_rwsem(&fs_info->subvol_sem);
803b2f54 3244 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3245
ad618368 3246 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3247 btrfs_init_qgroup(fs_info);
b0643e59 3248 btrfs_discard_init(fs_info);
416ac51d 3249
fa9c0d79
CM
3250 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3251 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3252
e6dcd2dc 3253 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3254 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3255 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3256 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3257 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3258
da17066c
JM
3259 /* Usable values until the real ones are cached from the superblock */
3260 fs_info->nodesize = 4096;
3261 fs_info->sectorsize = 4096;
ab108d99 3262 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3263 fs_info->stripesize = 4096;
3264
eede2bf3
OS
3265 spin_lock_init(&fs_info->swapfile_pins_lock);
3266 fs_info->swapfile_pins = RB_ROOT;
3267
18bb8bbf
JT
3268 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3269 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3270}
3271
3272static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3273{
3274 int ret;
3275
3276 fs_info->sb = sb;
3277 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3278 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3279
5deb17e1 3280 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3281 if (ret)
c75e8394 3282 return ret;
ae18c37a
JB
3283
3284 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3285 if (ret)
c75e8394 3286 return ret;
ae18c37a
JB
3287
3288 fs_info->dirty_metadata_batch = PAGE_SIZE *
3289 (1 + ilog2(nr_cpu_ids));
3290
3291 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3292 if (ret)
c75e8394 3293 return ret;
ae18c37a
JB
3294
3295 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3296 GFP_KERNEL);
3297 if (ret)
c75e8394 3298 return ret;
ae18c37a
JB
3299
3300 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3301 GFP_KERNEL);
c75e8394
JB
3302 if (!fs_info->delayed_root)
3303 return -ENOMEM;
ae18c37a
JB
3304 btrfs_init_delayed_root(fs_info->delayed_root);
3305
a0a1db70
FM
3306 if (sb_rdonly(sb))
3307 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3308
c75e8394 3309 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3310}
3311
97f4dd09
NB
3312static int btrfs_uuid_rescan_kthread(void *data)
3313{
0d031dc4 3314 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3315 int ret;
3316
3317 /*
3318 * 1st step is to iterate through the existing UUID tree and
3319 * to delete all entries that contain outdated data.
3320 * 2nd step is to add all missing entries to the UUID tree.
3321 */
3322 ret = btrfs_uuid_tree_iterate(fs_info);
3323 if (ret < 0) {
c94bec2c
JB
3324 if (ret != -EINTR)
3325 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3326 ret);
97f4dd09
NB
3327 up(&fs_info->uuid_tree_rescan_sem);
3328 return ret;
3329 }
3330 return btrfs_uuid_scan_kthread(data);
3331}
3332
3333static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3334{
3335 struct task_struct *task;
3336
3337 down(&fs_info->uuid_tree_rescan_sem);
3338 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3339 if (IS_ERR(task)) {
3340 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3341 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3342 up(&fs_info->uuid_tree_rescan_sem);
3343 return PTR_ERR(task);
3344 }
3345
3346 return 0;
3347}
3348
8cd29088
BB
3349/*
3350 * Some options only have meaning at mount time and shouldn't persist across
3351 * remounts, or be displayed. Clear these at the end of mount and remount
3352 * code paths.
3353 */
3354void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3355{
3356 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3357 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3358}
3359
44c0ca21
BB
3360/*
3361 * Mounting logic specific to read-write file systems. Shared by open_ctree
3362 * and btrfs_remount when remounting from read-only to read-write.
3363 */
3364int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3365{
3366 int ret;
94846229 3367 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3368 bool clear_free_space_tree = false;
3369
3370 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3371 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3372 clear_free_space_tree = true;
3373 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3374 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3375 btrfs_warn(fs_info, "free space tree is invalid");
3376 clear_free_space_tree = true;
3377 }
3378
3379 if (clear_free_space_tree) {
3380 btrfs_info(fs_info, "clearing free space tree");
3381 ret = btrfs_clear_free_space_tree(fs_info);
3382 if (ret) {
3383 btrfs_warn(fs_info,
3384 "failed to clear free space tree: %d", ret);
3385 goto out;
3386 }
3387 }
44c0ca21 3388
8d488a8c
FM
3389 /*
3390 * btrfs_find_orphan_roots() is responsible for finding all the dead
3391 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3392 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3393 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3394 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3395 * item before the root's tree is deleted - this means that if we unmount
3396 * or crash before the deletion completes, on the next mount we will not
3397 * delete what remains of the tree because the orphan item does not
3398 * exists anymore, which is what tells us we have a pending deletion.
3399 */
3400 ret = btrfs_find_orphan_roots(fs_info);
3401 if (ret)
3402 goto out;
3403
44c0ca21
BB
3404 ret = btrfs_cleanup_fs_roots(fs_info);
3405 if (ret)
3406 goto out;
3407
8f1c21d7
BB
3408 down_read(&fs_info->cleanup_work_sem);
3409 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3410 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3411 up_read(&fs_info->cleanup_work_sem);
3412 goto out;
3413 }
3414 up_read(&fs_info->cleanup_work_sem);
3415
44c0ca21 3416 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3417 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3418 mutex_unlock(&fs_info->cleaner_mutex);
3419 if (ret < 0) {
3420 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3421 goto out;
3422 }
3423
5011139a
BB
3424 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3425 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3426 btrfs_info(fs_info, "creating free space tree");
3427 ret = btrfs_create_free_space_tree(fs_info);
3428 if (ret) {
3429 btrfs_warn(fs_info,
3430 "failed to create free space tree: %d", ret);
3431 goto out;
3432 }
3433 }
3434
94846229
BB
3435 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3436 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3437 if (ret)
3438 goto out;
3439 }
3440
44c0ca21
BB
3441 ret = btrfs_resume_balance_async(fs_info);
3442 if (ret)
3443 goto out;
3444
3445 ret = btrfs_resume_dev_replace_async(fs_info);
3446 if (ret) {
3447 btrfs_warn(fs_info, "failed to resume dev_replace");
3448 goto out;
3449 }
3450
3451 btrfs_qgroup_rescan_resume(fs_info);
3452
3453 if (!fs_info->uuid_root) {
3454 btrfs_info(fs_info, "creating UUID tree");
3455 ret = btrfs_create_uuid_tree(fs_info);
3456 if (ret) {
3457 btrfs_warn(fs_info,
3458 "failed to create the UUID tree %d", ret);
3459 goto out;
3460 }
3461 }
3462
3463out:
3464 return ret;
3465}
3466
ae18c37a
JB
3467int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3468 char *options)
3469{
3470 u32 sectorsize;
3471 u32 nodesize;
3472 u32 stripesize;
3473 u64 generation;
3474 u64 features;
3475 u16 csum_type;
ae18c37a
JB
3476 struct btrfs_super_block *disk_super;
3477 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3478 struct btrfs_root *tree_root;
3479 struct btrfs_root *chunk_root;
3480 int ret;
3481 int err = -EINVAL;
ae18c37a
JB
3482 int level;
3483
8260edba 3484 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3485 if (ret) {
83c8266a 3486 err = ret;
ae18c37a 3487 goto fail;
53b381b3
DW
3488 }
3489
ae18c37a
JB
3490 /* These need to be init'ed before we start creating inodes and such. */
3491 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3492 GFP_KERNEL);
3493 fs_info->tree_root = tree_root;
3494 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3495 GFP_KERNEL);
3496 fs_info->chunk_root = chunk_root;
3497 if (!tree_root || !chunk_root) {
3498 err = -ENOMEM;
c75e8394 3499 goto fail;
ae18c37a
JB
3500 }
3501
3502 fs_info->btree_inode = new_inode(sb);
3503 if (!fs_info->btree_inode) {
3504 err = -ENOMEM;
c75e8394 3505 goto fail;
ae18c37a
JB
3506 }
3507 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3508 btrfs_init_btree_inode(fs_info);
3509
d24fa5c1 3510 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3511
3512 /*
3513 * Read super block and check the signature bytes only
3514 */
d24fa5c1 3515 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3516 if (IS_ERR(disk_super)) {
3517 err = PTR_ERR(disk_super);
16cdcec7 3518 goto fail_alloc;
20b45077 3519 }
39279cc3 3520
8dc3f22c 3521 /*
260db43c 3522 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3523 * corrupted, we'll find out
3524 */
8f32380d 3525 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3526 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3527 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3528 csum_type);
8dc3f22c 3529 err = -EINVAL;
8f32380d 3530 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3531 goto fail_alloc;
3532 }
3533
83c68bbc
SY
3534 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3535
6d97c6e3
JT
3536 ret = btrfs_init_csum_hash(fs_info, csum_type);
3537 if (ret) {
3538 err = ret;
8f32380d 3539 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3540 goto fail_alloc;
3541 }
3542
1104a885
DS
3543 /*
3544 * We want to check superblock checksum, the type is stored inside.
3545 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3546 */
8f32380d 3547 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3548 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3549 err = -EINVAL;
8f32380d 3550 btrfs_release_disk_super(disk_super);
141386e1 3551 goto fail_alloc;
1104a885
DS
3552 }
3553
3554 /*
3555 * super_copy is zeroed at allocation time and we never touch the
3556 * following bytes up to INFO_SIZE, the checksum is calculated from
3557 * the whole block of INFO_SIZE
3558 */
8f32380d
JT
3559 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3560 btrfs_release_disk_super(disk_super);
5f39d397 3561
fbc6feae
NB
3562 disk_super = fs_info->super_copy;
3563
0b86a832 3564
fbc6feae
NB
3565 features = btrfs_super_flags(disk_super);
3566 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3567 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3568 btrfs_set_super_flags(disk_super, features);
3569 btrfs_info(fs_info,
3570 "found metadata UUID change in progress flag, clearing");
3571 }
3572
3573 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3574 sizeof(*fs_info->super_for_commit));
de37aa51 3575
069ec957 3576 ret = btrfs_validate_mount_super(fs_info);
1104a885 3577 if (ret) {
05135f59 3578 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3579 err = -EINVAL;
141386e1 3580 goto fail_alloc;
1104a885
DS
3581 }
3582
0f7d52f4 3583 if (!btrfs_super_root(disk_super))
141386e1 3584 goto fail_alloc;
0f7d52f4 3585
acce952b 3586 /* check FS state, whether FS is broken. */
87533c47
MX
3587 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3588 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3589
75e7cb7f
LB
3590 /*
3591 * In the long term, we'll store the compression type in the super
3592 * block, and it'll be used for per file compression control.
3593 */
3594 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3595
6f93e834
AJ
3596 /*
3597 * Flag our filesystem as having big metadata blocks if they are bigger
3598 * than the page size.
3599 */
3600 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3601 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3602 btrfs_info(fs_info,
3603 "flagging fs with big metadata feature");
3604 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3605 }
3606
3607 /* Set up fs_info before parsing mount options */
3608 nodesize = btrfs_super_nodesize(disk_super);
3609 sectorsize = btrfs_super_sectorsize(disk_super);
3610 stripesize = sectorsize;
3611 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3612 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3613
3614 fs_info->nodesize = nodesize;
3615 fs_info->sectorsize = sectorsize;
3616 fs_info->sectorsize_bits = ilog2(sectorsize);
3617 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3618 fs_info->stripesize = stripesize;
3619
2ff7e61e 3620 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3621 if (ret) {
3622 err = ret;
141386e1 3623 goto fail_alloc;
2b82032c 3624 }
dfe25020 3625
f2b636e8
JB
3626 features = btrfs_super_incompat_flags(disk_super) &
3627 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3628 if (features) {
05135f59 3629 btrfs_err(fs_info,
d5321a0f 3630 "cannot mount because of unsupported optional features (0x%llx)",
05135f59 3631 features);
f2b636e8 3632 err = -EINVAL;
141386e1 3633 goto fail_alloc;
f2b636e8
JB
3634 }
3635
5d4f98a2 3636 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3637 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3638 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3639 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3640 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3641 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3642
3173a18f 3643 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3644 btrfs_info(fs_info, "has skinny extents");
3173a18f 3645
bc3f116f
CM
3646 /*
3647 * mixed block groups end up with duplicate but slightly offset
3648 * extent buffers for the same range. It leads to corruptions
3649 */
3650 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3651 (sectorsize != nodesize)) {
05135f59
DS
3652 btrfs_err(fs_info,
3653"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3654 nodesize, sectorsize);
141386e1 3655 goto fail_alloc;
bc3f116f
CM
3656 }
3657
ceda0864
MX
3658 /*
3659 * Needn't use the lock because there is no other task which will
3660 * update the flag.
3661 */
a6fa6fae 3662 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3663
f2b636e8
JB
3664 features = btrfs_super_compat_ro_flags(disk_super) &
3665 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3666 if (!sb_rdonly(sb) && features) {
05135f59 3667 btrfs_err(fs_info,
d5321a0f 3668 "cannot mount read-write because of unsupported optional features (0x%llx)",
c1c9ff7c 3669 features);
f2b636e8 3670 err = -EINVAL;
141386e1 3671 goto fail_alloc;
f2b636e8 3672 }
61d92c32 3673
8481dd80
QW
3674 if (sectorsize < PAGE_SIZE) {
3675 struct btrfs_subpage_info *subpage_info;
3676
9f73f1ae
QW
3677 /*
3678 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3679 * going to be deprecated.
3680 *
3681 * Force to use v2 cache for subpage case.
3682 */
3683 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3684 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3685 "forcing free space tree for sector size %u with page size %lu",
3686 sectorsize, PAGE_SIZE);
3687
95ea0486
QW
3688 btrfs_warn(fs_info,
3689 "read-write for sector size %u with page size %lu is experimental",
3690 sectorsize, PAGE_SIZE);
8481dd80
QW
3691 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3692 if (!subpage_info)
3693 goto fail_alloc;
3694 btrfs_init_subpage_info(subpage_info, sectorsize);
3695 fs_info->subpage_info = subpage_info;
c8050b3b 3696 }
0bb3eb3e 3697
d21deec5 3698 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3699 if (ret) {
3700 err = ret;
0dc3b84a
JB
3701 goto fail_sb_buffer;
3702 }
4543df7e 3703
9e11ceee
JK
3704 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3705 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3706
a061fc8d
CM
3707 sb->s_blocksize = sectorsize;
3708 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3709 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3710
925baedd 3711 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3712 ret = btrfs_read_sys_array(fs_info);
925baedd 3713 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3714 if (ret) {
05135f59 3715 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3716 goto fail_sb_buffer;
84eed90f 3717 }
0b86a832 3718
84234f3a 3719 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3720 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3721 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3722 generation, level);
3723 if (ret) {
05135f59 3724 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3725 goto fail_tree_roots;
83121942 3726 }
0b86a832 3727
e17cade2 3728 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3729 offsetof(struct btrfs_header, chunk_tree_uuid),
3730 BTRFS_UUID_SIZE);
e17cade2 3731
5b4aacef 3732 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3733 if (ret) {
05135f59 3734 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3735 goto fail_tree_roots;
2b82032c 3736 }
0b86a832 3737
8dabb742 3738 /*
bacce86a
AJ
3739 * At this point we know all the devices that make this filesystem,
3740 * including the seed devices but we don't know yet if the replace
3741 * target is required. So free devices that are not part of this
1a9fd417 3742 * filesystem but skip the replace target device which is checked
bacce86a 3743 * below in btrfs_init_dev_replace().
8dabb742 3744 */
bacce86a 3745 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3746 if (!fs_devices->latest_dev->bdev) {
05135f59 3747 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3748 goto fail_tree_roots;
3749 }
3750
b8522a1e 3751 ret = init_tree_roots(fs_info);
4bbcaa64 3752 if (ret)
b8522a1e 3753 goto fail_tree_roots;
8929ecfa 3754
73651042
NA
3755 /*
3756 * Get zone type information of zoned block devices. This will also
3757 * handle emulation of a zoned filesystem if a regular device has the
3758 * zoned incompat feature flag set.
3759 */
3760 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3761 if (ret) {
3762 btrfs_err(fs_info,
3763 "zoned: failed to read device zone info: %d",
3764 ret);
3765 goto fail_block_groups;
3766 }
3767
75ec1db8
JB
3768 /*
3769 * If we have a uuid root and we're not being told to rescan we need to
3770 * check the generation here so we can set the
3771 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3772 * transaction during a balance or the log replay without updating the
3773 * uuid generation, and then if we crash we would rescan the uuid tree,
3774 * even though it was perfectly fine.
3775 */
3776 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3777 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3778 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3779
cf90d884
QW
3780 ret = btrfs_verify_dev_extents(fs_info);
3781 if (ret) {
3782 btrfs_err(fs_info,
3783 "failed to verify dev extents against chunks: %d",
3784 ret);
3785 goto fail_block_groups;
3786 }
68310a5e
ID
3787 ret = btrfs_recover_balance(fs_info);
3788 if (ret) {
05135f59 3789 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3790 goto fail_block_groups;
3791 }
3792
733f4fbb
SB
3793 ret = btrfs_init_dev_stats(fs_info);
3794 if (ret) {
05135f59 3795 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3796 goto fail_block_groups;
3797 }
3798
8dabb742
SB
3799 ret = btrfs_init_dev_replace(fs_info);
3800 if (ret) {
05135f59 3801 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3802 goto fail_block_groups;
3803 }
3804
b70f5097
NA
3805 ret = btrfs_check_zoned_mode(fs_info);
3806 if (ret) {
3807 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3808 ret);
3809 goto fail_block_groups;
3810 }
3811
c6761a9e 3812 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3813 if (ret) {
05135f59
DS
3814 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3815 ret);
b7c35e81
AJ
3816 goto fail_block_groups;
3817 }
3818
96f3136e 3819 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3820 if (ret) {
05135f59 3821 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3822 goto fail_fsdev_sysfs;
c59021f8 3823 }
3824
c59021f8 3825 ret = btrfs_init_space_info(fs_info);
3826 if (ret) {
05135f59 3827 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3828 goto fail_sysfs;
c59021f8 3829 }
3830
5b4aacef 3831 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3832 if (ret) {
05135f59 3833 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3834 goto fail_sysfs;
1b1d1f66 3835 }
4330e183 3836
16beac87
NA
3837 btrfs_free_zone_cache(fs_info);
3838
5c78a5e7
AJ
3839 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3840 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3841 btrfs_warn(fs_info,
52042d8e 3842 "writable mount is not allowed due to too many missing devices");
2365dd3c 3843 goto fail_sysfs;
292fd7fc 3844 }
9078a3e1 3845
33c44184 3846 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3847 "btrfs-cleaner");
57506d50 3848 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3849 goto fail_sysfs;
a74a4b97
CM
3850
3851 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3852 tree_root,
3853 "btrfs-transaction");
57506d50 3854 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3855 goto fail_cleaner;
a74a4b97 3856
583b7231 3857 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3858 !fs_info->fs_devices->rotating) {
583b7231 3859 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3860 }
3861
572d9ab7 3862 /*
01327610 3863 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3864 * not have to wait for transaction commit
3865 */
3866 btrfs_apply_pending_changes(fs_info);
3818aea2 3867
21adbd5c 3868#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3869 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3870 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3871 btrfs_test_opt(fs_info,
cbeaae4f 3872 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3873 fs_info->check_integrity_print_mask);
3874 if (ret)
05135f59
DS
3875 btrfs_warn(fs_info,
3876 "failed to initialize integrity check module: %d",
3877 ret);
21adbd5c
SB
3878 }
3879#endif
bcef60f2
AJ
3880 ret = btrfs_read_qgroup_config(fs_info);
3881 if (ret)
3882 goto fail_trans_kthread;
21adbd5c 3883
fd708b81
JB
3884 if (btrfs_build_ref_tree(fs_info))
3885 btrfs_err(fs_info, "couldn't build ref tree");
3886
96da0919
QW
3887 /* do not make disk changes in broken FS or nologreplay is given */
3888 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3889 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3890 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3891 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3892 if (ret) {
63443bf5 3893 err = ret;
28c16cbb 3894 goto fail_qgroup;
79787eaa 3895 }
e02119d5 3896 }
1a40e23b 3897
56e9357a 3898 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3899 if (IS_ERR(fs_info->fs_root)) {
3900 err = PTR_ERR(fs_info->fs_root);
f50f4353 3901 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3902 fs_info->fs_root = NULL;
bcef60f2 3903 goto fail_qgroup;
3140c9a3 3904 }
c289811c 3905
bc98a42c 3906 if (sb_rdonly(sb))
8cd29088 3907 goto clear_oneshot;
59641015 3908
44c0ca21 3909 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3910 if (ret) {
6bccf3ab 3911 close_ctree(fs_info);
2b6ba629 3912 return ret;
e3acc2a6 3913 }
b0643e59 3914 btrfs_discard_resume(fs_info);
b382a324 3915
44c0ca21
BB
3916 if (fs_info->uuid_root &&
3917 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3918 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3919 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3920 ret = btrfs_check_uuid_tree(fs_info);
3921 if (ret) {
05135f59
DS
3922 btrfs_warn(fs_info,
3923 "failed to check the UUID tree: %d", ret);
6bccf3ab 3924 close_ctree(fs_info);
70f80175
SB
3925 return ret;
3926 }
f7a81ea4 3927 }
94846229 3928
afcdd129 3929 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3930
b4be6aef
JB
3931 /* Kick the cleaner thread so it'll start deleting snapshots. */
3932 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3933 wake_up_process(fs_info->cleaner_kthread);
3934
8cd29088
BB
3935clear_oneshot:
3936 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3937 return 0;
39279cc3 3938
bcef60f2
AJ
3939fail_qgroup:
3940 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3941fail_trans_kthread:
3942 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3943 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3944 btrfs_free_fs_roots(fs_info);
3f157a2f 3945fail_cleaner:
a74a4b97 3946 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3947
3948 /*
3949 * make sure we're done with the btree inode before we stop our
3950 * kthreads
3951 */
3952 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3953
2365dd3c 3954fail_sysfs:
6618a59b 3955 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3956
b7c35e81
AJ
3957fail_fsdev_sysfs:
3958 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3959
1b1d1f66 3960fail_block_groups:
54067ae9 3961 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3962
3963fail_tree_roots:
9e3aa805
JB
3964 if (fs_info->data_reloc_root)
3965 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3966 free_root_pointers(fs_info, true);
2b8195bb 3967 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3968
39279cc3 3969fail_sb_buffer:
7abadb64 3970 btrfs_stop_all_workers(fs_info);
5cdd7db6 3971 btrfs_free_block_groups(fs_info);
16cdcec7 3972fail_alloc:
586e46e2
ID
3973 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3974
4543df7e 3975 iput(fs_info->btree_inode);
7e662854 3976fail:
586e46e2 3977 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3978 return err;
eb60ceac 3979}
663faf9f 3980ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3981
314b6dd0 3982static void btrfs_end_super_write(struct bio *bio)
f2984462 3983{
314b6dd0
JT
3984 struct btrfs_device *device = bio->bi_private;
3985 struct bio_vec *bvec;
3986 struct bvec_iter_all iter_all;
3987 struct page *page;
3988
3989 bio_for_each_segment_all(bvec, bio, iter_all) {
3990 page = bvec->bv_page;
3991
3992 if (bio->bi_status) {
3993 btrfs_warn_rl_in_rcu(device->fs_info,
3994 "lost page write due to IO error on %s (%d)",
3995 rcu_str_deref(device->name),
3996 blk_status_to_errno(bio->bi_status));
3997 ClearPageUptodate(page);
3998 SetPageError(page);
3999 btrfs_dev_stat_inc_and_print(device,
4000 BTRFS_DEV_STAT_WRITE_ERRS);
4001 } else {
4002 SetPageUptodate(page);
4003 }
4004
4005 put_page(page);
4006 unlock_page(page);
f2984462 4007 }
314b6dd0
JT
4008
4009 bio_put(bio);
f2984462
CM
4010}
4011
8f32380d
JT
4012struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
4013 int copy_num)
29c36d72 4014{
29c36d72 4015 struct btrfs_super_block *super;
8f32380d 4016 struct page *page;
12659251 4017 u64 bytenr, bytenr_orig;
8f32380d 4018 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
4019 int ret;
4020
4021 bytenr_orig = btrfs_sb_offset(copy_num);
4022 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4023 if (ret == -ENOENT)
4024 return ERR_PTR(-EINVAL);
4025 else if (ret)
4026 return ERR_PTR(ret);
29c36d72 4027
cda00eba 4028 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 4029 return ERR_PTR(-EINVAL);
29c36d72 4030
8f32380d
JT
4031 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4032 if (IS_ERR(page))
4033 return ERR_CAST(page);
29c36d72 4034
8f32380d 4035 super = page_address(page);
96c2e067
AJ
4036 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4037 btrfs_release_disk_super(super);
4038 return ERR_PTR(-ENODATA);
4039 }
4040
12659251 4041 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
4042 btrfs_release_disk_super(super);
4043 return ERR_PTR(-EINVAL);
29c36d72
AJ
4044 }
4045
8f32380d 4046 return super;
29c36d72
AJ
4047}
4048
4049
8f32380d 4050struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 4051{
8f32380d 4052 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
4053 int i;
4054 u64 transid = 0;
a512bbf8
YZ
4055
4056 /* we would like to check all the supers, but that would make
4057 * a btrfs mount succeed after a mkfs from a different FS.
4058 * So, we need to add a special mount option to scan for
4059 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4060 */
4061 for (i = 0; i < 1; i++) {
8f32380d
JT
4062 super = btrfs_read_dev_one_super(bdev, i);
4063 if (IS_ERR(super))
a512bbf8
YZ
4064 continue;
4065
a512bbf8 4066 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
4067 if (latest)
4068 btrfs_release_disk_super(super);
4069
4070 latest = super;
a512bbf8 4071 transid = btrfs_super_generation(super);
a512bbf8
YZ
4072 }
4073 }
92fc03fb 4074
8f32380d 4075 return super;
a512bbf8
YZ
4076}
4077
4eedeb75 4078/*
abbb3b8e 4079 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 4080 * pages we use for writing are locked.
4eedeb75 4081 *
abbb3b8e
DS
4082 * Write @max_mirrors copies of the superblock, where 0 means default that fit
4083 * the expected device size at commit time. Note that max_mirrors must be
4084 * same for write and wait phases.
4eedeb75 4085 *
314b6dd0 4086 * Return number of errors when page is not found or submission fails.
4eedeb75 4087 */
a512bbf8 4088static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 4089 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 4090{
d5178578 4091 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 4092 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 4093 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 4094 int i;
a512bbf8 4095 int errors = 0;
12659251
NA
4096 int ret;
4097 u64 bytenr, bytenr_orig;
a512bbf8
YZ
4098
4099 if (max_mirrors == 0)
4100 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4101
d5178578
JT
4102 shash->tfm = fs_info->csum_shash;
4103
a512bbf8 4104 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4105 struct page *page;
4106 struct bio *bio;
4107 struct btrfs_super_block *disk_super;
4108
12659251
NA
4109 bytenr_orig = btrfs_sb_offset(i);
4110 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4111 if (ret == -ENOENT) {
4112 continue;
4113 } else if (ret < 0) {
4114 btrfs_err(device->fs_info,
4115 "couldn't get super block location for mirror %d",
4116 i);
4117 errors++;
4118 continue;
4119 }
935e5cc9
MX
4120 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4121 device->commit_total_bytes)
a512bbf8
YZ
4122 break;
4123
12659251 4124 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4125
fd08001f
EB
4126 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4127 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4128 sb->csum);
4eedeb75 4129
314b6dd0
JT
4130 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4131 GFP_NOFS);
4132 if (!page) {
abbb3b8e 4133 btrfs_err(device->fs_info,
314b6dd0 4134 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4135 bytenr);
4136 errors++;
4eedeb75 4137 continue;
abbb3b8e 4138 }
634554dc 4139
314b6dd0
JT
4140 /* Bump the refcount for wait_dev_supers() */
4141 get_page(page);
a512bbf8 4142
314b6dd0
JT
4143 disk_super = page_address(page);
4144 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4145
314b6dd0
JT
4146 /*
4147 * Directly use bios here instead of relying on the page cache
4148 * to do I/O, so we don't lose the ability to do integrity
4149 * checking.
4150 */
07888c66
CH
4151 bio = bio_alloc(device->bdev, 1,
4152 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4153 GFP_NOFS);
314b6dd0
JT
4154 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4155 bio->bi_private = device;
4156 bio->bi_end_io = btrfs_end_super_write;
4157 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4158 offset_in_page(bytenr));
a512bbf8 4159
387125fc 4160 /*
314b6dd0
JT
4161 * We FUA only the first super block. The others we allow to
4162 * go down lazy and there's a short window where the on-disk
4163 * copies might still contain the older version.
387125fc 4164 */
1b9e619c 4165 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4166 bio->bi_opf |= REQ_FUA;
4167
58ff51f1
CH
4168 btrfsic_check_bio(bio);
4169 submit_bio(bio);
8376d9e1
NA
4170
4171 if (btrfs_advance_sb_log(device, i))
4172 errors++;
a512bbf8
YZ
4173 }
4174 return errors < i ? 0 : -1;
4175}
4176
abbb3b8e
DS
4177/*
4178 * Wait for write completion of superblocks done by write_dev_supers,
4179 * @max_mirrors same for write and wait phases.
4180 *
314b6dd0 4181 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4182 * date.
4183 */
4184static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4185{
abbb3b8e
DS
4186 int i;
4187 int errors = 0;
b6a535fa 4188 bool primary_failed = false;
12659251 4189 int ret;
abbb3b8e
DS
4190 u64 bytenr;
4191
4192 if (max_mirrors == 0)
4193 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4194
4195 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4196 struct page *page;
4197
12659251
NA
4198 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4199 if (ret == -ENOENT) {
4200 break;
4201 } else if (ret < 0) {
4202 errors++;
4203 if (i == 0)
4204 primary_failed = true;
4205 continue;
4206 }
abbb3b8e
DS
4207 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4208 device->commit_total_bytes)
4209 break;
4210
314b6dd0
JT
4211 page = find_get_page(device->bdev->bd_inode->i_mapping,
4212 bytenr >> PAGE_SHIFT);
4213 if (!page) {
abbb3b8e 4214 errors++;
b6a535fa
HM
4215 if (i == 0)
4216 primary_failed = true;
abbb3b8e
DS
4217 continue;
4218 }
314b6dd0
JT
4219 /* Page is submitted locked and unlocked once the IO completes */
4220 wait_on_page_locked(page);
4221 if (PageError(page)) {
abbb3b8e 4222 errors++;
b6a535fa
HM
4223 if (i == 0)
4224 primary_failed = true;
4225 }
abbb3b8e 4226
314b6dd0
JT
4227 /* Drop our reference */
4228 put_page(page);
abbb3b8e 4229
314b6dd0
JT
4230 /* Drop the reference from the writing run */
4231 put_page(page);
abbb3b8e
DS
4232 }
4233
b6a535fa
HM
4234 /* log error, force error return */
4235 if (primary_failed) {
4236 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4237 device->devid);
4238 return -1;
4239 }
4240
abbb3b8e
DS
4241 return errors < i ? 0 : -1;
4242}
4243
387125fc
CM
4244/*
4245 * endio for the write_dev_flush, this will wake anyone waiting
4246 * for the barrier when it is done
4247 */
4246a0b6 4248static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4249{
e0ae9994 4250 complete(bio->bi_private);
387125fc
CM
4251}
4252
4253/*
4fc6441a
AJ
4254 * Submit a flush request to the device if it supports it. Error handling is
4255 * done in the waiting counterpart.
387125fc 4256 */
4fc6441a 4257static void write_dev_flush(struct btrfs_device *device)
387125fc 4258{
e0ae9994 4259 struct bio *bio = device->flush_bio;
387125fc 4260
a91cf0ff
WY
4261#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4262 /*
4263 * When a disk has write caching disabled, we skip submission of a bio
4264 * with flush and sync requests before writing the superblock, since
4265 * it's not needed. However when the integrity checker is enabled, this
4266 * results in reports that there are metadata blocks referred by a
4267 * superblock that were not properly flushed. So don't skip the bio
4268 * submission only when the integrity checker is enabled for the sake
4269 * of simplicity, since this is a debug tool and not meant for use in
4270 * non-debug builds.
4271 */
4272 struct request_queue *q = bdev_get_queue(device->bdev);
c2a9c7ab 4273 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 4274 return;
a91cf0ff 4275#endif
387125fc 4276
a7c50c94 4277 bio_reset(bio, device->bdev, REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4278 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4279 init_completion(&device->flush_wait);
4280 bio->bi_private = &device->flush_wait;
387125fc 4281
58ff51f1
CH
4282 btrfsic_check_bio(bio);
4283 submit_bio(bio);
1c3063b6 4284 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4285}
387125fc 4286
4fc6441a
AJ
4287/*
4288 * If the flush bio has been submitted by write_dev_flush, wait for it.
4289 */
8c27cb35 4290static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4291{
4fc6441a 4292 struct bio *bio = device->flush_bio;
387125fc 4293
1c3063b6 4294 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4295 return BLK_STS_OK;
387125fc 4296
1c3063b6 4297 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4298 wait_for_completion_io(&device->flush_wait);
387125fc 4299
8c27cb35 4300 return bio->bi_status;
387125fc 4301}
387125fc 4302
d10b82fe 4303static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4304{
6528b99d 4305 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4306 return -EIO;
387125fc
CM
4307 return 0;
4308}
4309
4310/*
4311 * send an empty flush down to each device in parallel,
4312 * then wait for them
4313 */
4314static int barrier_all_devices(struct btrfs_fs_info *info)
4315{
4316 struct list_head *head;
4317 struct btrfs_device *dev;
5af3e8cc 4318 int errors_wait = 0;
4e4cbee9 4319 blk_status_t ret;
387125fc 4320
1538e6c5 4321 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4322 /* send down all the barriers */
4323 head = &info->fs_devices->devices;
1538e6c5 4324 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4325 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4326 continue;
cea7c8bf 4327 if (!dev->bdev)
387125fc 4328 continue;
e12c9621 4329 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4330 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4331 continue;
4332
4fc6441a 4333 write_dev_flush(dev);
58efbc9f 4334 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4335 }
4336
4337 /* wait for all the barriers */
1538e6c5 4338 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4339 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4340 continue;
387125fc 4341 if (!dev->bdev) {
5af3e8cc 4342 errors_wait++;
387125fc
CM
4343 continue;
4344 }
e12c9621 4345 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4346 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4347 continue;
4348
4fc6441a 4349 ret = wait_dev_flush(dev);
401b41e5
AJ
4350 if (ret) {
4351 dev->last_flush_error = ret;
66b4993e
DS
4352 btrfs_dev_stat_inc_and_print(dev,
4353 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4354 errors_wait++;
401b41e5
AJ
4355 }
4356 }
4357
cea7c8bf 4358 if (errors_wait) {
401b41e5
AJ
4359 /*
4360 * At some point we need the status of all disks
4361 * to arrive at the volume status. So error checking
4362 * is being pushed to a separate loop.
4363 */
d10b82fe 4364 return check_barrier_error(info);
387125fc 4365 }
387125fc
CM
4366 return 0;
4367}
4368
943c6e99
ZL
4369int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4370{
8789f4fe
ZL
4371 int raid_type;
4372 int min_tolerated = INT_MAX;
943c6e99 4373
8789f4fe
ZL
4374 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4375 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4376 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4377 btrfs_raid_array[BTRFS_RAID_SINGLE].
4378 tolerated_failures);
943c6e99 4379
8789f4fe
ZL
4380 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4381 if (raid_type == BTRFS_RAID_SINGLE)
4382 continue;
41a6e891 4383 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4384 continue;
8c3e3582 4385 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4386 btrfs_raid_array[raid_type].
4387 tolerated_failures);
4388 }
943c6e99 4389
8789f4fe 4390 if (min_tolerated == INT_MAX) {
ab8d0fc4 4391 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4392 min_tolerated = 0;
4393 }
4394
4395 return min_tolerated;
943c6e99
ZL
4396}
4397
eece6a9c 4398int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4399{
e5e9a520 4400 struct list_head *head;
f2984462 4401 struct btrfs_device *dev;
a061fc8d 4402 struct btrfs_super_block *sb;
f2984462 4403 struct btrfs_dev_item *dev_item;
f2984462
CM
4404 int ret;
4405 int do_barriers;
a236aed1
CM
4406 int max_errors;
4407 int total_errors = 0;
a061fc8d 4408 u64 flags;
f2984462 4409
0b246afa 4410 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4411
4412 /*
4413 * max_mirrors == 0 indicates we're from commit_transaction,
4414 * not from fsync where the tree roots in fs_info have not
4415 * been consistent on disk.
4416 */
4417 if (max_mirrors == 0)
4418 backup_super_roots(fs_info);
f2984462 4419
0b246afa 4420 sb = fs_info->super_for_commit;
a061fc8d 4421 dev_item = &sb->dev_item;
e5e9a520 4422
0b246afa
JM
4423 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4424 head = &fs_info->fs_devices->devices;
4425 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4426
5af3e8cc 4427 if (do_barriers) {
0b246afa 4428 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4429 if (ret) {
4430 mutex_unlock(
0b246afa
JM
4431 &fs_info->fs_devices->device_list_mutex);
4432 btrfs_handle_fs_error(fs_info, ret,
4433 "errors while submitting device barriers.");
5af3e8cc
SB
4434 return ret;
4435 }
4436 }
387125fc 4437
1538e6c5 4438 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4439 if (!dev->bdev) {
4440 total_errors++;
4441 continue;
4442 }
e12c9621 4443 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4444 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4445 continue;
4446
2b82032c 4447 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4448 btrfs_set_stack_device_type(dev_item, dev->type);
4449 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4450 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4451 dev->commit_total_bytes);
ce7213c7
MX
4452 btrfs_set_stack_device_bytes_used(dev_item,
4453 dev->commit_bytes_used);
a061fc8d
CM
4454 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4455 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4456 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4457 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4458 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4459 BTRFS_FSID_SIZE);
a512bbf8 4460
a061fc8d
CM
4461 flags = btrfs_super_flags(sb);
4462 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4463
75cb857d
QW
4464 ret = btrfs_validate_write_super(fs_info, sb);
4465 if (ret < 0) {
4466 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4467 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4468 "unexpected superblock corruption detected");
4469 return -EUCLEAN;
4470 }
4471
abbb3b8e 4472 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4473 if (ret)
4474 total_errors++;
f2984462 4475 }
a236aed1 4476 if (total_errors > max_errors) {
0b246afa
JM
4477 btrfs_err(fs_info, "%d errors while writing supers",
4478 total_errors);
4479 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4480
9d565ba4 4481 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4482 btrfs_handle_fs_error(fs_info, -EIO,
4483 "%d errors while writing supers",
4484 total_errors);
9d565ba4 4485 return -EIO;
a236aed1 4486 }
f2984462 4487
a512bbf8 4488 total_errors = 0;
1538e6c5 4489 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4490 if (!dev->bdev)
4491 continue;
e12c9621 4492 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4493 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4494 continue;
4495
abbb3b8e 4496 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4497 if (ret)
4498 total_errors++;
f2984462 4499 }
0b246afa 4500 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4501 if (total_errors > max_errors) {
0b246afa
JM
4502 btrfs_handle_fs_error(fs_info, -EIO,
4503 "%d errors while writing supers",
4504 total_errors);
79787eaa 4505 return -EIO;
a236aed1 4506 }
f2984462
CM
4507 return 0;
4508}
4509
cb517eab
MX
4510/* Drop a fs root from the radix tree and free it. */
4511void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4512 struct btrfs_root *root)
2619ba1f 4513{
4785e24f
JB
4514 bool drop_ref = false;
4515
fc7cbcd4
DS
4516 spin_lock(&fs_info->fs_roots_radix_lock);
4517 radix_tree_delete(&fs_info->fs_roots_radix,
4518 (unsigned long)root->root_key.objectid);
4519 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4520 drop_ref = true;
fc7cbcd4 4521 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4522
84961539 4523 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4524 ASSERT(root->log_root == NULL);
1c1ea4f7 4525 if (root->reloc_root) {
00246528 4526 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4527 root->reloc_root = NULL;
4528 }
4529 }
3321719e 4530
4785e24f
JB
4531 if (drop_ref)
4532 btrfs_put_root(root);
2619ba1f
CM
4533}
4534
c146afad 4535int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4536{
fc7cbcd4
DS
4537 u64 root_objectid = 0;
4538 struct btrfs_root *gang[8];
4539 int i = 0;
65d33fd7 4540 int err = 0;
fc7cbcd4 4541 unsigned int ret = 0;
e089f05c 4542
c146afad 4543 while (1) {
fc7cbcd4
DS
4544 spin_lock(&fs_info->fs_roots_radix_lock);
4545 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4546 (void **)gang, root_objectid,
4547 ARRAY_SIZE(gang));
4548 if (!ret) {
4549 spin_unlock(&fs_info->fs_roots_radix_lock);
4550 break;
65d33fd7 4551 }
fc7cbcd4 4552 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4553
fc7cbcd4
DS
4554 for (i = 0; i < ret; i++) {
4555 /* Avoid to grab roots in dead_roots */
4556 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4557 gang[i] = NULL;
4558 continue;
4559 }
4560 /* grab all the search result for later use */
4561 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4562 }
fc7cbcd4 4563 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4564
fc7cbcd4
DS
4565 for (i = 0; i < ret; i++) {
4566 if (!gang[i])
65d33fd7 4567 continue;
fc7cbcd4
DS
4568 root_objectid = gang[i]->root_key.objectid;
4569 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4570 if (err)
fc7cbcd4
DS
4571 break;
4572 btrfs_put_root(gang[i]);
c146afad 4573 }
fc7cbcd4 4574 root_objectid++;
c146afad 4575 }
65d33fd7 4576
fc7cbcd4
DS
4577 /* release the uncleaned roots due to error */
4578 for (; i < ret; i++) {
4579 if (gang[i])
4580 btrfs_put_root(gang[i]);
65d33fd7
QW
4581 }
4582 return err;
c146afad 4583}
a2135011 4584
6bccf3ab 4585int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4586{
6bccf3ab 4587 struct btrfs_root *root = fs_info->tree_root;
c146afad 4588 struct btrfs_trans_handle *trans;
a74a4b97 4589
0b246afa 4590 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4591 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4592 mutex_unlock(&fs_info->cleaner_mutex);
4593 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4594
4595 /* wait until ongoing cleanup work done */
0b246afa
JM
4596 down_write(&fs_info->cleanup_work_sem);
4597 up_write(&fs_info->cleanup_work_sem);
c71bf099 4598
7a7eaa40 4599 trans = btrfs_join_transaction(root);
3612b495
TI
4600 if (IS_ERR(trans))
4601 return PTR_ERR(trans);
3a45bb20 4602 return btrfs_commit_transaction(trans);
c146afad
YZ
4603}
4604
36c86a9e
QW
4605static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4606{
4607 struct btrfs_transaction *trans;
4608 struct btrfs_transaction *tmp;
4609 bool found = false;
4610
4611 if (list_empty(&fs_info->trans_list))
4612 return;
4613
4614 /*
4615 * This function is only called at the very end of close_ctree(),
4616 * thus no other running transaction, no need to take trans_lock.
4617 */
4618 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4619 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4620 struct extent_state *cached = NULL;
4621 u64 dirty_bytes = 0;
4622 u64 cur = 0;
4623 u64 found_start;
4624 u64 found_end;
4625
4626 found = true;
4627 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4628 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4629 dirty_bytes += found_end + 1 - found_start;
4630 cur = found_end + 1;
4631 }
4632 btrfs_warn(fs_info,
4633 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4634 trans->transid, dirty_bytes);
4635 btrfs_cleanup_one_transaction(trans, fs_info);
4636
4637 if (trans == fs_info->running_transaction)
4638 fs_info->running_transaction = NULL;
4639 list_del_init(&trans->list);
4640
4641 btrfs_put_transaction(trans);
4642 trace_btrfs_transaction_commit(fs_info);
4643 }
4644 ASSERT(!found);
4645}
4646
b105e927 4647void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4648{
c146afad
YZ
4649 int ret;
4650
afcdd129 4651 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52
FM
4652
4653 /*
4654 * We may have the reclaim task running and relocating a data block group,
4655 * in which case it may create delayed iputs. So stop it before we park
4656 * the cleaner kthread otherwise we can get new delayed iputs after
4657 * parking the cleaner, and that can make the async reclaim task to hang
4658 * if it's waiting for delayed iputs to complete, since the cleaner is
4659 * parked and can not run delayed iputs - this will make us hang when
4660 * trying to stop the async reclaim task.
4661 */
4662 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4663 /*
4664 * We don't want the cleaner to start new transactions, add more delayed
4665 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4666 * because that frees the task_struct, and the transaction kthread might
4667 * still try to wake up the cleaner.
4668 */
4669 kthread_park(fs_info->cleaner_kthread);
c146afad 4670
b4be6aef
JB
4671 /*
4672 * If we had UNFINISHED_DROPS we could still be processing them, so
4673 * clear that bit and wake up relocation so it can stop.
4674 */
4675 btrfs_wake_unfinished_drop(fs_info);
4676
7343dd61 4677 /* wait for the qgroup rescan worker to stop */
d06f23d6 4678 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4679
803b2f54
SB
4680 /* wait for the uuid_scan task to finish */
4681 down(&fs_info->uuid_tree_rescan_sem);
4682 /* avoid complains from lockdep et al., set sem back to initial state */
4683 up(&fs_info->uuid_tree_rescan_sem);
4684
837d5b6e 4685 /* pause restriper - we want to resume on mount */
aa1b8cd4 4686 btrfs_pause_balance(fs_info);
837d5b6e 4687
8dabb742
SB
4688 btrfs_dev_replace_suspend_for_unmount(fs_info);
4689
aa1b8cd4 4690 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4691
4692 /* wait for any defraggers to finish */
4693 wait_event(fs_info->transaction_wait,
4694 (atomic_read(&fs_info->defrag_running) == 0));
4695
4696 /* clear out the rbtree of defraggable inodes */
26176e7c 4697 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4698
21c7e756 4699 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4700 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4701 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4702
b0643e59
DZ
4703 /* Cancel or finish ongoing discard work */
4704 btrfs_discard_cleanup(fs_info);
4705
bc98a42c 4706 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4707 /*
d6fd0ae2
OS
4708 * The cleaner kthread is stopped, so do one final pass over
4709 * unused block groups.
e44163e1 4710 */
0b246afa 4711 btrfs_delete_unused_bgs(fs_info);
e44163e1 4712
f0cc2cd7
FM
4713 /*
4714 * There might be existing delayed inode workers still running
4715 * and holding an empty delayed inode item. We must wait for
4716 * them to complete first because they can create a transaction.
4717 * This happens when someone calls btrfs_balance_delayed_items()
4718 * and then a transaction commit runs the same delayed nodes
4719 * before any delayed worker has done something with the nodes.
4720 * We must wait for any worker here and not at transaction
4721 * commit time since that could cause a deadlock.
4722 * This is a very rare case.
4723 */
4724 btrfs_flush_workqueue(fs_info->delayed_workers);
4725
6bccf3ab 4726 ret = btrfs_commit_super(fs_info);
acce952b 4727 if (ret)
04892340 4728 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4729 }
4730
84961539 4731 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4732 btrfs_error_commit_super(fs_info);
0f7d52f4 4733
e3029d9f
AV
4734 kthread_stop(fs_info->transaction_kthread);
4735 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4736
e187831e 4737 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4738 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4739
5958253c
QW
4740 if (btrfs_check_quota_leak(fs_info)) {
4741 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4742 btrfs_err(fs_info, "qgroup reserved space leaked");
4743 }
4744
04892340 4745 btrfs_free_qgroup_config(fs_info);
fe816d0f 4746 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4747
963d678b 4748 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4749 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4750 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4751 }
bcc63abb 4752
5deb17e1 4753 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4754 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4755 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4756
6618a59b 4757 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4758 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4759
1a4319cc
LB
4760 btrfs_put_block_group_cache(fs_info);
4761
de348ee0
WS
4762 /*
4763 * we must make sure there is not any read request to
4764 * submit after we stopping all workers.
4765 */
4766 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4767 btrfs_stop_all_workers(fs_info);
4768
0a31daa4 4769 /* We shouldn't have any transaction open at this point */
36c86a9e 4770 warn_about_uncommitted_trans(fs_info);
0a31daa4 4771
afcdd129 4772 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4773 free_root_pointers(fs_info, true);
8c38938c 4774 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4775
4e19443d
JB
4776 /*
4777 * We must free the block groups after dropping the fs_roots as we could
4778 * have had an IO error and have left over tree log blocks that aren't
4779 * cleaned up until the fs roots are freed. This makes the block group
4780 * accounting appear to be wrong because there's pending reserved bytes,
4781 * so make sure we do the block group cleanup afterwards.
4782 */
4783 btrfs_free_block_groups(fs_info);
4784
13e6c37b 4785 iput(fs_info->btree_inode);
d6bfde87 4786
21adbd5c 4787#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4788 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4789 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4790#endif
4791
0b86a832 4792 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4793 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4794}
4795
b9fab919
CM
4796int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4797 int atomic)
5f39d397 4798{
1259ab75 4799 int ret;
727011e0 4800 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4801
0b32f4bb 4802 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4803 if (!ret)
4804 return ret;
4805
4806 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4807 parent_transid, atomic);
4808 if (ret == -EAGAIN)
4809 return ret;
1259ab75 4810 return !ret;
5f39d397
CM
4811}
4812
5f39d397
CM
4813void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4814{
2f4d60df 4815 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4816 u64 transid = btrfs_header_generation(buf);
b9473439 4817 int was_dirty;
b4ce94de 4818
06ea65a3
JB
4819#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4820 /*
4821 * This is a fast path so only do this check if we have sanity tests
52042d8e 4822 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4823 * outside of the sanity tests.
4824 */
b0132a3b 4825 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4826 return;
4827#endif
49d0c642 4828 btrfs_assert_tree_write_locked(buf);
0b246afa 4829 if (transid != fs_info->generation)
5d163e0e 4830 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4831 buf->start, transid, fs_info->generation);
0b32f4bb 4832 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4833 if (!was_dirty)
104b4e51
NB
4834 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4835 buf->len,
4836 fs_info->dirty_metadata_batch);
1f21ef0a 4837#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4838 /*
4839 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4840 * but item data not updated.
4841 * So here we should only check item pointers, not item data.
4842 */
4843 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4844 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4845 btrfs_print_leaf(buf);
1f21ef0a
FM
4846 ASSERT(0);
4847 }
4848#endif
eb60ceac
CM
4849}
4850
2ff7e61e 4851static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4852 int flush_delayed)
16cdcec7
MX
4853{
4854 /*
4855 * looks as though older kernels can get into trouble with
4856 * this code, they end up stuck in balance_dirty_pages forever
4857 */
e2d84521 4858 int ret;
16cdcec7
MX
4859
4860 if (current->flags & PF_MEMALLOC)
4861 return;
4862
b53d3f5d 4863 if (flush_delayed)
2ff7e61e 4864 btrfs_balance_delayed_items(fs_info);
16cdcec7 4865
d814a491
EL
4866 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4867 BTRFS_DIRTY_METADATA_THRESH,
4868 fs_info->dirty_metadata_batch);
e2d84521 4869 if (ret > 0) {
0b246afa 4870 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4871 }
16cdcec7
MX
4872}
4873
2ff7e61e 4874void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4875{
2ff7e61e 4876 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4877}
585ad2c3 4878
2ff7e61e 4879void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4880{
2ff7e61e 4881 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4882}
6b80053d 4883
2ff7e61e 4884static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4885{
fe816d0f
NB
4886 /* cleanup FS via transaction */
4887 btrfs_cleanup_transaction(fs_info);
4888
0b246afa 4889 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4890 btrfs_run_delayed_iputs(fs_info);
0b246afa 4891 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4892
0b246afa
JM
4893 down_write(&fs_info->cleanup_work_sem);
4894 up_write(&fs_info->cleanup_work_sem);
acce952b 4895}
4896
ef67963d
JB
4897static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4898{
fc7cbcd4
DS
4899 struct btrfs_root *gang[8];
4900 u64 root_objectid = 0;
4901 int ret;
4902
4903 spin_lock(&fs_info->fs_roots_radix_lock);
4904 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4905 (void **)gang, root_objectid,
4906 ARRAY_SIZE(gang))) != 0) {
4907 int i;
4908
4909 for (i = 0; i < ret; i++)
4910 gang[i] = btrfs_grab_root(gang[i]);
4911 spin_unlock(&fs_info->fs_roots_radix_lock);
4912
4913 for (i = 0; i < ret; i++) {
4914 if (!gang[i])
ef67963d 4915 continue;
fc7cbcd4
DS
4916 root_objectid = gang[i]->root_key.objectid;
4917 btrfs_free_log(NULL, gang[i]);
4918 btrfs_put_root(gang[i]);
ef67963d 4919 }
fc7cbcd4
DS
4920 root_objectid++;
4921 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4922 }
fc7cbcd4 4923 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4924 btrfs_free_log_root_tree(NULL, fs_info);
4925}
4926
143bede5 4927static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4928{
acce952b 4929 struct btrfs_ordered_extent *ordered;
acce952b 4930
199c2a9c 4931 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4932 /*
4933 * This will just short circuit the ordered completion stuff which will
4934 * make sure the ordered extent gets properly cleaned up.
4935 */
199c2a9c 4936 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4937 root_extent_list)
4938 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4939 spin_unlock(&root->ordered_extent_lock);
4940}
4941
4942static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4943{
4944 struct btrfs_root *root;
4945 struct list_head splice;
4946
4947 INIT_LIST_HEAD(&splice);
4948
4949 spin_lock(&fs_info->ordered_root_lock);
4950 list_splice_init(&fs_info->ordered_roots, &splice);
4951 while (!list_empty(&splice)) {
4952 root = list_first_entry(&splice, struct btrfs_root,
4953 ordered_root);
1de2cfde
JB
4954 list_move_tail(&root->ordered_root,
4955 &fs_info->ordered_roots);
199c2a9c 4956
2a85d9ca 4957 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4958 btrfs_destroy_ordered_extents(root);
4959
2a85d9ca
LB
4960 cond_resched();
4961 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4962 }
4963 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4964
4965 /*
4966 * We need this here because if we've been flipped read-only we won't
4967 * get sync() from the umount, so we need to make sure any ordered
4968 * extents that haven't had their dirty pages IO start writeout yet
4969 * actually get run and error out properly.
4970 */
4971 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4972}
4973
35a3621b 4974static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4975 struct btrfs_fs_info *fs_info)
acce952b 4976{
4977 struct rb_node *node;
4978 struct btrfs_delayed_ref_root *delayed_refs;
4979 struct btrfs_delayed_ref_node *ref;
4980 int ret = 0;
4981
4982 delayed_refs = &trans->delayed_refs;
4983
4984 spin_lock(&delayed_refs->lock);
d7df2c79 4985 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4986 spin_unlock(&delayed_refs->lock);
b79ce3dd 4987 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4988 return ret;
4989 }
4990
5c9d028b 4991 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4992 struct btrfs_delayed_ref_head *head;
0e0adbcf 4993 struct rb_node *n;
e78417d1 4994 bool pin_bytes = false;
acce952b 4995
d7df2c79
JB
4996 head = rb_entry(node, struct btrfs_delayed_ref_head,
4997 href_node);
3069bd26 4998 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4999 continue;
3069bd26 5000
d7df2c79 5001 spin_lock(&head->lock);
e3d03965 5002 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
5003 ref = rb_entry(n, struct btrfs_delayed_ref_node,
5004 ref_node);
d7df2c79 5005 ref->in_tree = 0;
e3d03965 5006 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 5007 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
5008 if (!list_empty(&ref->add_list))
5009 list_del(&ref->add_list);
d7df2c79
JB
5010 atomic_dec(&delayed_refs->num_entries);
5011 btrfs_put_delayed_ref(ref);
e78417d1 5012 }
d7df2c79
JB
5013 if (head->must_insert_reserved)
5014 pin_bytes = true;
5015 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 5016 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
5017 spin_unlock(&head->lock);
5018 spin_unlock(&delayed_refs->lock);
5019 mutex_unlock(&head->mutex);
acce952b 5020
f603bb94
NB
5021 if (pin_bytes) {
5022 struct btrfs_block_group *cache;
5023
5024 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5025 BUG_ON(!cache);
5026
5027 spin_lock(&cache->space_info->lock);
5028 spin_lock(&cache->lock);
5029 cache->pinned += head->num_bytes;
5030 btrfs_space_info_update_bytes_pinned(fs_info,
5031 cache->space_info, head->num_bytes);
5032 cache->reserved -= head->num_bytes;
5033 cache->space_info->bytes_reserved -= head->num_bytes;
5034 spin_unlock(&cache->lock);
5035 spin_unlock(&cache->space_info->lock);
f603bb94
NB
5036
5037 btrfs_put_block_group(cache);
5038
5039 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5040 head->bytenr + head->num_bytes - 1);
5041 }
31890da0 5042 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 5043 btrfs_put_delayed_ref_head(head);
acce952b 5044 cond_resched();
5045 spin_lock(&delayed_refs->lock);
5046 }
81f7eb00 5047 btrfs_qgroup_destroy_extent_records(trans);
acce952b 5048
5049 spin_unlock(&delayed_refs->lock);
5050
5051 return ret;
5052}
5053
143bede5 5054static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 5055{
5056 struct btrfs_inode *btrfs_inode;
5057 struct list_head splice;
5058
5059 INIT_LIST_HEAD(&splice);
5060
eb73c1b7
MX
5061 spin_lock(&root->delalloc_lock);
5062 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 5063
5064 while (!list_empty(&splice)) {
fe816d0f 5065 struct inode *inode = NULL;
eb73c1b7
MX
5066 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5067 delalloc_inodes);
fe816d0f 5068 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 5069 spin_unlock(&root->delalloc_lock);
acce952b 5070
fe816d0f
NB
5071 /*
5072 * Make sure we get a live inode and that it'll not disappear
5073 * meanwhile.
5074 */
5075 inode = igrab(&btrfs_inode->vfs_inode);
5076 if (inode) {
5077 invalidate_inode_pages2(inode->i_mapping);
5078 iput(inode);
5079 }
eb73c1b7 5080 spin_lock(&root->delalloc_lock);
acce952b 5081 }
eb73c1b7
MX
5082 spin_unlock(&root->delalloc_lock);
5083}
5084
5085static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5086{
5087 struct btrfs_root *root;
5088 struct list_head splice;
5089
5090 INIT_LIST_HEAD(&splice);
5091
5092 spin_lock(&fs_info->delalloc_root_lock);
5093 list_splice_init(&fs_info->delalloc_roots, &splice);
5094 while (!list_empty(&splice)) {
5095 root = list_first_entry(&splice, struct btrfs_root,
5096 delalloc_root);
00246528 5097 root = btrfs_grab_root(root);
eb73c1b7
MX
5098 BUG_ON(!root);
5099 spin_unlock(&fs_info->delalloc_root_lock);
5100
5101 btrfs_destroy_delalloc_inodes(root);
00246528 5102 btrfs_put_root(root);
eb73c1b7
MX
5103
5104 spin_lock(&fs_info->delalloc_root_lock);
5105 }
5106 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5107}
5108
2ff7e61e 5109static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5110 struct extent_io_tree *dirty_pages,
5111 int mark)
5112{
5113 int ret;
acce952b 5114 struct extent_buffer *eb;
5115 u64 start = 0;
5116 u64 end;
acce952b 5117
5118 while (1) {
5119 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5120 mark, NULL);
acce952b 5121 if (ret)
5122 break;
5123
91166212 5124 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5125 while (start <= end) {
0b246afa
JM
5126 eb = find_extent_buffer(fs_info, start);
5127 start += fs_info->nodesize;
fd8b2b61 5128 if (!eb)
acce952b 5129 continue;
fd8b2b61 5130 wait_on_extent_buffer_writeback(eb);
acce952b 5131
fd8b2b61
JB
5132 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5133 &eb->bflags))
5134 clear_extent_buffer_dirty(eb);
5135 free_extent_buffer_stale(eb);
acce952b 5136 }
5137 }
5138
5139 return ret;
5140}
5141
2ff7e61e 5142static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5143 struct extent_io_tree *unpin)
acce952b 5144{
acce952b 5145 u64 start;
5146 u64 end;
5147 int ret;
5148
acce952b 5149 while (1) {
0e6ec385
FM
5150 struct extent_state *cached_state = NULL;
5151
fcd5e742
LF
5152 /*
5153 * The btrfs_finish_extent_commit() may get the same range as
5154 * ours between find_first_extent_bit and clear_extent_dirty.
5155 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5156 * the same extent range.
5157 */
5158 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5159 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5160 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5161 if (ret) {
5162 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5163 break;
fcd5e742 5164 }
acce952b 5165
0e6ec385
FM
5166 clear_extent_dirty(unpin, start, end, &cached_state);
5167 free_extent_state(cached_state);
2ff7e61e 5168 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5169 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5170 cond_resched();
5171 }
5172
5173 return 0;
5174}
5175
32da5386 5176static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5177{
5178 struct inode *inode;
5179
5180 inode = cache->io_ctl.inode;
5181 if (inode) {
5182 invalidate_inode_pages2(inode->i_mapping);
5183 BTRFS_I(inode)->generation = 0;
5184 cache->io_ctl.inode = NULL;
5185 iput(inode);
5186 }
bbc37d6e 5187 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5188 btrfs_put_block_group(cache);
5189}
5190
5191void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5192 struct btrfs_fs_info *fs_info)
c79a1751 5193{
32da5386 5194 struct btrfs_block_group *cache;
c79a1751
LB
5195
5196 spin_lock(&cur_trans->dirty_bgs_lock);
5197 while (!list_empty(&cur_trans->dirty_bgs)) {
5198 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5199 struct btrfs_block_group,
c79a1751 5200 dirty_list);
c79a1751
LB
5201
5202 if (!list_empty(&cache->io_list)) {
5203 spin_unlock(&cur_trans->dirty_bgs_lock);
5204 list_del_init(&cache->io_list);
5205 btrfs_cleanup_bg_io(cache);
5206 spin_lock(&cur_trans->dirty_bgs_lock);
5207 }
5208
5209 list_del_init(&cache->dirty_list);
5210 spin_lock(&cache->lock);
5211 cache->disk_cache_state = BTRFS_DC_ERROR;
5212 spin_unlock(&cache->lock);
5213
5214 spin_unlock(&cur_trans->dirty_bgs_lock);
5215 btrfs_put_block_group(cache);
ba2c4d4e 5216 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5217 spin_lock(&cur_trans->dirty_bgs_lock);
5218 }
5219 spin_unlock(&cur_trans->dirty_bgs_lock);
5220
45ae2c18
NB
5221 /*
5222 * Refer to the definition of io_bgs member for details why it's safe
5223 * to use it without any locking
5224 */
c79a1751
LB
5225 while (!list_empty(&cur_trans->io_bgs)) {
5226 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5227 struct btrfs_block_group,
c79a1751 5228 io_list);
c79a1751
LB
5229
5230 list_del_init(&cache->io_list);
5231 spin_lock(&cache->lock);
5232 cache->disk_cache_state = BTRFS_DC_ERROR;
5233 spin_unlock(&cache->lock);
5234 btrfs_cleanup_bg_io(cache);
5235 }
5236}
5237
49b25e05 5238void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5239 struct btrfs_fs_info *fs_info)
49b25e05 5240{
bbbf7243
NB
5241 struct btrfs_device *dev, *tmp;
5242
2ff7e61e 5243 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5244 ASSERT(list_empty(&cur_trans->dirty_bgs));
5245 ASSERT(list_empty(&cur_trans->io_bgs));
5246
bbbf7243
NB
5247 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5248 post_commit_list) {
5249 list_del_init(&dev->post_commit_list);
5250 }
5251
2ff7e61e 5252 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5253
4a9d8bde 5254 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5255 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5256
4a9d8bde 5257 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5258 wake_up(&fs_info->transaction_wait);
49b25e05 5259
ccdf9b30 5260 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5261
2ff7e61e 5262 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5263 EXTENT_DIRTY);
fe119a6e 5264 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5265
d3575156
NA
5266 btrfs_free_redirty_list(cur_trans);
5267
4a9d8bde
MX
5268 cur_trans->state =TRANS_STATE_COMPLETED;
5269 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5270}
5271
2ff7e61e 5272static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5273{
5274 struct btrfs_transaction *t;
acce952b 5275
0b246afa 5276 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5277
0b246afa
JM
5278 spin_lock(&fs_info->trans_lock);
5279 while (!list_empty(&fs_info->trans_list)) {
5280 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5281 struct btrfs_transaction, list);
5282 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5283 refcount_inc(&t->use_count);
0b246afa 5284 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5285 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5286 btrfs_put_transaction(t);
0b246afa 5287 spin_lock(&fs_info->trans_lock);
724e2315
JB
5288 continue;
5289 }
0b246afa 5290 if (t == fs_info->running_transaction) {
724e2315 5291 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5292 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5293 /*
5294 * We wait for 0 num_writers since we don't hold a trans
5295 * handle open currently for this transaction.
5296 */
5297 wait_event(t->writer_wait,
5298 atomic_read(&t->num_writers) == 0);
5299 } else {
0b246afa 5300 spin_unlock(&fs_info->trans_lock);
724e2315 5301 }
2ff7e61e 5302 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5303
0b246afa
JM
5304 spin_lock(&fs_info->trans_lock);
5305 if (t == fs_info->running_transaction)
5306 fs_info->running_transaction = NULL;
acce952b 5307 list_del_init(&t->list);
0b246afa 5308 spin_unlock(&fs_info->trans_lock);
acce952b 5309
724e2315 5310 btrfs_put_transaction(t);
2e4e97ab 5311 trace_btrfs_transaction_commit(fs_info);
0b246afa 5312 spin_lock(&fs_info->trans_lock);
724e2315 5313 }
0b246afa
JM
5314 spin_unlock(&fs_info->trans_lock);
5315 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5316 btrfs_destroy_delayed_inodes(fs_info);
5317 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5318 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5319 btrfs_drop_all_logs(fs_info);
0b246afa 5320 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5321
5322 return 0;
5323}
ec7d6dfd 5324
453e4873 5325int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5326{
5327 struct btrfs_path *path;
5328 int ret;
5329 struct extent_buffer *l;
5330 struct btrfs_key search_key;
5331 struct btrfs_key found_key;
5332 int slot;
5333
5334 path = btrfs_alloc_path();
5335 if (!path)
5336 return -ENOMEM;
5337
5338 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5339 search_key.type = -1;
5340 search_key.offset = (u64)-1;
5341 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5342 if (ret < 0)
5343 goto error;
5344 BUG_ON(ret == 0); /* Corruption */
5345 if (path->slots[0] > 0) {
5346 slot = path->slots[0] - 1;
5347 l = path->nodes[0];
5348 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5349 root->free_objectid = max_t(u64, found_key.objectid + 1,
5350 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5351 } else {
23125104 5352 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5353 }
5354 ret = 0;
5355error:
5356 btrfs_free_path(path);
5357 return ret;
5358}
5359
543068a2 5360int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5361{
5362 int ret;
5363 mutex_lock(&root->objectid_mutex);
5364
6b8fad57 5365 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5366 btrfs_warn(root->fs_info,
5367 "the objectid of root %llu reaches its highest value",
5368 root->root_key.objectid);
5369 ret = -ENOSPC;
5370 goto out;
5371 }
5372
23125104 5373 *objectid = root->free_objectid++;
ec7d6dfd
NB
5374 ret = 0;
5375out:
5376 mutex_unlock(&root->objectid_mutex);
5377 return ret;
5378}