]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/super.c
printk/kdb: handle more message headers
[people/ms/linux.git] / fs / btrfs / super.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
4b82d6e4 19#include <linux/blkdev.h>
2e635a27 20#include <linux/module.h>
e20d96d6 21#include <linux/buffer_head.h>
2e635a27
CM
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
a9572a15 27#include <linux/seq_file.h>
2e635a27 28#include <linux/string.h>
2e635a27 29#include <linux/backing-dev.h>
4b82d6e4 30#include <linux/mount.h>
dee26a9f 31#include <linux/mpage.h>
75dfe396
CM
32#include <linux/swap.h>
33#include <linux/writeback.h>
8fd17795 34#include <linux/statfs.h>
08607c1b 35#include <linux/compat.h>
95e05289 36#include <linux/parser.h>
c59f8951 37#include <linux/ctype.h>
6da6abae 38#include <linux/namei.h>
a9218f6b 39#include <linux/miscdevice.h>
1bcbf313 40#include <linux/magic.h>
5a0e3ad6 41#include <linux/slab.h>
90a887c9 42#include <linux/cleancache.h>
22c44fe6 43#include <linux/ratelimit.h>
55e301fd 44#include <linux/btrfs.h>
16cdcec7 45#include "delayed-inode.h"
2e635a27 46#include "ctree.h"
e20d96d6 47#include "disk-io.h"
d5719762 48#include "transaction.h"
2c90e5d6 49#include "btrfs_inode.h"
3a686375 50#include "print-tree.h"
14a958e6 51#include "hash.h"
63541927 52#include "props.h"
5103e947 53#include "xattr.h"
8a4b83cc 54#include "volumes.h"
be6e8dc0 55#include "export.h"
c8b97818 56#include "compression.h"
9c5085c1 57#include "rcu-string.h"
8dabb742 58#include "dev-replace.h"
74255aa0 59#include "free-space-cache.h"
b9e9a6cb 60#include "backref.h"
dc11dd5d 61#include "tests/btrfs-tests.h"
2e635a27 62
d3982100 63#include "qgroup.h"
1abe9b8a 64#define CREATE_TRACE_POINTS
65#include <trace/events/btrfs.h>
66
b87221de 67static const struct super_operations btrfs_super_ops;
830c4adb 68static struct file_system_type btrfs_fs_type;
75dfe396 69
0723a047
HH
70static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
e33e17ee 72const char *btrfs_decode_error(int errno)
acce952b 73{
08748810 74 char *errstr = "unknown";
acce952b 75
76 switch (errno) {
77 case -EIO:
78 errstr = "IO failure";
79 break;
80 case -ENOMEM:
81 errstr = "Out of memory";
82 break;
83 case -EROFS:
84 errstr = "Readonly filesystem";
85 break;
8c342930
JM
86 case -EEXIST:
87 errstr = "Object already exists";
88 break;
94ef7280
DS
89 case -ENOSPC:
90 errstr = "No space left";
91 break;
92 case -ENOENT:
93 errstr = "No such entry";
94 break;
acce952b 95 }
96
97 return errstr;
98}
99
acce952b 100/* btrfs handle error by forcing the filesystem readonly */
101static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
102{
103 struct super_block *sb = fs_info->sb;
104
105 if (sb->s_flags & MS_RDONLY)
106 return;
107
87533c47 108 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
acce952b 109 sb->s_flags |= MS_RDONLY;
c2cf52eb 110 btrfs_info(fs_info, "forced readonly");
1acd6831
SB
111 /*
112 * Note that a running device replace operation is not
113 * canceled here although there is no way to update
114 * the progress. It would add the risk of a deadlock,
01327610 115 * therefore the canceling is omitted. The only penalty
1acd6831
SB
116 * is that some I/O remains active until the procedure
117 * completes. The next time when the filesystem is
118 * mounted writeable again, the device replace
119 * operation continues.
120 */
acce952b 121 }
122}
123
124/*
34d97007 125 * __btrfs_handle_fs_error decodes expected errors from the caller and
acce952b 126 * invokes the approciate error response.
127 */
c0d19e2b 128__cold
34d97007 129void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
4da35113 130 unsigned int line, int errno, const char *fmt, ...)
acce952b 131{
132 struct super_block *sb = fs_info->sb;
57d816a1 133#ifdef CONFIG_PRINTK
acce952b 134 const char *errstr;
57d816a1 135#endif
acce952b 136
137 /*
138 * Special case: if the error is EROFS, and we're already
139 * under MS_RDONLY, then it is safe here.
140 */
141 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
4da35113
JM
142 return;
143
57d816a1 144#ifdef CONFIG_PRINTK
08748810 145 errstr = btrfs_decode_error(errno);
4da35113 146 if (fmt) {
37252a66
ES
147 struct va_format vaf;
148 va_list args;
149
150 va_start(args, fmt);
151 vaf.fmt = fmt;
152 vaf.va = &args;
4da35113 153
62e85577 154 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
08748810 155 sb->s_id, function, line, errno, errstr, &vaf);
37252a66 156 va_end(args);
4da35113 157 } else {
62e85577 158 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
08748810 159 sb->s_id, function, line, errno, errstr);
4da35113 160 }
57d816a1 161#endif
acce952b 162
0713d90c
AJ
163 /*
164 * Today we only save the error info to memory. Long term we'll
165 * also send it down to the disk
166 */
167 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
168
4da35113 169 /* Don't go through full error handling during mount */
cf79ffb5 170 if (sb->s_flags & MS_BORN)
4da35113 171 btrfs_handle_error(fs_info);
4da35113 172}
acce952b 173
57d816a1 174#ifdef CONFIG_PRINTK
533574c6 175static const char * const logtypes[] = {
4da35113
JM
176 "emergency",
177 "alert",
178 "critical",
179 "error",
180 "warning",
181 "notice",
182 "info",
183 "debug",
184};
185
35f4e5e6
NB
186
187/*
188 * Use one ratelimit state per log level so that a flood of less important
189 * messages doesn't cause more important ones to be dropped.
190 */
191static struct ratelimit_state printk_limits[] = {
192 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
193 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
194 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
195 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
196 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
197 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
198 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
199 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
200};
201
c2cf52eb 202void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
4da35113
JM
203{
204 struct super_block *sb = fs_info->sb;
205 char lvl[4];
206 struct va_format vaf;
207 va_list args;
208 const char *type = logtypes[4];
533574c6 209 int kern_level;
35f4e5e6 210 struct ratelimit_state *ratelimit;
4da35113
JM
211
212 va_start(args, fmt);
213
533574c6
JP
214 kern_level = printk_get_level(fmt);
215 if (kern_level) {
216 size_t size = printk_skip_level(fmt) - fmt;
217 memcpy(lvl, fmt, size);
218 lvl[size] = '\0';
219 fmt += size;
220 type = logtypes[kern_level - '0'];
35f4e5e6
NB
221 ratelimit = &printk_limits[kern_level - '0'];
222 } else {
4da35113 223 *lvl = '\0';
35f4e5e6
NB
224 /* Default to debug output */
225 ratelimit = &printk_limits[7];
226 }
4da35113
JM
227
228 vaf.fmt = fmt;
229 vaf.va = &args;
533574c6 230
35f4e5e6
NB
231 if (__ratelimit(ratelimit))
232 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
533574c6
JP
233
234 va_end(args);
235}
533574c6 236#endif
acce952b 237
49b25e05
JM
238/*
239 * We only mark the transaction aborted and then set the file system read-only.
240 * This will prevent new transactions from starting or trying to join this
241 * one.
242 *
243 * This means that error recovery at the call site is limited to freeing
244 * any local memory allocations and passing the error code up without
245 * further cleanup. The transaction should complete as it normally would
246 * in the call path but will return -EIO.
247 *
248 * We'll complete the cleanup in btrfs_end_transaction and
249 * btrfs_commit_transaction.
250 */
c0d19e2b 251__cold
49b25e05 252void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
66642832 253 const char *function,
49b25e05
JM
254 unsigned int line, int errno)
255{
66642832
JM
256 struct btrfs_fs_info *fs_info = trans->fs_info;
257
49b25e05
JM
258 trans->aborted = errno;
259 /* Nothing used. The other threads that have joined this
260 * transaction may be able to continue. */
64c12921 261 if (!trans->dirty && list_empty(&trans->new_bgs)) {
69ce977a
MX
262 const char *errstr;
263
08748810 264 errstr = btrfs_decode_error(errno);
66642832 265 btrfs_warn(fs_info,
c2cf52eb
SK
266 "%s:%d: Aborting unused transaction(%s).",
267 function, line, errstr);
acce952b 268 return;
49b25e05 269 }
8d25a086 270 ACCESS_ONCE(trans->transaction->aborted) = errno;
501407aa 271 /* Wake up anybody who may be waiting on this transaction */
66642832
JM
272 wake_up(&fs_info->transaction_wait);
273 wake_up(&fs_info->transaction_blocked_wait);
274 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
49b25e05 275}
8c342930
JM
276/*
277 * __btrfs_panic decodes unexpected, fatal errors from the caller,
278 * issues an alert, and either panics or BUGs, depending on mount options.
279 */
c0d19e2b 280__cold
8c342930
JM
281void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
282 unsigned int line, int errno, const char *fmt, ...)
283{
8c342930
JM
284 char *s_id = "<unknown>";
285 const char *errstr;
286 struct va_format vaf = { .fmt = fmt };
287 va_list args;
acce952b 288
8c342930
JM
289 if (fs_info)
290 s_id = fs_info->sb->s_id;
acce952b 291
8c342930
JM
292 va_start(args, fmt);
293 vaf.va = &args;
294
08748810 295 errstr = btrfs_decode_error(errno);
aa43a17c 296 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
08748810
DS
297 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
298 s_id, function, line, &vaf, errno, errstr);
8c342930 299
efe120a0
FH
300 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
301 function, line, &vaf, errno, errstr);
8c342930
JM
302 va_end(args);
303 /* Caller calls BUG() */
acce952b 304}
305
d397712b 306static void btrfs_put_super(struct super_block *sb)
b18c6685 307{
3abdbd78 308 close_ctree(btrfs_sb(sb)->tree_root);
75dfe396
CM
309}
310
95e05289 311enum {
73f73415 312 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
287a0ab9
JB
313 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
314 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
261507a0
LZ
315 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
316 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
70f6d82e
OS
317 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
318 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
319 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
320 Opt_skip_balance, Opt_check_integrity,
321 Opt_check_integrity_including_extent_data,
f420ee1e 322 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
e07a2ade 323 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
a258af7a 324 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
8dcddfa0 325 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
fed8f166 326 Opt_nologreplay, Opt_norecovery,
d0bd4560
JB
327#ifdef CONFIG_BTRFS_DEBUG
328 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
329#endif
9555c6c1 330 Opt_err,
95e05289
CM
331};
332
4d4ab6d6 333static const match_table_t tokens = {
dfe25020 334 {Opt_degraded, "degraded"},
95e05289 335 {Opt_subvol, "subvol=%s"},
1493381f 336 {Opt_subvolid, "subvolid=%s"},
43e570b0 337 {Opt_device, "device=%s"},
b6cda9bc 338 {Opt_nodatasum, "nodatasum"},
d399167d 339 {Opt_datasum, "datasum"},
be20aa9d 340 {Opt_nodatacow, "nodatacow"},
a258af7a 341 {Opt_datacow, "datacow"},
21ad10cf 342 {Opt_nobarrier, "nobarrier"},
842bef58 343 {Opt_barrier, "barrier"},
6f568d35 344 {Opt_max_inline, "max_inline=%s"},
8f662a76 345 {Opt_alloc_start, "alloc_start=%s"},
4543df7e 346 {Opt_thread_pool, "thread_pool=%d"},
c8b97818 347 {Opt_compress, "compress"},
261507a0 348 {Opt_compress_type, "compress=%s"},
a555f810 349 {Opt_compress_force, "compress-force"},
261507a0 350 {Opt_compress_force_type, "compress-force=%s"},
e18e4809 351 {Opt_ssd, "ssd"},
451d7585 352 {Opt_ssd_spread, "ssd_spread"},
3b30c22f 353 {Opt_nossd, "nossd"},
bd0330ad 354 {Opt_acl, "acl"},
33268eaf 355 {Opt_noacl, "noacl"},
3a5e1404 356 {Opt_notreelog, "notreelog"},
a88998f2 357 {Opt_treelog, "treelog"},
96da0919 358 {Opt_nologreplay, "nologreplay"},
fed8f166 359 {Opt_norecovery, "norecovery"},
dccae999 360 {Opt_flushoncommit, "flushoncommit"},
2c9ee856 361 {Opt_noflushoncommit, "noflushoncommit"},
97e728d4 362 {Opt_ratio, "metadata_ratio=%d"},
e244a0ae 363 {Opt_discard, "discard"},
e07a2ade 364 {Opt_nodiscard, "nodiscard"},
0af3d00b 365 {Opt_space_cache, "space_cache"},
70f6d82e 366 {Opt_space_cache_version, "space_cache=%s"},
88c2ba3b 367 {Opt_clear_cache, "clear_cache"},
4260f7c7 368 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
91435650 369 {Opt_enospc_debug, "enospc_debug"},
53036293 370 {Opt_noenospc_debug, "noenospc_debug"},
e15d0542 371 {Opt_subvolrootid, "subvolrootid=%d"},
4cb5300b 372 {Opt_defrag, "autodefrag"},
fc0ca9af 373 {Opt_nodefrag, "noautodefrag"},
4b9465cb 374 {Opt_inode_cache, "inode_cache"},
3818aea2 375 {Opt_noinode_cache, "noinode_cache"},
8965593e 376 {Opt_no_space_cache, "nospace_cache"},
8dcddfa0
QW
377 {Opt_recovery, "recovery"}, /* deprecated */
378 {Opt_usebackuproot, "usebackuproot"},
9555c6c1 379 {Opt_skip_balance, "skip_balance"},
21adbd5c
SB
380 {Opt_check_integrity, "check_int"},
381 {Opt_check_integrity_including_extent_data, "check_int_data"},
382 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
f420ee1e 383 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
8c342930 384 {Opt_fatal_errors, "fatal_errors=%s"},
8b87dc17 385 {Opt_commit_interval, "commit=%d"},
d0bd4560
JB
386#ifdef CONFIG_BTRFS_DEBUG
387 {Opt_fragment_data, "fragment=data"},
388 {Opt_fragment_metadata, "fragment=metadata"},
389 {Opt_fragment_all, "fragment=all"},
390#endif
33268eaf 391 {Opt_err, NULL},
95e05289
CM
392};
393
edf24abe
CH
394/*
395 * Regular mount options parser. Everything that is needed only when
396 * reading in a new superblock is parsed here.
49b25e05 397 * XXX JDM: This needs to be cleaned up for remount.
edf24abe 398 */
96da0919
QW
399int btrfs_parse_options(struct btrfs_root *root, char *options,
400 unsigned long new_flags)
95e05289 401{
edf24abe 402 struct btrfs_fs_info *info = root->fs_info;
95e05289 403 substring_t args[MAX_OPT_ARGS];
73bc1876
JB
404 char *p, *num, *orig = NULL;
405 u64 cache_gen;
4543df7e 406 int intarg;
a7a3f7ca 407 int ret = 0;
261507a0
LZ
408 char *compress_type;
409 bool compress_force = false;
b7c47bbb
TI
410 enum btrfs_compression_type saved_compress_type;
411 bool saved_compress_force;
412 int no_compress = 0;
b6cda9bc 413
6c41761f 414 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
70f6d82e
OS
415 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE))
416 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
417 else if (cache_gen)
73bc1876
JB
418 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
419
96da0919
QW
420 /*
421 * Even the options are empty, we still need to do extra check
422 * against new flags
423 */
95e05289 424 if (!options)
96da0919 425 goto check;
95e05289 426
be20aa9d
CM
427 /*
428 * strsep changes the string, duplicate it because parse_options
429 * gets called twice
430 */
431 options = kstrdup(options, GFP_NOFS);
432 if (!options)
433 return -ENOMEM;
434
da495ecc 435 orig = options;
be20aa9d 436
edf24abe 437 while ((p = strsep(&options, ",")) != NULL) {
95e05289
CM
438 int token;
439 if (!*p)
440 continue;
441
442 token = match_token(p, tokens, args);
443 switch (token) {
dfe25020 444 case Opt_degraded:
efe120a0 445 btrfs_info(root->fs_info, "allowing degraded mounts");
edf24abe 446 btrfs_set_opt(info->mount_opt, DEGRADED);
dfe25020 447 break;
95e05289 448 case Opt_subvol:
73f73415 449 case Opt_subvolid:
e15d0542 450 case Opt_subvolrootid:
43e570b0 451 case Opt_device:
edf24abe 452 /*
43e570b0 453 * These are parsed by btrfs_parse_early_options
edf24abe
CH
454 * and can be happily ignored here.
455 */
b6cda9bc
CM
456 break;
457 case Opt_nodatasum:
3cdde224 458 btrfs_set_and_info(info, NODATASUM,
07802534 459 "setting nodatasum");
be20aa9d 460 break;
d399167d 461 case Opt_datasum:
3cdde224
JM
462 if (btrfs_test_opt(info, NODATASUM)) {
463 if (btrfs_test_opt(info, NODATACOW))
5d163e0e
JM
464 btrfs_info(root->fs_info,
465 "setting datasum, datacow enabled");
07802534 466 else
5d163e0e
JM
467 btrfs_info(root->fs_info,
468 "setting datasum");
07802534 469 }
d399167d
QW
470 btrfs_clear_opt(info->mount_opt, NODATACOW);
471 btrfs_clear_opt(info->mount_opt, NODATASUM);
472 break;
be20aa9d 473 case Opt_nodatacow:
3cdde224
JM
474 if (!btrfs_test_opt(info, NODATACOW)) {
475 if (!btrfs_test_opt(info, COMPRESS) ||
476 !btrfs_test_opt(info, FORCE_COMPRESS)) {
efe120a0 477 btrfs_info(root->fs_info,
07802534
QW
478 "setting nodatacow, compression disabled");
479 } else {
5d163e0e
JM
480 btrfs_info(root->fs_info,
481 "setting nodatacow");
07802534 482 }
bedb2cca 483 }
bedb2cca
AP
484 btrfs_clear_opt(info->mount_opt, COMPRESS);
485 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
edf24abe
CH
486 btrfs_set_opt(info->mount_opt, NODATACOW);
487 btrfs_set_opt(info->mount_opt, NODATASUM);
95e05289 488 break;
a258af7a 489 case Opt_datacow:
3cdde224 490 btrfs_clear_and_info(info, NODATACOW,
07802534 491 "setting datacow");
a258af7a 492 break;
a555f810 493 case Opt_compress_force:
261507a0
LZ
494 case Opt_compress_force_type:
495 compress_force = true;
1c697d4a 496 /* Fallthrough */
261507a0
LZ
497 case Opt_compress:
498 case Opt_compress_type:
3cdde224
JM
499 saved_compress_type = btrfs_test_opt(info,
500 COMPRESS) ?
b7c47bbb
TI
501 info->compress_type : BTRFS_COMPRESS_NONE;
502 saved_compress_force =
3cdde224 503 btrfs_test_opt(info, FORCE_COMPRESS);
261507a0
LZ
504 if (token == Opt_compress ||
505 token == Opt_compress_force ||
506 strcmp(args[0].from, "zlib") == 0) {
507 compress_type = "zlib";
508 info->compress_type = BTRFS_COMPRESS_ZLIB;
063849ea 509 btrfs_set_opt(info->mount_opt, COMPRESS);
bedb2cca
AP
510 btrfs_clear_opt(info->mount_opt, NODATACOW);
511 btrfs_clear_opt(info->mount_opt, NODATASUM);
b7c47bbb 512 no_compress = 0;
a6fa6fae
LZ
513 } else if (strcmp(args[0].from, "lzo") == 0) {
514 compress_type = "lzo";
515 info->compress_type = BTRFS_COMPRESS_LZO;
063849ea 516 btrfs_set_opt(info->mount_opt, COMPRESS);
bedb2cca
AP
517 btrfs_clear_opt(info->mount_opt, NODATACOW);
518 btrfs_clear_opt(info->mount_opt, NODATASUM);
2b0ce2c2 519 btrfs_set_fs_incompat(info, COMPRESS_LZO);
b7c47bbb 520 no_compress = 0;
063849ea
AH
521 } else if (strncmp(args[0].from, "no", 2) == 0) {
522 compress_type = "no";
063849ea
AH
523 btrfs_clear_opt(info->mount_opt, COMPRESS);
524 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
525 compress_force = false;
b7c47bbb 526 no_compress++;
261507a0
LZ
527 } else {
528 ret = -EINVAL;
529 goto out;
530 }
531
261507a0 532 if (compress_force) {
b7c47bbb 533 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
143f3636 534 } else {
4027e0f4
WS
535 /*
536 * If we remount from compress-force=xxx to
537 * compress=xxx, we need clear FORCE_COMPRESS
538 * flag, otherwise, there is no way for users
539 * to disable forcible compression separately.
540 */
541 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
a7e252af 542 }
3cdde224 543 if ((btrfs_test_opt(info, COMPRESS) &&
b7c47bbb
TI
544 (info->compress_type != saved_compress_type ||
545 compress_force != saved_compress_force)) ||
3cdde224 546 (!btrfs_test_opt(info, COMPRESS) &&
b7c47bbb
TI
547 no_compress == 1)) {
548 btrfs_info(root->fs_info,
549 "%s %s compression",
550 (compress_force) ? "force" : "use",
551 compress_type);
552 }
553 compress_force = false;
a555f810 554 break;
e18e4809 555 case Opt_ssd:
3cdde224 556 btrfs_set_and_info(info, SSD,
07802534 557 "use ssd allocation scheme");
e18e4809 558 break;
451d7585 559 case Opt_ssd_spread:
3cdde224 560 btrfs_set_and_info(info, SSD_SPREAD,
07802534 561 "use spread ssd allocation scheme");
2aa06a35 562 btrfs_set_opt(info->mount_opt, SSD);
451d7585 563 break;
3b30c22f 564 case Opt_nossd:
3cdde224 565 btrfs_set_and_info(info, NOSSD,
07802534 566 "not using ssd allocation scheme");
3b30c22f
CM
567 btrfs_clear_opt(info->mount_opt, SSD);
568 break;
842bef58 569 case Opt_barrier:
3cdde224 570 btrfs_clear_and_info(info, NOBARRIER,
07802534 571 "turning on barriers");
842bef58 572 break;
21ad10cf 573 case Opt_nobarrier:
3cdde224 574 btrfs_set_and_info(info, NOBARRIER,
07802534 575 "turning off barriers");
21ad10cf 576 break;
4543df7e 577 case Opt_thread_pool:
2c334e87
WS
578 ret = match_int(&args[0], &intarg);
579 if (ret) {
580 goto out;
581 } else if (intarg > 0) {
4543df7e 582 info->thread_pool_size = intarg;
2c334e87
WS
583 } else {
584 ret = -EINVAL;
585 goto out;
586 }
4543df7e 587 break;
6f568d35 588 case Opt_max_inline:
edf24abe
CH
589 num = match_strdup(&args[0]);
590 if (num) {
91748467 591 info->max_inline = memparse(num, NULL);
edf24abe
CH
592 kfree(num);
593
15ada040 594 if (info->max_inline) {
feb5f965 595 info->max_inline = min_t(u64,
15ada040
CM
596 info->max_inline,
597 root->sectorsize);
598 }
efe120a0 599 btrfs_info(root->fs_info, "max_inline at %llu",
c1c9ff7c 600 info->max_inline);
2c334e87
WS
601 } else {
602 ret = -ENOMEM;
603 goto out;
6f568d35
CM
604 }
605 break;
8f662a76 606 case Opt_alloc_start:
edf24abe
CH
607 num = match_strdup(&args[0]);
608 if (num) {
c018daec 609 mutex_lock(&info->chunk_mutex);
91748467 610 info->alloc_start = memparse(num, NULL);
c018daec 611 mutex_unlock(&info->chunk_mutex);
edf24abe 612 kfree(num);
5d163e0e
JM
613 btrfs_info(root->fs_info,
614 "allocations start at %llu",
615 info->alloc_start);
2c334e87
WS
616 } else {
617 ret = -ENOMEM;
618 goto out;
8f662a76
CM
619 }
620 break;
bd0330ad 621 case Opt_acl:
45ff35d6 622#ifdef CONFIG_BTRFS_FS_POSIX_ACL
bd0330ad
QW
623 root->fs_info->sb->s_flags |= MS_POSIXACL;
624 break;
45ff35d6
GZ
625#else
626 btrfs_err(root->fs_info,
627 "support for ACL not compiled in!");
628 ret = -EINVAL;
629 goto out;
630#endif
33268eaf
JB
631 case Opt_noacl:
632 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
633 break;
3a5e1404 634 case Opt_notreelog:
3cdde224 635 btrfs_set_and_info(info, NOTREELOG,
07802534 636 "disabling tree log");
a88998f2
QW
637 break;
638 case Opt_treelog:
3cdde224 639 btrfs_clear_and_info(info, NOTREELOG,
07802534 640 "enabling tree log");
3a5e1404 641 break;
fed8f166 642 case Opt_norecovery:
96da0919 643 case Opt_nologreplay:
3cdde224 644 btrfs_set_and_info(info, NOLOGREPLAY,
96da0919
QW
645 "disabling log replay at mount time");
646 break;
dccae999 647 case Opt_flushoncommit:
3cdde224 648 btrfs_set_and_info(info, FLUSHONCOMMIT,
07802534 649 "turning on flush-on-commit");
dccae999 650 break;
2c9ee856 651 case Opt_noflushoncommit:
3cdde224 652 btrfs_clear_and_info(info, FLUSHONCOMMIT,
07802534 653 "turning off flush-on-commit");
2c9ee856 654 break;
97e728d4 655 case Opt_ratio:
2c334e87
WS
656 ret = match_int(&args[0], &intarg);
657 if (ret) {
658 goto out;
659 } else if (intarg >= 0) {
97e728d4 660 info->metadata_ratio = intarg;
efe120a0 661 btrfs_info(root->fs_info, "metadata ratio %d",
97e728d4 662 info->metadata_ratio);
2c334e87
WS
663 } else {
664 ret = -EINVAL;
665 goto out;
97e728d4
JB
666 }
667 break;
e244a0ae 668 case Opt_discard:
3cdde224 669 btrfs_set_and_info(info, DISCARD,
07802534 670 "turning on discard");
e244a0ae 671 break;
e07a2ade 672 case Opt_nodiscard:
3cdde224 673 btrfs_clear_and_info(info, DISCARD,
07802534 674 "turning off discard");
e07a2ade 675 break;
0af3d00b 676 case Opt_space_cache:
70f6d82e
OS
677 case Opt_space_cache_version:
678 if (token == Opt_space_cache ||
679 strcmp(args[0].from, "v1") == 0) {
680 btrfs_clear_opt(root->fs_info->mount_opt,
681 FREE_SPACE_TREE);
3cdde224 682 btrfs_set_and_info(info, SPACE_CACHE,
70f6d82e
OS
683 "enabling disk space caching");
684 } else if (strcmp(args[0].from, "v2") == 0) {
685 btrfs_clear_opt(root->fs_info->mount_opt,
686 SPACE_CACHE);
3cdde224
JM
687 btrfs_set_and_info(info,
688 FREE_SPACE_TREE,
70f6d82e
OS
689 "enabling free space tree");
690 } else {
691 ret = -EINVAL;
692 goto out;
693 }
0de90876 694 break;
f420ee1e
SB
695 case Opt_rescan_uuid_tree:
696 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
697 break;
73bc1876 698 case Opt_no_space_cache:
3cdde224
JM
699 if (btrfs_test_opt(info, SPACE_CACHE)) {
700 btrfs_clear_and_info(info,
701 SPACE_CACHE,
70f6d82e
OS
702 "disabling disk space caching");
703 }
3cdde224
JM
704 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
705 btrfs_clear_and_info(info,
706 FREE_SPACE_TREE,
70f6d82e
OS
707 "disabling free space tree");
708 }
73bc1876 709 break;
4b9465cb 710 case Opt_inode_cache:
7e1876ac 711 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
07802534 712 "enabling inode map caching");
3818aea2
QW
713 break;
714 case Opt_noinode_cache:
7e1876ac 715 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
07802534 716 "disabling inode map caching");
4b9465cb 717 break;
88c2ba3b 718 case Opt_clear_cache:
3cdde224 719 btrfs_set_and_info(info, CLEAR_CACHE,
07802534 720 "force clearing of disk cache");
0af3d00b 721 break;
4260f7c7
SW
722 case Opt_user_subvol_rm_allowed:
723 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
724 break;
91435650
CM
725 case Opt_enospc_debug:
726 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
727 break;
53036293
QW
728 case Opt_noenospc_debug:
729 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
730 break;
4cb5300b 731 case Opt_defrag:
3cdde224 732 btrfs_set_and_info(info, AUTO_DEFRAG,
07802534 733 "enabling auto defrag");
4cb5300b 734 break;
fc0ca9af 735 case Opt_nodefrag:
3cdde224 736 btrfs_clear_and_info(info, AUTO_DEFRAG,
07802534 737 "disabling auto defrag");
fc0ca9af 738 break;
af31f5e5 739 case Opt_recovery:
8dcddfa0
QW
740 btrfs_warn(root->fs_info,
741 "'recovery' is deprecated, use 'usebackuproot' instead");
742 case Opt_usebackuproot:
743 btrfs_info(root->fs_info,
744 "trying to use backup root at mount time");
745 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
af31f5e5 746 break;
9555c6c1
ID
747 case Opt_skip_balance:
748 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
749 break;
21adbd5c
SB
750#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
751 case Opt_check_integrity_including_extent_data:
efe120a0
FH
752 btrfs_info(root->fs_info,
753 "enabling check integrity including extent data");
21adbd5c
SB
754 btrfs_set_opt(info->mount_opt,
755 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
756 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
757 break;
758 case Opt_check_integrity:
efe120a0 759 btrfs_info(root->fs_info, "enabling check integrity");
21adbd5c
SB
760 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
761 break;
762 case Opt_check_integrity_print_mask:
2c334e87
WS
763 ret = match_int(&args[0], &intarg);
764 if (ret) {
765 goto out;
766 } else if (intarg >= 0) {
21adbd5c 767 info->check_integrity_print_mask = intarg;
5d163e0e
JM
768 btrfs_info(root->fs_info,
769 "check_integrity_print_mask 0x%x",
770 info->check_integrity_print_mask);
2c334e87
WS
771 } else {
772 ret = -EINVAL;
773 goto out;
21adbd5c
SB
774 }
775 break;
776#else
777 case Opt_check_integrity_including_extent_data:
778 case Opt_check_integrity:
779 case Opt_check_integrity_print_mask:
efe120a0
FH
780 btrfs_err(root->fs_info,
781 "support for check_integrity* not compiled in!");
21adbd5c
SB
782 ret = -EINVAL;
783 goto out;
784#endif
8c342930
JM
785 case Opt_fatal_errors:
786 if (strcmp(args[0].from, "panic") == 0)
787 btrfs_set_opt(info->mount_opt,
788 PANIC_ON_FATAL_ERROR);
789 else if (strcmp(args[0].from, "bug") == 0)
790 btrfs_clear_opt(info->mount_opt,
791 PANIC_ON_FATAL_ERROR);
792 else {
793 ret = -EINVAL;
794 goto out;
795 }
796 break;
8b87dc17
DS
797 case Opt_commit_interval:
798 intarg = 0;
799 ret = match_int(&args[0], &intarg);
800 if (ret < 0) {
5d163e0e
JM
801 btrfs_err(root->fs_info,
802 "invalid commit interval");
8b87dc17
DS
803 ret = -EINVAL;
804 goto out;
805 }
806 if (intarg > 0) {
807 if (intarg > 300) {
5d163e0e
JM
808 btrfs_warn(root->fs_info,
809 "excessive commit interval %d",
810 intarg);
8b87dc17
DS
811 }
812 info->commit_interval = intarg;
813 } else {
5d163e0e
JM
814 btrfs_info(root->fs_info,
815 "using default commit interval %ds",
816 BTRFS_DEFAULT_COMMIT_INTERVAL);
8b87dc17
DS
817 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
818 }
819 break;
d0bd4560
JB
820#ifdef CONFIG_BTRFS_DEBUG
821 case Opt_fragment_all:
822 btrfs_info(root->fs_info, "fragmenting all space");
823 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
824 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
825 break;
826 case Opt_fragment_metadata:
827 btrfs_info(root->fs_info, "fragmenting metadata");
828 btrfs_set_opt(info->mount_opt,
829 FRAGMENT_METADATA);
830 break;
831 case Opt_fragment_data:
832 btrfs_info(root->fs_info, "fragmenting data");
833 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
834 break;
835#endif
a7a3f7ca 836 case Opt_err:
5d163e0e
JM
837 btrfs_info(root->fs_info,
838 "unrecognized mount option '%s'", p);
a7a3f7ca
SW
839 ret = -EINVAL;
840 goto out;
95e05289 841 default:
be20aa9d 842 break;
95e05289
CM
843 }
844 }
96da0919
QW
845check:
846 /*
847 * Extra check for current option against current flag
848 */
3cdde224 849 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
96da0919
QW
850 btrfs_err(root->fs_info,
851 "nologreplay must be used with ro mount option");
852 ret = -EINVAL;
853 }
a7a3f7ca 854out:
70f6d82e 855 if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) &&
3cdde224
JM
856 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
857 !btrfs_test_opt(info, CLEAR_CACHE)) {
70f6d82e
OS
858 btrfs_err(root->fs_info, "cannot disable free space tree");
859 ret = -EINVAL;
860
861 }
3cdde224 862 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
efe120a0 863 btrfs_info(root->fs_info, "disk space caching is enabled");
3cdde224 864 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
70f6d82e 865 btrfs_info(root->fs_info, "using free space tree");
da495ecc 866 kfree(orig);
a7a3f7ca 867 return ret;
edf24abe
CH
868}
869
870/*
871 * Parse mount options that are required early in the mount process.
872 *
873 * All other options will be parsed on much later in the mount process and
874 * only when we need to allocate a new super block.
875 */
97288f2c 876static int btrfs_parse_early_options(const char *options, fmode_t flags,
73f73415 877 void *holder, char **subvol_name, u64 *subvol_objectid,
5e2a4b25 878 struct btrfs_fs_devices **fs_devices)
edf24abe
CH
879{
880 substring_t args[MAX_OPT_ARGS];
83c8c9bd 881 char *device_name, *opts, *orig, *p;
1493381f 882 char *num = NULL;
edf24abe
CH
883 int error = 0;
884
885 if (!options)
830c4adb 886 return 0;
edf24abe
CH
887
888 /*
889 * strsep changes the string, duplicate it because parse_options
890 * gets called twice
891 */
892 opts = kstrdup(options, GFP_KERNEL);
893 if (!opts)
894 return -ENOMEM;
3f3d0bc0 895 orig = opts;
edf24abe
CH
896
897 while ((p = strsep(&opts, ",")) != NULL) {
898 int token;
899 if (!*p)
900 continue;
901
902 token = match_token(p, tokens, args);
903 switch (token) {
904 case Opt_subvol:
a90e8b6f 905 kfree(*subvol_name);
edf24abe 906 *subvol_name = match_strdup(&args[0]);
2c334e87
WS
907 if (!*subvol_name) {
908 error = -ENOMEM;
909 goto out;
910 }
edf24abe 911 break;
73f73415 912 case Opt_subvolid:
1493381f
WS
913 num = match_strdup(&args[0]);
914 if (num) {
915 *subvol_objectid = memparse(num, NULL);
916 kfree(num);
4849f01d 917 /* we want the original fs_tree */
1493381f 918 if (!*subvol_objectid)
4849f01d
JB
919 *subvol_objectid =
920 BTRFS_FS_TREE_OBJECTID;
2c334e87
WS
921 } else {
922 error = -EINVAL;
923 goto out;
4849f01d 924 }
73f73415 925 break;
e15d0542 926 case Opt_subvolrootid:
62e85577 927 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
e15d0542 928 break;
43e570b0 929 case Opt_device:
83c8c9bd
JL
930 device_name = match_strdup(&args[0]);
931 if (!device_name) {
932 error = -ENOMEM;
933 goto out;
934 }
935 error = btrfs_scan_one_device(device_name,
43e570b0 936 flags, holder, fs_devices);
83c8c9bd 937 kfree(device_name);
43e570b0 938 if (error)
830c4adb 939 goto out;
43e570b0 940 break;
edf24abe
CH
941 default:
942 break;
943 }
944 }
945
830c4adb 946out:
3f3d0bc0 947 kfree(orig);
edf24abe 948 return error;
95e05289
CM
949}
950
05dbe683
OS
951static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
952 u64 subvol_objectid)
73f73415 953{
815745cf 954 struct btrfs_root *root = fs_info->tree_root;
05dbe683
OS
955 struct btrfs_root *fs_root;
956 struct btrfs_root_ref *root_ref;
957 struct btrfs_inode_ref *inode_ref;
958 struct btrfs_key key;
959 struct btrfs_path *path = NULL;
960 char *name = NULL, *ptr;
961 u64 dirid;
962 int len;
963 int ret;
964
965 path = btrfs_alloc_path();
966 if (!path) {
967 ret = -ENOMEM;
968 goto err;
969 }
970 path->leave_spinning = 1;
971
972 name = kmalloc(PATH_MAX, GFP_NOFS);
973 if (!name) {
974 ret = -ENOMEM;
975 goto err;
976 }
977 ptr = name + PATH_MAX - 1;
978 ptr[0] = '\0';
73f73415
JB
979
980 /*
05dbe683
OS
981 * Walk up the subvolume trees in the tree of tree roots by root
982 * backrefs until we hit the top-level subvolume.
73f73415 983 */
05dbe683
OS
984 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
985 key.objectid = subvol_objectid;
986 key.type = BTRFS_ROOT_BACKREF_KEY;
987 key.offset = (u64)-1;
988
989 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
990 if (ret < 0) {
991 goto err;
992 } else if (ret > 0) {
993 ret = btrfs_previous_item(root, path, subvol_objectid,
994 BTRFS_ROOT_BACKREF_KEY);
995 if (ret < 0) {
996 goto err;
997 } else if (ret > 0) {
998 ret = -ENOENT;
999 goto err;
1000 }
1001 }
1002
1003 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1004 subvol_objectid = key.offset;
1005
1006 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1007 struct btrfs_root_ref);
1008 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1009 ptr -= len + 1;
1010 if (ptr < name) {
1011 ret = -ENAMETOOLONG;
1012 goto err;
1013 }
1014 read_extent_buffer(path->nodes[0], ptr + 1,
1015 (unsigned long)(root_ref + 1), len);
1016 ptr[0] = '/';
1017 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1018 btrfs_release_path(path);
1019
1020 key.objectid = subvol_objectid;
1021 key.type = BTRFS_ROOT_ITEM_KEY;
1022 key.offset = (u64)-1;
1023 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1024 if (IS_ERR(fs_root)) {
1025 ret = PTR_ERR(fs_root);
1026 goto err;
1027 }
1028
1029 /*
1030 * Walk up the filesystem tree by inode refs until we hit the
1031 * root directory.
1032 */
1033 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1034 key.objectid = dirid;
1035 key.type = BTRFS_INODE_REF_KEY;
1036 key.offset = (u64)-1;
1037
1038 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1039 if (ret < 0) {
1040 goto err;
1041 } else if (ret > 0) {
1042 ret = btrfs_previous_item(fs_root, path, dirid,
1043 BTRFS_INODE_REF_KEY);
1044 if (ret < 0) {
1045 goto err;
1046 } else if (ret > 0) {
1047 ret = -ENOENT;
1048 goto err;
1049 }
1050 }
1051
1052 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1053 dirid = key.offset;
1054
1055 inode_ref = btrfs_item_ptr(path->nodes[0],
1056 path->slots[0],
1057 struct btrfs_inode_ref);
1058 len = btrfs_inode_ref_name_len(path->nodes[0],
1059 inode_ref);
1060 ptr -= len + 1;
1061 if (ptr < name) {
1062 ret = -ENAMETOOLONG;
1063 goto err;
1064 }
1065 read_extent_buffer(path->nodes[0], ptr + 1,
1066 (unsigned long)(inode_ref + 1), len);
1067 ptr[0] = '/';
1068 btrfs_release_path(path);
1069 }
73f73415
JB
1070 }
1071
05dbe683
OS
1072 btrfs_free_path(path);
1073 if (ptr == name + PATH_MAX - 1) {
1074 name[0] = '/';
1075 name[1] = '\0';
1076 } else {
1077 memmove(name, ptr, name + PATH_MAX - ptr);
1078 }
1079 return name;
1080
1081err:
1082 btrfs_free_path(path);
1083 kfree(name);
1084 return ERR_PTR(ret);
1085}
1086
1087static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1088{
1089 struct btrfs_root *root = fs_info->tree_root;
1090 struct btrfs_dir_item *di;
1091 struct btrfs_path *path;
1092 struct btrfs_key location;
1093 u64 dir_id;
1094
73f73415
JB
1095 path = btrfs_alloc_path();
1096 if (!path)
05dbe683 1097 return -ENOMEM;
73f73415
JB
1098 path->leave_spinning = 1;
1099
1100 /*
1101 * Find the "default" dir item which points to the root item that we
1102 * will mount by default if we haven't been given a specific subvolume
1103 * to mount.
1104 */
815745cf 1105 dir_id = btrfs_super_root_dir(fs_info->super_copy);
73f73415 1106 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
b0839166
JL
1107 if (IS_ERR(di)) {
1108 btrfs_free_path(path);
05dbe683 1109 return PTR_ERR(di);
b0839166 1110 }
73f73415
JB
1111 if (!di) {
1112 /*
1113 * Ok the default dir item isn't there. This is weird since
1114 * it's always been there, but don't freak out, just try and
05dbe683 1115 * mount the top-level subvolume.
73f73415
JB
1116 */
1117 btrfs_free_path(path);
05dbe683
OS
1118 *objectid = BTRFS_FS_TREE_OBJECTID;
1119 return 0;
73f73415
JB
1120 }
1121
1122 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1123 btrfs_free_path(path);
05dbe683
OS
1124 *objectid = location.objectid;
1125 return 0;
73f73415
JB
1126}
1127
d397712b 1128static int btrfs_fill_super(struct super_block *sb,
8a4b83cc 1129 struct btrfs_fs_devices *fs_devices,
d397712b 1130 void *data, int silent)
75dfe396 1131{
d397712b 1132 struct inode *inode;
815745cf 1133 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
5d4f98a2 1134 struct btrfs_key key;
39279cc3 1135 int err;
a429e513 1136
39279cc3
CM
1137 sb->s_maxbytes = MAX_LFS_FILESIZE;
1138 sb->s_magic = BTRFS_SUPER_MAGIC;
1139 sb->s_op = &btrfs_super_ops;
af53d29a 1140 sb->s_d_op = &btrfs_dentry_operations;
be6e8dc0 1141 sb->s_export_op = &btrfs_export_ops;
5103e947 1142 sb->s_xattr = btrfs_xattr_handlers;
39279cc3 1143 sb->s_time_gran = 1;
0eda294d 1144#ifdef CONFIG_BTRFS_FS_POSIX_ACL
33268eaf 1145 sb->s_flags |= MS_POSIXACL;
49cf6f45 1146#endif
0c4d2d95 1147 sb->s_flags |= MS_I_VERSION;
da2f0f74 1148 sb->s_iflags |= SB_I_CGROUPWB;
ad2b2c80
AV
1149 err = open_ctree(sb, fs_devices, (char *)data);
1150 if (err) {
ab8d0fc4 1151 btrfs_err(fs_info, "open_ctree failed");
ad2b2c80 1152 return err;
a429e513
CM
1153 }
1154
5d4f98a2
YZ
1155 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1156 key.type = BTRFS_INODE_ITEM_KEY;
1157 key.offset = 0;
98c7089c 1158 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
5d4f98a2
YZ
1159 if (IS_ERR(inode)) {
1160 err = PTR_ERR(inode);
39279cc3 1161 goto fail_close;
f254e52c 1162 }
f254e52c 1163
48fde701
AV
1164 sb->s_root = d_make_root(inode);
1165 if (!sb->s_root) {
39279cc3
CM
1166 err = -ENOMEM;
1167 goto fail_close;
f254e52c 1168 }
58176a96 1169
6885f308 1170 save_mount_options(sb, data);
90a887c9 1171 cleancache_init_fs(sb);
59553edf 1172 sb->s_flags |= MS_ACTIVE;
2619ba1f 1173 return 0;
39279cc3
CM
1174
1175fail_close:
815745cf 1176 close_ctree(fs_info->tree_root);
39279cc3 1177 return err;
2619ba1f
CM
1178}
1179
6bf13c0c 1180int btrfs_sync_fs(struct super_block *sb, int wait)
c5739bba
CM
1181{
1182 struct btrfs_trans_handle *trans;
815745cf
AV
1183 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1184 struct btrfs_root *root = fs_info->tree_root;
2619ba1f 1185
bc074524 1186 trace_btrfs_sync_fs(fs_info, wait);
1abe9b8a 1187
39279cc3 1188 if (!wait) {
815745cf 1189 filemap_flush(fs_info->btree_inode->i_mapping);
39279cc3
CM
1190 return 0;
1191 }
771ed689 1192
578def7c 1193 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
771ed689 1194
d4edf39b 1195 trans = btrfs_attach_transaction_barrier(root);
60376ce4 1196 if (IS_ERR(trans)) {
354aa0fb 1197 /* no transaction, don't bother */
6b5fe46d
DS
1198 if (PTR_ERR(trans) == -ENOENT) {
1199 /*
1200 * Exit unless we have some pending changes
1201 * that need to go through commit
1202 */
1203 if (fs_info->pending_changes == 0)
1204 return 0;
a53f4f8e
QW
1205 /*
1206 * A non-blocking test if the fs is frozen. We must not
1207 * start a new transaction here otherwise a deadlock
1208 * happens. The pending operations are delayed to the
1209 * next commit after thawing.
1210 */
1211 if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1212 __sb_end_write(sb, SB_FREEZE_WRITE);
1213 else
1214 return 0;
6b5fe46d 1215 trans = btrfs_start_transaction(root, 0);
6b5fe46d 1216 }
98bd5c54
DS
1217 if (IS_ERR(trans))
1218 return PTR_ERR(trans);
60376ce4 1219 }
bd7de2c9 1220 return btrfs_commit_transaction(trans, root);
2c90e5d6
CM
1221}
1222
34c80b1d 1223static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
a9572a15 1224{
815745cf
AV
1225 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1226 struct btrfs_root *root = info->tree_root;
200da64e 1227 char *compress_type;
a9572a15 1228
3cdde224 1229 if (btrfs_test_opt(info, DEGRADED))
a9572a15 1230 seq_puts(seq, ",degraded");
3cdde224 1231 if (btrfs_test_opt(info, NODATASUM))
a9572a15 1232 seq_puts(seq, ",nodatasum");
3cdde224 1233 if (btrfs_test_opt(info, NODATACOW))
a9572a15 1234 seq_puts(seq, ",nodatacow");
3cdde224 1235 if (btrfs_test_opt(info, NOBARRIER))
a9572a15 1236 seq_puts(seq, ",nobarrier");
95ac567a 1237 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
c1c9ff7c 1238 seq_printf(seq, ",max_inline=%llu", info->max_inline);
a9572a15 1239 if (info->alloc_start != 0)
c1c9ff7c 1240 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
a9572a15
EP
1241 if (info->thread_pool_size != min_t(unsigned long,
1242 num_online_cpus() + 2, 8))
1243 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
3cdde224 1244 if (btrfs_test_opt(info, COMPRESS)) {
200da64e
TI
1245 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1246 compress_type = "zlib";
1247 else
1248 compress_type = "lzo";
3cdde224 1249 if (btrfs_test_opt(info, FORCE_COMPRESS))
200da64e
TI
1250 seq_printf(seq, ",compress-force=%s", compress_type);
1251 else
1252 seq_printf(seq, ",compress=%s", compress_type);
1253 }
3cdde224 1254 if (btrfs_test_opt(info, NOSSD))
c289811c 1255 seq_puts(seq, ",nossd");
3cdde224 1256 if (btrfs_test_opt(info, SSD_SPREAD))
451d7585 1257 seq_puts(seq, ",ssd_spread");
3cdde224 1258 else if (btrfs_test_opt(info, SSD))
a9572a15 1259 seq_puts(seq, ",ssd");
3cdde224 1260 if (btrfs_test_opt(info, NOTREELOG))
6b65c5c6 1261 seq_puts(seq, ",notreelog");
3cdde224 1262 if (btrfs_test_opt(info, NOLOGREPLAY))
96da0919 1263 seq_puts(seq, ",nologreplay");
3cdde224 1264 if (btrfs_test_opt(info, FLUSHONCOMMIT))
6b65c5c6 1265 seq_puts(seq, ",flushoncommit");
3cdde224 1266 if (btrfs_test_opt(info, DISCARD))
20a5239a 1267 seq_puts(seq, ",discard");
a9572a15
EP
1268 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1269 seq_puts(seq, ",noacl");
3cdde224 1270 if (btrfs_test_opt(info, SPACE_CACHE))
200da64e 1271 seq_puts(seq, ",space_cache");
3cdde224 1272 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
70f6d82e 1273 seq_puts(seq, ",space_cache=v2");
73bc1876 1274 else
8965593e 1275 seq_puts(seq, ",nospace_cache");
3cdde224 1276 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
f420ee1e 1277 seq_puts(seq, ",rescan_uuid_tree");
3cdde224 1278 if (btrfs_test_opt(info, CLEAR_CACHE))
200da64e 1279 seq_puts(seq, ",clear_cache");
3cdde224 1280 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
200da64e 1281 seq_puts(seq, ",user_subvol_rm_allowed");
3cdde224 1282 if (btrfs_test_opt(info, ENOSPC_DEBUG))
0942caa3 1283 seq_puts(seq, ",enospc_debug");
3cdde224 1284 if (btrfs_test_opt(info, AUTO_DEFRAG))
0942caa3 1285 seq_puts(seq, ",autodefrag");
3cdde224 1286 if (btrfs_test_opt(info, INODE_MAP_CACHE))
0942caa3 1287 seq_puts(seq, ",inode_cache");
3cdde224 1288 if (btrfs_test_opt(info, SKIP_BALANCE))
9555c6c1 1289 seq_puts(seq, ",skip_balance");
8507d216 1290#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3cdde224 1291 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
8507d216 1292 seq_puts(seq, ",check_int_data");
3cdde224 1293 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
8507d216
WS
1294 seq_puts(seq, ",check_int");
1295 if (info->check_integrity_print_mask)
1296 seq_printf(seq, ",check_int_print_mask=%d",
1297 info->check_integrity_print_mask);
1298#endif
1299 if (info->metadata_ratio)
1300 seq_printf(seq, ",metadata_ratio=%d",
1301 info->metadata_ratio);
3cdde224 1302 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
8c342930 1303 seq_puts(seq, ",fatal_errors=panic");
8b87dc17
DS
1304 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1305 seq_printf(seq, ",commit=%d", info->commit_interval);
d0bd4560 1306#ifdef CONFIG_BTRFS_DEBUG
3cdde224 1307 if (btrfs_test_opt(info, FRAGMENT_DATA))
d0bd4560 1308 seq_puts(seq, ",fragment=data");
3cdde224 1309 if (btrfs_test_opt(info, FRAGMENT_METADATA))
d0bd4560
JB
1310 seq_puts(seq, ",fragment=metadata");
1311#endif
c8d3fe02
OS
1312 seq_printf(seq, ",subvolid=%llu",
1313 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1314 seq_puts(seq, ",subvol=");
1315 seq_dentry(seq, dentry, " \t\n\\");
a9572a15
EP
1316 return 0;
1317}
1318
a061fc8d 1319static int btrfs_test_super(struct super_block *s, void *data)
4b82d6e4 1320{
815745cf
AV
1321 struct btrfs_fs_info *p = data;
1322 struct btrfs_fs_info *fs_info = btrfs_sb(s);
4b82d6e4 1323
815745cf 1324 return fs_info->fs_devices == p->fs_devices;
4b82d6e4
Y
1325}
1326
450ba0ea
JB
1327static int btrfs_set_super(struct super_block *s, void *data)
1328{
6de1d09d
AV
1329 int err = set_anon_super(s, data);
1330 if (!err)
1331 s->s_fs_info = data;
1332 return err;
4b82d6e4
Y
1333}
1334
f9d9ef62
DS
1335/*
1336 * subvolumes are identified by ino 256
1337 */
1338static inline int is_subvolume_inode(struct inode *inode)
1339{
1340 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1341 return 1;
1342 return 0;
1343}
1344
830c4adb 1345/*
e6e4dbe8
OS
1346 * This will add subvolid=0 to the argument string while removing any subvol=
1347 * and subvolid= arguments to make sure we get the top-level root for path
1348 * walking to the subvol we want.
830c4adb
JB
1349 */
1350static char *setup_root_args(char *args)
1351{
e6e4dbe8 1352 char *buf, *dst, *sep;
830c4adb 1353
e6e4dbe8
OS
1354 if (!args)
1355 return kstrdup("subvolid=0", GFP_NOFS);
f60d16a8 1356
e6e4dbe8
OS
1357 /* The worst case is that we add ",subvolid=0" to the end. */
1358 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
f60d16a8 1359 if (!buf)
830c4adb 1360 return NULL;
830c4adb 1361
e6e4dbe8
OS
1362 while (1) {
1363 sep = strchrnul(args, ',');
1364 if (!strstarts(args, "subvol=") &&
1365 !strstarts(args, "subvolid=")) {
1366 memcpy(dst, args, sep - args);
1367 dst += sep - args;
1368 *dst++ = ',';
1369 }
1370 if (*sep)
1371 args = sep + 1;
1372 else
1373 break;
830c4adb 1374 }
f60d16a8 1375 strcpy(dst, "subvolid=0");
830c4adb 1376
f60d16a8 1377 return buf;
830c4adb
JB
1378}
1379
bb289b7b
OS
1380static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1381 int flags, const char *device_name,
1382 char *data)
830c4adb 1383{
830c4adb 1384 struct dentry *root;
fa330659 1385 struct vfsmount *mnt = NULL;
830c4adb 1386 char *newargs;
fa330659 1387 int ret;
830c4adb
JB
1388
1389 newargs = setup_root_args(data);
fa330659
OS
1390 if (!newargs) {
1391 root = ERR_PTR(-ENOMEM);
1392 goto out;
1393 }
0723a047 1394
fa330659
OS
1395 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1396 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
0723a047 1397 if (flags & MS_RDONLY) {
fa330659
OS
1398 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1399 device_name, newargs);
0723a047 1400 } else {
fa330659
OS
1401 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1402 device_name, newargs);
0040e606 1403 if (IS_ERR(mnt)) {
fa330659
OS
1404 root = ERR_CAST(mnt);
1405 mnt = NULL;
1406 goto out;
0040e606 1407 }
0723a047 1408
773cd04e 1409 down_write(&mnt->mnt_sb->s_umount);
fa330659 1410 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
773cd04e 1411 up_write(&mnt->mnt_sb->s_umount);
fa330659
OS
1412 if (ret < 0) {
1413 root = ERR_PTR(ret);
1414 goto out;
0723a047
HH
1415 }
1416 }
1417 }
fa330659
OS
1418 if (IS_ERR(mnt)) {
1419 root = ERR_CAST(mnt);
1420 mnt = NULL;
1421 goto out;
1422 }
830c4adb 1423
05dbe683
OS
1424 if (!subvol_name) {
1425 if (!subvol_objectid) {
1426 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1427 &subvol_objectid);
1428 if (ret) {
1429 root = ERR_PTR(ret);
1430 goto out;
1431 }
1432 }
1433 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1434 subvol_objectid);
1435 if (IS_ERR(subvol_name)) {
1436 root = ERR_CAST(subvol_name);
1437 subvol_name = NULL;
1438 goto out;
1439 }
1440
1441 }
1442
ea441d11 1443 root = mount_subtree(mnt, subvol_name);
fa330659
OS
1444 /* mount_subtree() drops our reference on the vfsmount. */
1445 mnt = NULL;
830c4adb 1446
bb289b7b 1447 if (!IS_ERR(root)) {
ea441d11 1448 struct super_block *s = root->d_sb;
ab8d0fc4 1449 struct btrfs_fs_info *fs_info = btrfs_sb(s);
bb289b7b
OS
1450 struct inode *root_inode = d_inode(root);
1451 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1452
1453 ret = 0;
1454 if (!is_subvolume_inode(root_inode)) {
ab8d0fc4 1455 btrfs_err(fs_info, "'%s' is not a valid subvolume",
bb289b7b
OS
1456 subvol_name);
1457 ret = -EINVAL;
1458 }
1459 if (subvol_objectid && root_objectid != subvol_objectid) {
05dbe683
OS
1460 /*
1461 * This will also catch a race condition where a
1462 * subvolume which was passed by ID is renamed and
1463 * another subvolume is renamed over the old location.
1464 */
ab8d0fc4
JM
1465 btrfs_err(fs_info,
1466 "subvol '%s' does not match subvolid %llu",
1467 subvol_name, subvol_objectid);
bb289b7b
OS
1468 ret = -EINVAL;
1469 }
1470 if (ret) {
1471 dput(root);
1472 root = ERR_PTR(ret);
1473 deactivate_locked_super(s);
1474 }
f9d9ef62
DS
1475 }
1476
fa330659
OS
1477out:
1478 mntput(mnt);
1479 kfree(newargs);
1480 kfree(subvol_name);
830c4adb
JB
1481 return root;
1482}
450ba0ea 1483
f667aef6
QW
1484static int parse_security_options(char *orig_opts,
1485 struct security_mnt_opts *sec_opts)
1486{
1487 char *secdata = NULL;
1488 int ret = 0;
1489
1490 secdata = alloc_secdata();
1491 if (!secdata)
1492 return -ENOMEM;
1493 ret = security_sb_copy_data(orig_opts, secdata);
1494 if (ret) {
1495 free_secdata(secdata);
1496 return ret;
1497 }
1498 ret = security_sb_parse_opts_str(secdata, sec_opts);
1499 free_secdata(secdata);
1500 return ret;
1501}
1502
1503static int setup_security_options(struct btrfs_fs_info *fs_info,
1504 struct super_block *sb,
1505 struct security_mnt_opts *sec_opts)
1506{
1507 int ret = 0;
1508
1509 /*
1510 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1511 * is valid.
1512 */
1513 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1514 if (ret)
1515 return ret;
1516
a43bb39b 1517#ifdef CONFIG_SECURITY
f667aef6
QW
1518 if (!fs_info->security_opts.num_mnt_opts) {
1519 /* first time security setup, copy sec_opts to fs_info */
1520 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1521 } else {
1522 /*
180e4d47
LB
1523 * Since SELinux (the only one supporting security_mnt_opts)
1524 * does NOT support changing context during remount/mount of
1525 * the same sb, this must be the same or part of the same
1526 * security options, just free it.
f667aef6
QW
1527 */
1528 security_free_mnt_opts(sec_opts);
1529 }
a43bb39b 1530#endif
f667aef6
QW
1531 return ret;
1532}
1533
edf24abe
CH
1534/*
1535 * Find a superblock for the given device / mount point.
1536 *
1537 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1538 * for multiple device setup. Make sure to keep it in sync.
1539 */
061dbc6b 1540static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
306e16ce 1541 const char *device_name, void *data)
4b82d6e4
Y
1542{
1543 struct block_device *bdev = NULL;
1544 struct super_block *s;
8a4b83cc 1545 struct btrfs_fs_devices *fs_devices = NULL;
450ba0ea 1546 struct btrfs_fs_info *fs_info = NULL;
f667aef6 1547 struct security_mnt_opts new_sec_opts;
97288f2c 1548 fmode_t mode = FMODE_READ;
73f73415
JB
1549 char *subvol_name = NULL;
1550 u64 subvol_objectid = 0;
4b82d6e4
Y
1551 int error = 0;
1552
97288f2c
CH
1553 if (!(flags & MS_RDONLY))
1554 mode |= FMODE_WRITE;
1555
1556 error = btrfs_parse_early_options(data, mode, fs_type,
73f73415 1557 &subvol_name, &subvol_objectid,
5e2a4b25 1558 &fs_devices);
f23c8af8
ID
1559 if (error) {
1560 kfree(subvol_name);
061dbc6b 1561 return ERR_PTR(error);
f23c8af8 1562 }
edf24abe 1563
05dbe683 1564 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
fa330659 1565 /* mount_subvol() will free subvol_name. */
bb289b7b
OS
1566 return mount_subvol(subvol_name, subvol_objectid, flags,
1567 device_name, data);
830c4adb
JB
1568 }
1569
f667aef6
QW
1570 security_init_mnt_opts(&new_sec_opts);
1571 if (data) {
1572 error = parse_security_options(data, &new_sec_opts);
1573 if (error)
1574 return ERR_PTR(error);
1575 }
1576
306e16ce 1577 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
8a4b83cc 1578 if (error)
f667aef6 1579 goto error_sec_opts;
4b82d6e4 1580
450ba0ea
JB
1581 /*
1582 * Setup a dummy root and fs_info for test/set super. This is because
1583 * we don't actually fill this stuff out until open_ctree, but we need
1584 * it for searching for existing supers, so this lets us do that and
1585 * then open_ctree will properly initialize everything later.
1586 */
1587 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
f667aef6
QW
1588 if (!fs_info) {
1589 error = -ENOMEM;
1590 goto error_sec_opts;
1591 }
04d21a24 1592
450ba0ea 1593 fs_info->fs_devices = fs_devices;
450ba0ea 1594
6c41761f
DS
1595 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1596 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
f667aef6 1597 security_init_mnt_opts(&fs_info->security_opts);
6c41761f
DS
1598 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1599 error = -ENOMEM;
04d21a24
ID
1600 goto error_fs_info;
1601 }
1602
1603 error = btrfs_open_devices(fs_devices, mode, fs_type);
1604 if (error)
1605 goto error_fs_info;
1606
1607 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1608 error = -EACCES;
6c41761f
DS
1609 goto error_close_devices;
1610 }
1611
dfe25020 1612 bdev = fs_devices->latest_bdev;
9249e17f
DH
1613 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1614 fs_info);
830c4adb
JB
1615 if (IS_ERR(s)) {
1616 error = PTR_ERR(s);
1617 goto error_close_devices;
1618 }
4b82d6e4
Y
1619
1620 if (s->s_root) {
2b82032c 1621 btrfs_close_devices(fs_devices);
6c41761f 1622 free_fs_info(fs_info);
59553edf
AV
1623 if ((flags ^ s->s_flags) & MS_RDONLY)
1624 error = -EBUSY;
4b82d6e4 1625 } else {
a1c6f057 1626 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
815745cf 1627 btrfs_sb(s)->bdev_holder = fs_type;
8a4b83cc
CM
1628 error = btrfs_fill_super(s, fs_devices, data,
1629 flags & MS_SILENT ? 1 : 0);
4b82d6e4 1630 }
05dbe683 1631 if (error) {
f667aef6 1632 deactivate_locked_super(s);
f667aef6
QW
1633 goto error_sec_opts;
1634 }
1635
1636 fs_info = btrfs_sb(s);
1637 error = setup_security_options(fs_info, s, &new_sec_opts);
1638 if (error) {
830c4adb 1639 deactivate_locked_super(s);
f667aef6
QW
1640 goto error_sec_opts;
1641 }
4b82d6e4 1642
05dbe683 1643 return dget(s->s_root);
4b82d6e4 1644
c146afad 1645error_close_devices:
8a4b83cc 1646 btrfs_close_devices(fs_devices);
04d21a24 1647error_fs_info:
6c41761f 1648 free_fs_info(fs_info);
f667aef6
QW
1649error_sec_opts:
1650 security_free_mnt_opts(&new_sec_opts);
061dbc6b 1651 return ERR_PTR(error);
4b82d6e4 1652}
2e635a27 1653
0d2450ab
ST
1654static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1655 int new_pool_size, int old_pool_size)
1656{
1657 if (new_pool_size == old_pool_size)
1658 return;
1659
1660 fs_info->thread_pool_size = new_pool_size;
1661
efe120a0 1662 btrfs_info(fs_info, "resize thread pool %d -> %d",
0d2450ab
ST
1663 old_pool_size, new_pool_size);
1664
5cdc7ad3 1665 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
afe3d242 1666 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
a8c93d4e 1667 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
e66f0bb1 1668 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
fccb5d86
QW
1669 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1670 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1671 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1672 new_pool_size);
1673 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1674 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
5b3bc44e 1675 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
736cfa15 1676 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
0339ef2f
QW
1677 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1678 new_pool_size);
0d2450ab
ST
1679}
1680
f42a34b2 1681static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
dc81cdc5
MX
1682{
1683 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
f42a34b2 1684}
dc81cdc5 1685
f42a34b2
MX
1686static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1687 unsigned long old_opts, int flags)
1688{
dc81cdc5
MX
1689 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1690 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1691 (flags & MS_RDONLY))) {
1692 /* wait for any defraggers to finish */
1693 wait_event(fs_info->transaction_wait,
1694 (atomic_read(&fs_info->defrag_running) == 0));
1695 if (flags & MS_RDONLY)
1696 sync_filesystem(fs_info->sb);
1697 }
1698}
1699
1700static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1701 unsigned long old_opts)
1702{
1703 /*
180e4d47
LB
1704 * We need to cleanup all defragable inodes if the autodefragment is
1705 * close or the filesystem is read only.
dc81cdc5
MX
1706 */
1707 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1708 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1709 (fs_info->sb->s_flags & MS_RDONLY))) {
1710 btrfs_cleanup_defrag_inodes(fs_info);
1711 }
1712
1713 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1714}
1715
c146afad
YZ
1716static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1717{
815745cf
AV
1718 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1719 struct btrfs_root *root = fs_info->tree_root;
49b25e05
JM
1720 unsigned old_flags = sb->s_flags;
1721 unsigned long old_opts = fs_info->mount_opt;
1722 unsigned long old_compress_type = fs_info->compress_type;
1723 u64 old_max_inline = fs_info->max_inline;
1724 u64 old_alloc_start = fs_info->alloc_start;
1725 int old_thread_pool_size = fs_info->thread_pool_size;
1726 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
c146afad
YZ
1727 int ret;
1728
02b9984d 1729 sync_filesystem(sb);
f42a34b2 1730 btrfs_remount_prepare(fs_info);
dc81cdc5 1731
f667aef6
QW
1732 if (data) {
1733 struct security_mnt_opts new_sec_opts;
1734
1735 security_init_mnt_opts(&new_sec_opts);
1736 ret = parse_security_options(data, &new_sec_opts);
1737 if (ret)
1738 goto restore;
1739 ret = setup_security_options(fs_info, sb,
1740 &new_sec_opts);
1741 if (ret) {
1742 security_free_mnt_opts(&new_sec_opts);
1743 goto restore;
1744 }
1745 }
1746
96da0919 1747 ret = btrfs_parse_options(root, data, *flags);
49b25e05
JM
1748 if (ret) {
1749 ret = -EINVAL;
1750 goto restore;
1751 }
b288052e 1752
f42a34b2 1753 btrfs_remount_begin(fs_info, old_opts, *flags);
0d2450ab
ST
1754 btrfs_resize_thread_pool(fs_info,
1755 fs_info->thread_pool_size, old_thread_pool_size);
1756
c146afad 1757 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
dc81cdc5 1758 goto out;
c146afad
YZ
1759
1760 if (*flags & MS_RDONLY) {
8dabb742
SB
1761 /*
1762 * this also happens on 'umount -rf' or on shutdown, when
1763 * the filesystem is busy.
1764 */
21c7e756 1765 cancel_work_sync(&fs_info->async_reclaim_work);
361c093d
SB
1766
1767 /* wait for the uuid_scan task to finish */
1768 down(&fs_info->uuid_tree_rescan_sem);
1769 /* avoid complains from lockdep et al. */
1770 up(&fs_info->uuid_tree_rescan_sem);
1771
c146afad
YZ
1772 sb->s_flags |= MS_RDONLY;
1773
e44163e1
JM
1774 /*
1775 * Setting MS_RDONLY will put the cleaner thread to
1776 * sleep at the next loop if it's already active.
1777 * If it's already asleep, we'll leave unused block
1778 * groups on disk until we're mounted read-write again
1779 * unless we clean them up here.
1780 */
e44163e1 1781 btrfs_delete_unused_bgs(fs_info);
e44163e1 1782
8dabb742
SB
1783 btrfs_dev_replace_suspend_for_unmount(fs_info);
1784 btrfs_scrub_cancel(fs_info);
061594ef 1785 btrfs_pause_balance(fs_info);
8dabb742 1786
49b25e05
JM
1787 ret = btrfs_commit_super(root);
1788 if (ret)
1789 goto restore;
c146afad 1790 } else {
6ef3de9c
DS
1791 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1792 btrfs_err(fs_info,
efe120a0 1793 "Remounting read-write after error is not allowed");
6ef3de9c
DS
1794 ret = -EINVAL;
1795 goto restore;
1796 }
8a3db184 1797 if (fs_info->fs_devices->rw_devices == 0) {
49b25e05
JM
1798 ret = -EACCES;
1799 goto restore;
8a3db184 1800 }
2b82032c 1801
292fd7fc
SB
1802 if (fs_info->fs_devices->missing_devices >
1803 fs_info->num_tolerated_disk_barrier_failures &&
1804 !(*flags & MS_RDONLY)) {
efe120a0
FH
1805 btrfs_warn(fs_info,
1806 "too many missing devices, writeable remount is not allowed");
292fd7fc
SB
1807 ret = -EACCES;
1808 goto restore;
1809 }
1810
8a3db184 1811 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
49b25e05
JM
1812 ret = -EINVAL;
1813 goto restore;
8a3db184 1814 }
c146afad 1815
815745cf 1816 ret = btrfs_cleanup_fs_roots(fs_info);
49b25e05
JM
1817 if (ret)
1818 goto restore;
c146afad 1819
d68fc57b 1820 /* recover relocation */
5f316481 1821 mutex_lock(&fs_info->cleaner_mutex);
d68fc57b 1822 ret = btrfs_recover_relocation(root);
5f316481 1823 mutex_unlock(&fs_info->cleaner_mutex);
49b25e05
JM
1824 if (ret)
1825 goto restore;
c146afad 1826
2b6ba629
ID
1827 ret = btrfs_resume_balance_async(fs_info);
1828 if (ret)
1829 goto restore;
1830
8dabb742
SB
1831 ret = btrfs_resume_dev_replace_async(fs_info);
1832 if (ret) {
efe120a0 1833 btrfs_warn(fs_info, "failed to resume dev_replace");
8dabb742
SB
1834 goto restore;
1835 }
94aebfb2
JB
1836
1837 if (!fs_info->uuid_root) {
efe120a0 1838 btrfs_info(fs_info, "creating UUID tree");
94aebfb2
JB
1839 ret = btrfs_create_uuid_tree(fs_info);
1840 if (ret) {
5d163e0e
JM
1841 btrfs_warn(fs_info,
1842 "failed to create the UUID tree %d",
1843 ret);
94aebfb2
JB
1844 goto restore;
1845 }
1846 }
c146afad 1847 sb->s_flags &= ~MS_RDONLY;
90c711ab 1848
afcdd129 1849 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
c146afad 1850 }
dc81cdc5 1851out:
2c6a92b0 1852 wake_up_process(fs_info->transaction_kthread);
dc81cdc5 1853 btrfs_remount_cleanup(fs_info, old_opts);
c146afad 1854 return 0;
49b25e05
JM
1855
1856restore:
1857 /* We've hit an error - don't reset MS_RDONLY */
1858 if (sb->s_flags & MS_RDONLY)
1859 old_flags |= MS_RDONLY;
1860 sb->s_flags = old_flags;
1861 fs_info->mount_opt = old_opts;
1862 fs_info->compress_type = old_compress_type;
1863 fs_info->max_inline = old_max_inline;
c018daec 1864 mutex_lock(&fs_info->chunk_mutex);
49b25e05 1865 fs_info->alloc_start = old_alloc_start;
c018daec 1866 mutex_unlock(&fs_info->chunk_mutex);
0d2450ab
ST
1867 btrfs_resize_thread_pool(fs_info,
1868 old_thread_pool_size, fs_info->thread_pool_size);
49b25e05 1869 fs_info->metadata_ratio = old_metadata_ratio;
dc81cdc5 1870 btrfs_remount_cleanup(fs_info, old_opts);
49b25e05 1871 return ret;
c146afad
YZ
1872}
1873
bcd53741
AJ
1874/* Used to sort the devices by max_avail(descending sort) */
1875static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1876 const void *dev_info2)
1877{
1878 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1879 ((struct btrfs_device_info *)dev_info2)->max_avail)
1880 return -1;
1881 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1882 ((struct btrfs_device_info *)dev_info2)->max_avail)
1883 return 1;
1884 else
1885 return 0;
1886}
1887
1888/*
1889 * sort the devices by max_avail, in which max free extent size of each device
1890 * is stored.(Descending Sort)
1891 */
1892static inline void btrfs_descending_sort_devices(
1893 struct btrfs_device_info *devices,
1894 size_t nr_devices)
1895{
1896 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1897 btrfs_cmp_device_free_bytes, NULL);
1898}
1899
6d07bcec
MX
1900/*
1901 * The helper to calc the free space on the devices that can be used to store
1902 * file data.
1903 */
1904static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1905{
1906 struct btrfs_fs_info *fs_info = root->fs_info;
1907 struct btrfs_device_info *devices_info;
1908 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1909 struct btrfs_device *device;
1910 u64 skip_space;
1911 u64 type;
1912 u64 avail_space;
1913 u64 used_space;
1914 u64 min_stripe_size;
39fb26c3 1915 int min_stripes = 1, num_stripes = 1;
6d07bcec
MX
1916 int i = 0, nr_devices;
1917 int ret;
1918
7e33fd99 1919 /*
01327610 1920 * We aren't under the device list lock, so this is racy-ish, but good
7e33fd99
JB
1921 * enough for our purposes.
1922 */
b772a86e 1923 nr_devices = fs_info->fs_devices->open_devices;
7e33fd99
JB
1924 if (!nr_devices) {
1925 smp_mb();
1926 nr_devices = fs_info->fs_devices->open_devices;
1927 ASSERT(nr_devices);
1928 if (!nr_devices) {
1929 *free_bytes = 0;
1930 return 0;
1931 }
1932 }
6d07bcec 1933
d9b0d9ba 1934 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
6d07bcec
MX
1935 GFP_NOFS);
1936 if (!devices_info)
1937 return -ENOMEM;
1938
01327610 1939 /* calc min stripe number for data space allocation */
6d07bcec 1940 type = btrfs_get_alloc_profile(root, 1);
39fb26c3 1941 if (type & BTRFS_BLOCK_GROUP_RAID0) {
6d07bcec 1942 min_stripes = 2;
39fb26c3
MX
1943 num_stripes = nr_devices;
1944 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
6d07bcec 1945 min_stripes = 2;
39fb26c3
MX
1946 num_stripes = 2;
1947 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
6d07bcec 1948 min_stripes = 4;
39fb26c3
MX
1949 num_stripes = 4;
1950 }
6d07bcec
MX
1951
1952 if (type & BTRFS_BLOCK_GROUP_DUP)
1953 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1954 else
1955 min_stripe_size = BTRFS_STRIPE_LEN;
1956
7e33fd99
JB
1957 if (fs_info->alloc_start)
1958 mutex_lock(&fs_devices->device_list_mutex);
1959 rcu_read_lock();
1960 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
63a212ab
SB
1961 if (!device->in_fs_metadata || !device->bdev ||
1962 device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1963 continue;
1964
7e33fd99
JB
1965 if (i >= nr_devices)
1966 break;
1967
6d07bcec
MX
1968 avail_space = device->total_bytes - device->bytes_used;
1969
1970 /* align with stripe_len */
f8c269d7 1971 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
6d07bcec
MX
1972 avail_space *= BTRFS_STRIPE_LEN;
1973
1974 /*
01327610 1975 * In order to avoid overwriting the superblock on the drive,
6d07bcec
MX
1976 * btrfs starts at an offset of at least 1MB when doing chunk
1977 * allocation.
1978 */
ee22184b 1979 skip_space = SZ_1M;
6d07bcec
MX
1980
1981 /* user can set the offset in fs_info->alloc_start. */
7e33fd99
JB
1982 if (fs_info->alloc_start &&
1983 fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1984 device->total_bytes) {
1985 rcu_read_unlock();
6d07bcec
MX
1986 skip_space = max(fs_info->alloc_start, skip_space);
1987
7e33fd99
JB
1988 /*
1989 * btrfs can not use the free space in
1990 * [0, skip_space - 1], we must subtract it from the
1991 * total. In order to implement it, we account the used
1992 * space in this range first.
1993 */
1994 ret = btrfs_account_dev_extents_size(device, 0,
1995 skip_space - 1,
1996 &used_space);
1997 if (ret) {
1998 kfree(devices_info);
1999 mutex_unlock(&fs_devices->device_list_mutex);
2000 return ret;
2001 }
2002
2003 rcu_read_lock();
6d07bcec 2004
7e33fd99
JB
2005 /* calc the free space in [0, skip_space - 1] */
2006 skip_space -= used_space;
2007 }
6d07bcec
MX
2008
2009 /*
2010 * we can use the free space in [0, skip_space - 1], subtract
2011 * it from the total.
2012 */
2013 if (avail_space && avail_space >= skip_space)
2014 avail_space -= skip_space;
2015 else
2016 avail_space = 0;
2017
2018 if (avail_space < min_stripe_size)
2019 continue;
2020
2021 devices_info[i].dev = device;
2022 devices_info[i].max_avail = avail_space;
2023
2024 i++;
2025 }
7e33fd99
JB
2026 rcu_read_unlock();
2027 if (fs_info->alloc_start)
2028 mutex_unlock(&fs_devices->device_list_mutex);
6d07bcec
MX
2029
2030 nr_devices = i;
2031
2032 btrfs_descending_sort_devices(devices_info, nr_devices);
2033
2034 i = nr_devices - 1;
2035 avail_space = 0;
2036 while (nr_devices >= min_stripes) {
39fb26c3
MX
2037 if (num_stripes > nr_devices)
2038 num_stripes = nr_devices;
2039
6d07bcec
MX
2040 if (devices_info[i].max_avail >= min_stripe_size) {
2041 int j;
2042 u64 alloc_size;
2043
39fb26c3 2044 avail_space += devices_info[i].max_avail * num_stripes;
6d07bcec 2045 alloc_size = devices_info[i].max_avail;
39fb26c3 2046 for (j = i + 1 - num_stripes; j <= i; j++)
6d07bcec
MX
2047 devices_info[j].max_avail -= alloc_size;
2048 }
2049 i--;
2050 nr_devices--;
2051 }
2052
2053 kfree(devices_info);
2054 *free_bytes = avail_space;
2055 return 0;
2056}
2057
ba7b6e62
DS
2058/*
2059 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2060 *
2061 * If there's a redundant raid level at DATA block groups, use the respective
2062 * multiplier to scale the sizes.
2063 *
2064 * Unused device space usage is based on simulating the chunk allocator
2065 * algorithm that respects the device sizes, order of allocations and the
2066 * 'alloc_start' value, this is a close approximation of the actual use but
2067 * there are other factors that may change the result (like a new metadata
2068 * chunk).
2069 *
ca8a51b3 2070 * If metadata is exhausted, f_bavail will be 0.
ba7b6e62 2071 */
8fd17795
CM
2072static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2073{
815745cf
AV
2074 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2075 struct btrfs_super_block *disk_super = fs_info->super_copy;
2076 struct list_head *head = &fs_info->space_info;
bd4d1088
JB
2077 struct btrfs_space_info *found;
2078 u64 total_used = 0;
6d07bcec 2079 u64 total_free_data = 0;
ca8a51b3 2080 u64 total_free_meta = 0;
db94535d 2081 int bits = dentry->d_sb->s_blocksize_bits;
815745cf 2082 __be32 *fsid = (__be32 *)fs_info->fsid;
ba7b6e62
DS
2083 unsigned factor = 1;
2084 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
6d07bcec 2085 int ret;
ca8a51b3 2086 u64 thresh = 0;
ae02d1bd 2087 int mixed = 0;
8fd17795 2088
15484377 2089 /*
180e4d47 2090 * holding chunk_mutex to avoid allocating new chunks, holding
15484377
MX
2091 * device_list_mutex to avoid the device being removed
2092 */
bd4d1088 2093 rcu_read_lock();
89a55897 2094 list_for_each_entry_rcu(found, head, list) {
6d07bcec 2095 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
ba7b6e62
DS
2096 int i;
2097
6d07bcec
MX
2098 total_free_data += found->disk_total - found->disk_used;
2099 total_free_data -=
2100 btrfs_account_ro_block_groups_free_space(found);
ba7b6e62
DS
2101
2102 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2103 if (!list_empty(&found->block_groups[i])) {
2104 switch (i) {
2105 case BTRFS_RAID_DUP:
2106 case BTRFS_RAID_RAID1:
2107 case BTRFS_RAID_RAID10:
2108 factor = 2;
2109 }
2110 }
2111 }
6d07bcec 2112 }
ae02d1bd
LB
2113
2114 /*
2115 * Metadata in mixed block goup profiles are accounted in data
2116 */
2117 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2118 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2119 mixed = 1;
2120 else
2121 total_free_meta += found->disk_total -
2122 found->disk_used;
2123 }
6d07bcec 2124
b742bb82 2125 total_used += found->disk_used;
89a55897 2126 }
ba7b6e62 2127
bd4d1088
JB
2128 rcu_read_unlock();
2129
ba7b6e62
DS
2130 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2131 buf->f_blocks >>= bits;
2132 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2133
2134 /* Account global block reserve as used, it's in logical size already */
2135 spin_lock(&block_rsv->lock);
41b34acc
LB
2136 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2137 if (buf->f_bfree >= block_rsv->size >> bits)
2138 buf->f_bfree -= block_rsv->size >> bits;
2139 else
2140 buf->f_bfree = 0;
ba7b6e62
DS
2141 spin_unlock(&block_rsv->lock);
2142
0d95c1be 2143 buf->f_bavail = div_u64(total_free_data, factor);
815745cf 2144 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
7e33fd99 2145 if (ret)
6d07bcec 2146 return ret;
ba7b6e62 2147 buf->f_bavail += div_u64(total_free_data, factor);
6d07bcec 2148 buf->f_bavail = buf->f_bavail >> bits;
d397712b 2149
ca8a51b3
DS
2150 /*
2151 * We calculate the remaining metadata space minus global reserve. If
2152 * this is (supposedly) smaller than zero, there's no space. But this
2153 * does not hold in practice, the exhausted state happens where's still
2154 * some positive delta. So we apply some guesswork and compare the
2155 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2156 *
2157 * We probably cannot calculate the exact threshold value because this
2158 * depends on the internal reservations requested by various
2159 * operations, so some operations that consume a few metadata will
2160 * succeed even if the Avail is zero. But this is better than the other
2161 * way around.
2162 */
2163 thresh = 4 * 1024 * 1024;
2164
ae02d1bd 2165 if (!mixed && total_free_meta - thresh < block_rsv->size)
ca8a51b3
DS
2166 buf->f_bavail = 0;
2167
ba7b6e62
DS
2168 buf->f_type = BTRFS_SUPER_MAGIC;
2169 buf->f_bsize = dentry->d_sb->s_blocksize;
2170 buf->f_namelen = BTRFS_NAME_LEN;
2171
9d03632e 2172 /* We treat it as constant endianness (it doesn't matter _which_)
d397712b 2173 because we want the fsid to come out the same whether mounted
9d03632e
DW
2174 on a big-endian or little-endian host */
2175 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2176 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
32d48fa1 2177 /* Mask in the root object ID too, to disambiguate subvols */
2b0143b5
DH
2178 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2179 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
32d48fa1 2180
8fd17795
CM
2181 return 0;
2182}
b5133862 2183
aea52e19
AV
2184static void btrfs_kill_super(struct super_block *sb)
2185{
815745cf 2186 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
aea52e19 2187 kill_anon_super(sb);
d22ca7de 2188 free_fs_info(fs_info);
aea52e19
AV
2189}
2190
2e635a27
CM
2191static struct file_system_type btrfs_fs_type = {
2192 .owner = THIS_MODULE,
2193 .name = "btrfs",
061dbc6b 2194 .mount = btrfs_mount,
aea52e19 2195 .kill_sb = btrfs_kill_super,
f667aef6 2196 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2e635a27 2197};
7f78e035 2198MODULE_ALIAS_FS("btrfs");
a9218f6b 2199
d8620958
TVB
2200static int btrfs_control_open(struct inode *inode, struct file *file)
2201{
2202 /*
2203 * The control file's private_data is used to hold the
2204 * transaction when it is started and is used to keep
2205 * track of whether a transaction is already in progress.
2206 */
2207 file->private_data = NULL;
2208 return 0;
2209}
2210
d352ac68
CM
2211/*
2212 * used by btrfsctl to scan devices when no FS is mounted
2213 */
8a4b83cc
CM
2214static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2215 unsigned long arg)
2216{
2217 struct btrfs_ioctl_vol_args *vol;
2218 struct btrfs_fs_devices *fs_devices;
c071fcfd 2219 int ret = -ENOTTY;
8a4b83cc 2220
e441d54d
CM
2221 if (!capable(CAP_SYS_ADMIN))
2222 return -EPERM;
2223
dae7b665
LZ
2224 vol = memdup_user((void __user *)arg, sizeof(*vol));
2225 if (IS_ERR(vol))
2226 return PTR_ERR(vol);
c071fcfd 2227
8a4b83cc
CM
2228 switch (cmd) {
2229 case BTRFS_IOC_SCAN_DEV:
97288f2c 2230 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
8a4b83cc
CM
2231 &btrfs_fs_type, &fs_devices);
2232 break;
02db0844
JB
2233 case BTRFS_IOC_DEVICES_READY:
2234 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2235 &btrfs_fs_type, &fs_devices);
2236 if (ret)
2237 break;
2238 ret = !(fs_devices->num_devices == fs_devices->total_devices);
2239 break;
c5868f83 2240 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
d5131b65 2241 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
c5868f83 2242 break;
8a4b83cc 2243 }
dae7b665 2244
8a4b83cc 2245 kfree(vol);
f819d837 2246 return ret;
8a4b83cc
CM
2247}
2248
0176260f 2249static int btrfs_freeze(struct super_block *sb)
ed0dab6b 2250{
354aa0fb
MX
2251 struct btrfs_trans_handle *trans;
2252 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2253
9e7cc91a
WX
2254 root->fs_info->fs_frozen = 1;
2255 /*
2256 * We don't need a barrier here, we'll wait for any transaction that
2257 * could be in progress on other threads (and do delayed iputs that
2258 * we want to avoid on a frozen filesystem), or do the commit
2259 * ourselves.
2260 */
d4edf39b 2261 trans = btrfs_attach_transaction_barrier(root);
354aa0fb
MX
2262 if (IS_ERR(trans)) {
2263 /* no transaction, don't bother */
2264 if (PTR_ERR(trans) == -ENOENT)
2265 return 0;
2266 return PTR_ERR(trans);
2267 }
2268 return btrfs_commit_transaction(trans, root);
ed0dab6b
Y
2269}
2270
9e7cc91a
WX
2271static int btrfs_unfreeze(struct super_block *sb)
2272{
2273 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2274
2275 root->fs_info->fs_frozen = 0;
2276 return 0;
2277}
2278
9c5085c1
JB
2279static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2280{
2281 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2282 struct btrfs_fs_devices *cur_devices;
2283 struct btrfs_device *dev, *first_dev = NULL;
2284 struct list_head *head;
2285 struct rcu_string *name;
2286
2287 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2288 cur_devices = fs_info->fs_devices;
2289 while (cur_devices) {
2290 head = &cur_devices->devices;
2291 list_for_each_entry(dev, head, dev_list) {
aa9ddcd4
JB
2292 if (dev->missing)
2293 continue;
0aeb8a6e
AJ
2294 if (!dev->name)
2295 continue;
9c5085c1
JB
2296 if (!first_dev || dev->devid < first_dev->devid)
2297 first_dev = dev;
2298 }
2299 cur_devices = cur_devices->seed;
2300 }
2301
2302 if (first_dev) {
2303 rcu_read_lock();
2304 name = rcu_dereference(first_dev->name);
2305 seq_escape(m, name->str, " \t\n\\");
2306 rcu_read_unlock();
2307 } else {
2308 WARN_ON(1);
2309 }
2310 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2311 return 0;
2312}
2313
b87221de 2314static const struct super_operations btrfs_super_ops = {
76dda93c 2315 .drop_inode = btrfs_drop_inode,
bd555975 2316 .evict_inode = btrfs_evict_inode,
e20d96d6 2317 .put_super = btrfs_put_super,
d5719762 2318 .sync_fs = btrfs_sync_fs,
a9572a15 2319 .show_options = btrfs_show_options,
9c5085c1 2320 .show_devname = btrfs_show_devname,
4730a4bc 2321 .write_inode = btrfs_write_inode,
2c90e5d6
CM
2322 .alloc_inode = btrfs_alloc_inode,
2323 .destroy_inode = btrfs_destroy_inode,
8fd17795 2324 .statfs = btrfs_statfs,
c146afad 2325 .remount_fs = btrfs_remount,
0176260f 2326 .freeze_fs = btrfs_freeze,
9e7cc91a 2327 .unfreeze_fs = btrfs_unfreeze,
e20d96d6 2328};
a9218f6b
CM
2329
2330static const struct file_operations btrfs_ctl_fops = {
d8620958 2331 .open = btrfs_control_open,
a9218f6b
CM
2332 .unlocked_ioctl = btrfs_control_ioctl,
2333 .compat_ioctl = btrfs_control_ioctl,
2334 .owner = THIS_MODULE,
6038f373 2335 .llseek = noop_llseek,
a9218f6b
CM
2336};
2337
2338static struct miscdevice btrfs_misc = {
578454ff 2339 .minor = BTRFS_MINOR,
a9218f6b
CM
2340 .name = "btrfs-control",
2341 .fops = &btrfs_ctl_fops
2342};
2343
578454ff
KS
2344MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2345MODULE_ALIAS("devname:btrfs-control");
2346
a9218f6b
CM
2347static int btrfs_interface_init(void)
2348{
2349 return misc_register(&btrfs_misc);
2350}
2351
b2950863 2352static void btrfs_interface_exit(void)
a9218f6b 2353{
f368ed60 2354 misc_deregister(&btrfs_misc);
a9218f6b
CM
2355}
2356
8ae1af3c 2357static void btrfs_print_mod_info(void)
85965600 2358{
62e85577 2359 pr_info("Btrfs loaded, crc32c=%s"
85965600
DS
2360#ifdef CONFIG_BTRFS_DEBUG
2361 ", debug=on"
2362#endif
79556c3d
SB
2363#ifdef CONFIG_BTRFS_ASSERT
2364 ", assert=on"
2365#endif
85965600
DS
2366#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2367 ", integrity-checker=on"
2368#endif
5f9e1059
JM
2369 "\n",
2370 btrfs_crc32c_impl());
85965600
DS
2371}
2372
2e635a27
CM
2373static int __init init_btrfs_fs(void)
2374{
2c90e5d6 2375 int err;
58176a96 2376
14a958e6
FDBM
2377 err = btrfs_hash_init();
2378 if (err)
2379 return err;
2380
63541927
FDBM
2381 btrfs_props_init();
2382
58176a96
JB
2383 err = btrfs_init_sysfs();
2384 if (err)
14a958e6 2385 goto free_hash;
58176a96 2386
143bede5 2387 btrfs_init_compress();
d1310b2e 2388
261507a0
LZ
2389 err = btrfs_init_cachep();
2390 if (err)
2391 goto free_compress;
2392
d1310b2e 2393 err = extent_io_init();
2f4cbe64
WB
2394 if (err)
2395 goto free_cachep;
2396
d1310b2e
CM
2397 err = extent_map_init();
2398 if (err)
2399 goto free_extent_io;
2400
6352b91d 2401 err = ordered_data_init();
2f4cbe64
WB
2402 if (err)
2403 goto free_extent_map;
c8b97818 2404
6352b91d
MX
2405 err = btrfs_delayed_inode_init();
2406 if (err)
2407 goto free_ordered_data;
2408
9247f317 2409 err = btrfs_auto_defrag_init();
16cdcec7
MX
2410 if (err)
2411 goto free_delayed_inode;
2412
78a6184a 2413 err = btrfs_delayed_ref_init();
9247f317
MX
2414 if (err)
2415 goto free_auto_defrag;
2416
b9e9a6cb
WS
2417 err = btrfs_prelim_ref_init();
2418 if (err)
af13b492 2419 goto free_delayed_ref;
b9e9a6cb 2420
97eb6b69 2421 err = btrfs_end_io_wq_init();
78a6184a 2422 if (err)
af13b492 2423 goto free_prelim_ref;
78a6184a 2424
97eb6b69
DS
2425 err = btrfs_interface_init();
2426 if (err)
2427 goto free_end_io_wq;
2428
e565d4b9
JS
2429 btrfs_init_lockdep();
2430
8ae1af3c 2431 btrfs_print_mod_info();
dc11dd5d
JB
2432
2433 err = btrfs_run_sanity_tests();
2434 if (err)
2435 goto unregister_ioctl;
2436
2437 err = register_filesystem(&btrfs_fs_type);
2438 if (err)
2439 goto unregister_ioctl;
74255aa0 2440
2f4cbe64
WB
2441 return 0;
2442
a9218f6b
CM
2443unregister_ioctl:
2444 btrfs_interface_exit();
97eb6b69
DS
2445free_end_io_wq:
2446 btrfs_end_io_wq_exit();
b9e9a6cb
WS
2447free_prelim_ref:
2448 btrfs_prelim_ref_exit();
78a6184a
MX
2449free_delayed_ref:
2450 btrfs_delayed_ref_exit();
9247f317
MX
2451free_auto_defrag:
2452 btrfs_auto_defrag_exit();
16cdcec7
MX
2453free_delayed_inode:
2454 btrfs_delayed_inode_exit();
6352b91d
MX
2455free_ordered_data:
2456 ordered_data_exit();
2f4cbe64
WB
2457free_extent_map:
2458 extent_map_exit();
d1310b2e
CM
2459free_extent_io:
2460 extent_io_exit();
2f4cbe64
WB
2461free_cachep:
2462 btrfs_destroy_cachep();
261507a0
LZ
2463free_compress:
2464 btrfs_exit_compress();
2f4cbe64 2465 btrfs_exit_sysfs();
14a958e6
FDBM
2466free_hash:
2467 btrfs_hash_exit();
2f4cbe64 2468 return err;
2e635a27
CM
2469}
2470
2471static void __exit exit_btrfs_fs(void)
2472{
39279cc3 2473 btrfs_destroy_cachep();
78a6184a 2474 btrfs_delayed_ref_exit();
9247f317 2475 btrfs_auto_defrag_exit();
16cdcec7 2476 btrfs_delayed_inode_exit();
b9e9a6cb 2477 btrfs_prelim_ref_exit();
6352b91d 2478 ordered_data_exit();
a52d9a80 2479 extent_map_exit();
d1310b2e 2480 extent_io_exit();
a9218f6b 2481 btrfs_interface_exit();
5ed5f588 2482 btrfs_end_io_wq_exit();
2e635a27 2483 unregister_filesystem(&btrfs_fs_type);
58176a96 2484 btrfs_exit_sysfs();
8a4b83cc 2485 btrfs_cleanup_fs_uuids();
261507a0 2486 btrfs_exit_compress();
14a958e6 2487 btrfs_hash_exit();
2e635a27
CM
2488}
2489
60efa5eb 2490late_initcall(init_btrfs_fs);
2e635a27
CM
2491module_exit(exit_btrfs_fs)
2492
2493MODULE_LICENSE("GPL");