]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/tree-log.c
btrfs: rename ->len to ->num_bytes in btrfs_ref
[thirdparty/linux.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
f186373f 16#include "backref.h"
ebb8765b 17#include "compression.h"
df2c95f3 18#include "qgroup.h"
6787bb9f
NB
19#include "block-group.h"
20#include "space-info.h"
26c2c454 21#include "inode-item.h"
c7f13d42 22#include "fs.h"
ad1ac501 23#include "accessors.h"
a0231804 24#include "extent-tree.h"
45c40c8f 25#include "root-tree.h"
f2b39277 26#include "dir-item.h"
7c8ede16 27#include "file-item.h"
af142b6f 28#include "file.h"
aa5d3003 29#include "orphan.h"
103c1972 30#include "tree-checker.h"
e02119d5 31
e09d94c9
FM
32#define MAX_CONFLICT_INODES 10
33
e02119d5
CM
34/* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
e13976cf
DS
40enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
e13976cf 43};
e02119d5 44
12fcfd22
CM
45/*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
e02119d5
CM
88/*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
e13976cf
DS
97enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102};
e02119d5 103
12fcfd22 104static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 105 struct btrfs_inode *inode,
49dae1bc 106 int inode_only,
8407f553 107 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
108static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
111static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
fa1a0f42 116static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
117
118/*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
e02119d5
CM
141/*
142 * start a sub transaction and setup the log tree
143 * this increments the log tree writer count to make the people
144 * syncing the tree wait for us to finish
145 */
146static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
147 struct btrfs_root *root,
148 struct btrfs_log_ctx *ctx)
e02119d5 149{
0b246afa 150 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 151 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 152 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 153 int ret = 0;
fa1a0f42 154 bool created = false;
7237f183 155
47876f7c
FM
156 /*
157 * First check if the log root tree was already created. If not, create
158 * it before locking the root's log_mutex, just to keep lockdep happy.
159 */
160 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
161 mutex_lock(&tree_root->log_mutex);
162 if (!fs_info->log_root_tree) {
163 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 164 if (!ret) {
47876f7c 165 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
166 created = true;
167 }
47876f7c
FM
168 }
169 mutex_unlock(&tree_root->log_mutex);
170 if (ret)
171 return ret;
172 }
173
7237f183 174 mutex_lock(&root->log_mutex);
34eb2a52 175
fa1a0f42 176again:
7237f183 177 if (root->log_root) {
fa1a0f42
NA
178 int index = (root->log_transid + 1) % 2;
179
4884b8e8 180 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 181 ret = BTRFS_LOG_FORCE_COMMIT;
50471a38
MX
182 goto out;
183 }
34eb2a52 184
fa1a0f42
NA
185 if (zoned && atomic_read(&root->log_commit[index])) {
186 wait_log_commit(root, root->log_transid - 1);
187 goto again;
188 }
189
ff782e0a 190 if (!root->log_start_pid) {
27cdeb70 191 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 192 root->log_start_pid = current->pid;
ff782e0a 193 } else if (root->log_start_pid != current->pid) {
27cdeb70 194 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 195 }
34eb2a52 196 } else {
fa1a0f42
NA
197 /*
198 * This means fs_info->log_root_tree was already created
199 * for some other FS trees. Do the full commit not to mix
200 * nodes from multiple log transactions to do sequential
201 * writing.
202 */
203 if (zoned && !created) {
f31f09f6 204 ret = BTRFS_LOG_FORCE_COMMIT;
fa1a0f42
NA
205 goto out;
206 }
207
e02119d5 208 ret = btrfs_add_log_tree(trans, root);
4a500fd1 209 if (ret)
e87ac136 210 goto out;
34eb2a52 211
e7a79811 212 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
213 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 root->log_start_pid = current->pid;
e02119d5 215 }
34eb2a52 216
7237f183 217 atomic_inc(&root->log_writers);
289cffcb 218 if (!ctx->logging_new_name) {
34eb2a52 219 int index = root->log_transid % 2;
8b050d35 220 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 221 ctx->log_transid = root->log_transid;
8b050d35 222 }
34eb2a52 223
e87ac136 224out:
7237f183 225 mutex_unlock(&root->log_mutex);
e87ac136 226 return ret;
e02119d5
CM
227}
228
229/*
230 * returns 0 if there was a log transaction running and we were able
231 * to join, or returns -ENOENT if there were not transactions
232 * in progress
233 */
234static int join_running_log_trans(struct btrfs_root *root)
235{
fa1a0f42 236 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
237 int ret = -ENOENT;
238
e7a79811
FM
239 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
240 return ret;
241
7237f183 242 mutex_lock(&root->log_mutex);
fa1a0f42 243again:
e02119d5 244 if (root->log_root) {
fa1a0f42
NA
245 int index = (root->log_transid + 1) % 2;
246
e02119d5 247 ret = 0;
fa1a0f42
NA
248 if (zoned && atomic_read(&root->log_commit[index])) {
249 wait_log_commit(root, root->log_transid - 1);
250 goto again;
251 }
7237f183 252 atomic_inc(&root->log_writers);
e02119d5 253 }
7237f183 254 mutex_unlock(&root->log_mutex);
e02119d5
CM
255 return ret;
256}
257
12fcfd22
CM
258/*
259 * This either makes the current running log transaction wait
260 * until you call btrfs_end_log_trans() or it makes any future
261 * log transactions wait until you call btrfs_end_log_trans()
262 */
45128b08 263void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 264{
12fcfd22 265 atomic_inc(&root->log_writers);
12fcfd22
CM
266}
267
e02119d5
CM
268/*
269 * indicate we're done making changes to the log tree
270 * and wake up anyone waiting to do a sync
271 */
143bede5 272void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 273{
7237f183 274 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
275 /* atomic_dec_and_test implies a barrier */
276 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 277 }
e02119d5
CM
278}
279
e02119d5
CM
280/*
281 * the walk control struct is used to pass state down the chain when
282 * processing the log tree. The stage field tells us which part
283 * of the log tree processing we are currently doing. The others
284 * are state fields used for that specific part
285 */
286struct walk_control {
287 /* should we free the extent on disk when done? This is used
288 * at transaction commit time while freeing a log tree
289 */
290 int free;
291
e02119d5
CM
292 /* pin only walk, we record which extents on disk belong to the
293 * log trees
294 */
295 int pin;
296
297 /* what stage of the replay code we're currently in */
298 int stage;
299
f2d72f42
FM
300 /*
301 * Ignore any items from the inode currently being processed. Needs
302 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
303 * the LOG_WALK_REPLAY_INODES stage.
304 */
305 bool ignore_cur_inode;
306
e02119d5
CM
307 /* the root we are currently replaying */
308 struct btrfs_root *replay_dest;
309
310 /* the trans handle for the current replay */
311 struct btrfs_trans_handle *trans;
312
313 /* the function that gets used to process blocks we find in the
314 * tree. Note the extent_buffer might not be up to date when it is
315 * passed in, and it must be checked or read if you need the data
316 * inside it
317 */
318 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 319 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
320};
321
322/*
323 * process_func used to pin down extents, write them or wait on them
324 */
325static int process_one_buffer(struct btrfs_root *log,
326 struct extent_buffer *eb,
581c1760 327 struct walk_control *wc, u64 gen, int level)
e02119d5 328{
0b246afa 329 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
330 int ret = 0;
331
8c2a1a30
JB
332 /*
333 * If this fs is mixed then we need to be able to process the leaves to
334 * pin down any logged extents, so we have to read the block.
335 */
0b246afa 336 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
789d6a3a
QW
337 struct btrfs_tree_parent_check check = {
338 .level = level,
339 .transid = gen
340 };
341
342 ret = btrfs_read_extent_buffer(eb, &check);
8c2a1a30
JB
343 if (ret)
344 return ret;
345 }
346
c816d705 347 if (wc->pin) {
007dec8c 348 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
c816d705
FM
349 if (ret)
350 return ret;
e02119d5 351
c816d705
FM
352 if (btrfs_buffer_uptodate(eb, gen, 0) &&
353 btrfs_header_level(eb) == 0)
bcdc428c 354 ret = btrfs_exclude_logged_extents(eb);
e02119d5 355 }
b50c6e25 356 return ret;
e02119d5
CM
357}
358
3a8d1db3
FM
359/*
360 * Item overwrite used by replay and tree logging. eb, slot and key all refer
361 * to the src data we are copying out.
362 *
363 * root is the tree we are copying into, and path is a scratch
364 * path for use in this function (it should be released on entry and
365 * will be released on exit).
366 *
367 * If the key is already in the destination tree the existing item is
368 * overwritten. If the existing item isn't big enough, it is extended.
369 * If it is too large, it is truncated.
370 *
371 * If the key isn't in the destination yet, a new item is inserted.
372 */
373static int overwrite_item(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root,
375 struct btrfs_path *path,
376 struct extent_buffer *eb, int slot,
377 struct btrfs_key *key)
e02119d5
CM
378{
379 int ret;
380 u32 item_size;
381 u64 saved_i_size = 0;
382 int save_old_i_size = 0;
383 unsigned long src_ptr;
384 unsigned long dst_ptr;
4bc4bee4 385 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5 386
3eb42344
FM
387 /*
388 * This is only used during log replay, so the root is always from a
389 * fs/subvolume tree. In case we ever need to support a log root, then
390 * we'll have to clone the leaf in the path, release the path and use
391 * the leaf before writing into the log tree. See the comments at
392 * copy_items() for more details.
393 */
394 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
e02119d5 395
3212fa14 396 item_size = btrfs_item_size(eb, slot);
e02119d5
CM
397 src_ptr = btrfs_item_ptr_offset(eb, slot);
398
3a8d1db3
FM
399 /* Look for the key in the destination tree. */
400 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
401 if (ret < 0)
402 return ret;
4bc4bee4 403
e02119d5
CM
404 if (ret == 0) {
405 char *src_copy;
406 char *dst_copy;
3212fa14 407 u32 dst_size = btrfs_item_size(path->nodes[0],
e02119d5
CM
408 path->slots[0]);
409 if (dst_size != item_size)
410 goto insert;
411
412 if (item_size == 0) {
b3b4aa74 413 btrfs_release_path(path);
e02119d5
CM
414 return 0;
415 }
416 dst_copy = kmalloc(item_size, GFP_NOFS);
417 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 418 if (!dst_copy || !src_copy) {
b3b4aa74 419 btrfs_release_path(path);
2a29edc6 420 kfree(dst_copy);
421 kfree(src_copy);
422 return -ENOMEM;
423 }
e02119d5
CM
424
425 read_extent_buffer(eb, src_copy, src_ptr, item_size);
426
427 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
428 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
429 item_size);
430 ret = memcmp(dst_copy, src_copy, item_size);
431
432 kfree(dst_copy);
433 kfree(src_copy);
434 /*
435 * they have the same contents, just return, this saves
436 * us from cowing blocks in the destination tree and doing
437 * extra writes that may not have been done by a previous
438 * sync
439 */
440 if (ret == 0) {
b3b4aa74 441 btrfs_release_path(path);
e02119d5
CM
442 return 0;
443 }
444
4bc4bee4
JB
445 /*
446 * We need to load the old nbytes into the inode so when we
447 * replay the extents we've logged we get the right nbytes.
448 */
449 if (inode_item) {
450 struct btrfs_inode_item *item;
451 u64 nbytes;
d555438b 452 u32 mode;
4bc4bee4
JB
453
454 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
455 struct btrfs_inode_item);
456 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
457 item = btrfs_item_ptr(eb, slot,
458 struct btrfs_inode_item);
459 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
460
461 /*
462 * If this is a directory we need to reset the i_size to
463 * 0 so that we can set it up properly when replaying
464 * the rest of the items in this log.
465 */
466 mode = btrfs_inode_mode(eb, item);
467 if (S_ISDIR(mode))
468 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
469 }
470 } else if (inode_item) {
471 struct btrfs_inode_item *item;
d555438b 472 u32 mode;
4bc4bee4
JB
473
474 /*
475 * New inode, set nbytes to 0 so that the nbytes comes out
476 * properly when we replay the extents.
477 */
478 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
479 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
480
481 /*
482 * If this is a directory we need to reset the i_size to 0 so
483 * that we can set it up properly when replaying the rest of
484 * the items in this log.
485 */
486 mode = btrfs_inode_mode(eb, item);
487 if (S_ISDIR(mode))
488 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
489 }
490insert:
b3b4aa74 491 btrfs_release_path(path);
e02119d5 492 /* try to insert the key into the destination tree */
df8d116f 493 path->skip_release_on_error = 1;
e02119d5
CM
494 ret = btrfs_insert_empty_item(trans, root, path,
495 key, item_size);
df8d116f 496 path->skip_release_on_error = 0;
e02119d5
CM
497
498 /* make sure any existing item is the correct size */
df8d116f 499 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5 500 u32 found_size;
3212fa14 501 found_size = btrfs_item_size(path->nodes[0],
e02119d5 502 path->slots[0]);
143bede5 503 if (found_size > item_size)
50564b65 504 btrfs_truncate_item(trans, path, item_size, 1);
143bede5 505 else if (found_size < item_size)
50564b65 506 btrfs_extend_item(trans, path, item_size - found_size);
e02119d5 507 } else if (ret) {
4a500fd1 508 return ret;
e02119d5
CM
509 }
510 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
511 path->slots[0]);
512
513 /* don't overwrite an existing inode if the generation number
514 * was logged as zero. This is done when the tree logging code
515 * is just logging an inode to make sure it exists after recovery.
516 *
517 * Also, don't overwrite i_size on directories during replay.
518 * log replay inserts and removes directory items based on the
519 * state of the tree found in the subvolume, and i_size is modified
520 * as it goes
521 */
522 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
523 struct btrfs_inode_item *src_item;
524 struct btrfs_inode_item *dst_item;
525
526 src_item = (struct btrfs_inode_item *)src_ptr;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528
1a4bcf47
FM
529 if (btrfs_inode_generation(eb, src_item) == 0) {
530 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 531 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 532
2f2ff0ee
FM
533 /*
534 * For regular files an ino_size == 0 is used only when
535 * logging that an inode exists, as part of a directory
536 * fsync, and the inode wasn't fsynced before. In this
537 * case don't set the size of the inode in the fs/subvol
538 * tree, otherwise we would be throwing valid data away.
539 */
1a4bcf47 540 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 541 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
542 ino_size != 0)
543 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 544 goto no_copy;
1a4bcf47 545 }
e02119d5 546
3eb42344 547 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
e02119d5
CM
548 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
549 save_old_i_size = 1;
550 saved_i_size = btrfs_inode_size(path->nodes[0],
551 dst_item);
552 }
553 }
554
555 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
556 src_ptr, item_size);
557
558 if (save_old_i_size) {
559 struct btrfs_inode_item *dst_item;
560 dst_item = (struct btrfs_inode_item *)dst_ptr;
561 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
562 }
563
564 /* make sure the generation is filled in */
565 if (key->type == BTRFS_INODE_ITEM_KEY) {
566 struct btrfs_inode_item *dst_item;
567 dst_item = (struct btrfs_inode_item *)dst_ptr;
568 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
569 btrfs_set_inode_generation(path->nodes[0], dst_item,
570 trans->transid);
571 }
572 }
573no_copy:
50564b65 574 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
b3b4aa74 575 btrfs_release_path(path);
e02119d5
CM
576 return 0;
577}
578
e43eec81 579static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
6db75318 580 struct fscrypt_str *name)
e43eec81
STD
581{
582 char *buf;
583
584 buf = kmalloc(len, GFP_NOFS);
585 if (!buf)
586 return -ENOMEM;
587
588 read_extent_buffer(eb, buf, (unsigned long)start, len);
589 name->name = buf;
590 name->len = len;
591 return 0;
592}
593
e02119d5
CM
594/*
595 * simple helper to read an inode off the disk from a given root
596 * This can only be called for subvolume roots and not for the log
597 */
598static noinline struct inode *read_one_inode(struct btrfs_root *root,
599 u64 objectid)
600{
601 struct inode *inode;
e02119d5 602
0202e83f 603 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 604 if (IS_ERR(inode))
5d4f98a2 605 inode = NULL;
e02119d5
CM
606 return inode;
607}
608
609/* replays a single extent in 'eb' at 'slot' with 'key' into the
610 * subvolume 'root'. path is released on entry and should be released
611 * on exit.
612 *
613 * extents in the log tree have not been allocated out of the extent
614 * tree yet. So, this completes the allocation, taking a reference
615 * as required if the extent already exists or creating a new extent
616 * if it isn't in the extent allocation tree yet.
617 *
618 * The extent is inserted into the file, dropping any existing extents
619 * from the file that overlap the new one.
620 */
621static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root,
623 struct btrfs_path *path,
624 struct extent_buffer *eb, int slot,
625 struct btrfs_key *key)
626{
5893dfb9 627 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 628 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 629 int found_type;
e02119d5 630 u64 extent_end;
e02119d5 631 u64 start = key->offset;
4bc4bee4 632 u64 nbytes = 0;
e02119d5
CM
633 struct btrfs_file_extent_item *item;
634 struct inode *inode = NULL;
635 unsigned long size;
636 int ret = 0;
637
638 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639 found_type = btrfs_file_extent_type(eb, item);
640
d899e052 641 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
642 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643 nbytes = btrfs_file_extent_num_bytes(eb, item);
644 extent_end = start + nbytes;
645
646 /*
647 * We don't add to the inodes nbytes if we are prealloc or a
648 * hole.
649 */
650 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
651 nbytes = 0;
652 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 653 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 654 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 655 extent_end = ALIGN(start + size,
0b246afa 656 fs_info->sectorsize);
e02119d5
CM
657 } else {
658 ret = 0;
659 goto out;
660 }
661
662 inode = read_one_inode(root, key->objectid);
663 if (!inode) {
664 ret = -EIO;
665 goto out;
666 }
667
668 /*
669 * first check to see if we already have this extent in the
670 * file. This must be done before the btrfs_drop_extents run
671 * so we don't try to drop this extent.
672 */
f85b7379
DS
673 ret = btrfs_lookup_file_extent(trans, root, path,
674 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 675
d899e052
YZ
676 if (ret == 0 &&
677 (found_type == BTRFS_FILE_EXTENT_REG ||
678 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
679 struct btrfs_file_extent_item cmp1;
680 struct btrfs_file_extent_item cmp2;
681 struct btrfs_file_extent_item *existing;
682 struct extent_buffer *leaf;
683
684 leaf = path->nodes[0];
685 existing = btrfs_item_ptr(leaf, path->slots[0],
686 struct btrfs_file_extent_item);
687
688 read_extent_buffer(eb, &cmp1, (unsigned long)item,
689 sizeof(cmp1));
690 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
691 sizeof(cmp2));
692
693 /*
694 * we already have a pointer to this exact extent,
695 * we don't have to do anything
696 */
697 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 698 btrfs_release_path(path);
e02119d5
CM
699 goto out;
700 }
701 }
b3b4aa74 702 btrfs_release_path(path);
e02119d5
CM
703
704 /* drop any overlapping extents */
5893dfb9
FM
705 drop_args.start = start;
706 drop_args.end = extent_end;
707 drop_args.drop_cache = true;
708 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
709 if (ret)
710 goto out;
e02119d5 711
07d400a6
YZ
712 if (found_type == BTRFS_FILE_EXTENT_REG ||
713 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 714 u64 offset;
07d400a6
YZ
715 unsigned long dest_offset;
716 struct btrfs_key ins;
717
3168021c
FM
718 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
719 btrfs_fs_incompat(fs_info, NO_HOLES))
720 goto update_inode;
721
07d400a6
YZ
722 ret = btrfs_insert_empty_item(trans, root, path, key,
723 sizeof(*item));
3650860b
JB
724 if (ret)
725 goto out;
07d400a6
YZ
726 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
727 path->slots[0]);
728 copy_extent_buffer(path->nodes[0], eb, dest_offset,
729 (unsigned long)item, sizeof(*item));
730
731 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
732 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
733 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 734 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 735
df2c95f3
QW
736 /*
737 * Manually record dirty extent, as here we did a shallow
738 * file extent item copy and skip normal backref update,
739 * but modifying extent tree all by ourselves.
740 * So need to manually record dirty extent for qgroup,
741 * as the owner of the file extent changed from log tree
742 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
743 */
a95f3aaf 744 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3 745 btrfs_file_extent_disk_bytenr(eb, item),
e2896e79 746 btrfs_file_extent_disk_num_bytes(eb, item));
df2c95f3
QW
747 if (ret < 0)
748 goto out;
749
07d400a6
YZ
750 if (ins.objectid > 0) {
751 u64 csum_start;
752 u64 csum_end;
753 LIST_HEAD(ordered_sums);
82fa113f 754
07d400a6
YZ
755 /*
756 * is this extent already allocated in the extent
757 * allocation tree? If so, just add a reference
758 */
2ff7e61e 759 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 760 ins.offset);
3736127a
MPS
761 if (ret < 0) {
762 goto out;
763 } else if (ret == 0) {
4d09b4e9
JB
764 struct btrfs_ref ref = {
765 .action = BTRFS_ADD_DELAYED_REF,
766 .bytenr = ins.objectid,
12390e42 767 .num_bytes = ins.offset,
4d09b4e9 768 .owning_root = root->root_key.objectid,
f2e69a77 769 .ref_root = root->root_key.objectid,
4d09b4e9 770 };
f2e69a77
JB
771 btrfs_init_data_ref(&ref, key->objectid, offset,
772 0, false);
82fa113f 773 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
774 if (ret)
775 goto out;
07d400a6
YZ
776 } else {
777 /*
778 * insert the extent pointer in the extent
779 * allocation tree
780 */
5d4f98a2 781 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 782 root->root_key.objectid,
5d4f98a2 783 key->objectid, offset, &ins);
b50c6e25
JB
784 if (ret)
785 goto out;
07d400a6 786 }
b3b4aa74 787 btrfs_release_path(path);
07d400a6
YZ
788
789 if (btrfs_file_extent_compression(eb, item)) {
790 csum_start = ins.objectid;
791 csum_end = csum_start + ins.offset;
792 } else {
793 csum_start = ins.objectid +
794 btrfs_file_extent_offset(eb, item);
795 csum_end = csum_start +
796 btrfs_file_extent_num_bytes(eb, item);
797 }
798
97e38239 799 ret = btrfs_lookup_csums_list(root->log_root,
07d400a6 800 csum_start, csum_end - 1,
afcb8062 801 &ordered_sums, false);
8d2a83a9 802 if (ret < 0)
3650860b 803 goto out;
8d2a83a9 804 ret = 0;
b84b8390
FM
805 /*
806 * Now delete all existing cums in the csum root that
807 * cover our range. We do this because we can have an
808 * extent that is completely referenced by one file
809 * extent item and partially referenced by another
810 * file extent item (like after using the clone or
811 * extent_same ioctls). In this case if we end up doing
812 * the replay of the one that partially references the
813 * extent first, and we do not do the csum deletion
814 * below, we can get 2 csum items in the csum tree that
815 * overlap each other. For example, imagine our log has
816 * the two following file extent items:
817 *
818 * key (257 EXTENT_DATA 409600)
819 * extent data disk byte 12845056 nr 102400
820 * extent data offset 20480 nr 20480 ram 102400
821 *
822 * key (257 EXTENT_DATA 819200)
823 * extent data disk byte 12845056 nr 102400
824 * extent data offset 0 nr 102400 ram 102400
825 *
826 * Where the second one fully references the 100K extent
827 * that starts at disk byte 12845056, and the log tree
828 * has a single csum item that covers the entire range
829 * of the extent:
830 *
831 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
832 *
833 * After the first file extent item is replayed, the
834 * csum tree gets the following csum item:
835 *
836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 *
838 * Which covers the 20K sub-range starting at offset 20K
839 * of our extent. Now when we replay the second file
840 * extent item, if we do not delete existing csum items
841 * that cover any of its blocks, we end up getting two
842 * csum items in our csum tree that overlap each other:
843 *
844 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
845 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
846 *
847 * Which is a problem, because after this anyone trying
848 * to lookup up for the checksum of any block of our
849 * extent starting at an offset of 40K or higher, will
850 * end up looking at the second csum item only, which
851 * does not contain the checksum for any block starting
852 * at offset 40K or higher of our extent.
853 */
07d400a6
YZ
854 while (!list_empty(&ordered_sums)) {
855 struct btrfs_ordered_sum *sums;
fc28b25e
JB
856 struct btrfs_root *csum_root;
857
07d400a6
YZ
858 sums = list_entry(ordered_sums.next,
859 struct btrfs_ordered_sum,
860 list);
fc28b25e 861 csum_root = btrfs_csum_root(fs_info,
5cfe76f8 862 sums->logical);
b84b8390 863 if (!ret)
fc28b25e 864 ret = btrfs_del_csums(trans, csum_root,
5cfe76f8 865 sums->logical,
5b4aacef 866 sums->len);
3650860b
JB
867 if (!ret)
868 ret = btrfs_csum_file_blocks(trans,
fc28b25e
JB
869 csum_root,
870 sums);
07d400a6
YZ
871 list_del(&sums->list);
872 kfree(sums);
873 }
3650860b
JB
874 if (ret)
875 goto out;
07d400a6 876 } else {
b3b4aa74 877 btrfs_release_path(path);
07d400a6
YZ
878 }
879 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
880 /* inline extents are easy, we just overwrite them */
881 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
882 if (ret)
883 goto out;
07d400a6 884 }
e02119d5 885
9ddc959e
JB
886 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
887 extent_end - start);
888 if (ret)
889 goto out;
890
3168021c 891update_inode:
2766ff61 892 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
8b9d0322 893 ret = btrfs_update_inode(trans, BTRFS_I(inode));
e02119d5 894out:
8aa1e49e 895 iput(inode);
e02119d5
CM
896 return ret;
897}
898
313ab753
FM
899static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
900 struct btrfs_inode *dir,
901 struct btrfs_inode *inode,
6db75318 902 const struct fscrypt_str *name)
313ab753
FM
903{
904 int ret;
905
e43eec81 906 ret = btrfs_unlink_inode(trans, dir, inode, name);
313ab753
FM
907 if (ret)
908 return ret;
909 /*
910 * Whenever we need to check if a name exists or not, we check the
911 * fs/subvolume tree. So after an unlink we must run delayed items, so
912 * that future checks for a name during log replay see that the name
913 * does not exists anymore.
914 */
915 return btrfs_run_delayed_items(trans);
916}
917
e02119d5
CM
918/*
919 * when cleaning up conflicts between the directory names in the
920 * subvolume, directory names in the log and directory names in the
921 * inode back references, we may have to unlink inodes from directories.
922 *
923 * This is a helper function to do the unlink of a specific directory
924 * item
925 */
926static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
e02119d5 927 struct btrfs_path *path,
207e7d92 928 struct btrfs_inode *dir,
e02119d5
CM
929 struct btrfs_dir_item *di)
930{
9798ba24 931 struct btrfs_root *root = dir->root;
e02119d5 932 struct inode *inode;
6db75318 933 struct fscrypt_str name;
e02119d5
CM
934 struct extent_buffer *leaf;
935 struct btrfs_key location;
936 int ret;
937
938 leaf = path->nodes[0];
939
940 btrfs_dir_item_key_to_cpu(leaf, di, &location);
e43eec81
STD
941 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
942 if (ret)
2a29edc6 943 return -ENOMEM;
944
b3b4aa74 945 btrfs_release_path(path);
e02119d5
CM
946
947 inode = read_one_inode(root, location.objectid);
c00e9493 948 if (!inode) {
3650860b
JB
949 ret = -EIO;
950 goto out;
c00e9493 951 }
e02119d5 952
ec051c0f 953 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
954 if (ret)
955 goto out;
12fcfd22 956
e43eec81 957 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
3650860b 958out:
e43eec81 959 kfree(name.name);
e02119d5
CM
960 iput(inode);
961 return ret;
962}
963
964/*
77a5b9e3
FM
965 * See if a given name and sequence number found in an inode back reference are
966 * already in a directory and correctly point to this inode.
967 *
968 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
969 * exists.
e02119d5
CM
970 */
971static noinline int inode_in_dir(struct btrfs_root *root,
972 struct btrfs_path *path,
973 u64 dirid, u64 objectid, u64 index,
6db75318 974 struct fscrypt_str *name)
e02119d5
CM
975{
976 struct btrfs_dir_item *di;
977 struct btrfs_key location;
77a5b9e3 978 int ret = 0;
e02119d5
CM
979
980 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
e43eec81 981 index, name, 0);
77a5b9e3 982 if (IS_ERR(di)) {
8dcbc261 983 ret = PTR_ERR(di);
77a5b9e3
FM
984 goto out;
985 } else if (di) {
e02119d5
CM
986 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
987 if (location.objectid != objectid)
988 goto out;
77a5b9e3 989 } else {
e02119d5 990 goto out;
77a5b9e3 991 }
e02119d5 992
77a5b9e3 993 btrfs_release_path(path);
e43eec81 994 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
77a5b9e3
FM
995 if (IS_ERR(di)) {
996 ret = PTR_ERR(di);
e02119d5 997 goto out;
77a5b9e3
FM
998 } else if (di) {
999 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1000 if (location.objectid == objectid)
1001 ret = 1;
1002 }
e02119d5 1003out:
b3b4aa74 1004 btrfs_release_path(path);
77a5b9e3 1005 return ret;
e02119d5
CM
1006}
1007
1008/*
1009 * helper function to check a log tree for a named back reference in
1010 * an inode. This is used to decide if a back reference that is
1011 * found in the subvolume conflicts with what we find in the log.
1012 *
1013 * inode backreferences may have multiple refs in a single item,
1014 * during replay we process one reference at a time, and we don't
1015 * want to delete valid links to a file from the subvolume if that
1016 * link is also in the log.
1017 */
1018static noinline int backref_in_log(struct btrfs_root *log,
1019 struct btrfs_key *key,
f186373f 1020 u64 ref_objectid,
6db75318 1021 const struct fscrypt_str *name)
e02119d5
CM
1022{
1023 struct btrfs_path *path;
e02119d5 1024 int ret;
e02119d5
CM
1025
1026 path = btrfs_alloc_path();
2a29edc6 1027 if (!path)
1028 return -ENOMEM;
1029
e02119d5 1030 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1031 if (ret < 0) {
1032 goto out;
1033 } else if (ret == 1) {
89cbf5f6 1034 ret = 0;
f186373f
MF
1035 goto out;
1036 }
1037
89cbf5f6
NB
1038 if (key->type == BTRFS_INODE_EXTREF_KEY)
1039 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1040 path->slots[0],
e43eec81 1041 ref_objectid, name);
89cbf5f6
NB
1042 else
1043 ret = !!btrfs_find_name_in_backref(path->nodes[0],
e43eec81 1044 path->slots[0], name);
e02119d5
CM
1045out:
1046 btrfs_free_path(path);
89cbf5f6 1047 return ret;
e02119d5
CM
1048}
1049
5a1d7843 1050static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1051 struct btrfs_root *root,
e02119d5 1052 struct btrfs_path *path,
5a1d7843 1053 struct btrfs_root *log_root,
94c91a1f
NB
1054 struct btrfs_inode *dir,
1055 struct btrfs_inode *inode,
f186373f 1056 u64 inode_objectid, u64 parent_objectid,
6db75318 1057 u64 ref_index, struct fscrypt_str *name)
e02119d5 1058{
34f3e4f2 1059 int ret;
f186373f 1060 struct extent_buffer *leaf;
5a1d7843 1061 struct btrfs_dir_item *di;
f186373f
MF
1062 struct btrfs_key search_key;
1063 struct btrfs_inode_extref *extref;
c622ae60 1064
f186373f
MF
1065again:
1066 /* Search old style refs */
1067 search_key.objectid = inode_objectid;
1068 search_key.type = BTRFS_INODE_REF_KEY;
1069 search_key.offset = parent_objectid;
1070 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1071 if (ret == 0) {
e02119d5
CM
1072 struct btrfs_inode_ref *victim_ref;
1073 unsigned long ptr;
1074 unsigned long ptr_end;
f186373f
MF
1075
1076 leaf = path->nodes[0];
e02119d5
CM
1077
1078 /* are we trying to overwrite a back ref for the root directory
1079 * if so, just jump out, we're done
1080 */
f186373f 1081 if (search_key.objectid == search_key.offset)
5a1d7843 1082 return 1;
e02119d5
CM
1083
1084 /* check all the names in this back reference to see
1085 * if they are in the log. if so, we allow them to stay
1086 * otherwise they must be unlinked as a conflict
1087 */
1088 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3212fa14 1089 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
d397712b 1090 while (ptr < ptr_end) {
6db75318 1091 struct fscrypt_str victim_name;
e02119d5 1092
e43eec81
STD
1093 victim_ref = (struct btrfs_inode_ref *)ptr;
1094 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1095 btrfs_inode_ref_name_len(leaf, victim_ref),
1096 &victim_name);
1097 if (ret)
1098 return ret;
e02119d5 1099
d3316c82 1100 ret = backref_in_log(log_root, &search_key,
e43eec81 1101 parent_objectid, &victim_name);
d3316c82 1102 if (ret < 0) {
e43eec81 1103 kfree(victim_name.name);
d3316c82
NB
1104 return ret;
1105 } else if (!ret) {
94c91a1f 1106 inc_nlink(&inode->vfs_inode);
b3b4aa74 1107 btrfs_release_path(path);
12fcfd22 1108
313ab753 1109 ret = unlink_inode_for_log_replay(trans, dir, inode,
e43eec81
STD
1110 &victim_name);
1111 kfree(victim_name.name);
ada9af21
FDBM
1112 if (ret)
1113 return ret;
f186373f 1114 goto again;
e02119d5 1115 }
e43eec81 1116 kfree(victim_name.name);
f186373f 1117
e43eec81 1118 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
e02119d5 1119 }
e02119d5 1120 }
b3b4aa74 1121 btrfs_release_path(path);
e02119d5 1122
f186373f 1123 /* Same search but for extended refs */
e43eec81 1124 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
f186373f
MF
1125 inode_objectid, parent_objectid, 0,
1126 0);
7a6b75b7
FM
1127 if (IS_ERR(extref)) {
1128 return PTR_ERR(extref);
1129 } else if (extref) {
f186373f
MF
1130 u32 item_size;
1131 u32 cur_offset = 0;
1132 unsigned long base;
1133 struct inode *victim_parent;
1134
1135 leaf = path->nodes[0];
1136
3212fa14 1137 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f
MF
1138 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1139
1140 while (cur_offset < item_size) {
6db75318 1141 struct fscrypt_str victim_name;
f186373f 1142
e43eec81 1143 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1144
1145 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1146 goto next;
1147
e43eec81
STD
1148 ret = read_alloc_one_name(leaf, &extref->name,
1149 btrfs_inode_extref_name_len(leaf, extref),
1150 &victim_name);
1151 if (ret)
1152 return ret;
f186373f
MF
1153
1154 search_key.objectid = inode_objectid;
1155 search_key.type = BTRFS_INODE_EXTREF_KEY;
1156 search_key.offset = btrfs_extref_hash(parent_objectid,
e43eec81
STD
1157 victim_name.name,
1158 victim_name.len);
d3316c82 1159 ret = backref_in_log(log_root, &search_key,
e43eec81 1160 parent_objectid, &victim_name);
d3316c82 1161 if (ret < 0) {
e43eec81 1162 kfree(victim_name.name);
d3316c82
NB
1163 return ret;
1164 } else if (!ret) {
f186373f
MF
1165 ret = -ENOENT;
1166 victim_parent = read_one_inode(root,
94c91a1f 1167 parent_objectid);
f186373f 1168 if (victim_parent) {
94c91a1f 1169 inc_nlink(&inode->vfs_inode);
f186373f
MF
1170 btrfs_release_path(path);
1171
313ab753 1172 ret = unlink_inode_for_log_replay(trans,
4ec5934e 1173 BTRFS_I(victim_parent),
e43eec81 1174 inode, &victim_name);
f186373f 1175 }
f186373f 1176 iput(victim_parent);
e43eec81 1177 kfree(victim_name.name);
3650860b
JB
1178 if (ret)
1179 return ret;
f186373f
MF
1180 goto again;
1181 }
e43eec81 1182 kfree(victim_name.name);
f186373f 1183next:
e43eec81 1184 cur_offset += victim_name.len + sizeof(*extref);
f186373f 1185 }
f186373f
MF
1186 }
1187 btrfs_release_path(path);
1188
34f3e4f2 1189 /* look for a conflicting sequence number */
94c91a1f 1190 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
e43eec81 1191 ref_index, name, 0);
52db7779 1192 if (IS_ERR(di)) {
8dcbc261 1193 return PTR_ERR(di);
52db7779 1194 } else if (di) {
9798ba24 1195 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1196 if (ret)
1197 return ret;
34f3e4f2 1198 }
1199 btrfs_release_path(path);
1200
52042d8e 1201 /* look for a conflicting name */
e43eec81 1202 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
52db7779
FM
1203 if (IS_ERR(di)) {
1204 return PTR_ERR(di);
1205 } else if (di) {
9798ba24 1206 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1207 if (ret)
1208 return ret;
34f3e4f2 1209 }
1210 btrfs_release_path(path);
1211
5a1d7843
JS
1212 return 0;
1213}
e02119d5 1214
bae15d95 1215static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1216 struct fscrypt_str *name, u64 *index,
bae15d95 1217 u64 *parent_objectid)
f186373f
MF
1218{
1219 struct btrfs_inode_extref *extref;
e43eec81 1220 int ret;
f186373f
MF
1221
1222 extref = (struct btrfs_inode_extref *)ref_ptr;
1223
e43eec81
STD
1224 ret = read_alloc_one_name(eb, &extref->name,
1225 btrfs_inode_extref_name_len(eb, extref), name);
1226 if (ret)
1227 return ret;
f186373f 1228
1f250e92
FM
1229 if (index)
1230 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1231 if (parent_objectid)
1232 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1233
1234 return 0;
1235}
1236
bae15d95 1237static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1238 struct fscrypt_str *name, u64 *index)
f186373f
MF
1239{
1240 struct btrfs_inode_ref *ref;
e43eec81 1241 int ret;
f186373f
MF
1242
1243 ref = (struct btrfs_inode_ref *)ref_ptr;
1244
e43eec81
STD
1245 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1246 name);
1247 if (ret)
1248 return ret;
f186373f 1249
1f250e92
FM
1250 if (index)
1251 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1252
1253 return 0;
1254}
1255
1f250e92
FM
1256/*
1257 * Take an inode reference item from the log tree and iterate all names from the
1258 * inode reference item in the subvolume tree with the same key (if it exists).
1259 * For any name that is not in the inode reference item from the log tree, do a
1260 * proper unlink of that name (that is, remove its entry from the inode
1261 * reference item and both dir index keys).
1262 */
1263static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1264 struct btrfs_root *root,
1265 struct btrfs_path *path,
1266 struct btrfs_inode *inode,
1267 struct extent_buffer *log_eb,
1268 int log_slot,
1269 struct btrfs_key *key)
1270{
1271 int ret;
1272 unsigned long ref_ptr;
1273 unsigned long ref_end;
1274 struct extent_buffer *eb;
1275
1276again:
1277 btrfs_release_path(path);
1278 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1279 if (ret > 0) {
1280 ret = 0;
1281 goto out;
1282 }
1283 if (ret < 0)
1284 goto out;
1285
1286 eb = path->nodes[0];
1287 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3212fa14 1288 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1f250e92 1289 while (ref_ptr < ref_end) {
6db75318 1290 struct fscrypt_str name;
1f250e92
FM
1291 u64 parent_id;
1292
1293 if (key->type == BTRFS_INODE_EXTREF_KEY) {
e43eec81 1294 ret = extref_get_fields(eb, ref_ptr, &name,
1f250e92
FM
1295 NULL, &parent_id);
1296 } else {
1297 parent_id = key->offset;
e43eec81 1298 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1f250e92
FM
1299 }
1300 if (ret)
1301 goto out;
1302
1303 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a 1304 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
e43eec81 1305 parent_id, &name);
1f250e92 1306 else
e43eec81 1307 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1f250e92
FM
1308
1309 if (!ret) {
1310 struct inode *dir;
1311
1312 btrfs_release_path(path);
1313 dir = read_one_inode(root, parent_id);
1314 if (!dir) {
1315 ret = -ENOENT;
e43eec81 1316 kfree(name.name);
1f250e92
FM
1317 goto out;
1318 }
313ab753 1319 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
e43eec81
STD
1320 inode, &name);
1321 kfree(name.name);
1f250e92
FM
1322 iput(dir);
1323 if (ret)
1324 goto out;
1325 goto again;
1326 }
1327
e43eec81
STD
1328 kfree(name.name);
1329 ref_ptr += name.len;
1f250e92
FM
1330 if (key->type == BTRFS_INODE_EXTREF_KEY)
1331 ref_ptr += sizeof(struct btrfs_inode_extref);
1332 else
1333 ref_ptr += sizeof(struct btrfs_inode_ref);
1334 }
1335 ret = 0;
1336 out:
1337 btrfs_release_path(path);
1338 return ret;
1339}
1340
5a1d7843
JS
1341/*
1342 * replay one inode back reference item found in the log tree.
1343 * eb, slot and key refer to the buffer and key found in the log tree.
1344 * root is the destination we are replaying into, and path is for temp
1345 * use by this function. (it should be released on return).
1346 */
1347static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1348 struct btrfs_root *root,
1349 struct btrfs_root *log,
1350 struct btrfs_path *path,
1351 struct extent_buffer *eb, int slot,
1352 struct btrfs_key *key)
1353{
03b2f08b
GB
1354 struct inode *dir = NULL;
1355 struct inode *inode = NULL;
5a1d7843
JS
1356 unsigned long ref_ptr;
1357 unsigned long ref_end;
6db75318 1358 struct fscrypt_str name;
5a1d7843 1359 int ret;
f186373f
MF
1360 int log_ref_ver = 0;
1361 u64 parent_objectid;
1362 u64 inode_objectid;
f46dbe3d 1363 u64 ref_index = 0;
f186373f
MF
1364 int ref_struct_size;
1365
1366 ref_ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 1367 ref_end = ref_ptr + btrfs_item_size(eb, slot);
f186373f
MF
1368
1369 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1370 struct btrfs_inode_extref *r;
1371
1372 ref_struct_size = sizeof(struct btrfs_inode_extref);
1373 log_ref_ver = 1;
1374 r = (struct btrfs_inode_extref *)ref_ptr;
1375 parent_objectid = btrfs_inode_extref_parent(eb, r);
1376 } else {
1377 ref_struct_size = sizeof(struct btrfs_inode_ref);
1378 parent_objectid = key->offset;
1379 }
1380 inode_objectid = key->objectid;
e02119d5 1381
5a1d7843
JS
1382 /*
1383 * it is possible that we didn't log all the parent directories
1384 * for a given inode. If we don't find the dir, just don't
1385 * copy the back ref in. The link count fixup code will take
1386 * care of the rest
1387 */
f186373f 1388 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1389 if (!dir) {
1390 ret = -ENOENT;
1391 goto out;
1392 }
5a1d7843 1393
f186373f 1394 inode = read_one_inode(root, inode_objectid);
5a1d7843 1395 if (!inode) {
03b2f08b
GB
1396 ret = -EIO;
1397 goto out;
5a1d7843
JS
1398 }
1399
5a1d7843 1400 while (ref_ptr < ref_end) {
f186373f 1401 if (log_ref_ver) {
e43eec81 1402 ret = extref_get_fields(eb, ref_ptr, &name,
bae15d95 1403 &ref_index, &parent_objectid);
f186373f
MF
1404 /*
1405 * parent object can change from one array
1406 * item to another.
1407 */
1408 if (!dir)
1409 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1410 if (!dir) {
1411 ret = -ENOENT;
1412 goto out;
1413 }
f186373f 1414 } else {
e43eec81 1415 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
f186373f
MF
1416 }
1417 if (ret)
03b2f08b 1418 goto out;
5a1d7843 1419
77a5b9e3 1420 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
e43eec81 1421 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
77a5b9e3
FM
1422 if (ret < 0) {
1423 goto out;
1424 } else if (ret == 0) {
5a1d7843
JS
1425 /*
1426 * look for a conflicting back reference in the
1427 * metadata. if we find one we have to unlink that name
1428 * of the file before we add our new link. Later on, we
1429 * overwrite any existing back reference, and we don't
1430 * want to create dangling pointers in the directory.
1431 */
7059c658
FM
1432 ret = __add_inode_ref(trans, root, path, log,
1433 BTRFS_I(dir), BTRFS_I(inode),
1434 inode_objectid, parent_objectid,
e43eec81 1435 ref_index, &name);
7059c658
FM
1436 if (ret) {
1437 if (ret == 1)
1438 ret = 0;
0d836392 1439 goto out;
7059c658 1440 }
0d836392 1441
5a1d7843 1442 /* insert our name */
7059c658 1443 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 1444 &name, 0, ref_index);
3650860b
JB
1445 if (ret)
1446 goto out;
5a1d7843 1447
8b9d0322 1448 ret = btrfs_update_inode(trans, BTRFS_I(inode));
f96d4474
JB
1449 if (ret)
1450 goto out;
5a1d7843 1451 }
77a5b9e3 1452 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1453
e43eec81
STD
1454 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1455 kfree(name.name);
1456 name.name = NULL;
f186373f
MF
1457 if (log_ref_ver) {
1458 iput(dir);
1459 dir = NULL;
1460 }
5a1d7843 1461 }
e02119d5 1462
1f250e92
FM
1463 /*
1464 * Before we overwrite the inode reference item in the subvolume tree
1465 * with the item from the log tree, we must unlink all names from the
1466 * parent directory that are in the subvolume's tree inode reference
1467 * item, otherwise we end up with an inconsistent subvolume tree where
1468 * dir index entries exist for a name but there is no inode reference
1469 * item with the same name.
1470 */
1471 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1472 key);
1473 if (ret)
1474 goto out;
1475
e02119d5
CM
1476 /* finally write the back reference in the inode */
1477 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1478out:
b3b4aa74 1479 btrfs_release_path(path);
e43eec81 1480 kfree(name.name);
e02119d5
CM
1481 iput(dir);
1482 iput(inode);
3650860b 1483 return ret;
e02119d5
CM
1484}
1485
8befc61c 1486static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1487{
1488 int ret = 0;
1489 int name_len;
1490 unsigned int nlink = 0;
1491 u32 item_size;
1492 u32 cur_offset = 0;
36283658 1493 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1494 u64 offset = 0;
1495 unsigned long ptr;
1496 struct btrfs_inode_extref *extref;
1497 struct extent_buffer *leaf;
1498
1499 while (1) {
8befc61c
FM
1500 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1501 path, &extref, &offset);
f186373f
MF
1502 if (ret)
1503 break;
c71bf099 1504
f186373f 1505 leaf = path->nodes[0];
3212fa14 1506 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f 1507 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1508 cur_offset = 0;
f186373f
MF
1509
1510 while (cur_offset < item_size) {
1511 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1512 name_len = btrfs_inode_extref_name_len(leaf, extref);
1513
1514 nlink++;
1515
1516 cur_offset += name_len + sizeof(*extref);
1517 }
1518
1519 offset++;
1520 btrfs_release_path(path);
1521 }
1522 btrfs_release_path(path);
1523
2c2c452b 1524 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1525 return ret;
1526 return nlink;
1527}
1528
8befc61c 1529static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1530{
e02119d5
CM
1531 int ret;
1532 struct btrfs_key key;
f186373f 1533 unsigned int nlink = 0;
e02119d5
CM
1534 unsigned long ptr;
1535 unsigned long ptr_end;
1536 int name_len;
f329e319 1537 u64 ino = btrfs_ino(inode);
e02119d5 1538
33345d01 1539 key.objectid = ino;
e02119d5
CM
1540 key.type = BTRFS_INODE_REF_KEY;
1541 key.offset = (u64)-1;
1542
d397712b 1543 while (1) {
8befc61c 1544 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
e02119d5
CM
1545 if (ret < 0)
1546 break;
1547 if (ret > 0) {
1548 if (path->slots[0] == 0)
1549 break;
1550 path->slots[0]--;
1551 }
e93ae26f 1552process_slot:
e02119d5
CM
1553 btrfs_item_key_to_cpu(path->nodes[0], &key,
1554 path->slots[0]);
33345d01 1555 if (key.objectid != ino ||
e02119d5
CM
1556 key.type != BTRFS_INODE_REF_KEY)
1557 break;
1558 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
3212fa14 1559 ptr_end = ptr + btrfs_item_size(path->nodes[0],
e02119d5 1560 path->slots[0]);
d397712b 1561 while (ptr < ptr_end) {
e02119d5
CM
1562 struct btrfs_inode_ref *ref;
1563
1564 ref = (struct btrfs_inode_ref *)ptr;
1565 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1566 ref);
1567 ptr = (unsigned long)(ref + 1) + name_len;
1568 nlink++;
1569 }
1570
1571 if (key.offset == 0)
1572 break;
e93ae26f
FDBM
1573 if (path->slots[0] > 0) {
1574 path->slots[0]--;
1575 goto process_slot;
1576 }
e02119d5 1577 key.offset--;
b3b4aa74 1578 btrfs_release_path(path);
e02119d5 1579 }
b3b4aa74 1580 btrfs_release_path(path);
f186373f
MF
1581
1582 return nlink;
1583}
1584
1585/*
1586 * There are a few corners where the link count of the file can't
1587 * be properly maintained during replay. So, instead of adding
1588 * lots of complexity to the log code, we just scan the backrefs
1589 * for any file that has been through replay.
1590 *
1591 * The scan will update the link count on the inode to reflect the
1592 * number of back refs found. If it goes down to zero, the iput
1593 * will free the inode.
1594 */
1595static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
f186373f
MF
1596 struct inode *inode)
1597{
8befc61c 1598 struct btrfs_root *root = BTRFS_I(inode)->root;
f186373f
MF
1599 struct btrfs_path *path;
1600 int ret;
1601 u64 nlink = 0;
4a0cc7ca 1602 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1603
1604 path = btrfs_alloc_path();
1605 if (!path)
1606 return -ENOMEM;
1607
8befc61c 1608 ret = count_inode_refs(BTRFS_I(inode), path);
f186373f
MF
1609 if (ret < 0)
1610 goto out;
1611
1612 nlink = ret;
1613
8befc61c 1614 ret = count_inode_extrefs(BTRFS_I(inode), path);
f186373f
MF
1615 if (ret < 0)
1616 goto out;
1617
1618 nlink += ret;
1619
1620 ret = 0;
1621
e02119d5 1622 if (nlink != inode->i_nlink) {
bfe86848 1623 set_nlink(inode, nlink);
8b9d0322 1624 ret = btrfs_update_inode(trans, BTRFS_I(inode));
f96d4474
JB
1625 if (ret)
1626 goto out;
e02119d5 1627 }
8d5bf1cb 1628 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1629
c71bf099
YZ
1630 if (inode->i_nlink == 0) {
1631 if (S_ISDIR(inode->i_mode)) {
1632 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1633 ino, 1);
3650860b
JB
1634 if (ret)
1635 goto out;
c71bf099 1636 }
ecdcf3c2
NB
1637 ret = btrfs_insert_orphan_item(trans, root, ino);
1638 if (ret == -EEXIST)
1639 ret = 0;
12fcfd22 1640 }
12fcfd22 1641
f186373f
MF
1642out:
1643 btrfs_free_path(path);
1644 return ret;
e02119d5
CM
1645}
1646
1647static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1648 struct btrfs_root *root,
1649 struct btrfs_path *path)
1650{
1651 int ret;
1652 struct btrfs_key key;
1653 struct inode *inode;
1654
1655 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1656 key.type = BTRFS_ORPHAN_ITEM_KEY;
1657 key.offset = (u64)-1;
d397712b 1658 while (1) {
e02119d5
CM
1659 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1660 if (ret < 0)
1661 break;
1662
1663 if (ret == 1) {
011b28ac 1664 ret = 0;
e02119d5
CM
1665 if (path->slots[0] == 0)
1666 break;
1667 path->slots[0]--;
1668 }
1669
1670 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1671 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1672 key.type != BTRFS_ORPHAN_ITEM_KEY)
1673 break;
1674
1675 ret = btrfs_del_item(trans, root, path);
65a246c5 1676 if (ret)
011b28ac 1677 break;
e02119d5 1678
b3b4aa74 1679 btrfs_release_path(path);
e02119d5 1680 inode = read_one_inode(root, key.offset);
011b28ac
JB
1681 if (!inode) {
1682 ret = -EIO;
1683 break;
1684 }
e02119d5 1685
8befc61c 1686 ret = fixup_inode_link_count(trans, inode);
e02119d5 1687 iput(inode);
3650860b 1688 if (ret)
011b28ac 1689 break;
e02119d5 1690
12fcfd22
CM
1691 /*
1692 * fixup on a directory may create new entries,
1693 * make sure we always look for the highset possible
1694 * offset
1695 */
1696 key.offset = (u64)-1;
e02119d5 1697 }
b3b4aa74 1698 btrfs_release_path(path);
65a246c5 1699 return ret;
e02119d5
CM
1700}
1701
1702
1703/*
1704 * record a given inode in the fixup dir so we can check its link
1705 * count when replay is done. The link count is incremented here
1706 * so the inode won't go away until we check it
1707 */
1708static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1709 struct btrfs_root *root,
1710 struct btrfs_path *path,
1711 u64 objectid)
1712{
1713 struct btrfs_key key;
1714 int ret = 0;
1715 struct inode *inode;
1716
1717 inode = read_one_inode(root, objectid);
c00e9493
TI
1718 if (!inode)
1719 return -EIO;
e02119d5
CM
1720
1721 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1722 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1723 key.offset = objectid;
1724
1725 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1726
b3b4aa74 1727 btrfs_release_path(path);
e02119d5 1728 if (ret == 0) {
9bf7a489
JB
1729 if (!inode->i_nlink)
1730 set_nlink(inode, 1);
1731 else
8b558c5f 1732 inc_nlink(inode);
8b9d0322 1733 ret = btrfs_update_inode(trans, BTRFS_I(inode));
e02119d5
CM
1734 } else if (ret == -EEXIST) {
1735 ret = 0;
e02119d5
CM
1736 }
1737 iput(inode);
1738
1739 return ret;
1740}
1741
1742/*
1743 * when replaying the log for a directory, we only insert names
1744 * for inodes that actually exist. This means an fsync on a directory
1745 * does not implicitly fsync all the new files in it
1746 */
1747static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1748 struct btrfs_root *root,
e02119d5 1749 u64 dirid, u64 index,
6db75318 1750 const struct fscrypt_str *name,
e02119d5
CM
1751 struct btrfs_key *location)
1752{
1753 struct inode *inode;
1754 struct inode *dir;
1755 int ret;
1756
1757 inode = read_one_inode(root, location->objectid);
1758 if (!inode)
1759 return -ENOENT;
1760
1761 dir = read_one_inode(root, dirid);
1762 if (!dir) {
1763 iput(inode);
1764 return -EIO;
1765 }
d555438b 1766
db0a669f 1767 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
e43eec81 1768 1, index);
e02119d5
CM
1769
1770 /* FIXME, put inode into FIXUP list */
1771
1772 iput(inode);
1773 iput(dir);
1774 return ret;
1775}
1776
339d0354
FM
1777static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1778 struct btrfs_inode *dir,
1779 struct btrfs_path *path,
1780 struct btrfs_dir_item *dst_di,
1781 const struct btrfs_key *log_key,
94a48aef 1782 u8 log_flags,
339d0354
FM
1783 bool exists)
1784{
1785 struct btrfs_key found_key;
1786
1787 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1788 /* The existing dentry points to the same inode, don't delete it. */
1789 if (found_key.objectid == log_key->objectid &&
1790 found_key.type == log_key->type &&
1791 found_key.offset == log_key->offset &&
94a48aef 1792 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
339d0354
FM
1793 return 1;
1794
1795 /*
1796 * Don't drop the conflicting directory entry if the inode for the new
1797 * entry doesn't exist.
1798 */
1799 if (!exists)
1800 return 0;
1801
1802 return drop_one_dir_item(trans, path, dir, dst_di);
1803}
1804
e02119d5
CM
1805/*
1806 * take a single entry in a log directory item and replay it into
1807 * the subvolume.
1808 *
1809 * if a conflicting item exists in the subdirectory already,
1810 * the inode it points to is unlinked and put into the link count
1811 * fix up tree.
1812 *
1813 * If a name from the log points to a file or directory that does
1814 * not exist in the FS, it is skipped. fsyncs on directories
1815 * do not force down inodes inside that directory, just changes to the
1816 * names or unlinks in a directory.
bb53eda9
FM
1817 *
1818 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1819 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1820 */
1821static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1822 struct btrfs_root *root,
1823 struct btrfs_path *path,
1824 struct extent_buffer *eb,
1825 struct btrfs_dir_item *di,
1826 struct btrfs_key *key)
1827{
6db75318 1828 struct fscrypt_str name;
339d0354
FM
1829 struct btrfs_dir_item *dir_dst_di;
1830 struct btrfs_dir_item *index_dst_di;
1831 bool dir_dst_matches = false;
1832 bool index_dst_matches = false;
e02119d5 1833 struct btrfs_key log_key;
339d0354 1834 struct btrfs_key search_key;
e02119d5 1835 struct inode *dir;
94a48aef 1836 u8 log_flags;
cfd31269
FM
1837 bool exists;
1838 int ret;
339d0354 1839 bool update_size = true;
bb53eda9 1840 bool name_added = false;
e02119d5
CM
1841
1842 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1843 if (!dir)
1844 return -EIO;
e02119d5 1845
e43eec81
STD
1846 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1847 if (ret)
2bac325e 1848 goto out;
2a29edc6 1849
94a48aef 1850 log_flags = btrfs_dir_flags(eb, di);
e02119d5 1851 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 1852 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 1853 btrfs_release_path(path);
cfd31269
FM
1854 if (ret < 0)
1855 goto out;
1856 exists = (ret == 0);
1857 ret = 0;
4bef0848 1858
339d0354 1859 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
e43eec81 1860 &name, 1);
339d0354
FM
1861 if (IS_ERR(dir_dst_di)) {
1862 ret = PTR_ERR(dir_dst_di);
3650860b 1863 goto out;
339d0354
FM
1864 } else if (dir_dst_di) {
1865 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
94a48aef
OS
1866 dir_dst_di, &log_key,
1867 log_flags, exists);
339d0354
FM
1868 if (ret < 0)
1869 goto out;
1870 dir_dst_matches = (ret == 1);
e02119d5 1871 }
e15ac641 1872
339d0354
FM
1873 btrfs_release_path(path);
1874
1875 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1876 key->objectid, key->offset,
e43eec81 1877 &name, 1);
339d0354
FM
1878 if (IS_ERR(index_dst_di)) {
1879 ret = PTR_ERR(index_dst_di);
e15ac641 1880 goto out;
339d0354
FM
1881 } else if (index_dst_di) {
1882 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1883 index_dst_di, &log_key,
94a48aef 1884 log_flags, exists);
339d0354 1885 if (ret < 0)
e02119d5 1886 goto out;
339d0354 1887 index_dst_matches = (ret == 1);
e02119d5
CM
1888 }
1889
339d0354
FM
1890 btrfs_release_path(path);
1891
1892 if (dir_dst_matches && index_dst_matches) {
1893 ret = 0;
a2cc11db 1894 update_size = false;
e02119d5
CM
1895 goto out;
1896 }
1897
725af92a
NB
1898 /*
1899 * Check if the inode reference exists in the log for the given name,
1900 * inode and parent inode
1901 */
339d0354
FM
1902 search_key.objectid = log_key.objectid;
1903 search_key.type = BTRFS_INODE_REF_KEY;
1904 search_key.offset = key->objectid;
e43eec81 1905 ret = backref_in_log(root->log_root, &search_key, 0, &name);
725af92a
NB
1906 if (ret < 0) {
1907 goto out;
1908 } else if (ret) {
1909 /* The dentry will be added later. */
1910 ret = 0;
1911 update_size = false;
1912 goto out;
1913 }
1914
339d0354
FM
1915 search_key.objectid = log_key.objectid;
1916 search_key.type = BTRFS_INODE_EXTREF_KEY;
1917 search_key.offset = key->objectid;
e43eec81 1918 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
725af92a
NB
1919 if (ret < 0) {
1920 goto out;
1921 } else if (ret) {
df8d116f
FM
1922 /* The dentry will be added later. */
1923 ret = 0;
1924 update_size = false;
1925 goto out;
1926 }
b3b4aa74 1927 btrfs_release_path(path);
60d53eb3 1928 ret = insert_one_name(trans, root, key->objectid, key->offset,
e43eec81 1929 &name, &log_key);
df8d116f 1930 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1931 goto out;
bb53eda9
FM
1932 if (!ret)
1933 name_added = true;
d555438b 1934 update_size = false;
3650860b 1935 ret = 0;
339d0354
FM
1936
1937out:
1938 if (!ret && update_size) {
e43eec81 1939 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
8b9d0322 1940 ret = btrfs_update_inode(trans, BTRFS_I(dir));
339d0354 1941 }
e43eec81 1942 kfree(name.name);
339d0354
FM
1943 iput(dir);
1944 if (!ret && name_added)
1945 ret = 1;
1946 return ret;
e02119d5
CM
1947}
1948
339d0354 1949/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
e02119d5
CM
1950static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1951 struct btrfs_root *root,
1952 struct btrfs_path *path,
1953 struct extent_buffer *eb, int slot,
1954 struct btrfs_key *key)
1955{
339d0354 1956 int ret;
e02119d5 1957 struct btrfs_dir_item *di;
e02119d5 1958
339d0354
FM
1959 /* We only log dir index keys, which only contain a single dir item. */
1960 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1961
339d0354
FM
1962 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1963 ret = replay_one_name(trans, root, path, eb, di, key);
1964 if (ret < 0)
1965 return ret;
bb53eda9 1966
339d0354
FM
1967 /*
1968 * If this entry refers to a non-directory (directories can not have a
1969 * link count > 1) and it was added in the transaction that was not
1970 * committed, make sure we fixup the link count of the inode the entry
1971 * points to. Otherwise something like the following would result in a
1972 * directory pointing to an inode with a wrong link that does not account
1973 * for this dir entry:
1974 *
1975 * mkdir testdir
1976 * touch testdir/foo
1977 * touch testdir/bar
1978 * sync
1979 *
1980 * ln testdir/bar testdir/bar_link
1981 * ln testdir/foo testdir/foo_link
1982 * xfs_io -c "fsync" testdir/bar
1983 *
1984 * <power failure>
1985 *
1986 * mount fs, log replay happens
1987 *
1988 * File foo would remain with a link count of 1 when it has two entries
1989 * pointing to it in the directory testdir. This would make it impossible
1990 * to ever delete the parent directory has it would result in stale
1991 * dentries that can never be deleted.
1992 */
94a48aef 1993 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
339d0354
FM
1994 struct btrfs_path *fixup_path;
1995 struct btrfs_key di_key;
bb53eda9 1996
339d0354
FM
1997 fixup_path = btrfs_alloc_path();
1998 if (!fixup_path)
1999 return -ENOMEM;
2000
2001 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2002 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2003 btrfs_free_path(fixup_path);
e02119d5 2004 }
339d0354 2005
bb53eda9 2006 return ret;
e02119d5
CM
2007}
2008
2009/*
2010 * directory replay has two parts. There are the standard directory
2011 * items in the log copied from the subvolume, and range items
2012 * created in the log while the subvolume was logged.
2013 *
2014 * The range items tell us which parts of the key space the log
2015 * is authoritative for. During replay, if a key in the subvolume
2016 * directory is in a logged range item, but not actually in the log
2017 * that means it was deleted from the directory before the fsync
2018 * and should be removed.
2019 */
2020static noinline int find_dir_range(struct btrfs_root *root,
2021 struct btrfs_path *path,
ccae4a19 2022 u64 dirid,
e02119d5
CM
2023 u64 *start_ret, u64 *end_ret)
2024{
2025 struct btrfs_key key;
2026 u64 found_end;
2027 struct btrfs_dir_log_item *item;
2028 int ret;
2029 int nritems;
2030
2031 if (*start_ret == (u64)-1)
2032 return 1;
2033
2034 key.objectid = dirid;
ccae4a19 2035 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5
CM
2036 key.offset = *start_ret;
2037
2038 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2039 if (ret < 0)
2040 goto out;
2041 if (ret > 0) {
2042 if (path->slots[0] == 0)
2043 goto out;
2044 path->slots[0]--;
2045 }
2046 if (ret != 0)
2047 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2048
ccae4a19 2049 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2050 ret = 1;
2051 goto next;
2052 }
2053 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2054 struct btrfs_dir_log_item);
2055 found_end = btrfs_dir_log_end(path->nodes[0], item);
2056
2057 if (*start_ret >= key.offset && *start_ret <= found_end) {
2058 ret = 0;
2059 *start_ret = key.offset;
2060 *end_ret = found_end;
2061 goto out;
2062 }
2063 ret = 1;
2064next:
2065 /* check the next slot in the tree to see if it is a valid item */
2066 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2067 path->slots[0]++;
e02119d5
CM
2068 if (path->slots[0] >= nritems) {
2069 ret = btrfs_next_leaf(root, path);
2070 if (ret)
2071 goto out;
e02119d5
CM
2072 }
2073
2074 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2075
ccae4a19 2076 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2077 ret = 1;
2078 goto out;
2079 }
2080 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2081 struct btrfs_dir_log_item);
2082 found_end = btrfs_dir_log_end(path->nodes[0], item);
2083 *start_ret = key.offset;
2084 *end_ret = found_end;
2085 ret = 0;
2086out:
b3b4aa74 2087 btrfs_release_path(path);
e02119d5
CM
2088 return ret;
2089}
2090
2091/*
2092 * this looks for a given directory item in the log. If the directory
2093 * item is not in the log, the item is removed and the inode it points
2094 * to is unlinked
2095 */
2096static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
e02119d5
CM
2097 struct btrfs_root *log,
2098 struct btrfs_path *path,
2099 struct btrfs_path *log_path,
2100 struct inode *dir,
2101 struct btrfs_key *dir_key)
2102{
d1ed82f3 2103 struct btrfs_root *root = BTRFS_I(dir)->root;
e02119d5
CM
2104 int ret;
2105 struct extent_buffer *eb;
2106 int slot;
e02119d5 2107 struct btrfs_dir_item *di;
6db75318 2108 struct fscrypt_str name;
ccae4a19 2109 struct inode *inode = NULL;
e02119d5
CM
2110 struct btrfs_key location;
2111
ccae4a19 2112 /*
143823cf 2113 * Currently we only log dir index keys. Even if we replay a log created
ccae4a19
FM
2114 * by an older kernel that logged both dir index and dir item keys, all
2115 * we need to do is process the dir index keys, we (and our caller) can
2116 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2117 */
2118 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2119
e02119d5
CM
2120 eb = path->nodes[0];
2121 slot = path->slots[0];
ccae4a19 2122 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
e43eec81
STD
2123 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2124 if (ret)
ccae4a19 2125 goto out;
3650860b 2126
ccae4a19
FM
2127 if (log) {
2128 struct btrfs_dir_item *log_di;
e02119d5 2129
ccae4a19
FM
2130 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2131 dir_key->objectid,
e43eec81 2132 dir_key->offset, &name, 0);
ccae4a19
FM
2133 if (IS_ERR(log_di)) {
2134 ret = PTR_ERR(log_di);
2135 goto out;
2136 } else if (log_di) {
2137 /* The dentry exists in the log, we have nothing to do. */
e02119d5
CM
2138 ret = 0;
2139 goto out;
2140 }
ccae4a19 2141 }
e02119d5 2142
ccae4a19
FM
2143 btrfs_dir_item_key_to_cpu(eb, di, &location);
2144 btrfs_release_path(path);
2145 btrfs_release_path(log_path);
2146 inode = read_one_inode(root, location.objectid);
2147 if (!inode) {
2148 ret = -EIO;
2149 goto out;
e02119d5 2150 }
ccae4a19
FM
2151
2152 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2153 if (ret)
2154 goto out;
2155
2156 inc_nlink(inode);
313ab753 2157 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 2158 &name);
ccae4a19
FM
2159 /*
2160 * Unlike dir item keys, dir index keys can only have one name (entry) in
2161 * them, as there are no key collisions since each key has a unique offset
2162 * (an index number), so we're done.
2163 */
e02119d5 2164out:
b3b4aa74
DS
2165 btrfs_release_path(path);
2166 btrfs_release_path(log_path);
e43eec81 2167 kfree(name.name);
ccae4a19 2168 iput(inode);
e02119d5
CM
2169 return ret;
2170}
2171
4f764e51
FM
2172static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2173 struct btrfs_root *root,
2174 struct btrfs_root *log,
2175 struct btrfs_path *path,
2176 const u64 ino)
2177{
2178 struct btrfs_key search_key;
2179 struct btrfs_path *log_path;
2180 int i;
2181 int nritems;
2182 int ret;
2183
2184 log_path = btrfs_alloc_path();
2185 if (!log_path)
2186 return -ENOMEM;
2187
2188 search_key.objectid = ino;
2189 search_key.type = BTRFS_XATTR_ITEM_KEY;
2190 search_key.offset = 0;
2191again:
2192 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2193 if (ret < 0)
2194 goto out;
2195process_leaf:
2196 nritems = btrfs_header_nritems(path->nodes[0]);
2197 for (i = path->slots[0]; i < nritems; i++) {
2198 struct btrfs_key key;
2199 struct btrfs_dir_item *di;
2200 struct btrfs_dir_item *log_di;
2201 u32 total_size;
2202 u32 cur;
2203
2204 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2205 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2206 ret = 0;
2207 goto out;
2208 }
2209
2210 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
3212fa14 2211 total_size = btrfs_item_size(path->nodes[0], i);
4f764e51
FM
2212 cur = 0;
2213 while (cur < total_size) {
2214 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2215 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2216 u32 this_len = sizeof(*di) + name_len + data_len;
2217 char *name;
2218
2219 name = kmalloc(name_len, GFP_NOFS);
2220 if (!name) {
2221 ret = -ENOMEM;
2222 goto out;
2223 }
2224 read_extent_buffer(path->nodes[0], name,
2225 (unsigned long)(di + 1), name_len);
2226
2227 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2228 name, name_len, 0);
2229 btrfs_release_path(log_path);
2230 if (!log_di) {
2231 /* Doesn't exist in log tree, so delete it. */
2232 btrfs_release_path(path);
2233 di = btrfs_lookup_xattr(trans, root, path, ino,
2234 name, name_len, -1);
2235 kfree(name);
2236 if (IS_ERR(di)) {
2237 ret = PTR_ERR(di);
2238 goto out;
2239 }
2240 ASSERT(di);
2241 ret = btrfs_delete_one_dir_name(trans, root,
2242 path, di);
2243 if (ret)
2244 goto out;
2245 btrfs_release_path(path);
2246 search_key = key;
2247 goto again;
2248 }
2249 kfree(name);
2250 if (IS_ERR(log_di)) {
2251 ret = PTR_ERR(log_di);
2252 goto out;
2253 }
2254 cur += this_len;
2255 di = (struct btrfs_dir_item *)((char *)di + this_len);
2256 }
2257 }
2258 ret = btrfs_next_leaf(root, path);
2259 if (ret > 0)
2260 ret = 0;
2261 else if (ret == 0)
2262 goto process_leaf;
2263out:
2264 btrfs_free_path(log_path);
2265 btrfs_release_path(path);
2266 return ret;
2267}
2268
2269
e02119d5
CM
2270/*
2271 * deletion replay happens before we copy any new directory items
2272 * out of the log or out of backreferences from inodes. It
2273 * scans the log to find ranges of keys that log is authoritative for,
2274 * and then scans the directory to find items in those ranges that are
2275 * not present in the log.
2276 *
2277 * Anything we don't find in the log is unlinked and removed from the
2278 * directory.
2279 */
2280static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2281 struct btrfs_root *root,
2282 struct btrfs_root *log,
2283 struct btrfs_path *path,
12fcfd22 2284 u64 dirid, int del_all)
e02119d5
CM
2285{
2286 u64 range_start;
2287 u64 range_end;
e02119d5
CM
2288 int ret = 0;
2289 struct btrfs_key dir_key;
2290 struct btrfs_key found_key;
2291 struct btrfs_path *log_path;
2292 struct inode *dir;
2293
2294 dir_key.objectid = dirid;
ccae4a19 2295 dir_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
2296 log_path = btrfs_alloc_path();
2297 if (!log_path)
2298 return -ENOMEM;
2299
2300 dir = read_one_inode(root, dirid);
2301 /* it isn't an error if the inode isn't there, that can happen
2302 * because we replay the deletes before we copy in the inode item
2303 * from the log
2304 */
2305 if (!dir) {
2306 btrfs_free_path(log_path);
2307 return 0;
2308 }
ccae4a19 2309
e02119d5
CM
2310 range_start = 0;
2311 range_end = 0;
d397712b 2312 while (1) {
12fcfd22
CM
2313 if (del_all)
2314 range_end = (u64)-1;
2315 else {
ccae4a19 2316 ret = find_dir_range(log, path, dirid,
12fcfd22 2317 &range_start, &range_end);
10adb115
FM
2318 if (ret < 0)
2319 goto out;
2320 else if (ret > 0)
12fcfd22
CM
2321 break;
2322 }
e02119d5
CM
2323
2324 dir_key.offset = range_start;
d397712b 2325 while (1) {
e02119d5
CM
2326 int nritems;
2327 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2328 0, 0);
2329 if (ret < 0)
2330 goto out;
2331
2332 nritems = btrfs_header_nritems(path->nodes[0]);
2333 if (path->slots[0] >= nritems) {
2334 ret = btrfs_next_leaf(root, path);
b98def7c 2335 if (ret == 1)
e02119d5 2336 break;
b98def7c
LB
2337 else if (ret < 0)
2338 goto out;
e02119d5
CM
2339 }
2340 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2341 path->slots[0]);
2342 if (found_key.objectid != dirid ||
ccae4a19
FM
2343 found_key.type != dir_key.type) {
2344 ret = 0;
2345 goto out;
2346 }
e02119d5
CM
2347
2348 if (found_key.offset > range_end)
2349 break;
2350
d1ed82f3 2351 ret = check_item_in_log(trans, log, path,
12fcfd22
CM
2352 log_path, dir,
2353 &found_key);
3650860b
JB
2354 if (ret)
2355 goto out;
e02119d5
CM
2356 if (found_key.offset == (u64)-1)
2357 break;
2358 dir_key.offset = found_key.offset + 1;
2359 }
b3b4aa74 2360 btrfs_release_path(path);
e02119d5
CM
2361 if (range_end == (u64)-1)
2362 break;
2363 range_start = range_end + 1;
2364 }
e02119d5 2365 ret = 0;
e02119d5 2366out:
b3b4aa74 2367 btrfs_release_path(path);
e02119d5
CM
2368 btrfs_free_path(log_path);
2369 iput(dir);
2370 return ret;
2371}
2372
2373/*
2374 * the process_func used to replay items from the log tree. This
2375 * gets called in two different stages. The first stage just looks
2376 * for inodes and makes sure they are all copied into the subvolume.
2377 *
2378 * The second stage copies all the other item types from the log into
2379 * the subvolume. The two stage approach is slower, but gets rid of
2380 * lots of complexity around inodes referencing other inodes that exist
2381 * only in the log (references come from either directory items or inode
2382 * back refs).
2383 */
2384static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2385 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2386{
2387 int nritems;
789d6a3a
QW
2388 struct btrfs_tree_parent_check check = {
2389 .transid = gen,
2390 .level = level
2391 };
e02119d5
CM
2392 struct btrfs_path *path;
2393 struct btrfs_root *root = wc->replay_dest;
2394 struct btrfs_key key;
e02119d5
CM
2395 int i;
2396 int ret;
2397
789d6a3a 2398 ret = btrfs_read_extent_buffer(eb, &check);
018642a1
TI
2399 if (ret)
2400 return ret;
e02119d5
CM
2401
2402 level = btrfs_header_level(eb);
2403
2404 if (level != 0)
2405 return 0;
2406
2407 path = btrfs_alloc_path();
1e5063d0
MF
2408 if (!path)
2409 return -ENOMEM;
e02119d5
CM
2410
2411 nritems = btrfs_header_nritems(eb);
2412 for (i = 0; i < nritems; i++) {
2413 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2414
2415 /* inode keys are done during the first stage */
2416 if (key.type == BTRFS_INODE_ITEM_KEY &&
2417 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2418 struct btrfs_inode_item *inode_item;
2419 u32 mode;
2420
2421 inode_item = btrfs_item_ptr(eb, i,
2422 struct btrfs_inode_item);
f2d72f42
FM
2423 /*
2424 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2425 * and never got linked before the fsync, skip it, as
2426 * replaying it is pointless since it would be deleted
2427 * later. We skip logging tmpfiles, but it's always
2428 * possible we are replaying a log created with a kernel
2429 * that used to log tmpfiles.
2430 */
2431 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2432 wc->ignore_cur_inode = true;
2433 continue;
2434 } else {
2435 wc->ignore_cur_inode = false;
2436 }
4f764e51
FM
2437 ret = replay_xattr_deletes(wc->trans, root, log,
2438 path, key.objectid);
2439 if (ret)
2440 break;
e02119d5
CM
2441 mode = btrfs_inode_mode(eb, inode_item);
2442 if (S_ISDIR(mode)) {
2443 ret = replay_dir_deletes(wc->trans,
12fcfd22 2444 root, log, path, key.objectid, 0);
b50c6e25
JB
2445 if (ret)
2446 break;
e02119d5
CM
2447 }
2448 ret = overwrite_item(wc->trans, root, path,
2449 eb, i, &key);
b50c6e25
JB
2450 if (ret)
2451 break;
e02119d5 2452
471d557a
FM
2453 /*
2454 * Before replaying extents, truncate the inode to its
2455 * size. We need to do it now and not after log replay
2456 * because before an fsync we can have prealloc extents
2457 * added beyond the inode's i_size. If we did it after,
2458 * through orphan cleanup for example, we would drop
2459 * those prealloc extents just after replaying them.
e02119d5
CM
2460 */
2461 if (S_ISREG(mode)) {
5893dfb9 2462 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2463 struct inode *inode;
2464 u64 from;
2465
2466 inode = read_one_inode(root, key.objectid);
2467 if (!inode) {
2468 ret = -EIO;
2469 break;
2470 }
2471 from = ALIGN(i_size_read(inode),
2472 root->fs_info->sectorsize);
5893dfb9
FM
2473 drop_args.start = from;
2474 drop_args.end = (u64)-1;
2475 drop_args.drop_cache = true;
2476 ret = btrfs_drop_extents(wc->trans, root,
2477 BTRFS_I(inode),
2478 &drop_args);
471d557a 2479 if (!ret) {
2766ff61
FM
2480 inode_sub_bytes(inode,
2481 drop_args.bytes_found);
f2d72f42 2482 /* Update the inode's nbytes. */
471d557a 2483 ret = btrfs_update_inode(wc->trans,
8b9d0322 2484 BTRFS_I(inode));
471d557a
FM
2485 }
2486 iput(inode);
b50c6e25
JB
2487 if (ret)
2488 break;
e02119d5 2489 }
c71bf099 2490
e02119d5
CM
2491 ret = link_to_fixup_dir(wc->trans, root,
2492 path, key.objectid);
b50c6e25
JB
2493 if (ret)
2494 break;
e02119d5 2495 }
dd8e7217 2496
f2d72f42
FM
2497 if (wc->ignore_cur_inode)
2498 continue;
2499
dd8e7217
JB
2500 if (key.type == BTRFS_DIR_INDEX_KEY &&
2501 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2502 ret = replay_one_dir_item(wc->trans, root, path,
2503 eb, i, &key);
2504 if (ret)
2505 break;
2506 }
2507
e02119d5
CM
2508 if (wc->stage < LOG_WALK_REPLAY_ALL)
2509 continue;
2510
2511 /* these keys are simply copied */
2512 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2513 ret = overwrite_item(wc->trans, root, path,
2514 eb, i, &key);
b50c6e25
JB
2515 if (ret)
2516 break;
2da1c669
LB
2517 } else if (key.type == BTRFS_INODE_REF_KEY ||
2518 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2519 ret = add_inode_ref(wc->trans, root, log, path,
2520 eb, i, &key);
b50c6e25
JB
2521 if (ret && ret != -ENOENT)
2522 break;
2523 ret = 0;
e02119d5
CM
2524 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2525 ret = replay_one_extent(wc->trans, root, path,
2526 eb, i, &key);
b50c6e25
JB
2527 if (ret)
2528 break;
e02119d5 2529 }
339d0354
FM
2530 /*
2531 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2532 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2533 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2534 * older kernel with such keys, ignore them.
2535 */
e02119d5
CM
2536 }
2537 btrfs_free_path(path);
b50c6e25 2538 return ret;
e02119d5
CM
2539}
2540
6787bb9f
NB
2541/*
2542 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2543 */
2544static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2545{
2546 struct btrfs_block_group *cache;
2547
2548 cache = btrfs_lookup_block_group(fs_info, start);
2549 if (!cache) {
2550 btrfs_err(fs_info, "unable to find block group for %llu", start);
2551 return;
2552 }
2553
2554 spin_lock(&cache->space_info->lock);
2555 spin_lock(&cache->lock);
2556 cache->reserved -= fs_info->nodesize;
2557 cache->space_info->bytes_reserved -= fs_info->nodesize;
2558 spin_unlock(&cache->lock);
2559 spin_unlock(&cache->space_info->lock);
2560
2561 btrfs_put_block_group(cache);
2562}
2563
e6b430f8
CH
2564static int clean_log_buffer(struct btrfs_trans_handle *trans,
2565 struct extent_buffer *eb)
2566{
2567 int ret;
2568
2569 btrfs_tree_lock(eb);
2570 btrfs_clear_buffer_dirty(trans, eb);
2571 wait_on_extent_buffer_writeback(eb);
2572 btrfs_tree_unlock(eb);
2573
2574 if (trans) {
f863c502 2575 ret = btrfs_pin_reserved_extent(trans, eb);
e6b430f8
CH
2576 if (ret)
2577 return ret;
e6b430f8
CH
2578 } else {
2579 unaccount_log_buffer(eb->fs_info, eb->start);
2580 }
2581
2582 return 0;
2583}
2584
d397712b 2585static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2586 struct btrfs_root *root,
2587 struct btrfs_path *path, int *level,
2588 struct walk_control *wc)
2589{
0b246afa 2590 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2591 u64 bytenr;
2592 u64 ptr_gen;
2593 struct extent_buffer *next;
2594 struct extent_buffer *cur;
e02119d5
CM
2595 int ret = 0;
2596
d397712b 2597 while (*level > 0) {
789d6a3a 2598 struct btrfs_tree_parent_check check = { 0 };
581c1760 2599
e02119d5
CM
2600 cur = path->nodes[*level];
2601
fae7f21c 2602 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2603
2604 if (path->slots[*level] >=
2605 btrfs_header_nritems(cur))
2606 break;
2607
2608 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2609 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
789d6a3a
QW
2610 check.transid = ptr_gen;
2611 check.level = *level - 1;
2612 check.has_first_key = true;
2613 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
e02119d5 2614
3fbaf258
JB
2615 next = btrfs_find_create_tree_block(fs_info, bytenr,
2616 btrfs_header_owner(cur),
2617 *level - 1);
c871b0f2
LB
2618 if (IS_ERR(next))
2619 return PTR_ERR(next);
e02119d5 2620
e02119d5 2621 if (*level == 1) {
581c1760
QW
2622 ret = wc->process_func(root, next, wc, ptr_gen,
2623 *level - 1);
b50c6e25
JB
2624 if (ret) {
2625 free_extent_buffer(next);
1e5063d0 2626 return ret;
b50c6e25 2627 }
4a500fd1 2628
e02119d5
CM
2629 path->slots[*level]++;
2630 if (wc->free) {
789d6a3a 2631 ret = btrfs_read_extent_buffer(next, &check);
018642a1
TI
2632 if (ret) {
2633 free_extent_buffer(next);
2634 return ret;
2635 }
e02119d5 2636
e6b430f8
CH
2637 ret = clean_log_buffer(trans, next);
2638 if (ret) {
2639 free_extent_buffer(next);
2640 return ret;
3650860b 2641 }
e02119d5
CM
2642 }
2643 free_extent_buffer(next);
2644 continue;
2645 }
789d6a3a 2646 ret = btrfs_read_extent_buffer(next, &check);
018642a1
TI
2647 if (ret) {
2648 free_extent_buffer(next);
2649 return ret;
2650 }
e02119d5 2651
e02119d5
CM
2652 if (path->nodes[*level-1])
2653 free_extent_buffer(path->nodes[*level-1]);
2654 path->nodes[*level-1] = next;
2655 *level = btrfs_header_level(next);
2656 path->slots[*level] = 0;
2657 cond_resched();
2658 }
4a500fd1 2659 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2660
2661 cond_resched();
2662 return 0;
2663}
2664
d397712b 2665static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2666 struct btrfs_root *root,
2667 struct btrfs_path *path, int *level,
2668 struct walk_control *wc)
2669{
e02119d5
CM
2670 int i;
2671 int slot;
2672 int ret;
2673
d397712b 2674 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2675 slot = path->slots[i];
4a500fd1 2676 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2677 path->slots[i]++;
2678 *level = i;
2679 WARN_ON(*level == 0);
2680 return 0;
2681 } else {
1e5063d0 2682 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2683 btrfs_header_generation(path->nodes[*level]),
2684 *level);
1e5063d0
MF
2685 if (ret)
2686 return ret;
2687
e02119d5 2688 if (wc->free) {
e6b430f8
CH
2689 ret = clean_log_buffer(trans, path->nodes[*level]);
2690 if (ret)
2691 return ret;
e02119d5
CM
2692 }
2693 free_extent_buffer(path->nodes[*level]);
2694 path->nodes[*level] = NULL;
2695 *level = i + 1;
2696 }
2697 }
2698 return 1;
2699}
2700
2701/*
2702 * drop the reference count on the tree rooted at 'snap'. This traverses
2703 * the tree freeing any blocks that have a ref count of zero after being
2704 * decremented.
2705 */
2706static int walk_log_tree(struct btrfs_trans_handle *trans,
2707 struct btrfs_root *log, struct walk_control *wc)
2708{
2709 int ret = 0;
2710 int wret;
2711 int level;
2712 struct btrfs_path *path;
e02119d5
CM
2713 int orig_level;
2714
2715 path = btrfs_alloc_path();
db5b493a
TI
2716 if (!path)
2717 return -ENOMEM;
e02119d5
CM
2718
2719 level = btrfs_header_level(log->node);
2720 orig_level = level;
2721 path->nodes[level] = log->node;
67439dad 2722 atomic_inc(&log->node->refs);
e02119d5
CM
2723 path->slots[level] = 0;
2724
d397712b 2725 while (1) {
e02119d5
CM
2726 wret = walk_down_log_tree(trans, log, path, &level, wc);
2727 if (wret > 0)
2728 break;
79787eaa 2729 if (wret < 0) {
e02119d5 2730 ret = wret;
79787eaa
JM
2731 goto out;
2732 }
e02119d5
CM
2733
2734 wret = walk_up_log_tree(trans, log, path, &level, wc);
2735 if (wret > 0)
2736 break;
79787eaa 2737 if (wret < 0) {
e02119d5 2738 ret = wret;
79787eaa
JM
2739 goto out;
2740 }
e02119d5
CM
2741 }
2742
2743 /* was the root node processed? if not, catch it here */
2744 if (path->nodes[orig_level]) {
79787eaa 2745 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2746 btrfs_header_generation(path->nodes[orig_level]),
2747 orig_level);
79787eaa
JM
2748 if (ret)
2749 goto out;
e6b430f8
CH
2750 if (wc->free)
2751 ret = clean_log_buffer(trans, path->nodes[orig_level]);
e02119d5
CM
2752 }
2753
79787eaa 2754out:
e02119d5 2755 btrfs_free_path(path);
e02119d5
CM
2756 return ret;
2757}
2758
7237f183
YZ
2759/*
2760 * helper function to update the item for a given subvolumes log root
2761 * in the tree of log roots
2762 */
2763static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2764 struct btrfs_root *log,
2765 struct btrfs_root_item *root_item)
7237f183 2766{
0b246afa 2767 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2768 int ret;
2769
2770 if (log->log_transid == 1) {
2771 /* insert root item on the first sync */
0b246afa 2772 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2773 &log->root_key, root_item);
7237f183 2774 } else {
0b246afa 2775 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2776 &log->root_key, root_item);
7237f183
YZ
2777 }
2778 return ret;
2779}
2780
60d53eb3 2781static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2782{
2783 DEFINE_WAIT(wait);
7237f183 2784 int index = transid % 2;
e02119d5 2785
7237f183
YZ
2786 /*
2787 * we only allow two pending log transactions at a time,
2788 * so we know that if ours is more than 2 older than the
2789 * current transaction, we're done
2790 */
49e83f57 2791 for (;;) {
7237f183
YZ
2792 prepare_to_wait(&root->log_commit_wait[index],
2793 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2794
49e83f57
LB
2795 if (!(root->log_transid_committed < transid &&
2796 atomic_read(&root->log_commit[index])))
2797 break;
12fcfd22 2798
49e83f57
LB
2799 mutex_unlock(&root->log_mutex);
2800 schedule();
7237f183 2801 mutex_lock(&root->log_mutex);
49e83f57
LB
2802 }
2803 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2804}
2805
60d53eb3 2806static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2807{
2808 DEFINE_WAIT(wait);
8b050d35 2809
49e83f57
LB
2810 for (;;) {
2811 prepare_to_wait(&root->log_writer_wait, &wait,
2812 TASK_UNINTERRUPTIBLE);
2813 if (!atomic_read(&root->log_writers))
2814 break;
2815
7237f183 2816 mutex_unlock(&root->log_mutex);
49e83f57 2817 schedule();
575849ec 2818 mutex_lock(&root->log_mutex);
7237f183 2819 }
49e83f57 2820 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2821}
2822
c207adc1
DS
2823void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct inode *inode)
2824{
2825 ctx->log_ret = 0;
2826 ctx->log_transid = 0;
2827 ctx->log_new_dentries = false;
2828 ctx->logging_new_name = false;
2829 ctx->logging_new_delayed_dentries = false;
2830 ctx->logged_before = false;
2831 ctx->inode = inode;
2832 INIT_LIST_HEAD(&ctx->list);
2833 INIT_LIST_HEAD(&ctx->ordered_extents);
2834 INIT_LIST_HEAD(&ctx->conflict_inodes);
2835 ctx->num_conflict_inodes = 0;
2836 ctx->logging_conflict_inodes = false;
2837 ctx->scratch_eb = NULL;
2838}
2839
2840void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2841{
2842 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2843
2844 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2845 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2846 return;
2847
2848 /*
2849 * Don't care about allocation failure. This is just for optimization,
2850 * if we fail to allocate here, we will try again later if needed.
2851 */
2852 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2853}
2854
2855void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2856{
2857 struct btrfs_ordered_extent *ordered;
2858 struct btrfs_ordered_extent *tmp;
2859
2860 ASSERT(inode_is_locked(ctx->inode));
2861
2862 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2863 list_del_init(&ordered->log_list);
2864 btrfs_put_ordered_extent(ordered);
2865 }
2866}
2867
2868
8b050d35
MX
2869static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2870 struct btrfs_log_ctx *ctx)
2871{
8b050d35
MX
2872 mutex_lock(&root->log_mutex);
2873 list_del_init(&ctx->list);
2874 mutex_unlock(&root->log_mutex);
2875}
2876
2877/*
2878 * Invoked in log mutex context, or be sure there is no other task which
2879 * can access the list.
2880 */
2881static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2882 int index, int error)
2883{
2884 struct btrfs_log_ctx *ctx;
570dd450 2885 struct btrfs_log_ctx *safe;
8b050d35 2886
570dd450
CM
2887 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2888 list_del_init(&ctx->list);
8b050d35 2889 ctx->log_ret = error;
570dd450 2890 }
8b050d35
MX
2891}
2892
e02119d5 2893/*
9580503b
DS
2894 * Sends a given tree log down to the disk and updates the super blocks to
2895 * record it. When this call is done, you know that any inodes previously
2896 * logged are safely on disk only if it returns 0.
12fcfd22
CM
2897 *
2898 * Any other return value means you need to call btrfs_commit_transaction.
2899 * Some of the edge cases for fsyncing directories that have had unlinks
2900 * or renames done in the past mean that sometimes the only safe
2901 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2902 * that has happened.
e02119d5
CM
2903 */
2904int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2905 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2906{
7237f183
YZ
2907 int index1;
2908 int index2;
8cef4e16 2909 int mark;
e02119d5 2910 int ret;
0b246afa 2911 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2912 struct btrfs_root *log = root->log_root;
0b246afa 2913 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 2914 struct btrfs_root_item new_root_item;
bb14a59b 2915 int log_transid = 0;
8b050d35 2916 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2917 struct blk_plug plug;
47876f7c
FM
2918 u64 log_root_start;
2919 u64 log_root_level;
e02119d5 2920
7237f183 2921 mutex_lock(&root->log_mutex);
d1433deb
MX
2922 log_transid = ctx->log_transid;
2923 if (root->log_transid_committed >= log_transid) {
2924 mutex_unlock(&root->log_mutex);
2925 return ctx->log_ret;
2926 }
2927
2928 index1 = log_transid % 2;
7237f183 2929 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2930 wait_log_commit(root, log_transid);
7237f183 2931 mutex_unlock(&root->log_mutex);
8b050d35 2932 return ctx->log_ret;
e02119d5 2933 }
d1433deb 2934 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2935 atomic_set(&root->log_commit[index1], 1);
2936
2937 /* wait for previous tree log sync to complete */
2938 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2939 wait_log_commit(root, log_transid - 1);
48cab2e0 2940
86df7eb9 2941 while (1) {
2ecb7923 2942 int batch = atomic_read(&root->log_batch);
cd354ad6 2943 /* when we're on an ssd, just kick the log commit out */
0b246afa 2944 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2945 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2946 mutex_unlock(&root->log_mutex);
2947 schedule_timeout_uninterruptible(1);
2948 mutex_lock(&root->log_mutex);
2949 }
60d53eb3 2950 wait_for_writer(root);
2ecb7923 2951 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2952 break;
2953 }
e02119d5 2954
12fcfd22 2955 /* bail out if we need to do a full commit */
4884b8e8 2956 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 2957 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
2958 mutex_unlock(&root->log_mutex);
2959 goto out;
2960 }
2961
8cef4e16
YZ
2962 if (log_transid % 2 == 0)
2963 mark = EXTENT_DIRTY;
2964 else
2965 mark = EXTENT_NEW;
2966
690587d1
CM
2967 /* we start IO on all the marked extents here, but we don't actually
2968 * wait for them until later.
2969 */
c6adc9cc 2970 blk_start_plug(&plug);
2ff7e61e 2971 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
2972 /*
2973 * -EAGAIN happens when someone, e.g., a concurrent transaction
2974 * commit, writes a dirty extent in this tree-log commit. This
2975 * concurrent write will create a hole writing out the extents,
2976 * and we cannot proceed on a zoned filesystem, requiring
2977 * sequential writing. While we can bail out to a full commit
2978 * here, but we can continue hoping the concurrent writing fills
2979 * the hole.
2980 */
2981 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2982 ret = 0;
79787eaa 2983 if (ret) {
c6adc9cc 2984 blk_finish_plug(&plug);
90787766 2985 btrfs_set_log_full_commit(trans);
79787eaa
JM
2986 mutex_unlock(&root->log_mutex);
2987 goto out;
2988 }
7237f183 2989
4203e968
JB
2990 /*
2991 * We _must_ update under the root->log_mutex in order to make sure we
2992 * have a consistent view of the log root we are trying to commit at
2993 * this moment.
2994 *
2995 * We _must_ copy this into a local copy, because we are not holding the
2996 * log_root_tree->log_mutex yet. This is important because when we
2997 * commit the log_root_tree we must have a consistent view of the
2998 * log_root_tree when we update the super block to point at the
2999 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3000 * with the commit and possibly point at the new block which we may not
3001 * have written out.
3002 */
5d4f98a2 3003 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3004 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3005
6008859b 3006 btrfs_set_root_log_transid(root, root->log_transid + 1);
7237f183 3007 log->log_transid = root->log_transid;
ff782e0a 3008 root->log_start_pid = 0;
7237f183 3009 /*
8cef4e16
YZ
3010 * IO has been started, blocks of the log tree have WRITTEN flag set
3011 * in their headers. new modifications of the log will be written to
3012 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3013 */
3014 mutex_unlock(&root->log_mutex);
3015
3ddebf27 3016 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3017 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3018 if (!log_root_tree->node) {
3019 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3020 if (ret) {
ea32af47 3021 mutex_unlock(&fs_info->tree_root->log_mutex);
50ff5788 3022 blk_finish_plug(&plug);
3ddebf27
NA
3023 goto out;
3024 }
3025 }
e75f9fd1 3026 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3027 }
3028
e75f9fd1
NA
3029 btrfs_init_log_ctx(&root_log_ctx, NULL);
3030
3031 mutex_lock(&log_root_tree->log_mutex);
3032
e3d3b415
FM
3033 index2 = log_root_tree->log_transid % 2;
3034 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3035 root_log_ctx.log_transid = log_root_tree->log_transid;
3036
4203e968
JB
3037 /*
3038 * Now we are safe to update the log_root_tree because we're under the
3039 * log_mutex, and we're a current writer so we're holding the commit
3040 * open until we drop the log_mutex.
3041 */
3042 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3043 if (ret) {
3cf63ddf 3044 list_del_init(&root_log_ctx.list);
c6adc9cc 3045 blk_finish_plug(&plug);
90787766 3046 btrfs_set_log_full_commit(trans);
09e44868
FM
3047 if (ret != -ENOSPC)
3048 btrfs_err(fs_info,
3049 "failed to update log for root %llu ret %d",
3050 root->root_key.objectid, ret);
bf89d38f 3051 btrfs_wait_tree_log_extents(log, mark);
4a500fd1 3052 mutex_unlock(&log_root_tree->log_mutex);
4a500fd1
YZ
3053 goto out;
3054 }
3055
d1433deb 3056 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3057 blk_finish_plug(&plug);
cbd60aa7 3058 list_del_init(&root_log_ctx.list);
d1433deb
MX
3059 mutex_unlock(&log_root_tree->log_mutex);
3060 ret = root_log_ctx.log_ret;
3061 goto out;
3062 }
8b050d35 3063
7237f183 3064 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3065 blk_finish_plug(&plug);
bf89d38f 3066 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3067 wait_log_commit(log_root_tree,
d1433deb 3068 root_log_ctx.log_transid);
7237f183 3069 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3070 if (!ret)
3071 ret = root_log_ctx.log_ret;
7237f183
YZ
3072 goto out;
3073 }
d1433deb 3074 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3075 atomic_set(&log_root_tree->log_commit[index2], 1);
3076
12fcfd22 3077 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3078 wait_log_commit(log_root_tree,
d1433deb 3079 root_log_ctx.log_transid - 1);
12fcfd22
CM
3080 }
3081
12fcfd22
CM
3082 /*
3083 * now that we've moved on to the tree of log tree roots,
3084 * check the full commit flag again
3085 */
4884b8e8 3086 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3087 blk_finish_plug(&plug);
bf89d38f 3088 btrfs_wait_tree_log_extents(log, mark);
12fcfd22 3089 mutex_unlock(&log_root_tree->log_mutex);
f31f09f6 3090 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
3091 goto out_wake_log_root;
3092 }
7237f183 3093
2ff7e61e 3094 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3095 &log_root_tree->dirty_log_pages,
3096 EXTENT_DIRTY | EXTENT_NEW);
3097 blk_finish_plug(&plug);
b528f467
NA
3098 /*
3099 * As described above, -EAGAIN indicates a hole in the extents. We
3100 * cannot wait for these write outs since the waiting cause a
3101 * deadlock. Bail out to the full commit instead.
3102 */
3103 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3104 btrfs_set_log_full_commit(trans);
3105 btrfs_wait_tree_log_extents(log, mark);
3106 mutex_unlock(&log_root_tree->log_mutex);
3107 goto out_wake_log_root;
3108 } else if (ret) {
90787766 3109 btrfs_set_log_full_commit(trans);
79787eaa
JM
3110 mutex_unlock(&log_root_tree->log_mutex);
3111 goto out_wake_log_root;
3112 }
bf89d38f 3113 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3114 if (!ret)
bf89d38f
JM
3115 ret = btrfs_wait_tree_log_extents(log_root_tree,
3116 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3117 if (ret) {
90787766 3118 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3119 mutex_unlock(&log_root_tree->log_mutex);
3120 goto out_wake_log_root;
3121 }
e02119d5 3122
47876f7c
FM
3123 log_root_start = log_root_tree->node->start;
3124 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3125 log_root_tree->log_transid++;
7237f183
YZ
3126 mutex_unlock(&log_root_tree->log_mutex);
3127
3128 /*
47876f7c
FM
3129 * Here we are guaranteed that nobody is going to write the superblock
3130 * for the current transaction before us and that neither we do write
3131 * our superblock before the previous transaction finishes its commit
3132 * and writes its superblock, because:
3133 *
3134 * 1) We are holding a handle on the current transaction, so no body
3135 * can commit it until we release the handle;
3136 *
3137 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3138 * if the previous transaction is still committing, and hasn't yet
3139 * written its superblock, we wait for it to do it, because a
3140 * transaction commit acquires the tree_log_mutex when the commit
3141 * begins and releases it only after writing its superblock.
7237f183 3142 */
47876f7c 3143 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3144
3145 /*
3146 * The previous transaction writeout phase could have failed, and thus
3147 * marked the fs in an error state. We must not commit here, as we
3148 * could have updated our generation in the super_for_commit and
3149 * writing the super here would result in transid mismatches. If there
3150 * is an error here just bail.
3151 */
84961539 3152 if (BTRFS_FS_ERROR(fs_info)) {
165ea85f
JB
3153 ret = -EIO;
3154 btrfs_set_log_full_commit(trans);
3155 btrfs_abort_transaction(trans, ret);
3156 mutex_unlock(&fs_info->tree_log_mutex);
3157 goto out_wake_log_root;
3158 }
3159
47876f7c
FM
3160 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3161 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3162 ret = write_all_supers(fs_info, 1);
47876f7c 3163 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3164 if (ret) {
90787766 3165 btrfs_set_log_full_commit(trans);
66642832 3166 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3167 goto out_wake_log_root;
3168 }
7237f183 3169
e1a6d264
FM
3170 /*
3171 * We know there can only be one task here, since we have not yet set
3172 * root->log_commit[index1] to 0 and any task attempting to sync the
3173 * log must wait for the previous log transaction to commit if it's
3174 * still in progress or wait for the current log transaction commit if
3175 * someone else already started it. We use <= and not < because the
3176 * first log transaction has an ID of 0.
3177 */
f9850787
FM
3178 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3179 btrfs_set_root_last_log_commit(root, log_transid);
257c62e1 3180
12fcfd22 3181out_wake_log_root:
570dd450 3182 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3183 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3184
d1433deb 3185 log_root_tree->log_transid_committed++;
7237f183 3186 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3187 mutex_unlock(&log_root_tree->log_mutex);
3188
33a9eca7 3189 /*
093258e6
DS
3190 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3191 * all the updates above are seen by the woken threads. It might not be
3192 * necessary, but proving that seems to be hard.
33a9eca7 3193 */
093258e6 3194 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3195out:
d1433deb 3196 mutex_lock(&root->log_mutex);
570dd450 3197 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3198 root->log_transid_committed++;
7237f183 3199 atomic_set(&root->log_commit[index1], 0);
d1433deb 3200 mutex_unlock(&root->log_mutex);
8b050d35 3201
33a9eca7 3202 /*
093258e6
DS
3203 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3204 * all the updates above are seen by the woken threads. It might not be
3205 * necessary, but proving that seems to be hard.
33a9eca7 3206 */
093258e6 3207 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3208 return ret;
e02119d5
CM
3209}
3210
4a500fd1
YZ
3211static void free_log_tree(struct btrfs_trans_handle *trans,
3212 struct btrfs_root *log)
e02119d5
CM
3213{
3214 int ret;
e02119d5
CM
3215 struct walk_control wc = {
3216 .free = 1,
3217 .process_func = process_one_buffer
3218 };
3219
3ddebf27
NA
3220 if (log->node) {
3221 ret = walk_log_tree(trans, log, &wc);
3222 if (ret) {
40cdc509
FM
3223 /*
3224 * We weren't able to traverse the entire log tree, the
3225 * typical scenario is getting an -EIO when reading an
3226 * extent buffer of the tree, due to a previous writeback
3227 * failure of it.
3228 */
3229 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3230 &log->fs_info->fs_state);
3231
3232 /*
3233 * Some extent buffers of the log tree may still be dirty
3234 * and not yet written back to storage, because we may
3235 * have updates to a log tree without syncing a log tree,
3236 * such as during rename and link operations. So flush
3237 * them out and wait for their writeback to complete, so
3238 * that we properly cleanup their state and pages.
3239 */
3240 btrfs_write_marked_extents(log->fs_info,
3241 &log->dirty_log_pages,
3242 EXTENT_DIRTY | EXTENT_NEW);
3243 btrfs_wait_tree_log_extents(log,
3244 EXTENT_DIRTY | EXTENT_NEW);
3245
3ddebf27
NA
3246 if (trans)
3247 btrfs_abort_transaction(trans, ret);
3248 else
3249 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3250 }
374b0e2d 3251 }
e02119d5 3252
0f8ac74d 3253 extent_io_tree_release(&log->dirty_log_pages);
e289f03e 3254 extent_io_tree_release(&log->log_csum_range);
d3575156 3255
00246528 3256 btrfs_put_root(log);
4a500fd1
YZ
3257}
3258
3259/*
3260 * free all the extents used by the tree log. This should be called
3261 * at commit time of the full transaction
3262 */
3263int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3264{
3265 if (root->log_root) {
3266 free_log_tree(trans, root->log_root);
3267 root->log_root = NULL;
e7a79811 3268 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3269 }
3270 return 0;
3271}
3272
3273int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3274 struct btrfs_fs_info *fs_info)
3275{
3276 if (fs_info->log_root_tree) {
3277 free_log_tree(trans, fs_info->log_root_tree);
3278 fs_info->log_root_tree = NULL;
47876f7c 3279 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3280 }
e02119d5
CM
3281 return 0;
3282}
3283
803f0f64 3284/*
0f8ce498
FM
3285 * Check if an inode was logged in the current transaction. This correctly deals
3286 * with the case where the inode was logged but has a logged_trans of 0, which
3287 * happens if the inode is evicted and loaded again, as logged_trans is an in
3288 * memory only field (not persisted).
3289 *
3290 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3291 * and < 0 on error.
803f0f64 3292 */
bf1f4fd3 3293static int inode_logged(const struct btrfs_trans_handle *trans,
0f8ce498
FM
3294 struct btrfs_inode *inode,
3295 struct btrfs_path *path_in)
803f0f64 3296{
0f8ce498
FM
3297 struct btrfs_path *path = path_in;
3298 struct btrfs_key key;
3299 int ret;
3300
803f0f64 3301 if (inode->logged_trans == trans->transid)
0f8ce498 3302 return 1;
803f0f64 3303
0f8ce498
FM
3304 /*
3305 * If logged_trans is not 0, then we know the inode logged was not logged
3306 * in this transaction, so we can return false right away.
3307 */
3308 if (inode->logged_trans > 0)
3309 return 0;
3310
3311 /*
3312 * If no log tree was created for this root in this transaction, then
3313 * the inode can not have been logged in this transaction. In that case
3314 * set logged_trans to anything greater than 0 and less than the current
3315 * transaction's ID, to avoid the search below in a future call in case
3316 * a log tree gets created after this.
3317 */
3318 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3319 inode->logged_trans = trans->transid - 1;
3320 return 0;
3321 }
3322
3323 /*
3324 * We have a log tree and the inode's logged_trans is 0. We can't tell
3325 * for sure if the inode was logged before in this transaction by looking
3326 * only at logged_trans. We could be pessimistic and assume it was, but
3327 * that can lead to unnecessarily logging an inode during rename and link
3328 * operations, and then further updating the log in followup rename and
3329 * link operations, specially if it's a directory, which adds latency
3330 * visible to applications doing a series of rename or link operations.
3331 *
3332 * A logged_trans of 0 here can mean several things:
3333 *
3334 * 1) The inode was never logged since the filesystem was mounted, and may
3335 * or may have not been evicted and loaded again;
3336 *
3337 * 2) The inode was logged in a previous transaction, then evicted and
3338 * then loaded again;
3339 *
3340 * 3) The inode was logged in the current transaction, then evicted and
3341 * then loaded again.
3342 *
3343 * For cases 1) and 2) we don't want to return true, but we need to detect
3344 * case 3) and return true. So we do a search in the log root for the inode
3345 * item.
3346 */
3347 key.objectid = btrfs_ino(inode);
3348 key.type = BTRFS_INODE_ITEM_KEY;
3349 key.offset = 0;
3350
3351 if (!path) {
3352 path = btrfs_alloc_path();
3353 if (!path)
3354 return -ENOMEM;
3355 }
3356
3357 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3358
3359 if (path_in)
3360 btrfs_release_path(path);
3361 else
3362 btrfs_free_path(path);
1e0860f3 3363
6e8e777d 3364 /*
0f8ce498
FM
3365 * Logging an inode always results in logging its inode item. So if we
3366 * did not find the item we know the inode was not logged for sure.
6e8e777d 3367 */
0f8ce498
FM
3368 if (ret < 0) {
3369 return ret;
3370 } else if (ret > 0) {
3371 /*
3372 * Set logged_trans to a value greater than 0 and less then the
3373 * current transaction to avoid doing the search in future calls.
3374 */
3375 inode->logged_trans = trans->transid - 1;
3376 return 0;
3377 }
3378
3379 /*
3380 * The inode was previously logged and then evicted, set logged_trans to
3381 * the current transacion's ID, to avoid future tree searches as long as
3382 * the inode is not evicted again.
3383 */
3384 inode->logged_trans = trans->transid;
3385
3386 /*
3387 * If it's a directory, then we must set last_dir_index_offset to the
3388 * maximum possible value, so that the next attempt to log the inode does
3389 * not skip checking if dir index keys found in modified subvolume tree
3390 * leaves have been logged before, otherwise it would result in attempts
3391 * to insert duplicate dir index keys in the log tree. This must be done
3392 * because last_dir_index_offset is an in-memory only field, not persisted
3393 * in the inode item or any other on-disk structure, so its value is lost
3394 * once the inode is evicted.
3395 */
3396 if (S_ISDIR(inode->vfs_inode.i_mode))
3397 inode->last_dir_index_offset = (u64)-1;
803f0f64 3398
0f8ce498 3399 return 1;
803f0f64
FM
3400}
3401
839061fe
FM
3402/*
3403 * Delete a directory entry from the log if it exists.
3404 *
3405 * Returns < 0 on error
3406 * 1 if the entry does not exists
3407 * 0 if the entry existed and was successfully deleted
3408 */
3409static int del_logged_dentry(struct btrfs_trans_handle *trans,
3410 struct btrfs_root *log,
3411 struct btrfs_path *path,
3412 u64 dir_ino,
6db75318 3413 const struct fscrypt_str *name,
839061fe
FM
3414 u64 index)
3415{
3416 struct btrfs_dir_item *di;
3417
3418 /*
3419 * We only log dir index items of a directory, so we don't need to look
3420 * for dir item keys.
3421 */
3422 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e43eec81 3423 index, name, -1);
839061fe
FM
3424 if (IS_ERR(di))
3425 return PTR_ERR(di);
3426 else if (!di)
3427 return 1;
3428
3429 /*
3430 * We do not need to update the size field of the directory's
3431 * inode item because on log replay we update the field to reflect
3432 * all existing entries in the directory (see overwrite_item()).
3433 */
3434 return btrfs_delete_one_dir_name(trans, log, path, di);
3435}
3436
e02119d5
CM
3437/*
3438 * If both a file and directory are logged, and unlinks or renames are
3439 * mixed in, we have a few interesting corners:
3440 *
3441 * create file X in dir Y
3442 * link file X to X.link in dir Y
3443 * fsync file X
3444 * unlink file X but leave X.link
3445 * fsync dir Y
3446 *
3447 * After a crash we would expect only X.link to exist. But file X
3448 * didn't get fsync'd again so the log has back refs for X and X.link.
3449 *
3450 * We solve this by removing directory entries and inode backrefs from the
3451 * log when a file that was logged in the current transaction is
3452 * unlinked. Any later fsync will include the updated log entries, and
3453 * we'll be able to reconstruct the proper directory items from backrefs.
3454 *
3455 * This optimizations allows us to avoid relogging the entire inode
3456 * or the entire directory.
3457 */
9a35fc95
JB
3458void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3459 struct btrfs_root *root,
6db75318 3460 const struct fscrypt_str *name,
9a35fc95 3461 struct btrfs_inode *dir, u64 index)
e02119d5 3462{
e02119d5
CM
3463 struct btrfs_path *path;
3464 int ret;
e02119d5 3465
0f8ce498
FM
3466 ret = inode_logged(trans, dir, NULL);
3467 if (ret == 0)
3468 return;
3469 else if (ret < 0) {
3470 btrfs_set_log_full_commit(trans);
9a35fc95 3471 return;
0f8ce498 3472 }
3a5f1d45 3473
e02119d5
CM
3474 ret = join_running_log_trans(root);
3475 if (ret)
9a35fc95 3476 return;
e02119d5 3477
49f34d1f 3478 mutex_lock(&dir->log_mutex);
e02119d5 3479
e02119d5 3480 path = btrfs_alloc_path();
a62f44a5 3481 if (!path) {
839061fe 3482 ret = -ENOMEM;
a62f44a5
TI
3483 goto out_unlock;
3484 }
2a29edc6 3485
839061fe 3486 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
e43eec81 3487 name, index);
e02119d5 3488 btrfs_free_path(path);
a62f44a5 3489out_unlock:
49f34d1f 3490 mutex_unlock(&dir->log_mutex);
839061fe 3491 if (ret < 0)
90787766 3492 btrfs_set_log_full_commit(trans);
12fcfd22 3493 btrfs_end_log_trans(root);
e02119d5
CM
3494}
3495
3496/* see comments for btrfs_del_dir_entries_in_log */
9a35fc95
JB
3497void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3498 struct btrfs_root *root,
6db75318 3499 const struct fscrypt_str *name,
9a35fc95 3500 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3501{
3502 struct btrfs_root *log;
3503 u64 index;
3504 int ret;
3505
0f8ce498
FM
3506 ret = inode_logged(trans, inode, NULL);
3507 if (ret == 0)
9a35fc95 3508 return;
0f8ce498
FM
3509 else if (ret < 0) {
3510 btrfs_set_log_full_commit(trans);
3511 return;
3512 }
3a5f1d45 3513
e02119d5
CM
3514 ret = join_running_log_trans(root);
3515 if (ret)
9a35fc95 3516 return;
e02119d5 3517 log = root->log_root;
a491abb2 3518 mutex_lock(&inode->log_mutex);
e02119d5 3519
e43eec81 3520 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
e02119d5 3521 dirid, &index);
a491abb2 3522 mutex_unlock(&inode->log_mutex);
9a35fc95 3523 if (ret < 0 && ret != -ENOENT)
90787766 3524 btrfs_set_log_full_commit(trans);
12fcfd22 3525 btrfs_end_log_trans(root);
e02119d5
CM
3526}
3527
3528/*
3529 * creates a range item in the log for 'dirid'. first_offset and
3530 * last_offset tell us which parts of the key space the log should
3531 * be considered authoritative for.
3532 */
3533static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3534 struct btrfs_root *log,
3535 struct btrfs_path *path,
339d0354 3536 u64 dirid,
e02119d5
CM
3537 u64 first_offset, u64 last_offset)
3538{
3539 int ret;
3540 struct btrfs_key key;
3541 struct btrfs_dir_log_item *item;
3542
3543 key.objectid = dirid;
3544 key.offset = first_offset;
339d0354 3545 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5 3546 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
750ee454
FM
3547 /*
3548 * -EEXIST is fine and can happen sporadically when we are logging a
3549 * directory and have concurrent insertions in the subvolume's tree for
3550 * items from other inodes and that result in pushing off some dir items
3551 * from one leaf to another in order to accommodate for the new items.
3552 * This results in logging the same dir index range key.
3553 */
3554 if (ret && ret != -EEXIST)
4a500fd1 3555 return ret;
e02119d5
CM
3556
3557 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3558 struct btrfs_dir_log_item);
750ee454
FM
3559 if (ret == -EEXIST) {
3560 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3561
3562 /*
3563 * btrfs_del_dir_entries_in_log() might have been called during
3564 * an unlink between the initial insertion of this key and the
3565 * current update, or we might be logging a single entry deletion
3566 * during a rename, so set the new last_offset to the max value.
3567 */
3568 last_offset = max(last_offset, curr_end);
3569 }
e02119d5 3570 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
50564b65 3571 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
b3b4aa74 3572 btrfs_release_path(path);
e02119d5
CM
3573 return 0;
3574}
3575
086dcbfa 3576static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
6afaed53 3577 struct btrfs_inode *inode,
086dcbfa
FM
3578 struct extent_buffer *src,
3579 struct btrfs_path *dst_path,
3580 int start_slot,
3581 int count)
3582{
6afaed53 3583 struct btrfs_root *log = inode->root->log_root;
086dcbfa 3584 char *ins_data = NULL;
b7ef5f3a 3585 struct btrfs_item_batch batch;
086dcbfa 3586 struct extent_buffer *dst;
da1b811f
FM
3587 unsigned long src_offset;
3588 unsigned long dst_offset;
6afaed53 3589 u64 last_index;
086dcbfa
FM
3590 struct btrfs_key key;
3591 u32 item_size;
3592 int ret;
3593 int i;
3594
3595 ASSERT(count > 0);
b7ef5f3a 3596 batch.nr = count;
086dcbfa
FM
3597
3598 if (count == 1) {
3599 btrfs_item_key_to_cpu(src, &key, start_slot);
3212fa14 3600 item_size = btrfs_item_size(src, start_slot);
b7ef5f3a
FM
3601 batch.keys = &key;
3602 batch.data_sizes = &item_size;
3603 batch.total_data_size = item_size;
086dcbfa 3604 } else {
b7ef5f3a
FM
3605 struct btrfs_key *ins_keys;
3606 u32 *ins_sizes;
3607
086dcbfa
FM
3608 ins_data = kmalloc(count * sizeof(u32) +
3609 count * sizeof(struct btrfs_key), GFP_NOFS);
3610 if (!ins_data)
3611 return -ENOMEM;
3612
3613 ins_sizes = (u32 *)ins_data;
3614 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
b7ef5f3a
FM
3615 batch.keys = ins_keys;
3616 batch.data_sizes = ins_sizes;
3617 batch.total_data_size = 0;
086dcbfa
FM
3618
3619 for (i = 0; i < count; i++) {
3620 const int slot = start_slot + i;
3621
3622 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3212fa14 3623 ins_sizes[i] = btrfs_item_size(src, slot);
b7ef5f3a 3624 batch.total_data_size += ins_sizes[i];
086dcbfa
FM
3625 }
3626 }
3627
b7ef5f3a 3628 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
086dcbfa
FM
3629 if (ret)
3630 goto out;
3631
3632 dst = dst_path->nodes[0];
da1b811f
FM
3633 /*
3634 * Copy all the items in bulk, in a single copy operation. Item data is
3635 * organized such that it's placed at the end of a leaf and from right
3636 * to left. For example, the data for the second item ends at an offset
3637 * that matches the offset where the data for the first item starts, the
3638 * data for the third item ends at an offset that matches the offset
3639 * where the data of the second items starts, and so on.
3640 * Therefore our source and destination start offsets for copy match the
3641 * offsets of the last items (highest slots).
3642 */
3643 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3644 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3645 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
086dcbfa 3646 btrfs_release_path(dst_path);
6afaed53
FM
3647
3648 last_index = batch.keys[count - 1].offset;
3649 ASSERT(last_index > inode->last_dir_index_offset);
3650
3651 /*
3652 * If for some unexpected reason the last item's index is not greater
5cce1780 3653 * than the last index we logged, warn and force a transaction commit.
6afaed53
FM
3654 */
3655 if (WARN_ON(last_index <= inode->last_dir_index_offset))
5cce1780 3656 ret = BTRFS_LOG_FORCE_COMMIT;
6afaed53
FM
3657 else
3658 inode->last_dir_index_offset = last_index;
fa4b8cb1
FM
3659
3660 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3661 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
086dcbfa
FM
3662out:
3663 kfree(ins_data);
3664
3665 return ret;
3666}
3667
e383e158
FM
3668static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3669{
3670 const int slot = path->slots[0];
3671
3672 if (ctx->scratch_eb) {
3673 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3674 } else {
3675 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3676 if (!ctx->scratch_eb)
3677 return -ENOMEM;
3678 }
3679
3680 btrfs_release_path(path);
3681 path->nodes[0] = ctx->scratch_eb;
3682 path->slots[0] = slot;
3683 /*
3684 * Add extra ref to scratch eb so that it is not freed when callers
3685 * release the path, so we can reuse it later if needed.
3686 */
3687 atomic_inc(&ctx->scratch_eb->refs);
3688
3689 return 0;
3690}
3691
eb10d85e
FM
3692static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3693 struct btrfs_inode *inode,
3694 struct btrfs_path *path,
3695 struct btrfs_path *dst_path,
732d591a
FM
3696 struct btrfs_log_ctx *ctx,
3697 u64 *last_old_dentry_offset)
eb10d85e
FM
3698{
3699 struct btrfs_root *log = inode->root->log_root;
796787c9
FM
3700 struct extent_buffer *src;
3701 const int nritems = btrfs_header_nritems(path->nodes[0]);
eb10d85e 3702 const u64 ino = btrfs_ino(inode);
086dcbfa
FM
3703 bool last_found = false;
3704 int batch_start = 0;
3705 int batch_size = 0;
e383e158 3706 int ret;
eb10d85e 3707
796787c9
FM
3708 /*
3709 * We need to clone the leaf, release the read lock on it, and use the
3710 * clone before modifying the log tree. See the comment at copy_items()
3711 * about why we need to do this.
3712 */
e383e158
FM
3713 ret = clone_leaf(path, ctx);
3714 if (ret < 0)
3715 return ret;
796787c9 3716
e383e158 3717 src = path->nodes[0];
796787c9 3718
e383e158 3719 for (int i = path->slots[0]; i < nritems; i++) {
732d591a 3720 struct btrfs_dir_item *di;
eb10d85e 3721 struct btrfs_key key;
eb10d85e
FM
3722 int ret;
3723
3724 btrfs_item_key_to_cpu(src, &key, i);
3725
339d0354 3726 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
086dcbfa
FM
3727 last_found = true;
3728 break;
3729 }
eb10d85e 3730
732d591a 3731 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
732d591a
FM
3732
3733 /*
3734 * Skip ranges of items that consist only of dir item keys created
3735 * in past transactions. However if we find a gap, we must log a
3736 * dir index range item for that gap, so that index keys in that
3737 * gap are deleted during log replay.
3738 */
3739 if (btrfs_dir_transid(src, di) < trans->transid) {
3740 if (key.offset > *last_old_dentry_offset + 1) {
3741 ret = insert_dir_log_key(trans, log, dst_path,
3742 ino, *last_old_dentry_offset + 1,
3743 key.offset - 1);
732d591a
FM
3744 if (ret < 0)
3745 return ret;
3746 }
3747
3748 *last_old_dentry_offset = key.offset;
3749 continue;
3750 }
193df624
FM
3751
3752 /* If we logged this dir index item before, we can skip it. */
3753 if (key.offset <= inode->last_dir_index_offset)
3754 continue;
3755
eb10d85e
FM
3756 /*
3757 * We must make sure that when we log a directory entry, the
3758 * corresponding inode, after log replay, has a matching link
3759 * count. For example:
3760 *
3761 * touch foo
3762 * mkdir mydir
3763 * sync
3764 * ln foo mydir/bar
3765 * xfs_io -c "fsync" mydir
3766 * <crash>
3767 * <mount fs and log replay>
3768 *
3769 * Would result in a fsync log that when replayed, our file inode
3770 * would have a link count of 1, but we get two directory entries
3771 * pointing to the same inode. After removing one of the names,
3772 * it would not be possible to remove the other name, which
3773 * resulted always in stale file handle errors, and would not be
3774 * possible to rmdir the parent directory, since its i_size could
3775 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3776 * resulting in -ENOTEMPTY errors.
3777 */
086dcbfa 3778 if (!ctx->log_new_dentries) {
086dcbfa
FM
3779 struct btrfs_key di_key;
3780
086dcbfa 3781 btrfs_dir_item_key_to_cpu(src, di, &di_key);
732d591a 3782 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
086dcbfa
FM
3783 ctx->log_new_dentries = true;
3784 }
3785
086dcbfa
FM
3786 if (batch_size == 0)
3787 batch_start = i;
3788 batch_size++;
eb10d85e
FM
3789 }
3790
086dcbfa
FM
3791 if (batch_size > 0) {
3792 int ret;
3793
6afaed53 3794 ret = flush_dir_items_batch(trans, inode, src, dst_path,
086dcbfa
FM
3795 batch_start, batch_size);
3796 if (ret < 0)
3797 return ret;
3798 }
3799
3800 return last_found ? 1 : 0;
eb10d85e
FM
3801}
3802
e02119d5
CM
3803/*
3804 * log all the items included in the current transaction for a given
3805 * directory. This also creates the range items in the log tree required
3806 * to replay anything deleted before the fsync
3807 */
3808static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3809 struct btrfs_inode *inode,
e02119d5 3810 struct btrfs_path *path,
339d0354 3811 struct btrfs_path *dst_path,
2f2ff0ee 3812 struct btrfs_log_ctx *ctx,
e02119d5
CM
3813 u64 min_offset, u64 *last_offset_ret)
3814{
3815 struct btrfs_key min_key;
90d04510 3816 struct btrfs_root *root = inode->root;
e02119d5 3817 struct btrfs_root *log = root->log_root;
e02119d5 3818 int ret;
732d591a 3819 u64 last_old_dentry_offset = min_offset - 1;
e02119d5 3820 u64 last_offset = (u64)-1;
684a5773 3821 u64 ino = btrfs_ino(inode);
e02119d5 3822
33345d01 3823 min_key.objectid = ino;
339d0354 3824 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
3825 min_key.offset = min_offset;
3826
6174d3cb 3827 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3828
3829 /*
3830 * we didn't find anything from this transaction, see if there
3831 * is anything at all
3832 */
339d0354
FM
3833 if (ret != 0 || min_key.objectid != ino ||
3834 min_key.type != BTRFS_DIR_INDEX_KEY) {
33345d01 3835 min_key.objectid = ino;
339d0354 3836 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5 3837 min_key.offset = (u64)-1;
b3b4aa74 3838 btrfs_release_path(path);
e02119d5
CM
3839 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3840 if (ret < 0) {
b3b4aa74 3841 btrfs_release_path(path);
e02119d5
CM
3842 return ret;
3843 }
339d0354 3844 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3845
3846 /* if ret == 0 there are items for this type,
3847 * create a range to tell us the last key of this type.
3848 * otherwise, there are no items in this directory after
3849 * *min_offset, and we create a range to indicate that.
3850 */
3851 if (ret == 0) {
3852 struct btrfs_key tmp;
732d591a 3853
e02119d5
CM
3854 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3855 path->slots[0]);
339d0354 3856 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3857 last_old_dentry_offset = tmp.offset;
235e1c7b
FM
3858 } else if (ret > 0) {
3859 ret = 0;
e02119d5 3860 }
6d3d970b 3861
e02119d5
CM
3862 goto done;
3863 }
3864
3865 /* go backward to find any previous key */
339d0354 3866 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3867 if (ret == 0) {
3868 struct btrfs_key tmp;
a450a4af 3869
e02119d5 3870 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
a450a4af
FM
3871 /*
3872 * The dir index key before the first one we found that needs to
3873 * be logged might be in a previous leaf, and there might be a
3874 * gap between these keys, meaning that we had deletions that
3875 * happened. So the key range item we log (key type
3876 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3877 * previous key's offset plus 1, so that those deletes are replayed.
3878 */
3879 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3880 last_old_dentry_offset = tmp.offset;
6d3d970b 3881 } else if (ret < 0) {
6d3d970b 3882 goto done;
e02119d5 3883 }
6d3d970b 3884
b3b4aa74 3885 btrfs_release_path(path);
e02119d5 3886
2cc83342 3887 /*
8bb6898d
FM
3888 * Find the first key from this transaction again or the one we were at
3889 * in the loop below in case we had to reschedule. We may be logging the
3890 * directory without holding its VFS lock, which happen when logging new
3891 * dentries (through log_new_dir_dentries()) or in some cases when we
3892 * need to log the parent directory of an inode. This means a dir index
3893 * key might be deleted from the inode's root, and therefore we may not
3894 * find it anymore. If we can't find it, just move to the next key. We
3895 * can not bail out and ignore, because if we do that we will simply
3896 * not log dir index keys that come after the one that was just deleted
3897 * and we can end up logging a dir index range that ends at (u64)-1
3898 * (@last_offset is initialized to that), resulting in removing dir
3899 * entries we should not remove at log replay time.
2cc83342 3900 */
bb56f02f 3901search:
e02119d5 3902 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
235e1c7b 3903 if (ret > 0) {
8bb6898d 3904 ret = btrfs_next_item(root, path);
235e1c7b
FM
3905 if (ret > 0) {
3906 /* There are no more keys in the inode's root. */
3907 ret = 0;
3908 goto done;
3909 }
3910 }
6d3d970b 3911 if (ret < 0)
e02119d5 3912 goto done;
e02119d5
CM
3913
3914 /*
3915 * we have a block from this transaction, log every item in it
3916 * from our directory
3917 */
d397712b 3918 while (1) {
732d591a
FM
3919 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3920 &last_old_dentry_offset);
eb10d85e 3921 if (ret != 0) {
235e1c7b
FM
3922 if (ret > 0)
3923 ret = 0;
eb10d85e 3924 goto done;
e02119d5 3925 }
eb10d85e 3926 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
e02119d5
CM
3927
3928 /*
3929 * look ahead to the next item and see if it is also
3930 * from this directory and from this transaction
3931 */
3932 ret = btrfs_next_leaf(root, path);
80c0b421 3933 if (ret) {
235e1c7b 3934 if (ret == 1) {
80c0b421 3935 last_offset = (u64)-1;
235e1c7b
FM
3936 ret = 0;
3937 }
e02119d5
CM
3938 goto done;
3939 }
eb10d85e 3940 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
339d0354 3941 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
3942 last_offset = (u64)-1;
3943 goto done;
3944 }
3945 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
a450a4af
FM
3946 /*
3947 * The next leaf was not changed in the current transaction
3948 * and has at least one dir index key.
3949 * We check for the next key because there might have been
3950 * one or more deletions between the last key we logged and
3951 * that next key. So the key range item we log (key type
3952 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3953 * offset minus 1, so that those deletes are replayed.
3954 */
3955 last_offset = min_key.offset - 1;
e02119d5
CM
3956 goto done;
3957 }
eb10d85e
FM
3958 if (need_resched()) {
3959 btrfs_release_path(path);
3960 cond_resched();
3961 goto search;
3962 }
e02119d5
CM
3963 }
3964done:
b3b4aa74
DS
3965 btrfs_release_path(path);
3966 btrfs_release_path(dst_path);
e02119d5 3967
235e1c7b 3968 if (ret == 0) {
4a500fd1
YZ
3969 *last_offset_ret = last_offset;
3970 /*
732d591a
FM
3971 * In case the leaf was changed in the current transaction but
3972 * all its dir items are from a past transaction, the last item
3973 * in the leaf is a dir item and there's no gap between that last
3974 * dir item and the first one on the next leaf (which did not
3975 * change in the current transaction), then we don't need to log
3976 * a range, last_old_dentry_offset is == to last_offset.
4a500fd1 3977 */
732d591a 3978 ASSERT(last_old_dentry_offset <= last_offset);
235e1c7b 3979 if (last_old_dentry_offset < last_offset)
732d591a
FM
3980 ret = insert_dir_log_key(trans, log, path, ino,
3981 last_old_dentry_offset + 1,
3982 last_offset);
4a500fd1 3983 }
235e1c7b
FM
3984
3985 return ret;
e02119d5
CM
3986}
3987
193df624
FM
3988/*
3989 * If the inode was logged before and it was evicted, then its
3990 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3991 * key offset. If that's the case, search for it and update the inode. This
3992 * is to avoid lookups in the log tree every time we try to insert a dir index
3993 * key from a leaf changed in the current transaction, and to allow us to always
3994 * do batch insertions of dir index keys.
3995 */
3996static int update_last_dir_index_offset(struct btrfs_inode *inode,
3997 struct btrfs_path *path,
3998 const struct btrfs_log_ctx *ctx)
3999{
4000 const u64 ino = btrfs_ino(inode);
4001 struct btrfs_key key;
4002 int ret;
4003
4004 lockdep_assert_held(&inode->log_mutex);
4005
4006 if (inode->last_dir_index_offset != (u64)-1)
4007 return 0;
4008
4009 if (!ctx->logged_before) {
4010 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4011 return 0;
4012 }
4013
4014 key.objectid = ino;
4015 key.type = BTRFS_DIR_INDEX_KEY;
4016 key.offset = (u64)-1;
4017
4018 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4019 /*
4020 * An error happened or we actually have an index key with an offset
4021 * value of (u64)-1. Bail out, we're done.
4022 */
4023 if (ret <= 0)
4024 goto out;
4025
4026 ret = 0;
4027 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4028
4029 /*
4030 * No dir index items, bail out and leave last_dir_index_offset with
4031 * the value right before the first valid index value.
4032 */
4033 if (path->slots[0] == 0)
4034 goto out;
4035
4036 /*
4037 * btrfs_search_slot() left us at one slot beyond the slot with the last
4038 * index key, or beyond the last key of the directory that is not an
4039 * index key. If we have an index key before, set last_dir_index_offset
4040 * to its offset value, otherwise leave it with a value right before the
4041 * first valid index value, as it means we have an empty directory.
4042 */
4043 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4044 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4045 inode->last_dir_index_offset = key.offset;
4046
4047out:
4048 btrfs_release_path(path);
4049
4050 return ret;
4051}
4052
e02119d5
CM
4053/*
4054 * logging directories is very similar to logging inodes, We find all the items
4055 * from the current transaction and write them to the log.
4056 *
4057 * The recovery code scans the directory in the subvolume, and if it finds a
4058 * key in the range logged that is not present in the log tree, then it means
4059 * that dir entry was unlinked during the transaction.
4060 *
4061 * In order for that scan to work, we must include one key smaller than
4062 * the smallest logged by this transaction and one key larger than the largest
4063 * key logged by this transaction.
4064 */
4065static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 4066 struct btrfs_inode *inode,
e02119d5 4067 struct btrfs_path *path,
2f2ff0ee
FM
4068 struct btrfs_path *dst_path,
4069 struct btrfs_log_ctx *ctx)
e02119d5
CM
4070{
4071 u64 min_key;
4072 u64 max_key;
4073 int ret;
e02119d5 4074
193df624
FM
4075 ret = update_last_dir_index_offset(inode, path, ctx);
4076 if (ret)
4077 return ret;
4078
732d591a 4079 min_key = BTRFS_DIR_START_INDEX;
e02119d5 4080 max_key = 0;
dc287224 4081
d397712b 4082 while (1) {
339d0354 4083 ret = log_dir_items(trans, inode, path, dst_path,
dbf39ea4 4084 ctx, min_key, &max_key);
4a500fd1
YZ
4085 if (ret)
4086 return ret;
e02119d5
CM
4087 if (max_key == (u64)-1)
4088 break;
4089 min_key = max_key + 1;
4090 }
4091
e02119d5
CM
4092 return 0;
4093}
4094
4095/*
4096 * a helper function to drop items from the log before we relog an
4097 * inode. max_key_type indicates the highest item type to remove.
4098 * This cannot be run for file data extents because it does not
4099 * free the extents they point to.
4100 */
88e221cd 4101static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
4102 struct btrfs_root *log,
4103 struct btrfs_path *path,
88e221cd
FM
4104 struct btrfs_inode *inode,
4105 int max_key_type)
e02119d5
CM
4106{
4107 int ret;
4108 struct btrfs_key key;
4109 struct btrfs_key found_key;
18ec90d6 4110 int start_slot;
e02119d5 4111
88e221cd 4112 key.objectid = btrfs_ino(inode);
e02119d5
CM
4113 key.type = max_key_type;
4114 key.offset = (u64)-1;
4115
d397712b 4116 while (1) {
e02119d5 4117 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
fc4026e2 4118 if (ret < 0) {
e02119d5 4119 break;
fc4026e2
FM
4120 } else if (ret > 0) {
4121 if (path->slots[0] == 0)
4122 break;
4123 path->slots[0]--;
4124 }
e02119d5 4125
e02119d5
CM
4126 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4127 path->slots[0]);
4128
88e221cd 4129 if (found_key.objectid != key.objectid)
e02119d5
CM
4130 break;
4131
18ec90d6
JB
4132 found_key.offset = 0;
4133 found_key.type = 0;
fdf8d595 4134 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
cbca7d59
FM
4135 if (ret < 0)
4136 break;
18ec90d6
JB
4137
4138 ret = btrfs_del_items(trans, log, path, start_slot,
4139 path->slots[0] - start_slot + 1);
4140 /*
4141 * If start slot isn't 0 then we don't need to re-search, we've
4142 * found the last guy with the objectid in this tree.
4143 */
4144 if (ret || start_slot != 0)
65a246c5 4145 break;
b3b4aa74 4146 btrfs_release_path(path);
e02119d5 4147 }
b3b4aa74 4148 btrfs_release_path(path);
5bdbeb21
JB
4149 if (ret > 0)
4150 ret = 0;
4a500fd1 4151 return ret;
e02119d5
CM
4152}
4153
8a2b3da1
FM
4154static int truncate_inode_items(struct btrfs_trans_handle *trans,
4155 struct btrfs_root *log_root,
4156 struct btrfs_inode *inode,
4157 u64 new_size, u32 min_type)
4158{
d9ac19c3
JB
4159 struct btrfs_truncate_control control = {
4160 .new_size = new_size,
487e81d2 4161 .ino = btrfs_ino(inode),
d9ac19c3 4162 .min_type = min_type,
5caa490e 4163 .skip_ref_updates = true,
d9ac19c3 4164 };
8a2b3da1 4165
8697b8f8 4166 return btrfs_truncate_inode_items(trans, log_root, &control);
8a2b3da1
FM
4167}
4168
94edf4ae
JB
4169static void fill_inode_item(struct btrfs_trans_handle *trans,
4170 struct extent_buffer *leaf,
4171 struct btrfs_inode_item *item,
1a4bcf47
FM
4172 struct inode *inode, int log_inode_only,
4173 u64 logged_isize)
94edf4ae 4174{
0b1c6cca 4175 struct btrfs_map_token token;
77eea05e 4176 u64 flags;
0b1c6cca 4177
c82f823c 4178 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
4179
4180 if (log_inode_only) {
4181 /* set the generation to zero so the recover code
4182 * can tell the difference between an logging
4183 * just to say 'this inode exists' and a logging
4184 * to say 'update this inode with these values'
4185 */
cc4c13d5
DS
4186 btrfs_set_token_inode_generation(&token, item, 0);
4187 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 4188 } else {
cc4c13d5
DS
4189 btrfs_set_token_inode_generation(&token, item,
4190 BTRFS_I(inode)->generation);
4191 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
4192 }
4193
cc4c13d5
DS
4194 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4195 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4196 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4197 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4198
4199 btrfs_set_token_timespec_sec(&token, &item->atime,
b1c38a13 4200 inode_get_atime_sec(inode));
cc4c13d5 4201 btrfs_set_token_timespec_nsec(&token, &item->atime,
b1c38a13 4202 inode_get_atime_nsec(inode));
cc4c13d5
DS
4203
4204 btrfs_set_token_timespec_sec(&token, &item->mtime,
b1c38a13 4205 inode_get_mtime_sec(inode));
cc4c13d5 4206 btrfs_set_token_timespec_nsec(&token, &item->mtime,
b1c38a13 4207 inode_get_mtime_nsec(inode));
cc4c13d5
DS
4208
4209 btrfs_set_token_timespec_sec(&token, &item->ctime,
b1c38a13 4210 inode_get_ctime_sec(inode));
cc4c13d5 4211 btrfs_set_token_timespec_nsec(&token, &item->ctime,
b1c38a13 4212 inode_get_ctime_nsec(inode));
cc4c13d5 4213
e593e54e
FM
4214 /*
4215 * We do not need to set the nbytes field, in fact during a fast fsync
4216 * its value may not even be correct, since a fast fsync does not wait
4217 * for ordered extent completion, which is where we update nbytes, it
4218 * only waits for writeback to complete. During log replay as we find
4219 * file extent items and replay them, we adjust the nbytes field of the
4220 * inode item in subvolume tree as needed (see overwrite_item()).
4221 */
cc4c13d5
DS
4222
4223 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4224 btrfs_set_token_inode_transid(&token, item, trans->transid);
4225 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4226 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4227 BTRFS_I(inode)->ro_flags);
4228 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4229 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4230}
4231
a95249b3
JB
4232static int log_inode_item(struct btrfs_trans_handle *trans,
4233 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4234 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4235{
4236 struct btrfs_inode_item *inode_item;
a95249b3
JB
4237 int ret;
4238
2ac691d8
FM
4239 /*
4240 * If we are doing a fast fsync and the inode was logged before in the
4241 * current transaction, then we know the inode was previously logged and
4242 * it exists in the log tree. For performance reasons, in this case use
4243 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4244 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4245 * contention in case there are concurrent fsyncs for other inodes of the
4246 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4247 * already exists can also result in unnecessarily splitting a leaf.
4248 */
4249 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4250 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4251 ASSERT(ret <= 0);
4252 if (ret > 0)
4253 ret = -ENOENT;
4254 } else {
4255 /*
4256 * This means it is the first fsync in the current transaction,
4257 * so the inode item is not in the log and we need to insert it.
4258 * We can never get -EEXIST because we are only called for a fast
4259 * fsync and in case an inode eviction happens after the inode was
4260 * logged before in the current transaction, when we load again
4261 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4262 * flags and set ->logged_trans to 0.
4263 */
4264 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4265 sizeof(*inode_item));
4266 ASSERT(ret != -EEXIST);
4267 }
4268 if (ret)
a95249b3
JB
4269 return ret;
4270 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4271 struct btrfs_inode_item);
6d889a3b
NB
4272 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4273 0, 0);
a95249b3
JB
4274 btrfs_release_path(path);
4275 return 0;
4276}
4277
40e046ac 4278static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4279 struct btrfs_inode *inode,
40e046ac
FM
4280 struct btrfs_root *log_root,
4281 struct btrfs_ordered_sum *sums)
4282{
5cfe76f8 4283 const u64 lock_end = sums->logical + sums->len - 1;
e289f03e 4284 struct extent_state *cached_state = NULL;
40e046ac
FM
4285 int ret;
4286
3ebac17c
FM
4287 /*
4288 * If this inode was not used for reflink operations in the current
4289 * transaction with new extents, then do the fast path, no need to
4290 * worry about logging checksum items with overlapping ranges.
4291 */
4292 if (inode->last_reflink_trans < trans->transid)
4293 return btrfs_csum_file_blocks(trans, log_root, sums);
4294
e289f03e
FM
4295 /*
4296 * Serialize logging for checksums. This is to avoid racing with the
4297 * same checksum being logged by another task that is logging another
4298 * file which happens to refer to the same extent as well. Such races
4299 * can leave checksum items in the log with overlapping ranges.
4300 */
5cfe76f8 4301 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
570eb97b 4302 &cached_state);
e289f03e
FM
4303 if (ret)
4304 return ret;
40e046ac
FM
4305 /*
4306 * Due to extent cloning, we might have logged a csum item that covers a
4307 * subrange of a cloned extent, and later we can end up logging a csum
4308 * item for a larger subrange of the same extent or the entire range.
4309 * This would leave csum items in the log tree that cover the same range
4310 * and break the searches for checksums in the log tree, resulting in
4311 * some checksums missing in the fs/subvolume tree. So just delete (or
4312 * trim and adjust) any existing csum items in the log for this range.
4313 */
5cfe76f8 4314 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
e289f03e
FM
4315 if (!ret)
4316 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4317
5cfe76f8 4318 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
570eb97b 4319 &cached_state);
e289f03e
FM
4320
4321 return ret;
40e046ac
FM
4322}
4323
31ff1cd2 4324static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4325 struct btrfs_inode *inode,
31ff1cd2 4326 struct btrfs_path *dst_path,
0e56315c 4327 struct btrfs_path *src_path,
1a4bcf47 4328 int start_slot, int nr, int inode_only,
e383e158 4329 u64 logged_isize, struct btrfs_log_ctx *ctx)
31ff1cd2 4330{
44d70e19 4331 struct btrfs_root *log = inode->root->log_root;
31ff1cd2 4332 struct btrfs_file_extent_item *extent;
796787c9 4333 struct extent_buffer *src;
e383e158 4334 int ret;
31ff1cd2
CM
4335 struct btrfs_key *ins_keys;
4336 u32 *ins_sizes;
b7ef5f3a 4337 struct btrfs_item_batch batch;
31ff1cd2 4338 char *ins_data;
7f30c072 4339 int dst_index;
7f30c072
FM
4340 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4341 const u64 i_size = i_size_read(&inode->vfs_inode);
d20f7043 4342
796787c9
FM
4343 /*
4344 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4345 * use the clone. This is because otherwise we would be changing the log
4346 * tree, to insert items from the subvolume tree or insert csum items,
4347 * while holding a read lock on a leaf from the subvolume tree, which
4348 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4349 *
4350 * 1) Modifying the log tree triggers an extent buffer allocation while
4351 * holding a write lock on a parent extent buffer from the log tree.
4352 * Allocating the pages for an extent buffer, or the extent buffer
4353 * struct, can trigger inode eviction and finally the inode eviction
4354 * will trigger a release/remove of a delayed node, which requires
4355 * taking the delayed node's mutex;
4356 *
4357 * 2) Allocating a metadata extent for a log tree can trigger the async
4358 * reclaim thread and make us wait for it to release enough space and
4359 * unblock our reservation ticket. The reclaim thread can start
4360 * flushing delayed items, and that in turn results in the need to
4361 * lock delayed node mutexes and in the need to write lock extent
4362 * buffers of a subvolume tree - all this while holding a write lock
4363 * on the parent extent buffer in the log tree.
4364 *
4365 * So one task in scenario 1) running in parallel with another task in
4366 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4367 * node mutex while having a read lock on a leaf from the subvolume,
4368 * while the other is holding the delayed node's mutex and wants to
4369 * write lock the same subvolume leaf for flushing delayed items.
4370 */
e383e158
FM
4371 ret = clone_leaf(src_path, ctx);
4372 if (ret < 0)
4373 return ret;
796787c9 4374
e383e158 4375 src = src_path->nodes[0];
796787c9 4376
31ff1cd2
CM
4377 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4378 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4379 if (!ins_data)
4380 return -ENOMEM;
4381
31ff1cd2
CM
4382 ins_sizes = (u32 *)ins_data;
4383 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
b7ef5f3a
FM
4384 batch.keys = ins_keys;
4385 batch.data_sizes = ins_sizes;
4386 batch.total_data_size = 0;
7f30c072 4387 batch.nr = 0;
31ff1cd2 4388
7f30c072 4389 dst_index = 0;
e383e158 4390 for (int i = 0; i < nr; i++) {
7f30c072
FM
4391 const int src_slot = start_slot + i;
4392 struct btrfs_root *csum_root;
5b7ce5e2
FM
4393 struct btrfs_ordered_sum *sums;
4394 struct btrfs_ordered_sum *sums_next;
4395 LIST_HEAD(ordered_sums);
7f30c072
FM
4396 u64 disk_bytenr;
4397 u64 disk_num_bytes;
4398 u64 extent_offset;
4399 u64 extent_num_bytes;
4400 bool is_old_extent;
4401
4402 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4403
4404 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4405 goto add_to_batch;
4406
4407 extent = btrfs_item_ptr(src, src_slot,
4408 struct btrfs_file_extent_item);
4409
4410 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4411 trans->transid);
4412
4413 /*
4414 * Don't copy extents from past generations. That would make us
4415 * log a lot more metadata for common cases like doing only a
4416 * few random writes into a file and then fsync it for the first
4417 * time or after the full sync flag is set on the inode. We can
4418 * get leaves full of extent items, most of which are from past
4419 * generations, so we can skip them - as long as the inode has
4420 * not been the target of a reflink operation in this transaction,
4421 * as in that case it might have had file extent items with old
4422 * generations copied into it. We also must always log prealloc
4423 * extents that start at or beyond eof, otherwise we would lose
4424 * them on log replay.
4425 */
4426 if (is_old_extent &&
4427 ins_keys[dst_index].offset < i_size &&
4428 inode->last_reflink_trans < trans->transid)
4429 continue;
4430
4431 if (skip_csum)
4432 goto add_to_batch;
4433
4434 /* Only regular extents have checksums. */
4435 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4436 goto add_to_batch;
4437
4438 /*
4439 * If it's an extent created in a past transaction, then its
4440 * checksums are already accessible from the committed csum tree,
4441 * no need to log them.
4442 */
4443 if (is_old_extent)
4444 goto add_to_batch;
4445
4446 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4447 /* If it's an explicit hole, there are no checksums. */
4448 if (disk_bytenr == 0)
4449 goto add_to_batch;
4450
4451 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4452
4453 if (btrfs_file_extent_compression(src, extent)) {
4454 extent_offset = 0;
4455 extent_num_bytes = disk_num_bytes;
4456 } else {
4457 extent_offset = btrfs_file_extent_offset(src, extent);
4458 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4459 }
4460
4461 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4462 disk_bytenr += extent_offset;
97e38239
QW
4463 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4464 disk_bytenr + extent_num_bytes - 1,
afcb8062 4465 &ordered_sums, false);
8d2a83a9 4466 if (ret < 0)
7f30c072 4467 goto out;
8d2a83a9 4468 ret = 0;
7f30c072 4469
5b7ce5e2
FM
4470 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4471 if (!ret)
4472 ret = log_csums(trans, inode, log, sums);
4473 list_del(&sums->list);
4474 kfree(sums);
4475 }
4476 if (ret)
4477 goto out;
4478
7f30c072
FM
4479add_to_batch:
4480 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4481 batch.total_data_size += ins_sizes[dst_index];
4482 batch.nr++;
4483 dst_index++;
31ff1cd2 4484 }
7f30c072
FM
4485
4486 /*
4487 * We have a leaf full of old extent items that don't need to be logged,
4488 * so we don't need to do anything.
4489 */
4490 if (batch.nr == 0)
4491 goto out;
4492
b7ef5f3a 4493 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
7f30c072
FM
4494 if (ret)
4495 goto out;
4496
4497 dst_index = 0;
e383e158 4498 for (int i = 0; i < nr; i++) {
7f30c072
FM
4499 const int src_slot = start_slot + i;
4500 const int dst_slot = dst_path->slots[0] + dst_index;
4501 struct btrfs_key key;
4502 unsigned long src_offset;
4503 unsigned long dst_offset;
4504
4505 /*
4506 * We're done, all the remaining items in the source leaf
4507 * correspond to old file extent items.
4508 */
4509 if (dst_index >= batch.nr)
4510 break;
4511
4512 btrfs_item_key_to_cpu(src, &key, src_slot);
4513
4514 if (key.type != BTRFS_EXTENT_DATA_KEY)
4515 goto copy_item;
31ff1cd2 4516
7f30c072
FM
4517 extent = btrfs_item_ptr(src, src_slot,
4518 struct btrfs_file_extent_item);
31ff1cd2 4519
7f30c072
FM
4520 /* See the comment in the previous loop, same logic. */
4521 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4522 key.offset < i_size &&
4523 inode->last_reflink_trans < trans->transid)
4524 continue;
4525
4526copy_item:
4527 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4528 src_offset = btrfs_item_ptr_offset(src, src_slot);
31ff1cd2 4529
7f30c072
FM
4530 if (key.type == BTRFS_INODE_ITEM_KEY) {
4531 struct btrfs_inode_item *inode_item;
4532
4533 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
31ff1cd2 4534 struct btrfs_inode_item);
94edf4ae 4535 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4536 &inode->vfs_inode,
4537 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4538 logged_isize);
94edf4ae
JB
4539 } else {
4540 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
7f30c072 4541 src_offset, ins_sizes[dst_index]);
31ff1cd2 4542 }
94edf4ae 4543
7f30c072 4544 dst_index++;
31ff1cd2
CM
4545 }
4546
50564b65 4547 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
b3b4aa74 4548 btrfs_release_path(dst_path);
7f30c072 4549out:
31ff1cd2 4550 kfree(ins_data);
d20f7043 4551
4a500fd1 4552 return ret;
31ff1cd2
CM
4553}
4554
4f0f586b
ST
4555static int extent_cmp(void *priv, const struct list_head *a,
4556 const struct list_head *b)
5dc562c5 4557{
214cc184 4558 const struct extent_map *em1, *em2;
5dc562c5
JB
4559
4560 em1 = list_entry(a, struct extent_map, list);
4561 em2 = list_entry(b, struct extent_map, list);
4562
4563 if (em1->start < em2->start)
4564 return -1;
4565 else if (em1->start > em2->start)
4566 return 1;
4567 return 0;
4568}
4569
e7175a69
JB
4570static int log_extent_csums(struct btrfs_trans_handle *trans,
4571 struct btrfs_inode *inode,
a9ecb653 4572 struct btrfs_root *log_root,
48778179
FM
4573 const struct extent_map *em,
4574 struct btrfs_log_ctx *ctx)
5dc562c5 4575{
48778179 4576 struct btrfs_ordered_extent *ordered;
fc28b25e 4577 struct btrfs_root *csum_root;
2ab28f32
JB
4578 u64 csum_offset;
4579 u64 csum_len;
2e438442
FM
4580 u64 mod_start = em->start;
4581 u64 mod_len = em->len;
8407f553
FM
4582 LIST_HEAD(ordered_sums);
4583 int ret = 0;
0aa4a17d 4584
e7175a69 4585 if (inode->flags & BTRFS_INODE_NODATASUM ||
f86f7a75 4586 (em->flags & EXTENT_FLAG_PREALLOC) ||
8407f553 4587 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4588 return 0;
5dc562c5 4589
48778179
FM
4590 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4591 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4592 const u64 mod_end = mod_start + mod_len;
4593 struct btrfs_ordered_sum *sums;
4594
4595 if (mod_len == 0)
4596 break;
4597
4598 if (ordered_end <= mod_start)
4599 continue;
4600 if (mod_end <= ordered->file_offset)
4601 break;
4602
4603 /*
4604 * We are going to copy all the csums on this ordered extent, so
4605 * go ahead and adjust mod_start and mod_len in case this ordered
4606 * extent has already been logged.
4607 */
4608 if (ordered->file_offset > mod_start) {
4609 if (ordered_end >= mod_end)
4610 mod_len = ordered->file_offset - mod_start;
4611 /*
4612 * If we have this case
4613 *
4614 * |--------- logged extent ---------|
4615 * |----- ordered extent ----|
4616 *
4617 * Just don't mess with mod_start and mod_len, we'll
4618 * just end up logging more csums than we need and it
4619 * will be ok.
4620 */
4621 } else {
4622 if (ordered_end < mod_end) {
4623 mod_len = mod_end - ordered_end;
4624 mod_start = ordered_end;
4625 } else {
4626 mod_len = 0;
4627 }
4628 }
4629
4630 /*
4631 * To keep us from looping for the above case of an ordered
4632 * extent that falls inside of the logged extent.
4633 */
4634 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4635 continue;
4636
4637 list_for_each_entry(sums, &ordered->list, list) {
4638 ret = log_csums(trans, inode, log_root, sums);
4639 if (ret)
4640 return ret;
4641 }
4642 }
4643
4644 /* We're done, found all csums in the ordered extents. */
4645 if (mod_len == 0)
4646 return 0;
4647
e7175a69 4648 /* If we're compressed we have to save the entire range of csums. */
f86f7a75 4649 if (extent_map_is_compressed(em)) {
488111aa 4650 csum_offset = 0;
8407f553 4651 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4652 } else {
48778179
FM
4653 csum_offset = mod_start - em->start;
4654 csum_len = mod_len;
488111aa 4655 }
2ab28f32 4656
70c8a91c 4657 /* block start is already adjusted for the file extent offset. */
fc28b25e 4658 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
97e38239
QW
4659 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4660 em->block_start + csum_offset +
afcb8062 4661 csum_len - 1, &ordered_sums, false);
8d2a83a9 4662 if (ret < 0)
70c8a91c 4663 return ret;
8d2a83a9 4664 ret = 0;
5dc562c5 4665
70c8a91c
JB
4666 while (!list_empty(&ordered_sums)) {
4667 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4668 struct btrfs_ordered_sum,
4669 list);
4670 if (!ret)
3ebac17c 4671 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4672 list_del(&sums->list);
4673 kfree(sums);
5dc562c5
JB
4674 }
4675
70c8a91c 4676 return ret;
5dc562c5
JB
4677}
4678
8407f553 4679static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4680 struct btrfs_inode *inode,
8407f553
FM
4681 const struct extent_map *em,
4682 struct btrfs_path *path,
8407f553
FM
4683 struct btrfs_log_ctx *ctx)
4684{
5893dfb9 4685 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4686 struct btrfs_root *log = inode->root->log_root;
e1f53ed8 4687 struct btrfs_file_extent_item fi = { 0 };
8407f553 4688 struct extent_buffer *leaf;
8407f553 4689 struct btrfs_key key;
f86f7a75 4690 enum btrfs_compression_type compress_type;
8407f553
FM
4691 u64 extent_offset = em->start - em->orig_start;
4692 u64 block_len;
4693 int ret;
8407f553 4694
e1f53ed8 4695 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
f86f7a75 4696 if (em->flags & EXTENT_FLAG_PREALLOC)
e1f53ed8
FM
4697 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4698 else
4699 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4700
4701 block_len = max(em->block_len, em->orig_block_len);
f86f7a75
FM
4702 compress_type = extent_map_compression(em);
4703 if (compress_type != BTRFS_COMPRESS_NONE) {
e1f53ed8
FM
4704 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4705 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4706 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4707 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4708 extent_offset);
4709 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4710 }
4711
4712 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4713 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4714 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
f86f7a75 4715 btrfs_set_stack_file_extent_compression(&fi, compress_type);
e1f53ed8 4716
48778179 4717 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4718 if (ret)
4719 return ret;
4720
5328b2a7
FM
4721 /*
4722 * If this is the first time we are logging the inode in the current
4723 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4724 * because it does a deletion search, which always acquires write locks
4725 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4726 * but also adds significant contention in a log tree, since log trees
4727 * are small, with a root at level 2 or 3 at most, due to their short
4728 * life span.
4729 */
0f8ce498 4730 if (ctx->logged_before) {
5328b2a7
FM
4731 drop_args.path = path;
4732 drop_args.start = em->start;
4733 drop_args.end = em->start + em->len;
4734 drop_args.replace_extent = true;
e1f53ed8 4735 drop_args.extent_item_size = sizeof(fi);
5328b2a7
FM
4736 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4737 if (ret)
4738 return ret;
4739 }
8407f553 4740
5893dfb9 4741 if (!drop_args.extent_inserted) {
9d122629 4742 key.objectid = btrfs_ino(inode);
8407f553
FM
4743 key.type = BTRFS_EXTENT_DATA_KEY;
4744 key.offset = em->start;
4745
4746 ret = btrfs_insert_empty_item(trans, log, path, &key,
e1f53ed8 4747 sizeof(fi));
8407f553
FM
4748 if (ret)
4749 return ret;
4750 }
4751 leaf = path->nodes[0];
e1f53ed8
FM
4752 write_extent_buffer(leaf, &fi,
4753 btrfs_item_ptr_offset(leaf, path->slots[0]),
4754 sizeof(fi));
50564b65 4755 btrfs_mark_buffer_dirty(trans, leaf);
8407f553
FM
4756
4757 btrfs_release_path(path);
4758
4759 return ret;
4760}
4761
31d11b83
FM
4762/*
4763 * Log all prealloc extents beyond the inode's i_size to make sure we do not
d9947887 4764 * lose them after doing a full/fast fsync and replaying the log. We scan the
31d11b83
FM
4765 * subvolume's root instead of iterating the inode's extent map tree because
4766 * otherwise we can log incorrect extent items based on extent map conversion.
4767 * That can happen due to the fact that extent maps are merged when they
4768 * are not in the extent map tree's list of modified extents.
4769 */
4770static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4771 struct btrfs_inode *inode,
e383e158
FM
4772 struct btrfs_path *path,
4773 struct btrfs_log_ctx *ctx)
31d11b83
FM
4774{
4775 struct btrfs_root *root = inode->root;
4776 struct btrfs_key key;
4777 const u64 i_size = i_size_read(&inode->vfs_inode);
4778 const u64 ino = btrfs_ino(inode);
4779 struct btrfs_path *dst_path = NULL;
0e56315c 4780 bool dropped_extents = false;
f135cea3
FM
4781 u64 truncate_offset = i_size;
4782 struct extent_buffer *leaf;
4783 int slot;
31d11b83 4784 int ins_nr = 0;
b4c639f6 4785 int start_slot = 0;
31d11b83
FM
4786 int ret;
4787
4788 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4789 return 0;
4790
4791 key.objectid = ino;
4792 key.type = BTRFS_EXTENT_DATA_KEY;
4793 key.offset = i_size;
4794 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4795 if (ret < 0)
4796 goto out;
4797
f135cea3
FM
4798 /*
4799 * We must check if there is a prealloc extent that starts before the
4800 * i_size and crosses the i_size boundary. This is to ensure later we
4801 * truncate down to the end of that extent and not to the i_size, as
4802 * otherwise we end up losing part of the prealloc extent after a log
4803 * replay and with an implicit hole if there is another prealloc extent
4804 * that starts at an offset beyond i_size.
4805 */
4806 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4807 if (ret < 0)
4808 goto out;
4809
4810 if (ret == 0) {
4811 struct btrfs_file_extent_item *ei;
4812
4813 leaf = path->nodes[0];
4814 slot = path->slots[0];
4815 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4816
4817 if (btrfs_file_extent_type(leaf, ei) ==
4818 BTRFS_FILE_EXTENT_PREALLOC) {
4819 u64 extent_end;
4820
4821 btrfs_item_key_to_cpu(leaf, &key, slot);
4822 extent_end = key.offset +
4823 btrfs_file_extent_num_bytes(leaf, ei);
4824
4825 if (extent_end > i_size)
4826 truncate_offset = extent_end;
4827 }
4828 } else {
4829 ret = 0;
4830 }
4831
31d11b83 4832 while (true) {
f135cea3
FM
4833 leaf = path->nodes[0];
4834 slot = path->slots[0];
31d11b83
FM
4835
4836 if (slot >= btrfs_header_nritems(leaf)) {
4837 if (ins_nr > 0) {
4838 ret = copy_items(trans, inode, dst_path, path,
e383e158 4839 start_slot, ins_nr, 1, 0, ctx);
31d11b83
FM
4840 if (ret < 0)
4841 goto out;
4842 ins_nr = 0;
4843 }
4844 ret = btrfs_next_leaf(root, path);
4845 if (ret < 0)
4846 goto out;
4847 if (ret > 0) {
4848 ret = 0;
4849 break;
4850 }
4851 continue;
4852 }
4853
4854 btrfs_item_key_to_cpu(leaf, &key, slot);
4855 if (key.objectid > ino)
4856 break;
4857 if (WARN_ON_ONCE(key.objectid < ino) ||
4858 key.type < BTRFS_EXTENT_DATA_KEY ||
4859 key.offset < i_size) {
4860 path->slots[0]++;
4861 continue;
4862 }
0e56315c 4863 if (!dropped_extents) {
31d11b83
FM
4864 /*
4865 * Avoid logging extent items logged in past fsync calls
4866 * and leading to duplicate keys in the log tree.
4867 */
8a2b3da1
FM
4868 ret = truncate_inode_items(trans, root->log_root, inode,
4869 truncate_offset,
4870 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4871 if (ret)
4872 goto out;
0e56315c 4873 dropped_extents = true;
31d11b83
FM
4874 }
4875 if (ins_nr == 0)
4876 start_slot = slot;
4877 ins_nr++;
4878 path->slots[0]++;
4879 if (!dst_path) {
4880 dst_path = btrfs_alloc_path();
4881 if (!dst_path) {
4882 ret = -ENOMEM;
4883 goto out;
4884 }
4885 }
4886 }
0bc2d3c0 4887 if (ins_nr > 0)
0e56315c 4888 ret = copy_items(trans, inode, dst_path, path,
e383e158 4889 start_slot, ins_nr, 1, 0, ctx);
31d11b83
FM
4890out:
4891 btrfs_release_path(path);
4892 btrfs_free_path(dst_path);
4893 return ret;
4894}
4895
5dc562c5 4896static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4897 struct btrfs_inode *inode,
827463c4 4898 struct btrfs_path *path,
48778179 4899 struct btrfs_log_ctx *ctx)
5dc562c5 4900{
48778179
FM
4901 struct btrfs_ordered_extent *ordered;
4902 struct btrfs_ordered_extent *tmp;
5dc562c5 4903 struct extent_map *em, *n;
84af994b 4904 LIST_HEAD(extents);
9d122629 4905 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4906 int ret = 0;
2ab28f32 4907 int num = 0;
5dc562c5 4908
5dc562c5 4909 write_lock(&tree->lock);
5dc562c5
JB
4910
4911 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4912 list_del_init(&em->list);
2ab28f32
JB
4913 /*
4914 * Just an arbitrary number, this can be really CPU intensive
4915 * once we start getting a lot of extents, and really once we
4916 * have a bunch of extents we just want to commit since it will
4917 * be faster.
4918 */
4919 if (++num > 32768) {
4920 list_del_init(&tree->modified_extents);
4921 ret = -EFBIG;
4922 goto process;
4923 }
4924
5f96bfb7 4925 if (em->generation < trans->transid)
5dc562c5 4926 continue;
8c6c5928 4927
31d11b83 4928 /* We log prealloc extents beyond eof later. */
f86f7a75 4929 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
31d11b83
FM
4930 em->start >= i_size_read(&inode->vfs_inode))
4931 continue;
4932
ff44c6e3 4933 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4934 refcount_inc(&em->refs);
f86f7a75 4935 em->flags |= EXTENT_FLAG_LOGGING;
5dc562c5 4936 list_add_tail(&em->list, &extents);
2ab28f32 4937 num++;
5dc562c5
JB
4938 }
4939
4940 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4941process:
5dc562c5
JB
4942 while (!list_empty(&extents)) {
4943 em = list_entry(extents.next, struct extent_map, list);
4944
4945 list_del_init(&em->list);
4946
4947 /*
4948 * If we had an error we just need to delete everybody from our
4949 * private list.
4950 */
ff44c6e3 4951 if (ret) {
201a9038 4952 clear_em_logging(tree, em);
ff44c6e3 4953 free_extent_map(em);
5dc562c5 4954 continue;
ff44c6e3
JB
4955 }
4956
4957 write_unlock(&tree->lock);
5dc562c5 4958
90d04510 4959 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 4960 write_lock(&tree->lock);
201a9038
JB
4961 clear_em_logging(tree, em);
4962 free_extent_map(em);
5dc562c5 4963 }
ff44c6e3
JB
4964 WARN_ON(!list_empty(&extents));
4965 write_unlock(&tree->lock);
5dc562c5 4966
31d11b83 4967 if (!ret)
e383e158 4968 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
48778179
FM
4969 if (ret)
4970 return ret;
31d11b83 4971
48778179
FM
4972 /*
4973 * We have logged all extents successfully, now make sure the commit of
4974 * the current transaction waits for the ordered extents to complete
4975 * before it commits and wipes out the log trees, otherwise we would
4976 * lose data if an ordered extents completes after the transaction
4977 * commits and a power failure happens after the transaction commit.
4978 */
4979 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4980 list_del_init(&ordered->log_list);
4981 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4982
4983 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
54c65371 4984 spin_lock_irq(&inode->ordered_tree_lock);
48778179
FM
4985 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4986 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4987 atomic_inc(&trans->transaction->pending_ordered);
4988 }
54c65371 4989 spin_unlock_irq(&inode->ordered_tree_lock);
48778179
FM
4990 }
4991 btrfs_put_ordered_extent(ordered);
4992 }
4993
4994 return 0;
5dc562c5
JB
4995}
4996
481b01c0 4997static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4998 struct btrfs_path *path, u64 *size_ret)
4999{
5000 struct btrfs_key key;
5001 int ret;
5002
481b01c0 5003 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
5004 key.type = BTRFS_INODE_ITEM_KEY;
5005 key.offset = 0;
5006
5007 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5008 if (ret < 0) {
5009 return ret;
5010 } else if (ret > 0) {
2f2ff0ee 5011 *size_ret = 0;
1a4bcf47
FM
5012 } else {
5013 struct btrfs_inode_item *item;
5014
5015 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5016 struct btrfs_inode_item);
5017 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
5018 /*
5019 * If the in-memory inode's i_size is smaller then the inode
5020 * size stored in the btree, return the inode's i_size, so
5021 * that we get a correct inode size after replaying the log
5022 * when before a power failure we had a shrinking truncate
5023 * followed by addition of a new name (rename / new hard link).
5024 * Otherwise return the inode size from the btree, to avoid
5025 * data loss when replaying a log due to previously doing a
5026 * write that expands the inode's size and logging a new name
5027 * immediately after.
5028 */
5029 if (*size_ret > inode->vfs_inode.i_size)
5030 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
5031 }
5032
5033 btrfs_release_path(path);
5034 return 0;
5035}
5036
36283bf7
FM
5037/*
5038 * At the moment we always log all xattrs. This is to figure out at log replay
5039 * time which xattrs must have their deletion replayed. If a xattr is missing
5040 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5041 * because if a xattr is deleted, the inode is fsynced and a power failure
5042 * happens, causing the log to be replayed the next time the fs is mounted,
5043 * we want the xattr to not exist anymore (same behaviour as other filesystems
5044 * with a journal, ext3/4, xfs, f2fs, etc).
5045 */
5046static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 5047 struct btrfs_inode *inode,
36283bf7 5048 struct btrfs_path *path,
e383e158
FM
5049 struct btrfs_path *dst_path,
5050 struct btrfs_log_ctx *ctx)
36283bf7 5051{
90d04510 5052 struct btrfs_root *root = inode->root;
36283bf7
FM
5053 int ret;
5054 struct btrfs_key key;
1a93c36a 5055 const u64 ino = btrfs_ino(inode);
36283bf7
FM
5056 int ins_nr = 0;
5057 int start_slot = 0;
f2f121ab
FM
5058 bool found_xattrs = false;
5059
5060 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5061 return 0;
36283bf7
FM
5062
5063 key.objectid = ino;
5064 key.type = BTRFS_XATTR_ITEM_KEY;
5065 key.offset = 0;
5066
5067 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5068 if (ret < 0)
5069 return ret;
5070
5071 while (true) {
5072 int slot = path->slots[0];
5073 struct extent_buffer *leaf = path->nodes[0];
5074 int nritems = btrfs_header_nritems(leaf);
5075
5076 if (slot >= nritems) {
5077 if (ins_nr > 0) {
1a93c36a 5078 ret = copy_items(trans, inode, dst_path, path,
e383e158 5079 start_slot, ins_nr, 1, 0, ctx);
36283bf7
FM
5080 if (ret < 0)
5081 return ret;
5082 ins_nr = 0;
5083 }
5084 ret = btrfs_next_leaf(root, path);
5085 if (ret < 0)
5086 return ret;
5087 else if (ret > 0)
5088 break;
5089 continue;
5090 }
5091
5092 btrfs_item_key_to_cpu(leaf, &key, slot);
5093 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5094 break;
5095
5096 if (ins_nr == 0)
5097 start_slot = slot;
5098 ins_nr++;
5099 path->slots[0]++;
f2f121ab 5100 found_xattrs = true;
36283bf7
FM
5101 cond_resched();
5102 }
5103 if (ins_nr > 0) {
1a93c36a 5104 ret = copy_items(trans, inode, dst_path, path,
e383e158 5105 start_slot, ins_nr, 1, 0, ctx);
36283bf7
FM
5106 if (ret < 0)
5107 return ret;
5108 }
5109
f2f121ab
FM
5110 if (!found_xattrs)
5111 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5112
36283bf7
FM
5113 return 0;
5114}
5115
a89ca6f2 5116/*
0e56315c
FM
5117 * When using the NO_HOLES feature if we punched a hole that causes the
5118 * deletion of entire leafs or all the extent items of the first leaf (the one
5119 * that contains the inode item and references) we may end up not processing
5120 * any extents, because there are no leafs with a generation matching the
5121 * current transaction that have extent items for our inode. So we need to find
5122 * if any holes exist and then log them. We also need to log holes after any
5123 * truncate operation that changes the inode's size.
a89ca6f2 5124 */
0e56315c 5125static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 5126 struct btrfs_inode *inode,
7af59743 5127 struct btrfs_path *path)
a89ca6f2 5128{
90d04510 5129 struct btrfs_root *root = inode->root;
0b246afa 5130 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 5131 struct btrfs_key key;
a0308dd7
NB
5132 const u64 ino = btrfs_ino(inode);
5133 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 5134 u64 prev_extent_end = 0;
0e56315c 5135 int ret;
a89ca6f2 5136
0e56315c 5137 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
5138 return 0;
5139
5140 key.objectid = ino;
5141 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 5142 key.offset = 0;
a89ca6f2
FM
5143
5144 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
5145 if (ret < 0)
5146 return ret;
5147
0e56315c 5148 while (true) {
0e56315c 5149 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 5150
0e56315c
FM
5151 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5152 ret = btrfs_next_leaf(root, path);
5153 if (ret < 0)
5154 return ret;
5155 if (ret > 0) {
5156 ret = 0;
5157 break;
5158 }
5159 leaf = path->nodes[0];
5160 }
5161
5162 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5163 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5164 break;
5165
5166 /* We have a hole, log it. */
5167 if (prev_extent_end < key.offset) {
7af59743 5168 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
5169
5170 /*
5171 * Release the path to avoid deadlocks with other code
5172 * paths that search the root while holding locks on
5173 * leafs from the log root.
5174 */
5175 btrfs_release_path(path);
d1f68ba0
OS
5176 ret = btrfs_insert_hole_extent(trans, root->log_root,
5177 ino, prev_extent_end,
5178 hole_len);
0e56315c
FM
5179 if (ret < 0)
5180 return ret;
5181
5182 /*
5183 * Search for the same key again in the root. Since it's
5184 * an extent item and we are holding the inode lock, the
5185 * key must still exist. If it doesn't just emit warning
5186 * and return an error to fall back to a transaction
5187 * commit.
5188 */
5189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5190 if (ret < 0)
5191 return ret;
5192 if (WARN_ON(ret > 0))
5193 return -ENOENT;
5194 leaf = path->nodes[0];
5195 }
a89ca6f2 5196
7af59743 5197 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
5198 path->slots[0]++;
5199 cond_resched();
a89ca6f2 5200 }
a89ca6f2 5201
7af59743 5202 if (prev_extent_end < i_size) {
0e56315c 5203 u64 hole_len;
a89ca6f2 5204
0e56315c 5205 btrfs_release_path(path);
7af59743 5206 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
d1f68ba0
OS
5207 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5208 prev_extent_end, hole_len);
0e56315c
FM
5209 if (ret < 0)
5210 return ret;
5211 }
5212
5213 return 0;
a89ca6f2
FM
5214}
5215
56f23fdb
FM
5216/*
5217 * When we are logging a new inode X, check if it doesn't have a reference that
5218 * matches the reference from some other inode Y created in a past transaction
5219 * and that was renamed in the current transaction. If we don't do this, then at
5220 * log replay time we can lose inode Y (and all its files if it's a directory):
5221 *
5222 * mkdir /mnt/x
5223 * echo "hello world" > /mnt/x/foobar
5224 * sync
5225 * mv /mnt/x /mnt/y
5226 * mkdir /mnt/x # or touch /mnt/x
5227 * xfs_io -c fsync /mnt/x
5228 * <power fail>
5229 * mount fs, trigger log replay
5230 *
5231 * After the log replay procedure, we would lose the first directory and all its
5232 * files (file foobar).
5233 * For the case where inode Y is not a directory we simply end up losing it:
5234 *
5235 * echo "123" > /mnt/foo
5236 * sync
5237 * mv /mnt/foo /mnt/bar
5238 * echo "abc" > /mnt/foo
5239 * xfs_io -c fsync /mnt/foo
5240 * <power fail>
5241 *
5242 * We also need this for cases where a snapshot entry is replaced by some other
5243 * entry (file or directory) otherwise we end up with an unreplayable log due to
5244 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5245 * if it were a regular entry:
5246 *
5247 * mkdir /mnt/x
5248 * btrfs subvolume snapshot /mnt /mnt/x/snap
5249 * btrfs subvolume delete /mnt/x/snap
5250 * rmdir /mnt/x
5251 * mkdir /mnt/x
5252 * fsync /mnt/x or fsync some new file inside it
5253 * <power fail>
5254 *
5255 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5256 * the same transaction.
5257 */
5258static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5259 const int slot,
5260 const struct btrfs_key *key,
4791c8f1 5261 struct btrfs_inode *inode,
a3baaf0d 5262 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
5263{
5264 int ret;
5265 struct btrfs_path *search_path;
5266 char *name = NULL;
5267 u32 name_len = 0;
3212fa14 5268 u32 item_size = btrfs_item_size(eb, slot);
56f23fdb
FM
5269 u32 cur_offset = 0;
5270 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5271
5272 search_path = btrfs_alloc_path();
5273 if (!search_path)
5274 return -ENOMEM;
5275 search_path->search_commit_root = 1;
5276 search_path->skip_locking = 1;
5277
5278 while (cur_offset < item_size) {
5279 u64 parent;
5280 u32 this_name_len;
5281 u32 this_len;
5282 unsigned long name_ptr;
5283 struct btrfs_dir_item *di;
6db75318 5284 struct fscrypt_str name_str;
56f23fdb
FM
5285
5286 if (key->type == BTRFS_INODE_REF_KEY) {
5287 struct btrfs_inode_ref *iref;
5288
5289 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5290 parent = key->offset;
5291 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5292 name_ptr = (unsigned long)(iref + 1);
5293 this_len = sizeof(*iref) + this_name_len;
5294 } else {
5295 struct btrfs_inode_extref *extref;
5296
5297 extref = (struct btrfs_inode_extref *)(ptr +
5298 cur_offset);
5299 parent = btrfs_inode_extref_parent(eb, extref);
5300 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5301 name_ptr = (unsigned long)&extref->name;
5302 this_len = sizeof(*extref) + this_name_len;
5303 }
5304
5305 if (this_name_len > name_len) {
5306 char *new_name;
5307
5308 new_name = krealloc(name, this_name_len, GFP_NOFS);
5309 if (!new_name) {
5310 ret = -ENOMEM;
5311 goto out;
5312 }
5313 name_len = this_name_len;
5314 name = new_name;
5315 }
5316
5317 read_extent_buffer(eb, name, name_ptr, this_name_len);
e43eec81
STD
5318
5319 name_str.name = name;
5320 name_str.len = this_name_len;
4791c8f1 5321 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
e43eec81 5322 parent, &name_str, 0);
56f23fdb 5323 if (di && !IS_ERR(di)) {
44f714da
FM
5324 struct btrfs_key di_key;
5325
5326 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5327 di, &di_key);
5328 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5329 if (di_key.objectid != key->objectid) {
5330 ret = 1;
5331 *other_ino = di_key.objectid;
a3baaf0d 5332 *other_parent = parent;
6b5fc433
FM
5333 } else {
5334 ret = 0;
5335 }
44f714da
FM
5336 } else {
5337 ret = -EAGAIN;
5338 }
56f23fdb
FM
5339 goto out;
5340 } else if (IS_ERR(di)) {
5341 ret = PTR_ERR(di);
5342 goto out;
5343 }
5344 btrfs_release_path(search_path);
5345
5346 cur_offset += this_len;
5347 }
5348 ret = 0;
5349out:
5350 btrfs_free_path(search_path);
5351 kfree(name);
5352 return ret;
5353}
5354
a3751024
FM
5355/*
5356 * Check if we need to log an inode. This is used in contexts where while
5357 * logging an inode we need to log another inode (either that it exists or in
5358 * full mode). This is used instead of btrfs_inode_in_log() because the later
5359 * requires the inode to be in the log and have the log transaction committed,
5360 * while here we do not care if the log transaction was already committed - our
5361 * caller will commit the log later - and we want to avoid logging an inode
5362 * multiple times when multiple tasks have joined the same log transaction.
5363 */
5364static bool need_log_inode(const struct btrfs_trans_handle *trans,
bf1f4fd3 5365 struct btrfs_inode *inode)
a3751024
FM
5366{
5367 /*
5368 * If a directory was not modified, no dentries added or removed, we can
5369 * and should avoid logging it.
5370 */
5371 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5372 return false;
5373
5374 /*
5375 * If this inode does not have new/updated/deleted xattrs since the last
5376 * time it was logged and is flagged as logged in the current transaction,
5377 * we can skip logging it. As for new/deleted names, those are updated in
5378 * the log by link/unlink/rename operations.
5379 * In case the inode was logged and then evicted and reloaded, its
5380 * logged_trans will be 0, in which case we have to fully log it since
5381 * logged_trans is a transient field, not persisted.
5382 */
bf1f4fd3 5383 if (inode_logged(trans, inode, NULL) == 1 &&
a3751024
FM
5384 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5385 return false;
5386
5387 return true;
5388}
5389
f6d86dbe
FM
5390struct btrfs_dir_list {
5391 u64 ino;
5392 struct list_head list;
5393};
5394
5395/*
5396 * Log the inodes of the new dentries of a directory.
5397 * See process_dir_items_leaf() for details about why it is needed.
5398 * This is a recursive operation - if an existing dentry corresponds to a
5399 * directory, that directory's new entries are logged too (same behaviour as
5400 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5401 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5402 * complains about the following circular lock dependency / possible deadlock:
5403 *
5404 * CPU0 CPU1
5405 * ---- ----
5406 * lock(&type->i_mutex_dir_key#3/2);
5407 * lock(sb_internal#2);
5408 * lock(&type->i_mutex_dir_key#3/2);
5409 * lock(&sb->s_type->i_mutex_key#14);
5410 *
5411 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5412 * sb_start_intwrite() in btrfs_start_transaction().
5413 * Not acquiring the VFS lock of the inodes is still safe because:
5414 *
5415 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5416 * that while logging the inode new references (names) are added or removed
5417 * from the inode, leaving the logged inode item with a link count that does
5418 * not match the number of logged inode reference items. This is fine because
5419 * at log replay time we compute the real number of links and correct the
5420 * link count in the inode item (see replay_one_buffer() and
5421 * link_to_fixup_dir());
5422 *
5423 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5424 * while logging the inode's items new index items (key type
5425 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5426 * has a size that doesn't match the sum of the lengths of all the logged
5427 * names - this is ok, not a problem, because at log replay time we set the
5428 * directory's i_size to the correct value (see replay_one_name() and
3a8d1db3 5429 * overwrite_item()).
f6d86dbe
FM
5430 */
5431static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5432 struct btrfs_inode *start_inode,
5433 struct btrfs_log_ctx *ctx)
5434{
5435 struct btrfs_root *root = start_inode->root;
5436 struct btrfs_fs_info *fs_info = root->fs_info;
5437 struct btrfs_path *path;
5438 LIST_HEAD(dir_list);
5439 struct btrfs_dir_list *dir_elem;
5440 u64 ino = btrfs_ino(start_inode);
fa4b8cb1 5441 struct btrfs_inode *curr_inode = start_inode;
f6d86dbe
FM
5442 int ret = 0;
5443
5444 /*
5445 * If we are logging a new name, as part of a link or rename operation,
5446 * don't bother logging new dentries, as we just want to log the names
5447 * of an inode and that any new parents exist.
5448 */
5449 if (ctx->logging_new_name)
5450 return 0;
5451
5452 path = btrfs_alloc_path();
5453 if (!path)
5454 return -ENOMEM;
5455
fa4b8cb1
FM
5456 /* Pairs with btrfs_add_delayed_iput below. */
5457 ihold(&curr_inode->vfs_inode);
5458
f6d86dbe 5459 while (true) {
fa4b8cb1 5460 struct inode *vfs_inode;
5d3e4f1d
FM
5461 struct btrfs_key key;
5462 struct btrfs_key found_key;
fa4b8cb1 5463 u64 next_index;
f6d86dbe 5464 bool continue_curr_inode = true;
5d3e4f1d 5465 int iter_ret;
f6d86dbe 5466
5d3e4f1d
FM
5467 key.objectid = ino;
5468 key.type = BTRFS_DIR_INDEX_KEY;
5469 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5470 next_index = key.offset;
f6d86dbe 5471again:
5d3e4f1d
FM
5472 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5473 struct extent_buffer *leaf = path->nodes[0];
f6d86dbe
FM
5474 struct btrfs_dir_item *di;
5475 struct btrfs_key di_key;
5476 struct inode *di_inode;
5477 int log_mode = LOG_INODE_EXISTS;
5478 int type;
5479
5d3e4f1d
FM
5480 if (found_key.objectid != ino ||
5481 found_key.type != BTRFS_DIR_INDEX_KEY) {
f6d86dbe
FM
5482 continue_curr_inode = false;
5483 break;
5484 }
5485
5d3e4f1d 5486 next_index = found_key.offset + 1;
fa4b8cb1 5487
5d3e4f1d 5488 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
94a48aef 5489 type = btrfs_dir_ftype(leaf, di);
f6d86dbe
FM
5490 if (btrfs_dir_transid(leaf, di) < trans->transid)
5491 continue;
5492 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5493 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5494 continue;
5495
5496 btrfs_release_path(path);
5497 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5498 if (IS_ERR(di_inode)) {
5499 ret = PTR_ERR(di_inode);
5500 goto out;
5501 }
5502
5503 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
e55cf7ca 5504 btrfs_add_delayed_iput(BTRFS_I(di_inode));
f6d86dbe
FM
5505 break;
5506 }
5507
5508 ctx->log_new_dentries = false;
5509 if (type == BTRFS_FT_DIR)
5510 log_mode = LOG_INODE_ALL;
5511 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5512 log_mode, ctx);
e55cf7ca 5513 btrfs_add_delayed_iput(BTRFS_I(di_inode));
f6d86dbe
FM
5514 if (ret)
5515 goto out;
5516 if (ctx->log_new_dentries) {
5517 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5518 if (!dir_elem) {
5519 ret = -ENOMEM;
5520 goto out;
5521 }
5522 dir_elem->ino = di_key.objectid;
5523 list_add_tail(&dir_elem->list, &dir_list);
5524 }
5525 break;
5526 }
5527
fa4b8cb1
FM
5528 btrfs_release_path(path);
5529
5d3e4f1d
FM
5530 if (iter_ret < 0) {
5531 ret = iter_ret;
5532 goto out;
5533 } else if (iter_ret > 0) {
5534 continue_curr_inode = false;
5535 } else {
5536 key = found_key;
5537 }
5538
5539 if (continue_curr_inode && key.offset < (u64)-1) {
5540 key.offset++;
f6d86dbe
FM
5541 goto again;
5542 }
5543
fa4b8cb1
FM
5544 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5545
f6d86dbe
FM
5546 if (list_empty(&dir_list))
5547 break;
5548
5549 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5550 ino = dir_elem->ino;
5551 list_del(&dir_elem->list);
5552 kfree(dir_elem);
fa4b8cb1
FM
5553
5554 btrfs_add_delayed_iput(curr_inode);
5555 curr_inode = NULL;
5556
5557 vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5558 if (IS_ERR(vfs_inode)) {
5559 ret = PTR_ERR(vfs_inode);
5560 break;
5561 }
5562 curr_inode = BTRFS_I(vfs_inode);
f6d86dbe
FM
5563 }
5564out:
5565 btrfs_free_path(path);
fa4b8cb1
FM
5566 if (curr_inode)
5567 btrfs_add_delayed_iput(curr_inode);
5568
f6d86dbe
FM
5569 if (ret) {
5570 struct btrfs_dir_list *next;
5571
5572 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5573 kfree(dir_elem);
5574 }
5575
5576 return ret;
5577}
5578
6b5fc433
FM
5579struct btrfs_ino_list {
5580 u64 ino;
a3baaf0d 5581 u64 parent;
6b5fc433
FM
5582 struct list_head list;
5583};
5584
e09d94c9
FM
5585static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5586{
5587 struct btrfs_ino_list *curr;
5588 struct btrfs_ino_list *next;
5589
5590 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5591 list_del(&curr->list);
5592 kfree(curr);
5593 }
5594}
5595
5557a069
FM
5596static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5597 struct btrfs_path *path)
5598{
5599 struct btrfs_key key;
5600 int ret;
5601
5602 key.objectid = ino;
5603 key.type = BTRFS_INODE_ITEM_KEY;
5604 key.offset = 0;
5605
5606 path->search_commit_root = 1;
5607 path->skip_locking = 1;
5608
5609 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5610 if (WARN_ON_ONCE(ret > 0)) {
5611 /*
5612 * We have previously found the inode through the commit root
5613 * so this should not happen. If it does, just error out and
5614 * fallback to a transaction commit.
5615 */
5616 ret = -ENOENT;
5617 } else if (ret == 0) {
5618 struct btrfs_inode_item *item;
5619
5620 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5621 struct btrfs_inode_item);
5622 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5623 ret = 1;
5624 }
5625
5626 btrfs_release_path(path);
5627 path->search_commit_root = 0;
5628 path->skip_locking = 0;
5629
5630 return ret;
5631}
5632
e09d94c9
FM
5633static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5634 struct btrfs_root *root,
5557a069 5635 struct btrfs_path *path,
e09d94c9
FM
5636 u64 ino, u64 parent,
5637 struct btrfs_log_ctx *ctx)
6b5fc433
FM
5638{
5639 struct btrfs_ino_list *ino_elem;
e09d94c9
FM
5640 struct inode *inode;
5641
5642 /*
5643 * It's rare to have a lot of conflicting inodes, in practice it is not
5644 * common to have more than 1 or 2. We don't want to collect too many,
5645 * as we could end up logging too many inodes (even if only in
5646 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5647 * commits.
5648 */
5cce1780 5649 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
e09d94c9
FM
5650 return BTRFS_LOG_FORCE_COMMIT;
5651
5652 inode = btrfs_iget(root->fs_info->sb, ino, root);
5653 /*
5654 * If the other inode that had a conflicting dir entry was deleted in
5557a069
FM
5655 * the current transaction then we either:
5656 *
5657 * 1) Log the parent directory (later after adding it to the list) if
5658 * the inode is a directory. This is because it may be a deleted
5659 * subvolume/snapshot or it may be a regular directory that had
5660 * deleted subvolumes/snapshots (or subdirectories that had them),
5661 * and at the moment we can't deal with dropping subvolumes/snapshots
5662 * during log replay. So we just log the parent, which will result in
5663 * a fallback to a transaction commit if we are dealing with those
5664 * cases (last_unlink_trans will match the current transaction);
5665 *
5666 * 2) Do nothing if it's not a directory. During log replay we simply
5667 * unlink the conflicting dentry from the parent directory and then
5668 * add the dentry for our inode. Like this we can avoid logging the
5669 * parent directory (and maybe fallback to a transaction commit in
5670 * case it has a last_unlink_trans == trans->transid, due to moving
5671 * some inode from it to some other directory).
e09d94c9
FM
5672 */
5673 if (IS_ERR(inode)) {
5674 int ret = PTR_ERR(inode);
5675
5676 if (ret != -ENOENT)
5677 return ret;
5678
5557a069
FM
5679 ret = conflicting_inode_is_dir(root, ino, path);
5680 /* Not a directory or we got an error. */
5681 if (ret <= 0)
5682 return ret;
5683
5684 /* Conflicting inode is a directory, so we'll log its parent. */
e09d94c9
FM
5685 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5686 if (!ino_elem)
5687 return -ENOMEM;
5688 ino_elem->ino = ino;
5689 ino_elem->parent = parent;
5690 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5691 ctx->num_conflict_inodes++;
5692
5693 return 0;
5694 }
5695
5696 /*
5697 * If the inode was already logged skip it - otherwise we can hit an
5698 * infinite loop. Example:
5699 *
5700 * From the commit root (previous transaction) we have the following
5701 * inodes:
5702 *
5703 * inode 257 a directory
5704 * inode 258 with references "zz" and "zz_link" on inode 257
5705 * inode 259 with reference "a" on inode 257
5706 *
5707 * And in the current (uncommitted) transaction we have:
5708 *
5709 * inode 257 a directory, unchanged
5710 * inode 258 with references "a" and "a2" on inode 257
5711 * inode 259 with reference "zz_link" on inode 257
5712 * inode 261 with reference "zz" on inode 257
5713 *
5714 * When logging inode 261 the following infinite loop could
5715 * happen if we don't skip already logged inodes:
5716 *
5717 * - we detect inode 258 as a conflicting inode, with inode 261
5718 * on reference "zz", and log it;
5719 *
5720 * - we detect inode 259 as a conflicting inode, with inode 258
5721 * on reference "a", and log it;
5722 *
5723 * - we detect inode 258 as a conflicting inode, with inode 259
5724 * on reference "zz_link", and log it - again! After this we
5725 * repeat the above steps forever.
5726 *
5727 * Here we can use need_log_inode() because we only need to log the
5728 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5729 * so that the log ends up with the new name and without the old name.
5730 */
5731 if (!need_log_inode(trans, BTRFS_I(inode))) {
e55cf7ca 5732 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5733 return 0;
5734 }
5735
e55cf7ca 5736 btrfs_add_delayed_iput(BTRFS_I(inode));
6b5fc433
FM
5737
5738 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5739 if (!ino_elem)
5740 return -ENOMEM;
5741 ino_elem->ino = ino;
a3baaf0d 5742 ino_elem->parent = parent;
e09d94c9
FM
5743 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5744 ctx->num_conflict_inodes++;
6b5fc433 5745
e09d94c9
FM
5746 return 0;
5747}
6b5fc433 5748
e09d94c9
FM
5749static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5750 struct btrfs_root *root,
5751 struct btrfs_log_ctx *ctx)
5752{
5753 struct btrfs_fs_info *fs_info = root->fs_info;
5754 int ret = 0;
6b5fc433 5755
e09d94c9
FM
5756 /*
5757 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5758 * otherwise we could have unbounded recursion of btrfs_log_inode()
5759 * calls. This check guarantees we can have only 1 level of recursion.
5760 */
5761 if (ctx->logging_conflict_inodes)
5762 return 0;
5763
5764 ctx->logging_conflict_inodes = true;
5765
5766 /*
5767 * New conflicting inodes may be found and added to the list while we
5768 * are logging a conflicting inode, so keep iterating while the list is
5769 * not empty.
5770 */
5771 while (!list_empty(&ctx->conflict_inodes)) {
5772 struct btrfs_ino_list *curr;
5773 struct inode *inode;
5774 u64 ino;
5775 u64 parent;
5776
5777 curr = list_first_entry(&ctx->conflict_inodes,
5778 struct btrfs_ino_list, list);
5779 ino = curr->ino;
5780 parent = curr->parent;
5781 list_del(&curr->list);
5782 kfree(curr);
6b5fc433 5783
0202e83f 5784 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5785 /*
5786 * If the other inode that had a conflicting dir entry was
a3baaf0d 5787 * deleted in the current transaction, we need to log its parent
e09d94c9 5788 * directory. See the comment at add_conflicting_inode().
6b5fc433
FM
5789 */
5790 if (IS_ERR(inode)) {
5791 ret = PTR_ERR(inode);
e09d94c9
FM
5792 if (ret != -ENOENT)
5793 break;
5794
5795 inode = btrfs_iget(fs_info->sb, parent, root);
5796 if (IS_ERR(inode)) {
5797 ret = PTR_ERR(inode);
5798 break;
a3baaf0d 5799 }
e09d94c9
FM
5800
5801 /*
5802 * Always log the directory, we cannot make this
5803 * conditional on need_log_inode() because the directory
5804 * might have been logged in LOG_INODE_EXISTS mode or
5805 * the dir index of the conflicting inode is not in a
5806 * dir index key range logged for the directory. So we
5807 * must make sure the deletion is recorded.
5808 */
5809 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5810 LOG_INODE_ALL, ctx);
e55cf7ca 5811 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5812 if (ret)
5813 break;
6b5fc433
FM
5814 continue;
5815 }
e09d94c9 5816
b5e4ff9d 5817 /*
e09d94c9
FM
5818 * Here we can use need_log_inode() because we only need to log
5819 * the inode in LOG_INODE_EXISTS mode and rename operations
5820 * update the log, so that the log ends up with the new name and
5821 * without the old name.
b5e4ff9d 5822 *
e09d94c9
FM
5823 * We did this check at add_conflicting_inode(), but here we do
5824 * it again because if some other task logged the inode after
5825 * that, we can avoid doing it again.
b5e4ff9d 5826 */
e09d94c9 5827 if (!need_log_inode(trans, BTRFS_I(inode))) {
e55cf7ca 5828 btrfs_add_delayed_iput(BTRFS_I(inode));
b5e4ff9d
FM
5829 continue;
5830 }
e09d94c9 5831
6b5fc433
FM
5832 /*
5833 * We are safe logging the other inode without acquiring its
5834 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5835 * are safe against concurrent renames of the other inode as
5836 * well because during a rename we pin the log and update the
5837 * log with the new name before we unpin it.
5838 */
e09d94c9 5839 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
e55cf7ca 5840 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5841 if (ret)
5842 break;
6b5fc433
FM
5843 }
5844
e09d94c9
FM
5845 ctx->logging_conflict_inodes = false;
5846 if (ret)
5847 free_conflicting_inodes(ctx);
5848
6b5fc433
FM
5849 return ret;
5850}
5851
da447009
FM
5852static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5853 struct btrfs_inode *inode,
5854 struct btrfs_key *min_key,
5855 const struct btrfs_key *max_key,
5856 struct btrfs_path *path,
5857 struct btrfs_path *dst_path,
5858 const u64 logged_isize,
da447009
FM
5859 const int inode_only,
5860 struct btrfs_log_ctx *ctx,
5861 bool *need_log_inode_item)
5862{
d9947887 5863 const u64 i_size = i_size_read(&inode->vfs_inode);
da447009
FM
5864 struct btrfs_root *root = inode->root;
5865 int ins_start_slot = 0;
5866 int ins_nr = 0;
5867 int ret;
5868
5869 while (1) {
5870 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5871 if (ret < 0)
5872 return ret;
5873 if (ret > 0) {
5874 ret = 0;
5875 break;
5876 }
5877again:
5878 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5879 if (min_key->objectid != max_key->objectid)
5880 break;
5881 if (min_key->type > max_key->type)
5882 break;
5883
d9947887 5884 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
da447009 5885 *need_log_inode_item = false;
d9947887
FM
5886 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5887 min_key->offset >= i_size) {
5888 /*
5889 * Extents at and beyond eof are logged with
5890 * btrfs_log_prealloc_extents().
5891 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5892 * and no keys greater than that, so bail out.
5893 */
5894 break;
5895 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5896 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
e09d94c9
FM
5897 (inode->generation == trans->transid ||
5898 ctx->logging_conflict_inodes)) {
da447009
FM
5899 u64 other_ino = 0;
5900 u64 other_parent = 0;
5901
5902 ret = btrfs_check_ref_name_override(path->nodes[0],
5903 path->slots[0], min_key, inode,
5904 &other_ino, &other_parent);
5905 if (ret < 0) {
5906 return ret;
289cffcb 5907 } else if (ret > 0 &&
da447009
FM
5908 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5909 if (ins_nr > 0) {
5910 ins_nr++;
5911 } else {
5912 ins_nr = 1;
5913 ins_start_slot = path->slots[0];
5914 }
5915 ret = copy_items(trans, inode, dst_path, path,
5916 ins_start_slot, ins_nr,
e383e158 5917 inode_only, logged_isize, ctx);
da447009
FM
5918 if (ret < 0)
5919 return ret;
5920 ins_nr = 0;
5921
e09d94c9 5922 btrfs_release_path(path);
5557a069 5923 ret = add_conflicting_inode(trans, root, path,
e09d94c9
FM
5924 other_ino,
5925 other_parent, ctx);
da447009
FM
5926 if (ret)
5927 return ret;
da447009
FM
5928 goto next_key;
5929 }
d9947887
FM
5930 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5931 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
da447009
FM
5932 if (ins_nr == 0)
5933 goto next_slot;
5934 ret = copy_items(trans, inode, dst_path, path,
5935 ins_start_slot,
e383e158 5936 ins_nr, inode_only, logged_isize, ctx);
da447009
FM
5937 if (ret < 0)
5938 return ret;
5939 ins_nr = 0;
5940 goto next_slot;
5941 }
5942
5943 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5944 ins_nr++;
5945 goto next_slot;
5946 } else if (!ins_nr) {
5947 ins_start_slot = path->slots[0];
5948 ins_nr = 1;
5949 goto next_slot;
5950 }
5951
5952 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
e383e158 5953 ins_nr, inode_only, logged_isize, ctx);
da447009
FM
5954 if (ret < 0)
5955 return ret;
5956 ins_nr = 1;
5957 ins_start_slot = path->slots[0];
5958next_slot:
5959 path->slots[0]++;
5960 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5961 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5962 path->slots[0]);
5963 goto again;
5964 }
5965 if (ins_nr) {
5966 ret = copy_items(trans, inode, dst_path, path,
5967 ins_start_slot, ins_nr, inode_only,
e383e158 5968 logged_isize, ctx);
da447009
FM
5969 if (ret < 0)
5970 return ret;
5971 ins_nr = 0;
5972 }
5973 btrfs_release_path(path);
5974next_key:
5975 if (min_key->offset < (u64)-1) {
5976 min_key->offset++;
5977 } else if (min_key->type < max_key->type) {
5978 min_key->type++;
5979 min_key->offset = 0;
5980 } else {
5981 break;
5982 }
96acb375
FM
5983
5984 /*
5985 * We may process many leaves full of items for our inode, so
5986 * avoid monopolizing a cpu for too long by rescheduling while
5987 * not holding locks on any tree.
5988 */
5989 cond_resched();
da447009 5990 }
d9947887 5991 if (ins_nr) {
da447009 5992 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
e383e158 5993 ins_nr, inode_only, logged_isize, ctx);
d9947887
FM
5994 if (ret)
5995 return ret;
5996 }
5997
5998 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5999 /*
6000 * Release the path because otherwise we might attempt to double
6001 * lock the same leaf with btrfs_log_prealloc_extents() below.
6002 */
6003 btrfs_release_path(path);
e383e158 6004 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
d9947887 6005 }
da447009
FM
6006
6007 return ret;
6008}
6009
30b80f3c
FM
6010static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6011 struct btrfs_root *log,
6012 struct btrfs_path *path,
6013 const struct btrfs_item_batch *batch,
6014 const struct btrfs_delayed_item *first_item)
6015{
6016 const struct btrfs_delayed_item *curr = first_item;
6017 int ret;
6018
6019 ret = btrfs_insert_empty_items(trans, log, path, batch);
6020 if (ret)
6021 return ret;
6022
6023 for (int i = 0; i < batch->nr; i++) {
6024 char *data_ptr;
6025
6026 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6027 write_extent_buffer(path->nodes[0], &curr->data,
6028 (unsigned long)data_ptr, curr->data_len);
6029 curr = list_next_entry(curr, log_list);
6030 path->slots[0]++;
6031 }
6032
6033 btrfs_release_path(path);
6034
6035 return 0;
6036}
6037
6038static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6039 struct btrfs_inode *inode,
6040 struct btrfs_path *path,
6041 const struct list_head *delayed_ins_list,
6042 struct btrfs_log_ctx *ctx)
6043{
6044 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6045 const int max_batch_size = 195;
6046 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6047 const u64 ino = btrfs_ino(inode);
6048 struct btrfs_root *log = inode->root->log_root;
6049 struct btrfs_item_batch batch = {
6050 .nr = 0,
6051 .total_data_size = 0,
6052 };
6053 const struct btrfs_delayed_item *first = NULL;
6054 const struct btrfs_delayed_item *curr;
6055 char *ins_data;
6056 struct btrfs_key *ins_keys;
6057 u32 *ins_sizes;
6058 u64 curr_batch_size = 0;
6059 int batch_idx = 0;
6060 int ret;
6061
6062 /* We are adding dir index items to the log tree. */
6063 lockdep_assert_held(&inode->log_mutex);
6064
6065 /*
6066 * We collect delayed items before copying index keys from the subvolume
6067 * to the log tree. However just after we collected them, they may have
6068 * been flushed (all of them or just some of them), and therefore we
6069 * could have copied them from the subvolume tree to the log tree.
6070 * So find the first delayed item that was not yet logged (they are
6071 * sorted by index number).
6072 */
6073 list_for_each_entry(curr, delayed_ins_list, log_list) {
6074 if (curr->index > inode->last_dir_index_offset) {
6075 first = curr;
6076 break;
6077 }
6078 }
6079
6080 /* Empty list or all delayed items were already logged. */
6081 if (!first)
6082 return 0;
6083
6084 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6085 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6086 if (!ins_data)
6087 return -ENOMEM;
6088 ins_sizes = (u32 *)ins_data;
6089 batch.data_sizes = ins_sizes;
6090 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6091 batch.keys = ins_keys;
6092
6093 curr = first;
6094 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6095 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6096
6097 if (curr_batch_size + curr_size > leaf_data_size ||
6098 batch.nr == max_batch_size) {
6099 ret = insert_delayed_items_batch(trans, log, path,
6100 &batch, first);
6101 if (ret)
6102 goto out;
6103 batch_idx = 0;
6104 batch.nr = 0;
6105 batch.total_data_size = 0;
6106 curr_batch_size = 0;
6107 first = curr;
6108 }
6109
6110 ins_sizes[batch_idx] = curr->data_len;
6111 ins_keys[batch_idx].objectid = ino;
6112 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6113 ins_keys[batch_idx].offset = curr->index;
6114 curr_batch_size += curr_size;
6115 batch.total_data_size += curr->data_len;
6116 batch.nr++;
6117 batch_idx++;
6118 curr = list_next_entry(curr, log_list);
6119 }
6120
6121 ASSERT(batch.nr >= 1);
6122 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6123
6124 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6125 log_list);
6126 inode->last_dir_index_offset = curr->index;
6127out:
6128 kfree(ins_data);
6129
6130 return ret;
6131}
6132
6133static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6134 struct btrfs_inode *inode,
6135 struct btrfs_path *path,
6136 const struct list_head *delayed_del_list,
6137 struct btrfs_log_ctx *ctx)
6138{
6139 const u64 ino = btrfs_ino(inode);
6140 const struct btrfs_delayed_item *curr;
6141
6142 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6143 log_list);
6144
6145 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6146 u64 first_dir_index = curr->index;
6147 u64 last_dir_index;
6148 const struct btrfs_delayed_item *next;
6149 int ret;
6150
6151 /*
6152 * Find a range of consecutive dir index items to delete. Like
6153 * this we log a single dir range item spanning several contiguous
6154 * dir items instead of logging one range item per dir index item.
6155 */
6156 next = list_next_entry(curr, log_list);
6157 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6158 if (next->index != curr->index + 1)
6159 break;
6160 curr = next;
6161 next = list_next_entry(next, log_list);
6162 }
6163
6164 last_dir_index = curr->index;
6165 ASSERT(last_dir_index >= first_dir_index);
6166
6167 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6168 ino, first_dir_index, last_dir_index);
6169 if (ret)
6170 return ret;
6171 curr = list_next_entry(curr, log_list);
6172 }
6173
6174 return 0;
6175}
6176
6177static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6178 struct btrfs_inode *inode,
6179 struct btrfs_path *path,
6180 struct btrfs_log_ctx *ctx,
6181 const struct list_head *delayed_del_list,
6182 const struct btrfs_delayed_item *first,
6183 const struct btrfs_delayed_item **last_ret)
6184{
6185 const struct btrfs_delayed_item *next;
6186 struct extent_buffer *leaf = path->nodes[0];
6187 const int last_slot = btrfs_header_nritems(leaf) - 1;
6188 int slot = path->slots[0] + 1;
6189 const u64 ino = btrfs_ino(inode);
6190
6191 next = list_next_entry(first, log_list);
6192
6193 while (slot < last_slot &&
6194 !list_entry_is_head(next, delayed_del_list, log_list)) {
6195 struct btrfs_key key;
6196
6197 btrfs_item_key_to_cpu(leaf, &key, slot);
6198 if (key.objectid != ino ||
6199 key.type != BTRFS_DIR_INDEX_KEY ||
6200 key.offset != next->index)
6201 break;
6202
6203 slot++;
6204 *last_ret = next;
6205 next = list_next_entry(next, log_list);
6206 }
6207
6208 return btrfs_del_items(trans, inode->root->log_root, path,
6209 path->slots[0], slot - path->slots[0]);
6210}
6211
6212static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6213 struct btrfs_inode *inode,
6214 struct btrfs_path *path,
6215 const struct list_head *delayed_del_list,
6216 struct btrfs_log_ctx *ctx)
6217{
6218 struct btrfs_root *log = inode->root->log_root;
6219 const struct btrfs_delayed_item *curr;
8fd9f423 6220 u64 last_range_start = 0;
30b80f3c
FM
6221 u64 last_range_end = 0;
6222 struct btrfs_key key;
6223
6224 key.objectid = btrfs_ino(inode);
6225 key.type = BTRFS_DIR_INDEX_KEY;
6226 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6227 log_list);
6228
6229 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6230 const struct btrfs_delayed_item *last = curr;
6231 u64 first_dir_index = curr->index;
6232 u64 last_dir_index;
6233 bool deleted_items = false;
6234 int ret;
6235
6236 key.offset = curr->index;
6237 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6238 if (ret < 0) {
6239 return ret;
6240 } else if (ret == 0) {
6241 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6242 delayed_del_list, curr,
6243 &last);
6244 if (ret)
6245 return ret;
6246 deleted_items = true;
6247 }
6248
6249 btrfs_release_path(path);
6250
6251 /*
6252 * If we deleted items from the leaf, it means we have a range
6253 * item logging their range, so no need to add one or update an
6254 * existing one. Otherwise we have to log a dir range item.
6255 */
6256 if (deleted_items)
6257 goto next_batch;
6258
6259 last_dir_index = last->index;
6260 ASSERT(last_dir_index >= first_dir_index);
6261 /*
6262 * If this range starts right after where the previous one ends,
6263 * then we want to reuse the previous range item and change its
6264 * end offset to the end of this range. This is just to minimize
6265 * leaf space usage, by avoiding adding a new range item.
6266 */
6267 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6268 first_dir_index = last_range_start;
6269
6270 ret = insert_dir_log_key(trans, log, path, key.objectid,
6271 first_dir_index, last_dir_index);
6272 if (ret)
6273 return ret;
6274
6275 last_range_start = first_dir_index;
6276 last_range_end = last_dir_index;
6277next_batch:
6278 curr = list_next_entry(last, log_list);
6279 }
6280
6281 return 0;
6282}
6283
6284static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6285 struct btrfs_inode *inode,
6286 struct btrfs_path *path,
6287 const struct list_head *delayed_del_list,
6288 struct btrfs_log_ctx *ctx)
6289{
6290 /*
6291 * We are deleting dir index items from the log tree or adding range
6292 * items to it.
6293 */
6294 lockdep_assert_held(&inode->log_mutex);
6295
6296 if (list_empty(delayed_del_list))
6297 return 0;
6298
6299 if (ctx->logged_before)
6300 return log_delayed_deletions_incremental(trans, inode, path,
6301 delayed_del_list, ctx);
6302
6303 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6304 ctx);
6305}
6306
6307/*
6308 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6309 * items instead of the subvolume tree.
6310 */
6311static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6312 struct btrfs_inode *inode,
6313 const struct list_head *delayed_ins_list,
6314 struct btrfs_log_ctx *ctx)
6315{
6316 const bool orig_log_new_dentries = ctx->log_new_dentries;
6317 struct btrfs_fs_info *fs_info = trans->fs_info;
6318 struct btrfs_delayed_item *item;
6319 int ret = 0;
6320
6321 /*
6322 * No need for the log mutex, plus to avoid potential deadlocks or
6323 * lockdep annotations due to nesting of delayed inode mutexes and log
6324 * mutexes.
6325 */
6326 lockdep_assert_not_held(&inode->log_mutex);
6327
6328 ASSERT(!ctx->logging_new_delayed_dentries);
6329 ctx->logging_new_delayed_dentries = true;
6330
6331 list_for_each_entry(item, delayed_ins_list, log_list) {
6332 struct btrfs_dir_item *dir_item;
6333 struct inode *di_inode;
6334 struct btrfs_key key;
6335 int log_mode = LOG_INODE_EXISTS;
6336
6337 dir_item = (struct btrfs_dir_item *)item->data;
6338 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6339
6340 if (key.type == BTRFS_ROOT_ITEM_KEY)
6341 continue;
6342
6343 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6344 if (IS_ERR(di_inode)) {
6345 ret = PTR_ERR(di_inode);
6346 break;
6347 }
6348
6349 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
e55cf7ca 6350 btrfs_add_delayed_iput(BTRFS_I(di_inode));
30b80f3c
FM
6351 continue;
6352 }
6353
94a48aef 6354 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
30b80f3c
FM
6355 log_mode = LOG_INODE_ALL;
6356
6357 ctx->log_new_dentries = false;
6358 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6359
6360 if (!ret && ctx->log_new_dentries)
6361 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6362
e55cf7ca 6363 btrfs_add_delayed_iput(BTRFS_I(di_inode));
30b80f3c
FM
6364
6365 if (ret)
6366 break;
6367 }
6368
6369 ctx->log_new_dentries = orig_log_new_dentries;
6370 ctx->logging_new_delayed_dentries = false;
6371
6372 return ret;
6373}
6374
e02119d5
CM
6375/* log a single inode in the tree log.
6376 * At least one parent directory for this inode must exist in the tree
6377 * or be logged already.
6378 *
6379 * Any items from this inode changed by the current transaction are copied
6380 * to the log tree. An extra reference is taken on any extents in this
6381 * file, allowing us to avoid a whole pile of corner cases around logging
6382 * blocks that have been removed from the tree.
6383 *
6384 * See LOG_INODE_ALL and related defines for a description of what inode_only
6385 * does.
6386 *
6387 * This handles both files and directories.
6388 */
12fcfd22 6389static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 6390 struct btrfs_inode *inode,
49dae1bc 6391 int inode_only,
8407f553 6392 struct btrfs_log_ctx *ctx)
e02119d5
CM
6393{
6394 struct btrfs_path *path;
6395 struct btrfs_path *dst_path;
6396 struct btrfs_key min_key;
6397 struct btrfs_key max_key;
90d04510 6398 struct btrfs_root *log = inode->root->log_root;
65faced5 6399 int ret;
5dc562c5 6400 bool fast_search = false;
a59108a7
NB
6401 u64 ino = btrfs_ino(inode);
6402 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 6403 u64 logged_isize = 0;
e4545de5 6404 bool need_log_inode_item = true;
9a8fca62 6405 bool xattrs_logged = false;
2ac691d8 6406 bool inode_item_dropped = true;
30b80f3c
FM
6407 bool full_dir_logging = false;
6408 LIST_HEAD(delayed_ins_list);
6409 LIST_HEAD(delayed_del_list);
e02119d5 6410
e02119d5 6411 path = btrfs_alloc_path();
5df67083
TI
6412 if (!path)
6413 return -ENOMEM;
e02119d5 6414 dst_path = btrfs_alloc_path();
5df67083
TI
6415 if (!dst_path) {
6416 btrfs_free_path(path);
6417 return -ENOMEM;
6418 }
e02119d5 6419
33345d01 6420 min_key.objectid = ino;
e02119d5
CM
6421 min_key.type = BTRFS_INODE_ITEM_KEY;
6422 min_key.offset = 0;
6423
33345d01 6424 max_key.objectid = ino;
12fcfd22 6425
12fcfd22 6426
5dc562c5 6427 /* today the code can only do partial logging of directories */
a59108a7 6428 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 6429 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6430 &inode->runtime_flags) &&
781feef7 6431 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
6432 max_key.type = BTRFS_XATTR_ITEM_KEY;
6433 else
6434 max_key.type = (u8)-1;
6435 max_key.offset = (u64)-1;
6436
30b80f3c
FM
6437 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6438 full_dir_logging = true;
6439
2c2c452b 6440 /*
30b80f3c
FM
6441 * If we are logging a directory while we are logging dentries of the
6442 * delayed items of some other inode, then we need to flush the delayed
6443 * items of this directory and not log the delayed items directly. This
6444 * is to prevent more than one level of recursion into btrfs_log_inode()
6445 * by having something like this:
6446 *
6447 * $ mkdir -p a/b/c/d/e/f/g/h/...
6448 * $ xfs_io -c "fsync" a
6449 *
6450 * Where all directories in the path did not exist before and are
6451 * created in the current transaction.
6452 * So in such a case we directly log the delayed items of the main
6453 * directory ("a") without flushing them first, while for each of its
6454 * subdirectories we flush their delayed items before logging them.
6455 * This prevents a potential unbounded recursion like this:
6456 *
6457 * btrfs_log_inode()
6458 * log_new_delayed_dentries()
6459 * btrfs_log_inode()
6460 * log_new_delayed_dentries()
6461 * btrfs_log_inode()
6462 * log_new_delayed_dentries()
6463 * (...)
6464 *
6465 * We have thresholds for the maximum number of delayed items to have in
6466 * memory, and once they are hit, the items are flushed asynchronously.
6467 * However the limit is quite high, so lets prevent deep levels of
6468 * recursion to happen by limiting the maximum depth to be 1.
2c2c452b 6469 */
30b80f3c 6470 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
65faced5
FM
6471 ret = btrfs_commit_inode_delayed_items(trans, inode);
6472 if (ret)
f6df27dd 6473 goto out;
16cdcec7
MX
6474 }
6475
e09d94c9 6476 mutex_lock(&inode->log_mutex);
e02119d5 6477
d0e64a98
FM
6478 /*
6479 * For symlinks, we must always log their content, which is stored in an
6480 * inline extent, otherwise we could end up with an empty symlink after
6481 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6482 * one attempts to create an empty symlink).
6483 * We don't need to worry about flushing delalloc, because when we create
6484 * the inline extent when the symlink is created (we never have delalloc
6485 * for symlinks).
6486 */
6487 if (S_ISLNK(inode->vfs_inode.i_mode))
6488 inode_only = LOG_INODE_ALL;
6489
0f8ce498
FM
6490 /*
6491 * Before logging the inode item, cache the value returned by
6492 * inode_logged(), because after that we have the need to figure out if
6493 * the inode was previously logged in this transaction.
6494 */
6495 ret = inode_logged(trans, inode, path);
65faced5 6496 if (ret < 0)
0f8ce498 6497 goto out_unlock;
0f8ce498 6498 ctx->logged_before = (ret == 1);
65faced5 6499 ret = 0;
0f8ce498 6500
64d6b281
FM
6501 /*
6502 * This is for cases where logging a directory could result in losing a
6503 * a file after replaying the log. For example, if we move a file from a
6504 * directory A to a directory B, then fsync directory A, we have no way
6505 * to known the file was moved from A to B, so logging just A would
6506 * result in losing the file after a log replay.
6507 */
30b80f3c 6508 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
f31f09f6 6509 ret = BTRFS_LOG_FORCE_COMMIT;
64d6b281
FM
6510 goto out_unlock;
6511 }
6512
e02119d5
CM
6513 /*
6514 * a brute force approach to making sure we get the most uptodate
6515 * copies of everything.
6516 */
a59108a7 6517 if (S_ISDIR(inode->vfs_inode.i_mode)) {
ab12313a 6518 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
0f8ce498
FM
6519 if (ctx->logged_before)
6520 ret = drop_inode_items(trans, log, path, inode,
04fc7d51 6521 BTRFS_XATTR_ITEM_KEY);
e02119d5 6522 } else {
0f8ce498 6523 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
1a4bcf47
FM
6524 /*
6525 * Make sure the new inode item we write to the log has
6526 * the same isize as the current one (if it exists).
6527 * This is necessary to prevent data loss after log
6528 * replay, and also to prevent doing a wrong expanding
6529 * truncate - for e.g. create file, write 4K into offset
6530 * 0, fsync, write 4K into offset 4096, add hard link,
6531 * fsync some other file (to sync log), power fail - if
6532 * we use the inode's current i_size, after log replay
6533 * we get a 8Kb file, with the last 4Kb extent as a hole
6534 * (zeroes), as if an expanding truncate happened,
6535 * instead of getting a file of 4Kb only.
6536 */
65faced5
FM
6537 ret = logged_inode_size(log, inode, path, &logged_isize);
6538 if (ret)
1a4bcf47
FM
6539 goto out_unlock;
6540 }
a742994a 6541 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6542 &inode->runtime_flags)) {
a742994a 6543 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 6544 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6545 if (ctx->logged_before)
6546 ret = drop_inode_items(trans, log, path,
6547 inode, max_key.type);
a742994a
FM
6548 } else {
6549 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6550 &inode->runtime_flags);
a742994a 6551 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6552 &inode->runtime_flags);
0f8ce498 6553 if (ctx->logged_before)
4934a815
FM
6554 ret = truncate_inode_items(trans, log,
6555 inode, 0, 0);
a742994a 6556 }
4f764e51 6557 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6558 &inode->runtime_flags) ||
6cfab851 6559 inode_only == LOG_INODE_EXISTS) {
4f764e51 6560 if (inode_only == LOG_INODE_ALL)
183f37fa 6561 fast_search = true;
4f764e51 6562 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6563 if (ctx->logged_before)
6564 ret = drop_inode_items(trans, log, path, inode,
6565 max_key.type);
a95249b3
JB
6566 } else {
6567 if (inode_only == LOG_INODE_ALL)
6568 fast_search = true;
2ac691d8 6569 inode_item_dropped = false;
a95249b3 6570 goto log_extents;
5dc562c5 6571 }
a95249b3 6572
e02119d5 6573 }
65faced5 6574 if (ret)
4a500fd1 6575 goto out_unlock;
e02119d5 6576
30b80f3c
FM
6577 /*
6578 * If we are logging a directory in full mode, collect the delayed items
6579 * before iterating the subvolume tree, so that we don't miss any new
6580 * dir index items in case they get flushed while or right after we are
6581 * iterating the subvolume tree.
6582 */
6583 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6584 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6585 &delayed_del_list);
6586
65faced5 6587 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
da447009 6588 path, dst_path, logged_isize,
e09d94c9 6589 inode_only, ctx,
7af59743 6590 &need_log_inode_item);
65faced5 6591 if (ret)
da447009 6592 goto out_unlock;
5dc562c5 6593
36283bf7
FM
6594 btrfs_release_path(path);
6595 btrfs_release_path(dst_path);
e383e158 6596 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
65faced5 6597 if (ret)
36283bf7 6598 goto out_unlock;
9a8fca62 6599 xattrs_logged = true;
a89ca6f2
FM
6600 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6601 btrfs_release_path(path);
6602 btrfs_release_path(dst_path);
65faced5
FM
6603 ret = btrfs_log_holes(trans, inode, path);
6604 if (ret)
a89ca6f2
FM
6605 goto out_unlock;
6606 }
a95249b3 6607log_extents:
f3b15ccd
JB
6608 btrfs_release_path(path);
6609 btrfs_release_path(dst_path);
e4545de5 6610 if (need_log_inode_item) {
65faced5
FM
6611 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6612 if (ret)
b590b839
FM
6613 goto out_unlock;
6614 /*
6615 * If we are doing a fast fsync and the inode was logged before
6616 * in this transaction, we don't need to log the xattrs because
6617 * they were logged before. If xattrs were added, changed or
6618 * deleted since the last time we logged the inode, then we have
6619 * already logged them because the inode had the runtime flag
6620 * BTRFS_INODE_COPY_EVERYTHING set.
6621 */
6622 if (!xattrs_logged && inode->logged_trans < trans->transid) {
e383e158 6623 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
65faced5 6624 if (ret)
b590b839 6625 goto out_unlock;
9a8fca62
FM
6626 btrfs_release_path(path);
6627 }
e4545de5 6628 }
5dc562c5 6629 if (fast_search) {
90d04510 6630 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
65faced5 6631 if (ret)
5dc562c5 6632 goto out_unlock;
d006a048 6633 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
6634 struct extent_map *em, *n;
6635
49dae1bc 6636 write_lock(&em_tree->lock);
48778179
FM
6637 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6638 list_del_init(&em->list);
49dae1bc 6639 write_unlock(&em_tree->lock);
5dc562c5
JB
6640 }
6641
30b80f3c 6642 if (full_dir_logging) {
90d04510 6643 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
65faced5 6644 if (ret)
4a500fd1 6645 goto out_unlock;
30b80f3c
FM
6646 ret = log_delayed_insertion_items(trans, inode, path,
6647 &delayed_ins_list, ctx);
6648 if (ret)
6649 goto out_unlock;
6650 ret = log_delayed_deletion_items(trans, inode, path,
6651 &delayed_del_list, ctx);
6652 if (ret)
6653 goto out_unlock;
e02119d5 6654 }
49dae1bc 6655
130341be
FM
6656 spin_lock(&inode->lock);
6657 inode->logged_trans = trans->transid;
d1d832a0 6658 /*
130341be
FM
6659 * Don't update last_log_commit if we logged that an inode exists.
6660 * We do this for three reasons:
6661 *
6662 * 1) We might have had buffered writes to this inode that were
6663 * flushed and had their ordered extents completed in this
6664 * transaction, but we did not previously log the inode with
6665 * LOG_INODE_ALL. Later the inode was evicted and after that
6666 * it was loaded again and this LOG_INODE_EXISTS log operation
6667 * happened. We must make sure that if an explicit fsync against
6668 * the inode is performed later, it logs the new extents, an
6669 * updated inode item, etc, and syncs the log. The same logic
6670 * applies to direct IO writes instead of buffered writes.
6671 *
6672 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6673 * is logged with an i_size of 0 or whatever value was logged
6674 * before. If later the i_size of the inode is increased by a
6675 * truncate operation, the log is synced through an fsync of
6676 * some other inode and then finally an explicit fsync against
6677 * this inode is made, we must make sure this fsync logs the
6678 * inode with the new i_size, the hole between old i_size and
6679 * the new i_size, and syncs the log.
6680 *
6681 * 3) If we are logging that an ancestor inode exists as part of
6682 * logging a new name from a link or rename operation, don't update
6683 * its last_log_commit - otherwise if an explicit fsync is made
6684 * against an ancestor, the fsync considers the inode in the log
6685 * and doesn't sync the log, resulting in the ancestor missing after
6686 * a power failure unless the log was synced as part of an fsync
6687 * against any other unrelated inode.
d1d832a0 6688 */
130341be
FM
6689 if (inode_only != LOG_INODE_EXISTS)
6690 inode->last_log_commit = inode->last_sub_trans;
6691 spin_unlock(&inode->lock);
23e3337f
FM
6692
6693 /*
6694 * Reset the last_reflink_trans so that the next fsync does not need to
6695 * go through the slower path when logging extents and their checksums.
6696 */
6697 if (inode_only == LOG_INODE_ALL)
6698 inode->last_reflink_trans = 0;
6699
4a500fd1 6700out_unlock:
a59108a7 6701 mutex_unlock(&inode->log_mutex);
f6df27dd 6702out:
e02119d5
CM
6703 btrfs_free_path(path);
6704 btrfs_free_path(dst_path);
0f8ce498 6705
e09d94c9
FM
6706 if (ret)
6707 free_conflicting_inodes(ctx);
6708 else
6709 ret = log_conflicting_inodes(trans, inode->root, ctx);
0f8ce498 6710
30b80f3c
FM
6711 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6712 if (!ret)
6713 ret = log_new_delayed_dentries(trans, inode,
6714 &delayed_ins_list, ctx);
6715
6716 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6717 &delayed_del_list);
6718 }
6719
65faced5 6720 return ret;
e02119d5
CM
6721}
6722
18aa0922 6723static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 6724 struct btrfs_inode *inode,
18aa0922
FM
6725 struct btrfs_log_ctx *ctx)
6726{
3ffbd68c 6727 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
6728 int ret;
6729 struct btrfs_path *path;
6730 struct btrfs_key key;
d0a0b78d
NB
6731 struct btrfs_root *root = inode->root;
6732 const u64 ino = btrfs_ino(inode);
18aa0922
FM
6733
6734 path = btrfs_alloc_path();
6735 if (!path)
6736 return -ENOMEM;
6737 path->skip_locking = 1;
6738 path->search_commit_root = 1;
6739
6740 key.objectid = ino;
6741 key.type = BTRFS_INODE_REF_KEY;
6742 key.offset = 0;
6743 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6744 if (ret < 0)
6745 goto out;
6746
6747 while (true) {
6748 struct extent_buffer *leaf = path->nodes[0];
6749 int slot = path->slots[0];
6750 u32 cur_offset = 0;
6751 u32 item_size;
6752 unsigned long ptr;
6753
6754 if (slot >= btrfs_header_nritems(leaf)) {
6755 ret = btrfs_next_leaf(root, path);
6756 if (ret < 0)
6757 goto out;
6758 else if (ret > 0)
6759 break;
6760 continue;
6761 }
6762
6763 btrfs_item_key_to_cpu(leaf, &key, slot);
6764 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6765 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6766 break;
6767
3212fa14 6768 item_size = btrfs_item_size(leaf, slot);
18aa0922
FM
6769 ptr = btrfs_item_ptr_offset(leaf, slot);
6770 while (cur_offset < item_size) {
6771 struct btrfs_key inode_key;
6772 struct inode *dir_inode;
6773
6774 inode_key.type = BTRFS_INODE_ITEM_KEY;
6775 inode_key.offset = 0;
6776
6777 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6778 struct btrfs_inode_extref *extref;
6779
6780 extref = (struct btrfs_inode_extref *)
6781 (ptr + cur_offset);
6782 inode_key.objectid = btrfs_inode_extref_parent(
6783 leaf, extref);
6784 cur_offset += sizeof(*extref);
6785 cur_offset += btrfs_inode_extref_name_len(leaf,
6786 extref);
6787 } else {
6788 inode_key.objectid = key.offset;
6789 cur_offset = item_size;
6790 }
6791
0202e83f
DS
6792 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6793 root);
0f375eed
FM
6794 /*
6795 * If the parent inode was deleted, return an error to
6796 * fallback to a transaction commit. This is to prevent
6797 * getting an inode that was moved from one parent A to
6798 * a parent B, got its former parent A deleted and then
6799 * it got fsync'ed, from existing at both parents after
6800 * a log replay (and the old parent still existing).
6801 * Example:
6802 *
6803 * mkdir /mnt/A
6804 * mkdir /mnt/B
6805 * touch /mnt/B/bar
6806 * sync
6807 * mv /mnt/B/bar /mnt/A/bar
6808 * mv -T /mnt/A /mnt/B
6809 * fsync /mnt/B/bar
6810 * <power fail>
6811 *
6812 * If we ignore the old parent B which got deleted,
6813 * after a log replay we would have file bar linked
6814 * at both parents and the old parent B would still
6815 * exist.
6816 */
6817 if (IS_ERR(dir_inode)) {
6818 ret = PTR_ERR(dir_inode);
6819 goto out;
6820 }
18aa0922 6821
3e6a86a1 6822 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
e55cf7ca 6823 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
3e6a86a1
FM
6824 continue;
6825 }
6826
289cffcb 6827 ctx->log_new_dentries = false;
90d04510 6828 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 6829 LOG_INODE_ALL, ctx);
289cffcb 6830 if (!ret && ctx->log_new_dentries)
8786a6d7 6831 ret = log_new_dir_dentries(trans,
f85b7379 6832 BTRFS_I(dir_inode), ctx);
e55cf7ca 6833 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
18aa0922
FM
6834 if (ret)
6835 goto out;
6836 }
6837 path->slots[0]++;
6838 }
6839 ret = 0;
6840out:
6841 btrfs_free_path(path);
6842 return ret;
6843}
6844
b8aa330d
FM
6845static int log_new_ancestors(struct btrfs_trans_handle *trans,
6846 struct btrfs_root *root,
6847 struct btrfs_path *path,
6848 struct btrfs_log_ctx *ctx)
6849{
6850 struct btrfs_key found_key;
6851
6852 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6853
6854 while (true) {
6855 struct btrfs_fs_info *fs_info = root->fs_info;
966de47f
CIK
6856 struct extent_buffer *leaf;
6857 int slot;
b8aa330d
FM
6858 struct btrfs_key search_key;
6859 struct inode *inode;
0202e83f 6860 u64 ino;
b8aa330d
FM
6861 int ret = 0;
6862
6863 btrfs_release_path(path);
6864
0202e83f
DS
6865 ino = found_key.offset;
6866
b8aa330d
FM
6867 search_key.objectid = found_key.offset;
6868 search_key.type = BTRFS_INODE_ITEM_KEY;
6869 search_key.offset = 0;
0202e83f 6870 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
6871 if (IS_ERR(inode))
6872 return PTR_ERR(inode);
6873
ab12313a
FM
6874 if (BTRFS_I(inode)->generation >= trans->transid &&
6875 need_log_inode(trans, BTRFS_I(inode)))
90d04510 6876 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 6877 LOG_INODE_EXISTS, ctx);
e55cf7ca 6878 btrfs_add_delayed_iput(BTRFS_I(inode));
b8aa330d
FM
6879 if (ret)
6880 return ret;
6881
6882 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6883 break;
6884
6885 search_key.type = BTRFS_INODE_REF_KEY;
6886 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6887 if (ret < 0)
6888 return ret;
6889
6890 leaf = path->nodes[0];
6891 slot = path->slots[0];
6892 if (slot >= btrfs_header_nritems(leaf)) {
6893 ret = btrfs_next_leaf(root, path);
6894 if (ret < 0)
6895 return ret;
6896 else if (ret > 0)
6897 return -ENOENT;
6898 leaf = path->nodes[0];
6899 slot = path->slots[0];
6900 }
6901
6902 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6903 if (found_key.objectid != search_key.objectid ||
6904 found_key.type != BTRFS_INODE_REF_KEY)
6905 return -ENOENT;
6906 }
6907 return 0;
6908}
6909
6910static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6911 struct btrfs_inode *inode,
6912 struct dentry *parent,
6913 struct btrfs_log_ctx *ctx)
6914{
6915 struct btrfs_root *root = inode->root;
b8aa330d
FM
6916 struct dentry *old_parent = NULL;
6917 struct super_block *sb = inode->vfs_inode.i_sb;
6918 int ret = 0;
6919
6920 while (true) {
6921 if (!parent || d_really_is_negative(parent) ||
6922 sb != parent->d_sb)
6923 break;
6924
6925 inode = BTRFS_I(d_inode(parent));
6926 if (root != inode->root)
6927 break;
6928
ab12313a
FM
6929 if (inode->generation >= trans->transid &&
6930 need_log_inode(trans, inode)) {
90d04510 6931 ret = btrfs_log_inode(trans, inode,
48778179 6932 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6933 if (ret)
6934 break;
6935 }
6936 if (IS_ROOT(parent))
6937 break;
6938
6939 parent = dget_parent(parent);
6940 dput(old_parent);
6941 old_parent = parent;
6942 }
6943 dput(old_parent);
6944
6945 return ret;
6946}
6947
6948static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6949 struct btrfs_inode *inode,
6950 struct dentry *parent,
6951 struct btrfs_log_ctx *ctx)
6952{
6953 struct btrfs_root *root = inode->root;
6954 const u64 ino = btrfs_ino(inode);
6955 struct btrfs_path *path;
6956 struct btrfs_key search_key;
6957 int ret;
6958
6959 /*
6960 * For a single hard link case, go through a fast path that does not
6961 * need to iterate the fs/subvolume tree.
6962 */
6963 if (inode->vfs_inode.i_nlink < 2)
6964 return log_new_ancestors_fast(trans, inode, parent, ctx);
6965
6966 path = btrfs_alloc_path();
6967 if (!path)
6968 return -ENOMEM;
6969
6970 search_key.objectid = ino;
6971 search_key.type = BTRFS_INODE_REF_KEY;
6972 search_key.offset = 0;
6973again:
6974 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6975 if (ret < 0)
6976 goto out;
6977 if (ret == 0)
6978 path->slots[0]++;
6979
6980 while (true) {
6981 struct extent_buffer *leaf = path->nodes[0];
6982 int slot = path->slots[0];
6983 struct btrfs_key found_key;
6984
6985 if (slot >= btrfs_header_nritems(leaf)) {
6986 ret = btrfs_next_leaf(root, path);
6987 if (ret < 0)
6988 goto out;
6989 else if (ret > 0)
6990 break;
6991 continue;
6992 }
6993
6994 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6995 if (found_key.objectid != ino ||
6996 found_key.type > BTRFS_INODE_EXTREF_KEY)
6997 break;
6998
6999 /*
7000 * Don't deal with extended references because they are rare
7001 * cases and too complex to deal with (we would need to keep
7002 * track of which subitem we are processing for each item in
7003 * this loop, etc). So just return some error to fallback to
7004 * a transaction commit.
7005 */
7006 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7007 ret = -EMLINK;
7008 goto out;
7009 }
7010
7011 /*
7012 * Logging ancestors needs to do more searches on the fs/subvol
7013 * tree, so it releases the path as needed to avoid deadlocks.
7014 * Keep track of the last inode ref key and resume from that key
7015 * after logging all new ancestors for the current hard link.
7016 */
7017 memcpy(&search_key, &found_key, sizeof(search_key));
7018
7019 ret = log_new_ancestors(trans, root, path, ctx);
7020 if (ret)
7021 goto out;
7022 btrfs_release_path(path);
7023 goto again;
7024 }
7025 ret = 0;
7026out:
7027 btrfs_free_path(path);
7028 return ret;
7029}
7030
e02119d5
CM
7031/*
7032 * helper function around btrfs_log_inode to make sure newly created
7033 * parent directories also end up in the log. A minimal inode and backref
7034 * only logging is done of any parent directories that are older than
7035 * the last committed transaction
7036 */
48a3b636 7037static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 7038 struct btrfs_inode *inode,
49dae1bc 7039 struct dentry *parent,
41a1eada 7040 int inode_only,
8b050d35 7041 struct btrfs_log_ctx *ctx)
e02119d5 7042{
f882274b 7043 struct btrfs_root *root = inode->root;
0b246afa 7044 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 7045 int ret = 0;
2f2ff0ee 7046 bool log_dentries = false;
12fcfd22 7047
0b246afa 7048 if (btrfs_test_opt(fs_info, NOTREELOG)) {
f31f09f6 7049 ret = BTRFS_LOG_FORCE_COMMIT;
3a5e1404
SW
7050 goto end_no_trans;
7051 }
7052
f882274b 7053 if (btrfs_root_refs(&root->root_item) == 0) {
f31f09f6 7054 ret = BTRFS_LOG_FORCE_COMMIT;
76dda93c
YZ
7055 goto end_no_trans;
7056 }
7057
f2d72f42
FM
7058 /*
7059 * Skip already logged inodes or inodes corresponding to tmpfiles
7060 * (since logging them is pointless, a link count of 0 means they
7061 * will never be accessible).
7062 */
626e9f41
FM
7063 if ((btrfs_inode_in_log(inode, trans->transid) &&
7064 list_empty(&ctx->ordered_extents)) ||
f2d72f42 7065 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
7066 ret = BTRFS_NO_LOG_SYNC;
7067 goto end_no_trans;
7068 }
7069
8b050d35 7070 ret = start_log_trans(trans, root, ctx);
4a500fd1 7071 if (ret)
e87ac136 7072 goto end_no_trans;
e02119d5 7073
90d04510 7074 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
7075 if (ret)
7076 goto end_trans;
12fcfd22 7077
af4176b4
CM
7078 /*
7079 * for regular files, if its inode is already on disk, we don't
7080 * have to worry about the parents at all. This is because
7081 * we can use the last_unlink_trans field to record renames
7082 * and other fun in this file.
7083 */
19df27a9 7084 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
7085 inode->generation < trans->transid &&
7086 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
7087 ret = 0;
7088 goto end_trans;
7089 }
af4176b4 7090
289cffcb 7091 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
7092 log_dentries = true;
7093
18aa0922 7094 /*
01327610 7095 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
7096 * inodes are fully logged. This is to prevent leaving dangling
7097 * directory index entries in directories that were our parents but are
7098 * not anymore. Not doing this results in old parent directory being
7099 * impossible to delete after log replay (rmdir will always fail with
7100 * error -ENOTEMPTY).
7101 *
7102 * Example 1:
7103 *
7104 * mkdir testdir
7105 * touch testdir/foo
7106 * ln testdir/foo testdir/bar
7107 * sync
7108 * unlink testdir/bar
7109 * xfs_io -c fsync testdir/foo
7110 * <power failure>
7111 * mount fs, triggers log replay
7112 *
7113 * If we don't log the parent directory (testdir), after log replay the
7114 * directory still has an entry pointing to the file inode using the bar
7115 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7116 * the file inode has a link count of 1.
7117 *
7118 * Example 2:
7119 *
7120 * mkdir testdir
7121 * touch foo
7122 * ln foo testdir/foo2
7123 * ln foo testdir/foo3
7124 * sync
7125 * unlink testdir/foo3
7126 * xfs_io -c fsync foo
7127 * <power failure>
7128 * mount fs, triggers log replay
7129 *
7130 * Similar as the first example, after log replay the parent directory
7131 * testdir still has an entry pointing to the inode file with name foo3
7132 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7133 * and has a link count of 2.
7134 */
47d3db41 7135 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 7136 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
7137 if (ret)
7138 goto end_trans;
7139 }
7140
b8aa330d
FM
7141 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7142 if (ret)
41bd6067 7143 goto end_trans;
76dda93c 7144
2f2ff0ee 7145 if (log_dentries)
8786a6d7 7146 ret = log_new_dir_dentries(trans, inode, ctx);
2f2ff0ee
FM
7147 else
7148 ret = 0;
4a500fd1
YZ
7149end_trans:
7150 if (ret < 0) {
90787766 7151 btrfs_set_log_full_commit(trans);
f31f09f6 7152 ret = BTRFS_LOG_FORCE_COMMIT;
4a500fd1 7153 }
8b050d35
MX
7154
7155 if (ret)
7156 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
7157 btrfs_end_log_trans(root);
7158end_no_trans:
7159 return ret;
e02119d5
CM
7160}
7161
7162/*
7163 * it is not safe to log dentry if the chunk root has added new
7164 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7165 * If this returns 1, you must commit the transaction to safely get your
7166 * data on disk.
7167 */
7168int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 7169 struct dentry *dentry,
8b050d35 7170 struct btrfs_log_ctx *ctx)
e02119d5 7171{
6a912213
JB
7172 struct dentry *parent = dget_parent(dentry);
7173 int ret;
7174
f882274b 7175 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 7176 LOG_INODE_ALL, ctx);
6a912213
JB
7177 dput(parent);
7178
7179 return ret;
e02119d5
CM
7180}
7181
7182/*
7183 * should be called during mount to recover any replay any log trees
7184 * from the FS
7185 */
7186int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7187{
7188 int ret;
7189 struct btrfs_path *path;
7190 struct btrfs_trans_handle *trans;
7191 struct btrfs_key key;
7192 struct btrfs_key found_key;
e02119d5
CM
7193 struct btrfs_root *log;
7194 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7195 struct walk_control wc = {
7196 .process_func = process_one_buffer,
430a6626 7197 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
7198 };
7199
e02119d5 7200 path = btrfs_alloc_path();
db5b493a
TI
7201 if (!path)
7202 return -ENOMEM;
7203
afcdd129 7204 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 7205
4a500fd1 7206 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
7207 if (IS_ERR(trans)) {
7208 ret = PTR_ERR(trans);
7209 goto error;
7210 }
e02119d5
CM
7211
7212 wc.trans = trans;
7213 wc.pin = 1;
7214
db5b493a 7215 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 7216 if (ret) {
ba51e2a1 7217 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7218 goto error;
7219 }
e02119d5
CM
7220
7221again:
7222 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7223 key.offset = (u64)-1;
962a298f 7224 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 7225
d397712b 7226 while (1) {
e02119d5 7227 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
7228
7229 if (ret < 0) {
ba51e2a1 7230 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7231 goto error;
7232 }
e02119d5
CM
7233 if (ret > 0) {
7234 if (path->slots[0] == 0)
7235 break;
7236 path->slots[0]--;
7237 }
7238 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7239 path->slots[0]);
b3b4aa74 7240 btrfs_release_path(path);
e02119d5
CM
7241 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7242 break;
7243
62a2c73e 7244 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
7245 if (IS_ERR(log)) {
7246 ret = PTR_ERR(log);
ba51e2a1 7247 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7248 goto error;
7249 }
e02119d5 7250
56e9357a
DS
7251 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7252 true);
79787eaa
JM
7253 if (IS_ERR(wc.replay_dest)) {
7254 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
7255
7256 /*
7257 * We didn't find the subvol, likely because it was
7258 * deleted. This is ok, simply skip this log and go to
7259 * the next one.
7260 *
7261 * We need to exclude the root because we can't have
7262 * other log replays overwriting this log as we'll read
7263 * it back in a few more times. This will keep our
7264 * block from being modified, and we'll just bail for
7265 * each subsequent pass.
7266 */
7267 if (ret == -ENOENT)
007dec8c 7268 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
00246528 7269 btrfs_put_root(log);
9bc574de
JB
7270
7271 if (!ret)
7272 goto next;
ba51e2a1 7273 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7274 goto error;
7275 }
e02119d5 7276
07d400a6 7277 wc.replay_dest->log_root = log;
2002ae11
JB
7278 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7279 if (ret)
7280 /* The loop needs to continue due to the root refs */
ba51e2a1 7281 btrfs_abort_transaction(trans, ret);
2002ae11
JB
7282 else
7283 ret = walk_log_tree(trans, log, &wc);
e02119d5 7284
b50c6e25 7285 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
7286 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7287 path);
ba51e2a1
JB
7288 if (ret)
7289 btrfs_abort_transaction(trans, ret);
e02119d5
CM
7290 }
7291
900c9981
LB
7292 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7293 struct btrfs_root *root = wc.replay_dest;
7294
7295 btrfs_release_path(path);
7296
7297 /*
7298 * We have just replayed everything, and the highest
7299 * objectid of fs roots probably has changed in case
7300 * some inode_item's got replayed.
7301 *
7302 * root->objectid_mutex is not acquired as log replay
7303 * could only happen during mount.
7304 */
453e4873 7305 ret = btrfs_init_root_free_objectid(root);
ba51e2a1
JB
7306 if (ret)
7307 btrfs_abort_transaction(trans, ret);
900c9981
LB
7308 }
7309
07d400a6 7310 wc.replay_dest->log_root = NULL;
00246528 7311 btrfs_put_root(wc.replay_dest);
00246528 7312 btrfs_put_root(log);
e02119d5 7313
b50c6e25
JB
7314 if (ret)
7315 goto error;
9bc574de 7316next:
e02119d5
CM
7317 if (found_key.offset == 0)
7318 break;
9bc574de 7319 key.offset = found_key.offset - 1;
e02119d5 7320 }
b3b4aa74 7321 btrfs_release_path(path);
e02119d5
CM
7322
7323 /* step one is to pin it all, step two is to replay just inodes */
7324 if (wc.pin) {
7325 wc.pin = 0;
7326 wc.process_func = replay_one_buffer;
7327 wc.stage = LOG_WALK_REPLAY_INODES;
7328 goto again;
7329 }
7330 /* step three is to replay everything */
7331 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7332 wc.stage++;
7333 goto again;
7334 }
7335
7336 btrfs_free_path(path);
7337
abefa55a 7338 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 7339 ret = btrfs_commit_transaction(trans);
abefa55a
JB
7340 if (ret)
7341 return ret;
7342
e02119d5 7343 log_root_tree->log_root = NULL;
afcdd129 7344 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 7345 btrfs_put_root(log_root_tree);
79787eaa 7346
abefa55a 7347 return 0;
79787eaa 7348error:
b50c6e25 7349 if (wc.trans)
3a45bb20 7350 btrfs_end_transaction(wc.trans);
1aeb6b56 7351 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
7352 btrfs_free_path(path);
7353 return ret;
e02119d5 7354}
12fcfd22
CM
7355
7356/*
7357 * there are some corner cases where we want to force a full
7358 * commit instead of allowing a directory to be logged.
7359 *
7360 * They revolve around files there were unlinked from the directory, and
7361 * this function updates the parent directory so that a full commit is
7362 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
7363 *
7364 * Must be called before the unlink operations (updates to the subvolume tree,
7365 * inodes, etc) are done.
12fcfd22
CM
7366 */
7367void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 7368 struct btrfs_inode *dir, struct btrfs_inode *inode,
59fcf388 7369 bool for_rename)
12fcfd22 7370{
af4176b4
CM
7371 /*
7372 * when we're logging a file, if it hasn't been renamed
7373 * or unlinked, and its inode is fully committed on disk,
7374 * we don't have to worry about walking up the directory chain
7375 * to log its parents.
7376 *
7377 * So, we use the last_unlink_trans field to put this transid
7378 * into the file. When the file is logged we check it and
7379 * don't log the parents if the file is fully on disk.
7380 */
4176bdbf
NB
7381 mutex_lock(&inode->log_mutex);
7382 inode->last_unlink_trans = trans->transid;
7383 mutex_unlock(&inode->log_mutex);
af4176b4 7384
acfb5a4f
FM
7385 if (!for_rename)
7386 return;
7387
12fcfd22 7388 /*
1e75ef03
FM
7389 * If this directory was already logged, any new names will be logged
7390 * with btrfs_log_new_name() and old names will be deleted from the log
7391 * tree with btrfs_del_dir_entries_in_log() or with
7392 * btrfs_del_inode_ref_in_log().
12fcfd22 7393 */
d67ba263 7394 if (inode_logged(trans, dir, NULL) == 1)
12fcfd22
CM
7395 return;
7396
7397 /*
1e75ef03
FM
7398 * If the inode we're about to unlink was logged before, the log will be
7399 * properly updated with the new name with btrfs_log_new_name() and the
7400 * old name removed with btrfs_del_dir_entries_in_log() or with
7401 * btrfs_del_inode_ref_in_log().
12fcfd22 7402 */
d67ba263 7403 if (inode_logged(trans, inode, NULL) == 1)
12fcfd22
CM
7404 return;
7405
7406 /*
7407 * when renaming files across directories, if the directory
7408 * there we're unlinking from gets fsync'd later on, there's
7409 * no way to find the destination directory later and fsync it
7410 * properly. So, we have to be conservative and force commits
7411 * so the new name gets discovered.
7412 */
4176bdbf
NB
7413 mutex_lock(&dir->log_mutex);
7414 dir->last_unlink_trans = trans->transid;
7415 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
7416}
7417
7418/*
7419 * Make sure that if someone attempts to fsync the parent directory of a deleted
7420 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7421 * that after replaying the log tree of the parent directory's root we will not
7422 * see the snapshot anymore and at log replay time we will not see any log tree
7423 * corresponding to the deleted snapshot's root, which could lead to replaying
7424 * it after replaying the log tree of the parent directory (which would replay
7425 * the snapshot delete operation).
2be63d5c
FM
7426 *
7427 * Must be called before the actual snapshot destroy operation (updates to the
7428 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
7429 */
7430void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 7431 struct btrfs_inode *dir)
1ec9a1ae 7432{
43663557
NB
7433 mutex_lock(&dir->log_mutex);
7434 dir->last_unlink_trans = trans->transid;
7435 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
7436}
7437
43dd529a 7438/*
d5f5bd54
FM
7439 * Update the log after adding a new name for an inode.
7440 *
7441 * @trans: Transaction handle.
7442 * @old_dentry: The dentry associated with the old name and the old
7443 * parent directory.
7444 * @old_dir: The inode of the previous parent directory for the case
7445 * of a rename. For a link operation, it must be NULL.
88d2beec
FM
7446 * @old_dir_index: The index number associated with the old name, meaningful
7447 * only for rename operations (when @old_dir is not NULL).
7448 * Ignored for link operations.
d5f5bd54
FM
7449 * @parent: The dentry associated with the directory under which the
7450 * new name is located.
7451 *
7452 * Call this after adding a new name for an inode, as a result of a link or
7453 * rename operation, and it will properly update the log to reflect the new name.
12fcfd22 7454 */
75b463d2 7455void btrfs_log_new_name(struct btrfs_trans_handle *trans,
d5f5bd54 7456 struct dentry *old_dentry, struct btrfs_inode *old_dir,
88d2beec 7457 u64 old_dir_index, struct dentry *parent)
12fcfd22 7458{
d5f5bd54 7459 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
259c4b96 7460 struct btrfs_root *root = inode->root;
75b463d2 7461 struct btrfs_log_ctx ctx;
259c4b96 7462 bool log_pinned = false;
0f8ce498 7463 int ret;
12fcfd22 7464
af4176b4
CM
7465 /*
7466 * this will force the logging code to walk the dentry chain
7467 * up for the file
7468 */
9a6509c4 7469 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 7470 inode->last_unlink_trans = trans->transid;
af4176b4 7471
12fcfd22
CM
7472 /*
7473 * if this inode hasn't been logged and directory we're renaming it
7474 * from hasn't been logged, we don't need to log it
7475 */
0f8ce498
FM
7476 ret = inode_logged(trans, inode, NULL);
7477 if (ret < 0) {
7478 goto out;
7479 } else if (ret == 0) {
7480 if (!old_dir)
7481 return;
7482 /*
7483 * If the inode was not logged and we are doing a rename (old_dir is not
7484 * NULL), check if old_dir was logged - if it was not we can return and
7485 * do nothing.
7486 */
7487 ret = inode_logged(trans, old_dir, NULL);
7488 if (ret < 0)
7489 goto out;
7490 else if (ret == 0)
7491 return;
7492 }
7493 ret = 0;
12fcfd22 7494
54a40fc3
FM
7495 /*
7496 * If we are doing a rename (old_dir is not NULL) from a directory that
88d2beec
FM
7497 * was previously logged, make sure that on log replay we get the old
7498 * dir entry deleted. This is needed because we will also log the new
7499 * name of the renamed inode, so we need to make sure that after log
7500 * replay we don't end up with both the new and old dir entries existing.
54a40fc3 7501 */
88d2beec
FM
7502 if (old_dir && old_dir->logged_trans == trans->transid) {
7503 struct btrfs_root *log = old_dir->root->log_root;
7504 struct btrfs_path *path;
ab3c5c18 7505 struct fscrypt_name fname;
88d2beec
FM
7506
7507 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7508
ab3c5c18
STD
7509 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7510 &old_dentry->d_name, 0, &fname);
7511 if (ret)
7512 goto out;
259c4b96
FM
7513 /*
7514 * We have two inodes to update in the log, the old directory and
7515 * the inode that got renamed, so we must pin the log to prevent
7516 * anyone from syncing the log until we have updated both inodes
7517 * in the log.
7518 */
723df2bc
FM
7519 ret = join_running_log_trans(root);
7520 /*
7521 * At least one of the inodes was logged before, so this should
7522 * not fail, but if it does, it's not serious, just bail out and
7523 * mark the log for a full commit.
7524 */
fee4c199
FM
7525 if (WARN_ON_ONCE(ret < 0)) {
7526 fscrypt_free_filename(&fname);
723df2bc 7527 goto out;
fee4c199
FM
7528 }
7529
259c4b96 7530 log_pinned = true;
259c4b96 7531
88d2beec
FM
7532 path = btrfs_alloc_path();
7533 if (!path) {
259c4b96 7534 ret = -ENOMEM;
ab3c5c18 7535 fscrypt_free_filename(&fname);
259c4b96 7536 goto out;
88d2beec
FM
7537 }
7538
7539 /*
7540 * Other concurrent task might be logging the old directory,
7541 * as it can be triggered when logging other inode that had or
750ee454
FM
7542 * still has a dentry in the old directory. We lock the old
7543 * directory's log_mutex to ensure the deletion of the old
7544 * name is persisted, because during directory logging we
7545 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7546 * the old name's dir index item is in the delayed items, so
7547 * it could be missed by an in progress directory logging.
88d2beec
FM
7548 */
7549 mutex_lock(&old_dir->log_mutex);
7550 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
6db75318 7551 &fname.disk_name, old_dir_index);
88d2beec
FM
7552 if (ret > 0) {
7553 /*
7554 * The dentry does not exist in the log, so record its
7555 * deletion.
7556 */
7557 btrfs_release_path(path);
7558 ret = insert_dir_log_key(trans, log, path,
7559 btrfs_ino(old_dir),
7560 old_dir_index, old_dir_index);
7561 }
7562 mutex_unlock(&old_dir->log_mutex);
7563
7564 btrfs_free_path(path);
ab3c5c18 7565 fscrypt_free_filename(&fname);
259c4b96
FM
7566 if (ret < 0)
7567 goto out;
88d2beec 7568 }
54a40fc3 7569
75b463d2
FM
7570 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7571 ctx.logging_new_name = true;
e383e158 7572 btrfs_init_log_ctx_scratch_eb(&ctx);
75b463d2
FM
7573 /*
7574 * We don't care about the return value. If we fail to log the new name
7575 * then we know the next attempt to sync the log will fallback to a full
7576 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7577 * we don't need to worry about getting a log committed that has an
7578 * inconsistent state after a rename operation.
7579 */
48778179 7580 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
e383e158 7581 free_extent_buffer(ctx.scratch_eb);
e09d94c9 7582 ASSERT(list_empty(&ctx.conflict_inodes));
259c4b96 7583out:
0f8ce498
FM
7584 /*
7585 * If an error happened mark the log for a full commit because it's not
7586 * consistent and up to date or we couldn't find out if one of the
7587 * inodes was logged before in this transaction. Do it before unpinning
7588 * the log, to avoid any races with someone else trying to commit it.
7589 */
7590 if (ret < 0)
7591 btrfs_set_log_full_commit(trans);
7592 if (log_pinned)
259c4b96 7593 btrfs_end_log_trans(root);
12fcfd22
CM
7594}
7595