]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
btrfs: fix transaction leak in btrfs_recover_relocation
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
900c9981 20#include "inode-map.h"
6787bb9f
NB
21#include "block-group.h"
22#include "space-info.h"
e02119d5
CM
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
e13976cf
DS
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
e02119d5 36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
e13976cf
DS
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 97 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 98 int inode_only,
7af59743
FM
99 const loff_t start,
100 const loff_t end,
8407f553 101 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
0b246afa 143 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 144 int ret = 0;
7237f183
YZ
145
146 mutex_lock(&root->log_mutex);
34eb2a52 147
7237f183 148 if (root->log_root) {
4884b8e8 149 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
150 ret = -EAGAIN;
151 goto out;
152 }
34eb2a52 153
ff782e0a 154 if (!root->log_start_pid) {
27cdeb70 155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 156 root->log_start_pid = current->pid;
ff782e0a 157 } else if (root->log_start_pid != current->pid) {
27cdeb70 158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 159 }
34eb2a52 160 } else {
0b246afa
JM
161 mutex_lock(&fs_info->tree_log_mutex);
162 if (!fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, fs_info);
164 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
165 if (ret)
166 goto out;
ff782e0a 167
e02119d5 168 ret = btrfs_add_log_tree(trans, root);
4a500fd1 169 if (ret)
e87ac136 170 goto out;
34eb2a52
Z
171
172 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 root->log_start_pid = current->pid;
e02119d5 174 }
34eb2a52 175
2ecb7923 176 atomic_inc(&root->log_batch);
7237f183 177 atomic_inc(&root->log_writers);
8b050d35 178 if (ctx) {
34eb2a52 179 int index = root->log_transid % 2;
8b050d35 180 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 181 ctx->log_transid = root->log_transid;
8b050d35 182 }
34eb2a52 183
e87ac136 184out:
7237f183 185 mutex_unlock(&root->log_mutex);
e87ac136 186 return ret;
e02119d5
CM
187}
188
189/*
190 * returns 0 if there was a log transaction running and we were able
191 * to join, or returns -ENOENT if there were not transactions
192 * in progress
193 */
194static int join_running_log_trans(struct btrfs_root *root)
195{
196 int ret = -ENOENT;
197
7237f183 198 mutex_lock(&root->log_mutex);
e02119d5
CM
199 if (root->log_root) {
200 ret = 0;
7237f183 201 atomic_inc(&root->log_writers);
e02119d5 202 }
7237f183 203 mutex_unlock(&root->log_mutex);
e02119d5
CM
204 return ret;
205}
206
12fcfd22
CM
207/*
208 * This either makes the current running log transaction wait
209 * until you call btrfs_end_log_trans() or it makes any future
210 * log transactions wait until you call btrfs_end_log_trans()
211 */
45128b08 212void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 213{
12fcfd22
CM
214 mutex_lock(&root->log_mutex);
215 atomic_inc(&root->log_writers);
216 mutex_unlock(&root->log_mutex);
12fcfd22
CM
217}
218
e02119d5
CM
219/*
220 * indicate we're done making changes to the log tree
221 * and wake up anyone waiting to do a sync
222 */
143bede5 223void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 224{
7237f183 225 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
226 /* atomic_dec_and_test implies a barrier */
227 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 228 }
e02119d5
CM
229}
230
247462a5
DS
231static int btrfs_write_tree_block(struct extent_buffer *buf)
232{
233 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 buf->start + buf->len - 1);
235}
236
237static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238{
239 filemap_fdatawait_range(buf->pages[0]->mapping,
240 buf->start, buf->start + buf->len - 1);
241}
e02119d5
CM
242
243/*
244 * the walk control struct is used to pass state down the chain when
245 * processing the log tree. The stage field tells us which part
246 * of the log tree processing we are currently doing. The others
247 * are state fields used for that specific part
248 */
249struct walk_control {
250 /* should we free the extent on disk when done? This is used
251 * at transaction commit time while freeing a log tree
252 */
253 int free;
254
255 /* should we write out the extent buffer? This is used
256 * while flushing the log tree to disk during a sync
257 */
258 int write;
259
260 /* should we wait for the extent buffer io to finish? Also used
261 * while flushing the log tree to disk for a sync
262 */
263 int wait;
264
265 /* pin only walk, we record which extents on disk belong to the
266 * log trees
267 */
268 int pin;
269
270 /* what stage of the replay code we're currently in */
271 int stage;
272
f2d72f42
FM
273 /*
274 * Ignore any items from the inode currently being processed. Needs
275 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 * the LOG_WALK_REPLAY_INODES stage.
277 */
278 bool ignore_cur_inode;
279
e02119d5
CM
280 /* the root we are currently replaying */
281 struct btrfs_root *replay_dest;
282
283 /* the trans handle for the current replay */
284 struct btrfs_trans_handle *trans;
285
286 /* the function that gets used to process blocks we find in the
287 * tree. Note the extent_buffer might not be up to date when it is
288 * passed in, and it must be checked or read if you need the data
289 * inside it
290 */
291 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 292 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
293};
294
295/*
296 * process_func used to pin down extents, write them or wait on them
297 */
298static int process_one_buffer(struct btrfs_root *log,
299 struct extent_buffer *eb,
581c1760 300 struct walk_control *wc, u64 gen, int level)
e02119d5 301{
0b246afa 302 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
303 int ret = 0;
304
8c2a1a30
JB
305 /*
306 * If this fs is mixed then we need to be able to process the leaves to
307 * pin down any logged extents, so we have to read the block.
308 */
0b246afa 309 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 310 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
311 if (ret)
312 return ret;
313 }
314
04018de5 315 if (wc->pin)
9fce5704 316 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 317 eb->len);
e02119d5 318
b50c6e25 319 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 320 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 321 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
322 if (wc->write)
323 btrfs_write_tree_block(eb);
324 if (wc->wait)
325 btrfs_wait_tree_block_writeback(eb);
326 }
b50c6e25 327 return ret;
e02119d5
CM
328}
329
330/*
331 * Item overwrite used by replay and tree logging. eb, slot and key all refer
332 * to the src data we are copying out.
333 *
334 * root is the tree we are copying into, and path is a scratch
335 * path for use in this function (it should be released on entry and
336 * will be released on exit).
337 *
338 * If the key is already in the destination tree the existing item is
339 * overwritten. If the existing item isn't big enough, it is extended.
340 * If it is too large, it is truncated.
341 *
342 * If the key isn't in the destination yet, a new item is inserted.
343 */
344static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 struct btrfs_root *root,
346 struct btrfs_path *path,
347 struct extent_buffer *eb, int slot,
348 struct btrfs_key *key)
349{
350 int ret;
351 u32 item_size;
352 u64 saved_i_size = 0;
353 int save_old_i_size = 0;
354 unsigned long src_ptr;
355 unsigned long dst_ptr;
356 int overwrite_root = 0;
4bc4bee4 357 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
358
359 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 overwrite_root = 1;
361
362 item_size = btrfs_item_size_nr(eb, slot);
363 src_ptr = btrfs_item_ptr_offset(eb, slot);
364
365 /* look for the key in the destination tree */
366 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
367 if (ret < 0)
368 return ret;
369
e02119d5
CM
370 if (ret == 0) {
371 char *src_copy;
372 char *dst_copy;
373 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 path->slots[0]);
375 if (dst_size != item_size)
376 goto insert;
377
378 if (item_size == 0) {
b3b4aa74 379 btrfs_release_path(path);
e02119d5
CM
380 return 0;
381 }
382 dst_copy = kmalloc(item_size, GFP_NOFS);
383 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 384 if (!dst_copy || !src_copy) {
b3b4aa74 385 btrfs_release_path(path);
2a29edc6 386 kfree(dst_copy);
387 kfree(src_copy);
388 return -ENOMEM;
389 }
e02119d5
CM
390
391 read_extent_buffer(eb, src_copy, src_ptr, item_size);
392
393 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 item_size);
396 ret = memcmp(dst_copy, src_copy, item_size);
397
398 kfree(dst_copy);
399 kfree(src_copy);
400 /*
401 * they have the same contents, just return, this saves
402 * us from cowing blocks in the destination tree and doing
403 * extra writes that may not have been done by a previous
404 * sync
405 */
406 if (ret == 0) {
b3b4aa74 407 btrfs_release_path(path);
e02119d5
CM
408 return 0;
409 }
410
4bc4bee4
JB
411 /*
412 * We need to load the old nbytes into the inode so when we
413 * replay the extents we've logged we get the right nbytes.
414 */
415 if (inode_item) {
416 struct btrfs_inode_item *item;
417 u64 nbytes;
d555438b 418 u32 mode;
4bc4bee4
JB
419
420 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 struct btrfs_inode_item);
422 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 item = btrfs_item_ptr(eb, slot,
424 struct btrfs_inode_item);
425 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
426
427 /*
428 * If this is a directory we need to reset the i_size to
429 * 0 so that we can set it up properly when replaying
430 * the rest of the items in this log.
431 */
432 mode = btrfs_inode_mode(eb, item);
433 if (S_ISDIR(mode))
434 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
435 }
436 } else if (inode_item) {
437 struct btrfs_inode_item *item;
d555438b 438 u32 mode;
4bc4bee4
JB
439
440 /*
441 * New inode, set nbytes to 0 so that the nbytes comes out
442 * properly when we replay the extents.
443 */
444 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
446
447 /*
448 * If this is a directory we need to reset the i_size to 0 so
449 * that we can set it up properly when replaying the rest of
450 * the items in this log.
451 */
452 mode = btrfs_inode_mode(eb, item);
453 if (S_ISDIR(mode))
454 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
455 }
456insert:
b3b4aa74 457 btrfs_release_path(path);
e02119d5 458 /* try to insert the key into the destination tree */
df8d116f 459 path->skip_release_on_error = 1;
e02119d5
CM
460 ret = btrfs_insert_empty_item(trans, root, path,
461 key, item_size);
df8d116f 462 path->skip_release_on_error = 0;
e02119d5
CM
463
464 /* make sure any existing item is the correct size */
df8d116f 465 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
466 u32 found_size;
467 found_size = btrfs_item_size_nr(path->nodes[0],
468 path->slots[0]);
143bede5 469 if (found_size > item_size)
78ac4f9e 470 btrfs_truncate_item(path, item_size, 1);
143bede5 471 else if (found_size < item_size)
c71dd880 472 btrfs_extend_item(path, item_size - found_size);
e02119d5 473 } else if (ret) {
4a500fd1 474 return ret;
e02119d5
CM
475 }
476 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 path->slots[0]);
478
479 /* don't overwrite an existing inode if the generation number
480 * was logged as zero. This is done when the tree logging code
481 * is just logging an inode to make sure it exists after recovery.
482 *
483 * Also, don't overwrite i_size on directories during replay.
484 * log replay inserts and removes directory items based on the
485 * state of the tree found in the subvolume, and i_size is modified
486 * as it goes
487 */
488 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 struct btrfs_inode_item *src_item;
490 struct btrfs_inode_item *dst_item;
491
492 src_item = (struct btrfs_inode_item *)src_ptr;
493 dst_item = (struct btrfs_inode_item *)dst_ptr;
494
1a4bcf47
FM
495 if (btrfs_inode_generation(eb, src_item) == 0) {
496 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 497 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 498
2f2ff0ee
FM
499 /*
500 * For regular files an ino_size == 0 is used only when
501 * logging that an inode exists, as part of a directory
502 * fsync, and the inode wasn't fsynced before. In this
503 * case don't set the size of the inode in the fs/subvol
504 * tree, otherwise we would be throwing valid data away.
505 */
1a4bcf47 506 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
507 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
508 ino_size != 0) {
1a4bcf47 509 struct btrfs_map_token token;
1a4bcf47 510
c82f823c 511 btrfs_init_map_token(&token, dst_eb);
1a4bcf47
FM
512 btrfs_set_token_inode_size(dst_eb, dst_item,
513 ino_size, &token);
514 }
e02119d5 515 goto no_copy;
1a4bcf47 516 }
e02119d5
CM
517
518 if (overwrite_root &&
519 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
520 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
521 save_old_i_size = 1;
522 saved_i_size = btrfs_inode_size(path->nodes[0],
523 dst_item);
524 }
525 }
526
527 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
528 src_ptr, item_size);
529
530 if (save_old_i_size) {
531 struct btrfs_inode_item *dst_item;
532 dst_item = (struct btrfs_inode_item *)dst_ptr;
533 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
534 }
535
536 /* make sure the generation is filled in */
537 if (key->type == BTRFS_INODE_ITEM_KEY) {
538 struct btrfs_inode_item *dst_item;
539 dst_item = (struct btrfs_inode_item *)dst_ptr;
540 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
541 btrfs_set_inode_generation(path->nodes[0], dst_item,
542 trans->transid);
543 }
544 }
545no_copy:
546 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 547 btrfs_release_path(path);
e02119d5
CM
548 return 0;
549}
550
551/*
552 * simple helper to read an inode off the disk from a given root
553 * This can only be called for subvolume roots and not for the log
554 */
555static noinline struct inode *read_one_inode(struct btrfs_root *root,
556 u64 objectid)
557{
5d4f98a2 558 struct btrfs_key key;
e02119d5 559 struct inode *inode;
e02119d5 560
5d4f98a2
YZ
561 key.objectid = objectid;
562 key.type = BTRFS_INODE_ITEM_KEY;
563 key.offset = 0;
4c66e0d4 564 inode = btrfs_iget(root->fs_info->sb, &key, root);
2e19f1f9 565 if (IS_ERR(inode))
5d4f98a2 566 inode = NULL;
e02119d5
CM
567 return inode;
568}
569
570/* replays a single extent in 'eb' at 'slot' with 'key' into the
571 * subvolume 'root'. path is released on entry and should be released
572 * on exit.
573 *
574 * extents in the log tree have not been allocated out of the extent
575 * tree yet. So, this completes the allocation, taking a reference
576 * as required if the extent already exists or creating a new extent
577 * if it isn't in the extent allocation tree yet.
578 *
579 * The extent is inserted into the file, dropping any existing extents
580 * from the file that overlap the new one.
581 */
582static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_path *path,
585 struct extent_buffer *eb, int slot,
586 struct btrfs_key *key)
587{
0b246afa 588 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 589 int found_type;
e02119d5 590 u64 extent_end;
e02119d5 591 u64 start = key->offset;
4bc4bee4 592 u64 nbytes = 0;
e02119d5
CM
593 struct btrfs_file_extent_item *item;
594 struct inode *inode = NULL;
595 unsigned long size;
596 int ret = 0;
597
598 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
599 found_type = btrfs_file_extent_type(eb, item);
600
d899e052 601 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
602 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
603 nbytes = btrfs_file_extent_num_bytes(eb, item);
604 extent_end = start + nbytes;
605
606 /*
607 * We don't add to the inodes nbytes if we are prealloc or a
608 * hole.
609 */
610 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
611 nbytes = 0;
612 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 613 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 614 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 615 extent_end = ALIGN(start + size,
0b246afa 616 fs_info->sectorsize);
e02119d5
CM
617 } else {
618 ret = 0;
619 goto out;
620 }
621
622 inode = read_one_inode(root, key->objectid);
623 if (!inode) {
624 ret = -EIO;
625 goto out;
626 }
627
628 /*
629 * first check to see if we already have this extent in the
630 * file. This must be done before the btrfs_drop_extents run
631 * so we don't try to drop this extent.
632 */
f85b7379
DS
633 ret = btrfs_lookup_file_extent(trans, root, path,
634 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 635
d899e052
YZ
636 if (ret == 0 &&
637 (found_type == BTRFS_FILE_EXTENT_REG ||
638 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
639 struct btrfs_file_extent_item cmp1;
640 struct btrfs_file_extent_item cmp2;
641 struct btrfs_file_extent_item *existing;
642 struct extent_buffer *leaf;
643
644 leaf = path->nodes[0];
645 existing = btrfs_item_ptr(leaf, path->slots[0],
646 struct btrfs_file_extent_item);
647
648 read_extent_buffer(eb, &cmp1, (unsigned long)item,
649 sizeof(cmp1));
650 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
651 sizeof(cmp2));
652
653 /*
654 * we already have a pointer to this exact extent,
655 * we don't have to do anything
656 */
657 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 658 btrfs_release_path(path);
e02119d5
CM
659 goto out;
660 }
661 }
b3b4aa74 662 btrfs_release_path(path);
e02119d5
CM
663
664 /* drop any overlapping extents */
2671485d 665 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
666 if (ret)
667 goto out;
e02119d5 668
07d400a6
YZ
669 if (found_type == BTRFS_FILE_EXTENT_REG ||
670 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 671 u64 offset;
07d400a6
YZ
672 unsigned long dest_offset;
673 struct btrfs_key ins;
674
3168021c
FM
675 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
676 btrfs_fs_incompat(fs_info, NO_HOLES))
677 goto update_inode;
678
07d400a6
YZ
679 ret = btrfs_insert_empty_item(trans, root, path, key,
680 sizeof(*item));
3650860b
JB
681 if (ret)
682 goto out;
07d400a6
YZ
683 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
684 path->slots[0]);
685 copy_extent_buffer(path->nodes[0], eb, dest_offset,
686 (unsigned long)item, sizeof(*item));
687
688 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
689 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
690 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 691 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 692
df2c95f3
QW
693 /*
694 * Manually record dirty extent, as here we did a shallow
695 * file extent item copy and skip normal backref update,
696 * but modifying extent tree all by ourselves.
697 * So need to manually record dirty extent for qgroup,
698 * as the owner of the file extent changed from log tree
699 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
700 */
a95f3aaf 701 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
702 btrfs_file_extent_disk_bytenr(eb, item),
703 btrfs_file_extent_disk_num_bytes(eb, item),
704 GFP_NOFS);
705 if (ret < 0)
706 goto out;
707
07d400a6 708 if (ins.objectid > 0) {
82fa113f 709 struct btrfs_ref ref = { 0 };
07d400a6
YZ
710 u64 csum_start;
711 u64 csum_end;
712 LIST_HEAD(ordered_sums);
82fa113f 713
07d400a6
YZ
714 /*
715 * is this extent already allocated in the extent
716 * allocation tree? If so, just add a reference
717 */
2ff7e61e 718 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
719 ins.offset);
720 if (ret == 0) {
82fa113f
QW
721 btrfs_init_generic_ref(&ref,
722 BTRFS_ADD_DELAYED_REF,
723 ins.objectid, ins.offset, 0);
724 btrfs_init_data_ref(&ref,
725 root->root_key.objectid,
b06c4bf5 726 key->objectid, offset);
82fa113f 727 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
728 if (ret)
729 goto out;
07d400a6
YZ
730 } else {
731 /*
732 * insert the extent pointer in the extent
733 * allocation tree
734 */
5d4f98a2 735 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 736 root->root_key.objectid,
5d4f98a2 737 key->objectid, offset, &ins);
b50c6e25
JB
738 if (ret)
739 goto out;
07d400a6 740 }
b3b4aa74 741 btrfs_release_path(path);
07d400a6
YZ
742
743 if (btrfs_file_extent_compression(eb, item)) {
744 csum_start = ins.objectid;
745 csum_end = csum_start + ins.offset;
746 } else {
747 csum_start = ins.objectid +
748 btrfs_file_extent_offset(eb, item);
749 csum_end = csum_start +
750 btrfs_file_extent_num_bytes(eb, item);
751 }
752
753 ret = btrfs_lookup_csums_range(root->log_root,
754 csum_start, csum_end - 1,
a2de733c 755 &ordered_sums, 0);
3650860b
JB
756 if (ret)
757 goto out;
b84b8390
FM
758 /*
759 * Now delete all existing cums in the csum root that
760 * cover our range. We do this because we can have an
761 * extent that is completely referenced by one file
762 * extent item and partially referenced by another
763 * file extent item (like after using the clone or
764 * extent_same ioctls). In this case if we end up doing
765 * the replay of the one that partially references the
766 * extent first, and we do not do the csum deletion
767 * below, we can get 2 csum items in the csum tree that
768 * overlap each other. For example, imagine our log has
769 * the two following file extent items:
770 *
771 * key (257 EXTENT_DATA 409600)
772 * extent data disk byte 12845056 nr 102400
773 * extent data offset 20480 nr 20480 ram 102400
774 *
775 * key (257 EXTENT_DATA 819200)
776 * extent data disk byte 12845056 nr 102400
777 * extent data offset 0 nr 102400 ram 102400
778 *
779 * Where the second one fully references the 100K extent
780 * that starts at disk byte 12845056, and the log tree
781 * has a single csum item that covers the entire range
782 * of the extent:
783 *
784 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
785 *
786 * After the first file extent item is replayed, the
787 * csum tree gets the following csum item:
788 *
789 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 *
791 * Which covers the 20K sub-range starting at offset 20K
792 * of our extent. Now when we replay the second file
793 * extent item, if we do not delete existing csum items
794 * that cover any of its blocks, we end up getting two
795 * csum items in our csum tree that overlap each other:
796 *
797 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
798 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
799 *
800 * Which is a problem, because after this anyone trying
801 * to lookup up for the checksum of any block of our
802 * extent starting at an offset of 40K or higher, will
803 * end up looking at the second csum item only, which
804 * does not contain the checksum for any block starting
805 * at offset 40K or higher of our extent.
806 */
07d400a6
YZ
807 while (!list_empty(&ordered_sums)) {
808 struct btrfs_ordered_sum *sums;
809 sums = list_entry(ordered_sums.next,
810 struct btrfs_ordered_sum,
811 list);
b84b8390 812 if (!ret)
40e046ac
FM
813 ret = btrfs_del_csums(trans,
814 fs_info->csum_root,
5b4aacef
JM
815 sums->bytenr,
816 sums->len);
3650860b
JB
817 if (!ret)
818 ret = btrfs_csum_file_blocks(trans,
0b246afa 819 fs_info->csum_root, sums);
07d400a6
YZ
820 list_del(&sums->list);
821 kfree(sums);
822 }
3650860b
JB
823 if (ret)
824 goto out;
07d400a6 825 } else {
b3b4aa74 826 btrfs_release_path(path);
07d400a6
YZ
827 }
828 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
829 /* inline extents are easy, we just overwrite them */
830 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
831 if (ret)
832 goto out;
07d400a6 833 }
e02119d5 834
9ddc959e
JB
835 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
836 extent_end - start);
837 if (ret)
838 goto out;
839
4bc4bee4 840 inode_add_bytes(inode, nbytes);
3168021c 841update_inode:
b9959295 842 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
843out:
844 if (inode)
845 iput(inode);
846 return ret;
847}
848
849/*
850 * when cleaning up conflicts between the directory names in the
851 * subvolume, directory names in the log and directory names in the
852 * inode back references, we may have to unlink inodes from directories.
853 *
854 * This is a helper function to do the unlink of a specific directory
855 * item
856 */
857static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
858 struct btrfs_root *root,
859 struct btrfs_path *path,
207e7d92 860 struct btrfs_inode *dir,
e02119d5
CM
861 struct btrfs_dir_item *di)
862{
863 struct inode *inode;
864 char *name;
865 int name_len;
866 struct extent_buffer *leaf;
867 struct btrfs_key location;
868 int ret;
869
870 leaf = path->nodes[0];
871
872 btrfs_dir_item_key_to_cpu(leaf, di, &location);
873 name_len = btrfs_dir_name_len(leaf, di);
874 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 875 if (!name)
876 return -ENOMEM;
877
e02119d5 878 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 879 btrfs_release_path(path);
e02119d5
CM
880
881 inode = read_one_inode(root, location.objectid);
c00e9493 882 if (!inode) {
3650860b
JB
883 ret = -EIO;
884 goto out;
c00e9493 885 }
e02119d5 886
ec051c0f 887 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
888 if (ret)
889 goto out;
12fcfd22 890
207e7d92
NB
891 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
892 name_len);
3650860b
JB
893 if (ret)
894 goto out;
ada9af21 895 else
e5c304e6 896 ret = btrfs_run_delayed_items(trans);
3650860b 897out:
e02119d5 898 kfree(name);
e02119d5
CM
899 iput(inode);
900 return ret;
901}
902
903/*
904 * helper function to see if a given name and sequence number found
905 * in an inode back reference are already in a directory and correctly
906 * point to this inode
907 */
908static noinline int inode_in_dir(struct btrfs_root *root,
909 struct btrfs_path *path,
910 u64 dirid, u64 objectid, u64 index,
911 const char *name, int name_len)
912{
913 struct btrfs_dir_item *di;
914 struct btrfs_key location;
915 int match = 0;
916
917 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
918 index, name, name_len, 0);
919 if (di && !IS_ERR(di)) {
920 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
921 if (location.objectid != objectid)
922 goto out;
923 } else
924 goto out;
b3b4aa74 925 btrfs_release_path(path);
e02119d5
CM
926
927 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
928 if (di && !IS_ERR(di)) {
929 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
930 if (location.objectid != objectid)
931 goto out;
932 } else
933 goto out;
934 match = 1;
935out:
b3b4aa74 936 btrfs_release_path(path);
e02119d5
CM
937 return match;
938}
939
940/*
941 * helper function to check a log tree for a named back reference in
942 * an inode. This is used to decide if a back reference that is
943 * found in the subvolume conflicts with what we find in the log.
944 *
945 * inode backreferences may have multiple refs in a single item,
946 * during replay we process one reference at a time, and we don't
947 * want to delete valid links to a file from the subvolume if that
948 * link is also in the log.
949 */
950static noinline int backref_in_log(struct btrfs_root *log,
951 struct btrfs_key *key,
f186373f 952 u64 ref_objectid,
df8d116f 953 const char *name, int namelen)
e02119d5
CM
954{
955 struct btrfs_path *path;
e02119d5 956 int ret;
e02119d5
CM
957
958 path = btrfs_alloc_path();
2a29edc6 959 if (!path)
960 return -ENOMEM;
961
e02119d5 962 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
963 if (ret < 0) {
964 goto out;
965 } else if (ret == 1) {
89cbf5f6 966 ret = 0;
f186373f
MF
967 goto out;
968 }
969
89cbf5f6
NB
970 if (key->type == BTRFS_INODE_EXTREF_KEY)
971 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
972 path->slots[0],
973 ref_objectid,
974 name, namelen);
975 else
976 ret = !!btrfs_find_name_in_backref(path->nodes[0],
977 path->slots[0],
978 name, namelen);
e02119d5
CM
979out:
980 btrfs_free_path(path);
89cbf5f6 981 return ret;
e02119d5
CM
982}
983
5a1d7843 984static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 985 struct btrfs_root *root,
e02119d5 986 struct btrfs_path *path,
5a1d7843 987 struct btrfs_root *log_root,
94c91a1f
NB
988 struct btrfs_inode *dir,
989 struct btrfs_inode *inode,
f186373f
MF
990 u64 inode_objectid, u64 parent_objectid,
991 u64 ref_index, char *name, int namelen,
992 int *search_done)
e02119d5 993{
34f3e4f2 994 int ret;
f186373f
MF
995 char *victim_name;
996 int victim_name_len;
997 struct extent_buffer *leaf;
5a1d7843 998 struct btrfs_dir_item *di;
f186373f
MF
999 struct btrfs_key search_key;
1000 struct btrfs_inode_extref *extref;
c622ae60 1001
f186373f
MF
1002again:
1003 /* Search old style refs */
1004 search_key.objectid = inode_objectid;
1005 search_key.type = BTRFS_INODE_REF_KEY;
1006 search_key.offset = parent_objectid;
1007 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1008 if (ret == 0) {
e02119d5
CM
1009 struct btrfs_inode_ref *victim_ref;
1010 unsigned long ptr;
1011 unsigned long ptr_end;
f186373f
MF
1012
1013 leaf = path->nodes[0];
e02119d5
CM
1014
1015 /* are we trying to overwrite a back ref for the root directory
1016 * if so, just jump out, we're done
1017 */
f186373f 1018 if (search_key.objectid == search_key.offset)
5a1d7843 1019 return 1;
e02119d5
CM
1020
1021 /* check all the names in this back reference to see
1022 * if they are in the log. if so, we allow them to stay
1023 * otherwise they must be unlinked as a conflict
1024 */
1025 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1026 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1027 while (ptr < ptr_end) {
e02119d5
CM
1028 victim_ref = (struct btrfs_inode_ref *)ptr;
1029 victim_name_len = btrfs_inode_ref_name_len(leaf,
1030 victim_ref);
1031 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1032 if (!victim_name)
1033 return -ENOMEM;
e02119d5
CM
1034
1035 read_extent_buffer(leaf, victim_name,
1036 (unsigned long)(victim_ref + 1),
1037 victim_name_len);
1038
d3316c82
NB
1039 ret = backref_in_log(log_root, &search_key,
1040 parent_objectid, victim_name,
1041 victim_name_len);
1042 if (ret < 0) {
1043 kfree(victim_name);
1044 return ret;
1045 } else if (!ret) {
94c91a1f 1046 inc_nlink(&inode->vfs_inode);
b3b4aa74 1047 btrfs_release_path(path);
12fcfd22 1048
94c91a1f 1049 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1050 victim_name, victim_name_len);
f186373f 1051 kfree(victim_name);
3650860b
JB
1052 if (ret)
1053 return ret;
e5c304e6 1054 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1055 if (ret)
1056 return ret;
f186373f
MF
1057 *search_done = 1;
1058 goto again;
e02119d5
CM
1059 }
1060 kfree(victim_name);
f186373f 1061
e02119d5
CM
1062 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1063 }
e02119d5 1064
c622ae60 1065 /*
1066 * NOTE: we have searched root tree and checked the
bb7ab3b9 1067 * corresponding ref, it does not need to check again.
c622ae60 1068 */
5a1d7843 1069 *search_done = 1;
e02119d5 1070 }
b3b4aa74 1071 btrfs_release_path(path);
e02119d5 1072
f186373f
MF
1073 /* Same search but for extended refs */
1074 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1075 inode_objectid, parent_objectid, 0,
1076 0);
1077 if (!IS_ERR_OR_NULL(extref)) {
1078 u32 item_size;
1079 u32 cur_offset = 0;
1080 unsigned long base;
1081 struct inode *victim_parent;
1082
1083 leaf = path->nodes[0];
1084
1085 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1086 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087
1088 while (cur_offset < item_size) {
dd9ef135 1089 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1090
1091 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1092
1093 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1094 goto next;
1095
1096 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1097 if (!victim_name)
1098 return -ENOMEM;
f186373f
MF
1099 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1100 victim_name_len);
1101
1102 search_key.objectid = inode_objectid;
1103 search_key.type = BTRFS_INODE_EXTREF_KEY;
1104 search_key.offset = btrfs_extref_hash(parent_objectid,
1105 victim_name,
1106 victim_name_len);
d3316c82
NB
1107 ret = backref_in_log(log_root, &search_key,
1108 parent_objectid, victim_name,
1109 victim_name_len);
1110 if (ret < 0) {
1111 return ret;
1112 } else if (!ret) {
f186373f
MF
1113 ret = -ENOENT;
1114 victim_parent = read_one_inode(root,
94c91a1f 1115 parent_objectid);
f186373f 1116 if (victim_parent) {
94c91a1f 1117 inc_nlink(&inode->vfs_inode);
f186373f
MF
1118 btrfs_release_path(path);
1119
1120 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1121 BTRFS_I(victim_parent),
94c91a1f 1122 inode,
4ec5934e
NB
1123 victim_name,
1124 victim_name_len);
ada9af21
FDBM
1125 if (!ret)
1126 ret = btrfs_run_delayed_items(
e5c304e6 1127 trans);
f186373f 1128 }
f186373f
MF
1129 iput(victim_parent);
1130 kfree(victim_name);
3650860b
JB
1131 if (ret)
1132 return ret;
f186373f
MF
1133 *search_done = 1;
1134 goto again;
1135 }
1136 kfree(victim_name);
f186373f
MF
1137next:
1138 cur_offset += victim_name_len + sizeof(*extref);
1139 }
1140 *search_done = 1;
1141 }
1142 btrfs_release_path(path);
1143
34f3e4f2 1144 /* look for a conflicting sequence number */
94c91a1f 1145 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1146 ref_index, name, namelen, 0);
34f3e4f2 1147 if (di && !IS_ERR(di)) {
94c91a1f 1148 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1149 if (ret)
1150 return ret;
34f3e4f2 1151 }
1152 btrfs_release_path(path);
1153
52042d8e 1154 /* look for a conflicting name */
94c91a1f 1155 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1156 name, namelen, 0);
1157 if (di && !IS_ERR(di)) {
94c91a1f 1158 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1159 if (ret)
1160 return ret;
34f3e4f2 1161 }
1162 btrfs_release_path(path);
1163
5a1d7843
JS
1164 return 0;
1165}
e02119d5 1166
bae15d95
QW
1167static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1168 u32 *namelen, char **name, u64 *index,
1169 u64 *parent_objectid)
f186373f
MF
1170{
1171 struct btrfs_inode_extref *extref;
1172
1173 extref = (struct btrfs_inode_extref *)ref_ptr;
1174
1175 *namelen = btrfs_inode_extref_name_len(eb, extref);
1176 *name = kmalloc(*namelen, GFP_NOFS);
1177 if (*name == NULL)
1178 return -ENOMEM;
1179
1180 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1181 *namelen);
1182
1f250e92
FM
1183 if (index)
1184 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1185 if (parent_objectid)
1186 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1187
1188 return 0;
1189}
1190
bae15d95
QW
1191static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1192 u32 *namelen, char **name, u64 *index)
f186373f
MF
1193{
1194 struct btrfs_inode_ref *ref;
1195
1196 ref = (struct btrfs_inode_ref *)ref_ptr;
1197
1198 *namelen = btrfs_inode_ref_name_len(eb, ref);
1199 *name = kmalloc(*namelen, GFP_NOFS);
1200 if (*name == NULL)
1201 return -ENOMEM;
1202
1203 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1204
1f250e92
FM
1205 if (index)
1206 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1207
1208 return 0;
1209}
1210
1f250e92
FM
1211/*
1212 * Take an inode reference item from the log tree and iterate all names from the
1213 * inode reference item in the subvolume tree with the same key (if it exists).
1214 * For any name that is not in the inode reference item from the log tree, do a
1215 * proper unlink of that name (that is, remove its entry from the inode
1216 * reference item and both dir index keys).
1217 */
1218static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1219 struct btrfs_root *root,
1220 struct btrfs_path *path,
1221 struct btrfs_inode *inode,
1222 struct extent_buffer *log_eb,
1223 int log_slot,
1224 struct btrfs_key *key)
1225{
1226 int ret;
1227 unsigned long ref_ptr;
1228 unsigned long ref_end;
1229 struct extent_buffer *eb;
1230
1231again:
1232 btrfs_release_path(path);
1233 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1234 if (ret > 0) {
1235 ret = 0;
1236 goto out;
1237 }
1238 if (ret < 0)
1239 goto out;
1240
1241 eb = path->nodes[0];
1242 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1243 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1244 while (ref_ptr < ref_end) {
1245 char *name = NULL;
1246 int namelen;
1247 u64 parent_id;
1248
1249 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1250 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1251 NULL, &parent_id);
1252 } else {
1253 parent_id = key->offset;
1254 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1255 NULL);
1256 }
1257 if (ret)
1258 goto out;
1259
1260 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1261 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1262 parent_id, name,
1263 namelen);
1f250e92 1264 else
9bb8407f
NB
1265 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1266 name, namelen);
1f250e92
FM
1267
1268 if (!ret) {
1269 struct inode *dir;
1270
1271 btrfs_release_path(path);
1272 dir = read_one_inode(root, parent_id);
1273 if (!dir) {
1274 ret = -ENOENT;
1275 kfree(name);
1276 goto out;
1277 }
1278 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1279 inode, name, namelen);
1280 kfree(name);
1281 iput(dir);
1282 if (ret)
1283 goto out;
1284 goto again;
1285 }
1286
1287 kfree(name);
1288 ref_ptr += namelen;
1289 if (key->type == BTRFS_INODE_EXTREF_KEY)
1290 ref_ptr += sizeof(struct btrfs_inode_extref);
1291 else
1292 ref_ptr += sizeof(struct btrfs_inode_ref);
1293 }
1294 ret = 0;
1295 out:
1296 btrfs_release_path(path);
1297 return ret;
1298}
1299
0d836392
FM
1300static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1301 const u8 ref_type, const char *name,
1302 const int namelen)
1303{
1304 struct btrfs_key key;
1305 struct btrfs_path *path;
1306 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1307 int ret;
1308
1309 path = btrfs_alloc_path();
1310 if (!path)
1311 return -ENOMEM;
1312
1313 key.objectid = btrfs_ino(BTRFS_I(inode));
1314 key.type = ref_type;
1315 if (key.type == BTRFS_INODE_REF_KEY)
1316 key.offset = parent_id;
1317 else
1318 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1319
1320 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1321 if (ret < 0)
1322 goto out;
1323 if (ret > 0) {
1324 ret = 0;
1325 goto out;
1326 }
1327 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1328 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1329 path->slots[0], parent_id, name, namelen);
0d836392 1330 else
9bb8407f
NB
1331 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1332 name, namelen);
0d836392
FM
1333
1334out:
1335 btrfs_free_path(path);
1336 return ret;
1337}
1338
6b5fc433
FM
1339static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1340 struct inode *dir, struct inode *inode, const char *name,
1341 int namelen, u64 ref_index)
1342{
1343 struct btrfs_dir_item *dir_item;
1344 struct btrfs_key key;
1345 struct btrfs_path *path;
1346 struct inode *other_inode = NULL;
1347 int ret;
1348
1349 path = btrfs_alloc_path();
1350 if (!path)
1351 return -ENOMEM;
1352
1353 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1354 btrfs_ino(BTRFS_I(dir)),
1355 name, namelen, 0);
1356 if (!dir_item) {
1357 btrfs_release_path(path);
1358 goto add_link;
1359 } else if (IS_ERR(dir_item)) {
1360 ret = PTR_ERR(dir_item);
1361 goto out;
1362 }
1363
1364 /*
1365 * Our inode's dentry collides with the dentry of another inode which is
1366 * in the log but not yet processed since it has a higher inode number.
1367 * So delete that other dentry.
1368 */
1369 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1370 btrfs_release_path(path);
1371 other_inode = read_one_inode(root, key.objectid);
1372 if (!other_inode) {
1373 ret = -ENOENT;
1374 goto out;
1375 }
1376 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1377 name, namelen);
1378 if (ret)
1379 goto out;
1380 /*
1381 * If we dropped the link count to 0, bump it so that later the iput()
1382 * on the inode will not free it. We will fixup the link count later.
1383 */
1384 if (other_inode->i_nlink == 0)
1385 inc_nlink(other_inode);
1386
1387 ret = btrfs_run_delayed_items(trans);
1388 if (ret)
1389 goto out;
1390add_link:
1391 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1392 name, namelen, 0, ref_index);
1393out:
1394 iput(other_inode);
1395 btrfs_free_path(path);
1396
1397 return ret;
1398}
1399
5a1d7843
JS
1400/*
1401 * replay one inode back reference item found in the log tree.
1402 * eb, slot and key refer to the buffer and key found in the log tree.
1403 * root is the destination we are replaying into, and path is for temp
1404 * use by this function. (it should be released on return).
1405 */
1406static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1407 struct btrfs_root *root,
1408 struct btrfs_root *log,
1409 struct btrfs_path *path,
1410 struct extent_buffer *eb, int slot,
1411 struct btrfs_key *key)
1412{
03b2f08b
GB
1413 struct inode *dir = NULL;
1414 struct inode *inode = NULL;
5a1d7843
JS
1415 unsigned long ref_ptr;
1416 unsigned long ref_end;
03b2f08b 1417 char *name = NULL;
5a1d7843
JS
1418 int namelen;
1419 int ret;
1420 int search_done = 0;
f186373f
MF
1421 int log_ref_ver = 0;
1422 u64 parent_objectid;
1423 u64 inode_objectid;
f46dbe3d 1424 u64 ref_index = 0;
f186373f
MF
1425 int ref_struct_size;
1426
1427 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1428 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1429
1430 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1431 struct btrfs_inode_extref *r;
1432
1433 ref_struct_size = sizeof(struct btrfs_inode_extref);
1434 log_ref_ver = 1;
1435 r = (struct btrfs_inode_extref *)ref_ptr;
1436 parent_objectid = btrfs_inode_extref_parent(eb, r);
1437 } else {
1438 ref_struct_size = sizeof(struct btrfs_inode_ref);
1439 parent_objectid = key->offset;
1440 }
1441 inode_objectid = key->objectid;
e02119d5 1442
5a1d7843
JS
1443 /*
1444 * it is possible that we didn't log all the parent directories
1445 * for a given inode. If we don't find the dir, just don't
1446 * copy the back ref in. The link count fixup code will take
1447 * care of the rest
1448 */
f186373f 1449 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1450 if (!dir) {
1451 ret = -ENOENT;
1452 goto out;
1453 }
5a1d7843 1454
f186373f 1455 inode = read_one_inode(root, inode_objectid);
5a1d7843 1456 if (!inode) {
03b2f08b
GB
1457 ret = -EIO;
1458 goto out;
5a1d7843
JS
1459 }
1460
5a1d7843 1461 while (ref_ptr < ref_end) {
f186373f 1462 if (log_ref_ver) {
bae15d95
QW
1463 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1464 &ref_index, &parent_objectid);
f186373f
MF
1465 /*
1466 * parent object can change from one array
1467 * item to another.
1468 */
1469 if (!dir)
1470 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1471 if (!dir) {
1472 ret = -ENOENT;
1473 goto out;
1474 }
f186373f 1475 } else {
bae15d95
QW
1476 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1477 &ref_index);
f186373f
MF
1478 }
1479 if (ret)
03b2f08b 1480 goto out;
5a1d7843
JS
1481
1482 /* if we already have a perfect match, we're done */
f85b7379
DS
1483 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1484 btrfs_ino(BTRFS_I(inode)), ref_index,
1485 name, namelen)) {
5a1d7843
JS
1486 /*
1487 * look for a conflicting back reference in the
1488 * metadata. if we find one we have to unlink that name
1489 * of the file before we add our new link. Later on, we
1490 * overwrite any existing back reference, and we don't
1491 * want to create dangling pointers in the directory.
1492 */
1493
1494 if (!search_done) {
1495 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1496 BTRFS_I(dir),
d75eefdf 1497 BTRFS_I(inode),
f186373f
MF
1498 inode_objectid,
1499 parent_objectid,
1500 ref_index, name, namelen,
5a1d7843 1501 &search_done);
03b2f08b
GB
1502 if (ret) {
1503 if (ret == 1)
1504 ret = 0;
3650860b
JB
1505 goto out;
1506 }
5a1d7843
JS
1507 }
1508
0d836392
FM
1509 /*
1510 * If a reference item already exists for this inode
1511 * with the same parent and name, but different index,
1512 * drop it and the corresponding directory index entries
1513 * from the parent before adding the new reference item
1514 * and dir index entries, otherwise we would fail with
1515 * -EEXIST returned from btrfs_add_link() below.
1516 */
1517 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1518 name, namelen);
1519 if (ret > 0) {
1520 ret = btrfs_unlink_inode(trans, root,
1521 BTRFS_I(dir),
1522 BTRFS_I(inode),
1523 name, namelen);
1524 /*
1525 * If we dropped the link count to 0, bump it so
1526 * that later the iput() on the inode will not
1527 * free it. We will fixup the link count later.
1528 */
1529 if (!ret && inode->i_nlink == 0)
1530 inc_nlink(inode);
1531 }
1532 if (ret < 0)
1533 goto out;
1534
5a1d7843 1535 /* insert our name */
6b5fc433
FM
1536 ret = add_link(trans, root, dir, inode, name, namelen,
1537 ref_index);
3650860b
JB
1538 if (ret)
1539 goto out;
5a1d7843
JS
1540
1541 btrfs_update_inode(trans, root, inode);
1542 }
1543
f186373f 1544 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1545 kfree(name);
03b2f08b 1546 name = NULL;
f186373f
MF
1547 if (log_ref_ver) {
1548 iput(dir);
1549 dir = NULL;
1550 }
5a1d7843 1551 }
e02119d5 1552
1f250e92
FM
1553 /*
1554 * Before we overwrite the inode reference item in the subvolume tree
1555 * with the item from the log tree, we must unlink all names from the
1556 * parent directory that are in the subvolume's tree inode reference
1557 * item, otherwise we end up with an inconsistent subvolume tree where
1558 * dir index entries exist for a name but there is no inode reference
1559 * item with the same name.
1560 */
1561 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1562 key);
1563 if (ret)
1564 goto out;
1565
e02119d5
CM
1566 /* finally write the back reference in the inode */
1567 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1568out:
b3b4aa74 1569 btrfs_release_path(path);
03b2f08b 1570 kfree(name);
e02119d5
CM
1571 iput(dir);
1572 iput(inode);
3650860b 1573 return ret;
e02119d5
CM
1574}
1575
c71bf099 1576static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1577 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1578{
1579 int ret;
381cf658 1580
9c4f61f0
DS
1581 ret = btrfs_insert_orphan_item(trans, root, ino);
1582 if (ret == -EEXIST)
1583 ret = 0;
381cf658 1584
c71bf099
YZ
1585 return ret;
1586}
1587
f186373f 1588static int count_inode_extrefs(struct btrfs_root *root,
36283658 1589 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1590{
1591 int ret = 0;
1592 int name_len;
1593 unsigned int nlink = 0;
1594 u32 item_size;
1595 u32 cur_offset = 0;
36283658 1596 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1597 u64 offset = 0;
1598 unsigned long ptr;
1599 struct btrfs_inode_extref *extref;
1600 struct extent_buffer *leaf;
1601
1602 while (1) {
1603 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1604 &extref, &offset);
1605 if (ret)
1606 break;
c71bf099 1607
f186373f
MF
1608 leaf = path->nodes[0];
1609 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1610 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1611 cur_offset = 0;
f186373f
MF
1612
1613 while (cur_offset < item_size) {
1614 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1615 name_len = btrfs_inode_extref_name_len(leaf, extref);
1616
1617 nlink++;
1618
1619 cur_offset += name_len + sizeof(*extref);
1620 }
1621
1622 offset++;
1623 btrfs_release_path(path);
1624 }
1625 btrfs_release_path(path);
1626
2c2c452b 1627 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1628 return ret;
1629 return nlink;
1630}
1631
1632static int count_inode_refs(struct btrfs_root *root,
f329e319 1633 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1634{
e02119d5
CM
1635 int ret;
1636 struct btrfs_key key;
f186373f 1637 unsigned int nlink = 0;
e02119d5
CM
1638 unsigned long ptr;
1639 unsigned long ptr_end;
1640 int name_len;
f329e319 1641 u64 ino = btrfs_ino(inode);
e02119d5 1642
33345d01 1643 key.objectid = ino;
e02119d5
CM
1644 key.type = BTRFS_INODE_REF_KEY;
1645 key.offset = (u64)-1;
1646
d397712b 1647 while (1) {
e02119d5
CM
1648 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1649 if (ret < 0)
1650 break;
1651 if (ret > 0) {
1652 if (path->slots[0] == 0)
1653 break;
1654 path->slots[0]--;
1655 }
e93ae26f 1656process_slot:
e02119d5
CM
1657 btrfs_item_key_to_cpu(path->nodes[0], &key,
1658 path->slots[0]);
33345d01 1659 if (key.objectid != ino ||
e02119d5
CM
1660 key.type != BTRFS_INODE_REF_KEY)
1661 break;
1662 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1663 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1664 path->slots[0]);
d397712b 1665 while (ptr < ptr_end) {
e02119d5
CM
1666 struct btrfs_inode_ref *ref;
1667
1668 ref = (struct btrfs_inode_ref *)ptr;
1669 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1670 ref);
1671 ptr = (unsigned long)(ref + 1) + name_len;
1672 nlink++;
1673 }
1674
1675 if (key.offset == 0)
1676 break;
e93ae26f
FDBM
1677 if (path->slots[0] > 0) {
1678 path->slots[0]--;
1679 goto process_slot;
1680 }
e02119d5 1681 key.offset--;
b3b4aa74 1682 btrfs_release_path(path);
e02119d5 1683 }
b3b4aa74 1684 btrfs_release_path(path);
f186373f
MF
1685
1686 return nlink;
1687}
1688
1689/*
1690 * There are a few corners where the link count of the file can't
1691 * be properly maintained during replay. So, instead of adding
1692 * lots of complexity to the log code, we just scan the backrefs
1693 * for any file that has been through replay.
1694 *
1695 * The scan will update the link count on the inode to reflect the
1696 * number of back refs found. If it goes down to zero, the iput
1697 * will free the inode.
1698 */
1699static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1700 struct btrfs_root *root,
1701 struct inode *inode)
1702{
1703 struct btrfs_path *path;
1704 int ret;
1705 u64 nlink = 0;
4a0cc7ca 1706 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1707
1708 path = btrfs_alloc_path();
1709 if (!path)
1710 return -ENOMEM;
1711
f329e319 1712 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1713 if (ret < 0)
1714 goto out;
1715
1716 nlink = ret;
1717
36283658 1718 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1719 if (ret < 0)
1720 goto out;
1721
1722 nlink += ret;
1723
1724 ret = 0;
1725
e02119d5 1726 if (nlink != inode->i_nlink) {
bfe86848 1727 set_nlink(inode, nlink);
e02119d5
CM
1728 btrfs_update_inode(trans, root, inode);
1729 }
8d5bf1cb 1730 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1731
c71bf099
YZ
1732 if (inode->i_nlink == 0) {
1733 if (S_ISDIR(inode->i_mode)) {
1734 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1735 ino, 1);
3650860b
JB
1736 if (ret)
1737 goto out;
c71bf099 1738 }
33345d01 1739 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1740 }
12fcfd22 1741
f186373f
MF
1742out:
1743 btrfs_free_path(path);
1744 return ret;
e02119d5
CM
1745}
1746
1747static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1748 struct btrfs_root *root,
1749 struct btrfs_path *path)
1750{
1751 int ret;
1752 struct btrfs_key key;
1753 struct inode *inode;
1754
1755 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1756 key.type = BTRFS_ORPHAN_ITEM_KEY;
1757 key.offset = (u64)-1;
d397712b 1758 while (1) {
e02119d5
CM
1759 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1760 if (ret < 0)
1761 break;
1762
1763 if (ret == 1) {
1764 if (path->slots[0] == 0)
1765 break;
1766 path->slots[0]--;
1767 }
1768
1769 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1770 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1771 key.type != BTRFS_ORPHAN_ITEM_KEY)
1772 break;
1773
1774 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1775 if (ret)
1776 goto out;
e02119d5 1777
b3b4aa74 1778 btrfs_release_path(path);
e02119d5 1779 inode = read_one_inode(root, key.offset);
c00e9493
TI
1780 if (!inode)
1781 return -EIO;
e02119d5
CM
1782
1783 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1784 iput(inode);
3650860b
JB
1785 if (ret)
1786 goto out;
e02119d5 1787
12fcfd22
CM
1788 /*
1789 * fixup on a directory may create new entries,
1790 * make sure we always look for the highset possible
1791 * offset
1792 */
1793 key.offset = (u64)-1;
e02119d5 1794 }
65a246c5
TI
1795 ret = 0;
1796out:
b3b4aa74 1797 btrfs_release_path(path);
65a246c5 1798 return ret;
e02119d5
CM
1799}
1800
1801
1802/*
1803 * record a given inode in the fixup dir so we can check its link
1804 * count when replay is done. The link count is incremented here
1805 * so the inode won't go away until we check it
1806 */
1807static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1808 struct btrfs_root *root,
1809 struct btrfs_path *path,
1810 u64 objectid)
1811{
1812 struct btrfs_key key;
1813 int ret = 0;
1814 struct inode *inode;
1815
1816 inode = read_one_inode(root, objectid);
c00e9493
TI
1817 if (!inode)
1818 return -EIO;
e02119d5
CM
1819
1820 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1821 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1822 key.offset = objectid;
1823
1824 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1825
b3b4aa74 1826 btrfs_release_path(path);
e02119d5 1827 if (ret == 0) {
9bf7a489
JB
1828 if (!inode->i_nlink)
1829 set_nlink(inode, 1);
1830 else
8b558c5f 1831 inc_nlink(inode);
b9959295 1832 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1833 } else if (ret == -EEXIST) {
1834 ret = 0;
1835 } else {
3650860b 1836 BUG(); /* Logic Error */
e02119d5
CM
1837 }
1838 iput(inode);
1839
1840 return ret;
1841}
1842
1843/*
1844 * when replaying the log for a directory, we only insert names
1845 * for inodes that actually exist. This means an fsync on a directory
1846 * does not implicitly fsync all the new files in it
1847 */
1848static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1849 struct btrfs_root *root,
e02119d5 1850 u64 dirid, u64 index,
60d53eb3 1851 char *name, int name_len,
e02119d5
CM
1852 struct btrfs_key *location)
1853{
1854 struct inode *inode;
1855 struct inode *dir;
1856 int ret;
1857
1858 inode = read_one_inode(root, location->objectid);
1859 if (!inode)
1860 return -ENOENT;
1861
1862 dir = read_one_inode(root, dirid);
1863 if (!dir) {
1864 iput(inode);
1865 return -EIO;
1866 }
d555438b 1867
db0a669f
NB
1868 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1869 name_len, 1, index);
e02119d5
CM
1870
1871 /* FIXME, put inode into FIXUP list */
1872
1873 iput(inode);
1874 iput(dir);
1875 return ret;
1876}
1877
1878/*
1879 * take a single entry in a log directory item and replay it into
1880 * the subvolume.
1881 *
1882 * if a conflicting item exists in the subdirectory already,
1883 * the inode it points to is unlinked and put into the link count
1884 * fix up tree.
1885 *
1886 * If a name from the log points to a file or directory that does
1887 * not exist in the FS, it is skipped. fsyncs on directories
1888 * do not force down inodes inside that directory, just changes to the
1889 * names or unlinks in a directory.
bb53eda9
FM
1890 *
1891 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1892 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1893 */
1894static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1895 struct btrfs_root *root,
1896 struct btrfs_path *path,
1897 struct extent_buffer *eb,
1898 struct btrfs_dir_item *di,
1899 struct btrfs_key *key)
1900{
1901 char *name;
1902 int name_len;
1903 struct btrfs_dir_item *dst_di;
1904 struct btrfs_key found_key;
1905 struct btrfs_key log_key;
1906 struct inode *dir;
e02119d5 1907 u8 log_type;
4bef0848 1908 int exists;
3650860b 1909 int ret = 0;
d555438b 1910 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1911 bool name_added = false;
e02119d5
CM
1912
1913 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1914 if (!dir)
1915 return -EIO;
e02119d5
CM
1916
1917 name_len = btrfs_dir_name_len(eb, di);
1918 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1919 if (!name) {
1920 ret = -ENOMEM;
1921 goto out;
1922 }
2a29edc6 1923
e02119d5
CM
1924 log_type = btrfs_dir_type(eb, di);
1925 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1926 name_len);
1927
1928 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1929 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1930 if (exists == 0)
1931 exists = 1;
1932 else
1933 exists = 0;
b3b4aa74 1934 btrfs_release_path(path);
4bef0848 1935
e02119d5
CM
1936 if (key->type == BTRFS_DIR_ITEM_KEY) {
1937 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1938 name, name_len, 1);
d397712b 1939 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1940 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1941 key->objectid,
1942 key->offset, name,
1943 name_len, 1);
1944 } else {
3650860b
JB
1945 /* Corruption */
1946 ret = -EINVAL;
1947 goto out;
e02119d5 1948 }
c704005d 1949 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1950 /* we need a sequence number to insert, so we only
1951 * do inserts for the BTRFS_DIR_INDEX_KEY types
1952 */
1953 if (key->type != BTRFS_DIR_INDEX_KEY)
1954 goto out;
1955 goto insert;
1956 }
1957
1958 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1959 /* the existing item matches the logged item */
1960 if (found_key.objectid == log_key.objectid &&
1961 found_key.type == log_key.type &&
1962 found_key.offset == log_key.offset &&
1963 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1964 update_size = false;
e02119d5
CM
1965 goto out;
1966 }
1967
1968 /*
1969 * don't drop the conflicting directory entry if the inode
1970 * for the new entry doesn't exist
1971 */
4bef0848 1972 if (!exists)
e02119d5
CM
1973 goto out;
1974
207e7d92 1975 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1976 if (ret)
1977 goto out;
e02119d5
CM
1978
1979 if (key->type == BTRFS_DIR_INDEX_KEY)
1980 goto insert;
1981out:
b3b4aa74 1982 btrfs_release_path(path);
d555438b 1983 if (!ret && update_size) {
6ef06d27 1984 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
1985 ret = btrfs_update_inode(trans, root, dir);
1986 }
e02119d5
CM
1987 kfree(name);
1988 iput(dir);
bb53eda9
FM
1989 if (!ret && name_added)
1990 ret = 1;
3650860b 1991 return ret;
e02119d5
CM
1992
1993insert:
725af92a
NB
1994 /*
1995 * Check if the inode reference exists in the log for the given name,
1996 * inode and parent inode
1997 */
1998 found_key.objectid = log_key.objectid;
1999 found_key.type = BTRFS_INODE_REF_KEY;
2000 found_key.offset = key->objectid;
2001 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2002 if (ret < 0) {
2003 goto out;
2004 } else if (ret) {
2005 /* The dentry will be added later. */
2006 ret = 0;
2007 update_size = false;
2008 goto out;
2009 }
2010
2011 found_key.objectid = log_key.objectid;
2012 found_key.type = BTRFS_INODE_EXTREF_KEY;
2013 found_key.offset = key->objectid;
2014 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2015 name_len);
2016 if (ret < 0) {
2017 goto out;
2018 } else if (ret) {
df8d116f
FM
2019 /* The dentry will be added later. */
2020 ret = 0;
2021 update_size = false;
2022 goto out;
2023 }
b3b4aa74 2024 btrfs_release_path(path);
60d53eb3
Z
2025 ret = insert_one_name(trans, root, key->objectid, key->offset,
2026 name, name_len, &log_key);
df8d116f 2027 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2028 goto out;
bb53eda9
FM
2029 if (!ret)
2030 name_added = true;
d555438b 2031 update_size = false;
3650860b 2032 ret = 0;
e02119d5
CM
2033 goto out;
2034}
2035
2036/*
2037 * find all the names in a directory item and reconcile them into
2038 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2039 * one name in a directory item, but the same code gets used for
2040 * both directory index types
2041 */
2042static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2043 struct btrfs_root *root,
2044 struct btrfs_path *path,
2045 struct extent_buffer *eb, int slot,
2046 struct btrfs_key *key)
2047{
bb53eda9 2048 int ret = 0;
e02119d5
CM
2049 u32 item_size = btrfs_item_size_nr(eb, slot);
2050 struct btrfs_dir_item *di;
2051 int name_len;
2052 unsigned long ptr;
2053 unsigned long ptr_end;
bb53eda9 2054 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2055
2056 ptr = btrfs_item_ptr_offset(eb, slot);
2057 ptr_end = ptr + item_size;
d397712b 2058 while (ptr < ptr_end) {
e02119d5
CM
2059 di = (struct btrfs_dir_item *)ptr;
2060 name_len = btrfs_dir_name_len(eb, di);
2061 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2062 if (ret < 0)
2063 break;
e02119d5
CM
2064 ptr = (unsigned long)(di + 1);
2065 ptr += name_len;
bb53eda9
FM
2066
2067 /*
2068 * If this entry refers to a non-directory (directories can not
2069 * have a link count > 1) and it was added in the transaction
2070 * that was not committed, make sure we fixup the link count of
2071 * the inode it the entry points to. Otherwise something like
2072 * the following would result in a directory pointing to an
2073 * inode with a wrong link that does not account for this dir
2074 * entry:
2075 *
2076 * mkdir testdir
2077 * touch testdir/foo
2078 * touch testdir/bar
2079 * sync
2080 *
2081 * ln testdir/bar testdir/bar_link
2082 * ln testdir/foo testdir/foo_link
2083 * xfs_io -c "fsync" testdir/bar
2084 *
2085 * <power failure>
2086 *
2087 * mount fs, log replay happens
2088 *
2089 * File foo would remain with a link count of 1 when it has two
2090 * entries pointing to it in the directory testdir. This would
2091 * make it impossible to ever delete the parent directory has
2092 * it would result in stale dentries that can never be deleted.
2093 */
2094 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2095 struct btrfs_key di_key;
2096
2097 if (!fixup_path) {
2098 fixup_path = btrfs_alloc_path();
2099 if (!fixup_path) {
2100 ret = -ENOMEM;
2101 break;
2102 }
2103 }
2104
2105 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2106 ret = link_to_fixup_dir(trans, root, fixup_path,
2107 di_key.objectid);
2108 if (ret)
2109 break;
2110 }
2111 ret = 0;
e02119d5 2112 }
bb53eda9
FM
2113 btrfs_free_path(fixup_path);
2114 return ret;
e02119d5
CM
2115}
2116
2117/*
2118 * directory replay has two parts. There are the standard directory
2119 * items in the log copied from the subvolume, and range items
2120 * created in the log while the subvolume was logged.
2121 *
2122 * The range items tell us which parts of the key space the log
2123 * is authoritative for. During replay, if a key in the subvolume
2124 * directory is in a logged range item, but not actually in the log
2125 * that means it was deleted from the directory before the fsync
2126 * and should be removed.
2127 */
2128static noinline int find_dir_range(struct btrfs_root *root,
2129 struct btrfs_path *path,
2130 u64 dirid, int key_type,
2131 u64 *start_ret, u64 *end_ret)
2132{
2133 struct btrfs_key key;
2134 u64 found_end;
2135 struct btrfs_dir_log_item *item;
2136 int ret;
2137 int nritems;
2138
2139 if (*start_ret == (u64)-1)
2140 return 1;
2141
2142 key.objectid = dirid;
2143 key.type = key_type;
2144 key.offset = *start_ret;
2145
2146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2147 if (ret < 0)
2148 goto out;
2149 if (ret > 0) {
2150 if (path->slots[0] == 0)
2151 goto out;
2152 path->slots[0]--;
2153 }
2154 if (ret != 0)
2155 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2156
2157 if (key.type != key_type || key.objectid != dirid) {
2158 ret = 1;
2159 goto next;
2160 }
2161 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2162 struct btrfs_dir_log_item);
2163 found_end = btrfs_dir_log_end(path->nodes[0], item);
2164
2165 if (*start_ret >= key.offset && *start_ret <= found_end) {
2166 ret = 0;
2167 *start_ret = key.offset;
2168 *end_ret = found_end;
2169 goto out;
2170 }
2171 ret = 1;
2172next:
2173 /* check the next slot in the tree to see if it is a valid item */
2174 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2175 path->slots[0]++;
e02119d5
CM
2176 if (path->slots[0] >= nritems) {
2177 ret = btrfs_next_leaf(root, path);
2178 if (ret)
2179 goto out;
e02119d5
CM
2180 }
2181
2182 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2183
2184 if (key.type != key_type || key.objectid != dirid) {
2185 ret = 1;
2186 goto out;
2187 }
2188 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2189 struct btrfs_dir_log_item);
2190 found_end = btrfs_dir_log_end(path->nodes[0], item);
2191 *start_ret = key.offset;
2192 *end_ret = found_end;
2193 ret = 0;
2194out:
b3b4aa74 2195 btrfs_release_path(path);
e02119d5
CM
2196 return ret;
2197}
2198
2199/*
2200 * this looks for a given directory item in the log. If the directory
2201 * item is not in the log, the item is removed and the inode it points
2202 * to is unlinked
2203 */
2204static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2205 struct btrfs_root *root,
2206 struct btrfs_root *log,
2207 struct btrfs_path *path,
2208 struct btrfs_path *log_path,
2209 struct inode *dir,
2210 struct btrfs_key *dir_key)
2211{
2212 int ret;
2213 struct extent_buffer *eb;
2214 int slot;
2215 u32 item_size;
2216 struct btrfs_dir_item *di;
2217 struct btrfs_dir_item *log_di;
2218 int name_len;
2219 unsigned long ptr;
2220 unsigned long ptr_end;
2221 char *name;
2222 struct inode *inode;
2223 struct btrfs_key location;
2224
2225again:
2226 eb = path->nodes[0];
2227 slot = path->slots[0];
2228 item_size = btrfs_item_size_nr(eb, slot);
2229 ptr = btrfs_item_ptr_offset(eb, slot);
2230 ptr_end = ptr + item_size;
d397712b 2231 while (ptr < ptr_end) {
e02119d5
CM
2232 di = (struct btrfs_dir_item *)ptr;
2233 name_len = btrfs_dir_name_len(eb, di);
2234 name = kmalloc(name_len, GFP_NOFS);
2235 if (!name) {
2236 ret = -ENOMEM;
2237 goto out;
2238 }
2239 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2240 name_len);
2241 log_di = NULL;
12fcfd22 2242 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2243 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2244 dir_key->objectid,
2245 name, name_len, 0);
12fcfd22 2246 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2247 log_di = btrfs_lookup_dir_index_item(trans, log,
2248 log_path,
2249 dir_key->objectid,
2250 dir_key->offset,
2251 name, name_len, 0);
2252 }
8d9e220c 2253 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2254 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2255 btrfs_release_path(path);
2256 btrfs_release_path(log_path);
e02119d5 2257 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2258 if (!inode) {
2259 kfree(name);
2260 return -EIO;
2261 }
e02119d5
CM
2262
2263 ret = link_to_fixup_dir(trans, root,
2264 path, location.objectid);
3650860b
JB
2265 if (ret) {
2266 kfree(name);
2267 iput(inode);
2268 goto out;
2269 }
2270
8b558c5f 2271 inc_nlink(inode);
4ec5934e
NB
2272 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2273 BTRFS_I(inode), name, name_len);
3650860b 2274 if (!ret)
e5c304e6 2275 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2276 kfree(name);
2277 iput(inode);
3650860b
JB
2278 if (ret)
2279 goto out;
e02119d5
CM
2280
2281 /* there might still be more names under this key
2282 * check and repeat if required
2283 */
2284 ret = btrfs_search_slot(NULL, root, dir_key, path,
2285 0, 0);
2286 if (ret == 0)
2287 goto again;
2288 ret = 0;
2289 goto out;
269d040f
FDBM
2290 } else if (IS_ERR(log_di)) {
2291 kfree(name);
2292 return PTR_ERR(log_di);
e02119d5 2293 }
b3b4aa74 2294 btrfs_release_path(log_path);
e02119d5
CM
2295 kfree(name);
2296
2297 ptr = (unsigned long)(di + 1);
2298 ptr += name_len;
2299 }
2300 ret = 0;
2301out:
b3b4aa74
DS
2302 btrfs_release_path(path);
2303 btrfs_release_path(log_path);
e02119d5
CM
2304 return ret;
2305}
2306
4f764e51
FM
2307static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2308 struct btrfs_root *root,
2309 struct btrfs_root *log,
2310 struct btrfs_path *path,
2311 const u64 ino)
2312{
2313 struct btrfs_key search_key;
2314 struct btrfs_path *log_path;
2315 int i;
2316 int nritems;
2317 int ret;
2318
2319 log_path = btrfs_alloc_path();
2320 if (!log_path)
2321 return -ENOMEM;
2322
2323 search_key.objectid = ino;
2324 search_key.type = BTRFS_XATTR_ITEM_KEY;
2325 search_key.offset = 0;
2326again:
2327 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2328 if (ret < 0)
2329 goto out;
2330process_leaf:
2331 nritems = btrfs_header_nritems(path->nodes[0]);
2332 for (i = path->slots[0]; i < nritems; i++) {
2333 struct btrfs_key key;
2334 struct btrfs_dir_item *di;
2335 struct btrfs_dir_item *log_di;
2336 u32 total_size;
2337 u32 cur;
2338
2339 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2340 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2341 ret = 0;
2342 goto out;
2343 }
2344
2345 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2346 total_size = btrfs_item_size_nr(path->nodes[0], i);
2347 cur = 0;
2348 while (cur < total_size) {
2349 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2350 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2351 u32 this_len = sizeof(*di) + name_len + data_len;
2352 char *name;
2353
2354 name = kmalloc(name_len, GFP_NOFS);
2355 if (!name) {
2356 ret = -ENOMEM;
2357 goto out;
2358 }
2359 read_extent_buffer(path->nodes[0], name,
2360 (unsigned long)(di + 1), name_len);
2361
2362 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2363 name, name_len, 0);
2364 btrfs_release_path(log_path);
2365 if (!log_di) {
2366 /* Doesn't exist in log tree, so delete it. */
2367 btrfs_release_path(path);
2368 di = btrfs_lookup_xattr(trans, root, path, ino,
2369 name, name_len, -1);
2370 kfree(name);
2371 if (IS_ERR(di)) {
2372 ret = PTR_ERR(di);
2373 goto out;
2374 }
2375 ASSERT(di);
2376 ret = btrfs_delete_one_dir_name(trans, root,
2377 path, di);
2378 if (ret)
2379 goto out;
2380 btrfs_release_path(path);
2381 search_key = key;
2382 goto again;
2383 }
2384 kfree(name);
2385 if (IS_ERR(log_di)) {
2386 ret = PTR_ERR(log_di);
2387 goto out;
2388 }
2389 cur += this_len;
2390 di = (struct btrfs_dir_item *)((char *)di + this_len);
2391 }
2392 }
2393 ret = btrfs_next_leaf(root, path);
2394 if (ret > 0)
2395 ret = 0;
2396 else if (ret == 0)
2397 goto process_leaf;
2398out:
2399 btrfs_free_path(log_path);
2400 btrfs_release_path(path);
2401 return ret;
2402}
2403
2404
e02119d5
CM
2405/*
2406 * deletion replay happens before we copy any new directory items
2407 * out of the log or out of backreferences from inodes. It
2408 * scans the log to find ranges of keys that log is authoritative for,
2409 * and then scans the directory to find items in those ranges that are
2410 * not present in the log.
2411 *
2412 * Anything we don't find in the log is unlinked and removed from the
2413 * directory.
2414 */
2415static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2416 struct btrfs_root *root,
2417 struct btrfs_root *log,
2418 struct btrfs_path *path,
12fcfd22 2419 u64 dirid, int del_all)
e02119d5
CM
2420{
2421 u64 range_start;
2422 u64 range_end;
2423 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2424 int ret = 0;
2425 struct btrfs_key dir_key;
2426 struct btrfs_key found_key;
2427 struct btrfs_path *log_path;
2428 struct inode *dir;
2429
2430 dir_key.objectid = dirid;
2431 dir_key.type = BTRFS_DIR_ITEM_KEY;
2432 log_path = btrfs_alloc_path();
2433 if (!log_path)
2434 return -ENOMEM;
2435
2436 dir = read_one_inode(root, dirid);
2437 /* it isn't an error if the inode isn't there, that can happen
2438 * because we replay the deletes before we copy in the inode item
2439 * from the log
2440 */
2441 if (!dir) {
2442 btrfs_free_path(log_path);
2443 return 0;
2444 }
2445again:
2446 range_start = 0;
2447 range_end = 0;
d397712b 2448 while (1) {
12fcfd22
CM
2449 if (del_all)
2450 range_end = (u64)-1;
2451 else {
2452 ret = find_dir_range(log, path, dirid, key_type,
2453 &range_start, &range_end);
2454 if (ret != 0)
2455 break;
2456 }
e02119d5
CM
2457
2458 dir_key.offset = range_start;
d397712b 2459 while (1) {
e02119d5
CM
2460 int nritems;
2461 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2462 0, 0);
2463 if (ret < 0)
2464 goto out;
2465
2466 nritems = btrfs_header_nritems(path->nodes[0]);
2467 if (path->slots[0] >= nritems) {
2468 ret = btrfs_next_leaf(root, path);
b98def7c 2469 if (ret == 1)
e02119d5 2470 break;
b98def7c
LB
2471 else if (ret < 0)
2472 goto out;
e02119d5
CM
2473 }
2474 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2475 path->slots[0]);
2476 if (found_key.objectid != dirid ||
2477 found_key.type != dir_key.type)
2478 goto next_type;
2479
2480 if (found_key.offset > range_end)
2481 break;
2482
2483 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2484 log_path, dir,
2485 &found_key);
3650860b
JB
2486 if (ret)
2487 goto out;
e02119d5
CM
2488 if (found_key.offset == (u64)-1)
2489 break;
2490 dir_key.offset = found_key.offset + 1;
2491 }
b3b4aa74 2492 btrfs_release_path(path);
e02119d5
CM
2493 if (range_end == (u64)-1)
2494 break;
2495 range_start = range_end + 1;
2496 }
2497
2498next_type:
2499 ret = 0;
2500 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2501 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2502 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2503 btrfs_release_path(path);
e02119d5
CM
2504 goto again;
2505 }
2506out:
b3b4aa74 2507 btrfs_release_path(path);
e02119d5
CM
2508 btrfs_free_path(log_path);
2509 iput(dir);
2510 return ret;
2511}
2512
2513/*
2514 * the process_func used to replay items from the log tree. This
2515 * gets called in two different stages. The first stage just looks
2516 * for inodes and makes sure they are all copied into the subvolume.
2517 *
2518 * The second stage copies all the other item types from the log into
2519 * the subvolume. The two stage approach is slower, but gets rid of
2520 * lots of complexity around inodes referencing other inodes that exist
2521 * only in the log (references come from either directory items or inode
2522 * back refs).
2523 */
2524static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2525 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2526{
2527 int nritems;
2528 struct btrfs_path *path;
2529 struct btrfs_root *root = wc->replay_dest;
2530 struct btrfs_key key;
e02119d5
CM
2531 int i;
2532 int ret;
2533
581c1760 2534 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2535 if (ret)
2536 return ret;
e02119d5
CM
2537
2538 level = btrfs_header_level(eb);
2539
2540 if (level != 0)
2541 return 0;
2542
2543 path = btrfs_alloc_path();
1e5063d0
MF
2544 if (!path)
2545 return -ENOMEM;
e02119d5
CM
2546
2547 nritems = btrfs_header_nritems(eb);
2548 for (i = 0; i < nritems; i++) {
2549 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2550
2551 /* inode keys are done during the first stage */
2552 if (key.type == BTRFS_INODE_ITEM_KEY &&
2553 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2554 struct btrfs_inode_item *inode_item;
2555 u32 mode;
2556
2557 inode_item = btrfs_item_ptr(eb, i,
2558 struct btrfs_inode_item);
f2d72f42
FM
2559 /*
2560 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2561 * and never got linked before the fsync, skip it, as
2562 * replaying it is pointless since it would be deleted
2563 * later. We skip logging tmpfiles, but it's always
2564 * possible we are replaying a log created with a kernel
2565 * that used to log tmpfiles.
2566 */
2567 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2568 wc->ignore_cur_inode = true;
2569 continue;
2570 } else {
2571 wc->ignore_cur_inode = false;
2572 }
4f764e51
FM
2573 ret = replay_xattr_deletes(wc->trans, root, log,
2574 path, key.objectid);
2575 if (ret)
2576 break;
e02119d5
CM
2577 mode = btrfs_inode_mode(eb, inode_item);
2578 if (S_ISDIR(mode)) {
2579 ret = replay_dir_deletes(wc->trans,
12fcfd22 2580 root, log, path, key.objectid, 0);
b50c6e25
JB
2581 if (ret)
2582 break;
e02119d5
CM
2583 }
2584 ret = overwrite_item(wc->trans, root, path,
2585 eb, i, &key);
b50c6e25
JB
2586 if (ret)
2587 break;
e02119d5 2588
471d557a
FM
2589 /*
2590 * Before replaying extents, truncate the inode to its
2591 * size. We need to do it now and not after log replay
2592 * because before an fsync we can have prealloc extents
2593 * added beyond the inode's i_size. If we did it after,
2594 * through orphan cleanup for example, we would drop
2595 * those prealloc extents just after replaying them.
e02119d5
CM
2596 */
2597 if (S_ISREG(mode)) {
471d557a
FM
2598 struct inode *inode;
2599 u64 from;
2600
2601 inode = read_one_inode(root, key.objectid);
2602 if (!inode) {
2603 ret = -EIO;
2604 break;
2605 }
2606 from = ALIGN(i_size_read(inode),
2607 root->fs_info->sectorsize);
2608 ret = btrfs_drop_extents(wc->trans, root, inode,
2609 from, (u64)-1, 1);
471d557a 2610 if (!ret) {
f2d72f42 2611 /* Update the inode's nbytes. */
471d557a
FM
2612 ret = btrfs_update_inode(wc->trans,
2613 root, inode);
2614 }
2615 iput(inode);
b50c6e25
JB
2616 if (ret)
2617 break;
e02119d5 2618 }
c71bf099 2619
e02119d5
CM
2620 ret = link_to_fixup_dir(wc->trans, root,
2621 path, key.objectid);
b50c6e25
JB
2622 if (ret)
2623 break;
e02119d5 2624 }
dd8e7217 2625
f2d72f42
FM
2626 if (wc->ignore_cur_inode)
2627 continue;
2628
dd8e7217
JB
2629 if (key.type == BTRFS_DIR_INDEX_KEY &&
2630 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2631 ret = replay_one_dir_item(wc->trans, root, path,
2632 eb, i, &key);
2633 if (ret)
2634 break;
2635 }
2636
e02119d5
CM
2637 if (wc->stage < LOG_WALK_REPLAY_ALL)
2638 continue;
2639
2640 /* these keys are simply copied */
2641 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2642 ret = overwrite_item(wc->trans, root, path,
2643 eb, i, &key);
b50c6e25
JB
2644 if (ret)
2645 break;
2da1c669
LB
2646 } else if (key.type == BTRFS_INODE_REF_KEY ||
2647 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2648 ret = add_inode_ref(wc->trans, root, log, path,
2649 eb, i, &key);
b50c6e25
JB
2650 if (ret && ret != -ENOENT)
2651 break;
2652 ret = 0;
e02119d5
CM
2653 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2654 ret = replay_one_extent(wc->trans, root, path,
2655 eb, i, &key);
b50c6e25
JB
2656 if (ret)
2657 break;
dd8e7217 2658 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2659 ret = replay_one_dir_item(wc->trans, root, path,
2660 eb, i, &key);
b50c6e25
JB
2661 if (ret)
2662 break;
e02119d5
CM
2663 }
2664 }
2665 btrfs_free_path(path);
b50c6e25 2666 return ret;
e02119d5
CM
2667}
2668
6787bb9f
NB
2669/*
2670 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2671 */
2672static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2673{
2674 struct btrfs_block_group *cache;
2675
2676 cache = btrfs_lookup_block_group(fs_info, start);
2677 if (!cache) {
2678 btrfs_err(fs_info, "unable to find block group for %llu", start);
2679 return;
2680 }
2681
2682 spin_lock(&cache->space_info->lock);
2683 spin_lock(&cache->lock);
2684 cache->reserved -= fs_info->nodesize;
2685 cache->space_info->bytes_reserved -= fs_info->nodesize;
2686 spin_unlock(&cache->lock);
2687 spin_unlock(&cache->space_info->lock);
2688
2689 btrfs_put_block_group(cache);
2690}
2691
d397712b 2692static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2693 struct btrfs_root *root,
2694 struct btrfs_path *path, int *level,
2695 struct walk_control *wc)
2696{
0b246afa 2697 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2698 u64 bytenr;
2699 u64 ptr_gen;
2700 struct extent_buffer *next;
2701 struct extent_buffer *cur;
e02119d5
CM
2702 u32 blocksize;
2703 int ret = 0;
2704
d397712b 2705 while (*level > 0) {
581c1760
QW
2706 struct btrfs_key first_key;
2707
e02119d5
CM
2708 cur = path->nodes[*level];
2709
fae7f21c 2710 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2711
2712 if (path->slots[*level] >=
2713 btrfs_header_nritems(cur))
2714 break;
2715
2716 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2717 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2718 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2719 blocksize = fs_info->nodesize;
e02119d5 2720
2ff7e61e 2721 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2722 if (IS_ERR(next))
2723 return PTR_ERR(next);
e02119d5 2724
e02119d5 2725 if (*level == 1) {
581c1760
QW
2726 ret = wc->process_func(root, next, wc, ptr_gen,
2727 *level - 1);
b50c6e25
JB
2728 if (ret) {
2729 free_extent_buffer(next);
1e5063d0 2730 return ret;
b50c6e25 2731 }
4a500fd1 2732
e02119d5
CM
2733 path->slots[*level]++;
2734 if (wc->free) {
581c1760
QW
2735 ret = btrfs_read_buffer(next, ptr_gen,
2736 *level - 1, &first_key);
018642a1
TI
2737 if (ret) {
2738 free_extent_buffer(next);
2739 return ret;
2740 }
e02119d5 2741
681ae509
JB
2742 if (trans) {
2743 btrfs_tree_lock(next);
8bead258 2744 btrfs_set_lock_blocking_write(next);
6a884d7d 2745 btrfs_clean_tree_block(next);
681ae509
JB
2746 btrfs_wait_tree_block_writeback(next);
2747 btrfs_tree_unlock(next);
7bfc1007 2748 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2749 bytenr, blocksize);
2750 if (ret) {
2751 free_extent_buffer(next);
2752 return ret;
2753 }
1846430c
LB
2754 } else {
2755 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2756 clear_extent_buffer_dirty(next);
10e958d5 2757 unaccount_log_buffer(fs_info, bytenr);
3650860b 2758 }
e02119d5
CM
2759 }
2760 free_extent_buffer(next);
2761 continue;
2762 }
581c1760 2763 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2764 if (ret) {
2765 free_extent_buffer(next);
2766 return ret;
2767 }
e02119d5 2768
e02119d5
CM
2769 if (path->nodes[*level-1])
2770 free_extent_buffer(path->nodes[*level-1]);
2771 path->nodes[*level-1] = next;
2772 *level = btrfs_header_level(next);
2773 path->slots[*level] = 0;
2774 cond_resched();
2775 }
4a500fd1 2776 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2777
2778 cond_resched();
2779 return 0;
2780}
2781
d397712b 2782static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2783 struct btrfs_root *root,
2784 struct btrfs_path *path, int *level,
2785 struct walk_control *wc)
2786{
0b246afa 2787 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2788 int i;
2789 int slot;
2790 int ret;
2791
d397712b 2792 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2793 slot = path->slots[i];
4a500fd1 2794 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2795 path->slots[i]++;
2796 *level = i;
2797 WARN_ON(*level == 0);
2798 return 0;
2799 } else {
1e5063d0 2800 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2801 btrfs_header_generation(path->nodes[*level]),
2802 *level);
1e5063d0
MF
2803 if (ret)
2804 return ret;
2805
e02119d5
CM
2806 if (wc->free) {
2807 struct extent_buffer *next;
2808
2809 next = path->nodes[*level];
2810
681ae509
JB
2811 if (trans) {
2812 btrfs_tree_lock(next);
8bead258 2813 btrfs_set_lock_blocking_write(next);
6a884d7d 2814 btrfs_clean_tree_block(next);
681ae509
JB
2815 btrfs_wait_tree_block_writeback(next);
2816 btrfs_tree_unlock(next);
7bfc1007 2817 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2818 path->nodes[*level]->start,
2819 path->nodes[*level]->len);
2820 if (ret)
2821 return ret;
1846430c
LB
2822 } else {
2823 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2824 clear_extent_buffer_dirty(next);
e02119d5 2825
10e958d5
NB
2826 unaccount_log_buffer(fs_info,
2827 path->nodes[*level]->start);
2828 }
e02119d5
CM
2829 }
2830 free_extent_buffer(path->nodes[*level]);
2831 path->nodes[*level] = NULL;
2832 *level = i + 1;
2833 }
2834 }
2835 return 1;
2836}
2837
2838/*
2839 * drop the reference count on the tree rooted at 'snap'. This traverses
2840 * the tree freeing any blocks that have a ref count of zero after being
2841 * decremented.
2842 */
2843static int walk_log_tree(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *log, struct walk_control *wc)
2845{
2ff7e61e 2846 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2847 int ret = 0;
2848 int wret;
2849 int level;
2850 struct btrfs_path *path;
e02119d5
CM
2851 int orig_level;
2852
2853 path = btrfs_alloc_path();
db5b493a
TI
2854 if (!path)
2855 return -ENOMEM;
e02119d5
CM
2856
2857 level = btrfs_header_level(log->node);
2858 orig_level = level;
2859 path->nodes[level] = log->node;
67439dad 2860 atomic_inc(&log->node->refs);
e02119d5
CM
2861 path->slots[level] = 0;
2862
d397712b 2863 while (1) {
e02119d5
CM
2864 wret = walk_down_log_tree(trans, log, path, &level, wc);
2865 if (wret > 0)
2866 break;
79787eaa 2867 if (wret < 0) {
e02119d5 2868 ret = wret;
79787eaa
JM
2869 goto out;
2870 }
e02119d5
CM
2871
2872 wret = walk_up_log_tree(trans, log, path, &level, wc);
2873 if (wret > 0)
2874 break;
79787eaa 2875 if (wret < 0) {
e02119d5 2876 ret = wret;
79787eaa
JM
2877 goto out;
2878 }
e02119d5
CM
2879 }
2880
2881 /* was the root node processed? if not, catch it here */
2882 if (path->nodes[orig_level]) {
79787eaa 2883 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2884 btrfs_header_generation(path->nodes[orig_level]),
2885 orig_level);
79787eaa
JM
2886 if (ret)
2887 goto out;
e02119d5
CM
2888 if (wc->free) {
2889 struct extent_buffer *next;
2890
2891 next = path->nodes[orig_level];
2892
681ae509
JB
2893 if (trans) {
2894 btrfs_tree_lock(next);
8bead258 2895 btrfs_set_lock_blocking_write(next);
6a884d7d 2896 btrfs_clean_tree_block(next);
681ae509
JB
2897 btrfs_wait_tree_block_writeback(next);
2898 btrfs_tree_unlock(next);
7bfc1007 2899 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2900 next->start, next->len);
2901 if (ret)
2902 goto out;
1846430c
LB
2903 } else {
2904 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2905 clear_extent_buffer_dirty(next);
10e958d5 2906 unaccount_log_buffer(fs_info, next->start);
681ae509 2907 }
e02119d5
CM
2908 }
2909 }
2910
79787eaa 2911out:
e02119d5 2912 btrfs_free_path(path);
e02119d5
CM
2913 return ret;
2914}
2915
7237f183
YZ
2916/*
2917 * helper function to update the item for a given subvolumes log root
2918 * in the tree of log roots
2919 */
2920static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2921 struct btrfs_root *log,
2922 struct btrfs_root_item *root_item)
7237f183 2923{
0b246afa 2924 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2925 int ret;
2926
2927 if (log->log_transid == 1) {
2928 /* insert root item on the first sync */
0b246afa 2929 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2930 &log->root_key, root_item);
7237f183 2931 } else {
0b246afa 2932 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2933 &log->root_key, root_item);
7237f183
YZ
2934 }
2935 return ret;
2936}
2937
60d53eb3 2938static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2939{
2940 DEFINE_WAIT(wait);
7237f183 2941 int index = transid % 2;
e02119d5 2942
7237f183
YZ
2943 /*
2944 * we only allow two pending log transactions at a time,
2945 * so we know that if ours is more than 2 older than the
2946 * current transaction, we're done
2947 */
49e83f57 2948 for (;;) {
7237f183
YZ
2949 prepare_to_wait(&root->log_commit_wait[index],
2950 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2951
49e83f57
LB
2952 if (!(root->log_transid_committed < transid &&
2953 atomic_read(&root->log_commit[index])))
2954 break;
12fcfd22 2955
49e83f57
LB
2956 mutex_unlock(&root->log_mutex);
2957 schedule();
7237f183 2958 mutex_lock(&root->log_mutex);
49e83f57
LB
2959 }
2960 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2961}
2962
60d53eb3 2963static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2964{
2965 DEFINE_WAIT(wait);
8b050d35 2966
49e83f57
LB
2967 for (;;) {
2968 prepare_to_wait(&root->log_writer_wait, &wait,
2969 TASK_UNINTERRUPTIBLE);
2970 if (!atomic_read(&root->log_writers))
2971 break;
2972
7237f183 2973 mutex_unlock(&root->log_mutex);
49e83f57 2974 schedule();
575849ec 2975 mutex_lock(&root->log_mutex);
7237f183 2976 }
49e83f57 2977 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2978}
2979
8b050d35
MX
2980static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2981 struct btrfs_log_ctx *ctx)
2982{
2983 if (!ctx)
2984 return;
2985
2986 mutex_lock(&root->log_mutex);
2987 list_del_init(&ctx->list);
2988 mutex_unlock(&root->log_mutex);
2989}
2990
2991/*
2992 * Invoked in log mutex context, or be sure there is no other task which
2993 * can access the list.
2994 */
2995static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2996 int index, int error)
2997{
2998 struct btrfs_log_ctx *ctx;
570dd450 2999 struct btrfs_log_ctx *safe;
8b050d35 3000
570dd450
CM
3001 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3002 list_del_init(&ctx->list);
8b050d35 3003 ctx->log_ret = error;
570dd450 3004 }
8b050d35
MX
3005
3006 INIT_LIST_HEAD(&root->log_ctxs[index]);
3007}
3008
e02119d5
CM
3009/*
3010 * btrfs_sync_log does sends a given tree log down to the disk and
3011 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3012 * you know that any inodes previously logged are safely on disk only
3013 * if it returns 0.
3014 *
3015 * Any other return value means you need to call btrfs_commit_transaction.
3016 * Some of the edge cases for fsyncing directories that have had unlinks
3017 * or renames done in the past mean that sometimes the only safe
3018 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3019 * that has happened.
e02119d5
CM
3020 */
3021int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3022 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3023{
7237f183
YZ
3024 int index1;
3025 int index2;
8cef4e16 3026 int mark;
e02119d5 3027 int ret;
0b246afa 3028 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3029 struct btrfs_root *log = root->log_root;
0b246afa 3030 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3031 struct btrfs_root_item new_root_item;
bb14a59b 3032 int log_transid = 0;
8b050d35 3033 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3034 struct blk_plug plug;
e02119d5 3035
7237f183 3036 mutex_lock(&root->log_mutex);
d1433deb
MX
3037 log_transid = ctx->log_transid;
3038 if (root->log_transid_committed >= log_transid) {
3039 mutex_unlock(&root->log_mutex);
3040 return ctx->log_ret;
3041 }
3042
3043 index1 = log_transid % 2;
7237f183 3044 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3045 wait_log_commit(root, log_transid);
7237f183 3046 mutex_unlock(&root->log_mutex);
8b050d35 3047 return ctx->log_ret;
e02119d5 3048 }
d1433deb 3049 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3050 atomic_set(&root->log_commit[index1], 1);
3051
3052 /* wait for previous tree log sync to complete */
3053 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3054 wait_log_commit(root, log_transid - 1);
48cab2e0 3055
86df7eb9 3056 while (1) {
2ecb7923 3057 int batch = atomic_read(&root->log_batch);
cd354ad6 3058 /* when we're on an ssd, just kick the log commit out */
0b246afa 3059 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3060 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3061 mutex_unlock(&root->log_mutex);
3062 schedule_timeout_uninterruptible(1);
3063 mutex_lock(&root->log_mutex);
3064 }
60d53eb3 3065 wait_for_writer(root);
2ecb7923 3066 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3067 break;
3068 }
e02119d5 3069
12fcfd22 3070 /* bail out if we need to do a full commit */
4884b8e8 3071 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3072 ret = -EAGAIN;
3073 mutex_unlock(&root->log_mutex);
3074 goto out;
3075 }
3076
8cef4e16
YZ
3077 if (log_transid % 2 == 0)
3078 mark = EXTENT_DIRTY;
3079 else
3080 mark = EXTENT_NEW;
3081
690587d1
CM
3082 /* we start IO on all the marked extents here, but we don't actually
3083 * wait for them until later.
3084 */
c6adc9cc 3085 blk_start_plug(&plug);
2ff7e61e 3086 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 3087 if (ret) {
c6adc9cc 3088 blk_finish_plug(&plug);
66642832 3089 btrfs_abort_transaction(trans, ret);
90787766 3090 btrfs_set_log_full_commit(trans);
79787eaa
JM
3091 mutex_unlock(&root->log_mutex);
3092 goto out;
3093 }
7237f183 3094
4203e968
JB
3095 /*
3096 * We _must_ update under the root->log_mutex in order to make sure we
3097 * have a consistent view of the log root we are trying to commit at
3098 * this moment.
3099 *
3100 * We _must_ copy this into a local copy, because we are not holding the
3101 * log_root_tree->log_mutex yet. This is important because when we
3102 * commit the log_root_tree we must have a consistent view of the
3103 * log_root_tree when we update the super block to point at the
3104 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3105 * with the commit and possibly point at the new block which we may not
3106 * have written out.
3107 */
5d4f98a2 3108 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3109 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3110
7237f183
YZ
3111 root->log_transid++;
3112 log->log_transid = root->log_transid;
ff782e0a 3113 root->log_start_pid = 0;
7237f183 3114 /*
8cef4e16
YZ
3115 * IO has been started, blocks of the log tree have WRITTEN flag set
3116 * in their headers. new modifications of the log will be written to
3117 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3118 */
3119 mutex_unlock(&root->log_mutex);
3120
28a23593 3121 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 3122
7237f183 3123 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 3124 atomic_inc(&log_root_tree->log_batch);
7237f183 3125 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
3126
3127 index2 = log_root_tree->log_transid % 2;
3128 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3129 root_log_ctx.log_transid = log_root_tree->log_transid;
3130
7237f183
YZ
3131 mutex_unlock(&log_root_tree->log_mutex);
3132
7237f183 3133 mutex_lock(&log_root_tree->log_mutex);
4203e968
JB
3134
3135 /*
3136 * Now we are safe to update the log_root_tree because we're under the
3137 * log_mutex, and we're a current writer so we're holding the commit
3138 * open until we drop the log_mutex.
3139 */
3140 ret = update_log_root(trans, log, &new_root_item);
3141
7237f183 3142 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
093258e6
DS
3143 /* atomic_dec_and_test implies a barrier */
3144 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
7237f183
YZ
3145 }
3146
4a500fd1 3147 if (ret) {
d1433deb
MX
3148 if (!list_empty(&root_log_ctx.list))
3149 list_del_init(&root_log_ctx.list);
3150
c6adc9cc 3151 blk_finish_plug(&plug);
90787766 3152 btrfs_set_log_full_commit(trans);
995946dd 3153
79787eaa 3154 if (ret != -ENOSPC) {
66642832 3155 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3156 mutex_unlock(&log_root_tree->log_mutex);
3157 goto out;
3158 }
bf89d38f 3159 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3160 mutex_unlock(&log_root_tree->log_mutex);
3161 ret = -EAGAIN;
3162 goto out;
3163 }
3164
d1433deb 3165 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3166 blk_finish_plug(&plug);
cbd60aa7 3167 list_del_init(&root_log_ctx.list);
d1433deb
MX
3168 mutex_unlock(&log_root_tree->log_mutex);
3169 ret = root_log_ctx.log_ret;
3170 goto out;
3171 }
8b050d35 3172
d1433deb 3173 index2 = root_log_ctx.log_transid % 2;
7237f183 3174 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3175 blk_finish_plug(&plug);
bf89d38f 3176 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3177 wait_log_commit(log_root_tree,
d1433deb 3178 root_log_ctx.log_transid);
7237f183 3179 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3180 if (!ret)
3181 ret = root_log_ctx.log_ret;
7237f183
YZ
3182 goto out;
3183 }
d1433deb 3184 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3185 atomic_set(&log_root_tree->log_commit[index2], 1);
3186
12fcfd22 3187 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3188 wait_log_commit(log_root_tree,
d1433deb 3189 root_log_ctx.log_transid - 1);
12fcfd22
CM
3190 }
3191
60d53eb3 3192 wait_for_writer(log_root_tree);
7237f183 3193
12fcfd22
CM
3194 /*
3195 * now that we've moved on to the tree of log tree roots,
3196 * check the full commit flag again
3197 */
4884b8e8 3198 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3199 blk_finish_plug(&plug);
bf89d38f 3200 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3201 mutex_unlock(&log_root_tree->log_mutex);
3202 ret = -EAGAIN;
3203 goto out_wake_log_root;
3204 }
7237f183 3205
2ff7e61e 3206 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3207 &log_root_tree->dirty_log_pages,
3208 EXTENT_DIRTY | EXTENT_NEW);
3209 blk_finish_plug(&plug);
79787eaa 3210 if (ret) {
90787766 3211 btrfs_set_log_full_commit(trans);
66642832 3212 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3213 mutex_unlock(&log_root_tree->log_mutex);
3214 goto out_wake_log_root;
3215 }
bf89d38f 3216 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3217 if (!ret)
bf89d38f
JM
3218 ret = btrfs_wait_tree_log_extents(log_root_tree,
3219 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3220 if (ret) {
90787766 3221 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3222 mutex_unlock(&log_root_tree->log_mutex);
3223 goto out_wake_log_root;
3224 }
e02119d5 3225
0b246afa
JM
3226 btrfs_set_super_log_root(fs_info->super_for_commit,
3227 log_root_tree->node->start);
3228 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3229 btrfs_header_level(log_root_tree->node));
e02119d5 3230
7237f183 3231 log_root_tree->log_transid++;
7237f183
YZ
3232 mutex_unlock(&log_root_tree->log_mutex);
3233
3234 /*
52042d8e 3235 * Nobody else is going to jump in and write the ctree
7237f183
YZ
3236 * super here because the log_commit atomic below is protecting
3237 * us. We must be called with a transaction handle pinning
3238 * the running transaction open, so a full commit can't hop
3239 * in and cause problems either.
3240 */
eece6a9c 3241 ret = write_all_supers(fs_info, 1);
5af3e8cc 3242 if (ret) {
90787766 3243 btrfs_set_log_full_commit(trans);
66642832 3244 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3245 goto out_wake_log_root;
3246 }
7237f183 3247
257c62e1
CM
3248 mutex_lock(&root->log_mutex);
3249 if (root->last_log_commit < log_transid)
3250 root->last_log_commit = log_transid;
3251 mutex_unlock(&root->log_mutex);
3252
12fcfd22 3253out_wake_log_root:
570dd450 3254 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3255 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3256
d1433deb 3257 log_root_tree->log_transid_committed++;
7237f183 3258 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3259 mutex_unlock(&log_root_tree->log_mutex);
3260
33a9eca7 3261 /*
093258e6
DS
3262 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3263 * all the updates above are seen by the woken threads. It might not be
3264 * necessary, but proving that seems to be hard.
33a9eca7 3265 */
093258e6 3266 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3267out:
d1433deb 3268 mutex_lock(&root->log_mutex);
570dd450 3269 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3270 root->log_transid_committed++;
7237f183 3271 atomic_set(&root->log_commit[index1], 0);
d1433deb 3272 mutex_unlock(&root->log_mutex);
8b050d35 3273
33a9eca7 3274 /*
093258e6
DS
3275 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3276 * all the updates above are seen by the woken threads. It might not be
3277 * necessary, but proving that seems to be hard.
33a9eca7 3278 */
093258e6 3279 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3280 return ret;
e02119d5
CM
3281}
3282
4a500fd1
YZ
3283static void free_log_tree(struct btrfs_trans_handle *trans,
3284 struct btrfs_root *log)
e02119d5
CM
3285{
3286 int ret;
e02119d5
CM
3287 struct walk_control wc = {
3288 .free = 1,
3289 .process_func = process_one_buffer
3290 };
3291
681ae509 3292 ret = walk_log_tree(trans, log, &wc);
374b0e2d
JM
3293 if (ret) {
3294 if (trans)
3295 btrfs_abort_transaction(trans, ret);
3296 else
3297 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3298 }
e02119d5 3299
59b0713a
FM
3300 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3301 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
00246528 3302 btrfs_put_root(log);
4a500fd1
YZ
3303}
3304
3305/*
3306 * free all the extents used by the tree log. This should be called
3307 * at commit time of the full transaction
3308 */
3309int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3310{
3311 if (root->log_root) {
3312 free_log_tree(trans, root->log_root);
3313 root->log_root = NULL;
3314 }
3315 return 0;
3316}
3317
3318int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3319 struct btrfs_fs_info *fs_info)
3320{
3321 if (fs_info->log_root_tree) {
3322 free_log_tree(trans, fs_info->log_root_tree);
3323 fs_info->log_root_tree = NULL;
3324 }
e02119d5
CM
3325 return 0;
3326}
3327
803f0f64
FM
3328/*
3329 * Check if an inode was logged in the current transaction. We can't always rely
3330 * on an inode's logged_trans value, because it's an in-memory only field and
3331 * therefore not persisted. This means that its value is lost if the inode gets
3332 * evicted and loaded again from disk (in which case it has a value of 0, and
3333 * certainly it is smaller then any possible transaction ID), when that happens
3334 * the full_sync flag is set in the inode's runtime flags, so on that case we
3335 * assume eviction happened and ignore the logged_trans value, assuming the
3336 * worst case, that the inode was logged before in the current transaction.
3337 */
3338static bool inode_logged(struct btrfs_trans_handle *trans,
3339 struct btrfs_inode *inode)
3340{
3341 if (inode->logged_trans == trans->transid)
3342 return true;
3343
3344 if (inode->last_trans == trans->transid &&
3345 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3346 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3347 return true;
3348
3349 return false;
3350}
3351
e02119d5
CM
3352/*
3353 * If both a file and directory are logged, and unlinks or renames are
3354 * mixed in, we have a few interesting corners:
3355 *
3356 * create file X in dir Y
3357 * link file X to X.link in dir Y
3358 * fsync file X
3359 * unlink file X but leave X.link
3360 * fsync dir Y
3361 *
3362 * After a crash we would expect only X.link to exist. But file X
3363 * didn't get fsync'd again so the log has back refs for X and X.link.
3364 *
3365 * We solve this by removing directory entries and inode backrefs from the
3366 * log when a file that was logged in the current transaction is
3367 * unlinked. Any later fsync will include the updated log entries, and
3368 * we'll be able to reconstruct the proper directory items from backrefs.
3369 *
3370 * This optimizations allows us to avoid relogging the entire inode
3371 * or the entire directory.
3372 */
3373int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3374 struct btrfs_root *root,
3375 const char *name, int name_len,
49f34d1f 3376 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3377{
3378 struct btrfs_root *log;
3379 struct btrfs_dir_item *di;
3380 struct btrfs_path *path;
3381 int ret;
4a500fd1 3382 int err = 0;
e02119d5 3383 int bytes_del = 0;
49f34d1f 3384 u64 dir_ino = btrfs_ino(dir);
e02119d5 3385
803f0f64 3386 if (!inode_logged(trans, dir))
3a5f1d45
CM
3387 return 0;
3388
e02119d5
CM
3389 ret = join_running_log_trans(root);
3390 if (ret)
3391 return 0;
3392
49f34d1f 3393 mutex_lock(&dir->log_mutex);
e02119d5
CM
3394
3395 log = root->log_root;
3396 path = btrfs_alloc_path();
a62f44a5
TI
3397 if (!path) {
3398 err = -ENOMEM;
3399 goto out_unlock;
3400 }
2a29edc6 3401
33345d01 3402 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3403 name, name_len, -1);
4a500fd1
YZ
3404 if (IS_ERR(di)) {
3405 err = PTR_ERR(di);
3406 goto fail;
3407 }
3408 if (di) {
e02119d5
CM
3409 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3410 bytes_del += name_len;
3650860b
JB
3411 if (ret) {
3412 err = ret;
3413 goto fail;
3414 }
e02119d5 3415 }
b3b4aa74 3416 btrfs_release_path(path);
33345d01 3417 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3418 index, name, name_len, -1);
4a500fd1
YZ
3419 if (IS_ERR(di)) {
3420 err = PTR_ERR(di);
3421 goto fail;
3422 }
3423 if (di) {
e02119d5
CM
3424 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3425 bytes_del += name_len;
3650860b
JB
3426 if (ret) {
3427 err = ret;
3428 goto fail;
3429 }
e02119d5
CM
3430 }
3431
3432 /* update the directory size in the log to reflect the names
3433 * we have removed
3434 */
3435 if (bytes_del) {
3436 struct btrfs_key key;
3437
33345d01 3438 key.objectid = dir_ino;
e02119d5
CM
3439 key.offset = 0;
3440 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3441 btrfs_release_path(path);
e02119d5
CM
3442
3443 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3444 if (ret < 0) {
3445 err = ret;
3446 goto fail;
3447 }
e02119d5
CM
3448 if (ret == 0) {
3449 struct btrfs_inode_item *item;
3450 u64 i_size;
3451
3452 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3453 struct btrfs_inode_item);
3454 i_size = btrfs_inode_size(path->nodes[0], item);
3455 if (i_size > bytes_del)
3456 i_size -= bytes_del;
3457 else
3458 i_size = 0;
3459 btrfs_set_inode_size(path->nodes[0], item, i_size);
3460 btrfs_mark_buffer_dirty(path->nodes[0]);
3461 } else
3462 ret = 0;
b3b4aa74 3463 btrfs_release_path(path);
e02119d5 3464 }
4a500fd1 3465fail:
e02119d5 3466 btrfs_free_path(path);
a62f44a5 3467out_unlock:
49f34d1f 3468 mutex_unlock(&dir->log_mutex);
4a500fd1 3469 if (ret == -ENOSPC) {
90787766 3470 btrfs_set_log_full_commit(trans);
4a500fd1 3471 ret = 0;
79787eaa 3472 } else if (ret < 0)
66642832 3473 btrfs_abort_transaction(trans, ret);
79787eaa 3474
12fcfd22 3475 btrfs_end_log_trans(root);
e02119d5 3476
411fc6bc 3477 return err;
e02119d5
CM
3478}
3479
3480/* see comments for btrfs_del_dir_entries_in_log */
3481int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3482 struct btrfs_root *root,
3483 const char *name, int name_len,
a491abb2 3484 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3485{
3486 struct btrfs_root *log;
3487 u64 index;
3488 int ret;
3489
803f0f64 3490 if (!inode_logged(trans, inode))
3a5f1d45
CM
3491 return 0;
3492
e02119d5
CM
3493 ret = join_running_log_trans(root);
3494 if (ret)
3495 return 0;
3496 log = root->log_root;
a491abb2 3497 mutex_lock(&inode->log_mutex);
e02119d5 3498
a491abb2 3499 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3500 dirid, &index);
a491abb2 3501 mutex_unlock(&inode->log_mutex);
4a500fd1 3502 if (ret == -ENOSPC) {
90787766 3503 btrfs_set_log_full_commit(trans);
4a500fd1 3504 ret = 0;
79787eaa 3505 } else if (ret < 0 && ret != -ENOENT)
66642832 3506 btrfs_abort_transaction(trans, ret);
12fcfd22 3507 btrfs_end_log_trans(root);
e02119d5 3508
e02119d5
CM
3509 return ret;
3510}
3511
3512/*
3513 * creates a range item in the log for 'dirid'. first_offset and
3514 * last_offset tell us which parts of the key space the log should
3515 * be considered authoritative for.
3516 */
3517static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3518 struct btrfs_root *log,
3519 struct btrfs_path *path,
3520 int key_type, u64 dirid,
3521 u64 first_offset, u64 last_offset)
3522{
3523 int ret;
3524 struct btrfs_key key;
3525 struct btrfs_dir_log_item *item;
3526
3527 key.objectid = dirid;
3528 key.offset = first_offset;
3529 if (key_type == BTRFS_DIR_ITEM_KEY)
3530 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3531 else
3532 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3533 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3534 if (ret)
3535 return ret;
e02119d5
CM
3536
3537 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3538 struct btrfs_dir_log_item);
3539 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3540 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3541 btrfs_release_path(path);
e02119d5
CM
3542 return 0;
3543}
3544
3545/*
3546 * log all the items included in the current transaction for a given
3547 * directory. This also creates the range items in the log tree required
3548 * to replay anything deleted before the fsync
3549 */
3550static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3551 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3552 struct btrfs_path *path,
3553 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3554 struct btrfs_log_ctx *ctx,
e02119d5
CM
3555 u64 min_offset, u64 *last_offset_ret)
3556{
3557 struct btrfs_key min_key;
e02119d5
CM
3558 struct btrfs_root *log = root->log_root;
3559 struct extent_buffer *src;
4a500fd1 3560 int err = 0;
e02119d5
CM
3561 int ret;
3562 int i;
3563 int nritems;
3564 u64 first_offset = min_offset;
3565 u64 last_offset = (u64)-1;
684a5773 3566 u64 ino = btrfs_ino(inode);
e02119d5
CM
3567
3568 log = root->log_root;
e02119d5 3569
33345d01 3570 min_key.objectid = ino;
e02119d5
CM
3571 min_key.type = key_type;
3572 min_key.offset = min_offset;
3573
6174d3cb 3574 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3575
3576 /*
3577 * we didn't find anything from this transaction, see if there
3578 * is anything at all
3579 */
33345d01
LZ
3580 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3581 min_key.objectid = ino;
e02119d5
CM
3582 min_key.type = key_type;
3583 min_key.offset = (u64)-1;
b3b4aa74 3584 btrfs_release_path(path);
e02119d5
CM
3585 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3586 if (ret < 0) {
b3b4aa74 3587 btrfs_release_path(path);
e02119d5
CM
3588 return ret;
3589 }
33345d01 3590 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3591
3592 /* if ret == 0 there are items for this type,
3593 * create a range to tell us the last key of this type.
3594 * otherwise, there are no items in this directory after
3595 * *min_offset, and we create a range to indicate that.
3596 */
3597 if (ret == 0) {
3598 struct btrfs_key tmp;
3599 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3600 path->slots[0]);
d397712b 3601 if (key_type == tmp.type)
e02119d5 3602 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3603 }
3604 goto done;
3605 }
3606
3607 /* go backward to find any previous key */
33345d01 3608 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3609 if (ret == 0) {
3610 struct btrfs_key tmp;
3611 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3612 if (key_type == tmp.type) {
3613 first_offset = tmp.offset;
3614 ret = overwrite_item(trans, log, dst_path,
3615 path->nodes[0], path->slots[0],
3616 &tmp);
4a500fd1
YZ
3617 if (ret) {
3618 err = ret;
3619 goto done;
3620 }
e02119d5
CM
3621 }
3622 }
b3b4aa74 3623 btrfs_release_path(path);
e02119d5 3624
2cc83342
JB
3625 /*
3626 * Find the first key from this transaction again. See the note for
3627 * log_new_dir_dentries, if we're logging a directory recursively we
3628 * won't be holding its i_mutex, which means we can modify the directory
3629 * while we're logging it. If we remove an entry between our first
3630 * search and this search we'll not find the key again and can just
3631 * bail.
3632 */
e02119d5 3633 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3634 if (ret != 0)
e02119d5 3635 goto done;
e02119d5
CM
3636
3637 /*
3638 * we have a block from this transaction, log every item in it
3639 * from our directory
3640 */
d397712b 3641 while (1) {
e02119d5
CM
3642 struct btrfs_key tmp;
3643 src = path->nodes[0];
3644 nritems = btrfs_header_nritems(src);
3645 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3646 struct btrfs_dir_item *di;
3647
e02119d5
CM
3648 btrfs_item_key_to_cpu(src, &min_key, i);
3649
33345d01 3650 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3651 goto done;
3652 ret = overwrite_item(trans, log, dst_path, src, i,
3653 &min_key);
4a500fd1
YZ
3654 if (ret) {
3655 err = ret;
3656 goto done;
3657 }
2f2ff0ee
FM
3658
3659 /*
3660 * We must make sure that when we log a directory entry,
3661 * the corresponding inode, after log replay, has a
3662 * matching link count. For example:
3663 *
3664 * touch foo
3665 * mkdir mydir
3666 * sync
3667 * ln foo mydir/bar
3668 * xfs_io -c "fsync" mydir
3669 * <crash>
3670 * <mount fs and log replay>
3671 *
3672 * Would result in a fsync log that when replayed, our
3673 * file inode would have a link count of 1, but we get
3674 * two directory entries pointing to the same inode.
3675 * After removing one of the names, it would not be
3676 * possible to remove the other name, which resulted
3677 * always in stale file handle errors, and would not
3678 * be possible to rmdir the parent directory, since
3679 * its i_size could never decrement to the value
3680 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3681 */
3682 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3683 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3684 if (ctx &&
3685 (btrfs_dir_transid(src, di) == trans->transid ||
3686 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3687 tmp.type != BTRFS_ROOT_ITEM_KEY)
3688 ctx->log_new_dentries = true;
e02119d5
CM
3689 }
3690 path->slots[0] = nritems;
3691
3692 /*
3693 * look ahead to the next item and see if it is also
3694 * from this directory and from this transaction
3695 */
3696 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3697 if (ret) {
3698 if (ret == 1)
3699 last_offset = (u64)-1;
3700 else
3701 err = ret;
e02119d5
CM
3702 goto done;
3703 }
3704 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3705 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3706 last_offset = (u64)-1;
3707 goto done;
3708 }
3709 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3710 ret = overwrite_item(trans, log, dst_path,
3711 path->nodes[0], path->slots[0],
3712 &tmp);
4a500fd1
YZ
3713 if (ret)
3714 err = ret;
3715 else
3716 last_offset = tmp.offset;
e02119d5
CM
3717 goto done;
3718 }
3719 }
3720done:
b3b4aa74
DS
3721 btrfs_release_path(path);
3722 btrfs_release_path(dst_path);
e02119d5 3723
4a500fd1
YZ
3724 if (err == 0) {
3725 *last_offset_ret = last_offset;
3726 /*
3727 * insert the log range keys to indicate where the log
3728 * is valid
3729 */
3730 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3731 ino, first_offset, last_offset);
4a500fd1
YZ
3732 if (ret)
3733 err = ret;
3734 }
3735 return err;
e02119d5
CM
3736}
3737
3738/*
3739 * logging directories is very similar to logging inodes, We find all the items
3740 * from the current transaction and write them to the log.
3741 *
3742 * The recovery code scans the directory in the subvolume, and if it finds a
3743 * key in the range logged that is not present in the log tree, then it means
3744 * that dir entry was unlinked during the transaction.
3745 *
3746 * In order for that scan to work, we must include one key smaller than
3747 * the smallest logged by this transaction and one key larger than the largest
3748 * key logged by this transaction.
3749 */
3750static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3751 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3752 struct btrfs_path *path,
2f2ff0ee
FM
3753 struct btrfs_path *dst_path,
3754 struct btrfs_log_ctx *ctx)
e02119d5
CM
3755{
3756 u64 min_key;
3757 u64 max_key;
3758 int ret;
3759 int key_type = BTRFS_DIR_ITEM_KEY;
3760
3761again:
3762 min_key = 0;
3763 max_key = 0;
d397712b 3764 while (1) {
dbf39ea4
NB
3765 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3766 ctx, min_key, &max_key);
4a500fd1
YZ
3767 if (ret)
3768 return ret;
e02119d5
CM
3769 if (max_key == (u64)-1)
3770 break;
3771 min_key = max_key + 1;
3772 }
3773
3774 if (key_type == BTRFS_DIR_ITEM_KEY) {
3775 key_type = BTRFS_DIR_INDEX_KEY;
3776 goto again;
3777 }
3778 return 0;
3779}
3780
3781/*
3782 * a helper function to drop items from the log before we relog an
3783 * inode. max_key_type indicates the highest item type to remove.
3784 * This cannot be run for file data extents because it does not
3785 * free the extents they point to.
3786 */
3787static int drop_objectid_items(struct btrfs_trans_handle *trans,
3788 struct btrfs_root *log,
3789 struct btrfs_path *path,
3790 u64 objectid, int max_key_type)
3791{
3792 int ret;
3793 struct btrfs_key key;
3794 struct btrfs_key found_key;
18ec90d6 3795 int start_slot;
e02119d5
CM
3796
3797 key.objectid = objectid;
3798 key.type = max_key_type;
3799 key.offset = (u64)-1;
3800
d397712b 3801 while (1) {
e02119d5 3802 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3803 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3804 if (ret < 0)
e02119d5
CM
3805 break;
3806
3807 if (path->slots[0] == 0)
3808 break;
3809
3810 path->slots[0]--;
3811 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3812 path->slots[0]);
3813
3814 if (found_key.objectid != objectid)
3815 break;
3816
18ec90d6
JB
3817 found_key.offset = 0;
3818 found_key.type = 0;
3819 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3820 &start_slot);
cbca7d59
FM
3821 if (ret < 0)
3822 break;
18ec90d6
JB
3823
3824 ret = btrfs_del_items(trans, log, path, start_slot,
3825 path->slots[0] - start_slot + 1);
3826 /*
3827 * If start slot isn't 0 then we don't need to re-search, we've
3828 * found the last guy with the objectid in this tree.
3829 */
3830 if (ret || start_slot != 0)
65a246c5 3831 break;
b3b4aa74 3832 btrfs_release_path(path);
e02119d5 3833 }
b3b4aa74 3834 btrfs_release_path(path);
5bdbeb21
JB
3835 if (ret > 0)
3836 ret = 0;
4a500fd1 3837 return ret;
e02119d5
CM
3838}
3839
94edf4ae
JB
3840static void fill_inode_item(struct btrfs_trans_handle *trans,
3841 struct extent_buffer *leaf,
3842 struct btrfs_inode_item *item,
1a4bcf47
FM
3843 struct inode *inode, int log_inode_only,
3844 u64 logged_isize)
94edf4ae 3845{
0b1c6cca
JB
3846 struct btrfs_map_token token;
3847
c82f823c 3848 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
3849
3850 if (log_inode_only) {
3851 /* set the generation to zero so the recover code
3852 * can tell the difference between an logging
3853 * just to say 'this inode exists' and a logging
3854 * to say 'update this inode with these values'
3855 */
0b1c6cca 3856 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3857 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3858 } else {
0b1c6cca
JB
3859 btrfs_set_token_inode_generation(leaf, item,
3860 BTRFS_I(inode)->generation,
3861 &token);
3862 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3863 }
3864
3865 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3866 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3867 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3868 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3869
a937b979 3870 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3871 inode->i_atime.tv_sec, &token);
a937b979 3872 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3873 inode->i_atime.tv_nsec, &token);
3874
a937b979 3875 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3876 inode->i_mtime.tv_sec, &token);
a937b979 3877 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3878 inode->i_mtime.tv_nsec, &token);
3879
a937b979 3880 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3881 inode->i_ctime.tv_sec, &token);
a937b979 3882 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3883 inode->i_ctime.tv_nsec, &token);
3884
3885 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3886 &token);
3887
c7f88c4e
JL
3888 btrfs_set_token_inode_sequence(leaf, item,
3889 inode_peek_iversion(inode), &token);
0b1c6cca
JB
3890 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3891 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3892 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3893 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3894}
3895
a95249b3
JB
3896static int log_inode_item(struct btrfs_trans_handle *trans,
3897 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3898 struct btrfs_inode *inode)
a95249b3
JB
3899{
3900 struct btrfs_inode_item *inode_item;
a95249b3
JB
3901 int ret;
3902
efd0c405 3903 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3904 &inode->location, sizeof(*inode_item));
a95249b3
JB
3905 if (ret && ret != -EEXIST)
3906 return ret;
3907 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3908 struct btrfs_inode_item);
6d889a3b
NB
3909 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3910 0, 0);
a95249b3
JB
3911 btrfs_release_path(path);
3912 return 0;
3913}
3914
40e046ac
FM
3915static int log_csums(struct btrfs_trans_handle *trans,
3916 struct btrfs_root *log_root,
3917 struct btrfs_ordered_sum *sums)
3918{
3919 int ret;
3920
3921 /*
3922 * Due to extent cloning, we might have logged a csum item that covers a
3923 * subrange of a cloned extent, and later we can end up logging a csum
3924 * item for a larger subrange of the same extent or the entire range.
3925 * This would leave csum items in the log tree that cover the same range
3926 * and break the searches for checksums in the log tree, resulting in
3927 * some checksums missing in the fs/subvolume tree. So just delete (or
3928 * trim and adjust) any existing csum items in the log for this range.
3929 */
3930 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3931 if (ret)
3932 return ret;
3933
3934 return btrfs_csum_file_blocks(trans, log_root, sums);
3935}
3936
31ff1cd2 3937static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3938 struct btrfs_inode *inode,
31ff1cd2 3939 struct btrfs_path *dst_path,
0e56315c 3940 struct btrfs_path *src_path,
1a4bcf47
FM
3941 int start_slot, int nr, int inode_only,
3942 u64 logged_isize)
31ff1cd2 3943{
3ffbd68c 3944 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
3945 unsigned long src_offset;
3946 unsigned long dst_offset;
44d70e19 3947 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3948 struct btrfs_file_extent_item *extent;
3949 struct btrfs_inode_item *inode_item;
16e7549f 3950 struct extent_buffer *src = src_path->nodes[0];
31ff1cd2
CM
3951 int ret;
3952 struct btrfs_key *ins_keys;
3953 u32 *ins_sizes;
3954 char *ins_data;
3955 int i;
d20f7043 3956 struct list_head ordered_sums;
44d70e19 3957 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
3958
3959 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3960
3961 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3962 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3963 if (!ins_data)
3964 return -ENOMEM;
3965
31ff1cd2
CM
3966 ins_sizes = (u32 *)ins_data;
3967 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3968
3969 for (i = 0; i < nr; i++) {
3970 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3971 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3972 }
3973 ret = btrfs_insert_empty_items(trans, log, dst_path,
3974 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3975 if (ret) {
3976 kfree(ins_data);
3977 return ret;
3978 }
31ff1cd2 3979
5d4f98a2 3980 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3981 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3982 dst_path->slots[0]);
3983
3984 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3985
94edf4ae 3986 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3987 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3988 dst_path->slots[0],
3989 struct btrfs_inode_item);
94edf4ae 3990 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3991 &inode->vfs_inode,
3992 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3993 logged_isize);
94edf4ae
JB
3994 } else {
3995 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3996 src_offset, ins_sizes[i]);
31ff1cd2 3997 }
94edf4ae 3998
31ff1cd2
CM
3999 /* take a reference on file data extents so that truncates
4000 * or deletes of this inode don't have to relog the inode
4001 * again
4002 */
962a298f 4003 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4004 !skip_csum) {
31ff1cd2
CM
4005 int found_type;
4006 extent = btrfs_item_ptr(src, start_slot + i,
4007 struct btrfs_file_extent_item);
4008
8e531cdf 4009 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4010 continue;
4011
31ff1cd2 4012 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4013 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4014 u64 ds, dl, cs, cl;
4015 ds = btrfs_file_extent_disk_bytenr(src,
4016 extent);
4017 /* ds == 0 is a hole */
4018 if (ds == 0)
4019 continue;
4020
4021 dl = btrfs_file_extent_disk_num_bytes(src,
4022 extent);
4023 cs = btrfs_file_extent_offset(src, extent);
4024 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4025 extent);
580afd76
CM
4026 if (btrfs_file_extent_compression(src,
4027 extent)) {
4028 cs = 0;
4029 cl = dl;
4030 }
5d4f98a2
YZ
4031
4032 ret = btrfs_lookup_csums_range(
0b246afa 4033 fs_info->csum_root,
5d4f98a2 4034 ds + cs, ds + cs + cl - 1,
a2de733c 4035 &ordered_sums, 0);
3650860b
JB
4036 if (ret) {
4037 btrfs_release_path(dst_path);
4038 kfree(ins_data);
4039 return ret;
4040 }
31ff1cd2
CM
4041 }
4042 }
31ff1cd2
CM
4043 }
4044
4045 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4046 btrfs_release_path(dst_path);
31ff1cd2 4047 kfree(ins_data);
d20f7043
CM
4048
4049 /*
4050 * we have to do this after the loop above to avoid changing the
4051 * log tree while trying to change the log tree.
4052 */
4a500fd1 4053 ret = 0;
d397712b 4054 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4055 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4056 struct btrfs_ordered_sum,
4057 list);
4a500fd1 4058 if (!ret)
40e046ac 4059 ret = log_csums(trans, log, sums);
d20f7043
CM
4060 list_del(&sums->list);
4061 kfree(sums);
4062 }
16e7549f 4063
4a500fd1 4064 return ret;
31ff1cd2
CM
4065}
4066
5dc562c5
JB
4067static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4068{
4069 struct extent_map *em1, *em2;
4070
4071 em1 = list_entry(a, struct extent_map, list);
4072 em2 = list_entry(b, struct extent_map, list);
4073
4074 if (em1->start < em2->start)
4075 return -1;
4076 else if (em1->start > em2->start)
4077 return 1;
4078 return 0;
4079}
4080
e7175a69
JB
4081static int log_extent_csums(struct btrfs_trans_handle *trans,
4082 struct btrfs_inode *inode,
a9ecb653 4083 struct btrfs_root *log_root,
e7175a69 4084 const struct extent_map *em)
5dc562c5 4085{
2ab28f32
JB
4086 u64 csum_offset;
4087 u64 csum_len;
8407f553
FM
4088 LIST_HEAD(ordered_sums);
4089 int ret = 0;
0aa4a17d 4090
e7175a69
JB
4091 if (inode->flags & BTRFS_INODE_NODATASUM ||
4092 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4093 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4094 return 0;
5dc562c5 4095
e7175a69 4096 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4097 if (em->compress_type) {
4098 csum_offset = 0;
8407f553 4099 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4100 } else {
e7175a69
JB
4101 csum_offset = em->mod_start - em->start;
4102 csum_len = em->mod_len;
488111aa 4103 }
2ab28f32 4104
70c8a91c 4105 /* block start is already adjusted for the file extent offset. */
a9ecb653 4106 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4107 em->block_start + csum_offset,
4108 em->block_start + csum_offset +
4109 csum_len - 1, &ordered_sums, 0);
4110 if (ret)
4111 return ret;
5dc562c5 4112
70c8a91c
JB
4113 while (!list_empty(&ordered_sums)) {
4114 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4115 struct btrfs_ordered_sum,
4116 list);
4117 if (!ret)
40e046ac 4118 ret = log_csums(trans, log_root, sums);
70c8a91c
JB
4119 list_del(&sums->list);
4120 kfree(sums);
5dc562c5
JB
4121 }
4122
70c8a91c 4123 return ret;
5dc562c5
JB
4124}
4125
8407f553 4126static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4127 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4128 const struct extent_map *em,
4129 struct btrfs_path *path,
8407f553
FM
4130 struct btrfs_log_ctx *ctx)
4131{
4132 struct btrfs_root *log = root->log_root;
4133 struct btrfs_file_extent_item *fi;
4134 struct extent_buffer *leaf;
4135 struct btrfs_map_token token;
4136 struct btrfs_key key;
4137 u64 extent_offset = em->start - em->orig_start;
4138 u64 block_len;
4139 int ret;
4140 int extent_inserted = 0;
8407f553 4141
a9ecb653 4142 ret = log_extent_csums(trans, inode, log, em);
8407f553
FM
4143 if (ret)
4144 return ret;
4145
9d122629 4146 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4147 em->start + em->len, NULL, 0, 1,
4148 sizeof(*fi), &extent_inserted);
4149 if (ret)
4150 return ret;
4151
4152 if (!extent_inserted) {
9d122629 4153 key.objectid = btrfs_ino(inode);
8407f553
FM
4154 key.type = BTRFS_EXTENT_DATA_KEY;
4155 key.offset = em->start;
4156
4157 ret = btrfs_insert_empty_item(trans, log, path, &key,
4158 sizeof(*fi));
4159 if (ret)
4160 return ret;
4161 }
4162 leaf = path->nodes[0];
c82f823c 4163 btrfs_init_map_token(&token, leaf);
8407f553
FM
4164 fi = btrfs_item_ptr(leaf, path->slots[0],
4165 struct btrfs_file_extent_item);
4166
50d9aa99 4167 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4168 &token);
4169 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4170 btrfs_set_token_file_extent_type(leaf, fi,
4171 BTRFS_FILE_EXTENT_PREALLOC,
4172 &token);
4173 else
4174 btrfs_set_token_file_extent_type(leaf, fi,
4175 BTRFS_FILE_EXTENT_REG,
4176 &token);
4177
4178 block_len = max(em->block_len, em->orig_block_len);
4179 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4180 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4181 em->block_start,
4182 &token);
4183 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4184 &token);
4185 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4186 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4187 em->block_start -
4188 extent_offset, &token);
4189 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4190 &token);
4191 } else {
4192 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4193 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4194 &token);
4195 }
4196
4197 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4198 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4199 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4200 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4201 &token);
4202 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4203 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4204 btrfs_mark_buffer_dirty(leaf);
4205
4206 btrfs_release_path(path);
4207
4208 return ret;
4209}
4210
31d11b83
FM
4211/*
4212 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4213 * lose them after doing a fast fsync and replaying the log. We scan the
4214 * subvolume's root instead of iterating the inode's extent map tree because
4215 * otherwise we can log incorrect extent items based on extent map conversion.
4216 * That can happen due to the fact that extent maps are merged when they
4217 * are not in the extent map tree's list of modified extents.
4218 */
4219static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4220 struct btrfs_inode *inode,
4221 struct btrfs_path *path)
4222{
4223 struct btrfs_root *root = inode->root;
4224 struct btrfs_key key;
4225 const u64 i_size = i_size_read(&inode->vfs_inode);
4226 const u64 ino = btrfs_ino(inode);
4227 struct btrfs_path *dst_path = NULL;
0e56315c 4228 bool dropped_extents = false;
31d11b83
FM
4229 int ins_nr = 0;
4230 int start_slot;
4231 int ret;
4232
4233 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4234 return 0;
4235
4236 key.objectid = ino;
4237 key.type = BTRFS_EXTENT_DATA_KEY;
4238 key.offset = i_size;
4239 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4240 if (ret < 0)
4241 goto out;
4242
4243 while (true) {
4244 struct extent_buffer *leaf = path->nodes[0];
4245 int slot = path->slots[0];
4246
4247 if (slot >= btrfs_header_nritems(leaf)) {
4248 if (ins_nr > 0) {
4249 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4250 start_slot, ins_nr, 1, 0);
31d11b83
FM
4251 if (ret < 0)
4252 goto out;
4253 ins_nr = 0;
4254 }
4255 ret = btrfs_next_leaf(root, path);
4256 if (ret < 0)
4257 goto out;
4258 if (ret > 0) {
4259 ret = 0;
4260 break;
4261 }
4262 continue;
4263 }
4264
4265 btrfs_item_key_to_cpu(leaf, &key, slot);
4266 if (key.objectid > ino)
4267 break;
4268 if (WARN_ON_ONCE(key.objectid < ino) ||
4269 key.type < BTRFS_EXTENT_DATA_KEY ||
4270 key.offset < i_size) {
4271 path->slots[0]++;
4272 continue;
4273 }
0e56315c 4274 if (!dropped_extents) {
31d11b83
FM
4275 /*
4276 * Avoid logging extent items logged in past fsync calls
4277 * and leading to duplicate keys in the log tree.
4278 */
4279 do {
4280 ret = btrfs_truncate_inode_items(trans,
4281 root->log_root,
4282 &inode->vfs_inode,
4283 i_size,
4284 BTRFS_EXTENT_DATA_KEY);
4285 } while (ret == -EAGAIN);
4286 if (ret)
4287 goto out;
0e56315c 4288 dropped_extents = true;
31d11b83
FM
4289 }
4290 if (ins_nr == 0)
4291 start_slot = slot;
4292 ins_nr++;
4293 path->slots[0]++;
4294 if (!dst_path) {
4295 dst_path = btrfs_alloc_path();
4296 if (!dst_path) {
4297 ret = -ENOMEM;
4298 goto out;
4299 }
4300 }
4301 }
4302 if (ins_nr > 0) {
0e56315c 4303 ret = copy_items(trans, inode, dst_path, path,
31d11b83
FM
4304 start_slot, ins_nr, 1, 0);
4305 if (ret > 0)
4306 ret = 0;
4307 }
4308out:
4309 btrfs_release_path(path);
4310 btrfs_free_path(dst_path);
4311 return ret;
4312}
4313
5dc562c5
JB
4314static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4315 struct btrfs_root *root,
9d122629 4316 struct btrfs_inode *inode,
827463c4 4317 struct btrfs_path *path,
de0ee0ed
FM
4318 struct btrfs_log_ctx *ctx,
4319 const u64 start,
4320 const u64 end)
5dc562c5 4321{
5dc562c5
JB
4322 struct extent_map *em, *n;
4323 struct list_head extents;
9d122629 4324 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4325 u64 test_gen;
4326 int ret = 0;
2ab28f32 4327 int num = 0;
5dc562c5
JB
4328
4329 INIT_LIST_HEAD(&extents);
4330
5dc562c5
JB
4331 write_lock(&tree->lock);
4332 test_gen = root->fs_info->last_trans_committed;
4333
4334 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
008c6753
FM
4335 /*
4336 * Skip extents outside our logging range. It's important to do
4337 * it for correctness because if we don't ignore them, we may
4338 * log them before their ordered extent completes, and therefore
4339 * we could log them without logging their respective checksums
4340 * (the checksum items are added to the csum tree at the very
4341 * end of btrfs_finish_ordered_io()). Also leave such extents
4342 * outside of our range in the list, since we may have another
4343 * ranged fsync in the near future that needs them. If an extent
4344 * outside our range corresponds to a hole, log it to avoid
4345 * leaving gaps between extents (fsck will complain when we are
4346 * not using the NO_HOLES feature).
4347 */
4348 if ((em->start > end || em->start + em->len <= start) &&
4349 em->block_start != EXTENT_MAP_HOLE)
4350 continue;
4351
5dc562c5 4352 list_del_init(&em->list);
2ab28f32
JB
4353 /*
4354 * Just an arbitrary number, this can be really CPU intensive
4355 * once we start getting a lot of extents, and really once we
4356 * have a bunch of extents we just want to commit since it will
4357 * be faster.
4358 */
4359 if (++num > 32768) {
4360 list_del_init(&tree->modified_extents);
4361 ret = -EFBIG;
4362 goto process;
4363 }
4364
5dc562c5
JB
4365 if (em->generation <= test_gen)
4366 continue;
8c6c5928 4367
31d11b83
FM
4368 /* We log prealloc extents beyond eof later. */
4369 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4370 em->start >= i_size_read(&inode->vfs_inode))
4371 continue;
4372
ff44c6e3 4373 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4374 refcount_inc(&em->refs);
ff44c6e3 4375 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4376 list_add_tail(&em->list, &extents);
2ab28f32 4377 num++;
5dc562c5
JB
4378 }
4379
4380 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4381process:
5dc562c5
JB
4382 while (!list_empty(&extents)) {
4383 em = list_entry(extents.next, struct extent_map, list);
4384
4385 list_del_init(&em->list);
4386
4387 /*
4388 * If we had an error we just need to delete everybody from our
4389 * private list.
4390 */
ff44c6e3 4391 if (ret) {
201a9038 4392 clear_em_logging(tree, em);
ff44c6e3 4393 free_extent_map(em);
5dc562c5 4394 continue;
ff44c6e3
JB
4395 }
4396
4397 write_unlock(&tree->lock);
5dc562c5 4398
a2120a47 4399 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4400 write_lock(&tree->lock);
201a9038
JB
4401 clear_em_logging(tree, em);
4402 free_extent_map(em);
5dc562c5 4403 }
ff44c6e3
JB
4404 WARN_ON(!list_empty(&extents));
4405 write_unlock(&tree->lock);
5dc562c5 4406
5dc562c5 4407 btrfs_release_path(path);
31d11b83
FM
4408 if (!ret)
4409 ret = btrfs_log_prealloc_extents(trans, inode, path);
4410
5dc562c5
JB
4411 return ret;
4412}
4413
481b01c0 4414static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4415 struct btrfs_path *path, u64 *size_ret)
4416{
4417 struct btrfs_key key;
4418 int ret;
4419
481b01c0 4420 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4421 key.type = BTRFS_INODE_ITEM_KEY;
4422 key.offset = 0;
4423
4424 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4425 if (ret < 0) {
4426 return ret;
4427 } else if (ret > 0) {
2f2ff0ee 4428 *size_ret = 0;
1a4bcf47
FM
4429 } else {
4430 struct btrfs_inode_item *item;
4431
4432 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4433 struct btrfs_inode_item);
4434 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4435 /*
4436 * If the in-memory inode's i_size is smaller then the inode
4437 * size stored in the btree, return the inode's i_size, so
4438 * that we get a correct inode size after replaying the log
4439 * when before a power failure we had a shrinking truncate
4440 * followed by addition of a new name (rename / new hard link).
4441 * Otherwise return the inode size from the btree, to avoid
4442 * data loss when replaying a log due to previously doing a
4443 * write that expands the inode's size and logging a new name
4444 * immediately after.
4445 */
4446 if (*size_ret > inode->vfs_inode.i_size)
4447 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4448 }
4449
4450 btrfs_release_path(path);
4451 return 0;
4452}
4453
36283bf7
FM
4454/*
4455 * At the moment we always log all xattrs. This is to figure out at log replay
4456 * time which xattrs must have their deletion replayed. If a xattr is missing
4457 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4458 * because if a xattr is deleted, the inode is fsynced and a power failure
4459 * happens, causing the log to be replayed the next time the fs is mounted,
4460 * we want the xattr to not exist anymore (same behaviour as other filesystems
4461 * with a journal, ext3/4, xfs, f2fs, etc).
4462 */
4463static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4464 struct btrfs_root *root,
1a93c36a 4465 struct btrfs_inode *inode,
36283bf7
FM
4466 struct btrfs_path *path,
4467 struct btrfs_path *dst_path)
4468{
4469 int ret;
4470 struct btrfs_key key;
1a93c36a 4471 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4472 int ins_nr = 0;
4473 int start_slot = 0;
4474
4475 key.objectid = ino;
4476 key.type = BTRFS_XATTR_ITEM_KEY;
4477 key.offset = 0;
4478
4479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4480 if (ret < 0)
4481 return ret;
4482
4483 while (true) {
4484 int slot = path->slots[0];
4485 struct extent_buffer *leaf = path->nodes[0];
4486 int nritems = btrfs_header_nritems(leaf);
4487
4488 if (slot >= nritems) {
4489 if (ins_nr > 0) {
1a93c36a 4490 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4491 start_slot, ins_nr, 1, 0);
36283bf7
FM
4492 if (ret < 0)
4493 return ret;
4494 ins_nr = 0;
4495 }
4496 ret = btrfs_next_leaf(root, path);
4497 if (ret < 0)
4498 return ret;
4499 else if (ret > 0)
4500 break;
4501 continue;
4502 }
4503
4504 btrfs_item_key_to_cpu(leaf, &key, slot);
4505 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4506 break;
4507
4508 if (ins_nr == 0)
4509 start_slot = slot;
4510 ins_nr++;
4511 path->slots[0]++;
4512 cond_resched();
4513 }
4514 if (ins_nr > 0) {
1a93c36a 4515 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4516 start_slot, ins_nr, 1, 0);
36283bf7
FM
4517 if (ret < 0)
4518 return ret;
4519 }
4520
4521 return 0;
4522}
4523
a89ca6f2 4524/*
0e56315c
FM
4525 * When using the NO_HOLES feature if we punched a hole that causes the
4526 * deletion of entire leafs or all the extent items of the first leaf (the one
4527 * that contains the inode item and references) we may end up not processing
4528 * any extents, because there are no leafs with a generation matching the
4529 * current transaction that have extent items for our inode. So we need to find
4530 * if any holes exist and then log them. We also need to log holes after any
4531 * truncate operation that changes the inode's size.
a89ca6f2 4532 */
0e56315c
FM
4533static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4534 struct btrfs_root *root,
4535 struct btrfs_inode *inode,
7af59743 4536 struct btrfs_path *path)
a89ca6f2 4537{
0b246afa 4538 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 4539 struct btrfs_key key;
a0308dd7
NB
4540 const u64 ino = btrfs_ino(inode);
4541 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 4542 u64 prev_extent_end = 0;
0e56315c 4543 int ret;
a89ca6f2 4544
0e56315c 4545 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
4546 return 0;
4547
4548 key.objectid = ino;
4549 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 4550 key.offset = 0;
a89ca6f2
FM
4551
4552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
4553 if (ret < 0)
4554 return ret;
4555
0e56315c 4556 while (true) {
0e56315c 4557 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 4558
0e56315c
FM
4559 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4560 ret = btrfs_next_leaf(root, path);
4561 if (ret < 0)
4562 return ret;
4563 if (ret > 0) {
4564 ret = 0;
4565 break;
4566 }
4567 leaf = path->nodes[0];
4568 }
4569
4570 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4571 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4572 break;
4573
4574 /* We have a hole, log it. */
4575 if (prev_extent_end < key.offset) {
7af59743 4576 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
4577
4578 /*
4579 * Release the path to avoid deadlocks with other code
4580 * paths that search the root while holding locks on
4581 * leafs from the log root.
4582 */
4583 btrfs_release_path(path);
4584 ret = btrfs_insert_file_extent(trans, root->log_root,
4585 ino, prev_extent_end, 0,
4586 0, hole_len, 0, hole_len,
4587 0, 0, 0);
4588 if (ret < 0)
4589 return ret;
4590
4591 /*
4592 * Search for the same key again in the root. Since it's
4593 * an extent item and we are holding the inode lock, the
4594 * key must still exist. If it doesn't just emit warning
4595 * and return an error to fall back to a transaction
4596 * commit.
4597 */
4598 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4599 if (ret < 0)
4600 return ret;
4601 if (WARN_ON(ret > 0))
4602 return -ENOENT;
4603 leaf = path->nodes[0];
4604 }
a89ca6f2 4605
7af59743 4606 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
4607 path->slots[0]++;
4608 cond_resched();
a89ca6f2 4609 }
a89ca6f2 4610
7af59743 4611 if (prev_extent_end < i_size) {
0e56315c 4612 u64 hole_len;
a89ca6f2 4613
0e56315c 4614 btrfs_release_path(path);
7af59743 4615 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
4616 ret = btrfs_insert_file_extent(trans, root->log_root,
4617 ino, prev_extent_end, 0, 0,
4618 hole_len, 0, hole_len,
4619 0, 0, 0);
4620 if (ret < 0)
4621 return ret;
4622 }
4623
4624 return 0;
a89ca6f2
FM
4625}
4626
56f23fdb
FM
4627/*
4628 * When we are logging a new inode X, check if it doesn't have a reference that
4629 * matches the reference from some other inode Y created in a past transaction
4630 * and that was renamed in the current transaction. If we don't do this, then at
4631 * log replay time we can lose inode Y (and all its files if it's a directory):
4632 *
4633 * mkdir /mnt/x
4634 * echo "hello world" > /mnt/x/foobar
4635 * sync
4636 * mv /mnt/x /mnt/y
4637 * mkdir /mnt/x # or touch /mnt/x
4638 * xfs_io -c fsync /mnt/x
4639 * <power fail>
4640 * mount fs, trigger log replay
4641 *
4642 * After the log replay procedure, we would lose the first directory and all its
4643 * files (file foobar).
4644 * For the case where inode Y is not a directory we simply end up losing it:
4645 *
4646 * echo "123" > /mnt/foo
4647 * sync
4648 * mv /mnt/foo /mnt/bar
4649 * echo "abc" > /mnt/foo
4650 * xfs_io -c fsync /mnt/foo
4651 * <power fail>
4652 *
4653 * We also need this for cases where a snapshot entry is replaced by some other
4654 * entry (file or directory) otherwise we end up with an unreplayable log due to
4655 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4656 * if it were a regular entry:
4657 *
4658 * mkdir /mnt/x
4659 * btrfs subvolume snapshot /mnt /mnt/x/snap
4660 * btrfs subvolume delete /mnt/x/snap
4661 * rmdir /mnt/x
4662 * mkdir /mnt/x
4663 * fsync /mnt/x or fsync some new file inside it
4664 * <power fail>
4665 *
4666 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4667 * the same transaction.
4668 */
4669static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4670 const int slot,
4671 const struct btrfs_key *key,
4791c8f1 4672 struct btrfs_inode *inode,
a3baaf0d 4673 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4674{
4675 int ret;
4676 struct btrfs_path *search_path;
4677 char *name = NULL;
4678 u32 name_len = 0;
4679 u32 item_size = btrfs_item_size_nr(eb, slot);
4680 u32 cur_offset = 0;
4681 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4682
4683 search_path = btrfs_alloc_path();
4684 if (!search_path)
4685 return -ENOMEM;
4686 search_path->search_commit_root = 1;
4687 search_path->skip_locking = 1;
4688
4689 while (cur_offset < item_size) {
4690 u64 parent;
4691 u32 this_name_len;
4692 u32 this_len;
4693 unsigned long name_ptr;
4694 struct btrfs_dir_item *di;
4695
4696 if (key->type == BTRFS_INODE_REF_KEY) {
4697 struct btrfs_inode_ref *iref;
4698
4699 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4700 parent = key->offset;
4701 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4702 name_ptr = (unsigned long)(iref + 1);
4703 this_len = sizeof(*iref) + this_name_len;
4704 } else {
4705 struct btrfs_inode_extref *extref;
4706
4707 extref = (struct btrfs_inode_extref *)(ptr +
4708 cur_offset);
4709 parent = btrfs_inode_extref_parent(eb, extref);
4710 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4711 name_ptr = (unsigned long)&extref->name;
4712 this_len = sizeof(*extref) + this_name_len;
4713 }
4714
4715 if (this_name_len > name_len) {
4716 char *new_name;
4717
4718 new_name = krealloc(name, this_name_len, GFP_NOFS);
4719 if (!new_name) {
4720 ret = -ENOMEM;
4721 goto out;
4722 }
4723 name_len = this_name_len;
4724 name = new_name;
4725 }
4726
4727 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4728 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4729 parent, name, this_name_len, 0);
56f23fdb 4730 if (di && !IS_ERR(di)) {
44f714da
FM
4731 struct btrfs_key di_key;
4732
4733 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4734 di, &di_key);
4735 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4736 if (di_key.objectid != key->objectid) {
4737 ret = 1;
4738 *other_ino = di_key.objectid;
a3baaf0d 4739 *other_parent = parent;
6b5fc433
FM
4740 } else {
4741 ret = 0;
4742 }
44f714da
FM
4743 } else {
4744 ret = -EAGAIN;
4745 }
56f23fdb
FM
4746 goto out;
4747 } else if (IS_ERR(di)) {
4748 ret = PTR_ERR(di);
4749 goto out;
4750 }
4751 btrfs_release_path(search_path);
4752
4753 cur_offset += this_len;
4754 }
4755 ret = 0;
4756out:
4757 btrfs_free_path(search_path);
4758 kfree(name);
4759 return ret;
4760}
4761
6b5fc433
FM
4762struct btrfs_ino_list {
4763 u64 ino;
a3baaf0d 4764 u64 parent;
6b5fc433
FM
4765 struct list_head list;
4766};
4767
4768static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4769 struct btrfs_root *root,
4770 struct btrfs_path *path,
4771 struct btrfs_log_ctx *ctx,
a3baaf0d 4772 u64 ino, u64 parent)
6b5fc433
FM
4773{
4774 struct btrfs_ino_list *ino_elem;
4775 LIST_HEAD(inode_list);
4776 int ret = 0;
4777
4778 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4779 if (!ino_elem)
4780 return -ENOMEM;
4781 ino_elem->ino = ino;
a3baaf0d 4782 ino_elem->parent = parent;
6b5fc433
FM
4783 list_add_tail(&ino_elem->list, &inode_list);
4784
4785 while (!list_empty(&inode_list)) {
4786 struct btrfs_fs_info *fs_info = root->fs_info;
4787 struct btrfs_key key;
4788 struct inode *inode;
4789
4790 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4791 list);
4792 ino = ino_elem->ino;
a3baaf0d 4793 parent = ino_elem->parent;
6b5fc433
FM
4794 list_del(&ino_elem->list);
4795 kfree(ino_elem);
4796 if (ret)
4797 continue;
4798
4799 btrfs_release_path(path);
4800
4801 key.objectid = ino;
4802 key.type = BTRFS_INODE_ITEM_KEY;
4803 key.offset = 0;
4c66e0d4 4804 inode = btrfs_iget(fs_info->sb, &key, root);
6b5fc433
FM
4805 /*
4806 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
4807 * deleted in the current transaction, we need to log its parent
4808 * directory.
6b5fc433
FM
4809 */
4810 if (IS_ERR(inode)) {
4811 ret = PTR_ERR(inode);
a3baaf0d
FM
4812 if (ret == -ENOENT) {
4813 key.objectid = parent;
4c66e0d4 4814 inode = btrfs_iget(fs_info->sb, &key, root);
a3baaf0d
FM
4815 if (IS_ERR(inode)) {
4816 ret = PTR_ERR(inode);
4817 } else {
4818 ret = btrfs_log_inode(trans, root,
4819 BTRFS_I(inode),
4820 LOG_OTHER_INODE_ALL,
4821 0, LLONG_MAX, ctx);
410f954c 4822 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
4823 }
4824 }
6b5fc433
FM
4825 continue;
4826 }
b5e4ff9d
FM
4827 /*
4828 * If the inode was already logged skip it - otherwise we can
4829 * hit an infinite loop. Example:
4830 *
4831 * From the commit root (previous transaction) we have the
4832 * following inodes:
4833 *
4834 * inode 257 a directory
4835 * inode 258 with references "zz" and "zz_link" on inode 257
4836 * inode 259 with reference "a" on inode 257
4837 *
4838 * And in the current (uncommitted) transaction we have:
4839 *
4840 * inode 257 a directory, unchanged
4841 * inode 258 with references "a" and "a2" on inode 257
4842 * inode 259 with reference "zz_link" on inode 257
4843 * inode 261 with reference "zz" on inode 257
4844 *
4845 * When logging inode 261 the following infinite loop could
4846 * happen if we don't skip already logged inodes:
4847 *
4848 * - we detect inode 258 as a conflicting inode, with inode 261
4849 * on reference "zz", and log it;
4850 *
4851 * - we detect inode 259 as a conflicting inode, with inode 258
4852 * on reference "a", and log it;
4853 *
4854 * - we detect inode 258 as a conflicting inode, with inode 259
4855 * on reference "zz_link", and log it - again! After this we
4856 * repeat the above steps forever.
4857 */
4858 spin_lock(&BTRFS_I(inode)->lock);
4859 /*
4860 * Check the inode's logged_trans only instead of
4861 * btrfs_inode_in_log(). This is because the last_log_commit of
4862 * the inode is not updated when we only log that it exists and
4863 * and it has the full sync bit set (see btrfs_log_inode()).
4864 */
4865 if (BTRFS_I(inode)->logged_trans == trans->transid) {
4866 spin_unlock(&BTRFS_I(inode)->lock);
4867 btrfs_add_delayed_iput(inode);
4868 continue;
4869 }
4870 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
4871 /*
4872 * We are safe logging the other inode without acquiring its
4873 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4874 * are safe against concurrent renames of the other inode as
4875 * well because during a rename we pin the log and update the
4876 * log with the new name before we unpin it.
4877 */
4878 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4879 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4880 if (ret) {
410f954c 4881 btrfs_add_delayed_iput(inode);
6b5fc433
FM
4882 continue;
4883 }
4884
4885 key.objectid = ino;
4886 key.type = BTRFS_INODE_REF_KEY;
4887 key.offset = 0;
4888 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4889 if (ret < 0) {
410f954c 4890 btrfs_add_delayed_iput(inode);
6b5fc433
FM
4891 continue;
4892 }
4893
4894 while (true) {
4895 struct extent_buffer *leaf = path->nodes[0];
4896 int slot = path->slots[0];
4897 u64 other_ino = 0;
a3baaf0d 4898 u64 other_parent = 0;
6b5fc433
FM
4899
4900 if (slot >= btrfs_header_nritems(leaf)) {
4901 ret = btrfs_next_leaf(root, path);
4902 if (ret < 0) {
4903 break;
4904 } else if (ret > 0) {
4905 ret = 0;
4906 break;
4907 }
4908 continue;
4909 }
4910
4911 btrfs_item_key_to_cpu(leaf, &key, slot);
4912 if (key.objectid != ino ||
4913 (key.type != BTRFS_INODE_REF_KEY &&
4914 key.type != BTRFS_INODE_EXTREF_KEY)) {
4915 ret = 0;
4916 break;
4917 }
4918
4919 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
4920 BTRFS_I(inode), &other_ino,
4921 &other_parent);
6b5fc433
FM
4922 if (ret < 0)
4923 break;
4924 if (ret > 0) {
4925 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4926 if (!ino_elem) {
4927 ret = -ENOMEM;
4928 break;
4929 }
4930 ino_elem->ino = other_ino;
a3baaf0d 4931 ino_elem->parent = other_parent;
6b5fc433
FM
4932 list_add_tail(&ino_elem->list, &inode_list);
4933 ret = 0;
4934 }
4935 path->slots[0]++;
4936 }
410f954c 4937 btrfs_add_delayed_iput(inode);
6b5fc433
FM
4938 }
4939
4940 return ret;
4941}
4942
da447009
FM
4943static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4944 struct btrfs_inode *inode,
4945 struct btrfs_key *min_key,
4946 const struct btrfs_key *max_key,
4947 struct btrfs_path *path,
4948 struct btrfs_path *dst_path,
4949 const u64 logged_isize,
4950 const bool recursive_logging,
4951 const int inode_only,
4952 struct btrfs_log_ctx *ctx,
4953 bool *need_log_inode_item)
4954{
4955 struct btrfs_root *root = inode->root;
4956 int ins_start_slot = 0;
4957 int ins_nr = 0;
4958 int ret;
4959
4960 while (1) {
4961 ret = btrfs_search_forward(root, min_key, path, trans->transid);
4962 if (ret < 0)
4963 return ret;
4964 if (ret > 0) {
4965 ret = 0;
4966 break;
4967 }
4968again:
4969 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
4970 if (min_key->objectid != max_key->objectid)
4971 break;
4972 if (min_key->type > max_key->type)
4973 break;
4974
4975 if (min_key->type == BTRFS_INODE_ITEM_KEY)
4976 *need_log_inode_item = false;
4977
4978 if ((min_key->type == BTRFS_INODE_REF_KEY ||
4979 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
4980 inode->generation == trans->transid &&
4981 !recursive_logging) {
4982 u64 other_ino = 0;
4983 u64 other_parent = 0;
4984
4985 ret = btrfs_check_ref_name_override(path->nodes[0],
4986 path->slots[0], min_key, inode,
4987 &other_ino, &other_parent);
4988 if (ret < 0) {
4989 return ret;
4990 } else if (ret > 0 && ctx &&
4991 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4992 if (ins_nr > 0) {
4993 ins_nr++;
4994 } else {
4995 ins_nr = 1;
4996 ins_start_slot = path->slots[0];
4997 }
4998 ret = copy_items(trans, inode, dst_path, path,
4999 ins_start_slot, ins_nr,
5000 inode_only, logged_isize);
5001 if (ret < 0)
5002 return ret;
5003 ins_nr = 0;
5004
5005 ret = log_conflicting_inodes(trans, root, path,
5006 ctx, other_ino, other_parent);
5007 if (ret)
5008 return ret;
5009 btrfs_release_path(path);
5010 goto next_key;
5011 }
5012 }
5013
5014 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5015 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5016 if (ins_nr == 0)
5017 goto next_slot;
5018 ret = copy_items(trans, inode, dst_path, path,
5019 ins_start_slot,
5020 ins_nr, inode_only, logged_isize);
5021 if (ret < 0)
5022 return ret;
5023 ins_nr = 0;
5024 goto next_slot;
5025 }
5026
5027 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5028 ins_nr++;
5029 goto next_slot;
5030 } else if (!ins_nr) {
5031 ins_start_slot = path->slots[0];
5032 ins_nr = 1;
5033 goto next_slot;
5034 }
5035
5036 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5037 ins_nr, inode_only, logged_isize);
5038 if (ret < 0)
5039 return ret;
5040 ins_nr = 1;
5041 ins_start_slot = path->slots[0];
5042next_slot:
5043 path->slots[0]++;
5044 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5045 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5046 path->slots[0]);
5047 goto again;
5048 }
5049 if (ins_nr) {
5050 ret = copy_items(trans, inode, dst_path, path,
5051 ins_start_slot, ins_nr, inode_only,
5052 logged_isize);
5053 if (ret < 0)
5054 return ret;
5055 ins_nr = 0;
5056 }
5057 btrfs_release_path(path);
5058next_key:
5059 if (min_key->offset < (u64)-1) {
5060 min_key->offset++;
5061 } else if (min_key->type < max_key->type) {
5062 min_key->type++;
5063 min_key->offset = 0;
5064 } else {
5065 break;
5066 }
5067 }
5068 if (ins_nr)
5069 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5070 ins_nr, inode_only, logged_isize);
5071
5072 return ret;
5073}
5074
e02119d5
CM
5075/* log a single inode in the tree log.
5076 * At least one parent directory for this inode must exist in the tree
5077 * or be logged already.
5078 *
5079 * Any items from this inode changed by the current transaction are copied
5080 * to the log tree. An extra reference is taken on any extents in this
5081 * file, allowing us to avoid a whole pile of corner cases around logging
5082 * blocks that have been removed from the tree.
5083 *
5084 * See LOG_INODE_ALL and related defines for a description of what inode_only
5085 * does.
5086 *
5087 * This handles both files and directories.
5088 */
12fcfd22 5089static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5090 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 5091 int inode_only,
7af59743
FM
5092 const loff_t start,
5093 const loff_t end,
8407f553 5094 struct btrfs_log_ctx *ctx)
e02119d5 5095{
0b246afa 5096 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
5097 struct btrfs_path *path;
5098 struct btrfs_path *dst_path;
5099 struct btrfs_key min_key;
5100 struct btrfs_key max_key;
5101 struct btrfs_root *log = root->log_root;
4a500fd1 5102 int err = 0;
e02119d5 5103 int ret;
5dc562c5 5104 bool fast_search = false;
a59108a7
NB
5105 u64 ino = btrfs_ino(inode);
5106 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5107 u64 logged_isize = 0;
e4545de5 5108 bool need_log_inode_item = true;
9a8fca62 5109 bool xattrs_logged = false;
a3baaf0d 5110 bool recursive_logging = false;
e02119d5 5111
e02119d5 5112 path = btrfs_alloc_path();
5df67083
TI
5113 if (!path)
5114 return -ENOMEM;
e02119d5 5115 dst_path = btrfs_alloc_path();
5df67083
TI
5116 if (!dst_path) {
5117 btrfs_free_path(path);
5118 return -ENOMEM;
5119 }
e02119d5 5120
33345d01 5121 min_key.objectid = ino;
e02119d5
CM
5122 min_key.type = BTRFS_INODE_ITEM_KEY;
5123 min_key.offset = 0;
5124
33345d01 5125 max_key.objectid = ino;
12fcfd22 5126
12fcfd22 5127
5dc562c5 5128 /* today the code can only do partial logging of directories */
a59108a7 5129 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5130 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5131 &inode->runtime_flags) &&
781feef7 5132 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5133 max_key.type = BTRFS_XATTR_ITEM_KEY;
5134 else
5135 max_key.type = (u8)-1;
5136 max_key.offset = (u64)-1;
5137
2c2c452b
FM
5138 /*
5139 * Only run delayed items if we are a dir or a new file.
5140 * Otherwise commit the delayed inode only, which is needed in
5141 * order for the log replay code to mark inodes for link count
5142 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5143 */
a59108a7
NB
5144 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5145 inode->generation > fs_info->last_trans_committed)
5146 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 5147 else
a59108a7 5148 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5149
5150 if (ret) {
5151 btrfs_free_path(path);
5152 btrfs_free_path(dst_path);
5153 return ret;
16cdcec7
MX
5154 }
5155
a3baaf0d
FM
5156 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5157 recursive_logging = true;
5158 if (inode_only == LOG_OTHER_INODE)
5159 inode_only = LOG_INODE_EXISTS;
5160 else
5161 inode_only = LOG_INODE_ALL;
a59108a7 5162 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5163 } else {
a59108a7 5164 mutex_lock(&inode->log_mutex);
781feef7 5165 }
e02119d5
CM
5166
5167 /*
5168 * a brute force approach to making sure we get the most uptodate
5169 * copies of everything.
5170 */
a59108a7 5171 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5172 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5173
4f764e51
FM
5174 if (inode_only == LOG_INODE_EXISTS)
5175 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5176 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5177 } else {
1a4bcf47
FM
5178 if (inode_only == LOG_INODE_EXISTS) {
5179 /*
5180 * Make sure the new inode item we write to the log has
5181 * the same isize as the current one (if it exists).
5182 * This is necessary to prevent data loss after log
5183 * replay, and also to prevent doing a wrong expanding
5184 * truncate - for e.g. create file, write 4K into offset
5185 * 0, fsync, write 4K into offset 4096, add hard link,
5186 * fsync some other file (to sync log), power fail - if
5187 * we use the inode's current i_size, after log replay
5188 * we get a 8Kb file, with the last 4Kb extent as a hole
5189 * (zeroes), as if an expanding truncate happened,
5190 * instead of getting a file of 4Kb only.
5191 */
a59108a7 5192 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5193 if (err)
5194 goto out_unlock;
5195 }
a742994a 5196 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5197 &inode->runtime_flags)) {
a742994a 5198 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5199 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5200 ret = drop_objectid_items(trans, log, path, ino,
5201 max_key.type);
5202 } else {
5203 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5204 &inode->runtime_flags);
a742994a 5205 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5206 &inode->runtime_flags);
28ed1345
CM
5207 while(1) {
5208 ret = btrfs_truncate_inode_items(trans,
a59108a7 5209 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
5210 if (ret != -EAGAIN)
5211 break;
5212 }
a742994a 5213 }
4f764e51 5214 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5215 &inode->runtime_flags) ||
6cfab851 5216 inode_only == LOG_INODE_EXISTS) {
4f764e51 5217 if (inode_only == LOG_INODE_ALL)
183f37fa 5218 fast_search = true;
4f764e51 5219 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5220 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5221 max_key.type);
a95249b3
JB
5222 } else {
5223 if (inode_only == LOG_INODE_ALL)
5224 fast_search = true;
a95249b3 5225 goto log_extents;
5dc562c5 5226 }
a95249b3 5227
e02119d5 5228 }
4a500fd1
YZ
5229 if (ret) {
5230 err = ret;
5231 goto out_unlock;
5232 }
e02119d5 5233
da447009
FM
5234 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5235 path, dst_path, logged_isize,
7af59743
FM
5236 recursive_logging, inode_only, ctx,
5237 &need_log_inode_item);
da447009
FM
5238 if (err)
5239 goto out_unlock;
5dc562c5 5240
36283bf7
FM
5241 btrfs_release_path(path);
5242 btrfs_release_path(dst_path);
a59108a7 5243 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5244 if (err)
5245 goto out_unlock;
9a8fca62 5246 xattrs_logged = true;
a89ca6f2
FM
5247 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5248 btrfs_release_path(path);
5249 btrfs_release_path(dst_path);
7af59743 5250 err = btrfs_log_holes(trans, root, inode, path);
a89ca6f2
FM
5251 if (err)
5252 goto out_unlock;
5253 }
a95249b3 5254log_extents:
f3b15ccd
JB
5255 btrfs_release_path(path);
5256 btrfs_release_path(dst_path);
e4545de5 5257 if (need_log_inode_item) {
a59108a7 5258 err = log_inode_item(trans, log, dst_path, inode);
9a8fca62
FM
5259 if (!err && !xattrs_logged) {
5260 err = btrfs_log_all_xattrs(trans, root, inode, path,
5261 dst_path);
5262 btrfs_release_path(path);
5263 }
e4545de5
FM
5264 if (err)
5265 goto out_unlock;
5266 }
5dc562c5 5267 if (fast_search) {
a59108a7 5268 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
a2120a47 5269 ctx, start, end);
5dc562c5
JB
5270 if (ret) {
5271 err = ret;
5272 goto out_unlock;
5273 }
d006a048 5274 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5275 struct extent_map *em, *n;
5276
49dae1bc
FM
5277 write_lock(&em_tree->lock);
5278 /*
5279 * We can't just remove every em if we're called for a ranged
5280 * fsync - that is, one that doesn't cover the whole possible
5281 * file range (0 to LLONG_MAX). This is because we can have
5282 * em's that fall outside the range we're logging and therefore
5283 * their ordered operations haven't completed yet
5284 * (btrfs_finish_ordered_io() not invoked yet). This means we
5285 * didn't get their respective file extent item in the fs/subvol
5286 * tree yet, and need to let the next fast fsync (one which
5287 * consults the list of modified extent maps) find the em so
5288 * that it logs a matching file extent item and waits for the
5289 * respective ordered operation to complete (if it's still
5290 * running).
5291 *
5292 * Removing every em outside the range we're logging would make
5293 * the next fast fsync not log their matching file extent items,
5294 * therefore making us lose data after a log replay.
5295 */
5296 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5297 list) {
5298 const u64 mod_end = em->mod_start + em->mod_len - 1;
5299
5300 if (em->mod_start >= start && mod_end <= end)
5301 list_del_init(&em->list);
5302 }
5303 write_unlock(&em_tree->lock);
5dc562c5
JB
5304 }
5305
a59108a7
NB
5306 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5307 ret = log_directory_changes(trans, root, inode, path, dst_path,
5308 ctx);
4a500fd1
YZ
5309 if (ret) {
5310 err = ret;
5311 goto out_unlock;
5312 }
e02119d5 5313 }
49dae1bc 5314
d1d832a0
FM
5315 /*
5316 * Don't update last_log_commit if we logged that an inode exists after
5317 * it was loaded to memory (full_sync bit set).
5318 * This is to prevent data loss when we do a write to the inode, then
5319 * the inode gets evicted after all delalloc was flushed, then we log
5320 * it exists (due to a rename for example) and then fsync it. This last
5321 * fsync would do nothing (not logging the extents previously written).
5322 */
a59108a7
NB
5323 spin_lock(&inode->lock);
5324 inode->logged_trans = trans->transid;
d1d832a0
FM
5325 if (inode_only != LOG_INODE_EXISTS ||
5326 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5327 inode->last_log_commit = inode->last_sub_trans;
a59108a7 5328 spin_unlock(&inode->lock);
4a500fd1 5329out_unlock:
a59108a7 5330 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5331
5332 btrfs_free_path(path);
5333 btrfs_free_path(dst_path);
4a500fd1 5334 return err;
e02119d5
CM
5335}
5336
2be63d5c
FM
5337/*
5338 * Check if we must fallback to a transaction commit when logging an inode.
5339 * This must be called after logging the inode and is used only in the context
5340 * when fsyncing an inode requires the need to log some other inode - in which
5341 * case we can't lock the i_mutex of each other inode we need to log as that
5342 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5343 * log inodes up or down in the hierarchy) or rename operations for example. So
5344 * we take the log_mutex of the inode after we have logged it and then check for
5345 * its last_unlink_trans value - this is safe because any task setting
5346 * last_unlink_trans must take the log_mutex and it must do this before it does
5347 * the actual unlink operation, so if we do this check before a concurrent task
5348 * sets last_unlink_trans it means we've logged a consistent version/state of
5349 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5350 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5351 * we logged the inode or it might have also done the unlink).
5352 */
5353static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5354 struct btrfs_inode *inode)
2be63d5c 5355{
ab1717b2 5356 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5357 bool ret = false;
5358
ab1717b2
NB
5359 mutex_lock(&inode->log_mutex);
5360 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5361 /*
5362 * Make sure any commits to the log are forced to be full
5363 * commits.
5364 */
90787766 5365 btrfs_set_log_full_commit(trans);
2be63d5c
FM
5366 ret = true;
5367 }
ab1717b2 5368 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5369
5370 return ret;
5371}
5372
12fcfd22
CM
5373/*
5374 * follow the dentry parent pointers up the chain and see if any
5375 * of the directories in it require a full commit before they can
5376 * be logged. Returns zero if nothing special needs to be done or 1 if
5377 * a full commit is required.
5378 */
5379static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5380 struct btrfs_inode *inode,
12fcfd22
CM
5381 struct dentry *parent,
5382 struct super_block *sb,
5383 u64 last_committed)
e02119d5 5384{
12fcfd22 5385 int ret = 0;
6a912213 5386 struct dentry *old_parent = NULL;
e02119d5 5387
af4176b4
CM
5388 /*
5389 * for regular files, if its inode is already on disk, we don't
5390 * have to worry about the parents at all. This is because
5391 * we can use the last_unlink_trans field to record renames
5392 * and other fun in this file.
5393 */
aefa6115
NB
5394 if (S_ISREG(inode->vfs_inode.i_mode) &&
5395 inode->generation <= last_committed &&
5396 inode->last_unlink_trans <= last_committed)
5397 goto out;
af4176b4 5398
aefa6115 5399 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5400 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5401 goto out;
aefa6115 5402 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5403 }
5404
5405 while (1) {
aefa6115 5406 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5407 ret = 1;
5408 break;
5409 }
5410
fc64005c 5411 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5412 break;
5413
44f714da 5414 if (IS_ROOT(parent)) {
aefa6115
NB
5415 inode = BTRFS_I(d_inode(parent));
5416 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5417 ret = 1;
12fcfd22 5418 break;
44f714da 5419 }
12fcfd22 5420
6a912213
JB
5421 parent = dget_parent(parent);
5422 dput(old_parent);
5423 old_parent = parent;
aefa6115 5424 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5425
5426 }
6a912213 5427 dput(old_parent);
12fcfd22 5428out:
e02119d5
CM
5429 return ret;
5430}
5431
2f2ff0ee
FM
5432struct btrfs_dir_list {
5433 u64 ino;
5434 struct list_head list;
5435};
5436
5437/*
5438 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5439 * details about the why it is needed.
5440 * This is a recursive operation - if an existing dentry corresponds to a
5441 * directory, that directory's new entries are logged too (same behaviour as
5442 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5443 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5444 * complains about the following circular lock dependency / possible deadlock:
5445 *
5446 * CPU0 CPU1
5447 * ---- ----
5448 * lock(&type->i_mutex_dir_key#3/2);
5449 * lock(sb_internal#2);
5450 * lock(&type->i_mutex_dir_key#3/2);
5451 * lock(&sb->s_type->i_mutex_key#14);
5452 *
5453 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5454 * sb_start_intwrite() in btrfs_start_transaction().
5455 * Not locking i_mutex of the inodes is still safe because:
5456 *
5457 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5458 * that while logging the inode new references (names) are added or removed
5459 * from the inode, leaving the logged inode item with a link count that does
5460 * not match the number of logged inode reference items. This is fine because
5461 * at log replay time we compute the real number of links and correct the
5462 * link count in the inode item (see replay_one_buffer() and
5463 * link_to_fixup_dir());
5464 *
5465 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5466 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5467 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5468 * has a size that doesn't match the sum of the lengths of all the logged
5469 * names. This does not result in a problem because if a dir_item key is
5470 * logged but its matching dir_index key is not logged, at log replay time we
5471 * don't use it to replay the respective name (see replay_one_name()). On the
5472 * other hand if only the dir_index key ends up being logged, the respective
5473 * name is added to the fs/subvol tree with both the dir_item and dir_index
5474 * keys created (see replay_one_name()).
5475 * The directory's inode item with a wrong i_size is not a problem as well,
5476 * since we don't use it at log replay time to set the i_size in the inode
5477 * item of the fs/subvol tree (see overwrite_item()).
5478 */
5479static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5480 struct btrfs_root *root,
51cc0d32 5481 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5482 struct btrfs_log_ctx *ctx)
5483{
0b246afa 5484 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5485 struct btrfs_root *log = root->log_root;
5486 struct btrfs_path *path;
5487 LIST_HEAD(dir_list);
5488 struct btrfs_dir_list *dir_elem;
5489 int ret = 0;
5490
5491 path = btrfs_alloc_path();
5492 if (!path)
5493 return -ENOMEM;
5494
5495 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5496 if (!dir_elem) {
5497 btrfs_free_path(path);
5498 return -ENOMEM;
5499 }
51cc0d32 5500 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5501 list_add_tail(&dir_elem->list, &dir_list);
5502
5503 while (!list_empty(&dir_list)) {
5504 struct extent_buffer *leaf;
5505 struct btrfs_key min_key;
5506 int nritems;
5507 int i;
5508
5509 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5510 list);
5511 if (ret)
5512 goto next_dir_inode;
5513
5514 min_key.objectid = dir_elem->ino;
5515 min_key.type = BTRFS_DIR_ITEM_KEY;
5516 min_key.offset = 0;
5517again:
5518 btrfs_release_path(path);
5519 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5520 if (ret < 0) {
5521 goto next_dir_inode;
5522 } else if (ret > 0) {
5523 ret = 0;
5524 goto next_dir_inode;
5525 }
5526
5527process_leaf:
5528 leaf = path->nodes[0];
5529 nritems = btrfs_header_nritems(leaf);
5530 for (i = path->slots[0]; i < nritems; i++) {
5531 struct btrfs_dir_item *di;
5532 struct btrfs_key di_key;
5533 struct inode *di_inode;
5534 struct btrfs_dir_list *new_dir_elem;
5535 int log_mode = LOG_INODE_EXISTS;
5536 int type;
5537
5538 btrfs_item_key_to_cpu(leaf, &min_key, i);
5539 if (min_key.objectid != dir_elem->ino ||
5540 min_key.type != BTRFS_DIR_ITEM_KEY)
5541 goto next_dir_inode;
5542
5543 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5544 type = btrfs_dir_type(leaf, di);
5545 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5546 type != BTRFS_FT_DIR)
5547 continue;
5548 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5549 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5550 continue;
5551
ec125cfb 5552 btrfs_release_path(path);
4c66e0d4 5553 di_inode = btrfs_iget(fs_info->sb, &di_key, root);
2f2ff0ee
FM
5554 if (IS_ERR(di_inode)) {
5555 ret = PTR_ERR(di_inode);
5556 goto next_dir_inode;
5557 }
5558
0f8939b8 5559 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
410f954c 5560 btrfs_add_delayed_iput(di_inode);
ec125cfb 5561 break;
2f2ff0ee
FM
5562 }
5563
5564 ctx->log_new_dentries = false;
3f9749f6 5565 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5566 log_mode = LOG_INODE_ALL;
a59108a7 5567 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5568 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5569 if (!ret &&
ab1717b2 5570 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5571 ret = 1;
410f954c 5572 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5573 if (ret)
5574 goto next_dir_inode;
5575 if (ctx->log_new_dentries) {
5576 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5577 GFP_NOFS);
5578 if (!new_dir_elem) {
5579 ret = -ENOMEM;
5580 goto next_dir_inode;
5581 }
5582 new_dir_elem->ino = di_key.objectid;
5583 list_add_tail(&new_dir_elem->list, &dir_list);
5584 }
5585 break;
5586 }
5587 if (i == nritems) {
5588 ret = btrfs_next_leaf(log, path);
5589 if (ret < 0) {
5590 goto next_dir_inode;
5591 } else if (ret > 0) {
5592 ret = 0;
5593 goto next_dir_inode;
5594 }
5595 goto process_leaf;
5596 }
5597 if (min_key.offset < (u64)-1) {
5598 min_key.offset++;
5599 goto again;
5600 }
5601next_dir_inode:
5602 list_del(&dir_elem->list);
5603 kfree(dir_elem);
5604 }
5605
5606 btrfs_free_path(path);
5607 return ret;
5608}
5609
18aa0922 5610static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5611 struct btrfs_inode *inode,
18aa0922
FM
5612 struct btrfs_log_ctx *ctx)
5613{
3ffbd68c 5614 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5615 int ret;
5616 struct btrfs_path *path;
5617 struct btrfs_key key;
d0a0b78d
NB
5618 struct btrfs_root *root = inode->root;
5619 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5620
5621 path = btrfs_alloc_path();
5622 if (!path)
5623 return -ENOMEM;
5624 path->skip_locking = 1;
5625 path->search_commit_root = 1;
5626
5627 key.objectid = ino;
5628 key.type = BTRFS_INODE_REF_KEY;
5629 key.offset = 0;
5630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5631 if (ret < 0)
5632 goto out;
5633
5634 while (true) {
5635 struct extent_buffer *leaf = path->nodes[0];
5636 int slot = path->slots[0];
5637 u32 cur_offset = 0;
5638 u32 item_size;
5639 unsigned long ptr;
5640
5641 if (slot >= btrfs_header_nritems(leaf)) {
5642 ret = btrfs_next_leaf(root, path);
5643 if (ret < 0)
5644 goto out;
5645 else if (ret > 0)
5646 break;
5647 continue;
5648 }
5649
5650 btrfs_item_key_to_cpu(leaf, &key, slot);
5651 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5652 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5653 break;
5654
5655 item_size = btrfs_item_size_nr(leaf, slot);
5656 ptr = btrfs_item_ptr_offset(leaf, slot);
5657 while (cur_offset < item_size) {
5658 struct btrfs_key inode_key;
5659 struct inode *dir_inode;
5660
5661 inode_key.type = BTRFS_INODE_ITEM_KEY;
5662 inode_key.offset = 0;
5663
5664 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5665 struct btrfs_inode_extref *extref;
5666
5667 extref = (struct btrfs_inode_extref *)
5668 (ptr + cur_offset);
5669 inode_key.objectid = btrfs_inode_extref_parent(
5670 leaf, extref);
5671 cur_offset += sizeof(*extref);
5672 cur_offset += btrfs_inode_extref_name_len(leaf,
5673 extref);
5674 } else {
5675 inode_key.objectid = key.offset;
5676 cur_offset = item_size;
5677 }
5678
4c66e0d4 5679 dir_inode = btrfs_iget(fs_info->sb, &inode_key, root);
0f375eed
FM
5680 /*
5681 * If the parent inode was deleted, return an error to
5682 * fallback to a transaction commit. This is to prevent
5683 * getting an inode that was moved from one parent A to
5684 * a parent B, got its former parent A deleted and then
5685 * it got fsync'ed, from existing at both parents after
5686 * a log replay (and the old parent still existing).
5687 * Example:
5688 *
5689 * mkdir /mnt/A
5690 * mkdir /mnt/B
5691 * touch /mnt/B/bar
5692 * sync
5693 * mv /mnt/B/bar /mnt/A/bar
5694 * mv -T /mnt/A /mnt/B
5695 * fsync /mnt/B/bar
5696 * <power fail>
5697 *
5698 * If we ignore the old parent B which got deleted,
5699 * after a log replay we would have file bar linked
5700 * at both parents and the old parent B would still
5701 * exist.
5702 */
5703 if (IS_ERR(dir_inode)) {
5704 ret = PTR_ERR(dir_inode);
5705 goto out;
5706 }
18aa0922 5707
657ed1aa
FM
5708 if (ctx)
5709 ctx->log_new_dentries = false;
a59108a7 5710 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5711 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5712 if (!ret &&
ab1717b2 5713 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5714 ret = 1;
657ed1aa
FM
5715 if (!ret && ctx && ctx->log_new_dentries)
5716 ret = log_new_dir_dentries(trans, root,
f85b7379 5717 BTRFS_I(dir_inode), ctx);
410f954c 5718 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
5719 if (ret)
5720 goto out;
5721 }
5722 path->slots[0]++;
5723 }
5724 ret = 0;
5725out:
5726 btrfs_free_path(path);
5727 return ret;
5728}
5729
b8aa330d
FM
5730static int log_new_ancestors(struct btrfs_trans_handle *trans,
5731 struct btrfs_root *root,
5732 struct btrfs_path *path,
5733 struct btrfs_log_ctx *ctx)
5734{
5735 struct btrfs_key found_key;
5736
5737 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5738
5739 while (true) {
5740 struct btrfs_fs_info *fs_info = root->fs_info;
5741 const u64 last_committed = fs_info->last_trans_committed;
5742 struct extent_buffer *leaf = path->nodes[0];
5743 int slot = path->slots[0];
5744 struct btrfs_key search_key;
5745 struct inode *inode;
5746 int ret = 0;
5747
5748 btrfs_release_path(path);
5749
5750 search_key.objectid = found_key.offset;
5751 search_key.type = BTRFS_INODE_ITEM_KEY;
5752 search_key.offset = 0;
4c66e0d4 5753 inode = btrfs_iget(fs_info->sb, &search_key, root);
b8aa330d
FM
5754 if (IS_ERR(inode))
5755 return PTR_ERR(inode);
5756
5757 if (BTRFS_I(inode)->generation > last_committed)
5758 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5759 LOG_INODE_EXISTS,
5760 0, LLONG_MAX, ctx);
410f954c 5761 btrfs_add_delayed_iput(inode);
b8aa330d
FM
5762 if (ret)
5763 return ret;
5764
5765 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5766 break;
5767
5768 search_key.type = BTRFS_INODE_REF_KEY;
5769 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5770 if (ret < 0)
5771 return ret;
5772
5773 leaf = path->nodes[0];
5774 slot = path->slots[0];
5775 if (slot >= btrfs_header_nritems(leaf)) {
5776 ret = btrfs_next_leaf(root, path);
5777 if (ret < 0)
5778 return ret;
5779 else if (ret > 0)
5780 return -ENOENT;
5781 leaf = path->nodes[0];
5782 slot = path->slots[0];
5783 }
5784
5785 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5786 if (found_key.objectid != search_key.objectid ||
5787 found_key.type != BTRFS_INODE_REF_KEY)
5788 return -ENOENT;
5789 }
5790 return 0;
5791}
5792
5793static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5794 struct btrfs_inode *inode,
5795 struct dentry *parent,
5796 struct btrfs_log_ctx *ctx)
5797{
5798 struct btrfs_root *root = inode->root;
5799 struct btrfs_fs_info *fs_info = root->fs_info;
5800 struct dentry *old_parent = NULL;
5801 struct super_block *sb = inode->vfs_inode.i_sb;
5802 int ret = 0;
5803
5804 while (true) {
5805 if (!parent || d_really_is_negative(parent) ||
5806 sb != parent->d_sb)
5807 break;
5808
5809 inode = BTRFS_I(d_inode(parent));
5810 if (root != inode->root)
5811 break;
5812
5813 if (inode->generation > fs_info->last_trans_committed) {
5814 ret = btrfs_log_inode(trans, root, inode,
5815 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5816 if (ret)
5817 break;
5818 }
5819 if (IS_ROOT(parent))
5820 break;
5821
5822 parent = dget_parent(parent);
5823 dput(old_parent);
5824 old_parent = parent;
5825 }
5826 dput(old_parent);
5827
5828 return ret;
5829}
5830
5831static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5832 struct btrfs_inode *inode,
5833 struct dentry *parent,
5834 struct btrfs_log_ctx *ctx)
5835{
5836 struct btrfs_root *root = inode->root;
5837 const u64 ino = btrfs_ino(inode);
5838 struct btrfs_path *path;
5839 struct btrfs_key search_key;
5840 int ret;
5841
5842 /*
5843 * For a single hard link case, go through a fast path that does not
5844 * need to iterate the fs/subvolume tree.
5845 */
5846 if (inode->vfs_inode.i_nlink < 2)
5847 return log_new_ancestors_fast(trans, inode, parent, ctx);
5848
5849 path = btrfs_alloc_path();
5850 if (!path)
5851 return -ENOMEM;
5852
5853 search_key.objectid = ino;
5854 search_key.type = BTRFS_INODE_REF_KEY;
5855 search_key.offset = 0;
5856again:
5857 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5858 if (ret < 0)
5859 goto out;
5860 if (ret == 0)
5861 path->slots[0]++;
5862
5863 while (true) {
5864 struct extent_buffer *leaf = path->nodes[0];
5865 int slot = path->slots[0];
5866 struct btrfs_key found_key;
5867
5868 if (slot >= btrfs_header_nritems(leaf)) {
5869 ret = btrfs_next_leaf(root, path);
5870 if (ret < 0)
5871 goto out;
5872 else if (ret > 0)
5873 break;
5874 continue;
5875 }
5876
5877 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5878 if (found_key.objectid != ino ||
5879 found_key.type > BTRFS_INODE_EXTREF_KEY)
5880 break;
5881
5882 /*
5883 * Don't deal with extended references because they are rare
5884 * cases and too complex to deal with (we would need to keep
5885 * track of which subitem we are processing for each item in
5886 * this loop, etc). So just return some error to fallback to
5887 * a transaction commit.
5888 */
5889 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5890 ret = -EMLINK;
5891 goto out;
5892 }
5893
5894 /*
5895 * Logging ancestors needs to do more searches on the fs/subvol
5896 * tree, so it releases the path as needed to avoid deadlocks.
5897 * Keep track of the last inode ref key and resume from that key
5898 * after logging all new ancestors for the current hard link.
5899 */
5900 memcpy(&search_key, &found_key, sizeof(search_key));
5901
5902 ret = log_new_ancestors(trans, root, path, ctx);
5903 if (ret)
5904 goto out;
5905 btrfs_release_path(path);
5906 goto again;
5907 }
5908 ret = 0;
5909out:
5910 btrfs_free_path(path);
5911 return ret;
5912}
5913
e02119d5
CM
5914/*
5915 * helper function around btrfs_log_inode to make sure newly created
5916 * parent directories also end up in the log. A minimal inode and backref
5917 * only logging is done of any parent directories that are older than
5918 * the last committed transaction
5919 */
48a3b636 5920static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 5921 struct btrfs_inode *inode,
49dae1bc
FM
5922 struct dentry *parent,
5923 const loff_t start,
5924 const loff_t end,
41a1eada 5925 int inode_only,
8b050d35 5926 struct btrfs_log_ctx *ctx)
e02119d5 5927{
f882274b 5928 struct btrfs_root *root = inode->root;
0b246afa 5929 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 5930 struct super_block *sb;
12fcfd22 5931 int ret = 0;
0b246afa 5932 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5933 bool log_dentries = false;
12fcfd22 5934
19df27a9 5935 sb = inode->vfs_inode.i_sb;
12fcfd22 5936
0b246afa 5937 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5938 ret = 1;
5939 goto end_no_trans;
5940 }
5941
995946dd
MX
5942 /*
5943 * The prev transaction commit doesn't complete, we need do
5944 * full commit by ourselves.
5945 */
0b246afa
JM
5946 if (fs_info->last_trans_log_full_commit >
5947 fs_info->last_trans_committed) {
12fcfd22
CM
5948 ret = 1;
5949 goto end_no_trans;
5950 }
5951
f882274b 5952 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5953 ret = 1;
5954 goto end_no_trans;
5955 }
5956
19df27a9
NB
5957 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5958 last_committed);
12fcfd22
CM
5959 if (ret)
5960 goto end_no_trans;
e02119d5 5961
f2d72f42
FM
5962 /*
5963 * Skip already logged inodes or inodes corresponding to tmpfiles
5964 * (since logging them is pointless, a link count of 0 means they
5965 * will never be accessible).
5966 */
5967 if (btrfs_inode_in_log(inode, trans->transid) ||
5968 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
5969 ret = BTRFS_NO_LOG_SYNC;
5970 goto end_no_trans;
5971 }
5972
8b050d35 5973 ret = start_log_trans(trans, root, ctx);
4a500fd1 5974 if (ret)
e87ac136 5975 goto end_no_trans;
e02119d5 5976
19df27a9 5977 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5978 if (ret)
5979 goto end_trans;
12fcfd22 5980
af4176b4
CM
5981 /*
5982 * for regular files, if its inode is already on disk, we don't
5983 * have to worry about the parents at all. This is because
5984 * we can use the last_unlink_trans field to record renames
5985 * and other fun in this file.
5986 */
19df27a9
NB
5987 if (S_ISREG(inode->vfs_inode.i_mode) &&
5988 inode->generation <= last_committed &&
5989 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
5990 ret = 0;
5991 goto end_trans;
5992 }
af4176b4 5993
19df27a9 5994 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
5995 log_dentries = true;
5996
18aa0922 5997 /*
01327610 5998 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5999 * inodes are fully logged. This is to prevent leaving dangling
6000 * directory index entries in directories that were our parents but are
6001 * not anymore. Not doing this results in old parent directory being
6002 * impossible to delete after log replay (rmdir will always fail with
6003 * error -ENOTEMPTY).
6004 *
6005 * Example 1:
6006 *
6007 * mkdir testdir
6008 * touch testdir/foo
6009 * ln testdir/foo testdir/bar
6010 * sync
6011 * unlink testdir/bar
6012 * xfs_io -c fsync testdir/foo
6013 * <power failure>
6014 * mount fs, triggers log replay
6015 *
6016 * If we don't log the parent directory (testdir), after log replay the
6017 * directory still has an entry pointing to the file inode using the bar
6018 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6019 * the file inode has a link count of 1.
6020 *
6021 * Example 2:
6022 *
6023 * mkdir testdir
6024 * touch foo
6025 * ln foo testdir/foo2
6026 * ln foo testdir/foo3
6027 * sync
6028 * unlink testdir/foo3
6029 * xfs_io -c fsync foo
6030 * <power failure>
6031 * mount fs, triggers log replay
6032 *
6033 * Similar as the first example, after log replay the parent directory
6034 * testdir still has an entry pointing to the inode file with name foo3
6035 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6036 * and has a link count of 2.
6037 */
19df27a9 6038 if (inode->last_unlink_trans > last_committed) {
b8aa330d 6039 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6040 if (ret)
6041 goto end_trans;
6042 }
6043
b8aa330d
FM
6044 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6045 if (ret)
41bd6067 6046 goto end_trans;
76dda93c 6047
2f2ff0ee 6048 if (log_dentries)
b8aa330d 6049 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6050 else
6051 ret = 0;
4a500fd1
YZ
6052end_trans:
6053 if (ret < 0) {
90787766 6054 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6055 ret = 1;
6056 }
8b050d35
MX
6057
6058 if (ret)
6059 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6060 btrfs_end_log_trans(root);
6061end_no_trans:
6062 return ret;
e02119d5
CM
6063}
6064
6065/*
6066 * it is not safe to log dentry if the chunk root has added new
6067 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6068 * If this returns 1, you must commit the transaction to safely get your
6069 * data on disk.
6070 */
6071int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6072 struct dentry *dentry,
49dae1bc
FM
6073 const loff_t start,
6074 const loff_t end,
8b050d35 6075 struct btrfs_log_ctx *ctx)
e02119d5 6076{
6a912213
JB
6077 struct dentry *parent = dget_parent(dentry);
6078 int ret;
6079
f882274b
NB
6080 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6081 start, end, LOG_INODE_ALL, ctx);
6a912213
JB
6082 dput(parent);
6083
6084 return ret;
e02119d5
CM
6085}
6086
6087/*
6088 * should be called during mount to recover any replay any log trees
6089 * from the FS
6090 */
6091int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6092{
6093 int ret;
6094 struct btrfs_path *path;
6095 struct btrfs_trans_handle *trans;
6096 struct btrfs_key key;
6097 struct btrfs_key found_key;
6098 struct btrfs_key tmp_key;
6099 struct btrfs_root *log;
6100 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6101 struct walk_control wc = {
6102 .process_func = process_one_buffer,
430a6626 6103 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6104 };
6105
e02119d5 6106 path = btrfs_alloc_path();
db5b493a
TI
6107 if (!path)
6108 return -ENOMEM;
6109
afcdd129 6110 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6111
4a500fd1 6112 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6113 if (IS_ERR(trans)) {
6114 ret = PTR_ERR(trans);
6115 goto error;
6116 }
e02119d5
CM
6117
6118 wc.trans = trans;
6119 wc.pin = 1;
6120
db5b493a 6121 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6122 if (ret) {
5d163e0e
JM
6123 btrfs_handle_fs_error(fs_info, ret,
6124 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6125 goto error;
6126 }
e02119d5
CM
6127
6128again:
6129 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6130 key.offset = (u64)-1;
962a298f 6131 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6132
d397712b 6133 while (1) {
e02119d5 6134 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6135
6136 if (ret < 0) {
34d97007 6137 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6138 "Couldn't find tree log root.");
6139 goto error;
6140 }
e02119d5
CM
6141 if (ret > 0) {
6142 if (path->slots[0] == 0)
6143 break;
6144 path->slots[0]--;
6145 }
6146 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6147 path->slots[0]);
b3b4aa74 6148 btrfs_release_path(path);
e02119d5
CM
6149 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6150 break;
6151
62a2c73e 6152 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6153 if (IS_ERR(log)) {
6154 ret = PTR_ERR(log);
34d97007 6155 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6156 "Couldn't read tree log root.");
6157 goto error;
6158 }
e02119d5
CM
6159
6160 tmp_key.objectid = found_key.offset;
6161 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6162 tmp_key.offset = (u64)-1;
6163
3619c94f 6164 wc.replay_dest = btrfs_get_fs_root(fs_info, &tmp_key, true);
79787eaa
JM
6165 if (IS_ERR(wc.replay_dest)) {
6166 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6167
6168 /*
6169 * We didn't find the subvol, likely because it was
6170 * deleted. This is ok, simply skip this log and go to
6171 * the next one.
6172 *
6173 * We need to exclude the root because we can't have
6174 * other log replays overwriting this log as we'll read
6175 * it back in a few more times. This will keep our
6176 * block from being modified, and we'll just bail for
6177 * each subsequent pass.
6178 */
6179 if (ret == -ENOENT)
9fce5704 6180 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6181 log->node->start,
6182 log->node->len);
00246528 6183 btrfs_put_root(log);
9bc574de
JB
6184
6185 if (!ret)
6186 goto next;
5d163e0e
JM
6187 btrfs_handle_fs_error(fs_info, ret,
6188 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6189 goto error;
6190 }
e02119d5 6191
07d400a6 6192 wc.replay_dest->log_root = log;
5d4f98a2 6193 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 6194 ret = walk_log_tree(trans, log, &wc);
e02119d5 6195
b50c6e25 6196 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6197 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6198 path);
e02119d5
CM
6199 }
6200
900c9981
LB
6201 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6202 struct btrfs_root *root = wc.replay_dest;
6203
6204 btrfs_release_path(path);
6205
6206 /*
6207 * We have just replayed everything, and the highest
6208 * objectid of fs roots probably has changed in case
6209 * some inode_item's got replayed.
6210 *
6211 * root->objectid_mutex is not acquired as log replay
6212 * could only happen during mount.
6213 */
6214 ret = btrfs_find_highest_objectid(root,
6215 &root->highest_objectid);
6216 }
6217
07d400a6 6218 wc.replay_dest->log_root = NULL;
00246528 6219 btrfs_put_root(wc.replay_dest);
00246528 6220 btrfs_put_root(log);
e02119d5 6221
b50c6e25
JB
6222 if (ret)
6223 goto error;
9bc574de 6224next:
e02119d5
CM
6225 if (found_key.offset == 0)
6226 break;
9bc574de 6227 key.offset = found_key.offset - 1;
e02119d5 6228 }
b3b4aa74 6229 btrfs_release_path(path);
e02119d5
CM
6230
6231 /* step one is to pin it all, step two is to replay just inodes */
6232 if (wc.pin) {
6233 wc.pin = 0;
6234 wc.process_func = replay_one_buffer;
6235 wc.stage = LOG_WALK_REPLAY_INODES;
6236 goto again;
6237 }
6238 /* step three is to replay everything */
6239 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6240 wc.stage++;
6241 goto again;
6242 }
6243
6244 btrfs_free_path(path);
6245
abefa55a 6246 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6247 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6248 if (ret)
6249 return ret;
6250
e02119d5 6251 log_root_tree->log_root = NULL;
afcdd129 6252 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6253 btrfs_put_root(log_root_tree);
79787eaa 6254
abefa55a 6255 return 0;
79787eaa 6256error:
b50c6e25 6257 if (wc.trans)
3a45bb20 6258 btrfs_end_transaction(wc.trans);
79787eaa
JM
6259 btrfs_free_path(path);
6260 return ret;
e02119d5 6261}
12fcfd22
CM
6262
6263/*
6264 * there are some corner cases where we want to force a full
6265 * commit instead of allowing a directory to be logged.
6266 *
6267 * They revolve around files there were unlinked from the directory, and
6268 * this function updates the parent directory so that a full commit is
6269 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6270 *
6271 * Must be called before the unlink operations (updates to the subvolume tree,
6272 * inodes, etc) are done.
12fcfd22
CM
6273 */
6274void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6275 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6276 int for_rename)
6277{
af4176b4
CM
6278 /*
6279 * when we're logging a file, if it hasn't been renamed
6280 * or unlinked, and its inode is fully committed on disk,
6281 * we don't have to worry about walking up the directory chain
6282 * to log its parents.
6283 *
6284 * So, we use the last_unlink_trans field to put this transid
6285 * into the file. When the file is logged we check it and
6286 * don't log the parents if the file is fully on disk.
6287 */
4176bdbf
NB
6288 mutex_lock(&inode->log_mutex);
6289 inode->last_unlink_trans = trans->transid;
6290 mutex_unlock(&inode->log_mutex);
af4176b4 6291
12fcfd22
CM
6292 /*
6293 * if this directory was already logged any new
6294 * names for this file/dir will get recorded
6295 */
4176bdbf 6296 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6297 return;
6298
6299 /*
6300 * if the inode we're about to unlink was logged,
6301 * the log will be properly updated for any new names
6302 */
4176bdbf 6303 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6304 return;
6305
6306 /*
6307 * when renaming files across directories, if the directory
6308 * there we're unlinking from gets fsync'd later on, there's
6309 * no way to find the destination directory later and fsync it
6310 * properly. So, we have to be conservative and force commits
6311 * so the new name gets discovered.
6312 */
6313 if (for_rename)
6314 goto record;
6315
6316 /* we can safely do the unlink without any special recording */
6317 return;
6318
6319record:
4176bdbf
NB
6320 mutex_lock(&dir->log_mutex);
6321 dir->last_unlink_trans = trans->transid;
6322 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6323}
6324
6325/*
6326 * Make sure that if someone attempts to fsync the parent directory of a deleted
6327 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6328 * that after replaying the log tree of the parent directory's root we will not
6329 * see the snapshot anymore and at log replay time we will not see any log tree
6330 * corresponding to the deleted snapshot's root, which could lead to replaying
6331 * it after replaying the log tree of the parent directory (which would replay
6332 * the snapshot delete operation).
2be63d5c
FM
6333 *
6334 * Must be called before the actual snapshot destroy operation (updates to the
6335 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6336 */
6337void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6338 struct btrfs_inode *dir)
1ec9a1ae 6339{
43663557
NB
6340 mutex_lock(&dir->log_mutex);
6341 dir->last_unlink_trans = trans->transid;
6342 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6343}
6344
6345/*
6346 * Call this after adding a new name for a file and it will properly
6347 * update the log to reflect the new name.
6348 *
d4682ba0
FM
6349 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6350 * true (because it's not used).
6351 *
6352 * Return value depends on whether @sync_log is true or false.
6353 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6354 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6355 * otherwise.
6356 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6357 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6358 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6359 * committed (without attempting to sync the log).
12fcfd22
CM
6360 */
6361int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6362 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
d4682ba0
FM
6363 struct dentry *parent,
6364 bool sync_log, struct btrfs_log_ctx *ctx)
12fcfd22 6365{
3ffbd68c 6366 struct btrfs_fs_info *fs_info = trans->fs_info;
d4682ba0 6367 int ret;
12fcfd22 6368
af4176b4
CM
6369 /*
6370 * this will force the logging code to walk the dentry chain
6371 * up for the file
6372 */
9a6509c4 6373 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6374 inode->last_unlink_trans = trans->transid;
af4176b4 6375
12fcfd22
CM
6376 /*
6377 * if this inode hasn't been logged and directory we're renaming it
6378 * from hasn't been logged, we don't need to log it
6379 */
9ca5fbfb
NB
6380 if (inode->logged_trans <= fs_info->last_trans_committed &&
6381 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
d4682ba0
FM
6382 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6383 BTRFS_DONT_NEED_LOG_SYNC;
6384
6385 if (sync_log) {
6386 struct btrfs_log_ctx ctx2;
6387
6388 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6389 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6390 LOG_INODE_EXISTS, &ctx2);
6391 if (ret == BTRFS_NO_LOG_SYNC)
6392 return BTRFS_DONT_NEED_TRANS_COMMIT;
6393 else if (ret)
6394 return BTRFS_NEED_TRANS_COMMIT;
6395
6396 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6397 if (ret)
6398 return BTRFS_NEED_TRANS_COMMIT;
6399 return BTRFS_DONT_NEED_TRANS_COMMIT;
6400 }
6401
6402 ASSERT(ctx);
6403 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6404 LOG_INODE_EXISTS, ctx);
6405 if (ret == BTRFS_NO_LOG_SYNC)
6406 return BTRFS_DONT_NEED_LOG_SYNC;
6407 else if (ret)
6408 return BTRFS_NEED_TRANS_COMMIT;
12fcfd22 6409
d4682ba0 6410 return BTRFS_NEED_LOG_SYNC;
12fcfd22
CM
6411}
6412