]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
btrfs: return whole extents in fiemap
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
e02119d5
CM
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
e13976cf
DS
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
e02119d5 36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
e13976cf
DS
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 97 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 98 int inode_only,
8407f553 99 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
fa1a0f42 108static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
e02119d5 141{
0b246afa 142 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 143 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 144 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 145 int ret = 0;
fa1a0f42 146 bool created = false;
7237f183 147
47876f7c
FM
148 /*
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
151 */
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 156 if (!ret) {
47876f7c 157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
158 created = true;
159 }
47876f7c
FM
160 }
161 mutex_unlock(&tree_root->log_mutex);
162 if (ret)
163 return ret;
164 }
165
7237f183 166 mutex_lock(&root->log_mutex);
34eb2a52 167
fa1a0f42 168again:
7237f183 169 if (root->log_root) {
fa1a0f42
NA
170 int index = (root->log_transid + 1) % 2;
171
4884b8e8 172 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
173 ret = -EAGAIN;
174 goto out;
175 }
34eb2a52 176
fa1a0f42
NA
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
179 goto again;
180 }
181
ff782e0a 182 if (!root->log_start_pid) {
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 184 root->log_start_pid = current->pid;
ff782e0a 185 } else if (root->log_start_pid != current->pid) {
27cdeb70 186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 187 }
34eb2a52 188 } else {
fa1a0f42
NA
189 /*
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
193 * writing.
194 */
195 if (zoned && !created) {
196 ret = -EAGAIN;
197 goto out;
198 }
199
e02119d5 200 ret = btrfs_add_log_tree(trans, root);
4a500fd1 201 if (ret)
e87ac136 202 goto out;
34eb2a52 203
e7a79811 204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
e02119d5 207 }
34eb2a52 208
7237f183 209 atomic_inc(&root->log_writers);
75b463d2 210 if (ctx && !ctx->logging_new_name) {
34eb2a52 211 int index = root->log_transid % 2;
8b050d35 212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 213 ctx->log_transid = root->log_transid;
8b050d35 214 }
34eb2a52 215
e87ac136 216out:
7237f183 217 mutex_unlock(&root->log_mutex);
e87ac136 218 return ret;
e02119d5
CM
219}
220
221/*
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
224 * in progress
225 */
226static int join_running_log_trans(struct btrfs_root *root)
227{
fa1a0f42 228 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
229 int ret = -ENOENT;
230
e7a79811
FM
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 return ret;
233
7237f183 234 mutex_lock(&root->log_mutex);
fa1a0f42 235again:
e02119d5 236 if (root->log_root) {
fa1a0f42
NA
237 int index = (root->log_transid + 1) % 2;
238
e02119d5 239 ret = 0;
fa1a0f42
NA
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
242 goto again;
243 }
7237f183 244 atomic_inc(&root->log_writers);
e02119d5 245 }
7237f183 246 mutex_unlock(&root->log_mutex);
e02119d5
CM
247 return ret;
248}
249
12fcfd22
CM
250/*
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
254 */
45128b08 255void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 256{
12fcfd22 257 atomic_inc(&root->log_writers);
12fcfd22
CM
258}
259
e02119d5
CM
260/*
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
263 */
143bede5 264void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 265{
7237f183 266 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 269 }
e02119d5
CM
270}
271
247462a5
DS
272static int btrfs_write_tree_block(struct extent_buffer *buf)
273{
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
276}
277
278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279{
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
282}
e02119d5
CM
283
284/*
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
289 */
290struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
293 */
294 int free;
295
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
298 */
299 int write;
300
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
303 */
304 int wait;
305
306 /* pin only walk, we record which extents on disk belong to the
307 * log trees
308 */
309 int pin;
310
311 /* what stage of the replay code we're currently in */
312 int stage;
313
f2d72f42
FM
314 /*
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
318 */
319 bool ignore_cur_inode;
320
e02119d5
CM
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
323
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
326
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
330 * inside it
331 */
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 333 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
334};
335
336/*
337 * process_func used to pin down extents, write them or wait on them
338 */
339static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
581c1760 341 struct walk_control *wc, u64 gen, int level)
e02119d5 342{
0b246afa 343 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
344 int ret = 0;
345
8c2a1a30
JB
346 /*
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
349 */
0b246afa 350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 351 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
352 if (ret)
353 return ret;
354 }
355
04018de5 356 if (wc->pin)
9fce5704 357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 358 eb->len);
e02119d5 359
b50c6e25 360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 361 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 362 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
363 if (wc->write)
364 btrfs_write_tree_block(eb);
365 if (wc->wait)
366 btrfs_wait_tree_block_writeback(eb);
367 }
b50c6e25 368 return ret;
e02119d5
CM
369}
370
371/*
372 * Item overwrite used by replay and tree logging. eb, slot and key all refer
373 * to the src data we are copying out.
374 *
375 * root is the tree we are copying into, and path is a scratch
376 * path for use in this function (it should be released on entry and
377 * will be released on exit).
378 *
379 * If the key is already in the destination tree the existing item is
380 * overwritten. If the existing item isn't big enough, it is extended.
381 * If it is too large, it is truncated.
382 *
383 * If the key isn't in the destination yet, a new item is inserted.
384 */
385static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct btrfs_path *path,
388 struct extent_buffer *eb, int slot,
389 struct btrfs_key *key)
390{
391 int ret;
392 u32 item_size;
393 u64 saved_i_size = 0;
394 int save_old_i_size = 0;
395 unsigned long src_ptr;
396 unsigned long dst_ptr;
397 int overwrite_root = 0;
4bc4bee4 398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
399
400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 overwrite_root = 1;
402
403 item_size = btrfs_item_size_nr(eb, slot);
404 src_ptr = btrfs_item_ptr_offset(eb, slot);
405
406 /* look for the key in the destination tree */
407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
408 if (ret < 0)
409 return ret;
410
e02119d5
CM
411 if (ret == 0) {
412 char *src_copy;
413 char *dst_copy;
414 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 path->slots[0]);
416 if (dst_size != item_size)
417 goto insert;
418
419 if (item_size == 0) {
b3b4aa74 420 btrfs_release_path(path);
e02119d5
CM
421 return 0;
422 }
423 dst_copy = kmalloc(item_size, GFP_NOFS);
424 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 425 if (!dst_copy || !src_copy) {
b3b4aa74 426 btrfs_release_path(path);
2a29edc6 427 kfree(dst_copy);
428 kfree(src_copy);
429 return -ENOMEM;
430 }
e02119d5
CM
431
432 read_extent_buffer(eb, src_copy, src_ptr, item_size);
433
434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 item_size);
437 ret = memcmp(dst_copy, src_copy, item_size);
438
439 kfree(dst_copy);
440 kfree(src_copy);
441 /*
442 * they have the same contents, just return, this saves
443 * us from cowing blocks in the destination tree and doing
444 * extra writes that may not have been done by a previous
445 * sync
446 */
447 if (ret == 0) {
b3b4aa74 448 btrfs_release_path(path);
e02119d5
CM
449 return 0;
450 }
451
4bc4bee4
JB
452 /*
453 * We need to load the old nbytes into the inode so when we
454 * replay the extents we've logged we get the right nbytes.
455 */
456 if (inode_item) {
457 struct btrfs_inode_item *item;
458 u64 nbytes;
d555438b 459 u32 mode;
4bc4bee4
JB
460
461 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 struct btrfs_inode_item);
463 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 item = btrfs_item_ptr(eb, slot,
465 struct btrfs_inode_item);
466 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
467
468 /*
469 * If this is a directory we need to reset the i_size to
470 * 0 so that we can set it up properly when replaying
471 * the rest of the items in this log.
472 */
473 mode = btrfs_inode_mode(eb, item);
474 if (S_ISDIR(mode))
475 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
476 }
477 } else if (inode_item) {
478 struct btrfs_inode_item *item;
d555438b 479 u32 mode;
4bc4bee4
JB
480
481 /*
482 * New inode, set nbytes to 0 so that the nbytes comes out
483 * properly when we replay the extents.
484 */
485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
487
488 /*
489 * If this is a directory we need to reset the i_size to 0 so
490 * that we can set it up properly when replaying the rest of
491 * the items in this log.
492 */
493 mode = btrfs_inode_mode(eb, item);
494 if (S_ISDIR(mode))
495 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
496 }
497insert:
b3b4aa74 498 btrfs_release_path(path);
e02119d5 499 /* try to insert the key into the destination tree */
df8d116f 500 path->skip_release_on_error = 1;
e02119d5
CM
501 ret = btrfs_insert_empty_item(trans, root, path,
502 key, item_size);
df8d116f 503 path->skip_release_on_error = 0;
e02119d5
CM
504
505 /* make sure any existing item is the correct size */
df8d116f 506 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
507 u32 found_size;
508 found_size = btrfs_item_size_nr(path->nodes[0],
509 path->slots[0]);
143bede5 510 if (found_size > item_size)
78ac4f9e 511 btrfs_truncate_item(path, item_size, 1);
143bede5 512 else if (found_size < item_size)
c71dd880 513 btrfs_extend_item(path, item_size - found_size);
e02119d5 514 } else if (ret) {
4a500fd1 515 return ret;
e02119d5
CM
516 }
517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 path->slots[0]);
519
520 /* don't overwrite an existing inode if the generation number
521 * was logged as zero. This is done when the tree logging code
522 * is just logging an inode to make sure it exists after recovery.
523 *
524 * Also, don't overwrite i_size on directories during replay.
525 * log replay inserts and removes directory items based on the
526 * state of the tree found in the subvolume, and i_size is modified
527 * as it goes
528 */
529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 struct btrfs_inode_item *src_item;
531 struct btrfs_inode_item *dst_item;
532
533 src_item = (struct btrfs_inode_item *)src_ptr;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535
1a4bcf47
FM
536 if (btrfs_inode_generation(eb, src_item) == 0) {
537 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 538 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 539
2f2ff0ee
FM
540 /*
541 * For regular files an ino_size == 0 is used only when
542 * logging that an inode exists, as part of a directory
543 * fsync, and the inode wasn't fsynced before. In this
544 * case don't set the size of the inode in the fs/subvol
545 * tree, otherwise we would be throwing valid data away.
546 */
1a4bcf47 547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
549 ino_size != 0)
550 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 551 goto no_copy;
1a4bcf47 552 }
e02119d5
CM
553
554 if (overwrite_root &&
555 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 save_old_i_size = 1;
558 saved_i_size = btrfs_inode_size(path->nodes[0],
559 dst_item);
560 }
561 }
562
563 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 src_ptr, item_size);
565
566 if (save_old_i_size) {
567 struct btrfs_inode_item *dst_item;
568 dst_item = (struct btrfs_inode_item *)dst_ptr;
569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 }
571
572 /* make sure the generation is filled in */
573 if (key->type == BTRFS_INODE_ITEM_KEY) {
574 struct btrfs_inode_item *dst_item;
575 dst_item = (struct btrfs_inode_item *)dst_ptr;
576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 btrfs_set_inode_generation(path->nodes[0], dst_item,
578 trans->transid);
579 }
580 }
581no_copy:
582 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 583 btrfs_release_path(path);
e02119d5
CM
584 return 0;
585}
586
587/*
588 * simple helper to read an inode off the disk from a given root
589 * This can only be called for subvolume roots and not for the log
590 */
591static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 u64 objectid)
593{
594 struct inode *inode;
e02119d5 595
0202e83f 596 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 597 if (IS_ERR(inode))
5d4f98a2 598 inode = NULL;
e02119d5
CM
599 return inode;
600}
601
602/* replays a single extent in 'eb' at 'slot' with 'key' into the
603 * subvolume 'root'. path is released on entry and should be released
604 * on exit.
605 *
606 * extents in the log tree have not been allocated out of the extent
607 * tree yet. So, this completes the allocation, taking a reference
608 * as required if the extent already exists or creating a new extent
609 * if it isn't in the extent allocation tree yet.
610 *
611 * The extent is inserted into the file, dropping any existing extents
612 * from the file that overlap the new one.
613 */
614static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 struct btrfs_root *root,
616 struct btrfs_path *path,
617 struct extent_buffer *eb, int slot,
618 struct btrfs_key *key)
619{
5893dfb9 620 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 621 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 622 int found_type;
e02119d5 623 u64 extent_end;
e02119d5 624 u64 start = key->offset;
4bc4bee4 625 u64 nbytes = 0;
e02119d5
CM
626 struct btrfs_file_extent_item *item;
627 struct inode *inode = NULL;
628 unsigned long size;
629 int ret = 0;
630
631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 found_type = btrfs_file_extent_type(eb, item);
633
d899e052 634 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
635 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 nbytes = btrfs_file_extent_num_bytes(eb, item);
637 extent_end = start + nbytes;
638
639 /*
640 * We don't add to the inodes nbytes if we are prealloc or a
641 * hole.
642 */
643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 nbytes = 0;
645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 646 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 647 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 648 extent_end = ALIGN(start + size,
0b246afa 649 fs_info->sectorsize);
e02119d5
CM
650 } else {
651 ret = 0;
652 goto out;
653 }
654
655 inode = read_one_inode(root, key->objectid);
656 if (!inode) {
657 ret = -EIO;
658 goto out;
659 }
660
661 /*
662 * first check to see if we already have this extent in the
663 * file. This must be done before the btrfs_drop_extents run
664 * so we don't try to drop this extent.
665 */
f85b7379
DS
666 ret = btrfs_lookup_file_extent(trans, root, path,
667 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 668
d899e052
YZ
669 if (ret == 0 &&
670 (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
672 struct btrfs_file_extent_item cmp1;
673 struct btrfs_file_extent_item cmp2;
674 struct btrfs_file_extent_item *existing;
675 struct extent_buffer *leaf;
676
677 leaf = path->nodes[0];
678 existing = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_file_extent_item);
680
681 read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 sizeof(cmp1));
683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 sizeof(cmp2));
685
686 /*
687 * we already have a pointer to this exact extent,
688 * we don't have to do anything
689 */
690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 691 btrfs_release_path(path);
e02119d5
CM
692 goto out;
693 }
694 }
b3b4aa74 695 btrfs_release_path(path);
e02119d5
CM
696
697 /* drop any overlapping extents */
5893dfb9
FM
698 drop_args.start = start;
699 drop_args.end = extent_end;
700 drop_args.drop_cache = true;
701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
702 if (ret)
703 goto out;
e02119d5 704
07d400a6
YZ
705 if (found_type == BTRFS_FILE_EXTENT_REG ||
706 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 707 u64 offset;
07d400a6
YZ
708 unsigned long dest_offset;
709 struct btrfs_key ins;
710
3168021c
FM
711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 btrfs_fs_incompat(fs_info, NO_HOLES))
713 goto update_inode;
714
07d400a6
YZ
715 ret = btrfs_insert_empty_item(trans, root, path, key,
716 sizeof(*item));
3650860b
JB
717 if (ret)
718 goto out;
07d400a6
YZ
719 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 path->slots[0]);
721 copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 (unsigned long)item, sizeof(*item));
723
724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 727 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 728
df2c95f3
QW
729 /*
730 * Manually record dirty extent, as here we did a shallow
731 * file extent item copy and skip normal backref update,
732 * but modifying extent tree all by ourselves.
733 * So need to manually record dirty extent for qgroup,
734 * as the owner of the file extent changed from log tree
735 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 */
a95f3aaf 737 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
738 btrfs_file_extent_disk_bytenr(eb, item),
739 btrfs_file_extent_disk_num_bytes(eb, item),
740 GFP_NOFS);
741 if (ret < 0)
742 goto out;
743
07d400a6 744 if (ins.objectid > 0) {
82fa113f 745 struct btrfs_ref ref = { 0 };
07d400a6
YZ
746 u64 csum_start;
747 u64 csum_end;
748 LIST_HEAD(ordered_sums);
82fa113f 749
07d400a6
YZ
750 /*
751 * is this extent already allocated in the extent
752 * allocation tree? If so, just add a reference
753 */
2ff7e61e 754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
755 ins.offset);
756 if (ret == 0) {
82fa113f
QW
757 btrfs_init_generic_ref(&ref,
758 BTRFS_ADD_DELAYED_REF,
759 ins.objectid, ins.offset, 0);
760 btrfs_init_data_ref(&ref,
761 root->root_key.objectid,
b06c4bf5 762 key->objectid, offset);
82fa113f 763 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
764 if (ret)
765 goto out;
07d400a6
YZ
766 } else {
767 /*
768 * insert the extent pointer in the extent
769 * allocation tree
770 */
5d4f98a2 771 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 772 root->root_key.objectid,
5d4f98a2 773 key->objectid, offset, &ins);
b50c6e25
JB
774 if (ret)
775 goto out;
07d400a6 776 }
b3b4aa74 777 btrfs_release_path(path);
07d400a6
YZ
778
779 if (btrfs_file_extent_compression(eb, item)) {
780 csum_start = ins.objectid;
781 csum_end = csum_start + ins.offset;
782 } else {
783 csum_start = ins.objectid +
784 btrfs_file_extent_offset(eb, item);
785 csum_end = csum_start +
786 btrfs_file_extent_num_bytes(eb, item);
787 }
788
789 ret = btrfs_lookup_csums_range(root->log_root,
790 csum_start, csum_end - 1,
a2de733c 791 &ordered_sums, 0);
3650860b
JB
792 if (ret)
793 goto out;
b84b8390
FM
794 /*
795 * Now delete all existing cums in the csum root that
796 * cover our range. We do this because we can have an
797 * extent that is completely referenced by one file
798 * extent item and partially referenced by another
799 * file extent item (like after using the clone or
800 * extent_same ioctls). In this case if we end up doing
801 * the replay of the one that partially references the
802 * extent first, and we do not do the csum deletion
803 * below, we can get 2 csum items in the csum tree that
804 * overlap each other. For example, imagine our log has
805 * the two following file extent items:
806 *
807 * key (257 EXTENT_DATA 409600)
808 * extent data disk byte 12845056 nr 102400
809 * extent data offset 20480 nr 20480 ram 102400
810 *
811 * key (257 EXTENT_DATA 819200)
812 * extent data disk byte 12845056 nr 102400
813 * extent data offset 0 nr 102400 ram 102400
814 *
815 * Where the second one fully references the 100K extent
816 * that starts at disk byte 12845056, and the log tree
817 * has a single csum item that covers the entire range
818 * of the extent:
819 *
820 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
821 *
822 * After the first file extent item is replayed, the
823 * csum tree gets the following csum item:
824 *
825 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
826 *
827 * Which covers the 20K sub-range starting at offset 20K
828 * of our extent. Now when we replay the second file
829 * extent item, if we do not delete existing csum items
830 * that cover any of its blocks, we end up getting two
831 * csum items in our csum tree that overlap each other:
832 *
833 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 *
836 * Which is a problem, because after this anyone trying
837 * to lookup up for the checksum of any block of our
838 * extent starting at an offset of 40K or higher, will
839 * end up looking at the second csum item only, which
840 * does not contain the checksum for any block starting
841 * at offset 40K or higher of our extent.
842 */
07d400a6
YZ
843 while (!list_empty(&ordered_sums)) {
844 struct btrfs_ordered_sum *sums;
845 sums = list_entry(ordered_sums.next,
846 struct btrfs_ordered_sum,
847 list);
b84b8390 848 if (!ret)
40e046ac
FM
849 ret = btrfs_del_csums(trans,
850 fs_info->csum_root,
5b4aacef
JM
851 sums->bytenr,
852 sums->len);
3650860b
JB
853 if (!ret)
854 ret = btrfs_csum_file_blocks(trans,
0b246afa 855 fs_info->csum_root, sums);
07d400a6
YZ
856 list_del(&sums->list);
857 kfree(sums);
858 }
3650860b
JB
859 if (ret)
860 goto out;
07d400a6 861 } else {
b3b4aa74 862 btrfs_release_path(path);
07d400a6
YZ
863 }
864 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
865 /* inline extents are easy, we just overwrite them */
866 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
867 if (ret)
868 goto out;
07d400a6 869 }
e02119d5 870
9ddc959e
JB
871 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
872 extent_end - start);
873 if (ret)
874 goto out;
875
3168021c 876update_inode:
2766ff61 877 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 878 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
879out:
880 if (inode)
881 iput(inode);
882 return ret;
883}
884
885/*
886 * when cleaning up conflicts between the directory names in the
887 * subvolume, directory names in the log and directory names in the
888 * inode back references, we may have to unlink inodes from directories.
889 *
890 * This is a helper function to do the unlink of a specific directory
891 * item
892 */
893static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
894 struct btrfs_root *root,
895 struct btrfs_path *path,
207e7d92 896 struct btrfs_inode *dir,
e02119d5
CM
897 struct btrfs_dir_item *di)
898{
899 struct inode *inode;
900 char *name;
901 int name_len;
902 struct extent_buffer *leaf;
903 struct btrfs_key location;
904 int ret;
905
906 leaf = path->nodes[0];
907
908 btrfs_dir_item_key_to_cpu(leaf, di, &location);
909 name_len = btrfs_dir_name_len(leaf, di);
910 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 911 if (!name)
912 return -ENOMEM;
913
e02119d5 914 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 915 btrfs_release_path(path);
e02119d5
CM
916
917 inode = read_one_inode(root, location.objectid);
c00e9493 918 if (!inode) {
3650860b
JB
919 ret = -EIO;
920 goto out;
c00e9493 921 }
e02119d5 922
ec051c0f 923 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
924 if (ret)
925 goto out;
12fcfd22 926
207e7d92
NB
927 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
928 name_len);
3650860b
JB
929 if (ret)
930 goto out;
ada9af21 931 else
e5c304e6 932 ret = btrfs_run_delayed_items(trans);
3650860b 933out:
e02119d5 934 kfree(name);
e02119d5
CM
935 iput(inode);
936 return ret;
937}
938
939/*
940 * helper function to see if a given name and sequence number found
941 * in an inode back reference are already in a directory and correctly
942 * point to this inode
943 */
944static noinline int inode_in_dir(struct btrfs_root *root,
945 struct btrfs_path *path,
946 u64 dirid, u64 objectid, u64 index,
947 const char *name, int name_len)
948{
949 struct btrfs_dir_item *di;
950 struct btrfs_key location;
951 int match = 0;
952
953 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
954 index, name, name_len, 0);
955 if (di && !IS_ERR(di)) {
956 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
957 if (location.objectid != objectid)
958 goto out;
959 } else
960 goto out;
b3b4aa74 961 btrfs_release_path(path);
e02119d5
CM
962
963 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
964 if (di && !IS_ERR(di)) {
965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
966 if (location.objectid != objectid)
967 goto out;
968 } else
969 goto out;
970 match = 1;
971out:
b3b4aa74 972 btrfs_release_path(path);
e02119d5
CM
973 return match;
974}
975
976/*
977 * helper function to check a log tree for a named back reference in
978 * an inode. This is used to decide if a back reference that is
979 * found in the subvolume conflicts with what we find in the log.
980 *
981 * inode backreferences may have multiple refs in a single item,
982 * during replay we process one reference at a time, and we don't
983 * want to delete valid links to a file from the subvolume if that
984 * link is also in the log.
985 */
986static noinline int backref_in_log(struct btrfs_root *log,
987 struct btrfs_key *key,
f186373f 988 u64 ref_objectid,
df8d116f 989 const char *name, int namelen)
e02119d5
CM
990{
991 struct btrfs_path *path;
e02119d5 992 int ret;
e02119d5
CM
993
994 path = btrfs_alloc_path();
2a29edc6 995 if (!path)
996 return -ENOMEM;
997
e02119d5 998 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
999 if (ret < 0) {
1000 goto out;
1001 } else if (ret == 1) {
89cbf5f6 1002 ret = 0;
f186373f
MF
1003 goto out;
1004 }
1005
89cbf5f6
NB
1006 if (key->type == BTRFS_INODE_EXTREF_KEY)
1007 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1008 path->slots[0],
1009 ref_objectid,
1010 name, namelen);
1011 else
1012 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1013 path->slots[0],
1014 name, namelen);
e02119d5
CM
1015out:
1016 btrfs_free_path(path);
89cbf5f6 1017 return ret;
e02119d5
CM
1018}
1019
5a1d7843 1020static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1021 struct btrfs_root *root,
e02119d5 1022 struct btrfs_path *path,
5a1d7843 1023 struct btrfs_root *log_root,
94c91a1f
NB
1024 struct btrfs_inode *dir,
1025 struct btrfs_inode *inode,
f186373f
MF
1026 u64 inode_objectid, u64 parent_objectid,
1027 u64 ref_index, char *name, int namelen,
1028 int *search_done)
e02119d5 1029{
34f3e4f2 1030 int ret;
f186373f
MF
1031 char *victim_name;
1032 int victim_name_len;
1033 struct extent_buffer *leaf;
5a1d7843 1034 struct btrfs_dir_item *di;
f186373f
MF
1035 struct btrfs_key search_key;
1036 struct btrfs_inode_extref *extref;
c622ae60 1037
f186373f
MF
1038again:
1039 /* Search old style refs */
1040 search_key.objectid = inode_objectid;
1041 search_key.type = BTRFS_INODE_REF_KEY;
1042 search_key.offset = parent_objectid;
1043 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1044 if (ret == 0) {
e02119d5
CM
1045 struct btrfs_inode_ref *victim_ref;
1046 unsigned long ptr;
1047 unsigned long ptr_end;
f186373f
MF
1048
1049 leaf = path->nodes[0];
e02119d5
CM
1050
1051 /* are we trying to overwrite a back ref for the root directory
1052 * if so, just jump out, we're done
1053 */
f186373f 1054 if (search_key.objectid == search_key.offset)
5a1d7843 1055 return 1;
e02119d5
CM
1056
1057 /* check all the names in this back reference to see
1058 * if they are in the log. if so, we allow them to stay
1059 * otherwise they must be unlinked as a conflict
1060 */
1061 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1062 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1063 while (ptr < ptr_end) {
e02119d5
CM
1064 victim_ref = (struct btrfs_inode_ref *)ptr;
1065 victim_name_len = btrfs_inode_ref_name_len(leaf,
1066 victim_ref);
1067 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1068 if (!victim_name)
1069 return -ENOMEM;
e02119d5
CM
1070
1071 read_extent_buffer(leaf, victim_name,
1072 (unsigned long)(victim_ref + 1),
1073 victim_name_len);
1074
d3316c82
NB
1075 ret = backref_in_log(log_root, &search_key,
1076 parent_objectid, victim_name,
1077 victim_name_len);
1078 if (ret < 0) {
1079 kfree(victim_name);
1080 return ret;
1081 } else if (!ret) {
94c91a1f 1082 inc_nlink(&inode->vfs_inode);
b3b4aa74 1083 btrfs_release_path(path);
12fcfd22 1084
94c91a1f 1085 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1086 victim_name, victim_name_len);
f186373f 1087 kfree(victim_name);
3650860b
JB
1088 if (ret)
1089 return ret;
e5c304e6 1090 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1091 if (ret)
1092 return ret;
f186373f
MF
1093 *search_done = 1;
1094 goto again;
e02119d5
CM
1095 }
1096 kfree(victim_name);
f186373f 1097
e02119d5
CM
1098 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1099 }
e02119d5 1100
c622ae60 1101 /*
1102 * NOTE: we have searched root tree and checked the
bb7ab3b9 1103 * corresponding ref, it does not need to check again.
c622ae60 1104 */
5a1d7843 1105 *search_done = 1;
e02119d5 1106 }
b3b4aa74 1107 btrfs_release_path(path);
e02119d5 1108
f186373f
MF
1109 /* Same search but for extended refs */
1110 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1111 inode_objectid, parent_objectid, 0,
1112 0);
1113 if (!IS_ERR_OR_NULL(extref)) {
1114 u32 item_size;
1115 u32 cur_offset = 0;
1116 unsigned long base;
1117 struct inode *victim_parent;
1118
1119 leaf = path->nodes[0];
1120
1121 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1122 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1123
1124 while (cur_offset < item_size) {
dd9ef135 1125 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1126
1127 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1128
1129 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1130 goto next;
1131
1132 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1133 if (!victim_name)
1134 return -ENOMEM;
f186373f
MF
1135 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1136 victim_name_len);
1137
1138 search_key.objectid = inode_objectid;
1139 search_key.type = BTRFS_INODE_EXTREF_KEY;
1140 search_key.offset = btrfs_extref_hash(parent_objectid,
1141 victim_name,
1142 victim_name_len);
d3316c82
NB
1143 ret = backref_in_log(log_root, &search_key,
1144 parent_objectid, victim_name,
1145 victim_name_len);
1146 if (ret < 0) {
1147 return ret;
1148 } else if (!ret) {
f186373f
MF
1149 ret = -ENOENT;
1150 victim_parent = read_one_inode(root,
94c91a1f 1151 parent_objectid);
f186373f 1152 if (victim_parent) {
94c91a1f 1153 inc_nlink(&inode->vfs_inode);
f186373f
MF
1154 btrfs_release_path(path);
1155
1156 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1157 BTRFS_I(victim_parent),
94c91a1f 1158 inode,
4ec5934e
NB
1159 victim_name,
1160 victim_name_len);
ada9af21
FDBM
1161 if (!ret)
1162 ret = btrfs_run_delayed_items(
e5c304e6 1163 trans);
f186373f 1164 }
f186373f
MF
1165 iput(victim_parent);
1166 kfree(victim_name);
3650860b
JB
1167 if (ret)
1168 return ret;
f186373f
MF
1169 *search_done = 1;
1170 goto again;
1171 }
1172 kfree(victim_name);
f186373f
MF
1173next:
1174 cur_offset += victim_name_len + sizeof(*extref);
1175 }
1176 *search_done = 1;
1177 }
1178 btrfs_release_path(path);
1179
34f3e4f2 1180 /* look for a conflicting sequence number */
94c91a1f 1181 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1182 ref_index, name, namelen, 0);
34f3e4f2 1183 if (di && !IS_ERR(di)) {
94c91a1f 1184 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1185 if (ret)
1186 return ret;
34f3e4f2 1187 }
1188 btrfs_release_path(path);
1189
52042d8e 1190 /* look for a conflicting name */
94c91a1f 1191 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1192 name, namelen, 0);
1193 if (di && !IS_ERR(di)) {
94c91a1f 1194 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1195 if (ret)
1196 return ret;
34f3e4f2 1197 }
1198 btrfs_release_path(path);
1199
5a1d7843
JS
1200 return 0;
1201}
e02119d5 1202
bae15d95
QW
1203static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1204 u32 *namelen, char **name, u64 *index,
1205 u64 *parent_objectid)
f186373f
MF
1206{
1207 struct btrfs_inode_extref *extref;
1208
1209 extref = (struct btrfs_inode_extref *)ref_ptr;
1210
1211 *namelen = btrfs_inode_extref_name_len(eb, extref);
1212 *name = kmalloc(*namelen, GFP_NOFS);
1213 if (*name == NULL)
1214 return -ENOMEM;
1215
1216 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1217 *namelen);
1218
1f250e92
FM
1219 if (index)
1220 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1221 if (parent_objectid)
1222 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1223
1224 return 0;
1225}
1226
bae15d95
QW
1227static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1228 u32 *namelen, char **name, u64 *index)
f186373f
MF
1229{
1230 struct btrfs_inode_ref *ref;
1231
1232 ref = (struct btrfs_inode_ref *)ref_ptr;
1233
1234 *namelen = btrfs_inode_ref_name_len(eb, ref);
1235 *name = kmalloc(*namelen, GFP_NOFS);
1236 if (*name == NULL)
1237 return -ENOMEM;
1238
1239 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1240
1f250e92
FM
1241 if (index)
1242 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1243
1244 return 0;
1245}
1246
1f250e92
FM
1247/*
1248 * Take an inode reference item from the log tree and iterate all names from the
1249 * inode reference item in the subvolume tree with the same key (if it exists).
1250 * For any name that is not in the inode reference item from the log tree, do a
1251 * proper unlink of that name (that is, remove its entry from the inode
1252 * reference item and both dir index keys).
1253 */
1254static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1255 struct btrfs_root *root,
1256 struct btrfs_path *path,
1257 struct btrfs_inode *inode,
1258 struct extent_buffer *log_eb,
1259 int log_slot,
1260 struct btrfs_key *key)
1261{
1262 int ret;
1263 unsigned long ref_ptr;
1264 unsigned long ref_end;
1265 struct extent_buffer *eb;
1266
1267again:
1268 btrfs_release_path(path);
1269 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1270 if (ret > 0) {
1271 ret = 0;
1272 goto out;
1273 }
1274 if (ret < 0)
1275 goto out;
1276
1277 eb = path->nodes[0];
1278 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1279 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1280 while (ref_ptr < ref_end) {
1281 char *name = NULL;
1282 int namelen;
1283 u64 parent_id;
1284
1285 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1286 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1287 NULL, &parent_id);
1288 } else {
1289 parent_id = key->offset;
1290 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1291 NULL);
1292 }
1293 if (ret)
1294 goto out;
1295
1296 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1297 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1298 parent_id, name,
1299 namelen);
1f250e92 1300 else
9bb8407f
NB
1301 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1302 name, namelen);
1f250e92
FM
1303
1304 if (!ret) {
1305 struct inode *dir;
1306
1307 btrfs_release_path(path);
1308 dir = read_one_inode(root, parent_id);
1309 if (!dir) {
1310 ret = -ENOENT;
1311 kfree(name);
1312 goto out;
1313 }
1314 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1315 inode, name, namelen);
1316 kfree(name);
1317 iput(dir);
1318 if (ret)
1319 goto out;
1320 goto again;
1321 }
1322
1323 kfree(name);
1324 ref_ptr += namelen;
1325 if (key->type == BTRFS_INODE_EXTREF_KEY)
1326 ref_ptr += sizeof(struct btrfs_inode_extref);
1327 else
1328 ref_ptr += sizeof(struct btrfs_inode_ref);
1329 }
1330 ret = 0;
1331 out:
1332 btrfs_release_path(path);
1333 return ret;
1334}
1335
0d836392
FM
1336static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1337 const u8 ref_type, const char *name,
1338 const int namelen)
1339{
1340 struct btrfs_key key;
1341 struct btrfs_path *path;
1342 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1343 int ret;
1344
1345 path = btrfs_alloc_path();
1346 if (!path)
1347 return -ENOMEM;
1348
1349 key.objectid = btrfs_ino(BTRFS_I(inode));
1350 key.type = ref_type;
1351 if (key.type == BTRFS_INODE_REF_KEY)
1352 key.offset = parent_id;
1353 else
1354 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1355
1356 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1357 if (ret < 0)
1358 goto out;
1359 if (ret > 0) {
1360 ret = 0;
1361 goto out;
1362 }
1363 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1364 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1365 path->slots[0], parent_id, name, namelen);
0d836392 1366 else
9bb8407f
NB
1367 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1368 name, namelen);
0d836392
FM
1369
1370out:
1371 btrfs_free_path(path);
1372 return ret;
1373}
1374
6b5fc433
FM
1375static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1376 struct inode *dir, struct inode *inode, const char *name,
1377 int namelen, u64 ref_index)
1378{
1379 struct btrfs_dir_item *dir_item;
1380 struct btrfs_key key;
1381 struct btrfs_path *path;
1382 struct inode *other_inode = NULL;
1383 int ret;
1384
1385 path = btrfs_alloc_path();
1386 if (!path)
1387 return -ENOMEM;
1388
1389 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1390 btrfs_ino(BTRFS_I(dir)),
1391 name, namelen, 0);
1392 if (!dir_item) {
1393 btrfs_release_path(path);
1394 goto add_link;
1395 } else if (IS_ERR(dir_item)) {
1396 ret = PTR_ERR(dir_item);
1397 goto out;
1398 }
1399
1400 /*
1401 * Our inode's dentry collides with the dentry of another inode which is
1402 * in the log but not yet processed since it has a higher inode number.
1403 * So delete that other dentry.
1404 */
1405 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1406 btrfs_release_path(path);
1407 other_inode = read_one_inode(root, key.objectid);
1408 if (!other_inode) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1413 name, namelen);
1414 if (ret)
1415 goto out;
1416 /*
1417 * If we dropped the link count to 0, bump it so that later the iput()
1418 * on the inode will not free it. We will fixup the link count later.
1419 */
1420 if (other_inode->i_nlink == 0)
1421 inc_nlink(other_inode);
1422
1423 ret = btrfs_run_delayed_items(trans);
1424 if (ret)
1425 goto out;
1426add_link:
1427 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1428 name, namelen, 0, ref_index);
1429out:
1430 iput(other_inode);
1431 btrfs_free_path(path);
1432
1433 return ret;
1434}
1435
5a1d7843
JS
1436/*
1437 * replay one inode back reference item found in the log tree.
1438 * eb, slot and key refer to the buffer and key found in the log tree.
1439 * root is the destination we are replaying into, and path is for temp
1440 * use by this function. (it should be released on return).
1441 */
1442static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1443 struct btrfs_root *root,
1444 struct btrfs_root *log,
1445 struct btrfs_path *path,
1446 struct extent_buffer *eb, int slot,
1447 struct btrfs_key *key)
1448{
03b2f08b
GB
1449 struct inode *dir = NULL;
1450 struct inode *inode = NULL;
5a1d7843
JS
1451 unsigned long ref_ptr;
1452 unsigned long ref_end;
03b2f08b 1453 char *name = NULL;
5a1d7843
JS
1454 int namelen;
1455 int ret;
1456 int search_done = 0;
f186373f
MF
1457 int log_ref_ver = 0;
1458 u64 parent_objectid;
1459 u64 inode_objectid;
f46dbe3d 1460 u64 ref_index = 0;
f186373f
MF
1461 int ref_struct_size;
1462
1463 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1464 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1465
1466 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1467 struct btrfs_inode_extref *r;
1468
1469 ref_struct_size = sizeof(struct btrfs_inode_extref);
1470 log_ref_ver = 1;
1471 r = (struct btrfs_inode_extref *)ref_ptr;
1472 parent_objectid = btrfs_inode_extref_parent(eb, r);
1473 } else {
1474 ref_struct_size = sizeof(struct btrfs_inode_ref);
1475 parent_objectid = key->offset;
1476 }
1477 inode_objectid = key->objectid;
e02119d5 1478
5a1d7843
JS
1479 /*
1480 * it is possible that we didn't log all the parent directories
1481 * for a given inode. If we don't find the dir, just don't
1482 * copy the back ref in. The link count fixup code will take
1483 * care of the rest
1484 */
f186373f 1485 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1486 if (!dir) {
1487 ret = -ENOENT;
1488 goto out;
1489 }
5a1d7843 1490
f186373f 1491 inode = read_one_inode(root, inode_objectid);
5a1d7843 1492 if (!inode) {
03b2f08b
GB
1493 ret = -EIO;
1494 goto out;
5a1d7843
JS
1495 }
1496
5a1d7843 1497 while (ref_ptr < ref_end) {
f186373f 1498 if (log_ref_ver) {
bae15d95
QW
1499 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1500 &ref_index, &parent_objectid);
f186373f
MF
1501 /*
1502 * parent object can change from one array
1503 * item to another.
1504 */
1505 if (!dir)
1506 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1507 if (!dir) {
1508 ret = -ENOENT;
1509 goto out;
1510 }
f186373f 1511 } else {
bae15d95
QW
1512 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1513 &ref_index);
f186373f
MF
1514 }
1515 if (ret)
03b2f08b 1516 goto out;
5a1d7843
JS
1517
1518 /* if we already have a perfect match, we're done */
f85b7379
DS
1519 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1520 btrfs_ino(BTRFS_I(inode)), ref_index,
1521 name, namelen)) {
5a1d7843
JS
1522 /*
1523 * look for a conflicting back reference in the
1524 * metadata. if we find one we have to unlink that name
1525 * of the file before we add our new link. Later on, we
1526 * overwrite any existing back reference, and we don't
1527 * want to create dangling pointers in the directory.
1528 */
1529
1530 if (!search_done) {
1531 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1532 BTRFS_I(dir),
d75eefdf 1533 BTRFS_I(inode),
f186373f
MF
1534 inode_objectid,
1535 parent_objectid,
1536 ref_index, name, namelen,
5a1d7843 1537 &search_done);
03b2f08b
GB
1538 if (ret) {
1539 if (ret == 1)
1540 ret = 0;
3650860b
JB
1541 goto out;
1542 }
5a1d7843
JS
1543 }
1544
0d836392
FM
1545 /*
1546 * If a reference item already exists for this inode
1547 * with the same parent and name, but different index,
1548 * drop it and the corresponding directory index entries
1549 * from the parent before adding the new reference item
1550 * and dir index entries, otherwise we would fail with
1551 * -EEXIST returned from btrfs_add_link() below.
1552 */
1553 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1554 name, namelen);
1555 if (ret > 0) {
1556 ret = btrfs_unlink_inode(trans, root,
1557 BTRFS_I(dir),
1558 BTRFS_I(inode),
1559 name, namelen);
1560 /*
1561 * If we dropped the link count to 0, bump it so
1562 * that later the iput() on the inode will not
1563 * free it. We will fixup the link count later.
1564 */
1565 if (!ret && inode->i_nlink == 0)
1566 inc_nlink(inode);
1567 }
1568 if (ret < 0)
1569 goto out;
1570
5a1d7843 1571 /* insert our name */
6b5fc433
FM
1572 ret = add_link(trans, root, dir, inode, name, namelen,
1573 ref_index);
3650860b
JB
1574 if (ret)
1575 goto out;
5a1d7843 1576
9a56fcd1 1577 btrfs_update_inode(trans, root, BTRFS_I(inode));
5a1d7843
JS
1578 }
1579
f186373f 1580 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1581 kfree(name);
03b2f08b 1582 name = NULL;
f186373f
MF
1583 if (log_ref_ver) {
1584 iput(dir);
1585 dir = NULL;
1586 }
5a1d7843 1587 }
e02119d5 1588
1f250e92
FM
1589 /*
1590 * Before we overwrite the inode reference item in the subvolume tree
1591 * with the item from the log tree, we must unlink all names from the
1592 * parent directory that are in the subvolume's tree inode reference
1593 * item, otherwise we end up with an inconsistent subvolume tree where
1594 * dir index entries exist for a name but there is no inode reference
1595 * item with the same name.
1596 */
1597 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1598 key);
1599 if (ret)
1600 goto out;
1601
e02119d5
CM
1602 /* finally write the back reference in the inode */
1603 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1604out:
b3b4aa74 1605 btrfs_release_path(path);
03b2f08b 1606 kfree(name);
e02119d5
CM
1607 iput(dir);
1608 iput(inode);
3650860b 1609 return ret;
e02119d5
CM
1610}
1611
f186373f 1612static int count_inode_extrefs(struct btrfs_root *root,
36283658 1613 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1614{
1615 int ret = 0;
1616 int name_len;
1617 unsigned int nlink = 0;
1618 u32 item_size;
1619 u32 cur_offset = 0;
36283658 1620 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1621 u64 offset = 0;
1622 unsigned long ptr;
1623 struct btrfs_inode_extref *extref;
1624 struct extent_buffer *leaf;
1625
1626 while (1) {
1627 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1628 &extref, &offset);
1629 if (ret)
1630 break;
c71bf099 1631
f186373f
MF
1632 leaf = path->nodes[0];
1633 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1634 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1635 cur_offset = 0;
f186373f
MF
1636
1637 while (cur_offset < item_size) {
1638 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1639 name_len = btrfs_inode_extref_name_len(leaf, extref);
1640
1641 nlink++;
1642
1643 cur_offset += name_len + sizeof(*extref);
1644 }
1645
1646 offset++;
1647 btrfs_release_path(path);
1648 }
1649 btrfs_release_path(path);
1650
2c2c452b 1651 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1652 return ret;
1653 return nlink;
1654}
1655
1656static int count_inode_refs(struct btrfs_root *root,
f329e319 1657 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1658{
e02119d5
CM
1659 int ret;
1660 struct btrfs_key key;
f186373f 1661 unsigned int nlink = 0;
e02119d5
CM
1662 unsigned long ptr;
1663 unsigned long ptr_end;
1664 int name_len;
f329e319 1665 u64 ino = btrfs_ino(inode);
e02119d5 1666
33345d01 1667 key.objectid = ino;
e02119d5
CM
1668 key.type = BTRFS_INODE_REF_KEY;
1669 key.offset = (u64)-1;
1670
d397712b 1671 while (1) {
e02119d5
CM
1672 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1673 if (ret < 0)
1674 break;
1675 if (ret > 0) {
1676 if (path->slots[0] == 0)
1677 break;
1678 path->slots[0]--;
1679 }
e93ae26f 1680process_slot:
e02119d5
CM
1681 btrfs_item_key_to_cpu(path->nodes[0], &key,
1682 path->slots[0]);
33345d01 1683 if (key.objectid != ino ||
e02119d5
CM
1684 key.type != BTRFS_INODE_REF_KEY)
1685 break;
1686 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1687 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1688 path->slots[0]);
d397712b 1689 while (ptr < ptr_end) {
e02119d5
CM
1690 struct btrfs_inode_ref *ref;
1691
1692 ref = (struct btrfs_inode_ref *)ptr;
1693 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1694 ref);
1695 ptr = (unsigned long)(ref + 1) + name_len;
1696 nlink++;
1697 }
1698
1699 if (key.offset == 0)
1700 break;
e93ae26f
FDBM
1701 if (path->slots[0] > 0) {
1702 path->slots[0]--;
1703 goto process_slot;
1704 }
e02119d5 1705 key.offset--;
b3b4aa74 1706 btrfs_release_path(path);
e02119d5 1707 }
b3b4aa74 1708 btrfs_release_path(path);
f186373f
MF
1709
1710 return nlink;
1711}
1712
1713/*
1714 * There are a few corners where the link count of the file can't
1715 * be properly maintained during replay. So, instead of adding
1716 * lots of complexity to the log code, we just scan the backrefs
1717 * for any file that has been through replay.
1718 *
1719 * The scan will update the link count on the inode to reflect the
1720 * number of back refs found. If it goes down to zero, the iput
1721 * will free the inode.
1722 */
1723static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct inode *inode)
1726{
1727 struct btrfs_path *path;
1728 int ret;
1729 u64 nlink = 0;
4a0cc7ca 1730 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1731
1732 path = btrfs_alloc_path();
1733 if (!path)
1734 return -ENOMEM;
1735
f329e319 1736 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1737 if (ret < 0)
1738 goto out;
1739
1740 nlink = ret;
1741
36283658 1742 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1743 if (ret < 0)
1744 goto out;
1745
1746 nlink += ret;
1747
1748 ret = 0;
1749
e02119d5 1750 if (nlink != inode->i_nlink) {
bfe86848 1751 set_nlink(inode, nlink);
9a56fcd1 1752 btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5 1753 }
8d5bf1cb 1754 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1755
c71bf099
YZ
1756 if (inode->i_nlink == 0) {
1757 if (S_ISDIR(inode->i_mode)) {
1758 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1759 ino, 1);
3650860b
JB
1760 if (ret)
1761 goto out;
c71bf099 1762 }
ecdcf3c2
NB
1763 ret = btrfs_insert_orphan_item(trans, root, ino);
1764 if (ret == -EEXIST)
1765 ret = 0;
12fcfd22 1766 }
12fcfd22 1767
f186373f
MF
1768out:
1769 btrfs_free_path(path);
1770 return ret;
e02119d5
CM
1771}
1772
1773static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1774 struct btrfs_root *root,
1775 struct btrfs_path *path)
1776{
1777 int ret;
1778 struct btrfs_key key;
1779 struct inode *inode;
1780
1781 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1782 key.type = BTRFS_ORPHAN_ITEM_KEY;
1783 key.offset = (u64)-1;
d397712b 1784 while (1) {
e02119d5
CM
1785 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1786 if (ret < 0)
1787 break;
1788
1789 if (ret == 1) {
1790 if (path->slots[0] == 0)
1791 break;
1792 path->slots[0]--;
1793 }
1794
1795 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1796 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1797 key.type != BTRFS_ORPHAN_ITEM_KEY)
1798 break;
1799
1800 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1801 if (ret)
1802 goto out;
e02119d5 1803
b3b4aa74 1804 btrfs_release_path(path);
e02119d5 1805 inode = read_one_inode(root, key.offset);
c00e9493
TI
1806 if (!inode)
1807 return -EIO;
e02119d5
CM
1808
1809 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1810 iput(inode);
3650860b
JB
1811 if (ret)
1812 goto out;
e02119d5 1813
12fcfd22
CM
1814 /*
1815 * fixup on a directory may create new entries,
1816 * make sure we always look for the highset possible
1817 * offset
1818 */
1819 key.offset = (u64)-1;
e02119d5 1820 }
65a246c5
TI
1821 ret = 0;
1822out:
b3b4aa74 1823 btrfs_release_path(path);
65a246c5 1824 return ret;
e02119d5
CM
1825}
1826
1827
1828/*
1829 * record a given inode in the fixup dir so we can check its link
1830 * count when replay is done. The link count is incremented here
1831 * so the inode won't go away until we check it
1832 */
1833static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1834 struct btrfs_root *root,
1835 struct btrfs_path *path,
1836 u64 objectid)
1837{
1838 struct btrfs_key key;
1839 int ret = 0;
1840 struct inode *inode;
1841
1842 inode = read_one_inode(root, objectid);
c00e9493
TI
1843 if (!inode)
1844 return -EIO;
e02119d5
CM
1845
1846 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1847 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1848 key.offset = objectid;
1849
1850 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1851
b3b4aa74 1852 btrfs_release_path(path);
e02119d5 1853 if (ret == 0) {
9bf7a489
JB
1854 if (!inode->i_nlink)
1855 set_nlink(inode, 1);
1856 else
8b558c5f 1857 inc_nlink(inode);
9a56fcd1 1858 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1859 } else if (ret == -EEXIST) {
1860 ret = 0;
1861 } else {
3650860b 1862 BUG(); /* Logic Error */
e02119d5
CM
1863 }
1864 iput(inode);
1865
1866 return ret;
1867}
1868
1869/*
1870 * when replaying the log for a directory, we only insert names
1871 * for inodes that actually exist. This means an fsync on a directory
1872 * does not implicitly fsync all the new files in it
1873 */
1874static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1875 struct btrfs_root *root,
e02119d5 1876 u64 dirid, u64 index,
60d53eb3 1877 char *name, int name_len,
e02119d5
CM
1878 struct btrfs_key *location)
1879{
1880 struct inode *inode;
1881 struct inode *dir;
1882 int ret;
1883
1884 inode = read_one_inode(root, location->objectid);
1885 if (!inode)
1886 return -ENOENT;
1887
1888 dir = read_one_inode(root, dirid);
1889 if (!dir) {
1890 iput(inode);
1891 return -EIO;
1892 }
d555438b 1893
db0a669f
NB
1894 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1895 name_len, 1, index);
e02119d5
CM
1896
1897 /* FIXME, put inode into FIXUP list */
1898
1899 iput(inode);
1900 iput(dir);
1901 return ret;
1902}
1903
1904/*
1905 * take a single entry in a log directory item and replay it into
1906 * the subvolume.
1907 *
1908 * if a conflicting item exists in the subdirectory already,
1909 * the inode it points to is unlinked and put into the link count
1910 * fix up tree.
1911 *
1912 * If a name from the log points to a file or directory that does
1913 * not exist in the FS, it is skipped. fsyncs on directories
1914 * do not force down inodes inside that directory, just changes to the
1915 * names or unlinks in a directory.
bb53eda9
FM
1916 *
1917 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1918 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1919 */
1920static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1921 struct btrfs_root *root,
1922 struct btrfs_path *path,
1923 struct extent_buffer *eb,
1924 struct btrfs_dir_item *di,
1925 struct btrfs_key *key)
1926{
1927 char *name;
1928 int name_len;
1929 struct btrfs_dir_item *dst_di;
1930 struct btrfs_key found_key;
1931 struct btrfs_key log_key;
1932 struct inode *dir;
e02119d5 1933 u8 log_type;
4bef0848 1934 int exists;
3650860b 1935 int ret = 0;
d555438b 1936 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1937 bool name_added = false;
e02119d5
CM
1938
1939 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1940 if (!dir)
1941 return -EIO;
e02119d5
CM
1942
1943 name_len = btrfs_dir_name_len(eb, di);
1944 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1945 if (!name) {
1946 ret = -ENOMEM;
1947 goto out;
1948 }
2a29edc6 1949
e02119d5
CM
1950 log_type = btrfs_dir_type(eb, di);
1951 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1952 name_len);
1953
1954 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1955 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1956 if (exists == 0)
1957 exists = 1;
1958 else
1959 exists = 0;
b3b4aa74 1960 btrfs_release_path(path);
4bef0848 1961
e02119d5
CM
1962 if (key->type == BTRFS_DIR_ITEM_KEY) {
1963 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1964 name, name_len, 1);
d397712b 1965 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1966 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1967 key->objectid,
1968 key->offset, name,
1969 name_len, 1);
1970 } else {
3650860b
JB
1971 /* Corruption */
1972 ret = -EINVAL;
1973 goto out;
e02119d5 1974 }
c704005d 1975 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1976 /* we need a sequence number to insert, so we only
1977 * do inserts for the BTRFS_DIR_INDEX_KEY types
1978 */
1979 if (key->type != BTRFS_DIR_INDEX_KEY)
1980 goto out;
1981 goto insert;
1982 }
1983
1984 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1985 /* the existing item matches the logged item */
1986 if (found_key.objectid == log_key.objectid &&
1987 found_key.type == log_key.type &&
1988 found_key.offset == log_key.offset &&
1989 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1990 update_size = false;
e02119d5
CM
1991 goto out;
1992 }
1993
1994 /*
1995 * don't drop the conflicting directory entry if the inode
1996 * for the new entry doesn't exist
1997 */
4bef0848 1998 if (!exists)
e02119d5
CM
1999 goto out;
2000
207e7d92 2001 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
2002 if (ret)
2003 goto out;
e02119d5
CM
2004
2005 if (key->type == BTRFS_DIR_INDEX_KEY)
2006 goto insert;
2007out:
b3b4aa74 2008 btrfs_release_path(path);
d555438b 2009 if (!ret && update_size) {
6ef06d27 2010 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
9a56fcd1 2011 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
d555438b 2012 }
e02119d5
CM
2013 kfree(name);
2014 iput(dir);
bb53eda9
FM
2015 if (!ret && name_added)
2016 ret = 1;
3650860b 2017 return ret;
e02119d5
CM
2018
2019insert:
725af92a
NB
2020 /*
2021 * Check if the inode reference exists in the log for the given name,
2022 * inode and parent inode
2023 */
2024 found_key.objectid = log_key.objectid;
2025 found_key.type = BTRFS_INODE_REF_KEY;
2026 found_key.offset = key->objectid;
2027 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2028 if (ret < 0) {
2029 goto out;
2030 } else if (ret) {
2031 /* The dentry will be added later. */
2032 ret = 0;
2033 update_size = false;
2034 goto out;
2035 }
2036
2037 found_key.objectid = log_key.objectid;
2038 found_key.type = BTRFS_INODE_EXTREF_KEY;
2039 found_key.offset = key->objectid;
2040 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2041 name_len);
2042 if (ret < 0) {
2043 goto out;
2044 } else if (ret) {
df8d116f
FM
2045 /* The dentry will be added later. */
2046 ret = 0;
2047 update_size = false;
2048 goto out;
2049 }
b3b4aa74 2050 btrfs_release_path(path);
60d53eb3
Z
2051 ret = insert_one_name(trans, root, key->objectid, key->offset,
2052 name, name_len, &log_key);
df8d116f 2053 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2054 goto out;
bb53eda9
FM
2055 if (!ret)
2056 name_added = true;
d555438b 2057 update_size = false;
3650860b 2058 ret = 0;
e02119d5
CM
2059 goto out;
2060}
2061
2062/*
2063 * find all the names in a directory item and reconcile them into
2064 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2065 * one name in a directory item, but the same code gets used for
2066 * both directory index types
2067 */
2068static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2069 struct btrfs_root *root,
2070 struct btrfs_path *path,
2071 struct extent_buffer *eb, int slot,
2072 struct btrfs_key *key)
2073{
bb53eda9 2074 int ret = 0;
e02119d5
CM
2075 u32 item_size = btrfs_item_size_nr(eb, slot);
2076 struct btrfs_dir_item *di;
2077 int name_len;
2078 unsigned long ptr;
2079 unsigned long ptr_end;
bb53eda9 2080 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2081
2082 ptr = btrfs_item_ptr_offset(eb, slot);
2083 ptr_end = ptr + item_size;
d397712b 2084 while (ptr < ptr_end) {
e02119d5
CM
2085 di = (struct btrfs_dir_item *)ptr;
2086 name_len = btrfs_dir_name_len(eb, di);
2087 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2088 if (ret < 0)
2089 break;
e02119d5
CM
2090 ptr = (unsigned long)(di + 1);
2091 ptr += name_len;
bb53eda9
FM
2092
2093 /*
2094 * If this entry refers to a non-directory (directories can not
2095 * have a link count > 1) and it was added in the transaction
2096 * that was not committed, make sure we fixup the link count of
2097 * the inode it the entry points to. Otherwise something like
2098 * the following would result in a directory pointing to an
2099 * inode with a wrong link that does not account for this dir
2100 * entry:
2101 *
2102 * mkdir testdir
2103 * touch testdir/foo
2104 * touch testdir/bar
2105 * sync
2106 *
2107 * ln testdir/bar testdir/bar_link
2108 * ln testdir/foo testdir/foo_link
2109 * xfs_io -c "fsync" testdir/bar
2110 *
2111 * <power failure>
2112 *
2113 * mount fs, log replay happens
2114 *
2115 * File foo would remain with a link count of 1 when it has two
2116 * entries pointing to it in the directory testdir. This would
2117 * make it impossible to ever delete the parent directory has
2118 * it would result in stale dentries that can never be deleted.
2119 */
2120 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2121 struct btrfs_key di_key;
2122
2123 if (!fixup_path) {
2124 fixup_path = btrfs_alloc_path();
2125 if (!fixup_path) {
2126 ret = -ENOMEM;
2127 break;
2128 }
2129 }
2130
2131 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2132 ret = link_to_fixup_dir(trans, root, fixup_path,
2133 di_key.objectid);
2134 if (ret)
2135 break;
2136 }
2137 ret = 0;
e02119d5 2138 }
bb53eda9
FM
2139 btrfs_free_path(fixup_path);
2140 return ret;
e02119d5
CM
2141}
2142
2143/*
2144 * directory replay has two parts. There are the standard directory
2145 * items in the log copied from the subvolume, and range items
2146 * created in the log while the subvolume was logged.
2147 *
2148 * The range items tell us which parts of the key space the log
2149 * is authoritative for. During replay, if a key in the subvolume
2150 * directory is in a logged range item, but not actually in the log
2151 * that means it was deleted from the directory before the fsync
2152 * and should be removed.
2153 */
2154static noinline int find_dir_range(struct btrfs_root *root,
2155 struct btrfs_path *path,
2156 u64 dirid, int key_type,
2157 u64 *start_ret, u64 *end_ret)
2158{
2159 struct btrfs_key key;
2160 u64 found_end;
2161 struct btrfs_dir_log_item *item;
2162 int ret;
2163 int nritems;
2164
2165 if (*start_ret == (u64)-1)
2166 return 1;
2167
2168 key.objectid = dirid;
2169 key.type = key_type;
2170 key.offset = *start_ret;
2171
2172 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2173 if (ret < 0)
2174 goto out;
2175 if (ret > 0) {
2176 if (path->slots[0] == 0)
2177 goto out;
2178 path->slots[0]--;
2179 }
2180 if (ret != 0)
2181 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2182
2183 if (key.type != key_type || key.objectid != dirid) {
2184 ret = 1;
2185 goto next;
2186 }
2187 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2188 struct btrfs_dir_log_item);
2189 found_end = btrfs_dir_log_end(path->nodes[0], item);
2190
2191 if (*start_ret >= key.offset && *start_ret <= found_end) {
2192 ret = 0;
2193 *start_ret = key.offset;
2194 *end_ret = found_end;
2195 goto out;
2196 }
2197 ret = 1;
2198next:
2199 /* check the next slot in the tree to see if it is a valid item */
2200 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2201 path->slots[0]++;
e02119d5
CM
2202 if (path->slots[0] >= nritems) {
2203 ret = btrfs_next_leaf(root, path);
2204 if (ret)
2205 goto out;
e02119d5
CM
2206 }
2207
2208 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2209
2210 if (key.type != key_type || key.objectid != dirid) {
2211 ret = 1;
2212 goto out;
2213 }
2214 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2215 struct btrfs_dir_log_item);
2216 found_end = btrfs_dir_log_end(path->nodes[0], item);
2217 *start_ret = key.offset;
2218 *end_ret = found_end;
2219 ret = 0;
2220out:
b3b4aa74 2221 btrfs_release_path(path);
e02119d5
CM
2222 return ret;
2223}
2224
2225/*
2226 * this looks for a given directory item in the log. If the directory
2227 * item is not in the log, the item is removed and the inode it points
2228 * to is unlinked
2229 */
2230static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2231 struct btrfs_root *root,
2232 struct btrfs_root *log,
2233 struct btrfs_path *path,
2234 struct btrfs_path *log_path,
2235 struct inode *dir,
2236 struct btrfs_key *dir_key)
2237{
2238 int ret;
2239 struct extent_buffer *eb;
2240 int slot;
2241 u32 item_size;
2242 struct btrfs_dir_item *di;
2243 struct btrfs_dir_item *log_di;
2244 int name_len;
2245 unsigned long ptr;
2246 unsigned long ptr_end;
2247 char *name;
2248 struct inode *inode;
2249 struct btrfs_key location;
2250
2251again:
2252 eb = path->nodes[0];
2253 slot = path->slots[0];
2254 item_size = btrfs_item_size_nr(eb, slot);
2255 ptr = btrfs_item_ptr_offset(eb, slot);
2256 ptr_end = ptr + item_size;
d397712b 2257 while (ptr < ptr_end) {
e02119d5
CM
2258 di = (struct btrfs_dir_item *)ptr;
2259 name_len = btrfs_dir_name_len(eb, di);
2260 name = kmalloc(name_len, GFP_NOFS);
2261 if (!name) {
2262 ret = -ENOMEM;
2263 goto out;
2264 }
2265 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2266 name_len);
2267 log_di = NULL;
12fcfd22 2268 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2269 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2270 dir_key->objectid,
2271 name, name_len, 0);
12fcfd22 2272 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2273 log_di = btrfs_lookup_dir_index_item(trans, log,
2274 log_path,
2275 dir_key->objectid,
2276 dir_key->offset,
2277 name, name_len, 0);
2278 }
8d9e220c 2279 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2280 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2281 btrfs_release_path(path);
2282 btrfs_release_path(log_path);
e02119d5 2283 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2284 if (!inode) {
2285 kfree(name);
2286 return -EIO;
2287 }
e02119d5
CM
2288
2289 ret = link_to_fixup_dir(trans, root,
2290 path, location.objectid);
3650860b
JB
2291 if (ret) {
2292 kfree(name);
2293 iput(inode);
2294 goto out;
2295 }
2296
8b558c5f 2297 inc_nlink(inode);
4ec5934e
NB
2298 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2299 BTRFS_I(inode), name, name_len);
3650860b 2300 if (!ret)
e5c304e6 2301 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2302 kfree(name);
2303 iput(inode);
3650860b
JB
2304 if (ret)
2305 goto out;
e02119d5
CM
2306
2307 /* there might still be more names under this key
2308 * check and repeat if required
2309 */
2310 ret = btrfs_search_slot(NULL, root, dir_key, path,
2311 0, 0);
2312 if (ret == 0)
2313 goto again;
2314 ret = 0;
2315 goto out;
269d040f
FDBM
2316 } else if (IS_ERR(log_di)) {
2317 kfree(name);
2318 return PTR_ERR(log_di);
e02119d5 2319 }
b3b4aa74 2320 btrfs_release_path(log_path);
e02119d5
CM
2321 kfree(name);
2322
2323 ptr = (unsigned long)(di + 1);
2324 ptr += name_len;
2325 }
2326 ret = 0;
2327out:
b3b4aa74
DS
2328 btrfs_release_path(path);
2329 btrfs_release_path(log_path);
e02119d5
CM
2330 return ret;
2331}
2332
4f764e51
FM
2333static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *root,
2335 struct btrfs_root *log,
2336 struct btrfs_path *path,
2337 const u64 ino)
2338{
2339 struct btrfs_key search_key;
2340 struct btrfs_path *log_path;
2341 int i;
2342 int nritems;
2343 int ret;
2344
2345 log_path = btrfs_alloc_path();
2346 if (!log_path)
2347 return -ENOMEM;
2348
2349 search_key.objectid = ino;
2350 search_key.type = BTRFS_XATTR_ITEM_KEY;
2351 search_key.offset = 0;
2352again:
2353 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2354 if (ret < 0)
2355 goto out;
2356process_leaf:
2357 nritems = btrfs_header_nritems(path->nodes[0]);
2358 for (i = path->slots[0]; i < nritems; i++) {
2359 struct btrfs_key key;
2360 struct btrfs_dir_item *di;
2361 struct btrfs_dir_item *log_di;
2362 u32 total_size;
2363 u32 cur;
2364
2365 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2366 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2367 ret = 0;
2368 goto out;
2369 }
2370
2371 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2372 total_size = btrfs_item_size_nr(path->nodes[0], i);
2373 cur = 0;
2374 while (cur < total_size) {
2375 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2376 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2377 u32 this_len = sizeof(*di) + name_len + data_len;
2378 char *name;
2379
2380 name = kmalloc(name_len, GFP_NOFS);
2381 if (!name) {
2382 ret = -ENOMEM;
2383 goto out;
2384 }
2385 read_extent_buffer(path->nodes[0], name,
2386 (unsigned long)(di + 1), name_len);
2387
2388 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2389 name, name_len, 0);
2390 btrfs_release_path(log_path);
2391 if (!log_di) {
2392 /* Doesn't exist in log tree, so delete it. */
2393 btrfs_release_path(path);
2394 di = btrfs_lookup_xattr(trans, root, path, ino,
2395 name, name_len, -1);
2396 kfree(name);
2397 if (IS_ERR(di)) {
2398 ret = PTR_ERR(di);
2399 goto out;
2400 }
2401 ASSERT(di);
2402 ret = btrfs_delete_one_dir_name(trans, root,
2403 path, di);
2404 if (ret)
2405 goto out;
2406 btrfs_release_path(path);
2407 search_key = key;
2408 goto again;
2409 }
2410 kfree(name);
2411 if (IS_ERR(log_di)) {
2412 ret = PTR_ERR(log_di);
2413 goto out;
2414 }
2415 cur += this_len;
2416 di = (struct btrfs_dir_item *)((char *)di + this_len);
2417 }
2418 }
2419 ret = btrfs_next_leaf(root, path);
2420 if (ret > 0)
2421 ret = 0;
2422 else if (ret == 0)
2423 goto process_leaf;
2424out:
2425 btrfs_free_path(log_path);
2426 btrfs_release_path(path);
2427 return ret;
2428}
2429
2430
e02119d5
CM
2431/*
2432 * deletion replay happens before we copy any new directory items
2433 * out of the log or out of backreferences from inodes. It
2434 * scans the log to find ranges of keys that log is authoritative for,
2435 * and then scans the directory to find items in those ranges that are
2436 * not present in the log.
2437 *
2438 * Anything we don't find in the log is unlinked and removed from the
2439 * directory.
2440 */
2441static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2442 struct btrfs_root *root,
2443 struct btrfs_root *log,
2444 struct btrfs_path *path,
12fcfd22 2445 u64 dirid, int del_all)
e02119d5
CM
2446{
2447 u64 range_start;
2448 u64 range_end;
2449 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2450 int ret = 0;
2451 struct btrfs_key dir_key;
2452 struct btrfs_key found_key;
2453 struct btrfs_path *log_path;
2454 struct inode *dir;
2455
2456 dir_key.objectid = dirid;
2457 dir_key.type = BTRFS_DIR_ITEM_KEY;
2458 log_path = btrfs_alloc_path();
2459 if (!log_path)
2460 return -ENOMEM;
2461
2462 dir = read_one_inode(root, dirid);
2463 /* it isn't an error if the inode isn't there, that can happen
2464 * because we replay the deletes before we copy in the inode item
2465 * from the log
2466 */
2467 if (!dir) {
2468 btrfs_free_path(log_path);
2469 return 0;
2470 }
2471again:
2472 range_start = 0;
2473 range_end = 0;
d397712b 2474 while (1) {
12fcfd22
CM
2475 if (del_all)
2476 range_end = (u64)-1;
2477 else {
2478 ret = find_dir_range(log, path, dirid, key_type,
2479 &range_start, &range_end);
2480 if (ret != 0)
2481 break;
2482 }
e02119d5
CM
2483
2484 dir_key.offset = range_start;
d397712b 2485 while (1) {
e02119d5
CM
2486 int nritems;
2487 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2488 0, 0);
2489 if (ret < 0)
2490 goto out;
2491
2492 nritems = btrfs_header_nritems(path->nodes[0]);
2493 if (path->slots[0] >= nritems) {
2494 ret = btrfs_next_leaf(root, path);
b98def7c 2495 if (ret == 1)
e02119d5 2496 break;
b98def7c
LB
2497 else if (ret < 0)
2498 goto out;
e02119d5
CM
2499 }
2500 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2501 path->slots[0]);
2502 if (found_key.objectid != dirid ||
2503 found_key.type != dir_key.type)
2504 goto next_type;
2505
2506 if (found_key.offset > range_end)
2507 break;
2508
2509 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2510 log_path, dir,
2511 &found_key);
3650860b
JB
2512 if (ret)
2513 goto out;
e02119d5
CM
2514 if (found_key.offset == (u64)-1)
2515 break;
2516 dir_key.offset = found_key.offset + 1;
2517 }
b3b4aa74 2518 btrfs_release_path(path);
e02119d5
CM
2519 if (range_end == (u64)-1)
2520 break;
2521 range_start = range_end + 1;
2522 }
2523
2524next_type:
2525 ret = 0;
2526 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2527 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2528 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2529 btrfs_release_path(path);
e02119d5
CM
2530 goto again;
2531 }
2532out:
b3b4aa74 2533 btrfs_release_path(path);
e02119d5
CM
2534 btrfs_free_path(log_path);
2535 iput(dir);
2536 return ret;
2537}
2538
2539/*
2540 * the process_func used to replay items from the log tree. This
2541 * gets called in two different stages. The first stage just looks
2542 * for inodes and makes sure they are all copied into the subvolume.
2543 *
2544 * The second stage copies all the other item types from the log into
2545 * the subvolume. The two stage approach is slower, but gets rid of
2546 * lots of complexity around inodes referencing other inodes that exist
2547 * only in the log (references come from either directory items or inode
2548 * back refs).
2549 */
2550static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2551 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2552{
2553 int nritems;
2554 struct btrfs_path *path;
2555 struct btrfs_root *root = wc->replay_dest;
2556 struct btrfs_key key;
e02119d5
CM
2557 int i;
2558 int ret;
2559
581c1760 2560 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2561 if (ret)
2562 return ret;
e02119d5
CM
2563
2564 level = btrfs_header_level(eb);
2565
2566 if (level != 0)
2567 return 0;
2568
2569 path = btrfs_alloc_path();
1e5063d0
MF
2570 if (!path)
2571 return -ENOMEM;
e02119d5
CM
2572
2573 nritems = btrfs_header_nritems(eb);
2574 for (i = 0; i < nritems; i++) {
2575 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2576
2577 /* inode keys are done during the first stage */
2578 if (key.type == BTRFS_INODE_ITEM_KEY &&
2579 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2580 struct btrfs_inode_item *inode_item;
2581 u32 mode;
2582
2583 inode_item = btrfs_item_ptr(eb, i,
2584 struct btrfs_inode_item);
f2d72f42
FM
2585 /*
2586 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2587 * and never got linked before the fsync, skip it, as
2588 * replaying it is pointless since it would be deleted
2589 * later. We skip logging tmpfiles, but it's always
2590 * possible we are replaying a log created with a kernel
2591 * that used to log tmpfiles.
2592 */
2593 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2594 wc->ignore_cur_inode = true;
2595 continue;
2596 } else {
2597 wc->ignore_cur_inode = false;
2598 }
4f764e51
FM
2599 ret = replay_xattr_deletes(wc->trans, root, log,
2600 path, key.objectid);
2601 if (ret)
2602 break;
e02119d5
CM
2603 mode = btrfs_inode_mode(eb, inode_item);
2604 if (S_ISDIR(mode)) {
2605 ret = replay_dir_deletes(wc->trans,
12fcfd22 2606 root, log, path, key.objectid, 0);
b50c6e25
JB
2607 if (ret)
2608 break;
e02119d5
CM
2609 }
2610 ret = overwrite_item(wc->trans, root, path,
2611 eb, i, &key);
b50c6e25
JB
2612 if (ret)
2613 break;
e02119d5 2614
471d557a
FM
2615 /*
2616 * Before replaying extents, truncate the inode to its
2617 * size. We need to do it now and not after log replay
2618 * because before an fsync we can have prealloc extents
2619 * added beyond the inode's i_size. If we did it after,
2620 * through orphan cleanup for example, we would drop
2621 * those prealloc extents just after replaying them.
e02119d5
CM
2622 */
2623 if (S_ISREG(mode)) {
5893dfb9 2624 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2625 struct inode *inode;
2626 u64 from;
2627
2628 inode = read_one_inode(root, key.objectid);
2629 if (!inode) {
2630 ret = -EIO;
2631 break;
2632 }
2633 from = ALIGN(i_size_read(inode),
2634 root->fs_info->sectorsize);
5893dfb9
FM
2635 drop_args.start = from;
2636 drop_args.end = (u64)-1;
2637 drop_args.drop_cache = true;
2638 ret = btrfs_drop_extents(wc->trans, root,
2639 BTRFS_I(inode),
2640 &drop_args);
471d557a 2641 if (!ret) {
2766ff61
FM
2642 inode_sub_bytes(inode,
2643 drop_args.bytes_found);
f2d72f42 2644 /* Update the inode's nbytes. */
471d557a 2645 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2646 root, BTRFS_I(inode));
471d557a
FM
2647 }
2648 iput(inode);
b50c6e25
JB
2649 if (ret)
2650 break;
e02119d5 2651 }
c71bf099 2652
e02119d5
CM
2653 ret = link_to_fixup_dir(wc->trans, root,
2654 path, key.objectid);
b50c6e25
JB
2655 if (ret)
2656 break;
e02119d5 2657 }
dd8e7217 2658
f2d72f42
FM
2659 if (wc->ignore_cur_inode)
2660 continue;
2661
dd8e7217
JB
2662 if (key.type == BTRFS_DIR_INDEX_KEY &&
2663 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2664 ret = replay_one_dir_item(wc->trans, root, path,
2665 eb, i, &key);
2666 if (ret)
2667 break;
2668 }
2669
e02119d5
CM
2670 if (wc->stage < LOG_WALK_REPLAY_ALL)
2671 continue;
2672
2673 /* these keys are simply copied */
2674 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2675 ret = overwrite_item(wc->trans, root, path,
2676 eb, i, &key);
b50c6e25
JB
2677 if (ret)
2678 break;
2da1c669
LB
2679 } else if (key.type == BTRFS_INODE_REF_KEY ||
2680 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2681 ret = add_inode_ref(wc->trans, root, log, path,
2682 eb, i, &key);
b50c6e25
JB
2683 if (ret && ret != -ENOENT)
2684 break;
2685 ret = 0;
e02119d5
CM
2686 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2687 ret = replay_one_extent(wc->trans, root, path,
2688 eb, i, &key);
b50c6e25
JB
2689 if (ret)
2690 break;
dd8e7217 2691 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2692 ret = replay_one_dir_item(wc->trans, root, path,
2693 eb, i, &key);
b50c6e25
JB
2694 if (ret)
2695 break;
e02119d5
CM
2696 }
2697 }
2698 btrfs_free_path(path);
b50c6e25 2699 return ret;
e02119d5
CM
2700}
2701
6787bb9f
NB
2702/*
2703 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2704 */
2705static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2706{
2707 struct btrfs_block_group *cache;
2708
2709 cache = btrfs_lookup_block_group(fs_info, start);
2710 if (!cache) {
2711 btrfs_err(fs_info, "unable to find block group for %llu", start);
2712 return;
2713 }
2714
2715 spin_lock(&cache->space_info->lock);
2716 spin_lock(&cache->lock);
2717 cache->reserved -= fs_info->nodesize;
2718 cache->space_info->bytes_reserved -= fs_info->nodesize;
2719 spin_unlock(&cache->lock);
2720 spin_unlock(&cache->space_info->lock);
2721
2722 btrfs_put_block_group(cache);
2723}
2724
d397712b 2725static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2726 struct btrfs_root *root,
2727 struct btrfs_path *path, int *level,
2728 struct walk_control *wc)
2729{
0b246afa 2730 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2731 u64 bytenr;
2732 u64 ptr_gen;
2733 struct extent_buffer *next;
2734 struct extent_buffer *cur;
e02119d5
CM
2735 u32 blocksize;
2736 int ret = 0;
2737
d397712b 2738 while (*level > 0) {
581c1760
QW
2739 struct btrfs_key first_key;
2740
e02119d5
CM
2741 cur = path->nodes[*level];
2742
fae7f21c 2743 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2744
2745 if (path->slots[*level] >=
2746 btrfs_header_nritems(cur))
2747 break;
2748
2749 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2750 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2751 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2752 blocksize = fs_info->nodesize;
e02119d5 2753
3fbaf258
JB
2754 next = btrfs_find_create_tree_block(fs_info, bytenr,
2755 btrfs_header_owner(cur),
2756 *level - 1);
c871b0f2
LB
2757 if (IS_ERR(next))
2758 return PTR_ERR(next);
e02119d5 2759
e02119d5 2760 if (*level == 1) {
581c1760
QW
2761 ret = wc->process_func(root, next, wc, ptr_gen,
2762 *level - 1);
b50c6e25
JB
2763 if (ret) {
2764 free_extent_buffer(next);
1e5063d0 2765 return ret;
b50c6e25 2766 }
4a500fd1 2767
e02119d5
CM
2768 path->slots[*level]++;
2769 if (wc->free) {
581c1760
QW
2770 ret = btrfs_read_buffer(next, ptr_gen,
2771 *level - 1, &first_key);
018642a1
TI
2772 if (ret) {
2773 free_extent_buffer(next);
2774 return ret;
2775 }
e02119d5 2776
681ae509
JB
2777 if (trans) {
2778 btrfs_tree_lock(next);
6a884d7d 2779 btrfs_clean_tree_block(next);
681ae509
JB
2780 btrfs_wait_tree_block_writeback(next);
2781 btrfs_tree_unlock(next);
7bfc1007 2782 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2783 bytenr, blocksize);
2784 if (ret) {
2785 free_extent_buffer(next);
2786 return ret;
2787 }
d3575156
NA
2788 btrfs_redirty_list_add(
2789 trans->transaction, next);
1846430c
LB
2790 } else {
2791 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2792 clear_extent_buffer_dirty(next);
10e958d5 2793 unaccount_log_buffer(fs_info, bytenr);
3650860b 2794 }
e02119d5
CM
2795 }
2796 free_extent_buffer(next);
2797 continue;
2798 }
581c1760 2799 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2800 if (ret) {
2801 free_extent_buffer(next);
2802 return ret;
2803 }
e02119d5 2804
e02119d5
CM
2805 if (path->nodes[*level-1])
2806 free_extent_buffer(path->nodes[*level-1]);
2807 path->nodes[*level-1] = next;
2808 *level = btrfs_header_level(next);
2809 path->slots[*level] = 0;
2810 cond_resched();
2811 }
4a500fd1 2812 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2813
2814 cond_resched();
2815 return 0;
2816}
2817
d397712b 2818static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2819 struct btrfs_root *root,
2820 struct btrfs_path *path, int *level,
2821 struct walk_control *wc)
2822{
0b246afa 2823 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2824 int i;
2825 int slot;
2826 int ret;
2827
d397712b 2828 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2829 slot = path->slots[i];
4a500fd1 2830 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2831 path->slots[i]++;
2832 *level = i;
2833 WARN_ON(*level == 0);
2834 return 0;
2835 } else {
1e5063d0 2836 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2837 btrfs_header_generation(path->nodes[*level]),
2838 *level);
1e5063d0
MF
2839 if (ret)
2840 return ret;
2841
e02119d5
CM
2842 if (wc->free) {
2843 struct extent_buffer *next;
2844
2845 next = path->nodes[*level];
2846
681ae509
JB
2847 if (trans) {
2848 btrfs_tree_lock(next);
6a884d7d 2849 btrfs_clean_tree_block(next);
681ae509
JB
2850 btrfs_wait_tree_block_writeback(next);
2851 btrfs_tree_unlock(next);
7bfc1007 2852 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2853 path->nodes[*level]->start,
2854 path->nodes[*level]->len);
2855 if (ret)
2856 return ret;
1846430c
LB
2857 } else {
2858 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2859 clear_extent_buffer_dirty(next);
e02119d5 2860
10e958d5
NB
2861 unaccount_log_buffer(fs_info,
2862 path->nodes[*level]->start);
2863 }
e02119d5
CM
2864 }
2865 free_extent_buffer(path->nodes[*level]);
2866 path->nodes[*level] = NULL;
2867 *level = i + 1;
2868 }
2869 }
2870 return 1;
2871}
2872
2873/*
2874 * drop the reference count on the tree rooted at 'snap'. This traverses
2875 * the tree freeing any blocks that have a ref count of zero after being
2876 * decremented.
2877 */
2878static int walk_log_tree(struct btrfs_trans_handle *trans,
2879 struct btrfs_root *log, struct walk_control *wc)
2880{
2ff7e61e 2881 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2882 int ret = 0;
2883 int wret;
2884 int level;
2885 struct btrfs_path *path;
e02119d5
CM
2886 int orig_level;
2887
2888 path = btrfs_alloc_path();
db5b493a
TI
2889 if (!path)
2890 return -ENOMEM;
e02119d5
CM
2891
2892 level = btrfs_header_level(log->node);
2893 orig_level = level;
2894 path->nodes[level] = log->node;
67439dad 2895 atomic_inc(&log->node->refs);
e02119d5
CM
2896 path->slots[level] = 0;
2897
d397712b 2898 while (1) {
e02119d5
CM
2899 wret = walk_down_log_tree(trans, log, path, &level, wc);
2900 if (wret > 0)
2901 break;
79787eaa 2902 if (wret < 0) {
e02119d5 2903 ret = wret;
79787eaa
JM
2904 goto out;
2905 }
e02119d5
CM
2906
2907 wret = walk_up_log_tree(trans, log, path, &level, wc);
2908 if (wret > 0)
2909 break;
79787eaa 2910 if (wret < 0) {
e02119d5 2911 ret = wret;
79787eaa
JM
2912 goto out;
2913 }
e02119d5
CM
2914 }
2915
2916 /* was the root node processed? if not, catch it here */
2917 if (path->nodes[orig_level]) {
79787eaa 2918 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2919 btrfs_header_generation(path->nodes[orig_level]),
2920 orig_level);
79787eaa
JM
2921 if (ret)
2922 goto out;
e02119d5
CM
2923 if (wc->free) {
2924 struct extent_buffer *next;
2925
2926 next = path->nodes[orig_level];
2927
681ae509
JB
2928 if (trans) {
2929 btrfs_tree_lock(next);
6a884d7d 2930 btrfs_clean_tree_block(next);
681ae509
JB
2931 btrfs_wait_tree_block_writeback(next);
2932 btrfs_tree_unlock(next);
7bfc1007 2933 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2934 next->start, next->len);
2935 if (ret)
2936 goto out;
1846430c
LB
2937 } else {
2938 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2939 clear_extent_buffer_dirty(next);
10e958d5 2940 unaccount_log_buffer(fs_info, next->start);
681ae509 2941 }
e02119d5
CM
2942 }
2943 }
2944
79787eaa 2945out:
e02119d5 2946 btrfs_free_path(path);
e02119d5
CM
2947 return ret;
2948}
2949
7237f183
YZ
2950/*
2951 * helper function to update the item for a given subvolumes log root
2952 * in the tree of log roots
2953 */
2954static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2955 struct btrfs_root *log,
2956 struct btrfs_root_item *root_item)
7237f183 2957{
0b246afa 2958 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2959 int ret;
2960
2961 if (log->log_transid == 1) {
2962 /* insert root item on the first sync */
0b246afa 2963 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2964 &log->root_key, root_item);
7237f183 2965 } else {
0b246afa 2966 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2967 &log->root_key, root_item);
7237f183
YZ
2968 }
2969 return ret;
2970}
2971
60d53eb3 2972static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2973{
2974 DEFINE_WAIT(wait);
7237f183 2975 int index = transid % 2;
e02119d5 2976
7237f183
YZ
2977 /*
2978 * we only allow two pending log transactions at a time,
2979 * so we know that if ours is more than 2 older than the
2980 * current transaction, we're done
2981 */
49e83f57 2982 for (;;) {
7237f183
YZ
2983 prepare_to_wait(&root->log_commit_wait[index],
2984 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2985
49e83f57
LB
2986 if (!(root->log_transid_committed < transid &&
2987 atomic_read(&root->log_commit[index])))
2988 break;
12fcfd22 2989
49e83f57
LB
2990 mutex_unlock(&root->log_mutex);
2991 schedule();
7237f183 2992 mutex_lock(&root->log_mutex);
49e83f57
LB
2993 }
2994 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2995}
2996
60d53eb3 2997static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2998{
2999 DEFINE_WAIT(wait);
8b050d35 3000
49e83f57
LB
3001 for (;;) {
3002 prepare_to_wait(&root->log_writer_wait, &wait,
3003 TASK_UNINTERRUPTIBLE);
3004 if (!atomic_read(&root->log_writers))
3005 break;
3006
7237f183 3007 mutex_unlock(&root->log_mutex);
49e83f57 3008 schedule();
575849ec 3009 mutex_lock(&root->log_mutex);
7237f183 3010 }
49e83f57 3011 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
3012}
3013
8b050d35
MX
3014static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3015 struct btrfs_log_ctx *ctx)
3016{
3017 if (!ctx)
3018 return;
3019
3020 mutex_lock(&root->log_mutex);
3021 list_del_init(&ctx->list);
3022 mutex_unlock(&root->log_mutex);
3023}
3024
3025/*
3026 * Invoked in log mutex context, or be sure there is no other task which
3027 * can access the list.
3028 */
3029static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3030 int index, int error)
3031{
3032 struct btrfs_log_ctx *ctx;
570dd450 3033 struct btrfs_log_ctx *safe;
8b050d35 3034
570dd450
CM
3035 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3036 list_del_init(&ctx->list);
8b050d35 3037 ctx->log_ret = error;
570dd450 3038 }
8b050d35
MX
3039
3040 INIT_LIST_HEAD(&root->log_ctxs[index]);
3041}
3042
e02119d5
CM
3043/*
3044 * btrfs_sync_log does sends a given tree log down to the disk and
3045 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3046 * you know that any inodes previously logged are safely on disk only
3047 * if it returns 0.
3048 *
3049 * Any other return value means you need to call btrfs_commit_transaction.
3050 * Some of the edge cases for fsyncing directories that have had unlinks
3051 * or renames done in the past mean that sometimes the only safe
3052 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3053 * that has happened.
e02119d5
CM
3054 */
3055int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3056 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3057{
7237f183
YZ
3058 int index1;
3059 int index2;
8cef4e16 3060 int mark;
e02119d5 3061 int ret;
0b246afa 3062 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3063 struct btrfs_root *log = root->log_root;
0b246afa 3064 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3065 struct btrfs_root_item new_root_item;
bb14a59b 3066 int log_transid = 0;
8b050d35 3067 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3068 struct blk_plug plug;
47876f7c
FM
3069 u64 log_root_start;
3070 u64 log_root_level;
e02119d5 3071
7237f183 3072 mutex_lock(&root->log_mutex);
d1433deb
MX
3073 log_transid = ctx->log_transid;
3074 if (root->log_transid_committed >= log_transid) {
3075 mutex_unlock(&root->log_mutex);
3076 return ctx->log_ret;
3077 }
3078
3079 index1 = log_transid % 2;
7237f183 3080 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3081 wait_log_commit(root, log_transid);
7237f183 3082 mutex_unlock(&root->log_mutex);
8b050d35 3083 return ctx->log_ret;
e02119d5 3084 }
d1433deb 3085 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3086 atomic_set(&root->log_commit[index1], 1);
3087
3088 /* wait for previous tree log sync to complete */
3089 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3090 wait_log_commit(root, log_transid - 1);
48cab2e0 3091
86df7eb9 3092 while (1) {
2ecb7923 3093 int batch = atomic_read(&root->log_batch);
cd354ad6 3094 /* when we're on an ssd, just kick the log commit out */
0b246afa 3095 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3096 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3097 mutex_unlock(&root->log_mutex);
3098 schedule_timeout_uninterruptible(1);
3099 mutex_lock(&root->log_mutex);
3100 }
60d53eb3 3101 wait_for_writer(root);
2ecb7923 3102 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3103 break;
3104 }
e02119d5 3105
12fcfd22 3106 /* bail out if we need to do a full commit */
4884b8e8 3107 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3108 ret = -EAGAIN;
3109 mutex_unlock(&root->log_mutex);
3110 goto out;
3111 }
3112
8cef4e16
YZ
3113 if (log_transid % 2 == 0)
3114 mark = EXTENT_DIRTY;
3115 else
3116 mark = EXTENT_NEW;
3117
690587d1
CM
3118 /* we start IO on all the marked extents here, but we don't actually
3119 * wait for them until later.
3120 */
c6adc9cc 3121 blk_start_plug(&plug);
2ff7e61e 3122 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
3123 /*
3124 * -EAGAIN happens when someone, e.g., a concurrent transaction
3125 * commit, writes a dirty extent in this tree-log commit. This
3126 * concurrent write will create a hole writing out the extents,
3127 * and we cannot proceed on a zoned filesystem, requiring
3128 * sequential writing. While we can bail out to a full commit
3129 * here, but we can continue hoping the concurrent writing fills
3130 * the hole.
3131 */
3132 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3133 ret = 0;
79787eaa 3134 if (ret) {
c6adc9cc 3135 blk_finish_plug(&plug);
66642832 3136 btrfs_abort_transaction(trans, ret);
90787766 3137 btrfs_set_log_full_commit(trans);
79787eaa
JM
3138 mutex_unlock(&root->log_mutex);
3139 goto out;
3140 }
7237f183 3141
4203e968
JB
3142 /*
3143 * We _must_ update under the root->log_mutex in order to make sure we
3144 * have a consistent view of the log root we are trying to commit at
3145 * this moment.
3146 *
3147 * We _must_ copy this into a local copy, because we are not holding the
3148 * log_root_tree->log_mutex yet. This is important because when we
3149 * commit the log_root_tree we must have a consistent view of the
3150 * log_root_tree when we update the super block to point at the
3151 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3152 * with the commit and possibly point at the new block which we may not
3153 * have written out.
3154 */
5d4f98a2 3155 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3156 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3157
7237f183
YZ
3158 root->log_transid++;
3159 log->log_transid = root->log_transid;
ff782e0a 3160 root->log_start_pid = 0;
7237f183 3161 /*
8cef4e16
YZ
3162 * IO has been started, blocks of the log tree have WRITTEN flag set
3163 * in their headers. new modifications of the log will be written to
3164 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3165 */
3166 mutex_unlock(&root->log_mutex);
3167
3ddebf27 3168 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3169 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3170 if (!log_root_tree->node) {
3171 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3172 if (ret) {
e75f9fd1 3173 mutex_unlock(&fs_info->tree_log_mutex);
3ddebf27
NA
3174 goto out;
3175 }
3176 }
e75f9fd1 3177 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3178 }
3179
e75f9fd1
NA
3180 btrfs_init_log_ctx(&root_log_ctx, NULL);
3181
3182 mutex_lock(&log_root_tree->log_mutex);
3183
e3d3b415
FM
3184 index2 = log_root_tree->log_transid % 2;
3185 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3186 root_log_ctx.log_transid = log_root_tree->log_transid;
3187
4203e968
JB
3188 /*
3189 * Now we are safe to update the log_root_tree because we're under the
3190 * log_mutex, and we're a current writer so we're holding the commit
3191 * open until we drop the log_mutex.
3192 */
3193 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3194 if (ret) {
d1433deb
MX
3195 if (!list_empty(&root_log_ctx.list))
3196 list_del_init(&root_log_ctx.list);
3197
c6adc9cc 3198 blk_finish_plug(&plug);
90787766 3199 btrfs_set_log_full_commit(trans);
995946dd 3200
79787eaa 3201 if (ret != -ENOSPC) {
66642832 3202 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3203 mutex_unlock(&log_root_tree->log_mutex);
3204 goto out;
3205 }
bf89d38f 3206 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3207 mutex_unlock(&log_root_tree->log_mutex);
3208 ret = -EAGAIN;
3209 goto out;
3210 }
3211
d1433deb 3212 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3213 blk_finish_plug(&plug);
cbd60aa7 3214 list_del_init(&root_log_ctx.list);
d1433deb
MX
3215 mutex_unlock(&log_root_tree->log_mutex);
3216 ret = root_log_ctx.log_ret;
3217 goto out;
3218 }
8b050d35 3219
d1433deb 3220 index2 = root_log_ctx.log_transid % 2;
7237f183 3221 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3222 blk_finish_plug(&plug);
bf89d38f 3223 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3224 wait_log_commit(log_root_tree,
d1433deb 3225 root_log_ctx.log_transid);
7237f183 3226 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3227 if (!ret)
3228 ret = root_log_ctx.log_ret;
7237f183
YZ
3229 goto out;
3230 }
d1433deb 3231 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3232 atomic_set(&log_root_tree->log_commit[index2], 1);
3233
12fcfd22 3234 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3235 wait_log_commit(log_root_tree,
d1433deb 3236 root_log_ctx.log_transid - 1);
12fcfd22
CM
3237 }
3238
12fcfd22
CM
3239 /*
3240 * now that we've moved on to the tree of log tree roots,
3241 * check the full commit flag again
3242 */
4884b8e8 3243 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3244 blk_finish_plug(&plug);
bf89d38f 3245 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3246 mutex_unlock(&log_root_tree->log_mutex);
3247 ret = -EAGAIN;
3248 goto out_wake_log_root;
3249 }
7237f183 3250
2ff7e61e 3251 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3252 &log_root_tree->dirty_log_pages,
3253 EXTENT_DIRTY | EXTENT_NEW);
3254 blk_finish_plug(&plug);
b528f467
NA
3255 /*
3256 * As described above, -EAGAIN indicates a hole in the extents. We
3257 * cannot wait for these write outs since the waiting cause a
3258 * deadlock. Bail out to the full commit instead.
3259 */
3260 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3261 btrfs_set_log_full_commit(trans);
3262 btrfs_wait_tree_log_extents(log, mark);
3263 mutex_unlock(&log_root_tree->log_mutex);
3264 goto out_wake_log_root;
3265 } else if (ret) {
90787766 3266 btrfs_set_log_full_commit(trans);
66642832 3267 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3268 mutex_unlock(&log_root_tree->log_mutex);
3269 goto out_wake_log_root;
3270 }
bf89d38f 3271 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3272 if (!ret)
bf89d38f
JM
3273 ret = btrfs_wait_tree_log_extents(log_root_tree,
3274 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3275 if (ret) {
90787766 3276 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3277 mutex_unlock(&log_root_tree->log_mutex);
3278 goto out_wake_log_root;
3279 }
e02119d5 3280
47876f7c
FM
3281 log_root_start = log_root_tree->node->start;
3282 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3283 log_root_tree->log_transid++;
7237f183
YZ
3284 mutex_unlock(&log_root_tree->log_mutex);
3285
3286 /*
47876f7c
FM
3287 * Here we are guaranteed that nobody is going to write the superblock
3288 * for the current transaction before us and that neither we do write
3289 * our superblock before the previous transaction finishes its commit
3290 * and writes its superblock, because:
3291 *
3292 * 1) We are holding a handle on the current transaction, so no body
3293 * can commit it until we release the handle;
3294 *
3295 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3296 * if the previous transaction is still committing, and hasn't yet
3297 * written its superblock, we wait for it to do it, because a
3298 * transaction commit acquires the tree_log_mutex when the commit
3299 * begins and releases it only after writing its superblock.
7237f183 3300 */
47876f7c
FM
3301 mutex_lock(&fs_info->tree_log_mutex);
3302 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3303 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3304 ret = write_all_supers(fs_info, 1);
47876f7c 3305 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3306 if (ret) {
90787766 3307 btrfs_set_log_full_commit(trans);
66642832 3308 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3309 goto out_wake_log_root;
3310 }
7237f183 3311
257c62e1
CM
3312 mutex_lock(&root->log_mutex);
3313 if (root->last_log_commit < log_transid)
3314 root->last_log_commit = log_transid;
3315 mutex_unlock(&root->log_mutex);
3316
12fcfd22 3317out_wake_log_root:
570dd450 3318 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3319 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3320
d1433deb 3321 log_root_tree->log_transid_committed++;
7237f183 3322 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3323 mutex_unlock(&log_root_tree->log_mutex);
3324
33a9eca7 3325 /*
093258e6
DS
3326 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3327 * all the updates above are seen by the woken threads. It might not be
3328 * necessary, but proving that seems to be hard.
33a9eca7 3329 */
093258e6 3330 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3331out:
d1433deb 3332 mutex_lock(&root->log_mutex);
570dd450 3333 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3334 root->log_transid_committed++;
7237f183 3335 atomic_set(&root->log_commit[index1], 0);
d1433deb 3336 mutex_unlock(&root->log_mutex);
8b050d35 3337
33a9eca7 3338 /*
093258e6
DS
3339 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3340 * all the updates above are seen by the woken threads. It might not be
3341 * necessary, but proving that seems to be hard.
33a9eca7 3342 */
093258e6 3343 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3344 return ret;
e02119d5
CM
3345}
3346
4a500fd1
YZ
3347static void free_log_tree(struct btrfs_trans_handle *trans,
3348 struct btrfs_root *log)
e02119d5
CM
3349{
3350 int ret;
e02119d5
CM
3351 struct walk_control wc = {
3352 .free = 1,
3353 .process_func = process_one_buffer
3354 };
3355
3ddebf27
NA
3356 if (log->node) {
3357 ret = walk_log_tree(trans, log, &wc);
3358 if (ret) {
3359 if (trans)
3360 btrfs_abort_transaction(trans, ret);
3361 else
3362 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3363 }
374b0e2d 3364 }
e02119d5 3365
59b0713a
FM
3366 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3367 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3368 extent_io_tree_release(&log->log_csum_range);
d3575156
NA
3369
3370 if (trans && log->node)
3371 btrfs_redirty_list_add(trans->transaction, log->node);
00246528 3372 btrfs_put_root(log);
4a500fd1
YZ
3373}
3374
3375/*
3376 * free all the extents used by the tree log. This should be called
3377 * at commit time of the full transaction
3378 */
3379int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3380{
3381 if (root->log_root) {
3382 free_log_tree(trans, root->log_root);
3383 root->log_root = NULL;
e7a79811 3384 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3385 }
3386 return 0;
3387}
3388
3389int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3390 struct btrfs_fs_info *fs_info)
3391{
3392 if (fs_info->log_root_tree) {
3393 free_log_tree(trans, fs_info->log_root_tree);
3394 fs_info->log_root_tree = NULL;
47876f7c 3395 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3396 }
e02119d5
CM
3397 return 0;
3398}
3399
803f0f64
FM
3400/*
3401 * Check if an inode was logged in the current transaction. We can't always rely
3402 * on an inode's logged_trans value, because it's an in-memory only field and
3403 * therefore not persisted. This means that its value is lost if the inode gets
3404 * evicted and loaded again from disk (in which case it has a value of 0, and
3405 * certainly it is smaller then any possible transaction ID), when that happens
3406 * the full_sync flag is set in the inode's runtime flags, so on that case we
3407 * assume eviction happened and ignore the logged_trans value, assuming the
3408 * worst case, that the inode was logged before in the current transaction.
3409 */
3410static bool inode_logged(struct btrfs_trans_handle *trans,
3411 struct btrfs_inode *inode)
3412{
3413 if (inode->logged_trans == trans->transid)
3414 return true;
3415
3416 if (inode->last_trans == trans->transid &&
3417 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3418 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3419 return true;
3420
3421 return false;
3422}
3423
e02119d5
CM
3424/*
3425 * If both a file and directory are logged, and unlinks or renames are
3426 * mixed in, we have a few interesting corners:
3427 *
3428 * create file X in dir Y
3429 * link file X to X.link in dir Y
3430 * fsync file X
3431 * unlink file X but leave X.link
3432 * fsync dir Y
3433 *
3434 * After a crash we would expect only X.link to exist. But file X
3435 * didn't get fsync'd again so the log has back refs for X and X.link.
3436 *
3437 * We solve this by removing directory entries and inode backrefs from the
3438 * log when a file that was logged in the current transaction is
3439 * unlinked. Any later fsync will include the updated log entries, and
3440 * we'll be able to reconstruct the proper directory items from backrefs.
3441 *
3442 * This optimizations allows us to avoid relogging the entire inode
3443 * or the entire directory.
3444 */
3445int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3446 struct btrfs_root *root,
3447 const char *name, int name_len,
49f34d1f 3448 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3449{
3450 struct btrfs_root *log;
3451 struct btrfs_dir_item *di;
3452 struct btrfs_path *path;
3453 int ret;
4a500fd1 3454 int err = 0;
49f34d1f 3455 u64 dir_ino = btrfs_ino(dir);
e02119d5 3456
803f0f64 3457 if (!inode_logged(trans, dir))
3a5f1d45
CM
3458 return 0;
3459
e02119d5
CM
3460 ret = join_running_log_trans(root);
3461 if (ret)
3462 return 0;
3463
49f34d1f 3464 mutex_lock(&dir->log_mutex);
e02119d5
CM
3465
3466 log = root->log_root;
3467 path = btrfs_alloc_path();
a62f44a5
TI
3468 if (!path) {
3469 err = -ENOMEM;
3470 goto out_unlock;
3471 }
2a29edc6 3472
33345d01 3473 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3474 name, name_len, -1);
4a500fd1
YZ
3475 if (IS_ERR(di)) {
3476 err = PTR_ERR(di);
3477 goto fail;
3478 }
3479 if (di) {
e02119d5 3480 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3481 if (ret) {
3482 err = ret;
3483 goto fail;
3484 }
e02119d5 3485 }
b3b4aa74 3486 btrfs_release_path(path);
33345d01 3487 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3488 index, name, name_len, -1);
4a500fd1
YZ
3489 if (IS_ERR(di)) {
3490 err = PTR_ERR(di);
3491 goto fail;
3492 }
3493 if (di) {
e02119d5 3494 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3495 if (ret) {
3496 err = ret;
3497 goto fail;
3498 }
e02119d5
CM
3499 }
3500
ddffcf6f
FM
3501 /*
3502 * We do not need to update the size field of the directory's inode item
3503 * because on log replay we update the field to reflect all existing
3504 * entries in the directory (see overwrite_item()).
e02119d5 3505 */
4a500fd1 3506fail:
e02119d5 3507 btrfs_free_path(path);
a62f44a5 3508out_unlock:
49f34d1f 3509 mutex_unlock(&dir->log_mutex);
fb2fecba 3510 if (err == -ENOSPC) {
90787766 3511 btrfs_set_log_full_commit(trans);
fb2fecba
JB
3512 err = 0;
3513 } else if (err < 0 && err != -ENOENT) {
3514 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3515 btrfs_abort_transaction(trans, err);
3516 }
79787eaa 3517
12fcfd22 3518 btrfs_end_log_trans(root);
e02119d5 3519
411fc6bc 3520 return err;
e02119d5
CM
3521}
3522
3523/* see comments for btrfs_del_dir_entries_in_log */
3524int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3525 struct btrfs_root *root,
3526 const char *name, int name_len,
a491abb2 3527 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3528{
3529 struct btrfs_root *log;
3530 u64 index;
3531 int ret;
3532
803f0f64 3533 if (!inode_logged(trans, inode))
3a5f1d45
CM
3534 return 0;
3535
e02119d5
CM
3536 ret = join_running_log_trans(root);
3537 if (ret)
3538 return 0;
3539 log = root->log_root;
a491abb2 3540 mutex_lock(&inode->log_mutex);
e02119d5 3541
a491abb2 3542 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3543 dirid, &index);
a491abb2 3544 mutex_unlock(&inode->log_mutex);
4a500fd1 3545 if (ret == -ENOSPC) {
90787766 3546 btrfs_set_log_full_commit(trans);
4a500fd1 3547 ret = 0;
79787eaa 3548 } else if (ret < 0 && ret != -ENOENT)
66642832 3549 btrfs_abort_transaction(trans, ret);
12fcfd22 3550 btrfs_end_log_trans(root);
e02119d5 3551
e02119d5
CM
3552 return ret;
3553}
3554
3555/*
3556 * creates a range item in the log for 'dirid'. first_offset and
3557 * last_offset tell us which parts of the key space the log should
3558 * be considered authoritative for.
3559 */
3560static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3561 struct btrfs_root *log,
3562 struct btrfs_path *path,
3563 int key_type, u64 dirid,
3564 u64 first_offset, u64 last_offset)
3565{
3566 int ret;
3567 struct btrfs_key key;
3568 struct btrfs_dir_log_item *item;
3569
3570 key.objectid = dirid;
3571 key.offset = first_offset;
3572 if (key_type == BTRFS_DIR_ITEM_KEY)
3573 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3574 else
3575 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3576 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3577 if (ret)
3578 return ret;
e02119d5
CM
3579
3580 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3581 struct btrfs_dir_log_item);
3582 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3583 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3584 btrfs_release_path(path);
e02119d5
CM
3585 return 0;
3586}
3587
3588/*
3589 * log all the items included in the current transaction for a given
3590 * directory. This also creates the range items in the log tree required
3591 * to replay anything deleted before the fsync
3592 */
3593static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3594 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3595 struct btrfs_path *path,
3596 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3597 struct btrfs_log_ctx *ctx,
e02119d5
CM
3598 u64 min_offset, u64 *last_offset_ret)
3599{
3600 struct btrfs_key min_key;
e02119d5
CM
3601 struct btrfs_root *log = root->log_root;
3602 struct extent_buffer *src;
4a500fd1 3603 int err = 0;
e02119d5
CM
3604 int ret;
3605 int i;
3606 int nritems;
3607 u64 first_offset = min_offset;
3608 u64 last_offset = (u64)-1;
684a5773 3609 u64 ino = btrfs_ino(inode);
e02119d5
CM
3610
3611 log = root->log_root;
e02119d5 3612
33345d01 3613 min_key.objectid = ino;
e02119d5
CM
3614 min_key.type = key_type;
3615 min_key.offset = min_offset;
3616
6174d3cb 3617 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3618
3619 /*
3620 * we didn't find anything from this transaction, see if there
3621 * is anything at all
3622 */
33345d01
LZ
3623 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3624 min_key.objectid = ino;
e02119d5
CM
3625 min_key.type = key_type;
3626 min_key.offset = (u64)-1;
b3b4aa74 3627 btrfs_release_path(path);
e02119d5
CM
3628 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3629 if (ret < 0) {
b3b4aa74 3630 btrfs_release_path(path);
e02119d5
CM
3631 return ret;
3632 }
33345d01 3633 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3634
3635 /* if ret == 0 there are items for this type,
3636 * create a range to tell us the last key of this type.
3637 * otherwise, there are no items in this directory after
3638 * *min_offset, and we create a range to indicate that.
3639 */
3640 if (ret == 0) {
3641 struct btrfs_key tmp;
3642 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3643 path->slots[0]);
d397712b 3644 if (key_type == tmp.type)
e02119d5 3645 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3646 }
3647 goto done;
3648 }
3649
3650 /* go backward to find any previous key */
33345d01 3651 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3652 if (ret == 0) {
3653 struct btrfs_key tmp;
3654 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3655 if (key_type == tmp.type) {
3656 first_offset = tmp.offset;
3657 ret = overwrite_item(trans, log, dst_path,
3658 path->nodes[0], path->slots[0],
3659 &tmp);
4a500fd1
YZ
3660 if (ret) {
3661 err = ret;
3662 goto done;
3663 }
e02119d5
CM
3664 }
3665 }
b3b4aa74 3666 btrfs_release_path(path);
e02119d5 3667
2cc83342
JB
3668 /*
3669 * Find the first key from this transaction again. See the note for
3670 * log_new_dir_dentries, if we're logging a directory recursively we
3671 * won't be holding its i_mutex, which means we can modify the directory
3672 * while we're logging it. If we remove an entry between our first
3673 * search and this search we'll not find the key again and can just
3674 * bail.
3675 */
bb56f02f 3676search:
e02119d5 3677 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3678 if (ret != 0)
e02119d5 3679 goto done;
e02119d5
CM
3680
3681 /*
3682 * we have a block from this transaction, log every item in it
3683 * from our directory
3684 */
d397712b 3685 while (1) {
e02119d5
CM
3686 struct btrfs_key tmp;
3687 src = path->nodes[0];
3688 nritems = btrfs_header_nritems(src);
3689 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3690 struct btrfs_dir_item *di;
3691
e02119d5
CM
3692 btrfs_item_key_to_cpu(src, &min_key, i);
3693
33345d01 3694 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5 3695 goto done;
bb56f02f
FM
3696
3697 if (need_resched()) {
3698 btrfs_release_path(path);
3699 cond_resched();
3700 goto search;
3701 }
3702
e02119d5
CM
3703 ret = overwrite_item(trans, log, dst_path, src, i,
3704 &min_key);
4a500fd1
YZ
3705 if (ret) {
3706 err = ret;
3707 goto done;
3708 }
2f2ff0ee
FM
3709
3710 /*
3711 * We must make sure that when we log a directory entry,
3712 * the corresponding inode, after log replay, has a
3713 * matching link count. For example:
3714 *
3715 * touch foo
3716 * mkdir mydir
3717 * sync
3718 * ln foo mydir/bar
3719 * xfs_io -c "fsync" mydir
3720 * <crash>
3721 * <mount fs and log replay>
3722 *
3723 * Would result in a fsync log that when replayed, our
3724 * file inode would have a link count of 1, but we get
3725 * two directory entries pointing to the same inode.
3726 * After removing one of the names, it would not be
3727 * possible to remove the other name, which resulted
3728 * always in stale file handle errors, and would not
3729 * be possible to rmdir the parent directory, since
3730 * its i_size could never decrement to the value
3731 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3732 */
3733 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3734 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3735 if (ctx &&
3736 (btrfs_dir_transid(src, di) == trans->transid ||
3737 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3738 tmp.type != BTRFS_ROOT_ITEM_KEY)
3739 ctx->log_new_dentries = true;
e02119d5
CM
3740 }
3741 path->slots[0] = nritems;
3742
3743 /*
3744 * look ahead to the next item and see if it is also
3745 * from this directory and from this transaction
3746 */
3747 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3748 if (ret) {
3749 if (ret == 1)
3750 last_offset = (u64)-1;
3751 else
3752 err = ret;
e02119d5
CM
3753 goto done;
3754 }
3755 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3756 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3757 last_offset = (u64)-1;
3758 goto done;
3759 }
3760 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3761 ret = overwrite_item(trans, log, dst_path,
3762 path->nodes[0], path->slots[0],
3763 &tmp);
4a500fd1
YZ
3764 if (ret)
3765 err = ret;
3766 else
3767 last_offset = tmp.offset;
e02119d5
CM
3768 goto done;
3769 }
3770 }
3771done:
b3b4aa74
DS
3772 btrfs_release_path(path);
3773 btrfs_release_path(dst_path);
e02119d5 3774
4a500fd1
YZ
3775 if (err == 0) {
3776 *last_offset_ret = last_offset;
3777 /*
3778 * insert the log range keys to indicate where the log
3779 * is valid
3780 */
3781 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3782 ino, first_offset, last_offset);
4a500fd1
YZ
3783 if (ret)
3784 err = ret;
3785 }
3786 return err;
e02119d5
CM
3787}
3788
3789/*
3790 * logging directories is very similar to logging inodes, We find all the items
3791 * from the current transaction and write them to the log.
3792 *
3793 * The recovery code scans the directory in the subvolume, and if it finds a
3794 * key in the range logged that is not present in the log tree, then it means
3795 * that dir entry was unlinked during the transaction.
3796 *
3797 * In order for that scan to work, we must include one key smaller than
3798 * the smallest logged by this transaction and one key larger than the largest
3799 * key logged by this transaction.
3800 */
3801static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3802 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3803 struct btrfs_path *path,
2f2ff0ee
FM
3804 struct btrfs_path *dst_path,
3805 struct btrfs_log_ctx *ctx)
e02119d5
CM
3806{
3807 u64 min_key;
3808 u64 max_key;
3809 int ret;
3810 int key_type = BTRFS_DIR_ITEM_KEY;
3811
3812again:
3813 min_key = 0;
3814 max_key = 0;
d397712b 3815 while (1) {
dbf39ea4
NB
3816 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3817 ctx, min_key, &max_key);
4a500fd1
YZ
3818 if (ret)
3819 return ret;
e02119d5
CM
3820 if (max_key == (u64)-1)
3821 break;
3822 min_key = max_key + 1;
3823 }
3824
3825 if (key_type == BTRFS_DIR_ITEM_KEY) {
3826 key_type = BTRFS_DIR_INDEX_KEY;
3827 goto again;
3828 }
3829 return 0;
3830}
3831
3832/*
3833 * a helper function to drop items from the log before we relog an
3834 * inode. max_key_type indicates the highest item type to remove.
3835 * This cannot be run for file data extents because it does not
3836 * free the extents they point to.
3837 */
3838static int drop_objectid_items(struct btrfs_trans_handle *trans,
3839 struct btrfs_root *log,
3840 struct btrfs_path *path,
3841 u64 objectid, int max_key_type)
3842{
3843 int ret;
3844 struct btrfs_key key;
3845 struct btrfs_key found_key;
18ec90d6 3846 int start_slot;
e02119d5
CM
3847
3848 key.objectid = objectid;
3849 key.type = max_key_type;
3850 key.offset = (u64)-1;
3851
d397712b 3852 while (1) {
e02119d5 3853 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3854 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3855 if (ret < 0)
e02119d5
CM
3856 break;
3857
3858 if (path->slots[0] == 0)
3859 break;
3860
3861 path->slots[0]--;
3862 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3863 path->slots[0]);
3864
3865 if (found_key.objectid != objectid)
3866 break;
3867
18ec90d6
JB
3868 found_key.offset = 0;
3869 found_key.type = 0;
e3b83361 3870 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
3871 if (ret < 0)
3872 break;
18ec90d6
JB
3873
3874 ret = btrfs_del_items(trans, log, path, start_slot,
3875 path->slots[0] - start_slot + 1);
3876 /*
3877 * If start slot isn't 0 then we don't need to re-search, we've
3878 * found the last guy with the objectid in this tree.
3879 */
3880 if (ret || start_slot != 0)
65a246c5 3881 break;
b3b4aa74 3882 btrfs_release_path(path);
e02119d5 3883 }
b3b4aa74 3884 btrfs_release_path(path);
5bdbeb21
JB
3885 if (ret > 0)
3886 ret = 0;
4a500fd1 3887 return ret;
e02119d5
CM
3888}
3889
94edf4ae
JB
3890static void fill_inode_item(struct btrfs_trans_handle *trans,
3891 struct extent_buffer *leaf,
3892 struct btrfs_inode_item *item,
1a4bcf47
FM
3893 struct inode *inode, int log_inode_only,
3894 u64 logged_isize)
94edf4ae 3895{
0b1c6cca
JB
3896 struct btrfs_map_token token;
3897
c82f823c 3898 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
3899
3900 if (log_inode_only) {
3901 /* set the generation to zero so the recover code
3902 * can tell the difference between an logging
3903 * just to say 'this inode exists' and a logging
3904 * to say 'update this inode with these values'
3905 */
cc4c13d5
DS
3906 btrfs_set_token_inode_generation(&token, item, 0);
3907 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 3908 } else {
cc4c13d5
DS
3909 btrfs_set_token_inode_generation(&token, item,
3910 BTRFS_I(inode)->generation);
3911 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
3912 }
3913
cc4c13d5
DS
3914 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3915 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3916 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3917 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3918
3919 btrfs_set_token_timespec_sec(&token, &item->atime,
3920 inode->i_atime.tv_sec);
3921 btrfs_set_token_timespec_nsec(&token, &item->atime,
3922 inode->i_atime.tv_nsec);
3923
3924 btrfs_set_token_timespec_sec(&token, &item->mtime,
3925 inode->i_mtime.tv_sec);
3926 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3927 inode->i_mtime.tv_nsec);
3928
3929 btrfs_set_token_timespec_sec(&token, &item->ctime,
3930 inode->i_ctime.tv_sec);
3931 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3932 inode->i_ctime.tv_nsec);
3933
e593e54e
FM
3934 /*
3935 * We do not need to set the nbytes field, in fact during a fast fsync
3936 * its value may not even be correct, since a fast fsync does not wait
3937 * for ordered extent completion, which is where we update nbytes, it
3938 * only waits for writeback to complete. During log replay as we find
3939 * file extent items and replay them, we adjust the nbytes field of the
3940 * inode item in subvolume tree as needed (see overwrite_item()).
3941 */
cc4c13d5
DS
3942
3943 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3944 btrfs_set_token_inode_transid(&token, item, trans->transid);
3945 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3946 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3947 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
3948}
3949
a95249b3
JB
3950static int log_inode_item(struct btrfs_trans_handle *trans,
3951 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3952 struct btrfs_inode *inode)
a95249b3
JB
3953{
3954 struct btrfs_inode_item *inode_item;
a95249b3
JB
3955 int ret;
3956
efd0c405 3957 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3958 &inode->location, sizeof(*inode_item));
a95249b3
JB
3959 if (ret && ret != -EEXIST)
3960 return ret;
3961 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3962 struct btrfs_inode_item);
6d889a3b
NB
3963 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3964 0, 0);
a95249b3
JB
3965 btrfs_release_path(path);
3966 return 0;
3967}
3968
40e046ac 3969static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 3970 struct btrfs_inode *inode,
40e046ac
FM
3971 struct btrfs_root *log_root,
3972 struct btrfs_ordered_sum *sums)
3973{
e289f03e
FM
3974 const u64 lock_end = sums->bytenr + sums->len - 1;
3975 struct extent_state *cached_state = NULL;
40e046ac
FM
3976 int ret;
3977
3ebac17c
FM
3978 /*
3979 * If this inode was not used for reflink operations in the current
3980 * transaction with new extents, then do the fast path, no need to
3981 * worry about logging checksum items with overlapping ranges.
3982 */
3983 if (inode->last_reflink_trans < trans->transid)
3984 return btrfs_csum_file_blocks(trans, log_root, sums);
3985
e289f03e
FM
3986 /*
3987 * Serialize logging for checksums. This is to avoid racing with the
3988 * same checksum being logged by another task that is logging another
3989 * file which happens to refer to the same extent as well. Such races
3990 * can leave checksum items in the log with overlapping ranges.
3991 */
3992 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3993 lock_end, &cached_state);
3994 if (ret)
3995 return ret;
40e046ac
FM
3996 /*
3997 * Due to extent cloning, we might have logged a csum item that covers a
3998 * subrange of a cloned extent, and later we can end up logging a csum
3999 * item for a larger subrange of the same extent or the entire range.
4000 * This would leave csum items in the log tree that cover the same range
4001 * and break the searches for checksums in the log tree, resulting in
4002 * some checksums missing in the fs/subvolume tree. So just delete (or
4003 * trim and adjust) any existing csum items in the log for this range.
4004 */
4005 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4006 if (!ret)
4007 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4008
e289f03e
FM
4009 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4010 &cached_state);
4011
4012 return ret;
40e046ac
FM
4013}
4014
31ff1cd2 4015static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4016 struct btrfs_inode *inode,
31ff1cd2 4017 struct btrfs_path *dst_path,
0e56315c 4018 struct btrfs_path *src_path,
1a4bcf47
FM
4019 int start_slot, int nr, int inode_only,
4020 u64 logged_isize)
31ff1cd2 4021{
3ffbd68c 4022 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
4023 unsigned long src_offset;
4024 unsigned long dst_offset;
44d70e19 4025 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
4026 struct btrfs_file_extent_item *extent;
4027 struct btrfs_inode_item *inode_item;
16e7549f 4028 struct extent_buffer *src = src_path->nodes[0];
31ff1cd2
CM
4029 int ret;
4030 struct btrfs_key *ins_keys;
4031 u32 *ins_sizes;
4032 char *ins_data;
4033 int i;
d20f7043 4034 struct list_head ordered_sums;
44d70e19 4035 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
4036
4037 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
4038
4039 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4040 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4041 if (!ins_data)
4042 return -ENOMEM;
4043
31ff1cd2
CM
4044 ins_sizes = (u32 *)ins_data;
4045 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4046
4047 for (i = 0; i < nr; i++) {
4048 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4049 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4050 }
4051 ret = btrfs_insert_empty_items(trans, log, dst_path,
4052 ins_keys, ins_sizes, nr);
4a500fd1
YZ
4053 if (ret) {
4054 kfree(ins_data);
4055 return ret;
4056 }
31ff1cd2 4057
5d4f98a2 4058 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
4059 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4060 dst_path->slots[0]);
4061
4062 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4063
94edf4ae 4064 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
4065 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4066 dst_path->slots[0],
4067 struct btrfs_inode_item);
94edf4ae 4068 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4069 &inode->vfs_inode,
4070 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4071 logged_isize);
94edf4ae
JB
4072 } else {
4073 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4074 src_offset, ins_sizes[i]);
31ff1cd2 4075 }
94edf4ae 4076
31ff1cd2
CM
4077 /* take a reference on file data extents so that truncates
4078 * or deletes of this inode don't have to relog the inode
4079 * again
4080 */
962a298f 4081 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4082 !skip_csum) {
31ff1cd2
CM
4083 int found_type;
4084 extent = btrfs_item_ptr(src, start_slot + i,
4085 struct btrfs_file_extent_item);
4086
8e531cdf 4087 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4088 continue;
4089
31ff1cd2 4090 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4091 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4092 u64 ds, dl, cs, cl;
4093 ds = btrfs_file_extent_disk_bytenr(src,
4094 extent);
4095 /* ds == 0 is a hole */
4096 if (ds == 0)
4097 continue;
4098
4099 dl = btrfs_file_extent_disk_num_bytes(src,
4100 extent);
4101 cs = btrfs_file_extent_offset(src, extent);
4102 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4103 extent);
580afd76
CM
4104 if (btrfs_file_extent_compression(src,
4105 extent)) {
4106 cs = 0;
4107 cl = dl;
4108 }
5d4f98a2
YZ
4109
4110 ret = btrfs_lookup_csums_range(
0b246afa 4111 fs_info->csum_root,
5d4f98a2 4112 ds + cs, ds + cs + cl - 1,
a2de733c 4113 &ordered_sums, 0);
4f26433e
FM
4114 if (ret)
4115 break;
31ff1cd2
CM
4116 }
4117 }
31ff1cd2
CM
4118 }
4119
4120 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4121 btrfs_release_path(dst_path);
31ff1cd2 4122 kfree(ins_data);
d20f7043
CM
4123
4124 /*
4125 * we have to do this after the loop above to avoid changing the
4126 * log tree while trying to change the log tree.
4127 */
d397712b 4128 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4129 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4130 struct btrfs_ordered_sum,
4131 list);
4a500fd1 4132 if (!ret)
3ebac17c 4133 ret = log_csums(trans, inode, log, sums);
d20f7043
CM
4134 list_del(&sums->list);
4135 kfree(sums);
4136 }
16e7549f 4137
4a500fd1 4138 return ret;
31ff1cd2
CM
4139}
4140
5dc562c5
JB
4141static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4142{
4143 struct extent_map *em1, *em2;
4144
4145 em1 = list_entry(a, struct extent_map, list);
4146 em2 = list_entry(b, struct extent_map, list);
4147
4148 if (em1->start < em2->start)
4149 return -1;
4150 else if (em1->start > em2->start)
4151 return 1;
4152 return 0;
4153}
4154
e7175a69
JB
4155static int log_extent_csums(struct btrfs_trans_handle *trans,
4156 struct btrfs_inode *inode,
a9ecb653 4157 struct btrfs_root *log_root,
48778179
FM
4158 const struct extent_map *em,
4159 struct btrfs_log_ctx *ctx)
5dc562c5 4160{
48778179 4161 struct btrfs_ordered_extent *ordered;
2ab28f32
JB
4162 u64 csum_offset;
4163 u64 csum_len;
48778179
FM
4164 u64 mod_start = em->mod_start;
4165 u64 mod_len = em->mod_len;
8407f553
FM
4166 LIST_HEAD(ordered_sums);
4167 int ret = 0;
0aa4a17d 4168
e7175a69
JB
4169 if (inode->flags & BTRFS_INODE_NODATASUM ||
4170 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4171 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4172 return 0;
5dc562c5 4173
48778179
FM
4174 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4175 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4176 const u64 mod_end = mod_start + mod_len;
4177 struct btrfs_ordered_sum *sums;
4178
4179 if (mod_len == 0)
4180 break;
4181
4182 if (ordered_end <= mod_start)
4183 continue;
4184 if (mod_end <= ordered->file_offset)
4185 break;
4186
4187 /*
4188 * We are going to copy all the csums on this ordered extent, so
4189 * go ahead and adjust mod_start and mod_len in case this ordered
4190 * extent has already been logged.
4191 */
4192 if (ordered->file_offset > mod_start) {
4193 if (ordered_end >= mod_end)
4194 mod_len = ordered->file_offset - mod_start;
4195 /*
4196 * If we have this case
4197 *
4198 * |--------- logged extent ---------|
4199 * |----- ordered extent ----|
4200 *
4201 * Just don't mess with mod_start and mod_len, we'll
4202 * just end up logging more csums than we need and it
4203 * will be ok.
4204 */
4205 } else {
4206 if (ordered_end < mod_end) {
4207 mod_len = mod_end - ordered_end;
4208 mod_start = ordered_end;
4209 } else {
4210 mod_len = 0;
4211 }
4212 }
4213
4214 /*
4215 * To keep us from looping for the above case of an ordered
4216 * extent that falls inside of the logged extent.
4217 */
4218 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4219 continue;
4220
4221 list_for_each_entry(sums, &ordered->list, list) {
4222 ret = log_csums(trans, inode, log_root, sums);
4223 if (ret)
4224 return ret;
4225 }
4226 }
4227
4228 /* We're done, found all csums in the ordered extents. */
4229 if (mod_len == 0)
4230 return 0;
4231
e7175a69 4232 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4233 if (em->compress_type) {
4234 csum_offset = 0;
8407f553 4235 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4236 } else {
48778179
FM
4237 csum_offset = mod_start - em->start;
4238 csum_len = mod_len;
488111aa 4239 }
2ab28f32 4240
70c8a91c 4241 /* block start is already adjusted for the file extent offset. */
a9ecb653 4242 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4243 em->block_start + csum_offset,
4244 em->block_start + csum_offset +
4245 csum_len - 1, &ordered_sums, 0);
4246 if (ret)
4247 return ret;
5dc562c5 4248
70c8a91c
JB
4249 while (!list_empty(&ordered_sums)) {
4250 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4251 struct btrfs_ordered_sum,
4252 list);
4253 if (!ret)
3ebac17c 4254 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4255 list_del(&sums->list);
4256 kfree(sums);
5dc562c5
JB
4257 }
4258
70c8a91c 4259 return ret;
5dc562c5
JB
4260}
4261
8407f553 4262static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4263 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4264 const struct extent_map *em,
4265 struct btrfs_path *path,
8407f553
FM
4266 struct btrfs_log_ctx *ctx)
4267{
5893dfb9 4268 struct btrfs_drop_extents_args drop_args = { 0 };
8407f553
FM
4269 struct btrfs_root *log = root->log_root;
4270 struct btrfs_file_extent_item *fi;
4271 struct extent_buffer *leaf;
4272 struct btrfs_map_token token;
4273 struct btrfs_key key;
4274 u64 extent_offset = em->start - em->orig_start;
4275 u64 block_len;
4276 int ret;
8407f553 4277
48778179 4278 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4279 if (ret)
4280 return ret;
4281
5893dfb9
FM
4282 drop_args.path = path;
4283 drop_args.start = em->start;
4284 drop_args.end = em->start + em->len;
4285 drop_args.replace_extent = true;
4286 drop_args.extent_item_size = sizeof(*fi);
4287 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
8407f553
FM
4288 if (ret)
4289 return ret;
4290
5893dfb9 4291 if (!drop_args.extent_inserted) {
9d122629 4292 key.objectid = btrfs_ino(inode);
8407f553
FM
4293 key.type = BTRFS_EXTENT_DATA_KEY;
4294 key.offset = em->start;
4295
4296 ret = btrfs_insert_empty_item(trans, log, path, &key,
4297 sizeof(*fi));
4298 if (ret)
4299 return ret;
4300 }
4301 leaf = path->nodes[0];
c82f823c 4302 btrfs_init_map_token(&token, leaf);
8407f553
FM
4303 fi = btrfs_item_ptr(leaf, path->slots[0],
4304 struct btrfs_file_extent_item);
4305
cc4c13d5 4306 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
8407f553 4307 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
cc4c13d5
DS
4308 btrfs_set_token_file_extent_type(&token, fi,
4309 BTRFS_FILE_EXTENT_PREALLOC);
8407f553 4310 else
cc4c13d5
DS
4311 btrfs_set_token_file_extent_type(&token, fi,
4312 BTRFS_FILE_EXTENT_REG);
8407f553
FM
4313
4314 block_len = max(em->block_len, em->orig_block_len);
4315 if (em->compress_type != BTRFS_COMPRESS_NONE) {
cc4c13d5
DS
4316 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4317 em->block_start);
4318 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4319 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
cc4c13d5 4320 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
8407f553 4321 em->block_start -
cc4c13d5
DS
4322 extent_offset);
4323 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4324 } else {
cc4c13d5
DS
4325 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4326 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
8407f553
FM
4327 }
4328
cc4c13d5
DS
4329 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4330 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4331 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4332 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4333 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4334 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
8407f553
FM
4335 btrfs_mark_buffer_dirty(leaf);
4336
4337 btrfs_release_path(path);
4338
4339 return ret;
4340}
4341
31d11b83
FM
4342/*
4343 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4344 * lose them after doing a fast fsync and replaying the log. We scan the
4345 * subvolume's root instead of iterating the inode's extent map tree because
4346 * otherwise we can log incorrect extent items based on extent map conversion.
4347 * That can happen due to the fact that extent maps are merged when they
4348 * are not in the extent map tree's list of modified extents.
4349 */
4350static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4351 struct btrfs_inode *inode,
4352 struct btrfs_path *path)
4353{
4354 struct btrfs_root *root = inode->root;
4355 struct btrfs_key key;
4356 const u64 i_size = i_size_read(&inode->vfs_inode);
4357 const u64 ino = btrfs_ino(inode);
4358 struct btrfs_path *dst_path = NULL;
0e56315c 4359 bool dropped_extents = false;
f135cea3
FM
4360 u64 truncate_offset = i_size;
4361 struct extent_buffer *leaf;
4362 int slot;
31d11b83
FM
4363 int ins_nr = 0;
4364 int start_slot;
4365 int ret;
4366
4367 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4368 return 0;
4369
4370 key.objectid = ino;
4371 key.type = BTRFS_EXTENT_DATA_KEY;
4372 key.offset = i_size;
4373 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4374 if (ret < 0)
4375 goto out;
4376
f135cea3
FM
4377 /*
4378 * We must check if there is a prealloc extent that starts before the
4379 * i_size and crosses the i_size boundary. This is to ensure later we
4380 * truncate down to the end of that extent and not to the i_size, as
4381 * otherwise we end up losing part of the prealloc extent after a log
4382 * replay and with an implicit hole if there is another prealloc extent
4383 * that starts at an offset beyond i_size.
4384 */
4385 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4386 if (ret < 0)
4387 goto out;
4388
4389 if (ret == 0) {
4390 struct btrfs_file_extent_item *ei;
4391
4392 leaf = path->nodes[0];
4393 slot = path->slots[0];
4394 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4395
4396 if (btrfs_file_extent_type(leaf, ei) ==
4397 BTRFS_FILE_EXTENT_PREALLOC) {
4398 u64 extent_end;
4399
4400 btrfs_item_key_to_cpu(leaf, &key, slot);
4401 extent_end = key.offset +
4402 btrfs_file_extent_num_bytes(leaf, ei);
4403
4404 if (extent_end > i_size)
4405 truncate_offset = extent_end;
4406 }
4407 } else {
4408 ret = 0;
4409 }
4410
31d11b83 4411 while (true) {
f135cea3
FM
4412 leaf = path->nodes[0];
4413 slot = path->slots[0];
31d11b83
FM
4414
4415 if (slot >= btrfs_header_nritems(leaf)) {
4416 if (ins_nr > 0) {
4417 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4418 start_slot, ins_nr, 1, 0);
31d11b83
FM
4419 if (ret < 0)
4420 goto out;
4421 ins_nr = 0;
4422 }
4423 ret = btrfs_next_leaf(root, path);
4424 if (ret < 0)
4425 goto out;
4426 if (ret > 0) {
4427 ret = 0;
4428 break;
4429 }
4430 continue;
4431 }
4432
4433 btrfs_item_key_to_cpu(leaf, &key, slot);
4434 if (key.objectid > ino)
4435 break;
4436 if (WARN_ON_ONCE(key.objectid < ino) ||
4437 key.type < BTRFS_EXTENT_DATA_KEY ||
4438 key.offset < i_size) {
4439 path->slots[0]++;
4440 continue;
4441 }
0e56315c 4442 if (!dropped_extents) {
31d11b83
FM
4443 /*
4444 * Avoid logging extent items logged in past fsync calls
4445 * and leading to duplicate keys in the log tree.
4446 */
4447 do {
4448 ret = btrfs_truncate_inode_items(trans,
4449 root->log_root,
50743398 4450 inode, truncate_offset,
31d11b83
FM
4451 BTRFS_EXTENT_DATA_KEY);
4452 } while (ret == -EAGAIN);
4453 if (ret)
4454 goto out;
0e56315c 4455 dropped_extents = true;
31d11b83
FM
4456 }
4457 if (ins_nr == 0)
4458 start_slot = slot;
4459 ins_nr++;
4460 path->slots[0]++;
4461 if (!dst_path) {
4462 dst_path = btrfs_alloc_path();
4463 if (!dst_path) {
4464 ret = -ENOMEM;
4465 goto out;
4466 }
4467 }
4468 }
0bc2d3c0 4469 if (ins_nr > 0)
0e56315c 4470 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4471 start_slot, ins_nr, 1, 0);
31d11b83
FM
4472out:
4473 btrfs_release_path(path);
4474 btrfs_free_path(dst_path);
4475 return ret;
4476}
4477
5dc562c5
JB
4478static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4479 struct btrfs_root *root,
9d122629 4480 struct btrfs_inode *inode,
827463c4 4481 struct btrfs_path *path,
48778179 4482 struct btrfs_log_ctx *ctx)
5dc562c5 4483{
48778179
FM
4484 struct btrfs_ordered_extent *ordered;
4485 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4486 struct extent_map *em, *n;
4487 struct list_head extents;
9d122629 4488 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4489 int ret = 0;
2ab28f32 4490 int num = 0;
5dc562c5
JB
4491
4492 INIT_LIST_HEAD(&extents);
4493
5dc562c5 4494 write_lock(&tree->lock);
5dc562c5
JB
4495
4496 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4497 list_del_init(&em->list);
2ab28f32
JB
4498 /*
4499 * Just an arbitrary number, this can be really CPU intensive
4500 * once we start getting a lot of extents, and really once we
4501 * have a bunch of extents we just want to commit since it will
4502 * be faster.
4503 */
4504 if (++num > 32768) {
4505 list_del_init(&tree->modified_extents);
4506 ret = -EFBIG;
4507 goto process;
4508 }
4509
5f96bfb7 4510 if (em->generation < trans->transid)
5dc562c5 4511 continue;
8c6c5928 4512
31d11b83
FM
4513 /* We log prealloc extents beyond eof later. */
4514 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4515 em->start >= i_size_read(&inode->vfs_inode))
4516 continue;
4517
ff44c6e3 4518 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4519 refcount_inc(&em->refs);
ff44c6e3 4520 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4521 list_add_tail(&em->list, &extents);
2ab28f32 4522 num++;
5dc562c5
JB
4523 }
4524
4525 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4526process:
5dc562c5
JB
4527 while (!list_empty(&extents)) {
4528 em = list_entry(extents.next, struct extent_map, list);
4529
4530 list_del_init(&em->list);
4531
4532 /*
4533 * If we had an error we just need to delete everybody from our
4534 * private list.
4535 */
ff44c6e3 4536 if (ret) {
201a9038 4537 clear_em_logging(tree, em);
ff44c6e3 4538 free_extent_map(em);
5dc562c5 4539 continue;
ff44c6e3
JB
4540 }
4541
4542 write_unlock(&tree->lock);
5dc562c5 4543
a2120a47 4544 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4545 write_lock(&tree->lock);
201a9038
JB
4546 clear_em_logging(tree, em);
4547 free_extent_map(em);
5dc562c5 4548 }
ff44c6e3
JB
4549 WARN_ON(!list_empty(&extents));
4550 write_unlock(&tree->lock);
5dc562c5 4551
5dc562c5 4552 btrfs_release_path(path);
31d11b83
FM
4553 if (!ret)
4554 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4555 if (ret)
4556 return ret;
31d11b83 4557
48778179
FM
4558 /*
4559 * We have logged all extents successfully, now make sure the commit of
4560 * the current transaction waits for the ordered extents to complete
4561 * before it commits and wipes out the log trees, otherwise we would
4562 * lose data if an ordered extents completes after the transaction
4563 * commits and a power failure happens after the transaction commit.
4564 */
4565 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4566 list_del_init(&ordered->log_list);
4567 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4568
4569 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4570 spin_lock_irq(&inode->ordered_tree.lock);
4571 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4572 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4573 atomic_inc(&trans->transaction->pending_ordered);
4574 }
4575 spin_unlock_irq(&inode->ordered_tree.lock);
4576 }
4577 btrfs_put_ordered_extent(ordered);
4578 }
4579
4580 return 0;
5dc562c5
JB
4581}
4582
481b01c0 4583static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4584 struct btrfs_path *path, u64 *size_ret)
4585{
4586 struct btrfs_key key;
4587 int ret;
4588
481b01c0 4589 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4590 key.type = BTRFS_INODE_ITEM_KEY;
4591 key.offset = 0;
4592
4593 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4594 if (ret < 0) {
4595 return ret;
4596 } else if (ret > 0) {
2f2ff0ee 4597 *size_ret = 0;
1a4bcf47
FM
4598 } else {
4599 struct btrfs_inode_item *item;
4600
4601 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4602 struct btrfs_inode_item);
4603 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4604 /*
4605 * If the in-memory inode's i_size is smaller then the inode
4606 * size stored in the btree, return the inode's i_size, so
4607 * that we get a correct inode size after replaying the log
4608 * when before a power failure we had a shrinking truncate
4609 * followed by addition of a new name (rename / new hard link).
4610 * Otherwise return the inode size from the btree, to avoid
4611 * data loss when replaying a log due to previously doing a
4612 * write that expands the inode's size and logging a new name
4613 * immediately after.
4614 */
4615 if (*size_ret > inode->vfs_inode.i_size)
4616 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4617 }
4618
4619 btrfs_release_path(path);
4620 return 0;
4621}
4622
36283bf7
FM
4623/*
4624 * At the moment we always log all xattrs. This is to figure out at log replay
4625 * time which xattrs must have their deletion replayed. If a xattr is missing
4626 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4627 * because if a xattr is deleted, the inode is fsynced and a power failure
4628 * happens, causing the log to be replayed the next time the fs is mounted,
4629 * we want the xattr to not exist anymore (same behaviour as other filesystems
4630 * with a journal, ext3/4, xfs, f2fs, etc).
4631 */
4632static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4633 struct btrfs_root *root,
1a93c36a 4634 struct btrfs_inode *inode,
36283bf7
FM
4635 struct btrfs_path *path,
4636 struct btrfs_path *dst_path)
4637{
4638 int ret;
4639 struct btrfs_key key;
1a93c36a 4640 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4641 int ins_nr = 0;
4642 int start_slot = 0;
f2f121ab
FM
4643 bool found_xattrs = false;
4644
4645 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4646 return 0;
36283bf7
FM
4647
4648 key.objectid = ino;
4649 key.type = BTRFS_XATTR_ITEM_KEY;
4650 key.offset = 0;
4651
4652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4653 if (ret < 0)
4654 return ret;
4655
4656 while (true) {
4657 int slot = path->slots[0];
4658 struct extent_buffer *leaf = path->nodes[0];
4659 int nritems = btrfs_header_nritems(leaf);
4660
4661 if (slot >= nritems) {
4662 if (ins_nr > 0) {
1a93c36a 4663 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4664 start_slot, ins_nr, 1, 0);
36283bf7
FM
4665 if (ret < 0)
4666 return ret;
4667 ins_nr = 0;
4668 }
4669 ret = btrfs_next_leaf(root, path);
4670 if (ret < 0)
4671 return ret;
4672 else if (ret > 0)
4673 break;
4674 continue;
4675 }
4676
4677 btrfs_item_key_to_cpu(leaf, &key, slot);
4678 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4679 break;
4680
4681 if (ins_nr == 0)
4682 start_slot = slot;
4683 ins_nr++;
4684 path->slots[0]++;
f2f121ab 4685 found_xattrs = true;
36283bf7
FM
4686 cond_resched();
4687 }
4688 if (ins_nr > 0) {
1a93c36a 4689 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4690 start_slot, ins_nr, 1, 0);
36283bf7
FM
4691 if (ret < 0)
4692 return ret;
4693 }
4694
f2f121ab
FM
4695 if (!found_xattrs)
4696 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4697
36283bf7
FM
4698 return 0;
4699}
4700
a89ca6f2 4701/*
0e56315c
FM
4702 * When using the NO_HOLES feature if we punched a hole that causes the
4703 * deletion of entire leafs or all the extent items of the first leaf (the one
4704 * that contains the inode item and references) we may end up not processing
4705 * any extents, because there are no leafs with a generation matching the
4706 * current transaction that have extent items for our inode. So we need to find
4707 * if any holes exist and then log them. We also need to log holes after any
4708 * truncate operation that changes the inode's size.
a89ca6f2 4709 */
0e56315c
FM
4710static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4711 struct btrfs_root *root,
4712 struct btrfs_inode *inode,
7af59743 4713 struct btrfs_path *path)
a89ca6f2 4714{
0b246afa 4715 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 4716 struct btrfs_key key;
a0308dd7
NB
4717 const u64 ino = btrfs_ino(inode);
4718 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 4719 u64 prev_extent_end = 0;
0e56315c 4720 int ret;
a89ca6f2 4721
0e56315c 4722 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
4723 return 0;
4724
4725 key.objectid = ino;
4726 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 4727 key.offset = 0;
a89ca6f2
FM
4728
4729 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
4730 if (ret < 0)
4731 return ret;
4732
0e56315c 4733 while (true) {
0e56315c 4734 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 4735
0e56315c
FM
4736 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4737 ret = btrfs_next_leaf(root, path);
4738 if (ret < 0)
4739 return ret;
4740 if (ret > 0) {
4741 ret = 0;
4742 break;
4743 }
4744 leaf = path->nodes[0];
4745 }
4746
4747 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4748 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4749 break;
4750
4751 /* We have a hole, log it. */
4752 if (prev_extent_end < key.offset) {
7af59743 4753 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
4754
4755 /*
4756 * Release the path to avoid deadlocks with other code
4757 * paths that search the root while holding locks on
4758 * leafs from the log root.
4759 */
4760 btrfs_release_path(path);
4761 ret = btrfs_insert_file_extent(trans, root->log_root,
4762 ino, prev_extent_end, 0,
4763 0, hole_len, 0, hole_len,
4764 0, 0, 0);
4765 if (ret < 0)
4766 return ret;
4767
4768 /*
4769 * Search for the same key again in the root. Since it's
4770 * an extent item and we are holding the inode lock, the
4771 * key must still exist. If it doesn't just emit warning
4772 * and return an error to fall back to a transaction
4773 * commit.
4774 */
4775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4776 if (ret < 0)
4777 return ret;
4778 if (WARN_ON(ret > 0))
4779 return -ENOENT;
4780 leaf = path->nodes[0];
4781 }
a89ca6f2 4782
7af59743 4783 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
4784 path->slots[0]++;
4785 cond_resched();
a89ca6f2 4786 }
a89ca6f2 4787
7af59743 4788 if (prev_extent_end < i_size) {
0e56315c 4789 u64 hole_len;
a89ca6f2 4790
0e56315c 4791 btrfs_release_path(path);
7af59743 4792 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
4793 ret = btrfs_insert_file_extent(trans, root->log_root,
4794 ino, prev_extent_end, 0, 0,
4795 hole_len, 0, hole_len,
4796 0, 0, 0);
4797 if (ret < 0)
4798 return ret;
4799 }
4800
4801 return 0;
a89ca6f2
FM
4802}
4803
56f23fdb
FM
4804/*
4805 * When we are logging a new inode X, check if it doesn't have a reference that
4806 * matches the reference from some other inode Y created in a past transaction
4807 * and that was renamed in the current transaction. If we don't do this, then at
4808 * log replay time we can lose inode Y (and all its files if it's a directory):
4809 *
4810 * mkdir /mnt/x
4811 * echo "hello world" > /mnt/x/foobar
4812 * sync
4813 * mv /mnt/x /mnt/y
4814 * mkdir /mnt/x # or touch /mnt/x
4815 * xfs_io -c fsync /mnt/x
4816 * <power fail>
4817 * mount fs, trigger log replay
4818 *
4819 * After the log replay procedure, we would lose the first directory and all its
4820 * files (file foobar).
4821 * For the case where inode Y is not a directory we simply end up losing it:
4822 *
4823 * echo "123" > /mnt/foo
4824 * sync
4825 * mv /mnt/foo /mnt/bar
4826 * echo "abc" > /mnt/foo
4827 * xfs_io -c fsync /mnt/foo
4828 * <power fail>
4829 *
4830 * We also need this for cases where a snapshot entry is replaced by some other
4831 * entry (file or directory) otherwise we end up with an unreplayable log due to
4832 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4833 * if it were a regular entry:
4834 *
4835 * mkdir /mnt/x
4836 * btrfs subvolume snapshot /mnt /mnt/x/snap
4837 * btrfs subvolume delete /mnt/x/snap
4838 * rmdir /mnt/x
4839 * mkdir /mnt/x
4840 * fsync /mnt/x or fsync some new file inside it
4841 * <power fail>
4842 *
4843 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4844 * the same transaction.
4845 */
4846static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4847 const int slot,
4848 const struct btrfs_key *key,
4791c8f1 4849 struct btrfs_inode *inode,
a3baaf0d 4850 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4851{
4852 int ret;
4853 struct btrfs_path *search_path;
4854 char *name = NULL;
4855 u32 name_len = 0;
4856 u32 item_size = btrfs_item_size_nr(eb, slot);
4857 u32 cur_offset = 0;
4858 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4859
4860 search_path = btrfs_alloc_path();
4861 if (!search_path)
4862 return -ENOMEM;
4863 search_path->search_commit_root = 1;
4864 search_path->skip_locking = 1;
4865
4866 while (cur_offset < item_size) {
4867 u64 parent;
4868 u32 this_name_len;
4869 u32 this_len;
4870 unsigned long name_ptr;
4871 struct btrfs_dir_item *di;
4872
4873 if (key->type == BTRFS_INODE_REF_KEY) {
4874 struct btrfs_inode_ref *iref;
4875
4876 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4877 parent = key->offset;
4878 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4879 name_ptr = (unsigned long)(iref + 1);
4880 this_len = sizeof(*iref) + this_name_len;
4881 } else {
4882 struct btrfs_inode_extref *extref;
4883
4884 extref = (struct btrfs_inode_extref *)(ptr +
4885 cur_offset);
4886 parent = btrfs_inode_extref_parent(eb, extref);
4887 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4888 name_ptr = (unsigned long)&extref->name;
4889 this_len = sizeof(*extref) + this_name_len;
4890 }
4891
4892 if (this_name_len > name_len) {
4893 char *new_name;
4894
4895 new_name = krealloc(name, this_name_len, GFP_NOFS);
4896 if (!new_name) {
4897 ret = -ENOMEM;
4898 goto out;
4899 }
4900 name_len = this_name_len;
4901 name = new_name;
4902 }
4903
4904 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4905 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4906 parent, name, this_name_len, 0);
56f23fdb 4907 if (di && !IS_ERR(di)) {
44f714da
FM
4908 struct btrfs_key di_key;
4909
4910 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4911 di, &di_key);
4912 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4913 if (di_key.objectid != key->objectid) {
4914 ret = 1;
4915 *other_ino = di_key.objectid;
a3baaf0d 4916 *other_parent = parent;
6b5fc433
FM
4917 } else {
4918 ret = 0;
4919 }
44f714da
FM
4920 } else {
4921 ret = -EAGAIN;
4922 }
56f23fdb
FM
4923 goto out;
4924 } else if (IS_ERR(di)) {
4925 ret = PTR_ERR(di);
4926 goto out;
4927 }
4928 btrfs_release_path(search_path);
4929
4930 cur_offset += this_len;
4931 }
4932 ret = 0;
4933out:
4934 btrfs_free_path(search_path);
4935 kfree(name);
4936 return ret;
4937}
4938
6b5fc433
FM
4939struct btrfs_ino_list {
4940 u64 ino;
a3baaf0d 4941 u64 parent;
6b5fc433
FM
4942 struct list_head list;
4943};
4944
4945static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4946 struct btrfs_root *root,
4947 struct btrfs_path *path,
4948 struct btrfs_log_ctx *ctx,
a3baaf0d 4949 u64 ino, u64 parent)
6b5fc433
FM
4950{
4951 struct btrfs_ino_list *ino_elem;
4952 LIST_HEAD(inode_list);
4953 int ret = 0;
4954
4955 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4956 if (!ino_elem)
4957 return -ENOMEM;
4958 ino_elem->ino = ino;
a3baaf0d 4959 ino_elem->parent = parent;
6b5fc433
FM
4960 list_add_tail(&ino_elem->list, &inode_list);
4961
4962 while (!list_empty(&inode_list)) {
4963 struct btrfs_fs_info *fs_info = root->fs_info;
4964 struct btrfs_key key;
4965 struct inode *inode;
4966
4967 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4968 list);
4969 ino = ino_elem->ino;
a3baaf0d 4970 parent = ino_elem->parent;
6b5fc433
FM
4971 list_del(&ino_elem->list);
4972 kfree(ino_elem);
4973 if (ret)
4974 continue;
4975
4976 btrfs_release_path(path);
4977
0202e83f 4978 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
4979 /*
4980 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
4981 * deleted in the current transaction, we need to log its parent
4982 * directory.
6b5fc433
FM
4983 */
4984 if (IS_ERR(inode)) {
4985 ret = PTR_ERR(inode);
a3baaf0d 4986 if (ret == -ENOENT) {
0202e83f 4987 inode = btrfs_iget(fs_info->sb, parent, root);
a3baaf0d
FM
4988 if (IS_ERR(inode)) {
4989 ret = PTR_ERR(inode);
4990 } else {
4991 ret = btrfs_log_inode(trans, root,
4992 BTRFS_I(inode),
4993 LOG_OTHER_INODE_ALL,
48778179 4994 ctx);
410f954c 4995 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
4996 }
4997 }
6b5fc433
FM
4998 continue;
4999 }
b5e4ff9d
FM
5000 /*
5001 * If the inode was already logged skip it - otherwise we can
5002 * hit an infinite loop. Example:
5003 *
5004 * From the commit root (previous transaction) we have the
5005 * following inodes:
5006 *
5007 * inode 257 a directory
5008 * inode 258 with references "zz" and "zz_link" on inode 257
5009 * inode 259 with reference "a" on inode 257
5010 *
5011 * And in the current (uncommitted) transaction we have:
5012 *
5013 * inode 257 a directory, unchanged
5014 * inode 258 with references "a" and "a2" on inode 257
5015 * inode 259 with reference "zz_link" on inode 257
5016 * inode 261 with reference "zz" on inode 257
5017 *
5018 * When logging inode 261 the following infinite loop could
5019 * happen if we don't skip already logged inodes:
5020 *
5021 * - we detect inode 258 as a conflicting inode, with inode 261
5022 * on reference "zz", and log it;
5023 *
5024 * - we detect inode 259 as a conflicting inode, with inode 258
5025 * on reference "a", and log it;
5026 *
5027 * - we detect inode 258 as a conflicting inode, with inode 259
5028 * on reference "zz_link", and log it - again! After this we
5029 * repeat the above steps forever.
5030 */
5031 spin_lock(&BTRFS_I(inode)->lock);
5032 /*
5033 * Check the inode's logged_trans only instead of
5034 * btrfs_inode_in_log(). This is because the last_log_commit of
5035 * the inode is not updated when we only log that it exists and
260db43c 5036 * it has the full sync bit set (see btrfs_log_inode()).
b5e4ff9d
FM
5037 */
5038 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5039 spin_unlock(&BTRFS_I(inode)->lock);
5040 btrfs_add_delayed_iput(inode);
5041 continue;
5042 }
5043 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
5044 /*
5045 * We are safe logging the other inode without acquiring its
5046 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5047 * are safe against concurrent renames of the other inode as
5048 * well because during a rename we pin the log and update the
5049 * log with the new name before we unpin it.
5050 */
5051 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
48778179 5052 LOG_OTHER_INODE, ctx);
6b5fc433 5053 if (ret) {
410f954c 5054 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5055 continue;
5056 }
5057
5058 key.objectid = ino;
5059 key.type = BTRFS_INODE_REF_KEY;
5060 key.offset = 0;
5061 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5062 if (ret < 0) {
410f954c 5063 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5064 continue;
5065 }
5066
5067 while (true) {
5068 struct extent_buffer *leaf = path->nodes[0];
5069 int slot = path->slots[0];
5070 u64 other_ino = 0;
a3baaf0d 5071 u64 other_parent = 0;
6b5fc433
FM
5072
5073 if (slot >= btrfs_header_nritems(leaf)) {
5074 ret = btrfs_next_leaf(root, path);
5075 if (ret < 0) {
5076 break;
5077 } else if (ret > 0) {
5078 ret = 0;
5079 break;
5080 }
5081 continue;
5082 }
5083
5084 btrfs_item_key_to_cpu(leaf, &key, slot);
5085 if (key.objectid != ino ||
5086 (key.type != BTRFS_INODE_REF_KEY &&
5087 key.type != BTRFS_INODE_EXTREF_KEY)) {
5088 ret = 0;
5089 break;
5090 }
5091
5092 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5093 BTRFS_I(inode), &other_ino,
5094 &other_parent);
6b5fc433
FM
5095 if (ret < 0)
5096 break;
5097 if (ret > 0) {
5098 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5099 if (!ino_elem) {
5100 ret = -ENOMEM;
5101 break;
5102 }
5103 ino_elem->ino = other_ino;
a3baaf0d 5104 ino_elem->parent = other_parent;
6b5fc433
FM
5105 list_add_tail(&ino_elem->list, &inode_list);
5106 ret = 0;
5107 }
5108 path->slots[0]++;
5109 }
410f954c 5110 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5111 }
5112
5113 return ret;
5114}
5115
da447009
FM
5116static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5117 struct btrfs_inode *inode,
5118 struct btrfs_key *min_key,
5119 const struct btrfs_key *max_key,
5120 struct btrfs_path *path,
5121 struct btrfs_path *dst_path,
5122 const u64 logged_isize,
5123 const bool recursive_logging,
5124 const int inode_only,
5125 struct btrfs_log_ctx *ctx,
5126 bool *need_log_inode_item)
5127{
5128 struct btrfs_root *root = inode->root;
5129 int ins_start_slot = 0;
5130 int ins_nr = 0;
5131 int ret;
5132
5133 while (1) {
5134 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5135 if (ret < 0)
5136 return ret;
5137 if (ret > 0) {
5138 ret = 0;
5139 break;
5140 }
5141again:
5142 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5143 if (min_key->objectid != max_key->objectid)
5144 break;
5145 if (min_key->type > max_key->type)
5146 break;
5147
5148 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5149 *need_log_inode_item = false;
5150
5151 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5152 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5153 inode->generation == trans->transid &&
5154 !recursive_logging) {
5155 u64 other_ino = 0;
5156 u64 other_parent = 0;
5157
5158 ret = btrfs_check_ref_name_override(path->nodes[0],
5159 path->slots[0], min_key, inode,
5160 &other_ino, &other_parent);
5161 if (ret < 0) {
5162 return ret;
5163 } else if (ret > 0 && ctx &&
5164 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5165 if (ins_nr > 0) {
5166 ins_nr++;
5167 } else {
5168 ins_nr = 1;
5169 ins_start_slot = path->slots[0];
5170 }
5171 ret = copy_items(trans, inode, dst_path, path,
5172 ins_start_slot, ins_nr,
5173 inode_only, logged_isize);
5174 if (ret < 0)
5175 return ret;
5176 ins_nr = 0;
5177
5178 ret = log_conflicting_inodes(trans, root, path,
5179 ctx, other_ino, other_parent);
5180 if (ret)
5181 return ret;
5182 btrfs_release_path(path);
5183 goto next_key;
5184 }
5185 }
5186
5187 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5188 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5189 if (ins_nr == 0)
5190 goto next_slot;
5191 ret = copy_items(trans, inode, dst_path, path,
5192 ins_start_slot,
5193 ins_nr, inode_only, logged_isize);
5194 if (ret < 0)
5195 return ret;
5196 ins_nr = 0;
5197 goto next_slot;
5198 }
5199
5200 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5201 ins_nr++;
5202 goto next_slot;
5203 } else if (!ins_nr) {
5204 ins_start_slot = path->slots[0];
5205 ins_nr = 1;
5206 goto next_slot;
5207 }
5208
5209 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5210 ins_nr, inode_only, logged_isize);
5211 if (ret < 0)
5212 return ret;
5213 ins_nr = 1;
5214 ins_start_slot = path->slots[0];
5215next_slot:
5216 path->slots[0]++;
5217 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5218 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5219 path->slots[0]);
5220 goto again;
5221 }
5222 if (ins_nr) {
5223 ret = copy_items(trans, inode, dst_path, path,
5224 ins_start_slot, ins_nr, inode_only,
5225 logged_isize);
5226 if (ret < 0)
5227 return ret;
5228 ins_nr = 0;
5229 }
5230 btrfs_release_path(path);
5231next_key:
5232 if (min_key->offset < (u64)-1) {
5233 min_key->offset++;
5234 } else if (min_key->type < max_key->type) {
5235 min_key->type++;
5236 min_key->offset = 0;
5237 } else {
5238 break;
5239 }
5240 }
5241 if (ins_nr)
5242 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5243 ins_nr, inode_only, logged_isize);
5244
5245 return ret;
5246}
5247
e02119d5
CM
5248/* log a single inode in the tree log.
5249 * At least one parent directory for this inode must exist in the tree
5250 * or be logged already.
5251 *
5252 * Any items from this inode changed by the current transaction are copied
5253 * to the log tree. An extra reference is taken on any extents in this
5254 * file, allowing us to avoid a whole pile of corner cases around logging
5255 * blocks that have been removed from the tree.
5256 *
5257 * See LOG_INODE_ALL and related defines for a description of what inode_only
5258 * does.
5259 *
5260 * This handles both files and directories.
5261 */
12fcfd22 5262static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5263 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 5264 int inode_only,
8407f553 5265 struct btrfs_log_ctx *ctx)
e02119d5
CM
5266{
5267 struct btrfs_path *path;
5268 struct btrfs_path *dst_path;
5269 struct btrfs_key min_key;
5270 struct btrfs_key max_key;
5271 struct btrfs_root *log = root->log_root;
4a500fd1 5272 int err = 0;
8c8648dd 5273 int ret = 0;
5dc562c5 5274 bool fast_search = false;
a59108a7
NB
5275 u64 ino = btrfs_ino(inode);
5276 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5277 u64 logged_isize = 0;
e4545de5 5278 bool need_log_inode_item = true;
9a8fca62 5279 bool xattrs_logged = false;
a3baaf0d 5280 bool recursive_logging = false;
e02119d5 5281
e02119d5 5282 path = btrfs_alloc_path();
5df67083
TI
5283 if (!path)
5284 return -ENOMEM;
e02119d5 5285 dst_path = btrfs_alloc_path();
5df67083
TI
5286 if (!dst_path) {
5287 btrfs_free_path(path);
5288 return -ENOMEM;
5289 }
e02119d5 5290
33345d01 5291 min_key.objectid = ino;
e02119d5
CM
5292 min_key.type = BTRFS_INODE_ITEM_KEY;
5293 min_key.offset = 0;
5294
33345d01 5295 max_key.objectid = ino;
12fcfd22 5296
12fcfd22 5297
5dc562c5 5298 /* today the code can only do partial logging of directories */
a59108a7 5299 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5300 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5301 &inode->runtime_flags) &&
781feef7 5302 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5303 max_key.type = BTRFS_XATTR_ITEM_KEY;
5304 else
5305 max_key.type = (u8)-1;
5306 max_key.offset = (u64)-1;
5307
2c2c452b 5308 /*
5aa7d1a7
FM
5309 * Only run delayed items if we are a directory. We want to make sure
5310 * all directory indexes hit the fs/subvolume tree so we can find them
5311 * and figure out which index ranges have to be logged.
5312 *
8c8648dd
FM
5313 * Otherwise commit the delayed inode only if the full sync flag is set,
5314 * as we want to make sure an up to date version is in the subvolume
5315 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5316 * it to the log tree. For a non full sync, we always log the inode item
5317 * based on the in-memory struct btrfs_inode which is always up to date.
2c2c452b 5318 */
5aa7d1a7 5319 if (S_ISDIR(inode->vfs_inode.i_mode))
a59108a7 5320 ret = btrfs_commit_inode_delayed_items(trans, inode);
8c8648dd 5321 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
a59108a7 5322 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5323
5324 if (ret) {
5325 btrfs_free_path(path);
5326 btrfs_free_path(dst_path);
5327 return ret;
16cdcec7
MX
5328 }
5329
a3baaf0d
FM
5330 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5331 recursive_logging = true;
5332 if (inode_only == LOG_OTHER_INODE)
5333 inode_only = LOG_INODE_EXISTS;
5334 else
5335 inode_only = LOG_INODE_ALL;
a59108a7 5336 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5337 } else {
a59108a7 5338 mutex_lock(&inode->log_mutex);
781feef7 5339 }
e02119d5 5340
64d6b281
FM
5341 /*
5342 * This is for cases where logging a directory could result in losing a
5343 * a file after replaying the log. For example, if we move a file from a
5344 * directory A to a directory B, then fsync directory A, we have no way
5345 * to known the file was moved from A to B, so logging just A would
5346 * result in losing the file after a log replay.
5347 */
5348 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5349 inode_only == LOG_INODE_ALL &&
5350 inode->last_unlink_trans >= trans->transid) {
5351 btrfs_set_log_full_commit(trans);
5352 err = 1;
5353 goto out_unlock;
5354 }
5355
e02119d5
CM
5356 /*
5357 * a brute force approach to making sure we get the most uptodate
5358 * copies of everything.
5359 */
a59108a7 5360 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5361 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5362
ab12313a 5363 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
4f764e51
FM
5364 if (inode_only == LOG_INODE_EXISTS)
5365 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5366 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5367 } else {
1a4bcf47
FM
5368 if (inode_only == LOG_INODE_EXISTS) {
5369 /*
5370 * Make sure the new inode item we write to the log has
5371 * the same isize as the current one (if it exists).
5372 * This is necessary to prevent data loss after log
5373 * replay, and also to prevent doing a wrong expanding
5374 * truncate - for e.g. create file, write 4K into offset
5375 * 0, fsync, write 4K into offset 4096, add hard link,
5376 * fsync some other file (to sync log), power fail - if
5377 * we use the inode's current i_size, after log replay
5378 * we get a 8Kb file, with the last 4Kb extent as a hole
5379 * (zeroes), as if an expanding truncate happened,
5380 * instead of getting a file of 4Kb only.
5381 */
a59108a7 5382 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5383 if (err)
5384 goto out_unlock;
5385 }
a742994a 5386 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5387 &inode->runtime_flags)) {
a742994a 5388 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5389 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5390 ret = drop_objectid_items(trans, log, path, ino,
5391 max_key.type);
5392 } else {
5393 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5394 &inode->runtime_flags);
a742994a 5395 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5396 &inode->runtime_flags);
28ed1345
CM
5397 while(1) {
5398 ret = btrfs_truncate_inode_items(trans,
50743398 5399 log, inode, 0, 0);
28ed1345
CM
5400 if (ret != -EAGAIN)
5401 break;
5402 }
a742994a 5403 }
4f764e51 5404 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5405 &inode->runtime_flags) ||
6cfab851 5406 inode_only == LOG_INODE_EXISTS) {
4f764e51 5407 if (inode_only == LOG_INODE_ALL)
183f37fa 5408 fast_search = true;
4f764e51 5409 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5410 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5411 max_key.type);
a95249b3
JB
5412 } else {
5413 if (inode_only == LOG_INODE_ALL)
5414 fast_search = true;
a95249b3 5415 goto log_extents;
5dc562c5 5416 }
a95249b3 5417
e02119d5 5418 }
4a500fd1
YZ
5419 if (ret) {
5420 err = ret;
5421 goto out_unlock;
5422 }
e02119d5 5423
da447009
FM
5424 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5425 path, dst_path, logged_isize,
7af59743
FM
5426 recursive_logging, inode_only, ctx,
5427 &need_log_inode_item);
da447009
FM
5428 if (err)
5429 goto out_unlock;
5dc562c5 5430
36283bf7
FM
5431 btrfs_release_path(path);
5432 btrfs_release_path(dst_path);
a59108a7 5433 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5434 if (err)
5435 goto out_unlock;
9a8fca62 5436 xattrs_logged = true;
a89ca6f2
FM
5437 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5438 btrfs_release_path(path);
5439 btrfs_release_path(dst_path);
7af59743 5440 err = btrfs_log_holes(trans, root, inode, path);
a89ca6f2
FM
5441 if (err)
5442 goto out_unlock;
5443 }
a95249b3 5444log_extents:
f3b15ccd
JB
5445 btrfs_release_path(path);
5446 btrfs_release_path(dst_path);
e4545de5 5447 if (need_log_inode_item) {
a59108a7 5448 err = log_inode_item(trans, log, dst_path, inode);
9a8fca62
FM
5449 if (!err && !xattrs_logged) {
5450 err = btrfs_log_all_xattrs(trans, root, inode, path,
5451 dst_path);
5452 btrfs_release_path(path);
5453 }
e4545de5
FM
5454 if (err)
5455 goto out_unlock;
5456 }
5dc562c5 5457 if (fast_search) {
a59108a7 5458 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
48778179 5459 ctx);
5dc562c5
JB
5460 if (ret) {
5461 err = ret;
5462 goto out_unlock;
5463 }
d006a048 5464 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5465 struct extent_map *em, *n;
5466
49dae1bc 5467 write_lock(&em_tree->lock);
48778179
FM
5468 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5469 list_del_init(&em->list);
49dae1bc 5470 write_unlock(&em_tree->lock);
5dc562c5
JB
5471 }
5472
a59108a7
NB
5473 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5474 ret = log_directory_changes(trans, root, inode, path, dst_path,
5475 ctx);
4a500fd1
YZ
5476 if (ret) {
5477 err = ret;
5478 goto out_unlock;
5479 }
e02119d5 5480 }
49dae1bc 5481
d1d832a0 5482 /*
75b463d2
FM
5483 * If we are logging that an ancestor inode exists as part of logging a
5484 * new name from a link or rename operation, don't mark the inode as
5485 * logged - otherwise if an explicit fsync is made against an ancestor,
5486 * the fsync considers the inode in the log and doesn't sync the log,
5487 * resulting in the ancestor missing after a power failure unless the
5488 * log was synced as part of an fsync against any other unrelated inode.
5489 * So keep it simple for this case and just don't flag the ancestors as
5490 * logged.
d1d832a0 5491 */
75b463d2
FM
5492 if (!ctx ||
5493 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5494 &inode->vfs_inode != ctx->inode)) {
5495 spin_lock(&inode->lock);
5496 inode->logged_trans = trans->transid;
5497 /*
5498 * Don't update last_log_commit if we logged that an inode exists
5499 * after it was loaded to memory (full_sync bit set).
5500 * This is to prevent data loss when we do a write to the inode,
5501 * then the inode gets evicted after all delalloc was flushed,
5502 * then we log it exists (due to a rename for example) and then
5503 * fsync it. This last fsync would do nothing (not logging the
5504 * extents previously written).
5505 */
5506 if (inode_only != LOG_INODE_EXISTS ||
5507 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5508 inode->last_log_commit = inode->last_sub_trans;
5509 spin_unlock(&inode->lock);
5510 }
4a500fd1 5511out_unlock:
a59108a7 5512 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5513
5514 btrfs_free_path(path);
5515 btrfs_free_path(dst_path);
4a500fd1 5516 return err;
e02119d5
CM
5517}
5518
ab12313a
FM
5519/*
5520 * Check if we need to log an inode. This is used in contexts where while
5521 * logging an inode we need to log another inode (either that it exists or in
5522 * full mode). This is used instead of btrfs_inode_in_log() because the later
5523 * requires the inode to be in the log and have the log transaction committed,
5524 * while here we do not care if the log transaction was already committed - our
5525 * caller will commit the log later - and we want to avoid logging an inode
5526 * multiple times when multiple tasks have joined the same log transaction.
5527 */
5528static bool need_log_inode(struct btrfs_trans_handle *trans,
5529 struct btrfs_inode *inode)
5530{
5531 /*
5532 * If this inode does not have new/updated/deleted xattrs since the last
5533 * time it was logged and is flagged as logged in the current transaction,
5534 * we can skip logging it. As for new/deleted names, those are updated in
5535 * the log by link/unlink/rename operations.
5536 * In case the inode was logged and then evicted and reloaded, its
5537 * logged_trans will be 0, in which case we have to fully log it since
5538 * logged_trans is a transient field, not persisted.
5539 */
5540 if (inode->logged_trans == trans->transid &&
5541 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5542 return false;
5543
5544 return true;
5545}
5546
2f2ff0ee
FM
5547struct btrfs_dir_list {
5548 u64 ino;
5549 struct list_head list;
5550};
5551
5552/*
5553 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5554 * details about the why it is needed.
5555 * This is a recursive operation - if an existing dentry corresponds to a
5556 * directory, that directory's new entries are logged too (same behaviour as
5557 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5558 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5559 * complains about the following circular lock dependency / possible deadlock:
5560 *
5561 * CPU0 CPU1
5562 * ---- ----
5563 * lock(&type->i_mutex_dir_key#3/2);
5564 * lock(sb_internal#2);
5565 * lock(&type->i_mutex_dir_key#3/2);
5566 * lock(&sb->s_type->i_mutex_key#14);
5567 *
5568 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5569 * sb_start_intwrite() in btrfs_start_transaction().
5570 * Not locking i_mutex of the inodes is still safe because:
5571 *
5572 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5573 * that while logging the inode new references (names) are added or removed
5574 * from the inode, leaving the logged inode item with a link count that does
5575 * not match the number of logged inode reference items. This is fine because
5576 * at log replay time we compute the real number of links and correct the
5577 * link count in the inode item (see replay_one_buffer() and
5578 * link_to_fixup_dir());
5579 *
5580 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5581 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5582 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5583 * has a size that doesn't match the sum of the lengths of all the logged
5584 * names. This does not result in a problem because if a dir_item key is
5585 * logged but its matching dir_index key is not logged, at log replay time we
5586 * don't use it to replay the respective name (see replay_one_name()). On the
5587 * other hand if only the dir_index key ends up being logged, the respective
5588 * name is added to the fs/subvol tree with both the dir_item and dir_index
5589 * keys created (see replay_one_name()).
5590 * The directory's inode item with a wrong i_size is not a problem as well,
5591 * since we don't use it at log replay time to set the i_size in the inode
5592 * item of the fs/subvol tree (see overwrite_item()).
5593 */
5594static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5595 struct btrfs_root *root,
51cc0d32 5596 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5597 struct btrfs_log_ctx *ctx)
5598{
0b246afa 5599 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5600 struct btrfs_root *log = root->log_root;
5601 struct btrfs_path *path;
5602 LIST_HEAD(dir_list);
5603 struct btrfs_dir_list *dir_elem;
5604 int ret = 0;
5605
5606 path = btrfs_alloc_path();
5607 if (!path)
5608 return -ENOMEM;
5609
5610 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5611 if (!dir_elem) {
5612 btrfs_free_path(path);
5613 return -ENOMEM;
5614 }
51cc0d32 5615 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5616 list_add_tail(&dir_elem->list, &dir_list);
5617
5618 while (!list_empty(&dir_list)) {
5619 struct extent_buffer *leaf;
5620 struct btrfs_key min_key;
5621 int nritems;
5622 int i;
5623
5624 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5625 list);
5626 if (ret)
5627 goto next_dir_inode;
5628
5629 min_key.objectid = dir_elem->ino;
5630 min_key.type = BTRFS_DIR_ITEM_KEY;
5631 min_key.offset = 0;
5632again:
5633 btrfs_release_path(path);
5634 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5635 if (ret < 0) {
5636 goto next_dir_inode;
5637 } else if (ret > 0) {
5638 ret = 0;
5639 goto next_dir_inode;
5640 }
5641
5642process_leaf:
5643 leaf = path->nodes[0];
5644 nritems = btrfs_header_nritems(leaf);
5645 for (i = path->slots[0]; i < nritems; i++) {
5646 struct btrfs_dir_item *di;
5647 struct btrfs_key di_key;
5648 struct inode *di_inode;
5649 struct btrfs_dir_list *new_dir_elem;
5650 int log_mode = LOG_INODE_EXISTS;
5651 int type;
5652
5653 btrfs_item_key_to_cpu(leaf, &min_key, i);
5654 if (min_key.objectid != dir_elem->ino ||
5655 min_key.type != BTRFS_DIR_ITEM_KEY)
5656 goto next_dir_inode;
5657
5658 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5659 type = btrfs_dir_type(leaf, di);
5660 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5661 type != BTRFS_FT_DIR)
5662 continue;
5663 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5664 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5665 continue;
5666
ec125cfb 5667 btrfs_release_path(path);
0202e83f 5668 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
2f2ff0ee
FM
5669 if (IS_ERR(di_inode)) {
5670 ret = PTR_ERR(di_inode);
5671 goto next_dir_inode;
5672 }
5673
0e44cb3f 5674 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
410f954c 5675 btrfs_add_delayed_iput(di_inode);
ec125cfb 5676 break;
2f2ff0ee
FM
5677 }
5678
5679 ctx->log_new_dentries = false;
3f9749f6 5680 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5681 log_mode = LOG_INODE_ALL;
a59108a7 5682 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
48778179 5683 log_mode, ctx);
410f954c 5684 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5685 if (ret)
5686 goto next_dir_inode;
5687 if (ctx->log_new_dentries) {
5688 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5689 GFP_NOFS);
5690 if (!new_dir_elem) {
5691 ret = -ENOMEM;
5692 goto next_dir_inode;
5693 }
5694 new_dir_elem->ino = di_key.objectid;
5695 list_add_tail(&new_dir_elem->list, &dir_list);
5696 }
5697 break;
5698 }
5699 if (i == nritems) {
5700 ret = btrfs_next_leaf(log, path);
5701 if (ret < 0) {
5702 goto next_dir_inode;
5703 } else if (ret > 0) {
5704 ret = 0;
5705 goto next_dir_inode;
5706 }
5707 goto process_leaf;
5708 }
5709 if (min_key.offset < (u64)-1) {
5710 min_key.offset++;
5711 goto again;
5712 }
5713next_dir_inode:
5714 list_del(&dir_elem->list);
5715 kfree(dir_elem);
5716 }
5717
5718 btrfs_free_path(path);
5719 return ret;
5720}
5721
18aa0922 5722static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5723 struct btrfs_inode *inode,
18aa0922
FM
5724 struct btrfs_log_ctx *ctx)
5725{
3ffbd68c 5726 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5727 int ret;
5728 struct btrfs_path *path;
5729 struct btrfs_key key;
d0a0b78d
NB
5730 struct btrfs_root *root = inode->root;
5731 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5732
5733 path = btrfs_alloc_path();
5734 if (!path)
5735 return -ENOMEM;
5736 path->skip_locking = 1;
5737 path->search_commit_root = 1;
5738
5739 key.objectid = ino;
5740 key.type = BTRFS_INODE_REF_KEY;
5741 key.offset = 0;
5742 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5743 if (ret < 0)
5744 goto out;
5745
5746 while (true) {
5747 struct extent_buffer *leaf = path->nodes[0];
5748 int slot = path->slots[0];
5749 u32 cur_offset = 0;
5750 u32 item_size;
5751 unsigned long ptr;
5752
5753 if (slot >= btrfs_header_nritems(leaf)) {
5754 ret = btrfs_next_leaf(root, path);
5755 if (ret < 0)
5756 goto out;
5757 else if (ret > 0)
5758 break;
5759 continue;
5760 }
5761
5762 btrfs_item_key_to_cpu(leaf, &key, slot);
5763 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5764 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5765 break;
5766
5767 item_size = btrfs_item_size_nr(leaf, slot);
5768 ptr = btrfs_item_ptr_offset(leaf, slot);
5769 while (cur_offset < item_size) {
5770 struct btrfs_key inode_key;
5771 struct inode *dir_inode;
5772
5773 inode_key.type = BTRFS_INODE_ITEM_KEY;
5774 inode_key.offset = 0;
5775
5776 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5777 struct btrfs_inode_extref *extref;
5778
5779 extref = (struct btrfs_inode_extref *)
5780 (ptr + cur_offset);
5781 inode_key.objectid = btrfs_inode_extref_parent(
5782 leaf, extref);
5783 cur_offset += sizeof(*extref);
5784 cur_offset += btrfs_inode_extref_name_len(leaf,
5785 extref);
5786 } else {
5787 inode_key.objectid = key.offset;
5788 cur_offset = item_size;
5789 }
5790
0202e83f
DS
5791 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5792 root);
0f375eed
FM
5793 /*
5794 * If the parent inode was deleted, return an error to
5795 * fallback to a transaction commit. This is to prevent
5796 * getting an inode that was moved from one parent A to
5797 * a parent B, got its former parent A deleted and then
5798 * it got fsync'ed, from existing at both parents after
5799 * a log replay (and the old parent still existing).
5800 * Example:
5801 *
5802 * mkdir /mnt/A
5803 * mkdir /mnt/B
5804 * touch /mnt/B/bar
5805 * sync
5806 * mv /mnt/B/bar /mnt/A/bar
5807 * mv -T /mnt/A /mnt/B
5808 * fsync /mnt/B/bar
5809 * <power fail>
5810 *
5811 * If we ignore the old parent B which got deleted,
5812 * after a log replay we would have file bar linked
5813 * at both parents and the old parent B would still
5814 * exist.
5815 */
5816 if (IS_ERR(dir_inode)) {
5817 ret = PTR_ERR(dir_inode);
5818 goto out;
5819 }
18aa0922 5820
3e6a86a1
FM
5821 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5822 btrfs_add_delayed_iput(dir_inode);
5823 continue;
5824 }
5825
657ed1aa
FM
5826 if (ctx)
5827 ctx->log_new_dentries = false;
a59108a7 5828 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
48778179 5829 LOG_INODE_ALL, ctx);
657ed1aa
FM
5830 if (!ret && ctx && ctx->log_new_dentries)
5831 ret = log_new_dir_dentries(trans, root,
f85b7379 5832 BTRFS_I(dir_inode), ctx);
410f954c 5833 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
5834 if (ret)
5835 goto out;
5836 }
5837 path->slots[0]++;
5838 }
5839 ret = 0;
5840out:
5841 btrfs_free_path(path);
5842 return ret;
5843}
5844
b8aa330d
FM
5845static int log_new_ancestors(struct btrfs_trans_handle *trans,
5846 struct btrfs_root *root,
5847 struct btrfs_path *path,
5848 struct btrfs_log_ctx *ctx)
5849{
5850 struct btrfs_key found_key;
5851
5852 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5853
5854 while (true) {
5855 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
5856 struct extent_buffer *leaf = path->nodes[0];
5857 int slot = path->slots[0];
5858 struct btrfs_key search_key;
5859 struct inode *inode;
0202e83f 5860 u64 ino;
b8aa330d
FM
5861 int ret = 0;
5862
5863 btrfs_release_path(path);
5864
0202e83f
DS
5865 ino = found_key.offset;
5866
b8aa330d
FM
5867 search_key.objectid = found_key.offset;
5868 search_key.type = BTRFS_INODE_ITEM_KEY;
5869 search_key.offset = 0;
0202e83f 5870 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
5871 if (IS_ERR(inode))
5872 return PTR_ERR(inode);
5873
ab12313a
FM
5874 if (BTRFS_I(inode)->generation >= trans->transid &&
5875 need_log_inode(trans, BTRFS_I(inode)))
b8aa330d 5876 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
48778179 5877 LOG_INODE_EXISTS, ctx);
410f954c 5878 btrfs_add_delayed_iput(inode);
b8aa330d
FM
5879 if (ret)
5880 return ret;
5881
5882 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5883 break;
5884
5885 search_key.type = BTRFS_INODE_REF_KEY;
5886 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5887 if (ret < 0)
5888 return ret;
5889
5890 leaf = path->nodes[0];
5891 slot = path->slots[0];
5892 if (slot >= btrfs_header_nritems(leaf)) {
5893 ret = btrfs_next_leaf(root, path);
5894 if (ret < 0)
5895 return ret;
5896 else if (ret > 0)
5897 return -ENOENT;
5898 leaf = path->nodes[0];
5899 slot = path->slots[0];
5900 }
5901
5902 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5903 if (found_key.objectid != search_key.objectid ||
5904 found_key.type != BTRFS_INODE_REF_KEY)
5905 return -ENOENT;
5906 }
5907 return 0;
5908}
5909
5910static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5911 struct btrfs_inode *inode,
5912 struct dentry *parent,
5913 struct btrfs_log_ctx *ctx)
5914{
5915 struct btrfs_root *root = inode->root;
b8aa330d
FM
5916 struct dentry *old_parent = NULL;
5917 struct super_block *sb = inode->vfs_inode.i_sb;
5918 int ret = 0;
5919
5920 while (true) {
5921 if (!parent || d_really_is_negative(parent) ||
5922 sb != parent->d_sb)
5923 break;
5924
5925 inode = BTRFS_I(d_inode(parent));
5926 if (root != inode->root)
5927 break;
5928
ab12313a
FM
5929 if (inode->generation >= trans->transid &&
5930 need_log_inode(trans, inode)) {
b8aa330d 5931 ret = btrfs_log_inode(trans, root, inode,
48778179 5932 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
5933 if (ret)
5934 break;
5935 }
5936 if (IS_ROOT(parent))
5937 break;
5938
5939 parent = dget_parent(parent);
5940 dput(old_parent);
5941 old_parent = parent;
5942 }
5943 dput(old_parent);
5944
5945 return ret;
5946}
5947
5948static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5949 struct btrfs_inode *inode,
5950 struct dentry *parent,
5951 struct btrfs_log_ctx *ctx)
5952{
5953 struct btrfs_root *root = inode->root;
5954 const u64 ino = btrfs_ino(inode);
5955 struct btrfs_path *path;
5956 struct btrfs_key search_key;
5957 int ret;
5958
5959 /*
5960 * For a single hard link case, go through a fast path that does not
5961 * need to iterate the fs/subvolume tree.
5962 */
5963 if (inode->vfs_inode.i_nlink < 2)
5964 return log_new_ancestors_fast(trans, inode, parent, ctx);
5965
5966 path = btrfs_alloc_path();
5967 if (!path)
5968 return -ENOMEM;
5969
5970 search_key.objectid = ino;
5971 search_key.type = BTRFS_INODE_REF_KEY;
5972 search_key.offset = 0;
5973again:
5974 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5975 if (ret < 0)
5976 goto out;
5977 if (ret == 0)
5978 path->slots[0]++;
5979
5980 while (true) {
5981 struct extent_buffer *leaf = path->nodes[0];
5982 int slot = path->slots[0];
5983 struct btrfs_key found_key;
5984
5985 if (slot >= btrfs_header_nritems(leaf)) {
5986 ret = btrfs_next_leaf(root, path);
5987 if (ret < 0)
5988 goto out;
5989 else if (ret > 0)
5990 break;
5991 continue;
5992 }
5993
5994 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5995 if (found_key.objectid != ino ||
5996 found_key.type > BTRFS_INODE_EXTREF_KEY)
5997 break;
5998
5999 /*
6000 * Don't deal with extended references because they are rare
6001 * cases and too complex to deal with (we would need to keep
6002 * track of which subitem we are processing for each item in
6003 * this loop, etc). So just return some error to fallback to
6004 * a transaction commit.
6005 */
6006 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6007 ret = -EMLINK;
6008 goto out;
6009 }
6010
6011 /*
6012 * Logging ancestors needs to do more searches on the fs/subvol
6013 * tree, so it releases the path as needed to avoid deadlocks.
6014 * Keep track of the last inode ref key and resume from that key
6015 * after logging all new ancestors for the current hard link.
6016 */
6017 memcpy(&search_key, &found_key, sizeof(search_key));
6018
6019 ret = log_new_ancestors(trans, root, path, ctx);
6020 if (ret)
6021 goto out;
6022 btrfs_release_path(path);
6023 goto again;
6024 }
6025 ret = 0;
6026out:
6027 btrfs_free_path(path);
6028 return ret;
6029}
6030
e02119d5
CM
6031/*
6032 * helper function around btrfs_log_inode to make sure newly created
6033 * parent directories also end up in the log. A minimal inode and backref
6034 * only logging is done of any parent directories that are older than
6035 * the last committed transaction
6036 */
48a3b636 6037static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6038 struct btrfs_inode *inode,
49dae1bc 6039 struct dentry *parent,
41a1eada 6040 int inode_only,
8b050d35 6041 struct btrfs_log_ctx *ctx)
e02119d5 6042{
f882274b 6043 struct btrfs_root *root = inode->root;
0b246afa 6044 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6045 int ret = 0;
2f2ff0ee 6046 bool log_dentries = false;
12fcfd22 6047
0b246afa 6048 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6049 ret = 1;
6050 goto end_no_trans;
6051 }
6052
f882274b 6053 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6054 ret = 1;
6055 goto end_no_trans;
6056 }
6057
f2d72f42
FM
6058 /*
6059 * Skip already logged inodes or inodes corresponding to tmpfiles
6060 * (since logging them is pointless, a link count of 0 means they
6061 * will never be accessible).
6062 */
626e9f41
FM
6063 if ((btrfs_inode_in_log(inode, trans->transid) &&
6064 list_empty(&ctx->ordered_extents)) ||
f2d72f42 6065 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6066 ret = BTRFS_NO_LOG_SYNC;
6067 goto end_no_trans;
6068 }
6069
8b050d35 6070 ret = start_log_trans(trans, root, ctx);
4a500fd1 6071 if (ret)
e87ac136 6072 goto end_no_trans;
e02119d5 6073
48778179 6074 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
4a500fd1
YZ
6075 if (ret)
6076 goto end_trans;
12fcfd22 6077
af4176b4
CM
6078 /*
6079 * for regular files, if its inode is already on disk, we don't
6080 * have to worry about the parents at all. This is because
6081 * we can use the last_unlink_trans field to record renames
6082 * and other fun in this file.
6083 */
19df27a9 6084 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
6085 inode->generation < trans->transid &&
6086 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
6087 ret = 0;
6088 goto end_trans;
6089 }
af4176b4 6090
19df27a9 6091 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
6092 log_dentries = true;
6093
18aa0922 6094 /*
01327610 6095 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6096 * inodes are fully logged. This is to prevent leaving dangling
6097 * directory index entries in directories that were our parents but are
6098 * not anymore. Not doing this results in old parent directory being
6099 * impossible to delete after log replay (rmdir will always fail with
6100 * error -ENOTEMPTY).
6101 *
6102 * Example 1:
6103 *
6104 * mkdir testdir
6105 * touch testdir/foo
6106 * ln testdir/foo testdir/bar
6107 * sync
6108 * unlink testdir/bar
6109 * xfs_io -c fsync testdir/foo
6110 * <power failure>
6111 * mount fs, triggers log replay
6112 *
6113 * If we don't log the parent directory (testdir), after log replay the
6114 * directory still has an entry pointing to the file inode using the bar
6115 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6116 * the file inode has a link count of 1.
6117 *
6118 * Example 2:
6119 *
6120 * mkdir testdir
6121 * touch foo
6122 * ln foo testdir/foo2
6123 * ln foo testdir/foo3
6124 * sync
6125 * unlink testdir/foo3
6126 * xfs_io -c fsync foo
6127 * <power failure>
6128 * mount fs, triggers log replay
6129 *
6130 * Similar as the first example, after log replay the parent directory
6131 * testdir still has an entry pointing to the inode file with name foo3
6132 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6133 * and has a link count of 2.
6134 */
47d3db41 6135 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 6136 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6137 if (ret)
6138 goto end_trans;
6139 }
6140
b8aa330d
FM
6141 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6142 if (ret)
41bd6067 6143 goto end_trans;
76dda93c 6144
2f2ff0ee 6145 if (log_dentries)
b8aa330d 6146 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6147 else
6148 ret = 0;
4a500fd1
YZ
6149end_trans:
6150 if (ret < 0) {
90787766 6151 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6152 ret = 1;
6153 }
8b050d35
MX
6154
6155 if (ret)
6156 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6157 btrfs_end_log_trans(root);
6158end_no_trans:
6159 return ret;
e02119d5
CM
6160}
6161
6162/*
6163 * it is not safe to log dentry if the chunk root has added new
6164 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6165 * If this returns 1, you must commit the transaction to safely get your
6166 * data on disk.
6167 */
6168int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6169 struct dentry *dentry,
8b050d35 6170 struct btrfs_log_ctx *ctx)
e02119d5 6171{
6a912213
JB
6172 struct dentry *parent = dget_parent(dentry);
6173 int ret;
6174
f882274b 6175 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 6176 LOG_INODE_ALL, ctx);
6a912213
JB
6177 dput(parent);
6178
6179 return ret;
e02119d5
CM
6180}
6181
6182/*
6183 * should be called during mount to recover any replay any log trees
6184 * from the FS
6185 */
6186int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6187{
6188 int ret;
6189 struct btrfs_path *path;
6190 struct btrfs_trans_handle *trans;
6191 struct btrfs_key key;
6192 struct btrfs_key found_key;
e02119d5
CM
6193 struct btrfs_root *log;
6194 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6195 struct walk_control wc = {
6196 .process_func = process_one_buffer,
430a6626 6197 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6198 };
6199
e02119d5 6200 path = btrfs_alloc_path();
db5b493a
TI
6201 if (!path)
6202 return -ENOMEM;
6203
afcdd129 6204 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6205
4a500fd1 6206 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6207 if (IS_ERR(trans)) {
6208 ret = PTR_ERR(trans);
6209 goto error;
6210 }
e02119d5
CM
6211
6212 wc.trans = trans;
6213 wc.pin = 1;
6214
db5b493a 6215 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6216 if (ret) {
5d163e0e
JM
6217 btrfs_handle_fs_error(fs_info, ret,
6218 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6219 goto error;
6220 }
e02119d5
CM
6221
6222again:
6223 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6224 key.offset = (u64)-1;
962a298f 6225 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6226
d397712b 6227 while (1) {
e02119d5 6228 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6229
6230 if (ret < 0) {
34d97007 6231 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6232 "Couldn't find tree log root.");
6233 goto error;
6234 }
e02119d5
CM
6235 if (ret > 0) {
6236 if (path->slots[0] == 0)
6237 break;
6238 path->slots[0]--;
6239 }
6240 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6241 path->slots[0]);
b3b4aa74 6242 btrfs_release_path(path);
e02119d5
CM
6243 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6244 break;
6245
62a2c73e 6246 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6247 if (IS_ERR(log)) {
6248 ret = PTR_ERR(log);
34d97007 6249 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6250 "Couldn't read tree log root.");
6251 goto error;
6252 }
e02119d5 6253
56e9357a
DS
6254 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6255 true);
79787eaa
JM
6256 if (IS_ERR(wc.replay_dest)) {
6257 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6258
6259 /*
6260 * We didn't find the subvol, likely because it was
6261 * deleted. This is ok, simply skip this log and go to
6262 * the next one.
6263 *
6264 * We need to exclude the root because we can't have
6265 * other log replays overwriting this log as we'll read
6266 * it back in a few more times. This will keep our
6267 * block from being modified, and we'll just bail for
6268 * each subsequent pass.
6269 */
6270 if (ret == -ENOENT)
9fce5704 6271 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6272 log->node->start,
6273 log->node->len);
00246528 6274 btrfs_put_root(log);
9bc574de
JB
6275
6276 if (!ret)
6277 goto next;
5d163e0e
JM
6278 btrfs_handle_fs_error(fs_info, ret,
6279 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6280 goto error;
6281 }
e02119d5 6282
07d400a6 6283 wc.replay_dest->log_root = log;
2002ae11
JB
6284 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6285 if (ret)
6286 /* The loop needs to continue due to the root refs */
6287 btrfs_handle_fs_error(fs_info, ret,
6288 "failed to record the log root in transaction");
6289 else
6290 ret = walk_log_tree(trans, log, &wc);
e02119d5 6291
b50c6e25 6292 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6293 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6294 path);
e02119d5
CM
6295 }
6296
900c9981
LB
6297 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6298 struct btrfs_root *root = wc.replay_dest;
6299
6300 btrfs_release_path(path);
6301
6302 /*
6303 * We have just replayed everything, and the highest
6304 * objectid of fs roots probably has changed in case
6305 * some inode_item's got replayed.
6306 *
6307 * root->objectid_mutex is not acquired as log replay
6308 * could only happen during mount.
6309 */
453e4873 6310 ret = btrfs_init_root_free_objectid(root);
900c9981
LB
6311 }
6312
07d400a6 6313 wc.replay_dest->log_root = NULL;
00246528 6314 btrfs_put_root(wc.replay_dest);
00246528 6315 btrfs_put_root(log);
e02119d5 6316
b50c6e25
JB
6317 if (ret)
6318 goto error;
9bc574de 6319next:
e02119d5
CM
6320 if (found_key.offset == 0)
6321 break;
9bc574de 6322 key.offset = found_key.offset - 1;
e02119d5 6323 }
b3b4aa74 6324 btrfs_release_path(path);
e02119d5
CM
6325
6326 /* step one is to pin it all, step two is to replay just inodes */
6327 if (wc.pin) {
6328 wc.pin = 0;
6329 wc.process_func = replay_one_buffer;
6330 wc.stage = LOG_WALK_REPLAY_INODES;
6331 goto again;
6332 }
6333 /* step three is to replay everything */
6334 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6335 wc.stage++;
6336 goto again;
6337 }
6338
6339 btrfs_free_path(path);
6340
abefa55a 6341 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6342 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6343 if (ret)
6344 return ret;
6345
e02119d5 6346 log_root_tree->log_root = NULL;
afcdd129 6347 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6348 btrfs_put_root(log_root_tree);
79787eaa 6349
abefa55a 6350 return 0;
79787eaa 6351error:
b50c6e25 6352 if (wc.trans)
3a45bb20 6353 btrfs_end_transaction(wc.trans);
79787eaa
JM
6354 btrfs_free_path(path);
6355 return ret;
e02119d5 6356}
12fcfd22
CM
6357
6358/*
6359 * there are some corner cases where we want to force a full
6360 * commit instead of allowing a directory to be logged.
6361 *
6362 * They revolve around files there were unlinked from the directory, and
6363 * this function updates the parent directory so that a full commit is
6364 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6365 *
6366 * Must be called before the unlink operations (updates to the subvolume tree,
6367 * inodes, etc) are done.
12fcfd22
CM
6368 */
6369void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6370 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6371 int for_rename)
6372{
af4176b4
CM
6373 /*
6374 * when we're logging a file, if it hasn't been renamed
6375 * or unlinked, and its inode is fully committed on disk,
6376 * we don't have to worry about walking up the directory chain
6377 * to log its parents.
6378 *
6379 * So, we use the last_unlink_trans field to put this transid
6380 * into the file. When the file is logged we check it and
6381 * don't log the parents if the file is fully on disk.
6382 */
4176bdbf
NB
6383 mutex_lock(&inode->log_mutex);
6384 inode->last_unlink_trans = trans->transid;
6385 mutex_unlock(&inode->log_mutex);
af4176b4 6386
12fcfd22
CM
6387 /*
6388 * if this directory was already logged any new
6389 * names for this file/dir will get recorded
6390 */
4176bdbf 6391 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6392 return;
6393
6394 /*
6395 * if the inode we're about to unlink was logged,
6396 * the log will be properly updated for any new names
6397 */
4176bdbf 6398 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6399 return;
6400
6401 /*
6402 * when renaming files across directories, if the directory
6403 * there we're unlinking from gets fsync'd later on, there's
6404 * no way to find the destination directory later and fsync it
6405 * properly. So, we have to be conservative and force commits
6406 * so the new name gets discovered.
6407 */
6408 if (for_rename)
6409 goto record;
6410
6411 /* we can safely do the unlink without any special recording */
6412 return;
6413
6414record:
4176bdbf
NB
6415 mutex_lock(&dir->log_mutex);
6416 dir->last_unlink_trans = trans->transid;
6417 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6418}
6419
6420/*
6421 * Make sure that if someone attempts to fsync the parent directory of a deleted
6422 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6423 * that after replaying the log tree of the parent directory's root we will not
6424 * see the snapshot anymore and at log replay time we will not see any log tree
6425 * corresponding to the deleted snapshot's root, which could lead to replaying
6426 * it after replaying the log tree of the parent directory (which would replay
6427 * the snapshot delete operation).
2be63d5c
FM
6428 *
6429 * Must be called before the actual snapshot destroy operation (updates to the
6430 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6431 */
6432void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6433 struct btrfs_inode *dir)
1ec9a1ae 6434{
43663557
NB
6435 mutex_lock(&dir->log_mutex);
6436 dir->last_unlink_trans = trans->transid;
6437 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6438}
6439
6440/*
6441 * Call this after adding a new name for a file and it will properly
6442 * update the log to reflect the new name.
12fcfd22 6443 */
75b463d2 6444void btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6445 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
75b463d2 6446 struct dentry *parent)
12fcfd22 6447{
75b463d2 6448 struct btrfs_log_ctx ctx;
12fcfd22 6449
af4176b4
CM
6450 /*
6451 * this will force the logging code to walk the dentry chain
6452 * up for the file
6453 */
9a6509c4 6454 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6455 inode->last_unlink_trans = trans->transid;
af4176b4 6456
12fcfd22
CM
6457 /*
6458 * if this inode hasn't been logged and directory we're renaming it
6459 * from hasn't been logged, we don't need to log it
6460 */
de53d892
FM
6461 if (inode->logged_trans < trans->transid &&
6462 (!old_dir || old_dir->logged_trans < trans->transid))
75b463d2 6463 return;
12fcfd22 6464
75b463d2
FM
6465 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6466 ctx.logging_new_name = true;
6467 /*
6468 * We don't care about the return value. If we fail to log the new name
6469 * then we know the next attempt to sync the log will fallback to a full
6470 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6471 * we don't need to worry about getting a log committed that has an
6472 * inconsistent state after a rename operation.
6473 */
48778179 6474 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
12fcfd22
CM
6475}
6476