]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
Btrfs: fix fsync when extend references are added to an inode
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
e02119d5
CM
29
30/* magic values for the inode_only field in btrfs_log_inode:
31 *
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 * during log replay
35 */
36#define LOG_INODE_ALL 0
37#define LOG_INODE_EXISTS 1
38
12fcfd22
CM
39/*
40 * directory trouble cases
41 *
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
46 *
47 * mkdir foo/some_dir
48 * normal commit
49 * rename foo/some_dir foo2/some_dir
50 * mkdir foo/some_dir
51 * fsync foo/some_dir/some_file
52 *
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
56 *
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
59 *
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
63 *
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
66 *
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
69 *
70 * mkdir f1/foo
71 * normal commit
72 * rm -rf f1/foo
73 * fsync(f1)
74 *
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
79 * ugly details.
80 */
81
e02119d5
CM
82/*
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
87 *
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
90 */
91#define LOG_WALK_PIN_ONLY 0
92#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
93#define LOG_WALK_REPLAY_DIR_INDEX 2
94#define LOG_WALK_REPLAY_ALL 3
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
97 struct btrfs_root *root, struct inode *inode,
98 int inode_only,
99 const loff_t start,
8407f553
FM
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
8b050d35 143 int index;
e02119d5 144 int ret;
7237f183
YZ
145
146 mutex_lock(&root->log_mutex);
147 if (root->log_root) {
995946dd 148 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
50471a38
MX
149 ret = -EAGAIN;
150 goto out;
151 }
ff782e0a
JB
152 if (!root->log_start_pid) {
153 root->log_start_pid = current->pid;
27cdeb70 154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 155 } else if (root->log_start_pid != current->pid) {
27cdeb70 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a
JB
157 }
158
2ecb7923 159 atomic_inc(&root->log_batch);
7237f183 160 atomic_inc(&root->log_writers);
8b050d35
MX
161 if (ctx) {
162 index = root->log_transid % 2;
163 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 164 ctx->log_transid = root->log_transid;
8b050d35 165 }
7237f183
YZ
166 mutex_unlock(&root->log_mutex);
167 return 0;
168 }
e87ac136
MX
169
170 ret = 0;
e02119d5 171 mutex_lock(&root->fs_info->tree_log_mutex);
e87ac136 172 if (!root->fs_info->log_root_tree)
e02119d5 173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
e87ac136
MX
174 mutex_unlock(&root->fs_info->tree_log_mutex);
175 if (ret)
176 goto out;
177
178 if (!root->log_root) {
e02119d5 179 ret = btrfs_add_log_tree(trans, root);
4a500fd1 180 if (ret)
e87ac136 181 goto out;
e02119d5 182 }
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
e87ac136 184 root->log_start_pid = current->pid;
2ecb7923 185 atomic_inc(&root->log_batch);
7237f183 186 atomic_inc(&root->log_writers);
8b050d35
MX
187 if (ctx) {
188 index = root->log_transid % 2;
189 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 190 ctx->log_transid = root->log_transid;
8b050d35 191 }
e87ac136 192out:
7237f183 193 mutex_unlock(&root->log_mutex);
e87ac136 194 return ret;
e02119d5
CM
195}
196
197/*
198 * returns 0 if there was a log transaction running and we were able
199 * to join, or returns -ENOENT if there were not transactions
200 * in progress
201 */
202static int join_running_log_trans(struct btrfs_root *root)
203{
204 int ret = -ENOENT;
205
206 smp_mb();
207 if (!root->log_root)
208 return -ENOENT;
209
7237f183 210 mutex_lock(&root->log_mutex);
e02119d5
CM
211 if (root->log_root) {
212 ret = 0;
7237f183 213 atomic_inc(&root->log_writers);
e02119d5 214 }
7237f183 215 mutex_unlock(&root->log_mutex);
e02119d5
CM
216 return ret;
217}
218
12fcfd22
CM
219/*
220 * This either makes the current running log transaction wait
221 * until you call btrfs_end_log_trans() or it makes any future
222 * log transactions wait until you call btrfs_end_log_trans()
223 */
224int btrfs_pin_log_trans(struct btrfs_root *root)
225{
226 int ret = -ENOENT;
227
228 mutex_lock(&root->log_mutex);
229 atomic_inc(&root->log_writers);
230 mutex_unlock(&root->log_mutex);
231 return ret;
232}
233
e02119d5
CM
234/*
235 * indicate we're done making changes to the log tree
236 * and wake up anyone waiting to do a sync
237 */
143bede5 238void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 239{
7237f183
YZ
240 if (atomic_dec_and_test(&root->log_writers)) {
241 smp_mb();
242 if (waitqueue_active(&root->log_writer_wait))
243 wake_up(&root->log_writer_wait);
244 }
e02119d5
CM
245}
246
247
248/*
249 * the walk control struct is used to pass state down the chain when
250 * processing the log tree. The stage field tells us which part
251 * of the log tree processing we are currently doing. The others
252 * are state fields used for that specific part
253 */
254struct walk_control {
255 /* should we free the extent on disk when done? This is used
256 * at transaction commit time while freeing a log tree
257 */
258 int free;
259
260 /* should we write out the extent buffer? This is used
261 * while flushing the log tree to disk during a sync
262 */
263 int write;
264
265 /* should we wait for the extent buffer io to finish? Also used
266 * while flushing the log tree to disk for a sync
267 */
268 int wait;
269
270 /* pin only walk, we record which extents on disk belong to the
271 * log trees
272 */
273 int pin;
274
275 /* what stage of the replay code we're currently in */
276 int stage;
277
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
280
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
283
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
288 */
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen);
291};
292
293/*
294 * process_func used to pin down extents, write them or wait on them
295 */
296static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen)
299{
b50c6e25
JB
300 int ret = 0;
301
8c2a1a30
JB
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
308 if (ret)
309 return ret;
310 }
311
04018de5 312 if (wc->pin)
b50c6e25
JB
313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 eb->start, eb->len);
e02119d5 315
b50c6e25 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
b50c6e25 324 return ret;
e02119d5
CM
325}
326
327/*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346{
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
4bc4bee4 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
355
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
358
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
361
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
364 if (ret < 0)
365 return ret;
366
e02119d5
CM
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
374
375 if (item_size == 0) {
b3b4aa74 376 btrfs_release_path(path);
e02119d5
CM
377 return 0;
378 }
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 381 if (!dst_copy || !src_copy) {
b3b4aa74 382 btrfs_release_path(path);
2a29edc6 383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
386 }
e02119d5
CM
387
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
394
395 kfree(dst_copy);
396 kfree(src_copy);
397 /*
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
402 */
403 if (ret == 0) {
b3b4aa74 404 btrfs_release_path(path);
e02119d5
CM
405 return 0;
406 }
407
4bc4bee4
JB
408 /*
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
411 */
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
d555438b 415 u32 mode;
4bc4bee4
JB
416
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
423
424 /*
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
428 */
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
432 }
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
d555438b 435 u32 mode;
4bc4bee4
JB
436
437 /*
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
440 */
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
443
444 /*
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
448 */
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
452 }
453insert:
b3b4aa74 454 btrfs_release_path(path);
e02119d5
CM
455 /* try to insert the key into the destination tree */
456 ret = btrfs_insert_empty_item(trans, root, path,
457 key, item_size);
458
459 /* make sure any existing item is the correct size */
460 if (ret == -EEXIST) {
461 u32 found_size;
462 found_size = btrfs_item_size_nr(path->nodes[0],
463 path->slots[0]);
143bede5 464 if (found_size > item_size)
afe5fea7 465 btrfs_truncate_item(root, path, item_size, 1);
143bede5 466 else if (found_size < item_size)
4b90c680 467 btrfs_extend_item(root, path,
143bede5 468 item_size - found_size);
e02119d5 469 } else if (ret) {
4a500fd1 470 return ret;
e02119d5
CM
471 }
472 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
473 path->slots[0]);
474
475 /* don't overwrite an existing inode if the generation number
476 * was logged as zero. This is done when the tree logging code
477 * is just logging an inode to make sure it exists after recovery.
478 *
479 * Also, don't overwrite i_size on directories during replay.
480 * log replay inserts and removes directory items based on the
481 * state of the tree found in the subvolume, and i_size is modified
482 * as it goes
483 */
484 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
485 struct btrfs_inode_item *src_item;
486 struct btrfs_inode_item *dst_item;
487
488 src_item = (struct btrfs_inode_item *)src_ptr;
489 dst_item = (struct btrfs_inode_item *)dst_ptr;
490
491 if (btrfs_inode_generation(eb, src_item) == 0)
492 goto no_copy;
493
494 if (overwrite_root &&
495 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
496 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
497 save_old_i_size = 1;
498 saved_i_size = btrfs_inode_size(path->nodes[0],
499 dst_item);
500 }
501 }
502
503 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
504 src_ptr, item_size);
505
506 if (save_old_i_size) {
507 struct btrfs_inode_item *dst_item;
508 dst_item = (struct btrfs_inode_item *)dst_ptr;
509 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
510 }
511
512 /* make sure the generation is filled in */
513 if (key->type == BTRFS_INODE_ITEM_KEY) {
514 struct btrfs_inode_item *dst_item;
515 dst_item = (struct btrfs_inode_item *)dst_ptr;
516 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
517 btrfs_set_inode_generation(path->nodes[0], dst_item,
518 trans->transid);
519 }
520 }
521no_copy:
522 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 523 btrfs_release_path(path);
e02119d5
CM
524 return 0;
525}
526
527/*
528 * simple helper to read an inode off the disk from a given root
529 * This can only be called for subvolume roots and not for the log
530 */
531static noinline struct inode *read_one_inode(struct btrfs_root *root,
532 u64 objectid)
533{
5d4f98a2 534 struct btrfs_key key;
e02119d5 535 struct inode *inode;
e02119d5 536
5d4f98a2
YZ
537 key.objectid = objectid;
538 key.type = BTRFS_INODE_ITEM_KEY;
539 key.offset = 0;
73f73415 540 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
541 if (IS_ERR(inode)) {
542 inode = NULL;
543 } else if (is_bad_inode(inode)) {
e02119d5
CM
544 iput(inode);
545 inode = NULL;
546 }
547 return inode;
548}
549
550/* replays a single extent in 'eb' at 'slot' with 'key' into the
551 * subvolume 'root'. path is released on entry and should be released
552 * on exit.
553 *
554 * extents in the log tree have not been allocated out of the extent
555 * tree yet. So, this completes the allocation, taking a reference
556 * as required if the extent already exists or creating a new extent
557 * if it isn't in the extent allocation tree yet.
558 *
559 * The extent is inserted into the file, dropping any existing extents
560 * from the file that overlap the new one.
561 */
562static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
563 struct btrfs_root *root,
564 struct btrfs_path *path,
565 struct extent_buffer *eb, int slot,
566 struct btrfs_key *key)
567{
568 int found_type;
e02119d5 569 u64 extent_end;
e02119d5 570 u64 start = key->offset;
4bc4bee4 571 u64 nbytes = 0;
e02119d5
CM
572 struct btrfs_file_extent_item *item;
573 struct inode *inode = NULL;
574 unsigned long size;
575 int ret = 0;
576
577 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
578 found_type = btrfs_file_extent_type(eb, item);
579
d899e052 580 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
581 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
582 nbytes = btrfs_file_extent_num_bytes(eb, item);
583 extent_end = start + nbytes;
584
585 /*
586 * We don't add to the inodes nbytes if we are prealloc or a
587 * hole.
588 */
589 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
590 nbytes = 0;
591 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 592 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 593 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 594 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
595 } else {
596 ret = 0;
597 goto out;
598 }
599
600 inode = read_one_inode(root, key->objectid);
601 if (!inode) {
602 ret = -EIO;
603 goto out;
604 }
605
606 /*
607 * first check to see if we already have this extent in the
608 * file. This must be done before the btrfs_drop_extents run
609 * so we don't try to drop this extent.
610 */
33345d01 611 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
612 start, 0);
613
d899e052
YZ
614 if (ret == 0 &&
615 (found_type == BTRFS_FILE_EXTENT_REG ||
616 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
617 struct btrfs_file_extent_item cmp1;
618 struct btrfs_file_extent_item cmp2;
619 struct btrfs_file_extent_item *existing;
620 struct extent_buffer *leaf;
621
622 leaf = path->nodes[0];
623 existing = btrfs_item_ptr(leaf, path->slots[0],
624 struct btrfs_file_extent_item);
625
626 read_extent_buffer(eb, &cmp1, (unsigned long)item,
627 sizeof(cmp1));
628 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
629 sizeof(cmp2));
630
631 /*
632 * we already have a pointer to this exact extent,
633 * we don't have to do anything
634 */
635 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 636 btrfs_release_path(path);
e02119d5
CM
637 goto out;
638 }
639 }
b3b4aa74 640 btrfs_release_path(path);
e02119d5
CM
641
642 /* drop any overlapping extents */
2671485d 643 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
644 if (ret)
645 goto out;
e02119d5 646
07d400a6
YZ
647 if (found_type == BTRFS_FILE_EXTENT_REG ||
648 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 649 u64 offset;
07d400a6
YZ
650 unsigned long dest_offset;
651 struct btrfs_key ins;
652
653 ret = btrfs_insert_empty_item(trans, root, path, key,
654 sizeof(*item));
3650860b
JB
655 if (ret)
656 goto out;
07d400a6
YZ
657 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
658 path->slots[0]);
659 copy_extent_buffer(path->nodes[0], eb, dest_offset,
660 (unsigned long)item, sizeof(*item));
661
662 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
663 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
664 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 665 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
666
667 if (ins.objectid > 0) {
668 u64 csum_start;
669 u64 csum_end;
670 LIST_HEAD(ordered_sums);
671 /*
672 * is this extent already allocated in the extent
673 * allocation tree? If so, just add a reference
674 */
1a4ed8fd 675 ret = btrfs_lookup_data_extent(root, ins.objectid,
07d400a6
YZ
676 ins.offset);
677 if (ret == 0) {
678 ret = btrfs_inc_extent_ref(trans, root,
679 ins.objectid, ins.offset,
5d4f98a2 680 0, root->root_key.objectid,
66d7e7f0 681 key->objectid, offset, 0);
b50c6e25
JB
682 if (ret)
683 goto out;
07d400a6
YZ
684 } else {
685 /*
686 * insert the extent pointer in the extent
687 * allocation tree
688 */
5d4f98a2
YZ
689 ret = btrfs_alloc_logged_file_extent(trans,
690 root, root->root_key.objectid,
691 key->objectid, offset, &ins);
b50c6e25
JB
692 if (ret)
693 goto out;
07d400a6 694 }
b3b4aa74 695 btrfs_release_path(path);
07d400a6
YZ
696
697 if (btrfs_file_extent_compression(eb, item)) {
698 csum_start = ins.objectid;
699 csum_end = csum_start + ins.offset;
700 } else {
701 csum_start = ins.objectid +
702 btrfs_file_extent_offset(eb, item);
703 csum_end = csum_start +
704 btrfs_file_extent_num_bytes(eb, item);
705 }
706
707 ret = btrfs_lookup_csums_range(root->log_root,
708 csum_start, csum_end - 1,
a2de733c 709 &ordered_sums, 0);
3650860b
JB
710 if (ret)
711 goto out;
07d400a6
YZ
712 while (!list_empty(&ordered_sums)) {
713 struct btrfs_ordered_sum *sums;
714 sums = list_entry(ordered_sums.next,
715 struct btrfs_ordered_sum,
716 list);
3650860b
JB
717 if (!ret)
718 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
719 root->fs_info->csum_root,
720 sums);
07d400a6
YZ
721 list_del(&sums->list);
722 kfree(sums);
723 }
3650860b
JB
724 if (ret)
725 goto out;
07d400a6 726 } else {
b3b4aa74 727 btrfs_release_path(path);
07d400a6
YZ
728 }
729 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
730 /* inline extents are easy, we just overwrite them */
731 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
732 if (ret)
733 goto out;
07d400a6 734 }
e02119d5 735
4bc4bee4 736 inode_add_bytes(inode, nbytes);
b9959295 737 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
738out:
739 if (inode)
740 iput(inode);
741 return ret;
742}
743
744/*
745 * when cleaning up conflicts between the directory names in the
746 * subvolume, directory names in the log and directory names in the
747 * inode back references, we may have to unlink inodes from directories.
748 *
749 * This is a helper function to do the unlink of a specific directory
750 * item
751 */
752static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
753 struct btrfs_root *root,
754 struct btrfs_path *path,
755 struct inode *dir,
756 struct btrfs_dir_item *di)
757{
758 struct inode *inode;
759 char *name;
760 int name_len;
761 struct extent_buffer *leaf;
762 struct btrfs_key location;
763 int ret;
764
765 leaf = path->nodes[0];
766
767 btrfs_dir_item_key_to_cpu(leaf, di, &location);
768 name_len = btrfs_dir_name_len(leaf, di);
769 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 770 if (!name)
771 return -ENOMEM;
772
e02119d5 773 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 774 btrfs_release_path(path);
e02119d5
CM
775
776 inode = read_one_inode(root, location.objectid);
c00e9493 777 if (!inode) {
3650860b
JB
778 ret = -EIO;
779 goto out;
c00e9493 780 }
e02119d5 781
ec051c0f 782 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
783 if (ret)
784 goto out;
12fcfd22 785
e02119d5 786 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
787 if (ret)
788 goto out;
ada9af21
FDBM
789 else
790 ret = btrfs_run_delayed_items(trans, root);
3650860b 791out:
e02119d5 792 kfree(name);
e02119d5
CM
793 iput(inode);
794 return ret;
795}
796
797/*
798 * helper function to see if a given name and sequence number found
799 * in an inode back reference are already in a directory and correctly
800 * point to this inode
801 */
802static noinline int inode_in_dir(struct btrfs_root *root,
803 struct btrfs_path *path,
804 u64 dirid, u64 objectid, u64 index,
805 const char *name, int name_len)
806{
807 struct btrfs_dir_item *di;
808 struct btrfs_key location;
809 int match = 0;
810
811 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
812 index, name, name_len, 0);
813 if (di && !IS_ERR(di)) {
814 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
815 if (location.objectid != objectid)
816 goto out;
817 } else
818 goto out;
b3b4aa74 819 btrfs_release_path(path);
e02119d5
CM
820
821 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
822 if (di && !IS_ERR(di)) {
823 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
824 if (location.objectid != objectid)
825 goto out;
826 } else
827 goto out;
828 match = 1;
829out:
b3b4aa74 830 btrfs_release_path(path);
e02119d5
CM
831 return match;
832}
833
834/*
835 * helper function to check a log tree for a named back reference in
836 * an inode. This is used to decide if a back reference that is
837 * found in the subvolume conflicts with what we find in the log.
838 *
839 * inode backreferences may have multiple refs in a single item,
840 * during replay we process one reference at a time, and we don't
841 * want to delete valid links to a file from the subvolume if that
842 * link is also in the log.
843 */
844static noinline int backref_in_log(struct btrfs_root *log,
845 struct btrfs_key *key,
f186373f 846 u64 ref_objectid,
e02119d5
CM
847 char *name, int namelen)
848{
849 struct btrfs_path *path;
850 struct btrfs_inode_ref *ref;
851 unsigned long ptr;
852 unsigned long ptr_end;
853 unsigned long name_ptr;
854 int found_name_len;
855 int item_size;
856 int ret;
857 int match = 0;
858
859 path = btrfs_alloc_path();
2a29edc6 860 if (!path)
861 return -ENOMEM;
862
e02119d5
CM
863 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
864 if (ret != 0)
865 goto out;
866
e02119d5 867 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
868
869 if (key->type == BTRFS_INODE_EXTREF_KEY) {
870 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
871 name, namelen, NULL))
872 match = 1;
873
874 goto out;
875 }
876
877 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
878 ptr_end = ptr + item_size;
879 while (ptr < ptr_end) {
880 ref = (struct btrfs_inode_ref *)ptr;
881 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
882 if (found_name_len == namelen) {
883 name_ptr = (unsigned long)(ref + 1);
884 ret = memcmp_extent_buffer(path->nodes[0], name,
885 name_ptr, namelen);
886 if (ret == 0) {
887 match = 1;
888 goto out;
889 }
890 }
891 ptr = (unsigned long)(ref + 1) + found_name_len;
892 }
893out:
894 btrfs_free_path(path);
895 return match;
896}
897
5a1d7843 898static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 899 struct btrfs_root *root,
e02119d5 900 struct btrfs_path *path,
5a1d7843
JS
901 struct btrfs_root *log_root,
902 struct inode *dir, struct inode *inode,
5a1d7843 903 struct extent_buffer *eb,
f186373f
MF
904 u64 inode_objectid, u64 parent_objectid,
905 u64 ref_index, char *name, int namelen,
906 int *search_done)
e02119d5 907{
34f3e4f2 908 int ret;
f186373f
MF
909 char *victim_name;
910 int victim_name_len;
911 struct extent_buffer *leaf;
5a1d7843 912 struct btrfs_dir_item *di;
f186373f
MF
913 struct btrfs_key search_key;
914 struct btrfs_inode_extref *extref;
c622ae60 915
f186373f
MF
916again:
917 /* Search old style refs */
918 search_key.objectid = inode_objectid;
919 search_key.type = BTRFS_INODE_REF_KEY;
920 search_key.offset = parent_objectid;
921 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 922 if (ret == 0) {
e02119d5
CM
923 struct btrfs_inode_ref *victim_ref;
924 unsigned long ptr;
925 unsigned long ptr_end;
f186373f
MF
926
927 leaf = path->nodes[0];
e02119d5
CM
928
929 /* are we trying to overwrite a back ref for the root directory
930 * if so, just jump out, we're done
931 */
f186373f 932 if (search_key.objectid == search_key.offset)
5a1d7843 933 return 1;
e02119d5
CM
934
935 /* check all the names in this back reference to see
936 * if they are in the log. if so, we allow them to stay
937 * otherwise they must be unlinked as a conflict
938 */
939 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
940 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 941 while (ptr < ptr_end) {
e02119d5
CM
942 victim_ref = (struct btrfs_inode_ref *)ptr;
943 victim_name_len = btrfs_inode_ref_name_len(leaf,
944 victim_ref);
945 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
946 if (!victim_name)
947 return -ENOMEM;
e02119d5
CM
948
949 read_extent_buffer(leaf, victim_name,
950 (unsigned long)(victim_ref + 1),
951 victim_name_len);
952
f186373f
MF
953 if (!backref_in_log(log_root, &search_key,
954 parent_objectid,
955 victim_name,
e02119d5 956 victim_name_len)) {
8b558c5f 957 inc_nlink(inode);
b3b4aa74 958 btrfs_release_path(path);
12fcfd22 959
e02119d5
CM
960 ret = btrfs_unlink_inode(trans, root, dir,
961 inode, victim_name,
962 victim_name_len);
f186373f 963 kfree(victim_name);
3650860b
JB
964 if (ret)
965 return ret;
ada9af21
FDBM
966 ret = btrfs_run_delayed_items(trans, root);
967 if (ret)
968 return ret;
f186373f
MF
969 *search_done = 1;
970 goto again;
e02119d5
CM
971 }
972 kfree(victim_name);
f186373f 973
e02119d5
CM
974 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
975 }
e02119d5 976
c622ae60 977 /*
978 * NOTE: we have searched root tree and checked the
979 * coresponding ref, it does not need to check again.
980 */
5a1d7843 981 *search_done = 1;
e02119d5 982 }
b3b4aa74 983 btrfs_release_path(path);
e02119d5 984
f186373f
MF
985 /* Same search but for extended refs */
986 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
987 inode_objectid, parent_objectid, 0,
988 0);
989 if (!IS_ERR_OR_NULL(extref)) {
990 u32 item_size;
991 u32 cur_offset = 0;
992 unsigned long base;
993 struct inode *victim_parent;
994
995 leaf = path->nodes[0];
996
997 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
998 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
999
1000 while (cur_offset < item_size) {
1001 extref = (struct btrfs_inode_extref *)base + cur_offset;
1002
1003 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1004
1005 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1006 goto next;
1007
1008 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1009 if (!victim_name)
1010 return -ENOMEM;
f186373f
MF
1011 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1012 victim_name_len);
1013
1014 search_key.objectid = inode_objectid;
1015 search_key.type = BTRFS_INODE_EXTREF_KEY;
1016 search_key.offset = btrfs_extref_hash(parent_objectid,
1017 victim_name,
1018 victim_name_len);
1019 ret = 0;
1020 if (!backref_in_log(log_root, &search_key,
1021 parent_objectid, victim_name,
1022 victim_name_len)) {
1023 ret = -ENOENT;
1024 victim_parent = read_one_inode(root,
1025 parent_objectid);
1026 if (victim_parent) {
8b558c5f 1027 inc_nlink(inode);
f186373f
MF
1028 btrfs_release_path(path);
1029
1030 ret = btrfs_unlink_inode(trans, root,
1031 victim_parent,
1032 inode,
1033 victim_name,
1034 victim_name_len);
ada9af21
FDBM
1035 if (!ret)
1036 ret = btrfs_run_delayed_items(
1037 trans, root);
f186373f 1038 }
f186373f
MF
1039 iput(victim_parent);
1040 kfree(victim_name);
3650860b
JB
1041 if (ret)
1042 return ret;
f186373f
MF
1043 *search_done = 1;
1044 goto again;
1045 }
1046 kfree(victim_name);
3650860b
JB
1047 if (ret)
1048 return ret;
f186373f
MF
1049next:
1050 cur_offset += victim_name_len + sizeof(*extref);
1051 }
1052 *search_done = 1;
1053 }
1054 btrfs_release_path(path);
1055
34f3e4f2 1056 /* look for a conflicting sequence number */
1057 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1058 ref_index, name, namelen, 0);
34f3e4f2 1059 if (di && !IS_ERR(di)) {
1060 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1061 if (ret)
1062 return ret;
34f3e4f2 1063 }
1064 btrfs_release_path(path);
1065
1066 /* look for a conflicing name */
1067 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1068 name, namelen, 0);
1069 if (di && !IS_ERR(di)) {
1070 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1071 if (ret)
1072 return ret;
34f3e4f2 1073 }
1074 btrfs_release_path(path);
1075
5a1d7843
JS
1076 return 0;
1077}
e02119d5 1078
f186373f
MF
1079static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1080 u32 *namelen, char **name, u64 *index,
1081 u64 *parent_objectid)
1082{
1083 struct btrfs_inode_extref *extref;
1084
1085 extref = (struct btrfs_inode_extref *)ref_ptr;
1086
1087 *namelen = btrfs_inode_extref_name_len(eb, extref);
1088 *name = kmalloc(*namelen, GFP_NOFS);
1089 if (*name == NULL)
1090 return -ENOMEM;
1091
1092 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1093 *namelen);
1094
1095 *index = btrfs_inode_extref_index(eb, extref);
1096 if (parent_objectid)
1097 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1098
1099 return 0;
1100}
1101
1102static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1103 u32 *namelen, char **name, u64 *index)
1104{
1105 struct btrfs_inode_ref *ref;
1106
1107 ref = (struct btrfs_inode_ref *)ref_ptr;
1108
1109 *namelen = btrfs_inode_ref_name_len(eb, ref);
1110 *name = kmalloc(*namelen, GFP_NOFS);
1111 if (*name == NULL)
1112 return -ENOMEM;
1113
1114 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1115
1116 *index = btrfs_inode_ref_index(eb, ref);
1117
1118 return 0;
1119}
1120
5a1d7843
JS
1121/*
1122 * replay one inode back reference item found in the log tree.
1123 * eb, slot and key refer to the buffer and key found in the log tree.
1124 * root is the destination we are replaying into, and path is for temp
1125 * use by this function. (it should be released on return).
1126 */
1127static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1128 struct btrfs_root *root,
1129 struct btrfs_root *log,
1130 struct btrfs_path *path,
1131 struct extent_buffer *eb, int slot,
1132 struct btrfs_key *key)
1133{
03b2f08b
GB
1134 struct inode *dir = NULL;
1135 struct inode *inode = NULL;
5a1d7843
JS
1136 unsigned long ref_ptr;
1137 unsigned long ref_end;
03b2f08b 1138 char *name = NULL;
5a1d7843
JS
1139 int namelen;
1140 int ret;
1141 int search_done = 0;
f186373f
MF
1142 int log_ref_ver = 0;
1143 u64 parent_objectid;
1144 u64 inode_objectid;
f46dbe3d 1145 u64 ref_index = 0;
f186373f
MF
1146 int ref_struct_size;
1147
1148 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1149 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1150
1151 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1152 struct btrfs_inode_extref *r;
1153
1154 ref_struct_size = sizeof(struct btrfs_inode_extref);
1155 log_ref_ver = 1;
1156 r = (struct btrfs_inode_extref *)ref_ptr;
1157 parent_objectid = btrfs_inode_extref_parent(eb, r);
1158 } else {
1159 ref_struct_size = sizeof(struct btrfs_inode_ref);
1160 parent_objectid = key->offset;
1161 }
1162 inode_objectid = key->objectid;
e02119d5 1163
5a1d7843
JS
1164 /*
1165 * it is possible that we didn't log all the parent directories
1166 * for a given inode. If we don't find the dir, just don't
1167 * copy the back ref in. The link count fixup code will take
1168 * care of the rest
1169 */
f186373f 1170 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1171 if (!dir) {
1172 ret = -ENOENT;
1173 goto out;
1174 }
5a1d7843 1175
f186373f 1176 inode = read_one_inode(root, inode_objectid);
5a1d7843 1177 if (!inode) {
03b2f08b
GB
1178 ret = -EIO;
1179 goto out;
5a1d7843
JS
1180 }
1181
5a1d7843 1182 while (ref_ptr < ref_end) {
f186373f
MF
1183 if (log_ref_ver) {
1184 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1185 &ref_index, &parent_objectid);
1186 /*
1187 * parent object can change from one array
1188 * item to another.
1189 */
1190 if (!dir)
1191 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1192 if (!dir) {
1193 ret = -ENOENT;
1194 goto out;
1195 }
f186373f
MF
1196 } else {
1197 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1198 &ref_index);
1199 }
1200 if (ret)
03b2f08b 1201 goto out;
5a1d7843
JS
1202
1203 /* if we already have a perfect match, we're done */
1204 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1205 ref_index, name, namelen)) {
5a1d7843
JS
1206 /*
1207 * look for a conflicting back reference in the
1208 * metadata. if we find one we have to unlink that name
1209 * of the file before we add our new link. Later on, we
1210 * overwrite any existing back reference, and we don't
1211 * want to create dangling pointers in the directory.
1212 */
1213
1214 if (!search_done) {
1215 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1216 dir, inode, eb,
1217 inode_objectid,
1218 parent_objectid,
1219 ref_index, name, namelen,
5a1d7843 1220 &search_done);
03b2f08b
GB
1221 if (ret) {
1222 if (ret == 1)
1223 ret = 0;
3650860b
JB
1224 goto out;
1225 }
5a1d7843
JS
1226 }
1227
1228 /* insert our name */
1229 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1230 0, ref_index);
3650860b
JB
1231 if (ret)
1232 goto out;
5a1d7843
JS
1233
1234 btrfs_update_inode(trans, root, inode);
1235 }
1236
f186373f 1237 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1238 kfree(name);
03b2f08b 1239 name = NULL;
f186373f
MF
1240 if (log_ref_ver) {
1241 iput(dir);
1242 dir = NULL;
1243 }
5a1d7843 1244 }
e02119d5
CM
1245
1246 /* finally write the back reference in the inode */
1247 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1248out:
b3b4aa74 1249 btrfs_release_path(path);
03b2f08b 1250 kfree(name);
e02119d5
CM
1251 iput(dir);
1252 iput(inode);
3650860b 1253 return ret;
e02119d5
CM
1254}
1255
c71bf099 1256static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1257 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1258{
1259 int ret;
381cf658 1260
9c4f61f0
DS
1261 ret = btrfs_insert_orphan_item(trans, root, ino);
1262 if (ret == -EEXIST)
1263 ret = 0;
381cf658 1264
c71bf099
YZ
1265 return ret;
1266}
1267
f186373f
MF
1268static int count_inode_extrefs(struct btrfs_root *root,
1269 struct inode *inode, struct btrfs_path *path)
1270{
1271 int ret = 0;
1272 int name_len;
1273 unsigned int nlink = 0;
1274 u32 item_size;
1275 u32 cur_offset = 0;
1276 u64 inode_objectid = btrfs_ino(inode);
1277 u64 offset = 0;
1278 unsigned long ptr;
1279 struct btrfs_inode_extref *extref;
1280 struct extent_buffer *leaf;
1281
1282 while (1) {
1283 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1284 &extref, &offset);
1285 if (ret)
1286 break;
c71bf099 1287
f186373f
MF
1288 leaf = path->nodes[0];
1289 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1290 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1291 cur_offset = 0;
f186373f
MF
1292
1293 while (cur_offset < item_size) {
1294 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1295 name_len = btrfs_inode_extref_name_len(leaf, extref);
1296
1297 nlink++;
1298
1299 cur_offset += name_len + sizeof(*extref);
1300 }
1301
1302 offset++;
1303 btrfs_release_path(path);
1304 }
1305 btrfs_release_path(path);
1306
2c2c452b 1307 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1308 return ret;
1309 return nlink;
1310}
1311
1312static int count_inode_refs(struct btrfs_root *root,
1313 struct inode *inode, struct btrfs_path *path)
e02119d5 1314{
e02119d5
CM
1315 int ret;
1316 struct btrfs_key key;
f186373f 1317 unsigned int nlink = 0;
e02119d5
CM
1318 unsigned long ptr;
1319 unsigned long ptr_end;
1320 int name_len;
33345d01 1321 u64 ino = btrfs_ino(inode);
e02119d5 1322
33345d01 1323 key.objectid = ino;
e02119d5
CM
1324 key.type = BTRFS_INODE_REF_KEY;
1325 key.offset = (u64)-1;
1326
d397712b 1327 while (1) {
e02119d5
CM
1328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1329 if (ret < 0)
1330 break;
1331 if (ret > 0) {
1332 if (path->slots[0] == 0)
1333 break;
1334 path->slots[0]--;
1335 }
e93ae26f 1336process_slot:
e02119d5
CM
1337 btrfs_item_key_to_cpu(path->nodes[0], &key,
1338 path->slots[0]);
33345d01 1339 if (key.objectid != ino ||
e02119d5
CM
1340 key.type != BTRFS_INODE_REF_KEY)
1341 break;
1342 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1343 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1344 path->slots[0]);
d397712b 1345 while (ptr < ptr_end) {
e02119d5
CM
1346 struct btrfs_inode_ref *ref;
1347
1348 ref = (struct btrfs_inode_ref *)ptr;
1349 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1350 ref);
1351 ptr = (unsigned long)(ref + 1) + name_len;
1352 nlink++;
1353 }
1354
1355 if (key.offset == 0)
1356 break;
e93ae26f
FDBM
1357 if (path->slots[0] > 0) {
1358 path->slots[0]--;
1359 goto process_slot;
1360 }
e02119d5 1361 key.offset--;
b3b4aa74 1362 btrfs_release_path(path);
e02119d5 1363 }
b3b4aa74 1364 btrfs_release_path(path);
f186373f
MF
1365
1366 return nlink;
1367}
1368
1369/*
1370 * There are a few corners where the link count of the file can't
1371 * be properly maintained during replay. So, instead of adding
1372 * lots of complexity to the log code, we just scan the backrefs
1373 * for any file that has been through replay.
1374 *
1375 * The scan will update the link count on the inode to reflect the
1376 * number of back refs found. If it goes down to zero, the iput
1377 * will free the inode.
1378 */
1379static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1380 struct btrfs_root *root,
1381 struct inode *inode)
1382{
1383 struct btrfs_path *path;
1384 int ret;
1385 u64 nlink = 0;
1386 u64 ino = btrfs_ino(inode);
1387
1388 path = btrfs_alloc_path();
1389 if (!path)
1390 return -ENOMEM;
1391
1392 ret = count_inode_refs(root, inode, path);
1393 if (ret < 0)
1394 goto out;
1395
1396 nlink = ret;
1397
1398 ret = count_inode_extrefs(root, inode, path);
f186373f
MF
1399 if (ret < 0)
1400 goto out;
1401
1402 nlink += ret;
1403
1404 ret = 0;
1405
e02119d5 1406 if (nlink != inode->i_nlink) {
bfe86848 1407 set_nlink(inode, nlink);
e02119d5
CM
1408 btrfs_update_inode(trans, root, inode);
1409 }
8d5bf1cb 1410 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1411
c71bf099
YZ
1412 if (inode->i_nlink == 0) {
1413 if (S_ISDIR(inode->i_mode)) {
1414 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1415 ino, 1);
3650860b
JB
1416 if (ret)
1417 goto out;
c71bf099 1418 }
33345d01 1419 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1420 }
12fcfd22 1421
f186373f
MF
1422out:
1423 btrfs_free_path(path);
1424 return ret;
e02119d5
CM
1425}
1426
1427static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1428 struct btrfs_root *root,
1429 struct btrfs_path *path)
1430{
1431 int ret;
1432 struct btrfs_key key;
1433 struct inode *inode;
1434
1435 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1436 key.type = BTRFS_ORPHAN_ITEM_KEY;
1437 key.offset = (u64)-1;
d397712b 1438 while (1) {
e02119d5
CM
1439 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1440 if (ret < 0)
1441 break;
1442
1443 if (ret == 1) {
1444 if (path->slots[0] == 0)
1445 break;
1446 path->slots[0]--;
1447 }
1448
1449 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1450 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1451 key.type != BTRFS_ORPHAN_ITEM_KEY)
1452 break;
1453
1454 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1455 if (ret)
1456 goto out;
e02119d5 1457
b3b4aa74 1458 btrfs_release_path(path);
e02119d5 1459 inode = read_one_inode(root, key.offset);
c00e9493
TI
1460 if (!inode)
1461 return -EIO;
e02119d5
CM
1462
1463 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1464 iput(inode);
3650860b
JB
1465 if (ret)
1466 goto out;
e02119d5 1467
12fcfd22
CM
1468 /*
1469 * fixup on a directory may create new entries,
1470 * make sure we always look for the highset possible
1471 * offset
1472 */
1473 key.offset = (u64)-1;
e02119d5 1474 }
65a246c5
TI
1475 ret = 0;
1476out:
b3b4aa74 1477 btrfs_release_path(path);
65a246c5 1478 return ret;
e02119d5
CM
1479}
1480
1481
1482/*
1483 * record a given inode in the fixup dir so we can check its link
1484 * count when replay is done. The link count is incremented here
1485 * so the inode won't go away until we check it
1486 */
1487static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1488 struct btrfs_root *root,
1489 struct btrfs_path *path,
1490 u64 objectid)
1491{
1492 struct btrfs_key key;
1493 int ret = 0;
1494 struct inode *inode;
1495
1496 inode = read_one_inode(root, objectid);
c00e9493
TI
1497 if (!inode)
1498 return -EIO;
e02119d5
CM
1499
1500 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1501 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1502 key.offset = objectid;
1503
1504 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1505
b3b4aa74 1506 btrfs_release_path(path);
e02119d5 1507 if (ret == 0) {
9bf7a489
JB
1508 if (!inode->i_nlink)
1509 set_nlink(inode, 1);
1510 else
8b558c5f 1511 inc_nlink(inode);
b9959295 1512 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1513 } else if (ret == -EEXIST) {
1514 ret = 0;
1515 } else {
3650860b 1516 BUG(); /* Logic Error */
e02119d5
CM
1517 }
1518 iput(inode);
1519
1520 return ret;
1521}
1522
1523/*
1524 * when replaying the log for a directory, we only insert names
1525 * for inodes that actually exist. This means an fsync on a directory
1526 * does not implicitly fsync all the new files in it
1527 */
1528static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1529 struct btrfs_root *root,
1530 struct btrfs_path *path,
1531 u64 dirid, u64 index,
1532 char *name, int name_len, u8 type,
1533 struct btrfs_key *location)
1534{
1535 struct inode *inode;
1536 struct inode *dir;
1537 int ret;
1538
1539 inode = read_one_inode(root, location->objectid);
1540 if (!inode)
1541 return -ENOENT;
1542
1543 dir = read_one_inode(root, dirid);
1544 if (!dir) {
1545 iput(inode);
1546 return -EIO;
1547 }
d555438b 1548
e02119d5
CM
1549 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1550
1551 /* FIXME, put inode into FIXUP list */
1552
1553 iput(inode);
1554 iput(dir);
1555 return ret;
1556}
1557
1558/*
1559 * take a single entry in a log directory item and replay it into
1560 * the subvolume.
1561 *
1562 * if a conflicting item exists in the subdirectory already,
1563 * the inode it points to is unlinked and put into the link count
1564 * fix up tree.
1565 *
1566 * If a name from the log points to a file or directory that does
1567 * not exist in the FS, it is skipped. fsyncs on directories
1568 * do not force down inodes inside that directory, just changes to the
1569 * names or unlinks in a directory.
1570 */
1571static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root,
1573 struct btrfs_path *path,
1574 struct extent_buffer *eb,
1575 struct btrfs_dir_item *di,
1576 struct btrfs_key *key)
1577{
1578 char *name;
1579 int name_len;
1580 struct btrfs_dir_item *dst_di;
1581 struct btrfs_key found_key;
1582 struct btrfs_key log_key;
1583 struct inode *dir;
e02119d5 1584 u8 log_type;
4bef0848 1585 int exists;
3650860b 1586 int ret = 0;
d555438b 1587 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
e02119d5
CM
1588
1589 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1590 if (!dir)
1591 return -EIO;
e02119d5
CM
1592
1593 name_len = btrfs_dir_name_len(eb, di);
1594 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1595 if (!name) {
1596 ret = -ENOMEM;
1597 goto out;
1598 }
2a29edc6 1599
e02119d5
CM
1600 log_type = btrfs_dir_type(eb, di);
1601 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1602 name_len);
1603
1604 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1605 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1606 if (exists == 0)
1607 exists = 1;
1608 else
1609 exists = 0;
b3b4aa74 1610 btrfs_release_path(path);
4bef0848 1611
e02119d5
CM
1612 if (key->type == BTRFS_DIR_ITEM_KEY) {
1613 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1614 name, name_len, 1);
d397712b 1615 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1616 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1617 key->objectid,
1618 key->offset, name,
1619 name_len, 1);
1620 } else {
3650860b
JB
1621 /* Corruption */
1622 ret = -EINVAL;
1623 goto out;
e02119d5 1624 }
c704005d 1625 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1626 /* we need a sequence number to insert, so we only
1627 * do inserts for the BTRFS_DIR_INDEX_KEY types
1628 */
1629 if (key->type != BTRFS_DIR_INDEX_KEY)
1630 goto out;
1631 goto insert;
1632 }
1633
1634 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1635 /* the existing item matches the logged item */
1636 if (found_key.objectid == log_key.objectid &&
1637 found_key.type == log_key.type &&
1638 found_key.offset == log_key.offset &&
1639 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1640 update_size = false;
e02119d5
CM
1641 goto out;
1642 }
1643
1644 /*
1645 * don't drop the conflicting directory entry if the inode
1646 * for the new entry doesn't exist
1647 */
4bef0848 1648 if (!exists)
e02119d5
CM
1649 goto out;
1650
e02119d5 1651 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1652 if (ret)
1653 goto out;
e02119d5
CM
1654
1655 if (key->type == BTRFS_DIR_INDEX_KEY)
1656 goto insert;
1657out:
b3b4aa74 1658 btrfs_release_path(path);
d555438b
JB
1659 if (!ret && update_size) {
1660 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1661 ret = btrfs_update_inode(trans, root, dir);
1662 }
e02119d5
CM
1663 kfree(name);
1664 iput(dir);
3650860b 1665 return ret;
e02119d5
CM
1666
1667insert:
b3b4aa74 1668 btrfs_release_path(path);
e02119d5
CM
1669 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1670 name, name_len, log_type, &log_key);
3650860b
JB
1671 if (ret && ret != -ENOENT)
1672 goto out;
d555438b 1673 update_size = false;
3650860b 1674 ret = 0;
e02119d5
CM
1675 goto out;
1676}
1677
1678/*
1679 * find all the names in a directory item and reconcile them into
1680 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1681 * one name in a directory item, but the same code gets used for
1682 * both directory index types
1683 */
1684static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1685 struct btrfs_root *root,
1686 struct btrfs_path *path,
1687 struct extent_buffer *eb, int slot,
1688 struct btrfs_key *key)
1689{
1690 int ret;
1691 u32 item_size = btrfs_item_size_nr(eb, slot);
1692 struct btrfs_dir_item *di;
1693 int name_len;
1694 unsigned long ptr;
1695 unsigned long ptr_end;
1696
1697 ptr = btrfs_item_ptr_offset(eb, slot);
1698 ptr_end = ptr + item_size;
d397712b 1699 while (ptr < ptr_end) {
e02119d5 1700 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1701 if (verify_dir_item(root, eb, di))
1702 return -EIO;
e02119d5
CM
1703 name_len = btrfs_dir_name_len(eb, di);
1704 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1705 if (ret)
1706 return ret;
e02119d5
CM
1707 ptr = (unsigned long)(di + 1);
1708 ptr += name_len;
1709 }
1710 return 0;
1711}
1712
1713/*
1714 * directory replay has two parts. There are the standard directory
1715 * items in the log copied from the subvolume, and range items
1716 * created in the log while the subvolume was logged.
1717 *
1718 * The range items tell us which parts of the key space the log
1719 * is authoritative for. During replay, if a key in the subvolume
1720 * directory is in a logged range item, but not actually in the log
1721 * that means it was deleted from the directory before the fsync
1722 * and should be removed.
1723 */
1724static noinline int find_dir_range(struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 u64 dirid, int key_type,
1727 u64 *start_ret, u64 *end_ret)
1728{
1729 struct btrfs_key key;
1730 u64 found_end;
1731 struct btrfs_dir_log_item *item;
1732 int ret;
1733 int nritems;
1734
1735 if (*start_ret == (u64)-1)
1736 return 1;
1737
1738 key.objectid = dirid;
1739 key.type = key_type;
1740 key.offset = *start_ret;
1741
1742 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1743 if (ret < 0)
1744 goto out;
1745 if (ret > 0) {
1746 if (path->slots[0] == 0)
1747 goto out;
1748 path->slots[0]--;
1749 }
1750 if (ret != 0)
1751 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1752
1753 if (key.type != key_type || key.objectid != dirid) {
1754 ret = 1;
1755 goto next;
1756 }
1757 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1758 struct btrfs_dir_log_item);
1759 found_end = btrfs_dir_log_end(path->nodes[0], item);
1760
1761 if (*start_ret >= key.offset && *start_ret <= found_end) {
1762 ret = 0;
1763 *start_ret = key.offset;
1764 *end_ret = found_end;
1765 goto out;
1766 }
1767 ret = 1;
1768next:
1769 /* check the next slot in the tree to see if it is a valid item */
1770 nritems = btrfs_header_nritems(path->nodes[0]);
1771 if (path->slots[0] >= nritems) {
1772 ret = btrfs_next_leaf(root, path);
1773 if (ret)
1774 goto out;
1775 } else {
1776 path->slots[0]++;
1777 }
1778
1779 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1780
1781 if (key.type != key_type || key.objectid != dirid) {
1782 ret = 1;
1783 goto out;
1784 }
1785 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 struct btrfs_dir_log_item);
1787 found_end = btrfs_dir_log_end(path->nodes[0], item);
1788 *start_ret = key.offset;
1789 *end_ret = found_end;
1790 ret = 0;
1791out:
b3b4aa74 1792 btrfs_release_path(path);
e02119d5
CM
1793 return ret;
1794}
1795
1796/*
1797 * this looks for a given directory item in the log. If the directory
1798 * item is not in the log, the item is removed and the inode it points
1799 * to is unlinked
1800 */
1801static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 struct btrfs_root *log,
1804 struct btrfs_path *path,
1805 struct btrfs_path *log_path,
1806 struct inode *dir,
1807 struct btrfs_key *dir_key)
1808{
1809 int ret;
1810 struct extent_buffer *eb;
1811 int slot;
1812 u32 item_size;
1813 struct btrfs_dir_item *di;
1814 struct btrfs_dir_item *log_di;
1815 int name_len;
1816 unsigned long ptr;
1817 unsigned long ptr_end;
1818 char *name;
1819 struct inode *inode;
1820 struct btrfs_key location;
1821
1822again:
1823 eb = path->nodes[0];
1824 slot = path->slots[0];
1825 item_size = btrfs_item_size_nr(eb, slot);
1826 ptr = btrfs_item_ptr_offset(eb, slot);
1827 ptr_end = ptr + item_size;
d397712b 1828 while (ptr < ptr_end) {
e02119d5 1829 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1830 if (verify_dir_item(root, eb, di)) {
1831 ret = -EIO;
1832 goto out;
1833 }
1834
e02119d5
CM
1835 name_len = btrfs_dir_name_len(eb, di);
1836 name = kmalloc(name_len, GFP_NOFS);
1837 if (!name) {
1838 ret = -ENOMEM;
1839 goto out;
1840 }
1841 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1842 name_len);
1843 log_di = NULL;
12fcfd22 1844 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1845 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1846 dir_key->objectid,
1847 name, name_len, 0);
12fcfd22 1848 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1849 log_di = btrfs_lookup_dir_index_item(trans, log,
1850 log_path,
1851 dir_key->objectid,
1852 dir_key->offset,
1853 name, name_len, 0);
1854 }
269d040f 1855 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 1856 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1857 btrfs_release_path(path);
1858 btrfs_release_path(log_path);
e02119d5 1859 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1860 if (!inode) {
1861 kfree(name);
1862 return -EIO;
1863 }
e02119d5
CM
1864
1865 ret = link_to_fixup_dir(trans, root,
1866 path, location.objectid);
3650860b
JB
1867 if (ret) {
1868 kfree(name);
1869 iput(inode);
1870 goto out;
1871 }
1872
8b558c5f 1873 inc_nlink(inode);
e02119d5
CM
1874 ret = btrfs_unlink_inode(trans, root, dir, inode,
1875 name, name_len);
3650860b 1876 if (!ret)
ada9af21 1877 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1878 kfree(name);
1879 iput(inode);
3650860b
JB
1880 if (ret)
1881 goto out;
e02119d5
CM
1882
1883 /* there might still be more names under this key
1884 * check and repeat if required
1885 */
1886 ret = btrfs_search_slot(NULL, root, dir_key, path,
1887 0, 0);
1888 if (ret == 0)
1889 goto again;
1890 ret = 0;
1891 goto out;
269d040f
FDBM
1892 } else if (IS_ERR(log_di)) {
1893 kfree(name);
1894 return PTR_ERR(log_di);
e02119d5 1895 }
b3b4aa74 1896 btrfs_release_path(log_path);
e02119d5
CM
1897 kfree(name);
1898
1899 ptr = (unsigned long)(di + 1);
1900 ptr += name_len;
1901 }
1902 ret = 0;
1903out:
b3b4aa74
DS
1904 btrfs_release_path(path);
1905 btrfs_release_path(log_path);
e02119d5
CM
1906 return ret;
1907}
1908
1909/*
1910 * deletion replay happens before we copy any new directory items
1911 * out of the log or out of backreferences from inodes. It
1912 * scans the log to find ranges of keys that log is authoritative for,
1913 * and then scans the directory to find items in those ranges that are
1914 * not present in the log.
1915 *
1916 * Anything we don't find in the log is unlinked and removed from the
1917 * directory.
1918 */
1919static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 struct btrfs_root *log,
1922 struct btrfs_path *path,
12fcfd22 1923 u64 dirid, int del_all)
e02119d5
CM
1924{
1925 u64 range_start;
1926 u64 range_end;
1927 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1928 int ret = 0;
1929 struct btrfs_key dir_key;
1930 struct btrfs_key found_key;
1931 struct btrfs_path *log_path;
1932 struct inode *dir;
1933
1934 dir_key.objectid = dirid;
1935 dir_key.type = BTRFS_DIR_ITEM_KEY;
1936 log_path = btrfs_alloc_path();
1937 if (!log_path)
1938 return -ENOMEM;
1939
1940 dir = read_one_inode(root, dirid);
1941 /* it isn't an error if the inode isn't there, that can happen
1942 * because we replay the deletes before we copy in the inode item
1943 * from the log
1944 */
1945 if (!dir) {
1946 btrfs_free_path(log_path);
1947 return 0;
1948 }
1949again:
1950 range_start = 0;
1951 range_end = 0;
d397712b 1952 while (1) {
12fcfd22
CM
1953 if (del_all)
1954 range_end = (u64)-1;
1955 else {
1956 ret = find_dir_range(log, path, dirid, key_type,
1957 &range_start, &range_end);
1958 if (ret != 0)
1959 break;
1960 }
e02119d5
CM
1961
1962 dir_key.offset = range_start;
d397712b 1963 while (1) {
e02119d5
CM
1964 int nritems;
1965 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1966 0, 0);
1967 if (ret < 0)
1968 goto out;
1969
1970 nritems = btrfs_header_nritems(path->nodes[0]);
1971 if (path->slots[0] >= nritems) {
1972 ret = btrfs_next_leaf(root, path);
1973 if (ret)
1974 break;
1975 }
1976 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1977 path->slots[0]);
1978 if (found_key.objectid != dirid ||
1979 found_key.type != dir_key.type)
1980 goto next_type;
1981
1982 if (found_key.offset > range_end)
1983 break;
1984
1985 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1986 log_path, dir,
1987 &found_key);
3650860b
JB
1988 if (ret)
1989 goto out;
e02119d5
CM
1990 if (found_key.offset == (u64)-1)
1991 break;
1992 dir_key.offset = found_key.offset + 1;
1993 }
b3b4aa74 1994 btrfs_release_path(path);
e02119d5
CM
1995 if (range_end == (u64)-1)
1996 break;
1997 range_start = range_end + 1;
1998 }
1999
2000next_type:
2001 ret = 0;
2002 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2003 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2004 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2005 btrfs_release_path(path);
e02119d5
CM
2006 goto again;
2007 }
2008out:
b3b4aa74 2009 btrfs_release_path(path);
e02119d5
CM
2010 btrfs_free_path(log_path);
2011 iput(dir);
2012 return ret;
2013}
2014
2015/*
2016 * the process_func used to replay items from the log tree. This
2017 * gets called in two different stages. The first stage just looks
2018 * for inodes and makes sure they are all copied into the subvolume.
2019 *
2020 * The second stage copies all the other item types from the log into
2021 * the subvolume. The two stage approach is slower, but gets rid of
2022 * lots of complexity around inodes referencing other inodes that exist
2023 * only in the log (references come from either directory items or inode
2024 * back refs).
2025 */
2026static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2027 struct walk_control *wc, u64 gen)
2028{
2029 int nritems;
2030 struct btrfs_path *path;
2031 struct btrfs_root *root = wc->replay_dest;
2032 struct btrfs_key key;
e02119d5
CM
2033 int level;
2034 int i;
2035 int ret;
2036
018642a1
TI
2037 ret = btrfs_read_buffer(eb, gen);
2038 if (ret)
2039 return ret;
e02119d5
CM
2040
2041 level = btrfs_header_level(eb);
2042
2043 if (level != 0)
2044 return 0;
2045
2046 path = btrfs_alloc_path();
1e5063d0
MF
2047 if (!path)
2048 return -ENOMEM;
e02119d5
CM
2049
2050 nritems = btrfs_header_nritems(eb);
2051 for (i = 0; i < nritems; i++) {
2052 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2053
2054 /* inode keys are done during the first stage */
2055 if (key.type == BTRFS_INODE_ITEM_KEY &&
2056 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2057 struct btrfs_inode_item *inode_item;
2058 u32 mode;
2059
2060 inode_item = btrfs_item_ptr(eb, i,
2061 struct btrfs_inode_item);
2062 mode = btrfs_inode_mode(eb, inode_item);
2063 if (S_ISDIR(mode)) {
2064 ret = replay_dir_deletes(wc->trans,
12fcfd22 2065 root, log, path, key.objectid, 0);
b50c6e25
JB
2066 if (ret)
2067 break;
e02119d5
CM
2068 }
2069 ret = overwrite_item(wc->trans, root, path,
2070 eb, i, &key);
b50c6e25
JB
2071 if (ret)
2072 break;
e02119d5 2073
c71bf099
YZ
2074 /* for regular files, make sure corresponding
2075 * orhpan item exist. extents past the new EOF
2076 * will be truncated later by orphan cleanup.
e02119d5
CM
2077 */
2078 if (S_ISREG(mode)) {
c71bf099
YZ
2079 ret = insert_orphan_item(wc->trans, root,
2080 key.objectid);
b50c6e25
JB
2081 if (ret)
2082 break;
e02119d5 2083 }
c71bf099 2084
e02119d5
CM
2085 ret = link_to_fixup_dir(wc->trans, root,
2086 path, key.objectid);
b50c6e25
JB
2087 if (ret)
2088 break;
e02119d5 2089 }
dd8e7217
JB
2090
2091 if (key.type == BTRFS_DIR_INDEX_KEY &&
2092 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2093 ret = replay_one_dir_item(wc->trans, root, path,
2094 eb, i, &key);
2095 if (ret)
2096 break;
2097 }
2098
e02119d5
CM
2099 if (wc->stage < LOG_WALK_REPLAY_ALL)
2100 continue;
2101
2102 /* these keys are simply copied */
2103 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2104 ret = overwrite_item(wc->trans, root, path,
2105 eb, i, &key);
b50c6e25
JB
2106 if (ret)
2107 break;
2da1c669
LB
2108 } else if (key.type == BTRFS_INODE_REF_KEY ||
2109 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2110 ret = add_inode_ref(wc->trans, root, log, path,
2111 eb, i, &key);
b50c6e25
JB
2112 if (ret && ret != -ENOENT)
2113 break;
2114 ret = 0;
e02119d5
CM
2115 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2116 ret = replay_one_extent(wc->trans, root, path,
2117 eb, i, &key);
b50c6e25
JB
2118 if (ret)
2119 break;
dd8e7217 2120 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2121 ret = replay_one_dir_item(wc->trans, root, path,
2122 eb, i, &key);
b50c6e25
JB
2123 if (ret)
2124 break;
e02119d5
CM
2125 }
2126 }
2127 btrfs_free_path(path);
b50c6e25 2128 return ret;
e02119d5
CM
2129}
2130
d397712b 2131static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2132 struct btrfs_root *root,
2133 struct btrfs_path *path, int *level,
2134 struct walk_control *wc)
2135{
2136 u64 root_owner;
e02119d5
CM
2137 u64 bytenr;
2138 u64 ptr_gen;
2139 struct extent_buffer *next;
2140 struct extent_buffer *cur;
2141 struct extent_buffer *parent;
2142 u32 blocksize;
2143 int ret = 0;
2144
2145 WARN_ON(*level < 0);
2146 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2147
d397712b 2148 while (*level > 0) {
e02119d5
CM
2149 WARN_ON(*level < 0);
2150 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2151 cur = path->nodes[*level];
2152
fae7f21c 2153 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2154
2155 if (path->slots[*level] >=
2156 btrfs_header_nritems(cur))
2157 break;
2158
2159 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2160 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
707e8a07 2161 blocksize = root->nodesize;
e02119d5
CM
2162
2163 parent = path->nodes[*level];
2164 root_owner = btrfs_header_owner(parent);
e02119d5 2165
a83fffb7 2166 next = btrfs_find_create_tree_block(root, bytenr);
2a29edc6 2167 if (!next)
2168 return -ENOMEM;
e02119d5 2169
e02119d5 2170 if (*level == 1) {
1e5063d0 2171 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2172 if (ret) {
2173 free_extent_buffer(next);
1e5063d0 2174 return ret;
b50c6e25 2175 }
4a500fd1 2176
e02119d5
CM
2177 path->slots[*level]++;
2178 if (wc->free) {
018642a1
TI
2179 ret = btrfs_read_buffer(next, ptr_gen);
2180 if (ret) {
2181 free_extent_buffer(next);
2182 return ret;
2183 }
e02119d5 2184
681ae509
JB
2185 if (trans) {
2186 btrfs_tree_lock(next);
2187 btrfs_set_lock_blocking(next);
2188 clean_tree_block(trans, root, next);
2189 btrfs_wait_tree_block_writeback(next);
2190 btrfs_tree_unlock(next);
2191 }
e02119d5 2192
e02119d5
CM
2193 WARN_ON(root_owner !=
2194 BTRFS_TREE_LOG_OBJECTID);
e688b725 2195 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2196 bytenr, blocksize);
3650860b
JB
2197 if (ret) {
2198 free_extent_buffer(next);
2199 return ret;
2200 }
e02119d5
CM
2201 }
2202 free_extent_buffer(next);
2203 continue;
2204 }
018642a1
TI
2205 ret = btrfs_read_buffer(next, ptr_gen);
2206 if (ret) {
2207 free_extent_buffer(next);
2208 return ret;
2209 }
e02119d5
CM
2210
2211 WARN_ON(*level <= 0);
2212 if (path->nodes[*level-1])
2213 free_extent_buffer(path->nodes[*level-1]);
2214 path->nodes[*level-1] = next;
2215 *level = btrfs_header_level(next);
2216 path->slots[*level] = 0;
2217 cond_resched();
2218 }
2219 WARN_ON(*level < 0);
2220 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2221
4a500fd1 2222 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2223
2224 cond_resched();
2225 return 0;
2226}
2227
d397712b 2228static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2229 struct btrfs_root *root,
2230 struct btrfs_path *path, int *level,
2231 struct walk_control *wc)
2232{
2233 u64 root_owner;
e02119d5
CM
2234 int i;
2235 int slot;
2236 int ret;
2237
d397712b 2238 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2239 slot = path->slots[i];
4a500fd1 2240 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2241 path->slots[i]++;
2242 *level = i;
2243 WARN_ON(*level == 0);
2244 return 0;
2245 } else {
31840ae1
ZY
2246 struct extent_buffer *parent;
2247 if (path->nodes[*level] == root->node)
2248 parent = path->nodes[*level];
2249 else
2250 parent = path->nodes[*level + 1];
2251
2252 root_owner = btrfs_header_owner(parent);
1e5063d0 2253 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2254 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2255 if (ret)
2256 return ret;
2257
e02119d5
CM
2258 if (wc->free) {
2259 struct extent_buffer *next;
2260
2261 next = path->nodes[*level];
2262
681ae509
JB
2263 if (trans) {
2264 btrfs_tree_lock(next);
2265 btrfs_set_lock_blocking(next);
2266 clean_tree_block(trans, root, next);
2267 btrfs_wait_tree_block_writeback(next);
2268 btrfs_tree_unlock(next);
2269 }
e02119d5 2270
e02119d5 2271 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2272 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2273 path->nodes[*level]->start,
d00aff00 2274 path->nodes[*level]->len);
3650860b
JB
2275 if (ret)
2276 return ret;
e02119d5
CM
2277 }
2278 free_extent_buffer(path->nodes[*level]);
2279 path->nodes[*level] = NULL;
2280 *level = i + 1;
2281 }
2282 }
2283 return 1;
2284}
2285
2286/*
2287 * drop the reference count on the tree rooted at 'snap'. This traverses
2288 * the tree freeing any blocks that have a ref count of zero after being
2289 * decremented.
2290 */
2291static int walk_log_tree(struct btrfs_trans_handle *trans,
2292 struct btrfs_root *log, struct walk_control *wc)
2293{
2294 int ret = 0;
2295 int wret;
2296 int level;
2297 struct btrfs_path *path;
e02119d5
CM
2298 int orig_level;
2299
2300 path = btrfs_alloc_path();
db5b493a
TI
2301 if (!path)
2302 return -ENOMEM;
e02119d5
CM
2303
2304 level = btrfs_header_level(log->node);
2305 orig_level = level;
2306 path->nodes[level] = log->node;
2307 extent_buffer_get(log->node);
2308 path->slots[level] = 0;
2309
d397712b 2310 while (1) {
e02119d5
CM
2311 wret = walk_down_log_tree(trans, log, path, &level, wc);
2312 if (wret > 0)
2313 break;
79787eaa 2314 if (wret < 0) {
e02119d5 2315 ret = wret;
79787eaa
JM
2316 goto out;
2317 }
e02119d5
CM
2318
2319 wret = walk_up_log_tree(trans, log, path, &level, wc);
2320 if (wret > 0)
2321 break;
79787eaa 2322 if (wret < 0) {
e02119d5 2323 ret = wret;
79787eaa
JM
2324 goto out;
2325 }
e02119d5
CM
2326 }
2327
2328 /* was the root node processed? if not, catch it here */
2329 if (path->nodes[orig_level]) {
79787eaa 2330 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2331 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2332 if (ret)
2333 goto out;
e02119d5
CM
2334 if (wc->free) {
2335 struct extent_buffer *next;
2336
2337 next = path->nodes[orig_level];
2338
681ae509
JB
2339 if (trans) {
2340 btrfs_tree_lock(next);
2341 btrfs_set_lock_blocking(next);
2342 clean_tree_block(trans, log, next);
2343 btrfs_wait_tree_block_writeback(next);
2344 btrfs_tree_unlock(next);
2345 }
e02119d5 2346
e02119d5
CM
2347 WARN_ON(log->root_key.objectid !=
2348 BTRFS_TREE_LOG_OBJECTID);
e688b725 2349 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2350 next->len);
3650860b
JB
2351 if (ret)
2352 goto out;
e02119d5
CM
2353 }
2354 }
2355
79787eaa 2356out:
e02119d5 2357 btrfs_free_path(path);
e02119d5
CM
2358 return ret;
2359}
2360
7237f183
YZ
2361/*
2362 * helper function to update the item for a given subvolumes log root
2363 * in the tree of log roots
2364 */
2365static int update_log_root(struct btrfs_trans_handle *trans,
2366 struct btrfs_root *log)
2367{
2368 int ret;
2369
2370 if (log->log_transid == 1) {
2371 /* insert root item on the first sync */
2372 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2373 &log->root_key, &log->root_item);
2374 } else {
2375 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2376 &log->root_key, &log->root_item);
2377 }
2378 return ret;
2379}
2380
8b050d35
MX
2381static void wait_log_commit(struct btrfs_trans_handle *trans,
2382 struct btrfs_root *root, int transid)
e02119d5
CM
2383{
2384 DEFINE_WAIT(wait);
7237f183 2385 int index = transid % 2;
e02119d5 2386
7237f183
YZ
2387 /*
2388 * we only allow two pending log transactions at a time,
2389 * so we know that if ours is more than 2 older than the
2390 * current transaction, we're done
2391 */
e02119d5 2392 do {
7237f183
YZ
2393 prepare_to_wait(&root->log_commit_wait[index],
2394 &wait, TASK_UNINTERRUPTIBLE);
2395 mutex_unlock(&root->log_mutex);
12fcfd22 2396
d1433deb 2397 if (root->log_transid_committed < transid &&
7237f183
YZ
2398 atomic_read(&root->log_commit[index]))
2399 schedule();
12fcfd22 2400
7237f183
YZ
2401 finish_wait(&root->log_commit_wait[index], &wait);
2402 mutex_lock(&root->log_mutex);
d1433deb 2403 } while (root->log_transid_committed < transid &&
7237f183 2404 atomic_read(&root->log_commit[index]));
7237f183
YZ
2405}
2406
143bede5
JM
2407static void wait_for_writer(struct btrfs_trans_handle *trans,
2408 struct btrfs_root *root)
7237f183
YZ
2409{
2410 DEFINE_WAIT(wait);
8b050d35
MX
2411
2412 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2413 prepare_to_wait(&root->log_writer_wait,
2414 &wait, TASK_UNINTERRUPTIBLE);
2415 mutex_unlock(&root->log_mutex);
8b050d35 2416 if (atomic_read(&root->log_writers))
e02119d5 2417 schedule();
7237f183
YZ
2418 mutex_lock(&root->log_mutex);
2419 finish_wait(&root->log_writer_wait, &wait);
2420 }
e02119d5
CM
2421}
2422
8b050d35
MX
2423static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2424 struct btrfs_log_ctx *ctx)
2425{
2426 if (!ctx)
2427 return;
2428
2429 mutex_lock(&root->log_mutex);
2430 list_del_init(&ctx->list);
2431 mutex_unlock(&root->log_mutex);
2432}
2433
2434/*
2435 * Invoked in log mutex context, or be sure there is no other task which
2436 * can access the list.
2437 */
2438static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2439 int index, int error)
2440{
2441 struct btrfs_log_ctx *ctx;
2442
2443 if (!error) {
2444 INIT_LIST_HEAD(&root->log_ctxs[index]);
2445 return;
2446 }
2447
2448 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2449 ctx->log_ret = error;
2450
2451 INIT_LIST_HEAD(&root->log_ctxs[index]);
2452}
2453
e02119d5
CM
2454/*
2455 * btrfs_sync_log does sends a given tree log down to the disk and
2456 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2457 * you know that any inodes previously logged are safely on disk only
2458 * if it returns 0.
2459 *
2460 * Any other return value means you need to call btrfs_commit_transaction.
2461 * Some of the edge cases for fsyncing directories that have had unlinks
2462 * or renames done in the past mean that sometimes the only safe
2463 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2464 * that has happened.
e02119d5
CM
2465 */
2466int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2467 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2468{
7237f183
YZ
2469 int index1;
2470 int index2;
8cef4e16 2471 int mark;
e02119d5 2472 int ret;
e02119d5 2473 struct btrfs_root *log = root->log_root;
7237f183 2474 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
bb14a59b 2475 int log_transid = 0;
8b050d35 2476 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2477 struct blk_plug plug;
e02119d5 2478
7237f183 2479 mutex_lock(&root->log_mutex);
d1433deb
MX
2480 log_transid = ctx->log_transid;
2481 if (root->log_transid_committed >= log_transid) {
2482 mutex_unlock(&root->log_mutex);
2483 return ctx->log_ret;
2484 }
2485
2486 index1 = log_transid % 2;
7237f183 2487 if (atomic_read(&root->log_commit[index1])) {
d1433deb 2488 wait_log_commit(trans, root, log_transid);
7237f183 2489 mutex_unlock(&root->log_mutex);
8b050d35 2490 return ctx->log_ret;
e02119d5 2491 }
d1433deb 2492 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2493 atomic_set(&root->log_commit[index1], 1);
2494
2495 /* wait for previous tree log sync to complete */
2496 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
d1433deb 2497 wait_log_commit(trans, root, log_transid - 1);
48cab2e0 2498
86df7eb9 2499 while (1) {
2ecb7923 2500 int batch = atomic_read(&root->log_batch);
cd354ad6 2501 /* when we're on an ssd, just kick the log commit out */
27cdeb70
MX
2502 if (!btrfs_test_opt(root, SSD) &&
2503 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2504 mutex_unlock(&root->log_mutex);
2505 schedule_timeout_uninterruptible(1);
2506 mutex_lock(&root->log_mutex);
2507 }
12fcfd22 2508 wait_for_writer(trans, root);
2ecb7923 2509 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2510 break;
2511 }
e02119d5 2512
12fcfd22 2513 /* bail out if we need to do a full commit */
995946dd 2514 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
12fcfd22 2515 ret = -EAGAIN;
2ab28f32 2516 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2517 mutex_unlock(&root->log_mutex);
2518 goto out;
2519 }
2520
8cef4e16
YZ
2521 if (log_transid % 2 == 0)
2522 mark = EXTENT_DIRTY;
2523 else
2524 mark = EXTENT_NEW;
2525
690587d1
CM
2526 /* we start IO on all the marked extents here, but we don't actually
2527 * wait for them until later.
2528 */
c6adc9cc 2529 blk_start_plug(&plug);
8cef4e16 2530 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2531 if (ret) {
c6adc9cc 2532 blk_finish_plug(&plug);
79787eaa 2533 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2534 btrfs_free_logged_extents(log, log_transid);
995946dd 2535 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa
JM
2536 mutex_unlock(&root->log_mutex);
2537 goto out;
2538 }
7237f183 2539
5d4f98a2 2540 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2541
7237f183
YZ
2542 root->log_transid++;
2543 log->log_transid = root->log_transid;
ff782e0a 2544 root->log_start_pid = 0;
7237f183 2545 /*
8cef4e16
YZ
2546 * IO has been started, blocks of the log tree have WRITTEN flag set
2547 * in their headers. new modifications of the log will be written to
2548 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2549 */
2550 mutex_unlock(&root->log_mutex);
2551
d1433deb
MX
2552 btrfs_init_log_ctx(&root_log_ctx);
2553
7237f183 2554 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2555 atomic_inc(&log_root_tree->log_batch);
7237f183 2556 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2557
2558 index2 = log_root_tree->log_transid % 2;
2559 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2560 root_log_ctx.log_transid = log_root_tree->log_transid;
2561
7237f183
YZ
2562 mutex_unlock(&log_root_tree->log_mutex);
2563
2564 ret = update_log_root(trans, log);
7237f183
YZ
2565
2566 mutex_lock(&log_root_tree->log_mutex);
2567 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2568 smp_mb();
2569 if (waitqueue_active(&log_root_tree->log_writer_wait))
2570 wake_up(&log_root_tree->log_writer_wait);
2571 }
2572
4a500fd1 2573 if (ret) {
d1433deb
MX
2574 if (!list_empty(&root_log_ctx.list))
2575 list_del_init(&root_log_ctx.list);
2576
c6adc9cc 2577 blk_finish_plug(&plug);
995946dd
MX
2578 btrfs_set_log_full_commit(root->fs_info, trans);
2579
79787eaa
JM
2580 if (ret != -ENOSPC) {
2581 btrfs_abort_transaction(trans, root, ret);
2582 mutex_unlock(&log_root_tree->log_mutex);
2583 goto out;
2584 }
4a500fd1 2585 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2586 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2587 mutex_unlock(&log_root_tree->log_mutex);
2588 ret = -EAGAIN;
2589 goto out;
2590 }
2591
d1433deb
MX
2592 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2593 mutex_unlock(&log_root_tree->log_mutex);
2594 ret = root_log_ctx.log_ret;
2595 goto out;
2596 }
8b050d35 2597
d1433deb 2598 index2 = root_log_ctx.log_transid % 2;
7237f183 2599 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2600 blk_finish_plug(&plug);
5ab5e44a
FM
2601 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2602 mark);
50d9aa99 2603 btrfs_wait_logged_extents(trans, log, log_transid);
8b050d35 2604 wait_log_commit(trans, log_root_tree,
d1433deb 2605 root_log_ctx.log_transid);
7237f183 2606 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2607 if (!ret)
2608 ret = root_log_ctx.log_ret;
7237f183
YZ
2609 goto out;
2610 }
d1433deb 2611 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2612 atomic_set(&log_root_tree->log_commit[index2], 1);
2613
12fcfd22
CM
2614 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2615 wait_log_commit(trans, log_root_tree,
d1433deb 2616 root_log_ctx.log_transid - 1);
12fcfd22
CM
2617 }
2618
2619 wait_for_writer(trans, log_root_tree);
7237f183 2620
12fcfd22
CM
2621 /*
2622 * now that we've moved on to the tree of log tree roots,
2623 * check the full commit flag again
2624 */
995946dd 2625 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
c6adc9cc 2626 blk_finish_plug(&plug);
8cef4e16 2627 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2628 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2629 mutex_unlock(&log_root_tree->log_mutex);
2630 ret = -EAGAIN;
2631 goto out_wake_log_root;
2632 }
7237f183 2633
c6adc9cc
MX
2634 ret = btrfs_write_marked_extents(log_root_tree,
2635 &log_root_tree->dirty_log_pages,
2636 EXTENT_DIRTY | EXTENT_NEW);
2637 blk_finish_plug(&plug);
79787eaa 2638 if (ret) {
995946dd 2639 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa 2640 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2641 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2642 mutex_unlock(&log_root_tree->log_mutex);
2643 goto out_wake_log_root;
2644 }
5ab5e44a
FM
2645 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2646 if (!ret)
2647 ret = btrfs_wait_marked_extents(log_root_tree,
2648 &log_root_tree->dirty_log_pages,
2649 EXTENT_NEW | EXTENT_DIRTY);
2650 if (ret) {
2651 btrfs_set_log_full_commit(root->fs_info, trans);
2652 btrfs_free_logged_extents(log, log_transid);
2653 mutex_unlock(&log_root_tree->log_mutex);
2654 goto out_wake_log_root;
2655 }
50d9aa99 2656 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2657
6c41761f 2658 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2659 log_root_tree->node->start);
6c41761f 2660 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2661 btrfs_header_level(log_root_tree->node));
e02119d5 2662
7237f183 2663 log_root_tree->log_transid++;
7237f183
YZ
2664 mutex_unlock(&log_root_tree->log_mutex);
2665
2666 /*
2667 * nobody else is going to jump in and write the the ctree
2668 * super here because the log_commit atomic below is protecting
2669 * us. We must be called with a transaction handle pinning
2670 * the running transaction open, so a full commit can't hop
2671 * in and cause problems either.
2672 */
5af3e8cc 2673 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
5af3e8cc 2674 if (ret) {
995946dd 2675 btrfs_set_log_full_commit(root->fs_info, trans);
5af3e8cc
SB
2676 btrfs_abort_transaction(trans, root, ret);
2677 goto out_wake_log_root;
2678 }
7237f183 2679
257c62e1
CM
2680 mutex_lock(&root->log_mutex);
2681 if (root->last_log_commit < log_transid)
2682 root->last_log_commit = log_transid;
2683 mutex_unlock(&root->log_mutex);
2684
12fcfd22 2685out_wake_log_root:
8b050d35
MX
2686 /*
2687 * We needn't get log_mutex here because we are sure all
2688 * the other tasks are blocked.
2689 */
2690 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2691
d1433deb
MX
2692 mutex_lock(&log_root_tree->log_mutex);
2693 log_root_tree->log_transid_committed++;
7237f183 2694 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2695 mutex_unlock(&log_root_tree->log_mutex);
2696
7237f183
YZ
2697 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2698 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2699out:
8b050d35
MX
2700 /* See above. */
2701 btrfs_remove_all_log_ctxs(root, index1, ret);
2702
d1433deb
MX
2703 mutex_lock(&root->log_mutex);
2704 root->log_transid_committed++;
7237f183 2705 atomic_set(&root->log_commit[index1], 0);
d1433deb 2706 mutex_unlock(&root->log_mutex);
8b050d35 2707
7237f183
YZ
2708 if (waitqueue_active(&root->log_commit_wait[index1]))
2709 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2710 return ret;
e02119d5
CM
2711}
2712
4a500fd1
YZ
2713static void free_log_tree(struct btrfs_trans_handle *trans,
2714 struct btrfs_root *log)
e02119d5
CM
2715{
2716 int ret;
d0c803c4
CM
2717 u64 start;
2718 u64 end;
e02119d5
CM
2719 struct walk_control wc = {
2720 .free = 1,
2721 .process_func = process_one_buffer
2722 };
2723
681ae509
JB
2724 ret = walk_log_tree(trans, log, &wc);
2725 /* I don't think this can happen but just in case */
2726 if (ret)
2727 btrfs_abort_transaction(trans, log, ret);
e02119d5 2728
d397712b 2729 while (1) {
d0c803c4 2730 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2731 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2732 NULL);
d0c803c4
CM
2733 if (ret)
2734 break;
2735
8cef4e16
YZ
2736 clear_extent_bits(&log->dirty_log_pages, start, end,
2737 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2738 }
2739
2ab28f32
JB
2740 /*
2741 * We may have short-circuited the log tree with the full commit logic
2742 * and left ordered extents on our list, so clear these out to keep us
2743 * from leaking inodes and memory.
2744 */
2745 btrfs_free_logged_extents(log, 0);
2746 btrfs_free_logged_extents(log, 1);
2747
7237f183
YZ
2748 free_extent_buffer(log->node);
2749 kfree(log);
4a500fd1
YZ
2750}
2751
2752/*
2753 * free all the extents used by the tree log. This should be called
2754 * at commit time of the full transaction
2755 */
2756int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2757{
2758 if (root->log_root) {
2759 free_log_tree(trans, root->log_root);
2760 root->log_root = NULL;
2761 }
2762 return 0;
2763}
2764
2765int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2766 struct btrfs_fs_info *fs_info)
2767{
2768 if (fs_info->log_root_tree) {
2769 free_log_tree(trans, fs_info->log_root_tree);
2770 fs_info->log_root_tree = NULL;
2771 }
e02119d5
CM
2772 return 0;
2773}
2774
e02119d5
CM
2775/*
2776 * If both a file and directory are logged, and unlinks or renames are
2777 * mixed in, we have a few interesting corners:
2778 *
2779 * create file X in dir Y
2780 * link file X to X.link in dir Y
2781 * fsync file X
2782 * unlink file X but leave X.link
2783 * fsync dir Y
2784 *
2785 * After a crash we would expect only X.link to exist. But file X
2786 * didn't get fsync'd again so the log has back refs for X and X.link.
2787 *
2788 * We solve this by removing directory entries and inode backrefs from the
2789 * log when a file that was logged in the current transaction is
2790 * unlinked. Any later fsync will include the updated log entries, and
2791 * we'll be able to reconstruct the proper directory items from backrefs.
2792 *
2793 * This optimizations allows us to avoid relogging the entire inode
2794 * or the entire directory.
2795 */
2796int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2797 struct btrfs_root *root,
2798 const char *name, int name_len,
2799 struct inode *dir, u64 index)
2800{
2801 struct btrfs_root *log;
2802 struct btrfs_dir_item *di;
2803 struct btrfs_path *path;
2804 int ret;
4a500fd1 2805 int err = 0;
e02119d5 2806 int bytes_del = 0;
33345d01 2807 u64 dir_ino = btrfs_ino(dir);
e02119d5 2808
3a5f1d45
CM
2809 if (BTRFS_I(dir)->logged_trans < trans->transid)
2810 return 0;
2811
e02119d5
CM
2812 ret = join_running_log_trans(root);
2813 if (ret)
2814 return 0;
2815
2816 mutex_lock(&BTRFS_I(dir)->log_mutex);
2817
2818 log = root->log_root;
2819 path = btrfs_alloc_path();
a62f44a5
TI
2820 if (!path) {
2821 err = -ENOMEM;
2822 goto out_unlock;
2823 }
2a29edc6 2824
33345d01 2825 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2826 name, name_len, -1);
4a500fd1
YZ
2827 if (IS_ERR(di)) {
2828 err = PTR_ERR(di);
2829 goto fail;
2830 }
2831 if (di) {
e02119d5
CM
2832 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2833 bytes_del += name_len;
3650860b
JB
2834 if (ret) {
2835 err = ret;
2836 goto fail;
2837 }
e02119d5 2838 }
b3b4aa74 2839 btrfs_release_path(path);
33345d01 2840 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2841 index, name, name_len, -1);
4a500fd1
YZ
2842 if (IS_ERR(di)) {
2843 err = PTR_ERR(di);
2844 goto fail;
2845 }
2846 if (di) {
e02119d5
CM
2847 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2848 bytes_del += name_len;
3650860b
JB
2849 if (ret) {
2850 err = ret;
2851 goto fail;
2852 }
e02119d5
CM
2853 }
2854
2855 /* update the directory size in the log to reflect the names
2856 * we have removed
2857 */
2858 if (bytes_del) {
2859 struct btrfs_key key;
2860
33345d01 2861 key.objectid = dir_ino;
e02119d5
CM
2862 key.offset = 0;
2863 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2864 btrfs_release_path(path);
e02119d5
CM
2865
2866 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2867 if (ret < 0) {
2868 err = ret;
2869 goto fail;
2870 }
e02119d5
CM
2871 if (ret == 0) {
2872 struct btrfs_inode_item *item;
2873 u64 i_size;
2874
2875 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2876 struct btrfs_inode_item);
2877 i_size = btrfs_inode_size(path->nodes[0], item);
2878 if (i_size > bytes_del)
2879 i_size -= bytes_del;
2880 else
2881 i_size = 0;
2882 btrfs_set_inode_size(path->nodes[0], item, i_size);
2883 btrfs_mark_buffer_dirty(path->nodes[0]);
2884 } else
2885 ret = 0;
b3b4aa74 2886 btrfs_release_path(path);
e02119d5 2887 }
4a500fd1 2888fail:
e02119d5 2889 btrfs_free_path(path);
a62f44a5 2890out_unlock:
e02119d5 2891 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1 2892 if (ret == -ENOSPC) {
995946dd 2893 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 2894 ret = 0;
79787eaa
JM
2895 } else if (ret < 0)
2896 btrfs_abort_transaction(trans, root, ret);
2897
12fcfd22 2898 btrfs_end_log_trans(root);
e02119d5 2899
411fc6bc 2900 return err;
e02119d5
CM
2901}
2902
2903/* see comments for btrfs_del_dir_entries_in_log */
2904int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2905 struct btrfs_root *root,
2906 const char *name, int name_len,
2907 struct inode *inode, u64 dirid)
2908{
2909 struct btrfs_root *log;
2910 u64 index;
2911 int ret;
2912
3a5f1d45
CM
2913 if (BTRFS_I(inode)->logged_trans < trans->transid)
2914 return 0;
2915
e02119d5
CM
2916 ret = join_running_log_trans(root);
2917 if (ret)
2918 return 0;
2919 log = root->log_root;
2920 mutex_lock(&BTRFS_I(inode)->log_mutex);
2921
33345d01 2922 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2923 dirid, &index);
2924 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1 2925 if (ret == -ENOSPC) {
995946dd 2926 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 2927 ret = 0;
79787eaa
JM
2928 } else if (ret < 0 && ret != -ENOENT)
2929 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2930 btrfs_end_log_trans(root);
e02119d5 2931
e02119d5
CM
2932 return ret;
2933}
2934
2935/*
2936 * creates a range item in the log for 'dirid'. first_offset and
2937 * last_offset tell us which parts of the key space the log should
2938 * be considered authoritative for.
2939 */
2940static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2941 struct btrfs_root *log,
2942 struct btrfs_path *path,
2943 int key_type, u64 dirid,
2944 u64 first_offset, u64 last_offset)
2945{
2946 int ret;
2947 struct btrfs_key key;
2948 struct btrfs_dir_log_item *item;
2949
2950 key.objectid = dirid;
2951 key.offset = first_offset;
2952 if (key_type == BTRFS_DIR_ITEM_KEY)
2953 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2954 else
2955 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2956 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2957 if (ret)
2958 return ret;
e02119d5
CM
2959
2960 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2961 struct btrfs_dir_log_item);
2962 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2963 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 2964 btrfs_release_path(path);
e02119d5
CM
2965 return 0;
2966}
2967
2968/*
2969 * log all the items included in the current transaction for a given
2970 * directory. This also creates the range items in the log tree required
2971 * to replay anything deleted before the fsync
2972 */
2973static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2974 struct btrfs_root *root, struct inode *inode,
2975 struct btrfs_path *path,
2976 struct btrfs_path *dst_path, int key_type,
2977 u64 min_offset, u64 *last_offset_ret)
2978{
2979 struct btrfs_key min_key;
e02119d5
CM
2980 struct btrfs_root *log = root->log_root;
2981 struct extent_buffer *src;
4a500fd1 2982 int err = 0;
e02119d5
CM
2983 int ret;
2984 int i;
2985 int nritems;
2986 u64 first_offset = min_offset;
2987 u64 last_offset = (u64)-1;
33345d01 2988 u64 ino = btrfs_ino(inode);
e02119d5
CM
2989
2990 log = root->log_root;
e02119d5 2991
33345d01 2992 min_key.objectid = ino;
e02119d5
CM
2993 min_key.type = key_type;
2994 min_key.offset = min_offset;
2995
6174d3cb 2996 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
2997
2998 /*
2999 * we didn't find anything from this transaction, see if there
3000 * is anything at all
3001 */
33345d01
LZ
3002 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3003 min_key.objectid = ino;
e02119d5
CM
3004 min_key.type = key_type;
3005 min_key.offset = (u64)-1;
b3b4aa74 3006 btrfs_release_path(path);
e02119d5
CM
3007 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3008 if (ret < 0) {
b3b4aa74 3009 btrfs_release_path(path);
e02119d5
CM
3010 return ret;
3011 }
33345d01 3012 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3013
3014 /* if ret == 0 there are items for this type,
3015 * create a range to tell us the last key of this type.
3016 * otherwise, there are no items in this directory after
3017 * *min_offset, and we create a range to indicate that.
3018 */
3019 if (ret == 0) {
3020 struct btrfs_key tmp;
3021 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3022 path->slots[0]);
d397712b 3023 if (key_type == tmp.type)
e02119d5 3024 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3025 }
3026 goto done;
3027 }
3028
3029 /* go backward to find any previous key */
33345d01 3030 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3031 if (ret == 0) {
3032 struct btrfs_key tmp;
3033 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3034 if (key_type == tmp.type) {
3035 first_offset = tmp.offset;
3036 ret = overwrite_item(trans, log, dst_path,
3037 path->nodes[0], path->slots[0],
3038 &tmp);
4a500fd1
YZ
3039 if (ret) {
3040 err = ret;
3041 goto done;
3042 }
e02119d5
CM
3043 }
3044 }
b3b4aa74 3045 btrfs_release_path(path);
e02119d5
CM
3046
3047 /* find the first key from this transaction again */
3048 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3049 if (WARN_ON(ret != 0))
e02119d5 3050 goto done;
e02119d5
CM
3051
3052 /*
3053 * we have a block from this transaction, log every item in it
3054 * from our directory
3055 */
d397712b 3056 while (1) {
e02119d5
CM
3057 struct btrfs_key tmp;
3058 src = path->nodes[0];
3059 nritems = btrfs_header_nritems(src);
3060 for (i = path->slots[0]; i < nritems; i++) {
3061 btrfs_item_key_to_cpu(src, &min_key, i);
3062
33345d01 3063 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3064 goto done;
3065 ret = overwrite_item(trans, log, dst_path, src, i,
3066 &min_key);
4a500fd1
YZ
3067 if (ret) {
3068 err = ret;
3069 goto done;
3070 }
e02119d5
CM
3071 }
3072 path->slots[0] = nritems;
3073
3074 /*
3075 * look ahead to the next item and see if it is also
3076 * from this directory and from this transaction
3077 */
3078 ret = btrfs_next_leaf(root, path);
3079 if (ret == 1) {
3080 last_offset = (u64)-1;
3081 goto done;
3082 }
3083 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3084 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3085 last_offset = (u64)-1;
3086 goto done;
3087 }
3088 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3089 ret = overwrite_item(trans, log, dst_path,
3090 path->nodes[0], path->slots[0],
3091 &tmp);
4a500fd1
YZ
3092 if (ret)
3093 err = ret;
3094 else
3095 last_offset = tmp.offset;
e02119d5
CM
3096 goto done;
3097 }
3098 }
3099done:
b3b4aa74
DS
3100 btrfs_release_path(path);
3101 btrfs_release_path(dst_path);
e02119d5 3102
4a500fd1
YZ
3103 if (err == 0) {
3104 *last_offset_ret = last_offset;
3105 /*
3106 * insert the log range keys to indicate where the log
3107 * is valid
3108 */
3109 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3110 ino, first_offset, last_offset);
4a500fd1
YZ
3111 if (ret)
3112 err = ret;
3113 }
3114 return err;
e02119d5
CM
3115}
3116
3117/*
3118 * logging directories is very similar to logging inodes, We find all the items
3119 * from the current transaction and write them to the log.
3120 *
3121 * The recovery code scans the directory in the subvolume, and if it finds a
3122 * key in the range logged that is not present in the log tree, then it means
3123 * that dir entry was unlinked during the transaction.
3124 *
3125 * In order for that scan to work, we must include one key smaller than
3126 * the smallest logged by this transaction and one key larger than the largest
3127 * key logged by this transaction.
3128 */
3129static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root, struct inode *inode,
3131 struct btrfs_path *path,
3132 struct btrfs_path *dst_path)
3133{
3134 u64 min_key;
3135 u64 max_key;
3136 int ret;
3137 int key_type = BTRFS_DIR_ITEM_KEY;
3138
3139again:
3140 min_key = 0;
3141 max_key = 0;
d397712b 3142 while (1) {
e02119d5
CM
3143 ret = log_dir_items(trans, root, inode, path,
3144 dst_path, key_type, min_key,
3145 &max_key);
4a500fd1
YZ
3146 if (ret)
3147 return ret;
e02119d5
CM
3148 if (max_key == (u64)-1)
3149 break;
3150 min_key = max_key + 1;
3151 }
3152
3153 if (key_type == BTRFS_DIR_ITEM_KEY) {
3154 key_type = BTRFS_DIR_INDEX_KEY;
3155 goto again;
3156 }
3157 return 0;
3158}
3159
3160/*
3161 * a helper function to drop items from the log before we relog an
3162 * inode. max_key_type indicates the highest item type to remove.
3163 * This cannot be run for file data extents because it does not
3164 * free the extents they point to.
3165 */
3166static int drop_objectid_items(struct btrfs_trans_handle *trans,
3167 struct btrfs_root *log,
3168 struct btrfs_path *path,
3169 u64 objectid, int max_key_type)
3170{
3171 int ret;
3172 struct btrfs_key key;
3173 struct btrfs_key found_key;
18ec90d6 3174 int start_slot;
e02119d5
CM
3175
3176 key.objectid = objectid;
3177 key.type = max_key_type;
3178 key.offset = (u64)-1;
3179
d397712b 3180 while (1) {
e02119d5 3181 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3182 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3183 if (ret < 0)
e02119d5
CM
3184 break;
3185
3186 if (path->slots[0] == 0)
3187 break;
3188
3189 path->slots[0]--;
3190 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3191 path->slots[0]);
3192
3193 if (found_key.objectid != objectid)
3194 break;
3195
18ec90d6
JB
3196 found_key.offset = 0;
3197 found_key.type = 0;
3198 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3199 &start_slot);
3200
3201 ret = btrfs_del_items(trans, log, path, start_slot,
3202 path->slots[0] - start_slot + 1);
3203 /*
3204 * If start slot isn't 0 then we don't need to re-search, we've
3205 * found the last guy with the objectid in this tree.
3206 */
3207 if (ret || start_slot != 0)
65a246c5 3208 break;
b3b4aa74 3209 btrfs_release_path(path);
e02119d5 3210 }
b3b4aa74 3211 btrfs_release_path(path);
5bdbeb21
JB
3212 if (ret > 0)
3213 ret = 0;
4a500fd1 3214 return ret;
e02119d5
CM
3215}
3216
94edf4ae
JB
3217static void fill_inode_item(struct btrfs_trans_handle *trans,
3218 struct extent_buffer *leaf,
3219 struct btrfs_inode_item *item,
3220 struct inode *inode, int log_inode_only)
3221{
0b1c6cca
JB
3222 struct btrfs_map_token token;
3223
3224 btrfs_init_map_token(&token);
94edf4ae
JB
3225
3226 if (log_inode_only) {
3227 /* set the generation to zero so the recover code
3228 * can tell the difference between an logging
3229 * just to say 'this inode exists' and a logging
3230 * to say 'update this inode with these values'
3231 */
0b1c6cca
JB
3232 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3233 btrfs_set_token_inode_size(leaf, item, 0, &token);
94edf4ae 3234 } else {
0b1c6cca
JB
3235 btrfs_set_token_inode_generation(leaf, item,
3236 BTRFS_I(inode)->generation,
3237 &token);
3238 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3239 }
3240
3241 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3242 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3243 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3244 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3245
3246 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3247 inode->i_atime.tv_sec, &token);
3248 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3249 inode->i_atime.tv_nsec, &token);
3250
3251 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3252 inode->i_mtime.tv_sec, &token);
3253 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3254 inode->i_mtime.tv_nsec, &token);
3255
3256 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3257 inode->i_ctime.tv_sec, &token);
3258 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3259 inode->i_ctime.tv_nsec, &token);
3260
3261 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3262 &token);
3263
3264 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3265 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3266 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3267 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3268 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3269}
3270
a95249b3
JB
3271static int log_inode_item(struct btrfs_trans_handle *trans,
3272 struct btrfs_root *log, struct btrfs_path *path,
3273 struct inode *inode)
3274{
3275 struct btrfs_inode_item *inode_item;
a95249b3
JB
3276 int ret;
3277
efd0c405
FDBM
3278 ret = btrfs_insert_empty_item(trans, log, path,
3279 &BTRFS_I(inode)->location,
a95249b3
JB
3280 sizeof(*inode_item));
3281 if (ret && ret != -EEXIST)
3282 return ret;
3283 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3284 struct btrfs_inode_item);
3285 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3286 btrfs_release_path(path);
3287 return 0;
3288}
3289
31ff1cd2 3290static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3291 struct inode *inode,
31ff1cd2 3292 struct btrfs_path *dst_path,
16e7549f 3293 struct btrfs_path *src_path, u64 *last_extent,
31ff1cd2
CM
3294 int start_slot, int nr, int inode_only)
3295{
3296 unsigned long src_offset;
3297 unsigned long dst_offset;
d2794405 3298 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3299 struct btrfs_file_extent_item *extent;
3300 struct btrfs_inode_item *inode_item;
16e7549f
JB
3301 struct extent_buffer *src = src_path->nodes[0];
3302 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3303 int ret;
3304 struct btrfs_key *ins_keys;
3305 u32 *ins_sizes;
3306 char *ins_data;
3307 int i;
d20f7043 3308 struct list_head ordered_sums;
d2794405 3309 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
16e7549f 3310 bool has_extents = false;
74121f7c 3311 bool need_find_last_extent = true;
16e7549f 3312 bool done = false;
d20f7043
CM
3313
3314 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3315
3316 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3317 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3318 if (!ins_data)
3319 return -ENOMEM;
3320
16e7549f
JB
3321 first_key.objectid = (u64)-1;
3322
31ff1cd2
CM
3323 ins_sizes = (u32 *)ins_data;
3324 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3325
3326 for (i = 0; i < nr; i++) {
3327 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3328 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3329 }
3330 ret = btrfs_insert_empty_items(trans, log, dst_path,
3331 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3332 if (ret) {
3333 kfree(ins_data);
3334 return ret;
3335 }
31ff1cd2 3336
5d4f98a2 3337 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3338 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3339 dst_path->slots[0]);
3340
3341 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3342
16e7549f
JB
3343 if ((i == (nr - 1)))
3344 last_key = ins_keys[i];
3345
94edf4ae 3346 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3347 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3348 dst_path->slots[0],
3349 struct btrfs_inode_item);
94edf4ae
JB
3350 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3351 inode, inode_only == LOG_INODE_EXISTS);
3352 } else {
3353 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3354 src_offset, ins_sizes[i]);
31ff1cd2 3355 }
94edf4ae 3356
16e7549f
JB
3357 /*
3358 * We set need_find_last_extent here in case we know we were
3359 * processing other items and then walk into the first extent in
3360 * the inode. If we don't hit an extent then nothing changes,
3361 * we'll do the last search the next time around.
3362 */
3363 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3364 has_extents = true;
74121f7c 3365 if (first_key.objectid == (u64)-1)
16e7549f
JB
3366 first_key = ins_keys[i];
3367 } else {
3368 need_find_last_extent = false;
3369 }
3370
31ff1cd2
CM
3371 /* take a reference on file data extents so that truncates
3372 * or deletes of this inode don't have to relog the inode
3373 * again
3374 */
962a298f 3375 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3376 !skip_csum) {
31ff1cd2
CM
3377 int found_type;
3378 extent = btrfs_item_ptr(src, start_slot + i,
3379 struct btrfs_file_extent_item);
3380
8e531cdf 3381 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3382 continue;
3383
31ff1cd2 3384 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3385 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3386 u64 ds, dl, cs, cl;
3387 ds = btrfs_file_extent_disk_bytenr(src,
3388 extent);
3389 /* ds == 0 is a hole */
3390 if (ds == 0)
3391 continue;
3392
3393 dl = btrfs_file_extent_disk_num_bytes(src,
3394 extent);
3395 cs = btrfs_file_extent_offset(src, extent);
3396 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3397 extent);
580afd76
CM
3398 if (btrfs_file_extent_compression(src,
3399 extent)) {
3400 cs = 0;
3401 cl = dl;
3402 }
5d4f98a2
YZ
3403
3404 ret = btrfs_lookup_csums_range(
3405 log->fs_info->csum_root,
3406 ds + cs, ds + cs + cl - 1,
a2de733c 3407 &ordered_sums, 0);
3650860b
JB
3408 if (ret) {
3409 btrfs_release_path(dst_path);
3410 kfree(ins_data);
3411 return ret;
3412 }
31ff1cd2
CM
3413 }
3414 }
31ff1cd2
CM
3415 }
3416
3417 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3418 btrfs_release_path(dst_path);
31ff1cd2 3419 kfree(ins_data);
d20f7043
CM
3420
3421 /*
3422 * we have to do this after the loop above to avoid changing the
3423 * log tree while trying to change the log tree.
3424 */
4a500fd1 3425 ret = 0;
d397712b 3426 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3427 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3428 struct btrfs_ordered_sum,
3429 list);
4a500fd1
YZ
3430 if (!ret)
3431 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3432 list_del(&sums->list);
3433 kfree(sums);
3434 }
16e7549f
JB
3435
3436 if (!has_extents)
3437 return ret;
3438
74121f7c
FM
3439 if (need_find_last_extent && *last_extent == first_key.offset) {
3440 /*
3441 * We don't have any leafs between our current one and the one
3442 * we processed before that can have file extent items for our
3443 * inode (and have a generation number smaller than our current
3444 * transaction id).
3445 */
3446 need_find_last_extent = false;
3447 }
3448
16e7549f
JB
3449 /*
3450 * Because we use btrfs_search_forward we could skip leaves that were
3451 * not modified and then assume *last_extent is valid when it really
3452 * isn't. So back up to the previous leaf and read the end of the last
3453 * extent before we go and fill in holes.
3454 */
3455 if (need_find_last_extent) {
3456 u64 len;
3457
3458 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3459 if (ret < 0)
3460 return ret;
3461 if (ret)
3462 goto fill_holes;
3463 if (src_path->slots[0])
3464 src_path->slots[0]--;
3465 src = src_path->nodes[0];
3466 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3467 if (key.objectid != btrfs_ino(inode) ||
3468 key.type != BTRFS_EXTENT_DATA_KEY)
3469 goto fill_holes;
3470 extent = btrfs_item_ptr(src, src_path->slots[0],
3471 struct btrfs_file_extent_item);
3472 if (btrfs_file_extent_type(src, extent) ==
3473 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3474 len = btrfs_file_extent_inline_len(src,
3475 src_path->slots[0],
3476 extent);
16e7549f
JB
3477 *last_extent = ALIGN(key.offset + len,
3478 log->sectorsize);
3479 } else {
3480 len = btrfs_file_extent_num_bytes(src, extent);
3481 *last_extent = key.offset + len;
3482 }
3483 }
3484fill_holes:
3485 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3486 * things could have happened
3487 *
3488 * 1) A merge could have happened, so we could currently be on a leaf
3489 * that holds what we were copying in the first place.
3490 * 2) A split could have happened, and now not all of the items we want
3491 * are on the same leaf.
3492 *
3493 * So we need to adjust how we search for holes, we need to drop the
3494 * path and re-search for the first extent key we found, and then walk
3495 * forward until we hit the last one we copied.
3496 */
3497 if (need_find_last_extent) {
3498 /* btrfs_prev_leaf could return 1 without releasing the path */
3499 btrfs_release_path(src_path);
3500 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3501 src_path, 0, 0);
3502 if (ret < 0)
3503 return ret;
3504 ASSERT(ret == 0);
3505 src = src_path->nodes[0];
3506 i = src_path->slots[0];
3507 } else {
3508 i = start_slot;
3509 }
3510
3511 /*
3512 * Ok so here we need to go through and fill in any holes we may have
3513 * to make sure that holes are punched for those areas in case they had
3514 * extents previously.
3515 */
3516 while (!done) {
3517 u64 offset, len;
3518 u64 extent_end;
3519
3520 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3521 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3522 if (ret < 0)
3523 return ret;
3524 ASSERT(ret == 0);
3525 src = src_path->nodes[0];
3526 i = 0;
3527 }
3528
3529 btrfs_item_key_to_cpu(src, &key, i);
3530 if (!btrfs_comp_cpu_keys(&key, &last_key))
3531 done = true;
3532 if (key.objectid != btrfs_ino(inode) ||
3533 key.type != BTRFS_EXTENT_DATA_KEY) {
3534 i++;
3535 continue;
3536 }
3537 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3538 if (btrfs_file_extent_type(src, extent) ==
3539 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3540 len = btrfs_file_extent_inline_len(src, i, extent);
16e7549f
JB
3541 extent_end = ALIGN(key.offset + len, log->sectorsize);
3542 } else {
3543 len = btrfs_file_extent_num_bytes(src, extent);
3544 extent_end = key.offset + len;
3545 }
3546 i++;
3547
3548 if (*last_extent == key.offset) {
3549 *last_extent = extent_end;
3550 continue;
3551 }
3552 offset = *last_extent;
3553 len = key.offset - *last_extent;
3554 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3555 offset, 0, 0, len, 0, len, 0,
3556 0, 0);
3557 if (ret)
3558 break;
74121f7c 3559 *last_extent = extent_end;
16e7549f
JB
3560 }
3561 /*
3562 * Need to let the callers know we dropped the path so they should
3563 * re-search.
3564 */
3565 if (!ret && need_find_last_extent)
3566 ret = 1;
4a500fd1 3567 return ret;
31ff1cd2
CM
3568}
3569
5dc562c5
JB
3570static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3571{
3572 struct extent_map *em1, *em2;
3573
3574 em1 = list_entry(a, struct extent_map, list);
3575 em2 = list_entry(b, struct extent_map, list);
3576
3577 if (em1->start < em2->start)
3578 return -1;
3579 else if (em1->start > em2->start)
3580 return 1;
3581 return 0;
3582}
3583
8407f553
FM
3584static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3585 struct inode *inode,
3586 struct btrfs_root *root,
3587 const struct extent_map *em,
3588 const struct list_head *logged_list,
3589 bool *ordered_io_error)
5dc562c5 3590{
2ab28f32 3591 struct btrfs_ordered_extent *ordered;
8407f553 3592 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3593 u64 mod_start = em->mod_start;
3594 u64 mod_len = em->mod_len;
8407f553 3595 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3596 u64 csum_offset;
3597 u64 csum_len;
8407f553
FM
3598 LIST_HEAD(ordered_sums);
3599 int ret = 0;
0aa4a17d 3600
8407f553 3601 *ordered_io_error = false;
0aa4a17d 3602
8407f553
FM
3603 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3604 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3605 return 0;
5dc562c5 3606
2ab28f32 3607 /*
8407f553
FM
3608 * Wait far any ordered extent that covers our extent map. If it
3609 * finishes without an error, first check and see if our csums are on
3610 * our outstanding ordered extents.
2ab28f32 3611 */
827463c4 3612 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3613 struct btrfs_ordered_sum *sum;
3614
3615 if (!mod_len)
3616 break;
3617
2ab28f32
JB
3618 if (ordered->file_offset + ordered->len <= mod_start ||
3619 mod_start + mod_len <= ordered->file_offset)
3620 continue;
3621
8407f553
FM
3622 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3623 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3624 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3625 const u64 start = ordered->file_offset;
3626 const u64 end = ordered->file_offset + ordered->len - 1;
3627
3628 WARN_ON(ordered->inode != inode);
3629 filemap_fdatawrite_range(inode->i_mapping, start, end);
3630 }
3631
3632 wait_event(ordered->wait,
3633 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3634 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3635
3636 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3637 /*
3638 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3639 * i_mapping flags, so that the next fsync won't get
3640 * an outdated io error too.
3641 */
3642 btrfs_inode_check_errors(inode);
8407f553
FM
3643 *ordered_io_error = true;
3644 break;
3645 }
2ab28f32
JB
3646 /*
3647 * We are going to copy all the csums on this ordered extent, so
3648 * go ahead and adjust mod_start and mod_len in case this
3649 * ordered extent has already been logged.
3650 */
3651 if (ordered->file_offset > mod_start) {
3652 if (ordered->file_offset + ordered->len >=
3653 mod_start + mod_len)
3654 mod_len = ordered->file_offset - mod_start;
3655 /*
3656 * If we have this case
3657 *
3658 * |--------- logged extent ---------|
3659 * |----- ordered extent ----|
3660 *
3661 * Just don't mess with mod_start and mod_len, we'll
3662 * just end up logging more csums than we need and it
3663 * will be ok.
3664 */
3665 } else {
3666 if (ordered->file_offset + ordered->len <
3667 mod_start + mod_len) {
3668 mod_len = (mod_start + mod_len) -
3669 (ordered->file_offset + ordered->len);
3670 mod_start = ordered->file_offset +
3671 ordered->len;
3672 } else {
3673 mod_len = 0;
3674 }
3675 }
3676
8407f553
FM
3677 if (skip_csum)
3678 continue;
3679
2ab28f32
JB
3680 /*
3681 * To keep us from looping for the above case of an ordered
3682 * extent that falls inside of the logged extent.
3683 */
3684 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3685 &ordered->flags))
3686 continue;
2ab28f32 3687
23c671a5
MX
3688 if (ordered->csum_bytes_left) {
3689 btrfs_start_ordered_extent(inode, ordered, 0);
3690 wait_event(ordered->wait,
3691 ordered->csum_bytes_left == 0);
3692 }
2ab28f32
JB
3693
3694 list_for_each_entry(sum, &ordered->list, list) {
3695 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 3696 if (ret)
8407f553 3697 break;
2ab28f32 3698 }
2ab28f32 3699 }
2ab28f32 3700
8407f553 3701 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
3702 return ret;
3703
488111aa
FDBM
3704 if (em->compress_type) {
3705 csum_offset = 0;
8407f553 3706 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
3707 } else {
3708 csum_offset = mod_start - em->start;
3709 csum_len = mod_len;
3710 }
2ab28f32 3711
70c8a91c
JB
3712 /* block start is already adjusted for the file extent offset. */
3713 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3714 em->block_start + csum_offset,
3715 em->block_start + csum_offset +
3716 csum_len - 1, &ordered_sums, 0);
3717 if (ret)
3718 return ret;
5dc562c5 3719
70c8a91c
JB
3720 while (!list_empty(&ordered_sums)) {
3721 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3722 struct btrfs_ordered_sum,
3723 list);
3724 if (!ret)
3725 ret = btrfs_csum_file_blocks(trans, log, sums);
3726 list_del(&sums->list);
3727 kfree(sums);
5dc562c5
JB
3728 }
3729
70c8a91c 3730 return ret;
5dc562c5
JB
3731}
3732
8407f553
FM
3733static int log_one_extent(struct btrfs_trans_handle *trans,
3734 struct inode *inode, struct btrfs_root *root,
3735 const struct extent_map *em,
3736 struct btrfs_path *path,
3737 const struct list_head *logged_list,
3738 struct btrfs_log_ctx *ctx)
3739{
3740 struct btrfs_root *log = root->log_root;
3741 struct btrfs_file_extent_item *fi;
3742 struct extent_buffer *leaf;
3743 struct btrfs_map_token token;
3744 struct btrfs_key key;
3745 u64 extent_offset = em->start - em->orig_start;
3746 u64 block_len;
3747 int ret;
3748 int extent_inserted = 0;
3749 bool ordered_io_err = false;
3750
3751 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3752 &ordered_io_err);
3753 if (ret)
3754 return ret;
3755
3756 if (ordered_io_err) {
3757 ctx->io_err = -EIO;
3758 return 0;
3759 }
3760
3761 btrfs_init_map_token(&token);
3762
3763 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3764 em->start + em->len, NULL, 0, 1,
3765 sizeof(*fi), &extent_inserted);
3766 if (ret)
3767 return ret;
3768
3769 if (!extent_inserted) {
3770 key.objectid = btrfs_ino(inode);
3771 key.type = BTRFS_EXTENT_DATA_KEY;
3772 key.offset = em->start;
3773
3774 ret = btrfs_insert_empty_item(trans, log, path, &key,
3775 sizeof(*fi));
3776 if (ret)
3777 return ret;
3778 }
3779 leaf = path->nodes[0];
3780 fi = btrfs_item_ptr(leaf, path->slots[0],
3781 struct btrfs_file_extent_item);
3782
50d9aa99 3783 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
3784 &token);
3785 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3786 btrfs_set_token_file_extent_type(leaf, fi,
3787 BTRFS_FILE_EXTENT_PREALLOC,
3788 &token);
3789 else
3790 btrfs_set_token_file_extent_type(leaf, fi,
3791 BTRFS_FILE_EXTENT_REG,
3792 &token);
3793
3794 block_len = max(em->block_len, em->orig_block_len);
3795 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3796 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3797 em->block_start,
3798 &token);
3799 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3800 &token);
3801 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3802 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3803 em->block_start -
3804 extent_offset, &token);
3805 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3806 &token);
3807 } else {
3808 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3809 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3810 &token);
3811 }
3812
3813 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
3814 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3815 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3816 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3817 &token);
3818 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3819 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3820 btrfs_mark_buffer_dirty(leaf);
3821
3822 btrfs_release_path(path);
3823
3824 return ret;
3825}
3826
5dc562c5
JB
3827static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3828 struct btrfs_root *root,
3829 struct inode *inode,
827463c4 3830 struct btrfs_path *path,
8407f553
FM
3831 struct list_head *logged_list,
3832 struct btrfs_log_ctx *ctx)
5dc562c5 3833{
5dc562c5
JB
3834 struct extent_map *em, *n;
3835 struct list_head extents;
3836 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3837 u64 test_gen;
3838 int ret = 0;
2ab28f32 3839 int num = 0;
5dc562c5
JB
3840
3841 INIT_LIST_HEAD(&extents);
3842
5dc562c5
JB
3843 write_lock(&tree->lock);
3844 test_gen = root->fs_info->last_trans_committed;
3845
3846 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3847 list_del_init(&em->list);
2ab28f32
JB
3848
3849 /*
3850 * Just an arbitrary number, this can be really CPU intensive
3851 * once we start getting a lot of extents, and really once we
3852 * have a bunch of extents we just want to commit since it will
3853 * be faster.
3854 */
3855 if (++num > 32768) {
3856 list_del_init(&tree->modified_extents);
3857 ret = -EFBIG;
3858 goto process;
3859 }
3860
5dc562c5
JB
3861 if (em->generation <= test_gen)
3862 continue;
ff44c6e3
JB
3863 /* Need a ref to keep it from getting evicted from cache */
3864 atomic_inc(&em->refs);
3865 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 3866 list_add_tail(&em->list, &extents);
2ab28f32 3867 num++;
5dc562c5
JB
3868 }
3869
3870 list_sort(NULL, &extents, extent_cmp);
3871
2ab28f32 3872process:
5dc562c5
JB
3873 while (!list_empty(&extents)) {
3874 em = list_entry(extents.next, struct extent_map, list);
3875
3876 list_del_init(&em->list);
3877
3878 /*
3879 * If we had an error we just need to delete everybody from our
3880 * private list.
3881 */
ff44c6e3 3882 if (ret) {
201a9038 3883 clear_em_logging(tree, em);
ff44c6e3 3884 free_extent_map(em);
5dc562c5 3885 continue;
ff44c6e3
JB
3886 }
3887
3888 write_unlock(&tree->lock);
5dc562c5 3889
8407f553
FM
3890 ret = log_one_extent(trans, inode, root, em, path, logged_list,
3891 ctx);
ff44c6e3 3892 write_lock(&tree->lock);
201a9038
JB
3893 clear_em_logging(tree, em);
3894 free_extent_map(em);
5dc562c5 3895 }
ff44c6e3
JB
3896 WARN_ON(!list_empty(&extents));
3897 write_unlock(&tree->lock);
5dc562c5 3898
5dc562c5 3899 btrfs_release_path(path);
5dc562c5
JB
3900 return ret;
3901}
3902
e02119d5
CM
3903/* log a single inode in the tree log.
3904 * At least one parent directory for this inode must exist in the tree
3905 * or be logged already.
3906 *
3907 * Any items from this inode changed by the current transaction are copied
3908 * to the log tree. An extra reference is taken on any extents in this
3909 * file, allowing us to avoid a whole pile of corner cases around logging
3910 * blocks that have been removed from the tree.
3911 *
3912 * See LOG_INODE_ALL and related defines for a description of what inode_only
3913 * does.
3914 *
3915 * This handles both files and directories.
3916 */
12fcfd22 3917static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
3918 struct btrfs_root *root, struct inode *inode,
3919 int inode_only,
3920 const loff_t start,
8407f553
FM
3921 const loff_t end,
3922 struct btrfs_log_ctx *ctx)
e02119d5
CM
3923{
3924 struct btrfs_path *path;
3925 struct btrfs_path *dst_path;
3926 struct btrfs_key min_key;
3927 struct btrfs_key max_key;
3928 struct btrfs_root *log = root->log_root;
31ff1cd2 3929 struct extent_buffer *src = NULL;
827463c4 3930 LIST_HEAD(logged_list);
16e7549f 3931 u64 last_extent = 0;
4a500fd1 3932 int err = 0;
e02119d5 3933 int ret;
3a5f1d45 3934 int nritems;
31ff1cd2
CM
3935 int ins_start_slot = 0;
3936 int ins_nr;
5dc562c5 3937 bool fast_search = false;
33345d01 3938 u64 ino = btrfs_ino(inode);
49dae1bc 3939 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
e02119d5 3940
e02119d5 3941 path = btrfs_alloc_path();
5df67083
TI
3942 if (!path)
3943 return -ENOMEM;
e02119d5 3944 dst_path = btrfs_alloc_path();
5df67083
TI
3945 if (!dst_path) {
3946 btrfs_free_path(path);
3947 return -ENOMEM;
3948 }
e02119d5 3949
33345d01 3950 min_key.objectid = ino;
e02119d5
CM
3951 min_key.type = BTRFS_INODE_ITEM_KEY;
3952 min_key.offset = 0;
3953
33345d01 3954 max_key.objectid = ino;
12fcfd22 3955
12fcfd22 3956
5dc562c5 3957 /* today the code can only do partial logging of directories */
5269b67e
MX
3958 if (S_ISDIR(inode->i_mode) ||
3959 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3960 &BTRFS_I(inode)->runtime_flags) &&
3961 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
3962 max_key.type = BTRFS_XATTR_ITEM_KEY;
3963 else
3964 max_key.type = (u8)-1;
3965 max_key.offset = (u64)-1;
3966
2c2c452b
FM
3967 /*
3968 * Only run delayed items if we are a dir or a new file.
3969 * Otherwise commit the delayed inode only, which is needed in
3970 * order for the log replay code to mark inodes for link count
3971 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
3972 */
94edf4ae 3973 if (S_ISDIR(inode->i_mode) ||
2c2c452b 3974 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
94edf4ae 3975 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b
FM
3976 else
3977 ret = btrfs_commit_inode_delayed_inode(inode);
3978
3979 if (ret) {
3980 btrfs_free_path(path);
3981 btrfs_free_path(dst_path);
3982 return ret;
16cdcec7
MX
3983 }
3984
e02119d5
CM
3985 mutex_lock(&BTRFS_I(inode)->log_mutex);
3986
0870295b 3987 btrfs_get_logged_extents(inode, &logged_list, start, end);
2ab28f32 3988
e02119d5
CM
3989 /*
3990 * a brute force approach to making sure we get the most uptodate
3991 * copies of everything.
3992 */
3993 if (S_ISDIR(inode->i_mode)) {
3994 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3995
3996 if (inode_only == LOG_INODE_EXISTS)
3997 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 3998 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 3999 } else {
5dc562c5
JB
4000 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4001 &BTRFS_I(inode)->runtime_flags)) {
e9976151
JB
4002 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4003 &BTRFS_I(inode)->runtime_flags);
5dc562c5
JB
4004 ret = btrfs_truncate_inode_items(trans, log,
4005 inode, 0, 0);
a95249b3 4006 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6cfab851
JB
4007 &BTRFS_I(inode)->runtime_flags) ||
4008 inode_only == LOG_INODE_EXISTS) {
183f37fa
LB
4009 if (inode_only == LOG_INODE_ALL)
4010 fast_search = true;
a95249b3 4011 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4012 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4013 max_key.type);
a95249b3
JB
4014 } else {
4015 if (inode_only == LOG_INODE_ALL)
4016 fast_search = true;
4017 ret = log_inode_item(trans, log, dst_path, inode);
4018 if (ret) {
4019 err = ret;
4020 goto out_unlock;
4021 }
4022 goto log_extents;
5dc562c5 4023 }
a95249b3 4024
e02119d5 4025 }
4a500fd1
YZ
4026 if (ret) {
4027 err = ret;
4028 goto out_unlock;
4029 }
e02119d5 4030
d397712b 4031 while (1) {
31ff1cd2 4032 ins_nr = 0;
6174d3cb 4033 ret = btrfs_search_forward(root, &min_key,
de78b51a 4034 path, trans->transid);
e02119d5
CM
4035 if (ret != 0)
4036 break;
3a5f1d45 4037again:
31ff1cd2 4038 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4039 if (min_key.objectid != ino)
e02119d5
CM
4040 break;
4041 if (min_key.type > max_key.type)
4042 break;
31ff1cd2 4043
e02119d5 4044 src = path->nodes[0];
31ff1cd2
CM
4045 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4046 ins_nr++;
4047 goto next_slot;
4048 } else if (!ins_nr) {
4049 ins_start_slot = path->slots[0];
4050 ins_nr = 1;
4051 goto next_slot;
e02119d5
CM
4052 }
4053
16e7549f
JB
4054 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4055 ins_start_slot, ins_nr, inode_only);
4056 if (ret < 0) {
4a500fd1
YZ
4057 err = ret;
4058 goto out_unlock;
a71db86e
RV
4059 }
4060 if (ret) {
16e7549f
JB
4061 ins_nr = 0;
4062 btrfs_release_path(path);
4063 continue;
4a500fd1 4064 }
31ff1cd2
CM
4065 ins_nr = 1;
4066 ins_start_slot = path->slots[0];
4067next_slot:
e02119d5 4068
3a5f1d45
CM
4069 nritems = btrfs_header_nritems(path->nodes[0]);
4070 path->slots[0]++;
4071 if (path->slots[0] < nritems) {
4072 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4073 path->slots[0]);
4074 goto again;
4075 }
31ff1cd2 4076 if (ins_nr) {
16e7549f
JB
4077 ret = copy_items(trans, inode, dst_path, path,
4078 &last_extent, ins_start_slot,
31ff1cd2 4079 ins_nr, inode_only);
16e7549f 4080 if (ret < 0) {
4a500fd1
YZ
4081 err = ret;
4082 goto out_unlock;
4083 }
16e7549f 4084 ret = 0;
31ff1cd2
CM
4085 ins_nr = 0;
4086 }
b3b4aa74 4087 btrfs_release_path(path);
3a5f1d45 4088
3d41d702 4089 if (min_key.offset < (u64)-1) {
e02119d5 4090 min_key.offset++;
3d41d702 4091 } else if (min_key.type < max_key.type) {
e02119d5 4092 min_key.type++;
3d41d702
FDBM
4093 min_key.offset = 0;
4094 } else {
e02119d5 4095 break;
3d41d702 4096 }
e02119d5 4097 }
31ff1cd2 4098 if (ins_nr) {
16e7549f
JB
4099 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4100 ins_start_slot, ins_nr, inode_only);
4101 if (ret < 0) {
4a500fd1
YZ
4102 err = ret;
4103 goto out_unlock;
4104 }
16e7549f 4105 ret = 0;
31ff1cd2
CM
4106 ins_nr = 0;
4107 }
5dc562c5 4108
a95249b3 4109log_extents:
f3b15ccd
JB
4110 btrfs_release_path(path);
4111 btrfs_release_path(dst_path);
5dc562c5 4112 if (fast_search) {
b38ef71c
FM
4113 /*
4114 * Some ordered extents started by fsync might have completed
4115 * before we collected the ordered extents in logged_list, which
4116 * means they're gone, not in our logged_list nor in the inode's
4117 * ordered tree. We want the application/user space to know an
4118 * error happened while attempting to persist file data so that
4119 * it can take proper action. If such error happened, we leave
4120 * without writing to the log tree and the fsync must report the
4121 * file data write error and not commit the current transaction.
4122 */
4123 err = btrfs_inode_check_errors(inode);
4124 if (err) {
4125 ctx->io_err = err;
4126 goto out_unlock;
4127 }
827463c4 4128 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
8407f553 4129 &logged_list, ctx);
5dc562c5
JB
4130 if (ret) {
4131 err = ret;
4132 goto out_unlock;
4133 }
d006a048 4134 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4135 struct extent_map *em, *n;
4136
49dae1bc
FM
4137 write_lock(&em_tree->lock);
4138 /*
4139 * We can't just remove every em if we're called for a ranged
4140 * fsync - that is, one that doesn't cover the whole possible
4141 * file range (0 to LLONG_MAX). This is because we can have
4142 * em's that fall outside the range we're logging and therefore
4143 * their ordered operations haven't completed yet
4144 * (btrfs_finish_ordered_io() not invoked yet). This means we
4145 * didn't get their respective file extent item in the fs/subvol
4146 * tree yet, and need to let the next fast fsync (one which
4147 * consults the list of modified extent maps) find the em so
4148 * that it logs a matching file extent item and waits for the
4149 * respective ordered operation to complete (if it's still
4150 * running).
4151 *
4152 * Removing every em outside the range we're logging would make
4153 * the next fast fsync not log their matching file extent items,
4154 * therefore making us lose data after a log replay.
4155 */
4156 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4157 list) {
4158 const u64 mod_end = em->mod_start + em->mod_len - 1;
4159
4160 if (em->mod_start >= start && mod_end <= end)
4161 list_del_init(&em->list);
4162 }
4163 write_unlock(&em_tree->lock);
5dc562c5
JB
4164 }
4165
9623f9a3 4166 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 4167 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
4168 if (ret) {
4169 err = ret;
4170 goto out_unlock;
4171 }
e02119d5 4172 }
49dae1bc 4173
125c4cf9
FM
4174 BTRFS_I(inode)->logged_trans = trans->transid;
4175 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 4176out_unlock:
827463c4
MX
4177 if (unlikely(err))
4178 btrfs_put_logged_extents(&logged_list);
4179 else
4180 btrfs_submit_logged_extents(&logged_list, log);
e02119d5
CM
4181 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4182
4183 btrfs_free_path(path);
4184 btrfs_free_path(dst_path);
4a500fd1 4185 return err;
e02119d5
CM
4186}
4187
12fcfd22
CM
4188/*
4189 * follow the dentry parent pointers up the chain and see if any
4190 * of the directories in it require a full commit before they can
4191 * be logged. Returns zero if nothing special needs to be done or 1 if
4192 * a full commit is required.
4193 */
4194static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4195 struct inode *inode,
4196 struct dentry *parent,
4197 struct super_block *sb,
4198 u64 last_committed)
e02119d5 4199{
12fcfd22
CM
4200 int ret = 0;
4201 struct btrfs_root *root;
6a912213 4202 struct dentry *old_parent = NULL;
de2b530b 4203 struct inode *orig_inode = inode;
e02119d5 4204
af4176b4
CM
4205 /*
4206 * for regular files, if its inode is already on disk, we don't
4207 * have to worry about the parents at all. This is because
4208 * we can use the last_unlink_trans field to record renames
4209 * and other fun in this file.
4210 */
4211 if (S_ISREG(inode->i_mode) &&
4212 BTRFS_I(inode)->generation <= last_committed &&
4213 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4214 goto out;
4215
12fcfd22
CM
4216 if (!S_ISDIR(inode->i_mode)) {
4217 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4218 goto out;
4219 inode = parent->d_inode;
4220 }
4221
4222 while (1) {
de2b530b
JB
4223 /*
4224 * If we are logging a directory then we start with our inode,
4225 * not our parents inode, so we need to skipp setting the
4226 * logged_trans so that further down in the log code we don't
4227 * think this inode has already been logged.
4228 */
4229 if (inode != orig_inode)
4230 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
4231 smp_mb();
4232
4233 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4234 root = BTRFS_I(inode)->root;
4235
4236 /*
4237 * make sure any commits to the log are forced
4238 * to be full commits
4239 */
995946dd 4240 btrfs_set_log_full_commit(root->fs_info, trans);
12fcfd22
CM
4241 ret = 1;
4242 break;
4243 }
4244
4245 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4246 break;
4247
76dda93c 4248 if (IS_ROOT(parent))
12fcfd22
CM
4249 break;
4250
6a912213
JB
4251 parent = dget_parent(parent);
4252 dput(old_parent);
4253 old_parent = parent;
12fcfd22
CM
4254 inode = parent->d_inode;
4255
4256 }
6a912213 4257 dput(old_parent);
12fcfd22 4258out:
e02119d5
CM
4259 return ret;
4260}
4261
4262/*
4263 * helper function around btrfs_log_inode to make sure newly created
4264 * parent directories also end up in the log. A minimal inode and backref
4265 * only logging is done of any parent directories that are older than
4266 * the last committed transaction
4267 */
48a3b636
ES
4268static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4269 struct btrfs_root *root, struct inode *inode,
49dae1bc
FM
4270 struct dentry *parent,
4271 const loff_t start,
4272 const loff_t end,
4273 int exists_only,
8b050d35 4274 struct btrfs_log_ctx *ctx)
e02119d5 4275{
12fcfd22 4276 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 4277 struct super_block *sb;
6a912213 4278 struct dentry *old_parent = NULL;
12fcfd22
CM
4279 int ret = 0;
4280 u64 last_committed = root->fs_info->last_trans_committed;
d36808e0
FM
4281 const struct dentry * const first_parent = parent;
4282 const bool did_unlink = (BTRFS_I(inode)->last_unlink_trans >
4283 last_committed);
12fcfd22
CM
4284
4285 sb = inode->i_sb;
4286
3a5e1404
SW
4287 if (btrfs_test_opt(root, NOTREELOG)) {
4288 ret = 1;
4289 goto end_no_trans;
4290 }
4291
995946dd
MX
4292 /*
4293 * The prev transaction commit doesn't complete, we need do
4294 * full commit by ourselves.
4295 */
12fcfd22
CM
4296 if (root->fs_info->last_trans_log_full_commit >
4297 root->fs_info->last_trans_committed) {
4298 ret = 1;
4299 goto end_no_trans;
4300 }
4301
76dda93c
YZ
4302 if (root != BTRFS_I(inode)->root ||
4303 btrfs_root_refs(&root->root_item) == 0) {
4304 ret = 1;
4305 goto end_no_trans;
4306 }
4307
12fcfd22
CM
4308 ret = check_parent_dirs_for_sync(trans, inode, parent,
4309 sb, last_committed);
4310 if (ret)
4311 goto end_no_trans;
e02119d5 4312
22ee6985 4313 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
4314 ret = BTRFS_NO_LOG_SYNC;
4315 goto end_no_trans;
4316 }
4317
8b050d35 4318 ret = start_log_trans(trans, root, ctx);
4a500fd1 4319 if (ret)
e87ac136 4320 goto end_no_trans;
e02119d5 4321
8407f553 4322 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
4323 if (ret)
4324 goto end_trans;
12fcfd22 4325
af4176b4
CM
4326 /*
4327 * for regular files, if its inode is already on disk, we don't
4328 * have to worry about the parents at all. This is because
4329 * we can use the last_unlink_trans field to record renames
4330 * and other fun in this file.
4331 */
4332 if (S_ISREG(inode->i_mode) &&
4333 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
4334 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4335 ret = 0;
4336 goto end_trans;
4337 }
af4176b4 4338
12fcfd22
CM
4339 while (1) {
4340 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
4341 break;
4342
12fcfd22 4343 inode = parent->d_inode;
76dda93c
YZ
4344 if (root != BTRFS_I(inode)->root)
4345 break;
4346
d36808e0
FM
4347 /*
4348 * On unlink we must make sure our immediate parent directory
4349 * inode is fully logged. This is to prevent leaving dangling
4350 * directory index entries and a wrong directory inode's i_size.
4351 * Not doing so can result in a directory being impossible to
4352 * delete after log replay (rmdir will always fail with error
4353 * -ENOTEMPTY).
4354 */
4355 if (did_unlink && parent == first_parent)
4356 inode_only = LOG_INODE_ALL;
4357 else
4358 inode_only = LOG_INODE_EXISTS;
4359
12fcfd22 4360 if (BTRFS_I(inode)->generation >
d36808e0
FM
4361 root->fs_info->last_trans_committed ||
4362 inode_only == LOG_INODE_ALL) {
49dae1bc 4363 ret = btrfs_log_inode(trans, root, inode, inode_only,
8407f553 4364 0, LLONG_MAX, ctx);
4a500fd1
YZ
4365 if (ret)
4366 goto end_trans;
12fcfd22 4367 }
76dda93c 4368 if (IS_ROOT(parent))
e02119d5 4369 break;
12fcfd22 4370
6a912213
JB
4371 parent = dget_parent(parent);
4372 dput(old_parent);
4373 old_parent = parent;
e02119d5 4374 }
12fcfd22 4375 ret = 0;
4a500fd1 4376end_trans:
6a912213 4377 dput(old_parent);
4a500fd1 4378 if (ret < 0) {
995946dd 4379 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1
YZ
4380 ret = 1;
4381 }
8b050d35
MX
4382
4383 if (ret)
4384 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
4385 btrfs_end_log_trans(root);
4386end_no_trans:
4387 return ret;
e02119d5
CM
4388}
4389
4390/*
4391 * it is not safe to log dentry if the chunk root has added new
4392 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4393 * If this returns 1, you must commit the transaction to safely get your
4394 * data on disk.
4395 */
4396int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 4397 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
4398 const loff_t start,
4399 const loff_t end,
8b050d35 4400 struct btrfs_log_ctx *ctx)
e02119d5 4401{
6a912213
JB
4402 struct dentry *parent = dget_parent(dentry);
4403 int ret;
4404
8b050d35 4405 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
49dae1bc 4406 start, end, 0, ctx);
6a912213
JB
4407 dput(parent);
4408
4409 return ret;
e02119d5
CM
4410}
4411
4412/*
4413 * should be called during mount to recover any replay any log trees
4414 * from the FS
4415 */
4416int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4417{
4418 int ret;
4419 struct btrfs_path *path;
4420 struct btrfs_trans_handle *trans;
4421 struct btrfs_key key;
4422 struct btrfs_key found_key;
4423 struct btrfs_key tmp_key;
4424 struct btrfs_root *log;
4425 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4426 struct walk_control wc = {
4427 .process_func = process_one_buffer,
4428 .stage = 0,
4429 };
4430
e02119d5 4431 path = btrfs_alloc_path();
db5b493a
TI
4432 if (!path)
4433 return -ENOMEM;
4434
4435 fs_info->log_root_recovering = 1;
e02119d5 4436
4a500fd1 4437 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
4438 if (IS_ERR(trans)) {
4439 ret = PTR_ERR(trans);
4440 goto error;
4441 }
e02119d5
CM
4442
4443 wc.trans = trans;
4444 wc.pin = 1;
4445
db5b493a 4446 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4447 if (ret) {
4448 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4449 "recovering log root tree.");
4450 goto error;
4451 }
e02119d5
CM
4452
4453again:
4454 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4455 key.offset = (u64)-1;
962a298f 4456 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 4457
d397712b 4458 while (1) {
e02119d5 4459 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4460
4461 if (ret < 0) {
4462 btrfs_error(fs_info, ret,
4463 "Couldn't find tree log root.");
4464 goto error;
4465 }
e02119d5
CM
4466 if (ret > 0) {
4467 if (path->slots[0] == 0)
4468 break;
4469 path->slots[0]--;
4470 }
4471 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4472 path->slots[0]);
b3b4aa74 4473 btrfs_release_path(path);
e02119d5
CM
4474 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4475 break;
4476
cb517eab 4477 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4478 if (IS_ERR(log)) {
4479 ret = PTR_ERR(log);
4480 btrfs_error(fs_info, ret,
4481 "Couldn't read tree log root.");
4482 goto error;
4483 }
e02119d5
CM
4484
4485 tmp_key.objectid = found_key.offset;
4486 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4487 tmp_key.offset = (u64)-1;
4488
4489 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4490 if (IS_ERR(wc.replay_dest)) {
4491 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4492 free_extent_buffer(log->node);
4493 free_extent_buffer(log->commit_root);
4494 kfree(log);
79787eaa
JM
4495 btrfs_error(fs_info, ret, "Couldn't read target root "
4496 "for tree log recovery.");
4497 goto error;
4498 }
e02119d5 4499
07d400a6 4500 wc.replay_dest->log_root = log;
5d4f98a2 4501 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4502 ret = walk_log_tree(trans, log, &wc);
e02119d5 4503
b50c6e25 4504 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4505 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4506 path);
e02119d5
CM
4507 }
4508
4509 key.offset = found_key.offset - 1;
07d400a6 4510 wc.replay_dest->log_root = NULL;
e02119d5 4511 free_extent_buffer(log->node);
b263c2c8 4512 free_extent_buffer(log->commit_root);
e02119d5
CM
4513 kfree(log);
4514
b50c6e25
JB
4515 if (ret)
4516 goto error;
4517
e02119d5
CM
4518 if (found_key.offset == 0)
4519 break;
4520 }
b3b4aa74 4521 btrfs_release_path(path);
e02119d5
CM
4522
4523 /* step one is to pin it all, step two is to replay just inodes */
4524 if (wc.pin) {
4525 wc.pin = 0;
4526 wc.process_func = replay_one_buffer;
4527 wc.stage = LOG_WALK_REPLAY_INODES;
4528 goto again;
4529 }
4530 /* step three is to replay everything */
4531 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4532 wc.stage++;
4533 goto again;
4534 }
4535
4536 btrfs_free_path(path);
4537
abefa55a
JB
4538 /* step 4: commit the transaction, which also unpins the blocks */
4539 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4540 if (ret)
4541 return ret;
4542
e02119d5
CM
4543 free_extent_buffer(log_root_tree->node);
4544 log_root_tree->log_root = NULL;
4545 fs_info->log_root_recovering = 0;
e02119d5 4546 kfree(log_root_tree);
79787eaa 4547
abefa55a 4548 return 0;
79787eaa 4549error:
b50c6e25
JB
4550 if (wc.trans)
4551 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4552 btrfs_free_path(path);
4553 return ret;
e02119d5 4554}
12fcfd22
CM
4555
4556/*
4557 * there are some corner cases where we want to force a full
4558 * commit instead of allowing a directory to be logged.
4559 *
4560 * They revolve around files there were unlinked from the directory, and
4561 * this function updates the parent directory so that a full commit is
4562 * properly done if it is fsync'd later after the unlinks are done.
4563 */
4564void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4565 struct inode *dir, struct inode *inode,
4566 int for_rename)
4567{
af4176b4
CM
4568 /*
4569 * when we're logging a file, if it hasn't been renamed
4570 * or unlinked, and its inode is fully committed on disk,
4571 * we don't have to worry about walking up the directory chain
4572 * to log its parents.
4573 *
4574 * So, we use the last_unlink_trans field to put this transid
4575 * into the file. When the file is logged we check it and
4576 * don't log the parents if the file is fully on disk.
4577 */
4578 if (S_ISREG(inode->i_mode))
4579 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4580
12fcfd22
CM
4581 /*
4582 * if this directory was already logged any new
4583 * names for this file/dir will get recorded
4584 */
4585 smp_mb();
4586 if (BTRFS_I(dir)->logged_trans == trans->transid)
4587 return;
4588
4589 /*
4590 * if the inode we're about to unlink was logged,
4591 * the log will be properly updated for any new names
4592 */
4593 if (BTRFS_I(inode)->logged_trans == trans->transid)
4594 return;
4595
4596 /*
4597 * when renaming files across directories, if the directory
4598 * there we're unlinking from gets fsync'd later on, there's
4599 * no way to find the destination directory later and fsync it
4600 * properly. So, we have to be conservative and force commits
4601 * so the new name gets discovered.
4602 */
4603 if (for_rename)
4604 goto record;
4605
4606 /* we can safely do the unlink without any special recording */
4607 return;
4608
4609record:
4610 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4611}
4612
4613/*
4614 * Call this after adding a new name for a file and it will properly
4615 * update the log to reflect the new name.
4616 *
4617 * It will return zero if all goes well, and it will return 1 if a
4618 * full transaction commit is required.
4619 */
4620int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4621 struct inode *inode, struct inode *old_dir,
4622 struct dentry *parent)
4623{
4624 struct btrfs_root * root = BTRFS_I(inode)->root;
4625
af4176b4
CM
4626 /*
4627 * this will force the logging code to walk the dentry chain
4628 * up for the file
4629 */
4630 if (S_ISREG(inode->i_mode))
4631 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4632
12fcfd22
CM
4633 /*
4634 * if this inode hasn't been logged and directory we're renaming it
4635 * from hasn't been logged, we don't need to log it
4636 */
4637 if (BTRFS_I(inode)->logged_trans <=
4638 root->fs_info->last_trans_committed &&
4639 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4640 root->fs_info->last_trans_committed))
4641 return 0;
4642
49dae1bc
FM
4643 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4644 LLONG_MAX, 1, NULL);
12fcfd22
CM
4645}
4646