]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
btrfs: update outdated comment for read_block_for_search()
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
26c2c454 23#include "inode-item.h"
e02119d5
CM
24
25/* magic values for the inode_only field in btrfs_log_inode:
26 *
27 * LOG_INODE_ALL means to log everything
28 * LOG_INODE_EXISTS means to log just enough to recreate the inode
29 * during log replay
30 */
e13976cf
DS
31enum {
32 LOG_INODE_ALL,
33 LOG_INODE_EXISTS,
34 LOG_OTHER_INODE,
35 LOG_OTHER_INODE_ALL,
36};
e02119d5 37
12fcfd22
CM
38/*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
e02119d5
CM
81/*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
e13976cf
DS
90enum {
91 LOG_WALK_PIN_ONLY,
92 LOG_WALK_REPLAY_INODES,
93 LOG_WALK_REPLAY_DIR_INDEX,
94 LOG_WALK_REPLAY_ALL,
95};
e02119d5 96
12fcfd22 97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 98 struct btrfs_inode *inode,
49dae1bc 99 int inode_only,
8407f553 100 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
fa1a0f42 109static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
0b246afa 143 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 144 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 145 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 146 int ret = 0;
fa1a0f42 147 bool created = false;
7237f183 148
47876f7c
FM
149 /*
150 * First check if the log root tree was already created. If not, create
151 * it before locking the root's log_mutex, just to keep lockdep happy.
152 */
153 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 mutex_lock(&tree_root->log_mutex);
155 if (!fs_info->log_root_tree) {
156 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 157 if (!ret) {
47876f7c 158 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
159 created = true;
160 }
47876f7c
FM
161 }
162 mutex_unlock(&tree_root->log_mutex);
163 if (ret)
164 return ret;
165 }
166
7237f183 167 mutex_lock(&root->log_mutex);
34eb2a52 168
fa1a0f42 169again:
7237f183 170 if (root->log_root) {
fa1a0f42
NA
171 int index = (root->log_transid + 1) % 2;
172
4884b8e8 173 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
174 ret = -EAGAIN;
175 goto out;
176 }
34eb2a52 177
fa1a0f42
NA
178 if (zoned && atomic_read(&root->log_commit[index])) {
179 wait_log_commit(root, root->log_transid - 1);
180 goto again;
181 }
182
ff782e0a 183 if (!root->log_start_pid) {
27cdeb70 184 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 185 root->log_start_pid = current->pid;
ff782e0a 186 } else if (root->log_start_pid != current->pid) {
27cdeb70 187 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 188 }
34eb2a52 189 } else {
fa1a0f42
NA
190 /*
191 * This means fs_info->log_root_tree was already created
192 * for some other FS trees. Do the full commit not to mix
193 * nodes from multiple log transactions to do sequential
194 * writing.
195 */
196 if (zoned && !created) {
197 ret = -EAGAIN;
198 goto out;
199 }
200
e02119d5 201 ret = btrfs_add_log_tree(trans, root);
4a500fd1 202 if (ret)
e87ac136 203 goto out;
34eb2a52 204
e7a79811 205 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
206 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 root->log_start_pid = current->pid;
e02119d5 208 }
34eb2a52 209
7237f183 210 atomic_inc(&root->log_writers);
289cffcb 211 if (!ctx->logging_new_name) {
34eb2a52 212 int index = root->log_transid % 2;
8b050d35 213 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 214 ctx->log_transid = root->log_transid;
8b050d35 215 }
34eb2a52 216
e87ac136 217out:
7237f183 218 mutex_unlock(&root->log_mutex);
e87ac136 219 return ret;
e02119d5
CM
220}
221
222/*
223 * returns 0 if there was a log transaction running and we were able
224 * to join, or returns -ENOENT if there were not transactions
225 * in progress
226 */
227static int join_running_log_trans(struct btrfs_root *root)
228{
fa1a0f42 229 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
230 int ret = -ENOENT;
231
e7a79811
FM
232 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 return ret;
234
7237f183 235 mutex_lock(&root->log_mutex);
fa1a0f42 236again:
e02119d5 237 if (root->log_root) {
fa1a0f42
NA
238 int index = (root->log_transid + 1) % 2;
239
e02119d5 240 ret = 0;
fa1a0f42
NA
241 if (zoned && atomic_read(&root->log_commit[index])) {
242 wait_log_commit(root, root->log_transid - 1);
243 goto again;
244 }
7237f183 245 atomic_inc(&root->log_writers);
e02119d5 246 }
7237f183 247 mutex_unlock(&root->log_mutex);
e02119d5
CM
248 return ret;
249}
250
12fcfd22
CM
251/*
252 * This either makes the current running log transaction wait
253 * until you call btrfs_end_log_trans() or it makes any future
254 * log transactions wait until you call btrfs_end_log_trans()
255 */
45128b08 256void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 257{
12fcfd22 258 atomic_inc(&root->log_writers);
12fcfd22
CM
259}
260
e02119d5
CM
261/*
262 * indicate we're done making changes to the log tree
263 * and wake up anyone waiting to do a sync
264 */
143bede5 265void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 266{
7237f183 267 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
268 /* atomic_dec_and_test implies a barrier */
269 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 270 }
e02119d5
CM
271}
272
247462a5
DS
273static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
274{
275 filemap_fdatawait_range(buf->pages[0]->mapping,
276 buf->start, buf->start + buf->len - 1);
277}
e02119d5
CM
278
279/*
280 * the walk control struct is used to pass state down the chain when
281 * processing the log tree. The stage field tells us which part
282 * of the log tree processing we are currently doing. The others
283 * are state fields used for that specific part
284 */
285struct walk_control {
286 /* should we free the extent on disk when done? This is used
287 * at transaction commit time while freeing a log tree
288 */
289 int free;
290
e02119d5
CM
291 /* pin only walk, we record which extents on disk belong to the
292 * log trees
293 */
294 int pin;
295
296 /* what stage of the replay code we're currently in */
297 int stage;
298
f2d72f42
FM
299 /*
300 * Ignore any items from the inode currently being processed. Needs
301 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
302 * the LOG_WALK_REPLAY_INODES stage.
303 */
304 bool ignore_cur_inode;
305
e02119d5
CM
306 /* the root we are currently replaying */
307 struct btrfs_root *replay_dest;
308
309 /* the trans handle for the current replay */
310 struct btrfs_trans_handle *trans;
311
312 /* the function that gets used to process blocks we find in the
313 * tree. Note the extent_buffer might not be up to date when it is
314 * passed in, and it must be checked or read if you need the data
315 * inside it
316 */
317 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 318 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
319};
320
321/*
322 * process_func used to pin down extents, write them or wait on them
323 */
324static int process_one_buffer(struct btrfs_root *log,
325 struct extent_buffer *eb,
581c1760 326 struct walk_control *wc, u64 gen, int level)
e02119d5 327{
0b246afa 328 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
329 int ret = 0;
330
8c2a1a30
JB
331 /*
332 * If this fs is mixed then we need to be able to process the leaves to
333 * pin down any logged extents, so we have to read the block.
334 */
0b246afa 335 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 336 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
337 if (ret)
338 return ret;
339 }
340
c816d705 341 if (wc->pin) {
9fce5704 342 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 343 eb->len);
c816d705
FM
344 if (ret)
345 return ret;
e02119d5 346
c816d705
FM
347 if (btrfs_buffer_uptodate(eb, gen, 0) &&
348 btrfs_header_level(eb) == 0)
bcdc428c 349 ret = btrfs_exclude_logged_extents(eb);
e02119d5 350 }
b50c6e25 351 return ret;
e02119d5
CM
352}
353
086dcbfa
FM
354static int do_overwrite_item(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root,
356 struct btrfs_path *path,
357 struct extent_buffer *eb, int slot,
358 struct btrfs_key *key)
e02119d5
CM
359{
360 int ret;
361 u32 item_size;
362 u64 saved_i_size = 0;
363 int save_old_i_size = 0;
364 unsigned long src_ptr;
365 unsigned long dst_ptr;
366 int overwrite_root = 0;
4bc4bee4 367 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
368
369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
370 overwrite_root = 1;
371
3212fa14 372 item_size = btrfs_item_size(eb, slot);
e02119d5
CM
373 src_ptr = btrfs_item_ptr_offset(eb, slot);
374
086dcbfa
FM
375 /* Our caller must have done a search for the key for us. */
376 ASSERT(path->nodes[0] != NULL);
377
378 /*
379 * And the slot must point to the exact key or the slot where the key
380 * should be at (the first item with a key greater than 'key')
381 */
382 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
383 struct btrfs_key found_key;
384
385 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
386 ret = btrfs_comp_cpu_keys(&found_key, key);
387 ASSERT(ret >= 0);
388 } else {
389 ret = 1;
390 }
4bc4bee4 391
e02119d5
CM
392 if (ret == 0) {
393 char *src_copy;
394 char *dst_copy;
3212fa14 395 u32 dst_size = btrfs_item_size(path->nodes[0],
e02119d5
CM
396 path->slots[0]);
397 if (dst_size != item_size)
398 goto insert;
399
400 if (item_size == 0) {
b3b4aa74 401 btrfs_release_path(path);
e02119d5
CM
402 return 0;
403 }
404 dst_copy = kmalloc(item_size, GFP_NOFS);
405 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 406 if (!dst_copy || !src_copy) {
b3b4aa74 407 btrfs_release_path(path);
2a29edc6 408 kfree(dst_copy);
409 kfree(src_copy);
410 return -ENOMEM;
411 }
e02119d5
CM
412
413 read_extent_buffer(eb, src_copy, src_ptr, item_size);
414
415 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
416 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
417 item_size);
418 ret = memcmp(dst_copy, src_copy, item_size);
419
420 kfree(dst_copy);
421 kfree(src_copy);
422 /*
423 * they have the same contents, just return, this saves
424 * us from cowing blocks in the destination tree and doing
425 * extra writes that may not have been done by a previous
426 * sync
427 */
428 if (ret == 0) {
b3b4aa74 429 btrfs_release_path(path);
e02119d5
CM
430 return 0;
431 }
432
4bc4bee4
JB
433 /*
434 * We need to load the old nbytes into the inode so when we
435 * replay the extents we've logged we get the right nbytes.
436 */
437 if (inode_item) {
438 struct btrfs_inode_item *item;
439 u64 nbytes;
d555438b 440 u32 mode;
4bc4bee4
JB
441
442 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
443 struct btrfs_inode_item);
444 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
445 item = btrfs_item_ptr(eb, slot,
446 struct btrfs_inode_item);
447 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
448
449 /*
450 * If this is a directory we need to reset the i_size to
451 * 0 so that we can set it up properly when replaying
452 * the rest of the items in this log.
453 */
454 mode = btrfs_inode_mode(eb, item);
455 if (S_ISDIR(mode))
456 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
457 }
458 } else if (inode_item) {
459 struct btrfs_inode_item *item;
d555438b 460 u32 mode;
4bc4bee4
JB
461
462 /*
463 * New inode, set nbytes to 0 so that the nbytes comes out
464 * properly when we replay the extents.
465 */
466 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
467 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
468
469 /*
470 * If this is a directory we need to reset the i_size to 0 so
471 * that we can set it up properly when replaying the rest of
472 * the items in this log.
473 */
474 mode = btrfs_inode_mode(eb, item);
475 if (S_ISDIR(mode))
476 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
477 }
478insert:
b3b4aa74 479 btrfs_release_path(path);
e02119d5 480 /* try to insert the key into the destination tree */
df8d116f 481 path->skip_release_on_error = 1;
e02119d5
CM
482 ret = btrfs_insert_empty_item(trans, root, path,
483 key, item_size);
df8d116f 484 path->skip_release_on_error = 0;
e02119d5
CM
485
486 /* make sure any existing item is the correct size */
df8d116f 487 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5 488 u32 found_size;
3212fa14 489 found_size = btrfs_item_size(path->nodes[0],
e02119d5 490 path->slots[0]);
143bede5 491 if (found_size > item_size)
78ac4f9e 492 btrfs_truncate_item(path, item_size, 1);
143bede5 493 else if (found_size < item_size)
c71dd880 494 btrfs_extend_item(path, item_size - found_size);
e02119d5 495 } else if (ret) {
4a500fd1 496 return ret;
e02119d5
CM
497 }
498 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
499 path->slots[0]);
500
501 /* don't overwrite an existing inode if the generation number
502 * was logged as zero. This is done when the tree logging code
503 * is just logging an inode to make sure it exists after recovery.
504 *
505 * Also, don't overwrite i_size on directories during replay.
506 * log replay inserts and removes directory items based on the
507 * state of the tree found in the subvolume, and i_size is modified
508 * as it goes
509 */
510 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
511 struct btrfs_inode_item *src_item;
512 struct btrfs_inode_item *dst_item;
513
514 src_item = (struct btrfs_inode_item *)src_ptr;
515 dst_item = (struct btrfs_inode_item *)dst_ptr;
516
1a4bcf47
FM
517 if (btrfs_inode_generation(eb, src_item) == 0) {
518 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 519 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 520
2f2ff0ee
FM
521 /*
522 * For regular files an ino_size == 0 is used only when
523 * logging that an inode exists, as part of a directory
524 * fsync, and the inode wasn't fsynced before. In this
525 * case don't set the size of the inode in the fs/subvol
526 * tree, otherwise we would be throwing valid data away.
527 */
1a4bcf47 528 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 529 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
530 ino_size != 0)
531 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 532 goto no_copy;
1a4bcf47 533 }
e02119d5
CM
534
535 if (overwrite_root &&
536 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
537 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
538 save_old_i_size = 1;
539 saved_i_size = btrfs_inode_size(path->nodes[0],
540 dst_item);
541 }
542 }
543
544 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
545 src_ptr, item_size);
546
547 if (save_old_i_size) {
548 struct btrfs_inode_item *dst_item;
549 dst_item = (struct btrfs_inode_item *)dst_ptr;
550 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
551 }
552
553 /* make sure the generation is filled in */
554 if (key->type == BTRFS_INODE_ITEM_KEY) {
555 struct btrfs_inode_item *dst_item;
556 dst_item = (struct btrfs_inode_item *)dst_ptr;
557 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
558 btrfs_set_inode_generation(path->nodes[0], dst_item,
559 trans->transid);
560 }
561 }
562no_copy:
563 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 564 btrfs_release_path(path);
e02119d5
CM
565 return 0;
566}
567
086dcbfa
FM
568/*
569 * Item overwrite used by replay and tree logging. eb, slot and key all refer
570 * to the src data we are copying out.
571 *
572 * root is the tree we are copying into, and path is a scratch
573 * path for use in this function (it should be released on entry and
574 * will be released on exit).
575 *
576 * If the key is already in the destination tree the existing item is
577 * overwritten. If the existing item isn't big enough, it is extended.
578 * If it is too large, it is truncated.
579 *
580 * If the key isn't in the destination yet, a new item is inserted.
581 */
582static int overwrite_item(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_path *path,
585 struct extent_buffer *eb, int slot,
586 struct btrfs_key *key)
587{
588 int ret;
589
590 /* Look for the key in the destination tree. */
591 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
592 if (ret < 0)
593 return ret;
594
595 return do_overwrite_item(trans, root, path, eb, slot, key);
596}
597
e02119d5
CM
598/*
599 * simple helper to read an inode off the disk from a given root
600 * This can only be called for subvolume roots and not for the log
601 */
602static noinline struct inode *read_one_inode(struct btrfs_root *root,
603 u64 objectid)
604{
605 struct inode *inode;
e02119d5 606
0202e83f 607 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 608 if (IS_ERR(inode))
5d4f98a2 609 inode = NULL;
e02119d5
CM
610 return inode;
611}
612
613/* replays a single extent in 'eb' at 'slot' with 'key' into the
614 * subvolume 'root'. path is released on entry and should be released
615 * on exit.
616 *
617 * extents in the log tree have not been allocated out of the extent
618 * tree yet. So, this completes the allocation, taking a reference
619 * as required if the extent already exists or creating a new extent
620 * if it isn't in the extent allocation tree yet.
621 *
622 * The extent is inserted into the file, dropping any existing extents
623 * from the file that overlap the new one.
624 */
625static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
626 struct btrfs_root *root,
627 struct btrfs_path *path,
628 struct extent_buffer *eb, int slot,
629 struct btrfs_key *key)
630{
5893dfb9 631 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 632 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 633 int found_type;
e02119d5 634 u64 extent_end;
e02119d5 635 u64 start = key->offset;
4bc4bee4 636 u64 nbytes = 0;
e02119d5
CM
637 struct btrfs_file_extent_item *item;
638 struct inode *inode = NULL;
639 unsigned long size;
640 int ret = 0;
641
642 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
643 found_type = btrfs_file_extent_type(eb, item);
644
d899e052 645 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
646 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
647 nbytes = btrfs_file_extent_num_bytes(eb, item);
648 extent_end = start + nbytes;
649
650 /*
651 * We don't add to the inodes nbytes if we are prealloc or a
652 * hole.
653 */
654 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
655 nbytes = 0;
656 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 657 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 658 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 659 extent_end = ALIGN(start + size,
0b246afa 660 fs_info->sectorsize);
e02119d5
CM
661 } else {
662 ret = 0;
663 goto out;
664 }
665
666 inode = read_one_inode(root, key->objectid);
667 if (!inode) {
668 ret = -EIO;
669 goto out;
670 }
671
672 /*
673 * first check to see if we already have this extent in the
674 * file. This must be done before the btrfs_drop_extents run
675 * so we don't try to drop this extent.
676 */
f85b7379
DS
677 ret = btrfs_lookup_file_extent(trans, root, path,
678 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 679
d899e052
YZ
680 if (ret == 0 &&
681 (found_type == BTRFS_FILE_EXTENT_REG ||
682 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
683 struct btrfs_file_extent_item cmp1;
684 struct btrfs_file_extent_item cmp2;
685 struct btrfs_file_extent_item *existing;
686 struct extent_buffer *leaf;
687
688 leaf = path->nodes[0];
689 existing = btrfs_item_ptr(leaf, path->slots[0],
690 struct btrfs_file_extent_item);
691
692 read_extent_buffer(eb, &cmp1, (unsigned long)item,
693 sizeof(cmp1));
694 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
695 sizeof(cmp2));
696
697 /*
698 * we already have a pointer to this exact extent,
699 * we don't have to do anything
700 */
701 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 702 btrfs_release_path(path);
e02119d5
CM
703 goto out;
704 }
705 }
b3b4aa74 706 btrfs_release_path(path);
e02119d5
CM
707
708 /* drop any overlapping extents */
5893dfb9
FM
709 drop_args.start = start;
710 drop_args.end = extent_end;
711 drop_args.drop_cache = true;
712 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
713 if (ret)
714 goto out;
e02119d5 715
07d400a6
YZ
716 if (found_type == BTRFS_FILE_EXTENT_REG ||
717 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 718 u64 offset;
07d400a6
YZ
719 unsigned long dest_offset;
720 struct btrfs_key ins;
721
3168021c
FM
722 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
723 btrfs_fs_incompat(fs_info, NO_HOLES))
724 goto update_inode;
725
07d400a6
YZ
726 ret = btrfs_insert_empty_item(trans, root, path, key,
727 sizeof(*item));
3650860b
JB
728 if (ret)
729 goto out;
07d400a6
YZ
730 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
731 path->slots[0]);
732 copy_extent_buffer(path->nodes[0], eb, dest_offset,
733 (unsigned long)item, sizeof(*item));
734
735 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
736 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
737 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 738 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 739
df2c95f3
QW
740 /*
741 * Manually record dirty extent, as here we did a shallow
742 * file extent item copy and skip normal backref update,
743 * but modifying extent tree all by ourselves.
744 * So need to manually record dirty extent for qgroup,
745 * as the owner of the file extent changed from log tree
746 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
747 */
a95f3aaf 748 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
749 btrfs_file_extent_disk_bytenr(eb, item),
750 btrfs_file_extent_disk_num_bytes(eb, item),
751 GFP_NOFS);
752 if (ret < 0)
753 goto out;
754
07d400a6 755 if (ins.objectid > 0) {
82fa113f 756 struct btrfs_ref ref = { 0 };
07d400a6
YZ
757 u64 csum_start;
758 u64 csum_end;
759 LIST_HEAD(ordered_sums);
82fa113f 760
07d400a6
YZ
761 /*
762 * is this extent already allocated in the extent
763 * allocation tree? If so, just add a reference
764 */
2ff7e61e 765 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 766 ins.offset);
3736127a
MPS
767 if (ret < 0) {
768 goto out;
769 } else if (ret == 0) {
82fa113f
QW
770 btrfs_init_generic_ref(&ref,
771 BTRFS_ADD_DELAYED_REF,
772 ins.objectid, ins.offset, 0);
773 btrfs_init_data_ref(&ref,
774 root->root_key.objectid,
f42c5da6 775 key->objectid, offset, 0, false);
82fa113f 776 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
777 if (ret)
778 goto out;
07d400a6
YZ
779 } else {
780 /*
781 * insert the extent pointer in the extent
782 * allocation tree
783 */
5d4f98a2 784 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 785 root->root_key.objectid,
5d4f98a2 786 key->objectid, offset, &ins);
b50c6e25
JB
787 if (ret)
788 goto out;
07d400a6 789 }
b3b4aa74 790 btrfs_release_path(path);
07d400a6
YZ
791
792 if (btrfs_file_extent_compression(eb, item)) {
793 csum_start = ins.objectid;
794 csum_end = csum_start + ins.offset;
795 } else {
796 csum_start = ins.objectid +
797 btrfs_file_extent_offset(eb, item);
798 csum_end = csum_start +
799 btrfs_file_extent_num_bytes(eb, item);
800 }
801
802 ret = btrfs_lookup_csums_range(root->log_root,
803 csum_start, csum_end - 1,
a2de733c 804 &ordered_sums, 0);
3650860b
JB
805 if (ret)
806 goto out;
b84b8390
FM
807 /*
808 * Now delete all existing cums in the csum root that
809 * cover our range. We do this because we can have an
810 * extent that is completely referenced by one file
811 * extent item and partially referenced by another
812 * file extent item (like after using the clone or
813 * extent_same ioctls). In this case if we end up doing
814 * the replay of the one that partially references the
815 * extent first, and we do not do the csum deletion
816 * below, we can get 2 csum items in the csum tree that
817 * overlap each other. For example, imagine our log has
818 * the two following file extent items:
819 *
820 * key (257 EXTENT_DATA 409600)
821 * extent data disk byte 12845056 nr 102400
822 * extent data offset 20480 nr 20480 ram 102400
823 *
824 * key (257 EXTENT_DATA 819200)
825 * extent data disk byte 12845056 nr 102400
826 * extent data offset 0 nr 102400 ram 102400
827 *
828 * Where the second one fully references the 100K extent
829 * that starts at disk byte 12845056, and the log tree
830 * has a single csum item that covers the entire range
831 * of the extent:
832 *
833 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 *
835 * After the first file extent item is replayed, the
836 * csum tree gets the following csum item:
837 *
838 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
839 *
840 * Which covers the 20K sub-range starting at offset 20K
841 * of our extent. Now when we replay the second file
842 * extent item, if we do not delete existing csum items
843 * that cover any of its blocks, we end up getting two
844 * csum items in our csum tree that overlap each other:
845 *
846 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
847 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
848 *
849 * Which is a problem, because after this anyone trying
850 * to lookup up for the checksum of any block of our
851 * extent starting at an offset of 40K or higher, will
852 * end up looking at the second csum item only, which
853 * does not contain the checksum for any block starting
854 * at offset 40K or higher of our extent.
855 */
07d400a6
YZ
856 while (!list_empty(&ordered_sums)) {
857 struct btrfs_ordered_sum *sums;
fc28b25e
JB
858 struct btrfs_root *csum_root;
859
07d400a6
YZ
860 sums = list_entry(ordered_sums.next,
861 struct btrfs_ordered_sum,
862 list);
fc28b25e
JB
863 csum_root = btrfs_csum_root(fs_info,
864 sums->bytenr);
b84b8390 865 if (!ret)
fc28b25e 866 ret = btrfs_del_csums(trans, csum_root,
5b4aacef
JM
867 sums->bytenr,
868 sums->len);
3650860b
JB
869 if (!ret)
870 ret = btrfs_csum_file_blocks(trans,
fc28b25e
JB
871 csum_root,
872 sums);
07d400a6
YZ
873 list_del(&sums->list);
874 kfree(sums);
875 }
3650860b
JB
876 if (ret)
877 goto out;
07d400a6 878 } else {
b3b4aa74 879 btrfs_release_path(path);
07d400a6
YZ
880 }
881 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
882 /* inline extents are easy, we just overwrite them */
883 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
884 if (ret)
885 goto out;
07d400a6 886 }
e02119d5 887
9ddc959e
JB
888 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
889 extent_end - start);
890 if (ret)
891 goto out;
892
3168021c 893update_inode:
2766ff61 894 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 895 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
896out:
897 if (inode)
898 iput(inode);
899 return ret;
900}
901
313ab753
FM
902static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
903 struct btrfs_inode *dir,
904 struct btrfs_inode *inode,
905 const char *name,
906 int name_len)
907{
908 int ret;
909
910 ret = btrfs_unlink_inode(trans, dir, inode, name, name_len);
911 if (ret)
912 return ret;
913 /*
914 * Whenever we need to check if a name exists or not, we check the
915 * fs/subvolume tree. So after an unlink we must run delayed items, so
916 * that future checks for a name during log replay see that the name
917 * does not exists anymore.
918 */
919 return btrfs_run_delayed_items(trans);
920}
921
e02119d5
CM
922/*
923 * when cleaning up conflicts between the directory names in the
924 * subvolume, directory names in the log and directory names in the
925 * inode back references, we may have to unlink inodes from directories.
926 *
927 * This is a helper function to do the unlink of a specific directory
928 * item
929 */
930static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
e02119d5 931 struct btrfs_path *path,
207e7d92 932 struct btrfs_inode *dir,
e02119d5
CM
933 struct btrfs_dir_item *di)
934{
9798ba24 935 struct btrfs_root *root = dir->root;
e02119d5
CM
936 struct inode *inode;
937 char *name;
938 int name_len;
939 struct extent_buffer *leaf;
940 struct btrfs_key location;
941 int ret;
942
943 leaf = path->nodes[0];
944
945 btrfs_dir_item_key_to_cpu(leaf, di, &location);
946 name_len = btrfs_dir_name_len(leaf, di);
947 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 948 if (!name)
949 return -ENOMEM;
950
e02119d5 951 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 952 btrfs_release_path(path);
e02119d5
CM
953
954 inode = read_one_inode(root, location.objectid);
c00e9493 955 if (!inode) {
3650860b
JB
956 ret = -EIO;
957 goto out;
c00e9493 958 }
e02119d5 959
ec051c0f 960 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
961 if (ret)
962 goto out;
12fcfd22 963
313ab753 964 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), name,
207e7d92 965 name_len);
3650860b 966out:
e02119d5 967 kfree(name);
e02119d5
CM
968 iput(inode);
969 return ret;
970}
971
972/*
77a5b9e3
FM
973 * See if a given name and sequence number found in an inode back reference are
974 * already in a directory and correctly point to this inode.
975 *
976 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
977 * exists.
e02119d5
CM
978 */
979static noinline int inode_in_dir(struct btrfs_root *root,
980 struct btrfs_path *path,
981 u64 dirid, u64 objectid, u64 index,
982 const char *name, int name_len)
983{
984 struct btrfs_dir_item *di;
985 struct btrfs_key location;
77a5b9e3 986 int ret = 0;
e02119d5
CM
987
988 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
989 index, name, name_len, 0);
77a5b9e3 990 if (IS_ERR(di)) {
8dcbc261 991 ret = PTR_ERR(di);
77a5b9e3
FM
992 goto out;
993 } else if (di) {
e02119d5
CM
994 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
995 if (location.objectid != objectid)
996 goto out;
77a5b9e3 997 } else {
e02119d5 998 goto out;
77a5b9e3 999 }
e02119d5 1000
77a5b9e3 1001 btrfs_release_path(path);
e02119d5 1002 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
77a5b9e3
FM
1003 if (IS_ERR(di)) {
1004 ret = PTR_ERR(di);
e02119d5 1005 goto out;
77a5b9e3
FM
1006 } else if (di) {
1007 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1008 if (location.objectid == objectid)
1009 ret = 1;
1010 }
e02119d5 1011out:
b3b4aa74 1012 btrfs_release_path(path);
77a5b9e3 1013 return ret;
e02119d5
CM
1014}
1015
1016/*
1017 * helper function to check a log tree for a named back reference in
1018 * an inode. This is used to decide if a back reference that is
1019 * found in the subvolume conflicts with what we find in the log.
1020 *
1021 * inode backreferences may have multiple refs in a single item,
1022 * during replay we process one reference at a time, and we don't
1023 * want to delete valid links to a file from the subvolume if that
1024 * link is also in the log.
1025 */
1026static noinline int backref_in_log(struct btrfs_root *log,
1027 struct btrfs_key *key,
f186373f 1028 u64 ref_objectid,
df8d116f 1029 const char *name, int namelen)
e02119d5
CM
1030{
1031 struct btrfs_path *path;
e02119d5 1032 int ret;
e02119d5
CM
1033
1034 path = btrfs_alloc_path();
2a29edc6 1035 if (!path)
1036 return -ENOMEM;
1037
e02119d5 1038 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1039 if (ret < 0) {
1040 goto out;
1041 } else if (ret == 1) {
89cbf5f6 1042 ret = 0;
f186373f
MF
1043 goto out;
1044 }
1045
89cbf5f6
NB
1046 if (key->type == BTRFS_INODE_EXTREF_KEY)
1047 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1048 path->slots[0],
1049 ref_objectid,
1050 name, namelen);
1051 else
1052 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1053 path->slots[0],
1054 name, namelen);
e02119d5
CM
1055out:
1056 btrfs_free_path(path);
89cbf5f6 1057 return ret;
e02119d5
CM
1058}
1059
5a1d7843 1060static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1061 struct btrfs_root *root,
e02119d5 1062 struct btrfs_path *path,
5a1d7843 1063 struct btrfs_root *log_root,
94c91a1f
NB
1064 struct btrfs_inode *dir,
1065 struct btrfs_inode *inode,
f186373f
MF
1066 u64 inode_objectid, u64 parent_objectid,
1067 u64 ref_index, char *name, int namelen,
1068 int *search_done)
e02119d5 1069{
34f3e4f2 1070 int ret;
f186373f
MF
1071 char *victim_name;
1072 int victim_name_len;
1073 struct extent_buffer *leaf;
5a1d7843 1074 struct btrfs_dir_item *di;
f186373f
MF
1075 struct btrfs_key search_key;
1076 struct btrfs_inode_extref *extref;
c622ae60 1077
f186373f
MF
1078again:
1079 /* Search old style refs */
1080 search_key.objectid = inode_objectid;
1081 search_key.type = BTRFS_INODE_REF_KEY;
1082 search_key.offset = parent_objectid;
1083 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1084 if (ret == 0) {
e02119d5
CM
1085 struct btrfs_inode_ref *victim_ref;
1086 unsigned long ptr;
1087 unsigned long ptr_end;
f186373f
MF
1088
1089 leaf = path->nodes[0];
e02119d5
CM
1090
1091 /* are we trying to overwrite a back ref for the root directory
1092 * if so, just jump out, we're done
1093 */
f186373f 1094 if (search_key.objectid == search_key.offset)
5a1d7843 1095 return 1;
e02119d5
CM
1096
1097 /* check all the names in this back reference to see
1098 * if they are in the log. if so, we allow them to stay
1099 * otherwise they must be unlinked as a conflict
1100 */
1101 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3212fa14 1102 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
d397712b 1103 while (ptr < ptr_end) {
e02119d5
CM
1104 victim_ref = (struct btrfs_inode_ref *)ptr;
1105 victim_name_len = btrfs_inode_ref_name_len(leaf,
1106 victim_ref);
1107 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1108 if (!victim_name)
1109 return -ENOMEM;
e02119d5
CM
1110
1111 read_extent_buffer(leaf, victim_name,
1112 (unsigned long)(victim_ref + 1),
1113 victim_name_len);
1114
d3316c82
NB
1115 ret = backref_in_log(log_root, &search_key,
1116 parent_objectid, victim_name,
1117 victim_name_len);
1118 if (ret < 0) {
1119 kfree(victim_name);
1120 return ret;
1121 } else if (!ret) {
94c91a1f 1122 inc_nlink(&inode->vfs_inode);
b3b4aa74 1123 btrfs_release_path(path);
12fcfd22 1124
313ab753 1125 ret = unlink_inode_for_log_replay(trans, dir, inode,
4ec5934e 1126 victim_name, victim_name_len);
f186373f 1127 kfree(victim_name);
ada9af21
FDBM
1128 if (ret)
1129 return ret;
f186373f
MF
1130 *search_done = 1;
1131 goto again;
e02119d5
CM
1132 }
1133 kfree(victim_name);
f186373f 1134
e02119d5
CM
1135 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1136 }
e02119d5 1137
c622ae60 1138 /*
1139 * NOTE: we have searched root tree and checked the
bb7ab3b9 1140 * corresponding ref, it does not need to check again.
c622ae60 1141 */
5a1d7843 1142 *search_done = 1;
e02119d5 1143 }
b3b4aa74 1144 btrfs_release_path(path);
e02119d5 1145
f186373f
MF
1146 /* Same search but for extended refs */
1147 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1148 inode_objectid, parent_objectid, 0,
1149 0);
1150 if (!IS_ERR_OR_NULL(extref)) {
1151 u32 item_size;
1152 u32 cur_offset = 0;
1153 unsigned long base;
1154 struct inode *victim_parent;
1155
1156 leaf = path->nodes[0];
1157
3212fa14 1158 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f
MF
1159 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1160
1161 while (cur_offset < item_size) {
dd9ef135 1162 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1163
1164 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1165
1166 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1167 goto next;
1168
1169 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1170 if (!victim_name)
1171 return -ENOMEM;
f186373f
MF
1172 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1173 victim_name_len);
1174
1175 search_key.objectid = inode_objectid;
1176 search_key.type = BTRFS_INODE_EXTREF_KEY;
1177 search_key.offset = btrfs_extref_hash(parent_objectid,
1178 victim_name,
1179 victim_name_len);
d3316c82
NB
1180 ret = backref_in_log(log_root, &search_key,
1181 parent_objectid, victim_name,
1182 victim_name_len);
1183 if (ret < 0) {
f35838a6 1184 kfree(victim_name);
d3316c82
NB
1185 return ret;
1186 } else if (!ret) {
f186373f
MF
1187 ret = -ENOENT;
1188 victim_parent = read_one_inode(root,
94c91a1f 1189 parent_objectid);
f186373f 1190 if (victim_parent) {
94c91a1f 1191 inc_nlink(&inode->vfs_inode);
f186373f
MF
1192 btrfs_release_path(path);
1193
313ab753 1194 ret = unlink_inode_for_log_replay(trans,
4ec5934e 1195 BTRFS_I(victim_parent),
94c91a1f 1196 inode,
4ec5934e
NB
1197 victim_name,
1198 victim_name_len);
f186373f 1199 }
f186373f
MF
1200 iput(victim_parent);
1201 kfree(victim_name);
3650860b
JB
1202 if (ret)
1203 return ret;
f186373f
MF
1204 *search_done = 1;
1205 goto again;
1206 }
1207 kfree(victim_name);
f186373f
MF
1208next:
1209 cur_offset += victim_name_len + sizeof(*extref);
1210 }
1211 *search_done = 1;
1212 }
1213 btrfs_release_path(path);
1214
34f3e4f2 1215 /* look for a conflicting sequence number */
94c91a1f 1216 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1217 ref_index, name, namelen, 0);
52db7779 1218 if (IS_ERR(di)) {
8dcbc261 1219 return PTR_ERR(di);
52db7779 1220 } else if (di) {
9798ba24 1221 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1222 if (ret)
1223 return ret;
34f3e4f2 1224 }
1225 btrfs_release_path(path);
1226
52042d8e 1227 /* look for a conflicting name */
94c91a1f 1228 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1229 name, namelen, 0);
52db7779
FM
1230 if (IS_ERR(di)) {
1231 return PTR_ERR(di);
1232 } else if (di) {
9798ba24 1233 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1234 if (ret)
1235 return ret;
34f3e4f2 1236 }
1237 btrfs_release_path(path);
1238
5a1d7843
JS
1239 return 0;
1240}
e02119d5 1241
bae15d95
QW
1242static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1243 u32 *namelen, char **name, u64 *index,
1244 u64 *parent_objectid)
f186373f
MF
1245{
1246 struct btrfs_inode_extref *extref;
1247
1248 extref = (struct btrfs_inode_extref *)ref_ptr;
1249
1250 *namelen = btrfs_inode_extref_name_len(eb, extref);
1251 *name = kmalloc(*namelen, GFP_NOFS);
1252 if (*name == NULL)
1253 return -ENOMEM;
1254
1255 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1256 *namelen);
1257
1f250e92
FM
1258 if (index)
1259 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1260 if (parent_objectid)
1261 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1262
1263 return 0;
1264}
1265
bae15d95
QW
1266static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1267 u32 *namelen, char **name, u64 *index)
f186373f
MF
1268{
1269 struct btrfs_inode_ref *ref;
1270
1271 ref = (struct btrfs_inode_ref *)ref_ptr;
1272
1273 *namelen = btrfs_inode_ref_name_len(eb, ref);
1274 *name = kmalloc(*namelen, GFP_NOFS);
1275 if (*name == NULL)
1276 return -ENOMEM;
1277
1278 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1279
1f250e92
FM
1280 if (index)
1281 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1282
1283 return 0;
1284}
1285
1f250e92
FM
1286/*
1287 * Take an inode reference item from the log tree and iterate all names from the
1288 * inode reference item in the subvolume tree with the same key (if it exists).
1289 * For any name that is not in the inode reference item from the log tree, do a
1290 * proper unlink of that name (that is, remove its entry from the inode
1291 * reference item and both dir index keys).
1292 */
1293static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1294 struct btrfs_root *root,
1295 struct btrfs_path *path,
1296 struct btrfs_inode *inode,
1297 struct extent_buffer *log_eb,
1298 int log_slot,
1299 struct btrfs_key *key)
1300{
1301 int ret;
1302 unsigned long ref_ptr;
1303 unsigned long ref_end;
1304 struct extent_buffer *eb;
1305
1306again:
1307 btrfs_release_path(path);
1308 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1309 if (ret > 0) {
1310 ret = 0;
1311 goto out;
1312 }
1313 if (ret < 0)
1314 goto out;
1315
1316 eb = path->nodes[0];
1317 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3212fa14 1318 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1f250e92
FM
1319 while (ref_ptr < ref_end) {
1320 char *name = NULL;
1321 int namelen;
1322 u64 parent_id;
1323
1324 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1325 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1326 NULL, &parent_id);
1327 } else {
1328 parent_id = key->offset;
1329 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1330 NULL);
1331 }
1332 if (ret)
1333 goto out;
1334
1335 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1336 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1337 parent_id, name,
1338 namelen);
1f250e92 1339 else
9bb8407f
NB
1340 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1341 name, namelen);
1f250e92
FM
1342
1343 if (!ret) {
1344 struct inode *dir;
1345
1346 btrfs_release_path(path);
1347 dir = read_one_inode(root, parent_id);
1348 if (!dir) {
1349 ret = -ENOENT;
1350 kfree(name);
1351 goto out;
1352 }
313ab753 1353 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1f250e92
FM
1354 inode, name, namelen);
1355 kfree(name);
1356 iput(dir);
1357 if (ret)
1358 goto out;
1359 goto again;
1360 }
1361
1362 kfree(name);
1363 ref_ptr += namelen;
1364 if (key->type == BTRFS_INODE_EXTREF_KEY)
1365 ref_ptr += sizeof(struct btrfs_inode_extref);
1366 else
1367 ref_ptr += sizeof(struct btrfs_inode_ref);
1368 }
1369 ret = 0;
1370 out:
1371 btrfs_release_path(path);
1372 return ret;
1373}
1374
0d836392
FM
1375static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1376 const u8 ref_type, const char *name,
1377 const int namelen)
1378{
1379 struct btrfs_key key;
1380 struct btrfs_path *path;
1381 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1382 int ret;
1383
1384 path = btrfs_alloc_path();
1385 if (!path)
1386 return -ENOMEM;
1387
1388 key.objectid = btrfs_ino(BTRFS_I(inode));
1389 key.type = ref_type;
1390 if (key.type == BTRFS_INODE_REF_KEY)
1391 key.offset = parent_id;
1392 else
1393 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1394
1395 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1396 if (ret < 0)
1397 goto out;
1398 if (ret > 0) {
1399 ret = 0;
1400 goto out;
1401 }
1402 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1403 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1404 path->slots[0], parent_id, name, namelen);
0d836392 1405 else
9bb8407f
NB
1406 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1407 name, namelen);
0d836392
FM
1408
1409out:
1410 btrfs_free_path(path);
1411 return ret;
1412}
1413
6d9cc072 1414static int add_link(struct btrfs_trans_handle *trans,
6b5fc433
FM
1415 struct inode *dir, struct inode *inode, const char *name,
1416 int namelen, u64 ref_index)
1417{
6d9cc072 1418 struct btrfs_root *root = BTRFS_I(dir)->root;
6b5fc433
FM
1419 struct btrfs_dir_item *dir_item;
1420 struct btrfs_key key;
1421 struct btrfs_path *path;
1422 struct inode *other_inode = NULL;
1423 int ret;
1424
1425 path = btrfs_alloc_path();
1426 if (!path)
1427 return -ENOMEM;
1428
1429 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1430 btrfs_ino(BTRFS_I(dir)),
1431 name, namelen, 0);
1432 if (!dir_item) {
1433 btrfs_release_path(path);
1434 goto add_link;
1435 } else if (IS_ERR(dir_item)) {
1436 ret = PTR_ERR(dir_item);
1437 goto out;
1438 }
1439
1440 /*
1441 * Our inode's dentry collides with the dentry of another inode which is
1442 * in the log but not yet processed since it has a higher inode number.
1443 * So delete that other dentry.
1444 */
1445 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1446 btrfs_release_path(path);
1447 other_inode = read_one_inode(root, key.objectid);
1448 if (!other_inode) {
1449 ret = -ENOENT;
1450 goto out;
1451 }
313ab753
FM
1452 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(other_inode),
1453 name, namelen);
6b5fc433
FM
1454 if (ret)
1455 goto out;
1456 /*
1457 * If we dropped the link count to 0, bump it so that later the iput()
1458 * on the inode will not free it. We will fixup the link count later.
1459 */
1460 if (other_inode->i_nlink == 0)
1461 inc_nlink(other_inode);
6b5fc433
FM
1462add_link:
1463 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1464 name, namelen, 0, ref_index);
1465out:
1466 iput(other_inode);
1467 btrfs_free_path(path);
1468
1469 return ret;
1470}
1471
5a1d7843
JS
1472/*
1473 * replay one inode back reference item found in the log tree.
1474 * eb, slot and key refer to the buffer and key found in the log tree.
1475 * root is the destination we are replaying into, and path is for temp
1476 * use by this function. (it should be released on return).
1477 */
1478static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root,
1480 struct btrfs_root *log,
1481 struct btrfs_path *path,
1482 struct extent_buffer *eb, int slot,
1483 struct btrfs_key *key)
1484{
03b2f08b
GB
1485 struct inode *dir = NULL;
1486 struct inode *inode = NULL;
5a1d7843
JS
1487 unsigned long ref_ptr;
1488 unsigned long ref_end;
03b2f08b 1489 char *name = NULL;
5a1d7843
JS
1490 int namelen;
1491 int ret;
1492 int search_done = 0;
f186373f
MF
1493 int log_ref_ver = 0;
1494 u64 parent_objectid;
1495 u64 inode_objectid;
f46dbe3d 1496 u64 ref_index = 0;
f186373f
MF
1497 int ref_struct_size;
1498
1499 ref_ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 1500 ref_end = ref_ptr + btrfs_item_size(eb, slot);
f186373f
MF
1501
1502 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1503 struct btrfs_inode_extref *r;
1504
1505 ref_struct_size = sizeof(struct btrfs_inode_extref);
1506 log_ref_ver = 1;
1507 r = (struct btrfs_inode_extref *)ref_ptr;
1508 parent_objectid = btrfs_inode_extref_parent(eb, r);
1509 } else {
1510 ref_struct_size = sizeof(struct btrfs_inode_ref);
1511 parent_objectid = key->offset;
1512 }
1513 inode_objectid = key->objectid;
e02119d5 1514
5a1d7843
JS
1515 /*
1516 * it is possible that we didn't log all the parent directories
1517 * for a given inode. If we don't find the dir, just don't
1518 * copy the back ref in. The link count fixup code will take
1519 * care of the rest
1520 */
f186373f 1521 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1522 if (!dir) {
1523 ret = -ENOENT;
1524 goto out;
1525 }
5a1d7843 1526
f186373f 1527 inode = read_one_inode(root, inode_objectid);
5a1d7843 1528 if (!inode) {
03b2f08b
GB
1529 ret = -EIO;
1530 goto out;
5a1d7843
JS
1531 }
1532
5a1d7843 1533 while (ref_ptr < ref_end) {
f186373f 1534 if (log_ref_ver) {
bae15d95
QW
1535 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1536 &ref_index, &parent_objectid);
f186373f
MF
1537 /*
1538 * parent object can change from one array
1539 * item to another.
1540 */
1541 if (!dir)
1542 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1543 if (!dir) {
1544 ret = -ENOENT;
1545 goto out;
1546 }
f186373f 1547 } else {
bae15d95
QW
1548 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1549 &ref_index);
f186373f
MF
1550 }
1551 if (ret)
03b2f08b 1552 goto out;
5a1d7843 1553
77a5b9e3
FM
1554 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1555 btrfs_ino(BTRFS_I(inode)), ref_index,
1556 name, namelen);
1557 if (ret < 0) {
1558 goto out;
1559 } else if (ret == 0) {
5a1d7843
JS
1560 /*
1561 * look for a conflicting back reference in the
1562 * metadata. if we find one we have to unlink that name
1563 * of the file before we add our new link. Later on, we
1564 * overwrite any existing back reference, and we don't
1565 * want to create dangling pointers in the directory.
1566 */
1567
1568 if (!search_done) {
1569 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1570 BTRFS_I(dir),
d75eefdf 1571 BTRFS_I(inode),
f186373f
MF
1572 inode_objectid,
1573 parent_objectid,
1574 ref_index, name, namelen,
5a1d7843 1575 &search_done);
03b2f08b
GB
1576 if (ret) {
1577 if (ret == 1)
1578 ret = 0;
3650860b
JB
1579 goto out;
1580 }
5a1d7843
JS
1581 }
1582
0d836392
FM
1583 /*
1584 * If a reference item already exists for this inode
1585 * with the same parent and name, but different index,
1586 * drop it and the corresponding directory index entries
1587 * from the parent before adding the new reference item
1588 * and dir index entries, otherwise we would fail with
1589 * -EEXIST returned from btrfs_add_link() below.
1590 */
1591 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1592 name, namelen);
1593 if (ret > 0) {
313ab753 1594 ret = unlink_inode_for_log_replay(trans,
0d836392
FM
1595 BTRFS_I(dir),
1596 BTRFS_I(inode),
1597 name, namelen);
1598 /*
1599 * If we dropped the link count to 0, bump it so
1600 * that later the iput() on the inode will not
1601 * free it. We will fixup the link count later.
1602 */
1603 if (!ret && inode->i_nlink == 0)
1604 inc_nlink(inode);
1605 }
1606 if (ret < 0)
1607 goto out;
1608
5a1d7843 1609 /* insert our name */
6d9cc072 1610 ret = add_link(trans, dir, inode, name, namelen,
6b5fc433 1611 ref_index);
3650860b
JB
1612 if (ret)
1613 goto out;
5a1d7843 1614
f96d4474
JB
1615 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1616 if (ret)
1617 goto out;
5a1d7843 1618 }
77a5b9e3 1619 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1620
f186373f 1621 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1622 kfree(name);
03b2f08b 1623 name = NULL;
f186373f
MF
1624 if (log_ref_ver) {
1625 iput(dir);
1626 dir = NULL;
1627 }
5a1d7843 1628 }
e02119d5 1629
1f250e92
FM
1630 /*
1631 * Before we overwrite the inode reference item in the subvolume tree
1632 * with the item from the log tree, we must unlink all names from the
1633 * parent directory that are in the subvolume's tree inode reference
1634 * item, otherwise we end up with an inconsistent subvolume tree where
1635 * dir index entries exist for a name but there is no inode reference
1636 * item with the same name.
1637 */
1638 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1639 key);
1640 if (ret)
1641 goto out;
1642
e02119d5
CM
1643 /* finally write the back reference in the inode */
1644 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1645out:
b3b4aa74 1646 btrfs_release_path(path);
03b2f08b 1647 kfree(name);
e02119d5
CM
1648 iput(dir);
1649 iput(inode);
3650860b 1650 return ret;
e02119d5
CM
1651}
1652
f186373f 1653static int count_inode_extrefs(struct btrfs_root *root,
36283658 1654 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1655{
1656 int ret = 0;
1657 int name_len;
1658 unsigned int nlink = 0;
1659 u32 item_size;
1660 u32 cur_offset = 0;
36283658 1661 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1662 u64 offset = 0;
1663 unsigned long ptr;
1664 struct btrfs_inode_extref *extref;
1665 struct extent_buffer *leaf;
1666
1667 while (1) {
1668 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1669 &extref, &offset);
1670 if (ret)
1671 break;
c71bf099 1672
f186373f 1673 leaf = path->nodes[0];
3212fa14 1674 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f 1675 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1676 cur_offset = 0;
f186373f
MF
1677
1678 while (cur_offset < item_size) {
1679 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1680 name_len = btrfs_inode_extref_name_len(leaf, extref);
1681
1682 nlink++;
1683
1684 cur_offset += name_len + sizeof(*extref);
1685 }
1686
1687 offset++;
1688 btrfs_release_path(path);
1689 }
1690 btrfs_release_path(path);
1691
2c2c452b 1692 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1693 return ret;
1694 return nlink;
1695}
1696
1697static int count_inode_refs(struct btrfs_root *root,
f329e319 1698 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1699{
e02119d5
CM
1700 int ret;
1701 struct btrfs_key key;
f186373f 1702 unsigned int nlink = 0;
e02119d5
CM
1703 unsigned long ptr;
1704 unsigned long ptr_end;
1705 int name_len;
f329e319 1706 u64 ino = btrfs_ino(inode);
e02119d5 1707
33345d01 1708 key.objectid = ino;
e02119d5
CM
1709 key.type = BTRFS_INODE_REF_KEY;
1710 key.offset = (u64)-1;
1711
d397712b 1712 while (1) {
e02119d5
CM
1713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1714 if (ret < 0)
1715 break;
1716 if (ret > 0) {
1717 if (path->slots[0] == 0)
1718 break;
1719 path->slots[0]--;
1720 }
e93ae26f 1721process_slot:
e02119d5
CM
1722 btrfs_item_key_to_cpu(path->nodes[0], &key,
1723 path->slots[0]);
33345d01 1724 if (key.objectid != ino ||
e02119d5
CM
1725 key.type != BTRFS_INODE_REF_KEY)
1726 break;
1727 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
3212fa14 1728 ptr_end = ptr + btrfs_item_size(path->nodes[0],
e02119d5 1729 path->slots[0]);
d397712b 1730 while (ptr < ptr_end) {
e02119d5
CM
1731 struct btrfs_inode_ref *ref;
1732
1733 ref = (struct btrfs_inode_ref *)ptr;
1734 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1735 ref);
1736 ptr = (unsigned long)(ref + 1) + name_len;
1737 nlink++;
1738 }
1739
1740 if (key.offset == 0)
1741 break;
e93ae26f
FDBM
1742 if (path->slots[0] > 0) {
1743 path->slots[0]--;
1744 goto process_slot;
1745 }
e02119d5 1746 key.offset--;
b3b4aa74 1747 btrfs_release_path(path);
e02119d5 1748 }
b3b4aa74 1749 btrfs_release_path(path);
f186373f
MF
1750
1751 return nlink;
1752}
1753
1754/*
1755 * There are a few corners where the link count of the file can't
1756 * be properly maintained during replay. So, instead of adding
1757 * lots of complexity to the log code, we just scan the backrefs
1758 * for any file that has been through replay.
1759 *
1760 * The scan will update the link count on the inode to reflect the
1761 * number of back refs found. If it goes down to zero, the iput
1762 * will free the inode.
1763 */
1764static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1765 struct btrfs_root *root,
1766 struct inode *inode)
1767{
1768 struct btrfs_path *path;
1769 int ret;
1770 u64 nlink = 0;
4a0cc7ca 1771 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1772
1773 path = btrfs_alloc_path();
1774 if (!path)
1775 return -ENOMEM;
1776
f329e319 1777 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1778 if (ret < 0)
1779 goto out;
1780
1781 nlink = ret;
1782
36283658 1783 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1784 if (ret < 0)
1785 goto out;
1786
1787 nlink += ret;
1788
1789 ret = 0;
1790
e02119d5 1791 if (nlink != inode->i_nlink) {
bfe86848 1792 set_nlink(inode, nlink);
f96d4474
JB
1793 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1794 if (ret)
1795 goto out;
e02119d5 1796 }
8d5bf1cb 1797 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1798
c71bf099
YZ
1799 if (inode->i_nlink == 0) {
1800 if (S_ISDIR(inode->i_mode)) {
1801 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1802 ino, 1);
3650860b
JB
1803 if (ret)
1804 goto out;
c71bf099 1805 }
ecdcf3c2
NB
1806 ret = btrfs_insert_orphan_item(trans, root, ino);
1807 if (ret == -EEXIST)
1808 ret = 0;
12fcfd22 1809 }
12fcfd22 1810
f186373f
MF
1811out:
1812 btrfs_free_path(path);
1813 return ret;
e02119d5
CM
1814}
1815
1816static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1817 struct btrfs_root *root,
1818 struct btrfs_path *path)
1819{
1820 int ret;
1821 struct btrfs_key key;
1822 struct inode *inode;
1823
1824 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1825 key.type = BTRFS_ORPHAN_ITEM_KEY;
1826 key.offset = (u64)-1;
d397712b 1827 while (1) {
e02119d5
CM
1828 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1829 if (ret < 0)
1830 break;
1831
1832 if (ret == 1) {
011b28ac 1833 ret = 0;
e02119d5
CM
1834 if (path->slots[0] == 0)
1835 break;
1836 path->slots[0]--;
1837 }
1838
1839 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1840 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1841 key.type != BTRFS_ORPHAN_ITEM_KEY)
1842 break;
1843
1844 ret = btrfs_del_item(trans, root, path);
65a246c5 1845 if (ret)
011b28ac 1846 break;
e02119d5 1847
b3b4aa74 1848 btrfs_release_path(path);
e02119d5 1849 inode = read_one_inode(root, key.offset);
011b28ac
JB
1850 if (!inode) {
1851 ret = -EIO;
1852 break;
1853 }
e02119d5
CM
1854
1855 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1856 iput(inode);
3650860b 1857 if (ret)
011b28ac 1858 break;
e02119d5 1859
12fcfd22
CM
1860 /*
1861 * fixup on a directory may create new entries,
1862 * make sure we always look for the highset possible
1863 * offset
1864 */
1865 key.offset = (u64)-1;
e02119d5 1866 }
b3b4aa74 1867 btrfs_release_path(path);
65a246c5 1868 return ret;
e02119d5
CM
1869}
1870
1871
1872/*
1873 * record a given inode in the fixup dir so we can check its link
1874 * count when replay is done. The link count is incremented here
1875 * so the inode won't go away until we check it
1876 */
1877static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1878 struct btrfs_root *root,
1879 struct btrfs_path *path,
1880 u64 objectid)
1881{
1882 struct btrfs_key key;
1883 int ret = 0;
1884 struct inode *inode;
1885
1886 inode = read_one_inode(root, objectid);
c00e9493
TI
1887 if (!inode)
1888 return -EIO;
e02119d5
CM
1889
1890 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1891 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1892 key.offset = objectid;
1893
1894 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1895
b3b4aa74 1896 btrfs_release_path(path);
e02119d5 1897 if (ret == 0) {
9bf7a489
JB
1898 if (!inode->i_nlink)
1899 set_nlink(inode, 1);
1900 else
8b558c5f 1901 inc_nlink(inode);
9a56fcd1 1902 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1903 } else if (ret == -EEXIST) {
1904 ret = 0;
e02119d5
CM
1905 }
1906 iput(inode);
1907
1908 return ret;
1909}
1910
1911/*
1912 * when replaying the log for a directory, we only insert names
1913 * for inodes that actually exist. This means an fsync on a directory
1914 * does not implicitly fsync all the new files in it
1915 */
1916static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1917 struct btrfs_root *root,
e02119d5 1918 u64 dirid, u64 index,
60d53eb3 1919 char *name, int name_len,
e02119d5
CM
1920 struct btrfs_key *location)
1921{
1922 struct inode *inode;
1923 struct inode *dir;
1924 int ret;
1925
1926 inode = read_one_inode(root, location->objectid);
1927 if (!inode)
1928 return -ENOENT;
1929
1930 dir = read_one_inode(root, dirid);
1931 if (!dir) {
1932 iput(inode);
1933 return -EIO;
1934 }
d555438b 1935
db0a669f
NB
1936 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1937 name_len, 1, index);
e02119d5
CM
1938
1939 /* FIXME, put inode into FIXUP list */
1940
1941 iput(inode);
1942 iput(dir);
1943 return ret;
1944}
1945
339d0354
FM
1946static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1947 struct btrfs_inode *dir,
1948 struct btrfs_path *path,
1949 struct btrfs_dir_item *dst_di,
1950 const struct btrfs_key *log_key,
1951 u8 log_type,
1952 bool exists)
1953{
1954 struct btrfs_key found_key;
1955
1956 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1957 /* The existing dentry points to the same inode, don't delete it. */
1958 if (found_key.objectid == log_key->objectid &&
1959 found_key.type == log_key->type &&
1960 found_key.offset == log_key->offset &&
1961 btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1962 return 1;
1963
1964 /*
1965 * Don't drop the conflicting directory entry if the inode for the new
1966 * entry doesn't exist.
1967 */
1968 if (!exists)
1969 return 0;
1970
1971 return drop_one_dir_item(trans, path, dir, dst_di);
1972}
1973
e02119d5
CM
1974/*
1975 * take a single entry in a log directory item and replay it into
1976 * the subvolume.
1977 *
1978 * if a conflicting item exists in the subdirectory already,
1979 * the inode it points to is unlinked and put into the link count
1980 * fix up tree.
1981 *
1982 * If a name from the log points to a file or directory that does
1983 * not exist in the FS, it is skipped. fsyncs on directories
1984 * do not force down inodes inside that directory, just changes to the
1985 * names or unlinks in a directory.
bb53eda9
FM
1986 *
1987 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1988 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1989 */
1990static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1991 struct btrfs_root *root,
1992 struct btrfs_path *path,
1993 struct extent_buffer *eb,
1994 struct btrfs_dir_item *di,
1995 struct btrfs_key *key)
1996{
1997 char *name;
1998 int name_len;
339d0354
FM
1999 struct btrfs_dir_item *dir_dst_di;
2000 struct btrfs_dir_item *index_dst_di;
2001 bool dir_dst_matches = false;
2002 bool index_dst_matches = false;
e02119d5 2003 struct btrfs_key log_key;
339d0354 2004 struct btrfs_key search_key;
e02119d5 2005 struct inode *dir;
e02119d5 2006 u8 log_type;
cfd31269
FM
2007 bool exists;
2008 int ret;
339d0354 2009 bool update_size = true;
bb53eda9 2010 bool name_added = false;
e02119d5
CM
2011
2012 dir = read_one_inode(root, key->objectid);
c00e9493
TI
2013 if (!dir)
2014 return -EIO;
e02119d5
CM
2015
2016 name_len = btrfs_dir_name_len(eb, di);
2017 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
2018 if (!name) {
2019 ret = -ENOMEM;
2020 goto out;
2021 }
2a29edc6 2022
e02119d5
CM
2023 log_type = btrfs_dir_type(eb, di);
2024 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2025 name_len);
2026
2027 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 2028 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 2029 btrfs_release_path(path);
cfd31269
FM
2030 if (ret < 0)
2031 goto out;
2032 exists = (ret == 0);
2033 ret = 0;
4bef0848 2034
339d0354
FM
2035 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2036 name, name_len, 1);
2037 if (IS_ERR(dir_dst_di)) {
2038 ret = PTR_ERR(dir_dst_di);
3650860b 2039 goto out;
339d0354
FM
2040 } else if (dir_dst_di) {
2041 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2042 dir_dst_di, &log_key, log_type,
2043 exists);
2044 if (ret < 0)
2045 goto out;
2046 dir_dst_matches = (ret == 1);
e02119d5 2047 }
e15ac641 2048
339d0354
FM
2049 btrfs_release_path(path);
2050
2051 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2052 key->objectid, key->offset,
2053 name, name_len, 1);
2054 if (IS_ERR(index_dst_di)) {
2055 ret = PTR_ERR(index_dst_di);
e15ac641 2056 goto out;
339d0354
FM
2057 } else if (index_dst_di) {
2058 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2059 index_dst_di, &log_key,
2060 log_type, exists);
2061 if (ret < 0)
e02119d5 2062 goto out;
339d0354 2063 index_dst_matches = (ret == 1);
e02119d5
CM
2064 }
2065
339d0354
FM
2066 btrfs_release_path(path);
2067
2068 if (dir_dst_matches && index_dst_matches) {
2069 ret = 0;
a2cc11db 2070 update_size = false;
e02119d5
CM
2071 goto out;
2072 }
2073
725af92a
NB
2074 /*
2075 * Check if the inode reference exists in the log for the given name,
2076 * inode and parent inode
2077 */
339d0354
FM
2078 search_key.objectid = log_key.objectid;
2079 search_key.type = BTRFS_INODE_REF_KEY;
2080 search_key.offset = key->objectid;
2081 ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
725af92a
NB
2082 if (ret < 0) {
2083 goto out;
2084 } else if (ret) {
2085 /* The dentry will be added later. */
2086 ret = 0;
2087 update_size = false;
2088 goto out;
2089 }
2090
339d0354
FM
2091 search_key.objectid = log_key.objectid;
2092 search_key.type = BTRFS_INODE_EXTREF_KEY;
2093 search_key.offset = key->objectid;
2094 ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
725af92a
NB
2095 name_len);
2096 if (ret < 0) {
2097 goto out;
2098 } else if (ret) {
df8d116f
FM
2099 /* The dentry will be added later. */
2100 ret = 0;
2101 update_size = false;
2102 goto out;
2103 }
b3b4aa74 2104 btrfs_release_path(path);
60d53eb3
Z
2105 ret = insert_one_name(trans, root, key->objectid, key->offset,
2106 name, name_len, &log_key);
df8d116f 2107 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2108 goto out;
bb53eda9
FM
2109 if (!ret)
2110 name_added = true;
d555438b 2111 update_size = false;
3650860b 2112 ret = 0;
339d0354
FM
2113
2114out:
2115 if (!ret && update_size) {
2116 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2117 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2118 }
2119 kfree(name);
2120 iput(dir);
2121 if (!ret && name_added)
2122 ret = 1;
2123 return ret;
e02119d5
CM
2124}
2125
339d0354 2126/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
e02119d5
CM
2127static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2128 struct btrfs_root *root,
2129 struct btrfs_path *path,
2130 struct extent_buffer *eb, int slot,
2131 struct btrfs_key *key)
2132{
339d0354 2133 int ret;
e02119d5 2134 struct btrfs_dir_item *di;
e02119d5 2135
339d0354
FM
2136 /* We only log dir index keys, which only contain a single dir item. */
2137 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 2138
339d0354
FM
2139 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2140 ret = replay_one_name(trans, root, path, eb, di, key);
2141 if (ret < 0)
2142 return ret;
bb53eda9 2143
339d0354
FM
2144 /*
2145 * If this entry refers to a non-directory (directories can not have a
2146 * link count > 1) and it was added in the transaction that was not
2147 * committed, make sure we fixup the link count of the inode the entry
2148 * points to. Otherwise something like the following would result in a
2149 * directory pointing to an inode with a wrong link that does not account
2150 * for this dir entry:
2151 *
2152 * mkdir testdir
2153 * touch testdir/foo
2154 * touch testdir/bar
2155 * sync
2156 *
2157 * ln testdir/bar testdir/bar_link
2158 * ln testdir/foo testdir/foo_link
2159 * xfs_io -c "fsync" testdir/bar
2160 *
2161 * <power failure>
2162 *
2163 * mount fs, log replay happens
2164 *
2165 * File foo would remain with a link count of 1 when it has two entries
2166 * pointing to it in the directory testdir. This would make it impossible
2167 * to ever delete the parent directory has it would result in stale
2168 * dentries that can never be deleted.
2169 */
2170 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2171 struct btrfs_path *fixup_path;
2172 struct btrfs_key di_key;
bb53eda9 2173
339d0354
FM
2174 fixup_path = btrfs_alloc_path();
2175 if (!fixup_path)
2176 return -ENOMEM;
2177
2178 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2179 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2180 btrfs_free_path(fixup_path);
e02119d5 2181 }
339d0354 2182
bb53eda9 2183 return ret;
e02119d5
CM
2184}
2185
2186/*
2187 * directory replay has two parts. There are the standard directory
2188 * items in the log copied from the subvolume, and range items
2189 * created in the log while the subvolume was logged.
2190 *
2191 * The range items tell us which parts of the key space the log
2192 * is authoritative for. During replay, if a key in the subvolume
2193 * directory is in a logged range item, but not actually in the log
2194 * that means it was deleted from the directory before the fsync
2195 * and should be removed.
2196 */
2197static noinline int find_dir_range(struct btrfs_root *root,
2198 struct btrfs_path *path,
ccae4a19 2199 u64 dirid,
e02119d5
CM
2200 u64 *start_ret, u64 *end_ret)
2201{
2202 struct btrfs_key key;
2203 u64 found_end;
2204 struct btrfs_dir_log_item *item;
2205 int ret;
2206 int nritems;
2207
2208 if (*start_ret == (u64)-1)
2209 return 1;
2210
2211 key.objectid = dirid;
ccae4a19 2212 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5
CM
2213 key.offset = *start_ret;
2214
2215 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2216 if (ret < 0)
2217 goto out;
2218 if (ret > 0) {
2219 if (path->slots[0] == 0)
2220 goto out;
2221 path->slots[0]--;
2222 }
2223 if (ret != 0)
2224 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2225
ccae4a19 2226 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2227 ret = 1;
2228 goto next;
2229 }
2230 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2231 struct btrfs_dir_log_item);
2232 found_end = btrfs_dir_log_end(path->nodes[0], item);
2233
2234 if (*start_ret >= key.offset && *start_ret <= found_end) {
2235 ret = 0;
2236 *start_ret = key.offset;
2237 *end_ret = found_end;
2238 goto out;
2239 }
2240 ret = 1;
2241next:
2242 /* check the next slot in the tree to see if it is a valid item */
2243 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2244 path->slots[0]++;
e02119d5
CM
2245 if (path->slots[0] >= nritems) {
2246 ret = btrfs_next_leaf(root, path);
2247 if (ret)
2248 goto out;
e02119d5
CM
2249 }
2250
2251 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2252
ccae4a19 2253 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2254 ret = 1;
2255 goto out;
2256 }
2257 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2258 struct btrfs_dir_log_item);
2259 found_end = btrfs_dir_log_end(path->nodes[0], item);
2260 *start_ret = key.offset;
2261 *end_ret = found_end;
2262 ret = 0;
2263out:
b3b4aa74 2264 btrfs_release_path(path);
e02119d5
CM
2265 return ret;
2266}
2267
2268/*
2269 * this looks for a given directory item in the log. If the directory
2270 * item is not in the log, the item is removed and the inode it points
2271 * to is unlinked
2272 */
2273static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
e02119d5
CM
2274 struct btrfs_root *log,
2275 struct btrfs_path *path,
2276 struct btrfs_path *log_path,
2277 struct inode *dir,
2278 struct btrfs_key *dir_key)
2279{
d1ed82f3 2280 struct btrfs_root *root = BTRFS_I(dir)->root;
e02119d5
CM
2281 int ret;
2282 struct extent_buffer *eb;
2283 int slot;
e02119d5 2284 struct btrfs_dir_item *di;
e02119d5 2285 int name_len;
e02119d5 2286 char *name;
ccae4a19 2287 struct inode *inode = NULL;
e02119d5
CM
2288 struct btrfs_key location;
2289
ccae4a19
FM
2290 /*
2291 * Currenly we only log dir index keys. Even if we replay a log created
2292 * by an older kernel that logged both dir index and dir item keys, all
2293 * we need to do is process the dir index keys, we (and our caller) can
2294 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2295 */
2296 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2297
e02119d5
CM
2298 eb = path->nodes[0];
2299 slot = path->slots[0];
ccae4a19
FM
2300 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2301 name_len = btrfs_dir_name_len(eb, di);
2302 name = kmalloc(name_len, GFP_NOFS);
2303 if (!name) {
2304 ret = -ENOMEM;
2305 goto out;
2306 }
e02119d5 2307
ccae4a19 2308 read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
3650860b 2309
ccae4a19
FM
2310 if (log) {
2311 struct btrfs_dir_item *log_di;
e02119d5 2312
ccae4a19
FM
2313 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2314 dir_key->objectid,
2315 dir_key->offset,
2316 name, name_len, 0);
2317 if (IS_ERR(log_di)) {
2318 ret = PTR_ERR(log_di);
2319 goto out;
2320 } else if (log_di) {
2321 /* The dentry exists in the log, we have nothing to do. */
e02119d5
CM
2322 ret = 0;
2323 goto out;
2324 }
ccae4a19 2325 }
e02119d5 2326
ccae4a19
FM
2327 btrfs_dir_item_key_to_cpu(eb, di, &location);
2328 btrfs_release_path(path);
2329 btrfs_release_path(log_path);
2330 inode = read_one_inode(root, location.objectid);
2331 if (!inode) {
2332 ret = -EIO;
2333 goto out;
e02119d5 2334 }
ccae4a19
FM
2335
2336 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2337 if (ret)
2338 goto out;
2339
2340 inc_nlink(inode);
313ab753
FM
2341 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2342 name, name_len);
ccae4a19
FM
2343 /*
2344 * Unlike dir item keys, dir index keys can only have one name (entry) in
2345 * them, as there are no key collisions since each key has a unique offset
2346 * (an index number), so we're done.
2347 */
e02119d5 2348out:
b3b4aa74
DS
2349 btrfs_release_path(path);
2350 btrfs_release_path(log_path);
ccae4a19
FM
2351 kfree(name);
2352 iput(inode);
e02119d5
CM
2353 return ret;
2354}
2355
4f764e51
FM
2356static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2357 struct btrfs_root *root,
2358 struct btrfs_root *log,
2359 struct btrfs_path *path,
2360 const u64 ino)
2361{
2362 struct btrfs_key search_key;
2363 struct btrfs_path *log_path;
2364 int i;
2365 int nritems;
2366 int ret;
2367
2368 log_path = btrfs_alloc_path();
2369 if (!log_path)
2370 return -ENOMEM;
2371
2372 search_key.objectid = ino;
2373 search_key.type = BTRFS_XATTR_ITEM_KEY;
2374 search_key.offset = 0;
2375again:
2376 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2377 if (ret < 0)
2378 goto out;
2379process_leaf:
2380 nritems = btrfs_header_nritems(path->nodes[0]);
2381 for (i = path->slots[0]; i < nritems; i++) {
2382 struct btrfs_key key;
2383 struct btrfs_dir_item *di;
2384 struct btrfs_dir_item *log_di;
2385 u32 total_size;
2386 u32 cur;
2387
2388 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2389 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2390 ret = 0;
2391 goto out;
2392 }
2393
2394 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
3212fa14 2395 total_size = btrfs_item_size(path->nodes[0], i);
4f764e51
FM
2396 cur = 0;
2397 while (cur < total_size) {
2398 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2399 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2400 u32 this_len = sizeof(*di) + name_len + data_len;
2401 char *name;
2402
2403 name = kmalloc(name_len, GFP_NOFS);
2404 if (!name) {
2405 ret = -ENOMEM;
2406 goto out;
2407 }
2408 read_extent_buffer(path->nodes[0], name,
2409 (unsigned long)(di + 1), name_len);
2410
2411 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2412 name, name_len, 0);
2413 btrfs_release_path(log_path);
2414 if (!log_di) {
2415 /* Doesn't exist in log tree, so delete it. */
2416 btrfs_release_path(path);
2417 di = btrfs_lookup_xattr(trans, root, path, ino,
2418 name, name_len, -1);
2419 kfree(name);
2420 if (IS_ERR(di)) {
2421 ret = PTR_ERR(di);
2422 goto out;
2423 }
2424 ASSERT(di);
2425 ret = btrfs_delete_one_dir_name(trans, root,
2426 path, di);
2427 if (ret)
2428 goto out;
2429 btrfs_release_path(path);
2430 search_key = key;
2431 goto again;
2432 }
2433 kfree(name);
2434 if (IS_ERR(log_di)) {
2435 ret = PTR_ERR(log_di);
2436 goto out;
2437 }
2438 cur += this_len;
2439 di = (struct btrfs_dir_item *)((char *)di + this_len);
2440 }
2441 }
2442 ret = btrfs_next_leaf(root, path);
2443 if (ret > 0)
2444 ret = 0;
2445 else if (ret == 0)
2446 goto process_leaf;
2447out:
2448 btrfs_free_path(log_path);
2449 btrfs_release_path(path);
2450 return ret;
2451}
2452
2453
e02119d5
CM
2454/*
2455 * deletion replay happens before we copy any new directory items
2456 * out of the log or out of backreferences from inodes. It
2457 * scans the log to find ranges of keys that log is authoritative for,
2458 * and then scans the directory to find items in those ranges that are
2459 * not present in the log.
2460 *
2461 * Anything we don't find in the log is unlinked and removed from the
2462 * directory.
2463 */
2464static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2465 struct btrfs_root *root,
2466 struct btrfs_root *log,
2467 struct btrfs_path *path,
12fcfd22 2468 u64 dirid, int del_all)
e02119d5
CM
2469{
2470 u64 range_start;
2471 u64 range_end;
e02119d5
CM
2472 int ret = 0;
2473 struct btrfs_key dir_key;
2474 struct btrfs_key found_key;
2475 struct btrfs_path *log_path;
2476 struct inode *dir;
2477
2478 dir_key.objectid = dirid;
ccae4a19 2479 dir_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
2480 log_path = btrfs_alloc_path();
2481 if (!log_path)
2482 return -ENOMEM;
2483
2484 dir = read_one_inode(root, dirid);
2485 /* it isn't an error if the inode isn't there, that can happen
2486 * because we replay the deletes before we copy in the inode item
2487 * from the log
2488 */
2489 if (!dir) {
2490 btrfs_free_path(log_path);
2491 return 0;
2492 }
ccae4a19 2493
e02119d5
CM
2494 range_start = 0;
2495 range_end = 0;
d397712b 2496 while (1) {
12fcfd22
CM
2497 if (del_all)
2498 range_end = (u64)-1;
2499 else {
ccae4a19 2500 ret = find_dir_range(log, path, dirid,
12fcfd22 2501 &range_start, &range_end);
10adb115
FM
2502 if (ret < 0)
2503 goto out;
2504 else if (ret > 0)
12fcfd22
CM
2505 break;
2506 }
e02119d5
CM
2507
2508 dir_key.offset = range_start;
d397712b 2509 while (1) {
e02119d5
CM
2510 int nritems;
2511 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2512 0, 0);
2513 if (ret < 0)
2514 goto out;
2515
2516 nritems = btrfs_header_nritems(path->nodes[0]);
2517 if (path->slots[0] >= nritems) {
2518 ret = btrfs_next_leaf(root, path);
b98def7c 2519 if (ret == 1)
e02119d5 2520 break;
b98def7c
LB
2521 else if (ret < 0)
2522 goto out;
e02119d5
CM
2523 }
2524 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2525 path->slots[0]);
2526 if (found_key.objectid != dirid ||
ccae4a19
FM
2527 found_key.type != dir_key.type) {
2528 ret = 0;
2529 goto out;
2530 }
e02119d5
CM
2531
2532 if (found_key.offset > range_end)
2533 break;
2534
d1ed82f3 2535 ret = check_item_in_log(trans, log, path,
12fcfd22
CM
2536 log_path, dir,
2537 &found_key);
3650860b
JB
2538 if (ret)
2539 goto out;
e02119d5
CM
2540 if (found_key.offset == (u64)-1)
2541 break;
2542 dir_key.offset = found_key.offset + 1;
2543 }
b3b4aa74 2544 btrfs_release_path(path);
e02119d5
CM
2545 if (range_end == (u64)-1)
2546 break;
2547 range_start = range_end + 1;
2548 }
e02119d5 2549 ret = 0;
e02119d5 2550out:
b3b4aa74 2551 btrfs_release_path(path);
e02119d5
CM
2552 btrfs_free_path(log_path);
2553 iput(dir);
2554 return ret;
2555}
2556
2557/*
2558 * the process_func used to replay items from the log tree. This
2559 * gets called in two different stages. The first stage just looks
2560 * for inodes and makes sure they are all copied into the subvolume.
2561 *
2562 * The second stage copies all the other item types from the log into
2563 * the subvolume. The two stage approach is slower, but gets rid of
2564 * lots of complexity around inodes referencing other inodes that exist
2565 * only in the log (references come from either directory items or inode
2566 * back refs).
2567 */
2568static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2569 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2570{
2571 int nritems;
2572 struct btrfs_path *path;
2573 struct btrfs_root *root = wc->replay_dest;
2574 struct btrfs_key key;
e02119d5
CM
2575 int i;
2576 int ret;
2577
581c1760 2578 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2579 if (ret)
2580 return ret;
e02119d5
CM
2581
2582 level = btrfs_header_level(eb);
2583
2584 if (level != 0)
2585 return 0;
2586
2587 path = btrfs_alloc_path();
1e5063d0
MF
2588 if (!path)
2589 return -ENOMEM;
e02119d5
CM
2590
2591 nritems = btrfs_header_nritems(eb);
2592 for (i = 0; i < nritems; i++) {
2593 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2594
2595 /* inode keys are done during the first stage */
2596 if (key.type == BTRFS_INODE_ITEM_KEY &&
2597 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2598 struct btrfs_inode_item *inode_item;
2599 u32 mode;
2600
2601 inode_item = btrfs_item_ptr(eb, i,
2602 struct btrfs_inode_item);
f2d72f42
FM
2603 /*
2604 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2605 * and never got linked before the fsync, skip it, as
2606 * replaying it is pointless since it would be deleted
2607 * later. We skip logging tmpfiles, but it's always
2608 * possible we are replaying a log created with a kernel
2609 * that used to log tmpfiles.
2610 */
2611 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2612 wc->ignore_cur_inode = true;
2613 continue;
2614 } else {
2615 wc->ignore_cur_inode = false;
2616 }
4f764e51
FM
2617 ret = replay_xattr_deletes(wc->trans, root, log,
2618 path, key.objectid);
2619 if (ret)
2620 break;
e02119d5
CM
2621 mode = btrfs_inode_mode(eb, inode_item);
2622 if (S_ISDIR(mode)) {
2623 ret = replay_dir_deletes(wc->trans,
12fcfd22 2624 root, log, path, key.objectid, 0);
b50c6e25
JB
2625 if (ret)
2626 break;
e02119d5
CM
2627 }
2628 ret = overwrite_item(wc->trans, root, path,
2629 eb, i, &key);
b50c6e25
JB
2630 if (ret)
2631 break;
e02119d5 2632
471d557a
FM
2633 /*
2634 * Before replaying extents, truncate the inode to its
2635 * size. We need to do it now and not after log replay
2636 * because before an fsync we can have prealloc extents
2637 * added beyond the inode's i_size. If we did it after,
2638 * through orphan cleanup for example, we would drop
2639 * those prealloc extents just after replaying them.
e02119d5
CM
2640 */
2641 if (S_ISREG(mode)) {
5893dfb9 2642 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2643 struct inode *inode;
2644 u64 from;
2645
2646 inode = read_one_inode(root, key.objectid);
2647 if (!inode) {
2648 ret = -EIO;
2649 break;
2650 }
2651 from = ALIGN(i_size_read(inode),
2652 root->fs_info->sectorsize);
5893dfb9
FM
2653 drop_args.start = from;
2654 drop_args.end = (u64)-1;
2655 drop_args.drop_cache = true;
2656 ret = btrfs_drop_extents(wc->trans, root,
2657 BTRFS_I(inode),
2658 &drop_args);
471d557a 2659 if (!ret) {
2766ff61
FM
2660 inode_sub_bytes(inode,
2661 drop_args.bytes_found);
f2d72f42 2662 /* Update the inode's nbytes. */
471d557a 2663 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2664 root, BTRFS_I(inode));
471d557a
FM
2665 }
2666 iput(inode);
b50c6e25
JB
2667 if (ret)
2668 break;
e02119d5 2669 }
c71bf099 2670
e02119d5
CM
2671 ret = link_to_fixup_dir(wc->trans, root,
2672 path, key.objectid);
b50c6e25
JB
2673 if (ret)
2674 break;
e02119d5 2675 }
dd8e7217 2676
f2d72f42
FM
2677 if (wc->ignore_cur_inode)
2678 continue;
2679
dd8e7217
JB
2680 if (key.type == BTRFS_DIR_INDEX_KEY &&
2681 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2682 ret = replay_one_dir_item(wc->trans, root, path,
2683 eb, i, &key);
2684 if (ret)
2685 break;
2686 }
2687
e02119d5
CM
2688 if (wc->stage < LOG_WALK_REPLAY_ALL)
2689 continue;
2690
2691 /* these keys are simply copied */
2692 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2693 ret = overwrite_item(wc->trans, root, path,
2694 eb, i, &key);
b50c6e25
JB
2695 if (ret)
2696 break;
2da1c669
LB
2697 } else if (key.type == BTRFS_INODE_REF_KEY ||
2698 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2699 ret = add_inode_ref(wc->trans, root, log, path,
2700 eb, i, &key);
b50c6e25
JB
2701 if (ret && ret != -ENOENT)
2702 break;
2703 ret = 0;
e02119d5
CM
2704 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2705 ret = replay_one_extent(wc->trans, root, path,
2706 eb, i, &key);
b50c6e25
JB
2707 if (ret)
2708 break;
e02119d5 2709 }
339d0354
FM
2710 /*
2711 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2712 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2713 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2714 * older kernel with such keys, ignore them.
2715 */
e02119d5
CM
2716 }
2717 btrfs_free_path(path);
b50c6e25 2718 return ret;
e02119d5
CM
2719}
2720
6787bb9f
NB
2721/*
2722 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2723 */
2724static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2725{
2726 struct btrfs_block_group *cache;
2727
2728 cache = btrfs_lookup_block_group(fs_info, start);
2729 if (!cache) {
2730 btrfs_err(fs_info, "unable to find block group for %llu", start);
2731 return;
2732 }
2733
2734 spin_lock(&cache->space_info->lock);
2735 spin_lock(&cache->lock);
2736 cache->reserved -= fs_info->nodesize;
2737 cache->space_info->bytes_reserved -= fs_info->nodesize;
2738 spin_unlock(&cache->lock);
2739 spin_unlock(&cache->space_info->lock);
2740
2741 btrfs_put_block_group(cache);
2742}
2743
d397712b 2744static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2745 struct btrfs_root *root,
2746 struct btrfs_path *path, int *level,
2747 struct walk_control *wc)
2748{
0b246afa 2749 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2750 u64 bytenr;
2751 u64 ptr_gen;
2752 struct extent_buffer *next;
2753 struct extent_buffer *cur;
e02119d5
CM
2754 u32 blocksize;
2755 int ret = 0;
2756
d397712b 2757 while (*level > 0) {
581c1760
QW
2758 struct btrfs_key first_key;
2759
e02119d5
CM
2760 cur = path->nodes[*level];
2761
fae7f21c 2762 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2763
2764 if (path->slots[*level] >=
2765 btrfs_header_nritems(cur))
2766 break;
2767
2768 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2769 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2770 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2771 blocksize = fs_info->nodesize;
e02119d5 2772
3fbaf258
JB
2773 next = btrfs_find_create_tree_block(fs_info, bytenr,
2774 btrfs_header_owner(cur),
2775 *level - 1);
c871b0f2
LB
2776 if (IS_ERR(next))
2777 return PTR_ERR(next);
e02119d5 2778
e02119d5 2779 if (*level == 1) {
581c1760
QW
2780 ret = wc->process_func(root, next, wc, ptr_gen,
2781 *level - 1);
b50c6e25
JB
2782 if (ret) {
2783 free_extent_buffer(next);
1e5063d0 2784 return ret;
b50c6e25 2785 }
4a500fd1 2786
e02119d5
CM
2787 path->slots[*level]++;
2788 if (wc->free) {
581c1760
QW
2789 ret = btrfs_read_buffer(next, ptr_gen,
2790 *level - 1, &first_key);
018642a1
TI
2791 if (ret) {
2792 free_extent_buffer(next);
2793 return ret;
2794 }
e02119d5 2795
681ae509
JB
2796 if (trans) {
2797 btrfs_tree_lock(next);
6a884d7d 2798 btrfs_clean_tree_block(next);
681ae509
JB
2799 btrfs_wait_tree_block_writeback(next);
2800 btrfs_tree_unlock(next);
7bfc1007 2801 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2802 bytenr, blocksize);
2803 if (ret) {
2804 free_extent_buffer(next);
2805 return ret;
2806 }
d3575156
NA
2807 btrfs_redirty_list_add(
2808 trans->transaction, next);
1846430c
LB
2809 } else {
2810 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2811 clear_extent_buffer_dirty(next);
10e958d5 2812 unaccount_log_buffer(fs_info, bytenr);
3650860b 2813 }
e02119d5
CM
2814 }
2815 free_extent_buffer(next);
2816 continue;
2817 }
581c1760 2818 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2819 if (ret) {
2820 free_extent_buffer(next);
2821 return ret;
2822 }
e02119d5 2823
e02119d5
CM
2824 if (path->nodes[*level-1])
2825 free_extent_buffer(path->nodes[*level-1]);
2826 path->nodes[*level-1] = next;
2827 *level = btrfs_header_level(next);
2828 path->slots[*level] = 0;
2829 cond_resched();
2830 }
4a500fd1 2831 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2832
2833 cond_resched();
2834 return 0;
2835}
2836
d397712b 2837static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2838 struct btrfs_root *root,
2839 struct btrfs_path *path, int *level,
2840 struct walk_control *wc)
2841{
0b246afa 2842 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2843 int i;
2844 int slot;
2845 int ret;
2846
d397712b 2847 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2848 slot = path->slots[i];
4a500fd1 2849 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2850 path->slots[i]++;
2851 *level = i;
2852 WARN_ON(*level == 0);
2853 return 0;
2854 } else {
1e5063d0 2855 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2856 btrfs_header_generation(path->nodes[*level]),
2857 *level);
1e5063d0
MF
2858 if (ret)
2859 return ret;
2860
e02119d5
CM
2861 if (wc->free) {
2862 struct extent_buffer *next;
2863
2864 next = path->nodes[*level];
2865
681ae509
JB
2866 if (trans) {
2867 btrfs_tree_lock(next);
6a884d7d 2868 btrfs_clean_tree_block(next);
681ae509
JB
2869 btrfs_wait_tree_block_writeback(next);
2870 btrfs_tree_unlock(next);
7bfc1007 2871 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2872 path->nodes[*level]->start,
2873 path->nodes[*level]->len);
2874 if (ret)
2875 return ret;
84c25448
NA
2876 btrfs_redirty_list_add(trans->transaction,
2877 next);
1846430c
LB
2878 } else {
2879 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2880 clear_extent_buffer_dirty(next);
e02119d5 2881
10e958d5
NB
2882 unaccount_log_buffer(fs_info,
2883 path->nodes[*level]->start);
2884 }
e02119d5
CM
2885 }
2886 free_extent_buffer(path->nodes[*level]);
2887 path->nodes[*level] = NULL;
2888 *level = i + 1;
2889 }
2890 }
2891 return 1;
2892}
2893
2894/*
2895 * drop the reference count on the tree rooted at 'snap'. This traverses
2896 * the tree freeing any blocks that have a ref count of zero after being
2897 * decremented.
2898 */
2899static int walk_log_tree(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *log, struct walk_control *wc)
2901{
2ff7e61e 2902 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2903 int ret = 0;
2904 int wret;
2905 int level;
2906 struct btrfs_path *path;
e02119d5
CM
2907 int orig_level;
2908
2909 path = btrfs_alloc_path();
db5b493a
TI
2910 if (!path)
2911 return -ENOMEM;
e02119d5
CM
2912
2913 level = btrfs_header_level(log->node);
2914 orig_level = level;
2915 path->nodes[level] = log->node;
67439dad 2916 atomic_inc(&log->node->refs);
e02119d5
CM
2917 path->slots[level] = 0;
2918
d397712b 2919 while (1) {
e02119d5
CM
2920 wret = walk_down_log_tree(trans, log, path, &level, wc);
2921 if (wret > 0)
2922 break;
79787eaa 2923 if (wret < 0) {
e02119d5 2924 ret = wret;
79787eaa
JM
2925 goto out;
2926 }
e02119d5
CM
2927
2928 wret = walk_up_log_tree(trans, log, path, &level, wc);
2929 if (wret > 0)
2930 break;
79787eaa 2931 if (wret < 0) {
e02119d5 2932 ret = wret;
79787eaa
JM
2933 goto out;
2934 }
e02119d5
CM
2935 }
2936
2937 /* was the root node processed? if not, catch it here */
2938 if (path->nodes[orig_level]) {
79787eaa 2939 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2940 btrfs_header_generation(path->nodes[orig_level]),
2941 orig_level);
79787eaa
JM
2942 if (ret)
2943 goto out;
e02119d5
CM
2944 if (wc->free) {
2945 struct extent_buffer *next;
2946
2947 next = path->nodes[orig_level];
2948
681ae509
JB
2949 if (trans) {
2950 btrfs_tree_lock(next);
6a884d7d 2951 btrfs_clean_tree_block(next);
681ae509
JB
2952 btrfs_wait_tree_block_writeback(next);
2953 btrfs_tree_unlock(next);
7bfc1007 2954 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2955 next->start, next->len);
2956 if (ret)
2957 goto out;
84c25448 2958 btrfs_redirty_list_add(trans->transaction, next);
1846430c
LB
2959 } else {
2960 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2961 clear_extent_buffer_dirty(next);
10e958d5 2962 unaccount_log_buffer(fs_info, next->start);
681ae509 2963 }
e02119d5
CM
2964 }
2965 }
2966
79787eaa 2967out:
e02119d5 2968 btrfs_free_path(path);
e02119d5
CM
2969 return ret;
2970}
2971
7237f183
YZ
2972/*
2973 * helper function to update the item for a given subvolumes log root
2974 * in the tree of log roots
2975 */
2976static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2977 struct btrfs_root *log,
2978 struct btrfs_root_item *root_item)
7237f183 2979{
0b246afa 2980 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2981 int ret;
2982
2983 if (log->log_transid == 1) {
2984 /* insert root item on the first sync */
0b246afa 2985 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2986 &log->root_key, root_item);
7237f183 2987 } else {
0b246afa 2988 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2989 &log->root_key, root_item);
7237f183
YZ
2990 }
2991 return ret;
2992}
2993
60d53eb3 2994static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2995{
2996 DEFINE_WAIT(wait);
7237f183 2997 int index = transid % 2;
e02119d5 2998
7237f183
YZ
2999 /*
3000 * we only allow two pending log transactions at a time,
3001 * so we know that if ours is more than 2 older than the
3002 * current transaction, we're done
3003 */
49e83f57 3004 for (;;) {
7237f183
YZ
3005 prepare_to_wait(&root->log_commit_wait[index],
3006 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 3007
49e83f57
LB
3008 if (!(root->log_transid_committed < transid &&
3009 atomic_read(&root->log_commit[index])))
3010 break;
12fcfd22 3011
49e83f57
LB
3012 mutex_unlock(&root->log_mutex);
3013 schedule();
7237f183 3014 mutex_lock(&root->log_mutex);
49e83f57
LB
3015 }
3016 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
3017}
3018
60d53eb3 3019static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
3020{
3021 DEFINE_WAIT(wait);
8b050d35 3022
49e83f57
LB
3023 for (;;) {
3024 prepare_to_wait(&root->log_writer_wait, &wait,
3025 TASK_UNINTERRUPTIBLE);
3026 if (!atomic_read(&root->log_writers))
3027 break;
3028
7237f183 3029 mutex_unlock(&root->log_mutex);
49e83f57 3030 schedule();
575849ec 3031 mutex_lock(&root->log_mutex);
7237f183 3032 }
49e83f57 3033 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
3034}
3035
8b050d35
MX
3036static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3037 struct btrfs_log_ctx *ctx)
3038{
8b050d35
MX
3039 mutex_lock(&root->log_mutex);
3040 list_del_init(&ctx->list);
3041 mutex_unlock(&root->log_mutex);
3042}
3043
3044/*
3045 * Invoked in log mutex context, or be sure there is no other task which
3046 * can access the list.
3047 */
3048static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3049 int index, int error)
3050{
3051 struct btrfs_log_ctx *ctx;
570dd450 3052 struct btrfs_log_ctx *safe;
8b050d35 3053
570dd450
CM
3054 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3055 list_del_init(&ctx->list);
8b050d35 3056 ctx->log_ret = error;
570dd450 3057 }
8b050d35
MX
3058}
3059
e02119d5
CM
3060/*
3061 * btrfs_sync_log does sends a given tree log down to the disk and
3062 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3063 * you know that any inodes previously logged are safely on disk only
3064 * if it returns 0.
3065 *
3066 * Any other return value means you need to call btrfs_commit_transaction.
3067 * Some of the edge cases for fsyncing directories that have had unlinks
3068 * or renames done in the past mean that sometimes the only safe
3069 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3070 * that has happened.
e02119d5
CM
3071 */
3072int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3073 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3074{
7237f183
YZ
3075 int index1;
3076 int index2;
8cef4e16 3077 int mark;
e02119d5 3078 int ret;
0b246afa 3079 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3080 struct btrfs_root *log = root->log_root;
0b246afa 3081 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3082 struct btrfs_root_item new_root_item;
bb14a59b 3083 int log_transid = 0;
8b050d35 3084 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3085 struct blk_plug plug;
47876f7c
FM
3086 u64 log_root_start;
3087 u64 log_root_level;
e02119d5 3088
7237f183 3089 mutex_lock(&root->log_mutex);
d1433deb
MX
3090 log_transid = ctx->log_transid;
3091 if (root->log_transid_committed >= log_transid) {
3092 mutex_unlock(&root->log_mutex);
3093 return ctx->log_ret;
3094 }
3095
3096 index1 = log_transid % 2;
7237f183 3097 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3098 wait_log_commit(root, log_transid);
7237f183 3099 mutex_unlock(&root->log_mutex);
8b050d35 3100 return ctx->log_ret;
e02119d5 3101 }
d1433deb 3102 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3103 atomic_set(&root->log_commit[index1], 1);
3104
3105 /* wait for previous tree log sync to complete */
3106 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3107 wait_log_commit(root, log_transid - 1);
48cab2e0 3108
86df7eb9 3109 while (1) {
2ecb7923 3110 int batch = atomic_read(&root->log_batch);
cd354ad6 3111 /* when we're on an ssd, just kick the log commit out */
0b246afa 3112 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3113 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3114 mutex_unlock(&root->log_mutex);
3115 schedule_timeout_uninterruptible(1);
3116 mutex_lock(&root->log_mutex);
3117 }
60d53eb3 3118 wait_for_writer(root);
2ecb7923 3119 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3120 break;
3121 }
e02119d5 3122
12fcfd22 3123 /* bail out if we need to do a full commit */
4884b8e8 3124 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3125 ret = -EAGAIN;
3126 mutex_unlock(&root->log_mutex);
3127 goto out;
3128 }
3129
8cef4e16
YZ
3130 if (log_transid % 2 == 0)
3131 mark = EXTENT_DIRTY;
3132 else
3133 mark = EXTENT_NEW;
3134
690587d1
CM
3135 /* we start IO on all the marked extents here, but we don't actually
3136 * wait for them until later.
3137 */
c6adc9cc 3138 blk_start_plug(&plug);
2ff7e61e 3139 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
3140 /*
3141 * -EAGAIN happens when someone, e.g., a concurrent transaction
3142 * commit, writes a dirty extent in this tree-log commit. This
3143 * concurrent write will create a hole writing out the extents,
3144 * and we cannot proceed on a zoned filesystem, requiring
3145 * sequential writing. While we can bail out to a full commit
3146 * here, but we can continue hoping the concurrent writing fills
3147 * the hole.
3148 */
3149 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3150 ret = 0;
79787eaa 3151 if (ret) {
c6adc9cc 3152 blk_finish_plug(&plug);
66642832 3153 btrfs_abort_transaction(trans, ret);
90787766 3154 btrfs_set_log_full_commit(trans);
79787eaa
JM
3155 mutex_unlock(&root->log_mutex);
3156 goto out;
3157 }
7237f183 3158
4203e968
JB
3159 /*
3160 * We _must_ update under the root->log_mutex in order to make sure we
3161 * have a consistent view of the log root we are trying to commit at
3162 * this moment.
3163 *
3164 * We _must_ copy this into a local copy, because we are not holding the
3165 * log_root_tree->log_mutex yet. This is important because when we
3166 * commit the log_root_tree we must have a consistent view of the
3167 * log_root_tree when we update the super block to point at the
3168 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3169 * with the commit and possibly point at the new block which we may not
3170 * have written out.
3171 */
5d4f98a2 3172 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3173 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3174
7237f183
YZ
3175 root->log_transid++;
3176 log->log_transid = root->log_transid;
ff782e0a 3177 root->log_start_pid = 0;
7237f183 3178 /*
8cef4e16
YZ
3179 * IO has been started, blocks of the log tree have WRITTEN flag set
3180 * in their headers. new modifications of the log will be written to
3181 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3182 */
3183 mutex_unlock(&root->log_mutex);
3184
3ddebf27 3185 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3186 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3187 if (!log_root_tree->node) {
3188 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3189 if (ret) {
ea32af47 3190 mutex_unlock(&fs_info->tree_root->log_mutex);
50ff5788 3191 blk_finish_plug(&plug);
3ddebf27
NA
3192 goto out;
3193 }
3194 }
e75f9fd1 3195 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3196 }
3197
e75f9fd1
NA
3198 btrfs_init_log_ctx(&root_log_ctx, NULL);
3199
3200 mutex_lock(&log_root_tree->log_mutex);
3201
e3d3b415
FM
3202 index2 = log_root_tree->log_transid % 2;
3203 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3204 root_log_ctx.log_transid = log_root_tree->log_transid;
3205
4203e968
JB
3206 /*
3207 * Now we are safe to update the log_root_tree because we're under the
3208 * log_mutex, and we're a current writer so we're holding the commit
3209 * open until we drop the log_mutex.
3210 */
3211 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3212 if (ret) {
d1433deb
MX
3213 if (!list_empty(&root_log_ctx.list))
3214 list_del_init(&root_log_ctx.list);
3215
c6adc9cc 3216 blk_finish_plug(&plug);
90787766 3217 btrfs_set_log_full_commit(trans);
995946dd 3218
79787eaa 3219 if (ret != -ENOSPC) {
66642832 3220 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3221 mutex_unlock(&log_root_tree->log_mutex);
3222 goto out;
3223 }
bf89d38f 3224 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3225 mutex_unlock(&log_root_tree->log_mutex);
3226 ret = -EAGAIN;
3227 goto out;
3228 }
3229
d1433deb 3230 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3231 blk_finish_plug(&plug);
cbd60aa7 3232 list_del_init(&root_log_ctx.list);
d1433deb
MX
3233 mutex_unlock(&log_root_tree->log_mutex);
3234 ret = root_log_ctx.log_ret;
3235 goto out;
3236 }
8b050d35 3237
d1433deb 3238 index2 = root_log_ctx.log_transid % 2;
7237f183 3239 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3240 blk_finish_plug(&plug);
bf89d38f 3241 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3242 wait_log_commit(log_root_tree,
d1433deb 3243 root_log_ctx.log_transid);
7237f183 3244 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3245 if (!ret)
3246 ret = root_log_ctx.log_ret;
7237f183
YZ
3247 goto out;
3248 }
d1433deb 3249 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3250 atomic_set(&log_root_tree->log_commit[index2], 1);
3251
12fcfd22 3252 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3253 wait_log_commit(log_root_tree,
d1433deb 3254 root_log_ctx.log_transid - 1);
12fcfd22
CM
3255 }
3256
12fcfd22
CM
3257 /*
3258 * now that we've moved on to the tree of log tree roots,
3259 * check the full commit flag again
3260 */
4884b8e8 3261 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3262 blk_finish_plug(&plug);
bf89d38f 3263 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3264 mutex_unlock(&log_root_tree->log_mutex);
3265 ret = -EAGAIN;
3266 goto out_wake_log_root;
3267 }
7237f183 3268
2ff7e61e 3269 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3270 &log_root_tree->dirty_log_pages,
3271 EXTENT_DIRTY | EXTENT_NEW);
3272 blk_finish_plug(&plug);
b528f467
NA
3273 /*
3274 * As described above, -EAGAIN indicates a hole in the extents. We
3275 * cannot wait for these write outs since the waiting cause a
3276 * deadlock. Bail out to the full commit instead.
3277 */
3278 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3279 btrfs_set_log_full_commit(trans);
3280 btrfs_wait_tree_log_extents(log, mark);
3281 mutex_unlock(&log_root_tree->log_mutex);
3282 goto out_wake_log_root;
3283 } else if (ret) {
90787766 3284 btrfs_set_log_full_commit(trans);
66642832 3285 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3286 mutex_unlock(&log_root_tree->log_mutex);
3287 goto out_wake_log_root;
3288 }
bf89d38f 3289 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3290 if (!ret)
bf89d38f
JM
3291 ret = btrfs_wait_tree_log_extents(log_root_tree,
3292 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3293 if (ret) {
90787766 3294 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3295 mutex_unlock(&log_root_tree->log_mutex);
3296 goto out_wake_log_root;
3297 }
e02119d5 3298
47876f7c
FM
3299 log_root_start = log_root_tree->node->start;
3300 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3301 log_root_tree->log_transid++;
7237f183
YZ
3302 mutex_unlock(&log_root_tree->log_mutex);
3303
3304 /*
47876f7c
FM
3305 * Here we are guaranteed that nobody is going to write the superblock
3306 * for the current transaction before us and that neither we do write
3307 * our superblock before the previous transaction finishes its commit
3308 * and writes its superblock, because:
3309 *
3310 * 1) We are holding a handle on the current transaction, so no body
3311 * can commit it until we release the handle;
3312 *
3313 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3314 * if the previous transaction is still committing, and hasn't yet
3315 * written its superblock, we wait for it to do it, because a
3316 * transaction commit acquires the tree_log_mutex when the commit
3317 * begins and releases it only after writing its superblock.
7237f183 3318 */
47876f7c 3319 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3320
3321 /*
3322 * The previous transaction writeout phase could have failed, and thus
3323 * marked the fs in an error state. We must not commit here, as we
3324 * could have updated our generation in the super_for_commit and
3325 * writing the super here would result in transid mismatches. If there
3326 * is an error here just bail.
3327 */
84961539 3328 if (BTRFS_FS_ERROR(fs_info)) {
165ea85f
JB
3329 ret = -EIO;
3330 btrfs_set_log_full_commit(trans);
3331 btrfs_abort_transaction(trans, ret);
3332 mutex_unlock(&fs_info->tree_log_mutex);
3333 goto out_wake_log_root;
3334 }
3335
47876f7c
FM
3336 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3337 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3338 ret = write_all_supers(fs_info, 1);
47876f7c 3339 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3340 if (ret) {
90787766 3341 btrfs_set_log_full_commit(trans);
66642832 3342 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3343 goto out_wake_log_root;
3344 }
7237f183 3345
e1a6d264
FM
3346 /*
3347 * We know there can only be one task here, since we have not yet set
3348 * root->log_commit[index1] to 0 and any task attempting to sync the
3349 * log must wait for the previous log transaction to commit if it's
3350 * still in progress or wait for the current log transaction commit if
3351 * someone else already started it. We use <= and not < because the
3352 * first log transaction has an ID of 0.
3353 */
3354 ASSERT(root->last_log_commit <= log_transid);
3355 root->last_log_commit = log_transid;
257c62e1 3356
12fcfd22 3357out_wake_log_root:
570dd450 3358 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3359 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3360
d1433deb 3361 log_root_tree->log_transid_committed++;
7237f183 3362 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3363 mutex_unlock(&log_root_tree->log_mutex);
3364
33a9eca7 3365 /*
093258e6
DS
3366 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3367 * all the updates above are seen by the woken threads. It might not be
3368 * necessary, but proving that seems to be hard.
33a9eca7 3369 */
093258e6 3370 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3371out:
d1433deb 3372 mutex_lock(&root->log_mutex);
570dd450 3373 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3374 root->log_transid_committed++;
7237f183 3375 atomic_set(&root->log_commit[index1], 0);
d1433deb 3376 mutex_unlock(&root->log_mutex);
8b050d35 3377
33a9eca7 3378 /*
093258e6
DS
3379 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3380 * all the updates above are seen by the woken threads. It might not be
3381 * necessary, but proving that seems to be hard.
33a9eca7 3382 */
093258e6 3383 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3384 return ret;
e02119d5
CM
3385}
3386
4a500fd1
YZ
3387static void free_log_tree(struct btrfs_trans_handle *trans,
3388 struct btrfs_root *log)
e02119d5
CM
3389{
3390 int ret;
e02119d5
CM
3391 struct walk_control wc = {
3392 .free = 1,
3393 .process_func = process_one_buffer
3394 };
3395
3ddebf27
NA
3396 if (log->node) {
3397 ret = walk_log_tree(trans, log, &wc);
3398 if (ret) {
40cdc509
FM
3399 /*
3400 * We weren't able to traverse the entire log tree, the
3401 * typical scenario is getting an -EIO when reading an
3402 * extent buffer of the tree, due to a previous writeback
3403 * failure of it.
3404 */
3405 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3406 &log->fs_info->fs_state);
3407
3408 /*
3409 * Some extent buffers of the log tree may still be dirty
3410 * and not yet written back to storage, because we may
3411 * have updates to a log tree without syncing a log tree,
3412 * such as during rename and link operations. So flush
3413 * them out and wait for their writeback to complete, so
3414 * that we properly cleanup their state and pages.
3415 */
3416 btrfs_write_marked_extents(log->fs_info,
3417 &log->dirty_log_pages,
3418 EXTENT_DIRTY | EXTENT_NEW);
3419 btrfs_wait_tree_log_extents(log,
3420 EXTENT_DIRTY | EXTENT_NEW);
3421
3ddebf27
NA
3422 if (trans)
3423 btrfs_abort_transaction(trans, ret);
3424 else
3425 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3426 }
374b0e2d 3427 }
e02119d5 3428
59b0713a
FM
3429 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3430 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3431 extent_io_tree_release(&log->log_csum_range);
d3575156 3432
00246528 3433 btrfs_put_root(log);
4a500fd1
YZ
3434}
3435
3436/*
3437 * free all the extents used by the tree log. This should be called
3438 * at commit time of the full transaction
3439 */
3440int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3441{
3442 if (root->log_root) {
3443 free_log_tree(trans, root->log_root);
3444 root->log_root = NULL;
e7a79811 3445 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3446 }
3447 return 0;
3448}
3449
3450int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3451 struct btrfs_fs_info *fs_info)
3452{
3453 if (fs_info->log_root_tree) {
3454 free_log_tree(trans, fs_info->log_root_tree);
3455 fs_info->log_root_tree = NULL;
47876f7c 3456 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3457 }
e02119d5
CM
3458 return 0;
3459}
3460
803f0f64 3461/*
0f8ce498
FM
3462 * Check if an inode was logged in the current transaction. This correctly deals
3463 * with the case where the inode was logged but has a logged_trans of 0, which
3464 * happens if the inode is evicted and loaded again, as logged_trans is an in
3465 * memory only field (not persisted).
3466 *
3467 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3468 * and < 0 on error.
803f0f64 3469 */
0f8ce498
FM
3470static int inode_logged(struct btrfs_trans_handle *trans,
3471 struct btrfs_inode *inode,
3472 struct btrfs_path *path_in)
803f0f64 3473{
0f8ce498
FM
3474 struct btrfs_path *path = path_in;
3475 struct btrfs_key key;
3476 int ret;
3477
803f0f64 3478 if (inode->logged_trans == trans->transid)
0f8ce498 3479 return 1;
803f0f64 3480
0f8ce498
FM
3481 /*
3482 * If logged_trans is not 0, then we know the inode logged was not logged
3483 * in this transaction, so we can return false right away.
3484 */
3485 if (inode->logged_trans > 0)
3486 return 0;
3487
3488 /*
3489 * If no log tree was created for this root in this transaction, then
3490 * the inode can not have been logged in this transaction. In that case
3491 * set logged_trans to anything greater than 0 and less than the current
3492 * transaction's ID, to avoid the search below in a future call in case
3493 * a log tree gets created after this.
3494 */
3495 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3496 inode->logged_trans = trans->transid - 1;
3497 return 0;
3498 }
3499
3500 /*
3501 * We have a log tree and the inode's logged_trans is 0. We can't tell
3502 * for sure if the inode was logged before in this transaction by looking
3503 * only at logged_trans. We could be pessimistic and assume it was, but
3504 * that can lead to unnecessarily logging an inode during rename and link
3505 * operations, and then further updating the log in followup rename and
3506 * link operations, specially if it's a directory, which adds latency
3507 * visible to applications doing a series of rename or link operations.
3508 *
3509 * A logged_trans of 0 here can mean several things:
3510 *
3511 * 1) The inode was never logged since the filesystem was mounted, and may
3512 * or may have not been evicted and loaded again;
3513 *
3514 * 2) The inode was logged in a previous transaction, then evicted and
3515 * then loaded again;
3516 *
3517 * 3) The inode was logged in the current transaction, then evicted and
3518 * then loaded again.
3519 *
3520 * For cases 1) and 2) we don't want to return true, but we need to detect
3521 * case 3) and return true. So we do a search in the log root for the inode
3522 * item.
3523 */
3524 key.objectid = btrfs_ino(inode);
3525 key.type = BTRFS_INODE_ITEM_KEY;
3526 key.offset = 0;
3527
3528 if (!path) {
3529 path = btrfs_alloc_path();
3530 if (!path)
3531 return -ENOMEM;
3532 }
3533
3534 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3535
3536 if (path_in)
3537 btrfs_release_path(path);
3538 else
3539 btrfs_free_path(path);
1e0860f3 3540
6e8e777d 3541 /*
0f8ce498
FM
3542 * Logging an inode always results in logging its inode item. So if we
3543 * did not find the item we know the inode was not logged for sure.
6e8e777d 3544 */
0f8ce498
FM
3545 if (ret < 0) {
3546 return ret;
3547 } else if (ret > 0) {
3548 /*
3549 * Set logged_trans to a value greater than 0 and less then the
3550 * current transaction to avoid doing the search in future calls.
3551 */
3552 inode->logged_trans = trans->transid - 1;
3553 return 0;
3554 }
3555
3556 /*
3557 * The inode was previously logged and then evicted, set logged_trans to
3558 * the current transacion's ID, to avoid future tree searches as long as
3559 * the inode is not evicted again.
3560 */
3561 inode->logged_trans = trans->transid;
3562
3563 /*
3564 * If it's a directory, then we must set last_dir_index_offset to the
3565 * maximum possible value, so that the next attempt to log the inode does
3566 * not skip checking if dir index keys found in modified subvolume tree
3567 * leaves have been logged before, otherwise it would result in attempts
3568 * to insert duplicate dir index keys in the log tree. This must be done
3569 * because last_dir_index_offset is an in-memory only field, not persisted
3570 * in the inode item or any other on-disk structure, so its value is lost
3571 * once the inode is evicted.
3572 */
3573 if (S_ISDIR(inode->vfs_inode.i_mode))
3574 inode->last_dir_index_offset = (u64)-1;
803f0f64 3575
0f8ce498 3576 return 1;
803f0f64
FM
3577}
3578
839061fe
FM
3579/*
3580 * Delete a directory entry from the log if it exists.
3581 *
3582 * Returns < 0 on error
3583 * 1 if the entry does not exists
3584 * 0 if the entry existed and was successfully deleted
3585 */
3586static int del_logged_dentry(struct btrfs_trans_handle *trans,
3587 struct btrfs_root *log,
3588 struct btrfs_path *path,
3589 u64 dir_ino,
3590 const char *name, int name_len,
3591 u64 index)
3592{
3593 struct btrfs_dir_item *di;
3594
3595 /*
3596 * We only log dir index items of a directory, so we don't need to look
3597 * for dir item keys.
3598 */
3599 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3600 index, name, name_len, -1);
3601 if (IS_ERR(di))
3602 return PTR_ERR(di);
3603 else if (!di)
3604 return 1;
3605
3606 /*
3607 * We do not need to update the size field of the directory's
3608 * inode item because on log replay we update the field to reflect
3609 * all existing entries in the directory (see overwrite_item()).
3610 */
3611 return btrfs_delete_one_dir_name(trans, log, path, di);
3612}
3613
e02119d5
CM
3614/*
3615 * If both a file and directory are logged, and unlinks or renames are
3616 * mixed in, we have a few interesting corners:
3617 *
3618 * create file X in dir Y
3619 * link file X to X.link in dir Y
3620 * fsync file X
3621 * unlink file X but leave X.link
3622 * fsync dir Y
3623 *
3624 * After a crash we would expect only X.link to exist. But file X
3625 * didn't get fsync'd again so the log has back refs for X and X.link.
3626 *
3627 * We solve this by removing directory entries and inode backrefs from the
3628 * log when a file that was logged in the current transaction is
3629 * unlinked. Any later fsync will include the updated log entries, and
3630 * we'll be able to reconstruct the proper directory items from backrefs.
3631 *
3632 * This optimizations allows us to avoid relogging the entire inode
3633 * or the entire directory.
3634 */
9a35fc95
JB
3635void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3636 struct btrfs_root *root,
3637 const char *name, int name_len,
3638 struct btrfs_inode *dir, u64 index)
e02119d5 3639{
e02119d5
CM
3640 struct btrfs_path *path;
3641 int ret;
e02119d5 3642
0f8ce498
FM
3643 ret = inode_logged(trans, dir, NULL);
3644 if (ret == 0)
3645 return;
3646 else if (ret < 0) {
3647 btrfs_set_log_full_commit(trans);
9a35fc95 3648 return;
0f8ce498 3649 }
3a5f1d45 3650
e02119d5
CM
3651 ret = join_running_log_trans(root);
3652 if (ret)
9a35fc95 3653 return;
e02119d5 3654
49f34d1f 3655 mutex_lock(&dir->log_mutex);
e02119d5 3656
e02119d5 3657 path = btrfs_alloc_path();
a62f44a5 3658 if (!path) {
839061fe 3659 ret = -ENOMEM;
a62f44a5
TI
3660 goto out_unlock;
3661 }
2a29edc6 3662
839061fe
FM
3663 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3664 name, name_len, index);
e02119d5 3665 btrfs_free_path(path);
a62f44a5 3666out_unlock:
49f34d1f 3667 mutex_unlock(&dir->log_mutex);
839061fe 3668 if (ret < 0)
90787766 3669 btrfs_set_log_full_commit(trans);
12fcfd22 3670 btrfs_end_log_trans(root);
e02119d5
CM
3671}
3672
3673/* see comments for btrfs_del_dir_entries_in_log */
9a35fc95
JB
3674void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3675 struct btrfs_root *root,
3676 const char *name, int name_len,
3677 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3678{
3679 struct btrfs_root *log;
3680 u64 index;
3681 int ret;
3682
0f8ce498
FM
3683 ret = inode_logged(trans, inode, NULL);
3684 if (ret == 0)
9a35fc95 3685 return;
0f8ce498
FM
3686 else if (ret < 0) {
3687 btrfs_set_log_full_commit(trans);
3688 return;
3689 }
3a5f1d45 3690
e02119d5
CM
3691 ret = join_running_log_trans(root);
3692 if (ret)
9a35fc95 3693 return;
e02119d5 3694 log = root->log_root;
a491abb2 3695 mutex_lock(&inode->log_mutex);
e02119d5 3696
a491abb2 3697 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3698 dirid, &index);
a491abb2 3699 mutex_unlock(&inode->log_mutex);
9a35fc95 3700 if (ret < 0 && ret != -ENOENT)
90787766 3701 btrfs_set_log_full_commit(trans);
12fcfd22 3702 btrfs_end_log_trans(root);
e02119d5
CM
3703}
3704
3705/*
3706 * creates a range item in the log for 'dirid'. first_offset and
3707 * last_offset tell us which parts of the key space the log should
3708 * be considered authoritative for.
3709 */
3710static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3711 struct btrfs_root *log,
3712 struct btrfs_path *path,
339d0354 3713 u64 dirid,
e02119d5
CM
3714 u64 first_offset, u64 last_offset)
3715{
3716 int ret;
3717 struct btrfs_key key;
3718 struct btrfs_dir_log_item *item;
3719
3720 key.objectid = dirid;
3721 key.offset = first_offset;
339d0354 3722 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5 3723 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
750ee454
FM
3724 /*
3725 * -EEXIST is fine and can happen sporadically when we are logging a
3726 * directory and have concurrent insertions in the subvolume's tree for
3727 * items from other inodes and that result in pushing off some dir items
3728 * from one leaf to another in order to accommodate for the new items.
3729 * This results in logging the same dir index range key.
3730 */
3731 if (ret && ret != -EEXIST)
4a500fd1 3732 return ret;
e02119d5
CM
3733
3734 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3735 struct btrfs_dir_log_item);
750ee454
FM
3736 if (ret == -EEXIST) {
3737 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3738
3739 /*
3740 * btrfs_del_dir_entries_in_log() might have been called during
3741 * an unlink between the initial insertion of this key and the
3742 * current update, or we might be logging a single entry deletion
3743 * during a rename, so set the new last_offset to the max value.
3744 */
3745 last_offset = max(last_offset, curr_end);
3746 }
e02119d5
CM
3747 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3748 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3749 btrfs_release_path(path);
e02119d5
CM
3750 return 0;
3751}
3752
086dcbfa
FM
3753static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3754 struct btrfs_root *log,
3755 struct extent_buffer *src,
3756 struct btrfs_path *dst_path,
3757 int start_slot,
3758 int count)
3759{
3760 char *ins_data = NULL;
b7ef5f3a 3761 struct btrfs_item_batch batch;
086dcbfa 3762 struct extent_buffer *dst;
da1b811f
FM
3763 unsigned long src_offset;
3764 unsigned long dst_offset;
086dcbfa
FM
3765 struct btrfs_key key;
3766 u32 item_size;
3767 int ret;
3768 int i;
3769
3770 ASSERT(count > 0);
b7ef5f3a 3771 batch.nr = count;
086dcbfa
FM
3772
3773 if (count == 1) {
3774 btrfs_item_key_to_cpu(src, &key, start_slot);
3212fa14 3775 item_size = btrfs_item_size(src, start_slot);
b7ef5f3a
FM
3776 batch.keys = &key;
3777 batch.data_sizes = &item_size;
3778 batch.total_data_size = item_size;
086dcbfa 3779 } else {
b7ef5f3a
FM
3780 struct btrfs_key *ins_keys;
3781 u32 *ins_sizes;
3782
086dcbfa
FM
3783 ins_data = kmalloc(count * sizeof(u32) +
3784 count * sizeof(struct btrfs_key), GFP_NOFS);
3785 if (!ins_data)
3786 return -ENOMEM;
3787
3788 ins_sizes = (u32 *)ins_data;
3789 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
b7ef5f3a
FM
3790 batch.keys = ins_keys;
3791 batch.data_sizes = ins_sizes;
3792 batch.total_data_size = 0;
086dcbfa
FM
3793
3794 for (i = 0; i < count; i++) {
3795 const int slot = start_slot + i;
3796
3797 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3212fa14 3798 ins_sizes[i] = btrfs_item_size(src, slot);
b7ef5f3a 3799 batch.total_data_size += ins_sizes[i];
086dcbfa
FM
3800 }
3801 }
3802
b7ef5f3a 3803 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
086dcbfa
FM
3804 if (ret)
3805 goto out;
3806
3807 dst = dst_path->nodes[0];
da1b811f
FM
3808 /*
3809 * Copy all the items in bulk, in a single copy operation. Item data is
3810 * organized such that it's placed at the end of a leaf and from right
3811 * to left. For example, the data for the second item ends at an offset
3812 * that matches the offset where the data for the first item starts, the
3813 * data for the third item ends at an offset that matches the offset
3814 * where the data of the second items starts, and so on.
3815 * Therefore our source and destination start offsets for copy match the
3816 * offsets of the last items (highest slots).
3817 */
3818 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3819 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3820 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
086dcbfa
FM
3821 btrfs_release_path(dst_path);
3822out:
3823 kfree(ins_data);
3824
3825 return ret;
3826}
3827
eb10d85e
FM
3828static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3829 struct btrfs_inode *inode,
3830 struct btrfs_path *path,
3831 struct btrfs_path *dst_path,
732d591a
FM
3832 struct btrfs_log_ctx *ctx,
3833 u64 *last_old_dentry_offset)
eb10d85e
FM
3834{
3835 struct btrfs_root *log = inode->root->log_root;
3836 struct extent_buffer *src = path->nodes[0];
3837 const int nritems = btrfs_header_nritems(src);
3838 const u64 ino = btrfs_ino(inode);
086dcbfa
FM
3839 bool last_found = false;
3840 int batch_start = 0;
3841 int batch_size = 0;
eb10d85e
FM
3842 int i;
3843
3844 for (i = path->slots[0]; i < nritems; i++) {
732d591a 3845 struct btrfs_dir_item *di;
eb10d85e 3846 struct btrfs_key key;
eb10d85e
FM
3847 int ret;
3848
3849 btrfs_item_key_to_cpu(src, &key, i);
3850
339d0354 3851 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
086dcbfa
FM
3852 last_found = true;
3853 break;
3854 }
eb10d85e 3855
732d591a 3856 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
dc287224 3857 ctx->last_dir_item_offset = key.offset;
732d591a
FM
3858
3859 /*
3860 * Skip ranges of items that consist only of dir item keys created
3861 * in past transactions. However if we find a gap, we must log a
3862 * dir index range item for that gap, so that index keys in that
3863 * gap are deleted during log replay.
3864 */
3865 if (btrfs_dir_transid(src, di) < trans->transid) {
3866 if (key.offset > *last_old_dentry_offset + 1) {
3867 ret = insert_dir_log_key(trans, log, dst_path,
3868 ino, *last_old_dentry_offset + 1,
3869 key.offset - 1);
732d591a
FM
3870 if (ret < 0)
3871 return ret;
3872 }
3873
3874 *last_old_dentry_offset = key.offset;
3875 continue;
3876 }
eb10d85e
FM
3877 /*
3878 * We must make sure that when we log a directory entry, the
3879 * corresponding inode, after log replay, has a matching link
3880 * count. For example:
3881 *
3882 * touch foo
3883 * mkdir mydir
3884 * sync
3885 * ln foo mydir/bar
3886 * xfs_io -c "fsync" mydir
3887 * <crash>
3888 * <mount fs and log replay>
3889 *
3890 * Would result in a fsync log that when replayed, our file inode
3891 * would have a link count of 1, but we get two directory entries
3892 * pointing to the same inode. After removing one of the names,
3893 * it would not be possible to remove the other name, which
3894 * resulted always in stale file handle errors, and would not be
3895 * possible to rmdir the parent directory, since its i_size could
3896 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3897 * resulting in -ENOTEMPTY errors.
3898 */
086dcbfa 3899 if (!ctx->log_new_dentries) {
086dcbfa
FM
3900 struct btrfs_key di_key;
3901
086dcbfa 3902 btrfs_dir_item_key_to_cpu(src, di, &di_key);
732d591a 3903 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
086dcbfa
FM
3904 ctx->log_new_dentries = true;
3905 }
3906
0f8ce498 3907 if (!ctx->logged_before)
086dcbfa 3908 goto add_to_batch;
dc287224
FM
3909
3910 /*
3911 * If we were logged before and have logged dir items, we can skip
3912 * checking if any item with a key offset larger than the last one
3913 * we logged is in the log tree, saving time and avoiding adding
0f8ce498
FM
3914 * contention on the log tree. We can only rely on the value of
3915 * last_dir_index_offset when we know for sure that the inode was
3916 * previously logged in the current transaction.
dc287224 3917 */
339d0354 3918 if (key.offset > inode->last_dir_index_offset)
dc287224 3919 goto add_to_batch;
086dcbfa
FM
3920 /*
3921 * Check if the key was already logged before. If not we can add
3922 * it to a batch for bulk insertion.
3923 */
3924 ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0);
3925 if (ret < 0) {
3926 return ret;
3927 } else if (ret > 0) {
3928 btrfs_release_path(dst_path);
3929 goto add_to_batch;
3930 }
3931
3932 /*
3933 * Item exists in the log. Overwrite the item in the log if it
3934 * has different content or do nothing if it has exactly the same
3935 * content. And then flush the current batch if any - do it after
3936 * overwriting the current item, or we would deadlock otherwise,
3937 * since we are holding a path for the existing item.
3938 */
3939 ret = do_overwrite_item(trans, log, dst_path, src, i, &key);
3940 if (ret < 0)
3941 return ret;
3942
3943 if (batch_size > 0) {
3944 ret = flush_dir_items_batch(trans, log, src, dst_path,
3945 batch_start, batch_size);
3946 if (ret < 0)
3947 return ret;
3948 batch_size = 0;
3949 }
3950 continue;
3951add_to_batch:
3952 if (batch_size == 0)
3953 batch_start = i;
3954 batch_size++;
eb10d85e
FM
3955 }
3956
086dcbfa
FM
3957 if (batch_size > 0) {
3958 int ret;
3959
3960 ret = flush_dir_items_batch(trans, log, src, dst_path,
3961 batch_start, batch_size);
3962 if (ret < 0)
3963 return ret;
3964 }
3965
3966 return last_found ? 1 : 0;
eb10d85e
FM
3967}
3968
e02119d5
CM
3969/*
3970 * log all the items included in the current transaction for a given
3971 * directory. This also creates the range items in the log tree required
3972 * to replay anything deleted before the fsync
3973 */
3974static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3975 struct btrfs_inode *inode,
e02119d5 3976 struct btrfs_path *path,
339d0354 3977 struct btrfs_path *dst_path,
2f2ff0ee 3978 struct btrfs_log_ctx *ctx,
e02119d5
CM
3979 u64 min_offset, u64 *last_offset_ret)
3980{
3981 struct btrfs_key min_key;
90d04510 3982 struct btrfs_root *root = inode->root;
e02119d5 3983 struct btrfs_root *log = root->log_root;
4a500fd1 3984 int err = 0;
e02119d5 3985 int ret;
732d591a 3986 u64 last_old_dentry_offset = min_offset - 1;
e02119d5 3987 u64 last_offset = (u64)-1;
684a5773 3988 u64 ino = btrfs_ino(inode);
e02119d5 3989
33345d01 3990 min_key.objectid = ino;
339d0354 3991 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
3992 min_key.offset = min_offset;
3993
6174d3cb 3994 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3995
3996 /*
3997 * we didn't find anything from this transaction, see if there
3998 * is anything at all
3999 */
339d0354
FM
4000 if (ret != 0 || min_key.objectid != ino ||
4001 min_key.type != BTRFS_DIR_INDEX_KEY) {
33345d01 4002 min_key.objectid = ino;
339d0354 4003 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5 4004 min_key.offset = (u64)-1;
b3b4aa74 4005 btrfs_release_path(path);
e02119d5
CM
4006 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4007 if (ret < 0) {
b3b4aa74 4008 btrfs_release_path(path);
e02119d5
CM
4009 return ret;
4010 }
339d0354 4011 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
4012
4013 /* if ret == 0 there are items for this type,
4014 * create a range to tell us the last key of this type.
4015 * otherwise, there are no items in this directory after
4016 * *min_offset, and we create a range to indicate that.
4017 */
4018 if (ret == 0) {
4019 struct btrfs_key tmp;
732d591a 4020
e02119d5
CM
4021 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
4022 path->slots[0]);
339d0354 4023 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 4024 last_old_dentry_offset = tmp.offset;
e02119d5
CM
4025 }
4026 goto done;
4027 }
4028
4029 /* go backward to find any previous key */
339d0354 4030 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
4031 if (ret == 0) {
4032 struct btrfs_key tmp;
a450a4af 4033
e02119d5 4034 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
a450a4af
FM
4035 /*
4036 * The dir index key before the first one we found that needs to
4037 * be logged might be in a previous leaf, and there might be a
4038 * gap between these keys, meaning that we had deletions that
4039 * happened. So the key range item we log (key type
4040 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
4041 * previous key's offset plus 1, so that those deletes are replayed.
4042 */
4043 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 4044 last_old_dentry_offset = tmp.offset;
e02119d5 4045 }
b3b4aa74 4046 btrfs_release_path(path);
e02119d5 4047
2cc83342
JB
4048 /*
4049 * Find the first key from this transaction again. See the note for
4050 * log_new_dir_dentries, if we're logging a directory recursively we
4051 * won't be holding its i_mutex, which means we can modify the directory
4052 * while we're logging it. If we remove an entry between our first
4053 * search and this search we'll not find the key again and can just
4054 * bail.
4055 */
bb56f02f 4056search:
e02119d5 4057 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 4058 if (ret != 0)
e02119d5 4059 goto done;
e02119d5
CM
4060
4061 /*
4062 * we have a block from this transaction, log every item in it
4063 * from our directory
4064 */
d397712b 4065 while (1) {
732d591a
FM
4066 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
4067 &last_old_dentry_offset);
eb10d85e
FM
4068 if (ret != 0) {
4069 if (ret < 0)
4a500fd1 4070 err = ret;
eb10d85e 4071 goto done;
e02119d5 4072 }
eb10d85e 4073 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
e02119d5
CM
4074
4075 /*
4076 * look ahead to the next item and see if it is also
4077 * from this directory and from this transaction
4078 */
4079 ret = btrfs_next_leaf(root, path);
80c0b421
LB
4080 if (ret) {
4081 if (ret == 1)
4082 last_offset = (u64)-1;
4083 else
4084 err = ret;
e02119d5
CM
4085 goto done;
4086 }
eb10d85e 4087 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
339d0354 4088 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
4089 last_offset = (u64)-1;
4090 goto done;
4091 }
4092 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
a450a4af
FM
4093 /*
4094 * The next leaf was not changed in the current transaction
4095 * and has at least one dir index key.
4096 * We check for the next key because there might have been
4097 * one or more deletions between the last key we logged and
4098 * that next key. So the key range item we log (key type
4099 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4100 * offset minus 1, so that those deletes are replayed.
4101 */
4102 last_offset = min_key.offset - 1;
e02119d5
CM
4103 goto done;
4104 }
eb10d85e
FM
4105 if (need_resched()) {
4106 btrfs_release_path(path);
4107 cond_resched();
4108 goto search;
4109 }
e02119d5
CM
4110 }
4111done:
b3b4aa74
DS
4112 btrfs_release_path(path);
4113 btrfs_release_path(dst_path);
e02119d5 4114
4a500fd1
YZ
4115 if (err == 0) {
4116 *last_offset_ret = last_offset;
4117 /*
732d591a
FM
4118 * In case the leaf was changed in the current transaction but
4119 * all its dir items are from a past transaction, the last item
4120 * in the leaf is a dir item and there's no gap between that last
4121 * dir item and the first one on the next leaf (which did not
4122 * change in the current transaction), then we don't need to log
4123 * a range, last_old_dentry_offset is == to last_offset.
4a500fd1 4124 */
732d591a
FM
4125 ASSERT(last_old_dentry_offset <= last_offset);
4126 if (last_old_dentry_offset < last_offset) {
4127 ret = insert_dir_log_key(trans, log, path, ino,
4128 last_old_dentry_offset + 1,
4129 last_offset);
4130 if (ret)
4131 err = ret;
4132 }
4a500fd1
YZ
4133 }
4134 return err;
e02119d5
CM
4135}
4136
4137/*
4138 * logging directories is very similar to logging inodes, We find all the items
4139 * from the current transaction and write them to the log.
4140 *
4141 * The recovery code scans the directory in the subvolume, and if it finds a
4142 * key in the range logged that is not present in the log tree, then it means
4143 * that dir entry was unlinked during the transaction.
4144 *
4145 * In order for that scan to work, we must include one key smaller than
4146 * the smallest logged by this transaction and one key larger than the largest
4147 * key logged by this transaction.
4148 */
4149static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 4150 struct btrfs_inode *inode,
e02119d5 4151 struct btrfs_path *path,
2f2ff0ee
FM
4152 struct btrfs_path *dst_path,
4153 struct btrfs_log_ctx *ctx)
e02119d5
CM
4154{
4155 u64 min_key;
4156 u64 max_key;
4157 int ret;
e02119d5 4158
732d591a 4159 min_key = BTRFS_DIR_START_INDEX;
e02119d5 4160 max_key = 0;
339d0354 4161 ctx->last_dir_item_offset = inode->last_dir_index_offset;
dc287224 4162
d397712b 4163 while (1) {
339d0354 4164 ret = log_dir_items(trans, inode, path, dst_path,
dbf39ea4 4165 ctx, min_key, &max_key);
4a500fd1
YZ
4166 if (ret)
4167 return ret;
e02119d5
CM
4168 if (max_key == (u64)-1)
4169 break;
4170 min_key = max_key + 1;
4171 }
4172
339d0354
FM
4173 inode->last_dir_index_offset = ctx->last_dir_item_offset;
4174
e02119d5
CM
4175 return 0;
4176}
4177
4178/*
4179 * a helper function to drop items from the log before we relog an
4180 * inode. max_key_type indicates the highest item type to remove.
4181 * This cannot be run for file data extents because it does not
4182 * free the extents they point to.
4183 */
88e221cd 4184static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
4185 struct btrfs_root *log,
4186 struct btrfs_path *path,
88e221cd
FM
4187 struct btrfs_inode *inode,
4188 int max_key_type)
e02119d5
CM
4189{
4190 int ret;
4191 struct btrfs_key key;
4192 struct btrfs_key found_key;
18ec90d6 4193 int start_slot;
e02119d5 4194
88e221cd 4195 key.objectid = btrfs_ino(inode);
e02119d5
CM
4196 key.type = max_key_type;
4197 key.offset = (u64)-1;
4198
d397712b 4199 while (1) {
e02119d5 4200 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 4201 BUG_ON(ret == 0); /* Logic error */
4a500fd1 4202 if (ret < 0)
e02119d5
CM
4203 break;
4204
4205 if (path->slots[0] == 0)
4206 break;
4207
4208 path->slots[0]--;
4209 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4210 path->slots[0]);
4211
88e221cd 4212 if (found_key.objectid != key.objectid)
e02119d5
CM
4213 break;
4214
18ec90d6
JB
4215 found_key.offset = 0;
4216 found_key.type = 0;
e3b83361 4217 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
4218 if (ret < 0)
4219 break;
18ec90d6
JB
4220
4221 ret = btrfs_del_items(trans, log, path, start_slot,
4222 path->slots[0] - start_slot + 1);
4223 /*
4224 * If start slot isn't 0 then we don't need to re-search, we've
4225 * found the last guy with the objectid in this tree.
4226 */
4227 if (ret || start_slot != 0)
65a246c5 4228 break;
b3b4aa74 4229 btrfs_release_path(path);
e02119d5 4230 }
b3b4aa74 4231 btrfs_release_path(path);
5bdbeb21
JB
4232 if (ret > 0)
4233 ret = 0;
4a500fd1 4234 return ret;
e02119d5
CM
4235}
4236
8a2b3da1
FM
4237static int truncate_inode_items(struct btrfs_trans_handle *trans,
4238 struct btrfs_root *log_root,
4239 struct btrfs_inode *inode,
4240 u64 new_size, u32 min_type)
4241{
d9ac19c3
JB
4242 struct btrfs_truncate_control control = {
4243 .new_size = new_size,
487e81d2 4244 .ino = btrfs_ino(inode),
d9ac19c3 4245 .min_type = min_type,
5caa490e 4246 .skip_ref_updates = true,
d9ac19c3 4247 };
8a2b3da1 4248
8697b8f8 4249 return btrfs_truncate_inode_items(trans, log_root, &control);
8a2b3da1
FM
4250}
4251
94edf4ae
JB
4252static void fill_inode_item(struct btrfs_trans_handle *trans,
4253 struct extent_buffer *leaf,
4254 struct btrfs_inode_item *item,
1a4bcf47
FM
4255 struct inode *inode, int log_inode_only,
4256 u64 logged_isize)
94edf4ae 4257{
0b1c6cca 4258 struct btrfs_map_token token;
77eea05e 4259 u64 flags;
0b1c6cca 4260
c82f823c 4261 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
4262
4263 if (log_inode_only) {
4264 /* set the generation to zero so the recover code
4265 * can tell the difference between an logging
4266 * just to say 'this inode exists' and a logging
4267 * to say 'update this inode with these values'
4268 */
cc4c13d5
DS
4269 btrfs_set_token_inode_generation(&token, item, 0);
4270 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 4271 } else {
cc4c13d5
DS
4272 btrfs_set_token_inode_generation(&token, item,
4273 BTRFS_I(inode)->generation);
4274 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
4275 }
4276
cc4c13d5
DS
4277 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4278 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4279 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4280 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4281
4282 btrfs_set_token_timespec_sec(&token, &item->atime,
4283 inode->i_atime.tv_sec);
4284 btrfs_set_token_timespec_nsec(&token, &item->atime,
4285 inode->i_atime.tv_nsec);
4286
4287 btrfs_set_token_timespec_sec(&token, &item->mtime,
4288 inode->i_mtime.tv_sec);
4289 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4290 inode->i_mtime.tv_nsec);
4291
4292 btrfs_set_token_timespec_sec(&token, &item->ctime,
4293 inode->i_ctime.tv_sec);
4294 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4295 inode->i_ctime.tv_nsec);
4296
e593e54e
FM
4297 /*
4298 * We do not need to set the nbytes field, in fact during a fast fsync
4299 * its value may not even be correct, since a fast fsync does not wait
4300 * for ordered extent completion, which is where we update nbytes, it
4301 * only waits for writeback to complete. During log replay as we find
4302 * file extent items and replay them, we adjust the nbytes field of the
4303 * inode item in subvolume tree as needed (see overwrite_item()).
4304 */
cc4c13d5
DS
4305
4306 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4307 btrfs_set_token_inode_transid(&token, item, trans->transid);
4308 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4309 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4310 BTRFS_I(inode)->ro_flags);
4311 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4312 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4313}
4314
a95249b3
JB
4315static int log_inode_item(struct btrfs_trans_handle *trans,
4316 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4317 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4318{
4319 struct btrfs_inode_item *inode_item;
a95249b3
JB
4320 int ret;
4321
2ac691d8
FM
4322 /*
4323 * If we are doing a fast fsync and the inode was logged before in the
4324 * current transaction, then we know the inode was previously logged and
4325 * it exists in the log tree. For performance reasons, in this case use
4326 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4327 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4328 * contention in case there are concurrent fsyncs for other inodes of the
4329 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4330 * already exists can also result in unnecessarily splitting a leaf.
4331 */
4332 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4333 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4334 ASSERT(ret <= 0);
4335 if (ret > 0)
4336 ret = -ENOENT;
4337 } else {
4338 /*
4339 * This means it is the first fsync in the current transaction,
4340 * so the inode item is not in the log and we need to insert it.
4341 * We can never get -EEXIST because we are only called for a fast
4342 * fsync and in case an inode eviction happens after the inode was
4343 * logged before in the current transaction, when we load again
4344 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4345 * flags and set ->logged_trans to 0.
4346 */
4347 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4348 sizeof(*inode_item));
4349 ASSERT(ret != -EEXIST);
4350 }
4351 if (ret)
a95249b3
JB
4352 return ret;
4353 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4354 struct btrfs_inode_item);
6d889a3b
NB
4355 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4356 0, 0);
a95249b3
JB
4357 btrfs_release_path(path);
4358 return 0;
4359}
4360
40e046ac 4361static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4362 struct btrfs_inode *inode,
40e046ac
FM
4363 struct btrfs_root *log_root,
4364 struct btrfs_ordered_sum *sums)
4365{
e289f03e
FM
4366 const u64 lock_end = sums->bytenr + sums->len - 1;
4367 struct extent_state *cached_state = NULL;
40e046ac
FM
4368 int ret;
4369
3ebac17c
FM
4370 /*
4371 * If this inode was not used for reflink operations in the current
4372 * transaction with new extents, then do the fast path, no need to
4373 * worry about logging checksum items with overlapping ranges.
4374 */
4375 if (inode->last_reflink_trans < trans->transid)
4376 return btrfs_csum_file_blocks(trans, log_root, sums);
4377
e289f03e
FM
4378 /*
4379 * Serialize logging for checksums. This is to avoid racing with the
4380 * same checksum being logged by another task that is logging another
4381 * file which happens to refer to the same extent as well. Such races
4382 * can leave checksum items in the log with overlapping ranges.
4383 */
4384 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4385 lock_end, &cached_state);
4386 if (ret)
4387 return ret;
40e046ac
FM
4388 /*
4389 * Due to extent cloning, we might have logged a csum item that covers a
4390 * subrange of a cloned extent, and later we can end up logging a csum
4391 * item for a larger subrange of the same extent or the entire range.
4392 * This would leave csum items in the log tree that cover the same range
4393 * and break the searches for checksums in the log tree, resulting in
4394 * some checksums missing in the fs/subvolume tree. So just delete (or
4395 * trim and adjust) any existing csum items in the log for this range.
4396 */
4397 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4398 if (!ret)
4399 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4400
e289f03e
FM
4401 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4402 &cached_state);
4403
4404 return ret;
40e046ac
FM
4405}
4406
31ff1cd2 4407static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4408 struct btrfs_inode *inode,
31ff1cd2 4409 struct btrfs_path *dst_path,
0e56315c 4410 struct btrfs_path *src_path,
1a4bcf47
FM
4411 int start_slot, int nr, int inode_only,
4412 u64 logged_isize)
31ff1cd2 4413{
44d70e19 4414 struct btrfs_root *log = inode->root->log_root;
31ff1cd2 4415 struct btrfs_file_extent_item *extent;
16e7549f 4416 struct extent_buffer *src = src_path->nodes[0];
7f30c072 4417 int ret = 0;
31ff1cd2
CM
4418 struct btrfs_key *ins_keys;
4419 u32 *ins_sizes;
b7ef5f3a 4420 struct btrfs_item_batch batch;
31ff1cd2
CM
4421 char *ins_data;
4422 int i;
7f30c072 4423 int dst_index;
7f30c072
FM
4424 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4425 const u64 i_size = i_size_read(&inode->vfs_inode);
d20f7043 4426
31ff1cd2
CM
4427 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4428 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4429 if (!ins_data)
4430 return -ENOMEM;
4431
31ff1cd2
CM
4432 ins_sizes = (u32 *)ins_data;
4433 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
b7ef5f3a
FM
4434 batch.keys = ins_keys;
4435 batch.data_sizes = ins_sizes;
4436 batch.total_data_size = 0;
7f30c072 4437 batch.nr = 0;
31ff1cd2 4438
7f30c072 4439 dst_index = 0;
31ff1cd2 4440 for (i = 0; i < nr; i++) {
7f30c072
FM
4441 const int src_slot = start_slot + i;
4442 struct btrfs_root *csum_root;
5b7ce5e2
FM
4443 struct btrfs_ordered_sum *sums;
4444 struct btrfs_ordered_sum *sums_next;
4445 LIST_HEAD(ordered_sums);
7f30c072
FM
4446 u64 disk_bytenr;
4447 u64 disk_num_bytes;
4448 u64 extent_offset;
4449 u64 extent_num_bytes;
4450 bool is_old_extent;
4451
4452 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4453
4454 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4455 goto add_to_batch;
4456
4457 extent = btrfs_item_ptr(src, src_slot,
4458 struct btrfs_file_extent_item);
4459
4460 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4461 trans->transid);
4462
4463 /*
4464 * Don't copy extents from past generations. That would make us
4465 * log a lot more metadata for common cases like doing only a
4466 * few random writes into a file and then fsync it for the first
4467 * time or after the full sync flag is set on the inode. We can
4468 * get leaves full of extent items, most of which are from past
4469 * generations, so we can skip them - as long as the inode has
4470 * not been the target of a reflink operation in this transaction,
4471 * as in that case it might have had file extent items with old
4472 * generations copied into it. We also must always log prealloc
4473 * extents that start at or beyond eof, otherwise we would lose
4474 * them on log replay.
4475 */
4476 if (is_old_extent &&
4477 ins_keys[dst_index].offset < i_size &&
4478 inode->last_reflink_trans < trans->transid)
4479 continue;
4480
4481 if (skip_csum)
4482 goto add_to_batch;
4483
4484 /* Only regular extents have checksums. */
4485 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4486 goto add_to_batch;
4487
4488 /*
4489 * If it's an extent created in a past transaction, then its
4490 * checksums are already accessible from the committed csum tree,
4491 * no need to log them.
4492 */
4493 if (is_old_extent)
4494 goto add_to_batch;
4495
4496 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4497 /* If it's an explicit hole, there are no checksums. */
4498 if (disk_bytenr == 0)
4499 goto add_to_batch;
4500
4501 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4502
4503 if (btrfs_file_extent_compression(src, extent)) {
4504 extent_offset = 0;
4505 extent_num_bytes = disk_num_bytes;
4506 } else {
4507 extent_offset = btrfs_file_extent_offset(src, extent);
4508 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4509 }
4510
4511 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4512 disk_bytenr += extent_offset;
4513 ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4514 disk_bytenr + extent_num_bytes - 1,
4515 &ordered_sums, 0);
4516 if (ret)
4517 goto out;
4518
5b7ce5e2
FM
4519 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4520 if (!ret)
4521 ret = log_csums(trans, inode, log, sums);
4522 list_del(&sums->list);
4523 kfree(sums);
4524 }
4525 if (ret)
4526 goto out;
4527
7f30c072
FM
4528add_to_batch:
4529 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4530 batch.total_data_size += ins_sizes[dst_index];
4531 batch.nr++;
4532 dst_index++;
31ff1cd2 4533 }
7f30c072
FM
4534
4535 /*
4536 * We have a leaf full of old extent items that don't need to be logged,
4537 * so we don't need to do anything.
4538 */
4539 if (batch.nr == 0)
4540 goto out;
4541
b7ef5f3a 4542 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
7f30c072
FM
4543 if (ret)
4544 goto out;
4545
4546 dst_index = 0;
4547 for (i = 0; i < nr; i++) {
4548 const int src_slot = start_slot + i;
4549 const int dst_slot = dst_path->slots[0] + dst_index;
4550 struct btrfs_key key;
4551 unsigned long src_offset;
4552 unsigned long dst_offset;
4553
4554 /*
4555 * We're done, all the remaining items in the source leaf
4556 * correspond to old file extent items.
4557 */
4558 if (dst_index >= batch.nr)
4559 break;
4560
4561 btrfs_item_key_to_cpu(src, &key, src_slot);
4562
4563 if (key.type != BTRFS_EXTENT_DATA_KEY)
4564 goto copy_item;
31ff1cd2 4565
7f30c072
FM
4566 extent = btrfs_item_ptr(src, src_slot,
4567 struct btrfs_file_extent_item);
31ff1cd2 4568
7f30c072
FM
4569 /* See the comment in the previous loop, same logic. */
4570 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4571 key.offset < i_size &&
4572 inode->last_reflink_trans < trans->transid)
4573 continue;
4574
4575copy_item:
4576 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4577 src_offset = btrfs_item_ptr_offset(src, src_slot);
31ff1cd2 4578
7f30c072
FM
4579 if (key.type == BTRFS_INODE_ITEM_KEY) {
4580 struct btrfs_inode_item *inode_item;
4581
4582 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
31ff1cd2 4583 struct btrfs_inode_item);
94edf4ae 4584 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4585 &inode->vfs_inode,
4586 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4587 logged_isize);
94edf4ae
JB
4588 } else {
4589 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
7f30c072 4590 src_offset, ins_sizes[dst_index]);
31ff1cd2 4591 }
94edf4ae 4592
7f30c072 4593 dst_index++;
31ff1cd2
CM
4594 }
4595
4596 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4597 btrfs_release_path(dst_path);
7f30c072 4598out:
31ff1cd2 4599 kfree(ins_data);
d20f7043 4600
4a500fd1 4601 return ret;
31ff1cd2
CM
4602}
4603
4f0f586b
ST
4604static int extent_cmp(void *priv, const struct list_head *a,
4605 const struct list_head *b)
5dc562c5 4606{
214cc184 4607 const struct extent_map *em1, *em2;
5dc562c5
JB
4608
4609 em1 = list_entry(a, struct extent_map, list);
4610 em2 = list_entry(b, struct extent_map, list);
4611
4612 if (em1->start < em2->start)
4613 return -1;
4614 else if (em1->start > em2->start)
4615 return 1;
4616 return 0;
4617}
4618
e7175a69
JB
4619static int log_extent_csums(struct btrfs_trans_handle *trans,
4620 struct btrfs_inode *inode,
a9ecb653 4621 struct btrfs_root *log_root,
48778179
FM
4622 const struct extent_map *em,
4623 struct btrfs_log_ctx *ctx)
5dc562c5 4624{
48778179 4625 struct btrfs_ordered_extent *ordered;
fc28b25e 4626 struct btrfs_root *csum_root;
2ab28f32
JB
4627 u64 csum_offset;
4628 u64 csum_len;
48778179
FM
4629 u64 mod_start = em->mod_start;
4630 u64 mod_len = em->mod_len;
8407f553
FM
4631 LIST_HEAD(ordered_sums);
4632 int ret = 0;
0aa4a17d 4633
e7175a69
JB
4634 if (inode->flags & BTRFS_INODE_NODATASUM ||
4635 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4636 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4637 return 0;
5dc562c5 4638
48778179
FM
4639 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4640 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4641 const u64 mod_end = mod_start + mod_len;
4642 struct btrfs_ordered_sum *sums;
4643
4644 if (mod_len == 0)
4645 break;
4646
4647 if (ordered_end <= mod_start)
4648 continue;
4649 if (mod_end <= ordered->file_offset)
4650 break;
4651
4652 /*
4653 * We are going to copy all the csums on this ordered extent, so
4654 * go ahead and adjust mod_start and mod_len in case this ordered
4655 * extent has already been logged.
4656 */
4657 if (ordered->file_offset > mod_start) {
4658 if (ordered_end >= mod_end)
4659 mod_len = ordered->file_offset - mod_start;
4660 /*
4661 * If we have this case
4662 *
4663 * |--------- logged extent ---------|
4664 * |----- ordered extent ----|
4665 *
4666 * Just don't mess with mod_start and mod_len, we'll
4667 * just end up logging more csums than we need and it
4668 * will be ok.
4669 */
4670 } else {
4671 if (ordered_end < mod_end) {
4672 mod_len = mod_end - ordered_end;
4673 mod_start = ordered_end;
4674 } else {
4675 mod_len = 0;
4676 }
4677 }
4678
4679 /*
4680 * To keep us from looping for the above case of an ordered
4681 * extent that falls inside of the logged extent.
4682 */
4683 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4684 continue;
4685
4686 list_for_each_entry(sums, &ordered->list, list) {
4687 ret = log_csums(trans, inode, log_root, sums);
4688 if (ret)
4689 return ret;
4690 }
4691 }
4692
4693 /* We're done, found all csums in the ordered extents. */
4694 if (mod_len == 0)
4695 return 0;
4696
e7175a69 4697 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4698 if (em->compress_type) {
4699 csum_offset = 0;
8407f553 4700 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4701 } else {
48778179
FM
4702 csum_offset = mod_start - em->start;
4703 csum_len = mod_len;
488111aa 4704 }
2ab28f32 4705
70c8a91c 4706 /* block start is already adjusted for the file extent offset. */
fc28b25e
JB
4707 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4708 ret = btrfs_lookup_csums_range(csum_root,
70c8a91c
JB
4709 em->block_start + csum_offset,
4710 em->block_start + csum_offset +
4711 csum_len - 1, &ordered_sums, 0);
4712 if (ret)
4713 return ret;
5dc562c5 4714
70c8a91c
JB
4715 while (!list_empty(&ordered_sums)) {
4716 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4717 struct btrfs_ordered_sum,
4718 list);
4719 if (!ret)
3ebac17c 4720 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4721 list_del(&sums->list);
4722 kfree(sums);
5dc562c5
JB
4723 }
4724
70c8a91c 4725 return ret;
5dc562c5
JB
4726}
4727
8407f553 4728static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4729 struct btrfs_inode *inode,
8407f553
FM
4730 const struct extent_map *em,
4731 struct btrfs_path *path,
8407f553
FM
4732 struct btrfs_log_ctx *ctx)
4733{
5893dfb9 4734 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4735 struct btrfs_root *log = inode->root->log_root;
e1f53ed8 4736 struct btrfs_file_extent_item fi = { 0 };
8407f553 4737 struct extent_buffer *leaf;
8407f553
FM
4738 struct btrfs_key key;
4739 u64 extent_offset = em->start - em->orig_start;
4740 u64 block_len;
4741 int ret;
8407f553 4742
e1f53ed8
FM
4743 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4744 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4745 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4746 else
4747 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4748
4749 block_len = max(em->block_len, em->orig_block_len);
4750 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4751 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4752 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4753 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4754 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4755 extent_offset);
4756 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4757 }
4758
4759 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4760 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4761 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4762 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4763
48778179 4764 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4765 if (ret)
4766 return ret;
4767
5328b2a7
FM
4768 /*
4769 * If this is the first time we are logging the inode in the current
4770 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4771 * because it does a deletion search, which always acquires write locks
4772 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4773 * but also adds significant contention in a log tree, since log trees
4774 * are small, with a root at level 2 or 3 at most, due to their short
4775 * life span.
4776 */
0f8ce498 4777 if (ctx->logged_before) {
5328b2a7
FM
4778 drop_args.path = path;
4779 drop_args.start = em->start;
4780 drop_args.end = em->start + em->len;
4781 drop_args.replace_extent = true;
e1f53ed8 4782 drop_args.extent_item_size = sizeof(fi);
5328b2a7
FM
4783 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4784 if (ret)
4785 return ret;
4786 }
8407f553 4787
5893dfb9 4788 if (!drop_args.extent_inserted) {
9d122629 4789 key.objectid = btrfs_ino(inode);
8407f553
FM
4790 key.type = BTRFS_EXTENT_DATA_KEY;
4791 key.offset = em->start;
4792
4793 ret = btrfs_insert_empty_item(trans, log, path, &key,
e1f53ed8 4794 sizeof(fi));
8407f553
FM
4795 if (ret)
4796 return ret;
4797 }
4798 leaf = path->nodes[0];
e1f53ed8
FM
4799 write_extent_buffer(leaf, &fi,
4800 btrfs_item_ptr_offset(leaf, path->slots[0]),
4801 sizeof(fi));
8407f553
FM
4802 btrfs_mark_buffer_dirty(leaf);
4803
4804 btrfs_release_path(path);
4805
4806 return ret;
4807}
4808
31d11b83
FM
4809/*
4810 * Log all prealloc extents beyond the inode's i_size to make sure we do not
d9947887 4811 * lose them after doing a full/fast fsync and replaying the log. We scan the
31d11b83
FM
4812 * subvolume's root instead of iterating the inode's extent map tree because
4813 * otherwise we can log incorrect extent items based on extent map conversion.
4814 * That can happen due to the fact that extent maps are merged when they
4815 * are not in the extent map tree's list of modified extents.
4816 */
4817static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4818 struct btrfs_inode *inode,
4819 struct btrfs_path *path)
4820{
4821 struct btrfs_root *root = inode->root;
4822 struct btrfs_key key;
4823 const u64 i_size = i_size_read(&inode->vfs_inode);
4824 const u64 ino = btrfs_ino(inode);
4825 struct btrfs_path *dst_path = NULL;
0e56315c 4826 bool dropped_extents = false;
f135cea3
FM
4827 u64 truncate_offset = i_size;
4828 struct extent_buffer *leaf;
4829 int slot;
31d11b83
FM
4830 int ins_nr = 0;
4831 int start_slot;
4832 int ret;
4833
4834 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4835 return 0;
4836
4837 key.objectid = ino;
4838 key.type = BTRFS_EXTENT_DATA_KEY;
4839 key.offset = i_size;
4840 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4841 if (ret < 0)
4842 goto out;
4843
f135cea3
FM
4844 /*
4845 * We must check if there is a prealloc extent that starts before the
4846 * i_size and crosses the i_size boundary. This is to ensure later we
4847 * truncate down to the end of that extent and not to the i_size, as
4848 * otherwise we end up losing part of the prealloc extent after a log
4849 * replay and with an implicit hole if there is another prealloc extent
4850 * that starts at an offset beyond i_size.
4851 */
4852 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4853 if (ret < 0)
4854 goto out;
4855
4856 if (ret == 0) {
4857 struct btrfs_file_extent_item *ei;
4858
4859 leaf = path->nodes[0];
4860 slot = path->slots[0];
4861 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4862
4863 if (btrfs_file_extent_type(leaf, ei) ==
4864 BTRFS_FILE_EXTENT_PREALLOC) {
4865 u64 extent_end;
4866
4867 btrfs_item_key_to_cpu(leaf, &key, slot);
4868 extent_end = key.offset +
4869 btrfs_file_extent_num_bytes(leaf, ei);
4870
4871 if (extent_end > i_size)
4872 truncate_offset = extent_end;
4873 }
4874 } else {
4875 ret = 0;
4876 }
4877
31d11b83 4878 while (true) {
f135cea3
FM
4879 leaf = path->nodes[0];
4880 slot = path->slots[0];
31d11b83
FM
4881
4882 if (slot >= btrfs_header_nritems(leaf)) {
4883 if (ins_nr > 0) {
4884 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4885 start_slot, ins_nr, 1, 0);
31d11b83
FM
4886 if (ret < 0)
4887 goto out;
4888 ins_nr = 0;
4889 }
4890 ret = btrfs_next_leaf(root, path);
4891 if (ret < 0)
4892 goto out;
4893 if (ret > 0) {
4894 ret = 0;
4895 break;
4896 }
4897 continue;
4898 }
4899
4900 btrfs_item_key_to_cpu(leaf, &key, slot);
4901 if (key.objectid > ino)
4902 break;
4903 if (WARN_ON_ONCE(key.objectid < ino) ||
4904 key.type < BTRFS_EXTENT_DATA_KEY ||
4905 key.offset < i_size) {
4906 path->slots[0]++;
4907 continue;
4908 }
0e56315c 4909 if (!dropped_extents) {
31d11b83
FM
4910 /*
4911 * Avoid logging extent items logged in past fsync calls
4912 * and leading to duplicate keys in the log tree.
4913 */
8a2b3da1
FM
4914 ret = truncate_inode_items(trans, root->log_root, inode,
4915 truncate_offset,
4916 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4917 if (ret)
4918 goto out;
0e56315c 4919 dropped_extents = true;
31d11b83
FM
4920 }
4921 if (ins_nr == 0)
4922 start_slot = slot;
4923 ins_nr++;
4924 path->slots[0]++;
4925 if (!dst_path) {
4926 dst_path = btrfs_alloc_path();
4927 if (!dst_path) {
4928 ret = -ENOMEM;
4929 goto out;
4930 }
4931 }
4932 }
0bc2d3c0 4933 if (ins_nr > 0)
0e56315c 4934 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4935 start_slot, ins_nr, 1, 0);
31d11b83
FM
4936out:
4937 btrfs_release_path(path);
4938 btrfs_free_path(dst_path);
4939 return ret;
4940}
4941
5dc562c5 4942static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4943 struct btrfs_inode *inode,
827463c4 4944 struct btrfs_path *path,
48778179 4945 struct btrfs_log_ctx *ctx)
5dc562c5 4946{
48778179
FM
4947 struct btrfs_ordered_extent *ordered;
4948 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4949 struct extent_map *em, *n;
4950 struct list_head extents;
9d122629 4951 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4952 int ret = 0;
2ab28f32 4953 int num = 0;
5dc562c5
JB
4954
4955 INIT_LIST_HEAD(&extents);
4956
5dc562c5 4957 write_lock(&tree->lock);
5dc562c5
JB
4958
4959 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4960 list_del_init(&em->list);
2ab28f32
JB
4961 /*
4962 * Just an arbitrary number, this can be really CPU intensive
4963 * once we start getting a lot of extents, and really once we
4964 * have a bunch of extents we just want to commit since it will
4965 * be faster.
4966 */
4967 if (++num > 32768) {
4968 list_del_init(&tree->modified_extents);
4969 ret = -EFBIG;
4970 goto process;
4971 }
4972
5f96bfb7 4973 if (em->generation < trans->transid)
5dc562c5 4974 continue;
8c6c5928 4975
31d11b83
FM
4976 /* We log prealloc extents beyond eof later. */
4977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4978 em->start >= i_size_read(&inode->vfs_inode))
4979 continue;
4980
ff44c6e3 4981 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4982 refcount_inc(&em->refs);
ff44c6e3 4983 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4984 list_add_tail(&em->list, &extents);
2ab28f32 4985 num++;
5dc562c5
JB
4986 }
4987
4988 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4989process:
5dc562c5
JB
4990 while (!list_empty(&extents)) {
4991 em = list_entry(extents.next, struct extent_map, list);
4992
4993 list_del_init(&em->list);
4994
4995 /*
4996 * If we had an error we just need to delete everybody from our
4997 * private list.
4998 */
ff44c6e3 4999 if (ret) {
201a9038 5000 clear_em_logging(tree, em);
ff44c6e3 5001 free_extent_map(em);
5dc562c5 5002 continue;
ff44c6e3
JB
5003 }
5004
5005 write_unlock(&tree->lock);
5dc562c5 5006
90d04510 5007 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 5008 write_lock(&tree->lock);
201a9038
JB
5009 clear_em_logging(tree, em);
5010 free_extent_map(em);
5dc562c5 5011 }
ff44c6e3
JB
5012 WARN_ON(!list_empty(&extents));
5013 write_unlock(&tree->lock);
5dc562c5 5014
31d11b83
FM
5015 if (!ret)
5016 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
5017 if (ret)
5018 return ret;
31d11b83 5019
48778179
FM
5020 /*
5021 * We have logged all extents successfully, now make sure the commit of
5022 * the current transaction waits for the ordered extents to complete
5023 * before it commits and wipes out the log trees, otherwise we would
5024 * lose data if an ordered extents completes after the transaction
5025 * commits and a power failure happens after the transaction commit.
5026 */
5027 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5028 list_del_init(&ordered->log_list);
5029 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5030
5031 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5032 spin_lock_irq(&inode->ordered_tree.lock);
5033 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5034 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5035 atomic_inc(&trans->transaction->pending_ordered);
5036 }
5037 spin_unlock_irq(&inode->ordered_tree.lock);
5038 }
5039 btrfs_put_ordered_extent(ordered);
5040 }
5041
5042 return 0;
5dc562c5
JB
5043}
5044
481b01c0 5045static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
5046 struct btrfs_path *path, u64 *size_ret)
5047{
5048 struct btrfs_key key;
5049 int ret;
5050
481b01c0 5051 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
5052 key.type = BTRFS_INODE_ITEM_KEY;
5053 key.offset = 0;
5054
5055 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5056 if (ret < 0) {
5057 return ret;
5058 } else if (ret > 0) {
2f2ff0ee 5059 *size_ret = 0;
1a4bcf47
FM
5060 } else {
5061 struct btrfs_inode_item *item;
5062
5063 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5064 struct btrfs_inode_item);
5065 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
5066 /*
5067 * If the in-memory inode's i_size is smaller then the inode
5068 * size stored in the btree, return the inode's i_size, so
5069 * that we get a correct inode size after replaying the log
5070 * when before a power failure we had a shrinking truncate
5071 * followed by addition of a new name (rename / new hard link).
5072 * Otherwise return the inode size from the btree, to avoid
5073 * data loss when replaying a log due to previously doing a
5074 * write that expands the inode's size and logging a new name
5075 * immediately after.
5076 */
5077 if (*size_ret > inode->vfs_inode.i_size)
5078 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
5079 }
5080
5081 btrfs_release_path(path);
5082 return 0;
5083}
5084
36283bf7
FM
5085/*
5086 * At the moment we always log all xattrs. This is to figure out at log replay
5087 * time which xattrs must have their deletion replayed. If a xattr is missing
5088 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5089 * because if a xattr is deleted, the inode is fsynced and a power failure
5090 * happens, causing the log to be replayed the next time the fs is mounted,
5091 * we want the xattr to not exist anymore (same behaviour as other filesystems
5092 * with a journal, ext3/4, xfs, f2fs, etc).
5093 */
5094static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 5095 struct btrfs_inode *inode,
36283bf7
FM
5096 struct btrfs_path *path,
5097 struct btrfs_path *dst_path)
5098{
90d04510 5099 struct btrfs_root *root = inode->root;
36283bf7
FM
5100 int ret;
5101 struct btrfs_key key;
1a93c36a 5102 const u64 ino = btrfs_ino(inode);
36283bf7
FM
5103 int ins_nr = 0;
5104 int start_slot = 0;
f2f121ab
FM
5105 bool found_xattrs = false;
5106
5107 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5108 return 0;
36283bf7
FM
5109
5110 key.objectid = ino;
5111 key.type = BTRFS_XATTR_ITEM_KEY;
5112 key.offset = 0;
5113
5114 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5115 if (ret < 0)
5116 return ret;
5117
5118 while (true) {
5119 int slot = path->slots[0];
5120 struct extent_buffer *leaf = path->nodes[0];
5121 int nritems = btrfs_header_nritems(leaf);
5122
5123 if (slot >= nritems) {
5124 if (ins_nr > 0) {
1a93c36a 5125 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5126 start_slot, ins_nr, 1, 0);
36283bf7
FM
5127 if (ret < 0)
5128 return ret;
5129 ins_nr = 0;
5130 }
5131 ret = btrfs_next_leaf(root, path);
5132 if (ret < 0)
5133 return ret;
5134 else if (ret > 0)
5135 break;
5136 continue;
5137 }
5138
5139 btrfs_item_key_to_cpu(leaf, &key, slot);
5140 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5141 break;
5142
5143 if (ins_nr == 0)
5144 start_slot = slot;
5145 ins_nr++;
5146 path->slots[0]++;
f2f121ab 5147 found_xattrs = true;
36283bf7
FM
5148 cond_resched();
5149 }
5150 if (ins_nr > 0) {
1a93c36a 5151 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5152 start_slot, ins_nr, 1, 0);
36283bf7
FM
5153 if (ret < 0)
5154 return ret;
5155 }
5156
f2f121ab
FM
5157 if (!found_xattrs)
5158 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5159
36283bf7
FM
5160 return 0;
5161}
5162
a89ca6f2 5163/*
0e56315c
FM
5164 * When using the NO_HOLES feature if we punched a hole that causes the
5165 * deletion of entire leafs or all the extent items of the first leaf (the one
5166 * that contains the inode item and references) we may end up not processing
5167 * any extents, because there are no leafs with a generation matching the
5168 * current transaction that have extent items for our inode. So we need to find
5169 * if any holes exist and then log them. We also need to log holes after any
5170 * truncate operation that changes the inode's size.
a89ca6f2 5171 */
0e56315c 5172static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 5173 struct btrfs_inode *inode,
7af59743 5174 struct btrfs_path *path)
a89ca6f2 5175{
90d04510 5176 struct btrfs_root *root = inode->root;
0b246afa 5177 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 5178 struct btrfs_key key;
a0308dd7
NB
5179 const u64 ino = btrfs_ino(inode);
5180 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 5181 u64 prev_extent_end = 0;
0e56315c 5182 int ret;
a89ca6f2 5183
0e56315c 5184 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
5185 return 0;
5186
5187 key.objectid = ino;
5188 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 5189 key.offset = 0;
a89ca6f2
FM
5190
5191 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
5192 if (ret < 0)
5193 return ret;
5194
0e56315c 5195 while (true) {
0e56315c 5196 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 5197
0e56315c
FM
5198 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5199 ret = btrfs_next_leaf(root, path);
5200 if (ret < 0)
5201 return ret;
5202 if (ret > 0) {
5203 ret = 0;
5204 break;
5205 }
5206 leaf = path->nodes[0];
5207 }
5208
5209 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5210 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5211 break;
5212
5213 /* We have a hole, log it. */
5214 if (prev_extent_end < key.offset) {
7af59743 5215 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
5216
5217 /*
5218 * Release the path to avoid deadlocks with other code
5219 * paths that search the root while holding locks on
5220 * leafs from the log root.
5221 */
5222 btrfs_release_path(path);
5223 ret = btrfs_insert_file_extent(trans, root->log_root,
5224 ino, prev_extent_end, 0,
5225 0, hole_len, 0, hole_len,
5226 0, 0, 0);
5227 if (ret < 0)
5228 return ret;
5229
5230 /*
5231 * Search for the same key again in the root. Since it's
5232 * an extent item and we are holding the inode lock, the
5233 * key must still exist. If it doesn't just emit warning
5234 * and return an error to fall back to a transaction
5235 * commit.
5236 */
5237 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5238 if (ret < 0)
5239 return ret;
5240 if (WARN_ON(ret > 0))
5241 return -ENOENT;
5242 leaf = path->nodes[0];
5243 }
a89ca6f2 5244
7af59743 5245 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
5246 path->slots[0]++;
5247 cond_resched();
a89ca6f2 5248 }
a89ca6f2 5249
7af59743 5250 if (prev_extent_end < i_size) {
0e56315c 5251 u64 hole_len;
a89ca6f2 5252
0e56315c 5253 btrfs_release_path(path);
7af59743 5254 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
5255 ret = btrfs_insert_file_extent(trans, root->log_root,
5256 ino, prev_extent_end, 0, 0,
5257 hole_len, 0, hole_len,
5258 0, 0, 0);
5259 if (ret < 0)
5260 return ret;
5261 }
5262
5263 return 0;
a89ca6f2
FM
5264}
5265
56f23fdb
FM
5266/*
5267 * When we are logging a new inode X, check if it doesn't have a reference that
5268 * matches the reference from some other inode Y created in a past transaction
5269 * and that was renamed in the current transaction. If we don't do this, then at
5270 * log replay time we can lose inode Y (and all its files if it's a directory):
5271 *
5272 * mkdir /mnt/x
5273 * echo "hello world" > /mnt/x/foobar
5274 * sync
5275 * mv /mnt/x /mnt/y
5276 * mkdir /mnt/x # or touch /mnt/x
5277 * xfs_io -c fsync /mnt/x
5278 * <power fail>
5279 * mount fs, trigger log replay
5280 *
5281 * After the log replay procedure, we would lose the first directory and all its
5282 * files (file foobar).
5283 * For the case where inode Y is not a directory we simply end up losing it:
5284 *
5285 * echo "123" > /mnt/foo
5286 * sync
5287 * mv /mnt/foo /mnt/bar
5288 * echo "abc" > /mnt/foo
5289 * xfs_io -c fsync /mnt/foo
5290 * <power fail>
5291 *
5292 * We also need this for cases where a snapshot entry is replaced by some other
5293 * entry (file or directory) otherwise we end up with an unreplayable log due to
5294 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5295 * if it were a regular entry:
5296 *
5297 * mkdir /mnt/x
5298 * btrfs subvolume snapshot /mnt /mnt/x/snap
5299 * btrfs subvolume delete /mnt/x/snap
5300 * rmdir /mnt/x
5301 * mkdir /mnt/x
5302 * fsync /mnt/x or fsync some new file inside it
5303 * <power fail>
5304 *
5305 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5306 * the same transaction.
5307 */
5308static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5309 const int slot,
5310 const struct btrfs_key *key,
4791c8f1 5311 struct btrfs_inode *inode,
a3baaf0d 5312 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
5313{
5314 int ret;
5315 struct btrfs_path *search_path;
5316 char *name = NULL;
5317 u32 name_len = 0;
3212fa14 5318 u32 item_size = btrfs_item_size(eb, slot);
56f23fdb
FM
5319 u32 cur_offset = 0;
5320 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5321
5322 search_path = btrfs_alloc_path();
5323 if (!search_path)
5324 return -ENOMEM;
5325 search_path->search_commit_root = 1;
5326 search_path->skip_locking = 1;
5327
5328 while (cur_offset < item_size) {
5329 u64 parent;
5330 u32 this_name_len;
5331 u32 this_len;
5332 unsigned long name_ptr;
5333 struct btrfs_dir_item *di;
5334
5335 if (key->type == BTRFS_INODE_REF_KEY) {
5336 struct btrfs_inode_ref *iref;
5337
5338 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5339 parent = key->offset;
5340 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5341 name_ptr = (unsigned long)(iref + 1);
5342 this_len = sizeof(*iref) + this_name_len;
5343 } else {
5344 struct btrfs_inode_extref *extref;
5345
5346 extref = (struct btrfs_inode_extref *)(ptr +
5347 cur_offset);
5348 parent = btrfs_inode_extref_parent(eb, extref);
5349 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5350 name_ptr = (unsigned long)&extref->name;
5351 this_len = sizeof(*extref) + this_name_len;
5352 }
5353
5354 if (this_name_len > name_len) {
5355 char *new_name;
5356
5357 new_name = krealloc(name, this_name_len, GFP_NOFS);
5358 if (!new_name) {
5359 ret = -ENOMEM;
5360 goto out;
5361 }
5362 name_len = this_name_len;
5363 name = new_name;
5364 }
5365
5366 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
5367 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5368 parent, name, this_name_len, 0);
56f23fdb 5369 if (di && !IS_ERR(di)) {
44f714da
FM
5370 struct btrfs_key di_key;
5371
5372 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5373 di, &di_key);
5374 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5375 if (di_key.objectid != key->objectid) {
5376 ret = 1;
5377 *other_ino = di_key.objectid;
a3baaf0d 5378 *other_parent = parent;
6b5fc433
FM
5379 } else {
5380 ret = 0;
5381 }
44f714da
FM
5382 } else {
5383 ret = -EAGAIN;
5384 }
56f23fdb
FM
5385 goto out;
5386 } else if (IS_ERR(di)) {
5387 ret = PTR_ERR(di);
5388 goto out;
5389 }
5390 btrfs_release_path(search_path);
5391
5392 cur_offset += this_len;
5393 }
5394 ret = 0;
5395out:
5396 btrfs_free_path(search_path);
5397 kfree(name);
5398 return ret;
5399}
5400
6b5fc433
FM
5401struct btrfs_ino_list {
5402 u64 ino;
a3baaf0d 5403 u64 parent;
6b5fc433
FM
5404 struct list_head list;
5405};
5406
5407static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5408 struct btrfs_root *root,
5409 struct btrfs_path *path,
5410 struct btrfs_log_ctx *ctx,
a3baaf0d 5411 u64 ino, u64 parent)
6b5fc433
FM
5412{
5413 struct btrfs_ino_list *ino_elem;
5414 LIST_HEAD(inode_list);
5415 int ret = 0;
5416
5417 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5418 if (!ino_elem)
5419 return -ENOMEM;
5420 ino_elem->ino = ino;
a3baaf0d 5421 ino_elem->parent = parent;
6b5fc433
FM
5422 list_add_tail(&ino_elem->list, &inode_list);
5423
5424 while (!list_empty(&inode_list)) {
5425 struct btrfs_fs_info *fs_info = root->fs_info;
5426 struct btrfs_key key;
5427 struct inode *inode;
5428
5429 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5430 list);
5431 ino = ino_elem->ino;
a3baaf0d 5432 parent = ino_elem->parent;
6b5fc433
FM
5433 list_del(&ino_elem->list);
5434 kfree(ino_elem);
5435 if (ret)
5436 continue;
5437
5438 btrfs_release_path(path);
5439
0202e83f 5440 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5441 /*
5442 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
5443 * deleted in the current transaction, we need to log its parent
5444 * directory.
6b5fc433
FM
5445 */
5446 if (IS_ERR(inode)) {
5447 ret = PTR_ERR(inode);
a3baaf0d 5448 if (ret == -ENOENT) {
0202e83f 5449 inode = btrfs_iget(fs_info->sb, parent, root);
a3baaf0d
FM
5450 if (IS_ERR(inode)) {
5451 ret = PTR_ERR(inode);
5452 } else {
90d04510 5453 ret = btrfs_log_inode(trans,
a3baaf0d
FM
5454 BTRFS_I(inode),
5455 LOG_OTHER_INODE_ALL,
48778179 5456 ctx);
410f954c 5457 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
5458 }
5459 }
6b5fc433
FM
5460 continue;
5461 }
b5e4ff9d
FM
5462 /*
5463 * If the inode was already logged skip it - otherwise we can
5464 * hit an infinite loop. Example:
5465 *
5466 * From the commit root (previous transaction) we have the
5467 * following inodes:
5468 *
5469 * inode 257 a directory
5470 * inode 258 with references "zz" and "zz_link" on inode 257
5471 * inode 259 with reference "a" on inode 257
5472 *
5473 * And in the current (uncommitted) transaction we have:
5474 *
5475 * inode 257 a directory, unchanged
5476 * inode 258 with references "a" and "a2" on inode 257
5477 * inode 259 with reference "zz_link" on inode 257
5478 * inode 261 with reference "zz" on inode 257
5479 *
5480 * When logging inode 261 the following infinite loop could
5481 * happen if we don't skip already logged inodes:
5482 *
5483 * - we detect inode 258 as a conflicting inode, with inode 261
5484 * on reference "zz", and log it;
5485 *
5486 * - we detect inode 259 as a conflicting inode, with inode 258
5487 * on reference "a", and log it;
5488 *
5489 * - we detect inode 258 as a conflicting inode, with inode 259
5490 * on reference "zz_link", and log it - again! After this we
5491 * repeat the above steps forever.
5492 */
5493 spin_lock(&BTRFS_I(inode)->lock);
5494 /*
5495 * Check the inode's logged_trans only instead of
5496 * btrfs_inode_in_log(). This is because the last_log_commit of
1f295373
FM
5497 * the inode is not updated when we only log that it exists (see
5498 * btrfs_log_inode()).
b5e4ff9d
FM
5499 */
5500 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5501 spin_unlock(&BTRFS_I(inode)->lock);
5502 btrfs_add_delayed_iput(inode);
5503 continue;
5504 }
5505 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
5506 /*
5507 * We are safe logging the other inode without acquiring its
5508 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5509 * are safe against concurrent renames of the other inode as
5510 * well because during a rename we pin the log and update the
5511 * log with the new name before we unpin it.
5512 */
90d04510 5513 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
6b5fc433 5514 if (ret) {
410f954c 5515 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5516 continue;
5517 }
5518
5519 key.objectid = ino;
5520 key.type = BTRFS_INODE_REF_KEY;
5521 key.offset = 0;
5522 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5523 if (ret < 0) {
410f954c 5524 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5525 continue;
5526 }
5527
5528 while (true) {
5529 struct extent_buffer *leaf = path->nodes[0];
5530 int slot = path->slots[0];
5531 u64 other_ino = 0;
a3baaf0d 5532 u64 other_parent = 0;
6b5fc433
FM
5533
5534 if (slot >= btrfs_header_nritems(leaf)) {
5535 ret = btrfs_next_leaf(root, path);
5536 if (ret < 0) {
5537 break;
5538 } else if (ret > 0) {
5539 ret = 0;
5540 break;
5541 }
5542 continue;
5543 }
5544
5545 btrfs_item_key_to_cpu(leaf, &key, slot);
5546 if (key.objectid != ino ||
5547 (key.type != BTRFS_INODE_REF_KEY &&
5548 key.type != BTRFS_INODE_EXTREF_KEY)) {
5549 ret = 0;
5550 break;
5551 }
5552
5553 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5554 BTRFS_I(inode), &other_ino,
5555 &other_parent);
6b5fc433
FM
5556 if (ret < 0)
5557 break;
5558 if (ret > 0) {
5559 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5560 if (!ino_elem) {
5561 ret = -ENOMEM;
5562 break;
5563 }
5564 ino_elem->ino = other_ino;
a3baaf0d 5565 ino_elem->parent = other_parent;
6b5fc433
FM
5566 list_add_tail(&ino_elem->list, &inode_list);
5567 ret = 0;
5568 }
5569 path->slots[0]++;
5570 }
410f954c 5571 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5572 }
5573
5574 return ret;
5575}
5576
da447009
FM
5577static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5578 struct btrfs_inode *inode,
5579 struct btrfs_key *min_key,
5580 const struct btrfs_key *max_key,
5581 struct btrfs_path *path,
5582 struct btrfs_path *dst_path,
5583 const u64 logged_isize,
5584 const bool recursive_logging,
5585 const int inode_only,
5586 struct btrfs_log_ctx *ctx,
5587 bool *need_log_inode_item)
5588{
d9947887 5589 const u64 i_size = i_size_read(&inode->vfs_inode);
da447009
FM
5590 struct btrfs_root *root = inode->root;
5591 int ins_start_slot = 0;
5592 int ins_nr = 0;
5593 int ret;
5594
5595 while (1) {
5596 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5597 if (ret < 0)
5598 return ret;
5599 if (ret > 0) {
5600 ret = 0;
5601 break;
5602 }
5603again:
5604 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5605 if (min_key->objectid != max_key->objectid)
5606 break;
5607 if (min_key->type > max_key->type)
5608 break;
5609
d9947887 5610 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
da447009 5611 *need_log_inode_item = false;
d9947887
FM
5612 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5613 min_key->offset >= i_size) {
5614 /*
5615 * Extents at and beyond eof are logged with
5616 * btrfs_log_prealloc_extents().
5617 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5618 * and no keys greater than that, so bail out.
5619 */
5620 break;
5621 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5622 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5623 inode->generation == trans->transid &&
5624 !recursive_logging) {
da447009
FM
5625 u64 other_ino = 0;
5626 u64 other_parent = 0;
5627
5628 ret = btrfs_check_ref_name_override(path->nodes[0],
5629 path->slots[0], min_key, inode,
5630 &other_ino, &other_parent);
5631 if (ret < 0) {
5632 return ret;
289cffcb 5633 } else if (ret > 0 &&
da447009
FM
5634 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5635 if (ins_nr > 0) {
5636 ins_nr++;
5637 } else {
5638 ins_nr = 1;
5639 ins_start_slot = path->slots[0];
5640 }
5641 ret = copy_items(trans, inode, dst_path, path,
5642 ins_start_slot, ins_nr,
5643 inode_only, logged_isize);
5644 if (ret < 0)
5645 return ret;
5646 ins_nr = 0;
5647
5648 ret = log_conflicting_inodes(trans, root, path,
5649 ctx, other_ino, other_parent);
5650 if (ret)
5651 return ret;
5652 btrfs_release_path(path);
5653 goto next_key;
5654 }
d9947887
FM
5655 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5656 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
da447009
FM
5657 if (ins_nr == 0)
5658 goto next_slot;
5659 ret = copy_items(trans, inode, dst_path, path,
5660 ins_start_slot,
5661 ins_nr, inode_only, logged_isize);
5662 if (ret < 0)
5663 return ret;
5664 ins_nr = 0;
5665 goto next_slot;
5666 }
5667
5668 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5669 ins_nr++;
5670 goto next_slot;
5671 } else if (!ins_nr) {
5672 ins_start_slot = path->slots[0];
5673 ins_nr = 1;
5674 goto next_slot;
5675 }
5676
5677 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5678 ins_nr, inode_only, logged_isize);
5679 if (ret < 0)
5680 return ret;
5681 ins_nr = 1;
5682 ins_start_slot = path->slots[0];
5683next_slot:
5684 path->slots[0]++;
5685 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5686 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5687 path->slots[0]);
5688 goto again;
5689 }
5690 if (ins_nr) {
5691 ret = copy_items(trans, inode, dst_path, path,
5692 ins_start_slot, ins_nr, inode_only,
5693 logged_isize);
5694 if (ret < 0)
5695 return ret;
5696 ins_nr = 0;
5697 }
5698 btrfs_release_path(path);
5699next_key:
5700 if (min_key->offset < (u64)-1) {
5701 min_key->offset++;
5702 } else if (min_key->type < max_key->type) {
5703 min_key->type++;
5704 min_key->offset = 0;
5705 } else {
5706 break;
5707 }
96acb375
FM
5708
5709 /*
5710 * We may process many leaves full of items for our inode, so
5711 * avoid monopolizing a cpu for too long by rescheduling while
5712 * not holding locks on any tree.
5713 */
5714 cond_resched();
da447009 5715 }
d9947887 5716 if (ins_nr) {
da447009
FM
5717 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5718 ins_nr, inode_only, logged_isize);
d9947887
FM
5719 if (ret)
5720 return ret;
5721 }
5722
5723 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5724 /*
5725 * Release the path because otherwise we might attempt to double
5726 * lock the same leaf with btrfs_log_prealloc_extents() below.
5727 */
5728 btrfs_release_path(path);
5729 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5730 }
da447009
FM
5731
5732 return ret;
5733}
5734
e02119d5
CM
5735/* log a single inode in the tree log.
5736 * At least one parent directory for this inode must exist in the tree
5737 * or be logged already.
5738 *
5739 * Any items from this inode changed by the current transaction are copied
5740 * to the log tree. An extra reference is taken on any extents in this
5741 * file, allowing us to avoid a whole pile of corner cases around logging
5742 * blocks that have been removed from the tree.
5743 *
5744 * See LOG_INODE_ALL and related defines for a description of what inode_only
5745 * does.
5746 *
5747 * This handles both files and directories.
5748 */
12fcfd22 5749static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 5750 struct btrfs_inode *inode,
49dae1bc 5751 int inode_only,
8407f553 5752 struct btrfs_log_ctx *ctx)
e02119d5
CM
5753{
5754 struct btrfs_path *path;
5755 struct btrfs_path *dst_path;
5756 struct btrfs_key min_key;
5757 struct btrfs_key max_key;
90d04510 5758 struct btrfs_root *log = inode->root->log_root;
65faced5 5759 int ret;
5dc562c5 5760 bool fast_search = false;
a59108a7
NB
5761 u64 ino = btrfs_ino(inode);
5762 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5763 u64 logged_isize = 0;
e4545de5 5764 bool need_log_inode_item = true;
9a8fca62 5765 bool xattrs_logged = false;
a3baaf0d 5766 bool recursive_logging = false;
2ac691d8 5767 bool inode_item_dropped = true;
0f8ce498 5768 const bool orig_logged_before = ctx->logged_before;
e02119d5 5769
e02119d5 5770 path = btrfs_alloc_path();
5df67083
TI
5771 if (!path)
5772 return -ENOMEM;
e02119d5 5773 dst_path = btrfs_alloc_path();
5df67083
TI
5774 if (!dst_path) {
5775 btrfs_free_path(path);
5776 return -ENOMEM;
5777 }
e02119d5 5778
33345d01 5779 min_key.objectid = ino;
e02119d5
CM
5780 min_key.type = BTRFS_INODE_ITEM_KEY;
5781 min_key.offset = 0;
5782
33345d01 5783 max_key.objectid = ino;
12fcfd22 5784
12fcfd22 5785
5dc562c5 5786 /* today the code can only do partial logging of directories */
a59108a7 5787 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5788 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5789 &inode->runtime_flags) &&
781feef7 5790 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5791 max_key.type = BTRFS_XATTR_ITEM_KEY;
5792 else
5793 max_key.type = (u8)-1;
5794 max_key.offset = (u64)-1;
5795
2c2c452b 5796 /*
5aa7d1a7
FM
5797 * Only run delayed items if we are a directory. We want to make sure
5798 * all directory indexes hit the fs/subvolume tree so we can find them
5799 * and figure out which index ranges have to be logged.
2c2c452b 5800 */
f6df27dd 5801 if (S_ISDIR(inode->vfs_inode.i_mode)) {
65faced5
FM
5802 ret = btrfs_commit_inode_delayed_items(trans, inode);
5803 if (ret)
f6df27dd 5804 goto out;
16cdcec7
MX
5805 }
5806
a3baaf0d
FM
5807 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5808 recursive_logging = true;
5809 if (inode_only == LOG_OTHER_INODE)
5810 inode_only = LOG_INODE_EXISTS;
5811 else
5812 inode_only = LOG_INODE_ALL;
a59108a7 5813 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5814 } else {
a59108a7 5815 mutex_lock(&inode->log_mutex);
781feef7 5816 }
e02119d5 5817
d0e64a98
FM
5818 /*
5819 * For symlinks, we must always log their content, which is stored in an
5820 * inline extent, otherwise we could end up with an empty symlink after
5821 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
5822 * one attempts to create an empty symlink).
5823 * We don't need to worry about flushing delalloc, because when we create
5824 * the inline extent when the symlink is created (we never have delalloc
5825 * for symlinks).
5826 */
5827 if (S_ISLNK(inode->vfs_inode.i_mode))
5828 inode_only = LOG_INODE_ALL;
5829
0f8ce498
FM
5830 /*
5831 * Before logging the inode item, cache the value returned by
5832 * inode_logged(), because after that we have the need to figure out if
5833 * the inode was previously logged in this transaction.
5834 */
5835 ret = inode_logged(trans, inode, path);
65faced5 5836 if (ret < 0)
0f8ce498 5837 goto out_unlock;
0f8ce498 5838 ctx->logged_before = (ret == 1);
65faced5 5839 ret = 0;
0f8ce498 5840
64d6b281
FM
5841 /*
5842 * This is for cases where logging a directory could result in losing a
5843 * a file after replaying the log. For example, if we move a file from a
5844 * directory A to a directory B, then fsync directory A, we have no way
5845 * to known the file was moved from A to B, so logging just A would
5846 * result in losing the file after a log replay.
5847 */
5848 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5849 inode_only == LOG_INODE_ALL &&
5850 inode->last_unlink_trans >= trans->transid) {
5851 btrfs_set_log_full_commit(trans);
65faced5 5852 ret = 1;
64d6b281
FM
5853 goto out_unlock;
5854 }
5855
e02119d5
CM
5856 /*
5857 * a brute force approach to making sure we get the most uptodate
5858 * copies of everything.
5859 */
a59108a7 5860 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5861 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5862
ab12313a 5863 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
4f764e51
FM
5864 if (inode_only == LOG_INODE_EXISTS)
5865 max_key_type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
5866 if (ctx->logged_before)
5867 ret = drop_inode_items(trans, log, path, inode,
5868 max_key_type);
e02119d5 5869 } else {
0f8ce498 5870 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
1a4bcf47
FM
5871 /*
5872 * Make sure the new inode item we write to the log has
5873 * the same isize as the current one (if it exists).
5874 * This is necessary to prevent data loss after log
5875 * replay, and also to prevent doing a wrong expanding
5876 * truncate - for e.g. create file, write 4K into offset
5877 * 0, fsync, write 4K into offset 4096, add hard link,
5878 * fsync some other file (to sync log), power fail - if
5879 * we use the inode's current i_size, after log replay
5880 * we get a 8Kb file, with the last 4Kb extent as a hole
5881 * (zeroes), as if an expanding truncate happened,
5882 * instead of getting a file of 4Kb only.
5883 */
65faced5
FM
5884 ret = logged_inode_size(log, inode, path, &logged_isize);
5885 if (ret)
1a4bcf47
FM
5886 goto out_unlock;
5887 }
a742994a 5888 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5889 &inode->runtime_flags)) {
a742994a 5890 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5891 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
5892 if (ctx->logged_before)
5893 ret = drop_inode_items(trans, log, path,
5894 inode, max_key.type);
a742994a
FM
5895 } else {
5896 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5897 &inode->runtime_flags);
a742994a 5898 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5899 &inode->runtime_flags);
0f8ce498 5900 if (ctx->logged_before)
4934a815
FM
5901 ret = truncate_inode_items(trans, log,
5902 inode, 0, 0);
a742994a 5903 }
4f764e51 5904 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5905 &inode->runtime_flags) ||
6cfab851 5906 inode_only == LOG_INODE_EXISTS) {
4f764e51 5907 if (inode_only == LOG_INODE_ALL)
183f37fa 5908 fast_search = true;
4f764e51 5909 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
5910 if (ctx->logged_before)
5911 ret = drop_inode_items(trans, log, path, inode,
5912 max_key.type);
a95249b3
JB
5913 } else {
5914 if (inode_only == LOG_INODE_ALL)
5915 fast_search = true;
2ac691d8 5916 inode_item_dropped = false;
a95249b3 5917 goto log_extents;
5dc562c5 5918 }
a95249b3 5919
e02119d5 5920 }
65faced5 5921 if (ret)
4a500fd1 5922 goto out_unlock;
e02119d5 5923
65faced5 5924 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
da447009 5925 path, dst_path, logged_isize,
7af59743
FM
5926 recursive_logging, inode_only, ctx,
5927 &need_log_inode_item);
65faced5 5928 if (ret)
da447009 5929 goto out_unlock;
5dc562c5 5930
36283bf7
FM
5931 btrfs_release_path(path);
5932 btrfs_release_path(dst_path);
65faced5
FM
5933 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5934 if (ret)
36283bf7 5935 goto out_unlock;
9a8fca62 5936 xattrs_logged = true;
a89ca6f2
FM
5937 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5938 btrfs_release_path(path);
5939 btrfs_release_path(dst_path);
65faced5
FM
5940 ret = btrfs_log_holes(trans, inode, path);
5941 if (ret)
a89ca6f2
FM
5942 goto out_unlock;
5943 }
a95249b3 5944log_extents:
f3b15ccd
JB
5945 btrfs_release_path(path);
5946 btrfs_release_path(dst_path);
e4545de5 5947 if (need_log_inode_item) {
65faced5
FM
5948 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5949 if (ret)
b590b839
FM
5950 goto out_unlock;
5951 /*
5952 * If we are doing a fast fsync and the inode was logged before
5953 * in this transaction, we don't need to log the xattrs because
5954 * they were logged before. If xattrs were added, changed or
5955 * deleted since the last time we logged the inode, then we have
5956 * already logged them because the inode had the runtime flag
5957 * BTRFS_INODE_COPY_EVERYTHING set.
5958 */
5959 if (!xattrs_logged && inode->logged_trans < trans->transid) {
65faced5
FM
5960 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5961 if (ret)
b590b839 5962 goto out_unlock;
9a8fca62
FM
5963 btrfs_release_path(path);
5964 }
e4545de5 5965 }
5dc562c5 5966 if (fast_search) {
90d04510 5967 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
65faced5 5968 if (ret)
5dc562c5 5969 goto out_unlock;
d006a048 5970 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5971 struct extent_map *em, *n;
5972
49dae1bc 5973 write_lock(&em_tree->lock);
48778179
FM
5974 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5975 list_del_init(&em->list);
49dae1bc 5976 write_unlock(&em_tree->lock);
5dc562c5
JB
5977 }
5978
a59108a7 5979 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
90d04510 5980 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
65faced5 5981 if (ret)
4a500fd1 5982 goto out_unlock;
e02119d5 5983 }
49dae1bc 5984
130341be
FM
5985 spin_lock(&inode->lock);
5986 inode->logged_trans = trans->transid;
d1d832a0 5987 /*
130341be
FM
5988 * Don't update last_log_commit if we logged that an inode exists.
5989 * We do this for three reasons:
5990 *
5991 * 1) We might have had buffered writes to this inode that were
5992 * flushed and had their ordered extents completed in this
5993 * transaction, but we did not previously log the inode with
5994 * LOG_INODE_ALL. Later the inode was evicted and after that
5995 * it was loaded again and this LOG_INODE_EXISTS log operation
5996 * happened. We must make sure that if an explicit fsync against
5997 * the inode is performed later, it logs the new extents, an
5998 * updated inode item, etc, and syncs the log. The same logic
5999 * applies to direct IO writes instead of buffered writes.
6000 *
6001 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6002 * is logged with an i_size of 0 or whatever value was logged
6003 * before. If later the i_size of the inode is increased by a
6004 * truncate operation, the log is synced through an fsync of
6005 * some other inode and then finally an explicit fsync against
6006 * this inode is made, we must make sure this fsync logs the
6007 * inode with the new i_size, the hole between old i_size and
6008 * the new i_size, and syncs the log.
6009 *
6010 * 3) If we are logging that an ancestor inode exists as part of
6011 * logging a new name from a link or rename operation, don't update
6012 * its last_log_commit - otherwise if an explicit fsync is made
6013 * against an ancestor, the fsync considers the inode in the log
6014 * and doesn't sync the log, resulting in the ancestor missing after
6015 * a power failure unless the log was synced as part of an fsync
6016 * against any other unrelated inode.
d1d832a0 6017 */
130341be
FM
6018 if (inode_only != LOG_INODE_EXISTS)
6019 inode->last_log_commit = inode->last_sub_trans;
6020 spin_unlock(&inode->lock);
23e3337f
FM
6021
6022 /*
6023 * Reset the last_reflink_trans so that the next fsync does not need to
6024 * go through the slower path when logging extents and their checksums.
6025 */
6026 if (inode_only == LOG_INODE_ALL)
6027 inode->last_reflink_trans = 0;
6028
4a500fd1 6029out_unlock:
a59108a7 6030 mutex_unlock(&inode->log_mutex);
f6df27dd 6031out:
e02119d5
CM
6032 btrfs_free_path(path);
6033 btrfs_free_path(dst_path);
0f8ce498
FM
6034
6035 if (recursive_logging)
6036 ctx->logged_before = orig_logged_before;
6037
65faced5 6038 return ret;
e02119d5
CM
6039}
6040
ab12313a
FM
6041/*
6042 * Check if we need to log an inode. This is used in contexts where while
6043 * logging an inode we need to log another inode (either that it exists or in
6044 * full mode). This is used instead of btrfs_inode_in_log() because the later
6045 * requires the inode to be in the log and have the log transaction committed,
6046 * while here we do not care if the log transaction was already committed - our
6047 * caller will commit the log later - and we want to avoid logging an inode
6048 * multiple times when multiple tasks have joined the same log transaction.
6049 */
6050static bool need_log_inode(struct btrfs_trans_handle *trans,
6051 struct btrfs_inode *inode)
6052{
8be2ba2e
FM
6053 /*
6054 * If a directory was not modified, no dentries added or removed, we can
6055 * and should avoid logging it.
6056 */
6057 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
6058 return false;
6059
ab12313a
FM
6060 /*
6061 * If this inode does not have new/updated/deleted xattrs since the last
6062 * time it was logged and is flagged as logged in the current transaction,
6063 * we can skip logging it. As for new/deleted names, those are updated in
6064 * the log by link/unlink/rename operations.
6065 * In case the inode was logged and then evicted and reloaded, its
6066 * logged_trans will be 0, in which case we have to fully log it since
6067 * logged_trans is a transient field, not persisted.
6068 */
6069 if (inode->logged_trans == trans->transid &&
6070 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
6071 return false;
6072
6073 return true;
6074}
6075
2f2ff0ee
FM
6076struct btrfs_dir_list {
6077 u64 ino;
6078 struct list_head list;
6079};
6080
6081/*
6082 * Log the inodes of the new dentries of a directory. See log_dir_items() for
6083 * details about the why it is needed.
6084 * This is a recursive operation - if an existing dentry corresponds to a
6085 * directory, that directory's new entries are logged too (same behaviour as
6086 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
6087 * the dentries point to we do not lock their i_mutex, otherwise lockdep
6088 * complains about the following circular lock dependency / possible deadlock:
6089 *
6090 * CPU0 CPU1
6091 * ---- ----
6092 * lock(&type->i_mutex_dir_key#3/2);
6093 * lock(sb_internal#2);
6094 * lock(&type->i_mutex_dir_key#3/2);
6095 * lock(&sb->s_type->i_mutex_key#14);
6096 *
6097 * Where sb_internal is the lock (a counter that works as a lock) acquired by
6098 * sb_start_intwrite() in btrfs_start_transaction().
6099 * Not locking i_mutex of the inodes is still safe because:
6100 *
6101 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
6102 * that while logging the inode new references (names) are added or removed
6103 * from the inode, leaving the logged inode item with a link count that does
6104 * not match the number of logged inode reference items. This is fine because
6105 * at log replay time we compute the real number of links and correct the
6106 * link count in the inode item (see replay_one_buffer() and
6107 * link_to_fixup_dir());
6108 *
6109 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
339d0354
FM
6110 * while logging the inode's items new index items (key type
6111 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
2f2ff0ee 6112 * has a size that doesn't match the sum of the lengths of all the logged
339d0354
FM
6113 * names - this is ok, not a problem, because at log replay time we set the
6114 * directory's i_size to the correct value (see replay_one_name() and
6115 * do_overwrite_item()).
2f2ff0ee
FM
6116 */
6117static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
6118 struct btrfs_root *root,
51cc0d32 6119 struct btrfs_inode *start_inode,
2f2ff0ee
FM
6120 struct btrfs_log_ctx *ctx)
6121{
0b246afa 6122 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
6123 struct btrfs_path *path;
6124 LIST_HEAD(dir_list);
6125 struct btrfs_dir_list *dir_elem;
6126 int ret = 0;
6127
c48792c6
FM
6128 /*
6129 * If we are logging a new name, as part of a link or rename operation,
6130 * don't bother logging new dentries, as we just want to log the names
6131 * of an inode and that any new parents exist.
6132 */
6133 if (ctx->logging_new_name)
6134 return 0;
6135
2f2ff0ee
FM
6136 path = btrfs_alloc_path();
6137 if (!path)
6138 return -ENOMEM;
6139
6140 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
6141 if (!dir_elem) {
6142 btrfs_free_path(path);
6143 return -ENOMEM;
6144 }
51cc0d32 6145 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
6146 list_add_tail(&dir_elem->list, &dir_list);
6147
6148 while (!list_empty(&dir_list)) {
6149 struct extent_buffer *leaf;
6150 struct btrfs_key min_key;
6151 int nritems;
6152 int i;
6153
6154 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
6155 list);
6156 if (ret)
6157 goto next_dir_inode;
6158
6159 min_key.objectid = dir_elem->ino;
339d0354 6160 min_key.type = BTRFS_DIR_INDEX_KEY;
2f2ff0ee
FM
6161 min_key.offset = 0;
6162again:
6163 btrfs_release_path(path);
732d591a 6164 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2f2ff0ee
FM
6165 if (ret < 0) {
6166 goto next_dir_inode;
6167 } else if (ret > 0) {
6168 ret = 0;
6169 goto next_dir_inode;
6170 }
6171
2f2ff0ee
FM
6172 leaf = path->nodes[0];
6173 nritems = btrfs_header_nritems(leaf);
6174 for (i = path->slots[0]; i < nritems; i++) {
6175 struct btrfs_dir_item *di;
6176 struct btrfs_key di_key;
6177 struct inode *di_inode;
6178 struct btrfs_dir_list *new_dir_elem;
6179 int log_mode = LOG_INODE_EXISTS;
6180 int type;
6181
6182 btrfs_item_key_to_cpu(leaf, &min_key, i);
6183 if (min_key.objectid != dir_elem->ino ||
339d0354 6184 min_key.type != BTRFS_DIR_INDEX_KEY)
2f2ff0ee
FM
6185 goto next_dir_inode;
6186
6187 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
6188 type = btrfs_dir_type(leaf, di);
de6bc7f5 6189 if (btrfs_dir_transid(leaf, di) < trans->transid)
2f2ff0ee
FM
6190 continue;
6191 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
6192 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
6193 continue;
6194
ec125cfb 6195 btrfs_release_path(path);
0202e83f 6196 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
2f2ff0ee
FM
6197 if (IS_ERR(di_inode)) {
6198 ret = PTR_ERR(di_inode);
6199 goto next_dir_inode;
6200 }
6201
0e44cb3f 6202 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
410f954c 6203 btrfs_add_delayed_iput(di_inode);
ec125cfb 6204 break;
2f2ff0ee
FM
6205 }
6206
6207 ctx->log_new_dentries = false;
d0e64a98 6208 if (type == BTRFS_FT_DIR)
2f2ff0ee 6209 log_mode = LOG_INODE_ALL;
90d04510 6210 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
48778179 6211 log_mode, ctx);
410f954c 6212 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
6213 if (ret)
6214 goto next_dir_inode;
6215 if (ctx->log_new_dentries) {
6216 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
6217 GFP_NOFS);
6218 if (!new_dir_elem) {
6219 ret = -ENOMEM;
6220 goto next_dir_inode;
6221 }
6222 new_dir_elem->ino = di_key.objectid;
6223 list_add_tail(&new_dir_elem->list, &dir_list);
6224 }
6225 break;
6226 }
2f2ff0ee
FM
6227 if (min_key.offset < (u64)-1) {
6228 min_key.offset++;
6229 goto again;
6230 }
6231next_dir_inode:
6232 list_del(&dir_elem->list);
6233 kfree(dir_elem);
6234 }
6235
6236 btrfs_free_path(path);
6237 return ret;
6238}
6239
18aa0922 6240static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 6241 struct btrfs_inode *inode,
18aa0922
FM
6242 struct btrfs_log_ctx *ctx)
6243{
3ffbd68c 6244 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
6245 int ret;
6246 struct btrfs_path *path;
6247 struct btrfs_key key;
d0a0b78d
NB
6248 struct btrfs_root *root = inode->root;
6249 const u64 ino = btrfs_ino(inode);
18aa0922
FM
6250
6251 path = btrfs_alloc_path();
6252 if (!path)
6253 return -ENOMEM;
6254 path->skip_locking = 1;
6255 path->search_commit_root = 1;
6256
6257 key.objectid = ino;
6258 key.type = BTRFS_INODE_REF_KEY;
6259 key.offset = 0;
6260 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6261 if (ret < 0)
6262 goto out;
6263
6264 while (true) {
6265 struct extent_buffer *leaf = path->nodes[0];
6266 int slot = path->slots[0];
6267 u32 cur_offset = 0;
6268 u32 item_size;
6269 unsigned long ptr;
6270
6271 if (slot >= btrfs_header_nritems(leaf)) {
6272 ret = btrfs_next_leaf(root, path);
6273 if (ret < 0)
6274 goto out;
6275 else if (ret > 0)
6276 break;
6277 continue;
6278 }
6279
6280 btrfs_item_key_to_cpu(leaf, &key, slot);
6281 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6282 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6283 break;
6284
3212fa14 6285 item_size = btrfs_item_size(leaf, slot);
18aa0922
FM
6286 ptr = btrfs_item_ptr_offset(leaf, slot);
6287 while (cur_offset < item_size) {
6288 struct btrfs_key inode_key;
6289 struct inode *dir_inode;
6290
6291 inode_key.type = BTRFS_INODE_ITEM_KEY;
6292 inode_key.offset = 0;
6293
6294 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6295 struct btrfs_inode_extref *extref;
6296
6297 extref = (struct btrfs_inode_extref *)
6298 (ptr + cur_offset);
6299 inode_key.objectid = btrfs_inode_extref_parent(
6300 leaf, extref);
6301 cur_offset += sizeof(*extref);
6302 cur_offset += btrfs_inode_extref_name_len(leaf,
6303 extref);
6304 } else {
6305 inode_key.objectid = key.offset;
6306 cur_offset = item_size;
6307 }
6308
0202e83f
DS
6309 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6310 root);
0f375eed
FM
6311 /*
6312 * If the parent inode was deleted, return an error to
6313 * fallback to a transaction commit. This is to prevent
6314 * getting an inode that was moved from one parent A to
6315 * a parent B, got its former parent A deleted and then
6316 * it got fsync'ed, from existing at both parents after
6317 * a log replay (and the old parent still existing).
6318 * Example:
6319 *
6320 * mkdir /mnt/A
6321 * mkdir /mnt/B
6322 * touch /mnt/B/bar
6323 * sync
6324 * mv /mnt/B/bar /mnt/A/bar
6325 * mv -T /mnt/A /mnt/B
6326 * fsync /mnt/B/bar
6327 * <power fail>
6328 *
6329 * If we ignore the old parent B which got deleted,
6330 * after a log replay we would have file bar linked
6331 * at both parents and the old parent B would still
6332 * exist.
6333 */
6334 if (IS_ERR(dir_inode)) {
6335 ret = PTR_ERR(dir_inode);
6336 goto out;
6337 }
18aa0922 6338
3e6a86a1
FM
6339 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6340 btrfs_add_delayed_iput(dir_inode);
6341 continue;
6342 }
6343
289cffcb 6344 ctx->log_new_dentries = false;
90d04510 6345 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 6346 LOG_INODE_ALL, ctx);
289cffcb 6347 if (!ret && ctx->log_new_dentries)
657ed1aa 6348 ret = log_new_dir_dentries(trans, root,
f85b7379 6349 BTRFS_I(dir_inode), ctx);
410f954c 6350 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
6351 if (ret)
6352 goto out;
6353 }
6354 path->slots[0]++;
6355 }
6356 ret = 0;
6357out:
6358 btrfs_free_path(path);
6359 return ret;
6360}
6361
b8aa330d
FM
6362static int log_new_ancestors(struct btrfs_trans_handle *trans,
6363 struct btrfs_root *root,
6364 struct btrfs_path *path,
6365 struct btrfs_log_ctx *ctx)
6366{
6367 struct btrfs_key found_key;
6368
6369 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6370
6371 while (true) {
6372 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
6373 struct extent_buffer *leaf = path->nodes[0];
6374 int slot = path->slots[0];
6375 struct btrfs_key search_key;
6376 struct inode *inode;
0202e83f 6377 u64 ino;
b8aa330d
FM
6378 int ret = 0;
6379
6380 btrfs_release_path(path);
6381
0202e83f
DS
6382 ino = found_key.offset;
6383
b8aa330d
FM
6384 search_key.objectid = found_key.offset;
6385 search_key.type = BTRFS_INODE_ITEM_KEY;
6386 search_key.offset = 0;
0202e83f 6387 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
6388 if (IS_ERR(inode))
6389 return PTR_ERR(inode);
6390
ab12313a
FM
6391 if (BTRFS_I(inode)->generation >= trans->transid &&
6392 need_log_inode(trans, BTRFS_I(inode)))
90d04510 6393 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 6394 LOG_INODE_EXISTS, ctx);
410f954c 6395 btrfs_add_delayed_iput(inode);
b8aa330d
FM
6396 if (ret)
6397 return ret;
6398
6399 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6400 break;
6401
6402 search_key.type = BTRFS_INODE_REF_KEY;
6403 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6404 if (ret < 0)
6405 return ret;
6406
6407 leaf = path->nodes[0];
6408 slot = path->slots[0];
6409 if (slot >= btrfs_header_nritems(leaf)) {
6410 ret = btrfs_next_leaf(root, path);
6411 if (ret < 0)
6412 return ret;
6413 else if (ret > 0)
6414 return -ENOENT;
6415 leaf = path->nodes[0];
6416 slot = path->slots[0];
6417 }
6418
6419 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6420 if (found_key.objectid != search_key.objectid ||
6421 found_key.type != BTRFS_INODE_REF_KEY)
6422 return -ENOENT;
6423 }
6424 return 0;
6425}
6426
6427static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6428 struct btrfs_inode *inode,
6429 struct dentry *parent,
6430 struct btrfs_log_ctx *ctx)
6431{
6432 struct btrfs_root *root = inode->root;
b8aa330d
FM
6433 struct dentry *old_parent = NULL;
6434 struct super_block *sb = inode->vfs_inode.i_sb;
6435 int ret = 0;
6436
6437 while (true) {
6438 if (!parent || d_really_is_negative(parent) ||
6439 sb != parent->d_sb)
6440 break;
6441
6442 inode = BTRFS_I(d_inode(parent));
6443 if (root != inode->root)
6444 break;
6445
ab12313a
FM
6446 if (inode->generation >= trans->transid &&
6447 need_log_inode(trans, inode)) {
90d04510 6448 ret = btrfs_log_inode(trans, inode,
48778179 6449 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6450 if (ret)
6451 break;
6452 }
6453 if (IS_ROOT(parent))
6454 break;
6455
6456 parent = dget_parent(parent);
6457 dput(old_parent);
6458 old_parent = parent;
6459 }
6460 dput(old_parent);
6461
6462 return ret;
6463}
6464
6465static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6466 struct btrfs_inode *inode,
6467 struct dentry *parent,
6468 struct btrfs_log_ctx *ctx)
6469{
6470 struct btrfs_root *root = inode->root;
6471 const u64 ino = btrfs_ino(inode);
6472 struct btrfs_path *path;
6473 struct btrfs_key search_key;
6474 int ret;
6475
6476 /*
6477 * For a single hard link case, go through a fast path that does not
6478 * need to iterate the fs/subvolume tree.
6479 */
6480 if (inode->vfs_inode.i_nlink < 2)
6481 return log_new_ancestors_fast(trans, inode, parent, ctx);
6482
6483 path = btrfs_alloc_path();
6484 if (!path)
6485 return -ENOMEM;
6486
6487 search_key.objectid = ino;
6488 search_key.type = BTRFS_INODE_REF_KEY;
6489 search_key.offset = 0;
6490again:
6491 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6492 if (ret < 0)
6493 goto out;
6494 if (ret == 0)
6495 path->slots[0]++;
6496
6497 while (true) {
6498 struct extent_buffer *leaf = path->nodes[0];
6499 int slot = path->slots[0];
6500 struct btrfs_key found_key;
6501
6502 if (slot >= btrfs_header_nritems(leaf)) {
6503 ret = btrfs_next_leaf(root, path);
6504 if (ret < 0)
6505 goto out;
6506 else if (ret > 0)
6507 break;
6508 continue;
6509 }
6510
6511 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6512 if (found_key.objectid != ino ||
6513 found_key.type > BTRFS_INODE_EXTREF_KEY)
6514 break;
6515
6516 /*
6517 * Don't deal with extended references because they are rare
6518 * cases and too complex to deal with (we would need to keep
6519 * track of which subitem we are processing for each item in
6520 * this loop, etc). So just return some error to fallback to
6521 * a transaction commit.
6522 */
6523 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6524 ret = -EMLINK;
6525 goto out;
6526 }
6527
6528 /*
6529 * Logging ancestors needs to do more searches on the fs/subvol
6530 * tree, so it releases the path as needed to avoid deadlocks.
6531 * Keep track of the last inode ref key and resume from that key
6532 * after logging all new ancestors for the current hard link.
6533 */
6534 memcpy(&search_key, &found_key, sizeof(search_key));
6535
6536 ret = log_new_ancestors(trans, root, path, ctx);
6537 if (ret)
6538 goto out;
6539 btrfs_release_path(path);
6540 goto again;
6541 }
6542 ret = 0;
6543out:
6544 btrfs_free_path(path);
6545 return ret;
6546}
6547
e02119d5
CM
6548/*
6549 * helper function around btrfs_log_inode to make sure newly created
6550 * parent directories also end up in the log. A minimal inode and backref
6551 * only logging is done of any parent directories that are older than
6552 * the last committed transaction
6553 */
48a3b636 6554static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6555 struct btrfs_inode *inode,
49dae1bc 6556 struct dentry *parent,
41a1eada 6557 int inode_only,
8b050d35 6558 struct btrfs_log_ctx *ctx)
e02119d5 6559{
f882274b 6560 struct btrfs_root *root = inode->root;
0b246afa 6561 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6562 int ret = 0;
2f2ff0ee 6563 bool log_dentries = false;
12fcfd22 6564
0b246afa 6565 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6566 ret = 1;
6567 goto end_no_trans;
6568 }
6569
f882274b 6570 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6571 ret = 1;
6572 goto end_no_trans;
6573 }
6574
f2d72f42
FM
6575 /*
6576 * Skip already logged inodes or inodes corresponding to tmpfiles
6577 * (since logging them is pointless, a link count of 0 means they
6578 * will never be accessible).
6579 */
626e9f41
FM
6580 if ((btrfs_inode_in_log(inode, trans->transid) &&
6581 list_empty(&ctx->ordered_extents)) ||
f2d72f42 6582 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6583 ret = BTRFS_NO_LOG_SYNC;
6584 goto end_no_trans;
6585 }
6586
8b050d35 6587 ret = start_log_trans(trans, root, ctx);
4a500fd1 6588 if (ret)
e87ac136 6589 goto end_no_trans;
e02119d5 6590
90d04510 6591 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
6592 if (ret)
6593 goto end_trans;
12fcfd22 6594
af4176b4
CM
6595 /*
6596 * for regular files, if its inode is already on disk, we don't
6597 * have to worry about the parents at all. This is because
6598 * we can use the last_unlink_trans field to record renames
6599 * and other fun in this file.
6600 */
19df27a9 6601 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
6602 inode->generation < trans->transid &&
6603 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
6604 ret = 0;
6605 goto end_trans;
6606 }
af4176b4 6607
289cffcb 6608 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
6609 log_dentries = true;
6610
18aa0922 6611 /*
01327610 6612 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6613 * inodes are fully logged. This is to prevent leaving dangling
6614 * directory index entries in directories that were our parents but are
6615 * not anymore. Not doing this results in old parent directory being
6616 * impossible to delete after log replay (rmdir will always fail with
6617 * error -ENOTEMPTY).
6618 *
6619 * Example 1:
6620 *
6621 * mkdir testdir
6622 * touch testdir/foo
6623 * ln testdir/foo testdir/bar
6624 * sync
6625 * unlink testdir/bar
6626 * xfs_io -c fsync testdir/foo
6627 * <power failure>
6628 * mount fs, triggers log replay
6629 *
6630 * If we don't log the parent directory (testdir), after log replay the
6631 * directory still has an entry pointing to the file inode using the bar
6632 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6633 * the file inode has a link count of 1.
6634 *
6635 * Example 2:
6636 *
6637 * mkdir testdir
6638 * touch foo
6639 * ln foo testdir/foo2
6640 * ln foo testdir/foo3
6641 * sync
6642 * unlink testdir/foo3
6643 * xfs_io -c fsync foo
6644 * <power failure>
6645 * mount fs, triggers log replay
6646 *
6647 * Similar as the first example, after log replay the parent directory
6648 * testdir still has an entry pointing to the inode file with name foo3
6649 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6650 * and has a link count of 2.
6651 */
47d3db41 6652 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 6653 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6654 if (ret)
6655 goto end_trans;
6656 }
6657
b8aa330d
FM
6658 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6659 if (ret)
41bd6067 6660 goto end_trans;
76dda93c 6661
2f2ff0ee 6662 if (log_dentries)
b8aa330d 6663 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6664 else
6665 ret = 0;
4a500fd1
YZ
6666end_trans:
6667 if (ret < 0) {
90787766 6668 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6669 ret = 1;
6670 }
8b050d35
MX
6671
6672 if (ret)
6673 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6674 btrfs_end_log_trans(root);
6675end_no_trans:
6676 return ret;
e02119d5
CM
6677}
6678
6679/*
6680 * it is not safe to log dentry if the chunk root has added new
6681 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6682 * If this returns 1, you must commit the transaction to safely get your
6683 * data on disk.
6684 */
6685int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6686 struct dentry *dentry,
8b050d35 6687 struct btrfs_log_ctx *ctx)
e02119d5 6688{
6a912213
JB
6689 struct dentry *parent = dget_parent(dentry);
6690 int ret;
6691
f882274b 6692 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 6693 LOG_INODE_ALL, ctx);
6a912213
JB
6694 dput(parent);
6695
6696 return ret;
e02119d5
CM
6697}
6698
6699/*
6700 * should be called during mount to recover any replay any log trees
6701 * from the FS
6702 */
6703int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6704{
6705 int ret;
6706 struct btrfs_path *path;
6707 struct btrfs_trans_handle *trans;
6708 struct btrfs_key key;
6709 struct btrfs_key found_key;
e02119d5
CM
6710 struct btrfs_root *log;
6711 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6712 struct walk_control wc = {
6713 .process_func = process_one_buffer,
430a6626 6714 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6715 };
6716
e02119d5 6717 path = btrfs_alloc_path();
db5b493a
TI
6718 if (!path)
6719 return -ENOMEM;
6720
afcdd129 6721 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6722
4a500fd1 6723 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6724 if (IS_ERR(trans)) {
6725 ret = PTR_ERR(trans);
6726 goto error;
6727 }
e02119d5
CM
6728
6729 wc.trans = trans;
6730 wc.pin = 1;
6731
db5b493a 6732 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6733 if (ret) {
ba51e2a1 6734 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6735 goto error;
6736 }
e02119d5
CM
6737
6738again:
6739 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6740 key.offset = (u64)-1;
962a298f 6741 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6742
d397712b 6743 while (1) {
e02119d5 6744 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6745
6746 if (ret < 0) {
ba51e2a1 6747 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6748 goto error;
6749 }
e02119d5
CM
6750 if (ret > 0) {
6751 if (path->slots[0] == 0)
6752 break;
6753 path->slots[0]--;
6754 }
6755 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6756 path->slots[0]);
b3b4aa74 6757 btrfs_release_path(path);
e02119d5
CM
6758 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6759 break;
6760
62a2c73e 6761 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6762 if (IS_ERR(log)) {
6763 ret = PTR_ERR(log);
ba51e2a1 6764 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6765 goto error;
6766 }
e02119d5 6767
56e9357a
DS
6768 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6769 true);
79787eaa
JM
6770 if (IS_ERR(wc.replay_dest)) {
6771 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6772
6773 /*
6774 * We didn't find the subvol, likely because it was
6775 * deleted. This is ok, simply skip this log and go to
6776 * the next one.
6777 *
6778 * We need to exclude the root because we can't have
6779 * other log replays overwriting this log as we'll read
6780 * it back in a few more times. This will keep our
6781 * block from being modified, and we'll just bail for
6782 * each subsequent pass.
6783 */
6784 if (ret == -ENOENT)
9fce5704 6785 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6786 log->node->start,
6787 log->node->len);
00246528 6788 btrfs_put_root(log);
9bc574de
JB
6789
6790 if (!ret)
6791 goto next;
ba51e2a1 6792 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6793 goto error;
6794 }
e02119d5 6795
07d400a6 6796 wc.replay_dest->log_root = log;
2002ae11
JB
6797 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6798 if (ret)
6799 /* The loop needs to continue due to the root refs */
ba51e2a1 6800 btrfs_abort_transaction(trans, ret);
2002ae11
JB
6801 else
6802 ret = walk_log_tree(trans, log, &wc);
e02119d5 6803
b50c6e25 6804 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6805 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6806 path);
ba51e2a1
JB
6807 if (ret)
6808 btrfs_abort_transaction(trans, ret);
e02119d5
CM
6809 }
6810
900c9981
LB
6811 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6812 struct btrfs_root *root = wc.replay_dest;
6813
6814 btrfs_release_path(path);
6815
6816 /*
6817 * We have just replayed everything, and the highest
6818 * objectid of fs roots probably has changed in case
6819 * some inode_item's got replayed.
6820 *
6821 * root->objectid_mutex is not acquired as log replay
6822 * could only happen during mount.
6823 */
453e4873 6824 ret = btrfs_init_root_free_objectid(root);
ba51e2a1
JB
6825 if (ret)
6826 btrfs_abort_transaction(trans, ret);
900c9981
LB
6827 }
6828
07d400a6 6829 wc.replay_dest->log_root = NULL;
00246528 6830 btrfs_put_root(wc.replay_dest);
00246528 6831 btrfs_put_root(log);
e02119d5 6832
b50c6e25
JB
6833 if (ret)
6834 goto error;
9bc574de 6835next:
e02119d5
CM
6836 if (found_key.offset == 0)
6837 break;
9bc574de 6838 key.offset = found_key.offset - 1;
e02119d5 6839 }
b3b4aa74 6840 btrfs_release_path(path);
e02119d5
CM
6841
6842 /* step one is to pin it all, step two is to replay just inodes */
6843 if (wc.pin) {
6844 wc.pin = 0;
6845 wc.process_func = replay_one_buffer;
6846 wc.stage = LOG_WALK_REPLAY_INODES;
6847 goto again;
6848 }
6849 /* step three is to replay everything */
6850 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6851 wc.stage++;
6852 goto again;
6853 }
6854
6855 btrfs_free_path(path);
6856
abefa55a 6857 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6858 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6859 if (ret)
6860 return ret;
6861
e02119d5 6862 log_root_tree->log_root = NULL;
afcdd129 6863 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6864 btrfs_put_root(log_root_tree);
79787eaa 6865
abefa55a 6866 return 0;
79787eaa 6867error:
b50c6e25 6868 if (wc.trans)
3a45bb20 6869 btrfs_end_transaction(wc.trans);
1aeb6b56 6870 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
6871 btrfs_free_path(path);
6872 return ret;
e02119d5 6873}
12fcfd22
CM
6874
6875/*
6876 * there are some corner cases where we want to force a full
6877 * commit instead of allowing a directory to be logged.
6878 *
6879 * They revolve around files there were unlinked from the directory, and
6880 * this function updates the parent directory so that a full commit is
6881 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6882 *
6883 * Must be called before the unlink operations (updates to the subvolume tree,
6884 * inodes, etc) are done.
12fcfd22
CM
6885 */
6886void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6887 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6888 int for_rename)
6889{
af4176b4
CM
6890 /*
6891 * when we're logging a file, if it hasn't been renamed
6892 * or unlinked, and its inode is fully committed on disk,
6893 * we don't have to worry about walking up the directory chain
6894 * to log its parents.
6895 *
6896 * So, we use the last_unlink_trans field to put this transid
6897 * into the file. When the file is logged we check it and
6898 * don't log the parents if the file is fully on disk.
6899 */
4176bdbf
NB
6900 mutex_lock(&inode->log_mutex);
6901 inode->last_unlink_trans = trans->transid;
6902 mutex_unlock(&inode->log_mutex);
af4176b4 6903
12fcfd22
CM
6904 /*
6905 * if this directory was already logged any new
6906 * names for this file/dir will get recorded
6907 */
4176bdbf 6908 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6909 return;
6910
6911 /*
6912 * if the inode we're about to unlink was logged,
6913 * the log will be properly updated for any new names
6914 */
4176bdbf 6915 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6916 return;
6917
6918 /*
6919 * when renaming files across directories, if the directory
6920 * there we're unlinking from gets fsync'd later on, there's
6921 * no way to find the destination directory later and fsync it
6922 * properly. So, we have to be conservative and force commits
6923 * so the new name gets discovered.
6924 */
6925 if (for_rename)
6926 goto record;
6927
6928 /* we can safely do the unlink without any special recording */
6929 return;
6930
6931record:
4176bdbf
NB
6932 mutex_lock(&dir->log_mutex);
6933 dir->last_unlink_trans = trans->transid;
6934 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6935}
6936
6937/*
6938 * Make sure that if someone attempts to fsync the parent directory of a deleted
6939 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6940 * that after replaying the log tree of the parent directory's root we will not
6941 * see the snapshot anymore and at log replay time we will not see any log tree
6942 * corresponding to the deleted snapshot's root, which could lead to replaying
6943 * it after replaying the log tree of the parent directory (which would replay
6944 * the snapshot delete operation).
2be63d5c
FM
6945 *
6946 * Must be called before the actual snapshot destroy operation (updates to the
6947 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6948 */
6949void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6950 struct btrfs_inode *dir)
1ec9a1ae 6951{
43663557
NB
6952 mutex_lock(&dir->log_mutex);
6953 dir->last_unlink_trans = trans->transid;
6954 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6955}
6956
d5f5bd54
FM
6957/**
6958 * Update the log after adding a new name for an inode.
6959 *
6960 * @trans: Transaction handle.
6961 * @old_dentry: The dentry associated with the old name and the old
6962 * parent directory.
6963 * @old_dir: The inode of the previous parent directory for the case
6964 * of a rename. For a link operation, it must be NULL.
88d2beec
FM
6965 * @old_dir_index: The index number associated with the old name, meaningful
6966 * only for rename operations (when @old_dir is not NULL).
6967 * Ignored for link operations.
d5f5bd54
FM
6968 * @parent: The dentry associated with the directory under which the
6969 * new name is located.
6970 *
6971 * Call this after adding a new name for an inode, as a result of a link or
6972 * rename operation, and it will properly update the log to reflect the new name.
12fcfd22 6973 */
75b463d2 6974void btrfs_log_new_name(struct btrfs_trans_handle *trans,
d5f5bd54 6975 struct dentry *old_dentry, struct btrfs_inode *old_dir,
88d2beec 6976 u64 old_dir_index, struct dentry *parent)
12fcfd22 6977{
d5f5bd54 6978 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
259c4b96 6979 struct btrfs_root *root = inode->root;
75b463d2 6980 struct btrfs_log_ctx ctx;
259c4b96 6981 bool log_pinned = false;
0f8ce498 6982 int ret;
12fcfd22 6983
af4176b4
CM
6984 /*
6985 * this will force the logging code to walk the dentry chain
6986 * up for the file
6987 */
9a6509c4 6988 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6989 inode->last_unlink_trans = trans->transid;
af4176b4 6990
12fcfd22
CM
6991 /*
6992 * if this inode hasn't been logged and directory we're renaming it
6993 * from hasn't been logged, we don't need to log it
6994 */
0f8ce498
FM
6995 ret = inode_logged(trans, inode, NULL);
6996 if (ret < 0) {
6997 goto out;
6998 } else if (ret == 0) {
6999 if (!old_dir)
7000 return;
7001 /*
7002 * If the inode was not logged and we are doing a rename (old_dir is not
7003 * NULL), check if old_dir was logged - if it was not we can return and
7004 * do nothing.
7005 */
7006 ret = inode_logged(trans, old_dir, NULL);
7007 if (ret < 0)
7008 goto out;
7009 else if (ret == 0)
7010 return;
7011 }
7012 ret = 0;
12fcfd22 7013
54a40fc3
FM
7014 /*
7015 * If we are doing a rename (old_dir is not NULL) from a directory that
88d2beec
FM
7016 * was previously logged, make sure that on log replay we get the old
7017 * dir entry deleted. This is needed because we will also log the new
7018 * name of the renamed inode, so we need to make sure that after log
7019 * replay we don't end up with both the new and old dir entries existing.
54a40fc3 7020 */
88d2beec
FM
7021 if (old_dir && old_dir->logged_trans == trans->transid) {
7022 struct btrfs_root *log = old_dir->root->log_root;
7023 struct btrfs_path *path;
88d2beec
FM
7024
7025 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7026
259c4b96
FM
7027 /*
7028 * We have two inodes to update in the log, the old directory and
7029 * the inode that got renamed, so we must pin the log to prevent
7030 * anyone from syncing the log until we have updated both inodes
7031 * in the log.
7032 */
7033 log_pinned = true;
7034 btrfs_pin_log_trans(root);
7035
88d2beec
FM
7036 path = btrfs_alloc_path();
7037 if (!path) {
259c4b96
FM
7038 ret = -ENOMEM;
7039 goto out;
88d2beec
FM
7040 }
7041
7042 /*
7043 * Other concurrent task might be logging the old directory,
7044 * as it can be triggered when logging other inode that had or
750ee454
FM
7045 * still has a dentry in the old directory. We lock the old
7046 * directory's log_mutex to ensure the deletion of the old
7047 * name is persisted, because during directory logging we
7048 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7049 * the old name's dir index item is in the delayed items, so
7050 * it could be missed by an in progress directory logging.
88d2beec
FM
7051 */
7052 mutex_lock(&old_dir->log_mutex);
7053 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7054 old_dentry->d_name.name,
7055 old_dentry->d_name.len, old_dir_index);
7056 if (ret > 0) {
7057 /*
7058 * The dentry does not exist in the log, so record its
7059 * deletion.
7060 */
7061 btrfs_release_path(path);
7062 ret = insert_dir_log_key(trans, log, path,
7063 btrfs_ino(old_dir),
7064 old_dir_index, old_dir_index);
7065 }
7066 mutex_unlock(&old_dir->log_mutex);
7067
7068 btrfs_free_path(path);
259c4b96
FM
7069 if (ret < 0)
7070 goto out;
88d2beec 7071 }
54a40fc3 7072
75b463d2
FM
7073 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7074 ctx.logging_new_name = true;
7075 /*
7076 * We don't care about the return value. If we fail to log the new name
7077 * then we know the next attempt to sync the log will fallback to a full
7078 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7079 * we don't need to worry about getting a log committed that has an
7080 * inconsistent state after a rename operation.
7081 */
48778179 7082 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
259c4b96 7083out:
0f8ce498
FM
7084 /*
7085 * If an error happened mark the log for a full commit because it's not
7086 * consistent and up to date or we couldn't find out if one of the
7087 * inodes was logged before in this transaction. Do it before unpinning
7088 * the log, to avoid any races with someone else trying to commit it.
7089 */
7090 if (ret < 0)
7091 btrfs_set_log_full_commit(trans);
7092 if (log_pinned)
259c4b96 7093 btrfs_end_log_trans(root);
12fcfd22
CM
7094}
7095