]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
btrfs: only call inode_sub_bytes in truncate paths that care
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
26c2c454 23#include "inode-item.h"
e02119d5
CM
24
25/* magic values for the inode_only field in btrfs_log_inode:
26 *
27 * LOG_INODE_ALL means to log everything
28 * LOG_INODE_EXISTS means to log just enough to recreate the inode
29 * during log replay
30 */
e13976cf
DS
31enum {
32 LOG_INODE_ALL,
33 LOG_INODE_EXISTS,
34 LOG_OTHER_INODE,
35 LOG_OTHER_INODE_ALL,
36};
e02119d5 37
12fcfd22
CM
38/*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
e02119d5
CM
81/*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
e13976cf
DS
90enum {
91 LOG_WALK_PIN_ONLY,
92 LOG_WALK_REPLAY_INODES,
93 LOG_WALK_REPLAY_DIR_INDEX,
94 LOG_WALK_REPLAY_ALL,
95};
e02119d5 96
12fcfd22 97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 98 struct btrfs_inode *inode,
49dae1bc 99 int inode_only,
8407f553 100 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
fa1a0f42 109static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
0b246afa 143 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 144 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 145 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 146 int ret = 0;
fa1a0f42 147 bool created = false;
7237f183 148
47876f7c
FM
149 /*
150 * First check if the log root tree was already created. If not, create
151 * it before locking the root's log_mutex, just to keep lockdep happy.
152 */
153 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 mutex_lock(&tree_root->log_mutex);
155 if (!fs_info->log_root_tree) {
156 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 157 if (!ret) {
47876f7c 158 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
159 created = true;
160 }
47876f7c
FM
161 }
162 mutex_unlock(&tree_root->log_mutex);
163 if (ret)
164 return ret;
165 }
166
7237f183 167 mutex_lock(&root->log_mutex);
34eb2a52 168
fa1a0f42 169again:
7237f183 170 if (root->log_root) {
fa1a0f42
NA
171 int index = (root->log_transid + 1) % 2;
172
4884b8e8 173 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
174 ret = -EAGAIN;
175 goto out;
176 }
34eb2a52 177
fa1a0f42
NA
178 if (zoned && atomic_read(&root->log_commit[index])) {
179 wait_log_commit(root, root->log_transid - 1);
180 goto again;
181 }
182
ff782e0a 183 if (!root->log_start_pid) {
27cdeb70 184 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 185 root->log_start_pid = current->pid;
ff782e0a 186 } else if (root->log_start_pid != current->pid) {
27cdeb70 187 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 188 }
34eb2a52 189 } else {
fa1a0f42
NA
190 /*
191 * This means fs_info->log_root_tree was already created
192 * for some other FS trees. Do the full commit not to mix
193 * nodes from multiple log transactions to do sequential
194 * writing.
195 */
196 if (zoned && !created) {
197 ret = -EAGAIN;
198 goto out;
199 }
200
e02119d5 201 ret = btrfs_add_log_tree(trans, root);
4a500fd1 202 if (ret)
e87ac136 203 goto out;
34eb2a52 204
e7a79811 205 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
206 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 root->log_start_pid = current->pid;
e02119d5 208 }
34eb2a52 209
7237f183 210 atomic_inc(&root->log_writers);
289cffcb 211 if (!ctx->logging_new_name) {
34eb2a52 212 int index = root->log_transid % 2;
8b050d35 213 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 214 ctx->log_transid = root->log_transid;
8b050d35 215 }
34eb2a52 216
e87ac136 217out:
7237f183 218 mutex_unlock(&root->log_mutex);
e87ac136 219 return ret;
e02119d5
CM
220}
221
222/*
223 * returns 0 if there was a log transaction running and we were able
224 * to join, or returns -ENOENT if there were not transactions
225 * in progress
226 */
227static int join_running_log_trans(struct btrfs_root *root)
228{
fa1a0f42 229 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
230 int ret = -ENOENT;
231
e7a79811
FM
232 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 return ret;
234
7237f183 235 mutex_lock(&root->log_mutex);
fa1a0f42 236again:
e02119d5 237 if (root->log_root) {
fa1a0f42
NA
238 int index = (root->log_transid + 1) % 2;
239
e02119d5 240 ret = 0;
fa1a0f42
NA
241 if (zoned && atomic_read(&root->log_commit[index])) {
242 wait_log_commit(root, root->log_transid - 1);
243 goto again;
244 }
7237f183 245 atomic_inc(&root->log_writers);
e02119d5 246 }
7237f183 247 mutex_unlock(&root->log_mutex);
e02119d5
CM
248 return ret;
249}
250
12fcfd22
CM
251/*
252 * This either makes the current running log transaction wait
253 * until you call btrfs_end_log_trans() or it makes any future
254 * log transactions wait until you call btrfs_end_log_trans()
255 */
45128b08 256void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 257{
12fcfd22 258 atomic_inc(&root->log_writers);
12fcfd22
CM
259}
260
e02119d5
CM
261/*
262 * indicate we're done making changes to the log tree
263 * and wake up anyone waiting to do a sync
264 */
143bede5 265void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 266{
7237f183 267 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
268 /* atomic_dec_and_test implies a barrier */
269 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 270 }
e02119d5
CM
271}
272
247462a5
DS
273static int btrfs_write_tree_block(struct extent_buffer *buf)
274{
275 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
276 buf->start + buf->len - 1);
277}
278
279static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
280{
281 filemap_fdatawait_range(buf->pages[0]->mapping,
282 buf->start, buf->start + buf->len - 1);
283}
e02119d5
CM
284
285/*
286 * the walk control struct is used to pass state down the chain when
287 * processing the log tree. The stage field tells us which part
288 * of the log tree processing we are currently doing. The others
289 * are state fields used for that specific part
290 */
291struct walk_control {
292 /* should we free the extent on disk when done? This is used
293 * at transaction commit time while freeing a log tree
294 */
295 int free;
296
297 /* should we write out the extent buffer? This is used
298 * while flushing the log tree to disk during a sync
299 */
300 int write;
301
302 /* should we wait for the extent buffer io to finish? Also used
303 * while flushing the log tree to disk for a sync
304 */
305 int wait;
306
307 /* pin only walk, we record which extents on disk belong to the
308 * log trees
309 */
310 int pin;
311
312 /* what stage of the replay code we're currently in */
313 int stage;
314
f2d72f42
FM
315 /*
316 * Ignore any items from the inode currently being processed. Needs
317 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
318 * the LOG_WALK_REPLAY_INODES stage.
319 */
320 bool ignore_cur_inode;
321
e02119d5
CM
322 /* the root we are currently replaying */
323 struct btrfs_root *replay_dest;
324
325 /* the trans handle for the current replay */
326 struct btrfs_trans_handle *trans;
327
328 /* the function that gets used to process blocks we find in the
329 * tree. Note the extent_buffer might not be up to date when it is
330 * passed in, and it must be checked or read if you need the data
331 * inside it
332 */
333 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 334 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
335};
336
337/*
338 * process_func used to pin down extents, write them or wait on them
339 */
340static int process_one_buffer(struct btrfs_root *log,
341 struct extent_buffer *eb,
581c1760 342 struct walk_control *wc, u64 gen, int level)
e02119d5 343{
0b246afa 344 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
345 int ret = 0;
346
8c2a1a30
JB
347 /*
348 * If this fs is mixed then we need to be able to process the leaves to
349 * pin down any logged extents, so we have to read the block.
350 */
0b246afa 351 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 352 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
353 if (ret)
354 return ret;
355 }
356
04018de5 357 if (wc->pin)
9fce5704 358 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 359 eb->len);
e02119d5 360
b50c6e25 361 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 362 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 363 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
364 if (wc->write)
365 btrfs_write_tree_block(eb);
366 if (wc->wait)
367 btrfs_wait_tree_block_writeback(eb);
368 }
b50c6e25 369 return ret;
e02119d5
CM
370}
371
086dcbfa
FM
372static int do_overwrite_item(struct btrfs_trans_handle *trans,
373 struct btrfs_root *root,
374 struct btrfs_path *path,
375 struct extent_buffer *eb, int slot,
376 struct btrfs_key *key)
e02119d5
CM
377{
378 int ret;
379 u32 item_size;
380 u64 saved_i_size = 0;
381 int save_old_i_size = 0;
382 unsigned long src_ptr;
383 unsigned long dst_ptr;
384 int overwrite_root = 0;
4bc4bee4 385 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
386
387 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
388 overwrite_root = 1;
389
3212fa14 390 item_size = btrfs_item_size(eb, slot);
e02119d5
CM
391 src_ptr = btrfs_item_ptr_offset(eb, slot);
392
086dcbfa
FM
393 /* Our caller must have done a search for the key for us. */
394 ASSERT(path->nodes[0] != NULL);
395
396 /*
397 * And the slot must point to the exact key or the slot where the key
398 * should be at (the first item with a key greater than 'key')
399 */
400 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
401 struct btrfs_key found_key;
402
403 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
404 ret = btrfs_comp_cpu_keys(&found_key, key);
405 ASSERT(ret >= 0);
406 } else {
407 ret = 1;
408 }
4bc4bee4 409
e02119d5
CM
410 if (ret == 0) {
411 char *src_copy;
412 char *dst_copy;
3212fa14 413 u32 dst_size = btrfs_item_size(path->nodes[0],
e02119d5
CM
414 path->slots[0]);
415 if (dst_size != item_size)
416 goto insert;
417
418 if (item_size == 0) {
b3b4aa74 419 btrfs_release_path(path);
e02119d5
CM
420 return 0;
421 }
422 dst_copy = kmalloc(item_size, GFP_NOFS);
423 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 424 if (!dst_copy || !src_copy) {
b3b4aa74 425 btrfs_release_path(path);
2a29edc6 426 kfree(dst_copy);
427 kfree(src_copy);
428 return -ENOMEM;
429 }
e02119d5
CM
430
431 read_extent_buffer(eb, src_copy, src_ptr, item_size);
432
433 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
434 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
435 item_size);
436 ret = memcmp(dst_copy, src_copy, item_size);
437
438 kfree(dst_copy);
439 kfree(src_copy);
440 /*
441 * they have the same contents, just return, this saves
442 * us from cowing blocks in the destination tree and doing
443 * extra writes that may not have been done by a previous
444 * sync
445 */
446 if (ret == 0) {
b3b4aa74 447 btrfs_release_path(path);
e02119d5
CM
448 return 0;
449 }
450
4bc4bee4
JB
451 /*
452 * We need to load the old nbytes into the inode so when we
453 * replay the extents we've logged we get the right nbytes.
454 */
455 if (inode_item) {
456 struct btrfs_inode_item *item;
457 u64 nbytes;
d555438b 458 u32 mode;
4bc4bee4
JB
459
460 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
461 struct btrfs_inode_item);
462 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
463 item = btrfs_item_ptr(eb, slot,
464 struct btrfs_inode_item);
465 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
466
467 /*
468 * If this is a directory we need to reset the i_size to
469 * 0 so that we can set it up properly when replaying
470 * the rest of the items in this log.
471 */
472 mode = btrfs_inode_mode(eb, item);
473 if (S_ISDIR(mode))
474 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
475 }
476 } else if (inode_item) {
477 struct btrfs_inode_item *item;
d555438b 478 u32 mode;
4bc4bee4
JB
479
480 /*
481 * New inode, set nbytes to 0 so that the nbytes comes out
482 * properly when we replay the extents.
483 */
484 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
485 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
486
487 /*
488 * If this is a directory we need to reset the i_size to 0 so
489 * that we can set it up properly when replaying the rest of
490 * the items in this log.
491 */
492 mode = btrfs_inode_mode(eb, item);
493 if (S_ISDIR(mode))
494 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
495 }
496insert:
b3b4aa74 497 btrfs_release_path(path);
e02119d5 498 /* try to insert the key into the destination tree */
df8d116f 499 path->skip_release_on_error = 1;
e02119d5
CM
500 ret = btrfs_insert_empty_item(trans, root, path,
501 key, item_size);
df8d116f 502 path->skip_release_on_error = 0;
e02119d5
CM
503
504 /* make sure any existing item is the correct size */
df8d116f 505 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5 506 u32 found_size;
3212fa14 507 found_size = btrfs_item_size(path->nodes[0],
e02119d5 508 path->slots[0]);
143bede5 509 if (found_size > item_size)
78ac4f9e 510 btrfs_truncate_item(path, item_size, 1);
143bede5 511 else if (found_size < item_size)
c71dd880 512 btrfs_extend_item(path, item_size - found_size);
e02119d5 513 } else if (ret) {
4a500fd1 514 return ret;
e02119d5
CM
515 }
516 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
517 path->slots[0]);
518
519 /* don't overwrite an existing inode if the generation number
520 * was logged as zero. This is done when the tree logging code
521 * is just logging an inode to make sure it exists after recovery.
522 *
523 * Also, don't overwrite i_size on directories during replay.
524 * log replay inserts and removes directory items based on the
525 * state of the tree found in the subvolume, and i_size is modified
526 * as it goes
527 */
528 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
529 struct btrfs_inode_item *src_item;
530 struct btrfs_inode_item *dst_item;
531
532 src_item = (struct btrfs_inode_item *)src_ptr;
533 dst_item = (struct btrfs_inode_item *)dst_ptr;
534
1a4bcf47
FM
535 if (btrfs_inode_generation(eb, src_item) == 0) {
536 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 537 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 538
2f2ff0ee
FM
539 /*
540 * For regular files an ino_size == 0 is used only when
541 * logging that an inode exists, as part of a directory
542 * fsync, and the inode wasn't fsynced before. In this
543 * case don't set the size of the inode in the fs/subvol
544 * tree, otherwise we would be throwing valid data away.
545 */
1a4bcf47 546 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 547 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
548 ino_size != 0)
549 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 550 goto no_copy;
1a4bcf47 551 }
e02119d5
CM
552
553 if (overwrite_root &&
554 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
555 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
556 save_old_i_size = 1;
557 saved_i_size = btrfs_inode_size(path->nodes[0],
558 dst_item);
559 }
560 }
561
562 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
563 src_ptr, item_size);
564
565 if (save_old_i_size) {
566 struct btrfs_inode_item *dst_item;
567 dst_item = (struct btrfs_inode_item *)dst_ptr;
568 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
569 }
570
571 /* make sure the generation is filled in */
572 if (key->type == BTRFS_INODE_ITEM_KEY) {
573 struct btrfs_inode_item *dst_item;
574 dst_item = (struct btrfs_inode_item *)dst_ptr;
575 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
576 btrfs_set_inode_generation(path->nodes[0], dst_item,
577 trans->transid);
578 }
579 }
580no_copy:
581 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 582 btrfs_release_path(path);
e02119d5
CM
583 return 0;
584}
585
086dcbfa
FM
586/*
587 * Item overwrite used by replay and tree logging. eb, slot and key all refer
588 * to the src data we are copying out.
589 *
590 * root is the tree we are copying into, and path is a scratch
591 * path for use in this function (it should be released on entry and
592 * will be released on exit).
593 *
594 * If the key is already in the destination tree the existing item is
595 * overwritten. If the existing item isn't big enough, it is extended.
596 * If it is too large, it is truncated.
597 *
598 * If the key isn't in the destination yet, a new item is inserted.
599 */
600static int overwrite_item(struct btrfs_trans_handle *trans,
601 struct btrfs_root *root,
602 struct btrfs_path *path,
603 struct extent_buffer *eb, int slot,
604 struct btrfs_key *key)
605{
606 int ret;
607
608 /* Look for the key in the destination tree. */
609 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
610 if (ret < 0)
611 return ret;
612
613 return do_overwrite_item(trans, root, path, eb, slot, key);
614}
615
e02119d5
CM
616/*
617 * simple helper to read an inode off the disk from a given root
618 * This can only be called for subvolume roots and not for the log
619 */
620static noinline struct inode *read_one_inode(struct btrfs_root *root,
621 u64 objectid)
622{
623 struct inode *inode;
e02119d5 624
0202e83f 625 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 626 if (IS_ERR(inode))
5d4f98a2 627 inode = NULL;
e02119d5
CM
628 return inode;
629}
630
631/* replays a single extent in 'eb' at 'slot' with 'key' into the
632 * subvolume 'root'. path is released on entry and should be released
633 * on exit.
634 *
635 * extents in the log tree have not been allocated out of the extent
636 * tree yet. So, this completes the allocation, taking a reference
637 * as required if the extent already exists or creating a new extent
638 * if it isn't in the extent allocation tree yet.
639 *
640 * The extent is inserted into the file, dropping any existing extents
641 * from the file that overlap the new one.
642 */
643static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
644 struct btrfs_root *root,
645 struct btrfs_path *path,
646 struct extent_buffer *eb, int slot,
647 struct btrfs_key *key)
648{
5893dfb9 649 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 650 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 651 int found_type;
e02119d5 652 u64 extent_end;
e02119d5 653 u64 start = key->offset;
4bc4bee4 654 u64 nbytes = 0;
e02119d5
CM
655 struct btrfs_file_extent_item *item;
656 struct inode *inode = NULL;
657 unsigned long size;
658 int ret = 0;
659
660 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
661 found_type = btrfs_file_extent_type(eb, item);
662
d899e052 663 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
664 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 nbytes = btrfs_file_extent_num_bytes(eb, item);
666 extent_end = start + nbytes;
667
668 /*
669 * We don't add to the inodes nbytes if we are prealloc or a
670 * hole.
671 */
672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
673 nbytes = 0;
674 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 675 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 676 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 677 extent_end = ALIGN(start + size,
0b246afa 678 fs_info->sectorsize);
e02119d5
CM
679 } else {
680 ret = 0;
681 goto out;
682 }
683
684 inode = read_one_inode(root, key->objectid);
685 if (!inode) {
686 ret = -EIO;
687 goto out;
688 }
689
690 /*
691 * first check to see if we already have this extent in the
692 * file. This must be done before the btrfs_drop_extents run
693 * so we don't try to drop this extent.
694 */
f85b7379
DS
695 ret = btrfs_lookup_file_extent(trans, root, path,
696 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 697
d899e052
YZ
698 if (ret == 0 &&
699 (found_type == BTRFS_FILE_EXTENT_REG ||
700 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
701 struct btrfs_file_extent_item cmp1;
702 struct btrfs_file_extent_item cmp2;
703 struct btrfs_file_extent_item *existing;
704 struct extent_buffer *leaf;
705
706 leaf = path->nodes[0];
707 existing = btrfs_item_ptr(leaf, path->slots[0],
708 struct btrfs_file_extent_item);
709
710 read_extent_buffer(eb, &cmp1, (unsigned long)item,
711 sizeof(cmp1));
712 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
713 sizeof(cmp2));
714
715 /*
716 * we already have a pointer to this exact extent,
717 * we don't have to do anything
718 */
719 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 720 btrfs_release_path(path);
e02119d5
CM
721 goto out;
722 }
723 }
b3b4aa74 724 btrfs_release_path(path);
e02119d5
CM
725
726 /* drop any overlapping extents */
5893dfb9
FM
727 drop_args.start = start;
728 drop_args.end = extent_end;
729 drop_args.drop_cache = true;
730 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
731 if (ret)
732 goto out;
e02119d5 733
07d400a6
YZ
734 if (found_type == BTRFS_FILE_EXTENT_REG ||
735 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 736 u64 offset;
07d400a6
YZ
737 unsigned long dest_offset;
738 struct btrfs_key ins;
739
3168021c
FM
740 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
741 btrfs_fs_incompat(fs_info, NO_HOLES))
742 goto update_inode;
743
07d400a6
YZ
744 ret = btrfs_insert_empty_item(trans, root, path, key,
745 sizeof(*item));
3650860b
JB
746 if (ret)
747 goto out;
07d400a6
YZ
748 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
749 path->slots[0]);
750 copy_extent_buffer(path->nodes[0], eb, dest_offset,
751 (unsigned long)item, sizeof(*item));
752
753 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
754 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
755 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 756 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 757
df2c95f3
QW
758 /*
759 * Manually record dirty extent, as here we did a shallow
760 * file extent item copy and skip normal backref update,
761 * but modifying extent tree all by ourselves.
762 * So need to manually record dirty extent for qgroup,
763 * as the owner of the file extent changed from log tree
764 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
765 */
a95f3aaf 766 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
767 btrfs_file_extent_disk_bytenr(eb, item),
768 btrfs_file_extent_disk_num_bytes(eb, item),
769 GFP_NOFS);
770 if (ret < 0)
771 goto out;
772
07d400a6 773 if (ins.objectid > 0) {
82fa113f 774 struct btrfs_ref ref = { 0 };
07d400a6
YZ
775 u64 csum_start;
776 u64 csum_end;
777 LIST_HEAD(ordered_sums);
82fa113f 778
07d400a6
YZ
779 /*
780 * is this extent already allocated in the extent
781 * allocation tree? If so, just add a reference
782 */
2ff7e61e 783 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 784 ins.offset);
3736127a
MPS
785 if (ret < 0) {
786 goto out;
787 } else if (ret == 0) {
82fa113f
QW
788 btrfs_init_generic_ref(&ref,
789 BTRFS_ADD_DELAYED_REF,
790 ins.objectid, ins.offset, 0);
791 btrfs_init_data_ref(&ref,
792 root->root_key.objectid,
f42c5da6 793 key->objectid, offset, 0, false);
82fa113f 794 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
795 if (ret)
796 goto out;
07d400a6
YZ
797 } else {
798 /*
799 * insert the extent pointer in the extent
800 * allocation tree
801 */
5d4f98a2 802 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 803 root->root_key.objectid,
5d4f98a2 804 key->objectid, offset, &ins);
b50c6e25
JB
805 if (ret)
806 goto out;
07d400a6 807 }
b3b4aa74 808 btrfs_release_path(path);
07d400a6
YZ
809
810 if (btrfs_file_extent_compression(eb, item)) {
811 csum_start = ins.objectid;
812 csum_end = csum_start + ins.offset;
813 } else {
814 csum_start = ins.objectid +
815 btrfs_file_extent_offset(eb, item);
816 csum_end = csum_start +
817 btrfs_file_extent_num_bytes(eb, item);
818 }
819
820 ret = btrfs_lookup_csums_range(root->log_root,
821 csum_start, csum_end - 1,
a2de733c 822 &ordered_sums, 0);
3650860b
JB
823 if (ret)
824 goto out;
b84b8390
FM
825 /*
826 * Now delete all existing cums in the csum root that
827 * cover our range. We do this because we can have an
828 * extent that is completely referenced by one file
829 * extent item and partially referenced by another
830 * file extent item (like after using the clone or
831 * extent_same ioctls). In this case if we end up doing
832 * the replay of the one that partially references the
833 * extent first, and we do not do the csum deletion
834 * below, we can get 2 csum items in the csum tree that
835 * overlap each other. For example, imagine our log has
836 * the two following file extent items:
837 *
838 * key (257 EXTENT_DATA 409600)
839 * extent data disk byte 12845056 nr 102400
840 * extent data offset 20480 nr 20480 ram 102400
841 *
842 * key (257 EXTENT_DATA 819200)
843 * extent data disk byte 12845056 nr 102400
844 * extent data offset 0 nr 102400 ram 102400
845 *
846 * Where the second one fully references the 100K extent
847 * that starts at disk byte 12845056, and the log tree
848 * has a single csum item that covers the entire range
849 * of the extent:
850 *
851 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
852 *
853 * After the first file extent item is replayed, the
854 * csum tree gets the following csum item:
855 *
856 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
857 *
858 * Which covers the 20K sub-range starting at offset 20K
859 * of our extent. Now when we replay the second file
860 * extent item, if we do not delete existing csum items
861 * that cover any of its blocks, we end up getting two
862 * csum items in our csum tree that overlap each other:
863 *
864 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
865 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
866 *
867 * Which is a problem, because after this anyone trying
868 * to lookup up for the checksum of any block of our
869 * extent starting at an offset of 40K or higher, will
870 * end up looking at the second csum item only, which
871 * does not contain the checksum for any block starting
872 * at offset 40K or higher of our extent.
873 */
07d400a6
YZ
874 while (!list_empty(&ordered_sums)) {
875 struct btrfs_ordered_sum *sums;
fc28b25e
JB
876 struct btrfs_root *csum_root;
877
07d400a6
YZ
878 sums = list_entry(ordered_sums.next,
879 struct btrfs_ordered_sum,
880 list);
fc28b25e
JB
881 csum_root = btrfs_csum_root(fs_info,
882 sums->bytenr);
b84b8390 883 if (!ret)
fc28b25e 884 ret = btrfs_del_csums(trans, csum_root,
5b4aacef
JM
885 sums->bytenr,
886 sums->len);
3650860b
JB
887 if (!ret)
888 ret = btrfs_csum_file_blocks(trans,
fc28b25e
JB
889 csum_root,
890 sums);
07d400a6
YZ
891 list_del(&sums->list);
892 kfree(sums);
893 }
3650860b
JB
894 if (ret)
895 goto out;
07d400a6 896 } else {
b3b4aa74 897 btrfs_release_path(path);
07d400a6
YZ
898 }
899 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
900 /* inline extents are easy, we just overwrite them */
901 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
902 if (ret)
903 goto out;
07d400a6 904 }
e02119d5 905
9ddc959e
JB
906 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
907 extent_end - start);
908 if (ret)
909 goto out;
910
3168021c 911update_inode:
2766ff61 912 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 913 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
914out:
915 if (inode)
916 iput(inode);
917 return ret;
918}
919
920/*
921 * when cleaning up conflicts between the directory names in the
922 * subvolume, directory names in the log and directory names in the
923 * inode back references, we may have to unlink inodes from directories.
924 *
925 * This is a helper function to do the unlink of a specific directory
926 * item
927 */
928static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
e02119d5 929 struct btrfs_path *path,
207e7d92 930 struct btrfs_inode *dir,
e02119d5
CM
931 struct btrfs_dir_item *di)
932{
9798ba24 933 struct btrfs_root *root = dir->root;
e02119d5
CM
934 struct inode *inode;
935 char *name;
936 int name_len;
937 struct extent_buffer *leaf;
938 struct btrfs_key location;
939 int ret;
940
941 leaf = path->nodes[0];
942
943 btrfs_dir_item_key_to_cpu(leaf, di, &location);
944 name_len = btrfs_dir_name_len(leaf, di);
945 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 946 if (!name)
947 return -ENOMEM;
948
e02119d5 949 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 950 btrfs_release_path(path);
e02119d5
CM
951
952 inode = read_one_inode(root, location.objectid);
c00e9493 953 if (!inode) {
3650860b
JB
954 ret = -EIO;
955 goto out;
c00e9493 956 }
e02119d5 957
ec051c0f 958 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
959 if (ret)
960 goto out;
12fcfd22 961
4467af88 962 ret = btrfs_unlink_inode(trans, dir, BTRFS_I(inode), name,
207e7d92 963 name_len);
3650860b
JB
964 if (ret)
965 goto out;
ada9af21 966 else
e5c304e6 967 ret = btrfs_run_delayed_items(trans);
3650860b 968out:
e02119d5 969 kfree(name);
e02119d5
CM
970 iput(inode);
971 return ret;
972}
973
974/*
77a5b9e3
FM
975 * See if a given name and sequence number found in an inode back reference are
976 * already in a directory and correctly point to this inode.
977 *
978 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
979 * exists.
e02119d5
CM
980 */
981static noinline int inode_in_dir(struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 dirid, u64 objectid, u64 index,
984 const char *name, int name_len)
985{
986 struct btrfs_dir_item *di;
987 struct btrfs_key location;
77a5b9e3 988 int ret = 0;
e02119d5
CM
989
990 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
991 index, name, name_len, 0);
77a5b9e3 992 if (IS_ERR(di)) {
8dcbc261 993 ret = PTR_ERR(di);
77a5b9e3
FM
994 goto out;
995 } else if (di) {
e02119d5
CM
996 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
997 if (location.objectid != objectid)
998 goto out;
77a5b9e3 999 } else {
e02119d5 1000 goto out;
77a5b9e3 1001 }
e02119d5 1002
77a5b9e3 1003 btrfs_release_path(path);
e02119d5 1004 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
77a5b9e3
FM
1005 if (IS_ERR(di)) {
1006 ret = PTR_ERR(di);
e02119d5 1007 goto out;
77a5b9e3
FM
1008 } else if (di) {
1009 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1010 if (location.objectid == objectid)
1011 ret = 1;
1012 }
e02119d5 1013out:
b3b4aa74 1014 btrfs_release_path(path);
77a5b9e3 1015 return ret;
e02119d5
CM
1016}
1017
1018/*
1019 * helper function to check a log tree for a named back reference in
1020 * an inode. This is used to decide if a back reference that is
1021 * found in the subvolume conflicts with what we find in the log.
1022 *
1023 * inode backreferences may have multiple refs in a single item,
1024 * during replay we process one reference at a time, and we don't
1025 * want to delete valid links to a file from the subvolume if that
1026 * link is also in the log.
1027 */
1028static noinline int backref_in_log(struct btrfs_root *log,
1029 struct btrfs_key *key,
f186373f 1030 u64 ref_objectid,
df8d116f 1031 const char *name, int namelen)
e02119d5
CM
1032{
1033 struct btrfs_path *path;
e02119d5 1034 int ret;
e02119d5
CM
1035
1036 path = btrfs_alloc_path();
2a29edc6 1037 if (!path)
1038 return -ENOMEM;
1039
e02119d5 1040 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1041 if (ret < 0) {
1042 goto out;
1043 } else if (ret == 1) {
89cbf5f6 1044 ret = 0;
f186373f
MF
1045 goto out;
1046 }
1047
89cbf5f6
NB
1048 if (key->type == BTRFS_INODE_EXTREF_KEY)
1049 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1050 path->slots[0],
1051 ref_objectid,
1052 name, namelen);
1053 else
1054 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1055 path->slots[0],
1056 name, namelen);
e02119d5
CM
1057out:
1058 btrfs_free_path(path);
89cbf5f6 1059 return ret;
e02119d5
CM
1060}
1061
5a1d7843 1062static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1063 struct btrfs_root *root,
e02119d5 1064 struct btrfs_path *path,
5a1d7843 1065 struct btrfs_root *log_root,
94c91a1f
NB
1066 struct btrfs_inode *dir,
1067 struct btrfs_inode *inode,
f186373f
MF
1068 u64 inode_objectid, u64 parent_objectid,
1069 u64 ref_index, char *name, int namelen,
1070 int *search_done)
e02119d5 1071{
34f3e4f2 1072 int ret;
f186373f
MF
1073 char *victim_name;
1074 int victim_name_len;
1075 struct extent_buffer *leaf;
5a1d7843 1076 struct btrfs_dir_item *di;
f186373f
MF
1077 struct btrfs_key search_key;
1078 struct btrfs_inode_extref *extref;
c622ae60 1079
f186373f
MF
1080again:
1081 /* Search old style refs */
1082 search_key.objectid = inode_objectid;
1083 search_key.type = BTRFS_INODE_REF_KEY;
1084 search_key.offset = parent_objectid;
1085 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1086 if (ret == 0) {
e02119d5
CM
1087 struct btrfs_inode_ref *victim_ref;
1088 unsigned long ptr;
1089 unsigned long ptr_end;
f186373f
MF
1090
1091 leaf = path->nodes[0];
e02119d5
CM
1092
1093 /* are we trying to overwrite a back ref for the root directory
1094 * if so, just jump out, we're done
1095 */
f186373f 1096 if (search_key.objectid == search_key.offset)
5a1d7843 1097 return 1;
e02119d5
CM
1098
1099 /* check all the names in this back reference to see
1100 * if they are in the log. if so, we allow them to stay
1101 * otherwise they must be unlinked as a conflict
1102 */
1103 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3212fa14 1104 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
d397712b 1105 while (ptr < ptr_end) {
e02119d5
CM
1106 victim_ref = (struct btrfs_inode_ref *)ptr;
1107 victim_name_len = btrfs_inode_ref_name_len(leaf,
1108 victim_ref);
1109 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1110 if (!victim_name)
1111 return -ENOMEM;
e02119d5
CM
1112
1113 read_extent_buffer(leaf, victim_name,
1114 (unsigned long)(victim_ref + 1),
1115 victim_name_len);
1116
d3316c82
NB
1117 ret = backref_in_log(log_root, &search_key,
1118 parent_objectid, victim_name,
1119 victim_name_len);
1120 if (ret < 0) {
1121 kfree(victim_name);
1122 return ret;
1123 } else if (!ret) {
94c91a1f 1124 inc_nlink(&inode->vfs_inode);
b3b4aa74 1125 btrfs_release_path(path);
12fcfd22 1126
4467af88 1127 ret = btrfs_unlink_inode(trans, dir, inode,
4ec5934e 1128 victim_name, victim_name_len);
f186373f 1129 kfree(victim_name);
3650860b
JB
1130 if (ret)
1131 return ret;
e5c304e6 1132 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1133 if (ret)
1134 return ret;
f186373f
MF
1135 *search_done = 1;
1136 goto again;
e02119d5
CM
1137 }
1138 kfree(victim_name);
f186373f 1139
e02119d5
CM
1140 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1141 }
e02119d5 1142
c622ae60 1143 /*
1144 * NOTE: we have searched root tree and checked the
bb7ab3b9 1145 * corresponding ref, it does not need to check again.
c622ae60 1146 */
5a1d7843 1147 *search_done = 1;
e02119d5 1148 }
b3b4aa74 1149 btrfs_release_path(path);
e02119d5 1150
f186373f
MF
1151 /* Same search but for extended refs */
1152 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1153 inode_objectid, parent_objectid, 0,
1154 0);
1155 if (!IS_ERR_OR_NULL(extref)) {
1156 u32 item_size;
1157 u32 cur_offset = 0;
1158 unsigned long base;
1159 struct inode *victim_parent;
1160
1161 leaf = path->nodes[0];
1162
3212fa14 1163 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f
MF
1164 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1165
1166 while (cur_offset < item_size) {
dd9ef135 1167 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1168
1169 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1170
1171 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1172 goto next;
1173
1174 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1175 if (!victim_name)
1176 return -ENOMEM;
f186373f
MF
1177 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1178 victim_name_len);
1179
1180 search_key.objectid = inode_objectid;
1181 search_key.type = BTRFS_INODE_EXTREF_KEY;
1182 search_key.offset = btrfs_extref_hash(parent_objectid,
1183 victim_name,
1184 victim_name_len);
d3316c82
NB
1185 ret = backref_in_log(log_root, &search_key,
1186 parent_objectid, victim_name,
1187 victim_name_len);
1188 if (ret < 0) {
f35838a6 1189 kfree(victim_name);
d3316c82
NB
1190 return ret;
1191 } else if (!ret) {
f186373f
MF
1192 ret = -ENOENT;
1193 victim_parent = read_one_inode(root,
94c91a1f 1194 parent_objectid);
f186373f 1195 if (victim_parent) {
94c91a1f 1196 inc_nlink(&inode->vfs_inode);
f186373f
MF
1197 btrfs_release_path(path);
1198
4467af88 1199 ret = btrfs_unlink_inode(trans,
4ec5934e 1200 BTRFS_I(victim_parent),
94c91a1f 1201 inode,
4ec5934e
NB
1202 victim_name,
1203 victim_name_len);
ada9af21
FDBM
1204 if (!ret)
1205 ret = btrfs_run_delayed_items(
e5c304e6 1206 trans);
f186373f 1207 }
f186373f
MF
1208 iput(victim_parent);
1209 kfree(victim_name);
3650860b
JB
1210 if (ret)
1211 return ret;
f186373f
MF
1212 *search_done = 1;
1213 goto again;
1214 }
1215 kfree(victim_name);
f186373f
MF
1216next:
1217 cur_offset += victim_name_len + sizeof(*extref);
1218 }
1219 *search_done = 1;
1220 }
1221 btrfs_release_path(path);
1222
34f3e4f2 1223 /* look for a conflicting sequence number */
94c91a1f 1224 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1225 ref_index, name, namelen, 0);
52db7779 1226 if (IS_ERR(di)) {
8dcbc261 1227 return PTR_ERR(di);
52db7779 1228 } else if (di) {
9798ba24 1229 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1230 if (ret)
1231 return ret;
34f3e4f2 1232 }
1233 btrfs_release_path(path);
1234
52042d8e 1235 /* look for a conflicting name */
94c91a1f 1236 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1237 name, namelen, 0);
52db7779
FM
1238 if (IS_ERR(di)) {
1239 return PTR_ERR(di);
1240 } else if (di) {
9798ba24 1241 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1242 if (ret)
1243 return ret;
34f3e4f2 1244 }
1245 btrfs_release_path(path);
1246
5a1d7843
JS
1247 return 0;
1248}
e02119d5 1249
bae15d95
QW
1250static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1251 u32 *namelen, char **name, u64 *index,
1252 u64 *parent_objectid)
f186373f
MF
1253{
1254 struct btrfs_inode_extref *extref;
1255
1256 extref = (struct btrfs_inode_extref *)ref_ptr;
1257
1258 *namelen = btrfs_inode_extref_name_len(eb, extref);
1259 *name = kmalloc(*namelen, GFP_NOFS);
1260 if (*name == NULL)
1261 return -ENOMEM;
1262
1263 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1264 *namelen);
1265
1f250e92
FM
1266 if (index)
1267 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1268 if (parent_objectid)
1269 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1270
1271 return 0;
1272}
1273
bae15d95
QW
1274static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1275 u32 *namelen, char **name, u64 *index)
f186373f
MF
1276{
1277 struct btrfs_inode_ref *ref;
1278
1279 ref = (struct btrfs_inode_ref *)ref_ptr;
1280
1281 *namelen = btrfs_inode_ref_name_len(eb, ref);
1282 *name = kmalloc(*namelen, GFP_NOFS);
1283 if (*name == NULL)
1284 return -ENOMEM;
1285
1286 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1287
1f250e92
FM
1288 if (index)
1289 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1290
1291 return 0;
1292}
1293
1f250e92
FM
1294/*
1295 * Take an inode reference item from the log tree and iterate all names from the
1296 * inode reference item in the subvolume tree with the same key (if it exists).
1297 * For any name that is not in the inode reference item from the log tree, do a
1298 * proper unlink of that name (that is, remove its entry from the inode
1299 * reference item and both dir index keys).
1300 */
1301static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1302 struct btrfs_root *root,
1303 struct btrfs_path *path,
1304 struct btrfs_inode *inode,
1305 struct extent_buffer *log_eb,
1306 int log_slot,
1307 struct btrfs_key *key)
1308{
1309 int ret;
1310 unsigned long ref_ptr;
1311 unsigned long ref_end;
1312 struct extent_buffer *eb;
1313
1314again:
1315 btrfs_release_path(path);
1316 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1317 if (ret > 0) {
1318 ret = 0;
1319 goto out;
1320 }
1321 if (ret < 0)
1322 goto out;
1323
1324 eb = path->nodes[0];
1325 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3212fa14 1326 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1f250e92
FM
1327 while (ref_ptr < ref_end) {
1328 char *name = NULL;
1329 int namelen;
1330 u64 parent_id;
1331
1332 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1333 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1334 NULL, &parent_id);
1335 } else {
1336 parent_id = key->offset;
1337 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1338 NULL);
1339 }
1340 if (ret)
1341 goto out;
1342
1343 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1344 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1345 parent_id, name,
1346 namelen);
1f250e92 1347 else
9bb8407f
NB
1348 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1349 name, namelen);
1f250e92
FM
1350
1351 if (!ret) {
1352 struct inode *dir;
1353
1354 btrfs_release_path(path);
1355 dir = read_one_inode(root, parent_id);
1356 if (!dir) {
1357 ret = -ENOENT;
1358 kfree(name);
1359 goto out;
1360 }
4467af88 1361 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
1f250e92
FM
1362 inode, name, namelen);
1363 kfree(name);
1364 iput(dir);
1365 if (ret)
1366 goto out;
1367 goto again;
1368 }
1369
1370 kfree(name);
1371 ref_ptr += namelen;
1372 if (key->type == BTRFS_INODE_EXTREF_KEY)
1373 ref_ptr += sizeof(struct btrfs_inode_extref);
1374 else
1375 ref_ptr += sizeof(struct btrfs_inode_ref);
1376 }
1377 ret = 0;
1378 out:
1379 btrfs_release_path(path);
1380 return ret;
1381}
1382
0d836392
FM
1383static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1384 const u8 ref_type, const char *name,
1385 const int namelen)
1386{
1387 struct btrfs_key key;
1388 struct btrfs_path *path;
1389 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1390 int ret;
1391
1392 path = btrfs_alloc_path();
1393 if (!path)
1394 return -ENOMEM;
1395
1396 key.objectid = btrfs_ino(BTRFS_I(inode));
1397 key.type = ref_type;
1398 if (key.type == BTRFS_INODE_REF_KEY)
1399 key.offset = parent_id;
1400 else
1401 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1402
1403 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1404 if (ret < 0)
1405 goto out;
1406 if (ret > 0) {
1407 ret = 0;
1408 goto out;
1409 }
1410 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1411 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1412 path->slots[0], parent_id, name, namelen);
0d836392 1413 else
9bb8407f
NB
1414 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1415 name, namelen);
0d836392
FM
1416
1417out:
1418 btrfs_free_path(path);
1419 return ret;
1420}
1421
6d9cc072 1422static int add_link(struct btrfs_trans_handle *trans,
6b5fc433
FM
1423 struct inode *dir, struct inode *inode, const char *name,
1424 int namelen, u64 ref_index)
1425{
6d9cc072 1426 struct btrfs_root *root = BTRFS_I(dir)->root;
6b5fc433
FM
1427 struct btrfs_dir_item *dir_item;
1428 struct btrfs_key key;
1429 struct btrfs_path *path;
1430 struct inode *other_inode = NULL;
1431 int ret;
1432
1433 path = btrfs_alloc_path();
1434 if (!path)
1435 return -ENOMEM;
1436
1437 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1438 btrfs_ino(BTRFS_I(dir)),
1439 name, namelen, 0);
1440 if (!dir_item) {
1441 btrfs_release_path(path);
1442 goto add_link;
1443 } else if (IS_ERR(dir_item)) {
1444 ret = PTR_ERR(dir_item);
1445 goto out;
1446 }
1447
1448 /*
1449 * Our inode's dentry collides with the dentry of another inode which is
1450 * in the log but not yet processed since it has a higher inode number.
1451 * So delete that other dentry.
1452 */
1453 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1454 btrfs_release_path(path);
1455 other_inode = read_one_inode(root, key.objectid);
1456 if (!other_inode) {
1457 ret = -ENOENT;
1458 goto out;
1459 }
4467af88 1460 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(other_inode),
6b5fc433
FM
1461 name, namelen);
1462 if (ret)
1463 goto out;
1464 /*
1465 * If we dropped the link count to 0, bump it so that later the iput()
1466 * on the inode will not free it. We will fixup the link count later.
1467 */
1468 if (other_inode->i_nlink == 0)
1469 inc_nlink(other_inode);
1470
1471 ret = btrfs_run_delayed_items(trans);
1472 if (ret)
1473 goto out;
1474add_link:
1475 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1476 name, namelen, 0, ref_index);
1477out:
1478 iput(other_inode);
1479 btrfs_free_path(path);
1480
1481 return ret;
1482}
1483
5a1d7843
JS
1484/*
1485 * replay one inode back reference item found in the log tree.
1486 * eb, slot and key refer to the buffer and key found in the log tree.
1487 * root is the destination we are replaying into, and path is for temp
1488 * use by this function. (it should be released on return).
1489 */
1490static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1491 struct btrfs_root *root,
1492 struct btrfs_root *log,
1493 struct btrfs_path *path,
1494 struct extent_buffer *eb, int slot,
1495 struct btrfs_key *key)
1496{
03b2f08b
GB
1497 struct inode *dir = NULL;
1498 struct inode *inode = NULL;
5a1d7843
JS
1499 unsigned long ref_ptr;
1500 unsigned long ref_end;
03b2f08b 1501 char *name = NULL;
5a1d7843
JS
1502 int namelen;
1503 int ret;
1504 int search_done = 0;
f186373f
MF
1505 int log_ref_ver = 0;
1506 u64 parent_objectid;
1507 u64 inode_objectid;
f46dbe3d 1508 u64 ref_index = 0;
f186373f
MF
1509 int ref_struct_size;
1510
1511 ref_ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 1512 ref_end = ref_ptr + btrfs_item_size(eb, slot);
f186373f
MF
1513
1514 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1515 struct btrfs_inode_extref *r;
1516
1517 ref_struct_size = sizeof(struct btrfs_inode_extref);
1518 log_ref_ver = 1;
1519 r = (struct btrfs_inode_extref *)ref_ptr;
1520 parent_objectid = btrfs_inode_extref_parent(eb, r);
1521 } else {
1522 ref_struct_size = sizeof(struct btrfs_inode_ref);
1523 parent_objectid = key->offset;
1524 }
1525 inode_objectid = key->objectid;
e02119d5 1526
5a1d7843
JS
1527 /*
1528 * it is possible that we didn't log all the parent directories
1529 * for a given inode. If we don't find the dir, just don't
1530 * copy the back ref in. The link count fixup code will take
1531 * care of the rest
1532 */
f186373f 1533 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1534 if (!dir) {
1535 ret = -ENOENT;
1536 goto out;
1537 }
5a1d7843 1538
f186373f 1539 inode = read_one_inode(root, inode_objectid);
5a1d7843 1540 if (!inode) {
03b2f08b
GB
1541 ret = -EIO;
1542 goto out;
5a1d7843
JS
1543 }
1544
5a1d7843 1545 while (ref_ptr < ref_end) {
f186373f 1546 if (log_ref_ver) {
bae15d95
QW
1547 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1548 &ref_index, &parent_objectid);
f186373f
MF
1549 /*
1550 * parent object can change from one array
1551 * item to another.
1552 */
1553 if (!dir)
1554 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1555 if (!dir) {
1556 ret = -ENOENT;
1557 goto out;
1558 }
f186373f 1559 } else {
bae15d95
QW
1560 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1561 &ref_index);
f186373f
MF
1562 }
1563 if (ret)
03b2f08b 1564 goto out;
5a1d7843 1565
77a5b9e3
FM
1566 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1567 btrfs_ino(BTRFS_I(inode)), ref_index,
1568 name, namelen);
1569 if (ret < 0) {
1570 goto out;
1571 } else if (ret == 0) {
5a1d7843
JS
1572 /*
1573 * look for a conflicting back reference in the
1574 * metadata. if we find one we have to unlink that name
1575 * of the file before we add our new link. Later on, we
1576 * overwrite any existing back reference, and we don't
1577 * want to create dangling pointers in the directory.
1578 */
1579
1580 if (!search_done) {
1581 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1582 BTRFS_I(dir),
d75eefdf 1583 BTRFS_I(inode),
f186373f
MF
1584 inode_objectid,
1585 parent_objectid,
1586 ref_index, name, namelen,
5a1d7843 1587 &search_done);
03b2f08b
GB
1588 if (ret) {
1589 if (ret == 1)
1590 ret = 0;
3650860b
JB
1591 goto out;
1592 }
5a1d7843
JS
1593 }
1594
0d836392
FM
1595 /*
1596 * If a reference item already exists for this inode
1597 * with the same parent and name, but different index,
1598 * drop it and the corresponding directory index entries
1599 * from the parent before adding the new reference item
1600 * and dir index entries, otherwise we would fail with
1601 * -EEXIST returned from btrfs_add_link() below.
1602 */
1603 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1604 name, namelen);
1605 if (ret > 0) {
4467af88 1606 ret = btrfs_unlink_inode(trans,
0d836392
FM
1607 BTRFS_I(dir),
1608 BTRFS_I(inode),
1609 name, namelen);
1610 /*
1611 * If we dropped the link count to 0, bump it so
1612 * that later the iput() on the inode will not
1613 * free it. We will fixup the link count later.
1614 */
1615 if (!ret && inode->i_nlink == 0)
1616 inc_nlink(inode);
1617 }
1618 if (ret < 0)
1619 goto out;
1620
5a1d7843 1621 /* insert our name */
6d9cc072 1622 ret = add_link(trans, dir, inode, name, namelen,
6b5fc433 1623 ref_index);
3650860b
JB
1624 if (ret)
1625 goto out;
5a1d7843 1626
f96d4474
JB
1627 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1628 if (ret)
1629 goto out;
5a1d7843 1630 }
77a5b9e3 1631 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1632
f186373f 1633 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1634 kfree(name);
03b2f08b 1635 name = NULL;
f186373f
MF
1636 if (log_ref_ver) {
1637 iput(dir);
1638 dir = NULL;
1639 }
5a1d7843 1640 }
e02119d5 1641
1f250e92
FM
1642 /*
1643 * Before we overwrite the inode reference item in the subvolume tree
1644 * with the item from the log tree, we must unlink all names from the
1645 * parent directory that are in the subvolume's tree inode reference
1646 * item, otherwise we end up with an inconsistent subvolume tree where
1647 * dir index entries exist for a name but there is no inode reference
1648 * item with the same name.
1649 */
1650 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1651 key);
1652 if (ret)
1653 goto out;
1654
e02119d5
CM
1655 /* finally write the back reference in the inode */
1656 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1657out:
b3b4aa74 1658 btrfs_release_path(path);
03b2f08b 1659 kfree(name);
e02119d5
CM
1660 iput(dir);
1661 iput(inode);
3650860b 1662 return ret;
e02119d5
CM
1663}
1664
f186373f 1665static int count_inode_extrefs(struct btrfs_root *root,
36283658 1666 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1667{
1668 int ret = 0;
1669 int name_len;
1670 unsigned int nlink = 0;
1671 u32 item_size;
1672 u32 cur_offset = 0;
36283658 1673 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1674 u64 offset = 0;
1675 unsigned long ptr;
1676 struct btrfs_inode_extref *extref;
1677 struct extent_buffer *leaf;
1678
1679 while (1) {
1680 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1681 &extref, &offset);
1682 if (ret)
1683 break;
c71bf099 1684
f186373f 1685 leaf = path->nodes[0];
3212fa14 1686 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f 1687 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1688 cur_offset = 0;
f186373f
MF
1689
1690 while (cur_offset < item_size) {
1691 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1692 name_len = btrfs_inode_extref_name_len(leaf, extref);
1693
1694 nlink++;
1695
1696 cur_offset += name_len + sizeof(*extref);
1697 }
1698
1699 offset++;
1700 btrfs_release_path(path);
1701 }
1702 btrfs_release_path(path);
1703
2c2c452b 1704 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1705 return ret;
1706 return nlink;
1707}
1708
1709static int count_inode_refs(struct btrfs_root *root,
f329e319 1710 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1711{
e02119d5
CM
1712 int ret;
1713 struct btrfs_key key;
f186373f 1714 unsigned int nlink = 0;
e02119d5
CM
1715 unsigned long ptr;
1716 unsigned long ptr_end;
1717 int name_len;
f329e319 1718 u64 ino = btrfs_ino(inode);
e02119d5 1719
33345d01 1720 key.objectid = ino;
e02119d5
CM
1721 key.type = BTRFS_INODE_REF_KEY;
1722 key.offset = (u64)-1;
1723
d397712b 1724 while (1) {
e02119d5
CM
1725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1726 if (ret < 0)
1727 break;
1728 if (ret > 0) {
1729 if (path->slots[0] == 0)
1730 break;
1731 path->slots[0]--;
1732 }
e93ae26f 1733process_slot:
e02119d5
CM
1734 btrfs_item_key_to_cpu(path->nodes[0], &key,
1735 path->slots[0]);
33345d01 1736 if (key.objectid != ino ||
e02119d5
CM
1737 key.type != BTRFS_INODE_REF_KEY)
1738 break;
1739 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
3212fa14 1740 ptr_end = ptr + btrfs_item_size(path->nodes[0],
e02119d5 1741 path->slots[0]);
d397712b 1742 while (ptr < ptr_end) {
e02119d5
CM
1743 struct btrfs_inode_ref *ref;
1744
1745 ref = (struct btrfs_inode_ref *)ptr;
1746 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1747 ref);
1748 ptr = (unsigned long)(ref + 1) + name_len;
1749 nlink++;
1750 }
1751
1752 if (key.offset == 0)
1753 break;
e93ae26f
FDBM
1754 if (path->slots[0] > 0) {
1755 path->slots[0]--;
1756 goto process_slot;
1757 }
e02119d5 1758 key.offset--;
b3b4aa74 1759 btrfs_release_path(path);
e02119d5 1760 }
b3b4aa74 1761 btrfs_release_path(path);
f186373f
MF
1762
1763 return nlink;
1764}
1765
1766/*
1767 * There are a few corners where the link count of the file can't
1768 * be properly maintained during replay. So, instead of adding
1769 * lots of complexity to the log code, we just scan the backrefs
1770 * for any file that has been through replay.
1771 *
1772 * The scan will update the link count on the inode to reflect the
1773 * number of back refs found. If it goes down to zero, the iput
1774 * will free the inode.
1775 */
1776static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1777 struct btrfs_root *root,
1778 struct inode *inode)
1779{
1780 struct btrfs_path *path;
1781 int ret;
1782 u64 nlink = 0;
4a0cc7ca 1783 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1784
1785 path = btrfs_alloc_path();
1786 if (!path)
1787 return -ENOMEM;
1788
f329e319 1789 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1790 if (ret < 0)
1791 goto out;
1792
1793 nlink = ret;
1794
36283658 1795 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1796 if (ret < 0)
1797 goto out;
1798
1799 nlink += ret;
1800
1801 ret = 0;
1802
e02119d5 1803 if (nlink != inode->i_nlink) {
bfe86848 1804 set_nlink(inode, nlink);
f96d4474
JB
1805 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1806 if (ret)
1807 goto out;
e02119d5 1808 }
8d5bf1cb 1809 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1810
c71bf099
YZ
1811 if (inode->i_nlink == 0) {
1812 if (S_ISDIR(inode->i_mode)) {
1813 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1814 ino, 1);
3650860b
JB
1815 if (ret)
1816 goto out;
c71bf099 1817 }
ecdcf3c2
NB
1818 ret = btrfs_insert_orphan_item(trans, root, ino);
1819 if (ret == -EEXIST)
1820 ret = 0;
12fcfd22 1821 }
12fcfd22 1822
f186373f
MF
1823out:
1824 btrfs_free_path(path);
1825 return ret;
e02119d5
CM
1826}
1827
1828static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1829 struct btrfs_root *root,
1830 struct btrfs_path *path)
1831{
1832 int ret;
1833 struct btrfs_key key;
1834 struct inode *inode;
1835
1836 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1837 key.type = BTRFS_ORPHAN_ITEM_KEY;
1838 key.offset = (u64)-1;
d397712b 1839 while (1) {
e02119d5
CM
1840 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1841 if (ret < 0)
1842 break;
1843
1844 if (ret == 1) {
011b28ac 1845 ret = 0;
e02119d5
CM
1846 if (path->slots[0] == 0)
1847 break;
1848 path->slots[0]--;
1849 }
1850
1851 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1852 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1853 key.type != BTRFS_ORPHAN_ITEM_KEY)
1854 break;
1855
1856 ret = btrfs_del_item(trans, root, path);
65a246c5 1857 if (ret)
011b28ac 1858 break;
e02119d5 1859
b3b4aa74 1860 btrfs_release_path(path);
e02119d5 1861 inode = read_one_inode(root, key.offset);
011b28ac
JB
1862 if (!inode) {
1863 ret = -EIO;
1864 break;
1865 }
e02119d5
CM
1866
1867 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1868 iput(inode);
3650860b 1869 if (ret)
011b28ac 1870 break;
e02119d5 1871
12fcfd22
CM
1872 /*
1873 * fixup on a directory may create new entries,
1874 * make sure we always look for the highset possible
1875 * offset
1876 */
1877 key.offset = (u64)-1;
e02119d5 1878 }
b3b4aa74 1879 btrfs_release_path(path);
65a246c5 1880 return ret;
e02119d5
CM
1881}
1882
1883
1884/*
1885 * record a given inode in the fixup dir so we can check its link
1886 * count when replay is done. The link count is incremented here
1887 * so the inode won't go away until we check it
1888 */
1889static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 struct btrfs_path *path,
1892 u64 objectid)
1893{
1894 struct btrfs_key key;
1895 int ret = 0;
1896 struct inode *inode;
1897
1898 inode = read_one_inode(root, objectid);
c00e9493
TI
1899 if (!inode)
1900 return -EIO;
e02119d5
CM
1901
1902 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1903 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1904 key.offset = objectid;
1905
1906 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1907
b3b4aa74 1908 btrfs_release_path(path);
e02119d5 1909 if (ret == 0) {
9bf7a489
JB
1910 if (!inode->i_nlink)
1911 set_nlink(inode, 1);
1912 else
8b558c5f 1913 inc_nlink(inode);
9a56fcd1 1914 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1915 } else if (ret == -EEXIST) {
1916 ret = 0;
e02119d5
CM
1917 }
1918 iput(inode);
1919
1920 return ret;
1921}
1922
1923/*
1924 * when replaying the log for a directory, we only insert names
1925 * for inodes that actually exist. This means an fsync on a directory
1926 * does not implicitly fsync all the new files in it
1927 */
1928static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1929 struct btrfs_root *root,
e02119d5 1930 u64 dirid, u64 index,
60d53eb3 1931 char *name, int name_len,
e02119d5
CM
1932 struct btrfs_key *location)
1933{
1934 struct inode *inode;
1935 struct inode *dir;
1936 int ret;
1937
1938 inode = read_one_inode(root, location->objectid);
1939 if (!inode)
1940 return -ENOENT;
1941
1942 dir = read_one_inode(root, dirid);
1943 if (!dir) {
1944 iput(inode);
1945 return -EIO;
1946 }
d555438b 1947
db0a669f
NB
1948 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1949 name_len, 1, index);
e02119d5
CM
1950
1951 /* FIXME, put inode into FIXUP list */
1952
1953 iput(inode);
1954 iput(dir);
1955 return ret;
1956}
1957
339d0354
FM
1958static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1959 struct btrfs_inode *dir,
1960 struct btrfs_path *path,
1961 struct btrfs_dir_item *dst_di,
1962 const struct btrfs_key *log_key,
1963 u8 log_type,
1964 bool exists)
1965{
1966 struct btrfs_key found_key;
1967
1968 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1969 /* The existing dentry points to the same inode, don't delete it. */
1970 if (found_key.objectid == log_key->objectid &&
1971 found_key.type == log_key->type &&
1972 found_key.offset == log_key->offset &&
1973 btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1974 return 1;
1975
1976 /*
1977 * Don't drop the conflicting directory entry if the inode for the new
1978 * entry doesn't exist.
1979 */
1980 if (!exists)
1981 return 0;
1982
1983 return drop_one_dir_item(trans, path, dir, dst_di);
1984}
1985
e02119d5
CM
1986/*
1987 * take a single entry in a log directory item and replay it into
1988 * the subvolume.
1989 *
1990 * if a conflicting item exists in the subdirectory already,
1991 * the inode it points to is unlinked and put into the link count
1992 * fix up tree.
1993 *
1994 * If a name from the log points to a file or directory that does
1995 * not exist in the FS, it is skipped. fsyncs on directories
1996 * do not force down inodes inside that directory, just changes to the
1997 * names or unlinks in a directory.
bb53eda9
FM
1998 *
1999 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
2000 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
2001 */
2002static noinline int replay_one_name(struct btrfs_trans_handle *trans,
2003 struct btrfs_root *root,
2004 struct btrfs_path *path,
2005 struct extent_buffer *eb,
2006 struct btrfs_dir_item *di,
2007 struct btrfs_key *key)
2008{
2009 char *name;
2010 int name_len;
339d0354
FM
2011 struct btrfs_dir_item *dir_dst_di;
2012 struct btrfs_dir_item *index_dst_di;
2013 bool dir_dst_matches = false;
2014 bool index_dst_matches = false;
e02119d5 2015 struct btrfs_key log_key;
339d0354 2016 struct btrfs_key search_key;
e02119d5 2017 struct inode *dir;
e02119d5 2018 u8 log_type;
cfd31269
FM
2019 bool exists;
2020 int ret;
339d0354 2021 bool update_size = true;
bb53eda9 2022 bool name_added = false;
e02119d5
CM
2023
2024 dir = read_one_inode(root, key->objectid);
c00e9493
TI
2025 if (!dir)
2026 return -EIO;
e02119d5
CM
2027
2028 name_len = btrfs_dir_name_len(eb, di);
2029 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
2030 if (!name) {
2031 ret = -ENOMEM;
2032 goto out;
2033 }
2a29edc6 2034
e02119d5
CM
2035 log_type = btrfs_dir_type(eb, di);
2036 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2037 name_len);
2038
2039 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 2040 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 2041 btrfs_release_path(path);
cfd31269
FM
2042 if (ret < 0)
2043 goto out;
2044 exists = (ret == 0);
2045 ret = 0;
4bef0848 2046
339d0354
FM
2047 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2048 name, name_len, 1);
2049 if (IS_ERR(dir_dst_di)) {
2050 ret = PTR_ERR(dir_dst_di);
3650860b 2051 goto out;
339d0354
FM
2052 } else if (dir_dst_di) {
2053 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2054 dir_dst_di, &log_key, log_type,
2055 exists);
2056 if (ret < 0)
2057 goto out;
2058 dir_dst_matches = (ret == 1);
e02119d5 2059 }
e15ac641 2060
339d0354
FM
2061 btrfs_release_path(path);
2062
2063 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2064 key->objectid, key->offset,
2065 name, name_len, 1);
2066 if (IS_ERR(index_dst_di)) {
2067 ret = PTR_ERR(index_dst_di);
e15ac641 2068 goto out;
339d0354
FM
2069 } else if (index_dst_di) {
2070 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2071 index_dst_di, &log_key,
2072 log_type, exists);
2073 if (ret < 0)
e02119d5 2074 goto out;
339d0354 2075 index_dst_matches = (ret == 1);
e02119d5
CM
2076 }
2077
339d0354
FM
2078 btrfs_release_path(path);
2079
2080 if (dir_dst_matches && index_dst_matches) {
2081 ret = 0;
a2cc11db 2082 update_size = false;
e02119d5
CM
2083 goto out;
2084 }
2085
725af92a
NB
2086 /*
2087 * Check if the inode reference exists in the log for the given name,
2088 * inode and parent inode
2089 */
339d0354
FM
2090 search_key.objectid = log_key.objectid;
2091 search_key.type = BTRFS_INODE_REF_KEY;
2092 search_key.offset = key->objectid;
2093 ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
725af92a
NB
2094 if (ret < 0) {
2095 goto out;
2096 } else if (ret) {
2097 /* The dentry will be added later. */
2098 ret = 0;
2099 update_size = false;
2100 goto out;
2101 }
2102
339d0354
FM
2103 search_key.objectid = log_key.objectid;
2104 search_key.type = BTRFS_INODE_EXTREF_KEY;
2105 search_key.offset = key->objectid;
2106 ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
725af92a
NB
2107 name_len);
2108 if (ret < 0) {
2109 goto out;
2110 } else if (ret) {
df8d116f
FM
2111 /* The dentry will be added later. */
2112 ret = 0;
2113 update_size = false;
2114 goto out;
2115 }
b3b4aa74 2116 btrfs_release_path(path);
60d53eb3
Z
2117 ret = insert_one_name(trans, root, key->objectid, key->offset,
2118 name, name_len, &log_key);
df8d116f 2119 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2120 goto out;
bb53eda9
FM
2121 if (!ret)
2122 name_added = true;
d555438b 2123 update_size = false;
3650860b 2124 ret = 0;
339d0354
FM
2125
2126out:
2127 if (!ret && update_size) {
2128 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2129 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2130 }
2131 kfree(name);
2132 iput(dir);
2133 if (!ret && name_added)
2134 ret = 1;
2135 return ret;
e02119d5
CM
2136}
2137
339d0354 2138/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
e02119d5
CM
2139static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2140 struct btrfs_root *root,
2141 struct btrfs_path *path,
2142 struct extent_buffer *eb, int slot,
2143 struct btrfs_key *key)
2144{
339d0354 2145 int ret;
e02119d5 2146 struct btrfs_dir_item *di;
e02119d5 2147
339d0354
FM
2148 /* We only log dir index keys, which only contain a single dir item. */
2149 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 2150
339d0354
FM
2151 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2152 ret = replay_one_name(trans, root, path, eb, di, key);
2153 if (ret < 0)
2154 return ret;
bb53eda9 2155
339d0354
FM
2156 /*
2157 * If this entry refers to a non-directory (directories can not have a
2158 * link count > 1) and it was added in the transaction that was not
2159 * committed, make sure we fixup the link count of the inode the entry
2160 * points to. Otherwise something like the following would result in a
2161 * directory pointing to an inode with a wrong link that does not account
2162 * for this dir entry:
2163 *
2164 * mkdir testdir
2165 * touch testdir/foo
2166 * touch testdir/bar
2167 * sync
2168 *
2169 * ln testdir/bar testdir/bar_link
2170 * ln testdir/foo testdir/foo_link
2171 * xfs_io -c "fsync" testdir/bar
2172 *
2173 * <power failure>
2174 *
2175 * mount fs, log replay happens
2176 *
2177 * File foo would remain with a link count of 1 when it has two entries
2178 * pointing to it in the directory testdir. This would make it impossible
2179 * to ever delete the parent directory has it would result in stale
2180 * dentries that can never be deleted.
2181 */
2182 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2183 struct btrfs_path *fixup_path;
2184 struct btrfs_key di_key;
bb53eda9 2185
339d0354
FM
2186 fixup_path = btrfs_alloc_path();
2187 if (!fixup_path)
2188 return -ENOMEM;
2189
2190 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2191 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2192 btrfs_free_path(fixup_path);
e02119d5 2193 }
339d0354 2194
bb53eda9 2195 return ret;
e02119d5
CM
2196}
2197
2198/*
2199 * directory replay has two parts. There are the standard directory
2200 * items in the log copied from the subvolume, and range items
2201 * created in the log while the subvolume was logged.
2202 *
2203 * The range items tell us which parts of the key space the log
2204 * is authoritative for. During replay, if a key in the subvolume
2205 * directory is in a logged range item, but not actually in the log
2206 * that means it was deleted from the directory before the fsync
2207 * and should be removed.
2208 */
2209static noinline int find_dir_range(struct btrfs_root *root,
2210 struct btrfs_path *path,
ccae4a19 2211 u64 dirid,
e02119d5
CM
2212 u64 *start_ret, u64 *end_ret)
2213{
2214 struct btrfs_key key;
2215 u64 found_end;
2216 struct btrfs_dir_log_item *item;
2217 int ret;
2218 int nritems;
2219
2220 if (*start_ret == (u64)-1)
2221 return 1;
2222
2223 key.objectid = dirid;
ccae4a19 2224 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5
CM
2225 key.offset = *start_ret;
2226
2227 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2228 if (ret < 0)
2229 goto out;
2230 if (ret > 0) {
2231 if (path->slots[0] == 0)
2232 goto out;
2233 path->slots[0]--;
2234 }
2235 if (ret != 0)
2236 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2237
ccae4a19 2238 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2239 ret = 1;
2240 goto next;
2241 }
2242 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2243 struct btrfs_dir_log_item);
2244 found_end = btrfs_dir_log_end(path->nodes[0], item);
2245
2246 if (*start_ret >= key.offset && *start_ret <= found_end) {
2247 ret = 0;
2248 *start_ret = key.offset;
2249 *end_ret = found_end;
2250 goto out;
2251 }
2252 ret = 1;
2253next:
2254 /* check the next slot in the tree to see if it is a valid item */
2255 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2256 path->slots[0]++;
e02119d5
CM
2257 if (path->slots[0] >= nritems) {
2258 ret = btrfs_next_leaf(root, path);
2259 if (ret)
2260 goto out;
e02119d5
CM
2261 }
2262
2263 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2264
ccae4a19 2265 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2266 ret = 1;
2267 goto out;
2268 }
2269 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2270 struct btrfs_dir_log_item);
2271 found_end = btrfs_dir_log_end(path->nodes[0], item);
2272 *start_ret = key.offset;
2273 *end_ret = found_end;
2274 ret = 0;
2275out:
b3b4aa74 2276 btrfs_release_path(path);
e02119d5
CM
2277 return ret;
2278}
2279
2280/*
2281 * this looks for a given directory item in the log. If the directory
2282 * item is not in the log, the item is removed and the inode it points
2283 * to is unlinked
2284 */
2285static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
e02119d5
CM
2286 struct btrfs_root *log,
2287 struct btrfs_path *path,
2288 struct btrfs_path *log_path,
2289 struct inode *dir,
2290 struct btrfs_key *dir_key)
2291{
d1ed82f3 2292 struct btrfs_root *root = BTRFS_I(dir)->root;
e02119d5
CM
2293 int ret;
2294 struct extent_buffer *eb;
2295 int slot;
e02119d5 2296 struct btrfs_dir_item *di;
e02119d5 2297 int name_len;
e02119d5 2298 char *name;
ccae4a19 2299 struct inode *inode = NULL;
e02119d5
CM
2300 struct btrfs_key location;
2301
ccae4a19
FM
2302 /*
2303 * Currenly we only log dir index keys. Even if we replay a log created
2304 * by an older kernel that logged both dir index and dir item keys, all
2305 * we need to do is process the dir index keys, we (and our caller) can
2306 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2307 */
2308 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2309
e02119d5
CM
2310 eb = path->nodes[0];
2311 slot = path->slots[0];
ccae4a19
FM
2312 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2313 name_len = btrfs_dir_name_len(eb, di);
2314 name = kmalloc(name_len, GFP_NOFS);
2315 if (!name) {
2316 ret = -ENOMEM;
2317 goto out;
2318 }
e02119d5 2319
ccae4a19 2320 read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
3650860b 2321
ccae4a19
FM
2322 if (log) {
2323 struct btrfs_dir_item *log_di;
e02119d5 2324
ccae4a19
FM
2325 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2326 dir_key->objectid,
2327 dir_key->offset,
2328 name, name_len, 0);
2329 if (IS_ERR(log_di)) {
2330 ret = PTR_ERR(log_di);
2331 goto out;
2332 } else if (log_di) {
2333 /* The dentry exists in the log, we have nothing to do. */
e02119d5
CM
2334 ret = 0;
2335 goto out;
2336 }
ccae4a19 2337 }
e02119d5 2338
ccae4a19
FM
2339 btrfs_dir_item_key_to_cpu(eb, di, &location);
2340 btrfs_release_path(path);
2341 btrfs_release_path(log_path);
2342 inode = read_one_inode(root, location.objectid);
2343 if (!inode) {
2344 ret = -EIO;
2345 goto out;
e02119d5 2346 }
ccae4a19
FM
2347
2348 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2349 if (ret)
2350 goto out;
2351
2352 inc_nlink(inode);
2353 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(inode), name,
2354 name_len);
2355 if (ret)
2356 goto out;
2357
2358 ret = btrfs_run_delayed_items(trans);
2359 if (ret)
2360 goto out;
2361
2362 /*
2363 * Unlike dir item keys, dir index keys can only have one name (entry) in
2364 * them, as there are no key collisions since each key has a unique offset
2365 * (an index number), so we're done.
2366 */
e02119d5 2367out:
b3b4aa74
DS
2368 btrfs_release_path(path);
2369 btrfs_release_path(log_path);
ccae4a19
FM
2370 kfree(name);
2371 iput(inode);
e02119d5
CM
2372 return ret;
2373}
2374
4f764e51
FM
2375static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2376 struct btrfs_root *root,
2377 struct btrfs_root *log,
2378 struct btrfs_path *path,
2379 const u64 ino)
2380{
2381 struct btrfs_key search_key;
2382 struct btrfs_path *log_path;
2383 int i;
2384 int nritems;
2385 int ret;
2386
2387 log_path = btrfs_alloc_path();
2388 if (!log_path)
2389 return -ENOMEM;
2390
2391 search_key.objectid = ino;
2392 search_key.type = BTRFS_XATTR_ITEM_KEY;
2393 search_key.offset = 0;
2394again:
2395 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2396 if (ret < 0)
2397 goto out;
2398process_leaf:
2399 nritems = btrfs_header_nritems(path->nodes[0]);
2400 for (i = path->slots[0]; i < nritems; i++) {
2401 struct btrfs_key key;
2402 struct btrfs_dir_item *di;
2403 struct btrfs_dir_item *log_di;
2404 u32 total_size;
2405 u32 cur;
2406
2407 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2408 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2409 ret = 0;
2410 goto out;
2411 }
2412
2413 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
3212fa14 2414 total_size = btrfs_item_size(path->nodes[0], i);
4f764e51
FM
2415 cur = 0;
2416 while (cur < total_size) {
2417 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2418 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2419 u32 this_len = sizeof(*di) + name_len + data_len;
2420 char *name;
2421
2422 name = kmalloc(name_len, GFP_NOFS);
2423 if (!name) {
2424 ret = -ENOMEM;
2425 goto out;
2426 }
2427 read_extent_buffer(path->nodes[0], name,
2428 (unsigned long)(di + 1), name_len);
2429
2430 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2431 name, name_len, 0);
2432 btrfs_release_path(log_path);
2433 if (!log_di) {
2434 /* Doesn't exist in log tree, so delete it. */
2435 btrfs_release_path(path);
2436 di = btrfs_lookup_xattr(trans, root, path, ino,
2437 name, name_len, -1);
2438 kfree(name);
2439 if (IS_ERR(di)) {
2440 ret = PTR_ERR(di);
2441 goto out;
2442 }
2443 ASSERT(di);
2444 ret = btrfs_delete_one_dir_name(trans, root,
2445 path, di);
2446 if (ret)
2447 goto out;
2448 btrfs_release_path(path);
2449 search_key = key;
2450 goto again;
2451 }
2452 kfree(name);
2453 if (IS_ERR(log_di)) {
2454 ret = PTR_ERR(log_di);
2455 goto out;
2456 }
2457 cur += this_len;
2458 di = (struct btrfs_dir_item *)((char *)di + this_len);
2459 }
2460 }
2461 ret = btrfs_next_leaf(root, path);
2462 if (ret > 0)
2463 ret = 0;
2464 else if (ret == 0)
2465 goto process_leaf;
2466out:
2467 btrfs_free_path(log_path);
2468 btrfs_release_path(path);
2469 return ret;
2470}
2471
2472
e02119d5
CM
2473/*
2474 * deletion replay happens before we copy any new directory items
2475 * out of the log or out of backreferences from inodes. It
2476 * scans the log to find ranges of keys that log is authoritative for,
2477 * and then scans the directory to find items in those ranges that are
2478 * not present in the log.
2479 *
2480 * Anything we don't find in the log is unlinked and removed from the
2481 * directory.
2482 */
2483static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2484 struct btrfs_root *root,
2485 struct btrfs_root *log,
2486 struct btrfs_path *path,
12fcfd22 2487 u64 dirid, int del_all)
e02119d5
CM
2488{
2489 u64 range_start;
2490 u64 range_end;
e02119d5
CM
2491 int ret = 0;
2492 struct btrfs_key dir_key;
2493 struct btrfs_key found_key;
2494 struct btrfs_path *log_path;
2495 struct inode *dir;
2496
2497 dir_key.objectid = dirid;
ccae4a19 2498 dir_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
2499 log_path = btrfs_alloc_path();
2500 if (!log_path)
2501 return -ENOMEM;
2502
2503 dir = read_one_inode(root, dirid);
2504 /* it isn't an error if the inode isn't there, that can happen
2505 * because we replay the deletes before we copy in the inode item
2506 * from the log
2507 */
2508 if (!dir) {
2509 btrfs_free_path(log_path);
2510 return 0;
2511 }
ccae4a19 2512
e02119d5
CM
2513 range_start = 0;
2514 range_end = 0;
d397712b 2515 while (1) {
12fcfd22
CM
2516 if (del_all)
2517 range_end = (u64)-1;
2518 else {
ccae4a19 2519 ret = find_dir_range(log, path, dirid,
12fcfd22 2520 &range_start, &range_end);
10adb115
FM
2521 if (ret < 0)
2522 goto out;
2523 else if (ret > 0)
12fcfd22
CM
2524 break;
2525 }
e02119d5
CM
2526
2527 dir_key.offset = range_start;
d397712b 2528 while (1) {
e02119d5
CM
2529 int nritems;
2530 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2531 0, 0);
2532 if (ret < 0)
2533 goto out;
2534
2535 nritems = btrfs_header_nritems(path->nodes[0]);
2536 if (path->slots[0] >= nritems) {
2537 ret = btrfs_next_leaf(root, path);
b98def7c 2538 if (ret == 1)
e02119d5 2539 break;
b98def7c
LB
2540 else if (ret < 0)
2541 goto out;
e02119d5
CM
2542 }
2543 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2544 path->slots[0]);
2545 if (found_key.objectid != dirid ||
ccae4a19
FM
2546 found_key.type != dir_key.type) {
2547 ret = 0;
2548 goto out;
2549 }
e02119d5
CM
2550
2551 if (found_key.offset > range_end)
2552 break;
2553
d1ed82f3 2554 ret = check_item_in_log(trans, log, path,
12fcfd22
CM
2555 log_path, dir,
2556 &found_key);
3650860b
JB
2557 if (ret)
2558 goto out;
e02119d5
CM
2559 if (found_key.offset == (u64)-1)
2560 break;
2561 dir_key.offset = found_key.offset + 1;
2562 }
b3b4aa74 2563 btrfs_release_path(path);
e02119d5
CM
2564 if (range_end == (u64)-1)
2565 break;
2566 range_start = range_end + 1;
2567 }
e02119d5 2568 ret = 0;
e02119d5 2569out:
b3b4aa74 2570 btrfs_release_path(path);
e02119d5
CM
2571 btrfs_free_path(log_path);
2572 iput(dir);
2573 return ret;
2574}
2575
2576/*
2577 * the process_func used to replay items from the log tree. This
2578 * gets called in two different stages. The first stage just looks
2579 * for inodes and makes sure they are all copied into the subvolume.
2580 *
2581 * The second stage copies all the other item types from the log into
2582 * the subvolume. The two stage approach is slower, but gets rid of
2583 * lots of complexity around inodes referencing other inodes that exist
2584 * only in the log (references come from either directory items or inode
2585 * back refs).
2586 */
2587static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2588 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2589{
2590 int nritems;
2591 struct btrfs_path *path;
2592 struct btrfs_root *root = wc->replay_dest;
2593 struct btrfs_key key;
e02119d5
CM
2594 int i;
2595 int ret;
2596
581c1760 2597 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2598 if (ret)
2599 return ret;
e02119d5
CM
2600
2601 level = btrfs_header_level(eb);
2602
2603 if (level != 0)
2604 return 0;
2605
2606 path = btrfs_alloc_path();
1e5063d0
MF
2607 if (!path)
2608 return -ENOMEM;
e02119d5
CM
2609
2610 nritems = btrfs_header_nritems(eb);
2611 for (i = 0; i < nritems; i++) {
2612 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2613
2614 /* inode keys are done during the first stage */
2615 if (key.type == BTRFS_INODE_ITEM_KEY &&
2616 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2617 struct btrfs_inode_item *inode_item;
2618 u32 mode;
2619
2620 inode_item = btrfs_item_ptr(eb, i,
2621 struct btrfs_inode_item);
f2d72f42
FM
2622 /*
2623 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2624 * and never got linked before the fsync, skip it, as
2625 * replaying it is pointless since it would be deleted
2626 * later. We skip logging tmpfiles, but it's always
2627 * possible we are replaying a log created with a kernel
2628 * that used to log tmpfiles.
2629 */
2630 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2631 wc->ignore_cur_inode = true;
2632 continue;
2633 } else {
2634 wc->ignore_cur_inode = false;
2635 }
4f764e51
FM
2636 ret = replay_xattr_deletes(wc->trans, root, log,
2637 path, key.objectid);
2638 if (ret)
2639 break;
e02119d5
CM
2640 mode = btrfs_inode_mode(eb, inode_item);
2641 if (S_ISDIR(mode)) {
2642 ret = replay_dir_deletes(wc->trans,
12fcfd22 2643 root, log, path, key.objectid, 0);
b50c6e25
JB
2644 if (ret)
2645 break;
e02119d5
CM
2646 }
2647 ret = overwrite_item(wc->trans, root, path,
2648 eb, i, &key);
b50c6e25
JB
2649 if (ret)
2650 break;
e02119d5 2651
471d557a
FM
2652 /*
2653 * Before replaying extents, truncate the inode to its
2654 * size. We need to do it now and not after log replay
2655 * because before an fsync we can have prealloc extents
2656 * added beyond the inode's i_size. If we did it after,
2657 * through orphan cleanup for example, we would drop
2658 * those prealloc extents just after replaying them.
e02119d5
CM
2659 */
2660 if (S_ISREG(mode)) {
5893dfb9 2661 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2662 struct inode *inode;
2663 u64 from;
2664
2665 inode = read_one_inode(root, key.objectid);
2666 if (!inode) {
2667 ret = -EIO;
2668 break;
2669 }
2670 from = ALIGN(i_size_read(inode),
2671 root->fs_info->sectorsize);
5893dfb9
FM
2672 drop_args.start = from;
2673 drop_args.end = (u64)-1;
2674 drop_args.drop_cache = true;
2675 ret = btrfs_drop_extents(wc->trans, root,
2676 BTRFS_I(inode),
2677 &drop_args);
471d557a 2678 if (!ret) {
2766ff61
FM
2679 inode_sub_bytes(inode,
2680 drop_args.bytes_found);
f2d72f42 2681 /* Update the inode's nbytes. */
471d557a 2682 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2683 root, BTRFS_I(inode));
471d557a
FM
2684 }
2685 iput(inode);
b50c6e25
JB
2686 if (ret)
2687 break;
e02119d5 2688 }
c71bf099 2689
e02119d5
CM
2690 ret = link_to_fixup_dir(wc->trans, root,
2691 path, key.objectid);
b50c6e25
JB
2692 if (ret)
2693 break;
e02119d5 2694 }
dd8e7217 2695
f2d72f42
FM
2696 if (wc->ignore_cur_inode)
2697 continue;
2698
dd8e7217
JB
2699 if (key.type == BTRFS_DIR_INDEX_KEY &&
2700 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2701 ret = replay_one_dir_item(wc->trans, root, path,
2702 eb, i, &key);
2703 if (ret)
2704 break;
2705 }
2706
e02119d5
CM
2707 if (wc->stage < LOG_WALK_REPLAY_ALL)
2708 continue;
2709
2710 /* these keys are simply copied */
2711 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2712 ret = overwrite_item(wc->trans, root, path,
2713 eb, i, &key);
b50c6e25
JB
2714 if (ret)
2715 break;
2da1c669
LB
2716 } else if (key.type == BTRFS_INODE_REF_KEY ||
2717 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2718 ret = add_inode_ref(wc->trans, root, log, path,
2719 eb, i, &key);
b50c6e25
JB
2720 if (ret && ret != -ENOENT)
2721 break;
2722 ret = 0;
e02119d5
CM
2723 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2724 ret = replay_one_extent(wc->trans, root, path,
2725 eb, i, &key);
b50c6e25
JB
2726 if (ret)
2727 break;
e02119d5 2728 }
339d0354
FM
2729 /*
2730 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2731 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2732 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2733 * older kernel with such keys, ignore them.
2734 */
e02119d5
CM
2735 }
2736 btrfs_free_path(path);
b50c6e25 2737 return ret;
e02119d5
CM
2738}
2739
6787bb9f
NB
2740/*
2741 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2742 */
2743static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2744{
2745 struct btrfs_block_group *cache;
2746
2747 cache = btrfs_lookup_block_group(fs_info, start);
2748 if (!cache) {
2749 btrfs_err(fs_info, "unable to find block group for %llu", start);
2750 return;
2751 }
2752
2753 spin_lock(&cache->space_info->lock);
2754 spin_lock(&cache->lock);
2755 cache->reserved -= fs_info->nodesize;
2756 cache->space_info->bytes_reserved -= fs_info->nodesize;
2757 spin_unlock(&cache->lock);
2758 spin_unlock(&cache->space_info->lock);
2759
2760 btrfs_put_block_group(cache);
2761}
2762
d397712b 2763static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2764 struct btrfs_root *root,
2765 struct btrfs_path *path, int *level,
2766 struct walk_control *wc)
2767{
0b246afa 2768 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2769 u64 bytenr;
2770 u64 ptr_gen;
2771 struct extent_buffer *next;
2772 struct extent_buffer *cur;
e02119d5
CM
2773 u32 blocksize;
2774 int ret = 0;
2775
d397712b 2776 while (*level > 0) {
581c1760
QW
2777 struct btrfs_key first_key;
2778
e02119d5
CM
2779 cur = path->nodes[*level];
2780
fae7f21c 2781 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2782
2783 if (path->slots[*level] >=
2784 btrfs_header_nritems(cur))
2785 break;
2786
2787 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2788 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2789 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2790 blocksize = fs_info->nodesize;
e02119d5 2791
3fbaf258
JB
2792 next = btrfs_find_create_tree_block(fs_info, bytenr,
2793 btrfs_header_owner(cur),
2794 *level - 1);
c871b0f2
LB
2795 if (IS_ERR(next))
2796 return PTR_ERR(next);
e02119d5 2797
e02119d5 2798 if (*level == 1) {
581c1760
QW
2799 ret = wc->process_func(root, next, wc, ptr_gen,
2800 *level - 1);
b50c6e25
JB
2801 if (ret) {
2802 free_extent_buffer(next);
1e5063d0 2803 return ret;
b50c6e25 2804 }
4a500fd1 2805
e02119d5
CM
2806 path->slots[*level]++;
2807 if (wc->free) {
581c1760
QW
2808 ret = btrfs_read_buffer(next, ptr_gen,
2809 *level - 1, &first_key);
018642a1
TI
2810 if (ret) {
2811 free_extent_buffer(next);
2812 return ret;
2813 }
e02119d5 2814
681ae509
JB
2815 if (trans) {
2816 btrfs_tree_lock(next);
6a884d7d 2817 btrfs_clean_tree_block(next);
681ae509
JB
2818 btrfs_wait_tree_block_writeback(next);
2819 btrfs_tree_unlock(next);
7bfc1007 2820 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2821 bytenr, blocksize);
2822 if (ret) {
2823 free_extent_buffer(next);
2824 return ret;
2825 }
d3575156
NA
2826 btrfs_redirty_list_add(
2827 trans->transaction, next);
1846430c
LB
2828 } else {
2829 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2830 clear_extent_buffer_dirty(next);
10e958d5 2831 unaccount_log_buffer(fs_info, bytenr);
3650860b 2832 }
e02119d5
CM
2833 }
2834 free_extent_buffer(next);
2835 continue;
2836 }
581c1760 2837 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2838 if (ret) {
2839 free_extent_buffer(next);
2840 return ret;
2841 }
e02119d5 2842
e02119d5
CM
2843 if (path->nodes[*level-1])
2844 free_extent_buffer(path->nodes[*level-1]);
2845 path->nodes[*level-1] = next;
2846 *level = btrfs_header_level(next);
2847 path->slots[*level] = 0;
2848 cond_resched();
2849 }
4a500fd1 2850 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2851
2852 cond_resched();
2853 return 0;
2854}
2855
d397712b 2856static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2857 struct btrfs_root *root,
2858 struct btrfs_path *path, int *level,
2859 struct walk_control *wc)
2860{
0b246afa 2861 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2862 int i;
2863 int slot;
2864 int ret;
2865
d397712b 2866 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2867 slot = path->slots[i];
4a500fd1 2868 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2869 path->slots[i]++;
2870 *level = i;
2871 WARN_ON(*level == 0);
2872 return 0;
2873 } else {
1e5063d0 2874 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2875 btrfs_header_generation(path->nodes[*level]),
2876 *level);
1e5063d0
MF
2877 if (ret)
2878 return ret;
2879
e02119d5
CM
2880 if (wc->free) {
2881 struct extent_buffer *next;
2882
2883 next = path->nodes[*level];
2884
681ae509
JB
2885 if (trans) {
2886 btrfs_tree_lock(next);
6a884d7d 2887 btrfs_clean_tree_block(next);
681ae509
JB
2888 btrfs_wait_tree_block_writeback(next);
2889 btrfs_tree_unlock(next);
7bfc1007 2890 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2891 path->nodes[*level]->start,
2892 path->nodes[*level]->len);
2893 if (ret)
2894 return ret;
84c25448
NA
2895 btrfs_redirty_list_add(trans->transaction,
2896 next);
1846430c
LB
2897 } else {
2898 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2899 clear_extent_buffer_dirty(next);
e02119d5 2900
10e958d5
NB
2901 unaccount_log_buffer(fs_info,
2902 path->nodes[*level]->start);
2903 }
e02119d5
CM
2904 }
2905 free_extent_buffer(path->nodes[*level]);
2906 path->nodes[*level] = NULL;
2907 *level = i + 1;
2908 }
2909 }
2910 return 1;
2911}
2912
2913/*
2914 * drop the reference count on the tree rooted at 'snap'. This traverses
2915 * the tree freeing any blocks that have a ref count of zero after being
2916 * decremented.
2917 */
2918static int walk_log_tree(struct btrfs_trans_handle *trans,
2919 struct btrfs_root *log, struct walk_control *wc)
2920{
2ff7e61e 2921 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2922 int ret = 0;
2923 int wret;
2924 int level;
2925 struct btrfs_path *path;
e02119d5
CM
2926 int orig_level;
2927
2928 path = btrfs_alloc_path();
db5b493a
TI
2929 if (!path)
2930 return -ENOMEM;
e02119d5
CM
2931
2932 level = btrfs_header_level(log->node);
2933 orig_level = level;
2934 path->nodes[level] = log->node;
67439dad 2935 atomic_inc(&log->node->refs);
e02119d5
CM
2936 path->slots[level] = 0;
2937
d397712b 2938 while (1) {
e02119d5
CM
2939 wret = walk_down_log_tree(trans, log, path, &level, wc);
2940 if (wret > 0)
2941 break;
79787eaa 2942 if (wret < 0) {
e02119d5 2943 ret = wret;
79787eaa
JM
2944 goto out;
2945 }
e02119d5
CM
2946
2947 wret = walk_up_log_tree(trans, log, path, &level, wc);
2948 if (wret > 0)
2949 break;
79787eaa 2950 if (wret < 0) {
e02119d5 2951 ret = wret;
79787eaa
JM
2952 goto out;
2953 }
e02119d5
CM
2954 }
2955
2956 /* was the root node processed? if not, catch it here */
2957 if (path->nodes[orig_level]) {
79787eaa 2958 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2959 btrfs_header_generation(path->nodes[orig_level]),
2960 orig_level);
79787eaa
JM
2961 if (ret)
2962 goto out;
e02119d5
CM
2963 if (wc->free) {
2964 struct extent_buffer *next;
2965
2966 next = path->nodes[orig_level];
2967
681ae509
JB
2968 if (trans) {
2969 btrfs_tree_lock(next);
6a884d7d 2970 btrfs_clean_tree_block(next);
681ae509
JB
2971 btrfs_wait_tree_block_writeback(next);
2972 btrfs_tree_unlock(next);
7bfc1007 2973 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2974 next->start, next->len);
2975 if (ret)
2976 goto out;
84c25448 2977 btrfs_redirty_list_add(trans->transaction, next);
1846430c
LB
2978 } else {
2979 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2980 clear_extent_buffer_dirty(next);
10e958d5 2981 unaccount_log_buffer(fs_info, next->start);
681ae509 2982 }
e02119d5
CM
2983 }
2984 }
2985
79787eaa 2986out:
e02119d5 2987 btrfs_free_path(path);
e02119d5
CM
2988 return ret;
2989}
2990
7237f183
YZ
2991/*
2992 * helper function to update the item for a given subvolumes log root
2993 * in the tree of log roots
2994 */
2995static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2996 struct btrfs_root *log,
2997 struct btrfs_root_item *root_item)
7237f183 2998{
0b246afa 2999 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
3000 int ret;
3001
3002 if (log->log_transid == 1) {
3003 /* insert root item on the first sync */
0b246afa 3004 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 3005 &log->root_key, root_item);
7237f183 3006 } else {
0b246afa 3007 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 3008 &log->root_key, root_item);
7237f183
YZ
3009 }
3010 return ret;
3011}
3012
60d53eb3 3013static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
3014{
3015 DEFINE_WAIT(wait);
7237f183 3016 int index = transid % 2;
e02119d5 3017
7237f183
YZ
3018 /*
3019 * we only allow two pending log transactions at a time,
3020 * so we know that if ours is more than 2 older than the
3021 * current transaction, we're done
3022 */
49e83f57 3023 for (;;) {
7237f183
YZ
3024 prepare_to_wait(&root->log_commit_wait[index],
3025 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 3026
49e83f57
LB
3027 if (!(root->log_transid_committed < transid &&
3028 atomic_read(&root->log_commit[index])))
3029 break;
12fcfd22 3030
49e83f57
LB
3031 mutex_unlock(&root->log_mutex);
3032 schedule();
7237f183 3033 mutex_lock(&root->log_mutex);
49e83f57
LB
3034 }
3035 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
3036}
3037
60d53eb3 3038static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
3039{
3040 DEFINE_WAIT(wait);
8b050d35 3041
49e83f57
LB
3042 for (;;) {
3043 prepare_to_wait(&root->log_writer_wait, &wait,
3044 TASK_UNINTERRUPTIBLE);
3045 if (!atomic_read(&root->log_writers))
3046 break;
3047
7237f183 3048 mutex_unlock(&root->log_mutex);
49e83f57 3049 schedule();
575849ec 3050 mutex_lock(&root->log_mutex);
7237f183 3051 }
49e83f57 3052 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
3053}
3054
8b050d35
MX
3055static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3056 struct btrfs_log_ctx *ctx)
3057{
8b050d35
MX
3058 mutex_lock(&root->log_mutex);
3059 list_del_init(&ctx->list);
3060 mutex_unlock(&root->log_mutex);
3061}
3062
3063/*
3064 * Invoked in log mutex context, or be sure there is no other task which
3065 * can access the list.
3066 */
3067static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3068 int index, int error)
3069{
3070 struct btrfs_log_ctx *ctx;
570dd450 3071 struct btrfs_log_ctx *safe;
8b050d35 3072
570dd450
CM
3073 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3074 list_del_init(&ctx->list);
8b050d35 3075 ctx->log_ret = error;
570dd450 3076 }
8b050d35
MX
3077}
3078
e02119d5
CM
3079/*
3080 * btrfs_sync_log does sends a given tree log down to the disk and
3081 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3082 * you know that any inodes previously logged are safely on disk only
3083 * if it returns 0.
3084 *
3085 * Any other return value means you need to call btrfs_commit_transaction.
3086 * Some of the edge cases for fsyncing directories that have had unlinks
3087 * or renames done in the past mean that sometimes the only safe
3088 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3089 * that has happened.
e02119d5
CM
3090 */
3091int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3092 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3093{
7237f183
YZ
3094 int index1;
3095 int index2;
8cef4e16 3096 int mark;
e02119d5 3097 int ret;
0b246afa 3098 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3099 struct btrfs_root *log = root->log_root;
0b246afa 3100 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3101 struct btrfs_root_item new_root_item;
bb14a59b 3102 int log_transid = 0;
8b050d35 3103 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3104 struct blk_plug plug;
47876f7c
FM
3105 u64 log_root_start;
3106 u64 log_root_level;
e02119d5 3107
7237f183 3108 mutex_lock(&root->log_mutex);
d1433deb
MX
3109 log_transid = ctx->log_transid;
3110 if (root->log_transid_committed >= log_transid) {
3111 mutex_unlock(&root->log_mutex);
3112 return ctx->log_ret;
3113 }
3114
3115 index1 = log_transid % 2;
7237f183 3116 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3117 wait_log_commit(root, log_transid);
7237f183 3118 mutex_unlock(&root->log_mutex);
8b050d35 3119 return ctx->log_ret;
e02119d5 3120 }
d1433deb 3121 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3122 atomic_set(&root->log_commit[index1], 1);
3123
3124 /* wait for previous tree log sync to complete */
3125 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3126 wait_log_commit(root, log_transid - 1);
48cab2e0 3127
86df7eb9 3128 while (1) {
2ecb7923 3129 int batch = atomic_read(&root->log_batch);
cd354ad6 3130 /* when we're on an ssd, just kick the log commit out */
0b246afa 3131 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3132 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3133 mutex_unlock(&root->log_mutex);
3134 schedule_timeout_uninterruptible(1);
3135 mutex_lock(&root->log_mutex);
3136 }
60d53eb3 3137 wait_for_writer(root);
2ecb7923 3138 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3139 break;
3140 }
e02119d5 3141
12fcfd22 3142 /* bail out if we need to do a full commit */
4884b8e8 3143 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3144 ret = -EAGAIN;
3145 mutex_unlock(&root->log_mutex);
3146 goto out;
3147 }
3148
8cef4e16
YZ
3149 if (log_transid % 2 == 0)
3150 mark = EXTENT_DIRTY;
3151 else
3152 mark = EXTENT_NEW;
3153
690587d1
CM
3154 /* we start IO on all the marked extents here, but we don't actually
3155 * wait for them until later.
3156 */
c6adc9cc 3157 blk_start_plug(&plug);
2ff7e61e 3158 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
3159 /*
3160 * -EAGAIN happens when someone, e.g., a concurrent transaction
3161 * commit, writes a dirty extent in this tree-log commit. This
3162 * concurrent write will create a hole writing out the extents,
3163 * and we cannot proceed on a zoned filesystem, requiring
3164 * sequential writing. While we can bail out to a full commit
3165 * here, but we can continue hoping the concurrent writing fills
3166 * the hole.
3167 */
3168 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3169 ret = 0;
79787eaa 3170 if (ret) {
c6adc9cc 3171 blk_finish_plug(&plug);
66642832 3172 btrfs_abort_transaction(trans, ret);
90787766 3173 btrfs_set_log_full_commit(trans);
79787eaa
JM
3174 mutex_unlock(&root->log_mutex);
3175 goto out;
3176 }
7237f183 3177
4203e968
JB
3178 /*
3179 * We _must_ update under the root->log_mutex in order to make sure we
3180 * have a consistent view of the log root we are trying to commit at
3181 * this moment.
3182 *
3183 * We _must_ copy this into a local copy, because we are not holding the
3184 * log_root_tree->log_mutex yet. This is important because when we
3185 * commit the log_root_tree we must have a consistent view of the
3186 * log_root_tree when we update the super block to point at the
3187 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3188 * with the commit and possibly point at the new block which we may not
3189 * have written out.
3190 */
5d4f98a2 3191 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3192 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3193
7237f183
YZ
3194 root->log_transid++;
3195 log->log_transid = root->log_transid;
ff782e0a 3196 root->log_start_pid = 0;
7237f183 3197 /*
8cef4e16
YZ
3198 * IO has been started, blocks of the log tree have WRITTEN flag set
3199 * in their headers. new modifications of the log will be written to
3200 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3201 */
3202 mutex_unlock(&root->log_mutex);
3203
3ddebf27 3204 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3205 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3206 if (!log_root_tree->node) {
3207 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3208 if (ret) {
ea32af47 3209 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3210 goto out;
3211 }
3212 }
e75f9fd1 3213 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3214 }
3215
e75f9fd1
NA
3216 btrfs_init_log_ctx(&root_log_ctx, NULL);
3217
3218 mutex_lock(&log_root_tree->log_mutex);
3219
e3d3b415
FM
3220 index2 = log_root_tree->log_transid % 2;
3221 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3222 root_log_ctx.log_transid = log_root_tree->log_transid;
3223
4203e968
JB
3224 /*
3225 * Now we are safe to update the log_root_tree because we're under the
3226 * log_mutex, and we're a current writer so we're holding the commit
3227 * open until we drop the log_mutex.
3228 */
3229 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3230 if (ret) {
d1433deb
MX
3231 if (!list_empty(&root_log_ctx.list))
3232 list_del_init(&root_log_ctx.list);
3233
c6adc9cc 3234 blk_finish_plug(&plug);
90787766 3235 btrfs_set_log_full_commit(trans);
995946dd 3236
79787eaa 3237 if (ret != -ENOSPC) {
66642832 3238 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3239 mutex_unlock(&log_root_tree->log_mutex);
3240 goto out;
3241 }
bf89d38f 3242 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3243 mutex_unlock(&log_root_tree->log_mutex);
3244 ret = -EAGAIN;
3245 goto out;
3246 }
3247
d1433deb 3248 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3249 blk_finish_plug(&plug);
cbd60aa7 3250 list_del_init(&root_log_ctx.list);
d1433deb
MX
3251 mutex_unlock(&log_root_tree->log_mutex);
3252 ret = root_log_ctx.log_ret;
3253 goto out;
3254 }
8b050d35 3255
d1433deb 3256 index2 = root_log_ctx.log_transid % 2;
7237f183 3257 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3258 blk_finish_plug(&plug);
bf89d38f 3259 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3260 wait_log_commit(log_root_tree,
d1433deb 3261 root_log_ctx.log_transid);
7237f183 3262 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3263 if (!ret)
3264 ret = root_log_ctx.log_ret;
7237f183
YZ
3265 goto out;
3266 }
d1433deb 3267 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3268 atomic_set(&log_root_tree->log_commit[index2], 1);
3269
12fcfd22 3270 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3271 wait_log_commit(log_root_tree,
d1433deb 3272 root_log_ctx.log_transid - 1);
12fcfd22
CM
3273 }
3274
12fcfd22
CM
3275 /*
3276 * now that we've moved on to the tree of log tree roots,
3277 * check the full commit flag again
3278 */
4884b8e8 3279 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3280 blk_finish_plug(&plug);
bf89d38f 3281 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3282 mutex_unlock(&log_root_tree->log_mutex);
3283 ret = -EAGAIN;
3284 goto out_wake_log_root;
3285 }
7237f183 3286
2ff7e61e 3287 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3288 &log_root_tree->dirty_log_pages,
3289 EXTENT_DIRTY | EXTENT_NEW);
3290 blk_finish_plug(&plug);
b528f467
NA
3291 /*
3292 * As described above, -EAGAIN indicates a hole in the extents. We
3293 * cannot wait for these write outs since the waiting cause a
3294 * deadlock. Bail out to the full commit instead.
3295 */
3296 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3297 btrfs_set_log_full_commit(trans);
3298 btrfs_wait_tree_log_extents(log, mark);
3299 mutex_unlock(&log_root_tree->log_mutex);
3300 goto out_wake_log_root;
3301 } else if (ret) {
90787766 3302 btrfs_set_log_full_commit(trans);
66642832 3303 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3304 mutex_unlock(&log_root_tree->log_mutex);
3305 goto out_wake_log_root;
3306 }
bf89d38f 3307 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3308 if (!ret)
bf89d38f
JM
3309 ret = btrfs_wait_tree_log_extents(log_root_tree,
3310 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3311 if (ret) {
90787766 3312 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3313 mutex_unlock(&log_root_tree->log_mutex);
3314 goto out_wake_log_root;
3315 }
e02119d5 3316
47876f7c
FM
3317 log_root_start = log_root_tree->node->start;
3318 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3319 log_root_tree->log_transid++;
7237f183
YZ
3320 mutex_unlock(&log_root_tree->log_mutex);
3321
3322 /*
47876f7c
FM
3323 * Here we are guaranteed that nobody is going to write the superblock
3324 * for the current transaction before us and that neither we do write
3325 * our superblock before the previous transaction finishes its commit
3326 * and writes its superblock, because:
3327 *
3328 * 1) We are holding a handle on the current transaction, so no body
3329 * can commit it until we release the handle;
3330 *
3331 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3332 * if the previous transaction is still committing, and hasn't yet
3333 * written its superblock, we wait for it to do it, because a
3334 * transaction commit acquires the tree_log_mutex when the commit
3335 * begins and releases it only after writing its superblock.
7237f183 3336 */
47876f7c 3337 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3338
3339 /*
3340 * The previous transaction writeout phase could have failed, and thus
3341 * marked the fs in an error state. We must not commit here, as we
3342 * could have updated our generation in the super_for_commit and
3343 * writing the super here would result in transid mismatches. If there
3344 * is an error here just bail.
3345 */
84961539 3346 if (BTRFS_FS_ERROR(fs_info)) {
165ea85f
JB
3347 ret = -EIO;
3348 btrfs_set_log_full_commit(trans);
3349 btrfs_abort_transaction(trans, ret);
3350 mutex_unlock(&fs_info->tree_log_mutex);
3351 goto out_wake_log_root;
3352 }
3353
47876f7c
FM
3354 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3355 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3356 ret = write_all_supers(fs_info, 1);
47876f7c 3357 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3358 if (ret) {
90787766 3359 btrfs_set_log_full_commit(trans);
66642832 3360 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3361 goto out_wake_log_root;
3362 }
7237f183 3363
e1a6d264
FM
3364 /*
3365 * We know there can only be one task here, since we have not yet set
3366 * root->log_commit[index1] to 0 and any task attempting to sync the
3367 * log must wait for the previous log transaction to commit if it's
3368 * still in progress or wait for the current log transaction commit if
3369 * someone else already started it. We use <= and not < because the
3370 * first log transaction has an ID of 0.
3371 */
3372 ASSERT(root->last_log_commit <= log_transid);
3373 root->last_log_commit = log_transid;
257c62e1 3374
12fcfd22 3375out_wake_log_root:
570dd450 3376 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3377 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3378
d1433deb 3379 log_root_tree->log_transid_committed++;
7237f183 3380 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3381 mutex_unlock(&log_root_tree->log_mutex);
3382
33a9eca7 3383 /*
093258e6
DS
3384 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3385 * all the updates above are seen by the woken threads. It might not be
3386 * necessary, but proving that seems to be hard.
33a9eca7 3387 */
093258e6 3388 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3389out:
d1433deb 3390 mutex_lock(&root->log_mutex);
570dd450 3391 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3392 root->log_transid_committed++;
7237f183 3393 atomic_set(&root->log_commit[index1], 0);
d1433deb 3394 mutex_unlock(&root->log_mutex);
8b050d35 3395
33a9eca7 3396 /*
093258e6
DS
3397 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3398 * all the updates above are seen by the woken threads. It might not be
3399 * necessary, but proving that seems to be hard.
33a9eca7 3400 */
093258e6 3401 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3402 return ret;
e02119d5
CM
3403}
3404
4a500fd1
YZ
3405static void free_log_tree(struct btrfs_trans_handle *trans,
3406 struct btrfs_root *log)
e02119d5
CM
3407{
3408 int ret;
e02119d5
CM
3409 struct walk_control wc = {
3410 .free = 1,
3411 .process_func = process_one_buffer
3412 };
3413
3ddebf27
NA
3414 if (log->node) {
3415 ret = walk_log_tree(trans, log, &wc);
3416 if (ret) {
3417 if (trans)
3418 btrfs_abort_transaction(trans, ret);
3419 else
3420 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3421 }
374b0e2d 3422 }
e02119d5 3423
59b0713a
FM
3424 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3425 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3426 extent_io_tree_release(&log->log_csum_range);
d3575156 3427
00246528 3428 btrfs_put_root(log);
4a500fd1
YZ
3429}
3430
3431/*
3432 * free all the extents used by the tree log. This should be called
3433 * at commit time of the full transaction
3434 */
3435int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3436{
3437 if (root->log_root) {
3438 free_log_tree(trans, root->log_root);
3439 root->log_root = NULL;
e7a79811 3440 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3441 }
3442 return 0;
3443}
3444
3445int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3446 struct btrfs_fs_info *fs_info)
3447{
3448 if (fs_info->log_root_tree) {
3449 free_log_tree(trans, fs_info->log_root_tree);
3450 fs_info->log_root_tree = NULL;
47876f7c 3451 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3452 }
e02119d5
CM
3453 return 0;
3454}
3455
803f0f64 3456/*
6e8e777d
FM
3457 * Check if an inode was logged in the current transaction. This may often
3458 * return some false positives, because logged_trans is an in memory only field,
3459 * not persisted anywhere. This is meant to be used in contexts where a false
3460 * positive has no functional consequences.
803f0f64
FM
3461 */
3462static bool inode_logged(struct btrfs_trans_handle *trans,
3463 struct btrfs_inode *inode)
3464{
3465 if (inode->logged_trans == trans->transid)
3466 return true;
3467
1e0860f3
FM
3468 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state))
3469 return false;
3470
6e8e777d
FM
3471 /*
3472 * The inode's logged_trans is always 0 when we load it (because it is
3473 * not persisted in the inode item or elsewhere). So if it is 0, the
d135a533
FM
3474 * inode was last modified in the current transaction then the inode may
3475 * have been logged before in the current transaction, then evicted and
3476 * loaded again in the current transaction - or may have never been logged
3477 * in the current transaction, but since we can not be sure, we have to
3478 * assume it was, otherwise our callers can leave an inconsistent log.
6e8e777d
FM
3479 */
3480 if (inode->logged_trans == 0 &&
3481 inode->last_trans == trans->transid &&
803f0f64
FM
3482 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3483 return true;
3484
3485 return false;
3486}
3487
e02119d5
CM
3488/*
3489 * If both a file and directory are logged, and unlinks or renames are
3490 * mixed in, we have a few interesting corners:
3491 *
3492 * create file X in dir Y
3493 * link file X to X.link in dir Y
3494 * fsync file X
3495 * unlink file X but leave X.link
3496 * fsync dir Y
3497 *
3498 * After a crash we would expect only X.link to exist. But file X
3499 * didn't get fsync'd again so the log has back refs for X and X.link.
3500 *
3501 * We solve this by removing directory entries and inode backrefs from the
3502 * log when a file that was logged in the current transaction is
3503 * unlinked. Any later fsync will include the updated log entries, and
3504 * we'll be able to reconstruct the proper directory items from backrefs.
3505 *
3506 * This optimizations allows us to avoid relogging the entire inode
3507 * or the entire directory.
3508 */
9a35fc95
JB
3509void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root,
3511 const char *name, int name_len,
3512 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3513{
3514 struct btrfs_root *log;
3515 struct btrfs_dir_item *di;
3516 struct btrfs_path *path;
3517 int ret;
4a500fd1 3518 int err = 0;
49f34d1f 3519 u64 dir_ino = btrfs_ino(dir);
e02119d5 3520
803f0f64 3521 if (!inode_logged(trans, dir))
9a35fc95 3522 return;
3a5f1d45 3523
e02119d5
CM
3524 ret = join_running_log_trans(root);
3525 if (ret)
9a35fc95 3526 return;
e02119d5 3527
49f34d1f 3528 mutex_lock(&dir->log_mutex);
e02119d5
CM
3529
3530 log = root->log_root;
3531 path = btrfs_alloc_path();
a62f44a5
TI
3532 if (!path) {
3533 err = -ENOMEM;
3534 goto out_unlock;
3535 }
2a29edc6 3536
339d0354
FM
3537 /*
3538 * We only log dir index items of a directory, so we don't need to look
3539 * for dir item keys.
3540 */
33345d01 3541 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3542 index, name, name_len, -1);
4a500fd1
YZ
3543 if (IS_ERR(di)) {
3544 err = PTR_ERR(di);
3545 goto fail;
3546 }
3547 if (di) {
e02119d5 3548 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3549 if (ret) {
3550 err = ret;
3551 goto fail;
3552 }
e02119d5
CM
3553 }
3554
ddffcf6f
FM
3555 /*
3556 * We do not need to update the size field of the directory's inode item
3557 * because on log replay we update the field to reflect all existing
3558 * entries in the directory (see overwrite_item()).
e02119d5 3559 */
4a500fd1 3560fail:
e02119d5 3561 btrfs_free_path(path);
a62f44a5 3562out_unlock:
49f34d1f 3563 mutex_unlock(&dir->log_mutex);
9a35fc95 3564 if (err < 0)
90787766 3565 btrfs_set_log_full_commit(trans);
12fcfd22 3566 btrfs_end_log_trans(root);
e02119d5
CM
3567}
3568
3569/* see comments for btrfs_del_dir_entries_in_log */
9a35fc95
JB
3570void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3571 struct btrfs_root *root,
3572 const char *name, int name_len,
3573 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3574{
3575 struct btrfs_root *log;
3576 u64 index;
3577 int ret;
3578
803f0f64 3579 if (!inode_logged(trans, inode))
9a35fc95 3580 return;
3a5f1d45 3581
e02119d5
CM
3582 ret = join_running_log_trans(root);
3583 if (ret)
9a35fc95 3584 return;
e02119d5 3585 log = root->log_root;
a491abb2 3586 mutex_lock(&inode->log_mutex);
e02119d5 3587
a491abb2 3588 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3589 dirid, &index);
a491abb2 3590 mutex_unlock(&inode->log_mutex);
9a35fc95 3591 if (ret < 0 && ret != -ENOENT)
90787766 3592 btrfs_set_log_full_commit(trans);
12fcfd22 3593 btrfs_end_log_trans(root);
e02119d5
CM
3594}
3595
3596/*
3597 * creates a range item in the log for 'dirid'. first_offset and
3598 * last_offset tell us which parts of the key space the log should
3599 * be considered authoritative for.
3600 */
3601static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3602 struct btrfs_root *log,
3603 struct btrfs_path *path,
339d0354 3604 u64 dirid,
e02119d5
CM
3605 u64 first_offset, u64 last_offset)
3606{
3607 int ret;
3608 struct btrfs_key key;
3609 struct btrfs_dir_log_item *item;
3610
3611 key.objectid = dirid;
3612 key.offset = first_offset;
339d0354 3613 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5 3614 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3615 if (ret)
3616 return ret;
e02119d5
CM
3617
3618 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3619 struct btrfs_dir_log_item);
3620 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3621 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3622 btrfs_release_path(path);
e02119d5
CM
3623 return 0;
3624}
3625
086dcbfa
FM
3626static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3627 struct btrfs_root *log,
3628 struct extent_buffer *src,
3629 struct btrfs_path *dst_path,
3630 int start_slot,
3631 int count)
3632{
3633 char *ins_data = NULL;
b7ef5f3a 3634 struct btrfs_item_batch batch;
086dcbfa 3635 struct extent_buffer *dst;
da1b811f
FM
3636 unsigned long src_offset;
3637 unsigned long dst_offset;
086dcbfa
FM
3638 struct btrfs_key key;
3639 u32 item_size;
3640 int ret;
3641 int i;
3642
3643 ASSERT(count > 0);
b7ef5f3a 3644 batch.nr = count;
086dcbfa
FM
3645
3646 if (count == 1) {
3647 btrfs_item_key_to_cpu(src, &key, start_slot);
3212fa14 3648 item_size = btrfs_item_size(src, start_slot);
b7ef5f3a
FM
3649 batch.keys = &key;
3650 batch.data_sizes = &item_size;
3651 batch.total_data_size = item_size;
086dcbfa 3652 } else {
b7ef5f3a
FM
3653 struct btrfs_key *ins_keys;
3654 u32 *ins_sizes;
3655
086dcbfa
FM
3656 ins_data = kmalloc(count * sizeof(u32) +
3657 count * sizeof(struct btrfs_key), GFP_NOFS);
3658 if (!ins_data)
3659 return -ENOMEM;
3660
3661 ins_sizes = (u32 *)ins_data;
3662 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
b7ef5f3a
FM
3663 batch.keys = ins_keys;
3664 batch.data_sizes = ins_sizes;
3665 batch.total_data_size = 0;
086dcbfa
FM
3666
3667 for (i = 0; i < count; i++) {
3668 const int slot = start_slot + i;
3669
3670 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3212fa14 3671 ins_sizes[i] = btrfs_item_size(src, slot);
b7ef5f3a 3672 batch.total_data_size += ins_sizes[i];
086dcbfa
FM
3673 }
3674 }
3675
b7ef5f3a 3676 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
086dcbfa
FM
3677 if (ret)
3678 goto out;
3679
3680 dst = dst_path->nodes[0];
da1b811f
FM
3681 /*
3682 * Copy all the items in bulk, in a single copy operation. Item data is
3683 * organized such that it's placed at the end of a leaf and from right
3684 * to left. For example, the data for the second item ends at an offset
3685 * that matches the offset where the data for the first item starts, the
3686 * data for the third item ends at an offset that matches the offset
3687 * where the data of the second items starts, and so on.
3688 * Therefore our source and destination start offsets for copy match the
3689 * offsets of the last items (highest slots).
3690 */
3691 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3692 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3693 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
086dcbfa
FM
3694 btrfs_release_path(dst_path);
3695out:
3696 kfree(ins_data);
3697
3698 return ret;
3699}
3700
eb10d85e
FM
3701static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3702 struct btrfs_inode *inode,
3703 struct btrfs_path *path,
3704 struct btrfs_path *dst_path,
eb10d85e
FM
3705 struct btrfs_log_ctx *ctx)
3706{
3707 struct btrfs_root *log = inode->root->log_root;
3708 struct extent_buffer *src = path->nodes[0];
3709 const int nritems = btrfs_header_nritems(src);
3710 const u64 ino = btrfs_ino(inode);
086dcbfa
FM
3711 const bool inode_logged_before = inode_logged(trans, inode);
3712 bool last_found = false;
3713 int batch_start = 0;
3714 int batch_size = 0;
eb10d85e
FM
3715 int i;
3716
3717 for (i = path->slots[0]; i < nritems; i++) {
3718 struct btrfs_key key;
eb10d85e
FM
3719 int ret;
3720
3721 btrfs_item_key_to_cpu(src, &key, i);
3722
339d0354 3723 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
086dcbfa
FM
3724 last_found = true;
3725 break;
3726 }
eb10d85e 3727
dc287224 3728 ctx->last_dir_item_offset = key.offset;
eb10d85e
FM
3729 /*
3730 * We must make sure that when we log a directory entry, the
3731 * corresponding inode, after log replay, has a matching link
3732 * count. For example:
3733 *
3734 * touch foo
3735 * mkdir mydir
3736 * sync
3737 * ln foo mydir/bar
3738 * xfs_io -c "fsync" mydir
3739 * <crash>
3740 * <mount fs and log replay>
3741 *
3742 * Would result in a fsync log that when replayed, our file inode
3743 * would have a link count of 1, but we get two directory entries
3744 * pointing to the same inode. After removing one of the names,
3745 * it would not be possible to remove the other name, which
3746 * resulted always in stale file handle errors, and would not be
3747 * possible to rmdir the parent directory, since its i_size could
3748 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3749 * resulting in -ENOTEMPTY errors.
3750 */
086dcbfa
FM
3751 if (!ctx->log_new_dentries) {
3752 struct btrfs_dir_item *di;
3753 struct btrfs_key di_key;
3754
3755 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3756 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3757 if ((btrfs_dir_transid(src, di) == trans->transid ||
3758 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3759 di_key.type != BTRFS_ROOT_ITEM_KEY)
3760 ctx->log_new_dentries = true;
3761 }
3762
3763 if (!inode_logged_before)
3764 goto add_to_batch;
dc287224
FM
3765
3766 /*
3767 * If we were logged before and have logged dir items, we can skip
3768 * checking if any item with a key offset larger than the last one
3769 * we logged is in the log tree, saving time and avoiding adding
3770 * contention on the log tree.
3771 */
339d0354 3772 if (key.offset > inode->last_dir_index_offset)
dc287224 3773 goto add_to_batch;
086dcbfa
FM
3774 /*
3775 * Check if the key was already logged before. If not we can add
3776 * it to a batch for bulk insertion.
3777 */
3778 ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0);
3779 if (ret < 0) {
3780 return ret;
3781 } else if (ret > 0) {
3782 btrfs_release_path(dst_path);
3783 goto add_to_batch;
3784 }
3785
3786 /*
3787 * Item exists in the log. Overwrite the item in the log if it
3788 * has different content or do nothing if it has exactly the same
3789 * content. And then flush the current batch if any - do it after
3790 * overwriting the current item, or we would deadlock otherwise,
3791 * since we are holding a path for the existing item.
3792 */
3793 ret = do_overwrite_item(trans, log, dst_path, src, i, &key);
3794 if (ret < 0)
3795 return ret;
3796
3797 if (batch_size > 0) {
3798 ret = flush_dir_items_batch(trans, log, src, dst_path,
3799 batch_start, batch_size);
3800 if (ret < 0)
3801 return ret;
3802 batch_size = 0;
3803 }
3804 continue;
3805add_to_batch:
3806 if (batch_size == 0)
3807 batch_start = i;
3808 batch_size++;
eb10d85e
FM
3809 }
3810
086dcbfa
FM
3811 if (batch_size > 0) {
3812 int ret;
3813
3814 ret = flush_dir_items_batch(trans, log, src, dst_path,
3815 batch_start, batch_size);
3816 if (ret < 0)
3817 return ret;
3818 }
3819
3820 return last_found ? 1 : 0;
eb10d85e
FM
3821}
3822
e02119d5
CM
3823/*
3824 * log all the items included in the current transaction for a given
3825 * directory. This also creates the range items in the log tree required
3826 * to replay anything deleted before the fsync
3827 */
3828static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3829 struct btrfs_inode *inode,
e02119d5 3830 struct btrfs_path *path,
339d0354 3831 struct btrfs_path *dst_path,
2f2ff0ee 3832 struct btrfs_log_ctx *ctx,
e02119d5
CM
3833 u64 min_offset, u64 *last_offset_ret)
3834{
3835 struct btrfs_key min_key;
90d04510 3836 struct btrfs_root *root = inode->root;
e02119d5 3837 struct btrfs_root *log = root->log_root;
4a500fd1 3838 int err = 0;
e02119d5 3839 int ret;
e02119d5
CM
3840 u64 first_offset = min_offset;
3841 u64 last_offset = (u64)-1;
684a5773 3842 u64 ino = btrfs_ino(inode);
e02119d5 3843
33345d01 3844 min_key.objectid = ino;
339d0354 3845 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
3846 min_key.offset = min_offset;
3847
6174d3cb 3848 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3849
3850 /*
3851 * we didn't find anything from this transaction, see if there
3852 * is anything at all
3853 */
339d0354
FM
3854 if (ret != 0 || min_key.objectid != ino ||
3855 min_key.type != BTRFS_DIR_INDEX_KEY) {
33345d01 3856 min_key.objectid = ino;
339d0354 3857 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5 3858 min_key.offset = (u64)-1;
b3b4aa74 3859 btrfs_release_path(path);
e02119d5
CM
3860 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3861 if (ret < 0) {
b3b4aa74 3862 btrfs_release_path(path);
e02119d5
CM
3863 return ret;
3864 }
339d0354 3865 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3866
3867 /* if ret == 0 there are items for this type,
3868 * create a range to tell us the last key of this type.
3869 * otherwise, there are no items in this directory after
3870 * *min_offset, and we create a range to indicate that.
3871 */
3872 if (ret == 0) {
3873 struct btrfs_key tmp;
3874 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3875 path->slots[0]);
339d0354 3876 if (tmp.type == BTRFS_DIR_INDEX_KEY)
e02119d5 3877 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3878 }
3879 goto done;
3880 }
3881
3882 /* go backward to find any previous key */
339d0354 3883 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3884 if (ret == 0) {
3885 struct btrfs_key tmp;
3886 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
339d0354 3887 if (tmp.type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
3888 first_offset = tmp.offset;
3889 ret = overwrite_item(trans, log, dst_path,
3890 path->nodes[0], path->slots[0],
3891 &tmp);
4a500fd1
YZ
3892 if (ret) {
3893 err = ret;
3894 goto done;
3895 }
e02119d5
CM
3896 }
3897 }
b3b4aa74 3898 btrfs_release_path(path);
e02119d5 3899
2cc83342
JB
3900 /*
3901 * Find the first key from this transaction again. See the note for
3902 * log_new_dir_dentries, if we're logging a directory recursively we
3903 * won't be holding its i_mutex, which means we can modify the directory
3904 * while we're logging it. If we remove an entry between our first
3905 * search and this search we'll not find the key again and can just
3906 * bail.
3907 */
bb56f02f 3908search:
e02119d5 3909 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3910 if (ret != 0)
e02119d5 3911 goto done;
e02119d5
CM
3912
3913 /*
3914 * we have a block from this transaction, log every item in it
3915 * from our directory
3916 */
d397712b 3917 while (1) {
339d0354 3918 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx);
eb10d85e
FM
3919 if (ret != 0) {
3920 if (ret < 0)
4a500fd1 3921 err = ret;
eb10d85e 3922 goto done;
e02119d5 3923 }
eb10d85e 3924 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
e02119d5
CM
3925
3926 /*
3927 * look ahead to the next item and see if it is also
3928 * from this directory and from this transaction
3929 */
3930 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3931 if (ret) {
3932 if (ret == 1)
3933 last_offset = (u64)-1;
3934 else
3935 err = ret;
e02119d5
CM
3936 goto done;
3937 }
eb10d85e 3938 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
339d0354 3939 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
3940 last_offset = (u64)-1;
3941 goto done;
3942 }
3943 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
1b2e5e5c 3944 ctx->last_dir_item_offset = min_key.offset;
e02119d5
CM
3945 ret = overwrite_item(trans, log, dst_path,
3946 path->nodes[0], path->slots[0],
eb10d85e 3947 &min_key);
4a500fd1
YZ
3948 if (ret)
3949 err = ret;
3950 else
eb10d85e 3951 last_offset = min_key.offset;
e02119d5
CM
3952 goto done;
3953 }
eb10d85e
FM
3954 if (need_resched()) {
3955 btrfs_release_path(path);
3956 cond_resched();
3957 goto search;
3958 }
e02119d5
CM
3959 }
3960done:
b3b4aa74
DS
3961 btrfs_release_path(path);
3962 btrfs_release_path(dst_path);
e02119d5 3963
4a500fd1
YZ
3964 if (err == 0) {
3965 *last_offset_ret = last_offset;
3966 /*
3967 * insert the log range keys to indicate where the log
3968 * is valid
3969 */
339d0354
FM
3970 ret = insert_dir_log_key(trans, log, path, ino, first_offset,
3971 last_offset);
4a500fd1
YZ
3972 if (ret)
3973 err = ret;
3974 }
3975 return err;
e02119d5
CM
3976}
3977
3978/*
3979 * logging directories is very similar to logging inodes, We find all the items
3980 * from the current transaction and write them to the log.
3981 *
3982 * The recovery code scans the directory in the subvolume, and if it finds a
3983 * key in the range logged that is not present in the log tree, then it means
3984 * that dir entry was unlinked during the transaction.
3985 *
3986 * In order for that scan to work, we must include one key smaller than
3987 * the smallest logged by this transaction and one key larger than the largest
3988 * key logged by this transaction.
3989 */
3990static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 3991 struct btrfs_inode *inode,
e02119d5 3992 struct btrfs_path *path,
2f2ff0ee
FM
3993 struct btrfs_path *dst_path,
3994 struct btrfs_log_ctx *ctx)
e02119d5
CM
3995{
3996 u64 min_key;
3997 u64 max_key;
3998 int ret;
e02119d5 3999
dc287224
FM
4000 /*
4001 * If this is the first time we are being logged in the current
4002 * transaction, or we were logged before but the inode was evicted and
339d0354
FM
4003 * reloaded later, in which case its logged_trans is 0, reset the value
4004 * of the last logged key offset. Note that we don't use the helper
dc287224
FM
4005 * function inode_logged() here - that is because the function returns
4006 * true after an inode eviction, assuming the worst case as it can not
4007 * know for sure if the inode was logged before. So we can not skip key
4008 * searches in the case the inode was evicted, because it may not have
4009 * been logged in this transaction and may have been logged in a past
339d0354 4010 * transaction, so we need to reset the last dir index offset to (u64)-1.
dc287224 4011 */
339d0354 4012 if (inode->logged_trans != trans->transid)
dc287224 4013 inode->last_dir_index_offset = (u64)-1;
339d0354 4014
e02119d5
CM
4015 min_key = 0;
4016 max_key = 0;
339d0354 4017 ctx->last_dir_item_offset = inode->last_dir_index_offset;
dc287224 4018
d397712b 4019 while (1) {
339d0354 4020 ret = log_dir_items(trans, inode, path, dst_path,
dbf39ea4 4021 ctx, min_key, &max_key);
4a500fd1
YZ
4022 if (ret)
4023 return ret;
e02119d5
CM
4024 if (max_key == (u64)-1)
4025 break;
4026 min_key = max_key + 1;
4027 }
4028
339d0354
FM
4029 inode->last_dir_index_offset = ctx->last_dir_item_offset;
4030
e02119d5
CM
4031 return 0;
4032}
4033
4034/*
4035 * a helper function to drop items from the log before we relog an
4036 * inode. max_key_type indicates the highest item type to remove.
4037 * This cannot be run for file data extents because it does not
4038 * free the extents they point to.
4039 */
88e221cd 4040static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
4041 struct btrfs_root *log,
4042 struct btrfs_path *path,
88e221cd
FM
4043 struct btrfs_inode *inode,
4044 int max_key_type)
e02119d5
CM
4045{
4046 int ret;
4047 struct btrfs_key key;
4048 struct btrfs_key found_key;
18ec90d6 4049 int start_slot;
e02119d5 4050
88e221cd
FM
4051 if (!inode_logged(trans, inode))
4052 return 0;
4053
4054 key.objectid = btrfs_ino(inode);
e02119d5
CM
4055 key.type = max_key_type;
4056 key.offset = (u64)-1;
4057
d397712b 4058 while (1) {
e02119d5 4059 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 4060 BUG_ON(ret == 0); /* Logic error */
4a500fd1 4061 if (ret < 0)
e02119d5
CM
4062 break;
4063
4064 if (path->slots[0] == 0)
4065 break;
4066
4067 path->slots[0]--;
4068 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4069 path->slots[0]);
4070
88e221cd 4071 if (found_key.objectid != key.objectid)
e02119d5
CM
4072 break;
4073
18ec90d6
JB
4074 found_key.offset = 0;
4075 found_key.type = 0;
e3b83361 4076 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
4077 if (ret < 0)
4078 break;
18ec90d6
JB
4079
4080 ret = btrfs_del_items(trans, log, path, start_slot,
4081 path->slots[0] - start_slot + 1);
4082 /*
4083 * If start slot isn't 0 then we don't need to re-search, we've
4084 * found the last guy with the objectid in this tree.
4085 */
4086 if (ret || start_slot != 0)
65a246c5 4087 break;
b3b4aa74 4088 btrfs_release_path(path);
e02119d5 4089 }
b3b4aa74 4090 btrfs_release_path(path);
5bdbeb21
JB
4091 if (ret > 0)
4092 ret = 0;
4a500fd1 4093 return ret;
e02119d5
CM
4094}
4095
8a2b3da1
FM
4096static int truncate_inode_items(struct btrfs_trans_handle *trans,
4097 struct btrfs_root *log_root,
4098 struct btrfs_inode *inode,
4099 u64 new_size, u32 min_type)
4100{
d9ac19c3
JB
4101 struct btrfs_truncate_control control = {
4102 .new_size = new_size,
4103 .min_type = min_type,
4104 };
8a2b3da1
FM
4105 int ret;
4106
4107 do {
4108 ret = btrfs_truncate_inode_items(trans, log_root, inode,
d9ac19c3 4109 &control);
8a2b3da1
FM
4110 } while (ret == -EAGAIN);
4111
4112 return ret;
4113}
4114
94edf4ae
JB
4115static void fill_inode_item(struct btrfs_trans_handle *trans,
4116 struct extent_buffer *leaf,
4117 struct btrfs_inode_item *item,
1a4bcf47
FM
4118 struct inode *inode, int log_inode_only,
4119 u64 logged_isize)
94edf4ae 4120{
0b1c6cca 4121 struct btrfs_map_token token;
77eea05e 4122 u64 flags;
0b1c6cca 4123
c82f823c 4124 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
4125
4126 if (log_inode_only) {
4127 /* set the generation to zero so the recover code
4128 * can tell the difference between an logging
4129 * just to say 'this inode exists' and a logging
4130 * to say 'update this inode with these values'
4131 */
cc4c13d5
DS
4132 btrfs_set_token_inode_generation(&token, item, 0);
4133 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 4134 } else {
cc4c13d5
DS
4135 btrfs_set_token_inode_generation(&token, item,
4136 BTRFS_I(inode)->generation);
4137 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
4138 }
4139
cc4c13d5
DS
4140 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4141 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4142 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4143 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4144
4145 btrfs_set_token_timespec_sec(&token, &item->atime,
4146 inode->i_atime.tv_sec);
4147 btrfs_set_token_timespec_nsec(&token, &item->atime,
4148 inode->i_atime.tv_nsec);
4149
4150 btrfs_set_token_timespec_sec(&token, &item->mtime,
4151 inode->i_mtime.tv_sec);
4152 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4153 inode->i_mtime.tv_nsec);
4154
4155 btrfs_set_token_timespec_sec(&token, &item->ctime,
4156 inode->i_ctime.tv_sec);
4157 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4158 inode->i_ctime.tv_nsec);
4159
e593e54e
FM
4160 /*
4161 * We do not need to set the nbytes field, in fact during a fast fsync
4162 * its value may not even be correct, since a fast fsync does not wait
4163 * for ordered extent completion, which is where we update nbytes, it
4164 * only waits for writeback to complete. During log replay as we find
4165 * file extent items and replay them, we adjust the nbytes field of the
4166 * inode item in subvolume tree as needed (see overwrite_item()).
4167 */
cc4c13d5
DS
4168
4169 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4170 btrfs_set_token_inode_transid(&token, item, trans->transid);
4171 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4172 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4173 BTRFS_I(inode)->ro_flags);
4174 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4175 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4176}
4177
a95249b3
JB
4178static int log_inode_item(struct btrfs_trans_handle *trans,
4179 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4180 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4181{
4182 struct btrfs_inode_item *inode_item;
a95249b3
JB
4183 int ret;
4184
2ac691d8
FM
4185 /*
4186 * If we are doing a fast fsync and the inode was logged before in the
4187 * current transaction, then we know the inode was previously logged and
4188 * it exists in the log tree. For performance reasons, in this case use
4189 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4190 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4191 * contention in case there are concurrent fsyncs for other inodes of the
4192 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4193 * already exists can also result in unnecessarily splitting a leaf.
4194 */
4195 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4196 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4197 ASSERT(ret <= 0);
4198 if (ret > 0)
4199 ret = -ENOENT;
4200 } else {
4201 /*
4202 * This means it is the first fsync in the current transaction,
4203 * so the inode item is not in the log and we need to insert it.
4204 * We can never get -EEXIST because we are only called for a fast
4205 * fsync and in case an inode eviction happens after the inode was
4206 * logged before in the current transaction, when we load again
4207 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4208 * flags and set ->logged_trans to 0.
4209 */
4210 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4211 sizeof(*inode_item));
4212 ASSERT(ret != -EEXIST);
4213 }
4214 if (ret)
a95249b3
JB
4215 return ret;
4216 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4217 struct btrfs_inode_item);
6d889a3b
NB
4218 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4219 0, 0);
a95249b3
JB
4220 btrfs_release_path(path);
4221 return 0;
4222}
4223
40e046ac 4224static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4225 struct btrfs_inode *inode,
40e046ac
FM
4226 struct btrfs_root *log_root,
4227 struct btrfs_ordered_sum *sums)
4228{
e289f03e
FM
4229 const u64 lock_end = sums->bytenr + sums->len - 1;
4230 struct extent_state *cached_state = NULL;
40e046ac
FM
4231 int ret;
4232
3ebac17c
FM
4233 /*
4234 * If this inode was not used for reflink operations in the current
4235 * transaction with new extents, then do the fast path, no need to
4236 * worry about logging checksum items with overlapping ranges.
4237 */
4238 if (inode->last_reflink_trans < trans->transid)
4239 return btrfs_csum_file_blocks(trans, log_root, sums);
4240
e289f03e
FM
4241 /*
4242 * Serialize logging for checksums. This is to avoid racing with the
4243 * same checksum being logged by another task that is logging another
4244 * file which happens to refer to the same extent as well. Such races
4245 * can leave checksum items in the log with overlapping ranges.
4246 */
4247 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4248 lock_end, &cached_state);
4249 if (ret)
4250 return ret;
40e046ac
FM
4251 /*
4252 * Due to extent cloning, we might have logged a csum item that covers a
4253 * subrange of a cloned extent, and later we can end up logging a csum
4254 * item for a larger subrange of the same extent or the entire range.
4255 * This would leave csum items in the log tree that cover the same range
4256 * and break the searches for checksums in the log tree, resulting in
4257 * some checksums missing in the fs/subvolume tree. So just delete (or
4258 * trim and adjust) any existing csum items in the log for this range.
4259 */
4260 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4261 if (!ret)
4262 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4263
e289f03e
FM
4264 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4265 &cached_state);
4266
4267 return ret;
40e046ac
FM
4268}
4269
31ff1cd2 4270static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4271 struct btrfs_inode *inode,
31ff1cd2 4272 struct btrfs_path *dst_path,
0e56315c 4273 struct btrfs_path *src_path,
1a4bcf47
FM
4274 int start_slot, int nr, int inode_only,
4275 u64 logged_isize)
31ff1cd2 4276{
3ffbd68c 4277 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
4278 unsigned long src_offset;
4279 unsigned long dst_offset;
44d70e19 4280 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
4281 struct btrfs_file_extent_item *extent;
4282 struct btrfs_inode_item *inode_item;
16e7549f 4283 struct extent_buffer *src = src_path->nodes[0];
31ff1cd2
CM
4284 int ret;
4285 struct btrfs_key *ins_keys;
4286 u32 *ins_sizes;
b7ef5f3a 4287 struct btrfs_item_batch batch;
31ff1cd2
CM
4288 char *ins_data;
4289 int i;
d20f7043 4290 struct list_head ordered_sums;
44d70e19 4291 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
4292
4293 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
4294
4295 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4296 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4297 if (!ins_data)
4298 return -ENOMEM;
4299
31ff1cd2
CM
4300 ins_sizes = (u32 *)ins_data;
4301 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
b7ef5f3a
FM
4302 batch.keys = ins_keys;
4303 batch.data_sizes = ins_sizes;
4304 batch.total_data_size = 0;
4305 batch.nr = nr;
31ff1cd2
CM
4306
4307 for (i = 0; i < nr; i++) {
3212fa14 4308 ins_sizes[i] = btrfs_item_size(src, i + start_slot);
b7ef5f3a 4309 batch.total_data_size += ins_sizes[i];
31ff1cd2
CM
4310 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4311 }
b7ef5f3a 4312 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4a500fd1
YZ
4313 if (ret) {
4314 kfree(ins_data);
4315 return ret;
4316 }
31ff1cd2 4317
5d4f98a2 4318 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
4319 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4320 dst_path->slots[0]);
4321
4322 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4323
94edf4ae 4324 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
4325 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4326 dst_path->slots[0],
4327 struct btrfs_inode_item);
94edf4ae 4328 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4329 &inode->vfs_inode,
4330 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4331 logged_isize);
94edf4ae
JB
4332 } else {
4333 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4334 src_offset, ins_sizes[i]);
31ff1cd2 4335 }
94edf4ae 4336
31ff1cd2
CM
4337 /* take a reference on file data extents so that truncates
4338 * or deletes of this inode don't have to relog the inode
4339 * again
4340 */
962a298f 4341 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4342 !skip_csum) {
31ff1cd2
CM
4343 int found_type;
4344 extent = btrfs_item_ptr(src, start_slot + i,
4345 struct btrfs_file_extent_item);
4346
8e531cdf 4347 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4348 continue;
4349
31ff1cd2 4350 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4351 if (found_type == BTRFS_FILE_EXTENT_REG) {
fc28b25e 4352 struct btrfs_root *csum_root;
5d4f98a2
YZ
4353 u64 ds, dl, cs, cl;
4354 ds = btrfs_file_extent_disk_bytenr(src,
4355 extent);
4356 /* ds == 0 is a hole */
4357 if (ds == 0)
4358 continue;
4359
4360 dl = btrfs_file_extent_disk_num_bytes(src,
4361 extent);
4362 cs = btrfs_file_extent_offset(src, extent);
4363 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4364 extent);
580afd76
CM
4365 if (btrfs_file_extent_compression(src,
4366 extent)) {
4367 cs = 0;
4368 cl = dl;
4369 }
5d4f98a2 4370
fc28b25e
JB
4371 csum_root = btrfs_csum_root(fs_info, ds);
4372 ret = btrfs_lookup_csums_range(csum_root,
5d4f98a2 4373 ds + cs, ds + cs + cl - 1,
a2de733c 4374 &ordered_sums, 0);
4f26433e
FM
4375 if (ret)
4376 break;
31ff1cd2
CM
4377 }
4378 }
31ff1cd2
CM
4379 }
4380
4381 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4382 btrfs_release_path(dst_path);
31ff1cd2 4383 kfree(ins_data);
d20f7043
CM
4384
4385 /*
4386 * we have to do this after the loop above to avoid changing the
4387 * log tree while trying to change the log tree.
4388 */
d397712b 4389 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4390 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4391 struct btrfs_ordered_sum,
4392 list);
4a500fd1 4393 if (!ret)
3ebac17c 4394 ret = log_csums(trans, inode, log, sums);
d20f7043
CM
4395 list_del(&sums->list);
4396 kfree(sums);
4397 }
16e7549f 4398
4a500fd1 4399 return ret;
31ff1cd2
CM
4400}
4401
4f0f586b
ST
4402static int extent_cmp(void *priv, const struct list_head *a,
4403 const struct list_head *b)
5dc562c5 4404{
214cc184 4405 const struct extent_map *em1, *em2;
5dc562c5
JB
4406
4407 em1 = list_entry(a, struct extent_map, list);
4408 em2 = list_entry(b, struct extent_map, list);
4409
4410 if (em1->start < em2->start)
4411 return -1;
4412 else if (em1->start > em2->start)
4413 return 1;
4414 return 0;
4415}
4416
e7175a69
JB
4417static int log_extent_csums(struct btrfs_trans_handle *trans,
4418 struct btrfs_inode *inode,
a9ecb653 4419 struct btrfs_root *log_root,
48778179
FM
4420 const struct extent_map *em,
4421 struct btrfs_log_ctx *ctx)
5dc562c5 4422{
48778179 4423 struct btrfs_ordered_extent *ordered;
fc28b25e 4424 struct btrfs_root *csum_root;
2ab28f32
JB
4425 u64 csum_offset;
4426 u64 csum_len;
48778179
FM
4427 u64 mod_start = em->mod_start;
4428 u64 mod_len = em->mod_len;
8407f553
FM
4429 LIST_HEAD(ordered_sums);
4430 int ret = 0;
0aa4a17d 4431
e7175a69
JB
4432 if (inode->flags & BTRFS_INODE_NODATASUM ||
4433 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4434 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4435 return 0;
5dc562c5 4436
48778179
FM
4437 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4438 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4439 const u64 mod_end = mod_start + mod_len;
4440 struct btrfs_ordered_sum *sums;
4441
4442 if (mod_len == 0)
4443 break;
4444
4445 if (ordered_end <= mod_start)
4446 continue;
4447 if (mod_end <= ordered->file_offset)
4448 break;
4449
4450 /*
4451 * We are going to copy all the csums on this ordered extent, so
4452 * go ahead and adjust mod_start and mod_len in case this ordered
4453 * extent has already been logged.
4454 */
4455 if (ordered->file_offset > mod_start) {
4456 if (ordered_end >= mod_end)
4457 mod_len = ordered->file_offset - mod_start;
4458 /*
4459 * If we have this case
4460 *
4461 * |--------- logged extent ---------|
4462 * |----- ordered extent ----|
4463 *
4464 * Just don't mess with mod_start and mod_len, we'll
4465 * just end up logging more csums than we need and it
4466 * will be ok.
4467 */
4468 } else {
4469 if (ordered_end < mod_end) {
4470 mod_len = mod_end - ordered_end;
4471 mod_start = ordered_end;
4472 } else {
4473 mod_len = 0;
4474 }
4475 }
4476
4477 /*
4478 * To keep us from looping for the above case of an ordered
4479 * extent that falls inside of the logged extent.
4480 */
4481 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4482 continue;
4483
4484 list_for_each_entry(sums, &ordered->list, list) {
4485 ret = log_csums(trans, inode, log_root, sums);
4486 if (ret)
4487 return ret;
4488 }
4489 }
4490
4491 /* We're done, found all csums in the ordered extents. */
4492 if (mod_len == 0)
4493 return 0;
4494
e7175a69 4495 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4496 if (em->compress_type) {
4497 csum_offset = 0;
8407f553 4498 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4499 } else {
48778179
FM
4500 csum_offset = mod_start - em->start;
4501 csum_len = mod_len;
488111aa 4502 }
2ab28f32 4503
70c8a91c 4504 /* block start is already adjusted for the file extent offset. */
fc28b25e
JB
4505 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4506 ret = btrfs_lookup_csums_range(csum_root,
70c8a91c
JB
4507 em->block_start + csum_offset,
4508 em->block_start + csum_offset +
4509 csum_len - 1, &ordered_sums, 0);
4510 if (ret)
4511 return ret;
5dc562c5 4512
70c8a91c
JB
4513 while (!list_empty(&ordered_sums)) {
4514 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4515 struct btrfs_ordered_sum,
4516 list);
4517 if (!ret)
3ebac17c 4518 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4519 list_del(&sums->list);
4520 kfree(sums);
5dc562c5
JB
4521 }
4522
70c8a91c 4523 return ret;
5dc562c5
JB
4524}
4525
8407f553 4526static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4527 struct btrfs_inode *inode,
8407f553
FM
4528 const struct extent_map *em,
4529 struct btrfs_path *path,
8407f553
FM
4530 struct btrfs_log_ctx *ctx)
4531{
5893dfb9 4532 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4533 struct btrfs_root *log = inode->root->log_root;
8407f553
FM
4534 struct btrfs_file_extent_item *fi;
4535 struct extent_buffer *leaf;
4536 struct btrfs_map_token token;
4537 struct btrfs_key key;
4538 u64 extent_offset = em->start - em->orig_start;
4539 u64 block_len;
4540 int ret;
8407f553 4541
48778179 4542 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4543 if (ret)
4544 return ret;
4545
5328b2a7
FM
4546 /*
4547 * If this is the first time we are logging the inode in the current
4548 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4549 * because it does a deletion search, which always acquires write locks
4550 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4551 * but also adds significant contention in a log tree, since log trees
4552 * are small, with a root at level 2 or 3 at most, due to their short
4553 * life span.
4554 */
4555 if (inode_logged(trans, inode)) {
4556 drop_args.path = path;
4557 drop_args.start = em->start;
4558 drop_args.end = em->start + em->len;
4559 drop_args.replace_extent = true;
4560 drop_args.extent_item_size = sizeof(*fi);
4561 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4562 if (ret)
4563 return ret;
4564 }
8407f553 4565
5893dfb9 4566 if (!drop_args.extent_inserted) {
9d122629 4567 key.objectid = btrfs_ino(inode);
8407f553
FM
4568 key.type = BTRFS_EXTENT_DATA_KEY;
4569 key.offset = em->start;
4570
4571 ret = btrfs_insert_empty_item(trans, log, path, &key,
4572 sizeof(*fi));
4573 if (ret)
4574 return ret;
4575 }
4576 leaf = path->nodes[0];
c82f823c 4577 btrfs_init_map_token(&token, leaf);
8407f553
FM
4578 fi = btrfs_item_ptr(leaf, path->slots[0],
4579 struct btrfs_file_extent_item);
4580
cc4c13d5 4581 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
8407f553 4582 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
cc4c13d5
DS
4583 btrfs_set_token_file_extent_type(&token, fi,
4584 BTRFS_FILE_EXTENT_PREALLOC);
8407f553 4585 else
cc4c13d5
DS
4586 btrfs_set_token_file_extent_type(&token, fi,
4587 BTRFS_FILE_EXTENT_REG);
8407f553
FM
4588
4589 block_len = max(em->block_len, em->orig_block_len);
4590 if (em->compress_type != BTRFS_COMPRESS_NONE) {
cc4c13d5
DS
4591 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4592 em->block_start);
4593 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4594 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
cc4c13d5 4595 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
8407f553 4596 em->block_start -
cc4c13d5
DS
4597 extent_offset);
4598 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4599 } else {
cc4c13d5
DS
4600 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4601 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
8407f553
FM
4602 }
4603
cc4c13d5
DS
4604 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4605 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4606 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4607 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4608 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4609 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
8407f553
FM
4610 btrfs_mark_buffer_dirty(leaf);
4611
4612 btrfs_release_path(path);
4613
4614 return ret;
4615}
4616
31d11b83
FM
4617/*
4618 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4619 * lose them after doing a fast fsync and replaying the log. We scan the
4620 * subvolume's root instead of iterating the inode's extent map tree because
4621 * otherwise we can log incorrect extent items based on extent map conversion.
4622 * That can happen due to the fact that extent maps are merged when they
4623 * are not in the extent map tree's list of modified extents.
4624 */
4625static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4626 struct btrfs_inode *inode,
4627 struct btrfs_path *path)
4628{
4629 struct btrfs_root *root = inode->root;
4630 struct btrfs_key key;
4631 const u64 i_size = i_size_read(&inode->vfs_inode);
4632 const u64 ino = btrfs_ino(inode);
4633 struct btrfs_path *dst_path = NULL;
0e56315c 4634 bool dropped_extents = false;
f135cea3
FM
4635 u64 truncate_offset = i_size;
4636 struct extent_buffer *leaf;
4637 int slot;
31d11b83
FM
4638 int ins_nr = 0;
4639 int start_slot;
4640 int ret;
4641
4642 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4643 return 0;
4644
4645 key.objectid = ino;
4646 key.type = BTRFS_EXTENT_DATA_KEY;
4647 key.offset = i_size;
4648 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4649 if (ret < 0)
4650 goto out;
4651
f135cea3
FM
4652 /*
4653 * We must check if there is a prealloc extent that starts before the
4654 * i_size and crosses the i_size boundary. This is to ensure later we
4655 * truncate down to the end of that extent and not to the i_size, as
4656 * otherwise we end up losing part of the prealloc extent after a log
4657 * replay and with an implicit hole if there is another prealloc extent
4658 * that starts at an offset beyond i_size.
4659 */
4660 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4661 if (ret < 0)
4662 goto out;
4663
4664 if (ret == 0) {
4665 struct btrfs_file_extent_item *ei;
4666
4667 leaf = path->nodes[0];
4668 slot = path->slots[0];
4669 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4670
4671 if (btrfs_file_extent_type(leaf, ei) ==
4672 BTRFS_FILE_EXTENT_PREALLOC) {
4673 u64 extent_end;
4674
4675 btrfs_item_key_to_cpu(leaf, &key, slot);
4676 extent_end = key.offset +
4677 btrfs_file_extent_num_bytes(leaf, ei);
4678
4679 if (extent_end > i_size)
4680 truncate_offset = extent_end;
4681 }
4682 } else {
4683 ret = 0;
4684 }
4685
31d11b83 4686 while (true) {
f135cea3
FM
4687 leaf = path->nodes[0];
4688 slot = path->slots[0];
31d11b83
FM
4689
4690 if (slot >= btrfs_header_nritems(leaf)) {
4691 if (ins_nr > 0) {
4692 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4693 start_slot, ins_nr, 1, 0);
31d11b83
FM
4694 if (ret < 0)
4695 goto out;
4696 ins_nr = 0;
4697 }
4698 ret = btrfs_next_leaf(root, path);
4699 if (ret < 0)
4700 goto out;
4701 if (ret > 0) {
4702 ret = 0;
4703 break;
4704 }
4705 continue;
4706 }
4707
4708 btrfs_item_key_to_cpu(leaf, &key, slot);
4709 if (key.objectid > ino)
4710 break;
4711 if (WARN_ON_ONCE(key.objectid < ino) ||
4712 key.type < BTRFS_EXTENT_DATA_KEY ||
4713 key.offset < i_size) {
4714 path->slots[0]++;
4715 continue;
4716 }
0e56315c 4717 if (!dropped_extents) {
31d11b83
FM
4718 /*
4719 * Avoid logging extent items logged in past fsync calls
4720 * and leading to duplicate keys in the log tree.
4721 */
8a2b3da1
FM
4722 ret = truncate_inode_items(trans, root->log_root, inode,
4723 truncate_offset,
4724 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4725 if (ret)
4726 goto out;
0e56315c 4727 dropped_extents = true;
31d11b83
FM
4728 }
4729 if (ins_nr == 0)
4730 start_slot = slot;
4731 ins_nr++;
4732 path->slots[0]++;
4733 if (!dst_path) {
4734 dst_path = btrfs_alloc_path();
4735 if (!dst_path) {
4736 ret = -ENOMEM;
4737 goto out;
4738 }
4739 }
4740 }
0bc2d3c0 4741 if (ins_nr > 0)
0e56315c 4742 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4743 start_slot, ins_nr, 1, 0);
31d11b83
FM
4744out:
4745 btrfs_release_path(path);
4746 btrfs_free_path(dst_path);
4747 return ret;
4748}
4749
5dc562c5 4750static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4751 struct btrfs_inode *inode,
827463c4 4752 struct btrfs_path *path,
48778179 4753 struct btrfs_log_ctx *ctx)
5dc562c5 4754{
48778179
FM
4755 struct btrfs_ordered_extent *ordered;
4756 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4757 struct extent_map *em, *n;
4758 struct list_head extents;
9d122629 4759 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4760 int ret = 0;
2ab28f32 4761 int num = 0;
5dc562c5
JB
4762
4763 INIT_LIST_HEAD(&extents);
4764
5dc562c5 4765 write_lock(&tree->lock);
5dc562c5
JB
4766
4767 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4768 list_del_init(&em->list);
2ab28f32
JB
4769 /*
4770 * Just an arbitrary number, this can be really CPU intensive
4771 * once we start getting a lot of extents, and really once we
4772 * have a bunch of extents we just want to commit since it will
4773 * be faster.
4774 */
4775 if (++num > 32768) {
4776 list_del_init(&tree->modified_extents);
4777 ret = -EFBIG;
4778 goto process;
4779 }
4780
5f96bfb7 4781 if (em->generation < trans->transid)
5dc562c5 4782 continue;
8c6c5928 4783
31d11b83
FM
4784 /* We log prealloc extents beyond eof later. */
4785 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4786 em->start >= i_size_read(&inode->vfs_inode))
4787 continue;
4788
ff44c6e3 4789 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4790 refcount_inc(&em->refs);
ff44c6e3 4791 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4792 list_add_tail(&em->list, &extents);
2ab28f32 4793 num++;
5dc562c5
JB
4794 }
4795
4796 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4797process:
5dc562c5
JB
4798 while (!list_empty(&extents)) {
4799 em = list_entry(extents.next, struct extent_map, list);
4800
4801 list_del_init(&em->list);
4802
4803 /*
4804 * If we had an error we just need to delete everybody from our
4805 * private list.
4806 */
ff44c6e3 4807 if (ret) {
201a9038 4808 clear_em_logging(tree, em);
ff44c6e3 4809 free_extent_map(em);
5dc562c5 4810 continue;
ff44c6e3
JB
4811 }
4812
4813 write_unlock(&tree->lock);
5dc562c5 4814
90d04510 4815 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 4816 write_lock(&tree->lock);
201a9038
JB
4817 clear_em_logging(tree, em);
4818 free_extent_map(em);
5dc562c5 4819 }
ff44c6e3
JB
4820 WARN_ON(!list_empty(&extents));
4821 write_unlock(&tree->lock);
5dc562c5 4822
5dc562c5 4823 btrfs_release_path(path);
31d11b83
FM
4824 if (!ret)
4825 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4826 if (ret)
4827 return ret;
31d11b83 4828
48778179
FM
4829 /*
4830 * We have logged all extents successfully, now make sure the commit of
4831 * the current transaction waits for the ordered extents to complete
4832 * before it commits and wipes out the log trees, otherwise we would
4833 * lose data if an ordered extents completes after the transaction
4834 * commits and a power failure happens after the transaction commit.
4835 */
4836 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4837 list_del_init(&ordered->log_list);
4838 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4839
4840 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4841 spin_lock_irq(&inode->ordered_tree.lock);
4842 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4843 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4844 atomic_inc(&trans->transaction->pending_ordered);
4845 }
4846 spin_unlock_irq(&inode->ordered_tree.lock);
4847 }
4848 btrfs_put_ordered_extent(ordered);
4849 }
4850
4851 return 0;
5dc562c5
JB
4852}
4853
481b01c0 4854static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4855 struct btrfs_path *path, u64 *size_ret)
4856{
4857 struct btrfs_key key;
4858 int ret;
4859
481b01c0 4860 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4861 key.type = BTRFS_INODE_ITEM_KEY;
4862 key.offset = 0;
4863
4864 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4865 if (ret < 0) {
4866 return ret;
4867 } else if (ret > 0) {
2f2ff0ee 4868 *size_ret = 0;
1a4bcf47
FM
4869 } else {
4870 struct btrfs_inode_item *item;
4871
4872 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4873 struct btrfs_inode_item);
4874 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4875 /*
4876 * If the in-memory inode's i_size is smaller then the inode
4877 * size stored in the btree, return the inode's i_size, so
4878 * that we get a correct inode size after replaying the log
4879 * when before a power failure we had a shrinking truncate
4880 * followed by addition of a new name (rename / new hard link).
4881 * Otherwise return the inode size from the btree, to avoid
4882 * data loss when replaying a log due to previously doing a
4883 * write that expands the inode's size and logging a new name
4884 * immediately after.
4885 */
4886 if (*size_ret > inode->vfs_inode.i_size)
4887 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4888 }
4889
4890 btrfs_release_path(path);
4891 return 0;
4892}
4893
36283bf7
FM
4894/*
4895 * At the moment we always log all xattrs. This is to figure out at log replay
4896 * time which xattrs must have their deletion replayed. If a xattr is missing
4897 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4898 * because if a xattr is deleted, the inode is fsynced and a power failure
4899 * happens, causing the log to be replayed the next time the fs is mounted,
4900 * we want the xattr to not exist anymore (same behaviour as other filesystems
4901 * with a journal, ext3/4, xfs, f2fs, etc).
4902 */
4903static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 4904 struct btrfs_inode *inode,
36283bf7
FM
4905 struct btrfs_path *path,
4906 struct btrfs_path *dst_path)
4907{
90d04510 4908 struct btrfs_root *root = inode->root;
36283bf7
FM
4909 int ret;
4910 struct btrfs_key key;
1a93c36a 4911 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4912 int ins_nr = 0;
4913 int start_slot = 0;
f2f121ab
FM
4914 bool found_xattrs = false;
4915
4916 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4917 return 0;
36283bf7
FM
4918
4919 key.objectid = ino;
4920 key.type = BTRFS_XATTR_ITEM_KEY;
4921 key.offset = 0;
4922
4923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4924 if (ret < 0)
4925 return ret;
4926
4927 while (true) {
4928 int slot = path->slots[0];
4929 struct extent_buffer *leaf = path->nodes[0];
4930 int nritems = btrfs_header_nritems(leaf);
4931
4932 if (slot >= nritems) {
4933 if (ins_nr > 0) {
1a93c36a 4934 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4935 start_slot, ins_nr, 1, 0);
36283bf7
FM
4936 if (ret < 0)
4937 return ret;
4938 ins_nr = 0;
4939 }
4940 ret = btrfs_next_leaf(root, path);
4941 if (ret < 0)
4942 return ret;
4943 else if (ret > 0)
4944 break;
4945 continue;
4946 }
4947
4948 btrfs_item_key_to_cpu(leaf, &key, slot);
4949 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4950 break;
4951
4952 if (ins_nr == 0)
4953 start_slot = slot;
4954 ins_nr++;
4955 path->slots[0]++;
f2f121ab 4956 found_xattrs = true;
36283bf7
FM
4957 cond_resched();
4958 }
4959 if (ins_nr > 0) {
1a93c36a 4960 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4961 start_slot, ins_nr, 1, 0);
36283bf7
FM
4962 if (ret < 0)
4963 return ret;
4964 }
4965
f2f121ab
FM
4966 if (!found_xattrs)
4967 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4968
36283bf7
FM
4969 return 0;
4970}
4971
a89ca6f2 4972/*
0e56315c
FM
4973 * When using the NO_HOLES feature if we punched a hole that causes the
4974 * deletion of entire leafs or all the extent items of the first leaf (the one
4975 * that contains the inode item and references) we may end up not processing
4976 * any extents, because there are no leafs with a generation matching the
4977 * current transaction that have extent items for our inode. So we need to find
4978 * if any holes exist and then log them. We also need to log holes after any
4979 * truncate operation that changes the inode's size.
a89ca6f2 4980 */
0e56315c 4981static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 4982 struct btrfs_inode *inode,
7af59743 4983 struct btrfs_path *path)
a89ca6f2 4984{
90d04510 4985 struct btrfs_root *root = inode->root;
0b246afa 4986 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 4987 struct btrfs_key key;
a0308dd7
NB
4988 const u64 ino = btrfs_ino(inode);
4989 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 4990 u64 prev_extent_end = 0;
0e56315c 4991 int ret;
a89ca6f2 4992
0e56315c 4993 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
4994 return 0;
4995
4996 key.objectid = ino;
4997 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 4998 key.offset = 0;
a89ca6f2
FM
4999
5000 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
5001 if (ret < 0)
5002 return ret;
5003
0e56315c 5004 while (true) {
0e56315c 5005 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 5006
0e56315c
FM
5007 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5008 ret = btrfs_next_leaf(root, path);
5009 if (ret < 0)
5010 return ret;
5011 if (ret > 0) {
5012 ret = 0;
5013 break;
5014 }
5015 leaf = path->nodes[0];
5016 }
5017
5018 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5019 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5020 break;
5021
5022 /* We have a hole, log it. */
5023 if (prev_extent_end < key.offset) {
7af59743 5024 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
5025
5026 /*
5027 * Release the path to avoid deadlocks with other code
5028 * paths that search the root while holding locks on
5029 * leafs from the log root.
5030 */
5031 btrfs_release_path(path);
5032 ret = btrfs_insert_file_extent(trans, root->log_root,
5033 ino, prev_extent_end, 0,
5034 0, hole_len, 0, hole_len,
5035 0, 0, 0);
5036 if (ret < 0)
5037 return ret;
5038
5039 /*
5040 * Search for the same key again in the root. Since it's
5041 * an extent item and we are holding the inode lock, the
5042 * key must still exist. If it doesn't just emit warning
5043 * and return an error to fall back to a transaction
5044 * commit.
5045 */
5046 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5047 if (ret < 0)
5048 return ret;
5049 if (WARN_ON(ret > 0))
5050 return -ENOENT;
5051 leaf = path->nodes[0];
5052 }
a89ca6f2 5053
7af59743 5054 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
5055 path->slots[0]++;
5056 cond_resched();
a89ca6f2 5057 }
a89ca6f2 5058
7af59743 5059 if (prev_extent_end < i_size) {
0e56315c 5060 u64 hole_len;
a89ca6f2 5061
0e56315c 5062 btrfs_release_path(path);
7af59743 5063 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
5064 ret = btrfs_insert_file_extent(trans, root->log_root,
5065 ino, prev_extent_end, 0, 0,
5066 hole_len, 0, hole_len,
5067 0, 0, 0);
5068 if (ret < 0)
5069 return ret;
5070 }
5071
5072 return 0;
a89ca6f2
FM
5073}
5074
56f23fdb
FM
5075/*
5076 * When we are logging a new inode X, check if it doesn't have a reference that
5077 * matches the reference from some other inode Y created in a past transaction
5078 * and that was renamed in the current transaction. If we don't do this, then at
5079 * log replay time we can lose inode Y (and all its files if it's a directory):
5080 *
5081 * mkdir /mnt/x
5082 * echo "hello world" > /mnt/x/foobar
5083 * sync
5084 * mv /mnt/x /mnt/y
5085 * mkdir /mnt/x # or touch /mnt/x
5086 * xfs_io -c fsync /mnt/x
5087 * <power fail>
5088 * mount fs, trigger log replay
5089 *
5090 * After the log replay procedure, we would lose the first directory and all its
5091 * files (file foobar).
5092 * For the case where inode Y is not a directory we simply end up losing it:
5093 *
5094 * echo "123" > /mnt/foo
5095 * sync
5096 * mv /mnt/foo /mnt/bar
5097 * echo "abc" > /mnt/foo
5098 * xfs_io -c fsync /mnt/foo
5099 * <power fail>
5100 *
5101 * We also need this for cases where a snapshot entry is replaced by some other
5102 * entry (file or directory) otherwise we end up with an unreplayable log due to
5103 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5104 * if it were a regular entry:
5105 *
5106 * mkdir /mnt/x
5107 * btrfs subvolume snapshot /mnt /mnt/x/snap
5108 * btrfs subvolume delete /mnt/x/snap
5109 * rmdir /mnt/x
5110 * mkdir /mnt/x
5111 * fsync /mnt/x or fsync some new file inside it
5112 * <power fail>
5113 *
5114 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5115 * the same transaction.
5116 */
5117static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5118 const int slot,
5119 const struct btrfs_key *key,
4791c8f1 5120 struct btrfs_inode *inode,
a3baaf0d 5121 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
5122{
5123 int ret;
5124 struct btrfs_path *search_path;
5125 char *name = NULL;
5126 u32 name_len = 0;
3212fa14 5127 u32 item_size = btrfs_item_size(eb, slot);
56f23fdb
FM
5128 u32 cur_offset = 0;
5129 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5130
5131 search_path = btrfs_alloc_path();
5132 if (!search_path)
5133 return -ENOMEM;
5134 search_path->search_commit_root = 1;
5135 search_path->skip_locking = 1;
5136
5137 while (cur_offset < item_size) {
5138 u64 parent;
5139 u32 this_name_len;
5140 u32 this_len;
5141 unsigned long name_ptr;
5142 struct btrfs_dir_item *di;
5143
5144 if (key->type == BTRFS_INODE_REF_KEY) {
5145 struct btrfs_inode_ref *iref;
5146
5147 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5148 parent = key->offset;
5149 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5150 name_ptr = (unsigned long)(iref + 1);
5151 this_len = sizeof(*iref) + this_name_len;
5152 } else {
5153 struct btrfs_inode_extref *extref;
5154
5155 extref = (struct btrfs_inode_extref *)(ptr +
5156 cur_offset);
5157 parent = btrfs_inode_extref_parent(eb, extref);
5158 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5159 name_ptr = (unsigned long)&extref->name;
5160 this_len = sizeof(*extref) + this_name_len;
5161 }
5162
5163 if (this_name_len > name_len) {
5164 char *new_name;
5165
5166 new_name = krealloc(name, this_name_len, GFP_NOFS);
5167 if (!new_name) {
5168 ret = -ENOMEM;
5169 goto out;
5170 }
5171 name_len = this_name_len;
5172 name = new_name;
5173 }
5174
5175 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
5176 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5177 parent, name, this_name_len, 0);
56f23fdb 5178 if (di && !IS_ERR(di)) {
44f714da
FM
5179 struct btrfs_key di_key;
5180
5181 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5182 di, &di_key);
5183 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5184 if (di_key.objectid != key->objectid) {
5185 ret = 1;
5186 *other_ino = di_key.objectid;
a3baaf0d 5187 *other_parent = parent;
6b5fc433
FM
5188 } else {
5189 ret = 0;
5190 }
44f714da
FM
5191 } else {
5192 ret = -EAGAIN;
5193 }
56f23fdb
FM
5194 goto out;
5195 } else if (IS_ERR(di)) {
5196 ret = PTR_ERR(di);
5197 goto out;
5198 }
5199 btrfs_release_path(search_path);
5200
5201 cur_offset += this_len;
5202 }
5203 ret = 0;
5204out:
5205 btrfs_free_path(search_path);
5206 kfree(name);
5207 return ret;
5208}
5209
6b5fc433
FM
5210struct btrfs_ino_list {
5211 u64 ino;
a3baaf0d 5212 u64 parent;
6b5fc433
FM
5213 struct list_head list;
5214};
5215
5216static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5217 struct btrfs_root *root,
5218 struct btrfs_path *path,
5219 struct btrfs_log_ctx *ctx,
a3baaf0d 5220 u64 ino, u64 parent)
6b5fc433
FM
5221{
5222 struct btrfs_ino_list *ino_elem;
5223 LIST_HEAD(inode_list);
5224 int ret = 0;
5225
5226 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5227 if (!ino_elem)
5228 return -ENOMEM;
5229 ino_elem->ino = ino;
a3baaf0d 5230 ino_elem->parent = parent;
6b5fc433
FM
5231 list_add_tail(&ino_elem->list, &inode_list);
5232
5233 while (!list_empty(&inode_list)) {
5234 struct btrfs_fs_info *fs_info = root->fs_info;
5235 struct btrfs_key key;
5236 struct inode *inode;
5237
5238 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5239 list);
5240 ino = ino_elem->ino;
a3baaf0d 5241 parent = ino_elem->parent;
6b5fc433
FM
5242 list_del(&ino_elem->list);
5243 kfree(ino_elem);
5244 if (ret)
5245 continue;
5246
5247 btrfs_release_path(path);
5248
0202e83f 5249 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5250 /*
5251 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
5252 * deleted in the current transaction, we need to log its parent
5253 * directory.
6b5fc433
FM
5254 */
5255 if (IS_ERR(inode)) {
5256 ret = PTR_ERR(inode);
a3baaf0d 5257 if (ret == -ENOENT) {
0202e83f 5258 inode = btrfs_iget(fs_info->sb, parent, root);
a3baaf0d
FM
5259 if (IS_ERR(inode)) {
5260 ret = PTR_ERR(inode);
5261 } else {
90d04510 5262 ret = btrfs_log_inode(trans,
a3baaf0d
FM
5263 BTRFS_I(inode),
5264 LOG_OTHER_INODE_ALL,
48778179 5265 ctx);
410f954c 5266 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
5267 }
5268 }
6b5fc433
FM
5269 continue;
5270 }
b5e4ff9d
FM
5271 /*
5272 * If the inode was already logged skip it - otherwise we can
5273 * hit an infinite loop. Example:
5274 *
5275 * From the commit root (previous transaction) we have the
5276 * following inodes:
5277 *
5278 * inode 257 a directory
5279 * inode 258 with references "zz" and "zz_link" on inode 257
5280 * inode 259 with reference "a" on inode 257
5281 *
5282 * And in the current (uncommitted) transaction we have:
5283 *
5284 * inode 257 a directory, unchanged
5285 * inode 258 with references "a" and "a2" on inode 257
5286 * inode 259 with reference "zz_link" on inode 257
5287 * inode 261 with reference "zz" on inode 257
5288 *
5289 * When logging inode 261 the following infinite loop could
5290 * happen if we don't skip already logged inodes:
5291 *
5292 * - we detect inode 258 as a conflicting inode, with inode 261
5293 * on reference "zz", and log it;
5294 *
5295 * - we detect inode 259 as a conflicting inode, with inode 258
5296 * on reference "a", and log it;
5297 *
5298 * - we detect inode 258 as a conflicting inode, with inode 259
5299 * on reference "zz_link", and log it - again! After this we
5300 * repeat the above steps forever.
5301 */
5302 spin_lock(&BTRFS_I(inode)->lock);
5303 /*
5304 * Check the inode's logged_trans only instead of
5305 * btrfs_inode_in_log(). This is because the last_log_commit of
1f295373
FM
5306 * the inode is not updated when we only log that it exists (see
5307 * btrfs_log_inode()).
b5e4ff9d
FM
5308 */
5309 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5310 spin_unlock(&BTRFS_I(inode)->lock);
5311 btrfs_add_delayed_iput(inode);
5312 continue;
5313 }
5314 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
5315 /*
5316 * We are safe logging the other inode without acquiring its
5317 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5318 * are safe against concurrent renames of the other inode as
5319 * well because during a rename we pin the log and update the
5320 * log with the new name before we unpin it.
5321 */
90d04510 5322 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
6b5fc433 5323 if (ret) {
410f954c 5324 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5325 continue;
5326 }
5327
5328 key.objectid = ino;
5329 key.type = BTRFS_INODE_REF_KEY;
5330 key.offset = 0;
5331 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5332 if (ret < 0) {
410f954c 5333 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5334 continue;
5335 }
5336
5337 while (true) {
5338 struct extent_buffer *leaf = path->nodes[0];
5339 int slot = path->slots[0];
5340 u64 other_ino = 0;
a3baaf0d 5341 u64 other_parent = 0;
6b5fc433
FM
5342
5343 if (slot >= btrfs_header_nritems(leaf)) {
5344 ret = btrfs_next_leaf(root, path);
5345 if (ret < 0) {
5346 break;
5347 } else if (ret > 0) {
5348 ret = 0;
5349 break;
5350 }
5351 continue;
5352 }
5353
5354 btrfs_item_key_to_cpu(leaf, &key, slot);
5355 if (key.objectid != ino ||
5356 (key.type != BTRFS_INODE_REF_KEY &&
5357 key.type != BTRFS_INODE_EXTREF_KEY)) {
5358 ret = 0;
5359 break;
5360 }
5361
5362 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5363 BTRFS_I(inode), &other_ino,
5364 &other_parent);
6b5fc433
FM
5365 if (ret < 0)
5366 break;
5367 if (ret > 0) {
5368 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5369 if (!ino_elem) {
5370 ret = -ENOMEM;
5371 break;
5372 }
5373 ino_elem->ino = other_ino;
a3baaf0d 5374 ino_elem->parent = other_parent;
6b5fc433
FM
5375 list_add_tail(&ino_elem->list, &inode_list);
5376 ret = 0;
5377 }
5378 path->slots[0]++;
5379 }
410f954c 5380 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5381 }
5382
5383 return ret;
5384}
5385
da447009
FM
5386static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5387 struct btrfs_inode *inode,
5388 struct btrfs_key *min_key,
5389 const struct btrfs_key *max_key,
5390 struct btrfs_path *path,
5391 struct btrfs_path *dst_path,
5392 const u64 logged_isize,
5393 const bool recursive_logging,
5394 const int inode_only,
5395 struct btrfs_log_ctx *ctx,
5396 bool *need_log_inode_item)
5397{
5398 struct btrfs_root *root = inode->root;
5399 int ins_start_slot = 0;
5400 int ins_nr = 0;
5401 int ret;
5402
5403 while (1) {
5404 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5405 if (ret < 0)
5406 return ret;
5407 if (ret > 0) {
5408 ret = 0;
5409 break;
5410 }
5411again:
5412 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5413 if (min_key->objectid != max_key->objectid)
5414 break;
5415 if (min_key->type > max_key->type)
5416 break;
5417
5418 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5419 *need_log_inode_item = false;
5420
5421 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5422 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5423 inode->generation == trans->transid &&
5424 !recursive_logging) {
5425 u64 other_ino = 0;
5426 u64 other_parent = 0;
5427
5428 ret = btrfs_check_ref_name_override(path->nodes[0],
5429 path->slots[0], min_key, inode,
5430 &other_ino, &other_parent);
5431 if (ret < 0) {
5432 return ret;
289cffcb 5433 } else if (ret > 0 &&
da447009
FM
5434 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5435 if (ins_nr > 0) {
5436 ins_nr++;
5437 } else {
5438 ins_nr = 1;
5439 ins_start_slot = path->slots[0];
5440 }
5441 ret = copy_items(trans, inode, dst_path, path,
5442 ins_start_slot, ins_nr,
5443 inode_only, logged_isize);
5444 if (ret < 0)
5445 return ret;
5446 ins_nr = 0;
5447
5448 ret = log_conflicting_inodes(trans, root, path,
5449 ctx, other_ino, other_parent);
5450 if (ret)
5451 return ret;
5452 btrfs_release_path(path);
5453 goto next_key;
5454 }
5455 }
5456
5457 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5458 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5459 if (ins_nr == 0)
5460 goto next_slot;
5461 ret = copy_items(trans, inode, dst_path, path,
5462 ins_start_slot,
5463 ins_nr, inode_only, logged_isize);
5464 if (ret < 0)
5465 return ret;
5466 ins_nr = 0;
5467 goto next_slot;
5468 }
5469
5470 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5471 ins_nr++;
5472 goto next_slot;
5473 } else if (!ins_nr) {
5474 ins_start_slot = path->slots[0];
5475 ins_nr = 1;
5476 goto next_slot;
5477 }
5478
5479 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5480 ins_nr, inode_only, logged_isize);
5481 if (ret < 0)
5482 return ret;
5483 ins_nr = 1;
5484 ins_start_slot = path->slots[0];
5485next_slot:
5486 path->slots[0]++;
5487 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5488 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5489 path->slots[0]);
5490 goto again;
5491 }
5492 if (ins_nr) {
5493 ret = copy_items(trans, inode, dst_path, path,
5494 ins_start_slot, ins_nr, inode_only,
5495 logged_isize);
5496 if (ret < 0)
5497 return ret;
5498 ins_nr = 0;
5499 }
5500 btrfs_release_path(path);
5501next_key:
5502 if (min_key->offset < (u64)-1) {
5503 min_key->offset++;
5504 } else if (min_key->type < max_key->type) {
5505 min_key->type++;
5506 min_key->offset = 0;
5507 } else {
5508 break;
5509 }
5510 }
5511 if (ins_nr)
5512 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5513 ins_nr, inode_only, logged_isize);
5514
5515 return ret;
5516}
5517
e02119d5
CM
5518/* log a single inode in the tree log.
5519 * At least one parent directory for this inode must exist in the tree
5520 * or be logged already.
5521 *
5522 * Any items from this inode changed by the current transaction are copied
5523 * to the log tree. An extra reference is taken on any extents in this
5524 * file, allowing us to avoid a whole pile of corner cases around logging
5525 * blocks that have been removed from the tree.
5526 *
5527 * See LOG_INODE_ALL and related defines for a description of what inode_only
5528 * does.
5529 *
5530 * This handles both files and directories.
5531 */
12fcfd22 5532static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 5533 struct btrfs_inode *inode,
49dae1bc 5534 int inode_only,
8407f553 5535 struct btrfs_log_ctx *ctx)
e02119d5
CM
5536{
5537 struct btrfs_path *path;
5538 struct btrfs_path *dst_path;
5539 struct btrfs_key min_key;
5540 struct btrfs_key max_key;
90d04510 5541 struct btrfs_root *log = inode->root->log_root;
4a500fd1 5542 int err = 0;
8c8648dd 5543 int ret = 0;
5dc562c5 5544 bool fast_search = false;
a59108a7
NB
5545 u64 ino = btrfs_ino(inode);
5546 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5547 u64 logged_isize = 0;
e4545de5 5548 bool need_log_inode_item = true;
9a8fca62 5549 bool xattrs_logged = false;
a3baaf0d 5550 bool recursive_logging = false;
2ac691d8 5551 bool inode_item_dropped = true;
e02119d5 5552
e02119d5 5553 path = btrfs_alloc_path();
5df67083
TI
5554 if (!path)
5555 return -ENOMEM;
e02119d5 5556 dst_path = btrfs_alloc_path();
5df67083
TI
5557 if (!dst_path) {
5558 btrfs_free_path(path);
5559 return -ENOMEM;
5560 }
e02119d5 5561
33345d01 5562 min_key.objectid = ino;
e02119d5
CM
5563 min_key.type = BTRFS_INODE_ITEM_KEY;
5564 min_key.offset = 0;
5565
33345d01 5566 max_key.objectid = ino;
12fcfd22 5567
12fcfd22 5568
5dc562c5 5569 /* today the code can only do partial logging of directories */
a59108a7 5570 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5571 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5572 &inode->runtime_flags) &&
781feef7 5573 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5574 max_key.type = BTRFS_XATTR_ITEM_KEY;
5575 else
5576 max_key.type = (u8)-1;
5577 max_key.offset = (u64)-1;
5578
2c2c452b 5579 /*
5aa7d1a7
FM
5580 * Only run delayed items if we are a directory. We want to make sure
5581 * all directory indexes hit the fs/subvolume tree so we can find them
5582 * and figure out which index ranges have to be logged.
2c2c452b 5583 */
f6df27dd
FM
5584 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5585 err = btrfs_commit_inode_delayed_items(trans, inode);
5586 if (err)
5587 goto out;
16cdcec7
MX
5588 }
5589
a3baaf0d
FM
5590 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5591 recursive_logging = true;
5592 if (inode_only == LOG_OTHER_INODE)
5593 inode_only = LOG_INODE_EXISTS;
5594 else
5595 inode_only = LOG_INODE_ALL;
a59108a7 5596 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5597 } else {
a59108a7 5598 mutex_lock(&inode->log_mutex);
781feef7 5599 }
e02119d5 5600
64d6b281
FM
5601 /*
5602 * This is for cases where logging a directory could result in losing a
5603 * a file after replaying the log. For example, if we move a file from a
5604 * directory A to a directory B, then fsync directory A, we have no way
5605 * to known the file was moved from A to B, so logging just A would
5606 * result in losing the file after a log replay.
5607 */
5608 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5609 inode_only == LOG_INODE_ALL &&
5610 inode->last_unlink_trans >= trans->transid) {
5611 btrfs_set_log_full_commit(trans);
5612 err = 1;
5613 goto out_unlock;
5614 }
5615
e02119d5
CM
5616 /*
5617 * a brute force approach to making sure we get the most uptodate
5618 * copies of everything.
5619 */
a59108a7 5620 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5621 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5622
ab12313a 5623 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
4f764e51
FM
5624 if (inode_only == LOG_INODE_EXISTS)
5625 max_key_type = BTRFS_XATTR_ITEM_KEY;
88e221cd 5626 ret = drop_inode_items(trans, log, path, inode, max_key_type);
e02119d5 5627 } else {
a5c733a4 5628 if (inode_only == LOG_INODE_EXISTS && inode_logged(trans, inode)) {
1a4bcf47
FM
5629 /*
5630 * Make sure the new inode item we write to the log has
5631 * the same isize as the current one (if it exists).
5632 * This is necessary to prevent data loss after log
5633 * replay, and also to prevent doing a wrong expanding
5634 * truncate - for e.g. create file, write 4K into offset
5635 * 0, fsync, write 4K into offset 4096, add hard link,
5636 * fsync some other file (to sync log), power fail - if
5637 * we use the inode's current i_size, after log replay
5638 * we get a 8Kb file, with the last 4Kb extent as a hole
5639 * (zeroes), as if an expanding truncate happened,
5640 * instead of getting a file of 4Kb only.
5641 */
a59108a7 5642 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5643 if (err)
5644 goto out_unlock;
5645 }
a742994a 5646 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5647 &inode->runtime_flags)) {
a742994a 5648 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5649 max_key.type = BTRFS_XATTR_ITEM_KEY;
88e221cd
FM
5650 ret = drop_inode_items(trans, log, path, inode,
5651 max_key.type);
a742994a
FM
5652 } else {
5653 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5654 &inode->runtime_flags);
a742994a 5655 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5656 &inode->runtime_flags);
4934a815
FM
5657 if (inode_logged(trans, inode))
5658 ret = truncate_inode_items(trans, log,
5659 inode, 0, 0);
a742994a 5660 }
4f764e51 5661 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5662 &inode->runtime_flags) ||
6cfab851 5663 inode_only == LOG_INODE_EXISTS) {
4f764e51 5664 if (inode_only == LOG_INODE_ALL)
183f37fa 5665 fast_search = true;
4f764e51 5666 max_key.type = BTRFS_XATTR_ITEM_KEY;
88e221cd
FM
5667 ret = drop_inode_items(trans, log, path, inode,
5668 max_key.type);
a95249b3
JB
5669 } else {
5670 if (inode_only == LOG_INODE_ALL)
5671 fast_search = true;
2ac691d8 5672 inode_item_dropped = false;
a95249b3 5673 goto log_extents;
5dc562c5 5674 }
a95249b3 5675
e02119d5 5676 }
4a500fd1
YZ
5677 if (ret) {
5678 err = ret;
5679 goto out_unlock;
5680 }
e02119d5 5681
da447009
FM
5682 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5683 path, dst_path, logged_isize,
7af59743
FM
5684 recursive_logging, inode_only, ctx,
5685 &need_log_inode_item);
da447009
FM
5686 if (err)
5687 goto out_unlock;
5dc562c5 5688
36283bf7
FM
5689 btrfs_release_path(path);
5690 btrfs_release_path(dst_path);
90d04510 5691 err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
36283bf7
FM
5692 if (err)
5693 goto out_unlock;
9a8fca62 5694 xattrs_logged = true;
a89ca6f2
FM
5695 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5696 btrfs_release_path(path);
5697 btrfs_release_path(dst_path);
90d04510 5698 err = btrfs_log_holes(trans, inode, path);
a89ca6f2
FM
5699 if (err)
5700 goto out_unlock;
5701 }
a95249b3 5702log_extents:
f3b15ccd
JB
5703 btrfs_release_path(path);
5704 btrfs_release_path(dst_path);
e4545de5 5705 if (need_log_inode_item) {
2ac691d8 5706 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
b590b839
FM
5707 if (err)
5708 goto out_unlock;
5709 /*
5710 * If we are doing a fast fsync and the inode was logged before
5711 * in this transaction, we don't need to log the xattrs because
5712 * they were logged before. If xattrs were added, changed or
5713 * deleted since the last time we logged the inode, then we have
5714 * already logged them because the inode had the runtime flag
5715 * BTRFS_INODE_COPY_EVERYTHING set.
5716 */
5717 if (!xattrs_logged && inode->logged_trans < trans->transid) {
90d04510 5718 err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
b590b839
FM
5719 if (err)
5720 goto out_unlock;
9a8fca62
FM
5721 btrfs_release_path(path);
5722 }
e4545de5 5723 }
5dc562c5 5724 if (fast_search) {
90d04510 5725 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
5dc562c5
JB
5726 if (ret) {
5727 err = ret;
5728 goto out_unlock;
5729 }
d006a048 5730 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5731 struct extent_map *em, *n;
5732
49dae1bc 5733 write_lock(&em_tree->lock);
48778179
FM
5734 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5735 list_del_init(&em->list);
49dae1bc 5736 write_unlock(&em_tree->lock);
5dc562c5
JB
5737 }
5738
a59108a7 5739 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
90d04510 5740 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
4a500fd1
YZ
5741 if (ret) {
5742 err = ret;
5743 goto out_unlock;
5744 }
e02119d5 5745 }
49dae1bc 5746
130341be
FM
5747 spin_lock(&inode->lock);
5748 inode->logged_trans = trans->transid;
d1d832a0 5749 /*
130341be
FM
5750 * Don't update last_log_commit if we logged that an inode exists.
5751 * We do this for three reasons:
5752 *
5753 * 1) We might have had buffered writes to this inode that were
5754 * flushed and had their ordered extents completed in this
5755 * transaction, but we did not previously log the inode with
5756 * LOG_INODE_ALL. Later the inode was evicted and after that
5757 * it was loaded again and this LOG_INODE_EXISTS log operation
5758 * happened. We must make sure that if an explicit fsync against
5759 * the inode is performed later, it logs the new extents, an
5760 * updated inode item, etc, and syncs the log. The same logic
5761 * applies to direct IO writes instead of buffered writes.
5762 *
5763 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5764 * is logged with an i_size of 0 or whatever value was logged
5765 * before. If later the i_size of the inode is increased by a
5766 * truncate operation, the log is synced through an fsync of
5767 * some other inode and then finally an explicit fsync against
5768 * this inode is made, we must make sure this fsync logs the
5769 * inode with the new i_size, the hole between old i_size and
5770 * the new i_size, and syncs the log.
5771 *
5772 * 3) If we are logging that an ancestor inode exists as part of
5773 * logging a new name from a link or rename operation, don't update
5774 * its last_log_commit - otherwise if an explicit fsync is made
5775 * against an ancestor, the fsync considers the inode in the log
5776 * and doesn't sync the log, resulting in the ancestor missing after
5777 * a power failure unless the log was synced as part of an fsync
5778 * against any other unrelated inode.
d1d832a0 5779 */
130341be
FM
5780 if (inode_only != LOG_INODE_EXISTS)
5781 inode->last_log_commit = inode->last_sub_trans;
5782 spin_unlock(&inode->lock);
4a500fd1 5783out_unlock:
a59108a7 5784 mutex_unlock(&inode->log_mutex);
f6df27dd 5785out:
e02119d5
CM
5786 btrfs_free_path(path);
5787 btrfs_free_path(dst_path);
4a500fd1 5788 return err;
e02119d5
CM
5789}
5790
ab12313a
FM
5791/*
5792 * Check if we need to log an inode. This is used in contexts where while
5793 * logging an inode we need to log another inode (either that it exists or in
5794 * full mode). This is used instead of btrfs_inode_in_log() because the later
5795 * requires the inode to be in the log and have the log transaction committed,
5796 * while here we do not care if the log transaction was already committed - our
5797 * caller will commit the log later - and we want to avoid logging an inode
5798 * multiple times when multiple tasks have joined the same log transaction.
5799 */
5800static bool need_log_inode(struct btrfs_trans_handle *trans,
5801 struct btrfs_inode *inode)
5802{
8be2ba2e
FM
5803 /*
5804 * If a directory was not modified, no dentries added or removed, we can
5805 * and should avoid logging it.
5806 */
5807 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5808 return false;
5809
ab12313a
FM
5810 /*
5811 * If this inode does not have new/updated/deleted xattrs since the last
5812 * time it was logged and is flagged as logged in the current transaction,
5813 * we can skip logging it. As for new/deleted names, those are updated in
5814 * the log by link/unlink/rename operations.
5815 * In case the inode was logged and then evicted and reloaded, its
5816 * logged_trans will be 0, in which case we have to fully log it since
5817 * logged_trans is a transient field, not persisted.
5818 */
5819 if (inode->logged_trans == trans->transid &&
5820 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5821 return false;
5822
5823 return true;
5824}
5825
2f2ff0ee
FM
5826struct btrfs_dir_list {
5827 u64 ino;
5828 struct list_head list;
5829};
5830
5831/*
5832 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5833 * details about the why it is needed.
5834 * This is a recursive operation - if an existing dentry corresponds to a
5835 * directory, that directory's new entries are logged too (same behaviour as
5836 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5837 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5838 * complains about the following circular lock dependency / possible deadlock:
5839 *
5840 * CPU0 CPU1
5841 * ---- ----
5842 * lock(&type->i_mutex_dir_key#3/2);
5843 * lock(sb_internal#2);
5844 * lock(&type->i_mutex_dir_key#3/2);
5845 * lock(&sb->s_type->i_mutex_key#14);
5846 *
5847 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5848 * sb_start_intwrite() in btrfs_start_transaction().
5849 * Not locking i_mutex of the inodes is still safe because:
5850 *
5851 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5852 * that while logging the inode new references (names) are added or removed
5853 * from the inode, leaving the logged inode item with a link count that does
5854 * not match the number of logged inode reference items. This is fine because
5855 * at log replay time we compute the real number of links and correct the
5856 * link count in the inode item (see replay_one_buffer() and
5857 * link_to_fixup_dir());
5858 *
5859 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
339d0354
FM
5860 * while logging the inode's items new index items (key type
5861 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
2f2ff0ee 5862 * has a size that doesn't match the sum of the lengths of all the logged
339d0354
FM
5863 * names - this is ok, not a problem, because at log replay time we set the
5864 * directory's i_size to the correct value (see replay_one_name() and
5865 * do_overwrite_item()).
2f2ff0ee
FM
5866 */
5867static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5868 struct btrfs_root *root,
51cc0d32 5869 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5870 struct btrfs_log_ctx *ctx)
5871{
0b246afa 5872 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5873 struct btrfs_root *log = root->log_root;
5874 struct btrfs_path *path;
5875 LIST_HEAD(dir_list);
5876 struct btrfs_dir_list *dir_elem;
5877 int ret = 0;
5878
c48792c6
FM
5879 /*
5880 * If we are logging a new name, as part of a link or rename operation,
5881 * don't bother logging new dentries, as we just want to log the names
5882 * of an inode and that any new parents exist.
5883 */
5884 if (ctx->logging_new_name)
5885 return 0;
5886
2f2ff0ee
FM
5887 path = btrfs_alloc_path();
5888 if (!path)
5889 return -ENOMEM;
5890
5891 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5892 if (!dir_elem) {
5893 btrfs_free_path(path);
5894 return -ENOMEM;
5895 }
51cc0d32 5896 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5897 list_add_tail(&dir_elem->list, &dir_list);
5898
5899 while (!list_empty(&dir_list)) {
5900 struct extent_buffer *leaf;
5901 struct btrfs_key min_key;
5902 int nritems;
5903 int i;
5904
5905 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5906 list);
5907 if (ret)
5908 goto next_dir_inode;
5909
5910 min_key.objectid = dir_elem->ino;
339d0354 5911 min_key.type = BTRFS_DIR_INDEX_KEY;
2f2ff0ee
FM
5912 min_key.offset = 0;
5913again:
5914 btrfs_release_path(path);
5915 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5916 if (ret < 0) {
5917 goto next_dir_inode;
5918 } else if (ret > 0) {
5919 ret = 0;
5920 goto next_dir_inode;
5921 }
5922
5923process_leaf:
5924 leaf = path->nodes[0];
5925 nritems = btrfs_header_nritems(leaf);
5926 for (i = path->slots[0]; i < nritems; i++) {
5927 struct btrfs_dir_item *di;
5928 struct btrfs_key di_key;
5929 struct inode *di_inode;
5930 struct btrfs_dir_list *new_dir_elem;
5931 int log_mode = LOG_INODE_EXISTS;
5932 int type;
5933
5934 btrfs_item_key_to_cpu(leaf, &min_key, i);
5935 if (min_key.objectid != dir_elem->ino ||
339d0354 5936 min_key.type != BTRFS_DIR_INDEX_KEY)
2f2ff0ee
FM
5937 goto next_dir_inode;
5938
5939 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5940 type = btrfs_dir_type(leaf, di);
5941 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5942 type != BTRFS_FT_DIR)
5943 continue;
5944 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5945 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5946 continue;
5947
ec125cfb 5948 btrfs_release_path(path);
0202e83f 5949 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
2f2ff0ee
FM
5950 if (IS_ERR(di_inode)) {
5951 ret = PTR_ERR(di_inode);
5952 goto next_dir_inode;
5953 }
5954
0e44cb3f 5955 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
410f954c 5956 btrfs_add_delayed_iput(di_inode);
ec125cfb 5957 break;
2f2ff0ee
FM
5958 }
5959
5960 ctx->log_new_dentries = false;
3f9749f6 5961 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5962 log_mode = LOG_INODE_ALL;
90d04510 5963 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
48778179 5964 log_mode, ctx);
410f954c 5965 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5966 if (ret)
5967 goto next_dir_inode;
5968 if (ctx->log_new_dentries) {
5969 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5970 GFP_NOFS);
5971 if (!new_dir_elem) {
5972 ret = -ENOMEM;
5973 goto next_dir_inode;
5974 }
5975 new_dir_elem->ino = di_key.objectid;
5976 list_add_tail(&new_dir_elem->list, &dir_list);
5977 }
5978 break;
5979 }
5980 if (i == nritems) {
5981 ret = btrfs_next_leaf(log, path);
5982 if (ret < 0) {
5983 goto next_dir_inode;
5984 } else if (ret > 0) {
5985 ret = 0;
5986 goto next_dir_inode;
5987 }
5988 goto process_leaf;
5989 }
5990 if (min_key.offset < (u64)-1) {
5991 min_key.offset++;
5992 goto again;
5993 }
5994next_dir_inode:
5995 list_del(&dir_elem->list);
5996 kfree(dir_elem);
5997 }
5998
5999 btrfs_free_path(path);
6000 return ret;
6001}
6002
18aa0922 6003static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 6004 struct btrfs_inode *inode,
18aa0922
FM
6005 struct btrfs_log_ctx *ctx)
6006{
3ffbd68c 6007 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
6008 int ret;
6009 struct btrfs_path *path;
6010 struct btrfs_key key;
d0a0b78d
NB
6011 struct btrfs_root *root = inode->root;
6012 const u64 ino = btrfs_ino(inode);
18aa0922
FM
6013
6014 path = btrfs_alloc_path();
6015 if (!path)
6016 return -ENOMEM;
6017 path->skip_locking = 1;
6018 path->search_commit_root = 1;
6019
6020 key.objectid = ino;
6021 key.type = BTRFS_INODE_REF_KEY;
6022 key.offset = 0;
6023 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6024 if (ret < 0)
6025 goto out;
6026
6027 while (true) {
6028 struct extent_buffer *leaf = path->nodes[0];
6029 int slot = path->slots[0];
6030 u32 cur_offset = 0;
6031 u32 item_size;
6032 unsigned long ptr;
6033
6034 if (slot >= btrfs_header_nritems(leaf)) {
6035 ret = btrfs_next_leaf(root, path);
6036 if (ret < 0)
6037 goto out;
6038 else if (ret > 0)
6039 break;
6040 continue;
6041 }
6042
6043 btrfs_item_key_to_cpu(leaf, &key, slot);
6044 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6045 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6046 break;
6047
3212fa14 6048 item_size = btrfs_item_size(leaf, slot);
18aa0922
FM
6049 ptr = btrfs_item_ptr_offset(leaf, slot);
6050 while (cur_offset < item_size) {
6051 struct btrfs_key inode_key;
6052 struct inode *dir_inode;
6053
6054 inode_key.type = BTRFS_INODE_ITEM_KEY;
6055 inode_key.offset = 0;
6056
6057 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6058 struct btrfs_inode_extref *extref;
6059
6060 extref = (struct btrfs_inode_extref *)
6061 (ptr + cur_offset);
6062 inode_key.objectid = btrfs_inode_extref_parent(
6063 leaf, extref);
6064 cur_offset += sizeof(*extref);
6065 cur_offset += btrfs_inode_extref_name_len(leaf,
6066 extref);
6067 } else {
6068 inode_key.objectid = key.offset;
6069 cur_offset = item_size;
6070 }
6071
0202e83f
DS
6072 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6073 root);
0f375eed
FM
6074 /*
6075 * If the parent inode was deleted, return an error to
6076 * fallback to a transaction commit. This is to prevent
6077 * getting an inode that was moved from one parent A to
6078 * a parent B, got its former parent A deleted and then
6079 * it got fsync'ed, from existing at both parents after
6080 * a log replay (and the old parent still existing).
6081 * Example:
6082 *
6083 * mkdir /mnt/A
6084 * mkdir /mnt/B
6085 * touch /mnt/B/bar
6086 * sync
6087 * mv /mnt/B/bar /mnt/A/bar
6088 * mv -T /mnt/A /mnt/B
6089 * fsync /mnt/B/bar
6090 * <power fail>
6091 *
6092 * If we ignore the old parent B which got deleted,
6093 * after a log replay we would have file bar linked
6094 * at both parents and the old parent B would still
6095 * exist.
6096 */
6097 if (IS_ERR(dir_inode)) {
6098 ret = PTR_ERR(dir_inode);
6099 goto out;
6100 }
18aa0922 6101
3e6a86a1
FM
6102 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6103 btrfs_add_delayed_iput(dir_inode);
6104 continue;
6105 }
6106
289cffcb 6107 ctx->log_new_dentries = false;
90d04510 6108 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 6109 LOG_INODE_ALL, ctx);
289cffcb 6110 if (!ret && ctx->log_new_dentries)
657ed1aa 6111 ret = log_new_dir_dentries(trans, root,
f85b7379 6112 BTRFS_I(dir_inode), ctx);
410f954c 6113 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
6114 if (ret)
6115 goto out;
6116 }
6117 path->slots[0]++;
6118 }
6119 ret = 0;
6120out:
6121 btrfs_free_path(path);
6122 return ret;
6123}
6124
b8aa330d
FM
6125static int log_new_ancestors(struct btrfs_trans_handle *trans,
6126 struct btrfs_root *root,
6127 struct btrfs_path *path,
6128 struct btrfs_log_ctx *ctx)
6129{
6130 struct btrfs_key found_key;
6131
6132 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6133
6134 while (true) {
6135 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
6136 struct extent_buffer *leaf = path->nodes[0];
6137 int slot = path->slots[0];
6138 struct btrfs_key search_key;
6139 struct inode *inode;
0202e83f 6140 u64 ino;
b8aa330d
FM
6141 int ret = 0;
6142
6143 btrfs_release_path(path);
6144
0202e83f
DS
6145 ino = found_key.offset;
6146
b8aa330d
FM
6147 search_key.objectid = found_key.offset;
6148 search_key.type = BTRFS_INODE_ITEM_KEY;
6149 search_key.offset = 0;
0202e83f 6150 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
6151 if (IS_ERR(inode))
6152 return PTR_ERR(inode);
6153
ab12313a
FM
6154 if (BTRFS_I(inode)->generation >= trans->transid &&
6155 need_log_inode(trans, BTRFS_I(inode)))
90d04510 6156 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 6157 LOG_INODE_EXISTS, ctx);
410f954c 6158 btrfs_add_delayed_iput(inode);
b8aa330d
FM
6159 if (ret)
6160 return ret;
6161
6162 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6163 break;
6164
6165 search_key.type = BTRFS_INODE_REF_KEY;
6166 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6167 if (ret < 0)
6168 return ret;
6169
6170 leaf = path->nodes[0];
6171 slot = path->slots[0];
6172 if (slot >= btrfs_header_nritems(leaf)) {
6173 ret = btrfs_next_leaf(root, path);
6174 if (ret < 0)
6175 return ret;
6176 else if (ret > 0)
6177 return -ENOENT;
6178 leaf = path->nodes[0];
6179 slot = path->slots[0];
6180 }
6181
6182 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6183 if (found_key.objectid != search_key.objectid ||
6184 found_key.type != BTRFS_INODE_REF_KEY)
6185 return -ENOENT;
6186 }
6187 return 0;
6188}
6189
6190static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6191 struct btrfs_inode *inode,
6192 struct dentry *parent,
6193 struct btrfs_log_ctx *ctx)
6194{
6195 struct btrfs_root *root = inode->root;
b8aa330d
FM
6196 struct dentry *old_parent = NULL;
6197 struct super_block *sb = inode->vfs_inode.i_sb;
6198 int ret = 0;
6199
6200 while (true) {
6201 if (!parent || d_really_is_negative(parent) ||
6202 sb != parent->d_sb)
6203 break;
6204
6205 inode = BTRFS_I(d_inode(parent));
6206 if (root != inode->root)
6207 break;
6208
ab12313a
FM
6209 if (inode->generation >= trans->transid &&
6210 need_log_inode(trans, inode)) {
90d04510 6211 ret = btrfs_log_inode(trans, inode,
48778179 6212 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6213 if (ret)
6214 break;
6215 }
6216 if (IS_ROOT(parent))
6217 break;
6218
6219 parent = dget_parent(parent);
6220 dput(old_parent);
6221 old_parent = parent;
6222 }
6223 dput(old_parent);
6224
6225 return ret;
6226}
6227
6228static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6229 struct btrfs_inode *inode,
6230 struct dentry *parent,
6231 struct btrfs_log_ctx *ctx)
6232{
6233 struct btrfs_root *root = inode->root;
6234 const u64 ino = btrfs_ino(inode);
6235 struct btrfs_path *path;
6236 struct btrfs_key search_key;
6237 int ret;
6238
6239 /*
6240 * For a single hard link case, go through a fast path that does not
6241 * need to iterate the fs/subvolume tree.
6242 */
6243 if (inode->vfs_inode.i_nlink < 2)
6244 return log_new_ancestors_fast(trans, inode, parent, ctx);
6245
6246 path = btrfs_alloc_path();
6247 if (!path)
6248 return -ENOMEM;
6249
6250 search_key.objectid = ino;
6251 search_key.type = BTRFS_INODE_REF_KEY;
6252 search_key.offset = 0;
6253again:
6254 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6255 if (ret < 0)
6256 goto out;
6257 if (ret == 0)
6258 path->slots[0]++;
6259
6260 while (true) {
6261 struct extent_buffer *leaf = path->nodes[0];
6262 int slot = path->slots[0];
6263 struct btrfs_key found_key;
6264
6265 if (slot >= btrfs_header_nritems(leaf)) {
6266 ret = btrfs_next_leaf(root, path);
6267 if (ret < 0)
6268 goto out;
6269 else if (ret > 0)
6270 break;
6271 continue;
6272 }
6273
6274 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6275 if (found_key.objectid != ino ||
6276 found_key.type > BTRFS_INODE_EXTREF_KEY)
6277 break;
6278
6279 /*
6280 * Don't deal with extended references because they are rare
6281 * cases and too complex to deal with (we would need to keep
6282 * track of which subitem we are processing for each item in
6283 * this loop, etc). So just return some error to fallback to
6284 * a transaction commit.
6285 */
6286 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6287 ret = -EMLINK;
6288 goto out;
6289 }
6290
6291 /*
6292 * Logging ancestors needs to do more searches on the fs/subvol
6293 * tree, so it releases the path as needed to avoid deadlocks.
6294 * Keep track of the last inode ref key and resume from that key
6295 * after logging all new ancestors for the current hard link.
6296 */
6297 memcpy(&search_key, &found_key, sizeof(search_key));
6298
6299 ret = log_new_ancestors(trans, root, path, ctx);
6300 if (ret)
6301 goto out;
6302 btrfs_release_path(path);
6303 goto again;
6304 }
6305 ret = 0;
6306out:
6307 btrfs_free_path(path);
6308 return ret;
6309}
6310
e02119d5
CM
6311/*
6312 * helper function around btrfs_log_inode to make sure newly created
6313 * parent directories also end up in the log. A minimal inode and backref
6314 * only logging is done of any parent directories that are older than
6315 * the last committed transaction
6316 */
48a3b636 6317static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6318 struct btrfs_inode *inode,
49dae1bc 6319 struct dentry *parent,
41a1eada 6320 int inode_only,
8b050d35 6321 struct btrfs_log_ctx *ctx)
e02119d5 6322{
f882274b 6323 struct btrfs_root *root = inode->root;
0b246afa 6324 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6325 int ret = 0;
2f2ff0ee 6326 bool log_dentries = false;
12fcfd22 6327
0b246afa 6328 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6329 ret = 1;
6330 goto end_no_trans;
6331 }
6332
f882274b 6333 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6334 ret = 1;
6335 goto end_no_trans;
6336 }
6337
f2d72f42
FM
6338 /*
6339 * Skip already logged inodes or inodes corresponding to tmpfiles
6340 * (since logging them is pointless, a link count of 0 means they
6341 * will never be accessible).
6342 */
626e9f41
FM
6343 if ((btrfs_inode_in_log(inode, trans->transid) &&
6344 list_empty(&ctx->ordered_extents)) ||
f2d72f42 6345 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6346 ret = BTRFS_NO_LOG_SYNC;
6347 goto end_no_trans;
6348 }
6349
8b050d35 6350 ret = start_log_trans(trans, root, ctx);
4a500fd1 6351 if (ret)
e87ac136 6352 goto end_no_trans;
e02119d5 6353
90d04510 6354 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
6355 if (ret)
6356 goto end_trans;
12fcfd22 6357
af4176b4
CM
6358 /*
6359 * for regular files, if its inode is already on disk, we don't
6360 * have to worry about the parents at all. This is because
6361 * we can use the last_unlink_trans field to record renames
6362 * and other fun in this file.
6363 */
19df27a9 6364 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
6365 inode->generation < trans->transid &&
6366 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
6367 ret = 0;
6368 goto end_trans;
6369 }
af4176b4 6370
289cffcb 6371 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
6372 log_dentries = true;
6373
18aa0922 6374 /*
01327610 6375 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6376 * inodes are fully logged. This is to prevent leaving dangling
6377 * directory index entries in directories that were our parents but are
6378 * not anymore. Not doing this results in old parent directory being
6379 * impossible to delete after log replay (rmdir will always fail with
6380 * error -ENOTEMPTY).
6381 *
6382 * Example 1:
6383 *
6384 * mkdir testdir
6385 * touch testdir/foo
6386 * ln testdir/foo testdir/bar
6387 * sync
6388 * unlink testdir/bar
6389 * xfs_io -c fsync testdir/foo
6390 * <power failure>
6391 * mount fs, triggers log replay
6392 *
6393 * If we don't log the parent directory (testdir), after log replay the
6394 * directory still has an entry pointing to the file inode using the bar
6395 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6396 * the file inode has a link count of 1.
6397 *
6398 * Example 2:
6399 *
6400 * mkdir testdir
6401 * touch foo
6402 * ln foo testdir/foo2
6403 * ln foo testdir/foo3
6404 * sync
6405 * unlink testdir/foo3
6406 * xfs_io -c fsync foo
6407 * <power failure>
6408 * mount fs, triggers log replay
6409 *
6410 * Similar as the first example, after log replay the parent directory
6411 * testdir still has an entry pointing to the inode file with name foo3
6412 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6413 * and has a link count of 2.
6414 */
47d3db41 6415 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 6416 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6417 if (ret)
6418 goto end_trans;
6419 }
6420
b8aa330d
FM
6421 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6422 if (ret)
41bd6067 6423 goto end_trans;
76dda93c 6424
2f2ff0ee 6425 if (log_dentries)
b8aa330d 6426 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6427 else
6428 ret = 0;
4a500fd1
YZ
6429end_trans:
6430 if (ret < 0) {
90787766 6431 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6432 ret = 1;
6433 }
8b050d35
MX
6434
6435 if (ret)
6436 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6437 btrfs_end_log_trans(root);
6438end_no_trans:
6439 return ret;
e02119d5
CM
6440}
6441
6442/*
6443 * it is not safe to log dentry if the chunk root has added new
6444 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6445 * If this returns 1, you must commit the transaction to safely get your
6446 * data on disk.
6447 */
6448int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6449 struct dentry *dentry,
8b050d35 6450 struct btrfs_log_ctx *ctx)
e02119d5 6451{
6a912213
JB
6452 struct dentry *parent = dget_parent(dentry);
6453 int ret;
6454
f882274b 6455 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 6456 LOG_INODE_ALL, ctx);
6a912213
JB
6457 dput(parent);
6458
6459 return ret;
e02119d5
CM
6460}
6461
6462/*
6463 * should be called during mount to recover any replay any log trees
6464 * from the FS
6465 */
6466int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6467{
6468 int ret;
6469 struct btrfs_path *path;
6470 struct btrfs_trans_handle *trans;
6471 struct btrfs_key key;
6472 struct btrfs_key found_key;
e02119d5
CM
6473 struct btrfs_root *log;
6474 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6475 struct walk_control wc = {
6476 .process_func = process_one_buffer,
430a6626 6477 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6478 };
6479
e02119d5 6480 path = btrfs_alloc_path();
db5b493a
TI
6481 if (!path)
6482 return -ENOMEM;
6483
afcdd129 6484 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6485
4a500fd1 6486 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6487 if (IS_ERR(trans)) {
6488 ret = PTR_ERR(trans);
6489 goto error;
6490 }
e02119d5
CM
6491
6492 wc.trans = trans;
6493 wc.pin = 1;
6494
db5b493a 6495 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6496 if (ret) {
ba51e2a1 6497 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6498 goto error;
6499 }
e02119d5
CM
6500
6501again:
6502 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6503 key.offset = (u64)-1;
962a298f 6504 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6505
d397712b 6506 while (1) {
e02119d5 6507 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6508
6509 if (ret < 0) {
ba51e2a1 6510 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6511 goto error;
6512 }
e02119d5
CM
6513 if (ret > 0) {
6514 if (path->slots[0] == 0)
6515 break;
6516 path->slots[0]--;
6517 }
6518 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6519 path->slots[0]);
b3b4aa74 6520 btrfs_release_path(path);
e02119d5
CM
6521 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6522 break;
6523
62a2c73e 6524 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6525 if (IS_ERR(log)) {
6526 ret = PTR_ERR(log);
ba51e2a1 6527 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6528 goto error;
6529 }
e02119d5 6530
56e9357a
DS
6531 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6532 true);
79787eaa
JM
6533 if (IS_ERR(wc.replay_dest)) {
6534 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6535
6536 /*
6537 * We didn't find the subvol, likely because it was
6538 * deleted. This is ok, simply skip this log and go to
6539 * the next one.
6540 *
6541 * We need to exclude the root because we can't have
6542 * other log replays overwriting this log as we'll read
6543 * it back in a few more times. This will keep our
6544 * block from being modified, and we'll just bail for
6545 * each subsequent pass.
6546 */
6547 if (ret == -ENOENT)
9fce5704 6548 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6549 log->node->start,
6550 log->node->len);
00246528 6551 btrfs_put_root(log);
9bc574de
JB
6552
6553 if (!ret)
6554 goto next;
ba51e2a1 6555 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6556 goto error;
6557 }
e02119d5 6558
07d400a6 6559 wc.replay_dest->log_root = log;
2002ae11
JB
6560 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6561 if (ret)
6562 /* The loop needs to continue due to the root refs */
ba51e2a1 6563 btrfs_abort_transaction(trans, ret);
2002ae11
JB
6564 else
6565 ret = walk_log_tree(trans, log, &wc);
e02119d5 6566
b50c6e25 6567 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6568 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6569 path);
ba51e2a1
JB
6570 if (ret)
6571 btrfs_abort_transaction(trans, ret);
e02119d5
CM
6572 }
6573
900c9981
LB
6574 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6575 struct btrfs_root *root = wc.replay_dest;
6576
6577 btrfs_release_path(path);
6578
6579 /*
6580 * We have just replayed everything, and the highest
6581 * objectid of fs roots probably has changed in case
6582 * some inode_item's got replayed.
6583 *
6584 * root->objectid_mutex is not acquired as log replay
6585 * could only happen during mount.
6586 */
453e4873 6587 ret = btrfs_init_root_free_objectid(root);
ba51e2a1
JB
6588 if (ret)
6589 btrfs_abort_transaction(trans, ret);
900c9981
LB
6590 }
6591
07d400a6 6592 wc.replay_dest->log_root = NULL;
00246528 6593 btrfs_put_root(wc.replay_dest);
00246528 6594 btrfs_put_root(log);
e02119d5 6595
b50c6e25
JB
6596 if (ret)
6597 goto error;
9bc574de 6598next:
e02119d5
CM
6599 if (found_key.offset == 0)
6600 break;
9bc574de 6601 key.offset = found_key.offset - 1;
e02119d5 6602 }
b3b4aa74 6603 btrfs_release_path(path);
e02119d5
CM
6604
6605 /* step one is to pin it all, step two is to replay just inodes */
6606 if (wc.pin) {
6607 wc.pin = 0;
6608 wc.process_func = replay_one_buffer;
6609 wc.stage = LOG_WALK_REPLAY_INODES;
6610 goto again;
6611 }
6612 /* step three is to replay everything */
6613 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6614 wc.stage++;
6615 goto again;
6616 }
6617
6618 btrfs_free_path(path);
6619
abefa55a 6620 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6621 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6622 if (ret)
6623 return ret;
6624
e02119d5 6625 log_root_tree->log_root = NULL;
afcdd129 6626 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6627 btrfs_put_root(log_root_tree);
79787eaa 6628
abefa55a 6629 return 0;
79787eaa 6630error:
b50c6e25 6631 if (wc.trans)
3a45bb20 6632 btrfs_end_transaction(wc.trans);
1aeb6b56 6633 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
6634 btrfs_free_path(path);
6635 return ret;
e02119d5 6636}
12fcfd22
CM
6637
6638/*
6639 * there are some corner cases where we want to force a full
6640 * commit instead of allowing a directory to be logged.
6641 *
6642 * They revolve around files there were unlinked from the directory, and
6643 * this function updates the parent directory so that a full commit is
6644 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6645 *
6646 * Must be called before the unlink operations (updates to the subvolume tree,
6647 * inodes, etc) are done.
12fcfd22
CM
6648 */
6649void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6650 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6651 int for_rename)
6652{
af4176b4
CM
6653 /*
6654 * when we're logging a file, if it hasn't been renamed
6655 * or unlinked, and its inode is fully committed on disk,
6656 * we don't have to worry about walking up the directory chain
6657 * to log its parents.
6658 *
6659 * So, we use the last_unlink_trans field to put this transid
6660 * into the file. When the file is logged we check it and
6661 * don't log the parents if the file is fully on disk.
6662 */
4176bdbf
NB
6663 mutex_lock(&inode->log_mutex);
6664 inode->last_unlink_trans = trans->transid;
6665 mutex_unlock(&inode->log_mutex);
af4176b4 6666
12fcfd22
CM
6667 /*
6668 * if this directory was already logged any new
6669 * names for this file/dir will get recorded
6670 */
4176bdbf 6671 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6672 return;
6673
6674 /*
6675 * if the inode we're about to unlink was logged,
6676 * the log will be properly updated for any new names
6677 */
4176bdbf 6678 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6679 return;
6680
6681 /*
6682 * when renaming files across directories, if the directory
6683 * there we're unlinking from gets fsync'd later on, there's
6684 * no way to find the destination directory later and fsync it
6685 * properly. So, we have to be conservative and force commits
6686 * so the new name gets discovered.
6687 */
6688 if (for_rename)
6689 goto record;
6690
6691 /* we can safely do the unlink without any special recording */
6692 return;
6693
6694record:
4176bdbf
NB
6695 mutex_lock(&dir->log_mutex);
6696 dir->last_unlink_trans = trans->transid;
6697 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6698}
6699
6700/*
6701 * Make sure that if someone attempts to fsync the parent directory of a deleted
6702 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6703 * that after replaying the log tree of the parent directory's root we will not
6704 * see the snapshot anymore and at log replay time we will not see any log tree
6705 * corresponding to the deleted snapshot's root, which could lead to replaying
6706 * it after replaying the log tree of the parent directory (which would replay
6707 * the snapshot delete operation).
2be63d5c
FM
6708 *
6709 * Must be called before the actual snapshot destroy operation (updates to the
6710 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6711 */
6712void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6713 struct btrfs_inode *dir)
1ec9a1ae 6714{
43663557
NB
6715 mutex_lock(&dir->log_mutex);
6716 dir->last_unlink_trans = trans->transid;
6717 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6718}
6719
6720/*
6721 * Call this after adding a new name for a file and it will properly
6722 * update the log to reflect the new name.
12fcfd22 6723 */
75b463d2 6724void btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6725 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
75b463d2 6726 struct dentry *parent)
12fcfd22 6727{
75b463d2 6728 struct btrfs_log_ctx ctx;
12fcfd22 6729
af4176b4
CM
6730 /*
6731 * this will force the logging code to walk the dentry chain
6732 * up for the file
6733 */
9a6509c4 6734 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6735 inode->last_unlink_trans = trans->transid;
af4176b4 6736
12fcfd22
CM
6737 /*
6738 * if this inode hasn't been logged and directory we're renaming it
6739 * from hasn't been logged, we don't need to log it
6740 */
ecc64fab
FM
6741 if (!inode_logged(trans, inode) &&
6742 (!old_dir || !inode_logged(trans, old_dir)))
75b463d2 6743 return;
12fcfd22 6744
54a40fc3
FM
6745 /*
6746 * If we are doing a rename (old_dir is not NULL) from a directory that
6747 * was previously logged, make sure the next log attempt on the directory
6748 * is not skipped and logs the inode again. This is because the log may
6749 * not currently be authoritative for a range including the old
339d0354
FM
6750 * BTRFS_DIR_INDEX_KEY key, so we want to make sure after a log replay we
6751 * do not end up with both the new and old dentries around (in case the
6752 * inode is a directory we would have a directory with two hard links and
6753 * 2 inode references for different parents). The next log attempt of
6754 * old_dir will happen at btrfs_log_all_parents(), called through
6755 * btrfs_log_inode_parent() below, because we have previously set
6756 * inode->last_unlink_trans to the current transaction ID, either here or
6757 * at btrfs_record_unlink_dir() in case the inode is a directory.
54a40fc3
FM
6758 */
6759 if (old_dir)
6760 old_dir->logged_trans = 0;
6761
75b463d2
FM
6762 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6763 ctx.logging_new_name = true;
6764 /*
6765 * We don't care about the return value. If we fail to log the new name
6766 * then we know the next attempt to sync the log will fallback to a full
6767 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6768 * we don't need to worry about getting a log committed that has an
6769 * inconsistent state after a rename operation.
6770 */
48778179 6771 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
12fcfd22
CM
6772}
6773