]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
Merge branch 'jeffm-discard-4.3' into for-linus-4.3
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
e02119d5
CM
29
30/* magic values for the inode_only field in btrfs_log_inode:
31 *
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 * during log replay
35 */
36#define LOG_INODE_ALL 0
37#define LOG_INODE_EXISTS 1
38
12fcfd22
CM
39/*
40 * directory trouble cases
41 *
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
46 *
47 * mkdir foo/some_dir
48 * normal commit
49 * rename foo/some_dir foo2/some_dir
50 * mkdir foo/some_dir
51 * fsync foo/some_dir/some_file
52 *
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
56 *
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
59 *
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
63 *
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
66 *
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
69 *
70 * mkdir f1/foo
71 * normal commit
72 * rm -rf f1/foo
73 * fsync(f1)
74 *
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
79 * ugly details.
80 */
81
e02119d5
CM
82/*
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
87 *
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
90 */
91#define LOG_WALK_PIN_ONLY 0
92#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
93#define LOG_WALK_REPLAY_DIR_INDEX 2
94#define LOG_WALK_REPLAY_ALL 3
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
97 struct btrfs_root *root, struct inode *inode,
98 int inode_only,
99 const loff_t start,
8407f553
FM
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
8b050d35 143 int index;
e02119d5 144 int ret;
7237f183
YZ
145
146 mutex_lock(&root->log_mutex);
147 if (root->log_root) {
995946dd 148 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
50471a38
MX
149 ret = -EAGAIN;
150 goto out;
151 }
ff782e0a
JB
152 if (!root->log_start_pid) {
153 root->log_start_pid = current->pid;
27cdeb70 154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 155 } else if (root->log_start_pid != current->pid) {
27cdeb70 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a
JB
157 }
158
2ecb7923 159 atomic_inc(&root->log_batch);
7237f183 160 atomic_inc(&root->log_writers);
8b050d35
MX
161 if (ctx) {
162 index = root->log_transid % 2;
163 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 164 ctx->log_transid = root->log_transid;
8b050d35 165 }
7237f183
YZ
166 mutex_unlock(&root->log_mutex);
167 return 0;
168 }
e87ac136
MX
169
170 ret = 0;
e02119d5 171 mutex_lock(&root->fs_info->tree_log_mutex);
e87ac136 172 if (!root->fs_info->log_root_tree)
e02119d5 173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
e87ac136
MX
174 mutex_unlock(&root->fs_info->tree_log_mutex);
175 if (ret)
176 goto out;
177
178 if (!root->log_root) {
e02119d5 179 ret = btrfs_add_log_tree(trans, root);
4a500fd1 180 if (ret)
e87ac136 181 goto out;
e02119d5 182 }
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
e87ac136 184 root->log_start_pid = current->pid;
2ecb7923 185 atomic_inc(&root->log_batch);
7237f183 186 atomic_inc(&root->log_writers);
8b050d35
MX
187 if (ctx) {
188 index = root->log_transid % 2;
189 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 190 ctx->log_transid = root->log_transid;
8b050d35 191 }
e87ac136 192out:
7237f183 193 mutex_unlock(&root->log_mutex);
e87ac136 194 return ret;
e02119d5
CM
195}
196
197/*
198 * returns 0 if there was a log transaction running and we were able
199 * to join, or returns -ENOENT if there were not transactions
200 * in progress
201 */
202static int join_running_log_trans(struct btrfs_root *root)
203{
204 int ret = -ENOENT;
205
206 smp_mb();
207 if (!root->log_root)
208 return -ENOENT;
209
7237f183 210 mutex_lock(&root->log_mutex);
e02119d5
CM
211 if (root->log_root) {
212 ret = 0;
7237f183 213 atomic_inc(&root->log_writers);
e02119d5 214 }
7237f183 215 mutex_unlock(&root->log_mutex);
e02119d5
CM
216 return ret;
217}
218
12fcfd22
CM
219/*
220 * This either makes the current running log transaction wait
221 * until you call btrfs_end_log_trans() or it makes any future
222 * log transactions wait until you call btrfs_end_log_trans()
223 */
224int btrfs_pin_log_trans(struct btrfs_root *root)
225{
226 int ret = -ENOENT;
227
228 mutex_lock(&root->log_mutex);
229 atomic_inc(&root->log_writers);
230 mutex_unlock(&root->log_mutex);
231 return ret;
232}
233
e02119d5
CM
234/*
235 * indicate we're done making changes to the log tree
236 * and wake up anyone waiting to do a sync
237 */
143bede5 238void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 239{
7237f183
YZ
240 if (atomic_dec_and_test(&root->log_writers)) {
241 smp_mb();
242 if (waitqueue_active(&root->log_writer_wait))
243 wake_up(&root->log_writer_wait);
244 }
e02119d5
CM
245}
246
247
248/*
249 * the walk control struct is used to pass state down the chain when
250 * processing the log tree. The stage field tells us which part
251 * of the log tree processing we are currently doing. The others
252 * are state fields used for that specific part
253 */
254struct walk_control {
255 /* should we free the extent on disk when done? This is used
256 * at transaction commit time while freeing a log tree
257 */
258 int free;
259
260 /* should we write out the extent buffer? This is used
261 * while flushing the log tree to disk during a sync
262 */
263 int write;
264
265 /* should we wait for the extent buffer io to finish? Also used
266 * while flushing the log tree to disk for a sync
267 */
268 int wait;
269
270 /* pin only walk, we record which extents on disk belong to the
271 * log trees
272 */
273 int pin;
274
275 /* what stage of the replay code we're currently in */
276 int stage;
277
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
280
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
283
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
288 */
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen);
291};
292
293/*
294 * process_func used to pin down extents, write them or wait on them
295 */
296static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen)
299{
b50c6e25
JB
300 int ret = 0;
301
8c2a1a30
JB
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
308 if (ret)
309 return ret;
310 }
311
04018de5 312 if (wc->pin)
b50c6e25
JB
313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 eb->start, eb->len);
e02119d5 315
b50c6e25 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
b50c6e25 324 return ret;
e02119d5
CM
325}
326
327/*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346{
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
4bc4bee4 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
355
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
358
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
361
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
364 if (ret < 0)
365 return ret;
366
e02119d5
CM
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
374
375 if (item_size == 0) {
b3b4aa74 376 btrfs_release_path(path);
e02119d5
CM
377 return 0;
378 }
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 381 if (!dst_copy || !src_copy) {
b3b4aa74 382 btrfs_release_path(path);
2a29edc6 383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
386 }
e02119d5
CM
387
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
394
395 kfree(dst_copy);
396 kfree(src_copy);
397 /*
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
402 */
403 if (ret == 0) {
b3b4aa74 404 btrfs_release_path(path);
e02119d5
CM
405 return 0;
406 }
407
4bc4bee4
JB
408 /*
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
411 */
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
d555438b 415 u32 mode;
4bc4bee4
JB
416
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
423
424 /*
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
428 */
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
432 }
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
d555438b 435 u32 mode;
4bc4bee4
JB
436
437 /*
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
440 */
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
443
444 /*
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
448 */
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
452 }
453insert:
b3b4aa74 454 btrfs_release_path(path);
e02119d5 455 /* try to insert the key into the destination tree */
df8d116f 456 path->skip_release_on_error = 1;
e02119d5
CM
457 ret = btrfs_insert_empty_item(trans, root, path,
458 key, item_size);
df8d116f 459 path->skip_release_on_error = 0;
e02119d5
CM
460
461 /* make sure any existing item is the correct size */
df8d116f 462 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
463 u32 found_size;
464 found_size = btrfs_item_size_nr(path->nodes[0],
465 path->slots[0]);
143bede5 466 if (found_size > item_size)
afe5fea7 467 btrfs_truncate_item(root, path, item_size, 1);
143bede5 468 else if (found_size < item_size)
4b90c680 469 btrfs_extend_item(root, path,
143bede5 470 item_size - found_size);
e02119d5 471 } else if (ret) {
4a500fd1 472 return ret;
e02119d5
CM
473 }
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
476
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
480 *
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
485 */
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
489
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
492
1a4bcf47
FM
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 495 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 496
2f2ff0ee
FM
497 /*
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
503 */
1a4bcf47 504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 ino_size != 0) {
1a4bcf47 507 struct btrfs_map_token token;
1a4bcf47
FM
508
509 btrfs_init_map_token(&token);
510 btrfs_set_token_inode_size(dst_eb, dst_item,
511 ino_size, &token);
512 }
e02119d5 513 goto no_copy;
1a4bcf47 514 }
e02119d5
CM
515
516 if (overwrite_root &&
517 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 save_old_i_size = 1;
520 saved_i_size = btrfs_inode_size(path->nodes[0],
521 dst_item);
522 }
523 }
524
525 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 src_ptr, item_size);
527
528 if (save_old_i_size) {
529 struct btrfs_inode_item *dst_item;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 }
533
534 /* make sure the generation is filled in */
535 if (key->type == BTRFS_INODE_ITEM_KEY) {
536 struct btrfs_inode_item *dst_item;
537 dst_item = (struct btrfs_inode_item *)dst_ptr;
538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 btrfs_set_inode_generation(path->nodes[0], dst_item,
540 trans->transid);
541 }
542 }
543no_copy:
544 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 545 btrfs_release_path(path);
e02119d5
CM
546 return 0;
547}
548
549/*
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
552 */
553static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 u64 objectid)
555{
5d4f98a2 556 struct btrfs_key key;
e02119d5 557 struct inode *inode;
e02119d5 558
5d4f98a2
YZ
559 key.objectid = objectid;
560 key.type = BTRFS_INODE_ITEM_KEY;
561 key.offset = 0;
73f73415 562 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
563 if (IS_ERR(inode)) {
564 inode = NULL;
565 } else if (is_bad_inode(inode)) {
e02119d5
CM
566 iput(inode);
567 inode = NULL;
568 }
569 return inode;
570}
571
572/* replays a single extent in 'eb' at 'slot' with 'key' into the
573 * subvolume 'root'. path is released on entry and should be released
574 * on exit.
575 *
576 * extents in the log tree have not been allocated out of the extent
577 * tree yet. So, this completes the allocation, taking a reference
578 * as required if the extent already exists or creating a new extent
579 * if it isn't in the extent allocation tree yet.
580 *
581 * The extent is inserted into the file, dropping any existing extents
582 * from the file that overlap the new one.
583 */
584static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
585 struct btrfs_root *root,
586 struct btrfs_path *path,
587 struct extent_buffer *eb, int slot,
588 struct btrfs_key *key)
589{
590 int found_type;
e02119d5 591 u64 extent_end;
e02119d5 592 u64 start = key->offset;
4bc4bee4 593 u64 nbytes = 0;
e02119d5
CM
594 struct btrfs_file_extent_item *item;
595 struct inode *inode = NULL;
596 unsigned long size;
597 int ret = 0;
598
599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 found_type = btrfs_file_extent_type(eb, item);
601
d899e052 602 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
603 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 nbytes = btrfs_file_extent_num_bytes(eb, item);
605 extent_end = start + nbytes;
606
607 /*
608 * We don't add to the inodes nbytes if we are prealloc or a
609 * hole.
610 */
611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 nbytes = 0;
613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 614 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 615 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 616 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
617 } else {
618 ret = 0;
619 goto out;
620 }
621
622 inode = read_one_inode(root, key->objectid);
623 if (!inode) {
624 ret = -EIO;
625 goto out;
626 }
627
628 /*
629 * first check to see if we already have this extent in the
630 * file. This must be done before the btrfs_drop_extents run
631 * so we don't try to drop this extent.
632 */
33345d01 633 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
634 start, 0);
635
d899e052
YZ
636 if (ret == 0 &&
637 (found_type == BTRFS_FILE_EXTENT_REG ||
638 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
639 struct btrfs_file_extent_item cmp1;
640 struct btrfs_file_extent_item cmp2;
641 struct btrfs_file_extent_item *existing;
642 struct extent_buffer *leaf;
643
644 leaf = path->nodes[0];
645 existing = btrfs_item_ptr(leaf, path->slots[0],
646 struct btrfs_file_extent_item);
647
648 read_extent_buffer(eb, &cmp1, (unsigned long)item,
649 sizeof(cmp1));
650 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
651 sizeof(cmp2));
652
653 /*
654 * we already have a pointer to this exact extent,
655 * we don't have to do anything
656 */
657 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 658 btrfs_release_path(path);
e02119d5
CM
659 goto out;
660 }
661 }
b3b4aa74 662 btrfs_release_path(path);
e02119d5
CM
663
664 /* drop any overlapping extents */
2671485d 665 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
666 if (ret)
667 goto out;
e02119d5 668
07d400a6
YZ
669 if (found_type == BTRFS_FILE_EXTENT_REG ||
670 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 671 u64 offset;
07d400a6
YZ
672 unsigned long dest_offset;
673 struct btrfs_key ins;
674
675 ret = btrfs_insert_empty_item(trans, root, path, key,
676 sizeof(*item));
3650860b
JB
677 if (ret)
678 goto out;
07d400a6
YZ
679 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
680 path->slots[0]);
681 copy_extent_buffer(path->nodes[0], eb, dest_offset,
682 (unsigned long)item, sizeof(*item));
683
684 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
685 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
686 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 687 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
688
689 if (ins.objectid > 0) {
690 u64 csum_start;
691 u64 csum_end;
692 LIST_HEAD(ordered_sums);
693 /*
694 * is this extent already allocated in the extent
695 * allocation tree? If so, just add a reference
696 */
1a4ed8fd 697 ret = btrfs_lookup_data_extent(root, ins.objectid,
07d400a6
YZ
698 ins.offset);
699 if (ret == 0) {
700 ret = btrfs_inc_extent_ref(trans, root,
701 ins.objectid, ins.offset,
5d4f98a2 702 0, root->root_key.objectid,
66d7e7f0 703 key->objectid, offset, 0);
b50c6e25
JB
704 if (ret)
705 goto out;
07d400a6
YZ
706 } else {
707 /*
708 * insert the extent pointer in the extent
709 * allocation tree
710 */
5d4f98a2
YZ
711 ret = btrfs_alloc_logged_file_extent(trans,
712 root, root->root_key.objectid,
713 key->objectid, offset, &ins);
b50c6e25
JB
714 if (ret)
715 goto out;
07d400a6 716 }
b3b4aa74 717 btrfs_release_path(path);
07d400a6
YZ
718
719 if (btrfs_file_extent_compression(eb, item)) {
720 csum_start = ins.objectid;
721 csum_end = csum_start + ins.offset;
722 } else {
723 csum_start = ins.objectid +
724 btrfs_file_extent_offset(eb, item);
725 csum_end = csum_start +
726 btrfs_file_extent_num_bytes(eb, item);
727 }
728
729 ret = btrfs_lookup_csums_range(root->log_root,
730 csum_start, csum_end - 1,
a2de733c 731 &ordered_sums, 0);
3650860b
JB
732 if (ret)
733 goto out;
07d400a6
YZ
734 while (!list_empty(&ordered_sums)) {
735 struct btrfs_ordered_sum *sums;
736 sums = list_entry(ordered_sums.next,
737 struct btrfs_ordered_sum,
738 list);
3650860b
JB
739 if (!ret)
740 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
741 root->fs_info->csum_root,
742 sums);
07d400a6
YZ
743 list_del(&sums->list);
744 kfree(sums);
745 }
3650860b
JB
746 if (ret)
747 goto out;
07d400a6 748 } else {
b3b4aa74 749 btrfs_release_path(path);
07d400a6
YZ
750 }
751 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
752 /* inline extents are easy, we just overwrite them */
753 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
754 if (ret)
755 goto out;
07d400a6 756 }
e02119d5 757
4bc4bee4 758 inode_add_bytes(inode, nbytes);
b9959295 759 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
760out:
761 if (inode)
762 iput(inode);
763 return ret;
764}
765
766/*
767 * when cleaning up conflicts between the directory names in the
768 * subvolume, directory names in the log and directory names in the
769 * inode back references, we may have to unlink inodes from directories.
770 *
771 * This is a helper function to do the unlink of a specific directory
772 * item
773 */
774static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
775 struct btrfs_root *root,
776 struct btrfs_path *path,
777 struct inode *dir,
778 struct btrfs_dir_item *di)
779{
780 struct inode *inode;
781 char *name;
782 int name_len;
783 struct extent_buffer *leaf;
784 struct btrfs_key location;
785 int ret;
786
787 leaf = path->nodes[0];
788
789 btrfs_dir_item_key_to_cpu(leaf, di, &location);
790 name_len = btrfs_dir_name_len(leaf, di);
791 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 792 if (!name)
793 return -ENOMEM;
794
e02119d5 795 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 796 btrfs_release_path(path);
e02119d5
CM
797
798 inode = read_one_inode(root, location.objectid);
c00e9493 799 if (!inode) {
3650860b
JB
800 ret = -EIO;
801 goto out;
c00e9493 802 }
e02119d5 803
ec051c0f 804 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
805 if (ret)
806 goto out;
12fcfd22 807
e02119d5 808 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
809 if (ret)
810 goto out;
ada9af21
FDBM
811 else
812 ret = btrfs_run_delayed_items(trans, root);
3650860b 813out:
e02119d5 814 kfree(name);
e02119d5
CM
815 iput(inode);
816 return ret;
817}
818
819/*
820 * helper function to see if a given name and sequence number found
821 * in an inode back reference are already in a directory and correctly
822 * point to this inode
823 */
824static noinline int inode_in_dir(struct btrfs_root *root,
825 struct btrfs_path *path,
826 u64 dirid, u64 objectid, u64 index,
827 const char *name, int name_len)
828{
829 struct btrfs_dir_item *di;
830 struct btrfs_key location;
831 int match = 0;
832
833 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
834 index, name, name_len, 0);
835 if (di && !IS_ERR(di)) {
836 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
837 if (location.objectid != objectid)
838 goto out;
839 } else
840 goto out;
b3b4aa74 841 btrfs_release_path(path);
e02119d5
CM
842
843 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
844 if (di && !IS_ERR(di)) {
845 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
846 if (location.objectid != objectid)
847 goto out;
848 } else
849 goto out;
850 match = 1;
851out:
b3b4aa74 852 btrfs_release_path(path);
e02119d5
CM
853 return match;
854}
855
856/*
857 * helper function to check a log tree for a named back reference in
858 * an inode. This is used to decide if a back reference that is
859 * found in the subvolume conflicts with what we find in the log.
860 *
861 * inode backreferences may have multiple refs in a single item,
862 * during replay we process one reference at a time, and we don't
863 * want to delete valid links to a file from the subvolume if that
864 * link is also in the log.
865 */
866static noinline int backref_in_log(struct btrfs_root *log,
867 struct btrfs_key *key,
f186373f 868 u64 ref_objectid,
df8d116f 869 const char *name, int namelen)
e02119d5
CM
870{
871 struct btrfs_path *path;
872 struct btrfs_inode_ref *ref;
873 unsigned long ptr;
874 unsigned long ptr_end;
875 unsigned long name_ptr;
876 int found_name_len;
877 int item_size;
878 int ret;
879 int match = 0;
880
881 path = btrfs_alloc_path();
2a29edc6 882 if (!path)
883 return -ENOMEM;
884
e02119d5
CM
885 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
886 if (ret != 0)
887 goto out;
888
e02119d5 889 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
890
891 if (key->type == BTRFS_INODE_EXTREF_KEY) {
892 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
893 name, namelen, NULL))
894 match = 1;
895
896 goto out;
897 }
898
899 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
900 ptr_end = ptr + item_size;
901 while (ptr < ptr_end) {
902 ref = (struct btrfs_inode_ref *)ptr;
903 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
904 if (found_name_len == namelen) {
905 name_ptr = (unsigned long)(ref + 1);
906 ret = memcmp_extent_buffer(path->nodes[0], name,
907 name_ptr, namelen);
908 if (ret == 0) {
909 match = 1;
910 goto out;
911 }
912 }
913 ptr = (unsigned long)(ref + 1) + found_name_len;
914 }
915out:
916 btrfs_free_path(path);
917 return match;
918}
919
5a1d7843 920static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 921 struct btrfs_root *root,
e02119d5 922 struct btrfs_path *path,
5a1d7843
JS
923 struct btrfs_root *log_root,
924 struct inode *dir, struct inode *inode,
5a1d7843 925 struct extent_buffer *eb,
f186373f
MF
926 u64 inode_objectid, u64 parent_objectid,
927 u64 ref_index, char *name, int namelen,
928 int *search_done)
e02119d5 929{
34f3e4f2 930 int ret;
f186373f
MF
931 char *victim_name;
932 int victim_name_len;
933 struct extent_buffer *leaf;
5a1d7843 934 struct btrfs_dir_item *di;
f186373f
MF
935 struct btrfs_key search_key;
936 struct btrfs_inode_extref *extref;
c622ae60 937
f186373f
MF
938again:
939 /* Search old style refs */
940 search_key.objectid = inode_objectid;
941 search_key.type = BTRFS_INODE_REF_KEY;
942 search_key.offset = parent_objectid;
943 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 944 if (ret == 0) {
e02119d5
CM
945 struct btrfs_inode_ref *victim_ref;
946 unsigned long ptr;
947 unsigned long ptr_end;
f186373f
MF
948
949 leaf = path->nodes[0];
e02119d5
CM
950
951 /* are we trying to overwrite a back ref for the root directory
952 * if so, just jump out, we're done
953 */
f186373f 954 if (search_key.objectid == search_key.offset)
5a1d7843 955 return 1;
e02119d5
CM
956
957 /* check all the names in this back reference to see
958 * if they are in the log. if so, we allow them to stay
959 * otherwise they must be unlinked as a conflict
960 */
961 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
962 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 963 while (ptr < ptr_end) {
e02119d5
CM
964 victim_ref = (struct btrfs_inode_ref *)ptr;
965 victim_name_len = btrfs_inode_ref_name_len(leaf,
966 victim_ref);
967 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
968 if (!victim_name)
969 return -ENOMEM;
e02119d5
CM
970
971 read_extent_buffer(leaf, victim_name,
972 (unsigned long)(victim_ref + 1),
973 victim_name_len);
974
f186373f
MF
975 if (!backref_in_log(log_root, &search_key,
976 parent_objectid,
977 victim_name,
e02119d5 978 victim_name_len)) {
8b558c5f 979 inc_nlink(inode);
b3b4aa74 980 btrfs_release_path(path);
12fcfd22 981
e02119d5
CM
982 ret = btrfs_unlink_inode(trans, root, dir,
983 inode, victim_name,
984 victim_name_len);
f186373f 985 kfree(victim_name);
3650860b
JB
986 if (ret)
987 return ret;
ada9af21
FDBM
988 ret = btrfs_run_delayed_items(trans, root);
989 if (ret)
990 return ret;
f186373f
MF
991 *search_done = 1;
992 goto again;
e02119d5
CM
993 }
994 kfree(victim_name);
f186373f 995
e02119d5
CM
996 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
997 }
e02119d5 998
c622ae60 999 /*
1000 * NOTE: we have searched root tree and checked the
1001 * coresponding ref, it does not need to check again.
1002 */
5a1d7843 1003 *search_done = 1;
e02119d5 1004 }
b3b4aa74 1005 btrfs_release_path(path);
e02119d5 1006
f186373f
MF
1007 /* Same search but for extended refs */
1008 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1009 inode_objectid, parent_objectid, 0,
1010 0);
1011 if (!IS_ERR_OR_NULL(extref)) {
1012 u32 item_size;
1013 u32 cur_offset = 0;
1014 unsigned long base;
1015 struct inode *victim_parent;
1016
1017 leaf = path->nodes[0];
1018
1019 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1020 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021
1022 while (cur_offset < item_size) {
dd9ef135 1023 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1024
1025 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1026
1027 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1028 goto next;
1029
1030 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1031 if (!victim_name)
1032 return -ENOMEM;
f186373f
MF
1033 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1034 victim_name_len);
1035
1036 search_key.objectid = inode_objectid;
1037 search_key.type = BTRFS_INODE_EXTREF_KEY;
1038 search_key.offset = btrfs_extref_hash(parent_objectid,
1039 victim_name,
1040 victim_name_len);
1041 ret = 0;
1042 if (!backref_in_log(log_root, &search_key,
1043 parent_objectid, victim_name,
1044 victim_name_len)) {
1045 ret = -ENOENT;
1046 victim_parent = read_one_inode(root,
1047 parent_objectid);
1048 if (victim_parent) {
8b558c5f 1049 inc_nlink(inode);
f186373f
MF
1050 btrfs_release_path(path);
1051
1052 ret = btrfs_unlink_inode(trans, root,
1053 victim_parent,
1054 inode,
1055 victim_name,
1056 victim_name_len);
ada9af21
FDBM
1057 if (!ret)
1058 ret = btrfs_run_delayed_items(
1059 trans, root);
f186373f 1060 }
f186373f
MF
1061 iput(victim_parent);
1062 kfree(victim_name);
3650860b
JB
1063 if (ret)
1064 return ret;
f186373f
MF
1065 *search_done = 1;
1066 goto again;
1067 }
1068 kfree(victim_name);
3650860b
JB
1069 if (ret)
1070 return ret;
f186373f
MF
1071next:
1072 cur_offset += victim_name_len + sizeof(*extref);
1073 }
1074 *search_done = 1;
1075 }
1076 btrfs_release_path(path);
1077
34f3e4f2 1078 /* look for a conflicting sequence number */
1079 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1080 ref_index, name, namelen, 0);
34f3e4f2 1081 if (di && !IS_ERR(di)) {
1082 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1083 if (ret)
1084 return ret;
34f3e4f2 1085 }
1086 btrfs_release_path(path);
1087
1088 /* look for a conflicing name */
1089 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1090 name, namelen, 0);
1091 if (di && !IS_ERR(di)) {
1092 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1093 if (ret)
1094 return ret;
34f3e4f2 1095 }
1096 btrfs_release_path(path);
1097
5a1d7843
JS
1098 return 0;
1099}
e02119d5 1100
f186373f
MF
1101static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1102 u32 *namelen, char **name, u64 *index,
1103 u64 *parent_objectid)
1104{
1105 struct btrfs_inode_extref *extref;
1106
1107 extref = (struct btrfs_inode_extref *)ref_ptr;
1108
1109 *namelen = btrfs_inode_extref_name_len(eb, extref);
1110 *name = kmalloc(*namelen, GFP_NOFS);
1111 if (*name == NULL)
1112 return -ENOMEM;
1113
1114 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1115 *namelen);
1116
1117 *index = btrfs_inode_extref_index(eb, extref);
1118 if (parent_objectid)
1119 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1120
1121 return 0;
1122}
1123
1124static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1125 u32 *namelen, char **name, u64 *index)
1126{
1127 struct btrfs_inode_ref *ref;
1128
1129 ref = (struct btrfs_inode_ref *)ref_ptr;
1130
1131 *namelen = btrfs_inode_ref_name_len(eb, ref);
1132 *name = kmalloc(*namelen, GFP_NOFS);
1133 if (*name == NULL)
1134 return -ENOMEM;
1135
1136 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1137
1138 *index = btrfs_inode_ref_index(eb, ref);
1139
1140 return 0;
1141}
1142
5a1d7843
JS
1143/*
1144 * replay one inode back reference item found in the log tree.
1145 * eb, slot and key refer to the buffer and key found in the log tree.
1146 * root is the destination we are replaying into, and path is for temp
1147 * use by this function. (it should be released on return).
1148 */
1149static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1150 struct btrfs_root *root,
1151 struct btrfs_root *log,
1152 struct btrfs_path *path,
1153 struct extent_buffer *eb, int slot,
1154 struct btrfs_key *key)
1155{
03b2f08b
GB
1156 struct inode *dir = NULL;
1157 struct inode *inode = NULL;
5a1d7843
JS
1158 unsigned long ref_ptr;
1159 unsigned long ref_end;
03b2f08b 1160 char *name = NULL;
5a1d7843
JS
1161 int namelen;
1162 int ret;
1163 int search_done = 0;
f186373f
MF
1164 int log_ref_ver = 0;
1165 u64 parent_objectid;
1166 u64 inode_objectid;
f46dbe3d 1167 u64 ref_index = 0;
f186373f
MF
1168 int ref_struct_size;
1169
1170 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1171 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1172
1173 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1174 struct btrfs_inode_extref *r;
1175
1176 ref_struct_size = sizeof(struct btrfs_inode_extref);
1177 log_ref_ver = 1;
1178 r = (struct btrfs_inode_extref *)ref_ptr;
1179 parent_objectid = btrfs_inode_extref_parent(eb, r);
1180 } else {
1181 ref_struct_size = sizeof(struct btrfs_inode_ref);
1182 parent_objectid = key->offset;
1183 }
1184 inode_objectid = key->objectid;
e02119d5 1185
5a1d7843
JS
1186 /*
1187 * it is possible that we didn't log all the parent directories
1188 * for a given inode. If we don't find the dir, just don't
1189 * copy the back ref in. The link count fixup code will take
1190 * care of the rest
1191 */
f186373f 1192 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1193 if (!dir) {
1194 ret = -ENOENT;
1195 goto out;
1196 }
5a1d7843 1197
f186373f 1198 inode = read_one_inode(root, inode_objectid);
5a1d7843 1199 if (!inode) {
03b2f08b
GB
1200 ret = -EIO;
1201 goto out;
5a1d7843
JS
1202 }
1203
5a1d7843 1204 while (ref_ptr < ref_end) {
f186373f
MF
1205 if (log_ref_ver) {
1206 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1207 &ref_index, &parent_objectid);
1208 /*
1209 * parent object can change from one array
1210 * item to another.
1211 */
1212 if (!dir)
1213 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1214 if (!dir) {
1215 ret = -ENOENT;
1216 goto out;
1217 }
f186373f
MF
1218 } else {
1219 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1220 &ref_index);
1221 }
1222 if (ret)
03b2f08b 1223 goto out;
5a1d7843
JS
1224
1225 /* if we already have a perfect match, we're done */
1226 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1227 ref_index, name, namelen)) {
5a1d7843
JS
1228 /*
1229 * look for a conflicting back reference in the
1230 * metadata. if we find one we have to unlink that name
1231 * of the file before we add our new link. Later on, we
1232 * overwrite any existing back reference, and we don't
1233 * want to create dangling pointers in the directory.
1234 */
1235
1236 if (!search_done) {
1237 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1238 dir, inode, eb,
1239 inode_objectid,
1240 parent_objectid,
1241 ref_index, name, namelen,
5a1d7843 1242 &search_done);
03b2f08b
GB
1243 if (ret) {
1244 if (ret == 1)
1245 ret = 0;
3650860b
JB
1246 goto out;
1247 }
5a1d7843
JS
1248 }
1249
1250 /* insert our name */
1251 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1252 0, ref_index);
3650860b
JB
1253 if (ret)
1254 goto out;
5a1d7843
JS
1255
1256 btrfs_update_inode(trans, root, inode);
1257 }
1258
f186373f 1259 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1260 kfree(name);
03b2f08b 1261 name = NULL;
f186373f
MF
1262 if (log_ref_ver) {
1263 iput(dir);
1264 dir = NULL;
1265 }
5a1d7843 1266 }
e02119d5
CM
1267
1268 /* finally write the back reference in the inode */
1269 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1270out:
b3b4aa74 1271 btrfs_release_path(path);
03b2f08b 1272 kfree(name);
e02119d5
CM
1273 iput(dir);
1274 iput(inode);
3650860b 1275 return ret;
e02119d5
CM
1276}
1277
c71bf099 1278static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1279 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1280{
1281 int ret;
381cf658 1282
9c4f61f0
DS
1283 ret = btrfs_insert_orphan_item(trans, root, ino);
1284 if (ret == -EEXIST)
1285 ret = 0;
381cf658 1286
c71bf099
YZ
1287 return ret;
1288}
1289
f186373f
MF
1290static int count_inode_extrefs(struct btrfs_root *root,
1291 struct inode *inode, struct btrfs_path *path)
1292{
1293 int ret = 0;
1294 int name_len;
1295 unsigned int nlink = 0;
1296 u32 item_size;
1297 u32 cur_offset = 0;
1298 u64 inode_objectid = btrfs_ino(inode);
1299 u64 offset = 0;
1300 unsigned long ptr;
1301 struct btrfs_inode_extref *extref;
1302 struct extent_buffer *leaf;
1303
1304 while (1) {
1305 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1306 &extref, &offset);
1307 if (ret)
1308 break;
c71bf099 1309
f186373f
MF
1310 leaf = path->nodes[0];
1311 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1312 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1313 cur_offset = 0;
f186373f
MF
1314
1315 while (cur_offset < item_size) {
1316 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1317 name_len = btrfs_inode_extref_name_len(leaf, extref);
1318
1319 nlink++;
1320
1321 cur_offset += name_len + sizeof(*extref);
1322 }
1323
1324 offset++;
1325 btrfs_release_path(path);
1326 }
1327 btrfs_release_path(path);
1328
2c2c452b 1329 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1330 return ret;
1331 return nlink;
1332}
1333
1334static int count_inode_refs(struct btrfs_root *root,
1335 struct inode *inode, struct btrfs_path *path)
e02119d5 1336{
e02119d5
CM
1337 int ret;
1338 struct btrfs_key key;
f186373f 1339 unsigned int nlink = 0;
e02119d5
CM
1340 unsigned long ptr;
1341 unsigned long ptr_end;
1342 int name_len;
33345d01 1343 u64 ino = btrfs_ino(inode);
e02119d5 1344
33345d01 1345 key.objectid = ino;
e02119d5
CM
1346 key.type = BTRFS_INODE_REF_KEY;
1347 key.offset = (u64)-1;
1348
d397712b 1349 while (1) {
e02119d5
CM
1350 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1351 if (ret < 0)
1352 break;
1353 if (ret > 0) {
1354 if (path->slots[0] == 0)
1355 break;
1356 path->slots[0]--;
1357 }
e93ae26f 1358process_slot:
e02119d5
CM
1359 btrfs_item_key_to_cpu(path->nodes[0], &key,
1360 path->slots[0]);
33345d01 1361 if (key.objectid != ino ||
e02119d5
CM
1362 key.type != BTRFS_INODE_REF_KEY)
1363 break;
1364 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1365 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1366 path->slots[0]);
d397712b 1367 while (ptr < ptr_end) {
e02119d5
CM
1368 struct btrfs_inode_ref *ref;
1369
1370 ref = (struct btrfs_inode_ref *)ptr;
1371 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1372 ref);
1373 ptr = (unsigned long)(ref + 1) + name_len;
1374 nlink++;
1375 }
1376
1377 if (key.offset == 0)
1378 break;
e93ae26f
FDBM
1379 if (path->slots[0] > 0) {
1380 path->slots[0]--;
1381 goto process_slot;
1382 }
e02119d5 1383 key.offset--;
b3b4aa74 1384 btrfs_release_path(path);
e02119d5 1385 }
b3b4aa74 1386 btrfs_release_path(path);
f186373f
MF
1387
1388 return nlink;
1389}
1390
1391/*
1392 * There are a few corners where the link count of the file can't
1393 * be properly maintained during replay. So, instead of adding
1394 * lots of complexity to the log code, we just scan the backrefs
1395 * for any file that has been through replay.
1396 *
1397 * The scan will update the link count on the inode to reflect the
1398 * number of back refs found. If it goes down to zero, the iput
1399 * will free the inode.
1400 */
1401static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct inode *inode)
1404{
1405 struct btrfs_path *path;
1406 int ret;
1407 u64 nlink = 0;
1408 u64 ino = btrfs_ino(inode);
1409
1410 path = btrfs_alloc_path();
1411 if (!path)
1412 return -ENOMEM;
1413
1414 ret = count_inode_refs(root, inode, path);
1415 if (ret < 0)
1416 goto out;
1417
1418 nlink = ret;
1419
1420 ret = count_inode_extrefs(root, inode, path);
f186373f
MF
1421 if (ret < 0)
1422 goto out;
1423
1424 nlink += ret;
1425
1426 ret = 0;
1427
e02119d5 1428 if (nlink != inode->i_nlink) {
bfe86848 1429 set_nlink(inode, nlink);
e02119d5
CM
1430 btrfs_update_inode(trans, root, inode);
1431 }
8d5bf1cb 1432 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1433
c71bf099
YZ
1434 if (inode->i_nlink == 0) {
1435 if (S_ISDIR(inode->i_mode)) {
1436 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1437 ino, 1);
3650860b
JB
1438 if (ret)
1439 goto out;
c71bf099 1440 }
33345d01 1441 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1442 }
12fcfd22 1443
f186373f
MF
1444out:
1445 btrfs_free_path(path);
1446 return ret;
e02119d5
CM
1447}
1448
1449static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct btrfs_path *path)
1452{
1453 int ret;
1454 struct btrfs_key key;
1455 struct inode *inode;
1456
1457 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1458 key.type = BTRFS_ORPHAN_ITEM_KEY;
1459 key.offset = (u64)-1;
d397712b 1460 while (1) {
e02119d5
CM
1461 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1462 if (ret < 0)
1463 break;
1464
1465 if (ret == 1) {
1466 if (path->slots[0] == 0)
1467 break;
1468 path->slots[0]--;
1469 }
1470
1471 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1472 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1473 key.type != BTRFS_ORPHAN_ITEM_KEY)
1474 break;
1475
1476 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1477 if (ret)
1478 goto out;
e02119d5 1479
b3b4aa74 1480 btrfs_release_path(path);
e02119d5 1481 inode = read_one_inode(root, key.offset);
c00e9493
TI
1482 if (!inode)
1483 return -EIO;
e02119d5
CM
1484
1485 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1486 iput(inode);
3650860b
JB
1487 if (ret)
1488 goto out;
e02119d5 1489
12fcfd22
CM
1490 /*
1491 * fixup on a directory may create new entries,
1492 * make sure we always look for the highset possible
1493 * offset
1494 */
1495 key.offset = (u64)-1;
e02119d5 1496 }
65a246c5
TI
1497 ret = 0;
1498out:
b3b4aa74 1499 btrfs_release_path(path);
65a246c5 1500 return ret;
e02119d5
CM
1501}
1502
1503
1504/*
1505 * record a given inode in the fixup dir so we can check its link
1506 * count when replay is done. The link count is incremented here
1507 * so the inode won't go away until we check it
1508 */
1509static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1510 struct btrfs_root *root,
1511 struct btrfs_path *path,
1512 u64 objectid)
1513{
1514 struct btrfs_key key;
1515 int ret = 0;
1516 struct inode *inode;
1517
1518 inode = read_one_inode(root, objectid);
c00e9493
TI
1519 if (!inode)
1520 return -EIO;
e02119d5
CM
1521
1522 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1523 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1524 key.offset = objectid;
1525
1526 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1527
b3b4aa74 1528 btrfs_release_path(path);
e02119d5 1529 if (ret == 0) {
9bf7a489
JB
1530 if (!inode->i_nlink)
1531 set_nlink(inode, 1);
1532 else
8b558c5f 1533 inc_nlink(inode);
b9959295 1534 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1535 } else if (ret == -EEXIST) {
1536 ret = 0;
1537 } else {
3650860b 1538 BUG(); /* Logic Error */
e02119d5
CM
1539 }
1540 iput(inode);
1541
1542 return ret;
1543}
1544
1545/*
1546 * when replaying the log for a directory, we only insert names
1547 * for inodes that actually exist. This means an fsync on a directory
1548 * does not implicitly fsync all the new files in it
1549 */
1550static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1551 struct btrfs_root *root,
1552 struct btrfs_path *path,
1553 u64 dirid, u64 index,
1554 char *name, int name_len, u8 type,
1555 struct btrfs_key *location)
1556{
1557 struct inode *inode;
1558 struct inode *dir;
1559 int ret;
1560
1561 inode = read_one_inode(root, location->objectid);
1562 if (!inode)
1563 return -ENOENT;
1564
1565 dir = read_one_inode(root, dirid);
1566 if (!dir) {
1567 iput(inode);
1568 return -EIO;
1569 }
d555438b 1570
e02119d5
CM
1571 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1572
1573 /* FIXME, put inode into FIXUP list */
1574
1575 iput(inode);
1576 iput(dir);
1577 return ret;
1578}
1579
df8d116f
FM
1580/*
1581 * Return true if an inode reference exists in the log for the given name,
1582 * inode and parent inode.
1583 */
1584static bool name_in_log_ref(struct btrfs_root *log_root,
1585 const char *name, const int name_len,
1586 const u64 dirid, const u64 ino)
1587{
1588 struct btrfs_key search_key;
1589
1590 search_key.objectid = ino;
1591 search_key.type = BTRFS_INODE_REF_KEY;
1592 search_key.offset = dirid;
1593 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1594 return true;
1595
1596 search_key.type = BTRFS_INODE_EXTREF_KEY;
1597 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1598 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1599 return true;
1600
1601 return false;
1602}
1603
e02119d5
CM
1604/*
1605 * take a single entry in a log directory item and replay it into
1606 * the subvolume.
1607 *
1608 * if a conflicting item exists in the subdirectory already,
1609 * the inode it points to is unlinked and put into the link count
1610 * fix up tree.
1611 *
1612 * If a name from the log points to a file or directory that does
1613 * not exist in the FS, it is skipped. fsyncs on directories
1614 * do not force down inodes inside that directory, just changes to the
1615 * names or unlinks in a directory.
bb53eda9
FM
1616 *
1617 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1618 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1619 */
1620static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1621 struct btrfs_root *root,
1622 struct btrfs_path *path,
1623 struct extent_buffer *eb,
1624 struct btrfs_dir_item *di,
1625 struct btrfs_key *key)
1626{
1627 char *name;
1628 int name_len;
1629 struct btrfs_dir_item *dst_di;
1630 struct btrfs_key found_key;
1631 struct btrfs_key log_key;
1632 struct inode *dir;
e02119d5 1633 u8 log_type;
4bef0848 1634 int exists;
3650860b 1635 int ret = 0;
d555438b 1636 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1637 bool name_added = false;
e02119d5
CM
1638
1639 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1640 if (!dir)
1641 return -EIO;
e02119d5
CM
1642
1643 name_len = btrfs_dir_name_len(eb, di);
1644 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1645 if (!name) {
1646 ret = -ENOMEM;
1647 goto out;
1648 }
2a29edc6 1649
e02119d5
CM
1650 log_type = btrfs_dir_type(eb, di);
1651 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1652 name_len);
1653
1654 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1655 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1656 if (exists == 0)
1657 exists = 1;
1658 else
1659 exists = 0;
b3b4aa74 1660 btrfs_release_path(path);
4bef0848 1661
e02119d5
CM
1662 if (key->type == BTRFS_DIR_ITEM_KEY) {
1663 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1664 name, name_len, 1);
d397712b 1665 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1666 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1667 key->objectid,
1668 key->offset, name,
1669 name_len, 1);
1670 } else {
3650860b
JB
1671 /* Corruption */
1672 ret = -EINVAL;
1673 goto out;
e02119d5 1674 }
c704005d 1675 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1676 /* we need a sequence number to insert, so we only
1677 * do inserts for the BTRFS_DIR_INDEX_KEY types
1678 */
1679 if (key->type != BTRFS_DIR_INDEX_KEY)
1680 goto out;
1681 goto insert;
1682 }
1683
1684 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1685 /* the existing item matches the logged item */
1686 if (found_key.objectid == log_key.objectid &&
1687 found_key.type == log_key.type &&
1688 found_key.offset == log_key.offset &&
1689 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1690 update_size = false;
e02119d5
CM
1691 goto out;
1692 }
1693
1694 /*
1695 * don't drop the conflicting directory entry if the inode
1696 * for the new entry doesn't exist
1697 */
4bef0848 1698 if (!exists)
e02119d5
CM
1699 goto out;
1700
e02119d5 1701 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1702 if (ret)
1703 goto out;
e02119d5
CM
1704
1705 if (key->type == BTRFS_DIR_INDEX_KEY)
1706 goto insert;
1707out:
b3b4aa74 1708 btrfs_release_path(path);
d555438b
JB
1709 if (!ret && update_size) {
1710 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1711 ret = btrfs_update_inode(trans, root, dir);
1712 }
e02119d5
CM
1713 kfree(name);
1714 iput(dir);
bb53eda9
FM
1715 if (!ret && name_added)
1716 ret = 1;
3650860b 1717 return ret;
e02119d5
CM
1718
1719insert:
df8d116f
FM
1720 if (name_in_log_ref(root->log_root, name, name_len,
1721 key->objectid, log_key.objectid)) {
1722 /* The dentry will be added later. */
1723 ret = 0;
1724 update_size = false;
1725 goto out;
1726 }
b3b4aa74 1727 btrfs_release_path(path);
e02119d5
CM
1728 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1729 name, name_len, log_type, &log_key);
df8d116f 1730 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1731 goto out;
bb53eda9
FM
1732 if (!ret)
1733 name_added = true;
d555438b 1734 update_size = false;
3650860b 1735 ret = 0;
e02119d5
CM
1736 goto out;
1737}
1738
1739/*
1740 * find all the names in a directory item and reconcile them into
1741 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1742 * one name in a directory item, but the same code gets used for
1743 * both directory index types
1744 */
1745static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1746 struct btrfs_root *root,
1747 struct btrfs_path *path,
1748 struct extent_buffer *eb, int slot,
1749 struct btrfs_key *key)
1750{
bb53eda9 1751 int ret = 0;
e02119d5
CM
1752 u32 item_size = btrfs_item_size_nr(eb, slot);
1753 struct btrfs_dir_item *di;
1754 int name_len;
1755 unsigned long ptr;
1756 unsigned long ptr_end;
bb53eda9 1757 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
1758
1759 ptr = btrfs_item_ptr_offset(eb, slot);
1760 ptr_end = ptr + item_size;
d397712b 1761 while (ptr < ptr_end) {
e02119d5 1762 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1763 if (verify_dir_item(root, eb, di))
1764 return -EIO;
e02119d5
CM
1765 name_len = btrfs_dir_name_len(eb, di);
1766 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
1767 if (ret < 0)
1768 break;
e02119d5
CM
1769 ptr = (unsigned long)(di + 1);
1770 ptr += name_len;
bb53eda9
FM
1771
1772 /*
1773 * If this entry refers to a non-directory (directories can not
1774 * have a link count > 1) and it was added in the transaction
1775 * that was not committed, make sure we fixup the link count of
1776 * the inode it the entry points to. Otherwise something like
1777 * the following would result in a directory pointing to an
1778 * inode with a wrong link that does not account for this dir
1779 * entry:
1780 *
1781 * mkdir testdir
1782 * touch testdir/foo
1783 * touch testdir/bar
1784 * sync
1785 *
1786 * ln testdir/bar testdir/bar_link
1787 * ln testdir/foo testdir/foo_link
1788 * xfs_io -c "fsync" testdir/bar
1789 *
1790 * <power failure>
1791 *
1792 * mount fs, log replay happens
1793 *
1794 * File foo would remain with a link count of 1 when it has two
1795 * entries pointing to it in the directory testdir. This would
1796 * make it impossible to ever delete the parent directory has
1797 * it would result in stale dentries that can never be deleted.
1798 */
1799 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1800 struct btrfs_key di_key;
1801
1802 if (!fixup_path) {
1803 fixup_path = btrfs_alloc_path();
1804 if (!fixup_path) {
1805 ret = -ENOMEM;
1806 break;
1807 }
1808 }
1809
1810 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1811 ret = link_to_fixup_dir(trans, root, fixup_path,
1812 di_key.objectid);
1813 if (ret)
1814 break;
1815 }
1816 ret = 0;
e02119d5 1817 }
bb53eda9
FM
1818 btrfs_free_path(fixup_path);
1819 return ret;
e02119d5
CM
1820}
1821
1822/*
1823 * directory replay has two parts. There are the standard directory
1824 * items in the log copied from the subvolume, and range items
1825 * created in the log while the subvolume was logged.
1826 *
1827 * The range items tell us which parts of the key space the log
1828 * is authoritative for. During replay, if a key in the subvolume
1829 * directory is in a logged range item, but not actually in the log
1830 * that means it was deleted from the directory before the fsync
1831 * and should be removed.
1832 */
1833static noinline int find_dir_range(struct btrfs_root *root,
1834 struct btrfs_path *path,
1835 u64 dirid, int key_type,
1836 u64 *start_ret, u64 *end_ret)
1837{
1838 struct btrfs_key key;
1839 u64 found_end;
1840 struct btrfs_dir_log_item *item;
1841 int ret;
1842 int nritems;
1843
1844 if (*start_ret == (u64)-1)
1845 return 1;
1846
1847 key.objectid = dirid;
1848 key.type = key_type;
1849 key.offset = *start_ret;
1850
1851 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1852 if (ret < 0)
1853 goto out;
1854 if (ret > 0) {
1855 if (path->slots[0] == 0)
1856 goto out;
1857 path->slots[0]--;
1858 }
1859 if (ret != 0)
1860 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1861
1862 if (key.type != key_type || key.objectid != dirid) {
1863 ret = 1;
1864 goto next;
1865 }
1866 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1867 struct btrfs_dir_log_item);
1868 found_end = btrfs_dir_log_end(path->nodes[0], item);
1869
1870 if (*start_ret >= key.offset && *start_ret <= found_end) {
1871 ret = 0;
1872 *start_ret = key.offset;
1873 *end_ret = found_end;
1874 goto out;
1875 }
1876 ret = 1;
1877next:
1878 /* check the next slot in the tree to see if it is a valid item */
1879 nritems = btrfs_header_nritems(path->nodes[0]);
1880 if (path->slots[0] >= nritems) {
1881 ret = btrfs_next_leaf(root, path);
1882 if (ret)
1883 goto out;
1884 } else {
1885 path->slots[0]++;
1886 }
1887
1888 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1889
1890 if (key.type != key_type || key.objectid != dirid) {
1891 ret = 1;
1892 goto out;
1893 }
1894 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1895 struct btrfs_dir_log_item);
1896 found_end = btrfs_dir_log_end(path->nodes[0], item);
1897 *start_ret = key.offset;
1898 *end_ret = found_end;
1899 ret = 0;
1900out:
b3b4aa74 1901 btrfs_release_path(path);
e02119d5
CM
1902 return ret;
1903}
1904
1905/*
1906 * this looks for a given directory item in the log. If the directory
1907 * item is not in the log, the item is removed and the inode it points
1908 * to is unlinked
1909 */
1910static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1911 struct btrfs_root *root,
1912 struct btrfs_root *log,
1913 struct btrfs_path *path,
1914 struct btrfs_path *log_path,
1915 struct inode *dir,
1916 struct btrfs_key *dir_key)
1917{
1918 int ret;
1919 struct extent_buffer *eb;
1920 int slot;
1921 u32 item_size;
1922 struct btrfs_dir_item *di;
1923 struct btrfs_dir_item *log_di;
1924 int name_len;
1925 unsigned long ptr;
1926 unsigned long ptr_end;
1927 char *name;
1928 struct inode *inode;
1929 struct btrfs_key location;
1930
1931again:
1932 eb = path->nodes[0];
1933 slot = path->slots[0];
1934 item_size = btrfs_item_size_nr(eb, slot);
1935 ptr = btrfs_item_ptr_offset(eb, slot);
1936 ptr_end = ptr + item_size;
d397712b 1937 while (ptr < ptr_end) {
e02119d5 1938 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1939 if (verify_dir_item(root, eb, di)) {
1940 ret = -EIO;
1941 goto out;
1942 }
1943
e02119d5
CM
1944 name_len = btrfs_dir_name_len(eb, di);
1945 name = kmalloc(name_len, GFP_NOFS);
1946 if (!name) {
1947 ret = -ENOMEM;
1948 goto out;
1949 }
1950 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1951 name_len);
1952 log_di = NULL;
12fcfd22 1953 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1954 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1955 dir_key->objectid,
1956 name, name_len, 0);
12fcfd22 1957 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1958 log_di = btrfs_lookup_dir_index_item(trans, log,
1959 log_path,
1960 dir_key->objectid,
1961 dir_key->offset,
1962 name, name_len, 0);
1963 }
269d040f 1964 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 1965 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1966 btrfs_release_path(path);
1967 btrfs_release_path(log_path);
e02119d5 1968 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1969 if (!inode) {
1970 kfree(name);
1971 return -EIO;
1972 }
e02119d5
CM
1973
1974 ret = link_to_fixup_dir(trans, root,
1975 path, location.objectid);
3650860b
JB
1976 if (ret) {
1977 kfree(name);
1978 iput(inode);
1979 goto out;
1980 }
1981
8b558c5f 1982 inc_nlink(inode);
e02119d5
CM
1983 ret = btrfs_unlink_inode(trans, root, dir, inode,
1984 name, name_len);
3650860b 1985 if (!ret)
ada9af21 1986 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1987 kfree(name);
1988 iput(inode);
3650860b
JB
1989 if (ret)
1990 goto out;
e02119d5
CM
1991
1992 /* there might still be more names under this key
1993 * check and repeat if required
1994 */
1995 ret = btrfs_search_slot(NULL, root, dir_key, path,
1996 0, 0);
1997 if (ret == 0)
1998 goto again;
1999 ret = 0;
2000 goto out;
269d040f
FDBM
2001 } else if (IS_ERR(log_di)) {
2002 kfree(name);
2003 return PTR_ERR(log_di);
e02119d5 2004 }
b3b4aa74 2005 btrfs_release_path(log_path);
e02119d5
CM
2006 kfree(name);
2007
2008 ptr = (unsigned long)(di + 1);
2009 ptr += name_len;
2010 }
2011 ret = 0;
2012out:
b3b4aa74
DS
2013 btrfs_release_path(path);
2014 btrfs_release_path(log_path);
e02119d5
CM
2015 return ret;
2016}
2017
4f764e51
FM
2018static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2019 struct btrfs_root *root,
2020 struct btrfs_root *log,
2021 struct btrfs_path *path,
2022 const u64 ino)
2023{
2024 struct btrfs_key search_key;
2025 struct btrfs_path *log_path;
2026 int i;
2027 int nritems;
2028 int ret;
2029
2030 log_path = btrfs_alloc_path();
2031 if (!log_path)
2032 return -ENOMEM;
2033
2034 search_key.objectid = ino;
2035 search_key.type = BTRFS_XATTR_ITEM_KEY;
2036 search_key.offset = 0;
2037again:
2038 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2039 if (ret < 0)
2040 goto out;
2041process_leaf:
2042 nritems = btrfs_header_nritems(path->nodes[0]);
2043 for (i = path->slots[0]; i < nritems; i++) {
2044 struct btrfs_key key;
2045 struct btrfs_dir_item *di;
2046 struct btrfs_dir_item *log_di;
2047 u32 total_size;
2048 u32 cur;
2049
2050 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2051 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2052 ret = 0;
2053 goto out;
2054 }
2055
2056 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2057 total_size = btrfs_item_size_nr(path->nodes[0], i);
2058 cur = 0;
2059 while (cur < total_size) {
2060 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2061 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2062 u32 this_len = sizeof(*di) + name_len + data_len;
2063 char *name;
2064
2065 name = kmalloc(name_len, GFP_NOFS);
2066 if (!name) {
2067 ret = -ENOMEM;
2068 goto out;
2069 }
2070 read_extent_buffer(path->nodes[0], name,
2071 (unsigned long)(di + 1), name_len);
2072
2073 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2074 name, name_len, 0);
2075 btrfs_release_path(log_path);
2076 if (!log_di) {
2077 /* Doesn't exist in log tree, so delete it. */
2078 btrfs_release_path(path);
2079 di = btrfs_lookup_xattr(trans, root, path, ino,
2080 name, name_len, -1);
2081 kfree(name);
2082 if (IS_ERR(di)) {
2083 ret = PTR_ERR(di);
2084 goto out;
2085 }
2086 ASSERT(di);
2087 ret = btrfs_delete_one_dir_name(trans, root,
2088 path, di);
2089 if (ret)
2090 goto out;
2091 btrfs_release_path(path);
2092 search_key = key;
2093 goto again;
2094 }
2095 kfree(name);
2096 if (IS_ERR(log_di)) {
2097 ret = PTR_ERR(log_di);
2098 goto out;
2099 }
2100 cur += this_len;
2101 di = (struct btrfs_dir_item *)((char *)di + this_len);
2102 }
2103 }
2104 ret = btrfs_next_leaf(root, path);
2105 if (ret > 0)
2106 ret = 0;
2107 else if (ret == 0)
2108 goto process_leaf;
2109out:
2110 btrfs_free_path(log_path);
2111 btrfs_release_path(path);
2112 return ret;
2113}
2114
2115
e02119d5
CM
2116/*
2117 * deletion replay happens before we copy any new directory items
2118 * out of the log or out of backreferences from inodes. It
2119 * scans the log to find ranges of keys that log is authoritative for,
2120 * and then scans the directory to find items in those ranges that are
2121 * not present in the log.
2122 *
2123 * Anything we don't find in the log is unlinked and removed from the
2124 * directory.
2125 */
2126static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2127 struct btrfs_root *root,
2128 struct btrfs_root *log,
2129 struct btrfs_path *path,
12fcfd22 2130 u64 dirid, int del_all)
e02119d5
CM
2131{
2132 u64 range_start;
2133 u64 range_end;
2134 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2135 int ret = 0;
2136 struct btrfs_key dir_key;
2137 struct btrfs_key found_key;
2138 struct btrfs_path *log_path;
2139 struct inode *dir;
2140
2141 dir_key.objectid = dirid;
2142 dir_key.type = BTRFS_DIR_ITEM_KEY;
2143 log_path = btrfs_alloc_path();
2144 if (!log_path)
2145 return -ENOMEM;
2146
2147 dir = read_one_inode(root, dirid);
2148 /* it isn't an error if the inode isn't there, that can happen
2149 * because we replay the deletes before we copy in the inode item
2150 * from the log
2151 */
2152 if (!dir) {
2153 btrfs_free_path(log_path);
2154 return 0;
2155 }
2156again:
2157 range_start = 0;
2158 range_end = 0;
d397712b 2159 while (1) {
12fcfd22
CM
2160 if (del_all)
2161 range_end = (u64)-1;
2162 else {
2163 ret = find_dir_range(log, path, dirid, key_type,
2164 &range_start, &range_end);
2165 if (ret != 0)
2166 break;
2167 }
e02119d5
CM
2168
2169 dir_key.offset = range_start;
d397712b 2170 while (1) {
e02119d5
CM
2171 int nritems;
2172 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2173 0, 0);
2174 if (ret < 0)
2175 goto out;
2176
2177 nritems = btrfs_header_nritems(path->nodes[0]);
2178 if (path->slots[0] >= nritems) {
2179 ret = btrfs_next_leaf(root, path);
2180 if (ret)
2181 break;
2182 }
2183 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2184 path->slots[0]);
2185 if (found_key.objectid != dirid ||
2186 found_key.type != dir_key.type)
2187 goto next_type;
2188
2189 if (found_key.offset > range_end)
2190 break;
2191
2192 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2193 log_path, dir,
2194 &found_key);
3650860b
JB
2195 if (ret)
2196 goto out;
e02119d5
CM
2197 if (found_key.offset == (u64)-1)
2198 break;
2199 dir_key.offset = found_key.offset + 1;
2200 }
b3b4aa74 2201 btrfs_release_path(path);
e02119d5
CM
2202 if (range_end == (u64)-1)
2203 break;
2204 range_start = range_end + 1;
2205 }
2206
2207next_type:
2208 ret = 0;
2209 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2210 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2211 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2212 btrfs_release_path(path);
e02119d5
CM
2213 goto again;
2214 }
2215out:
b3b4aa74 2216 btrfs_release_path(path);
e02119d5
CM
2217 btrfs_free_path(log_path);
2218 iput(dir);
2219 return ret;
2220}
2221
2222/*
2223 * the process_func used to replay items from the log tree. This
2224 * gets called in two different stages. The first stage just looks
2225 * for inodes and makes sure they are all copied into the subvolume.
2226 *
2227 * The second stage copies all the other item types from the log into
2228 * the subvolume. The two stage approach is slower, but gets rid of
2229 * lots of complexity around inodes referencing other inodes that exist
2230 * only in the log (references come from either directory items or inode
2231 * back refs).
2232 */
2233static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2234 struct walk_control *wc, u64 gen)
2235{
2236 int nritems;
2237 struct btrfs_path *path;
2238 struct btrfs_root *root = wc->replay_dest;
2239 struct btrfs_key key;
e02119d5
CM
2240 int level;
2241 int i;
2242 int ret;
2243
018642a1
TI
2244 ret = btrfs_read_buffer(eb, gen);
2245 if (ret)
2246 return ret;
e02119d5
CM
2247
2248 level = btrfs_header_level(eb);
2249
2250 if (level != 0)
2251 return 0;
2252
2253 path = btrfs_alloc_path();
1e5063d0
MF
2254 if (!path)
2255 return -ENOMEM;
e02119d5
CM
2256
2257 nritems = btrfs_header_nritems(eb);
2258 for (i = 0; i < nritems; i++) {
2259 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2260
2261 /* inode keys are done during the first stage */
2262 if (key.type == BTRFS_INODE_ITEM_KEY &&
2263 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2264 struct btrfs_inode_item *inode_item;
2265 u32 mode;
2266
2267 inode_item = btrfs_item_ptr(eb, i,
2268 struct btrfs_inode_item);
4f764e51
FM
2269 ret = replay_xattr_deletes(wc->trans, root, log,
2270 path, key.objectid);
2271 if (ret)
2272 break;
e02119d5
CM
2273 mode = btrfs_inode_mode(eb, inode_item);
2274 if (S_ISDIR(mode)) {
2275 ret = replay_dir_deletes(wc->trans,
12fcfd22 2276 root, log, path, key.objectid, 0);
b50c6e25
JB
2277 if (ret)
2278 break;
e02119d5
CM
2279 }
2280 ret = overwrite_item(wc->trans, root, path,
2281 eb, i, &key);
b50c6e25
JB
2282 if (ret)
2283 break;
e02119d5 2284
c71bf099
YZ
2285 /* for regular files, make sure corresponding
2286 * orhpan item exist. extents past the new EOF
2287 * will be truncated later by orphan cleanup.
e02119d5
CM
2288 */
2289 if (S_ISREG(mode)) {
c71bf099
YZ
2290 ret = insert_orphan_item(wc->trans, root,
2291 key.objectid);
b50c6e25
JB
2292 if (ret)
2293 break;
e02119d5 2294 }
c71bf099 2295
e02119d5
CM
2296 ret = link_to_fixup_dir(wc->trans, root,
2297 path, key.objectid);
b50c6e25
JB
2298 if (ret)
2299 break;
e02119d5 2300 }
dd8e7217
JB
2301
2302 if (key.type == BTRFS_DIR_INDEX_KEY &&
2303 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2304 ret = replay_one_dir_item(wc->trans, root, path,
2305 eb, i, &key);
2306 if (ret)
2307 break;
2308 }
2309
e02119d5
CM
2310 if (wc->stage < LOG_WALK_REPLAY_ALL)
2311 continue;
2312
2313 /* these keys are simply copied */
2314 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2315 ret = overwrite_item(wc->trans, root, path,
2316 eb, i, &key);
b50c6e25
JB
2317 if (ret)
2318 break;
2da1c669
LB
2319 } else if (key.type == BTRFS_INODE_REF_KEY ||
2320 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2321 ret = add_inode_ref(wc->trans, root, log, path,
2322 eb, i, &key);
b50c6e25
JB
2323 if (ret && ret != -ENOENT)
2324 break;
2325 ret = 0;
e02119d5
CM
2326 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2327 ret = replay_one_extent(wc->trans, root, path,
2328 eb, i, &key);
b50c6e25
JB
2329 if (ret)
2330 break;
dd8e7217 2331 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2332 ret = replay_one_dir_item(wc->trans, root, path,
2333 eb, i, &key);
b50c6e25
JB
2334 if (ret)
2335 break;
e02119d5
CM
2336 }
2337 }
2338 btrfs_free_path(path);
b50c6e25 2339 return ret;
e02119d5
CM
2340}
2341
d397712b 2342static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2343 struct btrfs_root *root,
2344 struct btrfs_path *path, int *level,
2345 struct walk_control *wc)
2346{
2347 u64 root_owner;
e02119d5
CM
2348 u64 bytenr;
2349 u64 ptr_gen;
2350 struct extent_buffer *next;
2351 struct extent_buffer *cur;
2352 struct extent_buffer *parent;
2353 u32 blocksize;
2354 int ret = 0;
2355
2356 WARN_ON(*level < 0);
2357 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2358
d397712b 2359 while (*level > 0) {
e02119d5
CM
2360 WARN_ON(*level < 0);
2361 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2362 cur = path->nodes[*level];
2363
fae7f21c 2364 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2365
2366 if (path->slots[*level] >=
2367 btrfs_header_nritems(cur))
2368 break;
2369
2370 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2371 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
707e8a07 2372 blocksize = root->nodesize;
e02119d5
CM
2373
2374 parent = path->nodes[*level];
2375 root_owner = btrfs_header_owner(parent);
e02119d5 2376
a83fffb7 2377 next = btrfs_find_create_tree_block(root, bytenr);
2a29edc6 2378 if (!next)
2379 return -ENOMEM;
e02119d5 2380
e02119d5 2381 if (*level == 1) {
1e5063d0 2382 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2383 if (ret) {
2384 free_extent_buffer(next);
1e5063d0 2385 return ret;
b50c6e25 2386 }
4a500fd1 2387
e02119d5
CM
2388 path->slots[*level]++;
2389 if (wc->free) {
018642a1
TI
2390 ret = btrfs_read_buffer(next, ptr_gen);
2391 if (ret) {
2392 free_extent_buffer(next);
2393 return ret;
2394 }
e02119d5 2395
681ae509
JB
2396 if (trans) {
2397 btrfs_tree_lock(next);
2398 btrfs_set_lock_blocking(next);
01d58472
DD
2399 clean_tree_block(trans, root->fs_info,
2400 next);
681ae509
JB
2401 btrfs_wait_tree_block_writeback(next);
2402 btrfs_tree_unlock(next);
2403 }
e02119d5 2404
e02119d5
CM
2405 WARN_ON(root_owner !=
2406 BTRFS_TREE_LOG_OBJECTID);
e688b725 2407 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2408 bytenr, blocksize);
3650860b
JB
2409 if (ret) {
2410 free_extent_buffer(next);
2411 return ret;
2412 }
e02119d5
CM
2413 }
2414 free_extent_buffer(next);
2415 continue;
2416 }
018642a1
TI
2417 ret = btrfs_read_buffer(next, ptr_gen);
2418 if (ret) {
2419 free_extent_buffer(next);
2420 return ret;
2421 }
e02119d5
CM
2422
2423 WARN_ON(*level <= 0);
2424 if (path->nodes[*level-1])
2425 free_extent_buffer(path->nodes[*level-1]);
2426 path->nodes[*level-1] = next;
2427 *level = btrfs_header_level(next);
2428 path->slots[*level] = 0;
2429 cond_resched();
2430 }
2431 WARN_ON(*level < 0);
2432 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2433
4a500fd1 2434 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2435
2436 cond_resched();
2437 return 0;
2438}
2439
d397712b 2440static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2441 struct btrfs_root *root,
2442 struct btrfs_path *path, int *level,
2443 struct walk_control *wc)
2444{
2445 u64 root_owner;
e02119d5
CM
2446 int i;
2447 int slot;
2448 int ret;
2449
d397712b 2450 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2451 slot = path->slots[i];
4a500fd1 2452 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2453 path->slots[i]++;
2454 *level = i;
2455 WARN_ON(*level == 0);
2456 return 0;
2457 } else {
31840ae1
ZY
2458 struct extent_buffer *parent;
2459 if (path->nodes[*level] == root->node)
2460 parent = path->nodes[*level];
2461 else
2462 parent = path->nodes[*level + 1];
2463
2464 root_owner = btrfs_header_owner(parent);
1e5063d0 2465 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2466 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2467 if (ret)
2468 return ret;
2469
e02119d5
CM
2470 if (wc->free) {
2471 struct extent_buffer *next;
2472
2473 next = path->nodes[*level];
2474
681ae509
JB
2475 if (trans) {
2476 btrfs_tree_lock(next);
2477 btrfs_set_lock_blocking(next);
01d58472
DD
2478 clean_tree_block(trans, root->fs_info,
2479 next);
681ae509
JB
2480 btrfs_wait_tree_block_writeback(next);
2481 btrfs_tree_unlock(next);
2482 }
e02119d5 2483
e02119d5 2484 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2485 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2486 path->nodes[*level]->start,
d00aff00 2487 path->nodes[*level]->len);
3650860b
JB
2488 if (ret)
2489 return ret;
e02119d5
CM
2490 }
2491 free_extent_buffer(path->nodes[*level]);
2492 path->nodes[*level] = NULL;
2493 *level = i + 1;
2494 }
2495 }
2496 return 1;
2497}
2498
2499/*
2500 * drop the reference count on the tree rooted at 'snap'. This traverses
2501 * the tree freeing any blocks that have a ref count of zero after being
2502 * decremented.
2503 */
2504static int walk_log_tree(struct btrfs_trans_handle *trans,
2505 struct btrfs_root *log, struct walk_control *wc)
2506{
2507 int ret = 0;
2508 int wret;
2509 int level;
2510 struct btrfs_path *path;
e02119d5
CM
2511 int orig_level;
2512
2513 path = btrfs_alloc_path();
db5b493a
TI
2514 if (!path)
2515 return -ENOMEM;
e02119d5
CM
2516
2517 level = btrfs_header_level(log->node);
2518 orig_level = level;
2519 path->nodes[level] = log->node;
2520 extent_buffer_get(log->node);
2521 path->slots[level] = 0;
2522
d397712b 2523 while (1) {
e02119d5
CM
2524 wret = walk_down_log_tree(trans, log, path, &level, wc);
2525 if (wret > 0)
2526 break;
79787eaa 2527 if (wret < 0) {
e02119d5 2528 ret = wret;
79787eaa
JM
2529 goto out;
2530 }
e02119d5
CM
2531
2532 wret = walk_up_log_tree(trans, log, path, &level, wc);
2533 if (wret > 0)
2534 break;
79787eaa 2535 if (wret < 0) {
e02119d5 2536 ret = wret;
79787eaa
JM
2537 goto out;
2538 }
e02119d5
CM
2539 }
2540
2541 /* was the root node processed? if not, catch it here */
2542 if (path->nodes[orig_level]) {
79787eaa 2543 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2544 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2545 if (ret)
2546 goto out;
e02119d5
CM
2547 if (wc->free) {
2548 struct extent_buffer *next;
2549
2550 next = path->nodes[orig_level];
2551
681ae509
JB
2552 if (trans) {
2553 btrfs_tree_lock(next);
2554 btrfs_set_lock_blocking(next);
01d58472 2555 clean_tree_block(trans, log->fs_info, next);
681ae509
JB
2556 btrfs_wait_tree_block_writeback(next);
2557 btrfs_tree_unlock(next);
2558 }
e02119d5 2559
e02119d5
CM
2560 WARN_ON(log->root_key.objectid !=
2561 BTRFS_TREE_LOG_OBJECTID);
e688b725 2562 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2563 next->len);
3650860b
JB
2564 if (ret)
2565 goto out;
e02119d5
CM
2566 }
2567 }
2568
79787eaa 2569out:
e02119d5 2570 btrfs_free_path(path);
e02119d5
CM
2571 return ret;
2572}
2573
7237f183
YZ
2574/*
2575 * helper function to update the item for a given subvolumes log root
2576 * in the tree of log roots
2577 */
2578static int update_log_root(struct btrfs_trans_handle *trans,
2579 struct btrfs_root *log)
2580{
2581 int ret;
2582
2583 if (log->log_transid == 1) {
2584 /* insert root item on the first sync */
2585 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2586 &log->root_key, &log->root_item);
2587 } else {
2588 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2589 &log->root_key, &log->root_item);
2590 }
2591 return ret;
2592}
2593
8b050d35
MX
2594static void wait_log_commit(struct btrfs_trans_handle *trans,
2595 struct btrfs_root *root, int transid)
e02119d5
CM
2596{
2597 DEFINE_WAIT(wait);
7237f183 2598 int index = transid % 2;
e02119d5 2599
7237f183
YZ
2600 /*
2601 * we only allow two pending log transactions at a time,
2602 * so we know that if ours is more than 2 older than the
2603 * current transaction, we're done
2604 */
e02119d5 2605 do {
7237f183
YZ
2606 prepare_to_wait(&root->log_commit_wait[index],
2607 &wait, TASK_UNINTERRUPTIBLE);
2608 mutex_unlock(&root->log_mutex);
12fcfd22 2609
d1433deb 2610 if (root->log_transid_committed < transid &&
7237f183
YZ
2611 atomic_read(&root->log_commit[index]))
2612 schedule();
12fcfd22 2613
7237f183
YZ
2614 finish_wait(&root->log_commit_wait[index], &wait);
2615 mutex_lock(&root->log_mutex);
d1433deb 2616 } while (root->log_transid_committed < transid &&
7237f183 2617 atomic_read(&root->log_commit[index]));
7237f183
YZ
2618}
2619
143bede5
JM
2620static void wait_for_writer(struct btrfs_trans_handle *trans,
2621 struct btrfs_root *root)
7237f183
YZ
2622{
2623 DEFINE_WAIT(wait);
8b050d35
MX
2624
2625 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2626 prepare_to_wait(&root->log_writer_wait,
2627 &wait, TASK_UNINTERRUPTIBLE);
2628 mutex_unlock(&root->log_mutex);
8b050d35 2629 if (atomic_read(&root->log_writers))
e02119d5 2630 schedule();
7237f183 2631 finish_wait(&root->log_writer_wait, &wait);
575849ec 2632 mutex_lock(&root->log_mutex);
7237f183 2633 }
e02119d5
CM
2634}
2635
8b050d35
MX
2636static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2637 struct btrfs_log_ctx *ctx)
2638{
2639 if (!ctx)
2640 return;
2641
2642 mutex_lock(&root->log_mutex);
2643 list_del_init(&ctx->list);
2644 mutex_unlock(&root->log_mutex);
2645}
2646
2647/*
2648 * Invoked in log mutex context, or be sure there is no other task which
2649 * can access the list.
2650 */
2651static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2652 int index, int error)
2653{
2654 struct btrfs_log_ctx *ctx;
2655
2656 if (!error) {
2657 INIT_LIST_HEAD(&root->log_ctxs[index]);
2658 return;
2659 }
2660
2661 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2662 ctx->log_ret = error;
2663
2664 INIT_LIST_HEAD(&root->log_ctxs[index]);
2665}
2666
e02119d5
CM
2667/*
2668 * btrfs_sync_log does sends a given tree log down to the disk and
2669 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2670 * you know that any inodes previously logged are safely on disk only
2671 * if it returns 0.
2672 *
2673 * Any other return value means you need to call btrfs_commit_transaction.
2674 * Some of the edge cases for fsyncing directories that have had unlinks
2675 * or renames done in the past mean that sometimes the only safe
2676 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2677 * that has happened.
e02119d5
CM
2678 */
2679int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2680 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2681{
7237f183
YZ
2682 int index1;
2683 int index2;
8cef4e16 2684 int mark;
e02119d5 2685 int ret;
e02119d5 2686 struct btrfs_root *log = root->log_root;
7237f183 2687 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
bb14a59b 2688 int log_transid = 0;
8b050d35 2689 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2690 struct blk_plug plug;
e02119d5 2691
7237f183 2692 mutex_lock(&root->log_mutex);
d1433deb
MX
2693 log_transid = ctx->log_transid;
2694 if (root->log_transid_committed >= log_transid) {
2695 mutex_unlock(&root->log_mutex);
2696 return ctx->log_ret;
2697 }
2698
2699 index1 = log_transid % 2;
7237f183 2700 if (atomic_read(&root->log_commit[index1])) {
d1433deb 2701 wait_log_commit(trans, root, log_transid);
7237f183 2702 mutex_unlock(&root->log_mutex);
8b050d35 2703 return ctx->log_ret;
e02119d5 2704 }
d1433deb 2705 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2706 atomic_set(&root->log_commit[index1], 1);
2707
2708 /* wait for previous tree log sync to complete */
2709 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
d1433deb 2710 wait_log_commit(trans, root, log_transid - 1);
48cab2e0 2711
86df7eb9 2712 while (1) {
2ecb7923 2713 int batch = atomic_read(&root->log_batch);
cd354ad6 2714 /* when we're on an ssd, just kick the log commit out */
27cdeb70
MX
2715 if (!btrfs_test_opt(root, SSD) &&
2716 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2717 mutex_unlock(&root->log_mutex);
2718 schedule_timeout_uninterruptible(1);
2719 mutex_lock(&root->log_mutex);
2720 }
12fcfd22 2721 wait_for_writer(trans, root);
2ecb7923 2722 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2723 break;
2724 }
e02119d5 2725
12fcfd22 2726 /* bail out if we need to do a full commit */
995946dd 2727 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
12fcfd22 2728 ret = -EAGAIN;
2ab28f32 2729 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2730 mutex_unlock(&root->log_mutex);
2731 goto out;
2732 }
2733
8cef4e16
YZ
2734 if (log_transid % 2 == 0)
2735 mark = EXTENT_DIRTY;
2736 else
2737 mark = EXTENT_NEW;
2738
690587d1
CM
2739 /* we start IO on all the marked extents here, but we don't actually
2740 * wait for them until later.
2741 */
c6adc9cc 2742 blk_start_plug(&plug);
8cef4e16 2743 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2744 if (ret) {
c6adc9cc 2745 blk_finish_plug(&plug);
79787eaa 2746 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2747 btrfs_free_logged_extents(log, log_transid);
995946dd 2748 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa
JM
2749 mutex_unlock(&root->log_mutex);
2750 goto out;
2751 }
7237f183 2752
5d4f98a2 2753 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2754
7237f183
YZ
2755 root->log_transid++;
2756 log->log_transid = root->log_transid;
ff782e0a 2757 root->log_start_pid = 0;
7237f183 2758 /*
8cef4e16
YZ
2759 * IO has been started, blocks of the log tree have WRITTEN flag set
2760 * in their headers. new modifications of the log will be written to
2761 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2762 */
2763 mutex_unlock(&root->log_mutex);
2764
d1433deb
MX
2765 btrfs_init_log_ctx(&root_log_ctx);
2766
7237f183 2767 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2768 atomic_inc(&log_root_tree->log_batch);
7237f183 2769 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2770
2771 index2 = log_root_tree->log_transid % 2;
2772 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2773 root_log_ctx.log_transid = log_root_tree->log_transid;
2774
7237f183
YZ
2775 mutex_unlock(&log_root_tree->log_mutex);
2776
2777 ret = update_log_root(trans, log);
7237f183
YZ
2778
2779 mutex_lock(&log_root_tree->log_mutex);
2780 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2781 smp_mb();
2782 if (waitqueue_active(&log_root_tree->log_writer_wait))
2783 wake_up(&log_root_tree->log_writer_wait);
2784 }
2785
4a500fd1 2786 if (ret) {
d1433deb
MX
2787 if (!list_empty(&root_log_ctx.list))
2788 list_del_init(&root_log_ctx.list);
2789
c6adc9cc 2790 blk_finish_plug(&plug);
995946dd
MX
2791 btrfs_set_log_full_commit(root->fs_info, trans);
2792
79787eaa
JM
2793 if (ret != -ENOSPC) {
2794 btrfs_abort_transaction(trans, root, ret);
2795 mutex_unlock(&log_root_tree->log_mutex);
2796 goto out;
2797 }
4a500fd1 2798 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2799 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2800 mutex_unlock(&log_root_tree->log_mutex);
2801 ret = -EAGAIN;
2802 goto out;
2803 }
2804
d1433deb 2805 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 2806 blk_finish_plug(&plug);
d1433deb
MX
2807 mutex_unlock(&log_root_tree->log_mutex);
2808 ret = root_log_ctx.log_ret;
2809 goto out;
2810 }
8b050d35 2811
d1433deb 2812 index2 = root_log_ctx.log_transid % 2;
7237f183 2813 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2814 blk_finish_plug(&plug);
5ab5e44a
FM
2815 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2816 mark);
50d9aa99 2817 btrfs_wait_logged_extents(trans, log, log_transid);
8b050d35 2818 wait_log_commit(trans, log_root_tree,
d1433deb 2819 root_log_ctx.log_transid);
7237f183 2820 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2821 if (!ret)
2822 ret = root_log_ctx.log_ret;
7237f183
YZ
2823 goto out;
2824 }
d1433deb 2825 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2826 atomic_set(&log_root_tree->log_commit[index2], 1);
2827
12fcfd22
CM
2828 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2829 wait_log_commit(trans, log_root_tree,
d1433deb 2830 root_log_ctx.log_transid - 1);
12fcfd22
CM
2831 }
2832
2833 wait_for_writer(trans, log_root_tree);
7237f183 2834
12fcfd22
CM
2835 /*
2836 * now that we've moved on to the tree of log tree roots,
2837 * check the full commit flag again
2838 */
995946dd 2839 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
c6adc9cc 2840 blk_finish_plug(&plug);
8cef4e16 2841 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2842 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2843 mutex_unlock(&log_root_tree->log_mutex);
2844 ret = -EAGAIN;
2845 goto out_wake_log_root;
2846 }
7237f183 2847
c6adc9cc
MX
2848 ret = btrfs_write_marked_extents(log_root_tree,
2849 &log_root_tree->dirty_log_pages,
2850 EXTENT_DIRTY | EXTENT_NEW);
2851 blk_finish_plug(&plug);
79787eaa 2852 if (ret) {
995946dd 2853 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa 2854 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2855 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2856 mutex_unlock(&log_root_tree->log_mutex);
2857 goto out_wake_log_root;
2858 }
5ab5e44a
FM
2859 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2860 if (!ret)
2861 ret = btrfs_wait_marked_extents(log_root_tree,
2862 &log_root_tree->dirty_log_pages,
2863 EXTENT_NEW | EXTENT_DIRTY);
2864 if (ret) {
2865 btrfs_set_log_full_commit(root->fs_info, trans);
2866 btrfs_free_logged_extents(log, log_transid);
2867 mutex_unlock(&log_root_tree->log_mutex);
2868 goto out_wake_log_root;
2869 }
50d9aa99 2870 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2871
6c41761f 2872 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2873 log_root_tree->node->start);
6c41761f 2874 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2875 btrfs_header_level(log_root_tree->node));
e02119d5 2876
7237f183 2877 log_root_tree->log_transid++;
7237f183
YZ
2878 mutex_unlock(&log_root_tree->log_mutex);
2879
2880 /*
2881 * nobody else is going to jump in and write the the ctree
2882 * super here because the log_commit atomic below is protecting
2883 * us. We must be called with a transaction handle pinning
2884 * the running transaction open, so a full commit can't hop
2885 * in and cause problems either.
2886 */
5af3e8cc 2887 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
5af3e8cc 2888 if (ret) {
995946dd 2889 btrfs_set_log_full_commit(root->fs_info, trans);
5af3e8cc
SB
2890 btrfs_abort_transaction(trans, root, ret);
2891 goto out_wake_log_root;
2892 }
7237f183 2893
257c62e1
CM
2894 mutex_lock(&root->log_mutex);
2895 if (root->last_log_commit < log_transid)
2896 root->last_log_commit = log_transid;
2897 mutex_unlock(&root->log_mutex);
2898
12fcfd22 2899out_wake_log_root:
8b050d35
MX
2900 /*
2901 * We needn't get log_mutex here because we are sure all
2902 * the other tasks are blocked.
2903 */
2904 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2905
d1433deb
MX
2906 mutex_lock(&log_root_tree->log_mutex);
2907 log_root_tree->log_transid_committed++;
7237f183 2908 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2909 mutex_unlock(&log_root_tree->log_mutex);
2910
7237f183
YZ
2911 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2912 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2913out:
8b050d35
MX
2914 /* See above. */
2915 btrfs_remove_all_log_ctxs(root, index1, ret);
2916
d1433deb
MX
2917 mutex_lock(&root->log_mutex);
2918 root->log_transid_committed++;
7237f183 2919 atomic_set(&root->log_commit[index1], 0);
d1433deb 2920 mutex_unlock(&root->log_mutex);
8b050d35 2921
7237f183
YZ
2922 if (waitqueue_active(&root->log_commit_wait[index1]))
2923 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2924 return ret;
e02119d5
CM
2925}
2926
4a500fd1
YZ
2927static void free_log_tree(struct btrfs_trans_handle *trans,
2928 struct btrfs_root *log)
e02119d5
CM
2929{
2930 int ret;
d0c803c4
CM
2931 u64 start;
2932 u64 end;
e02119d5
CM
2933 struct walk_control wc = {
2934 .free = 1,
2935 .process_func = process_one_buffer
2936 };
2937
681ae509
JB
2938 ret = walk_log_tree(trans, log, &wc);
2939 /* I don't think this can happen but just in case */
2940 if (ret)
2941 btrfs_abort_transaction(trans, log, ret);
e02119d5 2942
d397712b 2943 while (1) {
d0c803c4 2944 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2945 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2946 NULL);
d0c803c4
CM
2947 if (ret)
2948 break;
2949
8cef4e16
YZ
2950 clear_extent_bits(&log->dirty_log_pages, start, end,
2951 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2952 }
2953
2ab28f32
JB
2954 /*
2955 * We may have short-circuited the log tree with the full commit logic
2956 * and left ordered extents on our list, so clear these out to keep us
2957 * from leaking inodes and memory.
2958 */
2959 btrfs_free_logged_extents(log, 0);
2960 btrfs_free_logged_extents(log, 1);
2961
7237f183
YZ
2962 free_extent_buffer(log->node);
2963 kfree(log);
4a500fd1
YZ
2964}
2965
2966/*
2967 * free all the extents used by the tree log. This should be called
2968 * at commit time of the full transaction
2969 */
2970int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2971{
2972 if (root->log_root) {
2973 free_log_tree(trans, root->log_root);
2974 root->log_root = NULL;
2975 }
2976 return 0;
2977}
2978
2979int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2980 struct btrfs_fs_info *fs_info)
2981{
2982 if (fs_info->log_root_tree) {
2983 free_log_tree(trans, fs_info->log_root_tree);
2984 fs_info->log_root_tree = NULL;
2985 }
e02119d5
CM
2986 return 0;
2987}
2988
e02119d5
CM
2989/*
2990 * If both a file and directory are logged, and unlinks or renames are
2991 * mixed in, we have a few interesting corners:
2992 *
2993 * create file X in dir Y
2994 * link file X to X.link in dir Y
2995 * fsync file X
2996 * unlink file X but leave X.link
2997 * fsync dir Y
2998 *
2999 * After a crash we would expect only X.link to exist. But file X
3000 * didn't get fsync'd again so the log has back refs for X and X.link.
3001 *
3002 * We solve this by removing directory entries and inode backrefs from the
3003 * log when a file that was logged in the current transaction is
3004 * unlinked. Any later fsync will include the updated log entries, and
3005 * we'll be able to reconstruct the proper directory items from backrefs.
3006 *
3007 * This optimizations allows us to avoid relogging the entire inode
3008 * or the entire directory.
3009 */
3010int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3011 struct btrfs_root *root,
3012 const char *name, int name_len,
3013 struct inode *dir, u64 index)
3014{
3015 struct btrfs_root *log;
3016 struct btrfs_dir_item *di;
3017 struct btrfs_path *path;
3018 int ret;
4a500fd1 3019 int err = 0;
e02119d5 3020 int bytes_del = 0;
33345d01 3021 u64 dir_ino = btrfs_ino(dir);
e02119d5 3022
3a5f1d45
CM
3023 if (BTRFS_I(dir)->logged_trans < trans->transid)
3024 return 0;
3025
e02119d5
CM
3026 ret = join_running_log_trans(root);
3027 if (ret)
3028 return 0;
3029
3030 mutex_lock(&BTRFS_I(dir)->log_mutex);
3031
3032 log = root->log_root;
3033 path = btrfs_alloc_path();
a62f44a5
TI
3034 if (!path) {
3035 err = -ENOMEM;
3036 goto out_unlock;
3037 }
2a29edc6 3038
33345d01 3039 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3040 name, name_len, -1);
4a500fd1
YZ
3041 if (IS_ERR(di)) {
3042 err = PTR_ERR(di);
3043 goto fail;
3044 }
3045 if (di) {
e02119d5
CM
3046 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3047 bytes_del += name_len;
3650860b
JB
3048 if (ret) {
3049 err = ret;
3050 goto fail;
3051 }
e02119d5 3052 }
b3b4aa74 3053 btrfs_release_path(path);
33345d01 3054 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3055 index, name, name_len, -1);
4a500fd1
YZ
3056 if (IS_ERR(di)) {
3057 err = PTR_ERR(di);
3058 goto fail;
3059 }
3060 if (di) {
e02119d5
CM
3061 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3062 bytes_del += name_len;
3650860b
JB
3063 if (ret) {
3064 err = ret;
3065 goto fail;
3066 }
e02119d5
CM
3067 }
3068
3069 /* update the directory size in the log to reflect the names
3070 * we have removed
3071 */
3072 if (bytes_del) {
3073 struct btrfs_key key;
3074
33345d01 3075 key.objectid = dir_ino;
e02119d5
CM
3076 key.offset = 0;
3077 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3078 btrfs_release_path(path);
e02119d5
CM
3079
3080 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3081 if (ret < 0) {
3082 err = ret;
3083 goto fail;
3084 }
e02119d5
CM
3085 if (ret == 0) {
3086 struct btrfs_inode_item *item;
3087 u64 i_size;
3088
3089 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3090 struct btrfs_inode_item);
3091 i_size = btrfs_inode_size(path->nodes[0], item);
3092 if (i_size > bytes_del)
3093 i_size -= bytes_del;
3094 else
3095 i_size = 0;
3096 btrfs_set_inode_size(path->nodes[0], item, i_size);
3097 btrfs_mark_buffer_dirty(path->nodes[0]);
3098 } else
3099 ret = 0;
b3b4aa74 3100 btrfs_release_path(path);
e02119d5 3101 }
4a500fd1 3102fail:
e02119d5 3103 btrfs_free_path(path);
a62f44a5 3104out_unlock:
e02119d5 3105 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1 3106 if (ret == -ENOSPC) {
995946dd 3107 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3108 ret = 0;
79787eaa
JM
3109 } else if (ret < 0)
3110 btrfs_abort_transaction(trans, root, ret);
3111
12fcfd22 3112 btrfs_end_log_trans(root);
e02119d5 3113
411fc6bc 3114 return err;
e02119d5
CM
3115}
3116
3117/* see comments for btrfs_del_dir_entries_in_log */
3118int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3119 struct btrfs_root *root,
3120 const char *name, int name_len,
3121 struct inode *inode, u64 dirid)
3122{
3123 struct btrfs_root *log;
3124 u64 index;
3125 int ret;
3126
3a5f1d45
CM
3127 if (BTRFS_I(inode)->logged_trans < trans->transid)
3128 return 0;
3129
e02119d5
CM
3130 ret = join_running_log_trans(root);
3131 if (ret)
3132 return 0;
3133 log = root->log_root;
3134 mutex_lock(&BTRFS_I(inode)->log_mutex);
3135
33345d01 3136 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
3137 dirid, &index);
3138 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1 3139 if (ret == -ENOSPC) {
995946dd 3140 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3141 ret = 0;
79787eaa
JM
3142 } else if (ret < 0 && ret != -ENOENT)
3143 btrfs_abort_transaction(trans, root, ret);
12fcfd22 3144 btrfs_end_log_trans(root);
e02119d5 3145
e02119d5
CM
3146 return ret;
3147}
3148
3149/*
3150 * creates a range item in the log for 'dirid'. first_offset and
3151 * last_offset tell us which parts of the key space the log should
3152 * be considered authoritative for.
3153 */
3154static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3155 struct btrfs_root *log,
3156 struct btrfs_path *path,
3157 int key_type, u64 dirid,
3158 u64 first_offset, u64 last_offset)
3159{
3160 int ret;
3161 struct btrfs_key key;
3162 struct btrfs_dir_log_item *item;
3163
3164 key.objectid = dirid;
3165 key.offset = first_offset;
3166 if (key_type == BTRFS_DIR_ITEM_KEY)
3167 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3168 else
3169 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3170 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3171 if (ret)
3172 return ret;
e02119d5
CM
3173
3174 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3175 struct btrfs_dir_log_item);
3176 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3177 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3178 btrfs_release_path(path);
e02119d5
CM
3179 return 0;
3180}
3181
3182/*
3183 * log all the items included in the current transaction for a given
3184 * directory. This also creates the range items in the log tree required
3185 * to replay anything deleted before the fsync
3186 */
3187static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3188 struct btrfs_root *root, struct inode *inode,
3189 struct btrfs_path *path,
3190 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3191 struct btrfs_log_ctx *ctx,
e02119d5
CM
3192 u64 min_offset, u64 *last_offset_ret)
3193{
3194 struct btrfs_key min_key;
e02119d5
CM
3195 struct btrfs_root *log = root->log_root;
3196 struct extent_buffer *src;
4a500fd1 3197 int err = 0;
e02119d5
CM
3198 int ret;
3199 int i;
3200 int nritems;
3201 u64 first_offset = min_offset;
3202 u64 last_offset = (u64)-1;
33345d01 3203 u64 ino = btrfs_ino(inode);
e02119d5
CM
3204
3205 log = root->log_root;
e02119d5 3206
33345d01 3207 min_key.objectid = ino;
e02119d5
CM
3208 min_key.type = key_type;
3209 min_key.offset = min_offset;
3210
6174d3cb 3211 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3212
3213 /*
3214 * we didn't find anything from this transaction, see if there
3215 * is anything at all
3216 */
33345d01
LZ
3217 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3218 min_key.objectid = ino;
e02119d5
CM
3219 min_key.type = key_type;
3220 min_key.offset = (u64)-1;
b3b4aa74 3221 btrfs_release_path(path);
e02119d5
CM
3222 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3223 if (ret < 0) {
b3b4aa74 3224 btrfs_release_path(path);
e02119d5
CM
3225 return ret;
3226 }
33345d01 3227 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3228
3229 /* if ret == 0 there are items for this type,
3230 * create a range to tell us the last key of this type.
3231 * otherwise, there are no items in this directory after
3232 * *min_offset, and we create a range to indicate that.
3233 */
3234 if (ret == 0) {
3235 struct btrfs_key tmp;
3236 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3237 path->slots[0]);
d397712b 3238 if (key_type == tmp.type)
e02119d5 3239 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3240 }
3241 goto done;
3242 }
3243
3244 /* go backward to find any previous key */
33345d01 3245 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3246 if (ret == 0) {
3247 struct btrfs_key tmp;
3248 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3249 if (key_type == tmp.type) {
3250 first_offset = tmp.offset;
3251 ret = overwrite_item(trans, log, dst_path,
3252 path->nodes[0], path->slots[0],
3253 &tmp);
4a500fd1
YZ
3254 if (ret) {
3255 err = ret;
3256 goto done;
3257 }
e02119d5
CM
3258 }
3259 }
b3b4aa74 3260 btrfs_release_path(path);
e02119d5
CM
3261
3262 /* find the first key from this transaction again */
3263 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3264 if (WARN_ON(ret != 0))
e02119d5 3265 goto done;
e02119d5
CM
3266
3267 /*
3268 * we have a block from this transaction, log every item in it
3269 * from our directory
3270 */
d397712b 3271 while (1) {
e02119d5
CM
3272 struct btrfs_key tmp;
3273 src = path->nodes[0];
3274 nritems = btrfs_header_nritems(src);
3275 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3276 struct btrfs_dir_item *di;
3277
e02119d5
CM
3278 btrfs_item_key_to_cpu(src, &min_key, i);
3279
33345d01 3280 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3281 goto done;
3282 ret = overwrite_item(trans, log, dst_path, src, i,
3283 &min_key);
4a500fd1
YZ
3284 if (ret) {
3285 err = ret;
3286 goto done;
3287 }
2f2ff0ee
FM
3288
3289 /*
3290 * We must make sure that when we log a directory entry,
3291 * the corresponding inode, after log replay, has a
3292 * matching link count. For example:
3293 *
3294 * touch foo
3295 * mkdir mydir
3296 * sync
3297 * ln foo mydir/bar
3298 * xfs_io -c "fsync" mydir
3299 * <crash>
3300 * <mount fs and log replay>
3301 *
3302 * Would result in a fsync log that when replayed, our
3303 * file inode would have a link count of 1, but we get
3304 * two directory entries pointing to the same inode.
3305 * After removing one of the names, it would not be
3306 * possible to remove the other name, which resulted
3307 * always in stale file handle errors, and would not
3308 * be possible to rmdir the parent directory, since
3309 * its i_size could never decrement to the value
3310 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3311 */
3312 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3313 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3314 if (ctx &&
3315 (btrfs_dir_transid(src, di) == trans->transid ||
3316 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3317 tmp.type != BTRFS_ROOT_ITEM_KEY)
3318 ctx->log_new_dentries = true;
e02119d5
CM
3319 }
3320 path->slots[0] = nritems;
3321
3322 /*
3323 * look ahead to the next item and see if it is also
3324 * from this directory and from this transaction
3325 */
3326 ret = btrfs_next_leaf(root, path);
3327 if (ret == 1) {
3328 last_offset = (u64)-1;
3329 goto done;
3330 }
3331 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3332 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3333 last_offset = (u64)-1;
3334 goto done;
3335 }
3336 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3337 ret = overwrite_item(trans, log, dst_path,
3338 path->nodes[0], path->slots[0],
3339 &tmp);
4a500fd1
YZ
3340 if (ret)
3341 err = ret;
3342 else
3343 last_offset = tmp.offset;
e02119d5
CM
3344 goto done;
3345 }
3346 }
3347done:
b3b4aa74
DS
3348 btrfs_release_path(path);
3349 btrfs_release_path(dst_path);
e02119d5 3350
4a500fd1
YZ
3351 if (err == 0) {
3352 *last_offset_ret = last_offset;
3353 /*
3354 * insert the log range keys to indicate where the log
3355 * is valid
3356 */
3357 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3358 ino, first_offset, last_offset);
4a500fd1
YZ
3359 if (ret)
3360 err = ret;
3361 }
3362 return err;
e02119d5
CM
3363}
3364
3365/*
3366 * logging directories is very similar to logging inodes, We find all the items
3367 * from the current transaction and write them to the log.
3368 *
3369 * The recovery code scans the directory in the subvolume, and if it finds a
3370 * key in the range logged that is not present in the log tree, then it means
3371 * that dir entry was unlinked during the transaction.
3372 *
3373 * In order for that scan to work, we must include one key smaller than
3374 * the smallest logged by this transaction and one key larger than the largest
3375 * key logged by this transaction.
3376 */
3377static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3378 struct btrfs_root *root, struct inode *inode,
3379 struct btrfs_path *path,
2f2ff0ee
FM
3380 struct btrfs_path *dst_path,
3381 struct btrfs_log_ctx *ctx)
e02119d5
CM
3382{
3383 u64 min_key;
3384 u64 max_key;
3385 int ret;
3386 int key_type = BTRFS_DIR_ITEM_KEY;
3387
3388again:
3389 min_key = 0;
3390 max_key = 0;
d397712b 3391 while (1) {
e02119d5 3392 ret = log_dir_items(trans, root, inode, path,
2f2ff0ee 3393 dst_path, key_type, ctx, min_key,
e02119d5 3394 &max_key);
4a500fd1
YZ
3395 if (ret)
3396 return ret;
e02119d5
CM
3397 if (max_key == (u64)-1)
3398 break;
3399 min_key = max_key + 1;
3400 }
3401
3402 if (key_type == BTRFS_DIR_ITEM_KEY) {
3403 key_type = BTRFS_DIR_INDEX_KEY;
3404 goto again;
3405 }
3406 return 0;
3407}
3408
3409/*
3410 * a helper function to drop items from the log before we relog an
3411 * inode. max_key_type indicates the highest item type to remove.
3412 * This cannot be run for file data extents because it does not
3413 * free the extents they point to.
3414 */
3415static int drop_objectid_items(struct btrfs_trans_handle *trans,
3416 struct btrfs_root *log,
3417 struct btrfs_path *path,
3418 u64 objectid, int max_key_type)
3419{
3420 int ret;
3421 struct btrfs_key key;
3422 struct btrfs_key found_key;
18ec90d6 3423 int start_slot;
e02119d5
CM
3424
3425 key.objectid = objectid;
3426 key.type = max_key_type;
3427 key.offset = (u64)-1;
3428
d397712b 3429 while (1) {
e02119d5 3430 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3431 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3432 if (ret < 0)
e02119d5
CM
3433 break;
3434
3435 if (path->slots[0] == 0)
3436 break;
3437
3438 path->slots[0]--;
3439 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3440 path->slots[0]);
3441
3442 if (found_key.objectid != objectid)
3443 break;
3444
18ec90d6
JB
3445 found_key.offset = 0;
3446 found_key.type = 0;
3447 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3448 &start_slot);
3449
3450 ret = btrfs_del_items(trans, log, path, start_slot,
3451 path->slots[0] - start_slot + 1);
3452 /*
3453 * If start slot isn't 0 then we don't need to re-search, we've
3454 * found the last guy with the objectid in this tree.
3455 */
3456 if (ret || start_slot != 0)
65a246c5 3457 break;
b3b4aa74 3458 btrfs_release_path(path);
e02119d5 3459 }
b3b4aa74 3460 btrfs_release_path(path);
5bdbeb21
JB
3461 if (ret > 0)
3462 ret = 0;
4a500fd1 3463 return ret;
e02119d5
CM
3464}
3465
94edf4ae
JB
3466static void fill_inode_item(struct btrfs_trans_handle *trans,
3467 struct extent_buffer *leaf,
3468 struct btrfs_inode_item *item,
1a4bcf47
FM
3469 struct inode *inode, int log_inode_only,
3470 u64 logged_isize)
94edf4ae 3471{
0b1c6cca
JB
3472 struct btrfs_map_token token;
3473
3474 btrfs_init_map_token(&token);
94edf4ae
JB
3475
3476 if (log_inode_only) {
3477 /* set the generation to zero so the recover code
3478 * can tell the difference between an logging
3479 * just to say 'this inode exists' and a logging
3480 * to say 'update this inode with these values'
3481 */
0b1c6cca 3482 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3483 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3484 } else {
0b1c6cca
JB
3485 btrfs_set_token_inode_generation(leaf, item,
3486 BTRFS_I(inode)->generation,
3487 &token);
3488 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3489 }
3490
3491 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3492 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3493 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3494 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3495
a937b979 3496 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3497 inode->i_atime.tv_sec, &token);
a937b979 3498 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3499 inode->i_atime.tv_nsec, &token);
3500
a937b979 3501 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3502 inode->i_mtime.tv_sec, &token);
a937b979 3503 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3504 inode->i_mtime.tv_nsec, &token);
3505
a937b979 3506 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3507 inode->i_ctime.tv_sec, &token);
a937b979 3508 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3509 inode->i_ctime.tv_nsec, &token);
3510
3511 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3512 &token);
3513
3514 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3515 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3516 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3517 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3518 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3519}
3520
a95249b3
JB
3521static int log_inode_item(struct btrfs_trans_handle *trans,
3522 struct btrfs_root *log, struct btrfs_path *path,
3523 struct inode *inode)
3524{
3525 struct btrfs_inode_item *inode_item;
a95249b3
JB
3526 int ret;
3527
efd0c405
FDBM
3528 ret = btrfs_insert_empty_item(trans, log, path,
3529 &BTRFS_I(inode)->location,
a95249b3
JB
3530 sizeof(*inode_item));
3531 if (ret && ret != -EEXIST)
3532 return ret;
3533 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3534 struct btrfs_inode_item);
1a4bcf47 3535 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
a95249b3
JB
3536 btrfs_release_path(path);
3537 return 0;
3538}
3539
31ff1cd2 3540static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3541 struct inode *inode,
31ff1cd2 3542 struct btrfs_path *dst_path,
16e7549f 3543 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3544 int start_slot, int nr, int inode_only,
3545 u64 logged_isize)
31ff1cd2
CM
3546{
3547 unsigned long src_offset;
3548 unsigned long dst_offset;
d2794405 3549 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3550 struct btrfs_file_extent_item *extent;
3551 struct btrfs_inode_item *inode_item;
16e7549f
JB
3552 struct extent_buffer *src = src_path->nodes[0];
3553 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3554 int ret;
3555 struct btrfs_key *ins_keys;
3556 u32 *ins_sizes;
3557 char *ins_data;
3558 int i;
d20f7043 3559 struct list_head ordered_sums;
d2794405 3560 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
16e7549f 3561 bool has_extents = false;
74121f7c 3562 bool need_find_last_extent = true;
16e7549f 3563 bool done = false;
d20f7043
CM
3564
3565 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3566
3567 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3568 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3569 if (!ins_data)
3570 return -ENOMEM;
3571
16e7549f
JB
3572 first_key.objectid = (u64)-1;
3573
31ff1cd2
CM
3574 ins_sizes = (u32 *)ins_data;
3575 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3576
3577 for (i = 0; i < nr; i++) {
3578 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3579 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3580 }
3581 ret = btrfs_insert_empty_items(trans, log, dst_path,
3582 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3583 if (ret) {
3584 kfree(ins_data);
3585 return ret;
3586 }
31ff1cd2 3587
5d4f98a2 3588 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3589 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3590 dst_path->slots[0]);
3591
3592 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3593
16e7549f
JB
3594 if ((i == (nr - 1)))
3595 last_key = ins_keys[i];
3596
94edf4ae 3597 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3598 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3599 dst_path->slots[0],
3600 struct btrfs_inode_item);
94edf4ae 3601 fill_inode_item(trans, dst_path->nodes[0], inode_item,
1a4bcf47
FM
3602 inode, inode_only == LOG_INODE_EXISTS,
3603 logged_isize);
94edf4ae
JB
3604 } else {
3605 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3606 src_offset, ins_sizes[i]);
31ff1cd2 3607 }
94edf4ae 3608
16e7549f
JB
3609 /*
3610 * We set need_find_last_extent here in case we know we were
3611 * processing other items and then walk into the first extent in
3612 * the inode. If we don't hit an extent then nothing changes,
3613 * we'll do the last search the next time around.
3614 */
3615 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3616 has_extents = true;
74121f7c 3617 if (first_key.objectid == (u64)-1)
16e7549f
JB
3618 first_key = ins_keys[i];
3619 } else {
3620 need_find_last_extent = false;
3621 }
3622
31ff1cd2
CM
3623 /* take a reference on file data extents so that truncates
3624 * or deletes of this inode don't have to relog the inode
3625 * again
3626 */
962a298f 3627 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3628 !skip_csum) {
31ff1cd2
CM
3629 int found_type;
3630 extent = btrfs_item_ptr(src, start_slot + i,
3631 struct btrfs_file_extent_item);
3632
8e531cdf 3633 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3634 continue;
3635
31ff1cd2 3636 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3637 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3638 u64 ds, dl, cs, cl;
3639 ds = btrfs_file_extent_disk_bytenr(src,
3640 extent);
3641 /* ds == 0 is a hole */
3642 if (ds == 0)
3643 continue;
3644
3645 dl = btrfs_file_extent_disk_num_bytes(src,
3646 extent);
3647 cs = btrfs_file_extent_offset(src, extent);
3648 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3649 extent);
580afd76
CM
3650 if (btrfs_file_extent_compression(src,
3651 extent)) {
3652 cs = 0;
3653 cl = dl;
3654 }
5d4f98a2
YZ
3655
3656 ret = btrfs_lookup_csums_range(
3657 log->fs_info->csum_root,
3658 ds + cs, ds + cs + cl - 1,
a2de733c 3659 &ordered_sums, 0);
3650860b
JB
3660 if (ret) {
3661 btrfs_release_path(dst_path);
3662 kfree(ins_data);
3663 return ret;
3664 }
31ff1cd2
CM
3665 }
3666 }
31ff1cd2
CM
3667 }
3668
3669 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3670 btrfs_release_path(dst_path);
31ff1cd2 3671 kfree(ins_data);
d20f7043
CM
3672
3673 /*
3674 * we have to do this after the loop above to avoid changing the
3675 * log tree while trying to change the log tree.
3676 */
4a500fd1 3677 ret = 0;
d397712b 3678 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3679 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3680 struct btrfs_ordered_sum,
3681 list);
4a500fd1
YZ
3682 if (!ret)
3683 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3684 list_del(&sums->list);
3685 kfree(sums);
3686 }
16e7549f
JB
3687
3688 if (!has_extents)
3689 return ret;
3690
74121f7c
FM
3691 if (need_find_last_extent && *last_extent == first_key.offset) {
3692 /*
3693 * We don't have any leafs between our current one and the one
3694 * we processed before that can have file extent items for our
3695 * inode (and have a generation number smaller than our current
3696 * transaction id).
3697 */
3698 need_find_last_extent = false;
3699 }
3700
16e7549f
JB
3701 /*
3702 * Because we use btrfs_search_forward we could skip leaves that were
3703 * not modified and then assume *last_extent is valid when it really
3704 * isn't. So back up to the previous leaf and read the end of the last
3705 * extent before we go and fill in holes.
3706 */
3707 if (need_find_last_extent) {
3708 u64 len;
3709
3710 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3711 if (ret < 0)
3712 return ret;
3713 if (ret)
3714 goto fill_holes;
3715 if (src_path->slots[0])
3716 src_path->slots[0]--;
3717 src = src_path->nodes[0];
3718 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3719 if (key.objectid != btrfs_ino(inode) ||
3720 key.type != BTRFS_EXTENT_DATA_KEY)
3721 goto fill_holes;
3722 extent = btrfs_item_ptr(src, src_path->slots[0],
3723 struct btrfs_file_extent_item);
3724 if (btrfs_file_extent_type(src, extent) ==
3725 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3726 len = btrfs_file_extent_inline_len(src,
3727 src_path->slots[0],
3728 extent);
16e7549f
JB
3729 *last_extent = ALIGN(key.offset + len,
3730 log->sectorsize);
3731 } else {
3732 len = btrfs_file_extent_num_bytes(src, extent);
3733 *last_extent = key.offset + len;
3734 }
3735 }
3736fill_holes:
3737 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3738 * things could have happened
3739 *
3740 * 1) A merge could have happened, so we could currently be on a leaf
3741 * that holds what we were copying in the first place.
3742 * 2) A split could have happened, and now not all of the items we want
3743 * are on the same leaf.
3744 *
3745 * So we need to adjust how we search for holes, we need to drop the
3746 * path and re-search for the first extent key we found, and then walk
3747 * forward until we hit the last one we copied.
3748 */
3749 if (need_find_last_extent) {
3750 /* btrfs_prev_leaf could return 1 without releasing the path */
3751 btrfs_release_path(src_path);
3752 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3753 src_path, 0, 0);
3754 if (ret < 0)
3755 return ret;
3756 ASSERT(ret == 0);
3757 src = src_path->nodes[0];
3758 i = src_path->slots[0];
3759 } else {
3760 i = start_slot;
3761 }
3762
3763 /*
3764 * Ok so here we need to go through and fill in any holes we may have
3765 * to make sure that holes are punched for those areas in case they had
3766 * extents previously.
3767 */
3768 while (!done) {
3769 u64 offset, len;
3770 u64 extent_end;
3771
3772 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3773 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3774 if (ret < 0)
3775 return ret;
3776 ASSERT(ret == 0);
3777 src = src_path->nodes[0];
3778 i = 0;
3779 }
3780
3781 btrfs_item_key_to_cpu(src, &key, i);
3782 if (!btrfs_comp_cpu_keys(&key, &last_key))
3783 done = true;
3784 if (key.objectid != btrfs_ino(inode) ||
3785 key.type != BTRFS_EXTENT_DATA_KEY) {
3786 i++;
3787 continue;
3788 }
3789 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3790 if (btrfs_file_extent_type(src, extent) ==
3791 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3792 len = btrfs_file_extent_inline_len(src, i, extent);
16e7549f
JB
3793 extent_end = ALIGN(key.offset + len, log->sectorsize);
3794 } else {
3795 len = btrfs_file_extent_num_bytes(src, extent);
3796 extent_end = key.offset + len;
3797 }
3798 i++;
3799
3800 if (*last_extent == key.offset) {
3801 *last_extent = extent_end;
3802 continue;
3803 }
3804 offset = *last_extent;
3805 len = key.offset - *last_extent;
3806 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3807 offset, 0, 0, len, 0, len, 0,
3808 0, 0);
3809 if (ret)
3810 break;
74121f7c 3811 *last_extent = extent_end;
16e7549f
JB
3812 }
3813 /*
3814 * Need to let the callers know we dropped the path so they should
3815 * re-search.
3816 */
3817 if (!ret && need_find_last_extent)
3818 ret = 1;
4a500fd1 3819 return ret;
31ff1cd2
CM
3820}
3821
5dc562c5
JB
3822static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3823{
3824 struct extent_map *em1, *em2;
3825
3826 em1 = list_entry(a, struct extent_map, list);
3827 em2 = list_entry(b, struct extent_map, list);
3828
3829 if (em1->start < em2->start)
3830 return -1;
3831 else if (em1->start > em2->start)
3832 return 1;
3833 return 0;
3834}
3835
8407f553
FM
3836static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3837 struct inode *inode,
3838 struct btrfs_root *root,
3839 const struct extent_map *em,
3840 const struct list_head *logged_list,
3841 bool *ordered_io_error)
5dc562c5 3842{
2ab28f32 3843 struct btrfs_ordered_extent *ordered;
8407f553 3844 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3845 u64 mod_start = em->mod_start;
3846 u64 mod_len = em->mod_len;
8407f553 3847 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3848 u64 csum_offset;
3849 u64 csum_len;
8407f553
FM
3850 LIST_HEAD(ordered_sums);
3851 int ret = 0;
0aa4a17d 3852
8407f553 3853 *ordered_io_error = false;
0aa4a17d 3854
8407f553
FM
3855 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3856 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3857 return 0;
5dc562c5 3858
2ab28f32 3859 /*
8407f553
FM
3860 * Wait far any ordered extent that covers our extent map. If it
3861 * finishes without an error, first check and see if our csums are on
3862 * our outstanding ordered extents.
2ab28f32 3863 */
827463c4 3864 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3865 struct btrfs_ordered_sum *sum;
3866
3867 if (!mod_len)
3868 break;
3869
2ab28f32
JB
3870 if (ordered->file_offset + ordered->len <= mod_start ||
3871 mod_start + mod_len <= ordered->file_offset)
3872 continue;
3873
8407f553
FM
3874 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3875 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3876 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3877 const u64 start = ordered->file_offset;
3878 const u64 end = ordered->file_offset + ordered->len - 1;
3879
3880 WARN_ON(ordered->inode != inode);
3881 filemap_fdatawrite_range(inode->i_mapping, start, end);
3882 }
3883
3884 wait_event(ordered->wait,
3885 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3886 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3887
3888 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3889 /*
3890 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3891 * i_mapping flags, so that the next fsync won't get
3892 * an outdated io error too.
3893 */
3894 btrfs_inode_check_errors(inode);
8407f553
FM
3895 *ordered_io_error = true;
3896 break;
3897 }
2ab28f32
JB
3898 /*
3899 * We are going to copy all the csums on this ordered extent, so
3900 * go ahead and adjust mod_start and mod_len in case this
3901 * ordered extent has already been logged.
3902 */
3903 if (ordered->file_offset > mod_start) {
3904 if (ordered->file_offset + ordered->len >=
3905 mod_start + mod_len)
3906 mod_len = ordered->file_offset - mod_start;
3907 /*
3908 * If we have this case
3909 *
3910 * |--------- logged extent ---------|
3911 * |----- ordered extent ----|
3912 *
3913 * Just don't mess with mod_start and mod_len, we'll
3914 * just end up logging more csums than we need and it
3915 * will be ok.
3916 */
3917 } else {
3918 if (ordered->file_offset + ordered->len <
3919 mod_start + mod_len) {
3920 mod_len = (mod_start + mod_len) -
3921 (ordered->file_offset + ordered->len);
3922 mod_start = ordered->file_offset +
3923 ordered->len;
3924 } else {
3925 mod_len = 0;
3926 }
3927 }
3928
8407f553
FM
3929 if (skip_csum)
3930 continue;
3931
2ab28f32
JB
3932 /*
3933 * To keep us from looping for the above case of an ordered
3934 * extent that falls inside of the logged extent.
3935 */
3936 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3937 &ordered->flags))
3938 continue;
2ab28f32 3939
2ab28f32
JB
3940 list_for_each_entry(sum, &ordered->list, list) {
3941 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 3942 if (ret)
8407f553 3943 break;
2ab28f32 3944 }
2ab28f32 3945 }
2ab28f32 3946
8407f553 3947 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
3948 return ret;
3949
488111aa
FDBM
3950 if (em->compress_type) {
3951 csum_offset = 0;
8407f553 3952 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
3953 } else {
3954 csum_offset = mod_start - em->start;
3955 csum_len = mod_len;
3956 }
2ab28f32 3957
70c8a91c
JB
3958 /* block start is already adjusted for the file extent offset. */
3959 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3960 em->block_start + csum_offset,
3961 em->block_start + csum_offset +
3962 csum_len - 1, &ordered_sums, 0);
3963 if (ret)
3964 return ret;
5dc562c5 3965
70c8a91c
JB
3966 while (!list_empty(&ordered_sums)) {
3967 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3968 struct btrfs_ordered_sum,
3969 list);
3970 if (!ret)
3971 ret = btrfs_csum_file_blocks(trans, log, sums);
3972 list_del(&sums->list);
3973 kfree(sums);
5dc562c5
JB
3974 }
3975
70c8a91c 3976 return ret;
5dc562c5
JB
3977}
3978
8407f553
FM
3979static int log_one_extent(struct btrfs_trans_handle *trans,
3980 struct inode *inode, struct btrfs_root *root,
3981 const struct extent_map *em,
3982 struct btrfs_path *path,
3983 const struct list_head *logged_list,
3984 struct btrfs_log_ctx *ctx)
3985{
3986 struct btrfs_root *log = root->log_root;
3987 struct btrfs_file_extent_item *fi;
3988 struct extent_buffer *leaf;
3989 struct btrfs_map_token token;
3990 struct btrfs_key key;
3991 u64 extent_offset = em->start - em->orig_start;
3992 u64 block_len;
3993 int ret;
3994 int extent_inserted = 0;
3995 bool ordered_io_err = false;
3996
3997 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3998 &ordered_io_err);
3999 if (ret)
4000 return ret;
4001
4002 if (ordered_io_err) {
4003 ctx->io_err = -EIO;
4004 return 0;
4005 }
4006
4007 btrfs_init_map_token(&token);
4008
4009 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4010 em->start + em->len, NULL, 0, 1,
4011 sizeof(*fi), &extent_inserted);
4012 if (ret)
4013 return ret;
4014
4015 if (!extent_inserted) {
4016 key.objectid = btrfs_ino(inode);
4017 key.type = BTRFS_EXTENT_DATA_KEY;
4018 key.offset = em->start;
4019
4020 ret = btrfs_insert_empty_item(trans, log, path, &key,
4021 sizeof(*fi));
4022 if (ret)
4023 return ret;
4024 }
4025 leaf = path->nodes[0];
4026 fi = btrfs_item_ptr(leaf, path->slots[0],
4027 struct btrfs_file_extent_item);
4028
50d9aa99 4029 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4030 &token);
4031 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4032 btrfs_set_token_file_extent_type(leaf, fi,
4033 BTRFS_FILE_EXTENT_PREALLOC,
4034 &token);
4035 else
4036 btrfs_set_token_file_extent_type(leaf, fi,
4037 BTRFS_FILE_EXTENT_REG,
4038 &token);
4039
4040 block_len = max(em->block_len, em->orig_block_len);
4041 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4042 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4043 em->block_start,
4044 &token);
4045 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4046 &token);
4047 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4048 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4049 em->block_start -
4050 extent_offset, &token);
4051 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4052 &token);
4053 } else {
4054 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4055 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4056 &token);
4057 }
4058
4059 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4060 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4061 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4062 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4063 &token);
4064 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4065 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4066 btrfs_mark_buffer_dirty(leaf);
4067
4068 btrfs_release_path(path);
4069
4070 return ret;
4071}
4072
5dc562c5
JB
4073static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4074 struct btrfs_root *root,
4075 struct inode *inode,
827463c4 4076 struct btrfs_path *path,
8407f553
FM
4077 struct list_head *logged_list,
4078 struct btrfs_log_ctx *ctx)
5dc562c5 4079{
5dc562c5
JB
4080 struct extent_map *em, *n;
4081 struct list_head extents;
4082 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4083 u64 test_gen;
4084 int ret = 0;
2ab28f32 4085 int num = 0;
5dc562c5
JB
4086
4087 INIT_LIST_HEAD(&extents);
4088
5dc562c5
JB
4089 write_lock(&tree->lock);
4090 test_gen = root->fs_info->last_trans_committed;
4091
4092 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4093 list_del_init(&em->list);
2ab28f32
JB
4094
4095 /*
4096 * Just an arbitrary number, this can be really CPU intensive
4097 * once we start getting a lot of extents, and really once we
4098 * have a bunch of extents we just want to commit since it will
4099 * be faster.
4100 */
4101 if (++num > 32768) {
4102 list_del_init(&tree->modified_extents);
4103 ret = -EFBIG;
4104 goto process;
4105 }
4106
5dc562c5
JB
4107 if (em->generation <= test_gen)
4108 continue;
ff44c6e3
JB
4109 /* Need a ref to keep it from getting evicted from cache */
4110 atomic_inc(&em->refs);
4111 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4112 list_add_tail(&em->list, &extents);
2ab28f32 4113 num++;
5dc562c5
JB
4114 }
4115
4116 list_sort(NULL, &extents, extent_cmp);
4117
2ab28f32 4118process:
5dc562c5
JB
4119 while (!list_empty(&extents)) {
4120 em = list_entry(extents.next, struct extent_map, list);
4121
4122 list_del_init(&em->list);
4123
4124 /*
4125 * If we had an error we just need to delete everybody from our
4126 * private list.
4127 */
ff44c6e3 4128 if (ret) {
201a9038 4129 clear_em_logging(tree, em);
ff44c6e3 4130 free_extent_map(em);
5dc562c5 4131 continue;
ff44c6e3
JB
4132 }
4133
4134 write_unlock(&tree->lock);
5dc562c5 4135
8407f553
FM
4136 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4137 ctx);
ff44c6e3 4138 write_lock(&tree->lock);
201a9038
JB
4139 clear_em_logging(tree, em);
4140 free_extent_map(em);
5dc562c5 4141 }
ff44c6e3
JB
4142 WARN_ON(!list_empty(&extents));
4143 write_unlock(&tree->lock);
5dc562c5 4144
5dc562c5 4145 btrfs_release_path(path);
5dc562c5
JB
4146 return ret;
4147}
4148
1a4bcf47
FM
4149static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4150 struct btrfs_path *path, u64 *size_ret)
4151{
4152 struct btrfs_key key;
4153 int ret;
4154
4155 key.objectid = btrfs_ino(inode);
4156 key.type = BTRFS_INODE_ITEM_KEY;
4157 key.offset = 0;
4158
4159 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4160 if (ret < 0) {
4161 return ret;
4162 } else if (ret > 0) {
2f2ff0ee 4163 *size_ret = 0;
1a4bcf47
FM
4164 } else {
4165 struct btrfs_inode_item *item;
4166
4167 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4168 struct btrfs_inode_item);
4169 *size_ret = btrfs_inode_size(path->nodes[0], item);
4170 }
4171
4172 btrfs_release_path(path);
4173 return 0;
4174}
4175
36283bf7
FM
4176/*
4177 * At the moment we always log all xattrs. This is to figure out at log replay
4178 * time which xattrs must have their deletion replayed. If a xattr is missing
4179 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4180 * because if a xattr is deleted, the inode is fsynced and a power failure
4181 * happens, causing the log to be replayed the next time the fs is mounted,
4182 * we want the xattr to not exist anymore (same behaviour as other filesystems
4183 * with a journal, ext3/4, xfs, f2fs, etc).
4184 */
4185static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4186 struct btrfs_root *root,
4187 struct inode *inode,
4188 struct btrfs_path *path,
4189 struct btrfs_path *dst_path)
4190{
4191 int ret;
4192 struct btrfs_key key;
4193 const u64 ino = btrfs_ino(inode);
4194 int ins_nr = 0;
4195 int start_slot = 0;
4196
4197 key.objectid = ino;
4198 key.type = BTRFS_XATTR_ITEM_KEY;
4199 key.offset = 0;
4200
4201 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4202 if (ret < 0)
4203 return ret;
4204
4205 while (true) {
4206 int slot = path->slots[0];
4207 struct extent_buffer *leaf = path->nodes[0];
4208 int nritems = btrfs_header_nritems(leaf);
4209
4210 if (slot >= nritems) {
4211 if (ins_nr > 0) {
4212 u64 last_extent = 0;
4213
4214 ret = copy_items(trans, inode, dst_path, path,
4215 &last_extent, start_slot,
4216 ins_nr, 1, 0);
4217 /* can't be 1, extent items aren't processed */
4218 ASSERT(ret <= 0);
4219 if (ret < 0)
4220 return ret;
4221 ins_nr = 0;
4222 }
4223 ret = btrfs_next_leaf(root, path);
4224 if (ret < 0)
4225 return ret;
4226 else if (ret > 0)
4227 break;
4228 continue;
4229 }
4230
4231 btrfs_item_key_to_cpu(leaf, &key, slot);
4232 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4233 break;
4234
4235 if (ins_nr == 0)
4236 start_slot = slot;
4237 ins_nr++;
4238 path->slots[0]++;
4239 cond_resched();
4240 }
4241 if (ins_nr > 0) {
4242 u64 last_extent = 0;
4243
4244 ret = copy_items(trans, inode, dst_path, path,
4245 &last_extent, start_slot,
4246 ins_nr, 1, 0);
4247 /* can't be 1, extent items aren't processed */
4248 ASSERT(ret <= 0);
4249 if (ret < 0)
4250 return ret;
4251 }
4252
4253 return 0;
4254}
4255
a89ca6f2
FM
4256/*
4257 * If the no holes feature is enabled we need to make sure any hole between the
4258 * last extent and the i_size of our inode is explicitly marked in the log. This
4259 * is to make sure that doing something like:
4260 *
4261 * 1) create file with 128Kb of data
4262 * 2) truncate file to 64Kb
4263 * 3) truncate file to 256Kb
4264 * 4) fsync file
4265 * 5) <crash/power failure>
4266 * 6) mount fs and trigger log replay
4267 *
4268 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4269 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4270 * file correspond to a hole. The presence of explicit holes in a log tree is
4271 * what guarantees that log replay will remove/adjust file extent items in the
4272 * fs/subvol tree.
4273 *
4274 * Here we do not need to care about holes between extents, that is already done
4275 * by copy_items(). We also only need to do this in the full sync path, where we
4276 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4277 * lookup the list of modified extent maps and if any represents a hole, we
4278 * insert a corresponding extent representing a hole in the log tree.
4279 */
4280static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4281 struct btrfs_root *root,
4282 struct inode *inode,
4283 struct btrfs_path *path)
4284{
4285 int ret;
4286 struct btrfs_key key;
4287 u64 hole_start;
4288 u64 hole_size;
4289 struct extent_buffer *leaf;
4290 struct btrfs_root *log = root->log_root;
4291 const u64 ino = btrfs_ino(inode);
4292 const u64 i_size = i_size_read(inode);
4293
4294 if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4295 return 0;
4296
4297 key.objectid = ino;
4298 key.type = BTRFS_EXTENT_DATA_KEY;
4299 key.offset = (u64)-1;
4300
4301 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4302 ASSERT(ret != 0);
4303 if (ret < 0)
4304 return ret;
4305
4306 ASSERT(path->slots[0] > 0);
4307 path->slots[0]--;
4308 leaf = path->nodes[0];
4309 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4310
4311 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4312 /* inode does not have any extents */
4313 hole_start = 0;
4314 hole_size = i_size;
4315 } else {
4316 struct btrfs_file_extent_item *extent;
4317 u64 len;
4318
4319 /*
4320 * If there's an extent beyond i_size, an explicit hole was
4321 * already inserted by copy_items().
4322 */
4323 if (key.offset >= i_size)
4324 return 0;
4325
4326 extent = btrfs_item_ptr(leaf, path->slots[0],
4327 struct btrfs_file_extent_item);
4328
4329 if (btrfs_file_extent_type(leaf, extent) ==
4330 BTRFS_FILE_EXTENT_INLINE) {
4331 len = btrfs_file_extent_inline_len(leaf,
4332 path->slots[0],
4333 extent);
4334 ASSERT(len == i_size);
4335 return 0;
4336 }
4337
4338 len = btrfs_file_extent_num_bytes(leaf, extent);
4339 /* Last extent goes beyond i_size, no need to log a hole. */
4340 if (key.offset + len > i_size)
4341 return 0;
4342 hole_start = key.offset + len;
4343 hole_size = i_size - hole_start;
4344 }
4345 btrfs_release_path(path);
4346
4347 /* Last extent ends at i_size. */
4348 if (hole_size == 0)
4349 return 0;
4350
4351 hole_size = ALIGN(hole_size, root->sectorsize);
4352 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4353 hole_size, 0, hole_size, 0, 0, 0);
4354 return ret;
4355}
4356
e02119d5
CM
4357/* log a single inode in the tree log.
4358 * At least one parent directory for this inode must exist in the tree
4359 * or be logged already.
4360 *
4361 * Any items from this inode changed by the current transaction are copied
4362 * to the log tree. An extra reference is taken on any extents in this
4363 * file, allowing us to avoid a whole pile of corner cases around logging
4364 * blocks that have been removed from the tree.
4365 *
4366 * See LOG_INODE_ALL and related defines for a description of what inode_only
4367 * does.
4368 *
4369 * This handles both files and directories.
4370 */
12fcfd22 4371static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
4372 struct btrfs_root *root, struct inode *inode,
4373 int inode_only,
4374 const loff_t start,
8407f553
FM
4375 const loff_t end,
4376 struct btrfs_log_ctx *ctx)
e02119d5
CM
4377{
4378 struct btrfs_path *path;
4379 struct btrfs_path *dst_path;
4380 struct btrfs_key min_key;
4381 struct btrfs_key max_key;
4382 struct btrfs_root *log = root->log_root;
31ff1cd2 4383 struct extent_buffer *src = NULL;
827463c4 4384 LIST_HEAD(logged_list);
16e7549f 4385 u64 last_extent = 0;
4a500fd1 4386 int err = 0;
e02119d5 4387 int ret;
3a5f1d45 4388 int nritems;
31ff1cd2
CM
4389 int ins_start_slot = 0;
4390 int ins_nr;
5dc562c5 4391 bool fast_search = false;
33345d01 4392 u64 ino = btrfs_ino(inode);
49dae1bc 4393 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1a4bcf47 4394 u64 logged_isize = 0;
e4545de5 4395 bool need_log_inode_item = true;
e02119d5 4396
e02119d5 4397 path = btrfs_alloc_path();
5df67083
TI
4398 if (!path)
4399 return -ENOMEM;
e02119d5 4400 dst_path = btrfs_alloc_path();
5df67083
TI
4401 if (!dst_path) {
4402 btrfs_free_path(path);
4403 return -ENOMEM;
4404 }
e02119d5 4405
33345d01 4406 min_key.objectid = ino;
e02119d5
CM
4407 min_key.type = BTRFS_INODE_ITEM_KEY;
4408 min_key.offset = 0;
4409
33345d01 4410 max_key.objectid = ino;
12fcfd22 4411
12fcfd22 4412
5dc562c5 4413 /* today the code can only do partial logging of directories */
5269b67e
MX
4414 if (S_ISDIR(inode->i_mode) ||
4415 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4416 &BTRFS_I(inode)->runtime_flags) &&
4417 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
4418 max_key.type = BTRFS_XATTR_ITEM_KEY;
4419 else
4420 max_key.type = (u8)-1;
4421 max_key.offset = (u64)-1;
4422
2c2c452b
FM
4423 /*
4424 * Only run delayed items if we are a dir or a new file.
4425 * Otherwise commit the delayed inode only, which is needed in
4426 * order for the log replay code to mark inodes for link count
4427 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4428 */
94edf4ae 4429 if (S_ISDIR(inode->i_mode) ||
2c2c452b 4430 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
94edf4ae 4431 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b
FM
4432 else
4433 ret = btrfs_commit_inode_delayed_inode(inode);
4434
4435 if (ret) {
4436 btrfs_free_path(path);
4437 btrfs_free_path(dst_path);
4438 return ret;
16cdcec7
MX
4439 }
4440
e02119d5
CM
4441 mutex_lock(&BTRFS_I(inode)->log_mutex);
4442
0870295b 4443 btrfs_get_logged_extents(inode, &logged_list, start, end);
2ab28f32 4444
e02119d5
CM
4445 /*
4446 * a brute force approach to making sure we get the most uptodate
4447 * copies of everything.
4448 */
4449 if (S_ISDIR(inode->i_mode)) {
4450 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4451
4f764e51
FM
4452 if (inode_only == LOG_INODE_EXISTS)
4453 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4454 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4455 } else {
1a4bcf47
FM
4456 if (inode_only == LOG_INODE_EXISTS) {
4457 /*
4458 * Make sure the new inode item we write to the log has
4459 * the same isize as the current one (if it exists).
4460 * This is necessary to prevent data loss after log
4461 * replay, and also to prevent doing a wrong expanding
4462 * truncate - for e.g. create file, write 4K into offset
4463 * 0, fsync, write 4K into offset 4096, add hard link,
4464 * fsync some other file (to sync log), power fail - if
4465 * we use the inode's current i_size, after log replay
4466 * we get a 8Kb file, with the last 4Kb extent as a hole
4467 * (zeroes), as if an expanding truncate happened,
4468 * instead of getting a file of 4Kb only.
4469 */
4470 err = logged_inode_size(log, inode, path,
4471 &logged_isize);
4472 if (err)
4473 goto out_unlock;
4474 }
a742994a
FM
4475 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4476 &BTRFS_I(inode)->runtime_flags)) {
4477 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4478 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4479 ret = drop_objectid_items(trans, log, path, ino,
4480 max_key.type);
4481 } else {
4482 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4483 &BTRFS_I(inode)->runtime_flags);
4484 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4485 &BTRFS_I(inode)->runtime_flags);
28ed1345
CM
4486 while(1) {
4487 ret = btrfs_truncate_inode_items(trans,
4488 log, inode, 0, 0);
4489 if (ret != -EAGAIN)
4490 break;
4491 }
a742994a 4492 }
4f764e51
FM
4493 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4494 &BTRFS_I(inode)->runtime_flags) ||
6cfab851 4495 inode_only == LOG_INODE_EXISTS) {
4f764e51 4496 if (inode_only == LOG_INODE_ALL)
183f37fa 4497 fast_search = true;
4f764e51 4498 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4499 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4500 max_key.type);
a95249b3
JB
4501 } else {
4502 if (inode_only == LOG_INODE_ALL)
4503 fast_search = true;
a95249b3 4504 goto log_extents;
5dc562c5 4505 }
a95249b3 4506
e02119d5 4507 }
4a500fd1
YZ
4508 if (ret) {
4509 err = ret;
4510 goto out_unlock;
4511 }
e02119d5 4512
d397712b 4513 while (1) {
31ff1cd2 4514 ins_nr = 0;
6174d3cb 4515 ret = btrfs_search_forward(root, &min_key,
de78b51a 4516 path, trans->transid);
e02119d5
CM
4517 if (ret != 0)
4518 break;
3a5f1d45 4519again:
31ff1cd2 4520 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4521 if (min_key.objectid != ino)
e02119d5
CM
4522 break;
4523 if (min_key.type > max_key.type)
4524 break;
31ff1cd2 4525
e4545de5
FM
4526 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4527 need_log_inode_item = false;
4528
36283bf7
FM
4529 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4530 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4531 if (ins_nr == 0)
4532 goto next_slot;
4533 ret = copy_items(trans, inode, dst_path, path,
4534 &last_extent, ins_start_slot,
4535 ins_nr, inode_only, logged_isize);
4536 if (ret < 0) {
4537 err = ret;
4538 goto out_unlock;
4539 }
4540 ins_nr = 0;
4541 if (ret) {
4542 btrfs_release_path(path);
4543 continue;
4544 }
4545 goto next_slot;
4546 }
4547
e02119d5 4548 src = path->nodes[0];
31ff1cd2
CM
4549 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4550 ins_nr++;
4551 goto next_slot;
4552 } else if (!ins_nr) {
4553 ins_start_slot = path->slots[0];
4554 ins_nr = 1;
4555 goto next_slot;
e02119d5
CM
4556 }
4557
16e7549f 4558 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4559 ins_start_slot, ins_nr, inode_only,
4560 logged_isize);
16e7549f 4561 if (ret < 0) {
4a500fd1
YZ
4562 err = ret;
4563 goto out_unlock;
a71db86e
RV
4564 }
4565 if (ret) {
16e7549f
JB
4566 ins_nr = 0;
4567 btrfs_release_path(path);
4568 continue;
4a500fd1 4569 }
31ff1cd2
CM
4570 ins_nr = 1;
4571 ins_start_slot = path->slots[0];
4572next_slot:
e02119d5 4573
3a5f1d45
CM
4574 nritems = btrfs_header_nritems(path->nodes[0]);
4575 path->slots[0]++;
4576 if (path->slots[0] < nritems) {
4577 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4578 path->slots[0]);
4579 goto again;
4580 }
31ff1cd2 4581 if (ins_nr) {
16e7549f
JB
4582 ret = copy_items(trans, inode, dst_path, path,
4583 &last_extent, ins_start_slot,
1a4bcf47 4584 ins_nr, inode_only, logged_isize);
16e7549f 4585 if (ret < 0) {
4a500fd1
YZ
4586 err = ret;
4587 goto out_unlock;
4588 }
16e7549f 4589 ret = 0;
31ff1cd2
CM
4590 ins_nr = 0;
4591 }
b3b4aa74 4592 btrfs_release_path(path);
3a5f1d45 4593
3d41d702 4594 if (min_key.offset < (u64)-1) {
e02119d5 4595 min_key.offset++;
3d41d702 4596 } else if (min_key.type < max_key.type) {
e02119d5 4597 min_key.type++;
3d41d702
FDBM
4598 min_key.offset = 0;
4599 } else {
e02119d5 4600 break;
3d41d702 4601 }
e02119d5 4602 }
31ff1cd2 4603 if (ins_nr) {
16e7549f 4604 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4605 ins_start_slot, ins_nr, inode_only,
4606 logged_isize);
16e7549f 4607 if (ret < 0) {
4a500fd1
YZ
4608 err = ret;
4609 goto out_unlock;
4610 }
16e7549f 4611 ret = 0;
31ff1cd2
CM
4612 ins_nr = 0;
4613 }
5dc562c5 4614
36283bf7
FM
4615 btrfs_release_path(path);
4616 btrfs_release_path(dst_path);
4617 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4618 if (err)
4619 goto out_unlock;
a89ca6f2
FM
4620 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4621 btrfs_release_path(path);
4622 btrfs_release_path(dst_path);
4623 err = btrfs_log_trailing_hole(trans, root, inode, path);
4624 if (err)
4625 goto out_unlock;
4626 }
a95249b3 4627log_extents:
f3b15ccd
JB
4628 btrfs_release_path(path);
4629 btrfs_release_path(dst_path);
e4545de5
FM
4630 if (need_log_inode_item) {
4631 err = log_inode_item(trans, log, dst_path, inode);
4632 if (err)
4633 goto out_unlock;
4634 }
5dc562c5 4635 if (fast_search) {
b38ef71c
FM
4636 /*
4637 * Some ordered extents started by fsync might have completed
4638 * before we collected the ordered extents in logged_list, which
4639 * means they're gone, not in our logged_list nor in the inode's
4640 * ordered tree. We want the application/user space to know an
4641 * error happened while attempting to persist file data so that
4642 * it can take proper action. If such error happened, we leave
4643 * without writing to the log tree and the fsync must report the
4644 * file data write error and not commit the current transaction.
4645 */
4646 err = btrfs_inode_check_errors(inode);
4647 if (err) {
4648 ctx->io_err = err;
4649 goto out_unlock;
4650 }
827463c4 4651 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
8407f553 4652 &logged_list, ctx);
5dc562c5
JB
4653 if (ret) {
4654 err = ret;
4655 goto out_unlock;
4656 }
d006a048 4657 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4658 struct extent_map *em, *n;
4659
49dae1bc
FM
4660 write_lock(&em_tree->lock);
4661 /*
4662 * We can't just remove every em if we're called for a ranged
4663 * fsync - that is, one that doesn't cover the whole possible
4664 * file range (0 to LLONG_MAX). This is because we can have
4665 * em's that fall outside the range we're logging and therefore
4666 * their ordered operations haven't completed yet
4667 * (btrfs_finish_ordered_io() not invoked yet). This means we
4668 * didn't get their respective file extent item in the fs/subvol
4669 * tree yet, and need to let the next fast fsync (one which
4670 * consults the list of modified extent maps) find the em so
4671 * that it logs a matching file extent item and waits for the
4672 * respective ordered operation to complete (if it's still
4673 * running).
4674 *
4675 * Removing every em outside the range we're logging would make
4676 * the next fast fsync not log their matching file extent items,
4677 * therefore making us lose data after a log replay.
4678 */
4679 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4680 list) {
4681 const u64 mod_end = em->mod_start + em->mod_len - 1;
4682
4683 if (em->mod_start >= start && mod_end <= end)
4684 list_del_init(&em->list);
4685 }
4686 write_unlock(&em_tree->lock);
5dc562c5
JB
4687 }
4688
9623f9a3 4689 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2f2ff0ee
FM
4690 ret = log_directory_changes(trans, root, inode, path, dst_path,
4691 ctx);
4a500fd1
YZ
4692 if (ret) {
4693 err = ret;
4694 goto out_unlock;
4695 }
e02119d5 4696 }
49dae1bc 4697
2f2ff0ee 4698 spin_lock(&BTRFS_I(inode)->lock);
125c4cf9
FM
4699 BTRFS_I(inode)->logged_trans = trans->transid;
4700 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
2f2ff0ee 4701 spin_unlock(&BTRFS_I(inode)->lock);
4a500fd1 4702out_unlock:
827463c4
MX
4703 if (unlikely(err))
4704 btrfs_put_logged_extents(&logged_list);
4705 else
4706 btrfs_submit_logged_extents(&logged_list, log);
e02119d5
CM
4707 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4708
4709 btrfs_free_path(path);
4710 btrfs_free_path(dst_path);
4a500fd1 4711 return err;
e02119d5
CM
4712}
4713
12fcfd22
CM
4714/*
4715 * follow the dentry parent pointers up the chain and see if any
4716 * of the directories in it require a full commit before they can
4717 * be logged. Returns zero if nothing special needs to be done or 1 if
4718 * a full commit is required.
4719 */
4720static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4721 struct inode *inode,
4722 struct dentry *parent,
4723 struct super_block *sb,
4724 u64 last_committed)
e02119d5 4725{
12fcfd22
CM
4726 int ret = 0;
4727 struct btrfs_root *root;
6a912213 4728 struct dentry *old_parent = NULL;
de2b530b 4729 struct inode *orig_inode = inode;
e02119d5 4730
af4176b4
CM
4731 /*
4732 * for regular files, if its inode is already on disk, we don't
4733 * have to worry about the parents at all. This is because
4734 * we can use the last_unlink_trans field to record renames
4735 * and other fun in this file.
4736 */
4737 if (S_ISREG(inode->i_mode) &&
4738 BTRFS_I(inode)->generation <= last_committed &&
4739 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4740 goto out;
4741
12fcfd22 4742 if (!S_ISDIR(inode->i_mode)) {
2b0143b5 4743 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
12fcfd22 4744 goto out;
2b0143b5 4745 inode = d_inode(parent);
12fcfd22
CM
4746 }
4747
4748 while (1) {
de2b530b
JB
4749 /*
4750 * If we are logging a directory then we start with our inode,
4751 * not our parents inode, so we need to skipp setting the
4752 * logged_trans so that further down in the log code we don't
4753 * think this inode has already been logged.
4754 */
4755 if (inode != orig_inode)
4756 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
4757 smp_mb();
4758
4759 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4760 root = BTRFS_I(inode)->root;
4761
4762 /*
4763 * make sure any commits to the log are forced
4764 * to be full commits
4765 */
995946dd 4766 btrfs_set_log_full_commit(root->fs_info, trans);
12fcfd22
CM
4767 ret = 1;
4768 break;
4769 }
4770
2b0143b5 4771 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
12fcfd22
CM
4772 break;
4773
76dda93c 4774 if (IS_ROOT(parent))
12fcfd22
CM
4775 break;
4776
6a912213
JB
4777 parent = dget_parent(parent);
4778 dput(old_parent);
4779 old_parent = parent;
2b0143b5 4780 inode = d_inode(parent);
12fcfd22
CM
4781
4782 }
6a912213 4783 dput(old_parent);
12fcfd22 4784out:
e02119d5
CM
4785 return ret;
4786}
4787
2f2ff0ee
FM
4788struct btrfs_dir_list {
4789 u64 ino;
4790 struct list_head list;
4791};
4792
4793/*
4794 * Log the inodes of the new dentries of a directory. See log_dir_items() for
4795 * details about the why it is needed.
4796 * This is a recursive operation - if an existing dentry corresponds to a
4797 * directory, that directory's new entries are logged too (same behaviour as
4798 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
4799 * the dentries point to we do not lock their i_mutex, otherwise lockdep
4800 * complains about the following circular lock dependency / possible deadlock:
4801 *
4802 * CPU0 CPU1
4803 * ---- ----
4804 * lock(&type->i_mutex_dir_key#3/2);
4805 * lock(sb_internal#2);
4806 * lock(&type->i_mutex_dir_key#3/2);
4807 * lock(&sb->s_type->i_mutex_key#14);
4808 *
4809 * Where sb_internal is the lock (a counter that works as a lock) acquired by
4810 * sb_start_intwrite() in btrfs_start_transaction().
4811 * Not locking i_mutex of the inodes is still safe because:
4812 *
4813 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
4814 * that while logging the inode new references (names) are added or removed
4815 * from the inode, leaving the logged inode item with a link count that does
4816 * not match the number of logged inode reference items. This is fine because
4817 * at log replay time we compute the real number of links and correct the
4818 * link count in the inode item (see replay_one_buffer() and
4819 * link_to_fixup_dir());
4820 *
4821 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
4822 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
4823 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
4824 * has a size that doesn't match the sum of the lengths of all the logged
4825 * names. This does not result in a problem because if a dir_item key is
4826 * logged but its matching dir_index key is not logged, at log replay time we
4827 * don't use it to replay the respective name (see replay_one_name()). On the
4828 * other hand if only the dir_index key ends up being logged, the respective
4829 * name is added to the fs/subvol tree with both the dir_item and dir_index
4830 * keys created (see replay_one_name()).
4831 * The directory's inode item with a wrong i_size is not a problem as well,
4832 * since we don't use it at log replay time to set the i_size in the inode
4833 * item of the fs/subvol tree (see overwrite_item()).
4834 */
4835static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
4836 struct btrfs_root *root,
4837 struct inode *start_inode,
4838 struct btrfs_log_ctx *ctx)
4839{
4840 struct btrfs_root *log = root->log_root;
4841 struct btrfs_path *path;
4842 LIST_HEAD(dir_list);
4843 struct btrfs_dir_list *dir_elem;
4844 int ret = 0;
4845
4846 path = btrfs_alloc_path();
4847 if (!path)
4848 return -ENOMEM;
4849
4850 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
4851 if (!dir_elem) {
4852 btrfs_free_path(path);
4853 return -ENOMEM;
4854 }
4855 dir_elem->ino = btrfs_ino(start_inode);
4856 list_add_tail(&dir_elem->list, &dir_list);
4857
4858 while (!list_empty(&dir_list)) {
4859 struct extent_buffer *leaf;
4860 struct btrfs_key min_key;
4861 int nritems;
4862 int i;
4863
4864 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
4865 list);
4866 if (ret)
4867 goto next_dir_inode;
4868
4869 min_key.objectid = dir_elem->ino;
4870 min_key.type = BTRFS_DIR_ITEM_KEY;
4871 min_key.offset = 0;
4872again:
4873 btrfs_release_path(path);
4874 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
4875 if (ret < 0) {
4876 goto next_dir_inode;
4877 } else if (ret > 0) {
4878 ret = 0;
4879 goto next_dir_inode;
4880 }
4881
4882process_leaf:
4883 leaf = path->nodes[0];
4884 nritems = btrfs_header_nritems(leaf);
4885 for (i = path->slots[0]; i < nritems; i++) {
4886 struct btrfs_dir_item *di;
4887 struct btrfs_key di_key;
4888 struct inode *di_inode;
4889 struct btrfs_dir_list *new_dir_elem;
4890 int log_mode = LOG_INODE_EXISTS;
4891 int type;
4892
4893 btrfs_item_key_to_cpu(leaf, &min_key, i);
4894 if (min_key.objectid != dir_elem->ino ||
4895 min_key.type != BTRFS_DIR_ITEM_KEY)
4896 goto next_dir_inode;
4897
4898 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
4899 type = btrfs_dir_type(leaf, di);
4900 if (btrfs_dir_transid(leaf, di) < trans->transid &&
4901 type != BTRFS_FT_DIR)
4902 continue;
4903 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
4904 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
4905 continue;
4906
4907 di_inode = btrfs_iget(root->fs_info->sb, &di_key,
4908 root, NULL);
4909 if (IS_ERR(di_inode)) {
4910 ret = PTR_ERR(di_inode);
4911 goto next_dir_inode;
4912 }
4913
4914 if (btrfs_inode_in_log(di_inode, trans->transid)) {
4915 iput(di_inode);
4916 continue;
4917 }
4918
4919 ctx->log_new_dentries = false;
4920 if (type == BTRFS_FT_DIR)
4921 log_mode = LOG_INODE_ALL;
4922 btrfs_release_path(path);
4923 ret = btrfs_log_inode(trans, root, di_inode,
4924 log_mode, 0, LLONG_MAX, ctx);
4925 iput(di_inode);
4926 if (ret)
4927 goto next_dir_inode;
4928 if (ctx->log_new_dentries) {
4929 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
4930 GFP_NOFS);
4931 if (!new_dir_elem) {
4932 ret = -ENOMEM;
4933 goto next_dir_inode;
4934 }
4935 new_dir_elem->ino = di_key.objectid;
4936 list_add_tail(&new_dir_elem->list, &dir_list);
4937 }
4938 break;
4939 }
4940 if (i == nritems) {
4941 ret = btrfs_next_leaf(log, path);
4942 if (ret < 0) {
4943 goto next_dir_inode;
4944 } else if (ret > 0) {
4945 ret = 0;
4946 goto next_dir_inode;
4947 }
4948 goto process_leaf;
4949 }
4950 if (min_key.offset < (u64)-1) {
4951 min_key.offset++;
4952 goto again;
4953 }
4954next_dir_inode:
4955 list_del(&dir_elem->list);
4956 kfree(dir_elem);
4957 }
4958
4959 btrfs_free_path(path);
4960 return ret;
4961}
4962
18aa0922
FM
4963static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
4964 struct inode *inode,
4965 struct btrfs_log_ctx *ctx)
4966{
4967 int ret;
4968 struct btrfs_path *path;
4969 struct btrfs_key key;
4970 struct btrfs_root *root = BTRFS_I(inode)->root;
4971 const u64 ino = btrfs_ino(inode);
4972
4973 path = btrfs_alloc_path();
4974 if (!path)
4975 return -ENOMEM;
4976 path->skip_locking = 1;
4977 path->search_commit_root = 1;
4978
4979 key.objectid = ino;
4980 key.type = BTRFS_INODE_REF_KEY;
4981 key.offset = 0;
4982 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4983 if (ret < 0)
4984 goto out;
4985
4986 while (true) {
4987 struct extent_buffer *leaf = path->nodes[0];
4988 int slot = path->slots[0];
4989 u32 cur_offset = 0;
4990 u32 item_size;
4991 unsigned long ptr;
4992
4993 if (slot >= btrfs_header_nritems(leaf)) {
4994 ret = btrfs_next_leaf(root, path);
4995 if (ret < 0)
4996 goto out;
4997 else if (ret > 0)
4998 break;
4999 continue;
5000 }
5001
5002 btrfs_item_key_to_cpu(leaf, &key, slot);
5003 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5004 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5005 break;
5006
5007 item_size = btrfs_item_size_nr(leaf, slot);
5008 ptr = btrfs_item_ptr_offset(leaf, slot);
5009 while (cur_offset < item_size) {
5010 struct btrfs_key inode_key;
5011 struct inode *dir_inode;
5012
5013 inode_key.type = BTRFS_INODE_ITEM_KEY;
5014 inode_key.offset = 0;
5015
5016 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5017 struct btrfs_inode_extref *extref;
5018
5019 extref = (struct btrfs_inode_extref *)
5020 (ptr + cur_offset);
5021 inode_key.objectid = btrfs_inode_extref_parent(
5022 leaf, extref);
5023 cur_offset += sizeof(*extref);
5024 cur_offset += btrfs_inode_extref_name_len(leaf,
5025 extref);
5026 } else {
5027 inode_key.objectid = key.offset;
5028 cur_offset = item_size;
5029 }
5030
5031 dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5032 root, NULL);
5033 /* If parent inode was deleted, skip it. */
5034 if (IS_ERR(dir_inode))
5035 continue;
5036
5037 ret = btrfs_log_inode(trans, root, dir_inode,
5038 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5039 iput(dir_inode);
5040 if (ret)
5041 goto out;
5042 }
5043 path->slots[0]++;
5044 }
5045 ret = 0;
5046out:
5047 btrfs_free_path(path);
5048 return ret;
5049}
5050
e02119d5
CM
5051/*
5052 * helper function around btrfs_log_inode to make sure newly created
5053 * parent directories also end up in the log. A minimal inode and backref
5054 * only logging is done of any parent directories that are older than
5055 * the last committed transaction
5056 */
48a3b636
ES
5057static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5058 struct btrfs_root *root, struct inode *inode,
49dae1bc
FM
5059 struct dentry *parent,
5060 const loff_t start,
5061 const loff_t end,
5062 int exists_only,
8b050d35 5063 struct btrfs_log_ctx *ctx)
e02119d5 5064{
12fcfd22 5065 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 5066 struct super_block *sb;
6a912213 5067 struct dentry *old_parent = NULL;
12fcfd22
CM
5068 int ret = 0;
5069 u64 last_committed = root->fs_info->last_trans_committed;
2f2ff0ee
FM
5070 bool log_dentries = false;
5071 struct inode *orig_inode = inode;
12fcfd22
CM
5072
5073 sb = inode->i_sb;
5074
3a5e1404
SW
5075 if (btrfs_test_opt(root, NOTREELOG)) {
5076 ret = 1;
5077 goto end_no_trans;
5078 }
5079
995946dd
MX
5080 /*
5081 * The prev transaction commit doesn't complete, we need do
5082 * full commit by ourselves.
5083 */
12fcfd22
CM
5084 if (root->fs_info->last_trans_log_full_commit >
5085 root->fs_info->last_trans_committed) {
5086 ret = 1;
5087 goto end_no_trans;
5088 }
5089
76dda93c
YZ
5090 if (root != BTRFS_I(inode)->root ||
5091 btrfs_root_refs(&root->root_item) == 0) {
5092 ret = 1;
5093 goto end_no_trans;
5094 }
5095
12fcfd22
CM
5096 ret = check_parent_dirs_for_sync(trans, inode, parent,
5097 sb, last_committed);
5098 if (ret)
5099 goto end_no_trans;
e02119d5 5100
22ee6985 5101 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
5102 ret = BTRFS_NO_LOG_SYNC;
5103 goto end_no_trans;
5104 }
5105
8b050d35 5106 ret = start_log_trans(trans, root, ctx);
4a500fd1 5107 if (ret)
e87ac136 5108 goto end_no_trans;
e02119d5 5109
8407f553 5110 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5111 if (ret)
5112 goto end_trans;
12fcfd22 5113
af4176b4
CM
5114 /*
5115 * for regular files, if its inode is already on disk, we don't
5116 * have to worry about the parents at all. This is because
5117 * we can use the last_unlink_trans field to record renames
5118 * and other fun in this file.
5119 */
5120 if (S_ISREG(inode->i_mode) &&
5121 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
5122 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5123 ret = 0;
5124 goto end_trans;
5125 }
af4176b4 5126
2f2ff0ee
FM
5127 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5128 log_dentries = true;
5129
18aa0922
FM
5130 /*
5131 * On unlink we must make sure all our current and old parent directores
5132 * inodes are fully logged. This is to prevent leaving dangling
5133 * directory index entries in directories that were our parents but are
5134 * not anymore. Not doing this results in old parent directory being
5135 * impossible to delete after log replay (rmdir will always fail with
5136 * error -ENOTEMPTY).
5137 *
5138 * Example 1:
5139 *
5140 * mkdir testdir
5141 * touch testdir/foo
5142 * ln testdir/foo testdir/bar
5143 * sync
5144 * unlink testdir/bar
5145 * xfs_io -c fsync testdir/foo
5146 * <power failure>
5147 * mount fs, triggers log replay
5148 *
5149 * If we don't log the parent directory (testdir), after log replay the
5150 * directory still has an entry pointing to the file inode using the bar
5151 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5152 * the file inode has a link count of 1.
5153 *
5154 * Example 2:
5155 *
5156 * mkdir testdir
5157 * touch foo
5158 * ln foo testdir/foo2
5159 * ln foo testdir/foo3
5160 * sync
5161 * unlink testdir/foo3
5162 * xfs_io -c fsync foo
5163 * <power failure>
5164 * mount fs, triggers log replay
5165 *
5166 * Similar as the first example, after log replay the parent directory
5167 * testdir still has an entry pointing to the inode file with name foo3
5168 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5169 * and has a link count of 2.
5170 */
5171 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5172 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5173 if (ret)
5174 goto end_trans;
5175 }
5176
12fcfd22 5177 while (1) {
2b0143b5 5178 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
e02119d5
CM
5179 break;
5180
2b0143b5 5181 inode = d_inode(parent);
76dda93c
YZ
5182 if (root != BTRFS_I(inode)->root)
5183 break;
5184
18aa0922
FM
5185 if (BTRFS_I(inode)->generation > last_committed) {
5186 ret = btrfs_log_inode(trans, root, inode,
5187 LOG_INODE_EXISTS,
8407f553 5188 0, LLONG_MAX, ctx);
4a500fd1
YZ
5189 if (ret)
5190 goto end_trans;
12fcfd22 5191 }
76dda93c 5192 if (IS_ROOT(parent))
e02119d5 5193 break;
12fcfd22 5194
6a912213
JB
5195 parent = dget_parent(parent);
5196 dput(old_parent);
5197 old_parent = parent;
e02119d5 5198 }
2f2ff0ee
FM
5199 if (log_dentries)
5200 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5201 else
5202 ret = 0;
4a500fd1 5203end_trans:
6a912213 5204 dput(old_parent);
4a500fd1 5205 if (ret < 0) {
995946dd 5206 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1
YZ
5207 ret = 1;
5208 }
8b050d35
MX
5209
5210 if (ret)
5211 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5212 btrfs_end_log_trans(root);
5213end_no_trans:
5214 return ret;
e02119d5
CM
5215}
5216
5217/*
5218 * it is not safe to log dentry if the chunk root has added new
5219 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5220 * If this returns 1, you must commit the transaction to safely get your
5221 * data on disk.
5222 */
5223int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 5224 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
5225 const loff_t start,
5226 const loff_t end,
8b050d35 5227 struct btrfs_log_ctx *ctx)
e02119d5 5228{
6a912213
JB
5229 struct dentry *parent = dget_parent(dentry);
5230 int ret;
5231
2b0143b5 5232 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
49dae1bc 5233 start, end, 0, ctx);
6a912213
JB
5234 dput(parent);
5235
5236 return ret;
e02119d5
CM
5237}
5238
5239/*
5240 * should be called during mount to recover any replay any log trees
5241 * from the FS
5242 */
5243int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5244{
5245 int ret;
5246 struct btrfs_path *path;
5247 struct btrfs_trans_handle *trans;
5248 struct btrfs_key key;
5249 struct btrfs_key found_key;
5250 struct btrfs_key tmp_key;
5251 struct btrfs_root *log;
5252 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5253 struct walk_control wc = {
5254 .process_func = process_one_buffer,
5255 .stage = 0,
5256 };
5257
e02119d5 5258 path = btrfs_alloc_path();
db5b493a
TI
5259 if (!path)
5260 return -ENOMEM;
5261
5262 fs_info->log_root_recovering = 1;
e02119d5 5263
4a500fd1 5264 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
5265 if (IS_ERR(trans)) {
5266 ret = PTR_ERR(trans);
5267 goto error;
5268 }
e02119d5
CM
5269
5270 wc.trans = trans;
5271 wc.pin = 1;
5272
db5b493a 5273 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
5274 if (ret) {
5275 btrfs_error(fs_info, ret, "Failed to pin buffers while "
5276 "recovering log root tree.");
5277 goto error;
5278 }
e02119d5
CM
5279
5280again:
5281 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5282 key.offset = (u64)-1;
962a298f 5283 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 5284
d397712b 5285 while (1) {
e02119d5 5286 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
5287
5288 if (ret < 0) {
5289 btrfs_error(fs_info, ret,
5290 "Couldn't find tree log root.");
5291 goto error;
5292 }
e02119d5
CM
5293 if (ret > 0) {
5294 if (path->slots[0] == 0)
5295 break;
5296 path->slots[0]--;
5297 }
5298 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5299 path->slots[0]);
b3b4aa74 5300 btrfs_release_path(path);
e02119d5
CM
5301 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5302 break;
5303
cb517eab 5304 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
5305 if (IS_ERR(log)) {
5306 ret = PTR_ERR(log);
5307 btrfs_error(fs_info, ret,
5308 "Couldn't read tree log root.");
5309 goto error;
5310 }
e02119d5
CM
5311
5312 tmp_key.objectid = found_key.offset;
5313 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5314 tmp_key.offset = (u64)-1;
5315
5316 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
5317 if (IS_ERR(wc.replay_dest)) {
5318 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
5319 free_extent_buffer(log->node);
5320 free_extent_buffer(log->commit_root);
5321 kfree(log);
79787eaa
JM
5322 btrfs_error(fs_info, ret, "Couldn't read target root "
5323 "for tree log recovery.");
5324 goto error;
5325 }
e02119d5 5326
07d400a6 5327 wc.replay_dest->log_root = log;
5d4f98a2 5328 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 5329 ret = walk_log_tree(trans, log, &wc);
e02119d5 5330
b50c6e25 5331 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
5332 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5333 path);
e02119d5
CM
5334 }
5335
5336 key.offset = found_key.offset - 1;
07d400a6 5337 wc.replay_dest->log_root = NULL;
e02119d5 5338 free_extent_buffer(log->node);
b263c2c8 5339 free_extent_buffer(log->commit_root);
e02119d5
CM
5340 kfree(log);
5341
b50c6e25
JB
5342 if (ret)
5343 goto error;
5344
e02119d5
CM
5345 if (found_key.offset == 0)
5346 break;
5347 }
b3b4aa74 5348 btrfs_release_path(path);
e02119d5
CM
5349
5350 /* step one is to pin it all, step two is to replay just inodes */
5351 if (wc.pin) {
5352 wc.pin = 0;
5353 wc.process_func = replay_one_buffer;
5354 wc.stage = LOG_WALK_REPLAY_INODES;
5355 goto again;
5356 }
5357 /* step three is to replay everything */
5358 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5359 wc.stage++;
5360 goto again;
5361 }
5362
5363 btrfs_free_path(path);
5364
abefa55a
JB
5365 /* step 4: commit the transaction, which also unpins the blocks */
5366 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5367 if (ret)
5368 return ret;
5369
e02119d5
CM
5370 free_extent_buffer(log_root_tree->node);
5371 log_root_tree->log_root = NULL;
5372 fs_info->log_root_recovering = 0;
e02119d5 5373 kfree(log_root_tree);
79787eaa 5374
abefa55a 5375 return 0;
79787eaa 5376error:
b50c6e25
JB
5377 if (wc.trans)
5378 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
5379 btrfs_free_path(path);
5380 return ret;
e02119d5 5381}
12fcfd22
CM
5382
5383/*
5384 * there are some corner cases where we want to force a full
5385 * commit instead of allowing a directory to be logged.
5386 *
5387 * They revolve around files there were unlinked from the directory, and
5388 * this function updates the parent directory so that a full commit is
5389 * properly done if it is fsync'd later after the unlinks are done.
5390 */
5391void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5392 struct inode *dir, struct inode *inode,
5393 int for_rename)
5394{
af4176b4
CM
5395 /*
5396 * when we're logging a file, if it hasn't been renamed
5397 * or unlinked, and its inode is fully committed on disk,
5398 * we don't have to worry about walking up the directory chain
5399 * to log its parents.
5400 *
5401 * So, we use the last_unlink_trans field to put this transid
5402 * into the file. When the file is logged we check it and
5403 * don't log the parents if the file is fully on disk.
5404 */
5405 if (S_ISREG(inode->i_mode))
5406 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5407
12fcfd22
CM
5408 /*
5409 * if this directory was already logged any new
5410 * names for this file/dir will get recorded
5411 */
5412 smp_mb();
5413 if (BTRFS_I(dir)->logged_trans == trans->transid)
5414 return;
5415
5416 /*
5417 * if the inode we're about to unlink was logged,
5418 * the log will be properly updated for any new names
5419 */
5420 if (BTRFS_I(inode)->logged_trans == trans->transid)
5421 return;
5422
5423 /*
5424 * when renaming files across directories, if the directory
5425 * there we're unlinking from gets fsync'd later on, there's
5426 * no way to find the destination directory later and fsync it
5427 * properly. So, we have to be conservative and force commits
5428 * so the new name gets discovered.
5429 */
5430 if (for_rename)
5431 goto record;
5432
5433 /* we can safely do the unlink without any special recording */
5434 return;
5435
5436record:
5437 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5438}
5439
5440/*
5441 * Call this after adding a new name for a file and it will properly
5442 * update the log to reflect the new name.
5443 *
5444 * It will return zero if all goes well, and it will return 1 if a
5445 * full transaction commit is required.
5446 */
5447int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5448 struct inode *inode, struct inode *old_dir,
5449 struct dentry *parent)
5450{
5451 struct btrfs_root * root = BTRFS_I(inode)->root;
5452
af4176b4
CM
5453 /*
5454 * this will force the logging code to walk the dentry chain
5455 * up for the file
5456 */
5457 if (S_ISREG(inode->i_mode))
5458 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5459
12fcfd22
CM
5460 /*
5461 * if this inode hasn't been logged and directory we're renaming it
5462 * from hasn't been logged, we don't need to log it
5463 */
5464 if (BTRFS_I(inode)->logged_trans <=
5465 root->fs_info->last_trans_committed &&
5466 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5467 root->fs_info->last_trans_committed))
5468 return 0;
5469
49dae1bc
FM
5470 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5471 LLONG_MAX, 1, NULL);
12fcfd22
CM
5472}
5473