]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
Btrfs: update nodatacow code v2
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "locking.h"
24#include "print-tree.h"
25#include "compat.h"
26
27/* magic values for the inode_only field in btrfs_log_inode:
28 *
29 * LOG_INODE_ALL means to log everything
30 * LOG_INODE_EXISTS means to log just enough to recreate the inode
31 * during log replay
32 */
33#define LOG_INODE_ALL 0
34#define LOG_INODE_EXISTS 1
35
36/*
37 * stages for the tree walking. The first
38 * stage (0) is to only pin down the blocks we find
39 * the second stage (1) is to make sure that all the inodes
40 * we find in the log are created in the subvolume.
41 *
42 * The last stage is to deal with directories and links and extents
43 * and all the other fun semantics
44 */
45#define LOG_WALK_PIN_ONLY 0
46#define LOG_WALK_REPLAY_INODES 1
47#define LOG_WALK_REPLAY_ALL 2
48
49static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
50 struct btrfs_root *root, struct inode *inode,
51 int inode_only);
52
53/*
54 * tree logging is a special write ahead log used to make sure that
55 * fsyncs and O_SYNCs can happen without doing full tree commits.
56 *
57 * Full tree commits are expensive because they require commonly
58 * modified blocks to be recowed, creating many dirty pages in the
59 * extent tree an 4x-6x higher write load than ext3.
60 *
61 * Instead of doing a tree commit on every fsync, we use the
62 * key ranges and transaction ids to find items for a given file or directory
63 * that have changed in this transaction. Those items are copied into
64 * a special tree (one per subvolume root), that tree is written to disk
65 * and then the fsync is considered complete.
66 *
67 * After a crash, items are copied out of the log-tree back into the
68 * subvolume tree. Any file data extents found are recorded in the extent
69 * allocation tree, and the log-tree freed.
70 *
71 * The log tree is read three times, once to pin down all the extents it is
72 * using in ram and once, once to create all the inodes logged in the tree
73 * and once to do all the other items.
74 */
75
76/*
77 * btrfs_add_log_tree adds a new per-subvolume log tree into the
78 * tree of log tree roots. This must be called with a tree log transaction
79 * running (see start_log_trans).
80 */
81int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root)
83{
84 struct btrfs_key key;
85 struct btrfs_root_item root_item;
86 struct btrfs_inode_item *inode_item;
87 struct extent_buffer *leaf;
88 struct btrfs_root *new_root = root;
89 int ret;
90 u64 objectid = root->root_key.objectid;
91
31840ae1 92 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
e02119d5 93 BTRFS_TREE_LOG_OBJECTID,
31840ae1 94 trans->transid, 0, 0, 0);
e02119d5
CM
95 if (IS_ERR(leaf)) {
96 ret = PTR_ERR(leaf);
97 return ret;
98 }
99
100 btrfs_set_header_nritems(leaf, 0);
101 btrfs_set_header_level(leaf, 0);
102 btrfs_set_header_bytenr(leaf, leaf->start);
103 btrfs_set_header_generation(leaf, trans->transid);
104 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
105
106 write_extent_buffer(leaf, root->fs_info->fsid,
107 (unsigned long)btrfs_header_fsid(leaf),
108 BTRFS_FSID_SIZE);
109 btrfs_mark_buffer_dirty(leaf);
110
111 inode_item = &root_item.inode;
112 memset(inode_item, 0, sizeof(*inode_item));
113 inode_item->generation = cpu_to_le64(1);
114 inode_item->size = cpu_to_le64(3);
115 inode_item->nlink = cpu_to_le32(1);
a76a3cd4 116 inode_item->nbytes = cpu_to_le64(root->leafsize);
e02119d5
CM
117 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
118
119 btrfs_set_root_bytenr(&root_item, leaf->start);
84234f3a 120 btrfs_set_root_generation(&root_item, trans->transid);
e02119d5
CM
121 btrfs_set_root_level(&root_item, 0);
122 btrfs_set_root_refs(&root_item, 0);
123 btrfs_set_root_used(&root_item, 0);
124
125 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
126 root_item.drop_level = 0;
127
128 btrfs_tree_unlock(leaf);
129 free_extent_buffer(leaf);
130 leaf = NULL;
131
132 btrfs_set_root_dirid(&root_item, 0);
133
134 key.objectid = BTRFS_TREE_LOG_OBJECTID;
135 key.offset = objectid;
136 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
137 ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
138 &root_item);
139 if (ret)
140 goto fail;
141
142 new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
143 &key);
144 BUG_ON(!new_root);
145
146 WARN_ON(root->log_root);
147 root->log_root = new_root;
148
149 /*
150 * log trees do not get reference counted because they go away
151 * before a real commit is actually done. They do store pointers
152 * to file data extents, and those reference counts still get
153 * updated (along with back refs to the log tree).
154 */
155 new_root->ref_cows = 0;
156 new_root->last_trans = trans->transid;
157fail:
158 return ret;
159}
160
161/*
162 * start a sub transaction and setup the log tree
163 * this increments the log tree writer count to make the people
164 * syncing the tree wait for us to finish
165 */
166static int start_log_trans(struct btrfs_trans_handle *trans,
167 struct btrfs_root *root)
168{
169 int ret;
170 mutex_lock(&root->fs_info->tree_log_mutex);
171 if (!root->fs_info->log_root_tree) {
172 ret = btrfs_init_log_root_tree(trans, root->fs_info);
173 BUG_ON(ret);
174 }
175 if (!root->log_root) {
176 ret = btrfs_add_log_tree(trans, root);
177 BUG_ON(ret);
178 }
179 atomic_inc(&root->fs_info->tree_log_writers);
180 root->fs_info->tree_log_batch++;
181 mutex_unlock(&root->fs_info->tree_log_mutex);
182 return 0;
183}
184
185/*
186 * returns 0 if there was a log transaction running and we were able
187 * to join, or returns -ENOENT if there were not transactions
188 * in progress
189 */
190static int join_running_log_trans(struct btrfs_root *root)
191{
192 int ret = -ENOENT;
193
194 smp_mb();
195 if (!root->log_root)
196 return -ENOENT;
197
198 mutex_lock(&root->fs_info->tree_log_mutex);
199 if (root->log_root) {
200 ret = 0;
201 atomic_inc(&root->fs_info->tree_log_writers);
202 root->fs_info->tree_log_batch++;
203 }
204 mutex_unlock(&root->fs_info->tree_log_mutex);
205 return ret;
206}
207
208/*
209 * indicate we're done making changes to the log tree
210 * and wake up anyone waiting to do a sync
211 */
212static int end_log_trans(struct btrfs_root *root)
213{
214 atomic_dec(&root->fs_info->tree_log_writers);
215 smp_mb();
216 if (waitqueue_active(&root->fs_info->tree_log_wait))
217 wake_up(&root->fs_info->tree_log_wait);
218 return 0;
219}
220
221
222/*
223 * the walk control struct is used to pass state down the chain when
224 * processing the log tree. The stage field tells us which part
225 * of the log tree processing we are currently doing. The others
226 * are state fields used for that specific part
227 */
228struct walk_control {
229 /* should we free the extent on disk when done? This is used
230 * at transaction commit time while freeing a log tree
231 */
232 int free;
233
234 /* should we write out the extent buffer? This is used
235 * while flushing the log tree to disk during a sync
236 */
237 int write;
238
239 /* should we wait for the extent buffer io to finish? Also used
240 * while flushing the log tree to disk for a sync
241 */
242 int wait;
243
244 /* pin only walk, we record which extents on disk belong to the
245 * log trees
246 */
247 int pin;
248
249 /* what stage of the replay code we're currently in */
250 int stage;
251
252 /* the root we are currently replaying */
253 struct btrfs_root *replay_dest;
254
255 /* the trans handle for the current replay */
256 struct btrfs_trans_handle *trans;
257
258 /* the function that gets used to process blocks we find in the
259 * tree. Note the extent_buffer might not be up to date when it is
260 * passed in, and it must be checked or read if you need the data
261 * inside it
262 */
263 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
264 struct walk_control *wc, u64 gen);
265};
266
267/*
268 * process_func used to pin down extents, write them or wait on them
269 */
270static int process_one_buffer(struct btrfs_root *log,
271 struct extent_buffer *eb,
272 struct walk_control *wc, u64 gen)
273{
274 if (wc->pin) {
25179201 275 mutex_lock(&log->fs_info->pinned_mutex);
e02119d5
CM
276 btrfs_update_pinned_extents(log->fs_info->extent_root,
277 eb->start, eb->len, 1);
25179201 278 mutex_unlock(&log->fs_info->pinned_mutex);
e02119d5
CM
279 }
280
281 if (btrfs_buffer_uptodate(eb, gen)) {
282 if (wc->write)
283 btrfs_write_tree_block(eb);
284 if (wc->wait)
285 btrfs_wait_tree_block_writeback(eb);
286 }
287 return 0;
288}
289
290/*
291 * Item overwrite used by replay and tree logging. eb, slot and key all refer
292 * to the src data we are copying out.
293 *
294 * root is the tree we are copying into, and path is a scratch
295 * path for use in this function (it should be released on entry and
296 * will be released on exit).
297 *
298 * If the key is already in the destination tree the existing item is
299 * overwritten. If the existing item isn't big enough, it is extended.
300 * If it is too large, it is truncated.
301 *
302 * If the key isn't in the destination yet, a new item is inserted.
303 */
304static noinline int overwrite_item(struct btrfs_trans_handle *trans,
305 struct btrfs_root *root,
306 struct btrfs_path *path,
307 struct extent_buffer *eb, int slot,
308 struct btrfs_key *key)
309{
310 int ret;
311 u32 item_size;
312 u64 saved_i_size = 0;
313 int save_old_i_size = 0;
314 unsigned long src_ptr;
315 unsigned long dst_ptr;
316 int overwrite_root = 0;
317
318 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
319 overwrite_root = 1;
320
321 item_size = btrfs_item_size_nr(eb, slot);
322 src_ptr = btrfs_item_ptr_offset(eb, slot);
323
324 /* look for the key in the destination tree */
325 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
326 if (ret == 0) {
327 char *src_copy;
328 char *dst_copy;
329 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
330 path->slots[0]);
331 if (dst_size != item_size)
332 goto insert;
333
334 if (item_size == 0) {
335 btrfs_release_path(root, path);
336 return 0;
337 }
338 dst_copy = kmalloc(item_size, GFP_NOFS);
339 src_copy = kmalloc(item_size, GFP_NOFS);
340
341 read_extent_buffer(eb, src_copy, src_ptr, item_size);
342
343 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
344 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
345 item_size);
346 ret = memcmp(dst_copy, src_copy, item_size);
347
348 kfree(dst_copy);
349 kfree(src_copy);
350 /*
351 * they have the same contents, just return, this saves
352 * us from cowing blocks in the destination tree and doing
353 * extra writes that may not have been done by a previous
354 * sync
355 */
356 if (ret == 0) {
357 btrfs_release_path(root, path);
358 return 0;
359 }
360
361 }
362insert:
363 btrfs_release_path(root, path);
364 /* try to insert the key into the destination tree */
365 ret = btrfs_insert_empty_item(trans, root, path,
366 key, item_size);
367
368 /* make sure any existing item is the correct size */
369 if (ret == -EEXIST) {
370 u32 found_size;
371 found_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (found_size > item_size) {
374 btrfs_truncate_item(trans, root, path, item_size, 1);
375 } else if (found_size < item_size) {
376 ret = btrfs_del_item(trans, root,
377 path);
378 BUG_ON(ret);
379
380 btrfs_release_path(root, path);
381 ret = btrfs_insert_empty_item(trans,
382 root, path, key, item_size);
383 BUG_ON(ret);
384 }
385 } else if (ret) {
386 BUG();
387 }
388 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
389 path->slots[0]);
390
391 /* don't overwrite an existing inode if the generation number
392 * was logged as zero. This is done when the tree logging code
393 * is just logging an inode to make sure it exists after recovery.
394 *
395 * Also, don't overwrite i_size on directories during replay.
396 * log replay inserts and removes directory items based on the
397 * state of the tree found in the subvolume, and i_size is modified
398 * as it goes
399 */
400 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
401 struct btrfs_inode_item *src_item;
402 struct btrfs_inode_item *dst_item;
403
404 src_item = (struct btrfs_inode_item *)src_ptr;
405 dst_item = (struct btrfs_inode_item *)dst_ptr;
406
407 if (btrfs_inode_generation(eb, src_item) == 0)
408 goto no_copy;
409
410 if (overwrite_root &&
411 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
412 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
413 save_old_i_size = 1;
414 saved_i_size = btrfs_inode_size(path->nodes[0],
415 dst_item);
416 }
417 }
418
419 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
420 src_ptr, item_size);
421
422 if (save_old_i_size) {
423 struct btrfs_inode_item *dst_item;
424 dst_item = (struct btrfs_inode_item *)dst_ptr;
425 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
426 }
427
428 /* make sure the generation is filled in */
429 if (key->type == BTRFS_INODE_ITEM_KEY) {
430 struct btrfs_inode_item *dst_item;
431 dst_item = (struct btrfs_inode_item *)dst_ptr;
432 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
433 btrfs_set_inode_generation(path->nodes[0], dst_item,
434 trans->transid);
435 }
436 }
31840ae1
ZY
437
438 if (overwrite_root &&
439 key->type == BTRFS_EXTENT_DATA_KEY) {
440 int extent_type;
441 struct btrfs_file_extent_item *fi;
442
443 fi = (struct btrfs_file_extent_item *)dst_ptr;
444 extent_type = btrfs_file_extent_type(path->nodes[0], fi);
445 if (extent_type == BTRFS_FILE_EXTENT_REG) {
446 struct btrfs_key ins;
447 ins.objectid = btrfs_file_extent_disk_bytenr(
448 path->nodes[0], fi);
449 ins.offset = btrfs_file_extent_disk_num_bytes(
450 path->nodes[0], fi);
451 ins.type = BTRFS_EXTENT_ITEM_KEY;
452
453 /*
454 * is this extent already allocated in the extent
455 * allocation tree? If so, just add a reference
456 */
457 ret = btrfs_lookup_extent(root, ins.objectid,
458 ins.offset);
459 if (ret == 0) {
460 ret = btrfs_inc_extent_ref(trans, root,
461 ins.objectid, ins.offset,
462 path->nodes[0]->start,
463 root->root_key.objectid,
3bb1a1bc 464 trans->transid, key->objectid);
31840ae1
ZY
465 } else {
466 /*
467 * insert the extent pointer in the extent
468 * allocation tree
469 */
470 ret = btrfs_alloc_logged_extent(trans, root,
471 path->nodes[0]->start,
472 root->root_key.objectid,
473 trans->transid, key->objectid,
3bb1a1bc 474 &ins);
31840ae1
ZY
475 BUG_ON(ret);
476 }
477 }
478 }
e02119d5
CM
479no_copy:
480 btrfs_mark_buffer_dirty(path->nodes[0]);
481 btrfs_release_path(root, path);
482 return 0;
483}
484
485/*
486 * simple helper to read an inode off the disk from a given root
487 * This can only be called for subvolume roots and not for the log
488 */
489static noinline struct inode *read_one_inode(struct btrfs_root *root,
490 u64 objectid)
491{
492 struct inode *inode;
493 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
494 if (inode->i_state & I_NEW) {
495 BTRFS_I(inode)->root = root;
496 BTRFS_I(inode)->location.objectid = objectid;
497 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
498 BTRFS_I(inode)->location.offset = 0;
499 btrfs_read_locked_inode(inode);
500 unlock_new_inode(inode);
501
502 }
503 if (is_bad_inode(inode)) {
504 iput(inode);
505 inode = NULL;
506 }
507 return inode;
508}
509
510/* replays a single extent in 'eb' at 'slot' with 'key' into the
511 * subvolume 'root'. path is released on entry and should be released
512 * on exit.
513 *
514 * extents in the log tree have not been allocated out of the extent
515 * tree yet. So, this completes the allocation, taking a reference
516 * as required if the extent already exists or creating a new extent
517 * if it isn't in the extent allocation tree yet.
518 *
519 * The extent is inserted into the file, dropping any existing extents
520 * from the file that overlap the new one.
521 */
522static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
523 struct btrfs_root *root,
524 struct btrfs_path *path,
525 struct extent_buffer *eb, int slot,
526 struct btrfs_key *key)
527{
528 int found_type;
529 u64 mask = root->sectorsize - 1;
530 u64 extent_end;
531 u64 alloc_hint;
532 u64 start = key->offset;
533 struct btrfs_file_extent_item *item;
534 struct inode *inode = NULL;
535 unsigned long size;
536 int ret = 0;
537
538 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539 found_type = btrfs_file_extent_type(eb, item);
540
541 if (found_type == BTRFS_FILE_EXTENT_REG)
542 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
543 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 544 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
545 extent_end = (start + size + mask) & ~mask;
546 } else {
547 ret = 0;
548 goto out;
549 }
550
551 inode = read_one_inode(root, key->objectid);
552 if (!inode) {
553 ret = -EIO;
554 goto out;
555 }
556
557 /*
558 * first check to see if we already have this extent in the
559 * file. This must be done before the btrfs_drop_extents run
560 * so we don't try to drop this extent.
561 */
562 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
563 start, 0);
564
565 if (ret == 0 && found_type == BTRFS_FILE_EXTENT_REG) {
566 struct btrfs_file_extent_item cmp1;
567 struct btrfs_file_extent_item cmp2;
568 struct btrfs_file_extent_item *existing;
569 struct extent_buffer *leaf;
570
571 leaf = path->nodes[0];
572 existing = btrfs_item_ptr(leaf, path->slots[0],
573 struct btrfs_file_extent_item);
574
575 read_extent_buffer(eb, &cmp1, (unsigned long)item,
576 sizeof(cmp1));
577 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
578 sizeof(cmp2));
579
580 /*
581 * we already have a pointer to this exact extent,
582 * we don't have to do anything
583 */
584 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
585 btrfs_release_path(root, path);
586 goto out;
587 }
588 }
589 btrfs_release_path(root, path);
590
591 /* drop any overlapping extents */
592 ret = btrfs_drop_extents(trans, root, inode,
593 start, extent_end, start, &alloc_hint);
594 BUG_ON(ret);
595
31840ae1
ZY
596 /* insert the extent */
597 ret = overwrite_item(trans, root, path, eb, slot, key);
e02119d5 598 BUG_ON(ret);
e02119d5 599
a76a3cd4
YZ
600 /* btrfs_drop_extents changes i_bytes & i_blocks, update it here */
601 inode_add_bytes(inode, extent_end - start);
e02119d5
CM
602 btrfs_update_inode(trans, root, inode);
603out:
604 if (inode)
605 iput(inode);
606 return ret;
607}
608
609/*
610 * when cleaning up conflicts between the directory names in the
611 * subvolume, directory names in the log and directory names in the
612 * inode back references, we may have to unlink inodes from directories.
613 *
614 * This is a helper function to do the unlink of a specific directory
615 * item
616 */
617static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
618 struct btrfs_root *root,
619 struct btrfs_path *path,
620 struct inode *dir,
621 struct btrfs_dir_item *di)
622{
623 struct inode *inode;
624 char *name;
625 int name_len;
626 struct extent_buffer *leaf;
627 struct btrfs_key location;
628 int ret;
629
630 leaf = path->nodes[0];
631
632 btrfs_dir_item_key_to_cpu(leaf, di, &location);
633 name_len = btrfs_dir_name_len(leaf, di);
634 name = kmalloc(name_len, GFP_NOFS);
635 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
636 btrfs_release_path(root, path);
637
638 inode = read_one_inode(root, location.objectid);
639 BUG_ON(!inode);
640
641 btrfs_inc_nlink(inode);
642 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
643 kfree(name);
644
645 iput(inode);
646 return ret;
647}
648
649/*
650 * helper function to see if a given name and sequence number found
651 * in an inode back reference are already in a directory and correctly
652 * point to this inode
653 */
654static noinline int inode_in_dir(struct btrfs_root *root,
655 struct btrfs_path *path,
656 u64 dirid, u64 objectid, u64 index,
657 const char *name, int name_len)
658{
659 struct btrfs_dir_item *di;
660 struct btrfs_key location;
661 int match = 0;
662
663 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
664 index, name, name_len, 0);
665 if (di && !IS_ERR(di)) {
666 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
667 if (location.objectid != objectid)
668 goto out;
669 } else
670 goto out;
671 btrfs_release_path(root, path);
672
673 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
674 if (di && !IS_ERR(di)) {
675 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
676 if (location.objectid != objectid)
677 goto out;
678 } else
679 goto out;
680 match = 1;
681out:
682 btrfs_release_path(root, path);
683 return match;
684}
685
686/*
687 * helper function to check a log tree for a named back reference in
688 * an inode. This is used to decide if a back reference that is
689 * found in the subvolume conflicts with what we find in the log.
690 *
691 * inode backreferences may have multiple refs in a single item,
692 * during replay we process one reference at a time, and we don't
693 * want to delete valid links to a file from the subvolume if that
694 * link is also in the log.
695 */
696static noinline int backref_in_log(struct btrfs_root *log,
697 struct btrfs_key *key,
698 char *name, int namelen)
699{
700 struct btrfs_path *path;
701 struct btrfs_inode_ref *ref;
702 unsigned long ptr;
703 unsigned long ptr_end;
704 unsigned long name_ptr;
705 int found_name_len;
706 int item_size;
707 int ret;
708 int match = 0;
709
710 path = btrfs_alloc_path();
711 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
712 if (ret != 0)
713 goto out;
714
715 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
716 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
717 ptr_end = ptr + item_size;
718 while (ptr < ptr_end) {
719 ref = (struct btrfs_inode_ref *)ptr;
720 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
721 if (found_name_len == namelen) {
722 name_ptr = (unsigned long)(ref + 1);
723 ret = memcmp_extent_buffer(path->nodes[0], name,
724 name_ptr, namelen);
725 if (ret == 0) {
726 match = 1;
727 goto out;
728 }
729 }
730 ptr = (unsigned long)(ref + 1) + found_name_len;
731 }
732out:
733 btrfs_free_path(path);
734 return match;
735}
736
737
738/*
739 * replay one inode back reference item found in the log tree.
740 * eb, slot and key refer to the buffer and key found in the log tree.
741 * root is the destination we are replaying into, and path is for temp
742 * use by this function. (it should be released on return).
743 */
744static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
745 struct btrfs_root *root,
746 struct btrfs_root *log,
747 struct btrfs_path *path,
748 struct extent_buffer *eb, int slot,
749 struct btrfs_key *key)
750{
751 struct inode *dir;
752 int ret;
753 struct btrfs_key location;
754 struct btrfs_inode_ref *ref;
755 struct btrfs_dir_item *di;
756 struct inode *inode;
757 char *name;
758 int namelen;
759 unsigned long ref_ptr;
760 unsigned long ref_end;
761
762 location.objectid = key->objectid;
763 location.type = BTRFS_INODE_ITEM_KEY;
764 location.offset = 0;
765
766 /*
767 * it is possible that we didn't log all the parent directories
768 * for a given inode. If we don't find the dir, just don't
769 * copy the back ref in. The link count fixup code will take
770 * care of the rest
771 */
772 dir = read_one_inode(root, key->offset);
773 if (!dir)
774 return -ENOENT;
775
776 inode = read_one_inode(root, key->objectid);
777 BUG_ON(!dir);
778
779 ref_ptr = btrfs_item_ptr_offset(eb, slot);
780 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
781
782again:
783 ref = (struct btrfs_inode_ref *)ref_ptr;
784
785 namelen = btrfs_inode_ref_name_len(eb, ref);
786 name = kmalloc(namelen, GFP_NOFS);
787 BUG_ON(!name);
788
789 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
790
791 /* if we already have a perfect match, we're done */
792 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
793 btrfs_inode_ref_index(eb, ref),
794 name, namelen)) {
795 goto out;
796 }
797
798 /*
799 * look for a conflicting back reference in the metadata.
800 * if we find one we have to unlink that name of the file
801 * before we add our new link. Later on, we overwrite any
802 * existing back reference, and we don't want to create
803 * dangling pointers in the directory.
804 */
805conflict_again:
806 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
807 if (ret == 0) {
808 char *victim_name;
809 int victim_name_len;
810 struct btrfs_inode_ref *victim_ref;
811 unsigned long ptr;
812 unsigned long ptr_end;
813 struct extent_buffer *leaf = path->nodes[0];
814
815 /* are we trying to overwrite a back ref for the root directory
816 * if so, just jump out, we're done
817 */
818 if (key->objectid == key->offset)
819 goto out_nowrite;
820
821 /* check all the names in this back reference to see
822 * if they are in the log. if so, we allow them to stay
823 * otherwise they must be unlinked as a conflict
824 */
825 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
826 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
827 while(ptr < ptr_end) {
828 victim_ref = (struct btrfs_inode_ref *)ptr;
829 victim_name_len = btrfs_inode_ref_name_len(leaf,
830 victim_ref);
831 victim_name = kmalloc(victim_name_len, GFP_NOFS);
832 BUG_ON(!victim_name);
833
834 read_extent_buffer(leaf, victim_name,
835 (unsigned long)(victim_ref + 1),
836 victim_name_len);
837
838 if (!backref_in_log(log, key, victim_name,
839 victim_name_len)) {
840 btrfs_inc_nlink(inode);
841 btrfs_release_path(root, path);
842 ret = btrfs_unlink_inode(trans, root, dir,
843 inode, victim_name,
844 victim_name_len);
845 kfree(victim_name);
846 btrfs_release_path(root, path);
847 goto conflict_again;
848 }
849 kfree(victim_name);
850 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
851 }
852 BUG_ON(ret);
853 }
854 btrfs_release_path(root, path);
855
856 /* look for a conflicting sequence number */
857 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
858 btrfs_inode_ref_index(eb, ref),
859 name, namelen, 0);
860 if (di && !IS_ERR(di)) {
861 ret = drop_one_dir_item(trans, root, path, dir, di);
862 BUG_ON(ret);
863 }
864 btrfs_release_path(root, path);
865
866
867 /* look for a conflicting name */
868 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
869 name, namelen, 0);
870 if (di && !IS_ERR(di)) {
871 ret = drop_one_dir_item(trans, root, path, dir, di);
872 BUG_ON(ret);
873 }
874 btrfs_release_path(root, path);
875
876 /* insert our name */
877 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
878 btrfs_inode_ref_index(eb, ref));
879 BUG_ON(ret);
880
881 btrfs_update_inode(trans, root, inode);
882
883out:
884 ref_ptr = (unsigned long)(ref + 1) + namelen;
885 kfree(name);
886 if (ref_ptr < ref_end)
887 goto again;
888
889 /* finally write the back reference in the inode */
890 ret = overwrite_item(trans, root, path, eb, slot, key);
891 BUG_ON(ret);
892
893out_nowrite:
894 btrfs_release_path(root, path);
895 iput(dir);
896 iput(inode);
897 return 0;
898}
899
900/*
901 * replay one csum item from the log tree into the subvolume 'root'
902 * eb, slot and key all refer to the log tree
903 * path is for temp use by this function and should be released on return
904 *
905 * This copies the checksums out of the log tree and inserts them into
906 * the subvolume. Any existing checksums for this range in the file
907 * are overwritten, and new items are added where required.
908 *
909 * We keep this simple by reusing the btrfs_ordered_sum code from
910 * the data=ordered mode. This basically means making a copy
911 * of all the checksums in ram, which we have to do anyway for kmap
912 * rules.
913 *
914 * The copy is then sent down to btrfs_csum_file_blocks, which
915 * does all the hard work of finding existing items in the file
916 * or adding new ones.
917 */
918static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
919 struct btrfs_root *root,
920 struct btrfs_path *path,
921 struct extent_buffer *eb, int slot,
922 struct btrfs_key *key)
923{
924 int ret;
925 u32 item_size = btrfs_item_size_nr(eb, slot);
926 u64 cur_offset;
927 unsigned long file_bytes;
928 struct btrfs_ordered_sum *sums;
929 struct btrfs_sector_sum *sector_sum;
930 struct inode *inode;
931 unsigned long ptr;
932
933 file_bytes = (item_size / BTRFS_CRC32_SIZE) * root->sectorsize;
934 inode = read_one_inode(root, key->objectid);
935 if (!inode) {
936 return -EIO;
937 }
938
939 sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
940 if (!sums) {
941 iput(inode);
942 return -ENOMEM;
943 }
944
945 INIT_LIST_HEAD(&sums->list);
946 sums->len = file_bytes;
947 sums->file_offset = key->offset;
948
949 /*
950 * copy all the sums into the ordered sum struct
951 */
952 sector_sum = sums->sums;
953 cur_offset = key->offset;
954 ptr = btrfs_item_ptr_offset(eb, slot);
955 while(item_size > 0) {
956 sector_sum->offset = cur_offset;
957 read_extent_buffer(eb, &sector_sum->sum, ptr, BTRFS_CRC32_SIZE);
958 sector_sum++;
959 item_size -= BTRFS_CRC32_SIZE;
960 ptr += BTRFS_CRC32_SIZE;
961 cur_offset += root->sectorsize;
962 }
963
964 /* let btrfs_csum_file_blocks add them into the file */
965 ret = btrfs_csum_file_blocks(trans, root, inode, sums);
966 BUG_ON(ret);
967 kfree(sums);
968 iput(inode);
969
970 return 0;
971}
972/*
973 * There are a few corners where the link count of the file can't
974 * be properly maintained during replay. So, instead of adding
975 * lots of complexity to the log code, we just scan the backrefs
976 * for any file that has been through replay.
977 *
978 * The scan will update the link count on the inode to reflect the
979 * number of back refs found. If it goes down to zero, the iput
980 * will free the inode.
981 */
982static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
983 struct btrfs_root *root,
984 struct inode *inode)
985{
986 struct btrfs_path *path;
987 int ret;
988 struct btrfs_key key;
989 u64 nlink = 0;
990 unsigned long ptr;
991 unsigned long ptr_end;
992 int name_len;
993
994 key.objectid = inode->i_ino;
995 key.type = BTRFS_INODE_REF_KEY;
996 key.offset = (u64)-1;
997
998 path = btrfs_alloc_path();
999
1000 while(1) {
1001 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1002 if (ret < 0)
1003 break;
1004 if (ret > 0) {
1005 if (path->slots[0] == 0)
1006 break;
1007 path->slots[0]--;
1008 }
1009 btrfs_item_key_to_cpu(path->nodes[0], &key,
1010 path->slots[0]);
1011 if (key.objectid != inode->i_ino ||
1012 key.type != BTRFS_INODE_REF_KEY)
1013 break;
1014 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1015 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1016 path->slots[0]);
1017 while(ptr < ptr_end) {
1018 struct btrfs_inode_ref *ref;
1019
1020 ref = (struct btrfs_inode_ref *)ptr;
1021 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1022 ref);
1023 ptr = (unsigned long)(ref + 1) + name_len;
1024 nlink++;
1025 }
1026
1027 if (key.offset == 0)
1028 break;
1029 key.offset--;
1030 btrfs_release_path(root, path);
1031 }
1032 btrfs_free_path(path);
1033 if (nlink != inode->i_nlink) {
1034 inode->i_nlink = nlink;
1035 btrfs_update_inode(trans, root, inode);
1036 }
8d5bf1cb 1037 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5
CM
1038
1039 return 0;
1040}
1041
1042static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1043 struct btrfs_root *root,
1044 struct btrfs_path *path)
1045{
1046 int ret;
1047 struct btrfs_key key;
1048 struct inode *inode;
1049
1050 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1051 key.type = BTRFS_ORPHAN_ITEM_KEY;
1052 key.offset = (u64)-1;
1053 while(1) {
1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055 if (ret < 0)
1056 break;
1057
1058 if (ret == 1) {
1059 if (path->slots[0] == 0)
1060 break;
1061 path->slots[0]--;
1062 }
1063
1064 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1065 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1066 key.type != BTRFS_ORPHAN_ITEM_KEY)
1067 break;
1068
1069 ret = btrfs_del_item(trans, root, path);
1070 BUG_ON(ret);
1071
1072 btrfs_release_path(root, path);
1073 inode = read_one_inode(root, key.offset);
1074 BUG_ON(!inode);
1075
1076 ret = fixup_inode_link_count(trans, root, inode);
1077 BUG_ON(ret);
1078
1079 iput(inode);
1080
1081 if (key.offset == 0)
1082 break;
1083 key.offset--;
1084 }
1085 btrfs_release_path(root, path);
1086 return 0;
1087}
1088
1089
1090/*
1091 * record a given inode in the fixup dir so we can check its link
1092 * count when replay is done. The link count is incremented here
1093 * so the inode won't go away until we check it
1094 */
1095static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 objectid)
1099{
1100 struct btrfs_key key;
1101 int ret = 0;
1102 struct inode *inode;
1103
1104 inode = read_one_inode(root, objectid);
1105 BUG_ON(!inode);
1106
1107 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1108 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1109 key.offset = objectid;
1110
1111 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1112
1113 btrfs_release_path(root, path);
1114 if (ret == 0) {
1115 btrfs_inc_nlink(inode);
1116 btrfs_update_inode(trans, root, inode);
1117 } else if (ret == -EEXIST) {
1118 ret = 0;
1119 } else {
1120 BUG();
1121 }
1122 iput(inode);
1123
1124 return ret;
1125}
1126
1127/*
1128 * when replaying the log for a directory, we only insert names
1129 * for inodes that actually exist. This means an fsync on a directory
1130 * does not implicitly fsync all the new files in it
1131 */
1132static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1133 struct btrfs_root *root,
1134 struct btrfs_path *path,
1135 u64 dirid, u64 index,
1136 char *name, int name_len, u8 type,
1137 struct btrfs_key *location)
1138{
1139 struct inode *inode;
1140 struct inode *dir;
1141 int ret;
1142
1143 inode = read_one_inode(root, location->objectid);
1144 if (!inode)
1145 return -ENOENT;
1146
1147 dir = read_one_inode(root, dirid);
1148 if (!dir) {
1149 iput(inode);
1150 return -EIO;
1151 }
1152 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1153
1154 /* FIXME, put inode into FIXUP list */
1155
1156 iput(inode);
1157 iput(dir);
1158 return ret;
1159}
1160
1161/*
1162 * take a single entry in a log directory item and replay it into
1163 * the subvolume.
1164 *
1165 * if a conflicting item exists in the subdirectory already,
1166 * the inode it points to is unlinked and put into the link count
1167 * fix up tree.
1168 *
1169 * If a name from the log points to a file or directory that does
1170 * not exist in the FS, it is skipped. fsyncs on directories
1171 * do not force down inodes inside that directory, just changes to the
1172 * names or unlinks in a directory.
1173 */
1174static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 struct extent_buffer *eb,
1178 struct btrfs_dir_item *di,
1179 struct btrfs_key *key)
1180{
1181 char *name;
1182 int name_len;
1183 struct btrfs_dir_item *dst_di;
1184 struct btrfs_key found_key;
1185 struct btrfs_key log_key;
1186 struct inode *dir;
e02119d5 1187 u8 log_type;
4bef0848 1188 int exists;
e02119d5
CM
1189 int ret;
1190
1191 dir = read_one_inode(root, key->objectid);
1192 BUG_ON(!dir);
1193
1194 name_len = btrfs_dir_name_len(eb, di);
1195 name = kmalloc(name_len, GFP_NOFS);
1196 log_type = btrfs_dir_type(eb, di);
1197 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1198 name_len);
1199
1200 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1201 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1202 if (exists == 0)
1203 exists = 1;
1204 else
1205 exists = 0;
1206 btrfs_release_path(root, path);
1207
e02119d5
CM
1208 if (key->type == BTRFS_DIR_ITEM_KEY) {
1209 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1210 name, name_len, 1);
1211 }
1212 else if (key->type == BTRFS_DIR_INDEX_KEY) {
1213 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1214 key->objectid,
1215 key->offset, name,
1216 name_len, 1);
1217 } else {
1218 BUG();
1219 }
1220 if (!dst_di || IS_ERR(dst_di)) {
1221 /* we need a sequence number to insert, so we only
1222 * do inserts for the BTRFS_DIR_INDEX_KEY types
1223 */
1224 if (key->type != BTRFS_DIR_INDEX_KEY)
1225 goto out;
1226 goto insert;
1227 }
1228
1229 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1230 /* the existing item matches the logged item */
1231 if (found_key.objectid == log_key.objectid &&
1232 found_key.type == log_key.type &&
1233 found_key.offset == log_key.offset &&
1234 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1235 goto out;
1236 }
1237
1238 /*
1239 * don't drop the conflicting directory entry if the inode
1240 * for the new entry doesn't exist
1241 */
4bef0848 1242 if (!exists)
e02119d5
CM
1243 goto out;
1244
e02119d5
CM
1245 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1246 BUG_ON(ret);
1247
1248 if (key->type == BTRFS_DIR_INDEX_KEY)
1249 goto insert;
1250out:
1251 btrfs_release_path(root, path);
1252 kfree(name);
1253 iput(dir);
1254 return 0;
1255
1256insert:
1257 btrfs_release_path(root, path);
1258 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1259 name, name_len, log_type, &log_key);
1260
1261 if (ret && ret != -ENOENT)
1262 BUG();
1263 goto out;
1264}
1265
1266/*
1267 * find all the names in a directory item and reconcile them into
1268 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1269 * one name in a directory item, but the same code gets used for
1270 * both directory index types
1271 */
1272static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273 struct btrfs_root *root,
1274 struct btrfs_path *path,
1275 struct extent_buffer *eb, int slot,
1276 struct btrfs_key *key)
1277{
1278 int ret;
1279 u32 item_size = btrfs_item_size_nr(eb, slot);
1280 struct btrfs_dir_item *di;
1281 int name_len;
1282 unsigned long ptr;
1283 unsigned long ptr_end;
1284
1285 ptr = btrfs_item_ptr_offset(eb, slot);
1286 ptr_end = ptr + item_size;
1287 while(ptr < ptr_end) {
1288 di = (struct btrfs_dir_item *)ptr;
1289 name_len = btrfs_dir_name_len(eb, di);
1290 ret = replay_one_name(trans, root, path, eb, di, key);
1291 BUG_ON(ret);
1292 ptr = (unsigned long)(di + 1);
1293 ptr += name_len;
1294 }
1295 return 0;
1296}
1297
1298/*
1299 * directory replay has two parts. There are the standard directory
1300 * items in the log copied from the subvolume, and range items
1301 * created in the log while the subvolume was logged.
1302 *
1303 * The range items tell us which parts of the key space the log
1304 * is authoritative for. During replay, if a key in the subvolume
1305 * directory is in a logged range item, but not actually in the log
1306 * that means it was deleted from the directory before the fsync
1307 * and should be removed.
1308 */
1309static noinline int find_dir_range(struct btrfs_root *root,
1310 struct btrfs_path *path,
1311 u64 dirid, int key_type,
1312 u64 *start_ret, u64 *end_ret)
1313{
1314 struct btrfs_key key;
1315 u64 found_end;
1316 struct btrfs_dir_log_item *item;
1317 int ret;
1318 int nritems;
1319
1320 if (*start_ret == (u64)-1)
1321 return 1;
1322
1323 key.objectid = dirid;
1324 key.type = key_type;
1325 key.offset = *start_ret;
1326
1327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328 if (ret < 0)
1329 goto out;
1330 if (ret > 0) {
1331 if (path->slots[0] == 0)
1332 goto out;
1333 path->slots[0]--;
1334 }
1335 if (ret != 0)
1336 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1337
1338 if (key.type != key_type || key.objectid != dirid) {
1339 ret = 1;
1340 goto next;
1341 }
1342 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1343 struct btrfs_dir_log_item);
1344 found_end = btrfs_dir_log_end(path->nodes[0], item);
1345
1346 if (*start_ret >= key.offset && *start_ret <= found_end) {
1347 ret = 0;
1348 *start_ret = key.offset;
1349 *end_ret = found_end;
1350 goto out;
1351 }
1352 ret = 1;
1353next:
1354 /* check the next slot in the tree to see if it is a valid item */
1355 nritems = btrfs_header_nritems(path->nodes[0]);
1356 if (path->slots[0] >= nritems) {
1357 ret = btrfs_next_leaf(root, path);
1358 if (ret)
1359 goto out;
1360 } else {
1361 path->slots[0]++;
1362 }
1363
1364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1365
1366 if (key.type != key_type || key.objectid != dirid) {
1367 ret = 1;
1368 goto out;
1369 }
1370 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1371 struct btrfs_dir_log_item);
1372 found_end = btrfs_dir_log_end(path->nodes[0], item);
1373 *start_ret = key.offset;
1374 *end_ret = found_end;
1375 ret = 0;
1376out:
1377 btrfs_release_path(root, path);
1378 return ret;
1379}
1380
1381/*
1382 * this looks for a given directory item in the log. If the directory
1383 * item is not in the log, the item is removed and the inode it points
1384 * to is unlinked
1385 */
1386static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1387 struct btrfs_root *root,
1388 struct btrfs_root *log,
1389 struct btrfs_path *path,
1390 struct btrfs_path *log_path,
1391 struct inode *dir,
1392 struct btrfs_key *dir_key)
1393{
1394 int ret;
1395 struct extent_buffer *eb;
1396 int slot;
1397 u32 item_size;
1398 struct btrfs_dir_item *di;
1399 struct btrfs_dir_item *log_di;
1400 int name_len;
1401 unsigned long ptr;
1402 unsigned long ptr_end;
1403 char *name;
1404 struct inode *inode;
1405 struct btrfs_key location;
1406
1407again:
1408 eb = path->nodes[0];
1409 slot = path->slots[0];
1410 item_size = btrfs_item_size_nr(eb, slot);
1411 ptr = btrfs_item_ptr_offset(eb, slot);
1412 ptr_end = ptr + item_size;
1413 while(ptr < ptr_end) {
1414 di = (struct btrfs_dir_item *)ptr;
1415 name_len = btrfs_dir_name_len(eb, di);
1416 name = kmalloc(name_len, GFP_NOFS);
1417 if (!name) {
1418 ret = -ENOMEM;
1419 goto out;
1420 }
1421 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1422 name_len);
1423 log_di = NULL;
1424 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1425 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1426 dir_key->objectid,
1427 name, name_len, 0);
1428 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1429 log_di = btrfs_lookup_dir_index_item(trans, log,
1430 log_path,
1431 dir_key->objectid,
1432 dir_key->offset,
1433 name, name_len, 0);
1434 }
1435 if (!log_di || IS_ERR(log_di)) {
1436 btrfs_dir_item_key_to_cpu(eb, di, &location);
1437 btrfs_release_path(root, path);
1438 btrfs_release_path(log, log_path);
1439 inode = read_one_inode(root, location.objectid);
1440 BUG_ON(!inode);
1441
1442 ret = link_to_fixup_dir(trans, root,
1443 path, location.objectid);
1444 BUG_ON(ret);
1445 btrfs_inc_nlink(inode);
1446 ret = btrfs_unlink_inode(trans, root, dir, inode,
1447 name, name_len);
1448 BUG_ON(ret);
1449 kfree(name);
1450 iput(inode);
1451
1452 /* there might still be more names under this key
1453 * check and repeat if required
1454 */
1455 ret = btrfs_search_slot(NULL, root, dir_key, path,
1456 0, 0);
1457 if (ret == 0)
1458 goto again;
1459 ret = 0;
1460 goto out;
1461 }
1462 btrfs_release_path(log, log_path);
1463 kfree(name);
1464
1465 ptr = (unsigned long)(di + 1);
1466 ptr += name_len;
1467 }
1468 ret = 0;
1469out:
1470 btrfs_release_path(root, path);
1471 btrfs_release_path(log, log_path);
1472 return ret;
1473}
1474
1475/*
1476 * deletion replay happens before we copy any new directory items
1477 * out of the log or out of backreferences from inodes. It
1478 * scans the log to find ranges of keys that log is authoritative for,
1479 * and then scans the directory to find items in those ranges that are
1480 * not present in the log.
1481 *
1482 * Anything we don't find in the log is unlinked and removed from the
1483 * directory.
1484 */
1485static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1486 struct btrfs_root *root,
1487 struct btrfs_root *log,
1488 struct btrfs_path *path,
1489 u64 dirid)
1490{
1491 u64 range_start;
1492 u64 range_end;
1493 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1494 int ret = 0;
1495 struct btrfs_key dir_key;
1496 struct btrfs_key found_key;
1497 struct btrfs_path *log_path;
1498 struct inode *dir;
1499
1500 dir_key.objectid = dirid;
1501 dir_key.type = BTRFS_DIR_ITEM_KEY;
1502 log_path = btrfs_alloc_path();
1503 if (!log_path)
1504 return -ENOMEM;
1505
1506 dir = read_one_inode(root, dirid);
1507 /* it isn't an error if the inode isn't there, that can happen
1508 * because we replay the deletes before we copy in the inode item
1509 * from the log
1510 */
1511 if (!dir) {
1512 btrfs_free_path(log_path);
1513 return 0;
1514 }
1515again:
1516 range_start = 0;
1517 range_end = 0;
1518 while(1) {
1519 ret = find_dir_range(log, path, dirid, key_type,
1520 &range_start, &range_end);
1521 if (ret != 0)
1522 break;
1523
1524 dir_key.offset = range_start;
1525 while(1) {
1526 int nritems;
1527 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1528 0, 0);
1529 if (ret < 0)
1530 goto out;
1531
1532 nritems = btrfs_header_nritems(path->nodes[0]);
1533 if (path->slots[0] >= nritems) {
1534 ret = btrfs_next_leaf(root, path);
1535 if (ret)
1536 break;
1537 }
1538 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1539 path->slots[0]);
1540 if (found_key.objectid != dirid ||
1541 found_key.type != dir_key.type)
1542 goto next_type;
1543
1544 if (found_key.offset > range_end)
1545 break;
1546
1547 ret = check_item_in_log(trans, root, log, path,
1548 log_path, dir, &found_key);
1549 BUG_ON(ret);
1550 if (found_key.offset == (u64)-1)
1551 break;
1552 dir_key.offset = found_key.offset + 1;
1553 }
1554 btrfs_release_path(root, path);
1555 if (range_end == (u64)-1)
1556 break;
1557 range_start = range_end + 1;
1558 }
1559
1560next_type:
1561 ret = 0;
1562 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1563 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1564 dir_key.type = BTRFS_DIR_INDEX_KEY;
1565 btrfs_release_path(root, path);
1566 goto again;
1567 }
1568out:
1569 btrfs_release_path(root, path);
1570 btrfs_free_path(log_path);
1571 iput(dir);
1572 return ret;
1573}
1574
1575/*
1576 * the process_func used to replay items from the log tree. This
1577 * gets called in two different stages. The first stage just looks
1578 * for inodes and makes sure they are all copied into the subvolume.
1579 *
1580 * The second stage copies all the other item types from the log into
1581 * the subvolume. The two stage approach is slower, but gets rid of
1582 * lots of complexity around inodes referencing other inodes that exist
1583 * only in the log (references come from either directory items or inode
1584 * back refs).
1585 */
1586static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1587 struct walk_control *wc, u64 gen)
1588{
1589 int nritems;
1590 struct btrfs_path *path;
1591 struct btrfs_root *root = wc->replay_dest;
1592 struct btrfs_key key;
1593 u32 item_size;
1594 int level;
1595 int i;
1596 int ret;
1597
1598 btrfs_read_buffer(eb, gen);
1599
1600 level = btrfs_header_level(eb);
1601
1602 if (level != 0)
1603 return 0;
1604
1605 path = btrfs_alloc_path();
1606 BUG_ON(!path);
1607
1608 nritems = btrfs_header_nritems(eb);
1609 for (i = 0; i < nritems; i++) {
1610 btrfs_item_key_to_cpu(eb, &key, i);
1611 item_size = btrfs_item_size_nr(eb, i);
1612
1613 /* inode keys are done during the first stage */
1614 if (key.type == BTRFS_INODE_ITEM_KEY &&
1615 wc->stage == LOG_WALK_REPLAY_INODES) {
1616 struct inode *inode;
1617 struct btrfs_inode_item *inode_item;
1618 u32 mode;
1619
1620 inode_item = btrfs_item_ptr(eb, i,
1621 struct btrfs_inode_item);
1622 mode = btrfs_inode_mode(eb, inode_item);
1623 if (S_ISDIR(mode)) {
1624 ret = replay_dir_deletes(wc->trans,
1625 root, log, path, key.objectid);
1626 BUG_ON(ret);
1627 }
1628 ret = overwrite_item(wc->trans, root, path,
1629 eb, i, &key);
1630 BUG_ON(ret);
1631
1632 /* for regular files, truncate away
1633 * extents past the new EOF
1634 */
1635 if (S_ISREG(mode)) {
1636 inode = read_one_inode(root,
1637 key.objectid);
1638 BUG_ON(!inode);
1639
1640 ret = btrfs_truncate_inode_items(wc->trans,
1641 root, inode, inode->i_size,
1642 BTRFS_EXTENT_DATA_KEY);
1643 BUG_ON(ret);
1644 iput(inode);
1645 }
1646 ret = link_to_fixup_dir(wc->trans, root,
1647 path, key.objectid);
1648 BUG_ON(ret);
1649 }
1650 if (wc->stage < LOG_WALK_REPLAY_ALL)
1651 continue;
1652
1653 /* these keys are simply copied */
1654 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1655 ret = overwrite_item(wc->trans, root, path,
1656 eb, i, &key);
1657 BUG_ON(ret);
1658 } else if (key.type == BTRFS_INODE_REF_KEY) {
1659 ret = add_inode_ref(wc->trans, root, log, path,
1660 eb, i, &key);
1661 BUG_ON(ret && ret != -ENOENT);
1662 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1663 ret = replay_one_extent(wc->trans, root, path,
1664 eb, i, &key);
1665 BUG_ON(ret);
1666 } else if (key.type == BTRFS_CSUM_ITEM_KEY) {
1667 ret = replay_one_csum(wc->trans, root, path,
1668 eb, i, &key);
1669 BUG_ON(ret);
1670 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1671 key.type == BTRFS_DIR_INDEX_KEY) {
1672 ret = replay_one_dir_item(wc->trans, root, path,
1673 eb, i, &key);
1674 BUG_ON(ret);
1675 }
1676 }
1677 btrfs_free_path(path);
1678 return 0;
1679}
1680
1681static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
1682 struct btrfs_root *root,
1683 struct btrfs_path *path, int *level,
1684 struct walk_control *wc)
1685{
1686 u64 root_owner;
1687 u64 root_gen;
1688 u64 bytenr;
1689 u64 ptr_gen;
1690 struct extent_buffer *next;
1691 struct extent_buffer *cur;
1692 struct extent_buffer *parent;
1693 u32 blocksize;
1694 int ret = 0;
1695
1696 WARN_ON(*level < 0);
1697 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1698
1699 while(*level > 0) {
1700 WARN_ON(*level < 0);
1701 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1702 cur = path->nodes[*level];
1703
1704 if (btrfs_header_level(cur) != *level)
1705 WARN_ON(1);
1706
1707 if (path->slots[*level] >=
1708 btrfs_header_nritems(cur))
1709 break;
1710
1711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1713 blocksize = btrfs_level_size(root, *level - 1);
1714
1715 parent = path->nodes[*level];
1716 root_owner = btrfs_header_owner(parent);
1717 root_gen = btrfs_header_generation(parent);
1718
1719 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1720
1721 wc->process_func(root, next, wc, ptr_gen);
1722
1723 if (*level == 1) {
1724 path->slots[*level]++;
1725 if (wc->free) {
1726 btrfs_read_buffer(next, ptr_gen);
1727
1728 btrfs_tree_lock(next);
1729 clean_tree_block(trans, root, next);
1730 btrfs_wait_tree_block_writeback(next);
1731 btrfs_tree_unlock(next);
1732
1733 ret = btrfs_drop_leaf_ref(trans, root, next);
1734 BUG_ON(ret);
1735
1736 WARN_ON(root_owner !=
1737 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1738 ret = btrfs_free_reserved_extent(root,
1739 bytenr, blocksize);
e02119d5
CM
1740 BUG_ON(ret);
1741 }
1742 free_extent_buffer(next);
1743 continue;
1744 }
1745 btrfs_read_buffer(next, ptr_gen);
1746
1747 WARN_ON(*level <= 0);
1748 if (path->nodes[*level-1])
1749 free_extent_buffer(path->nodes[*level-1]);
1750 path->nodes[*level-1] = next;
1751 *level = btrfs_header_level(next);
1752 path->slots[*level] = 0;
1753 cond_resched();
1754 }
1755 WARN_ON(*level < 0);
1756 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1757
1758 if (path->nodes[*level] == root->node) {
1759 parent = path->nodes[*level];
1760 } else {
1761 parent = path->nodes[*level + 1];
1762 }
1763 bytenr = path->nodes[*level]->start;
1764
1765 blocksize = btrfs_level_size(root, *level);
1766 root_owner = btrfs_header_owner(parent);
1767 root_gen = btrfs_header_generation(parent);
1768
1769 wc->process_func(root, path->nodes[*level], wc,
1770 btrfs_header_generation(path->nodes[*level]));
1771
1772 if (wc->free) {
1773 next = path->nodes[*level];
1774 btrfs_tree_lock(next);
1775 clean_tree_block(trans, root, next);
1776 btrfs_wait_tree_block_writeback(next);
1777 btrfs_tree_unlock(next);
1778
1779 if (*level == 0) {
1780 ret = btrfs_drop_leaf_ref(trans, root, next);
1781 BUG_ON(ret);
1782 }
1783 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1784 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
e02119d5
CM
1785 BUG_ON(ret);
1786 }
1787 free_extent_buffer(path->nodes[*level]);
1788 path->nodes[*level] = NULL;
1789 *level += 1;
1790
1791 cond_resched();
1792 return 0;
1793}
1794
1795static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
1796 struct btrfs_root *root,
1797 struct btrfs_path *path, int *level,
1798 struct walk_control *wc)
1799{
1800 u64 root_owner;
1801 u64 root_gen;
1802 int i;
1803 int slot;
1804 int ret;
1805
1806 for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1807 slot = path->slots[i];
1808 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1809 struct extent_buffer *node;
1810 node = path->nodes[i];
1811 path->slots[i]++;
1812 *level = i;
1813 WARN_ON(*level == 0);
1814 return 0;
1815 } else {
31840ae1
ZY
1816 struct extent_buffer *parent;
1817 if (path->nodes[*level] == root->node)
1818 parent = path->nodes[*level];
1819 else
1820 parent = path->nodes[*level + 1];
1821
1822 root_owner = btrfs_header_owner(parent);
1823 root_gen = btrfs_header_generation(parent);
e02119d5
CM
1824 wc->process_func(root, path->nodes[*level], wc,
1825 btrfs_header_generation(path->nodes[*level]));
1826 if (wc->free) {
1827 struct extent_buffer *next;
1828
1829 next = path->nodes[*level];
1830
1831 btrfs_tree_lock(next);
1832 clean_tree_block(trans, root, next);
1833 btrfs_wait_tree_block_writeback(next);
1834 btrfs_tree_unlock(next);
1835
1836 if (*level == 0) {
1837 ret = btrfs_drop_leaf_ref(trans, root,
1838 next);
1839 BUG_ON(ret);
1840 }
1841
1842 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1843 ret = btrfs_free_reserved_extent(root,
e02119d5 1844 path->nodes[*level]->start,
d00aff00 1845 path->nodes[*level]->len);
e02119d5
CM
1846 BUG_ON(ret);
1847 }
1848 free_extent_buffer(path->nodes[*level]);
1849 path->nodes[*level] = NULL;
1850 *level = i + 1;
1851 }
1852 }
1853 return 1;
1854}
1855
1856/*
1857 * drop the reference count on the tree rooted at 'snap'. This traverses
1858 * the tree freeing any blocks that have a ref count of zero after being
1859 * decremented.
1860 */
1861static int walk_log_tree(struct btrfs_trans_handle *trans,
1862 struct btrfs_root *log, struct walk_control *wc)
1863{
1864 int ret = 0;
1865 int wret;
1866 int level;
1867 struct btrfs_path *path;
1868 int i;
1869 int orig_level;
1870
1871 path = btrfs_alloc_path();
1872 BUG_ON(!path);
1873
1874 level = btrfs_header_level(log->node);
1875 orig_level = level;
1876 path->nodes[level] = log->node;
1877 extent_buffer_get(log->node);
1878 path->slots[level] = 0;
1879
1880 while(1) {
1881 wret = walk_down_log_tree(trans, log, path, &level, wc);
1882 if (wret > 0)
1883 break;
1884 if (wret < 0)
1885 ret = wret;
1886
1887 wret = walk_up_log_tree(trans, log, path, &level, wc);
1888 if (wret > 0)
1889 break;
1890 if (wret < 0)
1891 ret = wret;
1892 }
1893
1894 /* was the root node processed? if not, catch it here */
1895 if (path->nodes[orig_level]) {
1896 wc->process_func(log, path->nodes[orig_level], wc,
1897 btrfs_header_generation(path->nodes[orig_level]));
1898 if (wc->free) {
1899 struct extent_buffer *next;
1900
1901 next = path->nodes[orig_level];
1902
1903 btrfs_tree_lock(next);
1904 clean_tree_block(trans, log, next);
1905 btrfs_wait_tree_block_writeback(next);
1906 btrfs_tree_unlock(next);
1907
1908 if (orig_level == 0) {
1909 ret = btrfs_drop_leaf_ref(trans, log,
1910 next);
1911 BUG_ON(ret);
1912 }
1913 WARN_ON(log->root_key.objectid !=
1914 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1915 ret = btrfs_free_reserved_extent(log, next->start,
1916 next->len);
e02119d5
CM
1917 BUG_ON(ret);
1918 }
1919 }
1920
1921 for (i = 0; i <= orig_level; i++) {
1922 if (path->nodes[i]) {
1923 free_extent_buffer(path->nodes[i]);
1924 path->nodes[i] = NULL;
1925 }
1926 }
1927 btrfs_free_path(path);
1928 if (wc->free)
1929 free_extent_buffer(log->node);
1930 return ret;
1931}
1932
1933int wait_log_commit(struct btrfs_root *log)
1934{
1935 DEFINE_WAIT(wait);
1936 u64 transid = log->fs_info->tree_log_transid;
1937
1938 do {
1939 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1940 TASK_UNINTERRUPTIBLE);
1941 mutex_unlock(&log->fs_info->tree_log_mutex);
1942 if (atomic_read(&log->fs_info->tree_log_commit))
1943 schedule();
1944 finish_wait(&log->fs_info->tree_log_wait, &wait);
1945 mutex_lock(&log->fs_info->tree_log_mutex);
1946 } while(transid == log->fs_info->tree_log_transid &&
1947 atomic_read(&log->fs_info->tree_log_commit));
1948 return 0;
1949}
1950
1951/*
1952 * btrfs_sync_log does sends a given tree log down to the disk and
1953 * updates the super blocks to record it. When this call is done,
1954 * you know that any inodes previously logged are safely on disk
1955 */
1956int btrfs_sync_log(struct btrfs_trans_handle *trans,
1957 struct btrfs_root *root)
1958{
1959 int ret;
1960 unsigned long batch;
1961 struct btrfs_root *log = root->log_root;
e02119d5
CM
1962
1963 mutex_lock(&log->fs_info->tree_log_mutex);
1964 if (atomic_read(&log->fs_info->tree_log_commit)) {
1965 wait_log_commit(log);
1966 goto out;
1967 }
1968 atomic_set(&log->fs_info->tree_log_commit, 1);
1969
1970 while(1) {
49eb7e46 1971 batch = log->fs_info->tree_log_batch;
e02119d5
CM
1972 mutex_unlock(&log->fs_info->tree_log_mutex);
1973 schedule_timeout_uninterruptible(1);
1974 mutex_lock(&log->fs_info->tree_log_mutex);
e02119d5
CM
1975
1976 while(atomic_read(&log->fs_info->tree_log_writers)) {
1977 DEFINE_WAIT(wait);
1978 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1979 TASK_UNINTERRUPTIBLE);
e02119d5
CM
1980 mutex_unlock(&log->fs_info->tree_log_mutex);
1981 if (atomic_read(&log->fs_info->tree_log_writers))
1982 schedule();
1983 mutex_lock(&log->fs_info->tree_log_mutex);
1984 finish_wait(&log->fs_info->tree_log_wait, &wait);
1985 }
1986 if (batch == log->fs_info->tree_log_batch)
1987 break;
1988 }
e02119d5 1989
d0c803c4 1990 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
e02119d5 1991 BUG_ON(ret);
d0c803c4
CM
1992 ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
1993 &root->fs_info->log_root_tree->dirty_log_pages);
e02119d5
CM
1994 BUG_ON(ret);
1995
1996 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
1997 log->fs_info->log_root_tree->node->start);
1998 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
1999 btrfs_header_level(log->fs_info->log_root_tree->node));
2000
2001 write_ctree_super(trans, log->fs_info->tree_root);
2002 log->fs_info->tree_log_transid++;
2003 log->fs_info->tree_log_batch = 0;
2004 atomic_set(&log->fs_info->tree_log_commit, 0);
2005 smp_mb();
2006 if (waitqueue_active(&log->fs_info->tree_log_wait))
2007 wake_up(&log->fs_info->tree_log_wait);
2008out:
2009 mutex_unlock(&log->fs_info->tree_log_mutex);
2010 return 0;
2011
2012}
2013
3a5f1d45 2014/* * free all the extents used by the tree log. This should be called
e02119d5
CM
2015 * at commit time of the full transaction
2016 */
2017int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2018{
2019 int ret;
2020 struct btrfs_root *log;
2021 struct key;
d0c803c4
CM
2022 u64 start;
2023 u64 end;
e02119d5
CM
2024 struct walk_control wc = {
2025 .free = 1,
2026 .process_func = process_one_buffer
2027 };
2028
2029 if (!root->log_root)
2030 return 0;
2031
2032 log = root->log_root;
2033 ret = walk_log_tree(trans, log, &wc);
2034 BUG_ON(ret);
2035
d0c803c4
CM
2036 while(1) {
2037 ret = find_first_extent_bit(&log->dirty_log_pages,
2038 0, &start, &end, EXTENT_DIRTY);
2039 if (ret)
2040 break;
2041
2042 clear_extent_dirty(&log->dirty_log_pages,
2043 start, end, GFP_NOFS);
2044 }
2045
e02119d5
CM
2046 log = root->log_root;
2047 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2048 &log->root_key);
2049 BUG_ON(ret);
2050 root->log_root = NULL;
2051 kfree(root->log_root);
2052 return 0;
2053}
2054
2055/*
2056 * helper function to update the item for a given subvolumes log root
2057 * in the tree of log roots
2058 */
2059static int update_log_root(struct btrfs_trans_handle *trans,
2060 struct btrfs_root *log)
2061{
2062 u64 bytenr = btrfs_root_bytenr(&log->root_item);
2063 int ret;
2064
2065 if (log->node->start == bytenr)
2066 return 0;
2067
2068 btrfs_set_root_bytenr(&log->root_item, log->node->start);
84234f3a 2069 btrfs_set_root_generation(&log->root_item, trans->transid);
e02119d5
CM
2070 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2071 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2072 &log->root_key, &log->root_item);
2073 BUG_ON(ret);
2074 return ret;
2075}
2076
2077/*
2078 * If both a file and directory are logged, and unlinks or renames are
2079 * mixed in, we have a few interesting corners:
2080 *
2081 * create file X in dir Y
2082 * link file X to X.link in dir Y
2083 * fsync file X
2084 * unlink file X but leave X.link
2085 * fsync dir Y
2086 *
2087 * After a crash we would expect only X.link to exist. But file X
2088 * didn't get fsync'd again so the log has back refs for X and X.link.
2089 *
2090 * We solve this by removing directory entries and inode backrefs from the
2091 * log when a file that was logged in the current transaction is
2092 * unlinked. Any later fsync will include the updated log entries, and
2093 * we'll be able to reconstruct the proper directory items from backrefs.
2094 *
2095 * This optimizations allows us to avoid relogging the entire inode
2096 * or the entire directory.
2097 */
2098int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2099 struct btrfs_root *root,
2100 const char *name, int name_len,
2101 struct inode *dir, u64 index)
2102{
2103 struct btrfs_root *log;
2104 struct btrfs_dir_item *di;
2105 struct btrfs_path *path;
2106 int ret;
2107 int bytes_del = 0;
2108
3a5f1d45
CM
2109 if (BTRFS_I(dir)->logged_trans < trans->transid)
2110 return 0;
2111
e02119d5
CM
2112 ret = join_running_log_trans(root);
2113 if (ret)
2114 return 0;
2115
2116 mutex_lock(&BTRFS_I(dir)->log_mutex);
2117
2118 log = root->log_root;
2119 path = btrfs_alloc_path();
2120 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2121 name, name_len, -1);
2122 if (di && !IS_ERR(di)) {
2123 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2124 bytes_del += name_len;
2125 BUG_ON(ret);
2126 }
2127 btrfs_release_path(log, path);
2128 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2129 index, name, name_len, -1);
2130 if (di && !IS_ERR(di)) {
2131 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2132 bytes_del += name_len;
2133 BUG_ON(ret);
2134 }
2135
2136 /* update the directory size in the log to reflect the names
2137 * we have removed
2138 */
2139 if (bytes_del) {
2140 struct btrfs_key key;
2141
2142 key.objectid = dir->i_ino;
2143 key.offset = 0;
2144 key.type = BTRFS_INODE_ITEM_KEY;
2145 btrfs_release_path(log, path);
2146
2147 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2148 if (ret == 0) {
2149 struct btrfs_inode_item *item;
2150 u64 i_size;
2151
2152 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2153 struct btrfs_inode_item);
2154 i_size = btrfs_inode_size(path->nodes[0], item);
2155 if (i_size > bytes_del)
2156 i_size -= bytes_del;
2157 else
2158 i_size = 0;
2159 btrfs_set_inode_size(path->nodes[0], item, i_size);
2160 btrfs_mark_buffer_dirty(path->nodes[0]);
2161 } else
2162 ret = 0;
2163 btrfs_release_path(log, path);
2164 }
2165
2166 btrfs_free_path(path);
2167 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2168 end_log_trans(root);
2169
2170 return 0;
2171}
2172
2173/* see comments for btrfs_del_dir_entries_in_log */
2174int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2175 struct btrfs_root *root,
2176 const char *name, int name_len,
2177 struct inode *inode, u64 dirid)
2178{
2179 struct btrfs_root *log;
2180 u64 index;
2181 int ret;
2182
3a5f1d45
CM
2183 if (BTRFS_I(inode)->logged_trans < trans->transid)
2184 return 0;
2185
e02119d5
CM
2186 ret = join_running_log_trans(root);
2187 if (ret)
2188 return 0;
2189 log = root->log_root;
2190 mutex_lock(&BTRFS_I(inode)->log_mutex);
2191
2192 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2193 dirid, &index);
2194 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2195 end_log_trans(root);
2196
e02119d5
CM
2197 return ret;
2198}
2199
2200/*
2201 * creates a range item in the log for 'dirid'. first_offset and
2202 * last_offset tell us which parts of the key space the log should
2203 * be considered authoritative for.
2204 */
2205static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2206 struct btrfs_root *log,
2207 struct btrfs_path *path,
2208 int key_type, u64 dirid,
2209 u64 first_offset, u64 last_offset)
2210{
2211 int ret;
2212 struct btrfs_key key;
2213 struct btrfs_dir_log_item *item;
2214
2215 key.objectid = dirid;
2216 key.offset = first_offset;
2217 if (key_type == BTRFS_DIR_ITEM_KEY)
2218 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2219 else
2220 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2221 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2222 BUG_ON(ret);
2223
2224 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2225 struct btrfs_dir_log_item);
2226 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2227 btrfs_mark_buffer_dirty(path->nodes[0]);
2228 btrfs_release_path(log, path);
2229 return 0;
2230}
2231
2232/*
2233 * log all the items included in the current transaction for a given
2234 * directory. This also creates the range items in the log tree required
2235 * to replay anything deleted before the fsync
2236 */
2237static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2238 struct btrfs_root *root, struct inode *inode,
2239 struct btrfs_path *path,
2240 struct btrfs_path *dst_path, int key_type,
2241 u64 min_offset, u64 *last_offset_ret)
2242{
2243 struct btrfs_key min_key;
2244 struct btrfs_key max_key;
2245 struct btrfs_root *log = root->log_root;
2246 struct extent_buffer *src;
2247 int ret;
2248 int i;
2249 int nritems;
2250 u64 first_offset = min_offset;
2251 u64 last_offset = (u64)-1;
2252
2253 log = root->log_root;
2254 max_key.objectid = inode->i_ino;
2255 max_key.offset = (u64)-1;
2256 max_key.type = key_type;
2257
2258 min_key.objectid = inode->i_ino;
2259 min_key.type = key_type;
2260 min_key.offset = min_offset;
2261
2262 path->keep_locks = 1;
2263
2264 ret = btrfs_search_forward(root, &min_key, &max_key,
2265 path, 0, trans->transid);
2266
2267 /*
2268 * we didn't find anything from this transaction, see if there
2269 * is anything at all
2270 */
2271 if (ret != 0 || min_key.objectid != inode->i_ino ||
2272 min_key.type != key_type) {
2273 min_key.objectid = inode->i_ino;
2274 min_key.type = key_type;
2275 min_key.offset = (u64)-1;
2276 btrfs_release_path(root, path);
2277 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2278 if (ret < 0) {
2279 btrfs_release_path(root, path);
2280 return ret;
2281 }
2282 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2283
2284 /* if ret == 0 there are items for this type,
2285 * create a range to tell us the last key of this type.
2286 * otherwise, there are no items in this directory after
2287 * *min_offset, and we create a range to indicate that.
2288 */
2289 if (ret == 0) {
2290 struct btrfs_key tmp;
2291 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2292 path->slots[0]);
2293 if (key_type == tmp.type) {
2294 first_offset = max(min_offset, tmp.offset) + 1;
2295 }
2296 }
2297 goto done;
2298 }
2299
2300 /* go backward to find any previous key */
2301 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2302 if (ret == 0) {
2303 struct btrfs_key tmp;
2304 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2305 if (key_type == tmp.type) {
2306 first_offset = tmp.offset;
2307 ret = overwrite_item(trans, log, dst_path,
2308 path->nodes[0], path->slots[0],
2309 &tmp);
2310 }
2311 }
2312 btrfs_release_path(root, path);
2313
2314 /* find the first key from this transaction again */
2315 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2316 if (ret != 0) {
2317 WARN_ON(1);
2318 goto done;
2319 }
2320
2321 /*
2322 * we have a block from this transaction, log every item in it
2323 * from our directory
2324 */
2325 while(1) {
2326 struct btrfs_key tmp;
2327 src = path->nodes[0];
2328 nritems = btrfs_header_nritems(src);
2329 for (i = path->slots[0]; i < nritems; i++) {
2330 btrfs_item_key_to_cpu(src, &min_key, i);
2331
2332 if (min_key.objectid != inode->i_ino ||
2333 min_key.type != key_type)
2334 goto done;
2335 ret = overwrite_item(trans, log, dst_path, src, i,
2336 &min_key);
2337 BUG_ON(ret);
2338 }
2339 path->slots[0] = nritems;
2340
2341 /*
2342 * look ahead to the next item and see if it is also
2343 * from this directory and from this transaction
2344 */
2345 ret = btrfs_next_leaf(root, path);
2346 if (ret == 1) {
2347 last_offset = (u64)-1;
2348 goto done;
2349 }
2350 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2351 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2352 last_offset = (u64)-1;
2353 goto done;
2354 }
2355 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2356 ret = overwrite_item(trans, log, dst_path,
2357 path->nodes[0], path->slots[0],
2358 &tmp);
2359
2360 BUG_ON(ret);
2361 last_offset = tmp.offset;
2362 goto done;
2363 }
2364 }
2365done:
2366 *last_offset_ret = last_offset;
2367 btrfs_release_path(root, path);
2368 btrfs_release_path(log, dst_path);
2369
2370 /* insert the log range keys to indicate where the log is valid */
2371 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2372 first_offset, last_offset);
2373 BUG_ON(ret);
2374 return 0;
2375}
2376
2377/*
2378 * logging directories is very similar to logging inodes, We find all the items
2379 * from the current transaction and write them to the log.
2380 *
2381 * The recovery code scans the directory in the subvolume, and if it finds a
2382 * key in the range logged that is not present in the log tree, then it means
2383 * that dir entry was unlinked during the transaction.
2384 *
2385 * In order for that scan to work, we must include one key smaller than
2386 * the smallest logged by this transaction and one key larger than the largest
2387 * key logged by this transaction.
2388 */
2389static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2390 struct btrfs_root *root, struct inode *inode,
2391 struct btrfs_path *path,
2392 struct btrfs_path *dst_path)
2393{
2394 u64 min_key;
2395 u64 max_key;
2396 int ret;
2397 int key_type = BTRFS_DIR_ITEM_KEY;
2398
2399again:
2400 min_key = 0;
2401 max_key = 0;
2402 while(1) {
2403 ret = log_dir_items(trans, root, inode, path,
2404 dst_path, key_type, min_key,
2405 &max_key);
2406 BUG_ON(ret);
2407 if (max_key == (u64)-1)
2408 break;
2409 min_key = max_key + 1;
2410 }
2411
2412 if (key_type == BTRFS_DIR_ITEM_KEY) {
2413 key_type = BTRFS_DIR_INDEX_KEY;
2414 goto again;
2415 }
2416 return 0;
2417}
2418
2419/*
2420 * a helper function to drop items from the log before we relog an
2421 * inode. max_key_type indicates the highest item type to remove.
2422 * This cannot be run for file data extents because it does not
2423 * free the extents they point to.
2424 */
2425static int drop_objectid_items(struct btrfs_trans_handle *trans,
2426 struct btrfs_root *log,
2427 struct btrfs_path *path,
2428 u64 objectid, int max_key_type)
2429{
2430 int ret;
2431 struct btrfs_key key;
2432 struct btrfs_key found_key;
2433
2434 key.objectid = objectid;
2435 key.type = max_key_type;
2436 key.offset = (u64)-1;
2437
2438 while(1) {
2439 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2440
2441 if (ret != 1)
2442 break;
2443
2444 if (path->slots[0] == 0)
2445 break;
2446
2447 path->slots[0]--;
2448 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2449 path->slots[0]);
2450
2451 if (found_key.objectid != objectid)
2452 break;
2453
2454 ret = btrfs_del_item(trans, log, path);
2455 BUG_ON(ret);
2456 btrfs_release_path(log, path);
2457 }
2458 btrfs_release_path(log, path);
2459 return 0;
2460}
2461
31ff1cd2
CM
2462static noinline int copy_items(struct btrfs_trans_handle *trans,
2463 struct btrfs_root *log,
2464 struct btrfs_path *dst_path,
2465 struct extent_buffer *src,
2466 int start_slot, int nr, int inode_only)
2467{
2468 unsigned long src_offset;
2469 unsigned long dst_offset;
2470 struct btrfs_file_extent_item *extent;
2471 struct btrfs_inode_item *inode_item;
2472 int ret;
2473 struct btrfs_key *ins_keys;
2474 u32 *ins_sizes;
2475 char *ins_data;
2476 int i;
2477
2478 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2479 nr * sizeof(u32), GFP_NOFS);
2480 ins_sizes = (u32 *)ins_data;
2481 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2482
2483 for (i = 0; i < nr; i++) {
2484 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2485 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2486 }
2487 ret = btrfs_insert_empty_items(trans, log, dst_path,
2488 ins_keys, ins_sizes, nr);
2489 BUG_ON(ret);
2490
2491 for (i = 0; i < nr; i++) {
2492 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2493 dst_path->slots[0]);
2494
2495 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2496
2497 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2498 src_offset, ins_sizes[i]);
2499
2500 if (inode_only == LOG_INODE_EXISTS &&
2501 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2502 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2503 dst_path->slots[0],
2504 struct btrfs_inode_item);
2505 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2506
2507 /* set the generation to zero so the recover code
2508 * can tell the difference between an logging
2509 * just to say 'this inode exists' and a logging
2510 * to say 'update this inode with these values'
2511 */
2512 btrfs_set_inode_generation(dst_path->nodes[0],
2513 inode_item, 0);
2514 }
2515 /* take a reference on file data extents so that truncates
2516 * or deletes of this inode don't have to relog the inode
2517 * again
2518 */
2519 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2520 int found_type;
2521 extent = btrfs_item_ptr(src, start_slot + i,
2522 struct btrfs_file_extent_item);
2523
2524 found_type = btrfs_file_extent_type(src, extent);
2525 if (found_type == BTRFS_FILE_EXTENT_REG) {
2526 u64 ds = btrfs_file_extent_disk_bytenr(src,
2527 extent);
2528 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2529 extent);
2530 /* ds == 0 is a hole */
2531 if (ds != 0) {
2532 ret = btrfs_inc_extent_ref(trans, log,
2533 ds, dl,
31840ae1 2534 dst_path->nodes[0]->start,
31ff1cd2 2535 BTRFS_TREE_LOG_OBJECTID,
31840ae1 2536 trans->transid,
3bb1a1bc 2537 ins_keys[i].objectid);
31ff1cd2
CM
2538 BUG_ON(ret);
2539 }
2540 }
2541 }
2542 dst_path->slots[0]++;
2543 }
2544
2545 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2546 btrfs_release_path(log, dst_path);
2547 kfree(ins_data);
2548 return 0;
2549}
2550
e02119d5
CM
2551/* log a single inode in the tree log.
2552 * At least one parent directory for this inode must exist in the tree
2553 * or be logged already.
2554 *
2555 * Any items from this inode changed by the current transaction are copied
2556 * to the log tree. An extra reference is taken on any extents in this
2557 * file, allowing us to avoid a whole pile of corner cases around logging
2558 * blocks that have been removed from the tree.
2559 *
2560 * See LOG_INODE_ALL and related defines for a description of what inode_only
2561 * does.
2562 *
2563 * This handles both files and directories.
2564 */
2565static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2566 struct btrfs_root *root, struct inode *inode,
2567 int inode_only)
2568{
2569 struct btrfs_path *path;
2570 struct btrfs_path *dst_path;
2571 struct btrfs_key min_key;
2572 struct btrfs_key max_key;
2573 struct btrfs_root *log = root->log_root;
31ff1cd2 2574 struct extent_buffer *src = NULL;
e02119d5
CM
2575 u32 size;
2576 int ret;
3a5f1d45 2577 int nritems;
31ff1cd2
CM
2578 int ins_start_slot = 0;
2579 int ins_nr;
e02119d5
CM
2580
2581 log = root->log_root;
2582
2583 path = btrfs_alloc_path();
2584 dst_path = btrfs_alloc_path();
2585
2586 min_key.objectid = inode->i_ino;
2587 min_key.type = BTRFS_INODE_ITEM_KEY;
2588 min_key.offset = 0;
2589
2590 max_key.objectid = inode->i_ino;
2591 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2592 max_key.type = BTRFS_XATTR_ITEM_KEY;
2593 else
2594 max_key.type = (u8)-1;
2595 max_key.offset = (u64)-1;
2596
2597 /*
2598 * if this inode has already been logged and we're in inode_only
2599 * mode, we don't want to delete the things that have already
2600 * been written to the log.
2601 *
2602 * But, if the inode has been through an inode_only log,
2603 * the logged_trans field is not set. This allows us to catch
2604 * any new names for this inode in the backrefs by logging it
2605 * again
2606 */
2607 if (inode_only == LOG_INODE_EXISTS &&
2608 BTRFS_I(inode)->logged_trans == trans->transid) {
2609 btrfs_free_path(path);
2610 btrfs_free_path(dst_path);
2611 goto out;
2612 }
2613 mutex_lock(&BTRFS_I(inode)->log_mutex);
2614
2615 /*
2616 * a brute force approach to making sure we get the most uptodate
2617 * copies of everything.
2618 */
2619 if (S_ISDIR(inode->i_mode)) {
2620 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2621
2622 if (inode_only == LOG_INODE_EXISTS)
2623 max_key_type = BTRFS_XATTR_ITEM_KEY;
2624 ret = drop_objectid_items(trans, log, path,
2625 inode->i_ino, max_key_type);
2626 } else {
2627 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2628 }
2629 BUG_ON(ret);
2630 path->keep_locks = 1;
2631
2632 while(1) {
31ff1cd2 2633 ins_nr = 0;
e02119d5
CM
2634 ret = btrfs_search_forward(root, &min_key, &max_key,
2635 path, 0, trans->transid);
2636 if (ret != 0)
2637 break;
3a5f1d45 2638again:
31ff1cd2 2639 /* note, ins_nr might be > 0 here, cleanup outside the loop */
e02119d5
CM
2640 if (min_key.objectid != inode->i_ino)
2641 break;
2642 if (min_key.type > max_key.type)
2643 break;
31ff1cd2 2644
e02119d5
CM
2645 src = path->nodes[0];
2646 size = btrfs_item_size_nr(src, path->slots[0]);
31ff1cd2
CM
2647 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2648 ins_nr++;
2649 goto next_slot;
2650 } else if (!ins_nr) {
2651 ins_start_slot = path->slots[0];
2652 ins_nr = 1;
2653 goto next_slot;
e02119d5
CM
2654 }
2655
31ff1cd2
CM
2656 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2657 ins_nr, inode_only);
2658 BUG_ON(ret);
2659 ins_nr = 1;
2660 ins_start_slot = path->slots[0];
2661next_slot:
e02119d5 2662
3a5f1d45
CM
2663 nritems = btrfs_header_nritems(path->nodes[0]);
2664 path->slots[0]++;
2665 if (path->slots[0] < nritems) {
2666 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2667 path->slots[0]);
2668 goto again;
2669 }
31ff1cd2
CM
2670 if (ins_nr) {
2671 ret = copy_items(trans, log, dst_path, src,
2672 ins_start_slot,
2673 ins_nr, inode_only);
2674 BUG_ON(ret);
2675 ins_nr = 0;
2676 }
3a5f1d45
CM
2677 btrfs_release_path(root, path);
2678
e02119d5
CM
2679 if (min_key.offset < (u64)-1)
2680 min_key.offset++;
2681 else if (min_key.type < (u8)-1)
2682 min_key.type++;
2683 else if (min_key.objectid < (u64)-1)
2684 min_key.objectid++;
2685 else
2686 break;
2687 }
31ff1cd2
CM
2688 if (ins_nr) {
2689 ret = copy_items(trans, log, dst_path, src,
2690 ins_start_slot,
2691 ins_nr, inode_only);
2692 BUG_ON(ret);
2693 ins_nr = 0;
2694 }
2695 WARN_ON(ins_nr);
9623f9a3 2696 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2697 btrfs_release_path(root, path);
2698 btrfs_release_path(log, dst_path);
49eb7e46 2699 BTRFS_I(inode)->log_dirty_trans = 0;
e02119d5
CM
2700 ret = log_directory_changes(trans, root, inode, path, dst_path);
2701 BUG_ON(ret);
2702 }
3a5f1d45 2703 BTRFS_I(inode)->logged_trans = trans->transid;
e02119d5
CM
2704 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2705
2706 btrfs_free_path(path);
2707 btrfs_free_path(dst_path);
2708
2709 mutex_lock(&root->fs_info->tree_log_mutex);
2710 ret = update_log_root(trans, log);
2711 BUG_ON(ret);
2712 mutex_unlock(&root->fs_info->tree_log_mutex);
2713out:
2714 return 0;
2715}
2716
2717int btrfs_log_inode(struct btrfs_trans_handle *trans,
2718 struct btrfs_root *root, struct inode *inode,
2719 int inode_only)
2720{
2721 int ret;
2722
2723 start_log_trans(trans, root);
2724 ret = __btrfs_log_inode(trans, root, inode, inode_only);
2725 end_log_trans(root);
2726 return ret;
2727}
2728
2729/*
2730 * helper function around btrfs_log_inode to make sure newly created
2731 * parent directories also end up in the log. A minimal inode and backref
2732 * only logging is done of any parent directories that are older than
2733 * the last committed transaction
2734 */
2735int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2736 struct btrfs_root *root, struct dentry *dentry)
2737{
2738 int inode_only = LOG_INODE_ALL;
2739 struct super_block *sb;
2740 int ret;
2741
2742 start_log_trans(trans, root);
2743 sb = dentry->d_inode->i_sb;
2744 while(1) {
2745 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2746 inode_only);
2747 BUG_ON(ret);
2748 inode_only = LOG_INODE_EXISTS;
2749
2750 dentry = dentry->d_parent;
2751 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2752 break;
2753
2754 if (BTRFS_I(dentry->d_inode)->generation <=
2755 root->fs_info->last_trans_committed)
2756 break;
2757 }
2758 end_log_trans(root);
2759 return 0;
2760}
2761
2762/*
2763 * it is not safe to log dentry if the chunk root has added new
2764 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2765 * If this returns 1, you must commit the transaction to safely get your
2766 * data on disk.
2767 */
2768int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2769 struct btrfs_root *root, struct dentry *dentry)
2770{
2771 u64 gen;
2772 gen = root->fs_info->last_trans_new_blockgroup;
2773 if (gen > root->fs_info->last_trans_committed)
2774 return 1;
2775 else
2776 return btrfs_log_dentry(trans, root, dentry);
2777}
2778
2779/*
2780 * should be called during mount to recover any replay any log trees
2781 * from the FS
2782 */
2783int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2784{
2785 int ret;
2786 struct btrfs_path *path;
2787 struct btrfs_trans_handle *trans;
2788 struct btrfs_key key;
2789 struct btrfs_key found_key;
2790 struct btrfs_key tmp_key;
2791 struct btrfs_root *log;
2792 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
8d5bf1cb 2793 u64 highest_inode;
e02119d5
CM
2794 struct walk_control wc = {
2795 .process_func = process_one_buffer,
2796 .stage = 0,
2797 };
2798
2799 fs_info->log_root_recovering = 1;
2800 path = btrfs_alloc_path();
2801 BUG_ON(!path);
2802
2803 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2804
2805 wc.trans = trans;
2806 wc.pin = 1;
2807
2808 walk_log_tree(trans, log_root_tree, &wc);
2809
2810again:
2811 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2812 key.offset = (u64)-1;
2813 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2814
2815 while(1) {
2816 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2817 if (ret < 0)
2818 break;
2819 if (ret > 0) {
2820 if (path->slots[0] == 0)
2821 break;
2822 path->slots[0]--;
2823 }
2824 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2825 path->slots[0]);
2826 btrfs_release_path(log_root_tree, path);
2827 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2828 break;
2829
2830 log = btrfs_read_fs_root_no_radix(log_root_tree,
2831 &found_key);
2832 BUG_ON(!log);
2833
2834
2835 tmp_key.objectid = found_key.offset;
2836 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2837 tmp_key.offset = (u64)-1;
2838
2839 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2840
2841 BUG_ON(!wc.replay_dest);
2842
2843 btrfs_record_root_in_trans(wc.replay_dest);
2844 ret = walk_log_tree(trans, log, &wc);
2845 BUG_ON(ret);
2846
2847 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2848 ret = fixup_inode_link_counts(trans, wc.replay_dest,
2849 path);
2850 BUG_ON(ret);
2851 }
8d5bf1cb
CM
2852 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2853 if (ret == 0) {
2854 wc.replay_dest->highest_inode = highest_inode;
2855 wc.replay_dest->last_inode_alloc = highest_inode;
2856 }
e02119d5
CM
2857
2858 key.offset = found_key.offset - 1;
2859 free_extent_buffer(log->node);
2860 kfree(log);
2861
2862 if (found_key.offset == 0)
2863 break;
2864 }
2865 btrfs_release_path(log_root_tree, path);
2866
2867 /* step one is to pin it all, step two is to replay just inodes */
2868 if (wc.pin) {
2869 wc.pin = 0;
2870 wc.process_func = replay_one_buffer;
2871 wc.stage = LOG_WALK_REPLAY_INODES;
2872 goto again;
2873 }
2874 /* step three is to replay everything */
2875 if (wc.stage < LOG_WALK_REPLAY_ALL) {
2876 wc.stage++;
2877 goto again;
2878 }
2879
2880 btrfs_free_path(path);
2881
2882 free_extent_buffer(log_root_tree->node);
2883 log_root_tree->log_root = NULL;
2884 fs_info->log_root_recovering = 0;
2885
2886 /* step 4: commit the transaction, which also unpins the blocks */
2887 btrfs_commit_transaction(trans, fs_info->tree_root);
2888
2889 kfree(log_root_tree);
2890 return 0;
2891}