]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
btrfs: avoid unnecessarily logging directories that had no changes
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
e02119d5
CM
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
e13976cf
DS
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
e02119d5 36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
e13976cf
DS
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 97 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 98 int inode_only,
8407f553 99 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
fa1a0f42 108static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
e02119d5 141{
0b246afa 142 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 143 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 144 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 145 int ret = 0;
fa1a0f42 146 bool created = false;
7237f183 147
47876f7c
FM
148 /*
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
151 */
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 156 if (!ret) {
47876f7c 157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
158 created = true;
159 }
47876f7c
FM
160 }
161 mutex_unlock(&tree_root->log_mutex);
162 if (ret)
163 return ret;
164 }
165
7237f183 166 mutex_lock(&root->log_mutex);
34eb2a52 167
fa1a0f42 168again:
7237f183 169 if (root->log_root) {
fa1a0f42
NA
170 int index = (root->log_transid + 1) % 2;
171
4884b8e8 172 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
173 ret = -EAGAIN;
174 goto out;
175 }
34eb2a52 176
fa1a0f42
NA
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
179 goto again;
180 }
181
ff782e0a 182 if (!root->log_start_pid) {
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 184 root->log_start_pid = current->pid;
ff782e0a 185 } else if (root->log_start_pid != current->pid) {
27cdeb70 186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 187 }
34eb2a52 188 } else {
fa1a0f42
NA
189 /*
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
193 * writing.
194 */
195 if (zoned && !created) {
196 ret = -EAGAIN;
197 goto out;
198 }
199
e02119d5 200 ret = btrfs_add_log_tree(trans, root);
4a500fd1 201 if (ret)
e87ac136 202 goto out;
34eb2a52 203
e7a79811 204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
e02119d5 207 }
34eb2a52 208
7237f183 209 atomic_inc(&root->log_writers);
75b463d2 210 if (ctx && !ctx->logging_new_name) {
34eb2a52 211 int index = root->log_transid % 2;
8b050d35 212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 213 ctx->log_transid = root->log_transid;
8b050d35 214 }
34eb2a52 215
e87ac136 216out:
7237f183 217 mutex_unlock(&root->log_mutex);
e87ac136 218 return ret;
e02119d5
CM
219}
220
221/*
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
224 * in progress
225 */
226static int join_running_log_trans(struct btrfs_root *root)
227{
fa1a0f42 228 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
229 int ret = -ENOENT;
230
e7a79811
FM
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 return ret;
233
7237f183 234 mutex_lock(&root->log_mutex);
fa1a0f42 235again:
e02119d5 236 if (root->log_root) {
fa1a0f42
NA
237 int index = (root->log_transid + 1) % 2;
238
e02119d5 239 ret = 0;
fa1a0f42
NA
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
242 goto again;
243 }
7237f183 244 atomic_inc(&root->log_writers);
e02119d5 245 }
7237f183 246 mutex_unlock(&root->log_mutex);
e02119d5
CM
247 return ret;
248}
249
12fcfd22
CM
250/*
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
254 */
45128b08 255void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 256{
12fcfd22 257 atomic_inc(&root->log_writers);
12fcfd22
CM
258}
259
e02119d5
CM
260/*
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
263 */
143bede5 264void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 265{
7237f183 266 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 269 }
e02119d5
CM
270}
271
247462a5
DS
272static int btrfs_write_tree_block(struct extent_buffer *buf)
273{
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
276}
277
278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279{
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
282}
e02119d5
CM
283
284/*
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
289 */
290struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
293 */
294 int free;
295
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
298 */
299 int write;
300
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
303 */
304 int wait;
305
306 /* pin only walk, we record which extents on disk belong to the
307 * log trees
308 */
309 int pin;
310
311 /* what stage of the replay code we're currently in */
312 int stage;
313
f2d72f42
FM
314 /*
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
318 */
319 bool ignore_cur_inode;
320
e02119d5
CM
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
323
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
326
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
330 * inside it
331 */
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 333 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
334};
335
336/*
337 * process_func used to pin down extents, write them or wait on them
338 */
339static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
581c1760 341 struct walk_control *wc, u64 gen, int level)
e02119d5 342{
0b246afa 343 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
344 int ret = 0;
345
8c2a1a30
JB
346 /*
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
349 */
0b246afa 350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 351 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
352 if (ret)
353 return ret;
354 }
355
04018de5 356 if (wc->pin)
9fce5704 357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 358 eb->len);
e02119d5 359
b50c6e25 360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 361 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 362 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
363 if (wc->write)
364 btrfs_write_tree_block(eb);
365 if (wc->wait)
366 btrfs_wait_tree_block_writeback(eb);
367 }
b50c6e25 368 return ret;
e02119d5
CM
369}
370
371/*
372 * Item overwrite used by replay and tree logging. eb, slot and key all refer
373 * to the src data we are copying out.
374 *
375 * root is the tree we are copying into, and path is a scratch
376 * path for use in this function (it should be released on entry and
377 * will be released on exit).
378 *
379 * If the key is already in the destination tree the existing item is
380 * overwritten. If the existing item isn't big enough, it is extended.
381 * If it is too large, it is truncated.
382 *
383 * If the key isn't in the destination yet, a new item is inserted.
384 */
385static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct btrfs_path *path,
388 struct extent_buffer *eb, int slot,
389 struct btrfs_key *key)
390{
391 int ret;
392 u32 item_size;
393 u64 saved_i_size = 0;
394 int save_old_i_size = 0;
395 unsigned long src_ptr;
396 unsigned long dst_ptr;
397 int overwrite_root = 0;
4bc4bee4 398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
399
400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 overwrite_root = 1;
402
403 item_size = btrfs_item_size_nr(eb, slot);
404 src_ptr = btrfs_item_ptr_offset(eb, slot);
405
406 /* look for the key in the destination tree */
407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
408 if (ret < 0)
409 return ret;
410
e02119d5
CM
411 if (ret == 0) {
412 char *src_copy;
413 char *dst_copy;
414 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 path->slots[0]);
416 if (dst_size != item_size)
417 goto insert;
418
419 if (item_size == 0) {
b3b4aa74 420 btrfs_release_path(path);
e02119d5
CM
421 return 0;
422 }
423 dst_copy = kmalloc(item_size, GFP_NOFS);
424 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 425 if (!dst_copy || !src_copy) {
b3b4aa74 426 btrfs_release_path(path);
2a29edc6 427 kfree(dst_copy);
428 kfree(src_copy);
429 return -ENOMEM;
430 }
e02119d5
CM
431
432 read_extent_buffer(eb, src_copy, src_ptr, item_size);
433
434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 item_size);
437 ret = memcmp(dst_copy, src_copy, item_size);
438
439 kfree(dst_copy);
440 kfree(src_copy);
441 /*
442 * they have the same contents, just return, this saves
443 * us from cowing blocks in the destination tree and doing
444 * extra writes that may not have been done by a previous
445 * sync
446 */
447 if (ret == 0) {
b3b4aa74 448 btrfs_release_path(path);
e02119d5
CM
449 return 0;
450 }
451
4bc4bee4
JB
452 /*
453 * We need to load the old nbytes into the inode so when we
454 * replay the extents we've logged we get the right nbytes.
455 */
456 if (inode_item) {
457 struct btrfs_inode_item *item;
458 u64 nbytes;
d555438b 459 u32 mode;
4bc4bee4
JB
460
461 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 struct btrfs_inode_item);
463 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 item = btrfs_item_ptr(eb, slot,
465 struct btrfs_inode_item);
466 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
467
468 /*
469 * If this is a directory we need to reset the i_size to
470 * 0 so that we can set it up properly when replaying
471 * the rest of the items in this log.
472 */
473 mode = btrfs_inode_mode(eb, item);
474 if (S_ISDIR(mode))
475 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
476 }
477 } else if (inode_item) {
478 struct btrfs_inode_item *item;
d555438b 479 u32 mode;
4bc4bee4
JB
480
481 /*
482 * New inode, set nbytes to 0 so that the nbytes comes out
483 * properly when we replay the extents.
484 */
485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
487
488 /*
489 * If this is a directory we need to reset the i_size to 0 so
490 * that we can set it up properly when replaying the rest of
491 * the items in this log.
492 */
493 mode = btrfs_inode_mode(eb, item);
494 if (S_ISDIR(mode))
495 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
496 }
497insert:
b3b4aa74 498 btrfs_release_path(path);
e02119d5 499 /* try to insert the key into the destination tree */
df8d116f 500 path->skip_release_on_error = 1;
e02119d5
CM
501 ret = btrfs_insert_empty_item(trans, root, path,
502 key, item_size);
df8d116f 503 path->skip_release_on_error = 0;
e02119d5
CM
504
505 /* make sure any existing item is the correct size */
df8d116f 506 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
507 u32 found_size;
508 found_size = btrfs_item_size_nr(path->nodes[0],
509 path->slots[0]);
143bede5 510 if (found_size > item_size)
78ac4f9e 511 btrfs_truncate_item(path, item_size, 1);
143bede5 512 else if (found_size < item_size)
c71dd880 513 btrfs_extend_item(path, item_size - found_size);
e02119d5 514 } else if (ret) {
4a500fd1 515 return ret;
e02119d5
CM
516 }
517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 path->slots[0]);
519
520 /* don't overwrite an existing inode if the generation number
521 * was logged as zero. This is done when the tree logging code
522 * is just logging an inode to make sure it exists after recovery.
523 *
524 * Also, don't overwrite i_size on directories during replay.
525 * log replay inserts and removes directory items based on the
526 * state of the tree found in the subvolume, and i_size is modified
527 * as it goes
528 */
529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 struct btrfs_inode_item *src_item;
531 struct btrfs_inode_item *dst_item;
532
533 src_item = (struct btrfs_inode_item *)src_ptr;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535
1a4bcf47
FM
536 if (btrfs_inode_generation(eb, src_item) == 0) {
537 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 538 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 539
2f2ff0ee
FM
540 /*
541 * For regular files an ino_size == 0 is used only when
542 * logging that an inode exists, as part of a directory
543 * fsync, and the inode wasn't fsynced before. In this
544 * case don't set the size of the inode in the fs/subvol
545 * tree, otherwise we would be throwing valid data away.
546 */
1a4bcf47 547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
549 ino_size != 0)
550 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 551 goto no_copy;
1a4bcf47 552 }
e02119d5
CM
553
554 if (overwrite_root &&
555 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 save_old_i_size = 1;
558 saved_i_size = btrfs_inode_size(path->nodes[0],
559 dst_item);
560 }
561 }
562
563 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 src_ptr, item_size);
565
566 if (save_old_i_size) {
567 struct btrfs_inode_item *dst_item;
568 dst_item = (struct btrfs_inode_item *)dst_ptr;
569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 }
571
572 /* make sure the generation is filled in */
573 if (key->type == BTRFS_INODE_ITEM_KEY) {
574 struct btrfs_inode_item *dst_item;
575 dst_item = (struct btrfs_inode_item *)dst_ptr;
576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 btrfs_set_inode_generation(path->nodes[0], dst_item,
578 trans->transid);
579 }
580 }
581no_copy:
582 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 583 btrfs_release_path(path);
e02119d5
CM
584 return 0;
585}
586
587/*
588 * simple helper to read an inode off the disk from a given root
589 * This can only be called for subvolume roots and not for the log
590 */
591static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 u64 objectid)
593{
594 struct inode *inode;
e02119d5 595
0202e83f 596 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 597 if (IS_ERR(inode))
5d4f98a2 598 inode = NULL;
e02119d5
CM
599 return inode;
600}
601
602/* replays a single extent in 'eb' at 'slot' with 'key' into the
603 * subvolume 'root'. path is released on entry and should be released
604 * on exit.
605 *
606 * extents in the log tree have not been allocated out of the extent
607 * tree yet. So, this completes the allocation, taking a reference
608 * as required if the extent already exists or creating a new extent
609 * if it isn't in the extent allocation tree yet.
610 *
611 * The extent is inserted into the file, dropping any existing extents
612 * from the file that overlap the new one.
613 */
614static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 struct btrfs_root *root,
616 struct btrfs_path *path,
617 struct extent_buffer *eb, int slot,
618 struct btrfs_key *key)
619{
5893dfb9 620 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 621 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 622 int found_type;
e02119d5 623 u64 extent_end;
e02119d5 624 u64 start = key->offset;
4bc4bee4 625 u64 nbytes = 0;
e02119d5
CM
626 struct btrfs_file_extent_item *item;
627 struct inode *inode = NULL;
628 unsigned long size;
629 int ret = 0;
630
631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 found_type = btrfs_file_extent_type(eb, item);
633
d899e052 634 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
635 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 nbytes = btrfs_file_extent_num_bytes(eb, item);
637 extent_end = start + nbytes;
638
639 /*
640 * We don't add to the inodes nbytes if we are prealloc or a
641 * hole.
642 */
643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 nbytes = 0;
645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 646 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 647 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 648 extent_end = ALIGN(start + size,
0b246afa 649 fs_info->sectorsize);
e02119d5
CM
650 } else {
651 ret = 0;
652 goto out;
653 }
654
655 inode = read_one_inode(root, key->objectid);
656 if (!inode) {
657 ret = -EIO;
658 goto out;
659 }
660
661 /*
662 * first check to see if we already have this extent in the
663 * file. This must be done before the btrfs_drop_extents run
664 * so we don't try to drop this extent.
665 */
f85b7379
DS
666 ret = btrfs_lookup_file_extent(trans, root, path,
667 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 668
d899e052
YZ
669 if (ret == 0 &&
670 (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
672 struct btrfs_file_extent_item cmp1;
673 struct btrfs_file_extent_item cmp2;
674 struct btrfs_file_extent_item *existing;
675 struct extent_buffer *leaf;
676
677 leaf = path->nodes[0];
678 existing = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_file_extent_item);
680
681 read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 sizeof(cmp1));
683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 sizeof(cmp2));
685
686 /*
687 * we already have a pointer to this exact extent,
688 * we don't have to do anything
689 */
690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 691 btrfs_release_path(path);
e02119d5
CM
692 goto out;
693 }
694 }
b3b4aa74 695 btrfs_release_path(path);
e02119d5
CM
696
697 /* drop any overlapping extents */
5893dfb9
FM
698 drop_args.start = start;
699 drop_args.end = extent_end;
700 drop_args.drop_cache = true;
701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
702 if (ret)
703 goto out;
e02119d5 704
07d400a6
YZ
705 if (found_type == BTRFS_FILE_EXTENT_REG ||
706 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 707 u64 offset;
07d400a6
YZ
708 unsigned long dest_offset;
709 struct btrfs_key ins;
710
3168021c
FM
711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 btrfs_fs_incompat(fs_info, NO_HOLES))
713 goto update_inode;
714
07d400a6
YZ
715 ret = btrfs_insert_empty_item(trans, root, path, key,
716 sizeof(*item));
3650860b
JB
717 if (ret)
718 goto out;
07d400a6
YZ
719 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 path->slots[0]);
721 copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 (unsigned long)item, sizeof(*item));
723
724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 727 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 728
df2c95f3
QW
729 /*
730 * Manually record dirty extent, as here we did a shallow
731 * file extent item copy and skip normal backref update,
732 * but modifying extent tree all by ourselves.
733 * So need to manually record dirty extent for qgroup,
734 * as the owner of the file extent changed from log tree
735 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 */
a95f3aaf 737 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
738 btrfs_file_extent_disk_bytenr(eb, item),
739 btrfs_file_extent_disk_num_bytes(eb, item),
740 GFP_NOFS);
741 if (ret < 0)
742 goto out;
743
07d400a6 744 if (ins.objectid > 0) {
82fa113f 745 struct btrfs_ref ref = { 0 };
07d400a6
YZ
746 u64 csum_start;
747 u64 csum_end;
748 LIST_HEAD(ordered_sums);
82fa113f 749
07d400a6
YZ
750 /*
751 * is this extent already allocated in the extent
752 * allocation tree? If so, just add a reference
753 */
2ff7e61e 754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
755 ins.offset);
756 if (ret == 0) {
82fa113f
QW
757 btrfs_init_generic_ref(&ref,
758 BTRFS_ADD_DELAYED_REF,
759 ins.objectid, ins.offset, 0);
760 btrfs_init_data_ref(&ref,
761 root->root_key.objectid,
b06c4bf5 762 key->objectid, offset);
82fa113f 763 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
764 if (ret)
765 goto out;
07d400a6
YZ
766 } else {
767 /*
768 * insert the extent pointer in the extent
769 * allocation tree
770 */
5d4f98a2 771 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 772 root->root_key.objectid,
5d4f98a2 773 key->objectid, offset, &ins);
b50c6e25
JB
774 if (ret)
775 goto out;
07d400a6 776 }
b3b4aa74 777 btrfs_release_path(path);
07d400a6
YZ
778
779 if (btrfs_file_extent_compression(eb, item)) {
780 csum_start = ins.objectid;
781 csum_end = csum_start + ins.offset;
782 } else {
783 csum_start = ins.objectid +
784 btrfs_file_extent_offset(eb, item);
785 csum_end = csum_start +
786 btrfs_file_extent_num_bytes(eb, item);
787 }
788
789 ret = btrfs_lookup_csums_range(root->log_root,
790 csum_start, csum_end - 1,
a2de733c 791 &ordered_sums, 0);
3650860b
JB
792 if (ret)
793 goto out;
b84b8390
FM
794 /*
795 * Now delete all existing cums in the csum root that
796 * cover our range. We do this because we can have an
797 * extent that is completely referenced by one file
798 * extent item and partially referenced by another
799 * file extent item (like after using the clone or
800 * extent_same ioctls). In this case if we end up doing
801 * the replay of the one that partially references the
802 * extent first, and we do not do the csum deletion
803 * below, we can get 2 csum items in the csum tree that
804 * overlap each other. For example, imagine our log has
805 * the two following file extent items:
806 *
807 * key (257 EXTENT_DATA 409600)
808 * extent data disk byte 12845056 nr 102400
809 * extent data offset 20480 nr 20480 ram 102400
810 *
811 * key (257 EXTENT_DATA 819200)
812 * extent data disk byte 12845056 nr 102400
813 * extent data offset 0 nr 102400 ram 102400
814 *
815 * Where the second one fully references the 100K extent
816 * that starts at disk byte 12845056, and the log tree
817 * has a single csum item that covers the entire range
818 * of the extent:
819 *
820 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
821 *
822 * After the first file extent item is replayed, the
823 * csum tree gets the following csum item:
824 *
825 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
826 *
827 * Which covers the 20K sub-range starting at offset 20K
828 * of our extent. Now when we replay the second file
829 * extent item, if we do not delete existing csum items
830 * that cover any of its blocks, we end up getting two
831 * csum items in our csum tree that overlap each other:
832 *
833 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 *
836 * Which is a problem, because after this anyone trying
837 * to lookup up for the checksum of any block of our
838 * extent starting at an offset of 40K or higher, will
839 * end up looking at the second csum item only, which
840 * does not contain the checksum for any block starting
841 * at offset 40K or higher of our extent.
842 */
07d400a6
YZ
843 while (!list_empty(&ordered_sums)) {
844 struct btrfs_ordered_sum *sums;
845 sums = list_entry(ordered_sums.next,
846 struct btrfs_ordered_sum,
847 list);
b84b8390 848 if (!ret)
40e046ac
FM
849 ret = btrfs_del_csums(trans,
850 fs_info->csum_root,
5b4aacef
JM
851 sums->bytenr,
852 sums->len);
3650860b
JB
853 if (!ret)
854 ret = btrfs_csum_file_blocks(trans,
0b246afa 855 fs_info->csum_root, sums);
07d400a6
YZ
856 list_del(&sums->list);
857 kfree(sums);
858 }
3650860b
JB
859 if (ret)
860 goto out;
07d400a6 861 } else {
b3b4aa74 862 btrfs_release_path(path);
07d400a6
YZ
863 }
864 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
865 /* inline extents are easy, we just overwrite them */
866 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
867 if (ret)
868 goto out;
07d400a6 869 }
e02119d5 870
9ddc959e
JB
871 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
872 extent_end - start);
873 if (ret)
874 goto out;
875
3168021c 876update_inode:
2766ff61 877 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 878 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
879out:
880 if (inode)
881 iput(inode);
882 return ret;
883}
884
885/*
886 * when cleaning up conflicts between the directory names in the
887 * subvolume, directory names in the log and directory names in the
888 * inode back references, we may have to unlink inodes from directories.
889 *
890 * This is a helper function to do the unlink of a specific directory
891 * item
892 */
893static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
894 struct btrfs_root *root,
895 struct btrfs_path *path,
207e7d92 896 struct btrfs_inode *dir,
e02119d5
CM
897 struct btrfs_dir_item *di)
898{
899 struct inode *inode;
900 char *name;
901 int name_len;
902 struct extent_buffer *leaf;
903 struct btrfs_key location;
904 int ret;
905
906 leaf = path->nodes[0];
907
908 btrfs_dir_item_key_to_cpu(leaf, di, &location);
909 name_len = btrfs_dir_name_len(leaf, di);
910 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 911 if (!name)
912 return -ENOMEM;
913
e02119d5 914 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 915 btrfs_release_path(path);
e02119d5
CM
916
917 inode = read_one_inode(root, location.objectid);
c00e9493 918 if (!inode) {
3650860b
JB
919 ret = -EIO;
920 goto out;
c00e9493 921 }
e02119d5 922
ec051c0f 923 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
924 if (ret)
925 goto out;
12fcfd22 926
207e7d92
NB
927 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
928 name_len);
3650860b
JB
929 if (ret)
930 goto out;
ada9af21 931 else
e5c304e6 932 ret = btrfs_run_delayed_items(trans);
3650860b 933out:
e02119d5 934 kfree(name);
e02119d5
CM
935 iput(inode);
936 return ret;
937}
938
939/*
940 * helper function to see if a given name and sequence number found
941 * in an inode back reference are already in a directory and correctly
942 * point to this inode
943 */
944static noinline int inode_in_dir(struct btrfs_root *root,
945 struct btrfs_path *path,
946 u64 dirid, u64 objectid, u64 index,
947 const char *name, int name_len)
948{
949 struct btrfs_dir_item *di;
950 struct btrfs_key location;
951 int match = 0;
952
953 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
954 index, name, name_len, 0);
955 if (di && !IS_ERR(di)) {
956 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
957 if (location.objectid != objectid)
958 goto out;
959 } else
960 goto out;
b3b4aa74 961 btrfs_release_path(path);
e02119d5
CM
962
963 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
964 if (di && !IS_ERR(di)) {
965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
966 if (location.objectid != objectid)
967 goto out;
968 } else
969 goto out;
970 match = 1;
971out:
b3b4aa74 972 btrfs_release_path(path);
e02119d5
CM
973 return match;
974}
975
976/*
977 * helper function to check a log tree for a named back reference in
978 * an inode. This is used to decide if a back reference that is
979 * found in the subvolume conflicts with what we find in the log.
980 *
981 * inode backreferences may have multiple refs in a single item,
982 * during replay we process one reference at a time, and we don't
983 * want to delete valid links to a file from the subvolume if that
984 * link is also in the log.
985 */
986static noinline int backref_in_log(struct btrfs_root *log,
987 struct btrfs_key *key,
f186373f 988 u64 ref_objectid,
df8d116f 989 const char *name, int namelen)
e02119d5
CM
990{
991 struct btrfs_path *path;
e02119d5 992 int ret;
e02119d5
CM
993
994 path = btrfs_alloc_path();
2a29edc6 995 if (!path)
996 return -ENOMEM;
997
e02119d5 998 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
999 if (ret < 0) {
1000 goto out;
1001 } else if (ret == 1) {
89cbf5f6 1002 ret = 0;
f186373f
MF
1003 goto out;
1004 }
1005
89cbf5f6
NB
1006 if (key->type == BTRFS_INODE_EXTREF_KEY)
1007 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1008 path->slots[0],
1009 ref_objectid,
1010 name, namelen);
1011 else
1012 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1013 path->slots[0],
1014 name, namelen);
e02119d5
CM
1015out:
1016 btrfs_free_path(path);
89cbf5f6 1017 return ret;
e02119d5
CM
1018}
1019
5a1d7843 1020static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1021 struct btrfs_root *root,
e02119d5 1022 struct btrfs_path *path,
5a1d7843 1023 struct btrfs_root *log_root,
94c91a1f
NB
1024 struct btrfs_inode *dir,
1025 struct btrfs_inode *inode,
f186373f
MF
1026 u64 inode_objectid, u64 parent_objectid,
1027 u64 ref_index, char *name, int namelen,
1028 int *search_done)
e02119d5 1029{
34f3e4f2 1030 int ret;
f186373f
MF
1031 char *victim_name;
1032 int victim_name_len;
1033 struct extent_buffer *leaf;
5a1d7843 1034 struct btrfs_dir_item *di;
f186373f
MF
1035 struct btrfs_key search_key;
1036 struct btrfs_inode_extref *extref;
c622ae60 1037
f186373f
MF
1038again:
1039 /* Search old style refs */
1040 search_key.objectid = inode_objectid;
1041 search_key.type = BTRFS_INODE_REF_KEY;
1042 search_key.offset = parent_objectid;
1043 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1044 if (ret == 0) {
e02119d5
CM
1045 struct btrfs_inode_ref *victim_ref;
1046 unsigned long ptr;
1047 unsigned long ptr_end;
f186373f
MF
1048
1049 leaf = path->nodes[0];
e02119d5
CM
1050
1051 /* are we trying to overwrite a back ref for the root directory
1052 * if so, just jump out, we're done
1053 */
f186373f 1054 if (search_key.objectid == search_key.offset)
5a1d7843 1055 return 1;
e02119d5
CM
1056
1057 /* check all the names in this back reference to see
1058 * if they are in the log. if so, we allow them to stay
1059 * otherwise they must be unlinked as a conflict
1060 */
1061 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1062 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1063 while (ptr < ptr_end) {
e02119d5
CM
1064 victim_ref = (struct btrfs_inode_ref *)ptr;
1065 victim_name_len = btrfs_inode_ref_name_len(leaf,
1066 victim_ref);
1067 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1068 if (!victim_name)
1069 return -ENOMEM;
e02119d5
CM
1070
1071 read_extent_buffer(leaf, victim_name,
1072 (unsigned long)(victim_ref + 1),
1073 victim_name_len);
1074
d3316c82
NB
1075 ret = backref_in_log(log_root, &search_key,
1076 parent_objectid, victim_name,
1077 victim_name_len);
1078 if (ret < 0) {
1079 kfree(victim_name);
1080 return ret;
1081 } else if (!ret) {
94c91a1f 1082 inc_nlink(&inode->vfs_inode);
b3b4aa74 1083 btrfs_release_path(path);
12fcfd22 1084
94c91a1f 1085 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1086 victim_name, victim_name_len);
f186373f 1087 kfree(victim_name);
3650860b
JB
1088 if (ret)
1089 return ret;
e5c304e6 1090 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1091 if (ret)
1092 return ret;
f186373f
MF
1093 *search_done = 1;
1094 goto again;
e02119d5
CM
1095 }
1096 kfree(victim_name);
f186373f 1097
e02119d5
CM
1098 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1099 }
e02119d5 1100
c622ae60 1101 /*
1102 * NOTE: we have searched root tree and checked the
bb7ab3b9 1103 * corresponding ref, it does not need to check again.
c622ae60 1104 */
5a1d7843 1105 *search_done = 1;
e02119d5 1106 }
b3b4aa74 1107 btrfs_release_path(path);
e02119d5 1108
f186373f
MF
1109 /* Same search but for extended refs */
1110 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1111 inode_objectid, parent_objectid, 0,
1112 0);
1113 if (!IS_ERR_OR_NULL(extref)) {
1114 u32 item_size;
1115 u32 cur_offset = 0;
1116 unsigned long base;
1117 struct inode *victim_parent;
1118
1119 leaf = path->nodes[0];
1120
1121 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1122 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1123
1124 while (cur_offset < item_size) {
dd9ef135 1125 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1126
1127 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1128
1129 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1130 goto next;
1131
1132 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1133 if (!victim_name)
1134 return -ENOMEM;
f186373f
MF
1135 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1136 victim_name_len);
1137
1138 search_key.objectid = inode_objectid;
1139 search_key.type = BTRFS_INODE_EXTREF_KEY;
1140 search_key.offset = btrfs_extref_hash(parent_objectid,
1141 victim_name,
1142 victim_name_len);
d3316c82
NB
1143 ret = backref_in_log(log_root, &search_key,
1144 parent_objectid, victim_name,
1145 victim_name_len);
1146 if (ret < 0) {
1147 return ret;
1148 } else if (!ret) {
f186373f
MF
1149 ret = -ENOENT;
1150 victim_parent = read_one_inode(root,
94c91a1f 1151 parent_objectid);
f186373f 1152 if (victim_parent) {
94c91a1f 1153 inc_nlink(&inode->vfs_inode);
f186373f
MF
1154 btrfs_release_path(path);
1155
1156 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1157 BTRFS_I(victim_parent),
94c91a1f 1158 inode,
4ec5934e
NB
1159 victim_name,
1160 victim_name_len);
ada9af21
FDBM
1161 if (!ret)
1162 ret = btrfs_run_delayed_items(
e5c304e6 1163 trans);
f186373f 1164 }
f186373f
MF
1165 iput(victim_parent);
1166 kfree(victim_name);
3650860b
JB
1167 if (ret)
1168 return ret;
f186373f
MF
1169 *search_done = 1;
1170 goto again;
1171 }
1172 kfree(victim_name);
f186373f
MF
1173next:
1174 cur_offset += victim_name_len + sizeof(*extref);
1175 }
1176 *search_done = 1;
1177 }
1178 btrfs_release_path(path);
1179
34f3e4f2 1180 /* look for a conflicting sequence number */
94c91a1f 1181 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1182 ref_index, name, namelen, 0);
34f3e4f2 1183 if (di && !IS_ERR(di)) {
94c91a1f 1184 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1185 if (ret)
1186 return ret;
34f3e4f2 1187 }
1188 btrfs_release_path(path);
1189
52042d8e 1190 /* look for a conflicting name */
94c91a1f 1191 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1192 name, namelen, 0);
1193 if (di && !IS_ERR(di)) {
94c91a1f 1194 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1195 if (ret)
1196 return ret;
34f3e4f2 1197 }
1198 btrfs_release_path(path);
1199
5a1d7843
JS
1200 return 0;
1201}
e02119d5 1202
bae15d95
QW
1203static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1204 u32 *namelen, char **name, u64 *index,
1205 u64 *parent_objectid)
f186373f
MF
1206{
1207 struct btrfs_inode_extref *extref;
1208
1209 extref = (struct btrfs_inode_extref *)ref_ptr;
1210
1211 *namelen = btrfs_inode_extref_name_len(eb, extref);
1212 *name = kmalloc(*namelen, GFP_NOFS);
1213 if (*name == NULL)
1214 return -ENOMEM;
1215
1216 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1217 *namelen);
1218
1f250e92
FM
1219 if (index)
1220 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1221 if (parent_objectid)
1222 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1223
1224 return 0;
1225}
1226
bae15d95
QW
1227static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1228 u32 *namelen, char **name, u64 *index)
f186373f
MF
1229{
1230 struct btrfs_inode_ref *ref;
1231
1232 ref = (struct btrfs_inode_ref *)ref_ptr;
1233
1234 *namelen = btrfs_inode_ref_name_len(eb, ref);
1235 *name = kmalloc(*namelen, GFP_NOFS);
1236 if (*name == NULL)
1237 return -ENOMEM;
1238
1239 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1240
1f250e92
FM
1241 if (index)
1242 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1243
1244 return 0;
1245}
1246
1f250e92
FM
1247/*
1248 * Take an inode reference item from the log tree and iterate all names from the
1249 * inode reference item in the subvolume tree with the same key (if it exists).
1250 * For any name that is not in the inode reference item from the log tree, do a
1251 * proper unlink of that name (that is, remove its entry from the inode
1252 * reference item and both dir index keys).
1253 */
1254static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1255 struct btrfs_root *root,
1256 struct btrfs_path *path,
1257 struct btrfs_inode *inode,
1258 struct extent_buffer *log_eb,
1259 int log_slot,
1260 struct btrfs_key *key)
1261{
1262 int ret;
1263 unsigned long ref_ptr;
1264 unsigned long ref_end;
1265 struct extent_buffer *eb;
1266
1267again:
1268 btrfs_release_path(path);
1269 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1270 if (ret > 0) {
1271 ret = 0;
1272 goto out;
1273 }
1274 if (ret < 0)
1275 goto out;
1276
1277 eb = path->nodes[0];
1278 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1279 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1280 while (ref_ptr < ref_end) {
1281 char *name = NULL;
1282 int namelen;
1283 u64 parent_id;
1284
1285 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1286 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1287 NULL, &parent_id);
1288 } else {
1289 parent_id = key->offset;
1290 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1291 NULL);
1292 }
1293 if (ret)
1294 goto out;
1295
1296 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1297 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1298 parent_id, name,
1299 namelen);
1f250e92 1300 else
9bb8407f
NB
1301 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1302 name, namelen);
1f250e92
FM
1303
1304 if (!ret) {
1305 struct inode *dir;
1306
1307 btrfs_release_path(path);
1308 dir = read_one_inode(root, parent_id);
1309 if (!dir) {
1310 ret = -ENOENT;
1311 kfree(name);
1312 goto out;
1313 }
1314 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1315 inode, name, namelen);
1316 kfree(name);
1317 iput(dir);
1318 if (ret)
1319 goto out;
1320 goto again;
1321 }
1322
1323 kfree(name);
1324 ref_ptr += namelen;
1325 if (key->type == BTRFS_INODE_EXTREF_KEY)
1326 ref_ptr += sizeof(struct btrfs_inode_extref);
1327 else
1328 ref_ptr += sizeof(struct btrfs_inode_ref);
1329 }
1330 ret = 0;
1331 out:
1332 btrfs_release_path(path);
1333 return ret;
1334}
1335
0d836392
FM
1336static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1337 const u8 ref_type, const char *name,
1338 const int namelen)
1339{
1340 struct btrfs_key key;
1341 struct btrfs_path *path;
1342 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1343 int ret;
1344
1345 path = btrfs_alloc_path();
1346 if (!path)
1347 return -ENOMEM;
1348
1349 key.objectid = btrfs_ino(BTRFS_I(inode));
1350 key.type = ref_type;
1351 if (key.type == BTRFS_INODE_REF_KEY)
1352 key.offset = parent_id;
1353 else
1354 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1355
1356 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1357 if (ret < 0)
1358 goto out;
1359 if (ret > 0) {
1360 ret = 0;
1361 goto out;
1362 }
1363 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1364 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1365 path->slots[0], parent_id, name, namelen);
0d836392 1366 else
9bb8407f
NB
1367 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1368 name, namelen);
0d836392
FM
1369
1370out:
1371 btrfs_free_path(path);
1372 return ret;
1373}
1374
6b5fc433
FM
1375static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1376 struct inode *dir, struct inode *inode, const char *name,
1377 int namelen, u64 ref_index)
1378{
1379 struct btrfs_dir_item *dir_item;
1380 struct btrfs_key key;
1381 struct btrfs_path *path;
1382 struct inode *other_inode = NULL;
1383 int ret;
1384
1385 path = btrfs_alloc_path();
1386 if (!path)
1387 return -ENOMEM;
1388
1389 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1390 btrfs_ino(BTRFS_I(dir)),
1391 name, namelen, 0);
1392 if (!dir_item) {
1393 btrfs_release_path(path);
1394 goto add_link;
1395 } else if (IS_ERR(dir_item)) {
1396 ret = PTR_ERR(dir_item);
1397 goto out;
1398 }
1399
1400 /*
1401 * Our inode's dentry collides with the dentry of another inode which is
1402 * in the log but not yet processed since it has a higher inode number.
1403 * So delete that other dentry.
1404 */
1405 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1406 btrfs_release_path(path);
1407 other_inode = read_one_inode(root, key.objectid);
1408 if (!other_inode) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1413 name, namelen);
1414 if (ret)
1415 goto out;
1416 /*
1417 * If we dropped the link count to 0, bump it so that later the iput()
1418 * on the inode will not free it. We will fixup the link count later.
1419 */
1420 if (other_inode->i_nlink == 0)
1421 inc_nlink(other_inode);
1422
1423 ret = btrfs_run_delayed_items(trans);
1424 if (ret)
1425 goto out;
1426add_link:
1427 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1428 name, namelen, 0, ref_index);
1429out:
1430 iput(other_inode);
1431 btrfs_free_path(path);
1432
1433 return ret;
1434}
1435
5a1d7843
JS
1436/*
1437 * replay one inode back reference item found in the log tree.
1438 * eb, slot and key refer to the buffer and key found in the log tree.
1439 * root is the destination we are replaying into, and path is for temp
1440 * use by this function. (it should be released on return).
1441 */
1442static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1443 struct btrfs_root *root,
1444 struct btrfs_root *log,
1445 struct btrfs_path *path,
1446 struct extent_buffer *eb, int slot,
1447 struct btrfs_key *key)
1448{
03b2f08b
GB
1449 struct inode *dir = NULL;
1450 struct inode *inode = NULL;
5a1d7843
JS
1451 unsigned long ref_ptr;
1452 unsigned long ref_end;
03b2f08b 1453 char *name = NULL;
5a1d7843
JS
1454 int namelen;
1455 int ret;
1456 int search_done = 0;
f186373f
MF
1457 int log_ref_ver = 0;
1458 u64 parent_objectid;
1459 u64 inode_objectid;
f46dbe3d 1460 u64 ref_index = 0;
f186373f
MF
1461 int ref_struct_size;
1462
1463 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1464 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1465
1466 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1467 struct btrfs_inode_extref *r;
1468
1469 ref_struct_size = sizeof(struct btrfs_inode_extref);
1470 log_ref_ver = 1;
1471 r = (struct btrfs_inode_extref *)ref_ptr;
1472 parent_objectid = btrfs_inode_extref_parent(eb, r);
1473 } else {
1474 ref_struct_size = sizeof(struct btrfs_inode_ref);
1475 parent_objectid = key->offset;
1476 }
1477 inode_objectid = key->objectid;
e02119d5 1478
5a1d7843
JS
1479 /*
1480 * it is possible that we didn't log all the parent directories
1481 * for a given inode. If we don't find the dir, just don't
1482 * copy the back ref in. The link count fixup code will take
1483 * care of the rest
1484 */
f186373f 1485 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1486 if (!dir) {
1487 ret = -ENOENT;
1488 goto out;
1489 }
5a1d7843 1490
f186373f 1491 inode = read_one_inode(root, inode_objectid);
5a1d7843 1492 if (!inode) {
03b2f08b
GB
1493 ret = -EIO;
1494 goto out;
5a1d7843
JS
1495 }
1496
5a1d7843 1497 while (ref_ptr < ref_end) {
f186373f 1498 if (log_ref_ver) {
bae15d95
QW
1499 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1500 &ref_index, &parent_objectid);
f186373f
MF
1501 /*
1502 * parent object can change from one array
1503 * item to another.
1504 */
1505 if (!dir)
1506 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1507 if (!dir) {
1508 ret = -ENOENT;
1509 goto out;
1510 }
f186373f 1511 } else {
bae15d95
QW
1512 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1513 &ref_index);
f186373f
MF
1514 }
1515 if (ret)
03b2f08b 1516 goto out;
5a1d7843
JS
1517
1518 /* if we already have a perfect match, we're done */
f85b7379
DS
1519 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1520 btrfs_ino(BTRFS_I(inode)), ref_index,
1521 name, namelen)) {
5a1d7843
JS
1522 /*
1523 * look for a conflicting back reference in the
1524 * metadata. if we find one we have to unlink that name
1525 * of the file before we add our new link. Later on, we
1526 * overwrite any existing back reference, and we don't
1527 * want to create dangling pointers in the directory.
1528 */
1529
1530 if (!search_done) {
1531 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1532 BTRFS_I(dir),
d75eefdf 1533 BTRFS_I(inode),
f186373f
MF
1534 inode_objectid,
1535 parent_objectid,
1536 ref_index, name, namelen,
5a1d7843 1537 &search_done);
03b2f08b
GB
1538 if (ret) {
1539 if (ret == 1)
1540 ret = 0;
3650860b
JB
1541 goto out;
1542 }
5a1d7843
JS
1543 }
1544
0d836392
FM
1545 /*
1546 * If a reference item already exists for this inode
1547 * with the same parent and name, but different index,
1548 * drop it and the corresponding directory index entries
1549 * from the parent before adding the new reference item
1550 * and dir index entries, otherwise we would fail with
1551 * -EEXIST returned from btrfs_add_link() below.
1552 */
1553 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1554 name, namelen);
1555 if (ret > 0) {
1556 ret = btrfs_unlink_inode(trans, root,
1557 BTRFS_I(dir),
1558 BTRFS_I(inode),
1559 name, namelen);
1560 /*
1561 * If we dropped the link count to 0, bump it so
1562 * that later the iput() on the inode will not
1563 * free it. We will fixup the link count later.
1564 */
1565 if (!ret && inode->i_nlink == 0)
1566 inc_nlink(inode);
1567 }
1568 if (ret < 0)
1569 goto out;
1570
5a1d7843 1571 /* insert our name */
6b5fc433
FM
1572 ret = add_link(trans, root, dir, inode, name, namelen,
1573 ref_index);
3650860b
JB
1574 if (ret)
1575 goto out;
5a1d7843 1576
f96d4474
JB
1577 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1578 if (ret)
1579 goto out;
5a1d7843
JS
1580 }
1581
f186373f 1582 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1583 kfree(name);
03b2f08b 1584 name = NULL;
f186373f
MF
1585 if (log_ref_ver) {
1586 iput(dir);
1587 dir = NULL;
1588 }
5a1d7843 1589 }
e02119d5 1590
1f250e92
FM
1591 /*
1592 * Before we overwrite the inode reference item in the subvolume tree
1593 * with the item from the log tree, we must unlink all names from the
1594 * parent directory that are in the subvolume's tree inode reference
1595 * item, otherwise we end up with an inconsistent subvolume tree where
1596 * dir index entries exist for a name but there is no inode reference
1597 * item with the same name.
1598 */
1599 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1600 key);
1601 if (ret)
1602 goto out;
1603
e02119d5
CM
1604 /* finally write the back reference in the inode */
1605 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1606out:
b3b4aa74 1607 btrfs_release_path(path);
03b2f08b 1608 kfree(name);
e02119d5
CM
1609 iput(dir);
1610 iput(inode);
3650860b 1611 return ret;
e02119d5
CM
1612}
1613
f186373f 1614static int count_inode_extrefs(struct btrfs_root *root,
36283658 1615 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1616{
1617 int ret = 0;
1618 int name_len;
1619 unsigned int nlink = 0;
1620 u32 item_size;
1621 u32 cur_offset = 0;
36283658 1622 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1623 u64 offset = 0;
1624 unsigned long ptr;
1625 struct btrfs_inode_extref *extref;
1626 struct extent_buffer *leaf;
1627
1628 while (1) {
1629 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1630 &extref, &offset);
1631 if (ret)
1632 break;
c71bf099 1633
f186373f
MF
1634 leaf = path->nodes[0];
1635 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1636 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1637 cur_offset = 0;
f186373f
MF
1638
1639 while (cur_offset < item_size) {
1640 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1641 name_len = btrfs_inode_extref_name_len(leaf, extref);
1642
1643 nlink++;
1644
1645 cur_offset += name_len + sizeof(*extref);
1646 }
1647
1648 offset++;
1649 btrfs_release_path(path);
1650 }
1651 btrfs_release_path(path);
1652
2c2c452b 1653 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1654 return ret;
1655 return nlink;
1656}
1657
1658static int count_inode_refs(struct btrfs_root *root,
f329e319 1659 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1660{
e02119d5
CM
1661 int ret;
1662 struct btrfs_key key;
f186373f 1663 unsigned int nlink = 0;
e02119d5
CM
1664 unsigned long ptr;
1665 unsigned long ptr_end;
1666 int name_len;
f329e319 1667 u64 ino = btrfs_ino(inode);
e02119d5 1668
33345d01 1669 key.objectid = ino;
e02119d5
CM
1670 key.type = BTRFS_INODE_REF_KEY;
1671 key.offset = (u64)-1;
1672
d397712b 1673 while (1) {
e02119d5
CM
1674 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1675 if (ret < 0)
1676 break;
1677 if (ret > 0) {
1678 if (path->slots[0] == 0)
1679 break;
1680 path->slots[0]--;
1681 }
e93ae26f 1682process_slot:
e02119d5
CM
1683 btrfs_item_key_to_cpu(path->nodes[0], &key,
1684 path->slots[0]);
33345d01 1685 if (key.objectid != ino ||
e02119d5
CM
1686 key.type != BTRFS_INODE_REF_KEY)
1687 break;
1688 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1689 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1690 path->slots[0]);
d397712b 1691 while (ptr < ptr_end) {
e02119d5
CM
1692 struct btrfs_inode_ref *ref;
1693
1694 ref = (struct btrfs_inode_ref *)ptr;
1695 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1696 ref);
1697 ptr = (unsigned long)(ref + 1) + name_len;
1698 nlink++;
1699 }
1700
1701 if (key.offset == 0)
1702 break;
e93ae26f
FDBM
1703 if (path->slots[0] > 0) {
1704 path->slots[0]--;
1705 goto process_slot;
1706 }
e02119d5 1707 key.offset--;
b3b4aa74 1708 btrfs_release_path(path);
e02119d5 1709 }
b3b4aa74 1710 btrfs_release_path(path);
f186373f
MF
1711
1712 return nlink;
1713}
1714
1715/*
1716 * There are a few corners where the link count of the file can't
1717 * be properly maintained during replay. So, instead of adding
1718 * lots of complexity to the log code, we just scan the backrefs
1719 * for any file that has been through replay.
1720 *
1721 * The scan will update the link count on the inode to reflect the
1722 * number of back refs found. If it goes down to zero, the iput
1723 * will free the inode.
1724 */
1725static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1726 struct btrfs_root *root,
1727 struct inode *inode)
1728{
1729 struct btrfs_path *path;
1730 int ret;
1731 u64 nlink = 0;
4a0cc7ca 1732 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1733
1734 path = btrfs_alloc_path();
1735 if (!path)
1736 return -ENOMEM;
1737
f329e319 1738 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1739 if (ret < 0)
1740 goto out;
1741
1742 nlink = ret;
1743
36283658 1744 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1745 if (ret < 0)
1746 goto out;
1747
1748 nlink += ret;
1749
1750 ret = 0;
1751
e02119d5 1752 if (nlink != inode->i_nlink) {
bfe86848 1753 set_nlink(inode, nlink);
f96d4474
JB
1754 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1755 if (ret)
1756 goto out;
e02119d5 1757 }
8d5bf1cb 1758 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1759
c71bf099
YZ
1760 if (inode->i_nlink == 0) {
1761 if (S_ISDIR(inode->i_mode)) {
1762 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1763 ino, 1);
3650860b
JB
1764 if (ret)
1765 goto out;
c71bf099 1766 }
ecdcf3c2
NB
1767 ret = btrfs_insert_orphan_item(trans, root, ino);
1768 if (ret == -EEXIST)
1769 ret = 0;
12fcfd22 1770 }
12fcfd22 1771
f186373f
MF
1772out:
1773 btrfs_free_path(path);
1774 return ret;
e02119d5
CM
1775}
1776
1777static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1778 struct btrfs_root *root,
1779 struct btrfs_path *path)
1780{
1781 int ret;
1782 struct btrfs_key key;
1783 struct inode *inode;
1784
1785 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1786 key.type = BTRFS_ORPHAN_ITEM_KEY;
1787 key.offset = (u64)-1;
d397712b 1788 while (1) {
e02119d5
CM
1789 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1790 if (ret < 0)
1791 break;
1792
1793 if (ret == 1) {
011b28ac 1794 ret = 0;
e02119d5
CM
1795 if (path->slots[0] == 0)
1796 break;
1797 path->slots[0]--;
1798 }
1799
1800 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1801 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1802 key.type != BTRFS_ORPHAN_ITEM_KEY)
1803 break;
1804
1805 ret = btrfs_del_item(trans, root, path);
65a246c5 1806 if (ret)
011b28ac 1807 break;
e02119d5 1808
b3b4aa74 1809 btrfs_release_path(path);
e02119d5 1810 inode = read_one_inode(root, key.offset);
011b28ac
JB
1811 if (!inode) {
1812 ret = -EIO;
1813 break;
1814 }
e02119d5
CM
1815
1816 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1817 iput(inode);
3650860b 1818 if (ret)
011b28ac 1819 break;
e02119d5 1820
12fcfd22
CM
1821 /*
1822 * fixup on a directory may create new entries,
1823 * make sure we always look for the highset possible
1824 * offset
1825 */
1826 key.offset = (u64)-1;
e02119d5 1827 }
b3b4aa74 1828 btrfs_release_path(path);
65a246c5 1829 return ret;
e02119d5
CM
1830}
1831
1832
1833/*
1834 * record a given inode in the fixup dir so we can check its link
1835 * count when replay is done. The link count is incremented here
1836 * so the inode won't go away until we check it
1837 */
1838static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1839 struct btrfs_root *root,
1840 struct btrfs_path *path,
1841 u64 objectid)
1842{
1843 struct btrfs_key key;
1844 int ret = 0;
1845 struct inode *inode;
1846
1847 inode = read_one_inode(root, objectid);
c00e9493
TI
1848 if (!inode)
1849 return -EIO;
e02119d5
CM
1850
1851 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1852 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1853 key.offset = objectid;
1854
1855 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1856
b3b4aa74 1857 btrfs_release_path(path);
e02119d5 1858 if (ret == 0) {
9bf7a489
JB
1859 if (!inode->i_nlink)
1860 set_nlink(inode, 1);
1861 else
8b558c5f 1862 inc_nlink(inode);
9a56fcd1 1863 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1864 } else if (ret == -EEXIST) {
1865 ret = 0;
e02119d5
CM
1866 }
1867 iput(inode);
1868
1869 return ret;
1870}
1871
1872/*
1873 * when replaying the log for a directory, we only insert names
1874 * for inodes that actually exist. This means an fsync on a directory
1875 * does not implicitly fsync all the new files in it
1876 */
1877static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1878 struct btrfs_root *root,
e02119d5 1879 u64 dirid, u64 index,
60d53eb3 1880 char *name, int name_len,
e02119d5
CM
1881 struct btrfs_key *location)
1882{
1883 struct inode *inode;
1884 struct inode *dir;
1885 int ret;
1886
1887 inode = read_one_inode(root, location->objectid);
1888 if (!inode)
1889 return -ENOENT;
1890
1891 dir = read_one_inode(root, dirid);
1892 if (!dir) {
1893 iput(inode);
1894 return -EIO;
1895 }
d555438b 1896
db0a669f
NB
1897 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1898 name_len, 1, index);
e02119d5
CM
1899
1900 /* FIXME, put inode into FIXUP list */
1901
1902 iput(inode);
1903 iput(dir);
1904 return ret;
1905}
1906
1907/*
1908 * take a single entry in a log directory item and replay it into
1909 * the subvolume.
1910 *
1911 * if a conflicting item exists in the subdirectory already,
1912 * the inode it points to is unlinked and put into the link count
1913 * fix up tree.
1914 *
1915 * If a name from the log points to a file or directory that does
1916 * not exist in the FS, it is skipped. fsyncs on directories
1917 * do not force down inodes inside that directory, just changes to the
1918 * names or unlinks in a directory.
bb53eda9
FM
1919 *
1920 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1921 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1922 */
1923static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 struct extent_buffer *eb,
1927 struct btrfs_dir_item *di,
1928 struct btrfs_key *key)
1929{
1930 char *name;
1931 int name_len;
1932 struct btrfs_dir_item *dst_di;
1933 struct btrfs_key found_key;
1934 struct btrfs_key log_key;
1935 struct inode *dir;
e02119d5 1936 u8 log_type;
4bef0848 1937 int exists;
3650860b 1938 int ret = 0;
d555438b 1939 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1940 bool name_added = false;
e02119d5
CM
1941
1942 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1943 if (!dir)
1944 return -EIO;
e02119d5
CM
1945
1946 name_len = btrfs_dir_name_len(eb, di);
1947 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1948 if (!name) {
1949 ret = -ENOMEM;
1950 goto out;
1951 }
2a29edc6 1952
e02119d5
CM
1953 log_type = btrfs_dir_type(eb, di);
1954 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1955 name_len);
1956
1957 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1958 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1959 if (exists == 0)
1960 exists = 1;
1961 else
1962 exists = 0;
b3b4aa74 1963 btrfs_release_path(path);
4bef0848 1964
e02119d5
CM
1965 if (key->type == BTRFS_DIR_ITEM_KEY) {
1966 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1967 name, name_len, 1);
d397712b 1968 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1969 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1970 key->objectid,
1971 key->offset, name,
1972 name_len, 1);
1973 } else {
3650860b
JB
1974 /* Corruption */
1975 ret = -EINVAL;
1976 goto out;
e02119d5 1977 }
c704005d 1978 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1979 /* we need a sequence number to insert, so we only
1980 * do inserts for the BTRFS_DIR_INDEX_KEY types
1981 */
1982 if (key->type != BTRFS_DIR_INDEX_KEY)
1983 goto out;
1984 goto insert;
1985 }
1986
1987 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1988 /* the existing item matches the logged item */
1989 if (found_key.objectid == log_key.objectid &&
1990 found_key.type == log_key.type &&
1991 found_key.offset == log_key.offset &&
1992 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1993 update_size = false;
e02119d5
CM
1994 goto out;
1995 }
1996
1997 /*
1998 * don't drop the conflicting directory entry if the inode
1999 * for the new entry doesn't exist
2000 */
4bef0848 2001 if (!exists)
e02119d5
CM
2002 goto out;
2003
207e7d92 2004 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
2005 if (ret)
2006 goto out;
e02119d5
CM
2007
2008 if (key->type == BTRFS_DIR_INDEX_KEY)
2009 goto insert;
2010out:
b3b4aa74 2011 btrfs_release_path(path);
d555438b 2012 if (!ret && update_size) {
6ef06d27 2013 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
9a56fcd1 2014 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
d555438b 2015 }
e02119d5
CM
2016 kfree(name);
2017 iput(dir);
bb53eda9
FM
2018 if (!ret && name_added)
2019 ret = 1;
3650860b 2020 return ret;
e02119d5
CM
2021
2022insert:
725af92a
NB
2023 /*
2024 * Check if the inode reference exists in the log for the given name,
2025 * inode and parent inode
2026 */
2027 found_key.objectid = log_key.objectid;
2028 found_key.type = BTRFS_INODE_REF_KEY;
2029 found_key.offset = key->objectid;
2030 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2031 if (ret < 0) {
2032 goto out;
2033 } else if (ret) {
2034 /* The dentry will be added later. */
2035 ret = 0;
2036 update_size = false;
2037 goto out;
2038 }
2039
2040 found_key.objectid = log_key.objectid;
2041 found_key.type = BTRFS_INODE_EXTREF_KEY;
2042 found_key.offset = key->objectid;
2043 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2044 name_len);
2045 if (ret < 0) {
2046 goto out;
2047 } else if (ret) {
df8d116f
FM
2048 /* The dentry will be added later. */
2049 ret = 0;
2050 update_size = false;
2051 goto out;
2052 }
b3b4aa74 2053 btrfs_release_path(path);
60d53eb3
Z
2054 ret = insert_one_name(trans, root, key->objectid, key->offset,
2055 name, name_len, &log_key);
df8d116f 2056 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2057 goto out;
bb53eda9
FM
2058 if (!ret)
2059 name_added = true;
d555438b 2060 update_size = false;
3650860b 2061 ret = 0;
e02119d5
CM
2062 goto out;
2063}
2064
2065/*
2066 * find all the names in a directory item and reconcile them into
2067 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2068 * one name in a directory item, but the same code gets used for
2069 * both directory index types
2070 */
2071static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2072 struct btrfs_root *root,
2073 struct btrfs_path *path,
2074 struct extent_buffer *eb, int slot,
2075 struct btrfs_key *key)
2076{
bb53eda9 2077 int ret = 0;
e02119d5
CM
2078 u32 item_size = btrfs_item_size_nr(eb, slot);
2079 struct btrfs_dir_item *di;
2080 int name_len;
2081 unsigned long ptr;
2082 unsigned long ptr_end;
bb53eda9 2083 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2084
2085 ptr = btrfs_item_ptr_offset(eb, slot);
2086 ptr_end = ptr + item_size;
d397712b 2087 while (ptr < ptr_end) {
e02119d5
CM
2088 di = (struct btrfs_dir_item *)ptr;
2089 name_len = btrfs_dir_name_len(eb, di);
2090 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2091 if (ret < 0)
2092 break;
e02119d5
CM
2093 ptr = (unsigned long)(di + 1);
2094 ptr += name_len;
bb53eda9
FM
2095
2096 /*
2097 * If this entry refers to a non-directory (directories can not
2098 * have a link count > 1) and it was added in the transaction
2099 * that was not committed, make sure we fixup the link count of
2100 * the inode it the entry points to. Otherwise something like
2101 * the following would result in a directory pointing to an
2102 * inode with a wrong link that does not account for this dir
2103 * entry:
2104 *
2105 * mkdir testdir
2106 * touch testdir/foo
2107 * touch testdir/bar
2108 * sync
2109 *
2110 * ln testdir/bar testdir/bar_link
2111 * ln testdir/foo testdir/foo_link
2112 * xfs_io -c "fsync" testdir/bar
2113 *
2114 * <power failure>
2115 *
2116 * mount fs, log replay happens
2117 *
2118 * File foo would remain with a link count of 1 when it has two
2119 * entries pointing to it in the directory testdir. This would
2120 * make it impossible to ever delete the parent directory has
2121 * it would result in stale dentries that can never be deleted.
2122 */
2123 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2124 struct btrfs_key di_key;
2125
2126 if (!fixup_path) {
2127 fixup_path = btrfs_alloc_path();
2128 if (!fixup_path) {
2129 ret = -ENOMEM;
2130 break;
2131 }
2132 }
2133
2134 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2135 ret = link_to_fixup_dir(trans, root, fixup_path,
2136 di_key.objectid);
2137 if (ret)
2138 break;
2139 }
2140 ret = 0;
e02119d5 2141 }
bb53eda9
FM
2142 btrfs_free_path(fixup_path);
2143 return ret;
e02119d5
CM
2144}
2145
2146/*
2147 * directory replay has two parts. There are the standard directory
2148 * items in the log copied from the subvolume, and range items
2149 * created in the log while the subvolume was logged.
2150 *
2151 * The range items tell us which parts of the key space the log
2152 * is authoritative for. During replay, if a key in the subvolume
2153 * directory is in a logged range item, but not actually in the log
2154 * that means it was deleted from the directory before the fsync
2155 * and should be removed.
2156 */
2157static noinline int find_dir_range(struct btrfs_root *root,
2158 struct btrfs_path *path,
2159 u64 dirid, int key_type,
2160 u64 *start_ret, u64 *end_ret)
2161{
2162 struct btrfs_key key;
2163 u64 found_end;
2164 struct btrfs_dir_log_item *item;
2165 int ret;
2166 int nritems;
2167
2168 if (*start_ret == (u64)-1)
2169 return 1;
2170
2171 key.objectid = dirid;
2172 key.type = key_type;
2173 key.offset = *start_ret;
2174
2175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2176 if (ret < 0)
2177 goto out;
2178 if (ret > 0) {
2179 if (path->slots[0] == 0)
2180 goto out;
2181 path->slots[0]--;
2182 }
2183 if (ret != 0)
2184 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2185
2186 if (key.type != key_type || key.objectid != dirid) {
2187 ret = 1;
2188 goto next;
2189 }
2190 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2191 struct btrfs_dir_log_item);
2192 found_end = btrfs_dir_log_end(path->nodes[0], item);
2193
2194 if (*start_ret >= key.offset && *start_ret <= found_end) {
2195 ret = 0;
2196 *start_ret = key.offset;
2197 *end_ret = found_end;
2198 goto out;
2199 }
2200 ret = 1;
2201next:
2202 /* check the next slot in the tree to see if it is a valid item */
2203 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2204 path->slots[0]++;
e02119d5
CM
2205 if (path->slots[0] >= nritems) {
2206 ret = btrfs_next_leaf(root, path);
2207 if (ret)
2208 goto out;
e02119d5
CM
2209 }
2210
2211 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2212
2213 if (key.type != key_type || key.objectid != dirid) {
2214 ret = 1;
2215 goto out;
2216 }
2217 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2218 struct btrfs_dir_log_item);
2219 found_end = btrfs_dir_log_end(path->nodes[0], item);
2220 *start_ret = key.offset;
2221 *end_ret = found_end;
2222 ret = 0;
2223out:
b3b4aa74 2224 btrfs_release_path(path);
e02119d5
CM
2225 return ret;
2226}
2227
2228/*
2229 * this looks for a given directory item in the log. If the directory
2230 * item is not in the log, the item is removed and the inode it points
2231 * to is unlinked
2232 */
2233static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2234 struct btrfs_root *root,
2235 struct btrfs_root *log,
2236 struct btrfs_path *path,
2237 struct btrfs_path *log_path,
2238 struct inode *dir,
2239 struct btrfs_key *dir_key)
2240{
2241 int ret;
2242 struct extent_buffer *eb;
2243 int slot;
2244 u32 item_size;
2245 struct btrfs_dir_item *di;
2246 struct btrfs_dir_item *log_di;
2247 int name_len;
2248 unsigned long ptr;
2249 unsigned long ptr_end;
2250 char *name;
2251 struct inode *inode;
2252 struct btrfs_key location;
2253
2254again:
2255 eb = path->nodes[0];
2256 slot = path->slots[0];
2257 item_size = btrfs_item_size_nr(eb, slot);
2258 ptr = btrfs_item_ptr_offset(eb, slot);
2259 ptr_end = ptr + item_size;
d397712b 2260 while (ptr < ptr_end) {
e02119d5
CM
2261 di = (struct btrfs_dir_item *)ptr;
2262 name_len = btrfs_dir_name_len(eb, di);
2263 name = kmalloc(name_len, GFP_NOFS);
2264 if (!name) {
2265 ret = -ENOMEM;
2266 goto out;
2267 }
2268 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2269 name_len);
2270 log_di = NULL;
12fcfd22 2271 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2272 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2273 dir_key->objectid,
2274 name, name_len, 0);
12fcfd22 2275 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2276 log_di = btrfs_lookup_dir_index_item(trans, log,
2277 log_path,
2278 dir_key->objectid,
2279 dir_key->offset,
2280 name, name_len, 0);
2281 }
8d9e220c 2282 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2283 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2284 btrfs_release_path(path);
2285 btrfs_release_path(log_path);
e02119d5 2286 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2287 if (!inode) {
2288 kfree(name);
2289 return -EIO;
2290 }
e02119d5
CM
2291
2292 ret = link_to_fixup_dir(trans, root,
2293 path, location.objectid);
3650860b
JB
2294 if (ret) {
2295 kfree(name);
2296 iput(inode);
2297 goto out;
2298 }
2299
8b558c5f 2300 inc_nlink(inode);
4ec5934e
NB
2301 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2302 BTRFS_I(inode), name, name_len);
3650860b 2303 if (!ret)
e5c304e6 2304 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2305 kfree(name);
2306 iput(inode);
3650860b
JB
2307 if (ret)
2308 goto out;
e02119d5
CM
2309
2310 /* there might still be more names under this key
2311 * check and repeat if required
2312 */
2313 ret = btrfs_search_slot(NULL, root, dir_key, path,
2314 0, 0);
2315 if (ret == 0)
2316 goto again;
2317 ret = 0;
2318 goto out;
269d040f
FDBM
2319 } else if (IS_ERR(log_di)) {
2320 kfree(name);
2321 return PTR_ERR(log_di);
e02119d5 2322 }
b3b4aa74 2323 btrfs_release_path(log_path);
e02119d5
CM
2324 kfree(name);
2325
2326 ptr = (unsigned long)(di + 1);
2327 ptr += name_len;
2328 }
2329 ret = 0;
2330out:
b3b4aa74
DS
2331 btrfs_release_path(path);
2332 btrfs_release_path(log_path);
e02119d5
CM
2333 return ret;
2334}
2335
4f764e51
FM
2336static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2337 struct btrfs_root *root,
2338 struct btrfs_root *log,
2339 struct btrfs_path *path,
2340 const u64 ino)
2341{
2342 struct btrfs_key search_key;
2343 struct btrfs_path *log_path;
2344 int i;
2345 int nritems;
2346 int ret;
2347
2348 log_path = btrfs_alloc_path();
2349 if (!log_path)
2350 return -ENOMEM;
2351
2352 search_key.objectid = ino;
2353 search_key.type = BTRFS_XATTR_ITEM_KEY;
2354 search_key.offset = 0;
2355again:
2356 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2357 if (ret < 0)
2358 goto out;
2359process_leaf:
2360 nritems = btrfs_header_nritems(path->nodes[0]);
2361 for (i = path->slots[0]; i < nritems; i++) {
2362 struct btrfs_key key;
2363 struct btrfs_dir_item *di;
2364 struct btrfs_dir_item *log_di;
2365 u32 total_size;
2366 u32 cur;
2367
2368 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2369 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2370 ret = 0;
2371 goto out;
2372 }
2373
2374 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2375 total_size = btrfs_item_size_nr(path->nodes[0], i);
2376 cur = 0;
2377 while (cur < total_size) {
2378 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2379 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2380 u32 this_len = sizeof(*di) + name_len + data_len;
2381 char *name;
2382
2383 name = kmalloc(name_len, GFP_NOFS);
2384 if (!name) {
2385 ret = -ENOMEM;
2386 goto out;
2387 }
2388 read_extent_buffer(path->nodes[0], name,
2389 (unsigned long)(di + 1), name_len);
2390
2391 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2392 name, name_len, 0);
2393 btrfs_release_path(log_path);
2394 if (!log_di) {
2395 /* Doesn't exist in log tree, so delete it. */
2396 btrfs_release_path(path);
2397 di = btrfs_lookup_xattr(trans, root, path, ino,
2398 name, name_len, -1);
2399 kfree(name);
2400 if (IS_ERR(di)) {
2401 ret = PTR_ERR(di);
2402 goto out;
2403 }
2404 ASSERT(di);
2405 ret = btrfs_delete_one_dir_name(trans, root,
2406 path, di);
2407 if (ret)
2408 goto out;
2409 btrfs_release_path(path);
2410 search_key = key;
2411 goto again;
2412 }
2413 kfree(name);
2414 if (IS_ERR(log_di)) {
2415 ret = PTR_ERR(log_di);
2416 goto out;
2417 }
2418 cur += this_len;
2419 di = (struct btrfs_dir_item *)((char *)di + this_len);
2420 }
2421 }
2422 ret = btrfs_next_leaf(root, path);
2423 if (ret > 0)
2424 ret = 0;
2425 else if (ret == 0)
2426 goto process_leaf;
2427out:
2428 btrfs_free_path(log_path);
2429 btrfs_release_path(path);
2430 return ret;
2431}
2432
2433
e02119d5
CM
2434/*
2435 * deletion replay happens before we copy any new directory items
2436 * out of the log or out of backreferences from inodes. It
2437 * scans the log to find ranges of keys that log is authoritative for,
2438 * and then scans the directory to find items in those ranges that are
2439 * not present in the log.
2440 *
2441 * Anything we don't find in the log is unlinked and removed from the
2442 * directory.
2443 */
2444static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2445 struct btrfs_root *root,
2446 struct btrfs_root *log,
2447 struct btrfs_path *path,
12fcfd22 2448 u64 dirid, int del_all)
e02119d5
CM
2449{
2450 u64 range_start;
2451 u64 range_end;
2452 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2453 int ret = 0;
2454 struct btrfs_key dir_key;
2455 struct btrfs_key found_key;
2456 struct btrfs_path *log_path;
2457 struct inode *dir;
2458
2459 dir_key.objectid = dirid;
2460 dir_key.type = BTRFS_DIR_ITEM_KEY;
2461 log_path = btrfs_alloc_path();
2462 if (!log_path)
2463 return -ENOMEM;
2464
2465 dir = read_one_inode(root, dirid);
2466 /* it isn't an error if the inode isn't there, that can happen
2467 * because we replay the deletes before we copy in the inode item
2468 * from the log
2469 */
2470 if (!dir) {
2471 btrfs_free_path(log_path);
2472 return 0;
2473 }
2474again:
2475 range_start = 0;
2476 range_end = 0;
d397712b 2477 while (1) {
12fcfd22
CM
2478 if (del_all)
2479 range_end = (u64)-1;
2480 else {
2481 ret = find_dir_range(log, path, dirid, key_type,
2482 &range_start, &range_end);
2483 if (ret != 0)
2484 break;
2485 }
e02119d5
CM
2486
2487 dir_key.offset = range_start;
d397712b 2488 while (1) {
e02119d5
CM
2489 int nritems;
2490 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2491 0, 0);
2492 if (ret < 0)
2493 goto out;
2494
2495 nritems = btrfs_header_nritems(path->nodes[0]);
2496 if (path->slots[0] >= nritems) {
2497 ret = btrfs_next_leaf(root, path);
b98def7c 2498 if (ret == 1)
e02119d5 2499 break;
b98def7c
LB
2500 else if (ret < 0)
2501 goto out;
e02119d5
CM
2502 }
2503 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2504 path->slots[0]);
2505 if (found_key.objectid != dirid ||
2506 found_key.type != dir_key.type)
2507 goto next_type;
2508
2509 if (found_key.offset > range_end)
2510 break;
2511
2512 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2513 log_path, dir,
2514 &found_key);
3650860b
JB
2515 if (ret)
2516 goto out;
e02119d5
CM
2517 if (found_key.offset == (u64)-1)
2518 break;
2519 dir_key.offset = found_key.offset + 1;
2520 }
b3b4aa74 2521 btrfs_release_path(path);
e02119d5
CM
2522 if (range_end == (u64)-1)
2523 break;
2524 range_start = range_end + 1;
2525 }
2526
2527next_type:
2528 ret = 0;
2529 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2530 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2531 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2532 btrfs_release_path(path);
e02119d5
CM
2533 goto again;
2534 }
2535out:
b3b4aa74 2536 btrfs_release_path(path);
e02119d5
CM
2537 btrfs_free_path(log_path);
2538 iput(dir);
2539 return ret;
2540}
2541
2542/*
2543 * the process_func used to replay items from the log tree. This
2544 * gets called in two different stages. The first stage just looks
2545 * for inodes and makes sure they are all copied into the subvolume.
2546 *
2547 * The second stage copies all the other item types from the log into
2548 * the subvolume. The two stage approach is slower, but gets rid of
2549 * lots of complexity around inodes referencing other inodes that exist
2550 * only in the log (references come from either directory items or inode
2551 * back refs).
2552 */
2553static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2554 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2555{
2556 int nritems;
2557 struct btrfs_path *path;
2558 struct btrfs_root *root = wc->replay_dest;
2559 struct btrfs_key key;
e02119d5
CM
2560 int i;
2561 int ret;
2562
581c1760 2563 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2564 if (ret)
2565 return ret;
e02119d5
CM
2566
2567 level = btrfs_header_level(eb);
2568
2569 if (level != 0)
2570 return 0;
2571
2572 path = btrfs_alloc_path();
1e5063d0
MF
2573 if (!path)
2574 return -ENOMEM;
e02119d5
CM
2575
2576 nritems = btrfs_header_nritems(eb);
2577 for (i = 0; i < nritems; i++) {
2578 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2579
2580 /* inode keys are done during the first stage */
2581 if (key.type == BTRFS_INODE_ITEM_KEY &&
2582 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2583 struct btrfs_inode_item *inode_item;
2584 u32 mode;
2585
2586 inode_item = btrfs_item_ptr(eb, i,
2587 struct btrfs_inode_item);
f2d72f42
FM
2588 /*
2589 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2590 * and never got linked before the fsync, skip it, as
2591 * replaying it is pointless since it would be deleted
2592 * later. We skip logging tmpfiles, but it's always
2593 * possible we are replaying a log created with a kernel
2594 * that used to log tmpfiles.
2595 */
2596 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2597 wc->ignore_cur_inode = true;
2598 continue;
2599 } else {
2600 wc->ignore_cur_inode = false;
2601 }
4f764e51
FM
2602 ret = replay_xattr_deletes(wc->trans, root, log,
2603 path, key.objectid);
2604 if (ret)
2605 break;
e02119d5
CM
2606 mode = btrfs_inode_mode(eb, inode_item);
2607 if (S_ISDIR(mode)) {
2608 ret = replay_dir_deletes(wc->trans,
12fcfd22 2609 root, log, path, key.objectid, 0);
b50c6e25
JB
2610 if (ret)
2611 break;
e02119d5
CM
2612 }
2613 ret = overwrite_item(wc->trans, root, path,
2614 eb, i, &key);
b50c6e25
JB
2615 if (ret)
2616 break;
e02119d5 2617
471d557a
FM
2618 /*
2619 * Before replaying extents, truncate the inode to its
2620 * size. We need to do it now and not after log replay
2621 * because before an fsync we can have prealloc extents
2622 * added beyond the inode's i_size. If we did it after,
2623 * through orphan cleanup for example, we would drop
2624 * those prealloc extents just after replaying them.
e02119d5
CM
2625 */
2626 if (S_ISREG(mode)) {
5893dfb9 2627 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2628 struct inode *inode;
2629 u64 from;
2630
2631 inode = read_one_inode(root, key.objectid);
2632 if (!inode) {
2633 ret = -EIO;
2634 break;
2635 }
2636 from = ALIGN(i_size_read(inode),
2637 root->fs_info->sectorsize);
5893dfb9
FM
2638 drop_args.start = from;
2639 drop_args.end = (u64)-1;
2640 drop_args.drop_cache = true;
2641 ret = btrfs_drop_extents(wc->trans, root,
2642 BTRFS_I(inode),
2643 &drop_args);
471d557a 2644 if (!ret) {
2766ff61
FM
2645 inode_sub_bytes(inode,
2646 drop_args.bytes_found);
f2d72f42 2647 /* Update the inode's nbytes. */
471d557a 2648 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2649 root, BTRFS_I(inode));
471d557a
FM
2650 }
2651 iput(inode);
b50c6e25
JB
2652 if (ret)
2653 break;
e02119d5 2654 }
c71bf099 2655
e02119d5
CM
2656 ret = link_to_fixup_dir(wc->trans, root,
2657 path, key.objectid);
b50c6e25
JB
2658 if (ret)
2659 break;
e02119d5 2660 }
dd8e7217 2661
f2d72f42
FM
2662 if (wc->ignore_cur_inode)
2663 continue;
2664
dd8e7217
JB
2665 if (key.type == BTRFS_DIR_INDEX_KEY &&
2666 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2667 ret = replay_one_dir_item(wc->trans, root, path,
2668 eb, i, &key);
2669 if (ret)
2670 break;
2671 }
2672
e02119d5
CM
2673 if (wc->stage < LOG_WALK_REPLAY_ALL)
2674 continue;
2675
2676 /* these keys are simply copied */
2677 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2678 ret = overwrite_item(wc->trans, root, path,
2679 eb, i, &key);
b50c6e25
JB
2680 if (ret)
2681 break;
2da1c669
LB
2682 } else if (key.type == BTRFS_INODE_REF_KEY ||
2683 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2684 ret = add_inode_ref(wc->trans, root, log, path,
2685 eb, i, &key);
b50c6e25
JB
2686 if (ret && ret != -ENOENT)
2687 break;
2688 ret = 0;
e02119d5
CM
2689 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2690 ret = replay_one_extent(wc->trans, root, path,
2691 eb, i, &key);
b50c6e25
JB
2692 if (ret)
2693 break;
dd8e7217 2694 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2695 ret = replay_one_dir_item(wc->trans, root, path,
2696 eb, i, &key);
b50c6e25
JB
2697 if (ret)
2698 break;
e02119d5
CM
2699 }
2700 }
2701 btrfs_free_path(path);
b50c6e25 2702 return ret;
e02119d5
CM
2703}
2704
6787bb9f
NB
2705/*
2706 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2707 */
2708static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2709{
2710 struct btrfs_block_group *cache;
2711
2712 cache = btrfs_lookup_block_group(fs_info, start);
2713 if (!cache) {
2714 btrfs_err(fs_info, "unable to find block group for %llu", start);
2715 return;
2716 }
2717
2718 spin_lock(&cache->space_info->lock);
2719 spin_lock(&cache->lock);
2720 cache->reserved -= fs_info->nodesize;
2721 cache->space_info->bytes_reserved -= fs_info->nodesize;
2722 spin_unlock(&cache->lock);
2723 spin_unlock(&cache->space_info->lock);
2724
2725 btrfs_put_block_group(cache);
2726}
2727
d397712b 2728static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2729 struct btrfs_root *root,
2730 struct btrfs_path *path, int *level,
2731 struct walk_control *wc)
2732{
0b246afa 2733 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2734 u64 bytenr;
2735 u64 ptr_gen;
2736 struct extent_buffer *next;
2737 struct extent_buffer *cur;
e02119d5
CM
2738 u32 blocksize;
2739 int ret = 0;
2740
d397712b 2741 while (*level > 0) {
581c1760
QW
2742 struct btrfs_key first_key;
2743
e02119d5
CM
2744 cur = path->nodes[*level];
2745
fae7f21c 2746 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2747
2748 if (path->slots[*level] >=
2749 btrfs_header_nritems(cur))
2750 break;
2751
2752 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2753 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2754 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2755 blocksize = fs_info->nodesize;
e02119d5 2756
3fbaf258
JB
2757 next = btrfs_find_create_tree_block(fs_info, bytenr,
2758 btrfs_header_owner(cur),
2759 *level - 1);
c871b0f2
LB
2760 if (IS_ERR(next))
2761 return PTR_ERR(next);
e02119d5 2762
e02119d5 2763 if (*level == 1) {
581c1760
QW
2764 ret = wc->process_func(root, next, wc, ptr_gen,
2765 *level - 1);
b50c6e25
JB
2766 if (ret) {
2767 free_extent_buffer(next);
1e5063d0 2768 return ret;
b50c6e25 2769 }
4a500fd1 2770
e02119d5
CM
2771 path->slots[*level]++;
2772 if (wc->free) {
581c1760
QW
2773 ret = btrfs_read_buffer(next, ptr_gen,
2774 *level - 1, &first_key);
018642a1
TI
2775 if (ret) {
2776 free_extent_buffer(next);
2777 return ret;
2778 }
e02119d5 2779
681ae509
JB
2780 if (trans) {
2781 btrfs_tree_lock(next);
6a884d7d 2782 btrfs_clean_tree_block(next);
681ae509
JB
2783 btrfs_wait_tree_block_writeback(next);
2784 btrfs_tree_unlock(next);
7bfc1007 2785 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2786 bytenr, blocksize);
2787 if (ret) {
2788 free_extent_buffer(next);
2789 return ret;
2790 }
d3575156
NA
2791 btrfs_redirty_list_add(
2792 trans->transaction, next);
1846430c
LB
2793 } else {
2794 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2795 clear_extent_buffer_dirty(next);
10e958d5 2796 unaccount_log_buffer(fs_info, bytenr);
3650860b 2797 }
e02119d5
CM
2798 }
2799 free_extent_buffer(next);
2800 continue;
2801 }
581c1760 2802 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2803 if (ret) {
2804 free_extent_buffer(next);
2805 return ret;
2806 }
e02119d5 2807
e02119d5
CM
2808 if (path->nodes[*level-1])
2809 free_extent_buffer(path->nodes[*level-1]);
2810 path->nodes[*level-1] = next;
2811 *level = btrfs_header_level(next);
2812 path->slots[*level] = 0;
2813 cond_resched();
2814 }
4a500fd1 2815 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2816
2817 cond_resched();
2818 return 0;
2819}
2820
d397712b 2821static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2822 struct btrfs_root *root,
2823 struct btrfs_path *path, int *level,
2824 struct walk_control *wc)
2825{
0b246afa 2826 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2827 int i;
2828 int slot;
2829 int ret;
2830
d397712b 2831 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2832 slot = path->slots[i];
4a500fd1 2833 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2834 path->slots[i]++;
2835 *level = i;
2836 WARN_ON(*level == 0);
2837 return 0;
2838 } else {
1e5063d0 2839 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2840 btrfs_header_generation(path->nodes[*level]),
2841 *level);
1e5063d0
MF
2842 if (ret)
2843 return ret;
2844
e02119d5
CM
2845 if (wc->free) {
2846 struct extent_buffer *next;
2847
2848 next = path->nodes[*level];
2849
681ae509
JB
2850 if (trans) {
2851 btrfs_tree_lock(next);
6a884d7d 2852 btrfs_clean_tree_block(next);
681ae509
JB
2853 btrfs_wait_tree_block_writeback(next);
2854 btrfs_tree_unlock(next);
7bfc1007 2855 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2856 path->nodes[*level]->start,
2857 path->nodes[*level]->len);
2858 if (ret)
2859 return ret;
1846430c
LB
2860 } else {
2861 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2862 clear_extent_buffer_dirty(next);
e02119d5 2863
10e958d5
NB
2864 unaccount_log_buffer(fs_info,
2865 path->nodes[*level]->start);
2866 }
e02119d5
CM
2867 }
2868 free_extent_buffer(path->nodes[*level]);
2869 path->nodes[*level] = NULL;
2870 *level = i + 1;
2871 }
2872 }
2873 return 1;
2874}
2875
2876/*
2877 * drop the reference count on the tree rooted at 'snap'. This traverses
2878 * the tree freeing any blocks that have a ref count of zero after being
2879 * decremented.
2880 */
2881static int walk_log_tree(struct btrfs_trans_handle *trans,
2882 struct btrfs_root *log, struct walk_control *wc)
2883{
2ff7e61e 2884 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2885 int ret = 0;
2886 int wret;
2887 int level;
2888 struct btrfs_path *path;
e02119d5
CM
2889 int orig_level;
2890
2891 path = btrfs_alloc_path();
db5b493a
TI
2892 if (!path)
2893 return -ENOMEM;
e02119d5
CM
2894
2895 level = btrfs_header_level(log->node);
2896 orig_level = level;
2897 path->nodes[level] = log->node;
67439dad 2898 atomic_inc(&log->node->refs);
e02119d5
CM
2899 path->slots[level] = 0;
2900
d397712b 2901 while (1) {
e02119d5
CM
2902 wret = walk_down_log_tree(trans, log, path, &level, wc);
2903 if (wret > 0)
2904 break;
79787eaa 2905 if (wret < 0) {
e02119d5 2906 ret = wret;
79787eaa
JM
2907 goto out;
2908 }
e02119d5
CM
2909
2910 wret = walk_up_log_tree(trans, log, path, &level, wc);
2911 if (wret > 0)
2912 break;
79787eaa 2913 if (wret < 0) {
e02119d5 2914 ret = wret;
79787eaa
JM
2915 goto out;
2916 }
e02119d5
CM
2917 }
2918
2919 /* was the root node processed? if not, catch it here */
2920 if (path->nodes[orig_level]) {
79787eaa 2921 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2922 btrfs_header_generation(path->nodes[orig_level]),
2923 orig_level);
79787eaa
JM
2924 if (ret)
2925 goto out;
e02119d5
CM
2926 if (wc->free) {
2927 struct extent_buffer *next;
2928
2929 next = path->nodes[orig_level];
2930
681ae509
JB
2931 if (trans) {
2932 btrfs_tree_lock(next);
6a884d7d 2933 btrfs_clean_tree_block(next);
681ae509
JB
2934 btrfs_wait_tree_block_writeback(next);
2935 btrfs_tree_unlock(next);
7bfc1007 2936 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2937 next->start, next->len);
2938 if (ret)
2939 goto out;
1846430c
LB
2940 } else {
2941 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2942 clear_extent_buffer_dirty(next);
10e958d5 2943 unaccount_log_buffer(fs_info, next->start);
681ae509 2944 }
e02119d5
CM
2945 }
2946 }
2947
79787eaa 2948out:
e02119d5 2949 btrfs_free_path(path);
e02119d5
CM
2950 return ret;
2951}
2952
7237f183
YZ
2953/*
2954 * helper function to update the item for a given subvolumes log root
2955 * in the tree of log roots
2956 */
2957static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2958 struct btrfs_root *log,
2959 struct btrfs_root_item *root_item)
7237f183 2960{
0b246afa 2961 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2962 int ret;
2963
2964 if (log->log_transid == 1) {
2965 /* insert root item on the first sync */
0b246afa 2966 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2967 &log->root_key, root_item);
7237f183 2968 } else {
0b246afa 2969 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2970 &log->root_key, root_item);
7237f183
YZ
2971 }
2972 return ret;
2973}
2974
60d53eb3 2975static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2976{
2977 DEFINE_WAIT(wait);
7237f183 2978 int index = transid % 2;
e02119d5 2979
7237f183
YZ
2980 /*
2981 * we only allow two pending log transactions at a time,
2982 * so we know that if ours is more than 2 older than the
2983 * current transaction, we're done
2984 */
49e83f57 2985 for (;;) {
7237f183
YZ
2986 prepare_to_wait(&root->log_commit_wait[index],
2987 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2988
49e83f57
LB
2989 if (!(root->log_transid_committed < transid &&
2990 atomic_read(&root->log_commit[index])))
2991 break;
12fcfd22 2992
49e83f57
LB
2993 mutex_unlock(&root->log_mutex);
2994 schedule();
7237f183 2995 mutex_lock(&root->log_mutex);
49e83f57
LB
2996 }
2997 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2998}
2999
60d53eb3 3000static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
3001{
3002 DEFINE_WAIT(wait);
8b050d35 3003
49e83f57
LB
3004 for (;;) {
3005 prepare_to_wait(&root->log_writer_wait, &wait,
3006 TASK_UNINTERRUPTIBLE);
3007 if (!atomic_read(&root->log_writers))
3008 break;
3009
7237f183 3010 mutex_unlock(&root->log_mutex);
49e83f57 3011 schedule();
575849ec 3012 mutex_lock(&root->log_mutex);
7237f183 3013 }
49e83f57 3014 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
3015}
3016
8b050d35
MX
3017static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3018 struct btrfs_log_ctx *ctx)
3019{
3020 if (!ctx)
3021 return;
3022
3023 mutex_lock(&root->log_mutex);
3024 list_del_init(&ctx->list);
3025 mutex_unlock(&root->log_mutex);
3026}
3027
3028/*
3029 * Invoked in log mutex context, or be sure there is no other task which
3030 * can access the list.
3031 */
3032static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3033 int index, int error)
3034{
3035 struct btrfs_log_ctx *ctx;
570dd450 3036 struct btrfs_log_ctx *safe;
8b050d35 3037
570dd450
CM
3038 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3039 list_del_init(&ctx->list);
8b050d35 3040 ctx->log_ret = error;
570dd450 3041 }
8b050d35
MX
3042}
3043
e02119d5
CM
3044/*
3045 * btrfs_sync_log does sends a given tree log down to the disk and
3046 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3047 * you know that any inodes previously logged are safely on disk only
3048 * if it returns 0.
3049 *
3050 * Any other return value means you need to call btrfs_commit_transaction.
3051 * Some of the edge cases for fsyncing directories that have had unlinks
3052 * or renames done in the past mean that sometimes the only safe
3053 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3054 * that has happened.
e02119d5
CM
3055 */
3056int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3057 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3058{
7237f183
YZ
3059 int index1;
3060 int index2;
8cef4e16 3061 int mark;
e02119d5 3062 int ret;
0b246afa 3063 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3064 struct btrfs_root *log = root->log_root;
0b246afa 3065 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3066 struct btrfs_root_item new_root_item;
bb14a59b 3067 int log_transid = 0;
8b050d35 3068 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3069 struct blk_plug plug;
47876f7c
FM
3070 u64 log_root_start;
3071 u64 log_root_level;
e02119d5 3072
7237f183 3073 mutex_lock(&root->log_mutex);
d1433deb
MX
3074 log_transid = ctx->log_transid;
3075 if (root->log_transid_committed >= log_transid) {
3076 mutex_unlock(&root->log_mutex);
3077 return ctx->log_ret;
3078 }
3079
3080 index1 = log_transid % 2;
7237f183 3081 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3082 wait_log_commit(root, log_transid);
7237f183 3083 mutex_unlock(&root->log_mutex);
8b050d35 3084 return ctx->log_ret;
e02119d5 3085 }
d1433deb 3086 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3087 atomic_set(&root->log_commit[index1], 1);
3088
3089 /* wait for previous tree log sync to complete */
3090 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3091 wait_log_commit(root, log_transid - 1);
48cab2e0 3092
86df7eb9 3093 while (1) {
2ecb7923 3094 int batch = atomic_read(&root->log_batch);
cd354ad6 3095 /* when we're on an ssd, just kick the log commit out */
0b246afa 3096 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3097 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3098 mutex_unlock(&root->log_mutex);
3099 schedule_timeout_uninterruptible(1);
3100 mutex_lock(&root->log_mutex);
3101 }
60d53eb3 3102 wait_for_writer(root);
2ecb7923 3103 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3104 break;
3105 }
e02119d5 3106
12fcfd22 3107 /* bail out if we need to do a full commit */
4884b8e8 3108 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3109 ret = -EAGAIN;
3110 mutex_unlock(&root->log_mutex);
3111 goto out;
3112 }
3113
8cef4e16
YZ
3114 if (log_transid % 2 == 0)
3115 mark = EXTENT_DIRTY;
3116 else
3117 mark = EXTENT_NEW;
3118
690587d1
CM
3119 /* we start IO on all the marked extents here, but we don't actually
3120 * wait for them until later.
3121 */
c6adc9cc 3122 blk_start_plug(&plug);
2ff7e61e 3123 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
3124 /*
3125 * -EAGAIN happens when someone, e.g., a concurrent transaction
3126 * commit, writes a dirty extent in this tree-log commit. This
3127 * concurrent write will create a hole writing out the extents,
3128 * and we cannot proceed on a zoned filesystem, requiring
3129 * sequential writing. While we can bail out to a full commit
3130 * here, but we can continue hoping the concurrent writing fills
3131 * the hole.
3132 */
3133 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3134 ret = 0;
79787eaa 3135 if (ret) {
c6adc9cc 3136 blk_finish_plug(&plug);
66642832 3137 btrfs_abort_transaction(trans, ret);
90787766 3138 btrfs_set_log_full_commit(trans);
79787eaa
JM
3139 mutex_unlock(&root->log_mutex);
3140 goto out;
3141 }
7237f183 3142
4203e968
JB
3143 /*
3144 * We _must_ update under the root->log_mutex in order to make sure we
3145 * have a consistent view of the log root we are trying to commit at
3146 * this moment.
3147 *
3148 * We _must_ copy this into a local copy, because we are not holding the
3149 * log_root_tree->log_mutex yet. This is important because when we
3150 * commit the log_root_tree we must have a consistent view of the
3151 * log_root_tree when we update the super block to point at the
3152 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3153 * with the commit and possibly point at the new block which we may not
3154 * have written out.
3155 */
5d4f98a2 3156 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3157 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3158
7237f183
YZ
3159 root->log_transid++;
3160 log->log_transid = root->log_transid;
ff782e0a 3161 root->log_start_pid = 0;
7237f183 3162 /*
8cef4e16
YZ
3163 * IO has been started, blocks of the log tree have WRITTEN flag set
3164 * in their headers. new modifications of the log will be written to
3165 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3166 */
3167 mutex_unlock(&root->log_mutex);
3168
3ddebf27 3169 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3170 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3171 if (!log_root_tree->node) {
3172 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3173 if (ret) {
ea32af47 3174 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3175 goto out;
3176 }
3177 }
e75f9fd1 3178 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3179 }
3180
e75f9fd1
NA
3181 btrfs_init_log_ctx(&root_log_ctx, NULL);
3182
3183 mutex_lock(&log_root_tree->log_mutex);
3184
e3d3b415
FM
3185 index2 = log_root_tree->log_transid % 2;
3186 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3187 root_log_ctx.log_transid = log_root_tree->log_transid;
3188
4203e968
JB
3189 /*
3190 * Now we are safe to update the log_root_tree because we're under the
3191 * log_mutex, and we're a current writer so we're holding the commit
3192 * open until we drop the log_mutex.
3193 */
3194 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3195 if (ret) {
d1433deb
MX
3196 if (!list_empty(&root_log_ctx.list))
3197 list_del_init(&root_log_ctx.list);
3198
c6adc9cc 3199 blk_finish_plug(&plug);
90787766 3200 btrfs_set_log_full_commit(trans);
995946dd 3201
79787eaa 3202 if (ret != -ENOSPC) {
66642832 3203 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3204 mutex_unlock(&log_root_tree->log_mutex);
3205 goto out;
3206 }
bf89d38f 3207 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3208 mutex_unlock(&log_root_tree->log_mutex);
3209 ret = -EAGAIN;
3210 goto out;
3211 }
3212
d1433deb 3213 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3214 blk_finish_plug(&plug);
cbd60aa7 3215 list_del_init(&root_log_ctx.list);
d1433deb
MX
3216 mutex_unlock(&log_root_tree->log_mutex);
3217 ret = root_log_ctx.log_ret;
3218 goto out;
3219 }
8b050d35 3220
d1433deb 3221 index2 = root_log_ctx.log_transid % 2;
7237f183 3222 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3223 blk_finish_plug(&plug);
bf89d38f 3224 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3225 wait_log_commit(log_root_tree,
d1433deb 3226 root_log_ctx.log_transid);
7237f183 3227 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3228 if (!ret)
3229 ret = root_log_ctx.log_ret;
7237f183
YZ
3230 goto out;
3231 }
d1433deb 3232 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3233 atomic_set(&log_root_tree->log_commit[index2], 1);
3234
12fcfd22 3235 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3236 wait_log_commit(log_root_tree,
d1433deb 3237 root_log_ctx.log_transid - 1);
12fcfd22
CM
3238 }
3239
12fcfd22
CM
3240 /*
3241 * now that we've moved on to the tree of log tree roots,
3242 * check the full commit flag again
3243 */
4884b8e8 3244 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3245 blk_finish_plug(&plug);
bf89d38f 3246 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3247 mutex_unlock(&log_root_tree->log_mutex);
3248 ret = -EAGAIN;
3249 goto out_wake_log_root;
3250 }
7237f183 3251
2ff7e61e 3252 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3253 &log_root_tree->dirty_log_pages,
3254 EXTENT_DIRTY | EXTENT_NEW);
3255 blk_finish_plug(&plug);
b528f467
NA
3256 /*
3257 * As described above, -EAGAIN indicates a hole in the extents. We
3258 * cannot wait for these write outs since the waiting cause a
3259 * deadlock. Bail out to the full commit instead.
3260 */
3261 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3262 btrfs_set_log_full_commit(trans);
3263 btrfs_wait_tree_log_extents(log, mark);
3264 mutex_unlock(&log_root_tree->log_mutex);
3265 goto out_wake_log_root;
3266 } else if (ret) {
90787766 3267 btrfs_set_log_full_commit(trans);
66642832 3268 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3269 mutex_unlock(&log_root_tree->log_mutex);
3270 goto out_wake_log_root;
3271 }
bf89d38f 3272 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3273 if (!ret)
bf89d38f
JM
3274 ret = btrfs_wait_tree_log_extents(log_root_tree,
3275 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3276 if (ret) {
90787766 3277 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3278 mutex_unlock(&log_root_tree->log_mutex);
3279 goto out_wake_log_root;
3280 }
e02119d5 3281
47876f7c
FM
3282 log_root_start = log_root_tree->node->start;
3283 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3284 log_root_tree->log_transid++;
7237f183
YZ
3285 mutex_unlock(&log_root_tree->log_mutex);
3286
3287 /*
47876f7c
FM
3288 * Here we are guaranteed that nobody is going to write the superblock
3289 * for the current transaction before us and that neither we do write
3290 * our superblock before the previous transaction finishes its commit
3291 * and writes its superblock, because:
3292 *
3293 * 1) We are holding a handle on the current transaction, so no body
3294 * can commit it until we release the handle;
3295 *
3296 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3297 * if the previous transaction is still committing, and hasn't yet
3298 * written its superblock, we wait for it to do it, because a
3299 * transaction commit acquires the tree_log_mutex when the commit
3300 * begins and releases it only after writing its superblock.
7237f183 3301 */
47876f7c 3302 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3303
3304 /*
3305 * The previous transaction writeout phase could have failed, and thus
3306 * marked the fs in an error state. We must not commit here, as we
3307 * could have updated our generation in the super_for_commit and
3308 * writing the super here would result in transid mismatches. If there
3309 * is an error here just bail.
3310 */
3311 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3312 ret = -EIO;
3313 btrfs_set_log_full_commit(trans);
3314 btrfs_abort_transaction(trans, ret);
3315 mutex_unlock(&fs_info->tree_log_mutex);
3316 goto out_wake_log_root;
3317 }
3318
47876f7c
FM
3319 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3320 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3321 ret = write_all_supers(fs_info, 1);
47876f7c 3322 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3323 if (ret) {
90787766 3324 btrfs_set_log_full_commit(trans);
66642832 3325 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3326 goto out_wake_log_root;
3327 }
7237f183 3328
e1a6d264
FM
3329 /*
3330 * We know there can only be one task here, since we have not yet set
3331 * root->log_commit[index1] to 0 and any task attempting to sync the
3332 * log must wait for the previous log transaction to commit if it's
3333 * still in progress or wait for the current log transaction commit if
3334 * someone else already started it. We use <= and not < because the
3335 * first log transaction has an ID of 0.
3336 */
3337 ASSERT(root->last_log_commit <= log_transid);
3338 root->last_log_commit = log_transid;
257c62e1 3339
12fcfd22 3340out_wake_log_root:
570dd450 3341 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3342 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3343
d1433deb 3344 log_root_tree->log_transid_committed++;
7237f183 3345 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3346 mutex_unlock(&log_root_tree->log_mutex);
3347
33a9eca7 3348 /*
093258e6
DS
3349 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3350 * all the updates above are seen by the woken threads. It might not be
3351 * necessary, but proving that seems to be hard.
33a9eca7 3352 */
093258e6 3353 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3354out:
d1433deb 3355 mutex_lock(&root->log_mutex);
570dd450 3356 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3357 root->log_transid_committed++;
7237f183 3358 atomic_set(&root->log_commit[index1], 0);
d1433deb 3359 mutex_unlock(&root->log_mutex);
8b050d35 3360
33a9eca7 3361 /*
093258e6
DS
3362 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3363 * all the updates above are seen by the woken threads. It might not be
3364 * necessary, but proving that seems to be hard.
33a9eca7 3365 */
093258e6 3366 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3367 return ret;
e02119d5
CM
3368}
3369
4a500fd1
YZ
3370static void free_log_tree(struct btrfs_trans_handle *trans,
3371 struct btrfs_root *log)
e02119d5
CM
3372{
3373 int ret;
e02119d5
CM
3374 struct walk_control wc = {
3375 .free = 1,
3376 .process_func = process_one_buffer
3377 };
3378
3ddebf27
NA
3379 if (log->node) {
3380 ret = walk_log_tree(trans, log, &wc);
3381 if (ret) {
3382 if (trans)
3383 btrfs_abort_transaction(trans, ret);
3384 else
3385 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3386 }
374b0e2d 3387 }
e02119d5 3388
59b0713a
FM
3389 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3390 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3391 extent_io_tree_release(&log->log_csum_range);
d3575156
NA
3392
3393 if (trans && log->node)
3394 btrfs_redirty_list_add(trans->transaction, log->node);
00246528 3395 btrfs_put_root(log);
4a500fd1
YZ
3396}
3397
3398/*
3399 * free all the extents used by the tree log. This should be called
3400 * at commit time of the full transaction
3401 */
3402int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3403{
3404 if (root->log_root) {
3405 free_log_tree(trans, root->log_root);
3406 root->log_root = NULL;
e7a79811 3407 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3408 }
3409 return 0;
3410}
3411
3412int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3413 struct btrfs_fs_info *fs_info)
3414{
3415 if (fs_info->log_root_tree) {
3416 free_log_tree(trans, fs_info->log_root_tree);
3417 fs_info->log_root_tree = NULL;
47876f7c 3418 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3419 }
e02119d5
CM
3420 return 0;
3421}
3422
803f0f64 3423/*
6e8e777d
FM
3424 * Check if an inode was logged in the current transaction. This may often
3425 * return some false positives, because logged_trans is an in memory only field,
3426 * not persisted anywhere. This is meant to be used in contexts where a false
3427 * positive has no functional consequences.
803f0f64
FM
3428 */
3429static bool inode_logged(struct btrfs_trans_handle *trans,
3430 struct btrfs_inode *inode)
3431{
3432 if (inode->logged_trans == trans->transid)
3433 return true;
3434
6e8e777d
FM
3435 /*
3436 * The inode's logged_trans is always 0 when we load it (because it is
3437 * not persisted in the inode item or elsewhere). So if it is 0, the
d135a533
FM
3438 * inode was last modified in the current transaction then the inode may
3439 * have been logged before in the current transaction, then evicted and
3440 * loaded again in the current transaction - or may have never been logged
3441 * in the current transaction, but since we can not be sure, we have to
3442 * assume it was, otherwise our callers can leave an inconsistent log.
6e8e777d
FM
3443 */
3444 if (inode->logged_trans == 0 &&
3445 inode->last_trans == trans->transid &&
803f0f64
FM
3446 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3447 return true;
3448
3449 return false;
3450}
3451
e02119d5
CM
3452/*
3453 * If both a file and directory are logged, and unlinks or renames are
3454 * mixed in, we have a few interesting corners:
3455 *
3456 * create file X in dir Y
3457 * link file X to X.link in dir Y
3458 * fsync file X
3459 * unlink file X but leave X.link
3460 * fsync dir Y
3461 *
3462 * After a crash we would expect only X.link to exist. But file X
3463 * didn't get fsync'd again so the log has back refs for X and X.link.
3464 *
3465 * We solve this by removing directory entries and inode backrefs from the
3466 * log when a file that was logged in the current transaction is
3467 * unlinked. Any later fsync will include the updated log entries, and
3468 * we'll be able to reconstruct the proper directory items from backrefs.
3469 *
3470 * This optimizations allows us to avoid relogging the entire inode
3471 * or the entire directory.
3472 */
3473int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *root,
3475 const char *name, int name_len,
49f34d1f 3476 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3477{
3478 struct btrfs_root *log;
3479 struct btrfs_dir_item *di;
3480 struct btrfs_path *path;
3481 int ret;
4a500fd1 3482 int err = 0;
49f34d1f 3483 u64 dir_ino = btrfs_ino(dir);
e02119d5 3484
803f0f64 3485 if (!inode_logged(trans, dir))
3a5f1d45
CM
3486 return 0;
3487
e02119d5
CM
3488 ret = join_running_log_trans(root);
3489 if (ret)
3490 return 0;
3491
49f34d1f 3492 mutex_lock(&dir->log_mutex);
e02119d5
CM
3493
3494 log = root->log_root;
3495 path = btrfs_alloc_path();
a62f44a5
TI
3496 if (!path) {
3497 err = -ENOMEM;
3498 goto out_unlock;
3499 }
2a29edc6 3500
33345d01 3501 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3502 name, name_len, -1);
4a500fd1
YZ
3503 if (IS_ERR(di)) {
3504 err = PTR_ERR(di);
3505 goto fail;
3506 }
3507 if (di) {
e02119d5 3508 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3509 if (ret) {
3510 err = ret;
3511 goto fail;
3512 }
e02119d5 3513 }
b3b4aa74 3514 btrfs_release_path(path);
33345d01 3515 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3516 index, name, name_len, -1);
4a500fd1
YZ
3517 if (IS_ERR(di)) {
3518 err = PTR_ERR(di);
3519 goto fail;
3520 }
3521 if (di) {
e02119d5 3522 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3523 if (ret) {
3524 err = ret;
3525 goto fail;
3526 }
e02119d5
CM
3527 }
3528
ddffcf6f
FM
3529 /*
3530 * We do not need to update the size field of the directory's inode item
3531 * because on log replay we update the field to reflect all existing
3532 * entries in the directory (see overwrite_item()).
e02119d5 3533 */
4a500fd1 3534fail:
e02119d5 3535 btrfs_free_path(path);
a62f44a5 3536out_unlock:
49f34d1f 3537 mutex_unlock(&dir->log_mutex);
fb2fecba 3538 if (err == -ENOSPC) {
90787766 3539 btrfs_set_log_full_commit(trans);
fb2fecba
JB
3540 err = 0;
3541 } else if (err < 0 && err != -ENOENT) {
3542 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3543 btrfs_abort_transaction(trans, err);
3544 }
79787eaa 3545
12fcfd22 3546 btrfs_end_log_trans(root);
e02119d5 3547
411fc6bc 3548 return err;
e02119d5
CM
3549}
3550
3551/* see comments for btrfs_del_dir_entries_in_log */
3552int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3553 struct btrfs_root *root,
3554 const char *name, int name_len,
a491abb2 3555 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3556{
3557 struct btrfs_root *log;
3558 u64 index;
3559 int ret;
3560
803f0f64 3561 if (!inode_logged(trans, inode))
3a5f1d45
CM
3562 return 0;
3563
e02119d5
CM
3564 ret = join_running_log_trans(root);
3565 if (ret)
3566 return 0;
3567 log = root->log_root;
a491abb2 3568 mutex_lock(&inode->log_mutex);
e02119d5 3569
a491abb2 3570 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3571 dirid, &index);
a491abb2 3572 mutex_unlock(&inode->log_mutex);
4a500fd1 3573 if (ret == -ENOSPC) {
90787766 3574 btrfs_set_log_full_commit(trans);
4a500fd1 3575 ret = 0;
79787eaa 3576 } else if (ret < 0 && ret != -ENOENT)
66642832 3577 btrfs_abort_transaction(trans, ret);
12fcfd22 3578 btrfs_end_log_trans(root);
e02119d5 3579
e02119d5
CM
3580 return ret;
3581}
3582
3583/*
3584 * creates a range item in the log for 'dirid'. first_offset and
3585 * last_offset tell us which parts of the key space the log should
3586 * be considered authoritative for.
3587 */
3588static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3589 struct btrfs_root *log,
3590 struct btrfs_path *path,
3591 int key_type, u64 dirid,
3592 u64 first_offset, u64 last_offset)
3593{
3594 int ret;
3595 struct btrfs_key key;
3596 struct btrfs_dir_log_item *item;
3597
3598 key.objectid = dirid;
3599 key.offset = first_offset;
3600 if (key_type == BTRFS_DIR_ITEM_KEY)
3601 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3602 else
3603 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3604 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3605 if (ret)
3606 return ret;
e02119d5
CM
3607
3608 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3609 struct btrfs_dir_log_item);
3610 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3611 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3612 btrfs_release_path(path);
e02119d5
CM
3613 return 0;
3614}
3615
3616/*
3617 * log all the items included in the current transaction for a given
3618 * directory. This also creates the range items in the log tree required
3619 * to replay anything deleted before the fsync
3620 */
3621static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3622 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3623 struct btrfs_path *path,
3624 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3625 struct btrfs_log_ctx *ctx,
e02119d5
CM
3626 u64 min_offset, u64 *last_offset_ret)
3627{
3628 struct btrfs_key min_key;
e02119d5
CM
3629 struct btrfs_root *log = root->log_root;
3630 struct extent_buffer *src;
4a500fd1 3631 int err = 0;
e02119d5
CM
3632 int ret;
3633 int i;
3634 int nritems;
3635 u64 first_offset = min_offset;
3636 u64 last_offset = (u64)-1;
684a5773 3637 u64 ino = btrfs_ino(inode);
e02119d5
CM
3638
3639 log = root->log_root;
e02119d5 3640
33345d01 3641 min_key.objectid = ino;
e02119d5
CM
3642 min_key.type = key_type;
3643 min_key.offset = min_offset;
3644
6174d3cb 3645 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3646
3647 /*
3648 * we didn't find anything from this transaction, see if there
3649 * is anything at all
3650 */
33345d01
LZ
3651 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3652 min_key.objectid = ino;
e02119d5
CM
3653 min_key.type = key_type;
3654 min_key.offset = (u64)-1;
b3b4aa74 3655 btrfs_release_path(path);
e02119d5
CM
3656 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3657 if (ret < 0) {
b3b4aa74 3658 btrfs_release_path(path);
e02119d5
CM
3659 return ret;
3660 }
33345d01 3661 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3662
3663 /* if ret == 0 there are items for this type,
3664 * create a range to tell us the last key of this type.
3665 * otherwise, there are no items in this directory after
3666 * *min_offset, and we create a range to indicate that.
3667 */
3668 if (ret == 0) {
3669 struct btrfs_key tmp;
3670 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3671 path->slots[0]);
d397712b 3672 if (key_type == tmp.type)
e02119d5 3673 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3674 }
3675 goto done;
3676 }
3677
3678 /* go backward to find any previous key */
33345d01 3679 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3680 if (ret == 0) {
3681 struct btrfs_key tmp;
3682 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3683 if (key_type == tmp.type) {
3684 first_offset = tmp.offset;
3685 ret = overwrite_item(trans, log, dst_path,
3686 path->nodes[0], path->slots[0],
3687 &tmp);
4a500fd1
YZ
3688 if (ret) {
3689 err = ret;
3690 goto done;
3691 }
e02119d5
CM
3692 }
3693 }
b3b4aa74 3694 btrfs_release_path(path);
e02119d5 3695
2cc83342
JB
3696 /*
3697 * Find the first key from this transaction again. See the note for
3698 * log_new_dir_dentries, if we're logging a directory recursively we
3699 * won't be holding its i_mutex, which means we can modify the directory
3700 * while we're logging it. If we remove an entry between our first
3701 * search and this search we'll not find the key again and can just
3702 * bail.
3703 */
bb56f02f 3704search:
e02119d5 3705 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3706 if (ret != 0)
e02119d5 3707 goto done;
e02119d5
CM
3708
3709 /*
3710 * we have a block from this transaction, log every item in it
3711 * from our directory
3712 */
d397712b 3713 while (1) {
e02119d5
CM
3714 struct btrfs_key tmp;
3715 src = path->nodes[0];
3716 nritems = btrfs_header_nritems(src);
3717 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3718 struct btrfs_dir_item *di;
3719
e02119d5
CM
3720 btrfs_item_key_to_cpu(src, &min_key, i);
3721
33345d01 3722 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5 3723 goto done;
bb56f02f
FM
3724
3725 if (need_resched()) {
3726 btrfs_release_path(path);
3727 cond_resched();
3728 goto search;
3729 }
3730
e02119d5
CM
3731 ret = overwrite_item(trans, log, dst_path, src, i,
3732 &min_key);
4a500fd1
YZ
3733 if (ret) {
3734 err = ret;
3735 goto done;
3736 }
2f2ff0ee
FM
3737
3738 /*
3739 * We must make sure that when we log a directory entry,
3740 * the corresponding inode, after log replay, has a
3741 * matching link count. For example:
3742 *
3743 * touch foo
3744 * mkdir mydir
3745 * sync
3746 * ln foo mydir/bar
3747 * xfs_io -c "fsync" mydir
3748 * <crash>
3749 * <mount fs and log replay>
3750 *
3751 * Would result in a fsync log that when replayed, our
3752 * file inode would have a link count of 1, but we get
3753 * two directory entries pointing to the same inode.
3754 * After removing one of the names, it would not be
3755 * possible to remove the other name, which resulted
3756 * always in stale file handle errors, and would not
3757 * be possible to rmdir the parent directory, since
3758 * its i_size could never decrement to the value
3759 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3760 */
3761 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3762 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3763 if (ctx &&
3764 (btrfs_dir_transid(src, di) == trans->transid ||
3765 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3766 tmp.type != BTRFS_ROOT_ITEM_KEY)
3767 ctx->log_new_dentries = true;
e02119d5
CM
3768 }
3769 path->slots[0] = nritems;
3770
3771 /*
3772 * look ahead to the next item and see if it is also
3773 * from this directory and from this transaction
3774 */
3775 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3776 if (ret) {
3777 if (ret == 1)
3778 last_offset = (u64)-1;
3779 else
3780 err = ret;
e02119d5
CM
3781 goto done;
3782 }
3783 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3784 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3785 last_offset = (u64)-1;
3786 goto done;
3787 }
3788 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3789 ret = overwrite_item(trans, log, dst_path,
3790 path->nodes[0], path->slots[0],
3791 &tmp);
4a500fd1
YZ
3792 if (ret)
3793 err = ret;
3794 else
3795 last_offset = tmp.offset;
e02119d5
CM
3796 goto done;
3797 }
3798 }
3799done:
b3b4aa74
DS
3800 btrfs_release_path(path);
3801 btrfs_release_path(dst_path);
e02119d5 3802
4a500fd1
YZ
3803 if (err == 0) {
3804 *last_offset_ret = last_offset;
3805 /*
3806 * insert the log range keys to indicate where the log
3807 * is valid
3808 */
3809 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3810 ino, first_offset, last_offset);
4a500fd1
YZ
3811 if (ret)
3812 err = ret;
3813 }
3814 return err;
e02119d5
CM
3815}
3816
3817/*
3818 * logging directories is very similar to logging inodes, We find all the items
3819 * from the current transaction and write them to the log.
3820 *
3821 * The recovery code scans the directory in the subvolume, and if it finds a
3822 * key in the range logged that is not present in the log tree, then it means
3823 * that dir entry was unlinked during the transaction.
3824 *
3825 * In order for that scan to work, we must include one key smaller than
3826 * the smallest logged by this transaction and one key larger than the largest
3827 * key logged by this transaction.
3828 */
3829static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3830 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3831 struct btrfs_path *path,
2f2ff0ee
FM
3832 struct btrfs_path *dst_path,
3833 struct btrfs_log_ctx *ctx)
e02119d5
CM
3834{
3835 u64 min_key;
3836 u64 max_key;
3837 int ret;
3838 int key_type = BTRFS_DIR_ITEM_KEY;
3839
3840again:
3841 min_key = 0;
3842 max_key = 0;
d397712b 3843 while (1) {
dbf39ea4
NB
3844 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3845 ctx, min_key, &max_key);
4a500fd1
YZ
3846 if (ret)
3847 return ret;
e02119d5
CM
3848 if (max_key == (u64)-1)
3849 break;
3850 min_key = max_key + 1;
3851 }
3852
3853 if (key_type == BTRFS_DIR_ITEM_KEY) {
3854 key_type = BTRFS_DIR_INDEX_KEY;
3855 goto again;
3856 }
3857 return 0;
3858}
3859
3860/*
3861 * a helper function to drop items from the log before we relog an
3862 * inode. max_key_type indicates the highest item type to remove.
3863 * This cannot be run for file data extents because it does not
3864 * free the extents they point to.
3865 */
3866static int drop_objectid_items(struct btrfs_trans_handle *trans,
3867 struct btrfs_root *log,
3868 struct btrfs_path *path,
3869 u64 objectid, int max_key_type)
3870{
3871 int ret;
3872 struct btrfs_key key;
3873 struct btrfs_key found_key;
18ec90d6 3874 int start_slot;
e02119d5
CM
3875
3876 key.objectid = objectid;
3877 key.type = max_key_type;
3878 key.offset = (u64)-1;
3879
d397712b 3880 while (1) {
e02119d5 3881 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3882 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3883 if (ret < 0)
e02119d5
CM
3884 break;
3885
3886 if (path->slots[0] == 0)
3887 break;
3888
3889 path->slots[0]--;
3890 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3891 path->slots[0]);
3892
3893 if (found_key.objectid != objectid)
3894 break;
3895
18ec90d6
JB
3896 found_key.offset = 0;
3897 found_key.type = 0;
e3b83361 3898 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
3899 if (ret < 0)
3900 break;
18ec90d6
JB
3901
3902 ret = btrfs_del_items(trans, log, path, start_slot,
3903 path->slots[0] - start_slot + 1);
3904 /*
3905 * If start slot isn't 0 then we don't need to re-search, we've
3906 * found the last guy with the objectid in this tree.
3907 */
3908 if (ret || start_slot != 0)
65a246c5 3909 break;
b3b4aa74 3910 btrfs_release_path(path);
e02119d5 3911 }
b3b4aa74 3912 btrfs_release_path(path);
5bdbeb21
JB
3913 if (ret > 0)
3914 ret = 0;
4a500fd1 3915 return ret;
e02119d5
CM
3916}
3917
94edf4ae
JB
3918static void fill_inode_item(struct btrfs_trans_handle *trans,
3919 struct extent_buffer *leaf,
3920 struct btrfs_inode_item *item,
1a4bcf47
FM
3921 struct inode *inode, int log_inode_only,
3922 u64 logged_isize)
94edf4ae 3923{
0b1c6cca 3924 struct btrfs_map_token token;
77eea05e 3925 u64 flags;
0b1c6cca 3926
c82f823c 3927 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
3928
3929 if (log_inode_only) {
3930 /* set the generation to zero so the recover code
3931 * can tell the difference between an logging
3932 * just to say 'this inode exists' and a logging
3933 * to say 'update this inode with these values'
3934 */
cc4c13d5
DS
3935 btrfs_set_token_inode_generation(&token, item, 0);
3936 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 3937 } else {
cc4c13d5
DS
3938 btrfs_set_token_inode_generation(&token, item,
3939 BTRFS_I(inode)->generation);
3940 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
3941 }
3942
cc4c13d5
DS
3943 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3944 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3945 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3946 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3947
3948 btrfs_set_token_timespec_sec(&token, &item->atime,
3949 inode->i_atime.tv_sec);
3950 btrfs_set_token_timespec_nsec(&token, &item->atime,
3951 inode->i_atime.tv_nsec);
3952
3953 btrfs_set_token_timespec_sec(&token, &item->mtime,
3954 inode->i_mtime.tv_sec);
3955 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3956 inode->i_mtime.tv_nsec);
3957
3958 btrfs_set_token_timespec_sec(&token, &item->ctime,
3959 inode->i_ctime.tv_sec);
3960 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3961 inode->i_ctime.tv_nsec);
3962
e593e54e
FM
3963 /*
3964 * We do not need to set the nbytes field, in fact during a fast fsync
3965 * its value may not even be correct, since a fast fsync does not wait
3966 * for ordered extent completion, which is where we update nbytes, it
3967 * only waits for writeback to complete. During log replay as we find
3968 * file extent items and replay them, we adjust the nbytes field of the
3969 * inode item in subvolume tree as needed (see overwrite_item()).
3970 */
cc4c13d5
DS
3971
3972 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3973 btrfs_set_token_inode_transid(&token, item, trans->transid);
3974 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
3975 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3976 BTRFS_I(inode)->ro_flags);
3977 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 3978 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
3979}
3980
a95249b3
JB
3981static int log_inode_item(struct btrfs_trans_handle *trans,
3982 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 3983 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
3984{
3985 struct btrfs_inode_item *inode_item;
a95249b3
JB
3986 int ret;
3987
2ac691d8
FM
3988 /*
3989 * If we are doing a fast fsync and the inode was logged before in the
3990 * current transaction, then we know the inode was previously logged and
3991 * it exists in the log tree. For performance reasons, in this case use
3992 * btrfs_search_slot() directly with ins_len set to 0 so that we never
3993 * attempt a write lock on the leaf's parent, which adds unnecessary lock
3994 * contention in case there are concurrent fsyncs for other inodes of the
3995 * same subvolume. Using btrfs_insert_empty_item() when the inode item
3996 * already exists can also result in unnecessarily splitting a leaf.
3997 */
3998 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
3999 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4000 ASSERT(ret <= 0);
4001 if (ret > 0)
4002 ret = -ENOENT;
4003 } else {
4004 /*
4005 * This means it is the first fsync in the current transaction,
4006 * so the inode item is not in the log and we need to insert it.
4007 * We can never get -EEXIST because we are only called for a fast
4008 * fsync and in case an inode eviction happens after the inode was
4009 * logged before in the current transaction, when we load again
4010 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4011 * flags and set ->logged_trans to 0.
4012 */
4013 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4014 sizeof(*inode_item));
4015 ASSERT(ret != -EEXIST);
4016 }
4017 if (ret)
a95249b3
JB
4018 return ret;
4019 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4020 struct btrfs_inode_item);
6d889a3b
NB
4021 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4022 0, 0);
a95249b3
JB
4023 btrfs_release_path(path);
4024 return 0;
4025}
4026
40e046ac 4027static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4028 struct btrfs_inode *inode,
40e046ac
FM
4029 struct btrfs_root *log_root,
4030 struct btrfs_ordered_sum *sums)
4031{
e289f03e
FM
4032 const u64 lock_end = sums->bytenr + sums->len - 1;
4033 struct extent_state *cached_state = NULL;
40e046ac
FM
4034 int ret;
4035
3ebac17c
FM
4036 /*
4037 * If this inode was not used for reflink operations in the current
4038 * transaction with new extents, then do the fast path, no need to
4039 * worry about logging checksum items with overlapping ranges.
4040 */
4041 if (inode->last_reflink_trans < trans->transid)
4042 return btrfs_csum_file_blocks(trans, log_root, sums);
4043
e289f03e
FM
4044 /*
4045 * Serialize logging for checksums. This is to avoid racing with the
4046 * same checksum being logged by another task that is logging another
4047 * file which happens to refer to the same extent as well. Such races
4048 * can leave checksum items in the log with overlapping ranges.
4049 */
4050 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4051 lock_end, &cached_state);
4052 if (ret)
4053 return ret;
40e046ac
FM
4054 /*
4055 * Due to extent cloning, we might have logged a csum item that covers a
4056 * subrange of a cloned extent, and later we can end up logging a csum
4057 * item for a larger subrange of the same extent or the entire range.
4058 * This would leave csum items in the log tree that cover the same range
4059 * and break the searches for checksums in the log tree, resulting in
4060 * some checksums missing in the fs/subvolume tree. So just delete (or
4061 * trim and adjust) any existing csum items in the log for this range.
4062 */
4063 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4064 if (!ret)
4065 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4066
e289f03e
FM
4067 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4068 &cached_state);
4069
4070 return ret;
40e046ac
FM
4071}
4072
31ff1cd2 4073static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4074 struct btrfs_inode *inode,
31ff1cd2 4075 struct btrfs_path *dst_path,
0e56315c 4076 struct btrfs_path *src_path,
1a4bcf47
FM
4077 int start_slot, int nr, int inode_only,
4078 u64 logged_isize)
31ff1cd2 4079{
3ffbd68c 4080 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
4081 unsigned long src_offset;
4082 unsigned long dst_offset;
44d70e19 4083 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
4084 struct btrfs_file_extent_item *extent;
4085 struct btrfs_inode_item *inode_item;
16e7549f 4086 struct extent_buffer *src = src_path->nodes[0];
31ff1cd2
CM
4087 int ret;
4088 struct btrfs_key *ins_keys;
4089 u32 *ins_sizes;
4090 char *ins_data;
4091 int i;
d20f7043 4092 struct list_head ordered_sums;
44d70e19 4093 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
4094
4095 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
4096
4097 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4098 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4099 if (!ins_data)
4100 return -ENOMEM;
4101
31ff1cd2
CM
4102 ins_sizes = (u32 *)ins_data;
4103 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4104
4105 for (i = 0; i < nr; i++) {
4106 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4107 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4108 }
4109 ret = btrfs_insert_empty_items(trans, log, dst_path,
4110 ins_keys, ins_sizes, nr);
4a500fd1
YZ
4111 if (ret) {
4112 kfree(ins_data);
4113 return ret;
4114 }
31ff1cd2 4115
5d4f98a2 4116 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
4117 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4118 dst_path->slots[0]);
4119
4120 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4121
94edf4ae 4122 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
4123 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4124 dst_path->slots[0],
4125 struct btrfs_inode_item);
94edf4ae 4126 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4127 &inode->vfs_inode,
4128 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4129 logged_isize);
94edf4ae
JB
4130 } else {
4131 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4132 src_offset, ins_sizes[i]);
31ff1cd2 4133 }
94edf4ae 4134
31ff1cd2
CM
4135 /* take a reference on file data extents so that truncates
4136 * or deletes of this inode don't have to relog the inode
4137 * again
4138 */
962a298f 4139 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4140 !skip_csum) {
31ff1cd2
CM
4141 int found_type;
4142 extent = btrfs_item_ptr(src, start_slot + i,
4143 struct btrfs_file_extent_item);
4144
8e531cdf 4145 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4146 continue;
4147
31ff1cd2 4148 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4149 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4150 u64 ds, dl, cs, cl;
4151 ds = btrfs_file_extent_disk_bytenr(src,
4152 extent);
4153 /* ds == 0 is a hole */
4154 if (ds == 0)
4155 continue;
4156
4157 dl = btrfs_file_extent_disk_num_bytes(src,
4158 extent);
4159 cs = btrfs_file_extent_offset(src, extent);
4160 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4161 extent);
580afd76
CM
4162 if (btrfs_file_extent_compression(src,
4163 extent)) {
4164 cs = 0;
4165 cl = dl;
4166 }
5d4f98a2
YZ
4167
4168 ret = btrfs_lookup_csums_range(
0b246afa 4169 fs_info->csum_root,
5d4f98a2 4170 ds + cs, ds + cs + cl - 1,
a2de733c 4171 &ordered_sums, 0);
4f26433e
FM
4172 if (ret)
4173 break;
31ff1cd2
CM
4174 }
4175 }
31ff1cd2
CM
4176 }
4177
4178 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4179 btrfs_release_path(dst_path);
31ff1cd2 4180 kfree(ins_data);
d20f7043
CM
4181
4182 /*
4183 * we have to do this after the loop above to avoid changing the
4184 * log tree while trying to change the log tree.
4185 */
d397712b 4186 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4187 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4188 struct btrfs_ordered_sum,
4189 list);
4a500fd1 4190 if (!ret)
3ebac17c 4191 ret = log_csums(trans, inode, log, sums);
d20f7043
CM
4192 list_del(&sums->list);
4193 kfree(sums);
4194 }
16e7549f 4195
4a500fd1 4196 return ret;
31ff1cd2
CM
4197}
4198
4f0f586b
ST
4199static int extent_cmp(void *priv, const struct list_head *a,
4200 const struct list_head *b)
5dc562c5 4201{
214cc184 4202 const struct extent_map *em1, *em2;
5dc562c5
JB
4203
4204 em1 = list_entry(a, struct extent_map, list);
4205 em2 = list_entry(b, struct extent_map, list);
4206
4207 if (em1->start < em2->start)
4208 return -1;
4209 else if (em1->start > em2->start)
4210 return 1;
4211 return 0;
4212}
4213
e7175a69
JB
4214static int log_extent_csums(struct btrfs_trans_handle *trans,
4215 struct btrfs_inode *inode,
a9ecb653 4216 struct btrfs_root *log_root,
48778179
FM
4217 const struct extent_map *em,
4218 struct btrfs_log_ctx *ctx)
5dc562c5 4219{
48778179 4220 struct btrfs_ordered_extent *ordered;
2ab28f32
JB
4221 u64 csum_offset;
4222 u64 csum_len;
48778179
FM
4223 u64 mod_start = em->mod_start;
4224 u64 mod_len = em->mod_len;
8407f553
FM
4225 LIST_HEAD(ordered_sums);
4226 int ret = 0;
0aa4a17d 4227
e7175a69
JB
4228 if (inode->flags & BTRFS_INODE_NODATASUM ||
4229 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4230 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4231 return 0;
5dc562c5 4232
48778179
FM
4233 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4234 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4235 const u64 mod_end = mod_start + mod_len;
4236 struct btrfs_ordered_sum *sums;
4237
4238 if (mod_len == 0)
4239 break;
4240
4241 if (ordered_end <= mod_start)
4242 continue;
4243 if (mod_end <= ordered->file_offset)
4244 break;
4245
4246 /*
4247 * We are going to copy all the csums on this ordered extent, so
4248 * go ahead and adjust mod_start and mod_len in case this ordered
4249 * extent has already been logged.
4250 */
4251 if (ordered->file_offset > mod_start) {
4252 if (ordered_end >= mod_end)
4253 mod_len = ordered->file_offset - mod_start;
4254 /*
4255 * If we have this case
4256 *
4257 * |--------- logged extent ---------|
4258 * |----- ordered extent ----|
4259 *
4260 * Just don't mess with mod_start and mod_len, we'll
4261 * just end up logging more csums than we need and it
4262 * will be ok.
4263 */
4264 } else {
4265 if (ordered_end < mod_end) {
4266 mod_len = mod_end - ordered_end;
4267 mod_start = ordered_end;
4268 } else {
4269 mod_len = 0;
4270 }
4271 }
4272
4273 /*
4274 * To keep us from looping for the above case of an ordered
4275 * extent that falls inside of the logged extent.
4276 */
4277 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4278 continue;
4279
4280 list_for_each_entry(sums, &ordered->list, list) {
4281 ret = log_csums(trans, inode, log_root, sums);
4282 if (ret)
4283 return ret;
4284 }
4285 }
4286
4287 /* We're done, found all csums in the ordered extents. */
4288 if (mod_len == 0)
4289 return 0;
4290
e7175a69 4291 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4292 if (em->compress_type) {
4293 csum_offset = 0;
8407f553 4294 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4295 } else {
48778179
FM
4296 csum_offset = mod_start - em->start;
4297 csum_len = mod_len;
488111aa 4298 }
2ab28f32 4299
70c8a91c 4300 /* block start is already adjusted for the file extent offset. */
a9ecb653 4301 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4302 em->block_start + csum_offset,
4303 em->block_start + csum_offset +
4304 csum_len - 1, &ordered_sums, 0);
4305 if (ret)
4306 return ret;
5dc562c5 4307
70c8a91c
JB
4308 while (!list_empty(&ordered_sums)) {
4309 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4310 struct btrfs_ordered_sum,
4311 list);
4312 if (!ret)
3ebac17c 4313 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4314 list_del(&sums->list);
4315 kfree(sums);
5dc562c5
JB
4316 }
4317
70c8a91c 4318 return ret;
5dc562c5
JB
4319}
4320
8407f553 4321static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4322 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4323 const struct extent_map *em,
4324 struct btrfs_path *path,
8407f553
FM
4325 struct btrfs_log_ctx *ctx)
4326{
5893dfb9 4327 struct btrfs_drop_extents_args drop_args = { 0 };
8407f553
FM
4328 struct btrfs_root *log = root->log_root;
4329 struct btrfs_file_extent_item *fi;
4330 struct extent_buffer *leaf;
4331 struct btrfs_map_token token;
4332 struct btrfs_key key;
4333 u64 extent_offset = em->start - em->orig_start;
4334 u64 block_len;
4335 int ret;
8407f553 4336
48778179 4337 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4338 if (ret)
4339 return ret;
4340
5893dfb9
FM
4341 drop_args.path = path;
4342 drop_args.start = em->start;
4343 drop_args.end = em->start + em->len;
4344 drop_args.replace_extent = true;
4345 drop_args.extent_item_size = sizeof(*fi);
4346 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
8407f553
FM
4347 if (ret)
4348 return ret;
4349
5893dfb9 4350 if (!drop_args.extent_inserted) {
9d122629 4351 key.objectid = btrfs_ino(inode);
8407f553
FM
4352 key.type = BTRFS_EXTENT_DATA_KEY;
4353 key.offset = em->start;
4354
4355 ret = btrfs_insert_empty_item(trans, log, path, &key,
4356 sizeof(*fi));
4357 if (ret)
4358 return ret;
4359 }
4360 leaf = path->nodes[0];
c82f823c 4361 btrfs_init_map_token(&token, leaf);
8407f553
FM
4362 fi = btrfs_item_ptr(leaf, path->slots[0],
4363 struct btrfs_file_extent_item);
4364
cc4c13d5 4365 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
8407f553 4366 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
cc4c13d5
DS
4367 btrfs_set_token_file_extent_type(&token, fi,
4368 BTRFS_FILE_EXTENT_PREALLOC);
8407f553 4369 else
cc4c13d5
DS
4370 btrfs_set_token_file_extent_type(&token, fi,
4371 BTRFS_FILE_EXTENT_REG);
8407f553
FM
4372
4373 block_len = max(em->block_len, em->orig_block_len);
4374 if (em->compress_type != BTRFS_COMPRESS_NONE) {
cc4c13d5
DS
4375 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4376 em->block_start);
4377 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4378 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
cc4c13d5 4379 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
8407f553 4380 em->block_start -
cc4c13d5
DS
4381 extent_offset);
4382 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4383 } else {
cc4c13d5
DS
4384 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4385 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
8407f553
FM
4386 }
4387
cc4c13d5
DS
4388 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4389 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4390 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4391 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4392 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4393 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
8407f553
FM
4394 btrfs_mark_buffer_dirty(leaf);
4395
4396 btrfs_release_path(path);
4397
4398 return ret;
4399}
4400
31d11b83
FM
4401/*
4402 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4403 * lose them after doing a fast fsync and replaying the log. We scan the
4404 * subvolume's root instead of iterating the inode's extent map tree because
4405 * otherwise we can log incorrect extent items based on extent map conversion.
4406 * That can happen due to the fact that extent maps are merged when they
4407 * are not in the extent map tree's list of modified extents.
4408 */
4409static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4410 struct btrfs_inode *inode,
4411 struct btrfs_path *path)
4412{
4413 struct btrfs_root *root = inode->root;
4414 struct btrfs_key key;
4415 const u64 i_size = i_size_read(&inode->vfs_inode);
4416 const u64 ino = btrfs_ino(inode);
4417 struct btrfs_path *dst_path = NULL;
0e56315c 4418 bool dropped_extents = false;
f135cea3
FM
4419 u64 truncate_offset = i_size;
4420 struct extent_buffer *leaf;
4421 int slot;
31d11b83
FM
4422 int ins_nr = 0;
4423 int start_slot;
4424 int ret;
4425
4426 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4427 return 0;
4428
4429 key.objectid = ino;
4430 key.type = BTRFS_EXTENT_DATA_KEY;
4431 key.offset = i_size;
4432 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4433 if (ret < 0)
4434 goto out;
4435
f135cea3
FM
4436 /*
4437 * We must check if there is a prealloc extent that starts before the
4438 * i_size and crosses the i_size boundary. This is to ensure later we
4439 * truncate down to the end of that extent and not to the i_size, as
4440 * otherwise we end up losing part of the prealloc extent after a log
4441 * replay and with an implicit hole if there is another prealloc extent
4442 * that starts at an offset beyond i_size.
4443 */
4444 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4445 if (ret < 0)
4446 goto out;
4447
4448 if (ret == 0) {
4449 struct btrfs_file_extent_item *ei;
4450
4451 leaf = path->nodes[0];
4452 slot = path->slots[0];
4453 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4454
4455 if (btrfs_file_extent_type(leaf, ei) ==
4456 BTRFS_FILE_EXTENT_PREALLOC) {
4457 u64 extent_end;
4458
4459 btrfs_item_key_to_cpu(leaf, &key, slot);
4460 extent_end = key.offset +
4461 btrfs_file_extent_num_bytes(leaf, ei);
4462
4463 if (extent_end > i_size)
4464 truncate_offset = extent_end;
4465 }
4466 } else {
4467 ret = 0;
4468 }
4469
31d11b83 4470 while (true) {
f135cea3
FM
4471 leaf = path->nodes[0];
4472 slot = path->slots[0];
31d11b83
FM
4473
4474 if (slot >= btrfs_header_nritems(leaf)) {
4475 if (ins_nr > 0) {
4476 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4477 start_slot, ins_nr, 1, 0);
31d11b83
FM
4478 if (ret < 0)
4479 goto out;
4480 ins_nr = 0;
4481 }
4482 ret = btrfs_next_leaf(root, path);
4483 if (ret < 0)
4484 goto out;
4485 if (ret > 0) {
4486 ret = 0;
4487 break;
4488 }
4489 continue;
4490 }
4491
4492 btrfs_item_key_to_cpu(leaf, &key, slot);
4493 if (key.objectid > ino)
4494 break;
4495 if (WARN_ON_ONCE(key.objectid < ino) ||
4496 key.type < BTRFS_EXTENT_DATA_KEY ||
4497 key.offset < i_size) {
4498 path->slots[0]++;
4499 continue;
4500 }
0e56315c 4501 if (!dropped_extents) {
31d11b83
FM
4502 /*
4503 * Avoid logging extent items logged in past fsync calls
4504 * and leading to duplicate keys in the log tree.
4505 */
4506 do {
4507 ret = btrfs_truncate_inode_items(trans,
4508 root->log_root,
50743398 4509 inode, truncate_offset,
0d7d3165
FM
4510 BTRFS_EXTENT_DATA_KEY,
4511 NULL);
31d11b83
FM
4512 } while (ret == -EAGAIN);
4513 if (ret)
4514 goto out;
0e56315c 4515 dropped_extents = true;
31d11b83
FM
4516 }
4517 if (ins_nr == 0)
4518 start_slot = slot;
4519 ins_nr++;
4520 path->slots[0]++;
4521 if (!dst_path) {
4522 dst_path = btrfs_alloc_path();
4523 if (!dst_path) {
4524 ret = -ENOMEM;
4525 goto out;
4526 }
4527 }
4528 }
0bc2d3c0 4529 if (ins_nr > 0)
0e56315c 4530 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4531 start_slot, ins_nr, 1, 0);
31d11b83
FM
4532out:
4533 btrfs_release_path(path);
4534 btrfs_free_path(dst_path);
4535 return ret;
4536}
4537
5dc562c5
JB
4538static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4539 struct btrfs_root *root,
9d122629 4540 struct btrfs_inode *inode,
827463c4 4541 struct btrfs_path *path,
48778179 4542 struct btrfs_log_ctx *ctx)
5dc562c5 4543{
48778179
FM
4544 struct btrfs_ordered_extent *ordered;
4545 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4546 struct extent_map *em, *n;
4547 struct list_head extents;
9d122629 4548 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4549 int ret = 0;
2ab28f32 4550 int num = 0;
5dc562c5
JB
4551
4552 INIT_LIST_HEAD(&extents);
4553
5dc562c5 4554 write_lock(&tree->lock);
5dc562c5
JB
4555
4556 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4557 list_del_init(&em->list);
2ab28f32
JB
4558 /*
4559 * Just an arbitrary number, this can be really CPU intensive
4560 * once we start getting a lot of extents, and really once we
4561 * have a bunch of extents we just want to commit since it will
4562 * be faster.
4563 */
4564 if (++num > 32768) {
4565 list_del_init(&tree->modified_extents);
4566 ret = -EFBIG;
4567 goto process;
4568 }
4569
5f96bfb7 4570 if (em->generation < trans->transid)
5dc562c5 4571 continue;
8c6c5928 4572
31d11b83
FM
4573 /* We log prealloc extents beyond eof later. */
4574 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4575 em->start >= i_size_read(&inode->vfs_inode))
4576 continue;
4577
ff44c6e3 4578 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4579 refcount_inc(&em->refs);
ff44c6e3 4580 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4581 list_add_tail(&em->list, &extents);
2ab28f32 4582 num++;
5dc562c5
JB
4583 }
4584
4585 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4586process:
5dc562c5
JB
4587 while (!list_empty(&extents)) {
4588 em = list_entry(extents.next, struct extent_map, list);
4589
4590 list_del_init(&em->list);
4591
4592 /*
4593 * If we had an error we just need to delete everybody from our
4594 * private list.
4595 */
ff44c6e3 4596 if (ret) {
201a9038 4597 clear_em_logging(tree, em);
ff44c6e3 4598 free_extent_map(em);
5dc562c5 4599 continue;
ff44c6e3
JB
4600 }
4601
4602 write_unlock(&tree->lock);
5dc562c5 4603
a2120a47 4604 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4605 write_lock(&tree->lock);
201a9038
JB
4606 clear_em_logging(tree, em);
4607 free_extent_map(em);
5dc562c5 4608 }
ff44c6e3
JB
4609 WARN_ON(!list_empty(&extents));
4610 write_unlock(&tree->lock);
5dc562c5 4611
5dc562c5 4612 btrfs_release_path(path);
31d11b83
FM
4613 if (!ret)
4614 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4615 if (ret)
4616 return ret;
31d11b83 4617
48778179
FM
4618 /*
4619 * We have logged all extents successfully, now make sure the commit of
4620 * the current transaction waits for the ordered extents to complete
4621 * before it commits and wipes out the log trees, otherwise we would
4622 * lose data if an ordered extents completes after the transaction
4623 * commits and a power failure happens after the transaction commit.
4624 */
4625 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4626 list_del_init(&ordered->log_list);
4627 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4628
4629 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4630 spin_lock_irq(&inode->ordered_tree.lock);
4631 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4632 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4633 atomic_inc(&trans->transaction->pending_ordered);
4634 }
4635 spin_unlock_irq(&inode->ordered_tree.lock);
4636 }
4637 btrfs_put_ordered_extent(ordered);
4638 }
4639
4640 return 0;
5dc562c5
JB
4641}
4642
481b01c0 4643static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4644 struct btrfs_path *path, u64 *size_ret)
4645{
4646 struct btrfs_key key;
4647 int ret;
4648
481b01c0 4649 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4650 key.type = BTRFS_INODE_ITEM_KEY;
4651 key.offset = 0;
4652
4653 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4654 if (ret < 0) {
4655 return ret;
4656 } else if (ret > 0) {
2f2ff0ee 4657 *size_ret = 0;
1a4bcf47
FM
4658 } else {
4659 struct btrfs_inode_item *item;
4660
4661 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4662 struct btrfs_inode_item);
4663 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4664 /*
4665 * If the in-memory inode's i_size is smaller then the inode
4666 * size stored in the btree, return the inode's i_size, so
4667 * that we get a correct inode size after replaying the log
4668 * when before a power failure we had a shrinking truncate
4669 * followed by addition of a new name (rename / new hard link).
4670 * Otherwise return the inode size from the btree, to avoid
4671 * data loss when replaying a log due to previously doing a
4672 * write that expands the inode's size and logging a new name
4673 * immediately after.
4674 */
4675 if (*size_ret > inode->vfs_inode.i_size)
4676 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4677 }
4678
4679 btrfs_release_path(path);
4680 return 0;
4681}
4682
36283bf7
FM
4683/*
4684 * At the moment we always log all xattrs. This is to figure out at log replay
4685 * time which xattrs must have their deletion replayed. If a xattr is missing
4686 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4687 * because if a xattr is deleted, the inode is fsynced and a power failure
4688 * happens, causing the log to be replayed the next time the fs is mounted,
4689 * we want the xattr to not exist anymore (same behaviour as other filesystems
4690 * with a journal, ext3/4, xfs, f2fs, etc).
4691 */
4692static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4693 struct btrfs_root *root,
1a93c36a 4694 struct btrfs_inode *inode,
36283bf7
FM
4695 struct btrfs_path *path,
4696 struct btrfs_path *dst_path)
4697{
4698 int ret;
4699 struct btrfs_key key;
1a93c36a 4700 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4701 int ins_nr = 0;
4702 int start_slot = 0;
f2f121ab
FM
4703 bool found_xattrs = false;
4704
4705 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4706 return 0;
36283bf7
FM
4707
4708 key.objectid = ino;
4709 key.type = BTRFS_XATTR_ITEM_KEY;
4710 key.offset = 0;
4711
4712 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4713 if (ret < 0)
4714 return ret;
4715
4716 while (true) {
4717 int slot = path->slots[0];
4718 struct extent_buffer *leaf = path->nodes[0];
4719 int nritems = btrfs_header_nritems(leaf);
4720
4721 if (slot >= nritems) {
4722 if (ins_nr > 0) {
1a93c36a 4723 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4724 start_slot, ins_nr, 1, 0);
36283bf7
FM
4725 if (ret < 0)
4726 return ret;
4727 ins_nr = 0;
4728 }
4729 ret = btrfs_next_leaf(root, path);
4730 if (ret < 0)
4731 return ret;
4732 else if (ret > 0)
4733 break;
4734 continue;
4735 }
4736
4737 btrfs_item_key_to_cpu(leaf, &key, slot);
4738 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4739 break;
4740
4741 if (ins_nr == 0)
4742 start_slot = slot;
4743 ins_nr++;
4744 path->slots[0]++;
f2f121ab 4745 found_xattrs = true;
36283bf7
FM
4746 cond_resched();
4747 }
4748 if (ins_nr > 0) {
1a93c36a 4749 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4750 start_slot, ins_nr, 1, 0);
36283bf7
FM
4751 if (ret < 0)
4752 return ret;
4753 }
4754
f2f121ab
FM
4755 if (!found_xattrs)
4756 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4757
36283bf7
FM
4758 return 0;
4759}
4760
a89ca6f2 4761/*
0e56315c
FM
4762 * When using the NO_HOLES feature if we punched a hole that causes the
4763 * deletion of entire leafs or all the extent items of the first leaf (the one
4764 * that contains the inode item and references) we may end up not processing
4765 * any extents, because there are no leafs with a generation matching the
4766 * current transaction that have extent items for our inode. So we need to find
4767 * if any holes exist and then log them. We also need to log holes after any
4768 * truncate operation that changes the inode's size.
a89ca6f2 4769 */
0e56315c
FM
4770static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4771 struct btrfs_root *root,
4772 struct btrfs_inode *inode,
7af59743 4773 struct btrfs_path *path)
a89ca6f2 4774{
0b246afa 4775 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 4776 struct btrfs_key key;
a0308dd7
NB
4777 const u64 ino = btrfs_ino(inode);
4778 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 4779 u64 prev_extent_end = 0;
0e56315c 4780 int ret;
a89ca6f2 4781
0e56315c 4782 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
4783 return 0;
4784
4785 key.objectid = ino;
4786 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 4787 key.offset = 0;
a89ca6f2
FM
4788
4789 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
4790 if (ret < 0)
4791 return ret;
4792
0e56315c 4793 while (true) {
0e56315c 4794 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 4795
0e56315c
FM
4796 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4797 ret = btrfs_next_leaf(root, path);
4798 if (ret < 0)
4799 return ret;
4800 if (ret > 0) {
4801 ret = 0;
4802 break;
4803 }
4804 leaf = path->nodes[0];
4805 }
4806
4807 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4808 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4809 break;
4810
4811 /* We have a hole, log it. */
4812 if (prev_extent_end < key.offset) {
7af59743 4813 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
4814
4815 /*
4816 * Release the path to avoid deadlocks with other code
4817 * paths that search the root while holding locks on
4818 * leafs from the log root.
4819 */
4820 btrfs_release_path(path);
4821 ret = btrfs_insert_file_extent(trans, root->log_root,
4822 ino, prev_extent_end, 0,
4823 0, hole_len, 0, hole_len,
4824 0, 0, 0);
4825 if (ret < 0)
4826 return ret;
4827
4828 /*
4829 * Search for the same key again in the root. Since it's
4830 * an extent item and we are holding the inode lock, the
4831 * key must still exist. If it doesn't just emit warning
4832 * and return an error to fall back to a transaction
4833 * commit.
4834 */
4835 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4836 if (ret < 0)
4837 return ret;
4838 if (WARN_ON(ret > 0))
4839 return -ENOENT;
4840 leaf = path->nodes[0];
4841 }
a89ca6f2 4842
7af59743 4843 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
4844 path->slots[0]++;
4845 cond_resched();
a89ca6f2 4846 }
a89ca6f2 4847
7af59743 4848 if (prev_extent_end < i_size) {
0e56315c 4849 u64 hole_len;
a89ca6f2 4850
0e56315c 4851 btrfs_release_path(path);
7af59743 4852 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
4853 ret = btrfs_insert_file_extent(trans, root->log_root,
4854 ino, prev_extent_end, 0, 0,
4855 hole_len, 0, hole_len,
4856 0, 0, 0);
4857 if (ret < 0)
4858 return ret;
4859 }
4860
4861 return 0;
a89ca6f2
FM
4862}
4863
56f23fdb
FM
4864/*
4865 * When we are logging a new inode X, check if it doesn't have a reference that
4866 * matches the reference from some other inode Y created in a past transaction
4867 * and that was renamed in the current transaction. If we don't do this, then at
4868 * log replay time we can lose inode Y (and all its files if it's a directory):
4869 *
4870 * mkdir /mnt/x
4871 * echo "hello world" > /mnt/x/foobar
4872 * sync
4873 * mv /mnt/x /mnt/y
4874 * mkdir /mnt/x # or touch /mnt/x
4875 * xfs_io -c fsync /mnt/x
4876 * <power fail>
4877 * mount fs, trigger log replay
4878 *
4879 * After the log replay procedure, we would lose the first directory and all its
4880 * files (file foobar).
4881 * For the case where inode Y is not a directory we simply end up losing it:
4882 *
4883 * echo "123" > /mnt/foo
4884 * sync
4885 * mv /mnt/foo /mnt/bar
4886 * echo "abc" > /mnt/foo
4887 * xfs_io -c fsync /mnt/foo
4888 * <power fail>
4889 *
4890 * We also need this for cases where a snapshot entry is replaced by some other
4891 * entry (file or directory) otherwise we end up with an unreplayable log due to
4892 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4893 * if it were a regular entry:
4894 *
4895 * mkdir /mnt/x
4896 * btrfs subvolume snapshot /mnt /mnt/x/snap
4897 * btrfs subvolume delete /mnt/x/snap
4898 * rmdir /mnt/x
4899 * mkdir /mnt/x
4900 * fsync /mnt/x or fsync some new file inside it
4901 * <power fail>
4902 *
4903 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4904 * the same transaction.
4905 */
4906static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4907 const int slot,
4908 const struct btrfs_key *key,
4791c8f1 4909 struct btrfs_inode *inode,
a3baaf0d 4910 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4911{
4912 int ret;
4913 struct btrfs_path *search_path;
4914 char *name = NULL;
4915 u32 name_len = 0;
4916 u32 item_size = btrfs_item_size_nr(eb, slot);
4917 u32 cur_offset = 0;
4918 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4919
4920 search_path = btrfs_alloc_path();
4921 if (!search_path)
4922 return -ENOMEM;
4923 search_path->search_commit_root = 1;
4924 search_path->skip_locking = 1;
4925
4926 while (cur_offset < item_size) {
4927 u64 parent;
4928 u32 this_name_len;
4929 u32 this_len;
4930 unsigned long name_ptr;
4931 struct btrfs_dir_item *di;
4932
4933 if (key->type == BTRFS_INODE_REF_KEY) {
4934 struct btrfs_inode_ref *iref;
4935
4936 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4937 parent = key->offset;
4938 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4939 name_ptr = (unsigned long)(iref + 1);
4940 this_len = sizeof(*iref) + this_name_len;
4941 } else {
4942 struct btrfs_inode_extref *extref;
4943
4944 extref = (struct btrfs_inode_extref *)(ptr +
4945 cur_offset);
4946 parent = btrfs_inode_extref_parent(eb, extref);
4947 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4948 name_ptr = (unsigned long)&extref->name;
4949 this_len = sizeof(*extref) + this_name_len;
4950 }
4951
4952 if (this_name_len > name_len) {
4953 char *new_name;
4954
4955 new_name = krealloc(name, this_name_len, GFP_NOFS);
4956 if (!new_name) {
4957 ret = -ENOMEM;
4958 goto out;
4959 }
4960 name_len = this_name_len;
4961 name = new_name;
4962 }
4963
4964 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4965 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4966 parent, name, this_name_len, 0);
56f23fdb 4967 if (di && !IS_ERR(di)) {
44f714da
FM
4968 struct btrfs_key di_key;
4969
4970 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4971 di, &di_key);
4972 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4973 if (di_key.objectid != key->objectid) {
4974 ret = 1;
4975 *other_ino = di_key.objectid;
a3baaf0d 4976 *other_parent = parent;
6b5fc433
FM
4977 } else {
4978 ret = 0;
4979 }
44f714da
FM
4980 } else {
4981 ret = -EAGAIN;
4982 }
56f23fdb
FM
4983 goto out;
4984 } else if (IS_ERR(di)) {
4985 ret = PTR_ERR(di);
4986 goto out;
4987 }
4988 btrfs_release_path(search_path);
4989
4990 cur_offset += this_len;
4991 }
4992 ret = 0;
4993out:
4994 btrfs_free_path(search_path);
4995 kfree(name);
4996 return ret;
4997}
4998
6b5fc433
FM
4999struct btrfs_ino_list {
5000 u64 ino;
a3baaf0d 5001 u64 parent;
6b5fc433
FM
5002 struct list_head list;
5003};
5004
5005static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5006 struct btrfs_root *root,
5007 struct btrfs_path *path,
5008 struct btrfs_log_ctx *ctx,
a3baaf0d 5009 u64 ino, u64 parent)
6b5fc433
FM
5010{
5011 struct btrfs_ino_list *ino_elem;
5012 LIST_HEAD(inode_list);
5013 int ret = 0;
5014
5015 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5016 if (!ino_elem)
5017 return -ENOMEM;
5018 ino_elem->ino = ino;
a3baaf0d 5019 ino_elem->parent = parent;
6b5fc433
FM
5020 list_add_tail(&ino_elem->list, &inode_list);
5021
5022 while (!list_empty(&inode_list)) {
5023 struct btrfs_fs_info *fs_info = root->fs_info;
5024 struct btrfs_key key;
5025 struct inode *inode;
5026
5027 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5028 list);
5029 ino = ino_elem->ino;
a3baaf0d 5030 parent = ino_elem->parent;
6b5fc433
FM
5031 list_del(&ino_elem->list);
5032 kfree(ino_elem);
5033 if (ret)
5034 continue;
5035
5036 btrfs_release_path(path);
5037
0202e83f 5038 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5039 /*
5040 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
5041 * deleted in the current transaction, we need to log its parent
5042 * directory.
6b5fc433
FM
5043 */
5044 if (IS_ERR(inode)) {
5045 ret = PTR_ERR(inode);
a3baaf0d 5046 if (ret == -ENOENT) {
0202e83f 5047 inode = btrfs_iget(fs_info->sb, parent, root);
a3baaf0d
FM
5048 if (IS_ERR(inode)) {
5049 ret = PTR_ERR(inode);
5050 } else {
5051 ret = btrfs_log_inode(trans, root,
5052 BTRFS_I(inode),
5053 LOG_OTHER_INODE_ALL,
48778179 5054 ctx);
410f954c 5055 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
5056 }
5057 }
6b5fc433
FM
5058 continue;
5059 }
b5e4ff9d
FM
5060 /*
5061 * If the inode was already logged skip it - otherwise we can
5062 * hit an infinite loop. Example:
5063 *
5064 * From the commit root (previous transaction) we have the
5065 * following inodes:
5066 *
5067 * inode 257 a directory
5068 * inode 258 with references "zz" and "zz_link" on inode 257
5069 * inode 259 with reference "a" on inode 257
5070 *
5071 * And in the current (uncommitted) transaction we have:
5072 *
5073 * inode 257 a directory, unchanged
5074 * inode 258 with references "a" and "a2" on inode 257
5075 * inode 259 with reference "zz_link" on inode 257
5076 * inode 261 with reference "zz" on inode 257
5077 *
5078 * When logging inode 261 the following infinite loop could
5079 * happen if we don't skip already logged inodes:
5080 *
5081 * - we detect inode 258 as a conflicting inode, with inode 261
5082 * on reference "zz", and log it;
5083 *
5084 * - we detect inode 259 as a conflicting inode, with inode 258
5085 * on reference "a", and log it;
5086 *
5087 * - we detect inode 258 as a conflicting inode, with inode 259
5088 * on reference "zz_link", and log it - again! After this we
5089 * repeat the above steps forever.
5090 */
5091 spin_lock(&BTRFS_I(inode)->lock);
5092 /*
5093 * Check the inode's logged_trans only instead of
5094 * btrfs_inode_in_log(). This is because the last_log_commit of
1f295373
FM
5095 * the inode is not updated when we only log that it exists (see
5096 * btrfs_log_inode()).
b5e4ff9d
FM
5097 */
5098 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5099 spin_unlock(&BTRFS_I(inode)->lock);
5100 btrfs_add_delayed_iput(inode);
5101 continue;
5102 }
5103 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
5104 /*
5105 * We are safe logging the other inode without acquiring its
5106 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5107 * are safe against concurrent renames of the other inode as
5108 * well because during a rename we pin the log and update the
5109 * log with the new name before we unpin it.
5110 */
5111 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
48778179 5112 LOG_OTHER_INODE, ctx);
6b5fc433 5113 if (ret) {
410f954c 5114 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5115 continue;
5116 }
5117
5118 key.objectid = ino;
5119 key.type = BTRFS_INODE_REF_KEY;
5120 key.offset = 0;
5121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5122 if (ret < 0) {
410f954c 5123 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5124 continue;
5125 }
5126
5127 while (true) {
5128 struct extent_buffer *leaf = path->nodes[0];
5129 int slot = path->slots[0];
5130 u64 other_ino = 0;
a3baaf0d 5131 u64 other_parent = 0;
6b5fc433
FM
5132
5133 if (slot >= btrfs_header_nritems(leaf)) {
5134 ret = btrfs_next_leaf(root, path);
5135 if (ret < 0) {
5136 break;
5137 } else if (ret > 0) {
5138 ret = 0;
5139 break;
5140 }
5141 continue;
5142 }
5143
5144 btrfs_item_key_to_cpu(leaf, &key, slot);
5145 if (key.objectid != ino ||
5146 (key.type != BTRFS_INODE_REF_KEY &&
5147 key.type != BTRFS_INODE_EXTREF_KEY)) {
5148 ret = 0;
5149 break;
5150 }
5151
5152 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5153 BTRFS_I(inode), &other_ino,
5154 &other_parent);
6b5fc433
FM
5155 if (ret < 0)
5156 break;
5157 if (ret > 0) {
5158 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5159 if (!ino_elem) {
5160 ret = -ENOMEM;
5161 break;
5162 }
5163 ino_elem->ino = other_ino;
a3baaf0d 5164 ino_elem->parent = other_parent;
6b5fc433
FM
5165 list_add_tail(&ino_elem->list, &inode_list);
5166 ret = 0;
5167 }
5168 path->slots[0]++;
5169 }
410f954c 5170 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5171 }
5172
5173 return ret;
5174}
5175
da447009
FM
5176static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5177 struct btrfs_inode *inode,
5178 struct btrfs_key *min_key,
5179 const struct btrfs_key *max_key,
5180 struct btrfs_path *path,
5181 struct btrfs_path *dst_path,
5182 const u64 logged_isize,
5183 const bool recursive_logging,
5184 const int inode_only,
5185 struct btrfs_log_ctx *ctx,
5186 bool *need_log_inode_item)
5187{
5188 struct btrfs_root *root = inode->root;
5189 int ins_start_slot = 0;
5190 int ins_nr = 0;
5191 int ret;
5192
5193 while (1) {
5194 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5195 if (ret < 0)
5196 return ret;
5197 if (ret > 0) {
5198 ret = 0;
5199 break;
5200 }
5201again:
5202 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5203 if (min_key->objectid != max_key->objectid)
5204 break;
5205 if (min_key->type > max_key->type)
5206 break;
5207
5208 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5209 *need_log_inode_item = false;
5210
5211 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5212 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5213 inode->generation == trans->transid &&
5214 !recursive_logging) {
5215 u64 other_ino = 0;
5216 u64 other_parent = 0;
5217
5218 ret = btrfs_check_ref_name_override(path->nodes[0],
5219 path->slots[0], min_key, inode,
5220 &other_ino, &other_parent);
5221 if (ret < 0) {
5222 return ret;
5223 } else if (ret > 0 && ctx &&
5224 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5225 if (ins_nr > 0) {
5226 ins_nr++;
5227 } else {
5228 ins_nr = 1;
5229 ins_start_slot = path->slots[0];
5230 }
5231 ret = copy_items(trans, inode, dst_path, path,
5232 ins_start_slot, ins_nr,
5233 inode_only, logged_isize);
5234 if (ret < 0)
5235 return ret;
5236 ins_nr = 0;
5237
5238 ret = log_conflicting_inodes(trans, root, path,
5239 ctx, other_ino, other_parent);
5240 if (ret)
5241 return ret;
5242 btrfs_release_path(path);
5243 goto next_key;
5244 }
5245 }
5246
5247 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5248 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5249 if (ins_nr == 0)
5250 goto next_slot;
5251 ret = copy_items(trans, inode, dst_path, path,
5252 ins_start_slot,
5253 ins_nr, inode_only, logged_isize);
5254 if (ret < 0)
5255 return ret;
5256 ins_nr = 0;
5257 goto next_slot;
5258 }
5259
5260 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5261 ins_nr++;
5262 goto next_slot;
5263 } else if (!ins_nr) {
5264 ins_start_slot = path->slots[0];
5265 ins_nr = 1;
5266 goto next_slot;
5267 }
5268
5269 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5270 ins_nr, inode_only, logged_isize);
5271 if (ret < 0)
5272 return ret;
5273 ins_nr = 1;
5274 ins_start_slot = path->slots[0];
5275next_slot:
5276 path->slots[0]++;
5277 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5278 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5279 path->slots[0]);
5280 goto again;
5281 }
5282 if (ins_nr) {
5283 ret = copy_items(trans, inode, dst_path, path,
5284 ins_start_slot, ins_nr, inode_only,
5285 logged_isize);
5286 if (ret < 0)
5287 return ret;
5288 ins_nr = 0;
5289 }
5290 btrfs_release_path(path);
5291next_key:
5292 if (min_key->offset < (u64)-1) {
5293 min_key->offset++;
5294 } else if (min_key->type < max_key->type) {
5295 min_key->type++;
5296 min_key->offset = 0;
5297 } else {
5298 break;
5299 }
5300 }
5301 if (ins_nr)
5302 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5303 ins_nr, inode_only, logged_isize);
5304
5305 return ret;
5306}
5307
e02119d5
CM
5308/* log a single inode in the tree log.
5309 * At least one parent directory for this inode must exist in the tree
5310 * or be logged already.
5311 *
5312 * Any items from this inode changed by the current transaction are copied
5313 * to the log tree. An extra reference is taken on any extents in this
5314 * file, allowing us to avoid a whole pile of corner cases around logging
5315 * blocks that have been removed from the tree.
5316 *
5317 * See LOG_INODE_ALL and related defines for a description of what inode_only
5318 * does.
5319 *
5320 * This handles both files and directories.
5321 */
12fcfd22 5322static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5323 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 5324 int inode_only,
8407f553 5325 struct btrfs_log_ctx *ctx)
e02119d5
CM
5326{
5327 struct btrfs_path *path;
5328 struct btrfs_path *dst_path;
5329 struct btrfs_key min_key;
5330 struct btrfs_key max_key;
5331 struct btrfs_root *log = root->log_root;
4a500fd1 5332 int err = 0;
8c8648dd 5333 int ret = 0;
5dc562c5 5334 bool fast_search = false;
a59108a7
NB
5335 u64 ino = btrfs_ino(inode);
5336 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5337 u64 logged_isize = 0;
e4545de5 5338 bool need_log_inode_item = true;
9a8fca62 5339 bool xattrs_logged = false;
a3baaf0d 5340 bool recursive_logging = false;
2ac691d8 5341 bool inode_item_dropped = true;
e02119d5 5342
e02119d5 5343 path = btrfs_alloc_path();
5df67083
TI
5344 if (!path)
5345 return -ENOMEM;
e02119d5 5346 dst_path = btrfs_alloc_path();
5df67083
TI
5347 if (!dst_path) {
5348 btrfs_free_path(path);
5349 return -ENOMEM;
5350 }
e02119d5 5351
33345d01 5352 min_key.objectid = ino;
e02119d5
CM
5353 min_key.type = BTRFS_INODE_ITEM_KEY;
5354 min_key.offset = 0;
5355
33345d01 5356 max_key.objectid = ino;
12fcfd22 5357
12fcfd22 5358
5dc562c5 5359 /* today the code can only do partial logging of directories */
a59108a7 5360 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5361 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5362 &inode->runtime_flags) &&
781feef7 5363 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5364 max_key.type = BTRFS_XATTR_ITEM_KEY;
5365 else
5366 max_key.type = (u8)-1;
5367 max_key.offset = (u64)-1;
5368
2c2c452b 5369 /*
5aa7d1a7
FM
5370 * Only run delayed items if we are a directory. We want to make sure
5371 * all directory indexes hit the fs/subvolume tree so we can find them
5372 * and figure out which index ranges have to be logged.
5373 *
8c8648dd
FM
5374 * Otherwise commit the delayed inode only if the full sync flag is set,
5375 * as we want to make sure an up to date version is in the subvolume
5376 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5377 * it to the log tree. For a non full sync, we always log the inode item
5378 * based on the in-memory struct btrfs_inode which is always up to date.
2c2c452b 5379 */
5aa7d1a7 5380 if (S_ISDIR(inode->vfs_inode.i_mode))
a59108a7 5381 ret = btrfs_commit_inode_delayed_items(trans, inode);
8c8648dd 5382 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
a59108a7 5383 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5384
5385 if (ret) {
5386 btrfs_free_path(path);
5387 btrfs_free_path(dst_path);
5388 return ret;
16cdcec7
MX
5389 }
5390
a3baaf0d
FM
5391 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5392 recursive_logging = true;
5393 if (inode_only == LOG_OTHER_INODE)
5394 inode_only = LOG_INODE_EXISTS;
5395 else
5396 inode_only = LOG_INODE_ALL;
a59108a7 5397 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5398 } else {
a59108a7 5399 mutex_lock(&inode->log_mutex);
781feef7 5400 }
e02119d5 5401
64d6b281
FM
5402 /*
5403 * This is for cases where logging a directory could result in losing a
5404 * a file after replaying the log. For example, if we move a file from a
5405 * directory A to a directory B, then fsync directory A, we have no way
5406 * to known the file was moved from A to B, so logging just A would
5407 * result in losing the file after a log replay.
5408 */
5409 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5410 inode_only == LOG_INODE_ALL &&
5411 inode->last_unlink_trans >= trans->transid) {
5412 btrfs_set_log_full_commit(trans);
5413 err = 1;
5414 goto out_unlock;
5415 }
5416
e02119d5
CM
5417 /*
5418 * a brute force approach to making sure we get the most uptodate
5419 * copies of everything.
5420 */
a59108a7 5421 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5422 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5423
ab12313a 5424 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
4f764e51
FM
5425 if (inode_only == LOG_INODE_EXISTS)
5426 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5427 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5428 } else {
1a4bcf47
FM
5429 if (inode_only == LOG_INODE_EXISTS) {
5430 /*
5431 * Make sure the new inode item we write to the log has
5432 * the same isize as the current one (if it exists).
5433 * This is necessary to prevent data loss after log
5434 * replay, and also to prevent doing a wrong expanding
5435 * truncate - for e.g. create file, write 4K into offset
5436 * 0, fsync, write 4K into offset 4096, add hard link,
5437 * fsync some other file (to sync log), power fail - if
5438 * we use the inode's current i_size, after log replay
5439 * we get a 8Kb file, with the last 4Kb extent as a hole
5440 * (zeroes), as if an expanding truncate happened,
5441 * instead of getting a file of 4Kb only.
5442 */
a59108a7 5443 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5444 if (err)
5445 goto out_unlock;
5446 }
a742994a 5447 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5448 &inode->runtime_flags)) {
a742994a 5449 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5450 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5451 ret = drop_objectid_items(trans, log, path, ino,
5452 max_key.type);
5453 } else {
5454 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5455 &inode->runtime_flags);
a742994a 5456 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5457 &inode->runtime_flags);
28ed1345
CM
5458 while(1) {
5459 ret = btrfs_truncate_inode_items(trans,
0d7d3165 5460 log, inode, 0, 0, NULL);
28ed1345
CM
5461 if (ret != -EAGAIN)
5462 break;
5463 }
a742994a 5464 }
4f764e51 5465 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5466 &inode->runtime_flags) ||
6cfab851 5467 inode_only == LOG_INODE_EXISTS) {
4f764e51 5468 if (inode_only == LOG_INODE_ALL)
183f37fa 5469 fast_search = true;
4f764e51 5470 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5471 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5472 max_key.type);
a95249b3
JB
5473 } else {
5474 if (inode_only == LOG_INODE_ALL)
5475 fast_search = true;
2ac691d8 5476 inode_item_dropped = false;
a95249b3 5477 goto log_extents;
5dc562c5 5478 }
a95249b3 5479
e02119d5 5480 }
4a500fd1
YZ
5481 if (ret) {
5482 err = ret;
5483 goto out_unlock;
5484 }
e02119d5 5485
da447009
FM
5486 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5487 path, dst_path, logged_isize,
7af59743
FM
5488 recursive_logging, inode_only, ctx,
5489 &need_log_inode_item);
da447009
FM
5490 if (err)
5491 goto out_unlock;
5dc562c5 5492
36283bf7
FM
5493 btrfs_release_path(path);
5494 btrfs_release_path(dst_path);
a59108a7 5495 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5496 if (err)
5497 goto out_unlock;
9a8fca62 5498 xattrs_logged = true;
a89ca6f2
FM
5499 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5500 btrfs_release_path(path);
5501 btrfs_release_path(dst_path);
7af59743 5502 err = btrfs_log_holes(trans, root, inode, path);
a89ca6f2
FM
5503 if (err)
5504 goto out_unlock;
5505 }
a95249b3 5506log_extents:
f3b15ccd
JB
5507 btrfs_release_path(path);
5508 btrfs_release_path(dst_path);
e4545de5 5509 if (need_log_inode_item) {
2ac691d8 5510 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
b590b839
FM
5511 if (err)
5512 goto out_unlock;
5513 /*
5514 * If we are doing a fast fsync and the inode was logged before
5515 * in this transaction, we don't need to log the xattrs because
5516 * they were logged before. If xattrs were added, changed or
5517 * deleted since the last time we logged the inode, then we have
5518 * already logged them because the inode had the runtime flag
5519 * BTRFS_INODE_COPY_EVERYTHING set.
5520 */
5521 if (!xattrs_logged && inode->logged_trans < trans->transid) {
9a8fca62
FM
5522 err = btrfs_log_all_xattrs(trans, root, inode, path,
5523 dst_path);
b590b839
FM
5524 if (err)
5525 goto out_unlock;
9a8fca62
FM
5526 btrfs_release_path(path);
5527 }
e4545de5 5528 }
5dc562c5 5529 if (fast_search) {
a59108a7 5530 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
48778179 5531 ctx);
5dc562c5
JB
5532 if (ret) {
5533 err = ret;
5534 goto out_unlock;
5535 }
d006a048 5536 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5537 struct extent_map *em, *n;
5538
49dae1bc 5539 write_lock(&em_tree->lock);
48778179
FM
5540 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5541 list_del_init(&em->list);
49dae1bc 5542 write_unlock(&em_tree->lock);
5dc562c5
JB
5543 }
5544
a59108a7
NB
5545 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5546 ret = log_directory_changes(trans, root, inode, path, dst_path,
5547 ctx);
4a500fd1
YZ
5548 if (ret) {
5549 err = ret;
5550 goto out_unlock;
5551 }
e02119d5 5552 }
49dae1bc 5553
d1d832a0 5554 /*
75b463d2
FM
5555 * If we are logging that an ancestor inode exists as part of logging a
5556 * new name from a link or rename operation, don't mark the inode as
5557 * logged - otherwise if an explicit fsync is made against an ancestor,
5558 * the fsync considers the inode in the log and doesn't sync the log,
5559 * resulting in the ancestor missing after a power failure unless the
5560 * log was synced as part of an fsync against any other unrelated inode.
5561 * So keep it simple for this case and just don't flag the ancestors as
5562 * logged.
d1d832a0 5563 */
75b463d2
FM
5564 if (!ctx ||
5565 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5566 &inode->vfs_inode != ctx->inode)) {
5567 spin_lock(&inode->lock);
5568 inode->logged_trans = trans->transid;
5569 /*
9acc8103
FM
5570 * Don't update last_log_commit if we logged that an inode exists.
5571 * We do this for two reasons:
5572 *
5573 * 1) We might have had buffered writes to this inode that were
5574 * flushed and had their ordered extents completed in this
5575 * transaction, but we did not previously log the inode with
5576 * LOG_INODE_ALL. Later the inode was evicted and after that
5577 * it was loaded again and this LOG_INODE_EXISTS log operation
5578 * happened. We must make sure that if an explicit fsync against
5579 * the inode is performed later, it logs the new extents, an
5580 * updated inode item, etc, and syncs the log. The same logic
5581 * applies to direct IO writes instead of buffered writes.
5582 *
5583 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5584 * is logged with an i_size of 0 or whatever value was logged
5585 * before. If later the i_size of the inode is increased by a
5586 * truncate operation, the log is synced through an fsync of
5587 * some other inode and then finally an explicit fsync against
5588 * this inode is made, we must make sure this fsync logs the
5589 * inode with the new i_size, the hole between old i_size and
5590 * the new i_size, and syncs the log.
75b463d2 5591 */
9acc8103 5592 if (inode_only != LOG_INODE_EXISTS)
75b463d2
FM
5593 inode->last_log_commit = inode->last_sub_trans;
5594 spin_unlock(&inode->lock);
5595 }
4a500fd1 5596out_unlock:
a59108a7 5597 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5598
5599 btrfs_free_path(path);
5600 btrfs_free_path(dst_path);
4a500fd1 5601 return err;
e02119d5
CM
5602}
5603
ab12313a
FM
5604/*
5605 * Check if we need to log an inode. This is used in contexts where while
5606 * logging an inode we need to log another inode (either that it exists or in
5607 * full mode). This is used instead of btrfs_inode_in_log() because the later
5608 * requires the inode to be in the log and have the log transaction committed,
5609 * while here we do not care if the log transaction was already committed - our
5610 * caller will commit the log later - and we want to avoid logging an inode
5611 * multiple times when multiple tasks have joined the same log transaction.
5612 */
5613static bool need_log_inode(struct btrfs_trans_handle *trans,
5614 struct btrfs_inode *inode)
5615{
8be2ba2e
FM
5616 /*
5617 * If a directory was not modified, no dentries added or removed, we can
5618 * and should avoid logging it.
5619 */
5620 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5621 return false;
5622
ab12313a
FM
5623 /*
5624 * If this inode does not have new/updated/deleted xattrs since the last
5625 * time it was logged and is flagged as logged in the current transaction,
5626 * we can skip logging it. As for new/deleted names, those are updated in
5627 * the log by link/unlink/rename operations.
5628 * In case the inode was logged and then evicted and reloaded, its
5629 * logged_trans will be 0, in which case we have to fully log it since
5630 * logged_trans is a transient field, not persisted.
5631 */
5632 if (inode->logged_trans == trans->transid &&
5633 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5634 return false;
5635
5636 return true;
5637}
5638
2f2ff0ee
FM
5639struct btrfs_dir_list {
5640 u64 ino;
5641 struct list_head list;
5642};
5643
5644/*
5645 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5646 * details about the why it is needed.
5647 * This is a recursive operation - if an existing dentry corresponds to a
5648 * directory, that directory's new entries are logged too (same behaviour as
5649 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5650 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5651 * complains about the following circular lock dependency / possible deadlock:
5652 *
5653 * CPU0 CPU1
5654 * ---- ----
5655 * lock(&type->i_mutex_dir_key#3/2);
5656 * lock(sb_internal#2);
5657 * lock(&type->i_mutex_dir_key#3/2);
5658 * lock(&sb->s_type->i_mutex_key#14);
5659 *
5660 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5661 * sb_start_intwrite() in btrfs_start_transaction().
5662 * Not locking i_mutex of the inodes is still safe because:
5663 *
5664 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5665 * that while logging the inode new references (names) are added or removed
5666 * from the inode, leaving the logged inode item with a link count that does
5667 * not match the number of logged inode reference items. This is fine because
5668 * at log replay time we compute the real number of links and correct the
5669 * link count in the inode item (see replay_one_buffer() and
5670 * link_to_fixup_dir());
5671 *
5672 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5673 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5674 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5675 * has a size that doesn't match the sum of the lengths of all the logged
5676 * names. This does not result in a problem because if a dir_item key is
5677 * logged but its matching dir_index key is not logged, at log replay time we
5678 * don't use it to replay the respective name (see replay_one_name()). On the
5679 * other hand if only the dir_index key ends up being logged, the respective
5680 * name is added to the fs/subvol tree with both the dir_item and dir_index
5681 * keys created (see replay_one_name()).
5682 * The directory's inode item with a wrong i_size is not a problem as well,
5683 * since we don't use it at log replay time to set the i_size in the inode
5684 * item of the fs/subvol tree (see overwrite_item()).
5685 */
5686static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5687 struct btrfs_root *root,
51cc0d32 5688 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5689 struct btrfs_log_ctx *ctx)
5690{
0b246afa 5691 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5692 struct btrfs_root *log = root->log_root;
5693 struct btrfs_path *path;
5694 LIST_HEAD(dir_list);
5695 struct btrfs_dir_list *dir_elem;
5696 int ret = 0;
5697
5698 path = btrfs_alloc_path();
5699 if (!path)
5700 return -ENOMEM;
5701
5702 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5703 if (!dir_elem) {
5704 btrfs_free_path(path);
5705 return -ENOMEM;
5706 }
51cc0d32 5707 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5708 list_add_tail(&dir_elem->list, &dir_list);
5709
5710 while (!list_empty(&dir_list)) {
5711 struct extent_buffer *leaf;
5712 struct btrfs_key min_key;
5713 int nritems;
5714 int i;
5715
5716 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5717 list);
5718 if (ret)
5719 goto next_dir_inode;
5720
5721 min_key.objectid = dir_elem->ino;
5722 min_key.type = BTRFS_DIR_ITEM_KEY;
5723 min_key.offset = 0;
5724again:
5725 btrfs_release_path(path);
5726 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5727 if (ret < 0) {
5728 goto next_dir_inode;
5729 } else if (ret > 0) {
5730 ret = 0;
5731 goto next_dir_inode;
5732 }
5733
5734process_leaf:
5735 leaf = path->nodes[0];
5736 nritems = btrfs_header_nritems(leaf);
5737 for (i = path->slots[0]; i < nritems; i++) {
5738 struct btrfs_dir_item *di;
5739 struct btrfs_key di_key;
5740 struct inode *di_inode;
5741 struct btrfs_dir_list *new_dir_elem;
5742 int log_mode = LOG_INODE_EXISTS;
5743 int type;
5744
5745 btrfs_item_key_to_cpu(leaf, &min_key, i);
5746 if (min_key.objectid != dir_elem->ino ||
5747 min_key.type != BTRFS_DIR_ITEM_KEY)
5748 goto next_dir_inode;
5749
5750 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5751 type = btrfs_dir_type(leaf, di);
5752 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5753 type != BTRFS_FT_DIR)
5754 continue;
5755 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5756 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5757 continue;
5758
ec125cfb 5759 btrfs_release_path(path);
0202e83f 5760 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
2f2ff0ee
FM
5761 if (IS_ERR(di_inode)) {
5762 ret = PTR_ERR(di_inode);
5763 goto next_dir_inode;
5764 }
5765
0e44cb3f 5766 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
410f954c 5767 btrfs_add_delayed_iput(di_inode);
ec125cfb 5768 break;
2f2ff0ee
FM
5769 }
5770
5771 ctx->log_new_dentries = false;
3f9749f6 5772 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5773 log_mode = LOG_INODE_ALL;
a59108a7 5774 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
48778179 5775 log_mode, ctx);
410f954c 5776 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5777 if (ret)
5778 goto next_dir_inode;
5779 if (ctx->log_new_dentries) {
5780 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5781 GFP_NOFS);
5782 if (!new_dir_elem) {
5783 ret = -ENOMEM;
5784 goto next_dir_inode;
5785 }
5786 new_dir_elem->ino = di_key.objectid;
5787 list_add_tail(&new_dir_elem->list, &dir_list);
5788 }
5789 break;
5790 }
5791 if (i == nritems) {
5792 ret = btrfs_next_leaf(log, path);
5793 if (ret < 0) {
5794 goto next_dir_inode;
5795 } else if (ret > 0) {
5796 ret = 0;
5797 goto next_dir_inode;
5798 }
5799 goto process_leaf;
5800 }
5801 if (min_key.offset < (u64)-1) {
5802 min_key.offset++;
5803 goto again;
5804 }
5805next_dir_inode:
5806 list_del(&dir_elem->list);
5807 kfree(dir_elem);
5808 }
5809
5810 btrfs_free_path(path);
5811 return ret;
5812}
5813
18aa0922 5814static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5815 struct btrfs_inode *inode,
18aa0922
FM
5816 struct btrfs_log_ctx *ctx)
5817{
3ffbd68c 5818 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5819 int ret;
5820 struct btrfs_path *path;
5821 struct btrfs_key key;
d0a0b78d
NB
5822 struct btrfs_root *root = inode->root;
5823 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5824
5825 path = btrfs_alloc_path();
5826 if (!path)
5827 return -ENOMEM;
5828 path->skip_locking = 1;
5829 path->search_commit_root = 1;
5830
5831 key.objectid = ino;
5832 key.type = BTRFS_INODE_REF_KEY;
5833 key.offset = 0;
5834 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5835 if (ret < 0)
5836 goto out;
5837
5838 while (true) {
5839 struct extent_buffer *leaf = path->nodes[0];
5840 int slot = path->slots[0];
5841 u32 cur_offset = 0;
5842 u32 item_size;
5843 unsigned long ptr;
5844
5845 if (slot >= btrfs_header_nritems(leaf)) {
5846 ret = btrfs_next_leaf(root, path);
5847 if (ret < 0)
5848 goto out;
5849 else if (ret > 0)
5850 break;
5851 continue;
5852 }
5853
5854 btrfs_item_key_to_cpu(leaf, &key, slot);
5855 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5856 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5857 break;
5858
5859 item_size = btrfs_item_size_nr(leaf, slot);
5860 ptr = btrfs_item_ptr_offset(leaf, slot);
5861 while (cur_offset < item_size) {
5862 struct btrfs_key inode_key;
5863 struct inode *dir_inode;
5864
5865 inode_key.type = BTRFS_INODE_ITEM_KEY;
5866 inode_key.offset = 0;
5867
5868 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5869 struct btrfs_inode_extref *extref;
5870
5871 extref = (struct btrfs_inode_extref *)
5872 (ptr + cur_offset);
5873 inode_key.objectid = btrfs_inode_extref_parent(
5874 leaf, extref);
5875 cur_offset += sizeof(*extref);
5876 cur_offset += btrfs_inode_extref_name_len(leaf,
5877 extref);
5878 } else {
5879 inode_key.objectid = key.offset;
5880 cur_offset = item_size;
5881 }
5882
0202e83f
DS
5883 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5884 root);
0f375eed
FM
5885 /*
5886 * If the parent inode was deleted, return an error to
5887 * fallback to a transaction commit. This is to prevent
5888 * getting an inode that was moved from one parent A to
5889 * a parent B, got its former parent A deleted and then
5890 * it got fsync'ed, from existing at both parents after
5891 * a log replay (and the old parent still existing).
5892 * Example:
5893 *
5894 * mkdir /mnt/A
5895 * mkdir /mnt/B
5896 * touch /mnt/B/bar
5897 * sync
5898 * mv /mnt/B/bar /mnt/A/bar
5899 * mv -T /mnt/A /mnt/B
5900 * fsync /mnt/B/bar
5901 * <power fail>
5902 *
5903 * If we ignore the old parent B which got deleted,
5904 * after a log replay we would have file bar linked
5905 * at both parents and the old parent B would still
5906 * exist.
5907 */
5908 if (IS_ERR(dir_inode)) {
5909 ret = PTR_ERR(dir_inode);
5910 goto out;
5911 }
18aa0922 5912
3e6a86a1
FM
5913 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5914 btrfs_add_delayed_iput(dir_inode);
5915 continue;
5916 }
5917
657ed1aa
FM
5918 if (ctx)
5919 ctx->log_new_dentries = false;
a59108a7 5920 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
48778179 5921 LOG_INODE_ALL, ctx);
657ed1aa
FM
5922 if (!ret && ctx && ctx->log_new_dentries)
5923 ret = log_new_dir_dentries(trans, root,
f85b7379 5924 BTRFS_I(dir_inode), ctx);
410f954c 5925 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
5926 if (ret)
5927 goto out;
5928 }
5929 path->slots[0]++;
5930 }
5931 ret = 0;
5932out:
5933 btrfs_free_path(path);
5934 return ret;
5935}
5936
b8aa330d
FM
5937static int log_new_ancestors(struct btrfs_trans_handle *trans,
5938 struct btrfs_root *root,
5939 struct btrfs_path *path,
5940 struct btrfs_log_ctx *ctx)
5941{
5942 struct btrfs_key found_key;
5943
5944 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5945
5946 while (true) {
5947 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
5948 struct extent_buffer *leaf = path->nodes[0];
5949 int slot = path->slots[0];
5950 struct btrfs_key search_key;
5951 struct inode *inode;
0202e83f 5952 u64 ino;
b8aa330d
FM
5953 int ret = 0;
5954
5955 btrfs_release_path(path);
5956
0202e83f
DS
5957 ino = found_key.offset;
5958
b8aa330d
FM
5959 search_key.objectid = found_key.offset;
5960 search_key.type = BTRFS_INODE_ITEM_KEY;
5961 search_key.offset = 0;
0202e83f 5962 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
5963 if (IS_ERR(inode))
5964 return PTR_ERR(inode);
5965
ab12313a
FM
5966 if (BTRFS_I(inode)->generation >= trans->transid &&
5967 need_log_inode(trans, BTRFS_I(inode)))
b8aa330d 5968 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
48778179 5969 LOG_INODE_EXISTS, ctx);
410f954c 5970 btrfs_add_delayed_iput(inode);
b8aa330d
FM
5971 if (ret)
5972 return ret;
5973
5974 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5975 break;
5976
5977 search_key.type = BTRFS_INODE_REF_KEY;
5978 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5979 if (ret < 0)
5980 return ret;
5981
5982 leaf = path->nodes[0];
5983 slot = path->slots[0];
5984 if (slot >= btrfs_header_nritems(leaf)) {
5985 ret = btrfs_next_leaf(root, path);
5986 if (ret < 0)
5987 return ret;
5988 else if (ret > 0)
5989 return -ENOENT;
5990 leaf = path->nodes[0];
5991 slot = path->slots[0];
5992 }
5993
5994 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5995 if (found_key.objectid != search_key.objectid ||
5996 found_key.type != BTRFS_INODE_REF_KEY)
5997 return -ENOENT;
5998 }
5999 return 0;
6000}
6001
6002static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6003 struct btrfs_inode *inode,
6004 struct dentry *parent,
6005 struct btrfs_log_ctx *ctx)
6006{
6007 struct btrfs_root *root = inode->root;
b8aa330d
FM
6008 struct dentry *old_parent = NULL;
6009 struct super_block *sb = inode->vfs_inode.i_sb;
6010 int ret = 0;
6011
6012 while (true) {
6013 if (!parent || d_really_is_negative(parent) ||
6014 sb != parent->d_sb)
6015 break;
6016
6017 inode = BTRFS_I(d_inode(parent));
6018 if (root != inode->root)
6019 break;
6020
ab12313a
FM
6021 if (inode->generation >= trans->transid &&
6022 need_log_inode(trans, inode)) {
b8aa330d 6023 ret = btrfs_log_inode(trans, root, inode,
48778179 6024 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6025 if (ret)
6026 break;
6027 }
6028 if (IS_ROOT(parent))
6029 break;
6030
6031 parent = dget_parent(parent);
6032 dput(old_parent);
6033 old_parent = parent;
6034 }
6035 dput(old_parent);
6036
6037 return ret;
6038}
6039
6040static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6041 struct btrfs_inode *inode,
6042 struct dentry *parent,
6043 struct btrfs_log_ctx *ctx)
6044{
6045 struct btrfs_root *root = inode->root;
6046 const u64 ino = btrfs_ino(inode);
6047 struct btrfs_path *path;
6048 struct btrfs_key search_key;
6049 int ret;
6050
6051 /*
6052 * For a single hard link case, go through a fast path that does not
6053 * need to iterate the fs/subvolume tree.
6054 */
6055 if (inode->vfs_inode.i_nlink < 2)
6056 return log_new_ancestors_fast(trans, inode, parent, ctx);
6057
6058 path = btrfs_alloc_path();
6059 if (!path)
6060 return -ENOMEM;
6061
6062 search_key.objectid = ino;
6063 search_key.type = BTRFS_INODE_REF_KEY;
6064 search_key.offset = 0;
6065again:
6066 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6067 if (ret < 0)
6068 goto out;
6069 if (ret == 0)
6070 path->slots[0]++;
6071
6072 while (true) {
6073 struct extent_buffer *leaf = path->nodes[0];
6074 int slot = path->slots[0];
6075 struct btrfs_key found_key;
6076
6077 if (slot >= btrfs_header_nritems(leaf)) {
6078 ret = btrfs_next_leaf(root, path);
6079 if (ret < 0)
6080 goto out;
6081 else if (ret > 0)
6082 break;
6083 continue;
6084 }
6085
6086 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6087 if (found_key.objectid != ino ||
6088 found_key.type > BTRFS_INODE_EXTREF_KEY)
6089 break;
6090
6091 /*
6092 * Don't deal with extended references because they are rare
6093 * cases and too complex to deal with (we would need to keep
6094 * track of which subitem we are processing for each item in
6095 * this loop, etc). So just return some error to fallback to
6096 * a transaction commit.
6097 */
6098 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6099 ret = -EMLINK;
6100 goto out;
6101 }
6102
6103 /*
6104 * Logging ancestors needs to do more searches on the fs/subvol
6105 * tree, so it releases the path as needed to avoid deadlocks.
6106 * Keep track of the last inode ref key and resume from that key
6107 * after logging all new ancestors for the current hard link.
6108 */
6109 memcpy(&search_key, &found_key, sizeof(search_key));
6110
6111 ret = log_new_ancestors(trans, root, path, ctx);
6112 if (ret)
6113 goto out;
6114 btrfs_release_path(path);
6115 goto again;
6116 }
6117 ret = 0;
6118out:
6119 btrfs_free_path(path);
6120 return ret;
6121}
6122
e02119d5
CM
6123/*
6124 * helper function around btrfs_log_inode to make sure newly created
6125 * parent directories also end up in the log. A minimal inode and backref
6126 * only logging is done of any parent directories that are older than
6127 * the last committed transaction
6128 */
48a3b636 6129static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6130 struct btrfs_inode *inode,
49dae1bc 6131 struct dentry *parent,
41a1eada 6132 int inode_only,
8b050d35 6133 struct btrfs_log_ctx *ctx)
e02119d5 6134{
f882274b 6135 struct btrfs_root *root = inode->root;
0b246afa 6136 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6137 int ret = 0;
2f2ff0ee 6138 bool log_dentries = false;
12fcfd22 6139
0b246afa 6140 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6141 ret = 1;
6142 goto end_no_trans;
6143 }
6144
f882274b 6145 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6146 ret = 1;
6147 goto end_no_trans;
6148 }
6149
f2d72f42
FM
6150 /*
6151 * Skip already logged inodes or inodes corresponding to tmpfiles
6152 * (since logging them is pointless, a link count of 0 means they
6153 * will never be accessible).
6154 */
626e9f41
FM
6155 if ((btrfs_inode_in_log(inode, trans->transid) &&
6156 list_empty(&ctx->ordered_extents)) ||
f2d72f42 6157 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6158 ret = BTRFS_NO_LOG_SYNC;
6159 goto end_no_trans;
6160 }
6161
8b050d35 6162 ret = start_log_trans(trans, root, ctx);
4a500fd1 6163 if (ret)
e87ac136 6164 goto end_no_trans;
e02119d5 6165
48778179 6166 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
4a500fd1
YZ
6167 if (ret)
6168 goto end_trans;
12fcfd22 6169
af4176b4
CM
6170 /*
6171 * for regular files, if its inode is already on disk, we don't
6172 * have to worry about the parents at all. This is because
6173 * we can use the last_unlink_trans field to record renames
6174 * and other fun in this file.
6175 */
19df27a9 6176 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
6177 inode->generation < trans->transid &&
6178 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
6179 ret = 0;
6180 goto end_trans;
6181 }
af4176b4 6182
19df27a9 6183 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
6184 log_dentries = true;
6185
18aa0922 6186 /*
01327610 6187 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6188 * inodes are fully logged. This is to prevent leaving dangling
6189 * directory index entries in directories that were our parents but are
6190 * not anymore. Not doing this results in old parent directory being
6191 * impossible to delete after log replay (rmdir will always fail with
6192 * error -ENOTEMPTY).
6193 *
6194 * Example 1:
6195 *
6196 * mkdir testdir
6197 * touch testdir/foo
6198 * ln testdir/foo testdir/bar
6199 * sync
6200 * unlink testdir/bar
6201 * xfs_io -c fsync testdir/foo
6202 * <power failure>
6203 * mount fs, triggers log replay
6204 *
6205 * If we don't log the parent directory (testdir), after log replay the
6206 * directory still has an entry pointing to the file inode using the bar
6207 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6208 * the file inode has a link count of 1.
6209 *
6210 * Example 2:
6211 *
6212 * mkdir testdir
6213 * touch foo
6214 * ln foo testdir/foo2
6215 * ln foo testdir/foo3
6216 * sync
6217 * unlink testdir/foo3
6218 * xfs_io -c fsync foo
6219 * <power failure>
6220 * mount fs, triggers log replay
6221 *
6222 * Similar as the first example, after log replay the parent directory
6223 * testdir still has an entry pointing to the inode file with name foo3
6224 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6225 * and has a link count of 2.
6226 */
47d3db41 6227 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 6228 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6229 if (ret)
6230 goto end_trans;
6231 }
6232
b8aa330d
FM
6233 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6234 if (ret)
41bd6067 6235 goto end_trans;
76dda93c 6236
2f2ff0ee 6237 if (log_dentries)
b8aa330d 6238 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6239 else
6240 ret = 0;
4a500fd1
YZ
6241end_trans:
6242 if (ret < 0) {
90787766 6243 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6244 ret = 1;
6245 }
8b050d35
MX
6246
6247 if (ret)
6248 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6249 btrfs_end_log_trans(root);
6250end_no_trans:
6251 return ret;
e02119d5
CM
6252}
6253
6254/*
6255 * it is not safe to log dentry if the chunk root has added new
6256 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6257 * If this returns 1, you must commit the transaction to safely get your
6258 * data on disk.
6259 */
6260int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6261 struct dentry *dentry,
8b050d35 6262 struct btrfs_log_ctx *ctx)
e02119d5 6263{
6a912213
JB
6264 struct dentry *parent = dget_parent(dentry);
6265 int ret;
6266
f882274b 6267 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 6268 LOG_INODE_ALL, ctx);
6a912213
JB
6269 dput(parent);
6270
6271 return ret;
e02119d5
CM
6272}
6273
6274/*
6275 * should be called during mount to recover any replay any log trees
6276 * from the FS
6277 */
6278int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6279{
6280 int ret;
6281 struct btrfs_path *path;
6282 struct btrfs_trans_handle *trans;
6283 struct btrfs_key key;
6284 struct btrfs_key found_key;
e02119d5
CM
6285 struct btrfs_root *log;
6286 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6287 struct walk_control wc = {
6288 .process_func = process_one_buffer,
430a6626 6289 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6290 };
6291
e02119d5 6292 path = btrfs_alloc_path();
db5b493a
TI
6293 if (!path)
6294 return -ENOMEM;
6295
afcdd129 6296 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6297
4a500fd1 6298 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6299 if (IS_ERR(trans)) {
6300 ret = PTR_ERR(trans);
6301 goto error;
6302 }
e02119d5
CM
6303
6304 wc.trans = trans;
6305 wc.pin = 1;
6306
db5b493a 6307 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6308 if (ret) {
5d163e0e
JM
6309 btrfs_handle_fs_error(fs_info, ret,
6310 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6311 goto error;
6312 }
e02119d5
CM
6313
6314again:
6315 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6316 key.offset = (u64)-1;
962a298f 6317 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6318
d397712b 6319 while (1) {
e02119d5 6320 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6321
6322 if (ret < 0) {
34d97007 6323 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6324 "Couldn't find tree log root.");
6325 goto error;
6326 }
e02119d5
CM
6327 if (ret > 0) {
6328 if (path->slots[0] == 0)
6329 break;
6330 path->slots[0]--;
6331 }
6332 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6333 path->slots[0]);
b3b4aa74 6334 btrfs_release_path(path);
e02119d5
CM
6335 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6336 break;
6337
62a2c73e 6338 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6339 if (IS_ERR(log)) {
6340 ret = PTR_ERR(log);
34d97007 6341 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6342 "Couldn't read tree log root.");
6343 goto error;
6344 }
e02119d5 6345
56e9357a
DS
6346 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6347 true);
79787eaa
JM
6348 if (IS_ERR(wc.replay_dest)) {
6349 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6350
6351 /*
6352 * We didn't find the subvol, likely because it was
6353 * deleted. This is ok, simply skip this log and go to
6354 * the next one.
6355 *
6356 * We need to exclude the root because we can't have
6357 * other log replays overwriting this log as we'll read
6358 * it back in a few more times. This will keep our
6359 * block from being modified, and we'll just bail for
6360 * each subsequent pass.
6361 */
6362 if (ret == -ENOENT)
9fce5704 6363 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6364 log->node->start,
6365 log->node->len);
00246528 6366 btrfs_put_root(log);
9bc574de
JB
6367
6368 if (!ret)
6369 goto next;
5d163e0e
JM
6370 btrfs_handle_fs_error(fs_info, ret,
6371 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6372 goto error;
6373 }
e02119d5 6374
07d400a6 6375 wc.replay_dest->log_root = log;
2002ae11
JB
6376 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6377 if (ret)
6378 /* The loop needs to continue due to the root refs */
6379 btrfs_handle_fs_error(fs_info, ret,
6380 "failed to record the log root in transaction");
6381 else
6382 ret = walk_log_tree(trans, log, &wc);
e02119d5 6383
b50c6e25 6384 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6385 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6386 path);
e02119d5
CM
6387 }
6388
900c9981
LB
6389 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6390 struct btrfs_root *root = wc.replay_dest;
6391
6392 btrfs_release_path(path);
6393
6394 /*
6395 * We have just replayed everything, and the highest
6396 * objectid of fs roots probably has changed in case
6397 * some inode_item's got replayed.
6398 *
6399 * root->objectid_mutex is not acquired as log replay
6400 * could only happen during mount.
6401 */
453e4873 6402 ret = btrfs_init_root_free_objectid(root);
900c9981
LB
6403 }
6404
07d400a6 6405 wc.replay_dest->log_root = NULL;
00246528 6406 btrfs_put_root(wc.replay_dest);
00246528 6407 btrfs_put_root(log);
e02119d5 6408
b50c6e25
JB
6409 if (ret)
6410 goto error;
9bc574de 6411next:
e02119d5
CM
6412 if (found_key.offset == 0)
6413 break;
9bc574de 6414 key.offset = found_key.offset - 1;
e02119d5 6415 }
b3b4aa74 6416 btrfs_release_path(path);
e02119d5
CM
6417
6418 /* step one is to pin it all, step two is to replay just inodes */
6419 if (wc.pin) {
6420 wc.pin = 0;
6421 wc.process_func = replay_one_buffer;
6422 wc.stage = LOG_WALK_REPLAY_INODES;
6423 goto again;
6424 }
6425 /* step three is to replay everything */
6426 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6427 wc.stage++;
6428 goto again;
6429 }
6430
6431 btrfs_free_path(path);
6432
abefa55a 6433 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6434 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6435 if (ret)
6436 return ret;
6437
e02119d5 6438 log_root_tree->log_root = NULL;
afcdd129 6439 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6440 btrfs_put_root(log_root_tree);
79787eaa 6441
abefa55a 6442 return 0;
79787eaa 6443error:
b50c6e25 6444 if (wc.trans)
3a45bb20 6445 btrfs_end_transaction(wc.trans);
1aeb6b56 6446 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
6447 btrfs_free_path(path);
6448 return ret;
e02119d5 6449}
12fcfd22
CM
6450
6451/*
6452 * there are some corner cases where we want to force a full
6453 * commit instead of allowing a directory to be logged.
6454 *
6455 * They revolve around files there were unlinked from the directory, and
6456 * this function updates the parent directory so that a full commit is
6457 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6458 *
6459 * Must be called before the unlink operations (updates to the subvolume tree,
6460 * inodes, etc) are done.
12fcfd22
CM
6461 */
6462void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6463 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6464 int for_rename)
6465{
af4176b4
CM
6466 /*
6467 * when we're logging a file, if it hasn't been renamed
6468 * or unlinked, and its inode is fully committed on disk,
6469 * we don't have to worry about walking up the directory chain
6470 * to log its parents.
6471 *
6472 * So, we use the last_unlink_trans field to put this transid
6473 * into the file. When the file is logged we check it and
6474 * don't log the parents if the file is fully on disk.
6475 */
4176bdbf
NB
6476 mutex_lock(&inode->log_mutex);
6477 inode->last_unlink_trans = trans->transid;
6478 mutex_unlock(&inode->log_mutex);
af4176b4 6479
12fcfd22
CM
6480 /*
6481 * if this directory was already logged any new
6482 * names for this file/dir will get recorded
6483 */
4176bdbf 6484 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6485 return;
6486
6487 /*
6488 * if the inode we're about to unlink was logged,
6489 * the log will be properly updated for any new names
6490 */
4176bdbf 6491 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6492 return;
6493
6494 /*
6495 * when renaming files across directories, if the directory
6496 * there we're unlinking from gets fsync'd later on, there's
6497 * no way to find the destination directory later and fsync it
6498 * properly. So, we have to be conservative and force commits
6499 * so the new name gets discovered.
6500 */
6501 if (for_rename)
6502 goto record;
6503
6504 /* we can safely do the unlink without any special recording */
6505 return;
6506
6507record:
4176bdbf
NB
6508 mutex_lock(&dir->log_mutex);
6509 dir->last_unlink_trans = trans->transid;
6510 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6511}
6512
6513/*
6514 * Make sure that if someone attempts to fsync the parent directory of a deleted
6515 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6516 * that after replaying the log tree of the parent directory's root we will not
6517 * see the snapshot anymore and at log replay time we will not see any log tree
6518 * corresponding to the deleted snapshot's root, which could lead to replaying
6519 * it after replaying the log tree of the parent directory (which would replay
6520 * the snapshot delete operation).
2be63d5c
FM
6521 *
6522 * Must be called before the actual snapshot destroy operation (updates to the
6523 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6524 */
6525void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6526 struct btrfs_inode *dir)
1ec9a1ae 6527{
43663557
NB
6528 mutex_lock(&dir->log_mutex);
6529 dir->last_unlink_trans = trans->transid;
6530 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6531}
6532
6533/*
6534 * Call this after adding a new name for a file and it will properly
6535 * update the log to reflect the new name.
12fcfd22 6536 */
75b463d2 6537void btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6538 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
75b463d2 6539 struct dentry *parent)
12fcfd22 6540{
75b463d2 6541 struct btrfs_log_ctx ctx;
12fcfd22 6542
af4176b4
CM
6543 /*
6544 * this will force the logging code to walk the dentry chain
6545 * up for the file
6546 */
9a6509c4 6547 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6548 inode->last_unlink_trans = trans->transid;
af4176b4 6549
12fcfd22
CM
6550 /*
6551 * if this inode hasn't been logged and directory we're renaming it
6552 * from hasn't been logged, we don't need to log it
6553 */
ecc64fab
FM
6554 if (!inode_logged(trans, inode) &&
6555 (!old_dir || !inode_logged(trans, old_dir)))
75b463d2 6556 return;
12fcfd22 6557
54a40fc3
FM
6558 /*
6559 * If we are doing a rename (old_dir is not NULL) from a directory that
6560 * was previously logged, make sure the next log attempt on the directory
6561 * is not skipped and logs the inode again. This is because the log may
6562 * not currently be authoritative for a range including the old
6563 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6564 * sure after a log replay we do not end up with both the new and old
6565 * dentries around (in case the inode is a directory we would have a
6566 * directory with two hard links and 2 inode references for different
6567 * parents). The next log attempt of old_dir will happen at
6568 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6569 * below, because we have previously set inode->last_unlink_trans to the
6570 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6571 * case inode is a directory.
6572 */
6573 if (old_dir)
6574 old_dir->logged_trans = 0;
6575
75b463d2
FM
6576 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6577 ctx.logging_new_name = true;
6578 /*
6579 * We don't care about the return value. If we fail to log the new name
6580 * then we know the next attempt to sync the log will fallback to a full
6581 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6582 * we don't need to worry about getting a log committed that has an
6583 * inconsistent state after a rename operation.
6584 */
48778179 6585 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
12fcfd22
CM
6586}
6587