]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
btrfs: remove redundant log root assignment from log_dir_items()
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
e02119d5
CM
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
e13976cf
DS
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
e02119d5 36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
e13976cf
DS
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 97 struct btrfs_inode *inode,
49dae1bc 98 int inode_only,
8407f553 99 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
fa1a0f42 108static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
e02119d5 141{
0b246afa 142 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 143 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 144 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 145 int ret = 0;
fa1a0f42 146 bool created = false;
7237f183 147
47876f7c
FM
148 /*
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
151 */
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 156 if (!ret) {
47876f7c 157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
158 created = true;
159 }
47876f7c
FM
160 }
161 mutex_unlock(&tree_root->log_mutex);
162 if (ret)
163 return ret;
164 }
165
7237f183 166 mutex_lock(&root->log_mutex);
34eb2a52 167
fa1a0f42 168again:
7237f183 169 if (root->log_root) {
fa1a0f42
NA
170 int index = (root->log_transid + 1) % 2;
171
4884b8e8 172 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
173 ret = -EAGAIN;
174 goto out;
175 }
34eb2a52 176
fa1a0f42
NA
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
179 goto again;
180 }
181
ff782e0a 182 if (!root->log_start_pid) {
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 184 root->log_start_pid = current->pid;
ff782e0a 185 } else if (root->log_start_pid != current->pid) {
27cdeb70 186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 187 }
34eb2a52 188 } else {
fa1a0f42
NA
189 /*
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
193 * writing.
194 */
195 if (zoned && !created) {
196 ret = -EAGAIN;
197 goto out;
198 }
199
e02119d5 200 ret = btrfs_add_log_tree(trans, root);
4a500fd1 201 if (ret)
e87ac136 202 goto out;
34eb2a52 203
e7a79811 204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
e02119d5 207 }
34eb2a52 208
7237f183 209 atomic_inc(&root->log_writers);
289cffcb 210 if (!ctx->logging_new_name) {
34eb2a52 211 int index = root->log_transid % 2;
8b050d35 212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 213 ctx->log_transid = root->log_transid;
8b050d35 214 }
34eb2a52 215
e87ac136 216out:
7237f183 217 mutex_unlock(&root->log_mutex);
e87ac136 218 return ret;
e02119d5
CM
219}
220
221/*
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
224 * in progress
225 */
226static int join_running_log_trans(struct btrfs_root *root)
227{
fa1a0f42 228 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
229 int ret = -ENOENT;
230
e7a79811
FM
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 return ret;
233
7237f183 234 mutex_lock(&root->log_mutex);
fa1a0f42 235again:
e02119d5 236 if (root->log_root) {
fa1a0f42
NA
237 int index = (root->log_transid + 1) % 2;
238
e02119d5 239 ret = 0;
fa1a0f42
NA
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
242 goto again;
243 }
7237f183 244 atomic_inc(&root->log_writers);
e02119d5 245 }
7237f183 246 mutex_unlock(&root->log_mutex);
e02119d5
CM
247 return ret;
248}
249
12fcfd22
CM
250/*
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
254 */
45128b08 255void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 256{
12fcfd22 257 atomic_inc(&root->log_writers);
12fcfd22
CM
258}
259
e02119d5
CM
260/*
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
263 */
143bede5 264void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 265{
7237f183 266 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 269 }
e02119d5
CM
270}
271
247462a5
DS
272static int btrfs_write_tree_block(struct extent_buffer *buf)
273{
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
276}
277
278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279{
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
282}
e02119d5
CM
283
284/*
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
289 */
290struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
293 */
294 int free;
295
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
298 */
299 int write;
300
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
303 */
304 int wait;
305
306 /* pin only walk, we record which extents on disk belong to the
307 * log trees
308 */
309 int pin;
310
311 /* what stage of the replay code we're currently in */
312 int stage;
313
f2d72f42
FM
314 /*
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
318 */
319 bool ignore_cur_inode;
320
e02119d5
CM
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
323
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
326
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
330 * inside it
331 */
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 333 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
334};
335
336/*
337 * process_func used to pin down extents, write them or wait on them
338 */
339static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
581c1760 341 struct walk_control *wc, u64 gen, int level)
e02119d5 342{
0b246afa 343 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
344 int ret = 0;
345
8c2a1a30
JB
346 /*
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
349 */
0b246afa 350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 351 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
352 if (ret)
353 return ret;
354 }
355
04018de5 356 if (wc->pin)
9fce5704 357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 358 eb->len);
e02119d5 359
b50c6e25 360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 361 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 362 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
363 if (wc->write)
364 btrfs_write_tree_block(eb);
365 if (wc->wait)
366 btrfs_wait_tree_block_writeback(eb);
367 }
b50c6e25 368 return ret;
e02119d5
CM
369}
370
371/*
372 * Item overwrite used by replay and tree logging. eb, slot and key all refer
373 * to the src data we are copying out.
374 *
375 * root is the tree we are copying into, and path is a scratch
376 * path for use in this function (it should be released on entry and
377 * will be released on exit).
378 *
379 * If the key is already in the destination tree the existing item is
380 * overwritten. If the existing item isn't big enough, it is extended.
381 * If it is too large, it is truncated.
382 *
383 * If the key isn't in the destination yet, a new item is inserted.
384 */
385static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct btrfs_path *path,
388 struct extent_buffer *eb, int slot,
389 struct btrfs_key *key)
390{
391 int ret;
392 u32 item_size;
393 u64 saved_i_size = 0;
394 int save_old_i_size = 0;
395 unsigned long src_ptr;
396 unsigned long dst_ptr;
397 int overwrite_root = 0;
4bc4bee4 398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
399
400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 overwrite_root = 1;
402
403 item_size = btrfs_item_size_nr(eb, slot);
404 src_ptr = btrfs_item_ptr_offset(eb, slot);
405
406 /* look for the key in the destination tree */
407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
408 if (ret < 0)
409 return ret;
410
e02119d5
CM
411 if (ret == 0) {
412 char *src_copy;
413 char *dst_copy;
414 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 path->slots[0]);
416 if (dst_size != item_size)
417 goto insert;
418
419 if (item_size == 0) {
b3b4aa74 420 btrfs_release_path(path);
e02119d5
CM
421 return 0;
422 }
423 dst_copy = kmalloc(item_size, GFP_NOFS);
424 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 425 if (!dst_copy || !src_copy) {
b3b4aa74 426 btrfs_release_path(path);
2a29edc6 427 kfree(dst_copy);
428 kfree(src_copy);
429 return -ENOMEM;
430 }
e02119d5
CM
431
432 read_extent_buffer(eb, src_copy, src_ptr, item_size);
433
434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 item_size);
437 ret = memcmp(dst_copy, src_copy, item_size);
438
439 kfree(dst_copy);
440 kfree(src_copy);
441 /*
442 * they have the same contents, just return, this saves
443 * us from cowing blocks in the destination tree and doing
444 * extra writes that may not have been done by a previous
445 * sync
446 */
447 if (ret == 0) {
b3b4aa74 448 btrfs_release_path(path);
e02119d5
CM
449 return 0;
450 }
451
4bc4bee4
JB
452 /*
453 * We need to load the old nbytes into the inode so when we
454 * replay the extents we've logged we get the right nbytes.
455 */
456 if (inode_item) {
457 struct btrfs_inode_item *item;
458 u64 nbytes;
d555438b 459 u32 mode;
4bc4bee4
JB
460
461 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 struct btrfs_inode_item);
463 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 item = btrfs_item_ptr(eb, slot,
465 struct btrfs_inode_item);
466 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
467
468 /*
469 * If this is a directory we need to reset the i_size to
470 * 0 so that we can set it up properly when replaying
471 * the rest of the items in this log.
472 */
473 mode = btrfs_inode_mode(eb, item);
474 if (S_ISDIR(mode))
475 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
476 }
477 } else if (inode_item) {
478 struct btrfs_inode_item *item;
d555438b 479 u32 mode;
4bc4bee4
JB
480
481 /*
482 * New inode, set nbytes to 0 so that the nbytes comes out
483 * properly when we replay the extents.
484 */
485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
487
488 /*
489 * If this is a directory we need to reset the i_size to 0 so
490 * that we can set it up properly when replaying the rest of
491 * the items in this log.
492 */
493 mode = btrfs_inode_mode(eb, item);
494 if (S_ISDIR(mode))
495 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
496 }
497insert:
b3b4aa74 498 btrfs_release_path(path);
e02119d5 499 /* try to insert the key into the destination tree */
df8d116f 500 path->skip_release_on_error = 1;
e02119d5
CM
501 ret = btrfs_insert_empty_item(trans, root, path,
502 key, item_size);
df8d116f 503 path->skip_release_on_error = 0;
e02119d5
CM
504
505 /* make sure any existing item is the correct size */
df8d116f 506 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
507 u32 found_size;
508 found_size = btrfs_item_size_nr(path->nodes[0],
509 path->slots[0]);
143bede5 510 if (found_size > item_size)
78ac4f9e 511 btrfs_truncate_item(path, item_size, 1);
143bede5 512 else if (found_size < item_size)
c71dd880 513 btrfs_extend_item(path, item_size - found_size);
e02119d5 514 } else if (ret) {
4a500fd1 515 return ret;
e02119d5
CM
516 }
517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 path->slots[0]);
519
520 /* don't overwrite an existing inode if the generation number
521 * was logged as zero. This is done when the tree logging code
522 * is just logging an inode to make sure it exists after recovery.
523 *
524 * Also, don't overwrite i_size on directories during replay.
525 * log replay inserts and removes directory items based on the
526 * state of the tree found in the subvolume, and i_size is modified
527 * as it goes
528 */
529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 struct btrfs_inode_item *src_item;
531 struct btrfs_inode_item *dst_item;
532
533 src_item = (struct btrfs_inode_item *)src_ptr;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535
1a4bcf47
FM
536 if (btrfs_inode_generation(eb, src_item) == 0) {
537 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 538 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 539
2f2ff0ee
FM
540 /*
541 * For regular files an ino_size == 0 is used only when
542 * logging that an inode exists, as part of a directory
543 * fsync, and the inode wasn't fsynced before. In this
544 * case don't set the size of the inode in the fs/subvol
545 * tree, otherwise we would be throwing valid data away.
546 */
1a4bcf47 547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
549 ino_size != 0)
550 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 551 goto no_copy;
1a4bcf47 552 }
e02119d5
CM
553
554 if (overwrite_root &&
555 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 save_old_i_size = 1;
558 saved_i_size = btrfs_inode_size(path->nodes[0],
559 dst_item);
560 }
561 }
562
563 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 src_ptr, item_size);
565
566 if (save_old_i_size) {
567 struct btrfs_inode_item *dst_item;
568 dst_item = (struct btrfs_inode_item *)dst_ptr;
569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 }
571
572 /* make sure the generation is filled in */
573 if (key->type == BTRFS_INODE_ITEM_KEY) {
574 struct btrfs_inode_item *dst_item;
575 dst_item = (struct btrfs_inode_item *)dst_ptr;
576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 btrfs_set_inode_generation(path->nodes[0], dst_item,
578 trans->transid);
579 }
580 }
581no_copy:
582 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 583 btrfs_release_path(path);
e02119d5
CM
584 return 0;
585}
586
587/*
588 * simple helper to read an inode off the disk from a given root
589 * This can only be called for subvolume roots and not for the log
590 */
591static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 u64 objectid)
593{
594 struct inode *inode;
e02119d5 595
0202e83f 596 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 597 if (IS_ERR(inode))
5d4f98a2 598 inode = NULL;
e02119d5
CM
599 return inode;
600}
601
602/* replays a single extent in 'eb' at 'slot' with 'key' into the
603 * subvolume 'root'. path is released on entry and should be released
604 * on exit.
605 *
606 * extents in the log tree have not been allocated out of the extent
607 * tree yet. So, this completes the allocation, taking a reference
608 * as required if the extent already exists or creating a new extent
609 * if it isn't in the extent allocation tree yet.
610 *
611 * The extent is inserted into the file, dropping any existing extents
612 * from the file that overlap the new one.
613 */
614static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 struct btrfs_root *root,
616 struct btrfs_path *path,
617 struct extent_buffer *eb, int slot,
618 struct btrfs_key *key)
619{
5893dfb9 620 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 621 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 622 int found_type;
e02119d5 623 u64 extent_end;
e02119d5 624 u64 start = key->offset;
4bc4bee4 625 u64 nbytes = 0;
e02119d5
CM
626 struct btrfs_file_extent_item *item;
627 struct inode *inode = NULL;
628 unsigned long size;
629 int ret = 0;
630
631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 found_type = btrfs_file_extent_type(eb, item);
633
d899e052 634 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
635 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 nbytes = btrfs_file_extent_num_bytes(eb, item);
637 extent_end = start + nbytes;
638
639 /*
640 * We don't add to the inodes nbytes if we are prealloc or a
641 * hole.
642 */
643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 nbytes = 0;
645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 646 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 647 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 648 extent_end = ALIGN(start + size,
0b246afa 649 fs_info->sectorsize);
e02119d5
CM
650 } else {
651 ret = 0;
652 goto out;
653 }
654
655 inode = read_one_inode(root, key->objectid);
656 if (!inode) {
657 ret = -EIO;
658 goto out;
659 }
660
661 /*
662 * first check to see if we already have this extent in the
663 * file. This must be done before the btrfs_drop_extents run
664 * so we don't try to drop this extent.
665 */
f85b7379
DS
666 ret = btrfs_lookup_file_extent(trans, root, path,
667 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 668
d899e052
YZ
669 if (ret == 0 &&
670 (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
672 struct btrfs_file_extent_item cmp1;
673 struct btrfs_file_extent_item cmp2;
674 struct btrfs_file_extent_item *existing;
675 struct extent_buffer *leaf;
676
677 leaf = path->nodes[0];
678 existing = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_file_extent_item);
680
681 read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 sizeof(cmp1));
683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 sizeof(cmp2));
685
686 /*
687 * we already have a pointer to this exact extent,
688 * we don't have to do anything
689 */
690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 691 btrfs_release_path(path);
e02119d5
CM
692 goto out;
693 }
694 }
b3b4aa74 695 btrfs_release_path(path);
e02119d5
CM
696
697 /* drop any overlapping extents */
5893dfb9
FM
698 drop_args.start = start;
699 drop_args.end = extent_end;
700 drop_args.drop_cache = true;
701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
702 if (ret)
703 goto out;
e02119d5 704
07d400a6
YZ
705 if (found_type == BTRFS_FILE_EXTENT_REG ||
706 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 707 u64 offset;
07d400a6
YZ
708 unsigned long dest_offset;
709 struct btrfs_key ins;
710
3168021c
FM
711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 btrfs_fs_incompat(fs_info, NO_HOLES))
713 goto update_inode;
714
07d400a6
YZ
715 ret = btrfs_insert_empty_item(trans, root, path, key,
716 sizeof(*item));
3650860b
JB
717 if (ret)
718 goto out;
07d400a6
YZ
719 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 path->slots[0]);
721 copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 (unsigned long)item, sizeof(*item));
723
724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 727 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 728
df2c95f3
QW
729 /*
730 * Manually record dirty extent, as here we did a shallow
731 * file extent item copy and skip normal backref update,
732 * but modifying extent tree all by ourselves.
733 * So need to manually record dirty extent for qgroup,
734 * as the owner of the file extent changed from log tree
735 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 */
a95f3aaf 737 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
738 btrfs_file_extent_disk_bytenr(eb, item),
739 btrfs_file_extent_disk_num_bytes(eb, item),
740 GFP_NOFS);
741 if (ret < 0)
742 goto out;
743
07d400a6 744 if (ins.objectid > 0) {
82fa113f 745 struct btrfs_ref ref = { 0 };
07d400a6
YZ
746 u64 csum_start;
747 u64 csum_end;
748 LIST_HEAD(ordered_sums);
82fa113f 749
07d400a6
YZ
750 /*
751 * is this extent already allocated in the extent
752 * allocation tree? If so, just add a reference
753 */
2ff7e61e 754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 755 ins.offset);
3736127a
MPS
756 if (ret < 0) {
757 goto out;
758 } else if (ret == 0) {
82fa113f
QW
759 btrfs_init_generic_ref(&ref,
760 BTRFS_ADD_DELAYED_REF,
761 ins.objectid, ins.offset, 0);
762 btrfs_init_data_ref(&ref,
763 root->root_key.objectid,
b06c4bf5 764 key->objectid, offset);
82fa113f 765 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
766 if (ret)
767 goto out;
07d400a6
YZ
768 } else {
769 /*
770 * insert the extent pointer in the extent
771 * allocation tree
772 */
5d4f98a2 773 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 774 root->root_key.objectid,
5d4f98a2 775 key->objectid, offset, &ins);
b50c6e25
JB
776 if (ret)
777 goto out;
07d400a6 778 }
b3b4aa74 779 btrfs_release_path(path);
07d400a6
YZ
780
781 if (btrfs_file_extent_compression(eb, item)) {
782 csum_start = ins.objectid;
783 csum_end = csum_start + ins.offset;
784 } else {
785 csum_start = ins.objectid +
786 btrfs_file_extent_offset(eb, item);
787 csum_end = csum_start +
788 btrfs_file_extent_num_bytes(eb, item);
789 }
790
791 ret = btrfs_lookup_csums_range(root->log_root,
792 csum_start, csum_end - 1,
a2de733c 793 &ordered_sums, 0);
3650860b
JB
794 if (ret)
795 goto out;
b84b8390
FM
796 /*
797 * Now delete all existing cums in the csum root that
798 * cover our range. We do this because we can have an
799 * extent that is completely referenced by one file
800 * extent item and partially referenced by another
801 * file extent item (like after using the clone or
802 * extent_same ioctls). In this case if we end up doing
803 * the replay of the one that partially references the
804 * extent first, and we do not do the csum deletion
805 * below, we can get 2 csum items in the csum tree that
806 * overlap each other. For example, imagine our log has
807 * the two following file extent items:
808 *
809 * key (257 EXTENT_DATA 409600)
810 * extent data disk byte 12845056 nr 102400
811 * extent data offset 20480 nr 20480 ram 102400
812 *
813 * key (257 EXTENT_DATA 819200)
814 * extent data disk byte 12845056 nr 102400
815 * extent data offset 0 nr 102400 ram 102400
816 *
817 * Where the second one fully references the 100K extent
818 * that starts at disk byte 12845056, and the log tree
819 * has a single csum item that covers the entire range
820 * of the extent:
821 *
822 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
823 *
824 * After the first file extent item is replayed, the
825 * csum tree gets the following csum item:
826 *
827 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
828 *
829 * Which covers the 20K sub-range starting at offset 20K
830 * of our extent. Now when we replay the second file
831 * extent item, if we do not delete existing csum items
832 * that cover any of its blocks, we end up getting two
833 * csum items in our csum tree that overlap each other:
834 *
835 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 *
838 * Which is a problem, because after this anyone trying
839 * to lookup up for the checksum of any block of our
840 * extent starting at an offset of 40K or higher, will
841 * end up looking at the second csum item only, which
842 * does not contain the checksum for any block starting
843 * at offset 40K or higher of our extent.
844 */
07d400a6
YZ
845 while (!list_empty(&ordered_sums)) {
846 struct btrfs_ordered_sum *sums;
847 sums = list_entry(ordered_sums.next,
848 struct btrfs_ordered_sum,
849 list);
b84b8390 850 if (!ret)
40e046ac
FM
851 ret = btrfs_del_csums(trans,
852 fs_info->csum_root,
5b4aacef
JM
853 sums->bytenr,
854 sums->len);
3650860b
JB
855 if (!ret)
856 ret = btrfs_csum_file_blocks(trans,
0b246afa 857 fs_info->csum_root, sums);
07d400a6
YZ
858 list_del(&sums->list);
859 kfree(sums);
860 }
3650860b
JB
861 if (ret)
862 goto out;
07d400a6 863 } else {
b3b4aa74 864 btrfs_release_path(path);
07d400a6
YZ
865 }
866 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
867 /* inline extents are easy, we just overwrite them */
868 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
869 if (ret)
870 goto out;
07d400a6 871 }
e02119d5 872
9ddc959e
JB
873 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
874 extent_end - start);
875 if (ret)
876 goto out;
877
3168021c 878update_inode:
2766ff61 879 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 880 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
881out:
882 if (inode)
883 iput(inode);
884 return ret;
885}
886
887/*
888 * when cleaning up conflicts between the directory names in the
889 * subvolume, directory names in the log and directory names in the
890 * inode back references, we may have to unlink inodes from directories.
891 *
892 * This is a helper function to do the unlink of a specific directory
893 * item
894 */
895static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
896 struct btrfs_root *root,
897 struct btrfs_path *path,
207e7d92 898 struct btrfs_inode *dir,
e02119d5
CM
899 struct btrfs_dir_item *di)
900{
901 struct inode *inode;
902 char *name;
903 int name_len;
904 struct extent_buffer *leaf;
905 struct btrfs_key location;
906 int ret;
907
908 leaf = path->nodes[0];
909
910 btrfs_dir_item_key_to_cpu(leaf, di, &location);
911 name_len = btrfs_dir_name_len(leaf, di);
912 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 913 if (!name)
914 return -ENOMEM;
915
e02119d5 916 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 917 btrfs_release_path(path);
e02119d5
CM
918
919 inode = read_one_inode(root, location.objectid);
c00e9493 920 if (!inode) {
3650860b
JB
921 ret = -EIO;
922 goto out;
c00e9493 923 }
e02119d5 924
ec051c0f 925 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
926 if (ret)
927 goto out;
12fcfd22 928
207e7d92
NB
929 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
930 name_len);
3650860b
JB
931 if (ret)
932 goto out;
ada9af21 933 else
e5c304e6 934 ret = btrfs_run_delayed_items(trans);
3650860b 935out:
e02119d5 936 kfree(name);
e02119d5
CM
937 iput(inode);
938 return ret;
939}
940
941/*
77a5b9e3
FM
942 * See if a given name and sequence number found in an inode back reference are
943 * already in a directory and correctly point to this inode.
944 *
945 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
946 * exists.
e02119d5
CM
947 */
948static noinline int inode_in_dir(struct btrfs_root *root,
949 struct btrfs_path *path,
950 u64 dirid, u64 objectid, u64 index,
951 const char *name, int name_len)
952{
953 struct btrfs_dir_item *di;
954 struct btrfs_key location;
77a5b9e3 955 int ret = 0;
e02119d5
CM
956
957 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
958 index, name, name_len, 0);
77a5b9e3 959 if (IS_ERR(di)) {
8dcbc261 960 ret = PTR_ERR(di);
77a5b9e3
FM
961 goto out;
962 } else if (di) {
e02119d5
CM
963 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
964 if (location.objectid != objectid)
965 goto out;
77a5b9e3 966 } else {
e02119d5 967 goto out;
77a5b9e3 968 }
e02119d5 969
77a5b9e3 970 btrfs_release_path(path);
e02119d5 971 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
77a5b9e3
FM
972 if (IS_ERR(di)) {
973 ret = PTR_ERR(di);
e02119d5 974 goto out;
77a5b9e3
FM
975 } else if (di) {
976 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
977 if (location.objectid == objectid)
978 ret = 1;
979 }
e02119d5 980out:
b3b4aa74 981 btrfs_release_path(path);
77a5b9e3 982 return ret;
e02119d5
CM
983}
984
985/*
986 * helper function to check a log tree for a named back reference in
987 * an inode. This is used to decide if a back reference that is
988 * found in the subvolume conflicts with what we find in the log.
989 *
990 * inode backreferences may have multiple refs in a single item,
991 * during replay we process one reference at a time, and we don't
992 * want to delete valid links to a file from the subvolume if that
993 * link is also in the log.
994 */
995static noinline int backref_in_log(struct btrfs_root *log,
996 struct btrfs_key *key,
f186373f 997 u64 ref_objectid,
df8d116f 998 const char *name, int namelen)
e02119d5
CM
999{
1000 struct btrfs_path *path;
e02119d5 1001 int ret;
e02119d5
CM
1002
1003 path = btrfs_alloc_path();
2a29edc6 1004 if (!path)
1005 return -ENOMEM;
1006
e02119d5 1007 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1008 if (ret < 0) {
1009 goto out;
1010 } else if (ret == 1) {
89cbf5f6 1011 ret = 0;
f186373f
MF
1012 goto out;
1013 }
1014
89cbf5f6
NB
1015 if (key->type == BTRFS_INODE_EXTREF_KEY)
1016 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1017 path->slots[0],
1018 ref_objectid,
1019 name, namelen);
1020 else
1021 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1022 path->slots[0],
1023 name, namelen);
e02119d5
CM
1024out:
1025 btrfs_free_path(path);
89cbf5f6 1026 return ret;
e02119d5
CM
1027}
1028
5a1d7843 1029static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1030 struct btrfs_root *root,
e02119d5 1031 struct btrfs_path *path,
5a1d7843 1032 struct btrfs_root *log_root,
94c91a1f
NB
1033 struct btrfs_inode *dir,
1034 struct btrfs_inode *inode,
f186373f
MF
1035 u64 inode_objectid, u64 parent_objectid,
1036 u64 ref_index, char *name, int namelen,
1037 int *search_done)
e02119d5 1038{
34f3e4f2 1039 int ret;
f186373f
MF
1040 char *victim_name;
1041 int victim_name_len;
1042 struct extent_buffer *leaf;
5a1d7843 1043 struct btrfs_dir_item *di;
f186373f
MF
1044 struct btrfs_key search_key;
1045 struct btrfs_inode_extref *extref;
c622ae60 1046
f186373f
MF
1047again:
1048 /* Search old style refs */
1049 search_key.objectid = inode_objectid;
1050 search_key.type = BTRFS_INODE_REF_KEY;
1051 search_key.offset = parent_objectid;
1052 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1053 if (ret == 0) {
e02119d5
CM
1054 struct btrfs_inode_ref *victim_ref;
1055 unsigned long ptr;
1056 unsigned long ptr_end;
f186373f
MF
1057
1058 leaf = path->nodes[0];
e02119d5
CM
1059
1060 /* are we trying to overwrite a back ref for the root directory
1061 * if so, just jump out, we're done
1062 */
f186373f 1063 if (search_key.objectid == search_key.offset)
5a1d7843 1064 return 1;
e02119d5
CM
1065
1066 /* check all the names in this back reference to see
1067 * if they are in the log. if so, we allow them to stay
1068 * otherwise they must be unlinked as a conflict
1069 */
1070 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1071 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1072 while (ptr < ptr_end) {
e02119d5
CM
1073 victim_ref = (struct btrfs_inode_ref *)ptr;
1074 victim_name_len = btrfs_inode_ref_name_len(leaf,
1075 victim_ref);
1076 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1077 if (!victim_name)
1078 return -ENOMEM;
e02119d5
CM
1079
1080 read_extent_buffer(leaf, victim_name,
1081 (unsigned long)(victim_ref + 1),
1082 victim_name_len);
1083
d3316c82
NB
1084 ret = backref_in_log(log_root, &search_key,
1085 parent_objectid, victim_name,
1086 victim_name_len);
1087 if (ret < 0) {
1088 kfree(victim_name);
1089 return ret;
1090 } else if (!ret) {
94c91a1f 1091 inc_nlink(&inode->vfs_inode);
b3b4aa74 1092 btrfs_release_path(path);
12fcfd22 1093
94c91a1f 1094 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1095 victim_name, victim_name_len);
f186373f 1096 kfree(victim_name);
3650860b
JB
1097 if (ret)
1098 return ret;
e5c304e6 1099 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1100 if (ret)
1101 return ret;
f186373f
MF
1102 *search_done = 1;
1103 goto again;
e02119d5
CM
1104 }
1105 kfree(victim_name);
f186373f 1106
e02119d5
CM
1107 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1108 }
e02119d5 1109
c622ae60 1110 /*
1111 * NOTE: we have searched root tree and checked the
bb7ab3b9 1112 * corresponding ref, it does not need to check again.
c622ae60 1113 */
5a1d7843 1114 *search_done = 1;
e02119d5 1115 }
b3b4aa74 1116 btrfs_release_path(path);
e02119d5 1117
f186373f
MF
1118 /* Same search but for extended refs */
1119 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1120 inode_objectid, parent_objectid, 0,
1121 0);
1122 if (!IS_ERR_OR_NULL(extref)) {
1123 u32 item_size;
1124 u32 cur_offset = 0;
1125 unsigned long base;
1126 struct inode *victim_parent;
1127
1128 leaf = path->nodes[0];
1129
1130 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1131 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1132
1133 while (cur_offset < item_size) {
dd9ef135 1134 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1135
1136 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1137
1138 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1139 goto next;
1140
1141 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1142 if (!victim_name)
1143 return -ENOMEM;
f186373f
MF
1144 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1145 victim_name_len);
1146
1147 search_key.objectid = inode_objectid;
1148 search_key.type = BTRFS_INODE_EXTREF_KEY;
1149 search_key.offset = btrfs_extref_hash(parent_objectid,
1150 victim_name,
1151 victim_name_len);
d3316c82
NB
1152 ret = backref_in_log(log_root, &search_key,
1153 parent_objectid, victim_name,
1154 victim_name_len);
1155 if (ret < 0) {
1156 return ret;
1157 } else if (!ret) {
f186373f
MF
1158 ret = -ENOENT;
1159 victim_parent = read_one_inode(root,
94c91a1f 1160 parent_objectid);
f186373f 1161 if (victim_parent) {
94c91a1f 1162 inc_nlink(&inode->vfs_inode);
f186373f
MF
1163 btrfs_release_path(path);
1164
1165 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1166 BTRFS_I(victim_parent),
94c91a1f 1167 inode,
4ec5934e
NB
1168 victim_name,
1169 victim_name_len);
ada9af21
FDBM
1170 if (!ret)
1171 ret = btrfs_run_delayed_items(
e5c304e6 1172 trans);
f186373f 1173 }
f186373f
MF
1174 iput(victim_parent);
1175 kfree(victim_name);
3650860b
JB
1176 if (ret)
1177 return ret;
f186373f
MF
1178 *search_done = 1;
1179 goto again;
1180 }
1181 kfree(victim_name);
f186373f
MF
1182next:
1183 cur_offset += victim_name_len + sizeof(*extref);
1184 }
1185 *search_done = 1;
1186 }
1187 btrfs_release_path(path);
1188
34f3e4f2 1189 /* look for a conflicting sequence number */
94c91a1f 1190 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1191 ref_index, name, namelen, 0);
52db7779 1192 if (IS_ERR(di)) {
8dcbc261 1193 return PTR_ERR(di);
52db7779 1194 } else if (di) {
94c91a1f 1195 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1196 if (ret)
1197 return ret;
34f3e4f2 1198 }
1199 btrfs_release_path(path);
1200
52042d8e 1201 /* look for a conflicting name */
94c91a1f 1202 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1203 name, namelen, 0);
52db7779
FM
1204 if (IS_ERR(di)) {
1205 return PTR_ERR(di);
1206 } else if (di) {
94c91a1f 1207 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1208 if (ret)
1209 return ret;
34f3e4f2 1210 }
1211 btrfs_release_path(path);
1212
5a1d7843
JS
1213 return 0;
1214}
e02119d5 1215
bae15d95
QW
1216static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1217 u32 *namelen, char **name, u64 *index,
1218 u64 *parent_objectid)
f186373f
MF
1219{
1220 struct btrfs_inode_extref *extref;
1221
1222 extref = (struct btrfs_inode_extref *)ref_ptr;
1223
1224 *namelen = btrfs_inode_extref_name_len(eb, extref);
1225 *name = kmalloc(*namelen, GFP_NOFS);
1226 if (*name == NULL)
1227 return -ENOMEM;
1228
1229 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1230 *namelen);
1231
1f250e92
FM
1232 if (index)
1233 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1234 if (parent_objectid)
1235 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1236
1237 return 0;
1238}
1239
bae15d95
QW
1240static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1241 u32 *namelen, char **name, u64 *index)
f186373f
MF
1242{
1243 struct btrfs_inode_ref *ref;
1244
1245 ref = (struct btrfs_inode_ref *)ref_ptr;
1246
1247 *namelen = btrfs_inode_ref_name_len(eb, ref);
1248 *name = kmalloc(*namelen, GFP_NOFS);
1249 if (*name == NULL)
1250 return -ENOMEM;
1251
1252 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1253
1f250e92
FM
1254 if (index)
1255 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1256
1257 return 0;
1258}
1259
1f250e92
FM
1260/*
1261 * Take an inode reference item from the log tree and iterate all names from the
1262 * inode reference item in the subvolume tree with the same key (if it exists).
1263 * For any name that is not in the inode reference item from the log tree, do a
1264 * proper unlink of that name (that is, remove its entry from the inode
1265 * reference item and both dir index keys).
1266 */
1267static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1268 struct btrfs_root *root,
1269 struct btrfs_path *path,
1270 struct btrfs_inode *inode,
1271 struct extent_buffer *log_eb,
1272 int log_slot,
1273 struct btrfs_key *key)
1274{
1275 int ret;
1276 unsigned long ref_ptr;
1277 unsigned long ref_end;
1278 struct extent_buffer *eb;
1279
1280again:
1281 btrfs_release_path(path);
1282 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1283 if (ret > 0) {
1284 ret = 0;
1285 goto out;
1286 }
1287 if (ret < 0)
1288 goto out;
1289
1290 eb = path->nodes[0];
1291 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1292 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1293 while (ref_ptr < ref_end) {
1294 char *name = NULL;
1295 int namelen;
1296 u64 parent_id;
1297
1298 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1299 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1300 NULL, &parent_id);
1301 } else {
1302 parent_id = key->offset;
1303 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1304 NULL);
1305 }
1306 if (ret)
1307 goto out;
1308
1309 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1310 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1311 parent_id, name,
1312 namelen);
1f250e92 1313 else
9bb8407f
NB
1314 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1315 name, namelen);
1f250e92
FM
1316
1317 if (!ret) {
1318 struct inode *dir;
1319
1320 btrfs_release_path(path);
1321 dir = read_one_inode(root, parent_id);
1322 if (!dir) {
1323 ret = -ENOENT;
1324 kfree(name);
1325 goto out;
1326 }
1327 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1328 inode, name, namelen);
1329 kfree(name);
1330 iput(dir);
1331 if (ret)
1332 goto out;
1333 goto again;
1334 }
1335
1336 kfree(name);
1337 ref_ptr += namelen;
1338 if (key->type == BTRFS_INODE_EXTREF_KEY)
1339 ref_ptr += sizeof(struct btrfs_inode_extref);
1340 else
1341 ref_ptr += sizeof(struct btrfs_inode_ref);
1342 }
1343 ret = 0;
1344 out:
1345 btrfs_release_path(path);
1346 return ret;
1347}
1348
0d836392
FM
1349static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1350 const u8 ref_type, const char *name,
1351 const int namelen)
1352{
1353 struct btrfs_key key;
1354 struct btrfs_path *path;
1355 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1356 int ret;
1357
1358 path = btrfs_alloc_path();
1359 if (!path)
1360 return -ENOMEM;
1361
1362 key.objectid = btrfs_ino(BTRFS_I(inode));
1363 key.type = ref_type;
1364 if (key.type == BTRFS_INODE_REF_KEY)
1365 key.offset = parent_id;
1366 else
1367 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1368
1369 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1370 if (ret < 0)
1371 goto out;
1372 if (ret > 0) {
1373 ret = 0;
1374 goto out;
1375 }
1376 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1377 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1378 path->slots[0], parent_id, name, namelen);
0d836392 1379 else
9bb8407f
NB
1380 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1381 name, namelen);
0d836392
FM
1382
1383out:
1384 btrfs_free_path(path);
1385 return ret;
1386}
1387
6b5fc433
FM
1388static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1389 struct inode *dir, struct inode *inode, const char *name,
1390 int namelen, u64 ref_index)
1391{
1392 struct btrfs_dir_item *dir_item;
1393 struct btrfs_key key;
1394 struct btrfs_path *path;
1395 struct inode *other_inode = NULL;
1396 int ret;
1397
1398 path = btrfs_alloc_path();
1399 if (!path)
1400 return -ENOMEM;
1401
1402 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1403 btrfs_ino(BTRFS_I(dir)),
1404 name, namelen, 0);
1405 if (!dir_item) {
1406 btrfs_release_path(path);
1407 goto add_link;
1408 } else if (IS_ERR(dir_item)) {
1409 ret = PTR_ERR(dir_item);
1410 goto out;
1411 }
1412
1413 /*
1414 * Our inode's dentry collides with the dentry of another inode which is
1415 * in the log but not yet processed since it has a higher inode number.
1416 * So delete that other dentry.
1417 */
1418 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1419 btrfs_release_path(path);
1420 other_inode = read_one_inode(root, key.objectid);
1421 if (!other_inode) {
1422 ret = -ENOENT;
1423 goto out;
1424 }
1425 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1426 name, namelen);
1427 if (ret)
1428 goto out;
1429 /*
1430 * If we dropped the link count to 0, bump it so that later the iput()
1431 * on the inode will not free it. We will fixup the link count later.
1432 */
1433 if (other_inode->i_nlink == 0)
1434 inc_nlink(other_inode);
1435
1436 ret = btrfs_run_delayed_items(trans);
1437 if (ret)
1438 goto out;
1439add_link:
1440 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1441 name, namelen, 0, ref_index);
1442out:
1443 iput(other_inode);
1444 btrfs_free_path(path);
1445
1446 return ret;
1447}
1448
5a1d7843
JS
1449/*
1450 * replay one inode back reference item found in the log tree.
1451 * eb, slot and key refer to the buffer and key found in the log tree.
1452 * root is the destination we are replaying into, and path is for temp
1453 * use by this function. (it should be released on return).
1454 */
1455static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root,
1457 struct btrfs_root *log,
1458 struct btrfs_path *path,
1459 struct extent_buffer *eb, int slot,
1460 struct btrfs_key *key)
1461{
03b2f08b
GB
1462 struct inode *dir = NULL;
1463 struct inode *inode = NULL;
5a1d7843
JS
1464 unsigned long ref_ptr;
1465 unsigned long ref_end;
03b2f08b 1466 char *name = NULL;
5a1d7843
JS
1467 int namelen;
1468 int ret;
1469 int search_done = 0;
f186373f
MF
1470 int log_ref_ver = 0;
1471 u64 parent_objectid;
1472 u64 inode_objectid;
f46dbe3d 1473 u64 ref_index = 0;
f186373f
MF
1474 int ref_struct_size;
1475
1476 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1477 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1478
1479 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1480 struct btrfs_inode_extref *r;
1481
1482 ref_struct_size = sizeof(struct btrfs_inode_extref);
1483 log_ref_ver = 1;
1484 r = (struct btrfs_inode_extref *)ref_ptr;
1485 parent_objectid = btrfs_inode_extref_parent(eb, r);
1486 } else {
1487 ref_struct_size = sizeof(struct btrfs_inode_ref);
1488 parent_objectid = key->offset;
1489 }
1490 inode_objectid = key->objectid;
e02119d5 1491
5a1d7843
JS
1492 /*
1493 * it is possible that we didn't log all the parent directories
1494 * for a given inode. If we don't find the dir, just don't
1495 * copy the back ref in. The link count fixup code will take
1496 * care of the rest
1497 */
f186373f 1498 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1499 if (!dir) {
1500 ret = -ENOENT;
1501 goto out;
1502 }
5a1d7843 1503
f186373f 1504 inode = read_one_inode(root, inode_objectid);
5a1d7843 1505 if (!inode) {
03b2f08b
GB
1506 ret = -EIO;
1507 goto out;
5a1d7843
JS
1508 }
1509
5a1d7843 1510 while (ref_ptr < ref_end) {
f186373f 1511 if (log_ref_ver) {
bae15d95
QW
1512 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1513 &ref_index, &parent_objectid);
f186373f
MF
1514 /*
1515 * parent object can change from one array
1516 * item to another.
1517 */
1518 if (!dir)
1519 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1520 if (!dir) {
1521 ret = -ENOENT;
1522 goto out;
1523 }
f186373f 1524 } else {
bae15d95
QW
1525 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1526 &ref_index);
f186373f
MF
1527 }
1528 if (ret)
03b2f08b 1529 goto out;
5a1d7843 1530
77a5b9e3
FM
1531 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1532 btrfs_ino(BTRFS_I(inode)), ref_index,
1533 name, namelen);
1534 if (ret < 0) {
1535 goto out;
1536 } else if (ret == 0) {
5a1d7843
JS
1537 /*
1538 * look for a conflicting back reference in the
1539 * metadata. if we find one we have to unlink that name
1540 * of the file before we add our new link. Later on, we
1541 * overwrite any existing back reference, and we don't
1542 * want to create dangling pointers in the directory.
1543 */
1544
1545 if (!search_done) {
1546 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1547 BTRFS_I(dir),
d75eefdf 1548 BTRFS_I(inode),
f186373f
MF
1549 inode_objectid,
1550 parent_objectid,
1551 ref_index, name, namelen,
5a1d7843 1552 &search_done);
03b2f08b
GB
1553 if (ret) {
1554 if (ret == 1)
1555 ret = 0;
3650860b
JB
1556 goto out;
1557 }
5a1d7843
JS
1558 }
1559
0d836392
FM
1560 /*
1561 * If a reference item already exists for this inode
1562 * with the same parent and name, but different index,
1563 * drop it and the corresponding directory index entries
1564 * from the parent before adding the new reference item
1565 * and dir index entries, otherwise we would fail with
1566 * -EEXIST returned from btrfs_add_link() below.
1567 */
1568 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1569 name, namelen);
1570 if (ret > 0) {
1571 ret = btrfs_unlink_inode(trans, root,
1572 BTRFS_I(dir),
1573 BTRFS_I(inode),
1574 name, namelen);
1575 /*
1576 * If we dropped the link count to 0, bump it so
1577 * that later the iput() on the inode will not
1578 * free it. We will fixup the link count later.
1579 */
1580 if (!ret && inode->i_nlink == 0)
1581 inc_nlink(inode);
1582 }
1583 if (ret < 0)
1584 goto out;
1585
5a1d7843 1586 /* insert our name */
6b5fc433
FM
1587 ret = add_link(trans, root, dir, inode, name, namelen,
1588 ref_index);
3650860b
JB
1589 if (ret)
1590 goto out;
5a1d7843 1591
f96d4474
JB
1592 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1593 if (ret)
1594 goto out;
5a1d7843 1595 }
77a5b9e3 1596 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1597
f186373f 1598 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1599 kfree(name);
03b2f08b 1600 name = NULL;
f186373f
MF
1601 if (log_ref_ver) {
1602 iput(dir);
1603 dir = NULL;
1604 }
5a1d7843 1605 }
e02119d5 1606
1f250e92
FM
1607 /*
1608 * Before we overwrite the inode reference item in the subvolume tree
1609 * with the item from the log tree, we must unlink all names from the
1610 * parent directory that are in the subvolume's tree inode reference
1611 * item, otherwise we end up with an inconsistent subvolume tree where
1612 * dir index entries exist for a name but there is no inode reference
1613 * item with the same name.
1614 */
1615 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1616 key);
1617 if (ret)
1618 goto out;
1619
e02119d5
CM
1620 /* finally write the back reference in the inode */
1621 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1622out:
b3b4aa74 1623 btrfs_release_path(path);
03b2f08b 1624 kfree(name);
e02119d5
CM
1625 iput(dir);
1626 iput(inode);
3650860b 1627 return ret;
e02119d5
CM
1628}
1629
f186373f 1630static int count_inode_extrefs(struct btrfs_root *root,
36283658 1631 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1632{
1633 int ret = 0;
1634 int name_len;
1635 unsigned int nlink = 0;
1636 u32 item_size;
1637 u32 cur_offset = 0;
36283658 1638 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1639 u64 offset = 0;
1640 unsigned long ptr;
1641 struct btrfs_inode_extref *extref;
1642 struct extent_buffer *leaf;
1643
1644 while (1) {
1645 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1646 &extref, &offset);
1647 if (ret)
1648 break;
c71bf099 1649
f186373f
MF
1650 leaf = path->nodes[0];
1651 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1652 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1653 cur_offset = 0;
f186373f
MF
1654
1655 while (cur_offset < item_size) {
1656 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1657 name_len = btrfs_inode_extref_name_len(leaf, extref);
1658
1659 nlink++;
1660
1661 cur_offset += name_len + sizeof(*extref);
1662 }
1663
1664 offset++;
1665 btrfs_release_path(path);
1666 }
1667 btrfs_release_path(path);
1668
2c2c452b 1669 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1670 return ret;
1671 return nlink;
1672}
1673
1674static int count_inode_refs(struct btrfs_root *root,
f329e319 1675 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1676{
e02119d5
CM
1677 int ret;
1678 struct btrfs_key key;
f186373f 1679 unsigned int nlink = 0;
e02119d5
CM
1680 unsigned long ptr;
1681 unsigned long ptr_end;
1682 int name_len;
f329e319 1683 u64 ino = btrfs_ino(inode);
e02119d5 1684
33345d01 1685 key.objectid = ino;
e02119d5
CM
1686 key.type = BTRFS_INODE_REF_KEY;
1687 key.offset = (u64)-1;
1688
d397712b 1689 while (1) {
e02119d5
CM
1690 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1691 if (ret < 0)
1692 break;
1693 if (ret > 0) {
1694 if (path->slots[0] == 0)
1695 break;
1696 path->slots[0]--;
1697 }
e93ae26f 1698process_slot:
e02119d5
CM
1699 btrfs_item_key_to_cpu(path->nodes[0], &key,
1700 path->slots[0]);
33345d01 1701 if (key.objectid != ino ||
e02119d5
CM
1702 key.type != BTRFS_INODE_REF_KEY)
1703 break;
1704 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1705 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1706 path->slots[0]);
d397712b 1707 while (ptr < ptr_end) {
e02119d5
CM
1708 struct btrfs_inode_ref *ref;
1709
1710 ref = (struct btrfs_inode_ref *)ptr;
1711 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1712 ref);
1713 ptr = (unsigned long)(ref + 1) + name_len;
1714 nlink++;
1715 }
1716
1717 if (key.offset == 0)
1718 break;
e93ae26f
FDBM
1719 if (path->slots[0] > 0) {
1720 path->slots[0]--;
1721 goto process_slot;
1722 }
e02119d5 1723 key.offset--;
b3b4aa74 1724 btrfs_release_path(path);
e02119d5 1725 }
b3b4aa74 1726 btrfs_release_path(path);
f186373f
MF
1727
1728 return nlink;
1729}
1730
1731/*
1732 * There are a few corners where the link count of the file can't
1733 * be properly maintained during replay. So, instead of adding
1734 * lots of complexity to the log code, we just scan the backrefs
1735 * for any file that has been through replay.
1736 *
1737 * The scan will update the link count on the inode to reflect the
1738 * number of back refs found. If it goes down to zero, the iput
1739 * will free the inode.
1740 */
1741static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1742 struct btrfs_root *root,
1743 struct inode *inode)
1744{
1745 struct btrfs_path *path;
1746 int ret;
1747 u64 nlink = 0;
4a0cc7ca 1748 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1749
1750 path = btrfs_alloc_path();
1751 if (!path)
1752 return -ENOMEM;
1753
f329e319 1754 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1755 if (ret < 0)
1756 goto out;
1757
1758 nlink = ret;
1759
36283658 1760 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1761 if (ret < 0)
1762 goto out;
1763
1764 nlink += ret;
1765
1766 ret = 0;
1767
e02119d5 1768 if (nlink != inode->i_nlink) {
bfe86848 1769 set_nlink(inode, nlink);
f96d4474
JB
1770 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1771 if (ret)
1772 goto out;
e02119d5 1773 }
8d5bf1cb 1774 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1775
c71bf099
YZ
1776 if (inode->i_nlink == 0) {
1777 if (S_ISDIR(inode->i_mode)) {
1778 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1779 ino, 1);
3650860b
JB
1780 if (ret)
1781 goto out;
c71bf099 1782 }
ecdcf3c2
NB
1783 ret = btrfs_insert_orphan_item(trans, root, ino);
1784 if (ret == -EEXIST)
1785 ret = 0;
12fcfd22 1786 }
12fcfd22 1787
f186373f
MF
1788out:
1789 btrfs_free_path(path);
1790 return ret;
e02119d5
CM
1791}
1792
1793static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1794 struct btrfs_root *root,
1795 struct btrfs_path *path)
1796{
1797 int ret;
1798 struct btrfs_key key;
1799 struct inode *inode;
1800
1801 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1802 key.type = BTRFS_ORPHAN_ITEM_KEY;
1803 key.offset = (u64)-1;
d397712b 1804 while (1) {
e02119d5
CM
1805 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1806 if (ret < 0)
1807 break;
1808
1809 if (ret == 1) {
011b28ac 1810 ret = 0;
e02119d5
CM
1811 if (path->slots[0] == 0)
1812 break;
1813 path->slots[0]--;
1814 }
1815
1816 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1817 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1818 key.type != BTRFS_ORPHAN_ITEM_KEY)
1819 break;
1820
1821 ret = btrfs_del_item(trans, root, path);
65a246c5 1822 if (ret)
011b28ac 1823 break;
e02119d5 1824
b3b4aa74 1825 btrfs_release_path(path);
e02119d5 1826 inode = read_one_inode(root, key.offset);
011b28ac
JB
1827 if (!inode) {
1828 ret = -EIO;
1829 break;
1830 }
e02119d5
CM
1831
1832 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1833 iput(inode);
3650860b 1834 if (ret)
011b28ac 1835 break;
e02119d5 1836
12fcfd22
CM
1837 /*
1838 * fixup on a directory may create new entries,
1839 * make sure we always look for the highset possible
1840 * offset
1841 */
1842 key.offset = (u64)-1;
e02119d5 1843 }
b3b4aa74 1844 btrfs_release_path(path);
65a246c5 1845 return ret;
e02119d5
CM
1846}
1847
1848
1849/*
1850 * record a given inode in the fixup dir so we can check its link
1851 * count when replay is done. The link count is incremented here
1852 * so the inode won't go away until we check it
1853 */
1854static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1855 struct btrfs_root *root,
1856 struct btrfs_path *path,
1857 u64 objectid)
1858{
1859 struct btrfs_key key;
1860 int ret = 0;
1861 struct inode *inode;
1862
1863 inode = read_one_inode(root, objectid);
c00e9493
TI
1864 if (!inode)
1865 return -EIO;
e02119d5
CM
1866
1867 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1868 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1869 key.offset = objectid;
1870
1871 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1872
b3b4aa74 1873 btrfs_release_path(path);
e02119d5 1874 if (ret == 0) {
9bf7a489
JB
1875 if (!inode->i_nlink)
1876 set_nlink(inode, 1);
1877 else
8b558c5f 1878 inc_nlink(inode);
9a56fcd1 1879 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1880 } else if (ret == -EEXIST) {
1881 ret = 0;
e02119d5
CM
1882 }
1883 iput(inode);
1884
1885 return ret;
1886}
1887
1888/*
1889 * when replaying the log for a directory, we only insert names
1890 * for inodes that actually exist. This means an fsync on a directory
1891 * does not implicitly fsync all the new files in it
1892 */
1893static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1894 struct btrfs_root *root,
e02119d5 1895 u64 dirid, u64 index,
60d53eb3 1896 char *name, int name_len,
e02119d5
CM
1897 struct btrfs_key *location)
1898{
1899 struct inode *inode;
1900 struct inode *dir;
1901 int ret;
1902
1903 inode = read_one_inode(root, location->objectid);
1904 if (!inode)
1905 return -ENOENT;
1906
1907 dir = read_one_inode(root, dirid);
1908 if (!dir) {
1909 iput(inode);
1910 return -EIO;
1911 }
d555438b 1912
db0a669f
NB
1913 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1914 name_len, 1, index);
e02119d5
CM
1915
1916 /* FIXME, put inode into FIXUP list */
1917
1918 iput(inode);
1919 iput(dir);
1920 return ret;
1921}
1922
1923/*
1924 * take a single entry in a log directory item and replay it into
1925 * the subvolume.
1926 *
1927 * if a conflicting item exists in the subdirectory already,
1928 * the inode it points to is unlinked and put into the link count
1929 * fix up tree.
1930 *
1931 * If a name from the log points to a file or directory that does
1932 * not exist in the FS, it is skipped. fsyncs on directories
1933 * do not force down inodes inside that directory, just changes to the
1934 * names or unlinks in a directory.
bb53eda9
FM
1935 *
1936 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1937 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1938 */
1939static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1940 struct btrfs_root *root,
1941 struct btrfs_path *path,
1942 struct extent_buffer *eb,
1943 struct btrfs_dir_item *di,
1944 struct btrfs_key *key)
1945{
1946 char *name;
1947 int name_len;
1948 struct btrfs_dir_item *dst_di;
1949 struct btrfs_key found_key;
1950 struct btrfs_key log_key;
1951 struct inode *dir;
e02119d5 1952 u8 log_type;
cfd31269
FM
1953 bool exists;
1954 int ret;
d555438b 1955 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1956 bool name_added = false;
e02119d5
CM
1957
1958 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1959 if (!dir)
1960 return -EIO;
e02119d5
CM
1961
1962 name_len = btrfs_dir_name_len(eb, di);
1963 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1964 if (!name) {
1965 ret = -ENOMEM;
1966 goto out;
1967 }
2a29edc6 1968
e02119d5
CM
1969 log_type = btrfs_dir_type(eb, di);
1970 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1971 name_len);
1972
1973 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 1974 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 1975 btrfs_release_path(path);
cfd31269
FM
1976 if (ret < 0)
1977 goto out;
1978 exists = (ret == 0);
1979 ret = 0;
4bef0848 1980
e02119d5
CM
1981 if (key->type == BTRFS_DIR_ITEM_KEY) {
1982 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1983 name, name_len, 1);
d397712b 1984 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1985 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1986 key->objectid,
1987 key->offset, name,
1988 name_len, 1);
1989 } else {
3650860b
JB
1990 /* Corruption */
1991 ret = -EINVAL;
1992 goto out;
e02119d5 1993 }
e15ac641 1994
e15ac641
FM
1995 if (IS_ERR(dst_di)) {
1996 ret = PTR_ERR(dst_di);
1997 goto out;
1998 } else if (!dst_di) {
e02119d5
CM
1999 /* we need a sequence number to insert, so we only
2000 * do inserts for the BTRFS_DIR_INDEX_KEY types
2001 */
2002 if (key->type != BTRFS_DIR_INDEX_KEY)
2003 goto out;
2004 goto insert;
2005 }
2006
2007 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2008 /* the existing item matches the logged item */
2009 if (found_key.objectid == log_key.objectid &&
2010 found_key.type == log_key.type &&
2011 found_key.offset == log_key.offset &&
2012 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 2013 update_size = false;
e02119d5
CM
2014 goto out;
2015 }
2016
2017 /*
2018 * don't drop the conflicting directory entry if the inode
2019 * for the new entry doesn't exist
2020 */
4bef0848 2021 if (!exists)
e02119d5
CM
2022 goto out;
2023
207e7d92 2024 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
2025 if (ret)
2026 goto out;
e02119d5
CM
2027
2028 if (key->type == BTRFS_DIR_INDEX_KEY)
2029 goto insert;
2030out:
b3b4aa74 2031 btrfs_release_path(path);
d555438b 2032 if (!ret && update_size) {
6ef06d27 2033 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
9a56fcd1 2034 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
d555438b 2035 }
e02119d5
CM
2036 kfree(name);
2037 iput(dir);
bb53eda9
FM
2038 if (!ret && name_added)
2039 ret = 1;
3650860b 2040 return ret;
e02119d5
CM
2041
2042insert:
725af92a
NB
2043 /*
2044 * Check if the inode reference exists in the log for the given name,
2045 * inode and parent inode
2046 */
2047 found_key.objectid = log_key.objectid;
2048 found_key.type = BTRFS_INODE_REF_KEY;
2049 found_key.offset = key->objectid;
2050 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2051 if (ret < 0) {
2052 goto out;
2053 } else if (ret) {
2054 /* The dentry will be added later. */
2055 ret = 0;
2056 update_size = false;
2057 goto out;
2058 }
2059
2060 found_key.objectid = log_key.objectid;
2061 found_key.type = BTRFS_INODE_EXTREF_KEY;
2062 found_key.offset = key->objectid;
2063 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2064 name_len);
2065 if (ret < 0) {
2066 goto out;
2067 } else if (ret) {
df8d116f
FM
2068 /* The dentry will be added later. */
2069 ret = 0;
2070 update_size = false;
2071 goto out;
2072 }
b3b4aa74 2073 btrfs_release_path(path);
60d53eb3
Z
2074 ret = insert_one_name(trans, root, key->objectid, key->offset,
2075 name, name_len, &log_key);
df8d116f 2076 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2077 goto out;
bb53eda9
FM
2078 if (!ret)
2079 name_added = true;
d555438b 2080 update_size = false;
3650860b 2081 ret = 0;
e02119d5
CM
2082 goto out;
2083}
2084
2085/*
2086 * find all the names in a directory item and reconcile them into
2087 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2088 * one name in a directory item, but the same code gets used for
2089 * both directory index types
2090 */
2091static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2092 struct btrfs_root *root,
2093 struct btrfs_path *path,
2094 struct extent_buffer *eb, int slot,
2095 struct btrfs_key *key)
2096{
bb53eda9 2097 int ret = 0;
e02119d5
CM
2098 u32 item_size = btrfs_item_size_nr(eb, slot);
2099 struct btrfs_dir_item *di;
2100 int name_len;
2101 unsigned long ptr;
2102 unsigned long ptr_end;
bb53eda9 2103 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2104
2105 ptr = btrfs_item_ptr_offset(eb, slot);
2106 ptr_end = ptr + item_size;
d397712b 2107 while (ptr < ptr_end) {
e02119d5
CM
2108 di = (struct btrfs_dir_item *)ptr;
2109 name_len = btrfs_dir_name_len(eb, di);
2110 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2111 if (ret < 0)
2112 break;
e02119d5
CM
2113 ptr = (unsigned long)(di + 1);
2114 ptr += name_len;
bb53eda9
FM
2115
2116 /*
2117 * If this entry refers to a non-directory (directories can not
2118 * have a link count > 1) and it was added in the transaction
2119 * that was not committed, make sure we fixup the link count of
2120 * the inode it the entry points to. Otherwise something like
2121 * the following would result in a directory pointing to an
2122 * inode with a wrong link that does not account for this dir
2123 * entry:
2124 *
2125 * mkdir testdir
2126 * touch testdir/foo
2127 * touch testdir/bar
2128 * sync
2129 *
2130 * ln testdir/bar testdir/bar_link
2131 * ln testdir/foo testdir/foo_link
2132 * xfs_io -c "fsync" testdir/bar
2133 *
2134 * <power failure>
2135 *
2136 * mount fs, log replay happens
2137 *
2138 * File foo would remain with a link count of 1 when it has two
2139 * entries pointing to it in the directory testdir. This would
2140 * make it impossible to ever delete the parent directory has
2141 * it would result in stale dentries that can never be deleted.
2142 */
2143 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2144 struct btrfs_key di_key;
2145
2146 if (!fixup_path) {
2147 fixup_path = btrfs_alloc_path();
2148 if (!fixup_path) {
2149 ret = -ENOMEM;
2150 break;
2151 }
2152 }
2153
2154 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2155 ret = link_to_fixup_dir(trans, root, fixup_path,
2156 di_key.objectid);
2157 if (ret)
2158 break;
2159 }
2160 ret = 0;
e02119d5 2161 }
bb53eda9
FM
2162 btrfs_free_path(fixup_path);
2163 return ret;
e02119d5
CM
2164}
2165
2166/*
2167 * directory replay has two parts. There are the standard directory
2168 * items in the log copied from the subvolume, and range items
2169 * created in the log while the subvolume was logged.
2170 *
2171 * The range items tell us which parts of the key space the log
2172 * is authoritative for. During replay, if a key in the subvolume
2173 * directory is in a logged range item, but not actually in the log
2174 * that means it was deleted from the directory before the fsync
2175 * and should be removed.
2176 */
2177static noinline int find_dir_range(struct btrfs_root *root,
2178 struct btrfs_path *path,
2179 u64 dirid, int key_type,
2180 u64 *start_ret, u64 *end_ret)
2181{
2182 struct btrfs_key key;
2183 u64 found_end;
2184 struct btrfs_dir_log_item *item;
2185 int ret;
2186 int nritems;
2187
2188 if (*start_ret == (u64)-1)
2189 return 1;
2190
2191 key.objectid = dirid;
2192 key.type = key_type;
2193 key.offset = *start_ret;
2194
2195 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2196 if (ret < 0)
2197 goto out;
2198 if (ret > 0) {
2199 if (path->slots[0] == 0)
2200 goto out;
2201 path->slots[0]--;
2202 }
2203 if (ret != 0)
2204 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2205
2206 if (key.type != key_type || key.objectid != dirid) {
2207 ret = 1;
2208 goto next;
2209 }
2210 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2211 struct btrfs_dir_log_item);
2212 found_end = btrfs_dir_log_end(path->nodes[0], item);
2213
2214 if (*start_ret >= key.offset && *start_ret <= found_end) {
2215 ret = 0;
2216 *start_ret = key.offset;
2217 *end_ret = found_end;
2218 goto out;
2219 }
2220 ret = 1;
2221next:
2222 /* check the next slot in the tree to see if it is a valid item */
2223 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2224 path->slots[0]++;
e02119d5
CM
2225 if (path->slots[0] >= nritems) {
2226 ret = btrfs_next_leaf(root, path);
2227 if (ret)
2228 goto out;
e02119d5
CM
2229 }
2230
2231 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2232
2233 if (key.type != key_type || key.objectid != dirid) {
2234 ret = 1;
2235 goto out;
2236 }
2237 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2238 struct btrfs_dir_log_item);
2239 found_end = btrfs_dir_log_end(path->nodes[0], item);
2240 *start_ret = key.offset;
2241 *end_ret = found_end;
2242 ret = 0;
2243out:
b3b4aa74 2244 btrfs_release_path(path);
e02119d5
CM
2245 return ret;
2246}
2247
2248/*
2249 * this looks for a given directory item in the log. If the directory
2250 * item is not in the log, the item is removed and the inode it points
2251 * to is unlinked
2252 */
2253static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2254 struct btrfs_root *root,
2255 struct btrfs_root *log,
2256 struct btrfs_path *path,
2257 struct btrfs_path *log_path,
2258 struct inode *dir,
2259 struct btrfs_key *dir_key)
2260{
2261 int ret;
2262 struct extent_buffer *eb;
2263 int slot;
2264 u32 item_size;
2265 struct btrfs_dir_item *di;
2266 struct btrfs_dir_item *log_di;
2267 int name_len;
2268 unsigned long ptr;
2269 unsigned long ptr_end;
2270 char *name;
2271 struct inode *inode;
2272 struct btrfs_key location;
2273
2274again:
2275 eb = path->nodes[0];
2276 slot = path->slots[0];
2277 item_size = btrfs_item_size_nr(eb, slot);
2278 ptr = btrfs_item_ptr_offset(eb, slot);
2279 ptr_end = ptr + item_size;
d397712b 2280 while (ptr < ptr_end) {
e02119d5
CM
2281 di = (struct btrfs_dir_item *)ptr;
2282 name_len = btrfs_dir_name_len(eb, di);
2283 name = kmalloc(name_len, GFP_NOFS);
2284 if (!name) {
2285 ret = -ENOMEM;
2286 goto out;
2287 }
2288 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2289 name_len);
2290 log_di = NULL;
12fcfd22 2291 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2292 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2293 dir_key->objectid,
2294 name, name_len, 0);
12fcfd22 2295 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2296 log_di = btrfs_lookup_dir_index_item(trans, log,
2297 log_path,
2298 dir_key->objectid,
2299 dir_key->offset,
2300 name, name_len, 0);
2301 }
8dcbc261 2302 if (!log_di) {
e02119d5 2303 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2304 btrfs_release_path(path);
2305 btrfs_release_path(log_path);
e02119d5 2306 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2307 if (!inode) {
2308 kfree(name);
2309 return -EIO;
2310 }
e02119d5
CM
2311
2312 ret = link_to_fixup_dir(trans, root,
2313 path, location.objectid);
3650860b
JB
2314 if (ret) {
2315 kfree(name);
2316 iput(inode);
2317 goto out;
2318 }
2319
8b558c5f 2320 inc_nlink(inode);
4ec5934e
NB
2321 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2322 BTRFS_I(inode), name, name_len);
3650860b 2323 if (!ret)
e5c304e6 2324 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2325 kfree(name);
2326 iput(inode);
3650860b
JB
2327 if (ret)
2328 goto out;
e02119d5
CM
2329
2330 /* there might still be more names under this key
2331 * check and repeat if required
2332 */
2333 ret = btrfs_search_slot(NULL, root, dir_key, path,
2334 0, 0);
2335 if (ret == 0)
2336 goto again;
2337 ret = 0;
2338 goto out;
269d040f
FDBM
2339 } else if (IS_ERR(log_di)) {
2340 kfree(name);
2341 return PTR_ERR(log_di);
e02119d5 2342 }
b3b4aa74 2343 btrfs_release_path(log_path);
e02119d5
CM
2344 kfree(name);
2345
2346 ptr = (unsigned long)(di + 1);
2347 ptr += name_len;
2348 }
2349 ret = 0;
2350out:
b3b4aa74
DS
2351 btrfs_release_path(path);
2352 btrfs_release_path(log_path);
e02119d5
CM
2353 return ret;
2354}
2355
4f764e51
FM
2356static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2357 struct btrfs_root *root,
2358 struct btrfs_root *log,
2359 struct btrfs_path *path,
2360 const u64 ino)
2361{
2362 struct btrfs_key search_key;
2363 struct btrfs_path *log_path;
2364 int i;
2365 int nritems;
2366 int ret;
2367
2368 log_path = btrfs_alloc_path();
2369 if (!log_path)
2370 return -ENOMEM;
2371
2372 search_key.objectid = ino;
2373 search_key.type = BTRFS_XATTR_ITEM_KEY;
2374 search_key.offset = 0;
2375again:
2376 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2377 if (ret < 0)
2378 goto out;
2379process_leaf:
2380 nritems = btrfs_header_nritems(path->nodes[0]);
2381 for (i = path->slots[0]; i < nritems; i++) {
2382 struct btrfs_key key;
2383 struct btrfs_dir_item *di;
2384 struct btrfs_dir_item *log_di;
2385 u32 total_size;
2386 u32 cur;
2387
2388 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2389 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2390 ret = 0;
2391 goto out;
2392 }
2393
2394 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2395 total_size = btrfs_item_size_nr(path->nodes[0], i);
2396 cur = 0;
2397 while (cur < total_size) {
2398 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2399 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2400 u32 this_len = sizeof(*di) + name_len + data_len;
2401 char *name;
2402
2403 name = kmalloc(name_len, GFP_NOFS);
2404 if (!name) {
2405 ret = -ENOMEM;
2406 goto out;
2407 }
2408 read_extent_buffer(path->nodes[0], name,
2409 (unsigned long)(di + 1), name_len);
2410
2411 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2412 name, name_len, 0);
2413 btrfs_release_path(log_path);
2414 if (!log_di) {
2415 /* Doesn't exist in log tree, so delete it. */
2416 btrfs_release_path(path);
2417 di = btrfs_lookup_xattr(trans, root, path, ino,
2418 name, name_len, -1);
2419 kfree(name);
2420 if (IS_ERR(di)) {
2421 ret = PTR_ERR(di);
2422 goto out;
2423 }
2424 ASSERT(di);
2425 ret = btrfs_delete_one_dir_name(trans, root,
2426 path, di);
2427 if (ret)
2428 goto out;
2429 btrfs_release_path(path);
2430 search_key = key;
2431 goto again;
2432 }
2433 kfree(name);
2434 if (IS_ERR(log_di)) {
2435 ret = PTR_ERR(log_di);
2436 goto out;
2437 }
2438 cur += this_len;
2439 di = (struct btrfs_dir_item *)((char *)di + this_len);
2440 }
2441 }
2442 ret = btrfs_next_leaf(root, path);
2443 if (ret > 0)
2444 ret = 0;
2445 else if (ret == 0)
2446 goto process_leaf;
2447out:
2448 btrfs_free_path(log_path);
2449 btrfs_release_path(path);
2450 return ret;
2451}
2452
2453
e02119d5
CM
2454/*
2455 * deletion replay happens before we copy any new directory items
2456 * out of the log or out of backreferences from inodes. It
2457 * scans the log to find ranges of keys that log is authoritative for,
2458 * and then scans the directory to find items in those ranges that are
2459 * not present in the log.
2460 *
2461 * Anything we don't find in the log is unlinked and removed from the
2462 * directory.
2463 */
2464static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2465 struct btrfs_root *root,
2466 struct btrfs_root *log,
2467 struct btrfs_path *path,
12fcfd22 2468 u64 dirid, int del_all)
e02119d5
CM
2469{
2470 u64 range_start;
2471 u64 range_end;
2472 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2473 int ret = 0;
2474 struct btrfs_key dir_key;
2475 struct btrfs_key found_key;
2476 struct btrfs_path *log_path;
2477 struct inode *dir;
2478
2479 dir_key.objectid = dirid;
2480 dir_key.type = BTRFS_DIR_ITEM_KEY;
2481 log_path = btrfs_alloc_path();
2482 if (!log_path)
2483 return -ENOMEM;
2484
2485 dir = read_one_inode(root, dirid);
2486 /* it isn't an error if the inode isn't there, that can happen
2487 * because we replay the deletes before we copy in the inode item
2488 * from the log
2489 */
2490 if (!dir) {
2491 btrfs_free_path(log_path);
2492 return 0;
2493 }
2494again:
2495 range_start = 0;
2496 range_end = 0;
d397712b 2497 while (1) {
12fcfd22
CM
2498 if (del_all)
2499 range_end = (u64)-1;
2500 else {
2501 ret = find_dir_range(log, path, dirid, key_type,
2502 &range_start, &range_end);
2503 if (ret != 0)
2504 break;
2505 }
e02119d5
CM
2506
2507 dir_key.offset = range_start;
d397712b 2508 while (1) {
e02119d5
CM
2509 int nritems;
2510 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2511 0, 0);
2512 if (ret < 0)
2513 goto out;
2514
2515 nritems = btrfs_header_nritems(path->nodes[0]);
2516 if (path->slots[0] >= nritems) {
2517 ret = btrfs_next_leaf(root, path);
b98def7c 2518 if (ret == 1)
e02119d5 2519 break;
b98def7c
LB
2520 else if (ret < 0)
2521 goto out;
e02119d5
CM
2522 }
2523 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2524 path->slots[0]);
2525 if (found_key.objectid != dirid ||
2526 found_key.type != dir_key.type)
2527 goto next_type;
2528
2529 if (found_key.offset > range_end)
2530 break;
2531
2532 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2533 log_path, dir,
2534 &found_key);
3650860b
JB
2535 if (ret)
2536 goto out;
e02119d5
CM
2537 if (found_key.offset == (u64)-1)
2538 break;
2539 dir_key.offset = found_key.offset + 1;
2540 }
b3b4aa74 2541 btrfs_release_path(path);
e02119d5
CM
2542 if (range_end == (u64)-1)
2543 break;
2544 range_start = range_end + 1;
2545 }
2546
2547next_type:
2548 ret = 0;
2549 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2550 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2551 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2552 btrfs_release_path(path);
e02119d5
CM
2553 goto again;
2554 }
2555out:
b3b4aa74 2556 btrfs_release_path(path);
e02119d5
CM
2557 btrfs_free_path(log_path);
2558 iput(dir);
2559 return ret;
2560}
2561
2562/*
2563 * the process_func used to replay items from the log tree. This
2564 * gets called in two different stages. The first stage just looks
2565 * for inodes and makes sure they are all copied into the subvolume.
2566 *
2567 * The second stage copies all the other item types from the log into
2568 * the subvolume. The two stage approach is slower, but gets rid of
2569 * lots of complexity around inodes referencing other inodes that exist
2570 * only in the log (references come from either directory items or inode
2571 * back refs).
2572 */
2573static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2574 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2575{
2576 int nritems;
2577 struct btrfs_path *path;
2578 struct btrfs_root *root = wc->replay_dest;
2579 struct btrfs_key key;
e02119d5
CM
2580 int i;
2581 int ret;
2582
581c1760 2583 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2584 if (ret)
2585 return ret;
e02119d5
CM
2586
2587 level = btrfs_header_level(eb);
2588
2589 if (level != 0)
2590 return 0;
2591
2592 path = btrfs_alloc_path();
1e5063d0
MF
2593 if (!path)
2594 return -ENOMEM;
e02119d5
CM
2595
2596 nritems = btrfs_header_nritems(eb);
2597 for (i = 0; i < nritems; i++) {
2598 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2599
2600 /* inode keys are done during the first stage */
2601 if (key.type == BTRFS_INODE_ITEM_KEY &&
2602 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2603 struct btrfs_inode_item *inode_item;
2604 u32 mode;
2605
2606 inode_item = btrfs_item_ptr(eb, i,
2607 struct btrfs_inode_item);
f2d72f42
FM
2608 /*
2609 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2610 * and never got linked before the fsync, skip it, as
2611 * replaying it is pointless since it would be deleted
2612 * later. We skip logging tmpfiles, but it's always
2613 * possible we are replaying a log created with a kernel
2614 * that used to log tmpfiles.
2615 */
2616 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2617 wc->ignore_cur_inode = true;
2618 continue;
2619 } else {
2620 wc->ignore_cur_inode = false;
2621 }
4f764e51
FM
2622 ret = replay_xattr_deletes(wc->trans, root, log,
2623 path, key.objectid);
2624 if (ret)
2625 break;
e02119d5
CM
2626 mode = btrfs_inode_mode(eb, inode_item);
2627 if (S_ISDIR(mode)) {
2628 ret = replay_dir_deletes(wc->trans,
12fcfd22 2629 root, log, path, key.objectid, 0);
b50c6e25
JB
2630 if (ret)
2631 break;
e02119d5
CM
2632 }
2633 ret = overwrite_item(wc->trans, root, path,
2634 eb, i, &key);
b50c6e25
JB
2635 if (ret)
2636 break;
e02119d5 2637
471d557a
FM
2638 /*
2639 * Before replaying extents, truncate the inode to its
2640 * size. We need to do it now and not after log replay
2641 * because before an fsync we can have prealloc extents
2642 * added beyond the inode's i_size. If we did it after,
2643 * through orphan cleanup for example, we would drop
2644 * those prealloc extents just after replaying them.
e02119d5
CM
2645 */
2646 if (S_ISREG(mode)) {
5893dfb9 2647 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2648 struct inode *inode;
2649 u64 from;
2650
2651 inode = read_one_inode(root, key.objectid);
2652 if (!inode) {
2653 ret = -EIO;
2654 break;
2655 }
2656 from = ALIGN(i_size_read(inode),
2657 root->fs_info->sectorsize);
5893dfb9
FM
2658 drop_args.start = from;
2659 drop_args.end = (u64)-1;
2660 drop_args.drop_cache = true;
2661 ret = btrfs_drop_extents(wc->trans, root,
2662 BTRFS_I(inode),
2663 &drop_args);
471d557a 2664 if (!ret) {
2766ff61
FM
2665 inode_sub_bytes(inode,
2666 drop_args.bytes_found);
f2d72f42 2667 /* Update the inode's nbytes. */
471d557a 2668 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2669 root, BTRFS_I(inode));
471d557a
FM
2670 }
2671 iput(inode);
b50c6e25
JB
2672 if (ret)
2673 break;
e02119d5 2674 }
c71bf099 2675
e02119d5
CM
2676 ret = link_to_fixup_dir(wc->trans, root,
2677 path, key.objectid);
b50c6e25
JB
2678 if (ret)
2679 break;
e02119d5 2680 }
dd8e7217 2681
f2d72f42
FM
2682 if (wc->ignore_cur_inode)
2683 continue;
2684
dd8e7217
JB
2685 if (key.type == BTRFS_DIR_INDEX_KEY &&
2686 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2687 ret = replay_one_dir_item(wc->trans, root, path,
2688 eb, i, &key);
2689 if (ret)
2690 break;
2691 }
2692
e02119d5
CM
2693 if (wc->stage < LOG_WALK_REPLAY_ALL)
2694 continue;
2695
2696 /* these keys are simply copied */
2697 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2698 ret = overwrite_item(wc->trans, root, path,
2699 eb, i, &key);
b50c6e25
JB
2700 if (ret)
2701 break;
2da1c669
LB
2702 } else if (key.type == BTRFS_INODE_REF_KEY ||
2703 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2704 ret = add_inode_ref(wc->trans, root, log, path,
2705 eb, i, &key);
b50c6e25
JB
2706 if (ret && ret != -ENOENT)
2707 break;
2708 ret = 0;
e02119d5
CM
2709 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2710 ret = replay_one_extent(wc->trans, root, path,
2711 eb, i, &key);
b50c6e25
JB
2712 if (ret)
2713 break;
dd8e7217 2714 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2715 ret = replay_one_dir_item(wc->trans, root, path,
2716 eb, i, &key);
b50c6e25
JB
2717 if (ret)
2718 break;
e02119d5
CM
2719 }
2720 }
2721 btrfs_free_path(path);
b50c6e25 2722 return ret;
e02119d5
CM
2723}
2724
6787bb9f
NB
2725/*
2726 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2727 */
2728static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2729{
2730 struct btrfs_block_group *cache;
2731
2732 cache = btrfs_lookup_block_group(fs_info, start);
2733 if (!cache) {
2734 btrfs_err(fs_info, "unable to find block group for %llu", start);
2735 return;
2736 }
2737
2738 spin_lock(&cache->space_info->lock);
2739 spin_lock(&cache->lock);
2740 cache->reserved -= fs_info->nodesize;
2741 cache->space_info->bytes_reserved -= fs_info->nodesize;
2742 spin_unlock(&cache->lock);
2743 spin_unlock(&cache->space_info->lock);
2744
2745 btrfs_put_block_group(cache);
2746}
2747
d397712b 2748static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2749 struct btrfs_root *root,
2750 struct btrfs_path *path, int *level,
2751 struct walk_control *wc)
2752{
0b246afa 2753 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2754 u64 bytenr;
2755 u64 ptr_gen;
2756 struct extent_buffer *next;
2757 struct extent_buffer *cur;
e02119d5
CM
2758 u32 blocksize;
2759 int ret = 0;
2760
d397712b 2761 while (*level > 0) {
581c1760
QW
2762 struct btrfs_key first_key;
2763
e02119d5
CM
2764 cur = path->nodes[*level];
2765
fae7f21c 2766 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2767
2768 if (path->slots[*level] >=
2769 btrfs_header_nritems(cur))
2770 break;
2771
2772 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2773 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2774 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2775 blocksize = fs_info->nodesize;
e02119d5 2776
3fbaf258
JB
2777 next = btrfs_find_create_tree_block(fs_info, bytenr,
2778 btrfs_header_owner(cur),
2779 *level - 1);
c871b0f2
LB
2780 if (IS_ERR(next))
2781 return PTR_ERR(next);
e02119d5 2782
e02119d5 2783 if (*level == 1) {
581c1760
QW
2784 ret = wc->process_func(root, next, wc, ptr_gen,
2785 *level - 1);
b50c6e25
JB
2786 if (ret) {
2787 free_extent_buffer(next);
1e5063d0 2788 return ret;
b50c6e25 2789 }
4a500fd1 2790
e02119d5
CM
2791 path->slots[*level]++;
2792 if (wc->free) {
581c1760
QW
2793 ret = btrfs_read_buffer(next, ptr_gen,
2794 *level - 1, &first_key);
018642a1
TI
2795 if (ret) {
2796 free_extent_buffer(next);
2797 return ret;
2798 }
e02119d5 2799
681ae509
JB
2800 if (trans) {
2801 btrfs_tree_lock(next);
6a884d7d 2802 btrfs_clean_tree_block(next);
681ae509
JB
2803 btrfs_wait_tree_block_writeback(next);
2804 btrfs_tree_unlock(next);
7bfc1007 2805 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2806 bytenr, blocksize);
2807 if (ret) {
2808 free_extent_buffer(next);
2809 return ret;
2810 }
d3575156
NA
2811 btrfs_redirty_list_add(
2812 trans->transaction, next);
1846430c
LB
2813 } else {
2814 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2815 clear_extent_buffer_dirty(next);
10e958d5 2816 unaccount_log_buffer(fs_info, bytenr);
3650860b 2817 }
e02119d5
CM
2818 }
2819 free_extent_buffer(next);
2820 continue;
2821 }
581c1760 2822 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2823 if (ret) {
2824 free_extent_buffer(next);
2825 return ret;
2826 }
e02119d5 2827
e02119d5
CM
2828 if (path->nodes[*level-1])
2829 free_extent_buffer(path->nodes[*level-1]);
2830 path->nodes[*level-1] = next;
2831 *level = btrfs_header_level(next);
2832 path->slots[*level] = 0;
2833 cond_resched();
2834 }
4a500fd1 2835 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2836
2837 cond_resched();
2838 return 0;
2839}
2840
d397712b 2841static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2842 struct btrfs_root *root,
2843 struct btrfs_path *path, int *level,
2844 struct walk_control *wc)
2845{
0b246afa 2846 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2847 int i;
2848 int slot;
2849 int ret;
2850
d397712b 2851 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2852 slot = path->slots[i];
4a500fd1 2853 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2854 path->slots[i]++;
2855 *level = i;
2856 WARN_ON(*level == 0);
2857 return 0;
2858 } else {
1e5063d0 2859 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2860 btrfs_header_generation(path->nodes[*level]),
2861 *level);
1e5063d0
MF
2862 if (ret)
2863 return ret;
2864
e02119d5
CM
2865 if (wc->free) {
2866 struct extent_buffer *next;
2867
2868 next = path->nodes[*level];
2869
681ae509
JB
2870 if (trans) {
2871 btrfs_tree_lock(next);
6a884d7d 2872 btrfs_clean_tree_block(next);
681ae509
JB
2873 btrfs_wait_tree_block_writeback(next);
2874 btrfs_tree_unlock(next);
7bfc1007 2875 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2876 path->nodes[*level]->start,
2877 path->nodes[*level]->len);
2878 if (ret)
2879 return ret;
1846430c
LB
2880 } else {
2881 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2882 clear_extent_buffer_dirty(next);
e02119d5 2883
10e958d5
NB
2884 unaccount_log_buffer(fs_info,
2885 path->nodes[*level]->start);
2886 }
e02119d5
CM
2887 }
2888 free_extent_buffer(path->nodes[*level]);
2889 path->nodes[*level] = NULL;
2890 *level = i + 1;
2891 }
2892 }
2893 return 1;
2894}
2895
2896/*
2897 * drop the reference count on the tree rooted at 'snap'. This traverses
2898 * the tree freeing any blocks that have a ref count of zero after being
2899 * decremented.
2900 */
2901static int walk_log_tree(struct btrfs_trans_handle *trans,
2902 struct btrfs_root *log, struct walk_control *wc)
2903{
2ff7e61e 2904 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2905 int ret = 0;
2906 int wret;
2907 int level;
2908 struct btrfs_path *path;
e02119d5
CM
2909 int orig_level;
2910
2911 path = btrfs_alloc_path();
db5b493a
TI
2912 if (!path)
2913 return -ENOMEM;
e02119d5
CM
2914
2915 level = btrfs_header_level(log->node);
2916 orig_level = level;
2917 path->nodes[level] = log->node;
67439dad 2918 atomic_inc(&log->node->refs);
e02119d5
CM
2919 path->slots[level] = 0;
2920
d397712b 2921 while (1) {
e02119d5
CM
2922 wret = walk_down_log_tree(trans, log, path, &level, wc);
2923 if (wret > 0)
2924 break;
79787eaa 2925 if (wret < 0) {
e02119d5 2926 ret = wret;
79787eaa
JM
2927 goto out;
2928 }
e02119d5
CM
2929
2930 wret = walk_up_log_tree(trans, log, path, &level, wc);
2931 if (wret > 0)
2932 break;
79787eaa 2933 if (wret < 0) {
e02119d5 2934 ret = wret;
79787eaa
JM
2935 goto out;
2936 }
e02119d5
CM
2937 }
2938
2939 /* was the root node processed? if not, catch it here */
2940 if (path->nodes[orig_level]) {
79787eaa 2941 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2942 btrfs_header_generation(path->nodes[orig_level]),
2943 orig_level);
79787eaa
JM
2944 if (ret)
2945 goto out;
e02119d5
CM
2946 if (wc->free) {
2947 struct extent_buffer *next;
2948
2949 next = path->nodes[orig_level];
2950
681ae509
JB
2951 if (trans) {
2952 btrfs_tree_lock(next);
6a884d7d 2953 btrfs_clean_tree_block(next);
681ae509
JB
2954 btrfs_wait_tree_block_writeback(next);
2955 btrfs_tree_unlock(next);
7bfc1007 2956 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2957 next->start, next->len);
2958 if (ret)
2959 goto out;
1846430c
LB
2960 } else {
2961 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2962 clear_extent_buffer_dirty(next);
10e958d5 2963 unaccount_log_buffer(fs_info, next->start);
681ae509 2964 }
e02119d5
CM
2965 }
2966 }
2967
79787eaa 2968out:
e02119d5 2969 btrfs_free_path(path);
e02119d5
CM
2970 return ret;
2971}
2972
7237f183
YZ
2973/*
2974 * helper function to update the item for a given subvolumes log root
2975 * in the tree of log roots
2976 */
2977static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2978 struct btrfs_root *log,
2979 struct btrfs_root_item *root_item)
7237f183 2980{
0b246afa 2981 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2982 int ret;
2983
2984 if (log->log_transid == 1) {
2985 /* insert root item on the first sync */
0b246afa 2986 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2987 &log->root_key, root_item);
7237f183 2988 } else {
0b246afa 2989 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2990 &log->root_key, root_item);
7237f183
YZ
2991 }
2992 return ret;
2993}
2994
60d53eb3 2995static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2996{
2997 DEFINE_WAIT(wait);
7237f183 2998 int index = transid % 2;
e02119d5 2999
7237f183
YZ
3000 /*
3001 * we only allow two pending log transactions at a time,
3002 * so we know that if ours is more than 2 older than the
3003 * current transaction, we're done
3004 */
49e83f57 3005 for (;;) {
7237f183
YZ
3006 prepare_to_wait(&root->log_commit_wait[index],
3007 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 3008
49e83f57
LB
3009 if (!(root->log_transid_committed < transid &&
3010 atomic_read(&root->log_commit[index])))
3011 break;
12fcfd22 3012
49e83f57
LB
3013 mutex_unlock(&root->log_mutex);
3014 schedule();
7237f183 3015 mutex_lock(&root->log_mutex);
49e83f57
LB
3016 }
3017 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
3018}
3019
60d53eb3 3020static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
3021{
3022 DEFINE_WAIT(wait);
8b050d35 3023
49e83f57
LB
3024 for (;;) {
3025 prepare_to_wait(&root->log_writer_wait, &wait,
3026 TASK_UNINTERRUPTIBLE);
3027 if (!atomic_read(&root->log_writers))
3028 break;
3029
7237f183 3030 mutex_unlock(&root->log_mutex);
49e83f57 3031 schedule();
575849ec 3032 mutex_lock(&root->log_mutex);
7237f183 3033 }
49e83f57 3034 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
3035}
3036
8b050d35
MX
3037static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3038 struct btrfs_log_ctx *ctx)
3039{
8b050d35
MX
3040 mutex_lock(&root->log_mutex);
3041 list_del_init(&ctx->list);
3042 mutex_unlock(&root->log_mutex);
3043}
3044
3045/*
3046 * Invoked in log mutex context, or be sure there is no other task which
3047 * can access the list.
3048 */
3049static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3050 int index, int error)
3051{
3052 struct btrfs_log_ctx *ctx;
570dd450 3053 struct btrfs_log_ctx *safe;
8b050d35 3054
570dd450
CM
3055 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3056 list_del_init(&ctx->list);
8b050d35 3057 ctx->log_ret = error;
570dd450 3058 }
8b050d35
MX
3059}
3060
e02119d5
CM
3061/*
3062 * btrfs_sync_log does sends a given tree log down to the disk and
3063 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3064 * you know that any inodes previously logged are safely on disk only
3065 * if it returns 0.
3066 *
3067 * Any other return value means you need to call btrfs_commit_transaction.
3068 * Some of the edge cases for fsyncing directories that have had unlinks
3069 * or renames done in the past mean that sometimes the only safe
3070 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3071 * that has happened.
e02119d5
CM
3072 */
3073int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3074 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3075{
7237f183
YZ
3076 int index1;
3077 int index2;
8cef4e16 3078 int mark;
e02119d5 3079 int ret;
0b246afa 3080 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3081 struct btrfs_root *log = root->log_root;
0b246afa 3082 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3083 struct btrfs_root_item new_root_item;
bb14a59b 3084 int log_transid = 0;
8b050d35 3085 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3086 struct blk_plug plug;
47876f7c
FM
3087 u64 log_root_start;
3088 u64 log_root_level;
e02119d5 3089
7237f183 3090 mutex_lock(&root->log_mutex);
d1433deb
MX
3091 log_transid = ctx->log_transid;
3092 if (root->log_transid_committed >= log_transid) {
3093 mutex_unlock(&root->log_mutex);
3094 return ctx->log_ret;
3095 }
3096
3097 index1 = log_transid % 2;
7237f183 3098 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3099 wait_log_commit(root, log_transid);
7237f183 3100 mutex_unlock(&root->log_mutex);
8b050d35 3101 return ctx->log_ret;
e02119d5 3102 }
d1433deb 3103 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3104 atomic_set(&root->log_commit[index1], 1);
3105
3106 /* wait for previous tree log sync to complete */
3107 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3108 wait_log_commit(root, log_transid - 1);
48cab2e0 3109
86df7eb9 3110 while (1) {
2ecb7923 3111 int batch = atomic_read(&root->log_batch);
cd354ad6 3112 /* when we're on an ssd, just kick the log commit out */
0b246afa 3113 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3114 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3115 mutex_unlock(&root->log_mutex);
3116 schedule_timeout_uninterruptible(1);
3117 mutex_lock(&root->log_mutex);
3118 }
60d53eb3 3119 wait_for_writer(root);
2ecb7923 3120 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3121 break;
3122 }
e02119d5 3123
12fcfd22 3124 /* bail out if we need to do a full commit */
4884b8e8 3125 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3126 ret = -EAGAIN;
3127 mutex_unlock(&root->log_mutex);
3128 goto out;
3129 }
3130
8cef4e16
YZ
3131 if (log_transid % 2 == 0)
3132 mark = EXTENT_DIRTY;
3133 else
3134 mark = EXTENT_NEW;
3135
690587d1
CM
3136 /* we start IO on all the marked extents here, but we don't actually
3137 * wait for them until later.
3138 */
c6adc9cc 3139 blk_start_plug(&plug);
2ff7e61e 3140 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
3141 /*
3142 * -EAGAIN happens when someone, e.g., a concurrent transaction
3143 * commit, writes a dirty extent in this tree-log commit. This
3144 * concurrent write will create a hole writing out the extents,
3145 * and we cannot proceed on a zoned filesystem, requiring
3146 * sequential writing. While we can bail out to a full commit
3147 * here, but we can continue hoping the concurrent writing fills
3148 * the hole.
3149 */
3150 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3151 ret = 0;
79787eaa 3152 if (ret) {
c6adc9cc 3153 blk_finish_plug(&plug);
66642832 3154 btrfs_abort_transaction(trans, ret);
90787766 3155 btrfs_set_log_full_commit(trans);
79787eaa
JM
3156 mutex_unlock(&root->log_mutex);
3157 goto out;
3158 }
7237f183 3159
4203e968
JB
3160 /*
3161 * We _must_ update under the root->log_mutex in order to make sure we
3162 * have a consistent view of the log root we are trying to commit at
3163 * this moment.
3164 *
3165 * We _must_ copy this into a local copy, because we are not holding the
3166 * log_root_tree->log_mutex yet. This is important because when we
3167 * commit the log_root_tree we must have a consistent view of the
3168 * log_root_tree when we update the super block to point at the
3169 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3170 * with the commit and possibly point at the new block which we may not
3171 * have written out.
3172 */
5d4f98a2 3173 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3174 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3175
7237f183
YZ
3176 root->log_transid++;
3177 log->log_transid = root->log_transid;
ff782e0a 3178 root->log_start_pid = 0;
7237f183 3179 /*
8cef4e16
YZ
3180 * IO has been started, blocks of the log tree have WRITTEN flag set
3181 * in their headers. new modifications of the log will be written to
3182 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3183 */
3184 mutex_unlock(&root->log_mutex);
3185
3ddebf27 3186 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3187 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3188 if (!log_root_tree->node) {
3189 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3190 if (ret) {
ea32af47 3191 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3192 goto out;
3193 }
3194 }
e75f9fd1 3195 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3196 }
3197
e75f9fd1
NA
3198 btrfs_init_log_ctx(&root_log_ctx, NULL);
3199
3200 mutex_lock(&log_root_tree->log_mutex);
3201
e3d3b415
FM
3202 index2 = log_root_tree->log_transid % 2;
3203 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3204 root_log_ctx.log_transid = log_root_tree->log_transid;
3205
4203e968
JB
3206 /*
3207 * Now we are safe to update the log_root_tree because we're under the
3208 * log_mutex, and we're a current writer so we're holding the commit
3209 * open until we drop the log_mutex.
3210 */
3211 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3212 if (ret) {
d1433deb
MX
3213 if (!list_empty(&root_log_ctx.list))
3214 list_del_init(&root_log_ctx.list);
3215
c6adc9cc 3216 blk_finish_plug(&plug);
90787766 3217 btrfs_set_log_full_commit(trans);
995946dd 3218
79787eaa 3219 if (ret != -ENOSPC) {
66642832 3220 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3221 mutex_unlock(&log_root_tree->log_mutex);
3222 goto out;
3223 }
bf89d38f 3224 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3225 mutex_unlock(&log_root_tree->log_mutex);
3226 ret = -EAGAIN;
3227 goto out;
3228 }
3229
d1433deb 3230 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3231 blk_finish_plug(&plug);
cbd60aa7 3232 list_del_init(&root_log_ctx.list);
d1433deb
MX
3233 mutex_unlock(&log_root_tree->log_mutex);
3234 ret = root_log_ctx.log_ret;
3235 goto out;
3236 }
8b050d35 3237
d1433deb 3238 index2 = root_log_ctx.log_transid % 2;
7237f183 3239 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3240 blk_finish_plug(&plug);
bf89d38f 3241 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3242 wait_log_commit(log_root_tree,
d1433deb 3243 root_log_ctx.log_transid);
7237f183 3244 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3245 if (!ret)
3246 ret = root_log_ctx.log_ret;
7237f183
YZ
3247 goto out;
3248 }
d1433deb 3249 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3250 atomic_set(&log_root_tree->log_commit[index2], 1);
3251
12fcfd22 3252 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3253 wait_log_commit(log_root_tree,
d1433deb 3254 root_log_ctx.log_transid - 1);
12fcfd22
CM
3255 }
3256
12fcfd22
CM
3257 /*
3258 * now that we've moved on to the tree of log tree roots,
3259 * check the full commit flag again
3260 */
4884b8e8 3261 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3262 blk_finish_plug(&plug);
bf89d38f 3263 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3264 mutex_unlock(&log_root_tree->log_mutex);
3265 ret = -EAGAIN;
3266 goto out_wake_log_root;
3267 }
7237f183 3268
2ff7e61e 3269 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3270 &log_root_tree->dirty_log_pages,
3271 EXTENT_DIRTY | EXTENT_NEW);
3272 blk_finish_plug(&plug);
b528f467
NA
3273 /*
3274 * As described above, -EAGAIN indicates a hole in the extents. We
3275 * cannot wait for these write outs since the waiting cause a
3276 * deadlock. Bail out to the full commit instead.
3277 */
3278 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3279 btrfs_set_log_full_commit(trans);
3280 btrfs_wait_tree_log_extents(log, mark);
3281 mutex_unlock(&log_root_tree->log_mutex);
3282 goto out_wake_log_root;
3283 } else if (ret) {
90787766 3284 btrfs_set_log_full_commit(trans);
66642832 3285 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3286 mutex_unlock(&log_root_tree->log_mutex);
3287 goto out_wake_log_root;
3288 }
bf89d38f 3289 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3290 if (!ret)
bf89d38f
JM
3291 ret = btrfs_wait_tree_log_extents(log_root_tree,
3292 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3293 if (ret) {
90787766 3294 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3295 mutex_unlock(&log_root_tree->log_mutex);
3296 goto out_wake_log_root;
3297 }
e02119d5 3298
47876f7c
FM
3299 log_root_start = log_root_tree->node->start;
3300 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3301 log_root_tree->log_transid++;
7237f183
YZ
3302 mutex_unlock(&log_root_tree->log_mutex);
3303
3304 /*
47876f7c
FM
3305 * Here we are guaranteed that nobody is going to write the superblock
3306 * for the current transaction before us and that neither we do write
3307 * our superblock before the previous transaction finishes its commit
3308 * and writes its superblock, because:
3309 *
3310 * 1) We are holding a handle on the current transaction, so no body
3311 * can commit it until we release the handle;
3312 *
3313 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3314 * if the previous transaction is still committing, and hasn't yet
3315 * written its superblock, we wait for it to do it, because a
3316 * transaction commit acquires the tree_log_mutex when the commit
3317 * begins and releases it only after writing its superblock.
7237f183 3318 */
47876f7c 3319 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3320
3321 /*
3322 * The previous transaction writeout phase could have failed, and thus
3323 * marked the fs in an error state. We must not commit here, as we
3324 * could have updated our generation in the super_for_commit and
3325 * writing the super here would result in transid mismatches. If there
3326 * is an error here just bail.
3327 */
3328 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3329 ret = -EIO;
3330 btrfs_set_log_full_commit(trans);
3331 btrfs_abort_transaction(trans, ret);
3332 mutex_unlock(&fs_info->tree_log_mutex);
3333 goto out_wake_log_root;
3334 }
3335
47876f7c
FM
3336 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3337 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3338 ret = write_all_supers(fs_info, 1);
47876f7c 3339 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3340 if (ret) {
90787766 3341 btrfs_set_log_full_commit(trans);
66642832 3342 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3343 goto out_wake_log_root;
3344 }
7237f183 3345
e1a6d264
FM
3346 /*
3347 * We know there can only be one task here, since we have not yet set
3348 * root->log_commit[index1] to 0 and any task attempting to sync the
3349 * log must wait for the previous log transaction to commit if it's
3350 * still in progress or wait for the current log transaction commit if
3351 * someone else already started it. We use <= and not < because the
3352 * first log transaction has an ID of 0.
3353 */
3354 ASSERT(root->last_log_commit <= log_transid);
3355 root->last_log_commit = log_transid;
257c62e1 3356
12fcfd22 3357out_wake_log_root:
570dd450 3358 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3359 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3360
d1433deb 3361 log_root_tree->log_transid_committed++;
7237f183 3362 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3363 mutex_unlock(&log_root_tree->log_mutex);
3364
33a9eca7 3365 /*
093258e6
DS
3366 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3367 * all the updates above are seen by the woken threads. It might not be
3368 * necessary, but proving that seems to be hard.
33a9eca7 3369 */
093258e6 3370 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3371out:
d1433deb 3372 mutex_lock(&root->log_mutex);
570dd450 3373 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3374 root->log_transid_committed++;
7237f183 3375 atomic_set(&root->log_commit[index1], 0);
d1433deb 3376 mutex_unlock(&root->log_mutex);
8b050d35 3377
33a9eca7 3378 /*
093258e6
DS
3379 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3380 * all the updates above are seen by the woken threads. It might not be
3381 * necessary, but proving that seems to be hard.
33a9eca7 3382 */
093258e6 3383 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3384 return ret;
e02119d5
CM
3385}
3386
4a500fd1
YZ
3387static void free_log_tree(struct btrfs_trans_handle *trans,
3388 struct btrfs_root *log)
e02119d5
CM
3389{
3390 int ret;
e02119d5
CM
3391 struct walk_control wc = {
3392 .free = 1,
3393 .process_func = process_one_buffer
3394 };
3395
3ddebf27
NA
3396 if (log->node) {
3397 ret = walk_log_tree(trans, log, &wc);
3398 if (ret) {
3399 if (trans)
3400 btrfs_abort_transaction(trans, ret);
3401 else
3402 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3403 }
374b0e2d 3404 }
e02119d5 3405
59b0713a
FM
3406 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3407 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3408 extent_io_tree_release(&log->log_csum_range);
d3575156
NA
3409
3410 if (trans && log->node)
3411 btrfs_redirty_list_add(trans->transaction, log->node);
00246528 3412 btrfs_put_root(log);
4a500fd1
YZ
3413}
3414
3415/*
3416 * free all the extents used by the tree log. This should be called
3417 * at commit time of the full transaction
3418 */
3419int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3420{
3421 if (root->log_root) {
3422 free_log_tree(trans, root->log_root);
3423 root->log_root = NULL;
e7a79811 3424 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3425 }
3426 return 0;
3427}
3428
3429int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3430 struct btrfs_fs_info *fs_info)
3431{
3432 if (fs_info->log_root_tree) {
3433 free_log_tree(trans, fs_info->log_root_tree);
3434 fs_info->log_root_tree = NULL;
47876f7c 3435 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3436 }
e02119d5
CM
3437 return 0;
3438}
3439
803f0f64 3440/*
6e8e777d
FM
3441 * Check if an inode was logged in the current transaction. This may often
3442 * return some false positives, because logged_trans is an in memory only field,
3443 * not persisted anywhere. This is meant to be used in contexts where a false
3444 * positive has no functional consequences.
803f0f64
FM
3445 */
3446static bool inode_logged(struct btrfs_trans_handle *trans,
3447 struct btrfs_inode *inode)
3448{
3449 if (inode->logged_trans == trans->transid)
3450 return true;
3451
1e0860f3
FM
3452 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state))
3453 return false;
3454
6e8e777d
FM
3455 /*
3456 * The inode's logged_trans is always 0 when we load it (because it is
3457 * not persisted in the inode item or elsewhere). So if it is 0, the
d135a533
FM
3458 * inode was last modified in the current transaction then the inode may
3459 * have been logged before in the current transaction, then evicted and
3460 * loaded again in the current transaction - or may have never been logged
3461 * in the current transaction, but since we can not be sure, we have to
3462 * assume it was, otherwise our callers can leave an inconsistent log.
6e8e777d
FM
3463 */
3464 if (inode->logged_trans == 0 &&
3465 inode->last_trans == trans->transid &&
803f0f64
FM
3466 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3467 return true;
3468
3469 return false;
3470}
3471
e02119d5
CM
3472/*
3473 * If both a file and directory are logged, and unlinks or renames are
3474 * mixed in, we have a few interesting corners:
3475 *
3476 * create file X in dir Y
3477 * link file X to X.link in dir Y
3478 * fsync file X
3479 * unlink file X but leave X.link
3480 * fsync dir Y
3481 *
3482 * After a crash we would expect only X.link to exist. But file X
3483 * didn't get fsync'd again so the log has back refs for X and X.link.
3484 *
3485 * We solve this by removing directory entries and inode backrefs from the
3486 * log when a file that was logged in the current transaction is
3487 * unlinked. Any later fsync will include the updated log entries, and
3488 * we'll be able to reconstruct the proper directory items from backrefs.
3489 *
3490 * This optimizations allows us to avoid relogging the entire inode
3491 * or the entire directory.
3492 */
3493int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3494 struct btrfs_root *root,
3495 const char *name, int name_len,
49f34d1f 3496 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3497{
3498 struct btrfs_root *log;
3499 struct btrfs_dir_item *di;
3500 struct btrfs_path *path;
3501 int ret;
4a500fd1 3502 int err = 0;
49f34d1f 3503 u64 dir_ino = btrfs_ino(dir);
e02119d5 3504
803f0f64 3505 if (!inode_logged(trans, dir))
3a5f1d45
CM
3506 return 0;
3507
e02119d5
CM
3508 ret = join_running_log_trans(root);
3509 if (ret)
3510 return 0;
3511
49f34d1f 3512 mutex_lock(&dir->log_mutex);
e02119d5
CM
3513
3514 log = root->log_root;
3515 path = btrfs_alloc_path();
a62f44a5
TI
3516 if (!path) {
3517 err = -ENOMEM;
3518 goto out_unlock;
3519 }
2a29edc6 3520
33345d01 3521 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3522 name, name_len, -1);
4a500fd1
YZ
3523 if (IS_ERR(di)) {
3524 err = PTR_ERR(di);
3525 goto fail;
3526 }
3527 if (di) {
e02119d5 3528 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3529 if (ret) {
3530 err = ret;
3531 goto fail;
3532 }
e02119d5 3533 }
b3b4aa74 3534 btrfs_release_path(path);
33345d01 3535 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3536 index, name, name_len, -1);
4a500fd1
YZ
3537 if (IS_ERR(di)) {
3538 err = PTR_ERR(di);
3539 goto fail;
3540 }
3541 if (di) {
e02119d5 3542 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3543 if (ret) {
3544 err = ret;
3545 goto fail;
3546 }
e02119d5
CM
3547 }
3548
ddffcf6f
FM
3549 /*
3550 * We do not need to update the size field of the directory's inode item
3551 * because on log replay we update the field to reflect all existing
3552 * entries in the directory (see overwrite_item()).
e02119d5 3553 */
4a500fd1 3554fail:
e02119d5 3555 btrfs_free_path(path);
a62f44a5 3556out_unlock:
49f34d1f 3557 mutex_unlock(&dir->log_mutex);
fb2fecba 3558 if (err == -ENOSPC) {
90787766 3559 btrfs_set_log_full_commit(trans);
fb2fecba 3560 err = 0;
8dcbc261 3561 } else if (err < 0) {
fb2fecba
JB
3562 btrfs_abort_transaction(trans, err);
3563 }
79787eaa 3564
12fcfd22 3565 btrfs_end_log_trans(root);
e02119d5 3566
411fc6bc 3567 return err;
e02119d5
CM
3568}
3569
3570/* see comments for btrfs_del_dir_entries_in_log */
3571int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3572 struct btrfs_root *root,
3573 const char *name, int name_len,
a491abb2 3574 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3575{
3576 struct btrfs_root *log;
3577 u64 index;
3578 int ret;
3579
803f0f64 3580 if (!inode_logged(trans, inode))
3a5f1d45
CM
3581 return 0;
3582
e02119d5
CM
3583 ret = join_running_log_trans(root);
3584 if (ret)
3585 return 0;
3586 log = root->log_root;
a491abb2 3587 mutex_lock(&inode->log_mutex);
e02119d5 3588
a491abb2 3589 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3590 dirid, &index);
a491abb2 3591 mutex_unlock(&inode->log_mutex);
4a500fd1 3592 if (ret == -ENOSPC) {
90787766 3593 btrfs_set_log_full_commit(trans);
4a500fd1 3594 ret = 0;
79787eaa 3595 } else if (ret < 0 && ret != -ENOENT)
66642832 3596 btrfs_abort_transaction(trans, ret);
12fcfd22 3597 btrfs_end_log_trans(root);
e02119d5 3598
e02119d5
CM
3599 return ret;
3600}
3601
3602/*
3603 * creates a range item in the log for 'dirid'. first_offset and
3604 * last_offset tell us which parts of the key space the log should
3605 * be considered authoritative for.
3606 */
3607static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3608 struct btrfs_root *log,
3609 struct btrfs_path *path,
3610 int key_type, u64 dirid,
3611 u64 first_offset, u64 last_offset)
3612{
3613 int ret;
3614 struct btrfs_key key;
3615 struct btrfs_dir_log_item *item;
3616
3617 key.objectid = dirid;
3618 key.offset = first_offset;
3619 if (key_type == BTRFS_DIR_ITEM_KEY)
3620 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3621 else
3622 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3623 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3624 if (ret)
3625 return ret;
e02119d5
CM
3626
3627 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3628 struct btrfs_dir_log_item);
3629 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3630 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3631 btrfs_release_path(path);
e02119d5
CM
3632 return 0;
3633}
3634
3635/*
3636 * log all the items included in the current transaction for a given
3637 * directory. This also creates the range items in the log tree required
3638 * to replay anything deleted before the fsync
3639 */
3640static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3641 struct btrfs_inode *inode,
e02119d5
CM
3642 struct btrfs_path *path,
3643 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3644 struct btrfs_log_ctx *ctx,
e02119d5
CM
3645 u64 min_offset, u64 *last_offset_ret)
3646{
3647 struct btrfs_key min_key;
90d04510 3648 struct btrfs_root *root = inode->root;
e02119d5
CM
3649 struct btrfs_root *log = root->log_root;
3650 struct extent_buffer *src;
4a500fd1 3651 int err = 0;
e02119d5
CM
3652 int ret;
3653 int i;
3654 int nritems;
3655 u64 first_offset = min_offset;
3656 u64 last_offset = (u64)-1;
684a5773 3657 u64 ino = btrfs_ino(inode);
e02119d5 3658
33345d01 3659 min_key.objectid = ino;
e02119d5
CM
3660 min_key.type = key_type;
3661 min_key.offset = min_offset;
3662
6174d3cb 3663 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3664
3665 /*
3666 * we didn't find anything from this transaction, see if there
3667 * is anything at all
3668 */
33345d01
LZ
3669 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3670 min_key.objectid = ino;
e02119d5
CM
3671 min_key.type = key_type;
3672 min_key.offset = (u64)-1;
b3b4aa74 3673 btrfs_release_path(path);
e02119d5
CM
3674 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3675 if (ret < 0) {
b3b4aa74 3676 btrfs_release_path(path);
e02119d5
CM
3677 return ret;
3678 }
33345d01 3679 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3680
3681 /* if ret == 0 there are items for this type,
3682 * create a range to tell us the last key of this type.
3683 * otherwise, there are no items in this directory after
3684 * *min_offset, and we create a range to indicate that.
3685 */
3686 if (ret == 0) {
3687 struct btrfs_key tmp;
3688 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3689 path->slots[0]);
d397712b 3690 if (key_type == tmp.type)
e02119d5 3691 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3692 }
3693 goto done;
3694 }
3695
3696 /* go backward to find any previous key */
33345d01 3697 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3698 if (ret == 0) {
3699 struct btrfs_key tmp;
3700 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3701 if (key_type == tmp.type) {
3702 first_offset = tmp.offset;
3703 ret = overwrite_item(trans, log, dst_path,
3704 path->nodes[0], path->slots[0],
3705 &tmp);
4a500fd1
YZ
3706 if (ret) {
3707 err = ret;
3708 goto done;
3709 }
e02119d5
CM
3710 }
3711 }
b3b4aa74 3712 btrfs_release_path(path);
e02119d5 3713
2cc83342
JB
3714 /*
3715 * Find the first key from this transaction again. See the note for
3716 * log_new_dir_dentries, if we're logging a directory recursively we
3717 * won't be holding its i_mutex, which means we can modify the directory
3718 * while we're logging it. If we remove an entry between our first
3719 * search and this search we'll not find the key again and can just
3720 * bail.
3721 */
bb56f02f 3722search:
e02119d5 3723 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3724 if (ret != 0)
e02119d5 3725 goto done;
e02119d5
CM
3726
3727 /*
3728 * we have a block from this transaction, log every item in it
3729 * from our directory
3730 */
d397712b 3731 while (1) {
e02119d5
CM
3732 struct btrfs_key tmp;
3733 src = path->nodes[0];
3734 nritems = btrfs_header_nritems(src);
3735 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3736 struct btrfs_dir_item *di;
3737
e02119d5
CM
3738 btrfs_item_key_to_cpu(src, &min_key, i);
3739
33345d01 3740 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5 3741 goto done;
bb56f02f
FM
3742
3743 if (need_resched()) {
3744 btrfs_release_path(path);
3745 cond_resched();
3746 goto search;
3747 }
3748
e02119d5
CM
3749 ret = overwrite_item(trans, log, dst_path, src, i,
3750 &min_key);
4a500fd1
YZ
3751 if (ret) {
3752 err = ret;
3753 goto done;
3754 }
2f2ff0ee
FM
3755
3756 /*
3757 * We must make sure that when we log a directory entry,
3758 * the corresponding inode, after log replay, has a
3759 * matching link count. For example:
3760 *
3761 * touch foo
3762 * mkdir mydir
3763 * sync
3764 * ln foo mydir/bar
3765 * xfs_io -c "fsync" mydir
3766 * <crash>
3767 * <mount fs and log replay>
3768 *
3769 * Would result in a fsync log that when replayed, our
3770 * file inode would have a link count of 1, but we get
3771 * two directory entries pointing to the same inode.
3772 * After removing one of the names, it would not be
3773 * possible to remove the other name, which resulted
3774 * always in stale file handle errors, and would not
3775 * be possible to rmdir the parent directory, since
3776 * its i_size could never decrement to the value
3777 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3778 */
3779 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3780 btrfs_dir_item_key_to_cpu(src, di, &tmp);
289cffcb 3781 if ((btrfs_dir_transid(src, di) == trans->transid ||
2f2ff0ee
FM
3782 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3783 tmp.type != BTRFS_ROOT_ITEM_KEY)
3784 ctx->log_new_dentries = true;
e02119d5
CM
3785 }
3786 path->slots[0] = nritems;
3787
3788 /*
3789 * look ahead to the next item and see if it is also
3790 * from this directory and from this transaction
3791 */
3792 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3793 if (ret) {
3794 if (ret == 1)
3795 last_offset = (u64)-1;
3796 else
3797 err = ret;
e02119d5
CM
3798 goto done;
3799 }
3800 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3801 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3802 last_offset = (u64)-1;
3803 goto done;
3804 }
3805 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3806 ret = overwrite_item(trans, log, dst_path,
3807 path->nodes[0], path->slots[0],
3808 &tmp);
4a500fd1
YZ
3809 if (ret)
3810 err = ret;
3811 else
3812 last_offset = tmp.offset;
e02119d5
CM
3813 goto done;
3814 }
3815 }
3816done:
b3b4aa74
DS
3817 btrfs_release_path(path);
3818 btrfs_release_path(dst_path);
e02119d5 3819
4a500fd1
YZ
3820 if (err == 0) {
3821 *last_offset_ret = last_offset;
3822 /*
3823 * insert the log range keys to indicate where the log
3824 * is valid
3825 */
3826 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3827 ino, first_offset, last_offset);
4a500fd1
YZ
3828 if (ret)
3829 err = ret;
3830 }
3831 return err;
e02119d5
CM
3832}
3833
3834/*
3835 * logging directories is very similar to logging inodes, We find all the items
3836 * from the current transaction and write them to the log.
3837 *
3838 * The recovery code scans the directory in the subvolume, and if it finds a
3839 * key in the range logged that is not present in the log tree, then it means
3840 * that dir entry was unlinked during the transaction.
3841 *
3842 * In order for that scan to work, we must include one key smaller than
3843 * the smallest logged by this transaction and one key larger than the largest
3844 * key logged by this transaction.
3845 */
3846static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 3847 struct btrfs_inode *inode,
e02119d5 3848 struct btrfs_path *path,
2f2ff0ee
FM
3849 struct btrfs_path *dst_path,
3850 struct btrfs_log_ctx *ctx)
e02119d5
CM
3851{
3852 u64 min_key;
3853 u64 max_key;
3854 int ret;
3855 int key_type = BTRFS_DIR_ITEM_KEY;
3856
3857again:
3858 min_key = 0;
3859 max_key = 0;
d397712b 3860 while (1) {
90d04510 3861 ret = log_dir_items(trans, inode, path, dst_path, key_type,
dbf39ea4 3862 ctx, min_key, &max_key);
4a500fd1
YZ
3863 if (ret)
3864 return ret;
e02119d5
CM
3865 if (max_key == (u64)-1)
3866 break;
3867 min_key = max_key + 1;
3868 }
3869
3870 if (key_type == BTRFS_DIR_ITEM_KEY) {
3871 key_type = BTRFS_DIR_INDEX_KEY;
3872 goto again;
3873 }
3874 return 0;
3875}
3876
3877/*
3878 * a helper function to drop items from the log before we relog an
3879 * inode. max_key_type indicates the highest item type to remove.
3880 * This cannot be run for file data extents because it does not
3881 * free the extents they point to.
3882 */
88e221cd 3883static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
3884 struct btrfs_root *log,
3885 struct btrfs_path *path,
88e221cd
FM
3886 struct btrfs_inode *inode,
3887 int max_key_type)
e02119d5
CM
3888{
3889 int ret;
3890 struct btrfs_key key;
3891 struct btrfs_key found_key;
18ec90d6 3892 int start_slot;
e02119d5 3893
88e221cd
FM
3894 if (!inode_logged(trans, inode))
3895 return 0;
3896
3897 key.objectid = btrfs_ino(inode);
e02119d5
CM
3898 key.type = max_key_type;
3899 key.offset = (u64)-1;
3900
d397712b 3901 while (1) {
e02119d5 3902 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3903 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3904 if (ret < 0)
e02119d5
CM
3905 break;
3906
3907 if (path->slots[0] == 0)
3908 break;
3909
3910 path->slots[0]--;
3911 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3912 path->slots[0]);
3913
88e221cd 3914 if (found_key.objectid != key.objectid)
e02119d5
CM
3915 break;
3916
18ec90d6
JB
3917 found_key.offset = 0;
3918 found_key.type = 0;
e3b83361 3919 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
3920 if (ret < 0)
3921 break;
18ec90d6
JB
3922
3923 ret = btrfs_del_items(trans, log, path, start_slot,
3924 path->slots[0] - start_slot + 1);
3925 /*
3926 * If start slot isn't 0 then we don't need to re-search, we've
3927 * found the last guy with the objectid in this tree.
3928 */
3929 if (ret || start_slot != 0)
65a246c5 3930 break;
b3b4aa74 3931 btrfs_release_path(path);
e02119d5 3932 }
b3b4aa74 3933 btrfs_release_path(path);
5bdbeb21
JB
3934 if (ret > 0)
3935 ret = 0;
4a500fd1 3936 return ret;
e02119d5
CM
3937}
3938
8a2b3da1
FM
3939static int truncate_inode_items(struct btrfs_trans_handle *trans,
3940 struct btrfs_root *log_root,
3941 struct btrfs_inode *inode,
3942 u64 new_size, u32 min_type)
3943{
3944 int ret;
3945
3946 do {
3947 ret = btrfs_truncate_inode_items(trans, log_root, inode,
3948 new_size, min_type, NULL);
3949 } while (ret == -EAGAIN);
3950
3951 return ret;
3952}
3953
94edf4ae
JB
3954static void fill_inode_item(struct btrfs_trans_handle *trans,
3955 struct extent_buffer *leaf,
3956 struct btrfs_inode_item *item,
1a4bcf47
FM
3957 struct inode *inode, int log_inode_only,
3958 u64 logged_isize)
94edf4ae 3959{
0b1c6cca 3960 struct btrfs_map_token token;
77eea05e 3961 u64 flags;
0b1c6cca 3962
c82f823c 3963 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
3964
3965 if (log_inode_only) {
3966 /* set the generation to zero so the recover code
3967 * can tell the difference between an logging
3968 * just to say 'this inode exists' and a logging
3969 * to say 'update this inode with these values'
3970 */
cc4c13d5
DS
3971 btrfs_set_token_inode_generation(&token, item, 0);
3972 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 3973 } else {
cc4c13d5
DS
3974 btrfs_set_token_inode_generation(&token, item,
3975 BTRFS_I(inode)->generation);
3976 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
3977 }
3978
cc4c13d5
DS
3979 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3980 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3981 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3982 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3983
3984 btrfs_set_token_timespec_sec(&token, &item->atime,
3985 inode->i_atime.tv_sec);
3986 btrfs_set_token_timespec_nsec(&token, &item->atime,
3987 inode->i_atime.tv_nsec);
3988
3989 btrfs_set_token_timespec_sec(&token, &item->mtime,
3990 inode->i_mtime.tv_sec);
3991 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3992 inode->i_mtime.tv_nsec);
3993
3994 btrfs_set_token_timespec_sec(&token, &item->ctime,
3995 inode->i_ctime.tv_sec);
3996 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3997 inode->i_ctime.tv_nsec);
3998
e593e54e
FM
3999 /*
4000 * We do not need to set the nbytes field, in fact during a fast fsync
4001 * its value may not even be correct, since a fast fsync does not wait
4002 * for ordered extent completion, which is where we update nbytes, it
4003 * only waits for writeback to complete. During log replay as we find
4004 * file extent items and replay them, we adjust the nbytes field of the
4005 * inode item in subvolume tree as needed (see overwrite_item()).
4006 */
cc4c13d5
DS
4007
4008 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4009 btrfs_set_token_inode_transid(&token, item, trans->transid);
4010 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4011 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4012 BTRFS_I(inode)->ro_flags);
4013 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4014 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4015}
4016
a95249b3
JB
4017static int log_inode_item(struct btrfs_trans_handle *trans,
4018 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4019 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4020{
4021 struct btrfs_inode_item *inode_item;
a95249b3
JB
4022 int ret;
4023
2ac691d8
FM
4024 /*
4025 * If we are doing a fast fsync and the inode was logged before in the
4026 * current transaction, then we know the inode was previously logged and
4027 * it exists in the log tree. For performance reasons, in this case use
4028 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4029 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4030 * contention in case there are concurrent fsyncs for other inodes of the
4031 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4032 * already exists can also result in unnecessarily splitting a leaf.
4033 */
4034 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4035 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4036 ASSERT(ret <= 0);
4037 if (ret > 0)
4038 ret = -ENOENT;
4039 } else {
4040 /*
4041 * This means it is the first fsync in the current transaction,
4042 * so the inode item is not in the log and we need to insert it.
4043 * We can never get -EEXIST because we are only called for a fast
4044 * fsync and in case an inode eviction happens after the inode was
4045 * logged before in the current transaction, when we load again
4046 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4047 * flags and set ->logged_trans to 0.
4048 */
4049 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4050 sizeof(*inode_item));
4051 ASSERT(ret != -EEXIST);
4052 }
4053 if (ret)
a95249b3
JB
4054 return ret;
4055 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4056 struct btrfs_inode_item);
6d889a3b
NB
4057 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4058 0, 0);
a95249b3
JB
4059 btrfs_release_path(path);
4060 return 0;
4061}
4062
40e046ac 4063static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4064 struct btrfs_inode *inode,
40e046ac
FM
4065 struct btrfs_root *log_root,
4066 struct btrfs_ordered_sum *sums)
4067{
e289f03e
FM
4068 const u64 lock_end = sums->bytenr + sums->len - 1;
4069 struct extent_state *cached_state = NULL;
40e046ac
FM
4070 int ret;
4071
3ebac17c
FM
4072 /*
4073 * If this inode was not used for reflink operations in the current
4074 * transaction with new extents, then do the fast path, no need to
4075 * worry about logging checksum items with overlapping ranges.
4076 */
4077 if (inode->last_reflink_trans < trans->transid)
4078 return btrfs_csum_file_blocks(trans, log_root, sums);
4079
e289f03e
FM
4080 /*
4081 * Serialize logging for checksums. This is to avoid racing with the
4082 * same checksum being logged by another task that is logging another
4083 * file which happens to refer to the same extent as well. Such races
4084 * can leave checksum items in the log with overlapping ranges.
4085 */
4086 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4087 lock_end, &cached_state);
4088 if (ret)
4089 return ret;
40e046ac
FM
4090 /*
4091 * Due to extent cloning, we might have logged a csum item that covers a
4092 * subrange of a cloned extent, and later we can end up logging a csum
4093 * item for a larger subrange of the same extent or the entire range.
4094 * This would leave csum items in the log tree that cover the same range
4095 * and break the searches for checksums in the log tree, resulting in
4096 * some checksums missing in the fs/subvolume tree. So just delete (or
4097 * trim and adjust) any existing csum items in the log for this range.
4098 */
4099 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4100 if (!ret)
4101 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4102
e289f03e
FM
4103 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4104 &cached_state);
4105
4106 return ret;
40e046ac
FM
4107}
4108
31ff1cd2 4109static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4110 struct btrfs_inode *inode,
31ff1cd2 4111 struct btrfs_path *dst_path,
0e56315c 4112 struct btrfs_path *src_path,
1a4bcf47
FM
4113 int start_slot, int nr, int inode_only,
4114 u64 logged_isize)
31ff1cd2 4115{
3ffbd68c 4116 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
4117 unsigned long src_offset;
4118 unsigned long dst_offset;
44d70e19 4119 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
4120 struct btrfs_file_extent_item *extent;
4121 struct btrfs_inode_item *inode_item;
16e7549f 4122 struct extent_buffer *src = src_path->nodes[0];
31ff1cd2
CM
4123 int ret;
4124 struct btrfs_key *ins_keys;
4125 u32 *ins_sizes;
4126 char *ins_data;
4127 int i;
d20f7043 4128 struct list_head ordered_sums;
44d70e19 4129 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
4130
4131 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
4132
4133 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4134 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4135 if (!ins_data)
4136 return -ENOMEM;
4137
31ff1cd2
CM
4138 ins_sizes = (u32 *)ins_data;
4139 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4140
4141 for (i = 0; i < nr; i++) {
4142 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4143 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4144 }
4145 ret = btrfs_insert_empty_items(trans, log, dst_path,
4146 ins_keys, ins_sizes, nr);
4a500fd1
YZ
4147 if (ret) {
4148 kfree(ins_data);
4149 return ret;
4150 }
31ff1cd2 4151
5d4f98a2 4152 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
4153 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4154 dst_path->slots[0]);
4155
4156 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4157
94edf4ae 4158 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
4159 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4160 dst_path->slots[0],
4161 struct btrfs_inode_item);
94edf4ae 4162 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4163 &inode->vfs_inode,
4164 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4165 logged_isize);
94edf4ae
JB
4166 } else {
4167 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4168 src_offset, ins_sizes[i]);
31ff1cd2 4169 }
94edf4ae 4170
31ff1cd2
CM
4171 /* take a reference on file data extents so that truncates
4172 * or deletes of this inode don't have to relog the inode
4173 * again
4174 */
962a298f 4175 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4176 !skip_csum) {
31ff1cd2
CM
4177 int found_type;
4178 extent = btrfs_item_ptr(src, start_slot + i,
4179 struct btrfs_file_extent_item);
4180
8e531cdf 4181 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4182 continue;
4183
31ff1cd2 4184 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4185 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4186 u64 ds, dl, cs, cl;
4187 ds = btrfs_file_extent_disk_bytenr(src,
4188 extent);
4189 /* ds == 0 is a hole */
4190 if (ds == 0)
4191 continue;
4192
4193 dl = btrfs_file_extent_disk_num_bytes(src,
4194 extent);
4195 cs = btrfs_file_extent_offset(src, extent);
4196 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4197 extent);
580afd76
CM
4198 if (btrfs_file_extent_compression(src,
4199 extent)) {
4200 cs = 0;
4201 cl = dl;
4202 }
5d4f98a2
YZ
4203
4204 ret = btrfs_lookup_csums_range(
0b246afa 4205 fs_info->csum_root,
5d4f98a2 4206 ds + cs, ds + cs + cl - 1,
a2de733c 4207 &ordered_sums, 0);
4f26433e
FM
4208 if (ret)
4209 break;
31ff1cd2
CM
4210 }
4211 }
31ff1cd2
CM
4212 }
4213
4214 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4215 btrfs_release_path(dst_path);
31ff1cd2 4216 kfree(ins_data);
d20f7043
CM
4217
4218 /*
4219 * we have to do this after the loop above to avoid changing the
4220 * log tree while trying to change the log tree.
4221 */
d397712b 4222 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4223 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4224 struct btrfs_ordered_sum,
4225 list);
4a500fd1 4226 if (!ret)
3ebac17c 4227 ret = log_csums(trans, inode, log, sums);
d20f7043
CM
4228 list_del(&sums->list);
4229 kfree(sums);
4230 }
16e7549f 4231
4a500fd1 4232 return ret;
31ff1cd2
CM
4233}
4234
4f0f586b
ST
4235static int extent_cmp(void *priv, const struct list_head *a,
4236 const struct list_head *b)
5dc562c5 4237{
214cc184 4238 const struct extent_map *em1, *em2;
5dc562c5
JB
4239
4240 em1 = list_entry(a, struct extent_map, list);
4241 em2 = list_entry(b, struct extent_map, list);
4242
4243 if (em1->start < em2->start)
4244 return -1;
4245 else if (em1->start > em2->start)
4246 return 1;
4247 return 0;
4248}
4249
e7175a69
JB
4250static int log_extent_csums(struct btrfs_trans_handle *trans,
4251 struct btrfs_inode *inode,
a9ecb653 4252 struct btrfs_root *log_root,
48778179
FM
4253 const struct extent_map *em,
4254 struct btrfs_log_ctx *ctx)
5dc562c5 4255{
48778179 4256 struct btrfs_ordered_extent *ordered;
2ab28f32
JB
4257 u64 csum_offset;
4258 u64 csum_len;
48778179
FM
4259 u64 mod_start = em->mod_start;
4260 u64 mod_len = em->mod_len;
8407f553
FM
4261 LIST_HEAD(ordered_sums);
4262 int ret = 0;
0aa4a17d 4263
e7175a69
JB
4264 if (inode->flags & BTRFS_INODE_NODATASUM ||
4265 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4266 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4267 return 0;
5dc562c5 4268
48778179
FM
4269 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4270 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4271 const u64 mod_end = mod_start + mod_len;
4272 struct btrfs_ordered_sum *sums;
4273
4274 if (mod_len == 0)
4275 break;
4276
4277 if (ordered_end <= mod_start)
4278 continue;
4279 if (mod_end <= ordered->file_offset)
4280 break;
4281
4282 /*
4283 * We are going to copy all the csums on this ordered extent, so
4284 * go ahead and adjust mod_start and mod_len in case this ordered
4285 * extent has already been logged.
4286 */
4287 if (ordered->file_offset > mod_start) {
4288 if (ordered_end >= mod_end)
4289 mod_len = ordered->file_offset - mod_start;
4290 /*
4291 * If we have this case
4292 *
4293 * |--------- logged extent ---------|
4294 * |----- ordered extent ----|
4295 *
4296 * Just don't mess with mod_start and mod_len, we'll
4297 * just end up logging more csums than we need and it
4298 * will be ok.
4299 */
4300 } else {
4301 if (ordered_end < mod_end) {
4302 mod_len = mod_end - ordered_end;
4303 mod_start = ordered_end;
4304 } else {
4305 mod_len = 0;
4306 }
4307 }
4308
4309 /*
4310 * To keep us from looping for the above case of an ordered
4311 * extent that falls inside of the logged extent.
4312 */
4313 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4314 continue;
4315
4316 list_for_each_entry(sums, &ordered->list, list) {
4317 ret = log_csums(trans, inode, log_root, sums);
4318 if (ret)
4319 return ret;
4320 }
4321 }
4322
4323 /* We're done, found all csums in the ordered extents. */
4324 if (mod_len == 0)
4325 return 0;
4326
e7175a69 4327 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4328 if (em->compress_type) {
4329 csum_offset = 0;
8407f553 4330 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4331 } else {
48778179
FM
4332 csum_offset = mod_start - em->start;
4333 csum_len = mod_len;
488111aa 4334 }
2ab28f32 4335
70c8a91c 4336 /* block start is already adjusted for the file extent offset. */
a9ecb653 4337 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4338 em->block_start + csum_offset,
4339 em->block_start + csum_offset +
4340 csum_len - 1, &ordered_sums, 0);
4341 if (ret)
4342 return ret;
5dc562c5 4343
70c8a91c
JB
4344 while (!list_empty(&ordered_sums)) {
4345 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4346 struct btrfs_ordered_sum,
4347 list);
4348 if (!ret)
3ebac17c 4349 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4350 list_del(&sums->list);
4351 kfree(sums);
5dc562c5
JB
4352 }
4353
70c8a91c 4354 return ret;
5dc562c5
JB
4355}
4356
8407f553 4357static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4358 struct btrfs_inode *inode,
8407f553
FM
4359 const struct extent_map *em,
4360 struct btrfs_path *path,
8407f553
FM
4361 struct btrfs_log_ctx *ctx)
4362{
5893dfb9 4363 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4364 struct btrfs_root *log = inode->root->log_root;
8407f553
FM
4365 struct btrfs_file_extent_item *fi;
4366 struct extent_buffer *leaf;
4367 struct btrfs_map_token token;
4368 struct btrfs_key key;
4369 u64 extent_offset = em->start - em->orig_start;
4370 u64 block_len;
4371 int ret;
8407f553 4372
48778179 4373 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4374 if (ret)
4375 return ret;
4376
5328b2a7
FM
4377 /*
4378 * If this is the first time we are logging the inode in the current
4379 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4380 * because it does a deletion search, which always acquires write locks
4381 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4382 * but also adds significant contention in a log tree, since log trees
4383 * are small, with a root at level 2 or 3 at most, due to their short
4384 * life span.
4385 */
4386 if (inode_logged(trans, inode)) {
4387 drop_args.path = path;
4388 drop_args.start = em->start;
4389 drop_args.end = em->start + em->len;
4390 drop_args.replace_extent = true;
4391 drop_args.extent_item_size = sizeof(*fi);
4392 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4393 if (ret)
4394 return ret;
4395 }
8407f553 4396
5893dfb9 4397 if (!drop_args.extent_inserted) {
9d122629 4398 key.objectid = btrfs_ino(inode);
8407f553
FM
4399 key.type = BTRFS_EXTENT_DATA_KEY;
4400 key.offset = em->start;
4401
4402 ret = btrfs_insert_empty_item(trans, log, path, &key,
4403 sizeof(*fi));
4404 if (ret)
4405 return ret;
4406 }
4407 leaf = path->nodes[0];
c82f823c 4408 btrfs_init_map_token(&token, leaf);
8407f553
FM
4409 fi = btrfs_item_ptr(leaf, path->slots[0],
4410 struct btrfs_file_extent_item);
4411
cc4c13d5 4412 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
8407f553 4413 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
cc4c13d5
DS
4414 btrfs_set_token_file_extent_type(&token, fi,
4415 BTRFS_FILE_EXTENT_PREALLOC);
8407f553 4416 else
cc4c13d5
DS
4417 btrfs_set_token_file_extent_type(&token, fi,
4418 BTRFS_FILE_EXTENT_REG);
8407f553
FM
4419
4420 block_len = max(em->block_len, em->orig_block_len);
4421 if (em->compress_type != BTRFS_COMPRESS_NONE) {
cc4c13d5
DS
4422 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4423 em->block_start);
4424 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4425 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
cc4c13d5 4426 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
8407f553 4427 em->block_start -
cc4c13d5
DS
4428 extent_offset);
4429 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4430 } else {
cc4c13d5
DS
4431 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4432 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
8407f553
FM
4433 }
4434
cc4c13d5
DS
4435 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4436 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4437 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4438 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4439 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4440 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
8407f553
FM
4441 btrfs_mark_buffer_dirty(leaf);
4442
4443 btrfs_release_path(path);
4444
4445 return ret;
4446}
4447
31d11b83
FM
4448/*
4449 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4450 * lose them after doing a fast fsync and replaying the log. We scan the
4451 * subvolume's root instead of iterating the inode's extent map tree because
4452 * otherwise we can log incorrect extent items based on extent map conversion.
4453 * That can happen due to the fact that extent maps are merged when they
4454 * are not in the extent map tree's list of modified extents.
4455 */
4456static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4457 struct btrfs_inode *inode,
4458 struct btrfs_path *path)
4459{
4460 struct btrfs_root *root = inode->root;
4461 struct btrfs_key key;
4462 const u64 i_size = i_size_read(&inode->vfs_inode);
4463 const u64 ino = btrfs_ino(inode);
4464 struct btrfs_path *dst_path = NULL;
0e56315c 4465 bool dropped_extents = false;
f135cea3
FM
4466 u64 truncate_offset = i_size;
4467 struct extent_buffer *leaf;
4468 int slot;
31d11b83
FM
4469 int ins_nr = 0;
4470 int start_slot;
4471 int ret;
4472
4473 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4474 return 0;
4475
4476 key.objectid = ino;
4477 key.type = BTRFS_EXTENT_DATA_KEY;
4478 key.offset = i_size;
4479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4480 if (ret < 0)
4481 goto out;
4482
f135cea3
FM
4483 /*
4484 * We must check if there is a prealloc extent that starts before the
4485 * i_size and crosses the i_size boundary. This is to ensure later we
4486 * truncate down to the end of that extent and not to the i_size, as
4487 * otherwise we end up losing part of the prealloc extent after a log
4488 * replay and with an implicit hole if there is another prealloc extent
4489 * that starts at an offset beyond i_size.
4490 */
4491 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4492 if (ret < 0)
4493 goto out;
4494
4495 if (ret == 0) {
4496 struct btrfs_file_extent_item *ei;
4497
4498 leaf = path->nodes[0];
4499 slot = path->slots[0];
4500 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4501
4502 if (btrfs_file_extent_type(leaf, ei) ==
4503 BTRFS_FILE_EXTENT_PREALLOC) {
4504 u64 extent_end;
4505
4506 btrfs_item_key_to_cpu(leaf, &key, slot);
4507 extent_end = key.offset +
4508 btrfs_file_extent_num_bytes(leaf, ei);
4509
4510 if (extent_end > i_size)
4511 truncate_offset = extent_end;
4512 }
4513 } else {
4514 ret = 0;
4515 }
4516
31d11b83 4517 while (true) {
f135cea3
FM
4518 leaf = path->nodes[0];
4519 slot = path->slots[0];
31d11b83
FM
4520
4521 if (slot >= btrfs_header_nritems(leaf)) {
4522 if (ins_nr > 0) {
4523 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4524 start_slot, ins_nr, 1, 0);
31d11b83
FM
4525 if (ret < 0)
4526 goto out;
4527 ins_nr = 0;
4528 }
4529 ret = btrfs_next_leaf(root, path);
4530 if (ret < 0)
4531 goto out;
4532 if (ret > 0) {
4533 ret = 0;
4534 break;
4535 }
4536 continue;
4537 }
4538
4539 btrfs_item_key_to_cpu(leaf, &key, slot);
4540 if (key.objectid > ino)
4541 break;
4542 if (WARN_ON_ONCE(key.objectid < ino) ||
4543 key.type < BTRFS_EXTENT_DATA_KEY ||
4544 key.offset < i_size) {
4545 path->slots[0]++;
4546 continue;
4547 }
0e56315c 4548 if (!dropped_extents) {
31d11b83
FM
4549 /*
4550 * Avoid logging extent items logged in past fsync calls
4551 * and leading to duplicate keys in the log tree.
4552 */
8a2b3da1
FM
4553 ret = truncate_inode_items(trans, root->log_root, inode,
4554 truncate_offset,
4555 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4556 if (ret)
4557 goto out;
0e56315c 4558 dropped_extents = true;
31d11b83
FM
4559 }
4560 if (ins_nr == 0)
4561 start_slot = slot;
4562 ins_nr++;
4563 path->slots[0]++;
4564 if (!dst_path) {
4565 dst_path = btrfs_alloc_path();
4566 if (!dst_path) {
4567 ret = -ENOMEM;
4568 goto out;
4569 }
4570 }
4571 }
0bc2d3c0 4572 if (ins_nr > 0)
0e56315c 4573 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4574 start_slot, ins_nr, 1, 0);
31d11b83
FM
4575out:
4576 btrfs_release_path(path);
4577 btrfs_free_path(dst_path);
4578 return ret;
4579}
4580
5dc562c5 4581static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4582 struct btrfs_inode *inode,
827463c4 4583 struct btrfs_path *path,
48778179 4584 struct btrfs_log_ctx *ctx)
5dc562c5 4585{
48778179
FM
4586 struct btrfs_ordered_extent *ordered;
4587 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4588 struct extent_map *em, *n;
4589 struct list_head extents;
9d122629 4590 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4591 int ret = 0;
2ab28f32 4592 int num = 0;
5dc562c5
JB
4593
4594 INIT_LIST_HEAD(&extents);
4595
5dc562c5 4596 write_lock(&tree->lock);
5dc562c5
JB
4597
4598 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4599 list_del_init(&em->list);
2ab28f32
JB
4600 /*
4601 * Just an arbitrary number, this can be really CPU intensive
4602 * once we start getting a lot of extents, and really once we
4603 * have a bunch of extents we just want to commit since it will
4604 * be faster.
4605 */
4606 if (++num > 32768) {
4607 list_del_init(&tree->modified_extents);
4608 ret = -EFBIG;
4609 goto process;
4610 }
4611
5f96bfb7 4612 if (em->generation < trans->transid)
5dc562c5 4613 continue;
8c6c5928 4614
31d11b83
FM
4615 /* We log prealloc extents beyond eof later. */
4616 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4617 em->start >= i_size_read(&inode->vfs_inode))
4618 continue;
4619
ff44c6e3 4620 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4621 refcount_inc(&em->refs);
ff44c6e3 4622 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4623 list_add_tail(&em->list, &extents);
2ab28f32 4624 num++;
5dc562c5
JB
4625 }
4626
4627 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4628process:
5dc562c5
JB
4629 while (!list_empty(&extents)) {
4630 em = list_entry(extents.next, struct extent_map, list);
4631
4632 list_del_init(&em->list);
4633
4634 /*
4635 * If we had an error we just need to delete everybody from our
4636 * private list.
4637 */
ff44c6e3 4638 if (ret) {
201a9038 4639 clear_em_logging(tree, em);
ff44c6e3 4640 free_extent_map(em);
5dc562c5 4641 continue;
ff44c6e3
JB
4642 }
4643
4644 write_unlock(&tree->lock);
5dc562c5 4645
90d04510 4646 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 4647 write_lock(&tree->lock);
201a9038
JB
4648 clear_em_logging(tree, em);
4649 free_extent_map(em);
5dc562c5 4650 }
ff44c6e3
JB
4651 WARN_ON(!list_empty(&extents));
4652 write_unlock(&tree->lock);
5dc562c5 4653
5dc562c5 4654 btrfs_release_path(path);
31d11b83
FM
4655 if (!ret)
4656 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4657 if (ret)
4658 return ret;
31d11b83 4659
48778179
FM
4660 /*
4661 * We have logged all extents successfully, now make sure the commit of
4662 * the current transaction waits for the ordered extents to complete
4663 * before it commits and wipes out the log trees, otherwise we would
4664 * lose data if an ordered extents completes after the transaction
4665 * commits and a power failure happens after the transaction commit.
4666 */
4667 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4668 list_del_init(&ordered->log_list);
4669 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4670
4671 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4672 spin_lock_irq(&inode->ordered_tree.lock);
4673 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4674 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4675 atomic_inc(&trans->transaction->pending_ordered);
4676 }
4677 spin_unlock_irq(&inode->ordered_tree.lock);
4678 }
4679 btrfs_put_ordered_extent(ordered);
4680 }
4681
4682 return 0;
5dc562c5
JB
4683}
4684
481b01c0 4685static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4686 struct btrfs_path *path, u64 *size_ret)
4687{
4688 struct btrfs_key key;
4689 int ret;
4690
481b01c0 4691 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4692 key.type = BTRFS_INODE_ITEM_KEY;
4693 key.offset = 0;
4694
4695 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4696 if (ret < 0) {
4697 return ret;
4698 } else if (ret > 0) {
2f2ff0ee 4699 *size_ret = 0;
1a4bcf47
FM
4700 } else {
4701 struct btrfs_inode_item *item;
4702
4703 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4704 struct btrfs_inode_item);
4705 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4706 /*
4707 * If the in-memory inode's i_size is smaller then the inode
4708 * size stored in the btree, return the inode's i_size, so
4709 * that we get a correct inode size after replaying the log
4710 * when before a power failure we had a shrinking truncate
4711 * followed by addition of a new name (rename / new hard link).
4712 * Otherwise return the inode size from the btree, to avoid
4713 * data loss when replaying a log due to previously doing a
4714 * write that expands the inode's size and logging a new name
4715 * immediately after.
4716 */
4717 if (*size_ret > inode->vfs_inode.i_size)
4718 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4719 }
4720
4721 btrfs_release_path(path);
4722 return 0;
4723}
4724
36283bf7
FM
4725/*
4726 * At the moment we always log all xattrs. This is to figure out at log replay
4727 * time which xattrs must have their deletion replayed. If a xattr is missing
4728 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4729 * because if a xattr is deleted, the inode is fsynced and a power failure
4730 * happens, causing the log to be replayed the next time the fs is mounted,
4731 * we want the xattr to not exist anymore (same behaviour as other filesystems
4732 * with a journal, ext3/4, xfs, f2fs, etc).
4733 */
4734static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 4735 struct btrfs_inode *inode,
36283bf7
FM
4736 struct btrfs_path *path,
4737 struct btrfs_path *dst_path)
4738{
90d04510 4739 struct btrfs_root *root = inode->root;
36283bf7
FM
4740 int ret;
4741 struct btrfs_key key;
1a93c36a 4742 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4743 int ins_nr = 0;
4744 int start_slot = 0;
f2f121ab
FM
4745 bool found_xattrs = false;
4746
4747 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4748 return 0;
36283bf7
FM
4749
4750 key.objectid = ino;
4751 key.type = BTRFS_XATTR_ITEM_KEY;
4752 key.offset = 0;
4753
4754 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4755 if (ret < 0)
4756 return ret;
4757
4758 while (true) {
4759 int slot = path->slots[0];
4760 struct extent_buffer *leaf = path->nodes[0];
4761 int nritems = btrfs_header_nritems(leaf);
4762
4763 if (slot >= nritems) {
4764 if (ins_nr > 0) {
1a93c36a 4765 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4766 start_slot, ins_nr, 1, 0);
36283bf7
FM
4767 if (ret < 0)
4768 return ret;
4769 ins_nr = 0;
4770 }
4771 ret = btrfs_next_leaf(root, path);
4772 if (ret < 0)
4773 return ret;
4774 else if (ret > 0)
4775 break;
4776 continue;
4777 }
4778
4779 btrfs_item_key_to_cpu(leaf, &key, slot);
4780 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4781 break;
4782
4783 if (ins_nr == 0)
4784 start_slot = slot;
4785 ins_nr++;
4786 path->slots[0]++;
f2f121ab 4787 found_xattrs = true;
36283bf7
FM
4788 cond_resched();
4789 }
4790 if (ins_nr > 0) {
1a93c36a 4791 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4792 start_slot, ins_nr, 1, 0);
36283bf7
FM
4793 if (ret < 0)
4794 return ret;
4795 }
4796
f2f121ab
FM
4797 if (!found_xattrs)
4798 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4799
36283bf7
FM
4800 return 0;
4801}
4802
a89ca6f2 4803/*
0e56315c
FM
4804 * When using the NO_HOLES feature if we punched a hole that causes the
4805 * deletion of entire leafs or all the extent items of the first leaf (the one
4806 * that contains the inode item and references) we may end up not processing
4807 * any extents, because there are no leafs with a generation matching the
4808 * current transaction that have extent items for our inode. So we need to find
4809 * if any holes exist and then log them. We also need to log holes after any
4810 * truncate operation that changes the inode's size.
a89ca6f2 4811 */
0e56315c 4812static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 4813 struct btrfs_inode *inode,
7af59743 4814 struct btrfs_path *path)
a89ca6f2 4815{
90d04510 4816 struct btrfs_root *root = inode->root;
0b246afa 4817 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 4818 struct btrfs_key key;
a0308dd7
NB
4819 const u64 ino = btrfs_ino(inode);
4820 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 4821 u64 prev_extent_end = 0;
0e56315c 4822 int ret;
a89ca6f2 4823
0e56315c 4824 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
4825 return 0;
4826
4827 key.objectid = ino;
4828 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 4829 key.offset = 0;
a89ca6f2
FM
4830
4831 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
4832 if (ret < 0)
4833 return ret;
4834
0e56315c 4835 while (true) {
0e56315c 4836 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 4837
0e56315c
FM
4838 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4839 ret = btrfs_next_leaf(root, path);
4840 if (ret < 0)
4841 return ret;
4842 if (ret > 0) {
4843 ret = 0;
4844 break;
4845 }
4846 leaf = path->nodes[0];
4847 }
4848
4849 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4850 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4851 break;
4852
4853 /* We have a hole, log it. */
4854 if (prev_extent_end < key.offset) {
7af59743 4855 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
4856
4857 /*
4858 * Release the path to avoid deadlocks with other code
4859 * paths that search the root while holding locks on
4860 * leafs from the log root.
4861 */
4862 btrfs_release_path(path);
4863 ret = btrfs_insert_file_extent(trans, root->log_root,
4864 ino, prev_extent_end, 0,
4865 0, hole_len, 0, hole_len,
4866 0, 0, 0);
4867 if (ret < 0)
4868 return ret;
4869
4870 /*
4871 * Search for the same key again in the root. Since it's
4872 * an extent item and we are holding the inode lock, the
4873 * key must still exist. If it doesn't just emit warning
4874 * and return an error to fall back to a transaction
4875 * commit.
4876 */
4877 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4878 if (ret < 0)
4879 return ret;
4880 if (WARN_ON(ret > 0))
4881 return -ENOENT;
4882 leaf = path->nodes[0];
4883 }
a89ca6f2 4884
7af59743 4885 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
4886 path->slots[0]++;
4887 cond_resched();
a89ca6f2 4888 }
a89ca6f2 4889
7af59743 4890 if (prev_extent_end < i_size) {
0e56315c 4891 u64 hole_len;
a89ca6f2 4892
0e56315c 4893 btrfs_release_path(path);
7af59743 4894 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
4895 ret = btrfs_insert_file_extent(trans, root->log_root,
4896 ino, prev_extent_end, 0, 0,
4897 hole_len, 0, hole_len,
4898 0, 0, 0);
4899 if (ret < 0)
4900 return ret;
4901 }
4902
4903 return 0;
a89ca6f2
FM
4904}
4905
56f23fdb
FM
4906/*
4907 * When we are logging a new inode X, check if it doesn't have a reference that
4908 * matches the reference from some other inode Y created in a past transaction
4909 * and that was renamed in the current transaction. If we don't do this, then at
4910 * log replay time we can lose inode Y (and all its files if it's a directory):
4911 *
4912 * mkdir /mnt/x
4913 * echo "hello world" > /mnt/x/foobar
4914 * sync
4915 * mv /mnt/x /mnt/y
4916 * mkdir /mnt/x # or touch /mnt/x
4917 * xfs_io -c fsync /mnt/x
4918 * <power fail>
4919 * mount fs, trigger log replay
4920 *
4921 * After the log replay procedure, we would lose the first directory and all its
4922 * files (file foobar).
4923 * For the case where inode Y is not a directory we simply end up losing it:
4924 *
4925 * echo "123" > /mnt/foo
4926 * sync
4927 * mv /mnt/foo /mnt/bar
4928 * echo "abc" > /mnt/foo
4929 * xfs_io -c fsync /mnt/foo
4930 * <power fail>
4931 *
4932 * We also need this for cases where a snapshot entry is replaced by some other
4933 * entry (file or directory) otherwise we end up with an unreplayable log due to
4934 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4935 * if it were a regular entry:
4936 *
4937 * mkdir /mnt/x
4938 * btrfs subvolume snapshot /mnt /mnt/x/snap
4939 * btrfs subvolume delete /mnt/x/snap
4940 * rmdir /mnt/x
4941 * mkdir /mnt/x
4942 * fsync /mnt/x or fsync some new file inside it
4943 * <power fail>
4944 *
4945 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4946 * the same transaction.
4947 */
4948static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4949 const int slot,
4950 const struct btrfs_key *key,
4791c8f1 4951 struct btrfs_inode *inode,
a3baaf0d 4952 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4953{
4954 int ret;
4955 struct btrfs_path *search_path;
4956 char *name = NULL;
4957 u32 name_len = 0;
4958 u32 item_size = btrfs_item_size_nr(eb, slot);
4959 u32 cur_offset = 0;
4960 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4961
4962 search_path = btrfs_alloc_path();
4963 if (!search_path)
4964 return -ENOMEM;
4965 search_path->search_commit_root = 1;
4966 search_path->skip_locking = 1;
4967
4968 while (cur_offset < item_size) {
4969 u64 parent;
4970 u32 this_name_len;
4971 u32 this_len;
4972 unsigned long name_ptr;
4973 struct btrfs_dir_item *di;
4974
4975 if (key->type == BTRFS_INODE_REF_KEY) {
4976 struct btrfs_inode_ref *iref;
4977
4978 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4979 parent = key->offset;
4980 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4981 name_ptr = (unsigned long)(iref + 1);
4982 this_len = sizeof(*iref) + this_name_len;
4983 } else {
4984 struct btrfs_inode_extref *extref;
4985
4986 extref = (struct btrfs_inode_extref *)(ptr +
4987 cur_offset);
4988 parent = btrfs_inode_extref_parent(eb, extref);
4989 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4990 name_ptr = (unsigned long)&extref->name;
4991 this_len = sizeof(*extref) + this_name_len;
4992 }
4993
4994 if (this_name_len > name_len) {
4995 char *new_name;
4996
4997 new_name = krealloc(name, this_name_len, GFP_NOFS);
4998 if (!new_name) {
4999 ret = -ENOMEM;
5000 goto out;
5001 }
5002 name_len = this_name_len;
5003 name = new_name;
5004 }
5005
5006 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
5007 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5008 parent, name, this_name_len, 0);
56f23fdb 5009 if (di && !IS_ERR(di)) {
44f714da
FM
5010 struct btrfs_key di_key;
5011
5012 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5013 di, &di_key);
5014 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5015 if (di_key.objectid != key->objectid) {
5016 ret = 1;
5017 *other_ino = di_key.objectid;
a3baaf0d 5018 *other_parent = parent;
6b5fc433
FM
5019 } else {
5020 ret = 0;
5021 }
44f714da
FM
5022 } else {
5023 ret = -EAGAIN;
5024 }
56f23fdb
FM
5025 goto out;
5026 } else if (IS_ERR(di)) {
5027 ret = PTR_ERR(di);
5028 goto out;
5029 }
5030 btrfs_release_path(search_path);
5031
5032 cur_offset += this_len;
5033 }
5034 ret = 0;
5035out:
5036 btrfs_free_path(search_path);
5037 kfree(name);
5038 return ret;
5039}
5040
6b5fc433
FM
5041struct btrfs_ino_list {
5042 u64 ino;
a3baaf0d 5043 u64 parent;
6b5fc433
FM
5044 struct list_head list;
5045};
5046
5047static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5048 struct btrfs_root *root,
5049 struct btrfs_path *path,
5050 struct btrfs_log_ctx *ctx,
a3baaf0d 5051 u64 ino, u64 parent)
6b5fc433
FM
5052{
5053 struct btrfs_ino_list *ino_elem;
5054 LIST_HEAD(inode_list);
5055 int ret = 0;
5056
5057 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5058 if (!ino_elem)
5059 return -ENOMEM;
5060 ino_elem->ino = ino;
a3baaf0d 5061 ino_elem->parent = parent;
6b5fc433
FM
5062 list_add_tail(&ino_elem->list, &inode_list);
5063
5064 while (!list_empty(&inode_list)) {
5065 struct btrfs_fs_info *fs_info = root->fs_info;
5066 struct btrfs_key key;
5067 struct inode *inode;
5068
5069 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5070 list);
5071 ino = ino_elem->ino;
a3baaf0d 5072 parent = ino_elem->parent;
6b5fc433
FM
5073 list_del(&ino_elem->list);
5074 kfree(ino_elem);
5075 if (ret)
5076 continue;
5077
5078 btrfs_release_path(path);
5079
0202e83f 5080 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5081 /*
5082 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
5083 * deleted in the current transaction, we need to log its parent
5084 * directory.
6b5fc433
FM
5085 */
5086 if (IS_ERR(inode)) {
5087 ret = PTR_ERR(inode);
a3baaf0d 5088 if (ret == -ENOENT) {
0202e83f 5089 inode = btrfs_iget(fs_info->sb, parent, root);
a3baaf0d
FM
5090 if (IS_ERR(inode)) {
5091 ret = PTR_ERR(inode);
5092 } else {
90d04510 5093 ret = btrfs_log_inode(trans,
a3baaf0d
FM
5094 BTRFS_I(inode),
5095 LOG_OTHER_INODE_ALL,
48778179 5096 ctx);
410f954c 5097 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
5098 }
5099 }
6b5fc433
FM
5100 continue;
5101 }
b5e4ff9d
FM
5102 /*
5103 * If the inode was already logged skip it - otherwise we can
5104 * hit an infinite loop. Example:
5105 *
5106 * From the commit root (previous transaction) we have the
5107 * following inodes:
5108 *
5109 * inode 257 a directory
5110 * inode 258 with references "zz" and "zz_link" on inode 257
5111 * inode 259 with reference "a" on inode 257
5112 *
5113 * And in the current (uncommitted) transaction we have:
5114 *
5115 * inode 257 a directory, unchanged
5116 * inode 258 with references "a" and "a2" on inode 257
5117 * inode 259 with reference "zz_link" on inode 257
5118 * inode 261 with reference "zz" on inode 257
5119 *
5120 * When logging inode 261 the following infinite loop could
5121 * happen if we don't skip already logged inodes:
5122 *
5123 * - we detect inode 258 as a conflicting inode, with inode 261
5124 * on reference "zz", and log it;
5125 *
5126 * - we detect inode 259 as a conflicting inode, with inode 258
5127 * on reference "a", and log it;
5128 *
5129 * - we detect inode 258 as a conflicting inode, with inode 259
5130 * on reference "zz_link", and log it - again! After this we
5131 * repeat the above steps forever.
5132 */
5133 spin_lock(&BTRFS_I(inode)->lock);
5134 /*
5135 * Check the inode's logged_trans only instead of
5136 * btrfs_inode_in_log(). This is because the last_log_commit of
1f295373
FM
5137 * the inode is not updated when we only log that it exists (see
5138 * btrfs_log_inode()).
b5e4ff9d
FM
5139 */
5140 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5141 spin_unlock(&BTRFS_I(inode)->lock);
5142 btrfs_add_delayed_iput(inode);
5143 continue;
5144 }
5145 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
5146 /*
5147 * We are safe logging the other inode without acquiring its
5148 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5149 * are safe against concurrent renames of the other inode as
5150 * well because during a rename we pin the log and update the
5151 * log with the new name before we unpin it.
5152 */
90d04510 5153 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
6b5fc433 5154 if (ret) {
410f954c 5155 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5156 continue;
5157 }
5158
5159 key.objectid = ino;
5160 key.type = BTRFS_INODE_REF_KEY;
5161 key.offset = 0;
5162 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5163 if (ret < 0) {
410f954c 5164 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5165 continue;
5166 }
5167
5168 while (true) {
5169 struct extent_buffer *leaf = path->nodes[0];
5170 int slot = path->slots[0];
5171 u64 other_ino = 0;
a3baaf0d 5172 u64 other_parent = 0;
6b5fc433
FM
5173
5174 if (slot >= btrfs_header_nritems(leaf)) {
5175 ret = btrfs_next_leaf(root, path);
5176 if (ret < 0) {
5177 break;
5178 } else if (ret > 0) {
5179 ret = 0;
5180 break;
5181 }
5182 continue;
5183 }
5184
5185 btrfs_item_key_to_cpu(leaf, &key, slot);
5186 if (key.objectid != ino ||
5187 (key.type != BTRFS_INODE_REF_KEY &&
5188 key.type != BTRFS_INODE_EXTREF_KEY)) {
5189 ret = 0;
5190 break;
5191 }
5192
5193 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5194 BTRFS_I(inode), &other_ino,
5195 &other_parent);
6b5fc433
FM
5196 if (ret < 0)
5197 break;
5198 if (ret > 0) {
5199 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5200 if (!ino_elem) {
5201 ret = -ENOMEM;
5202 break;
5203 }
5204 ino_elem->ino = other_ino;
a3baaf0d 5205 ino_elem->parent = other_parent;
6b5fc433
FM
5206 list_add_tail(&ino_elem->list, &inode_list);
5207 ret = 0;
5208 }
5209 path->slots[0]++;
5210 }
410f954c 5211 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5212 }
5213
5214 return ret;
5215}
5216
da447009
FM
5217static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5218 struct btrfs_inode *inode,
5219 struct btrfs_key *min_key,
5220 const struct btrfs_key *max_key,
5221 struct btrfs_path *path,
5222 struct btrfs_path *dst_path,
5223 const u64 logged_isize,
5224 const bool recursive_logging,
5225 const int inode_only,
5226 struct btrfs_log_ctx *ctx,
5227 bool *need_log_inode_item)
5228{
5229 struct btrfs_root *root = inode->root;
5230 int ins_start_slot = 0;
5231 int ins_nr = 0;
5232 int ret;
5233
5234 while (1) {
5235 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5236 if (ret < 0)
5237 return ret;
5238 if (ret > 0) {
5239 ret = 0;
5240 break;
5241 }
5242again:
5243 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5244 if (min_key->objectid != max_key->objectid)
5245 break;
5246 if (min_key->type > max_key->type)
5247 break;
5248
5249 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5250 *need_log_inode_item = false;
5251
5252 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5253 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5254 inode->generation == trans->transid &&
5255 !recursive_logging) {
5256 u64 other_ino = 0;
5257 u64 other_parent = 0;
5258
5259 ret = btrfs_check_ref_name_override(path->nodes[0],
5260 path->slots[0], min_key, inode,
5261 &other_ino, &other_parent);
5262 if (ret < 0) {
5263 return ret;
289cffcb 5264 } else if (ret > 0 &&
da447009
FM
5265 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5266 if (ins_nr > 0) {
5267 ins_nr++;
5268 } else {
5269 ins_nr = 1;
5270 ins_start_slot = path->slots[0];
5271 }
5272 ret = copy_items(trans, inode, dst_path, path,
5273 ins_start_slot, ins_nr,
5274 inode_only, logged_isize);
5275 if (ret < 0)
5276 return ret;
5277 ins_nr = 0;
5278
5279 ret = log_conflicting_inodes(trans, root, path,
5280 ctx, other_ino, other_parent);
5281 if (ret)
5282 return ret;
5283 btrfs_release_path(path);
5284 goto next_key;
5285 }
5286 }
5287
5288 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5289 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5290 if (ins_nr == 0)
5291 goto next_slot;
5292 ret = copy_items(trans, inode, dst_path, path,
5293 ins_start_slot,
5294 ins_nr, inode_only, logged_isize);
5295 if (ret < 0)
5296 return ret;
5297 ins_nr = 0;
5298 goto next_slot;
5299 }
5300
5301 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5302 ins_nr++;
5303 goto next_slot;
5304 } else if (!ins_nr) {
5305 ins_start_slot = path->slots[0];
5306 ins_nr = 1;
5307 goto next_slot;
5308 }
5309
5310 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5311 ins_nr, inode_only, logged_isize);
5312 if (ret < 0)
5313 return ret;
5314 ins_nr = 1;
5315 ins_start_slot = path->slots[0];
5316next_slot:
5317 path->slots[0]++;
5318 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5319 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5320 path->slots[0]);
5321 goto again;
5322 }
5323 if (ins_nr) {
5324 ret = copy_items(trans, inode, dst_path, path,
5325 ins_start_slot, ins_nr, inode_only,
5326 logged_isize);
5327 if (ret < 0)
5328 return ret;
5329 ins_nr = 0;
5330 }
5331 btrfs_release_path(path);
5332next_key:
5333 if (min_key->offset < (u64)-1) {
5334 min_key->offset++;
5335 } else if (min_key->type < max_key->type) {
5336 min_key->type++;
5337 min_key->offset = 0;
5338 } else {
5339 break;
5340 }
5341 }
5342 if (ins_nr)
5343 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5344 ins_nr, inode_only, logged_isize);
5345
5346 return ret;
5347}
5348
e02119d5
CM
5349/* log a single inode in the tree log.
5350 * At least one parent directory for this inode must exist in the tree
5351 * or be logged already.
5352 *
5353 * Any items from this inode changed by the current transaction are copied
5354 * to the log tree. An extra reference is taken on any extents in this
5355 * file, allowing us to avoid a whole pile of corner cases around logging
5356 * blocks that have been removed from the tree.
5357 *
5358 * See LOG_INODE_ALL and related defines for a description of what inode_only
5359 * does.
5360 *
5361 * This handles both files and directories.
5362 */
12fcfd22 5363static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 5364 struct btrfs_inode *inode,
49dae1bc 5365 int inode_only,
8407f553 5366 struct btrfs_log_ctx *ctx)
e02119d5
CM
5367{
5368 struct btrfs_path *path;
5369 struct btrfs_path *dst_path;
5370 struct btrfs_key min_key;
5371 struct btrfs_key max_key;
90d04510 5372 struct btrfs_root *log = inode->root->log_root;
4a500fd1 5373 int err = 0;
8c8648dd 5374 int ret = 0;
5dc562c5 5375 bool fast_search = false;
a59108a7
NB
5376 u64 ino = btrfs_ino(inode);
5377 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5378 u64 logged_isize = 0;
e4545de5 5379 bool need_log_inode_item = true;
9a8fca62 5380 bool xattrs_logged = false;
a3baaf0d 5381 bool recursive_logging = false;
2ac691d8 5382 bool inode_item_dropped = true;
e02119d5 5383
e02119d5 5384 path = btrfs_alloc_path();
5df67083
TI
5385 if (!path)
5386 return -ENOMEM;
e02119d5 5387 dst_path = btrfs_alloc_path();
5df67083
TI
5388 if (!dst_path) {
5389 btrfs_free_path(path);
5390 return -ENOMEM;
5391 }
e02119d5 5392
33345d01 5393 min_key.objectid = ino;
e02119d5
CM
5394 min_key.type = BTRFS_INODE_ITEM_KEY;
5395 min_key.offset = 0;
5396
33345d01 5397 max_key.objectid = ino;
12fcfd22 5398
12fcfd22 5399
5dc562c5 5400 /* today the code can only do partial logging of directories */
a59108a7 5401 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5402 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5403 &inode->runtime_flags) &&
781feef7 5404 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5405 max_key.type = BTRFS_XATTR_ITEM_KEY;
5406 else
5407 max_key.type = (u8)-1;
5408 max_key.offset = (u64)-1;
5409
2c2c452b 5410 /*
5aa7d1a7
FM
5411 * Only run delayed items if we are a directory. We want to make sure
5412 * all directory indexes hit the fs/subvolume tree so we can find them
5413 * and figure out which index ranges have to be logged.
2c2c452b 5414 */
f6df27dd
FM
5415 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5416 err = btrfs_commit_inode_delayed_items(trans, inode);
5417 if (err)
5418 goto out;
16cdcec7
MX
5419 }
5420
a3baaf0d
FM
5421 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5422 recursive_logging = true;
5423 if (inode_only == LOG_OTHER_INODE)
5424 inode_only = LOG_INODE_EXISTS;
5425 else
5426 inode_only = LOG_INODE_ALL;
a59108a7 5427 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5428 } else {
a59108a7 5429 mutex_lock(&inode->log_mutex);
781feef7 5430 }
e02119d5 5431
64d6b281
FM
5432 /*
5433 * This is for cases where logging a directory could result in losing a
5434 * a file after replaying the log. For example, if we move a file from a
5435 * directory A to a directory B, then fsync directory A, we have no way
5436 * to known the file was moved from A to B, so logging just A would
5437 * result in losing the file after a log replay.
5438 */
5439 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5440 inode_only == LOG_INODE_ALL &&
5441 inode->last_unlink_trans >= trans->transid) {
5442 btrfs_set_log_full_commit(trans);
5443 err = 1;
5444 goto out_unlock;
5445 }
5446
e02119d5
CM
5447 /*
5448 * a brute force approach to making sure we get the most uptodate
5449 * copies of everything.
5450 */
a59108a7 5451 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5452 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5453
ab12313a 5454 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
4f764e51
FM
5455 if (inode_only == LOG_INODE_EXISTS)
5456 max_key_type = BTRFS_XATTR_ITEM_KEY;
88e221cd 5457 ret = drop_inode_items(trans, log, path, inode, max_key_type);
e02119d5 5458 } else {
a5c733a4 5459 if (inode_only == LOG_INODE_EXISTS && inode_logged(trans, inode)) {
1a4bcf47
FM
5460 /*
5461 * Make sure the new inode item we write to the log has
5462 * the same isize as the current one (if it exists).
5463 * This is necessary to prevent data loss after log
5464 * replay, and also to prevent doing a wrong expanding
5465 * truncate - for e.g. create file, write 4K into offset
5466 * 0, fsync, write 4K into offset 4096, add hard link,
5467 * fsync some other file (to sync log), power fail - if
5468 * we use the inode's current i_size, after log replay
5469 * we get a 8Kb file, with the last 4Kb extent as a hole
5470 * (zeroes), as if an expanding truncate happened,
5471 * instead of getting a file of 4Kb only.
5472 */
a59108a7 5473 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5474 if (err)
5475 goto out_unlock;
5476 }
a742994a 5477 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5478 &inode->runtime_flags)) {
a742994a 5479 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5480 max_key.type = BTRFS_XATTR_ITEM_KEY;
88e221cd
FM
5481 ret = drop_inode_items(trans, log, path, inode,
5482 max_key.type);
a742994a
FM
5483 } else {
5484 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5485 &inode->runtime_flags);
a742994a 5486 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5487 &inode->runtime_flags);
4934a815
FM
5488 if (inode_logged(trans, inode))
5489 ret = truncate_inode_items(trans, log,
5490 inode, 0, 0);
a742994a 5491 }
4f764e51 5492 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5493 &inode->runtime_flags) ||
6cfab851 5494 inode_only == LOG_INODE_EXISTS) {
4f764e51 5495 if (inode_only == LOG_INODE_ALL)
183f37fa 5496 fast_search = true;
4f764e51 5497 max_key.type = BTRFS_XATTR_ITEM_KEY;
88e221cd
FM
5498 ret = drop_inode_items(trans, log, path, inode,
5499 max_key.type);
a95249b3
JB
5500 } else {
5501 if (inode_only == LOG_INODE_ALL)
5502 fast_search = true;
2ac691d8 5503 inode_item_dropped = false;
a95249b3 5504 goto log_extents;
5dc562c5 5505 }
a95249b3 5506
e02119d5 5507 }
4a500fd1
YZ
5508 if (ret) {
5509 err = ret;
5510 goto out_unlock;
5511 }
e02119d5 5512
da447009
FM
5513 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5514 path, dst_path, logged_isize,
7af59743
FM
5515 recursive_logging, inode_only, ctx,
5516 &need_log_inode_item);
da447009
FM
5517 if (err)
5518 goto out_unlock;
5dc562c5 5519
36283bf7
FM
5520 btrfs_release_path(path);
5521 btrfs_release_path(dst_path);
90d04510 5522 err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
36283bf7
FM
5523 if (err)
5524 goto out_unlock;
9a8fca62 5525 xattrs_logged = true;
a89ca6f2
FM
5526 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5527 btrfs_release_path(path);
5528 btrfs_release_path(dst_path);
90d04510 5529 err = btrfs_log_holes(trans, inode, path);
a89ca6f2
FM
5530 if (err)
5531 goto out_unlock;
5532 }
a95249b3 5533log_extents:
f3b15ccd
JB
5534 btrfs_release_path(path);
5535 btrfs_release_path(dst_path);
e4545de5 5536 if (need_log_inode_item) {
2ac691d8 5537 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
b590b839
FM
5538 if (err)
5539 goto out_unlock;
5540 /*
5541 * If we are doing a fast fsync and the inode was logged before
5542 * in this transaction, we don't need to log the xattrs because
5543 * they were logged before. If xattrs were added, changed or
5544 * deleted since the last time we logged the inode, then we have
5545 * already logged them because the inode had the runtime flag
5546 * BTRFS_INODE_COPY_EVERYTHING set.
5547 */
5548 if (!xattrs_logged && inode->logged_trans < trans->transid) {
90d04510 5549 err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
b590b839
FM
5550 if (err)
5551 goto out_unlock;
9a8fca62
FM
5552 btrfs_release_path(path);
5553 }
e4545de5 5554 }
5dc562c5 5555 if (fast_search) {
90d04510 5556 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
5dc562c5
JB
5557 if (ret) {
5558 err = ret;
5559 goto out_unlock;
5560 }
d006a048 5561 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5562 struct extent_map *em, *n;
5563
49dae1bc 5564 write_lock(&em_tree->lock);
48778179
FM
5565 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5566 list_del_init(&em->list);
49dae1bc 5567 write_unlock(&em_tree->lock);
5dc562c5
JB
5568 }
5569
a59108a7 5570 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
90d04510 5571 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
4a500fd1
YZ
5572 if (ret) {
5573 err = ret;
5574 goto out_unlock;
5575 }
e02119d5 5576 }
49dae1bc 5577
130341be
FM
5578 spin_lock(&inode->lock);
5579 inode->logged_trans = trans->transid;
d1d832a0 5580 /*
130341be
FM
5581 * Don't update last_log_commit if we logged that an inode exists.
5582 * We do this for three reasons:
5583 *
5584 * 1) We might have had buffered writes to this inode that were
5585 * flushed and had their ordered extents completed in this
5586 * transaction, but we did not previously log the inode with
5587 * LOG_INODE_ALL. Later the inode was evicted and after that
5588 * it was loaded again and this LOG_INODE_EXISTS log operation
5589 * happened. We must make sure that if an explicit fsync against
5590 * the inode is performed later, it logs the new extents, an
5591 * updated inode item, etc, and syncs the log. The same logic
5592 * applies to direct IO writes instead of buffered writes.
5593 *
5594 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5595 * is logged with an i_size of 0 or whatever value was logged
5596 * before. If later the i_size of the inode is increased by a
5597 * truncate operation, the log is synced through an fsync of
5598 * some other inode and then finally an explicit fsync against
5599 * this inode is made, we must make sure this fsync logs the
5600 * inode with the new i_size, the hole between old i_size and
5601 * the new i_size, and syncs the log.
5602 *
5603 * 3) If we are logging that an ancestor inode exists as part of
5604 * logging a new name from a link or rename operation, don't update
5605 * its last_log_commit - otherwise if an explicit fsync is made
5606 * against an ancestor, the fsync considers the inode in the log
5607 * and doesn't sync the log, resulting in the ancestor missing after
5608 * a power failure unless the log was synced as part of an fsync
5609 * against any other unrelated inode.
d1d832a0 5610 */
130341be
FM
5611 if (inode_only != LOG_INODE_EXISTS)
5612 inode->last_log_commit = inode->last_sub_trans;
5613 spin_unlock(&inode->lock);
4a500fd1 5614out_unlock:
a59108a7 5615 mutex_unlock(&inode->log_mutex);
f6df27dd 5616out:
e02119d5
CM
5617 btrfs_free_path(path);
5618 btrfs_free_path(dst_path);
4a500fd1 5619 return err;
e02119d5
CM
5620}
5621
ab12313a
FM
5622/*
5623 * Check if we need to log an inode. This is used in contexts where while
5624 * logging an inode we need to log another inode (either that it exists or in
5625 * full mode). This is used instead of btrfs_inode_in_log() because the later
5626 * requires the inode to be in the log and have the log transaction committed,
5627 * while here we do not care if the log transaction was already committed - our
5628 * caller will commit the log later - and we want to avoid logging an inode
5629 * multiple times when multiple tasks have joined the same log transaction.
5630 */
5631static bool need_log_inode(struct btrfs_trans_handle *trans,
5632 struct btrfs_inode *inode)
5633{
8be2ba2e
FM
5634 /*
5635 * If a directory was not modified, no dentries added or removed, we can
5636 * and should avoid logging it.
5637 */
5638 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5639 return false;
5640
ab12313a
FM
5641 /*
5642 * If this inode does not have new/updated/deleted xattrs since the last
5643 * time it was logged and is flagged as logged in the current transaction,
5644 * we can skip logging it. As for new/deleted names, those are updated in
5645 * the log by link/unlink/rename operations.
5646 * In case the inode was logged and then evicted and reloaded, its
5647 * logged_trans will be 0, in which case we have to fully log it since
5648 * logged_trans is a transient field, not persisted.
5649 */
5650 if (inode->logged_trans == trans->transid &&
5651 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5652 return false;
5653
5654 return true;
5655}
5656
2f2ff0ee
FM
5657struct btrfs_dir_list {
5658 u64 ino;
5659 struct list_head list;
5660};
5661
5662/*
5663 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5664 * details about the why it is needed.
5665 * This is a recursive operation - if an existing dentry corresponds to a
5666 * directory, that directory's new entries are logged too (same behaviour as
5667 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5668 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5669 * complains about the following circular lock dependency / possible deadlock:
5670 *
5671 * CPU0 CPU1
5672 * ---- ----
5673 * lock(&type->i_mutex_dir_key#3/2);
5674 * lock(sb_internal#2);
5675 * lock(&type->i_mutex_dir_key#3/2);
5676 * lock(&sb->s_type->i_mutex_key#14);
5677 *
5678 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5679 * sb_start_intwrite() in btrfs_start_transaction().
5680 * Not locking i_mutex of the inodes is still safe because:
5681 *
5682 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5683 * that while logging the inode new references (names) are added or removed
5684 * from the inode, leaving the logged inode item with a link count that does
5685 * not match the number of logged inode reference items. This is fine because
5686 * at log replay time we compute the real number of links and correct the
5687 * link count in the inode item (see replay_one_buffer() and
5688 * link_to_fixup_dir());
5689 *
5690 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5691 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5692 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5693 * has a size that doesn't match the sum of the lengths of all the logged
5694 * names. This does not result in a problem because if a dir_item key is
5695 * logged but its matching dir_index key is not logged, at log replay time we
5696 * don't use it to replay the respective name (see replay_one_name()). On the
5697 * other hand if only the dir_index key ends up being logged, the respective
5698 * name is added to the fs/subvol tree with both the dir_item and dir_index
5699 * keys created (see replay_one_name()).
5700 * The directory's inode item with a wrong i_size is not a problem as well,
5701 * since we don't use it at log replay time to set the i_size in the inode
5702 * item of the fs/subvol tree (see overwrite_item()).
5703 */
5704static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5705 struct btrfs_root *root,
51cc0d32 5706 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5707 struct btrfs_log_ctx *ctx)
5708{
0b246afa 5709 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5710 struct btrfs_root *log = root->log_root;
5711 struct btrfs_path *path;
5712 LIST_HEAD(dir_list);
5713 struct btrfs_dir_list *dir_elem;
5714 int ret = 0;
5715
c48792c6
FM
5716 /*
5717 * If we are logging a new name, as part of a link or rename operation,
5718 * don't bother logging new dentries, as we just want to log the names
5719 * of an inode and that any new parents exist.
5720 */
5721 if (ctx->logging_new_name)
5722 return 0;
5723
2f2ff0ee
FM
5724 path = btrfs_alloc_path();
5725 if (!path)
5726 return -ENOMEM;
5727
5728 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5729 if (!dir_elem) {
5730 btrfs_free_path(path);
5731 return -ENOMEM;
5732 }
51cc0d32 5733 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5734 list_add_tail(&dir_elem->list, &dir_list);
5735
5736 while (!list_empty(&dir_list)) {
5737 struct extent_buffer *leaf;
5738 struct btrfs_key min_key;
5739 int nritems;
5740 int i;
5741
5742 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5743 list);
5744 if (ret)
5745 goto next_dir_inode;
5746
5747 min_key.objectid = dir_elem->ino;
5748 min_key.type = BTRFS_DIR_ITEM_KEY;
5749 min_key.offset = 0;
5750again:
5751 btrfs_release_path(path);
5752 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5753 if (ret < 0) {
5754 goto next_dir_inode;
5755 } else if (ret > 0) {
5756 ret = 0;
5757 goto next_dir_inode;
5758 }
5759
5760process_leaf:
5761 leaf = path->nodes[0];
5762 nritems = btrfs_header_nritems(leaf);
5763 for (i = path->slots[0]; i < nritems; i++) {
5764 struct btrfs_dir_item *di;
5765 struct btrfs_key di_key;
5766 struct inode *di_inode;
5767 struct btrfs_dir_list *new_dir_elem;
5768 int log_mode = LOG_INODE_EXISTS;
5769 int type;
5770
5771 btrfs_item_key_to_cpu(leaf, &min_key, i);
5772 if (min_key.objectid != dir_elem->ino ||
5773 min_key.type != BTRFS_DIR_ITEM_KEY)
5774 goto next_dir_inode;
5775
5776 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5777 type = btrfs_dir_type(leaf, di);
5778 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5779 type != BTRFS_FT_DIR)
5780 continue;
5781 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5782 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5783 continue;
5784
ec125cfb 5785 btrfs_release_path(path);
0202e83f 5786 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
2f2ff0ee
FM
5787 if (IS_ERR(di_inode)) {
5788 ret = PTR_ERR(di_inode);
5789 goto next_dir_inode;
5790 }
5791
0e44cb3f 5792 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
410f954c 5793 btrfs_add_delayed_iput(di_inode);
ec125cfb 5794 break;
2f2ff0ee
FM
5795 }
5796
5797 ctx->log_new_dentries = false;
3f9749f6 5798 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5799 log_mode = LOG_INODE_ALL;
90d04510 5800 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
48778179 5801 log_mode, ctx);
410f954c 5802 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5803 if (ret)
5804 goto next_dir_inode;
5805 if (ctx->log_new_dentries) {
5806 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5807 GFP_NOFS);
5808 if (!new_dir_elem) {
5809 ret = -ENOMEM;
5810 goto next_dir_inode;
5811 }
5812 new_dir_elem->ino = di_key.objectid;
5813 list_add_tail(&new_dir_elem->list, &dir_list);
5814 }
5815 break;
5816 }
5817 if (i == nritems) {
5818 ret = btrfs_next_leaf(log, path);
5819 if (ret < 0) {
5820 goto next_dir_inode;
5821 } else if (ret > 0) {
5822 ret = 0;
5823 goto next_dir_inode;
5824 }
5825 goto process_leaf;
5826 }
5827 if (min_key.offset < (u64)-1) {
5828 min_key.offset++;
5829 goto again;
5830 }
5831next_dir_inode:
5832 list_del(&dir_elem->list);
5833 kfree(dir_elem);
5834 }
5835
5836 btrfs_free_path(path);
5837 return ret;
5838}
5839
18aa0922 5840static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5841 struct btrfs_inode *inode,
18aa0922
FM
5842 struct btrfs_log_ctx *ctx)
5843{
3ffbd68c 5844 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5845 int ret;
5846 struct btrfs_path *path;
5847 struct btrfs_key key;
d0a0b78d
NB
5848 struct btrfs_root *root = inode->root;
5849 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5850
5851 path = btrfs_alloc_path();
5852 if (!path)
5853 return -ENOMEM;
5854 path->skip_locking = 1;
5855 path->search_commit_root = 1;
5856
5857 key.objectid = ino;
5858 key.type = BTRFS_INODE_REF_KEY;
5859 key.offset = 0;
5860 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5861 if (ret < 0)
5862 goto out;
5863
5864 while (true) {
5865 struct extent_buffer *leaf = path->nodes[0];
5866 int slot = path->slots[0];
5867 u32 cur_offset = 0;
5868 u32 item_size;
5869 unsigned long ptr;
5870
5871 if (slot >= btrfs_header_nritems(leaf)) {
5872 ret = btrfs_next_leaf(root, path);
5873 if (ret < 0)
5874 goto out;
5875 else if (ret > 0)
5876 break;
5877 continue;
5878 }
5879
5880 btrfs_item_key_to_cpu(leaf, &key, slot);
5881 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5882 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5883 break;
5884
5885 item_size = btrfs_item_size_nr(leaf, slot);
5886 ptr = btrfs_item_ptr_offset(leaf, slot);
5887 while (cur_offset < item_size) {
5888 struct btrfs_key inode_key;
5889 struct inode *dir_inode;
5890
5891 inode_key.type = BTRFS_INODE_ITEM_KEY;
5892 inode_key.offset = 0;
5893
5894 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5895 struct btrfs_inode_extref *extref;
5896
5897 extref = (struct btrfs_inode_extref *)
5898 (ptr + cur_offset);
5899 inode_key.objectid = btrfs_inode_extref_parent(
5900 leaf, extref);
5901 cur_offset += sizeof(*extref);
5902 cur_offset += btrfs_inode_extref_name_len(leaf,
5903 extref);
5904 } else {
5905 inode_key.objectid = key.offset;
5906 cur_offset = item_size;
5907 }
5908
0202e83f
DS
5909 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5910 root);
0f375eed
FM
5911 /*
5912 * If the parent inode was deleted, return an error to
5913 * fallback to a transaction commit. This is to prevent
5914 * getting an inode that was moved from one parent A to
5915 * a parent B, got its former parent A deleted and then
5916 * it got fsync'ed, from existing at both parents after
5917 * a log replay (and the old parent still existing).
5918 * Example:
5919 *
5920 * mkdir /mnt/A
5921 * mkdir /mnt/B
5922 * touch /mnt/B/bar
5923 * sync
5924 * mv /mnt/B/bar /mnt/A/bar
5925 * mv -T /mnt/A /mnt/B
5926 * fsync /mnt/B/bar
5927 * <power fail>
5928 *
5929 * If we ignore the old parent B which got deleted,
5930 * after a log replay we would have file bar linked
5931 * at both parents and the old parent B would still
5932 * exist.
5933 */
5934 if (IS_ERR(dir_inode)) {
5935 ret = PTR_ERR(dir_inode);
5936 goto out;
5937 }
18aa0922 5938
3e6a86a1
FM
5939 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5940 btrfs_add_delayed_iput(dir_inode);
5941 continue;
5942 }
5943
289cffcb 5944 ctx->log_new_dentries = false;
90d04510 5945 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 5946 LOG_INODE_ALL, ctx);
289cffcb 5947 if (!ret && ctx->log_new_dentries)
657ed1aa 5948 ret = log_new_dir_dentries(trans, root,
f85b7379 5949 BTRFS_I(dir_inode), ctx);
410f954c 5950 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
5951 if (ret)
5952 goto out;
5953 }
5954 path->slots[0]++;
5955 }
5956 ret = 0;
5957out:
5958 btrfs_free_path(path);
5959 return ret;
5960}
5961
b8aa330d
FM
5962static int log_new_ancestors(struct btrfs_trans_handle *trans,
5963 struct btrfs_root *root,
5964 struct btrfs_path *path,
5965 struct btrfs_log_ctx *ctx)
5966{
5967 struct btrfs_key found_key;
5968
5969 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5970
5971 while (true) {
5972 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
5973 struct extent_buffer *leaf = path->nodes[0];
5974 int slot = path->slots[0];
5975 struct btrfs_key search_key;
5976 struct inode *inode;
0202e83f 5977 u64 ino;
b8aa330d
FM
5978 int ret = 0;
5979
5980 btrfs_release_path(path);
5981
0202e83f
DS
5982 ino = found_key.offset;
5983
b8aa330d
FM
5984 search_key.objectid = found_key.offset;
5985 search_key.type = BTRFS_INODE_ITEM_KEY;
5986 search_key.offset = 0;
0202e83f 5987 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
5988 if (IS_ERR(inode))
5989 return PTR_ERR(inode);
5990
ab12313a
FM
5991 if (BTRFS_I(inode)->generation >= trans->transid &&
5992 need_log_inode(trans, BTRFS_I(inode)))
90d04510 5993 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 5994 LOG_INODE_EXISTS, ctx);
410f954c 5995 btrfs_add_delayed_iput(inode);
b8aa330d
FM
5996 if (ret)
5997 return ret;
5998
5999 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6000 break;
6001
6002 search_key.type = BTRFS_INODE_REF_KEY;
6003 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6004 if (ret < 0)
6005 return ret;
6006
6007 leaf = path->nodes[0];
6008 slot = path->slots[0];
6009 if (slot >= btrfs_header_nritems(leaf)) {
6010 ret = btrfs_next_leaf(root, path);
6011 if (ret < 0)
6012 return ret;
6013 else if (ret > 0)
6014 return -ENOENT;
6015 leaf = path->nodes[0];
6016 slot = path->slots[0];
6017 }
6018
6019 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6020 if (found_key.objectid != search_key.objectid ||
6021 found_key.type != BTRFS_INODE_REF_KEY)
6022 return -ENOENT;
6023 }
6024 return 0;
6025}
6026
6027static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6028 struct btrfs_inode *inode,
6029 struct dentry *parent,
6030 struct btrfs_log_ctx *ctx)
6031{
6032 struct btrfs_root *root = inode->root;
b8aa330d
FM
6033 struct dentry *old_parent = NULL;
6034 struct super_block *sb = inode->vfs_inode.i_sb;
6035 int ret = 0;
6036
6037 while (true) {
6038 if (!parent || d_really_is_negative(parent) ||
6039 sb != parent->d_sb)
6040 break;
6041
6042 inode = BTRFS_I(d_inode(parent));
6043 if (root != inode->root)
6044 break;
6045
ab12313a
FM
6046 if (inode->generation >= trans->transid &&
6047 need_log_inode(trans, inode)) {
90d04510 6048 ret = btrfs_log_inode(trans, inode,
48778179 6049 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6050 if (ret)
6051 break;
6052 }
6053 if (IS_ROOT(parent))
6054 break;
6055
6056 parent = dget_parent(parent);
6057 dput(old_parent);
6058 old_parent = parent;
6059 }
6060 dput(old_parent);
6061
6062 return ret;
6063}
6064
6065static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6066 struct btrfs_inode *inode,
6067 struct dentry *parent,
6068 struct btrfs_log_ctx *ctx)
6069{
6070 struct btrfs_root *root = inode->root;
6071 const u64 ino = btrfs_ino(inode);
6072 struct btrfs_path *path;
6073 struct btrfs_key search_key;
6074 int ret;
6075
6076 /*
6077 * For a single hard link case, go through a fast path that does not
6078 * need to iterate the fs/subvolume tree.
6079 */
6080 if (inode->vfs_inode.i_nlink < 2)
6081 return log_new_ancestors_fast(trans, inode, parent, ctx);
6082
6083 path = btrfs_alloc_path();
6084 if (!path)
6085 return -ENOMEM;
6086
6087 search_key.objectid = ino;
6088 search_key.type = BTRFS_INODE_REF_KEY;
6089 search_key.offset = 0;
6090again:
6091 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6092 if (ret < 0)
6093 goto out;
6094 if (ret == 0)
6095 path->slots[0]++;
6096
6097 while (true) {
6098 struct extent_buffer *leaf = path->nodes[0];
6099 int slot = path->slots[0];
6100 struct btrfs_key found_key;
6101
6102 if (slot >= btrfs_header_nritems(leaf)) {
6103 ret = btrfs_next_leaf(root, path);
6104 if (ret < 0)
6105 goto out;
6106 else if (ret > 0)
6107 break;
6108 continue;
6109 }
6110
6111 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6112 if (found_key.objectid != ino ||
6113 found_key.type > BTRFS_INODE_EXTREF_KEY)
6114 break;
6115
6116 /*
6117 * Don't deal with extended references because they are rare
6118 * cases and too complex to deal with (we would need to keep
6119 * track of which subitem we are processing for each item in
6120 * this loop, etc). So just return some error to fallback to
6121 * a transaction commit.
6122 */
6123 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6124 ret = -EMLINK;
6125 goto out;
6126 }
6127
6128 /*
6129 * Logging ancestors needs to do more searches on the fs/subvol
6130 * tree, so it releases the path as needed to avoid deadlocks.
6131 * Keep track of the last inode ref key and resume from that key
6132 * after logging all new ancestors for the current hard link.
6133 */
6134 memcpy(&search_key, &found_key, sizeof(search_key));
6135
6136 ret = log_new_ancestors(trans, root, path, ctx);
6137 if (ret)
6138 goto out;
6139 btrfs_release_path(path);
6140 goto again;
6141 }
6142 ret = 0;
6143out:
6144 btrfs_free_path(path);
6145 return ret;
6146}
6147
e02119d5
CM
6148/*
6149 * helper function around btrfs_log_inode to make sure newly created
6150 * parent directories also end up in the log. A minimal inode and backref
6151 * only logging is done of any parent directories that are older than
6152 * the last committed transaction
6153 */
48a3b636 6154static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6155 struct btrfs_inode *inode,
49dae1bc 6156 struct dentry *parent,
41a1eada 6157 int inode_only,
8b050d35 6158 struct btrfs_log_ctx *ctx)
e02119d5 6159{
f882274b 6160 struct btrfs_root *root = inode->root;
0b246afa 6161 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6162 int ret = 0;
2f2ff0ee 6163 bool log_dentries = false;
12fcfd22 6164
0b246afa 6165 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6166 ret = 1;
6167 goto end_no_trans;
6168 }
6169
f882274b 6170 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6171 ret = 1;
6172 goto end_no_trans;
6173 }
6174
f2d72f42
FM
6175 /*
6176 * Skip already logged inodes or inodes corresponding to tmpfiles
6177 * (since logging them is pointless, a link count of 0 means they
6178 * will never be accessible).
6179 */
626e9f41
FM
6180 if ((btrfs_inode_in_log(inode, trans->transid) &&
6181 list_empty(&ctx->ordered_extents)) ||
f2d72f42 6182 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6183 ret = BTRFS_NO_LOG_SYNC;
6184 goto end_no_trans;
6185 }
6186
8b050d35 6187 ret = start_log_trans(trans, root, ctx);
4a500fd1 6188 if (ret)
e87ac136 6189 goto end_no_trans;
e02119d5 6190
90d04510 6191 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
6192 if (ret)
6193 goto end_trans;
12fcfd22 6194
af4176b4
CM
6195 /*
6196 * for regular files, if its inode is already on disk, we don't
6197 * have to worry about the parents at all. This is because
6198 * we can use the last_unlink_trans field to record renames
6199 * and other fun in this file.
6200 */
19df27a9 6201 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
6202 inode->generation < trans->transid &&
6203 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
6204 ret = 0;
6205 goto end_trans;
6206 }
af4176b4 6207
289cffcb 6208 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
6209 log_dentries = true;
6210
18aa0922 6211 /*
01327610 6212 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6213 * inodes are fully logged. This is to prevent leaving dangling
6214 * directory index entries in directories that were our parents but are
6215 * not anymore. Not doing this results in old parent directory being
6216 * impossible to delete after log replay (rmdir will always fail with
6217 * error -ENOTEMPTY).
6218 *
6219 * Example 1:
6220 *
6221 * mkdir testdir
6222 * touch testdir/foo
6223 * ln testdir/foo testdir/bar
6224 * sync
6225 * unlink testdir/bar
6226 * xfs_io -c fsync testdir/foo
6227 * <power failure>
6228 * mount fs, triggers log replay
6229 *
6230 * If we don't log the parent directory (testdir), after log replay the
6231 * directory still has an entry pointing to the file inode using the bar
6232 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6233 * the file inode has a link count of 1.
6234 *
6235 * Example 2:
6236 *
6237 * mkdir testdir
6238 * touch foo
6239 * ln foo testdir/foo2
6240 * ln foo testdir/foo3
6241 * sync
6242 * unlink testdir/foo3
6243 * xfs_io -c fsync foo
6244 * <power failure>
6245 * mount fs, triggers log replay
6246 *
6247 * Similar as the first example, after log replay the parent directory
6248 * testdir still has an entry pointing to the inode file with name foo3
6249 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6250 * and has a link count of 2.
6251 */
47d3db41 6252 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 6253 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6254 if (ret)
6255 goto end_trans;
6256 }
6257
b8aa330d
FM
6258 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6259 if (ret)
41bd6067 6260 goto end_trans;
76dda93c 6261
2f2ff0ee 6262 if (log_dentries)
b8aa330d 6263 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6264 else
6265 ret = 0;
4a500fd1
YZ
6266end_trans:
6267 if (ret < 0) {
90787766 6268 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6269 ret = 1;
6270 }
8b050d35
MX
6271
6272 if (ret)
6273 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6274 btrfs_end_log_trans(root);
6275end_no_trans:
6276 return ret;
e02119d5
CM
6277}
6278
6279/*
6280 * it is not safe to log dentry if the chunk root has added new
6281 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6282 * If this returns 1, you must commit the transaction to safely get your
6283 * data on disk.
6284 */
6285int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6286 struct dentry *dentry,
8b050d35 6287 struct btrfs_log_ctx *ctx)
e02119d5 6288{
6a912213
JB
6289 struct dentry *parent = dget_parent(dentry);
6290 int ret;
6291
f882274b 6292 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 6293 LOG_INODE_ALL, ctx);
6a912213
JB
6294 dput(parent);
6295
6296 return ret;
e02119d5
CM
6297}
6298
6299/*
6300 * should be called during mount to recover any replay any log trees
6301 * from the FS
6302 */
6303int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6304{
6305 int ret;
6306 struct btrfs_path *path;
6307 struct btrfs_trans_handle *trans;
6308 struct btrfs_key key;
6309 struct btrfs_key found_key;
e02119d5
CM
6310 struct btrfs_root *log;
6311 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6312 struct walk_control wc = {
6313 .process_func = process_one_buffer,
430a6626 6314 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6315 };
6316
e02119d5 6317 path = btrfs_alloc_path();
db5b493a
TI
6318 if (!path)
6319 return -ENOMEM;
6320
afcdd129 6321 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6322
4a500fd1 6323 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6324 if (IS_ERR(trans)) {
6325 ret = PTR_ERR(trans);
6326 goto error;
6327 }
e02119d5
CM
6328
6329 wc.trans = trans;
6330 wc.pin = 1;
6331
db5b493a 6332 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6333 if (ret) {
5d163e0e
JM
6334 btrfs_handle_fs_error(fs_info, ret,
6335 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6336 goto error;
6337 }
e02119d5
CM
6338
6339again:
6340 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6341 key.offset = (u64)-1;
962a298f 6342 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6343
d397712b 6344 while (1) {
e02119d5 6345 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6346
6347 if (ret < 0) {
34d97007 6348 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6349 "Couldn't find tree log root.");
6350 goto error;
6351 }
e02119d5
CM
6352 if (ret > 0) {
6353 if (path->slots[0] == 0)
6354 break;
6355 path->slots[0]--;
6356 }
6357 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6358 path->slots[0]);
b3b4aa74 6359 btrfs_release_path(path);
e02119d5
CM
6360 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6361 break;
6362
62a2c73e 6363 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6364 if (IS_ERR(log)) {
6365 ret = PTR_ERR(log);
34d97007 6366 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6367 "Couldn't read tree log root.");
6368 goto error;
6369 }
e02119d5 6370
56e9357a
DS
6371 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6372 true);
79787eaa
JM
6373 if (IS_ERR(wc.replay_dest)) {
6374 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6375
6376 /*
6377 * We didn't find the subvol, likely because it was
6378 * deleted. This is ok, simply skip this log and go to
6379 * the next one.
6380 *
6381 * We need to exclude the root because we can't have
6382 * other log replays overwriting this log as we'll read
6383 * it back in a few more times. This will keep our
6384 * block from being modified, and we'll just bail for
6385 * each subsequent pass.
6386 */
6387 if (ret == -ENOENT)
9fce5704 6388 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6389 log->node->start,
6390 log->node->len);
00246528 6391 btrfs_put_root(log);
9bc574de
JB
6392
6393 if (!ret)
6394 goto next;
5d163e0e
JM
6395 btrfs_handle_fs_error(fs_info, ret,
6396 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6397 goto error;
6398 }
e02119d5 6399
07d400a6 6400 wc.replay_dest->log_root = log;
2002ae11
JB
6401 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6402 if (ret)
6403 /* The loop needs to continue due to the root refs */
6404 btrfs_handle_fs_error(fs_info, ret,
6405 "failed to record the log root in transaction");
6406 else
6407 ret = walk_log_tree(trans, log, &wc);
e02119d5 6408
b50c6e25 6409 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6410 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6411 path);
e02119d5
CM
6412 }
6413
900c9981
LB
6414 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6415 struct btrfs_root *root = wc.replay_dest;
6416
6417 btrfs_release_path(path);
6418
6419 /*
6420 * We have just replayed everything, and the highest
6421 * objectid of fs roots probably has changed in case
6422 * some inode_item's got replayed.
6423 *
6424 * root->objectid_mutex is not acquired as log replay
6425 * could only happen during mount.
6426 */
453e4873 6427 ret = btrfs_init_root_free_objectid(root);
900c9981
LB
6428 }
6429
07d400a6 6430 wc.replay_dest->log_root = NULL;
00246528 6431 btrfs_put_root(wc.replay_dest);
00246528 6432 btrfs_put_root(log);
e02119d5 6433
b50c6e25
JB
6434 if (ret)
6435 goto error;
9bc574de 6436next:
e02119d5
CM
6437 if (found_key.offset == 0)
6438 break;
9bc574de 6439 key.offset = found_key.offset - 1;
e02119d5 6440 }
b3b4aa74 6441 btrfs_release_path(path);
e02119d5
CM
6442
6443 /* step one is to pin it all, step two is to replay just inodes */
6444 if (wc.pin) {
6445 wc.pin = 0;
6446 wc.process_func = replay_one_buffer;
6447 wc.stage = LOG_WALK_REPLAY_INODES;
6448 goto again;
6449 }
6450 /* step three is to replay everything */
6451 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6452 wc.stage++;
6453 goto again;
6454 }
6455
6456 btrfs_free_path(path);
6457
abefa55a 6458 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6459 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6460 if (ret)
6461 return ret;
6462
e02119d5 6463 log_root_tree->log_root = NULL;
afcdd129 6464 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6465 btrfs_put_root(log_root_tree);
79787eaa 6466
abefa55a 6467 return 0;
79787eaa 6468error:
b50c6e25 6469 if (wc.trans)
3a45bb20 6470 btrfs_end_transaction(wc.trans);
1aeb6b56 6471 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
6472 btrfs_free_path(path);
6473 return ret;
e02119d5 6474}
12fcfd22
CM
6475
6476/*
6477 * there are some corner cases where we want to force a full
6478 * commit instead of allowing a directory to be logged.
6479 *
6480 * They revolve around files there were unlinked from the directory, and
6481 * this function updates the parent directory so that a full commit is
6482 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6483 *
6484 * Must be called before the unlink operations (updates to the subvolume tree,
6485 * inodes, etc) are done.
12fcfd22
CM
6486 */
6487void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6488 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6489 int for_rename)
6490{
af4176b4
CM
6491 /*
6492 * when we're logging a file, if it hasn't been renamed
6493 * or unlinked, and its inode is fully committed on disk,
6494 * we don't have to worry about walking up the directory chain
6495 * to log its parents.
6496 *
6497 * So, we use the last_unlink_trans field to put this transid
6498 * into the file. When the file is logged we check it and
6499 * don't log the parents if the file is fully on disk.
6500 */
4176bdbf
NB
6501 mutex_lock(&inode->log_mutex);
6502 inode->last_unlink_trans = trans->transid;
6503 mutex_unlock(&inode->log_mutex);
af4176b4 6504
12fcfd22
CM
6505 /*
6506 * if this directory was already logged any new
6507 * names for this file/dir will get recorded
6508 */
4176bdbf 6509 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6510 return;
6511
6512 /*
6513 * if the inode we're about to unlink was logged,
6514 * the log will be properly updated for any new names
6515 */
4176bdbf 6516 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6517 return;
6518
6519 /*
6520 * when renaming files across directories, if the directory
6521 * there we're unlinking from gets fsync'd later on, there's
6522 * no way to find the destination directory later and fsync it
6523 * properly. So, we have to be conservative and force commits
6524 * so the new name gets discovered.
6525 */
6526 if (for_rename)
6527 goto record;
6528
6529 /* we can safely do the unlink without any special recording */
6530 return;
6531
6532record:
4176bdbf
NB
6533 mutex_lock(&dir->log_mutex);
6534 dir->last_unlink_trans = trans->transid;
6535 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6536}
6537
6538/*
6539 * Make sure that if someone attempts to fsync the parent directory of a deleted
6540 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6541 * that after replaying the log tree of the parent directory's root we will not
6542 * see the snapshot anymore and at log replay time we will not see any log tree
6543 * corresponding to the deleted snapshot's root, which could lead to replaying
6544 * it after replaying the log tree of the parent directory (which would replay
6545 * the snapshot delete operation).
2be63d5c
FM
6546 *
6547 * Must be called before the actual snapshot destroy operation (updates to the
6548 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6549 */
6550void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6551 struct btrfs_inode *dir)
1ec9a1ae 6552{
43663557
NB
6553 mutex_lock(&dir->log_mutex);
6554 dir->last_unlink_trans = trans->transid;
6555 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6556}
6557
6558/*
6559 * Call this after adding a new name for a file and it will properly
6560 * update the log to reflect the new name.
12fcfd22 6561 */
75b463d2 6562void btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6563 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
75b463d2 6564 struct dentry *parent)
12fcfd22 6565{
75b463d2 6566 struct btrfs_log_ctx ctx;
12fcfd22 6567
af4176b4
CM
6568 /*
6569 * this will force the logging code to walk the dentry chain
6570 * up for the file
6571 */
9a6509c4 6572 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6573 inode->last_unlink_trans = trans->transid;
af4176b4 6574
12fcfd22
CM
6575 /*
6576 * if this inode hasn't been logged and directory we're renaming it
6577 * from hasn't been logged, we don't need to log it
6578 */
ecc64fab
FM
6579 if (!inode_logged(trans, inode) &&
6580 (!old_dir || !inode_logged(trans, old_dir)))
75b463d2 6581 return;
12fcfd22 6582
54a40fc3
FM
6583 /*
6584 * If we are doing a rename (old_dir is not NULL) from a directory that
6585 * was previously logged, make sure the next log attempt on the directory
6586 * is not skipped and logs the inode again. This is because the log may
6587 * not currently be authoritative for a range including the old
6588 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6589 * sure after a log replay we do not end up with both the new and old
6590 * dentries around (in case the inode is a directory we would have a
6591 * directory with two hard links and 2 inode references for different
6592 * parents). The next log attempt of old_dir will happen at
6593 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6594 * below, because we have previously set inode->last_unlink_trans to the
6595 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6596 * case inode is a directory.
6597 */
6598 if (old_dir)
6599 old_dir->logged_trans = 0;
6600
75b463d2
FM
6601 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6602 ctx.logging_new_name = true;
6603 /*
6604 * We don't care about the return value. If we fail to log the new name
6605 * then we know the next attempt to sync the log will fallback to a full
6606 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6607 * we don't need to worry about getting a log committed that has an
6608 * inconsistent state after a rename operation.
6609 */
48778179 6610 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
12fcfd22
CM
6611}
6612