]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/tree-log.c
libcrc32c: Add crc32c_impl function
[people/ms/linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
c7f88c4e 23#include <linux/iversion.h>
995946dd 24#include "tree-log.h"
e02119d5
CM
25#include "disk-io.h"
26#include "locking.h"
27#include "print-tree.h"
f186373f 28#include "backref.h"
f186373f 29#include "hash.h"
ebb8765b 30#include "compression.h"
df2c95f3 31#include "qgroup.h"
900c9981 32#include "inode-map.h"
e02119d5
CM
33
34/* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40#define LOG_INODE_ALL 0
41#define LOG_INODE_EXISTS 1
781feef7 42#define LOG_OTHER_INODE 2
e02119d5 43
12fcfd22
CM
44/*
45 * directory trouble cases
46 *
47 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
48 * log, we must force a full commit before doing an fsync of the directory
49 * where the unlink was done.
50 * ---> record transid of last unlink/rename per directory
51 *
52 * mkdir foo/some_dir
53 * normal commit
54 * rename foo/some_dir foo2/some_dir
55 * mkdir foo/some_dir
56 * fsync foo/some_dir/some_file
57 *
58 * The fsync above will unlink the original some_dir without recording
59 * it in its new location (foo2). After a crash, some_dir will be gone
60 * unless the fsync of some_file forces a full commit
61 *
62 * 2) we must log any new names for any file or dir that is in the fsync
63 * log. ---> check inode while renaming/linking.
64 *
65 * 2a) we must log any new names for any file or dir during rename
66 * when the directory they are being removed from was logged.
67 * ---> check inode and old parent dir during rename
68 *
69 * 2a is actually the more important variant. With the extra logging
70 * a crash might unlink the old name without recreating the new one
71 *
72 * 3) after a crash, we must go through any directories with a link count
73 * of zero and redo the rm -rf
74 *
75 * mkdir f1/foo
76 * normal commit
77 * rm -rf f1/foo
78 * fsync(f1)
79 *
80 * The directory f1 was fully removed from the FS, but fsync was never
81 * called on f1, only its parent dir. After a crash the rm -rf must
82 * be replayed. This must be able to recurse down the entire
83 * directory tree. The inode link count fixup code takes care of the
84 * ugly details.
85 */
86
e02119d5
CM
87/*
88 * stages for the tree walking. The first
89 * stage (0) is to only pin down the blocks we find
90 * the second stage (1) is to make sure that all the inodes
91 * we find in the log are created in the subvolume.
92 *
93 * The last stage is to deal with directories and links and extents
94 * and all the other fun semantics
95 */
96#define LOG_WALK_PIN_ONLY 0
97#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
98#define LOG_WALK_REPLAY_DIR_INDEX 2
99#define LOG_WALK_REPLAY_ALL 3
e02119d5 100
12fcfd22 101static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 102 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
103 int inode_only,
104 const loff_t start,
8407f553
FM
105 const loff_t end,
106 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
107static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root,
109 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
110static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_root *log,
113 struct btrfs_path *path,
114 u64 dirid, int del_all);
e02119d5
CM
115
116/*
117 * tree logging is a special write ahead log used to make sure that
118 * fsyncs and O_SYNCs can happen without doing full tree commits.
119 *
120 * Full tree commits are expensive because they require commonly
121 * modified blocks to be recowed, creating many dirty pages in the
122 * extent tree an 4x-6x higher write load than ext3.
123 *
124 * Instead of doing a tree commit on every fsync, we use the
125 * key ranges and transaction ids to find items for a given file or directory
126 * that have changed in this transaction. Those items are copied into
127 * a special tree (one per subvolume root), that tree is written to disk
128 * and then the fsync is considered complete.
129 *
130 * After a crash, items are copied out of the log-tree back into the
131 * subvolume tree. Any file data extents found are recorded in the extent
132 * allocation tree, and the log-tree freed.
133 *
134 * The log tree is read three times, once to pin down all the extents it is
135 * using in ram and once, once to create all the inodes logged in the tree
136 * and once to do all the other items.
137 */
138
e02119d5
CM
139/*
140 * start a sub transaction and setup the log tree
141 * this increments the log tree writer count to make the people
142 * syncing the tree wait for us to finish
143 */
144static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
145 struct btrfs_root *root,
146 struct btrfs_log_ctx *ctx)
e02119d5 147{
0b246afa 148 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 149 int ret = 0;
7237f183
YZ
150
151 mutex_lock(&root->log_mutex);
34eb2a52 152
7237f183 153 if (root->log_root) {
0b246afa 154 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
155 ret = -EAGAIN;
156 goto out;
157 }
34eb2a52 158
ff782e0a 159 if (!root->log_start_pid) {
27cdeb70 160 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 161 root->log_start_pid = current->pid;
ff782e0a 162 } else if (root->log_start_pid != current->pid) {
27cdeb70 163 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 164 }
34eb2a52 165 } else {
0b246afa
JM
166 mutex_lock(&fs_info->tree_log_mutex);
167 if (!fs_info->log_root_tree)
168 ret = btrfs_init_log_root_tree(trans, fs_info);
169 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
170 if (ret)
171 goto out;
ff782e0a 172
e02119d5 173 ret = btrfs_add_log_tree(trans, root);
4a500fd1 174 if (ret)
e87ac136 175 goto out;
34eb2a52
Z
176
177 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
178 root->log_start_pid = current->pid;
e02119d5 179 }
34eb2a52 180
2ecb7923 181 atomic_inc(&root->log_batch);
7237f183 182 atomic_inc(&root->log_writers);
8b050d35 183 if (ctx) {
34eb2a52 184 int index = root->log_transid % 2;
8b050d35 185 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 186 ctx->log_transid = root->log_transid;
8b050d35 187 }
34eb2a52 188
e87ac136 189out:
7237f183 190 mutex_unlock(&root->log_mutex);
e87ac136 191 return ret;
e02119d5
CM
192}
193
194/*
195 * returns 0 if there was a log transaction running and we were able
196 * to join, or returns -ENOENT if there were not transactions
197 * in progress
198 */
199static int join_running_log_trans(struct btrfs_root *root)
200{
201 int ret = -ENOENT;
202
203 smp_mb();
204 if (!root->log_root)
205 return -ENOENT;
206
7237f183 207 mutex_lock(&root->log_mutex);
e02119d5
CM
208 if (root->log_root) {
209 ret = 0;
7237f183 210 atomic_inc(&root->log_writers);
e02119d5 211 }
7237f183 212 mutex_unlock(&root->log_mutex);
e02119d5
CM
213 return ret;
214}
215
12fcfd22
CM
216/*
217 * This either makes the current running log transaction wait
218 * until you call btrfs_end_log_trans() or it makes any future
219 * log transactions wait until you call btrfs_end_log_trans()
220 */
221int btrfs_pin_log_trans(struct btrfs_root *root)
222{
223 int ret = -ENOENT;
224
225 mutex_lock(&root->log_mutex);
226 atomic_inc(&root->log_writers);
227 mutex_unlock(&root->log_mutex);
228 return ret;
229}
230
e02119d5
CM
231/*
232 * indicate we're done making changes to the log tree
233 * and wake up anyone waiting to do a sync
234 */
143bede5 235void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 236{
7237f183 237 if (atomic_dec_and_test(&root->log_writers)) {
779adf0f
DS
238 /*
239 * Implicit memory barrier after atomic_dec_and_test
240 */
7237f183
YZ
241 if (waitqueue_active(&root->log_writer_wait))
242 wake_up(&root->log_writer_wait);
243 }
e02119d5
CM
244}
245
246
247/*
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
252 */
253struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
256 */
257 int free;
258
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
261 */
262 int write;
263
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
266 */
267 int wait;
268
269 /* pin only walk, we record which extents on disk belong to the
270 * log trees
271 */
272 int pin;
273
274 /* what stage of the replay code we're currently in */
275 int stage;
276
277 /* the root we are currently replaying */
278 struct btrfs_root *replay_dest;
279
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle *trans;
282
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
286 * inside it
287 */
288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 struct walk_control *wc, u64 gen);
290};
291
292/*
293 * process_func used to pin down extents, write them or wait on them
294 */
295static int process_one_buffer(struct btrfs_root *log,
296 struct extent_buffer *eb,
297 struct walk_control *wc, u64 gen)
298{
0b246afa 299 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
300 int ret = 0;
301
8c2a1a30
JB
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
0b246afa 306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8c2a1a30
JB
307 ret = btrfs_read_buffer(eb, gen);
308 if (ret)
309 return ret;
310 }
311
04018de5 312 if (wc->pin)
2ff7e61e
JM
313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 eb->len);
e02119d5 315
b50c6e25 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 317 if (wc->pin && btrfs_header_level(eb) == 0)
2ff7e61e 318 ret = btrfs_exclude_logged_extents(fs_info, eb);
e02119d5
CM
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
b50c6e25 324 return ret;
e02119d5
CM
325}
326
327/*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346{
2ff7e61e 347 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
348 int ret;
349 u32 item_size;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
4bc4bee4 355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
356
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 overwrite_root = 1;
359
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
362
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
365 if (ret < 0)
366 return ret;
367
e02119d5
CM
368 if (ret == 0) {
369 char *src_copy;
370 char *dst_copy;
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (dst_size != item_size)
374 goto insert;
375
376 if (item_size == 0) {
b3b4aa74 377 btrfs_release_path(path);
e02119d5
CM
378 return 0;
379 }
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 382 if (!dst_copy || !src_copy) {
b3b4aa74 383 btrfs_release_path(path);
2a29edc6 384 kfree(dst_copy);
385 kfree(src_copy);
386 return -ENOMEM;
387 }
e02119d5
CM
388
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
390
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 item_size);
394 ret = memcmp(dst_copy, src_copy, item_size);
395
396 kfree(dst_copy);
397 kfree(src_copy);
398 /*
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
402 * sync
403 */
404 if (ret == 0) {
b3b4aa74 405 btrfs_release_path(path);
e02119d5
CM
406 return 0;
407 }
408
4bc4bee4
JB
409 /*
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
412 */
413 if (inode_item) {
414 struct btrfs_inode_item *item;
415 u64 nbytes;
d555438b 416 u32 mode;
4bc4bee4
JB
417
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
424
425 /*
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
429 */
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
433 }
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
d555438b 436 u32 mode;
4bc4bee4
JB
437
438 /*
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
441 */
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
444
445 /*
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
449 */
450 mode = btrfs_inode_mode(eb, item);
451 if (S_ISDIR(mode))
452 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
453 }
454insert:
b3b4aa74 455 btrfs_release_path(path);
e02119d5 456 /* try to insert the key into the destination tree */
df8d116f 457 path->skip_release_on_error = 1;
e02119d5
CM
458 ret = btrfs_insert_empty_item(trans, root, path,
459 key, item_size);
df8d116f 460 path->skip_release_on_error = 0;
e02119d5
CM
461
462 /* make sure any existing item is the correct size */
df8d116f 463 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
464 u32 found_size;
465 found_size = btrfs_item_size_nr(path->nodes[0],
466 path->slots[0]);
143bede5 467 if (found_size > item_size)
2ff7e61e 468 btrfs_truncate_item(fs_info, path, item_size, 1);
143bede5 469 else if (found_size < item_size)
2ff7e61e 470 btrfs_extend_item(fs_info, path,
143bede5 471 item_size - found_size);
e02119d5 472 } else if (ret) {
4a500fd1 473 return ret;
e02119d5
CM
474 }
475 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
476 path->slots[0]);
477
478 /* don't overwrite an existing inode if the generation number
479 * was logged as zero. This is done when the tree logging code
480 * is just logging an inode to make sure it exists after recovery.
481 *
482 * Also, don't overwrite i_size on directories during replay.
483 * log replay inserts and removes directory items based on the
484 * state of the tree found in the subvolume, and i_size is modified
485 * as it goes
486 */
487 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
488 struct btrfs_inode_item *src_item;
489 struct btrfs_inode_item *dst_item;
490
491 src_item = (struct btrfs_inode_item *)src_ptr;
492 dst_item = (struct btrfs_inode_item *)dst_ptr;
493
1a4bcf47
FM
494 if (btrfs_inode_generation(eb, src_item) == 0) {
495 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 496 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 497
2f2ff0ee
FM
498 /*
499 * For regular files an ino_size == 0 is used only when
500 * logging that an inode exists, as part of a directory
501 * fsync, and the inode wasn't fsynced before. In this
502 * case don't set the size of the inode in the fs/subvol
503 * tree, otherwise we would be throwing valid data away.
504 */
1a4bcf47 505 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
506 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
507 ino_size != 0) {
1a4bcf47 508 struct btrfs_map_token token;
1a4bcf47
FM
509
510 btrfs_init_map_token(&token);
511 btrfs_set_token_inode_size(dst_eb, dst_item,
512 ino_size, &token);
513 }
e02119d5 514 goto no_copy;
1a4bcf47 515 }
e02119d5
CM
516
517 if (overwrite_root &&
518 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 save_old_i_size = 1;
521 saved_i_size = btrfs_inode_size(path->nodes[0],
522 dst_item);
523 }
524 }
525
526 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 src_ptr, item_size);
528
529 if (save_old_i_size) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 }
534
535 /* make sure the generation is filled in */
536 if (key->type == BTRFS_INODE_ITEM_KEY) {
537 struct btrfs_inode_item *dst_item;
538 dst_item = (struct btrfs_inode_item *)dst_ptr;
539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 btrfs_set_inode_generation(path->nodes[0], dst_item,
541 trans->transid);
542 }
543 }
544no_copy:
545 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 546 btrfs_release_path(path);
e02119d5
CM
547 return 0;
548}
549
550/*
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
553 */
554static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 u64 objectid)
556{
5d4f98a2 557 struct btrfs_key key;
e02119d5 558 struct inode *inode;
e02119d5 559
5d4f98a2
YZ
560 key.objectid = objectid;
561 key.type = BTRFS_INODE_ITEM_KEY;
562 key.offset = 0;
73f73415 563 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
564 if (IS_ERR(inode)) {
565 inode = NULL;
566 } else if (is_bad_inode(inode)) {
e02119d5
CM
567 iput(inode);
568 inode = NULL;
569 }
570 return inode;
571}
572
573/* replays a single extent in 'eb' at 'slot' with 'key' into the
574 * subvolume 'root'. path is released on entry and should be released
575 * on exit.
576 *
577 * extents in the log tree have not been allocated out of the extent
578 * tree yet. So, this completes the allocation, taking a reference
579 * as required if the extent already exists or creating a new extent
580 * if it isn't in the extent allocation tree yet.
581 *
582 * The extent is inserted into the file, dropping any existing extents
583 * from the file that overlap the new one.
584 */
585static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
587 struct btrfs_path *path,
588 struct extent_buffer *eb, int slot,
589 struct btrfs_key *key)
590{
0b246afa 591 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 592 int found_type;
e02119d5 593 u64 extent_end;
e02119d5 594 u64 start = key->offset;
4bc4bee4 595 u64 nbytes = 0;
e02119d5
CM
596 struct btrfs_file_extent_item *item;
597 struct inode *inode = NULL;
598 unsigned long size;
599 int ret = 0;
600
601 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
602 found_type = btrfs_file_extent_type(eb, item);
603
d899e052 604 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
605 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
606 nbytes = btrfs_file_extent_num_bytes(eb, item);
607 extent_end = start + nbytes;
608
609 /*
610 * We don't add to the inodes nbytes if we are prealloc or a
611 * hole.
612 */
613 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
614 nbytes = 0;
615 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 616 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 617 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 618 extent_end = ALIGN(start + size,
0b246afa 619 fs_info->sectorsize);
e02119d5
CM
620 } else {
621 ret = 0;
622 goto out;
623 }
624
625 inode = read_one_inode(root, key->objectid);
626 if (!inode) {
627 ret = -EIO;
628 goto out;
629 }
630
631 /*
632 * first check to see if we already have this extent in the
633 * file. This must be done before the btrfs_drop_extents run
634 * so we don't try to drop this extent.
635 */
f85b7379
DS
636 ret = btrfs_lookup_file_extent(trans, root, path,
637 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 638
d899e052
YZ
639 if (ret == 0 &&
640 (found_type == BTRFS_FILE_EXTENT_REG ||
641 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
642 struct btrfs_file_extent_item cmp1;
643 struct btrfs_file_extent_item cmp2;
644 struct btrfs_file_extent_item *existing;
645 struct extent_buffer *leaf;
646
647 leaf = path->nodes[0];
648 existing = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_file_extent_item);
650
651 read_extent_buffer(eb, &cmp1, (unsigned long)item,
652 sizeof(cmp1));
653 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
654 sizeof(cmp2));
655
656 /*
657 * we already have a pointer to this exact extent,
658 * we don't have to do anything
659 */
660 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 661 btrfs_release_path(path);
e02119d5
CM
662 goto out;
663 }
664 }
b3b4aa74 665 btrfs_release_path(path);
e02119d5
CM
666
667 /* drop any overlapping extents */
2671485d 668 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
669 if (ret)
670 goto out;
e02119d5 671
07d400a6
YZ
672 if (found_type == BTRFS_FILE_EXTENT_REG ||
673 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 674 u64 offset;
07d400a6
YZ
675 unsigned long dest_offset;
676 struct btrfs_key ins;
677
3168021c
FM
678 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
679 btrfs_fs_incompat(fs_info, NO_HOLES))
680 goto update_inode;
681
07d400a6
YZ
682 ret = btrfs_insert_empty_item(trans, root, path, key,
683 sizeof(*item));
3650860b
JB
684 if (ret)
685 goto out;
07d400a6
YZ
686 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
687 path->slots[0]);
688 copy_extent_buffer(path->nodes[0], eb, dest_offset,
689 (unsigned long)item, sizeof(*item));
690
691 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
692 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
693 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 694 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 695
df2c95f3
QW
696 /*
697 * Manually record dirty extent, as here we did a shallow
698 * file extent item copy and skip normal backref update,
699 * but modifying extent tree all by ourselves.
700 * So need to manually record dirty extent for qgroup,
701 * as the owner of the file extent changed from log tree
702 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
703 */
0b246afa 704 ret = btrfs_qgroup_trace_extent(trans, fs_info,
df2c95f3
QW
705 btrfs_file_extent_disk_bytenr(eb, item),
706 btrfs_file_extent_disk_num_bytes(eb, item),
707 GFP_NOFS);
708 if (ret < 0)
709 goto out;
710
07d400a6
YZ
711 if (ins.objectid > 0) {
712 u64 csum_start;
713 u64 csum_end;
714 LIST_HEAD(ordered_sums);
715 /*
716 * is this extent already allocated in the extent
717 * allocation tree? If so, just add a reference
718 */
2ff7e61e 719 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
720 ins.offset);
721 if (ret == 0) {
84f7d8e6 722 ret = btrfs_inc_extent_ref(trans, root,
07d400a6 723 ins.objectid, ins.offset,
5d4f98a2 724 0, root->root_key.objectid,
b06c4bf5 725 key->objectid, offset);
b50c6e25
JB
726 if (ret)
727 goto out;
07d400a6
YZ
728 } else {
729 /*
730 * insert the extent pointer in the extent
731 * allocation tree
732 */
5d4f98a2 733 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e
JM
734 fs_info,
735 root->root_key.objectid,
5d4f98a2 736 key->objectid, offset, &ins);
b50c6e25
JB
737 if (ret)
738 goto out;
07d400a6 739 }
b3b4aa74 740 btrfs_release_path(path);
07d400a6
YZ
741
742 if (btrfs_file_extent_compression(eb, item)) {
743 csum_start = ins.objectid;
744 csum_end = csum_start + ins.offset;
745 } else {
746 csum_start = ins.objectid +
747 btrfs_file_extent_offset(eb, item);
748 csum_end = csum_start +
749 btrfs_file_extent_num_bytes(eb, item);
750 }
751
752 ret = btrfs_lookup_csums_range(root->log_root,
753 csum_start, csum_end - 1,
a2de733c 754 &ordered_sums, 0);
3650860b
JB
755 if (ret)
756 goto out;
b84b8390
FM
757 /*
758 * Now delete all existing cums in the csum root that
759 * cover our range. We do this because we can have an
760 * extent that is completely referenced by one file
761 * extent item and partially referenced by another
762 * file extent item (like after using the clone or
763 * extent_same ioctls). In this case if we end up doing
764 * the replay of the one that partially references the
765 * extent first, and we do not do the csum deletion
766 * below, we can get 2 csum items in the csum tree that
767 * overlap each other. For example, imagine our log has
768 * the two following file extent items:
769 *
770 * key (257 EXTENT_DATA 409600)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 20480 nr 20480 ram 102400
773 *
774 * key (257 EXTENT_DATA 819200)
775 * extent data disk byte 12845056 nr 102400
776 * extent data offset 0 nr 102400 ram 102400
777 *
778 * Where the second one fully references the 100K extent
779 * that starts at disk byte 12845056, and the log tree
780 * has a single csum item that covers the entire range
781 * of the extent:
782 *
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 *
785 * After the first file extent item is replayed, the
786 * csum tree gets the following csum item:
787 *
788 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
789 *
790 * Which covers the 20K sub-range starting at offset 20K
791 * of our extent. Now when we replay the second file
792 * extent item, if we do not delete existing csum items
793 * that cover any of its blocks, we end up getting two
794 * csum items in our csum tree that overlap each other:
795 *
796 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
797 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
798 *
799 * Which is a problem, because after this anyone trying
800 * to lookup up for the checksum of any block of our
801 * extent starting at an offset of 40K or higher, will
802 * end up looking at the second csum item only, which
803 * does not contain the checksum for any block starting
804 * at offset 40K or higher of our extent.
805 */
07d400a6
YZ
806 while (!list_empty(&ordered_sums)) {
807 struct btrfs_ordered_sum *sums;
808 sums = list_entry(ordered_sums.next,
809 struct btrfs_ordered_sum,
810 list);
b84b8390 811 if (!ret)
0b246afa 812 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
813 sums->bytenr,
814 sums->len);
3650860b
JB
815 if (!ret)
816 ret = btrfs_csum_file_blocks(trans,
0b246afa 817 fs_info->csum_root, sums);
07d400a6
YZ
818 list_del(&sums->list);
819 kfree(sums);
820 }
3650860b
JB
821 if (ret)
822 goto out;
07d400a6 823 } else {
b3b4aa74 824 btrfs_release_path(path);
07d400a6
YZ
825 }
826 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 /* inline extents are easy, we just overwrite them */
828 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
829 if (ret)
830 goto out;
07d400a6 831 }
e02119d5 832
4bc4bee4 833 inode_add_bytes(inode, nbytes);
3168021c 834update_inode:
b9959295 835 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
836out:
837 if (inode)
838 iput(inode);
839 return ret;
840}
841
842/*
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
846 *
847 * This is a helper function to do the unlink of a specific directory
848 * item
849 */
850static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root,
852 struct btrfs_path *path,
207e7d92 853 struct btrfs_inode *dir,
e02119d5
CM
854 struct btrfs_dir_item *di)
855{
856 struct inode *inode;
857 char *name;
858 int name_len;
859 struct extent_buffer *leaf;
860 struct btrfs_key location;
861 int ret;
862
863 leaf = path->nodes[0];
864
865 btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 name_len = btrfs_dir_name_len(leaf, di);
867 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 868 if (!name)
869 return -ENOMEM;
870
e02119d5 871 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 872 btrfs_release_path(path);
e02119d5
CM
873
874 inode = read_one_inode(root, location.objectid);
c00e9493 875 if (!inode) {
3650860b
JB
876 ret = -EIO;
877 goto out;
c00e9493 878 }
e02119d5 879
ec051c0f 880 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
881 if (ret)
882 goto out;
12fcfd22 883
207e7d92
NB
884 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 name_len);
3650860b
JB
886 if (ret)
887 goto out;
ada9af21 888 else
e5c304e6 889 ret = btrfs_run_delayed_items(trans);
3650860b 890out:
e02119d5 891 kfree(name);
e02119d5
CM
892 iput(inode);
893 return ret;
894}
895
896/*
897 * helper function to see if a given name and sequence number found
898 * in an inode back reference are already in a directory and correctly
899 * point to this inode
900 */
901static noinline int inode_in_dir(struct btrfs_root *root,
902 struct btrfs_path *path,
903 u64 dirid, u64 objectid, u64 index,
904 const char *name, int name_len)
905{
906 struct btrfs_dir_item *di;
907 struct btrfs_key location;
908 int match = 0;
909
910 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 index, name, name_len, 0);
912 if (di && !IS_ERR(di)) {
913 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 if (location.objectid != objectid)
915 goto out;
916 } else
917 goto out;
b3b4aa74 918 btrfs_release_path(path);
e02119d5
CM
919
920 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 if (di && !IS_ERR(di)) {
922 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 if (location.objectid != objectid)
924 goto out;
925 } else
926 goto out;
927 match = 1;
928out:
b3b4aa74 929 btrfs_release_path(path);
e02119d5
CM
930 return match;
931}
932
933/*
934 * helper function to check a log tree for a named back reference in
935 * an inode. This is used to decide if a back reference that is
936 * found in the subvolume conflicts with what we find in the log.
937 *
938 * inode backreferences may have multiple refs in a single item,
939 * during replay we process one reference at a time, and we don't
940 * want to delete valid links to a file from the subvolume if that
941 * link is also in the log.
942 */
943static noinline int backref_in_log(struct btrfs_root *log,
944 struct btrfs_key *key,
f186373f 945 u64 ref_objectid,
df8d116f 946 const char *name, int namelen)
e02119d5
CM
947{
948 struct btrfs_path *path;
949 struct btrfs_inode_ref *ref;
950 unsigned long ptr;
951 unsigned long ptr_end;
952 unsigned long name_ptr;
953 int found_name_len;
954 int item_size;
955 int ret;
956 int match = 0;
957
958 path = btrfs_alloc_path();
2a29edc6 959 if (!path)
960 return -ENOMEM;
961
e02119d5
CM
962 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
963 if (ret != 0)
964 goto out;
965
e02119d5 966 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
967
968 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1f250e92
FM
969 if (btrfs_find_name_in_ext_backref(path->nodes[0],
970 path->slots[0],
971 ref_objectid,
f186373f
MF
972 name, namelen, NULL))
973 match = 1;
974
975 goto out;
976 }
977
978 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
979 ptr_end = ptr + item_size;
980 while (ptr < ptr_end) {
981 ref = (struct btrfs_inode_ref *)ptr;
982 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
983 if (found_name_len == namelen) {
984 name_ptr = (unsigned long)(ref + 1);
985 ret = memcmp_extent_buffer(path->nodes[0], name,
986 name_ptr, namelen);
987 if (ret == 0) {
988 match = 1;
989 goto out;
990 }
991 }
992 ptr = (unsigned long)(ref + 1) + found_name_len;
993 }
994out:
995 btrfs_free_path(path);
996 return match;
997}
998
5a1d7843 999static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1000 struct btrfs_root *root,
e02119d5 1001 struct btrfs_path *path,
5a1d7843 1002 struct btrfs_root *log_root,
94c91a1f
NB
1003 struct btrfs_inode *dir,
1004 struct btrfs_inode *inode,
f186373f
MF
1005 u64 inode_objectid, u64 parent_objectid,
1006 u64 ref_index, char *name, int namelen,
1007 int *search_done)
e02119d5 1008{
34f3e4f2 1009 int ret;
f186373f
MF
1010 char *victim_name;
1011 int victim_name_len;
1012 struct extent_buffer *leaf;
5a1d7843 1013 struct btrfs_dir_item *di;
f186373f
MF
1014 struct btrfs_key search_key;
1015 struct btrfs_inode_extref *extref;
c622ae60 1016
f186373f
MF
1017again:
1018 /* Search old style refs */
1019 search_key.objectid = inode_objectid;
1020 search_key.type = BTRFS_INODE_REF_KEY;
1021 search_key.offset = parent_objectid;
1022 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1023 if (ret == 0) {
e02119d5
CM
1024 struct btrfs_inode_ref *victim_ref;
1025 unsigned long ptr;
1026 unsigned long ptr_end;
f186373f
MF
1027
1028 leaf = path->nodes[0];
e02119d5
CM
1029
1030 /* are we trying to overwrite a back ref for the root directory
1031 * if so, just jump out, we're done
1032 */
f186373f 1033 if (search_key.objectid == search_key.offset)
5a1d7843 1034 return 1;
e02119d5
CM
1035
1036 /* check all the names in this back reference to see
1037 * if they are in the log. if so, we allow them to stay
1038 * otherwise they must be unlinked as a conflict
1039 */
1040 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1041 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1042 while (ptr < ptr_end) {
e02119d5
CM
1043 victim_ref = (struct btrfs_inode_ref *)ptr;
1044 victim_name_len = btrfs_inode_ref_name_len(leaf,
1045 victim_ref);
1046 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1047 if (!victim_name)
1048 return -ENOMEM;
e02119d5
CM
1049
1050 read_extent_buffer(leaf, victim_name,
1051 (unsigned long)(victim_ref + 1),
1052 victim_name_len);
1053
f186373f
MF
1054 if (!backref_in_log(log_root, &search_key,
1055 parent_objectid,
1056 victim_name,
e02119d5 1057 victim_name_len)) {
94c91a1f 1058 inc_nlink(&inode->vfs_inode);
b3b4aa74 1059 btrfs_release_path(path);
12fcfd22 1060
94c91a1f 1061 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1062 victim_name, victim_name_len);
f186373f 1063 kfree(victim_name);
3650860b
JB
1064 if (ret)
1065 return ret;
e5c304e6 1066 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1067 if (ret)
1068 return ret;
f186373f
MF
1069 *search_done = 1;
1070 goto again;
e02119d5
CM
1071 }
1072 kfree(victim_name);
f186373f 1073
e02119d5
CM
1074 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1075 }
e02119d5 1076
c622ae60 1077 /*
1078 * NOTE: we have searched root tree and checked the
bb7ab3b9 1079 * corresponding ref, it does not need to check again.
c622ae60 1080 */
5a1d7843 1081 *search_done = 1;
e02119d5 1082 }
b3b4aa74 1083 btrfs_release_path(path);
e02119d5 1084
f186373f
MF
1085 /* Same search but for extended refs */
1086 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1087 inode_objectid, parent_objectid, 0,
1088 0);
1089 if (!IS_ERR_OR_NULL(extref)) {
1090 u32 item_size;
1091 u32 cur_offset = 0;
1092 unsigned long base;
1093 struct inode *victim_parent;
1094
1095 leaf = path->nodes[0];
1096
1097 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1098 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1099
1100 while (cur_offset < item_size) {
dd9ef135 1101 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1102
1103 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1104
1105 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1106 goto next;
1107
1108 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1109 if (!victim_name)
1110 return -ENOMEM;
f186373f
MF
1111 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1112 victim_name_len);
1113
1114 search_key.objectid = inode_objectid;
1115 search_key.type = BTRFS_INODE_EXTREF_KEY;
1116 search_key.offset = btrfs_extref_hash(parent_objectid,
1117 victim_name,
1118 victim_name_len);
1119 ret = 0;
1120 if (!backref_in_log(log_root, &search_key,
1121 parent_objectid, victim_name,
1122 victim_name_len)) {
1123 ret = -ENOENT;
1124 victim_parent = read_one_inode(root,
94c91a1f 1125 parent_objectid);
f186373f 1126 if (victim_parent) {
94c91a1f 1127 inc_nlink(&inode->vfs_inode);
f186373f
MF
1128 btrfs_release_path(path);
1129
1130 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1131 BTRFS_I(victim_parent),
94c91a1f 1132 inode,
4ec5934e
NB
1133 victim_name,
1134 victim_name_len);
ada9af21
FDBM
1135 if (!ret)
1136 ret = btrfs_run_delayed_items(
e5c304e6 1137 trans);
f186373f 1138 }
f186373f
MF
1139 iput(victim_parent);
1140 kfree(victim_name);
3650860b
JB
1141 if (ret)
1142 return ret;
f186373f
MF
1143 *search_done = 1;
1144 goto again;
1145 }
1146 kfree(victim_name);
f186373f
MF
1147next:
1148 cur_offset += victim_name_len + sizeof(*extref);
1149 }
1150 *search_done = 1;
1151 }
1152 btrfs_release_path(path);
1153
34f3e4f2 1154 /* look for a conflicting sequence number */
94c91a1f 1155 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1156 ref_index, name, namelen, 0);
34f3e4f2 1157 if (di && !IS_ERR(di)) {
94c91a1f 1158 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1159 if (ret)
1160 return ret;
34f3e4f2 1161 }
1162 btrfs_release_path(path);
1163
1164 /* look for a conflicing name */
94c91a1f 1165 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1166 name, namelen, 0);
1167 if (di && !IS_ERR(di)) {
94c91a1f 1168 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1169 if (ret)
1170 return ret;
34f3e4f2 1171 }
1172 btrfs_release_path(path);
1173
5a1d7843
JS
1174 return 0;
1175}
e02119d5 1176
bae15d95
QW
1177static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1178 u32 *namelen, char **name, u64 *index,
1179 u64 *parent_objectid)
f186373f
MF
1180{
1181 struct btrfs_inode_extref *extref;
1182
1183 extref = (struct btrfs_inode_extref *)ref_ptr;
1184
1185 *namelen = btrfs_inode_extref_name_len(eb, extref);
1186 *name = kmalloc(*namelen, GFP_NOFS);
1187 if (*name == NULL)
1188 return -ENOMEM;
1189
1190 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1191 *namelen);
1192
1f250e92
FM
1193 if (index)
1194 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1195 if (parent_objectid)
1196 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1197
1198 return 0;
1199}
1200
bae15d95
QW
1201static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1202 u32 *namelen, char **name, u64 *index)
f186373f
MF
1203{
1204 struct btrfs_inode_ref *ref;
1205
1206 ref = (struct btrfs_inode_ref *)ref_ptr;
1207
1208 *namelen = btrfs_inode_ref_name_len(eb, ref);
1209 *name = kmalloc(*namelen, GFP_NOFS);
1210 if (*name == NULL)
1211 return -ENOMEM;
1212
1213 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1214
1f250e92
FM
1215 if (index)
1216 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1217
1218 return 0;
1219}
1220
1f250e92
FM
1221/*
1222 * Take an inode reference item from the log tree and iterate all names from the
1223 * inode reference item in the subvolume tree with the same key (if it exists).
1224 * For any name that is not in the inode reference item from the log tree, do a
1225 * proper unlink of that name (that is, remove its entry from the inode
1226 * reference item and both dir index keys).
1227 */
1228static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1229 struct btrfs_root *root,
1230 struct btrfs_path *path,
1231 struct btrfs_inode *inode,
1232 struct extent_buffer *log_eb,
1233 int log_slot,
1234 struct btrfs_key *key)
1235{
1236 int ret;
1237 unsigned long ref_ptr;
1238 unsigned long ref_end;
1239 struct extent_buffer *eb;
1240
1241again:
1242 btrfs_release_path(path);
1243 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1244 if (ret > 0) {
1245 ret = 0;
1246 goto out;
1247 }
1248 if (ret < 0)
1249 goto out;
1250
1251 eb = path->nodes[0];
1252 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1253 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1254 while (ref_ptr < ref_end) {
1255 char *name = NULL;
1256 int namelen;
1257 u64 parent_id;
1258
1259 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1260 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1261 NULL, &parent_id);
1262 } else {
1263 parent_id = key->offset;
1264 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1265 NULL);
1266 }
1267 if (ret)
1268 goto out;
1269
1270 if (key->type == BTRFS_INODE_EXTREF_KEY)
1271 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1272 parent_id, name,
1273 namelen, NULL);
1274 else
1275 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1276 namelen, NULL);
1277
1278 if (!ret) {
1279 struct inode *dir;
1280
1281 btrfs_release_path(path);
1282 dir = read_one_inode(root, parent_id);
1283 if (!dir) {
1284 ret = -ENOENT;
1285 kfree(name);
1286 goto out;
1287 }
1288 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1289 inode, name, namelen);
1290 kfree(name);
1291 iput(dir);
1292 if (ret)
1293 goto out;
1294 goto again;
1295 }
1296
1297 kfree(name);
1298 ref_ptr += namelen;
1299 if (key->type == BTRFS_INODE_EXTREF_KEY)
1300 ref_ptr += sizeof(struct btrfs_inode_extref);
1301 else
1302 ref_ptr += sizeof(struct btrfs_inode_ref);
1303 }
1304 ret = 0;
1305 out:
1306 btrfs_release_path(path);
1307 return ret;
1308}
1309
5a1d7843
JS
1310/*
1311 * replay one inode back reference item found in the log tree.
1312 * eb, slot and key refer to the buffer and key found in the log tree.
1313 * root is the destination we are replaying into, and path is for temp
1314 * use by this function. (it should be released on return).
1315 */
1316static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1317 struct btrfs_root *root,
1318 struct btrfs_root *log,
1319 struct btrfs_path *path,
1320 struct extent_buffer *eb, int slot,
1321 struct btrfs_key *key)
1322{
03b2f08b
GB
1323 struct inode *dir = NULL;
1324 struct inode *inode = NULL;
5a1d7843
JS
1325 unsigned long ref_ptr;
1326 unsigned long ref_end;
03b2f08b 1327 char *name = NULL;
5a1d7843
JS
1328 int namelen;
1329 int ret;
1330 int search_done = 0;
f186373f
MF
1331 int log_ref_ver = 0;
1332 u64 parent_objectid;
1333 u64 inode_objectid;
f46dbe3d 1334 u64 ref_index = 0;
f186373f
MF
1335 int ref_struct_size;
1336
1337 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1338 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1339
1340 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1341 struct btrfs_inode_extref *r;
1342
1343 ref_struct_size = sizeof(struct btrfs_inode_extref);
1344 log_ref_ver = 1;
1345 r = (struct btrfs_inode_extref *)ref_ptr;
1346 parent_objectid = btrfs_inode_extref_parent(eb, r);
1347 } else {
1348 ref_struct_size = sizeof(struct btrfs_inode_ref);
1349 parent_objectid = key->offset;
1350 }
1351 inode_objectid = key->objectid;
e02119d5 1352
5a1d7843
JS
1353 /*
1354 * it is possible that we didn't log all the parent directories
1355 * for a given inode. If we don't find the dir, just don't
1356 * copy the back ref in. The link count fixup code will take
1357 * care of the rest
1358 */
f186373f 1359 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1360 if (!dir) {
1361 ret = -ENOENT;
1362 goto out;
1363 }
5a1d7843 1364
f186373f 1365 inode = read_one_inode(root, inode_objectid);
5a1d7843 1366 if (!inode) {
03b2f08b
GB
1367 ret = -EIO;
1368 goto out;
5a1d7843
JS
1369 }
1370
5a1d7843 1371 while (ref_ptr < ref_end) {
f186373f 1372 if (log_ref_ver) {
bae15d95
QW
1373 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1374 &ref_index, &parent_objectid);
f186373f
MF
1375 /*
1376 * parent object can change from one array
1377 * item to another.
1378 */
1379 if (!dir)
1380 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1381 if (!dir) {
1382 ret = -ENOENT;
1383 goto out;
1384 }
f186373f 1385 } else {
bae15d95
QW
1386 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1387 &ref_index);
f186373f
MF
1388 }
1389 if (ret)
03b2f08b 1390 goto out;
5a1d7843
JS
1391
1392 /* if we already have a perfect match, we're done */
f85b7379
DS
1393 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1394 btrfs_ino(BTRFS_I(inode)), ref_index,
1395 name, namelen)) {
5a1d7843
JS
1396 /*
1397 * look for a conflicting back reference in the
1398 * metadata. if we find one we have to unlink that name
1399 * of the file before we add our new link. Later on, we
1400 * overwrite any existing back reference, and we don't
1401 * want to create dangling pointers in the directory.
1402 */
1403
1404 if (!search_done) {
1405 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1406 BTRFS_I(dir),
d75eefdf 1407 BTRFS_I(inode),
f186373f
MF
1408 inode_objectid,
1409 parent_objectid,
1410 ref_index, name, namelen,
5a1d7843 1411 &search_done);
03b2f08b
GB
1412 if (ret) {
1413 if (ret == 1)
1414 ret = 0;
3650860b
JB
1415 goto out;
1416 }
5a1d7843
JS
1417 }
1418
1419 /* insert our name */
db0a669f
NB
1420 ret = btrfs_add_link(trans, BTRFS_I(dir),
1421 BTRFS_I(inode),
1422 name, namelen, 0, ref_index);
3650860b
JB
1423 if (ret)
1424 goto out;
5a1d7843
JS
1425
1426 btrfs_update_inode(trans, root, inode);
1427 }
1428
f186373f 1429 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1430 kfree(name);
03b2f08b 1431 name = NULL;
f186373f
MF
1432 if (log_ref_ver) {
1433 iput(dir);
1434 dir = NULL;
1435 }
5a1d7843 1436 }
e02119d5 1437
1f250e92
FM
1438 /*
1439 * Before we overwrite the inode reference item in the subvolume tree
1440 * with the item from the log tree, we must unlink all names from the
1441 * parent directory that are in the subvolume's tree inode reference
1442 * item, otherwise we end up with an inconsistent subvolume tree where
1443 * dir index entries exist for a name but there is no inode reference
1444 * item with the same name.
1445 */
1446 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1447 key);
1448 if (ret)
1449 goto out;
1450
e02119d5
CM
1451 /* finally write the back reference in the inode */
1452 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1453out:
b3b4aa74 1454 btrfs_release_path(path);
03b2f08b 1455 kfree(name);
e02119d5
CM
1456 iput(dir);
1457 iput(inode);
3650860b 1458 return ret;
e02119d5
CM
1459}
1460
c71bf099 1461static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1462 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1463{
1464 int ret;
381cf658 1465
9c4f61f0
DS
1466 ret = btrfs_insert_orphan_item(trans, root, ino);
1467 if (ret == -EEXIST)
1468 ret = 0;
381cf658 1469
c71bf099
YZ
1470 return ret;
1471}
1472
f186373f 1473static int count_inode_extrefs(struct btrfs_root *root,
36283658 1474 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1475{
1476 int ret = 0;
1477 int name_len;
1478 unsigned int nlink = 0;
1479 u32 item_size;
1480 u32 cur_offset = 0;
36283658 1481 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1482 u64 offset = 0;
1483 unsigned long ptr;
1484 struct btrfs_inode_extref *extref;
1485 struct extent_buffer *leaf;
1486
1487 while (1) {
1488 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1489 &extref, &offset);
1490 if (ret)
1491 break;
c71bf099 1492
f186373f
MF
1493 leaf = path->nodes[0];
1494 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1495 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1496 cur_offset = 0;
f186373f
MF
1497
1498 while (cur_offset < item_size) {
1499 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1500 name_len = btrfs_inode_extref_name_len(leaf, extref);
1501
1502 nlink++;
1503
1504 cur_offset += name_len + sizeof(*extref);
1505 }
1506
1507 offset++;
1508 btrfs_release_path(path);
1509 }
1510 btrfs_release_path(path);
1511
2c2c452b 1512 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1513 return ret;
1514 return nlink;
1515}
1516
1517static int count_inode_refs(struct btrfs_root *root,
f329e319 1518 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1519{
e02119d5
CM
1520 int ret;
1521 struct btrfs_key key;
f186373f 1522 unsigned int nlink = 0;
e02119d5
CM
1523 unsigned long ptr;
1524 unsigned long ptr_end;
1525 int name_len;
f329e319 1526 u64 ino = btrfs_ino(inode);
e02119d5 1527
33345d01 1528 key.objectid = ino;
e02119d5
CM
1529 key.type = BTRFS_INODE_REF_KEY;
1530 key.offset = (u64)-1;
1531
d397712b 1532 while (1) {
e02119d5
CM
1533 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1534 if (ret < 0)
1535 break;
1536 if (ret > 0) {
1537 if (path->slots[0] == 0)
1538 break;
1539 path->slots[0]--;
1540 }
e93ae26f 1541process_slot:
e02119d5
CM
1542 btrfs_item_key_to_cpu(path->nodes[0], &key,
1543 path->slots[0]);
33345d01 1544 if (key.objectid != ino ||
e02119d5
CM
1545 key.type != BTRFS_INODE_REF_KEY)
1546 break;
1547 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1548 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1549 path->slots[0]);
d397712b 1550 while (ptr < ptr_end) {
e02119d5
CM
1551 struct btrfs_inode_ref *ref;
1552
1553 ref = (struct btrfs_inode_ref *)ptr;
1554 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1555 ref);
1556 ptr = (unsigned long)(ref + 1) + name_len;
1557 nlink++;
1558 }
1559
1560 if (key.offset == 0)
1561 break;
e93ae26f
FDBM
1562 if (path->slots[0] > 0) {
1563 path->slots[0]--;
1564 goto process_slot;
1565 }
e02119d5 1566 key.offset--;
b3b4aa74 1567 btrfs_release_path(path);
e02119d5 1568 }
b3b4aa74 1569 btrfs_release_path(path);
f186373f
MF
1570
1571 return nlink;
1572}
1573
1574/*
1575 * There are a few corners where the link count of the file can't
1576 * be properly maintained during replay. So, instead of adding
1577 * lots of complexity to the log code, we just scan the backrefs
1578 * for any file that has been through replay.
1579 *
1580 * The scan will update the link count on the inode to reflect the
1581 * number of back refs found. If it goes down to zero, the iput
1582 * will free the inode.
1583 */
1584static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1585 struct btrfs_root *root,
1586 struct inode *inode)
1587{
1588 struct btrfs_path *path;
1589 int ret;
1590 u64 nlink = 0;
4a0cc7ca 1591 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1592
1593 path = btrfs_alloc_path();
1594 if (!path)
1595 return -ENOMEM;
1596
f329e319 1597 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1598 if (ret < 0)
1599 goto out;
1600
1601 nlink = ret;
1602
36283658 1603 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1604 if (ret < 0)
1605 goto out;
1606
1607 nlink += ret;
1608
1609 ret = 0;
1610
e02119d5 1611 if (nlink != inode->i_nlink) {
bfe86848 1612 set_nlink(inode, nlink);
e02119d5
CM
1613 btrfs_update_inode(trans, root, inode);
1614 }
8d5bf1cb 1615 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1616
c71bf099
YZ
1617 if (inode->i_nlink == 0) {
1618 if (S_ISDIR(inode->i_mode)) {
1619 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1620 ino, 1);
3650860b
JB
1621 if (ret)
1622 goto out;
c71bf099 1623 }
33345d01 1624 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1625 }
12fcfd22 1626
f186373f
MF
1627out:
1628 btrfs_free_path(path);
1629 return ret;
e02119d5
CM
1630}
1631
1632static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1633 struct btrfs_root *root,
1634 struct btrfs_path *path)
1635{
1636 int ret;
1637 struct btrfs_key key;
1638 struct inode *inode;
1639
1640 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1641 key.type = BTRFS_ORPHAN_ITEM_KEY;
1642 key.offset = (u64)-1;
d397712b 1643 while (1) {
e02119d5
CM
1644 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1645 if (ret < 0)
1646 break;
1647
1648 if (ret == 1) {
1649 if (path->slots[0] == 0)
1650 break;
1651 path->slots[0]--;
1652 }
1653
1654 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1655 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1656 key.type != BTRFS_ORPHAN_ITEM_KEY)
1657 break;
1658
1659 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1660 if (ret)
1661 goto out;
e02119d5 1662
b3b4aa74 1663 btrfs_release_path(path);
e02119d5 1664 inode = read_one_inode(root, key.offset);
c00e9493
TI
1665 if (!inode)
1666 return -EIO;
e02119d5
CM
1667
1668 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1669 iput(inode);
3650860b
JB
1670 if (ret)
1671 goto out;
e02119d5 1672
12fcfd22
CM
1673 /*
1674 * fixup on a directory may create new entries,
1675 * make sure we always look for the highset possible
1676 * offset
1677 */
1678 key.offset = (u64)-1;
e02119d5 1679 }
65a246c5
TI
1680 ret = 0;
1681out:
b3b4aa74 1682 btrfs_release_path(path);
65a246c5 1683 return ret;
e02119d5
CM
1684}
1685
1686
1687/*
1688 * record a given inode in the fixup dir so we can check its link
1689 * count when replay is done. The link count is incremented here
1690 * so the inode won't go away until we check it
1691 */
1692static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1693 struct btrfs_root *root,
1694 struct btrfs_path *path,
1695 u64 objectid)
1696{
1697 struct btrfs_key key;
1698 int ret = 0;
1699 struct inode *inode;
1700
1701 inode = read_one_inode(root, objectid);
c00e9493
TI
1702 if (!inode)
1703 return -EIO;
e02119d5
CM
1704
1705 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1706 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1707 key.offset = objectid;
1708
1709 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1710
b3b4aa74 1711 btrfs_release_path(path);
e02119d5 1712 if (ret == 0) {
9bf7a489
JB
1713 if (!inode->i_nlink)
1714 set_nlink(inode, 1);
1715 else
8b558c5f 1716 inc_nlink(inode);
b9959295 1717 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1718 } else if (ret == -EEXIST) {
1719 ret = 0;
1720 } else {
3650860b 1721 BUG(); /* Logic Error */
e02119d5
CM
1722 }
1723 iput(inode);
1724
1725 return ret;
1726}
1727
1728/*
1729 * when replaying the log for a directory, we only insert names
1730 * for inodes that actually exist. This means an fsync on a directory
1731 * does not implicitly fsync all the new files in it
1732 */
1733static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1734 struct btrfs_root *root,
e02119d5 1735 u64 dirid, u64 index,
60d53eb3 1736 char *name, int name_len,
e02119d5
CM
1737 struct btrfs_key *location)
1738{
1739 struct inode *inode;
1740 struct inode *dir;
1741 int ret;
1742
1743 inode = read_one_inode(root, location->objectid);
1744 if (!inode)
1745 return -ENOENT;
1746
1747 dir = read_one_inode(root, dirid);
1748 if (!dir) {
1749 iput(inode);
1750 return -EIO;
1751 }
d555438b 1752
db0a669f
NB
1753 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1754 name_len, 1, index);
e02119d5
CM
1755
1756 /* FIXME, put inode into FIXUP list */
1757
1758 iput(inode);
1759 iput(dir);
1760 return ret;
1761}
1762
df8d116f
FM
1763/*
1764 * Return true if an inode reference exists in the log for the given name,
1765 * inode and parent inode.
1766 */
1767static bool name_in_log_ref(struct btrfs_root *log_root,
1768 const char *name, const int name_len,
1769 const u64 dirid, const u64 ino)
1770{
1771 struct btrfs_key search_key;
1772
1773 search_key.objectid = ino;
1774 search_key.type = BTRFS_INODE_REF_KEY;
1775 search_key.offset = dirid;
1776 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1777 return true;
1778
1779 search_key.type = BTRFS_INODE_EXTREF_KEY;
1780 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1781 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1782 return true;
1783
1784 return false;
1785}
1786
e02119d5
CM
1787/*
1788 * take a single entry in a log directory item and replay it into
1789 * the subvolume.
1790 *
1791 * if a conflicting item exists in the subdirectory already,
1792 * the inode it points to is unlinked and put into the link count
1793 * fix up tree.
1794 *
1795 * If a name from the log points to a file or directory that does
1796 * not exist in the FS, it is skipped. fsyncs on directories
1797 * do not force down inodes inside that directory, just changes to the
1798 * names or unlinks in a directory.
bb53eda9
FM
1799 *
1800 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1801 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1802 */
1803static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1804 struct btrfs_root *root,
1805 struct btrfs_path *path,
1806 struct extent_buffer *eb,
1807 struct btrfs_dir_item *di,
1808 struct btrfs_key *key)
1809{
1810 char *name;
1811 int name_len;
1812 struct btrfs_dir_item *dst_di;
1813 struct btrfs_key found_key;
1814 struct btrfs_key log_key;
1815 struct inode *dir;
e02119d5 1816 u8 log_type;
4bef0848 1817 int exists;
3650860b 1818 int ret = 0;
d555438b 1819 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1820 bool name_added = false;
e02119d5
CM
1821
1822 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1823 if (!dir)
1824 return -EIO;
e02119d5
CM
1825
1826 name_len = btrfs_dir_name_len(eb, di);
1827 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1828 if (!name) {
1829 ret = -ENOMEM;
1830 goto out;
1831 }
2a29edc6 1832
e02119d5
CM
1833 log_type = btrfs_dir_type(eb, di);
1834 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1835 name_len);
1836
1837 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1838 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1839 if (exists == 0)
1840 exists = 1;
1841 else
1842 exists = 0;
b3b4aa74 1843 btrfs_release_path(path);
4bef0848 1844
e02119d5
CM
1845 if (key->type == BTRFS_DIR_ITEM_KEY) {
1846 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1847 name, name_len, 1);
d397712b 1848 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1849 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1850 key->objectid,
1851 key->offset, name,
1852 name_len, 1);
1853 } else {
3650860b
JB
1854 /* Corruption */
1855 ret = -EINVAL;
1856 goto out;
e02119d5 1857 }
c704005d 1858 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1859 /* we need a sequence number to insert, so we only
1860 * do inserts for the BTRFS_DIR_INDEX_KEY types
1861 */
1862 if (key->type != BTRFS_DIR_INDEX_KEY)
1863 goto out;
1864 goto insert;
1865 }
1866
1867 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1868 /* the existing item matches the logged item */
1869 if (found_key.objectid == log_key.objectid &&
1870 found_key.type == log_key.type &&
1871 found_key.offset == log_key.offset &&
1872 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1873 update_size = false;
e02119d5
CM
1874 goto out;
1875 }
1876
1877 /*
1878 * don't drop the conflicting directory entry if the inode
1879 * for the new entry doesn't exist
1880 */
4bef0848 1881 if (!exists)
e02119d5
CM
1882 goto out;
1883
207e7d92 1884 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1885 if (ret)
1886 goto out;
e02119d5
CM
1887
1888 if (key->type == BTRFS_DIR_INDEX_KEY)
1889 goto insert;
1890out:
b3b4aa74 1891 btrfs_release_path(path);
d555438b 1892 if (!ret && update_size) {
6ef06d27 1893 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
1894 ret = btrfs_update_inode(trans, root, dir);
1895 }
e02119d5
CM
1896 kfree(name);
1897 iput(dir);
bb53eda9
FM
1898 if (!ret && name_added)
1899 ret = 1;
3650860b 1900 return ret;
e02119d5
CM
1901
1902insert:
df8d116f
FM
1903 if (name_in_log_ref(root->log_root, name, name_len,
1904 key->objectid, log_key.objectid)) {
1905 /* The dentry will be added later. */
1906 ret = 0;
1907 update_size = false;
1908 goto out;
1909 }
b3b4aa74 1910 btrfs_release_path(path);
60d53eb3
Z
1911 ret = insert_one_name(trans, root, key->objectid, key->offset,
1912 name, name_len, &log_key);
df8d116f 1913 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1914 goto out;
bb53eda9
FM
1915 if (!ret)
1916 name_added = true;
d555438b 1917 update_size = false;
3650860b 1918 ret = 0;
e02119d5
CM
1919 goto out;
1920}
1921
1922/*
1923 * find all the names in a directory item and reconcile them into
1924 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1925 * one name in a directory item, but the same code gets used for
1926 * both directory index types
1927 */
1928static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1929 struct btrfs_root *root,
1930 struct btrfs_path *path,
1931 struct extent_buffer *eb, int slot,
1932 struct btrfs_key *key)
1933{
bb53eda9 1934 int ret = 0;
e02119d5
CM
1935 u32 item_size = btrfs_item_size_nr(eb, slot);
1936 struct btrfs_dir_item *di;
1937 int name_len;
1938 unsigned long ptr;
1939 unsigned long ptr_end;
bb53eda9 1940 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
1941
1942 ptr = btrfs_item_ptr_offset(eb, slot);
1943 ptr_end = ptr + item_size;
d397712b 1944 while (ptr < ptr_end) {
e02119d5
CM
1945 di = (struct btrfs_dir_item *)ptr;
1946 name_len = btrfs_dir_name_len(eb, di);
1947 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
1948 if (ret < 0)
1949 break;
e02119d5
CM
1950 ptr = (unsigned long)(di + 1);
1951 ptr += name_len;
bb53eda9
FM
1952
1953 /*
1954 * If this entry refers to a non-directory (directories can not
1955 * have a link count > 1) and it was added in the transaction
1956 * that was not committed, make sure we fixup the link count of
1957 * the inode it the entry points to. Otherwise something like
1958 * the following would result in a directory pointing to an
1959 * inode with a wrong link that does not account for this dir
1960 * entry:
1961 *
1962 * mkdir testdir
1963 * touch testdir/foo
1964 * touch testdir/bar
1965 * sync
1966 *
1967 * ln testdir/bar testdir/bar_link
1968 * ln testdir/foo testdir/foo_link
1969 * xfs_io -c "fsync" testdir/bar
1970 *
1971 * <power failure>
1972 *
1973 * mount fs, log replay happens
1974 *
1975 * File foo would remain with a link count of 1 when it has two
1976 * entries pointing to it in the directory testdir. This would
1977 * make it impossible to ever delete the parent directory has
1978 * it would result in stale dentries that can never be deleted.
1979 */
1980 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1981 struct btrfs_key di_key;
1982
1983 if (!fixup_path) {
1984 fixup_path = btrfs_alloc_path();
1985 if (!fixup_path) {
1986 ret = -ENOMEM;
1987 break;
1988 }
1989 }
1990
1991 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1992 ret = link_to_fixup_dir(trans, root, fixup_path,
1993 di_key.objectid);
1994 if (ret)
1995 break;
1996 }
1997 ret = 0;
e02119d5 1998 }
bb53eda9
FM
1999 btrfs_free_path(fixup_path);
2000 return ret;
e02119d5
CM
2001}
2002
2003/*
2004 * directory replay has two parts. There are the standard directory
2005 * items in the log copied from the subvolume, and range items
2006 * created in the log while the subvolume was logged.
2007 *
2008 * The range items tell us which parts of the key space the log
2009 * is authoritative for. During replay, if a key in the subvolume
2010 * directory is in a logged range item, but not actually in the log
2011 * that means it was deleted from the directory before the fsync
2012 * and should be removed.
2013 */
2014static noinline int find_dir_range(struct btrfs_root *root,
2015 struct btrfs_path *path,
2016 u64 dirid, int key_type,
2017 u64 *start_ret, u64 *end_ret)
2018{
2019 struct btrfs_key key;
2020 u64 found_end;
2021 struct btrfs_dir_log_item *item;
2022 int ret;
2023 int nritems;
2024
2025 if (*start_ret == (u64)-1)
2026 return 1;
2027
2028 key.objectid = dirid;
2029 key.type = key_type;
2030 key.offset = *start_ret;
2031
2032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2033 if (ret < 0)
2034 goto out;
2035 if (ret > 0) {
2036 if (path->slots[0] == 0)
2037 goto out;
2038 path->slots[0]--;
2039 }
2040 if (ret != 0)
2041 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2042
2043 if (key.type != key_type || key.objectid != dirid) {
2044 ret = 1;
2045 goto next;
2046 }
2047 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2048 struct btrfs_dir_log_item);
2049 found_end = btrfs_dir_log_end(path->nodes[0], item);
2050
2051 if (*start_ret >= key.offset && *start_ret <= found_end) {
2052 ret = 0;
2053 *start_ret = key.offset;
2054 *end_ret = found_end;
2055 goto out;
2056 }
2057 ret = 1;
2058next:
2059 /* check the next slot in the tree to see if it is a valid item */
2060 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2061 path->slots[0]++;
e02119d5
CM
2062 if (path->slots[0] >= nritems) {
2063 ret = btrfs_next_leaf(root, path);
2064 if (ret)
2065 goto out;
e02119d5
CM
2066 }
2067
2068 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2069
2070 if (key.type != key_type || key.objectid != dirid) {
2071 ret = 1;
2072 goto out;
2073 }
2074 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2075 struct btrfs_dir_log_item);
2076 found_end = btrfs_dir_log_end(path->nodes[0], item);
2077 *start_ret = key.offset;
2078 *end_ret = found_end;
2079 ret = 0;
2080out:
b3b4aa74 2081 btrfs_release_path(path);
e02119d5
CM
2082 return ret;
2083}
2084
2085/*
2086 * this looks for a given directory item in the log. If the directory
2087 * item is not in the log, the item is removed and the inode it points
2088 * to is unlinked
2089 */
2090static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_root *log,
2093 struct btrfs_path *path,
2094 struct btrfs_path *log_path,
2095 struct inode *dir,
2096 struct btrfs_key *dir_key)
2097{
2098 int ret;
2099 struct extent_buffer *eb;
2100 int slot;
2101 u32 item_size;
2102 struct btrfs_dir_item *di;
2103 struct btrfs_dir_item *log_di;
2104 int name_len;
2105 unsigned long ptr;
2106 unsigned long ptr_end;
2107 char *name;
2108 struct inode *inode;
2109 struct btrfs_key location;
2110
2111again:
2112 eb = path->nodes[0];
2113 slot = path->slots[0];
2114 item_size = btrfs_item_size_nr(eb, slot);
2115 ptr = btrfs_item_ptr_offset(eb, slot);
2116 ptr_end = ptr + item_size;
d397712b 2117 while (ptr < ptr_end) {
e02119d5
CM
2118 di = (struct btrfs_dir_item *)ptr;
2119 name_len = btrfs_dir_name_len(eb, di);
2120 name = kmalloc(name_len, GFP_NOFS);
2121 if (!name) {
2122 ret = -ENOMEM;
2123 goto out;
2124 }
2125 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2126 name_len);
2127 log_di = NULL;
12fcfd22 2128 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2129 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2130 dir_key->objectid,
2131 name, name_len, 0);
12fcfd22 2132 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2133 log_di = btrfs_lookup_dir_index_item(trans, log,
2134 log_path,
2135 dir_key->objectid,
2136 dir_key->offset,
2137 name, name_len, 0);
2138 }
269d040f 2139 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 2140 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2141 btrfs_release_path(path);
2142 btrfs_release_path(log_path);
e02119d5 2143 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2144 if (!inode) {
2145 kfree(name);
2146 return -EIO;
2147 }
e02119d5
CM
2148
2149 ret = link_to_fixup_dir(trans, root,
2150 path, location.objectid);
3650860b
JB
2151 if (ret) {
2152 kfree(name);
2153 iput(inode);
2154 goto out;
2155 }
2156
8b558c5f 2157 inc_nlink(inode);
4ec5934e
NB
2158 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2159 BTRFS_I(inode), name, name_len);
3650860b 2160 if (!ret)
e5c304e6 2161 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2162 kfree(name);
2163 iput(inode);
3650860b
JB
2164 if (ret)
2165 goto out;
e02119d5
CM
2166
2167 /* there might still be more names under this key
2168 * check and repeat if required
2169 */
2170 ret = btrfs_search_slot(NULL, root, dir_key, path,
2171 0, 0);
2172 if (ret == 0)
2173 goto again;
2174 ret = 0;
2175 goto out;
269d040f
FDBM
2176 } else if (IS_ERR(log_di)) {
2177 kfree(name);
2178 return PTR_ERR(log_di);
e02119d5 2179 }
b3b4aa74 2180 btrfs_release_path(log_path);
e02119d5
CM
2181 kfree(name);
2182
2183 ptr = (unsigned long)(di + 1);
2184 ptr += name_len;
2185 }
2186 ret = 0;
2187out:
b3b4aa74
DS
2188 btrfs_release_path(path);
2189 btrfs_release_path(log_path);
e02119d5
CM
2190 return ret;
2191}
2192
4f764e51
FM
2193static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2194 struct btrfs_root *root,
2195 struct btrfs_root *log,
2196 struct btrfs_path *path,
2197 const u64 ino)
2198{
2199 struct btrfs_key search_key;
2200 struct btrfs_path *log_path;
2201 int i;
2202 int nritems;
2203 int ret;
2204
2205 log_path = btrfs_alloc_path();
2206 if (!log_path)
2207 return -ENOMEM;
2208
2209 search_key.objectid = ino;
2210 search_key.type = BTRFS_XATTR_ITEM_KEY;
2211 search_key.offset = 0;
2212again:
2213 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2214 if (ret < 0)
2215 goto out;
2216process_leaf:
2217 nritems = btrfs_header_nritems(path->nodes[0]);
2218 for (i = path->slots[0]; i < nritems; i++) {
2219 struct btrfs_key key;
2220 struct btrfs_dir_item *di;
2221 struct btrfs_dir_item *log_di;
2222 u32 total_size;
2223 u32 cur;
2224
2225 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2226 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2227 ret = 0;
2228 goto out;
2229 }
2230
2231 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2232 total_size = btrfs_item_size_nr(path->nodes[0], i);
2233 cur = 0;
2234 while (cur < total_size) {
2235 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2236 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2237 u32 this_len = sizeof(*di) + name_len + data_len;
2238 char *name;
2239
2240 name = kmalloc(name_len, GFP_NOFS);
2241 if (!name) {
2242 ret = -ENOMEM;
2243 goto out;
2244 }
2245 read_extent_buffer(path->nodes[0], name,
2246 (unsigned long)(di + 1), name_len);
2247
2248 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2249 name, name_len, 0);
2250 btrfs_release_path(log_path);
2251 if (!log_di) {
2252 /* Doesn't exist in log tree, so delete it. */
2253 btrfs_release_path(path);
2254 di = btrfs_lookup_xattr(trans, root, path, ino,
2255 name, name_len, -1);
2256 kfree(name);
2257 if (IS_ERR(di)) {
2258 ret = PTR_ERR(di);
2259 goto out;
2260 }
2261 ASSERT(di);
2262 ret = btrfs_delete_one_dir_name(trans, root,
2263 path, di);
2264 if (ret)
2265 goto out;
2266 btrfs_release_path(path);
2267 search_key = key;
2268 goto again;
2269 }
2270 kfree(name);
2271 if (IS_ERR(log_di)) {
2272 ret = PTR_ERR(log_di);
2273 goto out;
2274 }
2275 cur += this_len;
2276 di = (struct btrfs_dir_item *)((char *)di + this_len);
2277 }
2278 }
2279 ret = btrfs_next_leaf(root, path);
2280 if (ret > 0)
2281 ret = 0;
2282 else if (ret == 0)
2283 goto process_leaf;
2284out:
2285 btrfs_free_path(log_path);
2286 btrfs_release_path(path);
2287 return ret;
2288}
2289
2290
e02119d5
CM
2291/*
2292 * deletion replay happens before we copy any new directory items
2293 * out of the log or out of backreferences from inodes. It
2294 * scans the log to find ranges of keys that log is authoritative for,
2295 * and then scans the directory to find items in those ranges that are
2296 * not present in the log.
2297 *
2298 * Anything we don't find in the log is unlinked and removed from the
2299 * directory.
2300 */
2301static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2302 struct btrfs_root *root,
2303 struct btrfs_root *log,
2304 struct btrfs_path *path,
12fcfd22 2305 u64 dirid, int del_all)
e02119d5
CM
2306{
2307 u64 range_start;
2308 u64 range_end;
2309 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2310 int ret = 0;
2311 struct btrfs_key dir_key;
2312 struct btrfs_key found_key;
2313 struct btrfs_path *log_path;
2314 struct inode *dir;
2315
2316 dir_key.objectid = dirid;
2317 dir_key.type = BTRFS_DIR_ITEM_KEY;
2318 log_path = btrfs_alloc_path();
2319 if (!log_path)
2320 return -ENOMEM;
2321
2322 dir = read_one_inode(root, dirid);
2323 /* it isn't an error if the inode isn't there, that can happen
2324 * because we replay the deletes before we copy in the inode item
2325 * from the log
2326 */
2327 if (!dir) {
2328 btrfs_free_path(log_path);
2329 return 0;
2330 }
2331again:
2332 range_start = 0;
2333 range_end = 0;
d397712b 2334 while (1) {
12fcfd22
CM
2335 if (del_all)
2336 range_end = (u64)-1;
2337 else {
2338 ret = find_dir_range(log, path, dirid, key_type,
2339 &range_start, &range_end);
2340 if (ret != 0)
2341 break;
2342 }
e02119d5
CM
2343
2344 dir_key.offset = range_start;
d397712b 2345 while (1) {
e02119d5
CM
2346 int nritems;
2347 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2348 0, 0);
2349 if (ret < 0)
2350 goto out;
2351
2352 nritems = btrfs_header_nritems(path->nodes[0]);
2353 if (path->slots[0] >= nritems) {
2354 ret = btrfs_next_leaf(root, path);
2355 if (ret)
2356 break;
2357 }
2358 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2359 path->slots[0]);
2360 if (found_key.objectid != dirid ||
2361 found_key.type != dir_key.type)
2362 goto next_type;
2363
2364 if (found_key.offset > range_end)
2365 break;
2366
2367 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2368 log_path, dir,
2369 &found_key);
3650860b
JB
2370 if (ret)
2371 goto out;
e02119d5
CM
2372 if (found_key.offset == (u64)-1)
2373 break;
2374 dir_key.offset = found_key.offset + 1;
2375 }
b3b4aa74 2376 btrfs_release_path(path);
e02119d5
CM
2377 if (range_end == (u64)-1)
2378 break;
2379 range_start = range_end + 1;
2380 }
2381
2382next_type:
2383 ret = 0;
2384 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2385 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2386 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2387 btrfs_release_path(path);
e02119d5
CM
2388 goto again;
2389 }
2390out:
b3b4aa74 2391 btrfs_release_path(path);
e02119d5
CM
2392 btrfs_free_path(log_path);
2393 iput(dir);
2394 return ret;
2395}
2396
2397/*
2398 * the process_func used to replay items from the log tree. This
2399 * gets called in two different stages. The first stage just looks
2400 * for inodes and makes sure they are all copied into the subvolume.
2401 *
2402 * The second stage copies all the other item types from the log into
2403 * the subvolume. The two stage approach is slower, but gets rid of
2404 * lots of complexity around inodes referencing other inodes that exist
2405 * only in the log (references come from either directory items or inode
2406 * back refs).
2407 */
2408static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2409 struct walk_control *wc, u64 gen)
2410{
2411 int nritems;
2412 struct btrfs_path *path;
2413 struct btrfs_root *root = wc->replay_dest;
2414 struct btrfs_key key;
e02119d5
CM
2415 int level;
2416 int i;
2417 int ret;
2418
018642a1
TI
2419 ret = btrfs_read_buffer(eb, gen);
2420 if (ret)
2421 return ret;
e02119d5
CM
2422
2423 level = btrfs_header_level(eb);
2424
2425 if (level != 0)
2426 return 0;
2427
2428 path = btrfs_alloc_path();
1e5063d0
MF
2429 if (!path)
2430 return -ENOMEM;
e02119d5
CM
2431
2432 nritems = btrfs_header_nritems(eb);
2433 for (i = 0; i < nritems; i++) {
2434 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2435
2436 /* inode keys are done during the first stage */
2437 if (key.type == BTRFS_INODE_ITEM_KEY &&
2438 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2439 struct btrfs_inode_item *inode_item;
2440 u32 mode;
2441
2442 inode_item = btrfs_item_ptr(eb, i,
2443 struct btrfs_inode_item);
4f764e51
FM
2444 ret = replay_xattr_deletes(wc->trans, root, log,
2445 path, key.objectid);
2446 if (ret)
2447 break;
e02119d5
CM
2448 mode = btrfs_inode_mode(eb, inode_item);
2449 if (S_ISDIR(mode)) {
2450 ret = replay_dir_deletes(wc->trans,
12fcfd22 2451 root, log, path, key.objectid, 0);
b50c6e25
JB
2452 if (ret)
2453 break;
e02119d5
CM
2454 }
2455 ret = overwrite_item(wc->trans, root, path,
2456 eb, i, &key);
b50c6e25
JB
2457 if (ret)
2458 break;
e02119d5 2459
c71bf099 2460 /* for regular files, make sure corresponding
01327610 2461 * orphan item exist. extents past the new EOF
c71bf099 2462 * will be truncated later by orphan cleanup.
e02119d5
CM
2463 */
2464 if (S_ISREG(mode)) {
c71bf099
YZ
2465 ret = insert_orphan_item(wc->trans, root,
2466 key.objectid);
b50c6e25
JB
2467 if (ret)
2468 break;
e02119d5 2469 }
c71bf099 2470
e02119d5
CM
2471 ret = link_to_fixup_dir(wc->trans, root,
2472 path, key.objectid);
b50c6e25
JB
2473 if (ret)
2474 break;
e02119d5 2475 }
dd8e7217
JB
2476
2477 if (key.type == BTRFS_DIR_INDEX_KEY &&
2478 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2479 ret = replay_one_dir_item(wc->trans, root, path,
2480 eb, i, &key);
2481 if (ret)
2482 break;
2483 }
2484
e02119d5
CM
2485 if (wc->stage < LOG_WALK_REPLAY_ALL)
2486 continue;
2487
2488 /* these keys are simply copied */
2489 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2490 ret = overwrite_item(wc->trans, root, path,
2491 eb, i, &key);
b50c6e25
JB
2492 if (ret)
2493 break;
2da1c669
LB
2494 } else if (key.type == BTRFS_INODE_REF_KEY ||
2495 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2496 ret = add_inode_ref(wc->trans, root, log, path,
2497 eb, i, &key);
b50c6e25
JB
2498 if (ret && ret != -ENOENT)
2499 break;
2500 ret = 0;
e02119d5
CM
2501 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2502 ret = replay_one_extent(wc->trans, root, path,
2503 eb, i, &key);
b50c6e25
JB
2504 if (ret)
2505 break;
dd8e7217 2506 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2507 ret = replay_one_dir_item(wc->trans, root, path,
2508 eb, i, &key);
b50c6e25
JB
2509 if (ret)
2510 break;
e02119d5
CM
2511 }
2512 }
2513 btrfs_free_path(path);
b50c6e25 2514 return ret;
e02119d5
CM
2515}
2516
d397712b 2517static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2518 struct btrfs_root *root,
2519 struct btrfs_path *path, int *level,
2520 struct walk_control *wc)
2521{
0b246afa 2522 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2523 u64 root_owner;
e02119d5
CM
2524 u64 bytenr;
2525 u64 ptr_gen;
2526 struct extent_buffer *next;
2527 struct extent_buffer *cur;
2528 struct extent_buffer *parent;
2529 u32 blocksize;
2530 int ret = 0;
2531
2532 WARN_ON(*level < 0);
2533 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2534
d397712b 2535 while (*level > 0) {
e02119d5
CM
2536 WARN_ON(*level < 0);
2537 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2538 cur = path->nodes[*level];
2539
fae7f21c 2540 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2541
2542 if (path->slots[*level] >=
2543 btrfs_header_nritems(cur))
2544 break;
2545
2546 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2547 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
0b246afa 2548 blocksize = fs_info->nodesize;
e02119d5
CM
2549
2550 parent = path->nodes[*level];
2551 root_owner = btrfs_header_owner(parent);
e02119d5 2552
2ff7e61e 2553 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2554 if (IS_ERR(next))
2555 return PTR_ERR(next);
e02119d5 2556
e02119d5 2557 if (*level == 1) {
1e5063d0 2558 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2559 if (ret) {
2560 free_extent_buffer(next);
1e5063d0 2561 return ret;
b50c6e25 2562 }
4a500fd1 2563
e02119d5
CM
2564 path->slots[*level]++;
2565 if (wc->free) {
018642a1
TI
2566 ret = btrfs_read_buffer(next, ptr_gen);
2567 if (ret) {
2568 free_extent_buffer(next);
2569 return ret;
2570 }
e02119d5 2571
681ae509
JB
2572 if (trans) {
2573 btrfs_tree_lock(next);
2574 btrfs_set_lock_blocking(next);
7c302b49 2575 clean_tree_block(fs_info, next);
681ae509
JB
2576 btrfs_wait_tree_block_writeback(next);
2577 btrfs_tree_unlock(next);
1846430c
LB
2578 } else {
2579 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2580 clear_extent_buffer_dirty(next);
681ae509 2581 }
e02119d5 2582
e02119d5
CM
2583 WARN_ON(root_owner !=
2584 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2585 ret = btrfs_free_and_pin_reserved_extent(
2586 fs_info, bytenr,
2587 blocksize);
3650860b
JB
2588 if (ret) {
2589 free_extent_buffer(next);
2590 return ret;
2591 }
e02119d5
CM
2592 }
2593 free_extent_buffer(next);
2594 continue;
2595 }
018642a1
TI
2596 ret = btrfs_read_buffer(next, ptr_gen);
2597 if (ret) {
2598 free_extent_buffer(next);
2599 return ret;
2600 }
e02119d5
CM
2601
2602 WARN_ON(*level <= 0);
2603 if (path->nodes[*level-1])
2604 free_extent_buffer(path->nodes[*level-1]);
2605 path->nodes[*level-1] = next;
2606 *level = btrfs_header_level(next);
2607 path->slots[*level] = 0;
2608 cond_resched();
2609 }
2610 WARN_ON(*level < 0);
2611 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2612
4a500fd1 2613 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2614
2615 cond_resched();
2616 return 0;
2617}
2618
d397712b 2619static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2620 struct btrfs_root *root,
2621 struct btrfs_path *path, int *level,
2622 struct walk_control *wc)
2623{
0b246afa 2624 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2625 u64 root_owner;
e02119d5
CM
2626 int i;
2627 int slot;
2628 int ret;
2629
d397712b 2630 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2631 slot = path->slots[i];
4a500fd1 2632 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2633 path->slots[i]++;
2634 *level = i;
2635 WARN_ON(*level == 0);
2636 return 0;
2637 } else {
31840ae1
ZY
2638 struct extent_buffer *parent;
2639 if (path->nodes[*level] == root->node)
2640 parent = path->nodes[*level];
2641 else
2642 parent = path->nodes[*level + 1];
2643
2644 root_owner = btrfs_header_owner(parent);
1e5063d0 2645 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2646 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2647 if (ret)
2648 return ret;
2649
e02119d5
CM
2650 if (wc->free) {
2651 struct extent_buffer *next;
2652
2653 next = path->nodes[*level];
2654
681ae509
JB
2655 if (trans) {
2656 btrfs_tree_lock(next);
2657 btrfs_set_lock_blocking(next);
7c302b49 2658 clean_tree_block(fs_info, next);
681ae509
JB
2659 btrfs_wait_tree_block_writeback(next);
2660 btrfs_tree_unlock(next);
1846430c
LB
2661 } else {
2662 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2663 clear_extent_buffer_dirty(next);
681ae509 2664 }
e02119d5 2665
e02119d5 2666 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2667 ret = btrfs_free_and_pin_reserved_extent(
2668 fs_info,
e02119d5 2669 path->nodes[*level]->start,
d00aff00 2670 path->nodes[*level]->len);
3650860b
JB
2671 if (ret)
2672 return ret;
e02119d5
CM
2673 }
2674 free_extent_buffer(path->nodes[*level]);
2675 path->nodes[*level] = NULL;
2676 *level = i + 1;
2677 }
2678 }
2679 return 1;
2680}
2681
2682/*
2683 * drop the reference count on the tree rooted at 'snap'. This traverses
2684 * the tree freeing any blocks that have a ref count of zero after being
2685 * decremented.
2686 */
2687static int walk_log_tree(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *log, struct walk_control *wc)
2689{
2ff7e61e 2690 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2691 int ret = 0;
2692 int wret;
2693 int level;
2694 struct btrfs_path *path;
e02119d5
CM
2695 int orig_level;
2696
2697 path = btrfs_alloc_path();
db5b493a
TI
2698 if (!path)
2699 return -ENOMEM;
e02119d5
CM
2700
2701 level = btrfs_header_level(log->node);
2702 orig_level = level;
2703 path->nodes[level] = log->node;
2704 extent_buffer_get(log->node);
2705 path->slots[level] = 0;
2706
d397712b 2707 while (1) {
e02119d5
CM
2708 wret = walk_down_log_tree(trans, log, path, &level, wc);
2709 if (wret > 0)
2710 break;
79787eaa 2711 if (wret < 0) {
e02119d5 2712 ret = wret;
79787eaa
JM
2713 goto out;
2714 }
e02119d5
CM
2715
2716 wret = walk_up_log_tree(trans, log, path, &level, wc);
2717 if (wret > 0)
2718 break;
79787eaa 2719 if (wret < 0) {
e02119d5 2720 ret = wret;
79787eaa
JM
2721 goto out;
2722 }
e02119d5
CM
2723 }
2724
2725 /* was the root node processed? if not, catch it here */
2726 if (path->nodes[orig_level]) {
79787eaa 2727 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2728 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2729 if (ret)
2730 goto out;
e02119d5
CM
2731 if (wc->free) {
2732 struct extent_buffer *next;
2733
2734 next = path->nodes[orig_level];
2735
681ae509
JB
2736 if (trans) {
2737 btrfs_tree_lock(next);
2738 btrfs_set_lock_blocking(next);
7c302b49 2739 clean_tree_block(fs_info, next);
681ae509
JB
2740 btrfs_wait_tree_block_writeback(next);
2741 btrfs_tree_unlock(next);
1846430c
LB
2742 } else {
2743 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2744 clear_extent_buffer_dirty(next);
681ae509 2745 }
e02119d5 2746
e02119d5
CM
2747 WARN_ON(log->root_key.objectid !=
2748 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2749 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2750 next->start, next->len);
3650860b
JB
2751 if (ret)
2752 goto out;
e02119d5
CM
2753 }
2754 }
2755
79787eaa 2756out:
e02119d5 2757 btrfs_free_path(path);
e02119d5
CM
2758 return ret;
2759}
2760
7237f183
YZ
2761/*
2762 * helper function to update the item for a given subvolumes log root
2763 * in the tree of log roots
2764 */
2765static int update_log_root(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *log)
2767{
0b246afa 2768 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2769 int ret;
2770
2771 if (log->log_transid == 1) {
2772 /* insert root item on the first sync */
0b246afa 2773 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2774 &log->root_key, &log->root_item);
2775 } else {
0b246afa 2776 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2777 &log->root_key, &log->root_item);
2778 }
2779 return ret;
2780}
2781
60d53eb3 2782static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2783{
2784 DEFINE_WAIT(wait);
7237f183 2785 int index = transid % 2;
e02119d5 2786
7237f183
YZ
2787 /*
2788 * we only allow two pending log transactions at a time,
2789 * so we know that if ours is more than 2 older than the
2790 * current transaction, we're done
2791 */
49e83f57 2792 for (;;) {
7237f183
YZ
2793 prepare_to_wait(&root->log_commit_wait[index],
2794 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2795
49e83f57
LB
2796 if (!(root->log_transid_committed < transid &&
2797 atomic_read(&root->log_commit[index])))
2798 break;
12fcfd22 2799
49e83f57
LB
2800 mutex_unlock(&root->log_mutex);
2801 schedule();
7237f183 2802 mutex_lock(&root->log_mutex);
49e83f57
LB
2803 }
2804 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2805}
2806
60d53eb3 2807static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2808{
2809 DEFINE_WAIT(wait);
8b050d35 2810
49e83f57
LB
2811 for (;;) {
2812 prepare_to_wait(&root->log_writer_wait, &wait,
2813 TASK_UNINTERRUPTIBLE);
2814 if (!atomic_read(&root->log_writers))
2815 break;
2816
7237f183 2817 mutex_unlock(&root->log_mutex);
49e83f57 2818 schedule();
575849ec 2819 mutex_lock(&root->log_mutex);
7237f183 2820 }
49e83f57 2821 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2822}
2823
8b050d35
MX
2824static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2825 struct btrfs_log_ctx *ctx)
2826{
2827 if (!ctx)
2828 return;
2829
2830 mutex_lock(&root->log_mutex);
2831 list_del_init(&ctx->list);
2832 mutex_unlock(&root->log_mutex);
2833}
2834
2835/*
2836 * Invoked in log mutex context, or be sure there is no other task which
2837 * can access the list.
2838 */
2839static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2840 int index, int error)
2841{
2842 struct btrfs_log_ctx *ctx;
570dd450 2843 struct btrfs_log_ctx *safe;
8b050d35 2844
570dd450
CM
2845 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2846 list_del_init(&ctx->list);
8b050d35 2847 ctx->log_ret = error;
570dd450 2848 }
8b050d35
MX
2849
2850 INIT_LIST_HEAD(&root->log_ctxs[index]);
2851}
2852
e02119d5
CM
2853/*
2854 * btrfs_sync_log does sends a given tree log down to the disk and
2855 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2856 * you know that any inodes previously logged are safely on disk only
2857 * if it returns 0.
2858 *
2859 * Any other return value means you need to call btrfs_commit_transaction.
2860 * Some of the edge cases for fsyncing directories that have had unlinks
2861 * or renames done in the past mean that sometimes the only safe
2862 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2863 * that has happened.
e02119d5
CM
2864 */
2865int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2866 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2867{
7237f183
YZ
2868 int index1;
2869 int index2;
8cef4e16 2870 int mark;
e02119d5 2871 int ret;
0b246afa 2872 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2873 struct btrfs_root *log = root->log_root;
0b246afa 2874 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 2875 int log_transid = 0;
8b050d35 2876 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2877 struct blk_plug plug;
e02119d5 2878
7237f183 2879 mutex_lock(&root->log_mutex);
d1433deb
MX
2880 log_transid = ctx->log_transid;
2881 if (root->log_transid_committed >= log_transid) {
2882 mutex_unlock(&root->log_mutex);
2883 return ctx->log_ret;
2884 }
2885
2886 index1 = log_transid % 2;
7237f183 2887 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2888 wait_log_commit(root, log_transid);
7237f183 2889 mutex_unlock(&root->log_mutex);
8b050d35 2890 return ctx->log_ret;
e02119d5 2891 }
d1433deb 2892 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2893 atomic_set(&root->log_commit[index1], 1);
2894
2895 /* wait for previous tree log sync to complete */
2896 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2897 wait_log_commit(root, log_transid - 1);
48cab2e0 2898
86df7eb9 2899 while (1) {
2ecb7923 2900 int batch = atomic_read(&root->log_batch);
cd354ad6 2901 /* when we're on an ssd, just kick the log commit out */
0b246afa 2902 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2903 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2904 mutex_unlock(&root->log_mutex);
2905 schedule_timeout_uninterruptible(1);
2906 mutex_lock(&root->log_mutex);
2907 }
60d53eb3 2908 wait_for_writer(root);
2ecb7923 2909 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2910 break;
2911 }
e02119d5 2912
12fcfd22 2913 /* bail out if we need to do a full commit */
0b246afa 2914 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22 2915 ret = -EAGAIN;
2ab28f32 2916 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2917 mutex_unlock(&root->log_mutex);
2918 goto out;
2919 }
2920
8cef4e16
YZ
2921 if (log_transid % 2 == 0)
2922 mark = EXTENT_DIRTY;
2923 else
2924 mark = EXTENT_NEW;
2925
690587d1
CM
2926 /* we start IO on all the marked extents here, but we don't actually
2927 * wait for them until later.
2928 */
c6adc9cc 2929 blk_start_plug(&plug);
2ff7e61e 2930 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 2931 if (ret) {
c6adc9cc 2932 blk_finish_plug(&plug);
66642832 2933 btrfs_abort_transaction(trans, ret);
2ab28f32 2934 btrfs_free_logged_extents(log, log_transid);
0b246afa 2935 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
2936 mutex_unlock(&root->log_mutex);
2937 goto out;
2938 }
7237f183 2939
5d4f98a2 2940 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2941
7237f183
YZ
2942 root->log_transid++;
2943 log->log_transid = root->log_transid;
ff782e0a 2944 root->log_start_pid = 0;
7237f183 2945 /*
8cef4e16
YZ
2946 * IO has been started, blocks of the log tree have WRITTEN flag set
2947 * in their headers. new modifications of the log will be written to
2948 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2949 */
2950 mutex_unlock(&root->log_mutex);
2951
28a23593 2952 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 2953
7237f183 2954 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2955 atomic_inc(&log_root_tree->log_batch);
7237f183 2956 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2957
2958 index2 = log_root_tree->log_transid % 2;
2959 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2960 root_log_ctx.log_transid = log_root_tree->log_transid;
2961
7237f183
YZ
2962 mutex_unlock(&log_root_tree->log_mutex);
2963
2964 ret = update_log_root(trans, log);
7237f183
YZ
2965
2966 mutex_lock(&log_root_tree->log_mutex);
2967 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
779adf0f
DS
2968 /*
2969 * Implicit memory barrier after atomic_dec_and_test
2970 */
7237f183
YZ
2971 if (waitqueue_active(&log_root_tree->log_writer_wait))
2972 wake_up(&log_root_tree->log_writer_wait);
2973 }
2974
4a500fd1 2975 if (ret) {
d1433deb
MX
2976 if (!list_empty(&root_log_ctx.list))
2977 list_del_init(&root_log_ctx.list);
2978
c6adc9cc 2979 blk_finish_plug(&plug);
0b246afa 2980 btrfs_set_log_full_commit(fs_info, trans);
995946dd 2981
79787eaa 2982 if (ret != -ENOSPC) {
66642832 2983 btrfs_abort_transaction(trans, ret);
79787eaa
JM
2984 mutex_unlock(&log_root_tree->log_mutex);
2985 goto out;
2986 }
bf89d38f 2987 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 2988 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2989 mutex_unlock(&log_root_tree->log_mutex);
2990 ret = -EAGAIN;
2991 goto out;
2992 }
2993
d1433deb 2994 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 2995 blk_finish_plug(&plug);
cbd60aa7 2996 list_del_init(&root_log_ctx.list);
d1433deb
MX
2997 mutex_unlock(&log_root_tree->log_mutex);
2998 ret = root_log_ctx.log_ret;
2999 goto out;
3000 }
8b050d35 3001
d1433deb 3002 index2 = root_log_ctx.log_transid % 2;
7237f183 3003 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3004 blk_finish_plug(&plug);
bf89d38f 3005 ret = btrfs_wait_tree_log_extents(log, mark);
50d9aa99 3006 btrfs_wait_logged_extents(trans, log, log_transid);
60d53eb3 3007 wait_log_commit(log_root_tree,
d1433deb 3008 root_log_ctx.log_transid);
7237f183 3009 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3010 if (!ret)
3011 ret = root_log_ctx.log_ret;
7237f183
YZ
3012 goto out;
3013 }
d1433deb 3014 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3015 atomic_set(&log_root_tree->log_commit[index2], 1);
3016
12fcfd22 3017 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3018 wait_log_commit(log_root_tree,
d1433deb 3019 root_log_ctx.log_transid - 1);
12fcfd22
CM
3020 }
3021
60d53eb3 3022 wait_for_writer(log_root_tree);
7237f183 3023
12fcfd22
CM
3024 /*
3025 * now that we've moved on to the tree of log tree roots,
3026 * check the full commit flag again
3027 */
0b246afa 3028 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 3029 blk_finish_plug(&plug);
bf89d38f 3030 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 3031 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
3032 mutex_unlock(&log_root_tree->log_mutex);
3033 ret = -EAGAIN;
3034 goto out_wake_log_root;
3035 }
7237f183 3036
2ff7e61e 3037 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3038 &log_root_tree->dirty_log_pages,
3039 EXTENT_DIRTY | EXTENT_NEW);
3040 blk_finish_plug(&plug);
79787eaa 3041 if (ret) {
0b246afa 3042 btrfs_set_log_full_commit(fs_info, trans);
66642832 3043 btrfs_abort_transaction(trans, ret);
2ab28f32 3044 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
3045 mutex_unlock(&log_root_tree->log_mutex);
3046 goto out_wake_log_root;
3047 }
bf89d38f 3048 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3049 if (!ret)
bf89d38f
JM
3050 ret = btrfs_wait_tree_log_extents(log_root_tree,
3051 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3052 if (ret) {
0b246afa 3053 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
3054 btrfs_free_logged_extents(log, log_transid);
3055 mutex_unlock(&log_root_tree->log_mutex);
3056 goto out_wake_log_root;
3057 }
50d9aa99 3058 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 3059
0b246afa
JM
3060 btrfs_set_super_log_root(fs_info->super_for_commit,
3061 log_root_tree->node->start);
3062 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3063 btrfs_header_level(log_root_tree->node));
e02119d5 3064
7237f183 3065 log_root_tree->log_transid++;
7237f183
YZ
3066 mutex_unlock(&log_root_tree->log_mutex);
3067
3068 /*
3069 * nobody else is going to jump in and write the the ctree
3070 * super here because the log_commit atomic below is protecting
3071 * us. We must be called with a transaction handle pinning
3072 * the running transaction open, so a full commit can't hop
3073 * in and cause problems either.
3074 */
eece6a9c 3075 ret = write_all_supers(fs_info, 1);
5af3e8cc 3076 if (ret) {
0b246afa 3077 btrfs_set_log_full_commit(fs_info, trans);
66642832 3078 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3079 goto out_wake_log_root;
3080 }
7237f183 3081
257c62e1
CM
3082 mutex_lock(&root->log_mutex);
3083 if (root->last_log_commit < log_transid)
3084 root->last_log_commit = log_transid;
3085 mutex_unlock(&root->log_mutex);
3086
12fcfd22 3087out_wake_log_root:
570dd450 3088 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3089 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3090
d1433deb 3091 log_root_tree->log_transid_committed++;
7237f183 3092 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3093 mutex_unlock(&log_root_tree->log_mutex);
3094
33a9eca7
DS
3095 /*
3096 * The barrier before waitqueue_active is implied by mutex_unlock
3097 */
7237f183
YZ
3098 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3099 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3100out:
d1433deb 3101 mutex_lock(&root->log_mutex);
570dd450 3102 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3103 root->log_transid_committed++;
7237f183 3104 atomic_set(&root->log_commit[index1], 0);
d1433deb 3105 mutex_unlock(&root->log_mutex);
8b050d35 3106
33a9eca7
DS
3107 /*
3108 * The barrier before waitqueue_active is implied by mutex_unlock
3109 */
7237f183
YZ
3110 if (waitqueue_active(&root->log_commit_wait[index1]))
3111 wake_up(&root->log_commit_wait[index1]);
b31eabd8 3112 return ret;
e02119d5
CM
3113}
3114
4a500fd1
YZ
3115static void free_log_tree(struct btrfs_trans_handle *trans,
3116 struct btrfs_root *log)
e02119d5
CM
3117{
3118 int ret;
d0c803c4
CM
3119 u64 start;
3120 u64 end;
e02119d5
CM
3121 struct walk_control wc = {
3122 .free = 1,
3123 .process_func = process_one_buffer
3124 };
3125
681ae509
JB
3126 ret = walk_log_tree(trans, log, &wc);
3127 /* I don't think this can happen but just in case */
3128 if (ret)
66642832 3129 btrfs_abort_transaction(trans, ret);
e02119d5 3130
d397712b 3131 while (1) {
d0c803c4 3132 ret = find_first_extent_bit(&log->dirty_log_pages,
55237a5f
LB
3133 0, &start, &end,
3134 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
e6138876 3135 NULL);
d0c803c4
CM
3136 if (ret)
3137 break;
3138
8cef4e16 3139 clear_extent_bits(&log->dirty_log_pages, start, end,
55237a5f 3140 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
d0c803c4
CM
3141 }
3142
2ab28f32
JB
3143 /*
3144 * We may have short-circuited the log tree with the full commit logic
3145 * and left ordered extents on our list, so clear these out to keep us
3146 * from leaking inodes and memory.
3147 */
3148 btrfs_free_logged_extents(log, 0);
3149 btrfs_free_logged_extents(log, 1);
3150
7237f183
YZ
3151 free_extent_buffer(log->node);
3152 kfree(log);
4a500fd1
YZ
3153}
3154
3155/*
3156 * free all the extents used by the tree log. This should be called
3157 * at commit time of the full transaction
3158 */
3159int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3160{
3161 if (root->log_root) {
3162 free_log_tree(trans, root->log_root);
3163 root->log_root = NULL;
3164 }
3165 return 0;
3166}
3167
3168int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3169 struct btrfs_fs_info *fs_info)
3170{
3171 if (fs_info->log_root_tree) {
3172 free_log_tree(trans, fs_info->log_root_tree);
3173 fs_info->log_root_tree = NULL;
3174 }
e02119d5
CM
3175 return 0;
3176}
3177
e02119d5
CM
3178/*
3179 * If both a file and directory are logged, and unlinks or renames are
3180 * mixed in, we have a few interesting corners:
3181 *
3182 * create file X in dir Y
3183 * link file X to X.link in dir Y
3184 * fsync file X
3185 * unlink file X but leave X.link
3186 * fsync dir Y
3187 *
3188 * After a crash we would expect only X.link to exist. But file X
3189 * didn't get fsync'd again so the log has back refs for X and X.link.
3190 *
3191 * We solve this by removing directory entries and inode backrefs from the
3192 * log when a file that was logged in the current transaction is
3193 * unlinked. Any later fsync will include the updated log entries, and
3194 * we'll be able to reconstruct the proper directory items from backrefs.
3195 *
3196 * This optimizations allows us to avoid relogging the entire inode
3197 * or the entire directory.
3198 */
3199int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3200 struct btrfs_root *root,
3201 const char *name, int name_len,
49f34d1f 3202 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3203{
3204 struct btrfs_root *log;
3205 struct btrfs_dir_item *di;
3206 struct btrfs_path *path;
3207 int ret;
4a500fd1 3208 int err = 0;
e02119d5 3209 int bytes_del = 0;
49f34d1f 3210 u64 dir_ino = btrfs_ino(dir);
e02119d5 3211
49f34d1f 3212 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3213 return 0;
3214
e02119d5
CM
3215 ret = join_running_log_trans(root);
3216 if (ret)
3217 return 0;
3218
49f34d1f 3219 mutex_lock(&dir->log_mutex);
e02119d5
CM
3220
3221 log = root->log_root;
3222 path = btrfs_alloc_path();
a62f44a5
TI
3223 if (!path) {
3224 err = -ENOMEM;
3225 goto out_unlock;
3226 }
2a29edc6 3227
33345d01 3228 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3229 name, name_len, -1);
4a500fd1
YZ
3230 if (IS_ERR(di)) {
3231 err = PTR_ERR(di);
3232 goto fail;
3233 }
3234 if (di) {
e02119d5
CM
3235 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3236 bytes_del += name_len;
3650860b
JB
3237 if (ret) {
3238 err = ret;
3239 goto fail;
3240 }
e02119d5 3241 }
b3b4aa74 3242 btrfs_release_path(path);
33345d01 3243 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3244 index, name, name_len, -1);
4a500fd1
YZ
3245 if (IS_ERR(di)) {
3246 err = PTR_ERR(di);
3247 goto fail;
3248 }
3249 if (di) {
e02119d5
CM
3250 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3251 bytes_del += name_len;
3650860b
JB
3252 if (ret) {
3253 err = ret;
3254 goto fail;
3255 }
e02119d5
CM
3256 }
3257
3258 /* update the directory size in the log to reflect the names
3259 * we have removed
3260 */
3261 if (bytes_del) {
3262 struct btrfs_key key;
3263
33345d01 3264 key.objectid = dir_ino;
e02119d5
CM
3265 key.offset = 0;
3266 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3267 btrfs_release_path(path);
e02119d5
CM
3268
3269 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3270 if (ret < 0) {
3271 err = ret;
3272 goto fail;
3273 }
e02119d5
CM
3274 if (ret == 0) {
3275 struct btrfs_inode_item *item;
3276 u64 i_size;
3277
3278 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3279 struct btrfs_inode_item);
3280 i_size = btrfs_inode_size(path->nodes[0], item);
3281 if (i_size > bytes_del)
3282 i_size -= bytes_del;
3283 else
3284 i_size = 0;
3285 btrfs_set_inode_size(path->nodes[0], item, i_size);
3286 btrfs_mark_buffer_dirty(path->nodes[0]);
3287 } else
3288 ret = 0;
b3b4aa74 3289 btrfs_release_path(path);
e02119d5 3290 }
4a500fd1 3291fail:
e02119d5 3292 btrfs_free_path(path);
a62f44a5 3293out_unlock:
49f34d1f 3294 mutex_unlock(&dir->log_mutex);
4a500fd1 3295 if (ret == -ENOSPC) {
995946dd 3296 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3297 ret = 0;
79787eaa 3298 } else if (ret < 0)
66642832 3299 btrfs_abort_transaction(trans, ret);
79787eaa 3300
12fcfd22 3301 btrfs_end_log_trans(root);
e02119d5 3302
411fc6bc 3303 return err;
e02119d5
CM
3304}
3305
3306/* see comments for btrfs_del_dir_entries_in_log */
3307int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3308 struct btrfs_root *root,
3309 const char *name, int name_len,
a491abb2 3310 struct btrfs_inode *inode, u64 dirid)
e02119d5 3311{
0b246afa 3312 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3313 struct btrfs_root *log;
3314 u64 index;
3315 int ret;
3316
a491abb2 3317 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3318 return 0;
3319
e02119d5
CM
3320 ret = join_running_log_trans(root);
3321 if (ret)
3322 return 0;
3323 log = root->log_root;
a491abb2 3324 mutex_lock(&inode->log_mutex);
e02119d5 3325
a491abb2 3326 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3327 dirid, &index);
a491abb2 3328 mutex_unlock(&inode->log_mutex);
4a500fd1 3329 if (ret == -ENOSPC) {
0b246afa 3330 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3331 ret = 0;
79787eaa 3332 } else if (ret < 0 && ret != -ENOENT)
66642832 3333 btrfs_abort_transaction(trans, ret);
12fcfd22 3334 btrfs_end_log_trans(root);
e02119d5 3335
e02119d5
CM
3336 return ret;
3337}
3338
3339/*
3340 * creates a range item in the log for 'dirid'. first_offset and
3341 * last_offset tell us which parts of the key space the log should
3342 * be considered authoritative for.
3343 */
3344static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3345 struct btrfs_root *log,
3346 struct btrfs_path *path,
3347 int key_type, u64 dirid,
3348 u64 first_offset, u64 last_offset)
3349{
3350 int ret;
3351 struct btrfs_key key;
3352 struct btrfs_dir_log_item *item;
3353
3354 key.objectid = dirid;
3355 key.offset = first_offset;
3356 if (key_type == BTRFS_DIR_ITEM_KEY)
3357 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3358 else
3359 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3360 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3361 if (ret)
3362 return ret;
e02119d5
CM
3363
3364 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3365 struct btrfs_dir_log_item);
3366 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3367 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3368 btrfs_release_path(path);
e02119d5
CM
3369 return 0;
3370}
3371
3372/*
3373 * log all the items included in the current transaction for a given
3374 * directory. This also creates the range items in the log tree required
3375 * to replay anything deleted before the fsync
3376 */
3377static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3378 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3379 struct btrfs_path *path,
3380 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3381 struct btrfs_log_ctx *ctx,
e02119d5
CM
3382 u64 min_offset, u64 *last_offset_ret)
3383{
3384 struct btrfs_key min_key;
e02119d5
CM
3385 struct btrfs_root *log = root->log_root;
3386 struct extent_buffer *src;
4a500fd1 3387 int err = 0;
e02119d5
CM
3388 int ret;
3389 int i;
3390 int nritems;
3391 u64 first_offset = min_offset;
3392 u64 last_offset = (u64)-1;
684a5773 3393 u64 ino = btrfs_ino(inode);
e02119d5
CM
3394
3395 log = root->log_root;
e02119d5 3396
33345d01 3397 min_key.objectid = ino;
e02119d5
CM
3398 min_key.type = key_type;
3399 min_key.offset = min_offset;
3400
6174d3cb 3401 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3402
3403 /*
3404 * we didn't find anything from this transaction, see if there
3405 * is anything at all
3406 */
33345d01
LZ
3407 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3408 min_key.objectid = ino;
e02119d5
CM
3409 min_key.type = key_type;
3410 min_key.offset = (u64)-1;
b3b4aa74 3411 btrfs_release_path(path);
e02119d5
CM
3412 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3413 if (ret < 0) {
b3b4aa74 3414 btrfs_release_path(path);
e02119d5
CM
3415 return ret;
3416 }
33345d01 3417 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3418
3419 /* if ret == 0 there are items for this type,
3420 * create a range to tell us the last key of this type.
3421 * otherwise, there are no items in this directory after
3422 * *min_offset, and we create a range to indicate that.
3423 */
3424 if (ret == 0) {
3425 struct btrfs_key tmp;
3426 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3427 path->slots[0]);
d397712b 3428 if (key_type == tmp.type)
e02119d5 3429 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3430 }
3431 goto done;
3432 }
3433
3434 /* go backward to find any previous key */
33345d01 3435 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3436 if (ret == 0) {
3437 struct btrfs_key tmp;
3438 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3439 if (key_type == tmp.type) {
3440 first_offset = tmp.offset;
3441 ret = overwrite_item(trans, log, dst_path,
3442 path->nodes[0], path->slots[0],
3443 &tmp);
4a500fd1
YZ
3444 if (ret) {
3445 err = ret;
3446 goto done;
3447 }
e02119d5
CM
3448 }
3449 }
b3b4aa74 3450 btrfs_release_path(path);
e02119d5
CM
3451
3452 /* find the first key from this transaction again */
3453 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3454 if (WARN_ON(ret != 0))
e02119d5 3455 goto done;
e02119d5
CM
3456
3457 /*
3458 * we have a block from this transaction, log every item in it
3459 * from our directory
3460 */
d397712b 3461 while (1) {
e02119d5
CM
3462 struct btrfs_key tmp;
3463 src = path->nodes[0];
3464 nritems = btrfs_header_nritems(src);
3465 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3466 struct btrfs_dir_item *di;
3467
e02119d5
CM
3468 btrfs_item_key_to_cpu(src, &min_key, i);
3469
33345d01 3470 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3471 goto done;
3472 ret = overwrite_item(trans, log, dst_path, src, i,
3473 &min_key);
4a500fd1
YZ
3474 if (ret) {
3475 err = ret;
3476 goto done;
3477 }
2f2ff0ee
FM
3478
3479 /*
3480 * We must make sure that when we log a directory entry,
3481 * the corresponding inode, after log replay, has a
3482 * matching link count. For example:
3483 *
3484 * touch foo
3485 * mkdir mydir
3486 * sync
3487 * ln foo mydir/bar
3488 * xfs_io -c "fsync" mydir
3489 * <crash>
3490 * <mount fs and log replay>
3491 *
3492 * Would result in a fsync log that when replayed, our
3493 * file inode would have a link count of 1, but we get
3494 * two directory entries pointing to the same inode.
3495 * After removing one of the names, it would not be
3496 * possible to remove the other name, which resulted
3497 * always in stale file handle errors, and would not
3498 * be possible to rmdir the parent directory, since
3499 * its i_size could never decrement to the value
3500 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3501 */
3502 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3503 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3504 if (ctx &&
3505 (btrfs_dir_transid(src, di) == trans->transid ||
3506 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3507 tmp.type != BTRFS_ROOT_ITEM_KEY)
3508 ctx->log_new_dentries = true;
e02119d5
CM
3509 }
3510 path->slots[0] = nritems;
3511
3512 /*
3513 * look ahead to the next item and see if it is also
3514 * from this directory and from this transaction
3515 */
3516 ret = btrfs_next_leaf(root, path);
3517 if (ret == 1) {
3518 last_offset = (u64)-1;
3519 goto done;
3520 }
3521 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3522 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3523 last_offset = (u64)-1;
3524 goto done;
3525 }
3526 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3527 ret = overwrite_item(trans, log, dst_path,
3528 path->nodes[0], path->slots[0],
3529 &tmp);
4a500fd1
YZ
3530 if (ret)
3531 err = ret;
3532 else
3533 last_offset = tmp.offset;
e02119d5
CM
3534 goto done;
3535 }
3536 }
3537done:
b3b4aa74
DS
3538 btrfs_release_path(path);
3539 btrfs_release_path(dst_path);
e02119d5 3540
4a500fd1
YZ
3541 if (err == 0) {
3542 *last_offset_ret = last_offset;
3543 /*
3544 * insert the log range keys to indicate where the log
3545 * is valid
3546 */
3547 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3548 ino, first_offset, last_offset);
4a500fd1
YZ
3549 if (ret)
3550 err = ret;
3551 }
3552 return err;
e02119d5
CM
3553}
3554
3555/*
3556 * logging directories is very similar to logging inodes, We find all the items
3557 * from the current transaction and write them to the log.
3558 *
3559 * The recovery code scans the directory in the subvolume, and if it finds a
3560 * key in the range logged that is not present in the log tree, then it means
3561 * that dir entry was unlinked during the transaction.
3562 *
3563 * In order for that scan to work, we must include one key smaller than
3564 * the smallest logged by this transaction and one key larger than the largest
3565 * key logged by this transaction.
3566 */
3567static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3568 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3569 struct btrfs_path *path,
2f2ff0ee
FM
3570 struct btrfs_path *dst_path,
3571 struct btrfs_log_ctx *ctx)
e02119d5
CM
3572{
3573 u64 min_key;
3574 u64 max_key;
3575 int ret;
3576 int key_type = BTRFS_DIR_ITEM_KEY;
3577
3578again:
3579 min_key = 0;
3580 max_key = 0;
d397712b 3581 while (1) {
dbf39ea4
NB
3582 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3583 ctx, min_key, &max_key);
4a500fd1
YZ
3584 if (ret)
3585 return ret;
e02119d5
CM
3586 if (max_key == (u64)-1)
3587 break;
3588 min_key = max_key + 1;
3589 }
3590
3591 if (key_type == BTRFS_DIR_ITEM_KEY) {
3592 key_type = BTRFS_DIR_INDEX_KEY;
3593 goto again;
3594 }
3595 return 0;
3596}
3597
3598/*
3599 * a helper function to drop items from the log before we relog an
3600 * inode. max_key_type indicates the highest item type to remove.
3601 * This cannot be run for file data extents because it does not
3602 * free the extents they point to.
3603 */
3604static int drop_objectid_items(struct btrfs_trans_handle *trans,
3605 struct btrfs_root *log,
3606 struct btrfs_path *path,
3607 u64 objectid, int max_key_type)
3608{
3609 int ret;
3610 struct btrfs_key key;
3611 struct btrfs_key found_key;
18ec90d6 3612 int start_slot;
e02119d5
CM
3613
3614 key.objectid = objectid;
3615 key.type = max_key_type;
3616 key.offset = (u64)-1;
3617
d397712b 3618 while (1) {
e02119d5 3619 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3620 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3621 if (ret < 0)
e02119d5
CM
3622 break;
3623
3624 if (path->slots[0] == 0)
3625 break;
3626
3627 path->slots[0]--;
3628 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3629 path->slots[0]);
3630
3631 if (found_key.objectid != objectid)
3632 break;
3633
18ec90d6
JB
3634 found_key.offset = 0;
3635 found_key.type = 0;
3636 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3637 &start_slot);
3638
3639 ret = btrfs_del_items(trans, log, path, start_slot,
3640 path->slots[0] - start_slot + 1);
3641 /*
3642 * If start slot isn't 0 then we don't need to re-search, we've
3643 * found the last guy with the objectid in this tree.
3644 */
3645 if (ret || start_slot != 0)
65a246c5 3646 break;
b3b4aa74 3647 btrfs_release_path(path);
e02119d5 3648 }
b3b4aa74 3649 btrfs_release_path(path);
5bdbeb21
JB
3650 if (ret > 0)
3651 ret = 0;
4a500fd1 3652 return ret;
e02119d5
CM
3653}
3654
94edf4ae
JB
3655static void fill_inode_item(struct btrfs_trans_handle *trans,
3656 struct extent_buffer *leaf,
3657 struct btrfs_inode_item *item,
1a4bcf47
FM
3658 struct inode *inode, int log_inode_only,
3659 u64 logged_isize)
94edf4ae 3660{
0b1c6cca
JB
3661 struct btrfs_map_token token;
3662
3663 btrfs_init_map_token(&token);
94edf4ae
JB
3664
3665 if (log_inode_only) {
3666 /* set the generation to zero so the recover code
3667 * can tell the difference between an logging
3668 * just to say 'this inode exists' and a logging
3669 * to say 'update this inode with these values'
3670 */
0b1c6cca 3671 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3672 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3673 } else {
0b1c6cca
JB
3674 btrfs_set_token_inode_generation(leaf, item,
3675 BTRFS_I(inode)->generation,
3676 &token);
3677 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3678 }
3679
3680 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3681 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3682 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3683 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3684
a937b979 3685 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3686 inode->i_atime.tv_sec, &token);
a937b979 3687 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3688 inode->i_atime.tv_nsec, &token);
3689
a937b979 3690 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3691 inode->i_mtime.tv_sec, &token);
a937b979 3692 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3693 inode->i_mtime.tv_nsec, &token);
3694
a937b979 3695 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3696 inode->i_ctime.tv_sec, &token);
a937b979 3697 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3698 inode->i_ctime.tv_nsec, &token);
3699
3700 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3701 &token);
3702
c7f88c4e
JL
3703 btrfs_set_token_inode_sequence(leaf, item,
3704 inode_peek_iversion(inode), &token);
0b1c6cca
JB
3705 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3706 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3707 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3708 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3709}
3710
a95249b3
JB
3711static int log_inode_item(struct btrfs_trans_handle *trans,
3712 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3713 struct btrfs_inode *inode)
a95249b3
JB
3714{
3715 struct btrfs_inode_item *inode_item;
a95249b3
JB
3716 int ret;
3717
efd0c405 3718 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3719 &inode->location, sizeof(*inode_item));
a95249b3
JB
3720 if (ret && ret != -EEXIST)
3721 return ret;
3722 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3723 struct btrfs_inode_item);
6d889a3b
NB
3724 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3725 0, 0);
a95249b3
JB
3726 btrfs_release_path(path);
3727 return 0;
3728}
3729
31ff1cd2 3730static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3731 struct btrfs_inode *inode,
31ff1cd2 3732 struct btrfs_path *dst_path,
16e7549f 3733 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3734 int start_slot, int nr, int inode_only,
3735 u64 logged_isize)
31ff1cd2 3736{
44d70e19 3737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
31ff1cd2
CM
3738 unsigned long src_offset;
3739 unsigned long dst_offset;
44d70e19 3740 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3741 struct btrfs_file_extent_item *extent;
3742 struct btrfs_inode_item *inode_item;
16e7549f
JB
3743 struct extent_buffer *src = src_path->nodes[0];
3744 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3745 int ret;
3746 struct btrfs_key *ins_keys;
3747 u32 *ins_sizes;
3748 char *ins_data;
3749 int i;
d20f7043 3750 struct list_head ordered_sums;
44d70e19 3751 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3752 bool has_extents = false;
74121f7c 3753 bool need_find_last_extent = true;
16e7549f 3754 bool done = false;
d20f7043
CM
3755
3756 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3757
3758 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3759 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3760 if (!ins_data)
3761 return -ENOMEM;
3762
16e7549f
JB
3763 first_key.objectid = (u64)-1;
3764
31ff1cd2
CM
3765 ins_sizes = (u32 *)ins_data;
3766 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3767
3768 for (i = 0; i < nr; i++) {
3769 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3770 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3771 }
3772 ret = btrfs_insert_empty_items(trans, log, dst_path,
3773 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3774 if (ret) {
3775 kfree(ins_data);
3776 return ret;
3777 }
31ff1cd2 3778
5d4f98a2 3779 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3780 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3781 dst_path->slots[0]);
3782
3783 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3784
0dde10be 3785 if (i == nr - 1)
16e7549f
JB
3786 last_key = ins_keys[i];
3787
94edf4ae 3788 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3789 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3790 dst_path->slots[0],
3791 struct btrfs_inode_item);
94edf4ae 3792 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3793 &inode->vfs_inode,
3794 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3795 logged_isize);
94edf4ae
JB
3796 } else {
3797 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3798 src_offset, ins_sizes[i]);
31ff1cd2 3799 }
94edf4ae 3800
16e7549f
JB
3801 /*
3802 * We set need_find_last_extent here in case we know we were
3803 * processing other items and then walk into the first extent in
3804 * the inode. If we don't hit an extent then nothing changes,
3805 * we'll do the last search the next time around.
3806 */
3807 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3808 has_extents = true;
74121f7c 3809 if (first_key.objectid == (u64)-1)
16e7549f
JB
3810 first_key = ins_keys[i];
3811 } else {
3812 need_find_last_extent = false;
3813 }
3814
31ff1cd2
CM
3815 /* take a reference on file data extents so that truncates
3816 * or deletes of this inode don't have to relog the inode
3817 * again
3818 */
962a298f 3819 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3820 !skip_csum) {
31ff1cd2
CM
3821 int found_type;
3822 extent = btrfs_item_ptr(src, start_slot + i,
3823 struct btrfs_file_extent_item);
3824
8e531cdf 3825 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3826 continue;
3827
31ff1cd2 3828 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3829 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3830 u64 ds, dl, cs, cl;
3831 ds = btrfs_file_extent_disk_bytenr(src,
3832 extent);
3833 /* ds == 0 is a hole */
3834 if (ds == 0)
3835 continue;
3836
3837 dl = btrfs_file_extent_disk_num_bytes(src,
3838 extent);
3839 cs = btrfs_file_extent_offset(src, extent);
3840 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3841 extent);
580afd76
CM
3842 if (btrfs_file_extent_compression(src,
3843 extent)) {
3844 cs = 0;
3845 cl = dl;
3846 }
5d4f98a2
YZ
3847
3848 ret = btrfs_lookup_csums_range(
0b246afa 3849 fs_info->csum_root,
5d4f98a2 3850 ds + cs, ds + cs + cl - 1,
a2de733c 3851 &ordered_sums, 0);
3650860b
JB
3852 if (ret) {
3853 btrfs_release_path(dst_path);
3854 kfree(ins_data);
3855 return ret;
3856 }
31ff1cd2
CM
3857 }
3858 }
31ff1cd2
CM
3859 }
3860
3861 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3862 btrfs_release_path(dst_path);
31ff1cd2 3863 kfree(ins_data);
d20f7043
CM
3864
3865 /*
3866 * we have to do this after the loop above to avoid changing the
3867 * log tree while trying to change the log tree.
3868 */
4a500fd1 3869 ret = 0;
d397712b 3870 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3871 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3872 struct btrfs_ordered_sum,
3873 list);
4a500fd1
YZ
3874 if (!ret)
3875 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3876 list_del(&sums->list);
3877 kfree(sums);
3878 }
16e7549f
JB
3879
3880 if (!has_extents)
3881 return ret;
3882
74121f7c
FM
3883 if (need_find_last_extent && *last_extent == first_key.offset) {
3884 /*
3885 * We don't have any leafs between our current one and the one
3886 * we processed before that can have file extent items for our
3887 * inode (and have a generation number smaller than our current
3888 * transaction id).
3889 */
3890 need_find_last_extent = false;
3891 }
3892
16e7549f
JB
3893 /*
3894 * Because we use btrfs_search_forward we could skip leaves that were
3895 * not modified and then assume *last_extent is valid when it really
3896 * isn't. So back up to the previous leaf and read the end of the last
3897 * extent before we go and fill in holes.
3898 */
3899 if (need_find_last_extent) {
3900 u64 len;
3901
44d70e19 3902 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
3903 if (ret < 0)
3904 return ret;
3905 if (ret)
3906 goto fill_holes;
3907 if (src_path->slots[0])
3908 src_path->slots[0]--;
3909 src = src_path->nodes[0];
3910 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 3911 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3912 key.type != BTRFS_EXTENT_DATA_KEY)
3913 goto fill_holes;
3914 extent = btrfs_item_ptr(src, src_path->slots[0],
3915 struct btrfs_file_extent_item);
3916 if (btrfs_file_extent_type(src, extent) ==
3917 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3918 len = btrfs_file_extent_inline_len(src,
3919 src_path->slots[0],
3920 extent);
16e7549f 3921 *last_extent = ALIGN(key.offset + len,
0b246afa 3922 fs_info->sectorsize);
16e7549f
JB
3923 } else {
3924 len = btrfs_file_extent_num_bytes(src, extent);
3925 *last_extent = key.offset + len;
3926 }
3927 }
3928fill_holes:
3929 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3930 * things could have happened
3931 *
3932 * 1) A merge could have happened, so we could currently be on a leaf
3933 * that holds what we were copying in the first place.
3934 * 2) A split could have happened, and now not all of the items we want
3935 * are on the same leaf.
3936 *
3937 * So we need to adjust how we search for holes, we need to drop the
3938 * path and re-search for the first extent key we found, and then walk
3939 * forward until we hit the last one we copied.
3940 */
3941 if (need_find_last_extent) {
3942 /* btrfs_prev_leaf could return 1 without releasing the path */
3943 btrfs_release_path(src_path);
f85b7379
DS
3944 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3945 src_path, 0, 0);
16e7549f
JB
3946 if (ret < 0)
3947 return ret;
3948 ASSERT(ret == 0);
3949 src = src_path->nodes[0];
3950 i = src_path->slots[0];
3951 } else {
3952 i = start_slot;
3953 }
3954
3955 /*
3956 * Ok so here we need to go through and fill in any holes we may have
3957 * to make sure that holes are punched for those areas in case they had
3958 * extents previously.
3959 */
3960 while (!done) {
3961 u64 offset, len;
3962 u64 extent_end;
3963
3964 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 3965 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
3966 if (ret < 0)
3967 return ret;
3968 ASSERT(ret == 0);
3969 src = src_path->nodes[0];
3970 i = 0;
3971 }
3972
3973 btrfs_item_key_to_cpu(src, &key, i);
3974 if (!btrfs_comp_cpu_keys(&key, &last_key))
3975 done = true;
44d70e19 3976 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3977 key.type != BTRFS_EXTENT_DATA_KEY) {
3978 i++;
3979 continue;
3980 }
3981 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3982 if (btrfs_file_extent_type(src, extent) ==
3983 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3984 len = btrfs_file_extent_inline_len(src, i, extent);
da17066c 3985 extent_end = ALIGN(key.offset + len,
0b246afa 3986 fs_info->sectorsize);
16e7549f
JB
3987 } else {
3988 len = btrfs_file_extent_num_bytes(src, extent);
3989 extent_end = key.offset + len;
3990 }
3991 i++;
3992
3993 if (*last_extent == key.offset) {
3994 *last_extent = extent_end;
3995 continue;
3996 }
3997 offset = *last_extent;
3998 len = key.offset - *last_extent;
44d70e19 3999 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 4000 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
4001 if (ret)
4002 break;
74121f7c 4003 *last_extent = extent_end;
16e7549f
JB
4004 }
4005 /*
4006 * Need to let the callers know we dropped the path so they should
4007 * re-search.
4008 */
4009 if (!ret && need_find_last_extent)
4010 ret = 1;
4a500fd1 4011 return ret;
31ff1cd2
CM
4012}
4013
5dc562c5
JB
4014static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4015{
4016 struct extent_map *em1, *em2;
4017
4018 em1 = list_entry(a, struct extent_map, list);
4019 em2 = list_entry(b, struct extent_map, list);
4020
4021 if (em1->start < em2->start)
4022 return -1;
4023 else if (em1->start > em2->start)
4024 return 1;
4025 return 0;
4026}
4027
8407f553
FM
4028static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4029 struct inode *inode,
4030 struct btrfs_root *root,
4031 const struct extent_map *em,
4032 const struct list_head *logged_list,
4033 bool *ordered_io_error)
5dc562c5 4034{
0b246afa 4035 struct btrfs_fs_info *fs_info = root->fs_info;
2ab28f32 4036 struct btrfs_ordered_extent *ordered;
8407f553 4037 struct btrfs_root *log = root->log_root;
2ab28f32
JB
4038 u64 mod_start = em->mod_start;
4039 u64 mod_len = em->mod_len;
8407f553 4040 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
4041 u64 csum_offset;
4042 u64 csum_len;
8407f553
FM
4043 LIST_HEAD(ordered_sums);
4044 int ret = 0;
0aa4a17d 4045
8407f553 4046 *ordered_io_error = false;
0aa4a17d 4047
8407f553
FM
4048 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4049 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4050 return 0;
5dc562c5 4051
2ab28f32 4052 /*
8407f553
FM
4053 * Wait far any ordered extent that covers our extent map. If it
4054 * finishes without an error, first check and see if our csums are on
4055 * our outstanding ordered extents.
2ab28f32 4056 */
827463c4 4057 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
4058 struct btrfs_ordered_sum *sum;
4059
4060 if (!mod_len)
4061 break;
4062
2ab28f32
JB
4063 if (ordered->file_offset + ordered->len <= mod_start ||
4064 mod_start + mod_len <= ordered->file_offset)
4065 continue;
4066
8407f553
FM
4067 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4068 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4069 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4070 const u64 start = ordered->file_offset;
4071 const u64 end = ordered->file_offset + ordered->len - 1;
4072
4073 WARN_ON(ordered->inode != inode);
4074 filemap_fdatawrite_range(inode->i_mapping, start, end);
4075 }
4076
4077 wait_event(ordered->wait,
4078 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4079 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4080
4081 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
4082 /*
4083 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4084 * i_mapping flags, so that the next fsync won't get
4085 * an outdated io error too.
4086 */
f0312210 4087 filemap_check_errors(inode->i_mapping);
8407f553
FM
4088 *ordered_io_error = true;
4089 break;
4090 }
2ab28f32
JB
4091 /*
4092 * We are going to copy all the csums on this ordered extent, so
4093 * go ahead and adjust mod_start and mod_len in case this
4094 * ordered extent has already been logged.
4095 */
4096 if (ordered->file_offset > mod_start) {
4097 if (ordered->file_offset + ordered->len >=
4098 mod_start + mod_len)
4099 mod_len = ordered->file_offset - mod_start;
4100 /*
4101 * If we have this case
4102 *
4103 * |--------- logged extent ---------|
4104 * |----- ordered extent ----|
4105 *
4106 * Just don't mess with mod_start and mod_len, we'll
4107 * just end up logging more csums than we need and it
4108 * will be ok.
4109 */
4110 } else {
4111 if (ordered->file_offset + ordered->len <
4112 mod_start + mod_len) {
4113 mod_len = (mod_start + mod_len) -
4114 (ordered->file_offset + ordered->len);
4115 mod_start = ordered->file_offset +
4116 ordered->len;
4117 } else {
4118 mod_len = 0;
4119 }
4120 }
4121
8407f553
FM
4122 if (skip_csum)
4123 continue;
4124
2ab28f32
JB
4125 /*
4126 * To keep us from looping for the above case of an ordered
4127 * extent that falls inside of the logged extent.
4128 */
4129 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4130 &ordered->flags))
4131 continue;
2ab28f32 4132
2ab28f32
JB
4133 list_for_each_entry(sum, &ordered->list, list) {
4134 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 4135 if (ret)
8407f553 4136 break;
2ab28f32 4137 }
2ab28f32 4138 }
2ab28f32 4139
8407f553 4140 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
4141 return ret;
4142
488111aa
FDBM
4143 if (em->compress_type) {
4144 csum_offset = 0;
8407f553 4145 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
4146 } else {
4147 csum_offset = mod_start - em->start;
4148 csum_len = mod_len;
4149 }
2ab28f32 4150
70c8a91c 4151 /* block start is already adjusted for the file extent offset. */
0b246afa 4152 ret = btrfs_lookup_csums_range(fs_info->csum_root,
70c8a91c
JB
4153 em->block_start + csum_offset,
4154 em->block_start + csum_offset +
4155 csum_len - 1, &ordered_sums, 0);
4156 if (ret)
4157 return ret;
5dc562c5 4158
70c8a91c
JB
4159 while (!list_empty(&ordered_sums)) {
4160 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4161 struct btrfs_ordered_sum,
4162 list);
4163 if (!ret)
4164 ret = btrfs_csum_file_blocks(trans, log, sums);
4165 list_del(&sums->list);
4166 kfree(sums);
5dc562c5
JB
4167 }
4168
70c8a91c 4169 return ret;
5dc562c5
JB
4170}
4171
8407f553 4172static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4173 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4174 const struct extent_map *em,
4175 struct btrfs_path *path,
4176 const struct list_head *logged_list,
4177 struct btrfs_log_ctx *ctx)
4178{
4179 struct btrfs_root *log = root->log_root;
4180 struct btrfs_file_extent_item *fi;
4181 struct extent_buffer *leaf;
4182 struct btrfs_map_token token;
4183 struct btrfs_key key;
4184 u64 extent_offset = em->start - em->orig_start;
4185 u64 block_len;
4186 int ret;
4187 int extent_inserted = 0;
4188 bool ordered_io_err = false;
4189
f85b7379
DS
4190 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4191 logged_list, &ordered_io_err);
8407f553
FM
4192 if (ret)
4193 return ret;
4194
4195 if (ordered_io_err) {
4196 ctx->io_err = -EIO;
ebb70442 4197 return ctx->io_err;
8407f553
FM
4198 }
4199
4200 btrfs_init_map_token(&token);
4201
9d122629 4202 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4203 em->start + em->len, NULL, 0, 1,
4204 sizeof(*fi), &extent_inserted);
4205 if (ret)
4206 return ret;
4207
4208 if (!extent_inserted) {
9d122629 4209 key.objectid = btrfs_ino(inode);
8407f553
FM
4210 key.type = BTRFS_EXTENT_DATA_KEY;
4211 key.offset = em->start;
4212
4213 ret = btrfs_insert_empty_item(trans, log, path, &key,
4214 sizeof(*fi));
4215 if (ret)
4216 return ret;
4217 }
4218 leaf = path->nodes[0];
4219 fi = btrfs_item_ptr(leaf, path->slots[0],
4220 struct btrfs_file_extent_item);
4221
50d9aa99 4222 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4223 &token);
4224 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4225 btrfs_set_token_file_extent_type(leaf, fi,
4226 BTRFS_FILE_EXTENT_PREALLOC,
4227 &token);
4228 else
4229 btrfs_set_token_file_extent_type(leaf, fi,
4230 BTRFS_FILE_EXTENT_REG,
4231 &token);
4232
4233 block_len = max(em->block_len, em->orig_block_len);
4234 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4235 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4236 em->block_start,
4237 &token);
4238 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4239 &token);
4240 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4241 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4242 em->block_start -
4243 extent_offset, &token);
4244 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4245 &token);
4246 } else {
4247 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4248 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4249 &token);
4250 }
4251
4252 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4253 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4254 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4255 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4256 &token);
4257 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4258 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4259 btrfs_mark_buffer_dirty(leaf);
4260
4261 btrfs_release_path(path);
4262
4263 return ret;
4264}
4265
5dc562c5
JB
4266static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4267 struct btrfs_root *root,
9d122629 4268 struct btrfs_inode *inode,
827463c4 4269 struct btrfs_path *path,
8407f553 4270 struct list_head *logged_list,
de0ee0ed
FM
4271 struct btrfs_log_ctx *ctx,
4272 const u64 start,
4273 const u64 end)
5dc562c5 4274{
5dc562c5
JB
4275 struct extent_map *em, *n;
4276 struct list_head extents;
9d122629 4277 struct extent_map_tree *tree = &inode->extent_tree;
8c6c5928 4278 u64 logged_start, logged_end;
5dc562c5
JB
4279 u64 test_gen;
4280 int ret = 0;
2ab28f32 4281 int num = 0;
5dc562c5
JB
4282
4283 INIT_LIST_HEAD(&extents);
4284
9d122629 4285 down_write(&inode->dio_sem);
5dc562c5
JB
4286 write_lock(&tree->lock);
4287 test_gen = root->fs_info->last_trans_committed;
8c6c5928
JB
4288 logged_start = start;
4289 logged_end = end;
5dc562c5
JB
4290
4291 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4292 list_del_init(&em->list);
2ab28f32
JB
4293 /*
4294 * Just an arbitrary number, this can be really CPU intensive
4295 * once we start getting a lot of extents, and really once we
4296 * have a bunch of extents we just want to commit since it will
4297 * be faster.
4298 */
4299 if (++num > 32768) {
4300 list_del_init(&tree->modified_extents);
4301 ret = -EFBIG;
4302 goto process;
4303 }
4304
5dc562c5
JB
4305 if (em->generation <= test_gen)
4306 continue;
8c6c5928
JB
4307
4308 if (em->start < logged_start)
4309 logged_start = em->start;
4310 if ((em->start + em->len - 1) > logged_end)
4311 logged_end = em->start + em->len - 1;
4312
ff44c6e3 4313 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4314 refcount_inc(&em->refs);
ff44c6e3 4315 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4316 list_add_tail(&em->list, &extents);
2ab28f32 4317 num++;
5dc562c5
JB
4318 }
4319
4320 list_sort(NULL, &extents, extent_cmp);
8c6c5928 4321 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
de0ee0ed 4322 /*
5f9a8a51
FM
4323 * Some ordered extents started by fsync might have completed
4324 * before we could collect them into the list logged_list, which
4325 * means they're gone, not in our logged_list nor in the inode's
4326 * ordered tree. We want the application/user space to know an
4327 * error happened while attempting to persist file data so that
4328 * it can take proper action. If such error happened, we leave
4329 * without writing to the log tree and the fsync must report the
4330 * file data write error and not commit the current transaction.
de0ee0ed 4331 */
9d122629 4332 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
5f9a8a51
FM
4333 if (ret)
4334 ctx->io_err = ret;
2ab28f32 4335process:
5dc562c5
JB
4336 while (!list_empty(&extents)) {
4337 em = list_entry(extents.next, struct extent_map, list);
4338
4339 list_del_init(&em->list);
4340
4341 /*
4342 * If we had an error we just need to delete everybody from our
4343 * private list.
4344 */
ff44c6e3 4345 if (ret) {
201a9038 4346 clear_em_logging(tree, em);
ff44c6e3 4347 free_extent_map(em);
5dc562c5 4348 continue;
ff44c6e3
JB
4349 }
4350
4351 write_unlock(&tree->lock);
5dc562c5 4352
8407f553
FM
4353 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4354 ctx);
ff44c6e3 4355 write_lock(&tree->lock);
201a9038
JB
4356 clear_em_logging(tree, em);
4357 free_extent_map(em);
5dc562c5 4358 }
ff44c6e3
JB
4359 WARN_ON(!list_empty(&extents));
4360 write_unlock(&tree->lock);
9d122629 4361 up_write(&inode->dio_sem);
5dc562c5 4362
5dc562c5 4363 btrfs_release_path(path);
5dc562c5
JB
4364 return ret;
4365}
4366
481b01c0 4367static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4368 struct btrfs_path *path, u64 *size_ret)
4369{
4370 struct btrfs_key key;
4371 int ret;
4372
481b01c0 4373 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4374 key.type = BTRFS_INODE_ITEM_KEY;
4375 key.offset = 0;
4376
4377 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4378 if (ret < 0) {
4379 return ret;
4380 } else if (ret > 0) {
2f2ff0ee 4381 *size_ret = 0;
1a4bcf47
FM
4382 } else {
4383 struct btrfs_inode_item *item;
4384
4385 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4386 struct btrfs_inode_item);
4387 *size_ret = btrfs_inode_size(path->nodes[0], item);
4388 }
4389
4390 btrfs_release_path(path);
4391 return 0;
4392}
4393
36283bf7
FM
4394/*
4395 * At the moment we always log all xattrs. This is to figure out at log replay
4396 * time which xattrs must have their deletion replayed. If a xattr is missing
4397 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4398 * because if a xattr is deleted, the inode is fsynced and a power failure
4399 * happens, causing the log to be replayed the next time the fs is mounted,
4400 * we want the xattr to not exist anymore (same behaviour as other filesystems
4401 * with a journal, ext3/4, xfs, f2fs, etc).
4402 */
4403static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4404 struct btrfs_root *root,
1a93c36a 4405 struct btrfs_inode *inode,
36283bf7
FM
4406 struct btrfs_path *path,
4407 struct btrfs_path *dst_path)
4408{
4409 int ret;
4410 struct btrfs_key key;
1a93c36a 4411 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4412 int ins_nr = 0;
4413 int start_slot = 0;
4414
4415 key.objectid = ino;
4416 key.type = BTRFS_XATTR_ITEM_KEY;
4417 key.offset = 0;
4418
4419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4420 if (ret < 0)
4421 return ret;
4422
4423 while (true) {
4424 int slot = path->slots[0];
4425 struct extent_buffer *leaf = path->nodes[0];
4426 int nritems = btrfs_header_nritems(leaf);
4427
4428 if (slot >= nritems) {
4429 if (ins_nr > 0) {
4430 u64 last_extent = 0;
4431
1a93c36a 4432 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4433 &last_extent, start_slot,
4434 ins_nr, 1, 0);
4435 /* can't be 1, extent items aren't processed */
4436 ASSERT(ret <= 0);
4437 if (ret < 0)
4438 return ret;
4439 ins_nr = 0;
4440 }
4441 ret = btrfs_next_leaf(root, path);
4442 if (ret < 0)
4443 return ret;
4444 else if (ret > 0)
4445 break;
4446 continue;
4447 }
4448
4449 btrfs_item_key_to_cpu(leaf, &key, slot);
4450 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4451 break;
4452
4453 if (ins_nr == 0)
4454 start_slot = slot;
4455 ins_nr++;
4456 path->slots[0]++;
4457 cond_resched();
4458 }
4459 if (ins_nr > 0) {
4460 u64 last_extent = 0;
4461
1a93c36a 4462 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4463 &last_extent, start_slot,
4464 ins_nr, 1, 0);
4465 /* can't be 1, extent items aren't processed */
4466 ASSERT(ret <= 0);
4467 if (ret < 0)
4468 return ret;
4469 }
4470
4471 return 0;
4472}
4473
a89ca6f2
FM
4474/*
4475 * If the no holes feature is enabled we need to make sure any hole between the
4476 * last extent and the i_size of our inode is explicitly marked in the log. This
4477 * is to make sure that doing something like:
4478 *
4479 * 1) create file with 128Kb of data
4480 * 2) truncate file to 64Kb
4481 * 3) truncate file to 256Kb
4482 * 4) fsync file
4483 * 5) <crash/power failure>
4484 * 6) mount fs and trigger log replay
4485 *
4486 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4487 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4488 * file correspond to a hole. The presence of explicit holes in a log tree is
4489 * what guarantees that log replay will remove/adjust file extent items in the
4490 * fs/subvol tree.
4491 *
4492 * Here we do not need to care about holes between extents, that is already done
4493 * by copy_items(). We also only need to do this in the full sync path, where we
4494 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4495 * lookup the list of modified extent maps and if any represents a hole, we
4496 * insert a corresponding extent representing a hole in the log tree.
4497 */
4498static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4499 struct btrfs_root *root,
a0308dd7 4500 struct btrfs_inode *inode,
a89ca6f2
FM
4501 struct btrfs_path *path)
4502{
0b246afa 4503 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4504 int ret;
4505 struct btrfs_key key;
4506 u64 hole_start;
4507 u64 hole_size;
4508 struct extent_buffer *leaf;
4509 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4510 const u64 ino = btrfs_ino(inode);
4511 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4512
0b246afa 4513 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4514 return 0;
4515
4516 key.objectid = ino;
4517 key.type = BTRFS_EXTENT_DATA_KEY;
4518 key.offset = (u64)-1;
4519
4520 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4521 ASSERT(ret != 0);
4522 if (ret < 0)
4523 return ret;
4524
4525 ASSERT(path->slots[0] > 0);
4526 path->slots[0]--;
4527 leaf = path->nodes[0];
4528 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4529
4530 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4531 /* inode does not have any extents */
4532 hole_start = 0;
4533 hole_size = i_size;
4534 } else {
4535 struct btrfs_file_extent_item *extent;
4536 u64 len;
4537
4538 /*
4539 * If there's an extent beyond i_size, an explicit hole was
4540 * already inserted by copy_items().
4541 */
4542 if (key.offset >= i_size)
4543 return 0;
4544
4545 extent = btrfs_item_ptr(leaf, path->slots[0],
4546 struct btrfs_file_extent_item);
4547
4548 if (btrfs_file_extent_type(leaf, extent) ==
4549 BTRFS_FILE_EXTENT_INLINE) {
4550 len = btrfs_file_extent_inline_len(leaf,
4551 path->slots[0],
4552 extent);
6399fb5a
FM
4553 ASSERT(len == i_size ||
4554 (len == fs_info->sectorsize &&
4555 btrfs_file_extent_compression(leaf, extent) !=
4556 BTRFS_COMPRESS_NONE));
a89ca6f2
FM
4557 return 0;
4558 }
4559
4560 len = btrfs_file_extent_num_bytes(leaf, extent);
4561 /* Last extent goes beyond i_size, no need to log a hole. */
4562 if (key.offset + len > i_size)
4563 return 0;
4564 hole_start = key.offset + len;
4565 hole_size = i_size - hole_start;
4566 }
4567 btrfs_release_path(path);
4568
4569 /* Last extent ends at i_size. */
4570 if (hole_size == 0)
4571 return 0;
4572
0b246afa 4573 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4574 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4575 hole_size, 0, hole_size, 0, 0, 0);
4576 return ret;
4577}
4578
56f23fdb
FM
4579/*
4580 * When we are logging a new inode X, check if it doesn't have a reference that
4581 * matches the reference from some other inode Y created in a past transaction
4582 * and that was renamed in the current transaction. If we don't do this, then at
4583 * log replay time we can lose inode Y (and all its files if it's a directory):
4584 *
4585 * mkdir /mnt/x
4586 * echo "hello world" > /mnt/x/foobar
4587 * sync
4588 * mv /mnt/x /mnt/y
4589 * mkdir /mnt/x # or touch /mnt/x
4590 * xfs_io -c fsync /mnt/x
4591 * <power fail>
4592 * mount fs, trigger log replay
4593 *
4594 * After the log replay procedure, we would lose the first directory and all its
4595 * files (file foobar).
4596 * For the case where inode Y is not a directory we simply end up losing it:
4597 *
4598 * echo "123" > /mnt/foo
4599 * sync
4600 * mv /mnt/foo /mnt/bar
4601 * echo "abc" > /mnt/foo
4602 * xfs_io -c fsync /mnt/foo
4603 * <power fail>
4604 *
4605 * We also need this for cases where a snapshot entry is replaced by some other
4606 * entry (file or directory) otherwise we end up with an unreplayable log due to
4607 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4608 * if it were a regular entry:
4609 *
4610 * mkdir /mnt/x
4611 * btrfs subvolume snapshot /mnt /mnt/x/snap
4612 * btrfs subvolume delete /mnt/x/snap
4613 * rmdir /mnt/x
4614 * mkdir /mnt/x
4615 * fsync /mnt/x or fsync some new file inside it
4616 * <power fail>
4617 *
4618 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4619 * the same transaction.
4620 */
4621static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4622 const int slot,
4623 const struct btrfs_key *key,
4791c8f1 4624 struct btrfs_inode *inode,
44f714da 4625 u64 *other_ino)
56f23fdb
FM
4626{
4627 int ret;
4628 struct btrfs_path *search_path;
4629 char *name = NULL;
4630 u32 name_len = 0;
4631 u32 item_size = btrfs_item_size_nr(eb, slot);
4632 u32 cur_offset = 0;
4633 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4634
4635 search_path = btrfs_alloc_path();
4636 if (!search_path)
4637 return -ENOMEM;
4638 search_path->search_commit_root = 1;
4639 search_path->skip_locking = 1;
4640
4641 while (cur_offset < item_size) {
4642 u64 parent;
4643 u32 this_name_len;
4644 u32 this_len;
4645 unsigned long name_ptr;
4646 struct btrfs_dir_item *di;
4647
4648 if (key->type == BTRFS_INODE_REF_KEY) {
4649 struct btrfs_inode_ref *iref;
4650
4651 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4652 parent = key->offset;
4653 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4654 name_ptr = (unsigned long)(iref + 1);
4655 this_len = sizeof(*iref) + this_name_len;
4656 } else {
4657 struct btrfs_inode_extref *extref;
4658
4659 extref = (struct btrfs_inode_extref *)(ptr +
4660 cur_offset);
4661 parent = btrfs_inode_extref_parent(eb, extref);
4662 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4663 name_ptr = (unsigned long)&extref->name;
4664 this_len = sizeof(*extref) + this_name_len;
4665 }
4666
4667 if (this_name_len > name_len) {
4668 char *new_name;
4669
4670 new_name = krealloc(name, this_name_len, GFP_NOFS);
4671 if (!new_name) {
4672 ret = -ENOMEM;
4673 goto out;
4674 }
4675 name_len = this_name_len;
4676 name = new_name;
4677 }
4678
4679 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4680 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4681 parent, name, this_name_len, 0);
56f23fdb 4682 if (di && !IS_ERR(di)) {
44f714da
FM
4683 struct btrfs_key di_key;
4684
4685 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4686 di, &di_key);
4687 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4688 ret = 1;
4689 *other_ino = di_key.objectid;
4690 } else {
4691 ret = -EAGAIN;
4692 }
56f23fdb
FM
4693 goto out;
4694 } else if (IS_ERR(di)) {
4695 ret = PTR_ERR(di);
4696 goto out;
4697 }
4698 btrfs_release_path(search_path);
4699
4700 cur_offset += this_len;
4701 }
4702 ret = 0;
4703out:
4704 btrfs_free_path(search_path);
4705 kfree(name);
4706 return ret;
4707}
4708
e02119d5
CM
4709/* log a single inode in the tree log.
4710 * At least one parent directory for this inode must exist in the tree
4711 * or be logged already.
4712 *
4713 * Any items from this inode changed by the current transaction are copied
4714 * to the log tree. An extra reference is taken on any extents in this
4715 * file, allowing us to avoid a whole pile of corner cases around logging
4716 * blocks that have been removed from the tree.
4717 *
4718 * See LOG_INODE_ALL and related defines for a description of what inode_only
4719 * does.
4720 *
4721 * This handles both files and directories.
4722 */
12fcfd22 4723static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 4724 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
4725 int inode_only,
4726 const loff_t start,
8407f553
FM
4727 const loff_t end,
4728 struct btrfs_log_ctx *ctx)
e02119d5 4729{
0b246afa 4730 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
4731 struct btrfs_path *path;
4732 struct btrfs_path *dst_path;
4733 struct btrfs_key min_key;
4734 struct btrfs_key max_key;
4735 struct btrfs_root *log = root->log_root;
827463c4 4736 LIST_HEAD(logged_list);
16e7549f 4737 u64 last_extent = 0;
4a500fd1 4738 int err = 0;
e02119d5 4739 int ret;
3a5f1d45 4740 int nritems;
31ff1cd2
CM
4741 int ins_start_slot = 0;
4742 int ins_nr;
5dc562c5 4743 bool fast_search = false;
a59108a7
NB
4744 u64 ino = btrfs_ino(inode);
4745 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 4746 u64 logged_isize = 0;
e4545de5 4747 bool need_log_inode_item = true;
e02119d5 4748
e02119d5 4749 path = btrfs_alloc_path();
5df67083
TI
4750 if (!path)
4751 return -ENOMEM;
e02119d5 4752 dst_path = btrfs_alloc_path();
5df67083
TI
4753 if (!dst_path) {
4754 btrfs_free_path(path);
4755 return -ENOMEM;
4756 }
e02119d5 4757
33345d01 4758 min_key.objectid = ino;
e02119d5
CM
4759 min_key.type = BTRFS_INODE_ITEM_KEY;
4760 min_key.offset = 0;
4761
33345d01 4762 max_key.objectid = ino;
12fcfd22 4763
12fcfd22 4764
5dc562c5 4765 /* today the code can only do partial logging of directories */
a59108a7 4766 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 4767 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4768 &inode->runtime_flags) &&
781feef7 4769 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
4770 max_key.type = BTRFS_XATTR_ITEM_KEY;
4771 else
4772 max_key.type = (u8)-1;
4773 max_key.offset = (u64)-1;
4774
2c2c452b
FM
4775 /*
4776 * Only run delayed items if we are a dir or a new file.
4777 * Otherwise commit the delayed inode only, which is needed in
4778 * order for the log replay code to mark inodes for link count
4779 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4780 */
a59108a7
NB
4781 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4782 inode->generation > fs_info->last_trans_committed)
4783 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 4784 else
a59108a7 4785 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
4786
4787 if (ret) {
4788 btrfs_free_path(path);
4789 btrfs_free_path(dst_path);
4790 return ret;
16cdcec7
MX
4791 }
4792
781feef7
LB
4793 if (inode_only == LOG_OTHER_INODE) {
4794 inode_only = LOG_INODE_EXISTS;
a59108a7 4795 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 4796 } else {
a59108a7 4797 mutex_lock(&inode->log_mutex);
781feef7 4798 }
e02119d5
CM
4799
4800 /*
4801 * a brute force approach to making sure we get the most uptodate
4802 * copies of everything.
4803 */
a59108a7 4804 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
4805 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4806
4f764e51
FM
4807 if (inode_only == LOG_INODE_EXISTS)
4808 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4809 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4810 } else {
1a4bcf47
FM
4811 if (inode_only == LOG_INODE_EXISTS) {
4812 /*
4813 * Make sure the new inode item we write to the log has
4814 * the same isize as the current one (if it exists).
4815 * This is necessary to prevent data loss after log
4816 * replay, and also to prevent doing a wrong expanding
4817 * truncate - for e.g. create file, write 4K into offset
4818 * 0, fsync, write 4K into offset 4096, add hard link,
4819 * fsync some other file (to sync log), power fail - if
4820 * we use the inode's current i_size, after log replay
4821 * we get a 8Kb file, with the last 4Kb extent as a hole
4822 * (zeroes), as if an expanding truncate happened,
4823 * instead of getting a file of 4Kb only.
4824 */
a59108a7 4825 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
4826 if (err)
4827 goto out_unlock;
4828 }
a742994a 4829 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4830 &inode->runtime_flags)) {
a742994a 4831 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4832 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4833 ret = drop_objectid_items(trans, log, path, ino,
4834 max_key.type);
4835 } else {
4836 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4837 &inode->runtime_flags);
a742994a 4838 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4839 &inode->runtime_flags);
28ed1345
CM
4840 while(1) {
4841 ret = btrfs_truncate_inode_items(trans,
a59108a7 4842 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
4843 if (ret != -EAGAIN)
4844 break;
4845 }
a742994a 4846 }
4f764e51 4847 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4848 &inode->runtime_flags) ||
6cfab851 4849 inode_only == LOG_INODE_EXISTS) {
4f764e51 4850 if (inode_only == LOG_INODE_ALL)
183f37fa 4851 fast_search = true;
4f764e51 4852 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4853 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4854 max_key.type);
a95249b3
JB
4855 } else {
4856 if (inode_only == LOG_INODE_ALL)
4857 fast_search = true;
a95249b3 4858 goto log_extents;
5dc562c5 4859 }
a95249b3 4860
e02119d5 4861 }
4a500fd1
YZ
4862 if (ret) {
4863 err = ret;
4864 goto out_unlock;
4865 }
e02119d5 4866
d397712b 4867 while (1) {
31ff1cd2 4868 ins_nr = 0;
6174d3cb 4869 ret = btrfs_search_forward(root, &min_key,
de78b51a 4870 path, trans->transid);
fb770ae4
LB
4871 if (ret < 0) {
4872 err = ret;
4873 goto out_unlock;
4874 }
e02119d5
CM
4875 if (ret != 0)
4876 break;
3a5f1d45 4877again:
31ff1cd2 4878 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4879 if (min_key.objectid != ino)
e02119d5
CM
4880 break;
4881 if (min_key.type > max_key.type)
4882 break;
31ff1cd2 4883
e4545de5
FM
4884 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4885 need_log_inode_item = false;
4886
56f23fdb
FM
4887 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4888 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
a59108a7 4889 inode->generation == trans->transid) {
44f714da
FM
4890 u64 other_ino = 0;
4891
56f23fdb 4892 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7
NB
4893 path->slots[0], &min_key, inode,
4894 &other_ino);
56f23fdb
FM
4895 if (ret < 0) {
4896 err = ret;
4897 goto out_unlock;
28a23593 4898 } else if (ret > 0 && ctx &&
4a0cc7ca 4899 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
4900 struct btrfs_key inode_key;
4901 struct inode *other_inode;
4902
4903 if (ins_nr > 0) {
4904 ins_nr++;
4905 } else {
4906 ins_nr = 1;
4907 ins_start_slot = path->slots[0];
4908 }
a59108a7 4909 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
4910 &last_extent, ins_start_slot,
4911 ins_nr, inode_only,
4912 logged_isize);
4913 if (ret < 0) {
4914 err = ret;
4915 goto out_unlock;
4916 }
4917 ins_nr = 0;
4918 btrfs_release_path(path);
4919 inode_key.objectid = other_ino;
4920 inode_key.type = BTRFS_INODE_ITEM_KEY;
4921 inode_key.offset = 0;
0b246afa 4922 other_inode = btrfs_iget(fs_info->sb,
44f714da
FM
4923 &inode_key, root,
4924 NULL);
4925 /*
4926 * If the other inode that had a conflicting dir
4927 * entry was deleted in the current transaction,
4928 * we don't need to do more work nor fallback to
4929 * a transaction commit.
4930 */
4931 if (IS_ERR(other_inode) &&
4932 PTR_ERR(other_inode) == -ENOENT) {
4933 goto next_key;
4934 } else if (IS_ERR(other_inode)) {
4935 err = PTR_ERR(other_inode);
4936 goto out_unlock;
4937 }
4938 /*
4939 * We are safe logging the other inode without
4940 * acquiring its i_mutex as long as we log with
4941 * the LOG_INODE_EXISTS mode. We're safe against
4942 * concurrent renames of the other inode as well
4943 * because during a rename we pin the log and
4944 * update the log with the new name before we
4945 * unpin it.
4946 */
a59108a7
NB
4947 err = btrfs_log_inode(trans, root,
4948 BTRFS_I(other_inode),
4949 LOG_OTHER_INODE, 0, LLONG_MAX,
4950 ctx);
44f714da
FM
4951 iput(other_inode);
4952 if (err)
4953 goto out_unlock;
4954 else
4955 goto next_key;
56f23fdb
FM
4956 }
4957 }
4958
36283bf7
FM
4959 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4960 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4961 if (ins_nr == 0)
4962 goto next_slot;
a59108a7 4963 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4964 &last_extent, ins_start_slot,
4965 ins_nr, inode_only, logged_isize);
4966 if (ret < 0) {
4967 err = ret;
4968 goto out_unlock;
4969 }
4970 ins_nr = 0;
4971 if (ret) {
4972 btrfs_release_path(path);
4973 continue;
4974 }
4975 goto next_slot;
4976 }
4977
31ff1cd2
CM
4978 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4979 ins_nr++;
4980 goto next_slot;
4981 } else if (!ins_nr) {
4982 ins_start_slot = path->slots[0];
4983 ins_nr = 1;
4984 goto next_slot;
e02119d5
CM
4985 }
4986
a59108a7 4987 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4988 ins_start_slot, ins_nr, inode_only,
4989 logged_isize);
16e7549f 4990 if (ret < 0) {
4a500fd1
YZ
4991 err = ret;
4992 goto out_unlock;
a71db86e
RV
4993 }
4994 if (ret) {
16e7549f
JB
4995 ins_nr = 0;
4996 btrfs_release_path(path);
4997 continue;
4a500fd1 4998 }
31ff1cd2
CM
4999 ins_nr = 1;
5000 ins_start_slot = path->slots[0];
5001next_slot:
e02119d5 5002
3a5f1d45
CM
5003 nritems = btrfs_header_nritems(path->nodes[0]);
5004 path->slots[0]++;
5005 if (path->slots[0] < nritems) {
5006 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5007 path->slots[0]);
5008 goto again;
5009 }
31ff1cd2 5010 if (ins_nr) {
a59108a7 5011 ret = copy_items(trans, inode, dst_path, path,
16e7549f 5012 &last_extent, ins_start_slot,
1a4bcf47 5013 ins_nr, inode_only, logged_isize);
16e7549f 5014 if (ret < 0) {
4a500fd1
YZ
5015 err = ret;
5016 goto out_unlock;
5017 }
16e7549f 5018 ret = 0;
31ff1cd2
CM
5019 ins_nr = 0;
5020 }
b3b4aa74 5021 btrfs_release_path(path);
44f714da 5022next_key:
3d41d702 5023 if (min_key.offset < (u64)-1) {
e02119d5 5024 min_key.offset++;
3d41d702 5025 } else if (min_key.type < max_key.type) {
e02119d5 5026 min_key.type++;
3d41d702
FDBM
5027 min_key.offset = 0;
5028 } else {
e02119d5 5029 break;
3d41d702 5030 }
e02119d5 5031 }
31ff1cd2 5032 if (ins_nr) {
a59108a7 5033 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5034 ins_start_slot, ins_nr, inode_only,
5035 logged_isize);
16e7549f 5036 if (ret < 0) {
4a500fd1
YZ
5037 err = ret;
5038 goto out_unlock;
5039 }
16e7549f 5040 ret = 0;
31ff1cd2
CM
5041 ins_nr = 0;
5042 }
5dc562c5 5043
36283bf7
FM
5044 btrfs_release_path(path);
5045 btrfs_release_path(dst_path);
a59108a7 5046 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5047 if (err)
5048 goto out_unlock;
a89ca6f2
FM
5049 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5050 btrfs_release_path(path);
5051 btrfs_release_path(dst_path);
a59108a7 5052 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
5053 if (err)
5054 goto out_unlock;
5055 }
a95249b3 5056log_extents:
f3b15ccd
JB
5057 btrfs_release_path(path);
5058 btrfs_release_path(dst_path);
e4545de5 5059 if (need_log_inode_item) {
a59108a7 5060 err = log_inode_item(trans, log, dst_path, inode);
e4545de5
FM
5061 if (err)
5062 goto out_unlock;
5063 }
5dc562c5 5064 if (fast_search) {
a59108a7 5065 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
de0ee0ed 5066 &logged_list, ctx, start, end);
5dc562c5
JB
5067 if (ret) {
5068 err = ret;
5069 goto out_unlock;
5070 }
d006a048 5071 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5072 struct extent_map *em, *n;
5073
49dae1bc
FM
5074 write_lock(&em_tree->lock);
5075 /*
5076 * We can't just remove every em if we're called for a ranged
5077 * fsync - that is, one that doesn't cover the whole possible
5078 * file range (0 to LLONG_MAX). This is because we can have
5079 * em's that fall outside the range we're logging and therefore
5080 * their ordered operations haven't completed yet
5081 * (btrfs_finish_ordered_io() not invoked yet). This means we
5082 * didn't get their respective file extent item in the fs/subvol
5083 * tree yet, and need to let the next fast fsync (one which
5084 * consults the list of modified extent maps) find the em so
5085 * that it logs a matching file extent item and waits for the
5086 * respective ordered operation to complete (if it's still
5087 * running).
5088 *
5089 * Removing every em outside the range we're logging would make
5090 * the next fast fsync not log their matching file extent items,
5091 * therefore making us lose data after a log replay.
5092 */
5093 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5094 list) {
5095 const u64 mod_end = em->mod_start + em->mod_len - 1;
5096
5097 if (em->mod_start >= start && mod_end <= end)
5098 list_del_init(&em->list);
5099 }
5100 write_unlock(&em_tree->lock);
5dc562c5
JB
5101 }
5102
a59108a7
NB
5103 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5104 ret = log_directory_changes(trans, root, inode, path, dst_path,
5105 ctx);
4a500fd1
YZ
5106 if (ret) {
5107 err = ret;
5108 goto out_unlock;
5109 }
e02119d5 5110 }
49dae1bc 5111
a59108a7
NB
5112 spin_lock(&inode->lock);
5113 inode->logged_trans = trans->transid;
5114 inode->last_log_commit = inode->last_sub_trans;
5115 spin_unlock(&inode->lock);
4a500fd1 5116out_unlock:
827463c4
MX
5117 if (unlikely(err))
5118 btrfs_put_logged_extents(&logged_list);
5119 else
5120 btrfs_submit_logged_extents(&logged_list, log);
a59108a7 5121 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5122
5123 btrfs_free_path(path);
5124 btrfs_free_path(dst_path);
4a500fd1 5125 return err;
e02119d5
CM
5126}
5127
2be63d5c
FM
5128/*
5129 * Check if we must fallback to a transaction commit when logging an inode.
5130 * This must be called after logging the inode and is used only in the context
5131 * when fsyncing an inode requires the need to log some other inode - in which
5132 * case we can't lock the i_mutex of each other inode we need to log as that
5133 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5134 * log inodes up or down in the hierarchy) or rename operations for example. So
5135 * we take the log_mutex of the inode after we have logged it and then check for
5136 * its last_unlink_trans value - this is safe because any task setting
5137 * last_unlink_trans must take the log_mutex and it must do this before it does
5138 * the actual unlink operation, so if we do this check before a concurrent task
5139 * sets last_unlink_trans it means we've logged a consistent version/state of
5140 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5141 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5142 * we logged the inode or it might have also done the unlink).
5143 */
5144static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5145 struct btrfs_inode *inode)
2be63d5c 5146{
ab1717b2 5147 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5148 bool ret = false;
5149
ab1717b2
NB
5150 mutex_lock(&inode->log_mutex);
5151 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5152 /*
5153 * Make sure any commits to the log are forced to be full
5154 * commits.
5155 */
5156 btrfs_set_log_full_commit(fs_info, trans);
5157 ret = true;
5158 }
ab1717b2 5159 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5160
5161 return ret;
5162}
5163
12fcfd22
CM
5164/*
5165 * follow the dentry parent pointers up the chain and see if any
5166 * of the directories in it require a full commit before they can
5167 * be logged. Returns zero if nothing special needs to be done or 1 if
5168 * a full commit is required.
5169 */
5170static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5171 struct btrfs_inode *inode,
12fcfd22
CM
5172 struct dentry *parent,
5173 struct super_block *sb,
5174 u64 last_committed)
e02119d5 5175{
12fcfd22 5176 int ret = 0;
6a912213 5177 struct dentry *old_parent = NULL;
aefa6115 5178 struct btrfs_inode *orig_inode = inode;
e02119d5 5179
af4176b4
CM
5180 /*
5181 * for regular files, if its inode is already on disk, we don't
5182 * have to worry about the parents at all. This is because
5183 * we can use the last_unlink_trans field to record renames
5184 * and other fun in this file.
5185 */
aefa6115
NB
5186 if (S_ISREG(inode->vfs_inode.i_mode) &&
5187 inode->generation <= last_committed &&
5188 inode->last_unlink_trans <= last_committed)
5189 goto out;
af4176b4 5190
aefa6115 5191 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5192 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5193 goto out;
aefa6115 5194 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5195 }
5196
5197 while (1) {
de2b530b
JB
5198 /*
5199 * If we are logging a directory then we start with our inode,
01327610 5200 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5201 * logged_trans so that further down in the log code we don't
5202 * think this inode has already been logged.
5203 */
5204 if (inode != orig_inode)
aefa6115 5205 inode->logged_trans = trans->transid;
12fcfd22
CM
5206 smp_mb();
5207
aefa6115 5208 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5209 ret = 1;
5210 break;
5211 }
5212
fc64005c 5213 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5214 break;
5215
44f714da 5216 if (IS_ROOT(parent)) {
aefa6115
NB
5217 inode = BTRFS_I(d_inode(parent));
5218 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5219 ret = 1;
12fcfd22 5220 break;
44f714da 5221 }
12fcfd22 5222
6a912213
JB
5223 parent = dget_parent(parent);
5224 dput(old_parent);
5225 old_parent = parent;
aefa6115 5226 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5227
5228 }
6a912213 5229 dput(old_parent);
12fcfd22 5230out:
e02119d5
CM
5231 return ret;
5232}
5233
2f2ff0ee
FM
5234struct btrfs_dir_list {
5235 u64 ino;
5236 struct list_head list;
5237};
5238
5239/*
5240 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5241 * details about the why it is needed.
5242 * This is a recursive operation - if an existing dentry corresponds to a
5243 * directory, that directory's new entries are logged too (same behaviour as
5244 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5245 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5246 * complains about the following circular lock dependency / possible deadlock:
5247 *
5248 * CPU0 CPU1
5249 * ---- ----
5250 * lock(&type->i_mutex_dir_key#3/2);
5251 * lock(sb_internal#2);
5252 * lock(&type->i_mutex_dir_key#3/2);
5253 * lock(&sb->s_type->i_mutex_key#14);
5254 *
5255 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5256 * sb_start_intwrite() in btrfs_start_transaction().
5257 * Not locking i_mutex of the inodes is still safe because:
5258 *
5259 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5260 * that while logging the inode new references (names) are added or removed
5261 * from the inode, leaving the logged inode item with a link count that does
5262 * not match the number of logged inode reference items. This is fine because
5263 * at log replay time we compute the real number of links and correct the
5264 * link count in the inode item (see replay_one_buffer() and
5265 * link_to_fixup_dir());
5266 *
5267 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5268 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5269 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5270 * has a size that doesn't match the sum of the lengths of all the logged
5271 * names. This does not result in a problem because if a dir_item key is
5272 * logged but its matching dir_index key is not logged, at log replay time we
5273 * don't use it to replay the respective name (see replay_one_name()). On the
5274 * other hand if only the dir_index key ends up being logged, the respective
5275 * name is added to the fs/subvol tree with both the dir_item and dir_index
5276 * keys created (see replay_one_name()).
5277 * The directory's inode item with a wrong i_size is not a problem as well,
5278 * since we don't use it at log replay time to set the i_size in the inode
5279 * item of the fs/subvol tree (see overwrite_item()).
5280 */
5281static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5282 struct btrfs_root *root,
51cc0d32 5283 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5284 struct btrfs_log_ctx *ctx)
5285{
0b246afa 5286 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5287 struct btrfs_root *log = root->log_root;
5288 struct btrfs_path *path;
5289 LIST_HEAD(dir_list);
5290 struct btrfs_dir_list *dir_elem;
5291 int ret = 0;
5292
5293 path = btrfs_alloc_path();
5294 if (!path)
5295 return -ENOMEM;
5296
5297 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5298 if (!dir_elem) {
5299 btrfs_free_path(path);
5300 return -ENOMEM;
5301 }
51cc0d32 5302 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5303 list_add_tail(&dir_elem->list, &dir_list);
5304
5305 while (!list_empty(&dir_list)) {
5306 struct extent_buffer *leaf;
5307 struct btrfs_key min_key;
5308 int nritems;
5309 int i;
5310
5311 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5312 list);
5313 if (ret)
5314 goto next_dir_inode;
5315
5316 min_key.objectid = dir_elem->ino;
5317 min_key.type = BTRFS_DIR_ITEM_KEY;
5318 min_key.offset = 0;
5319again:
5320 btrfs_release_path(path);
5321 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5322 if (ret < 0) {
5323 goto next_dir_inode;
5324 } else if (ret > 0) {
5325 ret = 0;
5326 goto next_dir_inode;
5327 }
5328
5329process_leaf:
5330 leaf = path->nodes[0];
5331 nritems = btrfs_header_nritems(leaf);
5332 for (i = path->slots[0]; i < nritems; i++) {
5333 struct btrfs_dir_item *di;
5334 struct btrfs_key di_key;
5335 struct inode *di_inode;
5336 struct btrfs_dir_list *new_dir_elem;
5337 int log_mode = LOG_INODE_EXISTS;
5338 int type;
5339
5340 btrfs_item_key_to_cpu(leaf, &min_key, i);
5341 if (min_key.objectid != dir_elem->ino ||
5342 min_key.type != BTRFS_DIR_ITEM_KEY)
5343 goto next_dir_inode;
5344
5345 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5346 type = btrfs_dir_type(leaf, di);
5347 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5348 type != BTRFS_FT_DIR)
5349 continue;
5350 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5351 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5352 continue;
5353
ec125cfb 5354 btrfs_release_path(path);
0b246afa 5355 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5356 if (IS_ERR(di_inode)) {
5357 ret = PTR_ERR(di_inode);
5358 goto next_dir_inode;
5359 }
5360
0f8939b8 5361 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5362 iput(di_inode);
ec125cfb 5363 break;
2f2ff0ee
FM
5364 }
5365
5366 ctx->log_new_dentries = false;
3f9749f6 5367 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5368 log_mode = LOG_INODE_ALL;
a59108a7 5369 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5370 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5371 if (!ret &&
ab1717b2 5372 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5373 ret = 1;
2f2ff0ee
FM
5374 iput(di_inode);
5375 if (ret)
5376 goto next_dir_inode;
5377 if (ctx->log_new_dentries) {
5378 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5379 GFP_NOFS);
5380 if (!new_dir_elem) {
5381 ret = -ENOMEM;
5382 goto next_dir_inode;
5383 }
5384 new_dir_elem->ino = di_key.objectid;
5385 list_add_tail(&new_dir_elem->list, &dir_list);
5386 }
5387 break;
5388 }
5389 if (i == nritems) {
5390 ret = btrfs_next_leaf(log, path);
5391 if (ret < 0) {
5392 goto next_dir_inode;
5393 } else if (ret > 0) {
5394 ret = 0;
5395 goto next_dir_inode;
5396 }
5397 goto process_leaf;
5398 }
5399 if (min_key.offset < (u64)-1) {
5400 min_key.offset++;
5401 goto again;
5402 }
5403next_dir_inode:
5404 list_del(&dir_elem->list);
5405 kfree(dir_elem);
5406 }
5407
5408 btrfs_free_path(path);
5409 return ret;
5410}
5411
18aa0922 5412static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5413 struct btrfs_inode *inode,
18aa0922
FM
5414 struct btrfs_log_ctx *ctx)
5415{
d0a0b78d 5416 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
18aa0922
FM
5417 int ret;
5418 struct btrfs_path *path;
5419 struct btrfs_key key;
d0a0b78d
NB
5420 struct btrfs_root *root = inode->root;
5421 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5422
5423 path = btrfs_alloc_path();
5424 if (!path)
5425 return -ENOMEM;
5426 path->skip_locking = 1;
5427 path->search_commit_root = 1;
5428
5429 key.objectid = ino;
5430 key.type = BTRFS_INODE_REF_KEY;
5431 key.offset = 0;
5432 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5433 if (ret < 0)
5434 goto out;
5435
5436 while (true) {
5437 struct extent_buffer *leaf = path->nodes[0];
5438 int slot = path->slots[0];
5439 u32 cur_offset = 0;
5440 u32 item_size;
5441 unsigned long ptr;
5442
5443 if (slot >= btrfs_header_nritems(leaf)) {
5444 ret = btrfs_next_leaf(root, path);
5445 if (ret < 0)
5446 goto out;
5447 else if (ret > 0)
5448 break;
5449 continue;
5450 }
5451
5452 btrfs_item_key_to_cpu(leaf, &key, slot);
5453 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5454 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5455 break;
5456
5457 item_size = btrfs_item_size_nr(leaf, slot);
5458 ptr = btrfs_item_ptr_offset(leaf, slot);
5459 while (cur_offset < item_size) {
5460 struct btrfs_key inode_key;
5461 struct inode *dir_inode;
5462
5463 inode_key.type = BTRFS_INODE_ITEM_KEY;
5464 inode_key.offset = 0;
5465
5466 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5467 struct btrfs_inode_extref *extref;
5468
5469 extref = (struct btrfs_inode_extref *)
5470 (ptr + cur_offset);
5471 inode_key.objectid = btrfs_inode_extref_parent(
5472 leaf, extref);
5473 cur_offset += sizeof(*extref);
5474 cur_offset += btrfs_inode_extref_name_len(leaf,
5475 extref);
5476 } else {
5477 inode_key.objectid = key.offset;
5478 cur_offset = item_size;
5479 }
5480
0b246afa 5481 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922
FM
5482 root, NULL);
5483 /* If parent inode was deleted, skip it. */
5484 if (IS_ERR(dir_inode))
5485 continue;
5486
657ed1aa
FM
5487 if (ctx)
5488 ctx->log_new_dentries = false;
a59108a7 5489 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5490 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5491 if (!ret &&
ab1717b2 5492 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5493 ret = 1;
657ed1aa
FM
5494 if (!ret && ctx && ctx->log_new_dentries)
5495 ret = log_new_dir_dentries(trans, root,
f85b7379 5496 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5497 iput(dir_inode);
5498 if (ret)
5499 goto out;
5500 }
5501 path->slots[0]++;
5502 }
5503 ret = 0;
5504out:
5505 btrfs_free_path(path);
5506 return ret;
5507}
5508
e02119d5
CM
5509/*
5510 * helper function around btrfs_log_inode to make sure newly created
5511 * parent directories also end up in the log. A minimal inode and backref
5512 * only logging is done of any parent directories that are older than
5513 * the last committed transaction
5514 */
48a3b636 5515static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9
NB
5516 struct btrfs_root *root,
5517 struct btrfs_inode *inode,
49dae1bc
FM
5518 struct dentry *parent,
5519 const loff_t start,
5520 const loff_t end,
41a1eada 5521 int inode_only,
8b050d35 5522 struct btrfs_log_ctx *ctx)
e02119d5 5523{
0b246afa 5524 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 5525 struct super_block *sb;
6a912213 5526 struct dentry *old_parent = NULL;
12fcfd22 5527 int ret = 0;
0b246afa 5528 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5529 bool log_dentries = false;
19df27a9 5530 struct btrfs_inode *orig_inode = inode;
12fcfd22 5531
19df27a9 5532 sb = inode->vfs_inode.i_sb;
12fcfd22 5533
0b246afa 5534 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5535 ret = 1;
5536 goto end_no_trans;
5537 }
5538
995946dd
MX
5539 /*
5540 * The prev transaction commit doesn't complete, we need do
5541 * full commit by ourselves.
5542 */
0b246afa
JM
5543 if (fs_info->last_trans_log_full_commit >
5544 fs_info->last_trans_committed) {
12fcfd22
CM
5545 ret = 1;
5546 goto end_no_trans;
5547 }
5548
19df27a9 5549 if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5550 ret = 1;
5551 goto end_no_trans;
5552 }
5553
19df27a9
NB
5554 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5555 last_committed);
12fcfd22
CM
5556 if (ret)
5557 goto end_no_trans;
e02119d5 5558
19df27a9 5559 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
5560 ret = BTRFS_NO_LOG_SYNC;
5561 goto end_no_trans;
5562 }
5563
8b050d35 5564 ret = start_log_trans(trans, root, ctx);
4a500fd1 5565 if (ret)
e87ac136 5566 goto end_no_trans;
e02119d5 5567
19df27a9 5568 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5569 if (ret)
5570 goto end_trans;
12fcfd22 5571
af4176b4
CM
5572 /*
5573 * for regular files, if its inode is already on disk, we don't
5574 * have to worry about the parents at all. This is because
5575 * we can use the last_unlink_trans field to record renames
5576 * and other fun in this file.
5577 */
19df27a9
NB
5578 if (S_ISREG(inode->vfs_inode.i_mode) &&
5579 inode->generation <= last_committed &&
5580 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
5581 ret = 0;
5582 goto end_trans;
5583 }
af4176b4 5584
19df27a9 5585 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
5586 log_dentries = true;
5587
18aa0922 5588 /*
01327610 5589 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5590 * inodes are fully logged. This is to prevent leaving dangling
5591 * directory index entries in directories that were our parents but are
5592 * not anymore. Not doing this results in old parent directory being
5593 * impossible to delete after log replay (rmdir will always fail with
5594 * error -ENOTEMPTY).
5595 *
5596 * Example 1:
5597 *
5598 * mkdir testdir
5599 * touch testdir/foo
5600 * ln testdir/foo testdir/bar
5601 * sync
5602 * unlink testdir/bar
5603 * xfs_io -c fsync testdir/foo
5604 * <power failure>
5605 * mount fs, triggers log replay
5606 *
5607 * If we don't log the parent directory (testdir), after log replay the
5608 * directory still has an entry pointing to the file inode using the bar
5609 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5610 * the file inode has a link count of 1.
5611 *
5612 * Example 2:
5613 *
5614 * mkdir testdir
5615 * touch foo
5616 * ln foo testdir/foo2
5617 * ln foo testdir/foo3
5618 * sync
5619 * unlink testdir/foo3
5620 * xfs_io -c fsync foo
5621 * <power failure>
5622 * mount fs, triggers log replay
5623 *
5624 * Similar as the first example, after log replay the parent directory
5625 * testdir still has an entry pointing to the inode file with name foo3
5626 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5627 * and has a link count of 2.
5628 */
19df27a9 5629 if (inode->last_unlink_trans > last_committed) {
18aa0922
FM
5630 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5631 if (ret)
5632 goto end_trans;
5633 }
5634
12fcfd22 5635 while (1) {
fc64005c 5636 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5637 break;
5638
19df27a9
NB
5639 inode = BTRFS_I(d_inode(parent));
5640 if (root != inode->root)
76dda93c
YZ
5641 break;
5642
19df27a9
NB
5643 if (inode->generation > last_committed) {
5644 ret = btrfs_log_inode(trans, root, inode,
5645 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
4a500fd1
YZ
5646 if (ret)
5647 goto end_trans;
12fcfd22 5648 }
76dda93c 5649 if (IS_ROOT(parent))
e02119d5 5650 break;
12fcfd22 5651
6a912213
JB
5652 parent = dget_parent(parent);
5653 dput(old_parent);
5654 old_parent = parent;
e02119d5 5655 }
2f2ff0ee 5656 if (log_dentries)
19df27a9 5657 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
2f2ff0ee
FM
5658 else
5659 ret = 0;
4a500fd1 5660end_trans:
6a912213 5661 dput(old_parent);
4a500fd1 5662 if (ret < 0) {
0b246afa 5663 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5664 ret = 1;
5665 }
8b050d35
MX
5666
5667 if (ret)
5668 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5669 btrfs_end_log_trans(root);
5670end_no_trans:
5671 return ret;
e02119d5
CM
5672}
5673
5674/*
5675 * it is not safe to log dentry if the chunk root has added new
5676 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5677 * If this returns 1, you must commit the transaction to safely get your
5678 * data on disk.
5679 */
5680int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 5681 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
5682 const loff_t start,
5683 const loff_t end,
8b050d35 5684 struct btrfs_log_ctx *ctx)
e02119d5 5685{
6a912213
JB
5686 struct dentry *parent = dget_parent(dentry);
5687 int ret;
5688
19df27a9 5689 ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
41a1eada 5690 parent, start, end, LOG_INODE_ALL, ctx);
6a912213
JB
5691 dput(parent);
5692
5693 return ret;
e02119d5
CM
5694}
5695
5696/*
5697 * should be called during mount to recover any replay any log trees
5698 * from the FS
5699 */
5700int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5701{
5702 int ret;
5703 struct btrfs_path *path;
5704 struct btrfs_trans_handle *trans;
5705 struct btrfs_key key;
5706 struct btrfs_key found_key;
5707 struct btrfs_key tmp_key;
5708 struct btrfs_root *log;
5709 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5710 struct walk_control wc = {
5711 .process_func = process_one_buffer,
5712 .stage = 0,
5713 };
5714
e02119d5 5715 path = btrfs_alloc_path();
db5b493a
TI
5716 if (!path)
5717 return -ENOMEM;
5718
afcdd129 5719 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5720
4a500fd1 5721 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
5722 if (IS_ERR(trans)) {
5723 ret = PTR_ERR(trans);
5724 goto error;
5725 }
e02119d5
CM
5726
5727 wc.trans = trans;
5728 wc.pin = 1;
5729
db5b493a 5730 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 5731 if (ret) {
5d163e0e
JM
5732 btrfs_handle_fs_error(fs_info, ret,
5733 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
5734 goto error;
5735 }
e02119d5
CM
5736
5737again:
5738 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5739 key.offset = (u64)-1;
962a298f 5740 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 5741
d397712b 5742 while (1) {
e02119d5 5743 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
5744
5745 if (ret < 0) {
34d97007 5746 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5747 "Couldn't find tree log root.");
5748 goto error;
5749 }
e02119d5
CM
5750 if (ret > 0) {
5751 if (path->slots[0] == 0)
5752 break;
5753 path->slots[0]--;
5754 }
5755 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5756 path->slots[0]);
b3b4aa74 5757 btrfs_release_path(path);
e02119d5
CM
5758 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5759 break;
5760
cb517eab 5761 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
5762 if (IS_ERR(log)) {
5763 ret = PTR_ERR(log);
34d97007 5764 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5765 "Couldn't read tree log root.");
5766 goto error;
5767 }
e02119d5
CM
5768
5769 tmp_key.objectid = found_key.offset;
5770 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5771 tmp_key.offset = (u64)-1;
5772
5773 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
5774 if (IS_ERR(wc.replay_dest)) {
5775 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
5776 free_extent_buffer(log->node);
5777 free_extent_buffer(log->commit_root);
5778 kfree(log);
5d163e0e
JM
5779 btrfs_handle_fs_error(fs_info, ret,
5780 "Couldn't read target root for tree log recovery.");
79787eaa
JM
5781 goto error;
5782 }
e02119d5 5783
07d400a6 5784 wc.replay_dest->log_root = log;
5d4f98a2 5785 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 5786 ret = walk_log_tree(trans, log, &wc);
e02119d5 5787
b50c6e25 5788 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
5789 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5790 path);
e02119d5
CM
5791 }
5792
900c9981
LB
5793 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5794 struct btrfs_root *root = wc.replay_dest;
5795
5796 btrfs_release_path(path);
5797
5798 /*
5799 * We have just replayed everything, and the highest
5800 * objectid of fs roots probably has changed in case
5801 * some inode_item's got replayed.
5802 *
5803 * root->objectid_mutex is not acquired as log replay
5804 * could only happen during mount.
5805 */
5806 ret = btrfs_find_highest_objectid(root,
5807 &root->highest_objectid);
5808 }
5809
e02119d5 5810 key.offset = found_key.offset - 1;
07d400a6 5811 wc.replay_dest->log_root = NULL;
e02119d5 5812 free_extent_buffer(log->node);
b263c2c8 5813 free_extent_buffer(log->commit_root);
e02119d5
CM
5814 kfree(log);
5815
b50c6e25
JB
5816 if (ret)
5817 goto error;
5818
e02119d5
CM
5819 if (found_key.offset == 0)
5820 break;
5821 }
b3b4aa74 5822 btrfs_release_path(path);
e02119d5
CM
5823
5824 /* step one is to pin it all, step two is to replay just inodes */
5825 if (wc.pin) {
5826 wc.pin = 0;
5827 wc.process_func = replay_one_buffer;
5828 wc.stage = LOG_WALK_REPLAY_INODES;
5829 goto again;
5830 }
5831 /* step three is to replay everything */
5832 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5833 wc.stage++;
5834 goto again;
5835 }
5836
5837 btrfs_free_path(path);
5838
abefa55a 5839 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 5840 ret = btrfs_commit_transaction(trans);
abefa55a
JB
5841 if (ret)
5842 return ret;
5843
e02119d5
CM
5844 free_extent_buffer(log_root_tree->node);
5845 log_root_tree->log_root = NULL;
afcdd129 5846 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5847 kfree(log_root_tree);
79787eaa 5848
abefa55a 5849 return 0;
79787eaa 5850error:
b50c6e25 5851 if (wc.trans)
3a45bb20 5852 btrfs_end_transaction(wc.trans);
79787eaa
JM
5853 btrfs_free_path(path);
5854 return ret;
e02119d5 5855}
12fcfd22
CM
5856
5857/*
5858 * there are some corner cases where we want to force a full
5859 * commit instead of allowing a directory to be logged.
5860 *
5861 * They revolve around files there were unlinked from the directory, and
5862 * this function updates the parent directory so that a full commit is
5863 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
5864 *
5865 * Must be called before the unlink operations (updates to the subvolume tree,
5866 * inodes, etc) are done.
12fcfd22
CM
5867 */
5868void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 5869 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
5870 int for_rename)
5871{
af4176b4
CM
5872 /*
5873 * when we're logging a file, if it hasn't been renamed
5874 * or unlinked, and its inode is fully committed on disk,
5875 * we don't have to worry about walking up the directory chain
5876 * to log its parents.
5877 *
5878 * So, we use the last_unlink_trans field to put this transid
5879 * into the file. When the file is logged we check it and
5880 * don't log the parents if the file is fully on disk.
5881 */
4176bdbf
NB
5882 mutex_lock(&inode->log_mutex);
5883 inode->last_unlink_trans = trans->transid;
5884 mutex_unlock(&inode->log_mutex);
af4176b4 5885
12fcfd22
CM
5886 /*
5887 * if this directory was already logged any new
5888 * names for this file/dir will get recorded
5889 */
5890 smp_mb();
4176bdbf 5891 if (dir->logged_trans == trans->transid)
12fcfd22
CM
5892 return;
5893
5894 /*
5895 * if the inode we're about to unlink was logged,
5896 * the log will be properly updated for any new names
5897 */
4176bdbf 5898 if (inode->logged_trans == trans->transid)
12fcfd22
CM
5899 return;
5900
5901 /*
5902 * when renaming files across directories, if the directory
5903 * there we're unlinking from gets fsync'd later on, there's
5904 * no way to find the destination directory later and fsync it
5905 * properly. So, we have to be conservative and force commits
5906 * so the new name gets discovered.
5907 */
5908 if (for_rename)
5909 goto record;
5910
5911 /* we can safely do the unlink without any special recording */
5912 return;
5913
5914record:
4176bdbf
NB
5915 mutex_lock(&dir->log_mutex);
5916 dir->last_unlink_trans = trans->transid;
5917 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
5918}
5919
5920/*
5921 * Make sure that if someone attempts to fsync the parent directory of a deleted
5922 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5923 * that after replaying the log tree of the parent directory's root we will not
5924 * see the snapshot anymore and at log replay time we will not see any log tree
5925 * corresponding to the deleted snapshot's root, which could lead to replaying
5926 * it after replaying the log tree of the parent directory (which would replay
5927 * the snapshot delete operation).
2be63d5c
FM
5928 *
5929 * Must be called before the actual snapshot destroy operation (updates to the
5930 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
5931 */
5932void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 5933 struct btrfs_inode *dir)
1ec9a1ae 5934{
43663557
NB
5935 mutex_lock(&dir->log_mutex);
5936 dir->last_unlink_trans = trans->transid;
5937 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
5938}
5939
5940/*
5941 * Call this after adding a new name for a file and it will properly
5942 * update the log to reflect the new name.
5943 *
5944 * It will return zero if all goes well, and it will return 1 if a
5945 * full transaction commit is required.
5946 */
5947int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 5948 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
12fcfd22
CM
5949 struct dentry *parent)
5950{
9ca5fbfb 5951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
f85b7379 5952 struct btrfs_root *root = inode->root;
12fcfd22 5953
af4176b4
CM
5954 /*
5955 * this will force the logging code to walk the dentry chain
5956 * up for the file
5957 */
9a6509c4 5958 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 5959 inode->last_unlink_trans = trans->transid;
af4176b4 5960
12fcfd22
CM
5961 /*
5962 * if this inode hasn't been logged and directory we're renaming it
5963 * from hasn't been logged, we don't need to log it
5964 */
9ca5fbfb
NB
5965 if (inode->logged_trans <= fs_info->last_trans_committed &&
5966 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
12fcfd22
CM
5967 return 0;
5968
19df27a9 5969 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
41a1eada 5970 LLONG_MAX, LOG_INODE_EXISTS, NULL);
12fcfd22
CM
5971}
5972