]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/zoned.c
btrfs: zoned: finish least available block group on data bg allocation
[people/ms/linux.git] / fs / btrfs / zoned.c
CommitLineData
5b316468
NA
1// SPDX-License-Identifier: GPL-2.0
2
1cd6121f 3#include <linux/bitops.h>
5b316468
NA
4#include <linux/slab.h>
5#include <linux/blkdev.h>
08e11a3d 6#include <linux/sched/mm.h>
ea6f8ddc 7#include <linux/atomic.h>
16beac87 8#include <linux/vmalloc.h>
5b316468
NA
9#include "ctree.h"
10#include "volumes.h"
11#include "zoned.h"
12#include "rcu-string.h"
1cd6121f 13#include "disk-io.h"
08e11a3d 14#include "block-group.h"
d3575156 15#include "transaction.h"
6143c23c 16#include "dev-replace.h"
7db1c5d1 17#include "space-info.h"
5b316468
NA
18
19/* Maximum number of zones to report per blkdev_report_zones() call */
20#define BTRFS_REPORT_NR_ZONES 4096
08e11a3d
NA
21/* Invalid allocation pointer value for missing devices */
22#define WP_MISSING_DEV ((u64)-1)
23/* Pseudo write pointer value for conventional zone */
24#define WP_CONVENTIONAL ((u64)-2)
5b316468 25
53b74fa9
NA
26/*
27 * Location of the first zone of superblock logging zone pairs.
28 *
29 * - primary superblock: 0B (zone 0)
30 * - first copy: 512G (zone starting at that offset)
31 * - second copy: 4T (zone starting at that offset)
32 */
33#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
34#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
35#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
36
37#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39
12659251
NA
40/* Number of superblock log zones */
41#define BTRFS_NR_SB_LOG_ZONES 2
42
ea6f8ddc
NA
43/*
44 * Minimum of active zones we need:
45 *
46 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48 * - 1 zone for tree-log dedicated block group
49 * - 1 zone for relocation
50 */
51#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
52
53b74fa9 53/*
0a05fafe
JT
54 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56 * We do not expect the zone size to become larger than 8GiB or smaller than
57 * 4MiB in the near future.
53b74fa9
NA
58 */
59#define BTRFS_MAX_ZONE_SIZE SZ_8G
0a05fafe 60#define BTRFS_MIN_ZONE_SIZE SZ_4M
53b74fa9 61
5daaf552
NA
62#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63
64static inline bool sb_zone_is_full(const struct blk_zone *zone)
65{
66 return (zone->cond == BLK_ZONE_COND_FULL) ||
67 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68}
69
5b316468
NA
70static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71{
72 struct blk_zone *zones = data;
73
74 memcpy(&zones[idx], zone, sizeof(*zone));
75
76 return 0;
77}
78
12659251
NA
79static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80 u64 *wp_ret)
81{
82 bool empty[BTRFS_NR_SB_LOG_ZONES];
83 bool full[BTRFS_NR_SB_LOG_ZONES];
84 sector_t sector;
5daaf552 85 int i;
12659251 86
5daaf552
NA
87 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90 full[i] = sb_zone_is_full(&zones[i]);
91 }
12659251
NA
92
93 /*
94 * Possible states of log buffer zones
95 *
96 * Empty[0] In use[0] Full[0]
31f37269
PR
97 * Empty[1] * 0 1
98 * In use[1] x x 1
99 * Full[1] 0 0 C
12659251
NA
100 *
101 * Log position:
102 * *: Special case, no superblock is written
103 * 0: Use write pointer of zones[0]
104 * 1: Use write pointer of zones[1]
1a9fd417 105 * C: Compare super blocks from zones[0] and zones[1], use the latest
12659251
NA
106 * one determined by generation
107 * x: Invalid state
108 */
109
110 if (empty[0] && empty[1]) {
111 /* Special case to distinguish no superblock to read */
112 *wp_ret = zones[0].start << SECTOR_SHIFT;
113 return -ENOENT;
114 } else if (full[0] && full[1]) {
115 /* Compare two super blocks */
116 struct address_space *mapping = bdev->bd_inode->i_mapping;
117 struct page *page[BTRFS_NR_SB_LOG_ZONES];
118 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119 int i;
120
121 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122 u64 bytenr;
123
124 bytenr = ((zones[i].start + zones[i].len)
125 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126
127 page[i] = read_cache_page_gfp(mapping,
128 bytenr >> PAGE_SHIFT, GFP_NOFS);
129 if (IS_ERR(page[i])) {
130 if (i == 1)
131 btrfs_release_disk_super(super[0]);
132 return PTR_ERR(page[i]);
133 }
134 super[i] = page_address(page[i]);
135 }
136
137 if (super[0]->generation > super[1]->generation)
138 sector = zones[1].start;
139 else
140 sector = zones[0].start;
141
142 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
143 btrfs_release_disk_super(super[i]);
144 } else if (!full[0] && (empty[1] || full[1])) {
145 sector = zones[0].wp;
146 } else if (full[0]) {
147 sector = zones[1].wp;
148 } else {
149 return -EUCLEAN;
150 }
151 *wp_ret = sector << SECTOR_SHIFT;
152 return 0;
153}
154
155/*
53b74fa9 156 * Get the first zone number of the superblock mirror
12659251
NA
157 */
158static inline u32 sb_zone_number(int shift, int mirror)
159{
53b74fa9 160 u64 zone;
12659251 161
53b74fa9 162 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
12659251 163 switch (mirror) {
53b74fa9
NA
164 case 0: zone = 0; break;
165 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
166 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
12659251
NA
167 }
168
53b74fa9
NA
169 ASSERT(zone <= U32_MAX);
170
171 return (u32)zone;
12659251
NA
172}
173
5b434df8
NA
174static inline sector_t zone_start_sector(u32 zone_number,
175 struct block_device *bdev)
176{
177 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
178}
179
180static inline u64 zone_start_physical(u32 zone_number,
181 struct btrfs_zoned_device_info *zone_info)
182{
183 return (u64)zone_number << zone_info->zone_size_shift;
184}
185
3c9daa09
JT
186/*
187 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
188 * device into static sized chunks and fake a conventional zone on each of
189 * them.
190 */
191static int emulate_report_zones(struct btrfs_device *device, u64 pos,
192 struct blk_zone *zones, unsigned int nr_zones)
193{
194 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
195 sector_t bdev_size = bdev_nr_sectors(device->bdev);
196 unsigned int i;
197
198 pos >>= SECTOR_SHIFT;
199 for (i = 0; i < nr_zones; i++) {
200 zones[i].start = i * zone_sectors + pos;
201 zones[i].len = zone_sectors;
202 zones[i].capacity = zone_sectors;
203 zones[i].wp = zones[i].start + zone_sectors;
204 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
205 zones[i].cond = BLK_ZONE_COND_NOT_WP;
206
207 if (zones[i].wp >= bdev_size) {
208 i++;
209 break;
210 }
211 }
212
213 return i;
214}
215
5b316468
NA
216static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
217 struct blk_zone *zones, unsigned int *nr_zones)
218{
16beac87
NA
219 struct btrfs_zoned_device_info *zinfo = device->zone_info;
220 u32 zno;
5b316468
NA
221 int ret;
222
223 if (!*nr_zones)
224 return 0;
225
3c9daa09
JT
226 if (!bdev_is_zoned(device->bdev)) {
227 ret = emulate_report_zones(device, pos, zones, *nr_zones);
228 *nr_zones = ret;
229 return 0;
230 }
231
16beac87
NA
232 /* Check cache */
233 if (zinfo->zone_cache) {
234 unsigned int i;
235
236 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
237 zno = pos >> zinfo->zone_size_shift;
238 /*
239 * We cannot report zones beyond the zone end. So, it is OK to
240 * cap *nr_zones to at the end.
241 */
242 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
243
244 for (i = 0; i < *nr_zones; i++) {
245 struct blk_zone *zone_info;
246
247 zone_info = &zinfo->zone_cache[zno + i];
248 if (!zone_info->len)
249 break;
250 }
251
252 if (i == *nr_zones) {
253 /* Cache hit on all the zones */
254 memcpy(zones, zinfo->zone_cache + zno,
255 sizeof(*zinfo->zone_cache) * *nr_zones);
256 return 0;
257 }
258 }
259
5b316468
NA
260 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
261 copy_zone_info_cb, zones);
262 if (ret < 0) {
263 btrfs_err_in_rcu(device->fs_info,
264 "zoned: failed to read zone %llu on %s (devid %llu)",
265 pos, rcu_str_deref(device->name),
266 device->devid);
267 return ret;
268 }
269 *nr_zones = ret;
270 if (!ret)
271 return -EIO;
272
16beac87
NA
273 /* Populate cache */
274 if (zinfo->zone_cache)
275 memcpy(zinfo->zone_cache + zno, zones,
276 sizeof(*zinfo->zone_cache) * *nr_zones);
277
5b316468
NA
278 return 0;
279}
280
3c9daa09
JT
281/* The emulated zone size is determined from the size of device extent */
282static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
283{
284 struct btrfs_path *path;
285 struct btrfs_root *root = fs_info->dev_root;
286 struct btrfs_key key;
287 struct extent_buffer *leaf;
288 struct btrfs_dev_extent *dext;
289 int ret = 0;
290
291 key.objectid = 1;
292 key.type = BTRFS_DEV_EXTENT_KEY;
293 key.offset = 0;
294
295 path = btrfs_alloc_path();
296 if (!path)
297 return -ENOMEM;
298
299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
300 if (ret < 0)
301 goto out;
302
303 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 304 ret = btrfs_next_leaf(root, path);
3c9daa09
JT
305 if (ret < 0)
306 goto out;
307 /* No dev extents at all? Not good */
308 if (ret > 0) {
309 ret = -EUCLEAN;
310 goto out;
311 }
312 }
313
314 leaf = path->nodes[0];
315 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
316 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
317 ret = 0;
318
319out:
320 btrfs_free_path(path);
321
322 return ret;
323}
324
73651042
NA
325int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326{
327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
328 struct btrfs_device *device;
329 int ret = 0;
330
331 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
332 if (!btrfs_fs_incompat(fs_info, ZONED))
333 return 0;
334
335 mutex_lock(&fs_devices->device_list_mutex);
336 list_for_each_entry(device, &fs_devices->devices, dev_list) {
337 /* We can skip reading of zone info for missing devices */
338 if (!device->bdev)
339 continue;
340
16beac87 341 ret = btrfs_get_dev_zone_info(device, true);
73651042
NA
342 if (ret)
343 break;
344 }
345 mutex_unlock(&fs_devices->device_list_mutex);
346
347 return ret;
348}
349
16beac87 350int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
5b316468 351{
3c9daa09 352 struct btrfs_fs_info *fs_info = device->fs_info;
5b316468
NA
353 struct btrfs_zoned_device_info *zone_info = NULL;
354 struct block_device *bdev = device->bdev;
ea6f8ddc
NA
355 unsigned int max_active_zones;
356 unsigned int nactive;
5b316468
NA
357 sector_t nr_sectors;
358 sector_t sector = 0;
359 struct blk_zone *zones = NULL;
360 unsigned int i, nreported = 0, nr_zones;
d734492a 361 sector_t zone_sectors;
3c9daa09 362 char *model, *emulated;
5b316468
NA
363 int ret;
364
3c9daa09
JT
365 /*
366 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
367 * yet be set.
368 */
369 if (!btrfs_fs_incompat(fs_info, ZONED))
5b316468
NA
370 return 0;
371
372 if (device->zone_info)
373 return 0;
374
375 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
376 if (!zone_info)
377 return -ENOMEM;
378
16beac87
NA
379 device->zone_info = zone_info;
380
3c9daa09
JT
381 if (!bdev_is_zoned(bdev)) {
382 if (!fs_info->zone_size) {
383 ret = calculate_emulated_zone_size(fs_info);
384 if (ret)
385 goto out;
386 }
387
388 ASSERT(fs_info->zone_size);
389 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
390 } else {
391 zone_sectors = bdev_zone_sectors(bdev);
392 }
393
5b316468
NA
394 /* Check if it's power of 2 (see is_power_of_2) */
395 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
396 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
53b74fa9
NA
397
398 /* We reject devices with a zone size larger than 8GB */
399 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
400 btrfs_err_in_rcu(fs_info,
401 "zoned: %s: zone size %llu larger than supported maximum %llu",
402 rcu_str_deref(device->name),
403 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
404 ret = -EINVAL;
405 goto out;
0a05fafe
JT
406 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
407 btrfs_err_in_rcu(fs_info,
408 "zoned: %s: zone size %llu smaller than supported minimum %u",
409 rcu_str_deref(device->name),
410 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
411 ret = -EINVAL;
412 goto out;
53b74fa9
NA
413 }
414
415 nr_sectors = bdev_nr_sectors(bdev);
5b316468
NA
416 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
417 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
c2ae7b77
NA
418 /*
419 * We limit max_zone_append_size also by max_segments *
420 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
421 * since btrfs adds the pages one by one to a bio, and btrfs cannot
422 * increase the metadata reservation even if it increases the number of
423 * extents, it is safe to stick with the limit.
424 */
425 zone_info->max_zone_append_size =
426 min_t(u64, (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
427 (u64)bdev_max_segments(bdev) << PAGE_SHIFT);
5b316468
NA
428 if (!IS_ALIGNED(nr_sectors, zone_sectors))
429 zone_info->nr_zones++;
430
c1e7b244 431 max_active_zones = bdev_max_active_zones(bdev);
ea6f8ddc
NA
432 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
433 btrfs_err_in_rcu(fs_info,
434"zoned: %s: max active zones %u is too small, need at least %u active zones",
435 rcu_str_deref(device->name), max_active_zones,
436 BTRFS_MIN_ACTIVE_ZONES);
437 ret = -EINVAL;
438 goto out;
439 }
440 zone_info->max_active_zones = max_active_zones;
441
5b316468
NA
442 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
443 if (!zone_info->seq_zones) {
444 ret = -ENOMEM;
445 goto out;
446 }
447
448 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
449 if (!zone_info->empty_zones) {
450 ret = -ENOMEM;
451 goto out;
452 }
453
ea6f8ddc
NA
454 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
455 if (!zone_info->active_zones) {
456 ret = -ENOMEM;
457 goto out;
458 }
459
5b316468
NA
460 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
461 if (!zones) {
462 ret = -ENOMEM;
463 goto out;
464 }
465
16beac87
NA
466 /*
467 * Enable zone cache only for a zoned device. On a non-zoned device, we
468 * fill the zone info with emulated CONVENTIONAL zones, so no need to
469 * use the cache.
470 */
471 if (populate_cache && bdev_is_zoned(device->bdev)) {
472 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
473 zone_info->nr_zones);
474 if (!zone_info->zone_cache) {
475 btrfs_err_in_rcu(device->fs_info,
476 "zoned: failed to allocate zone cache for %s",
477 rcu_str_deref(device->name));
478 ret = -ENOMEM;
479 goto out;
480 }
481 }
482
5b316468 483 /* Get zones type */
ea6f8ddc 484 nactive = 0;
5b316468
NA
485 while (sector < nr_sectors) {
486 nr_zones = BTRFS_REPORT_NR_ZONES;
487 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
488 &nr_zones);
489 if (ret)
490 goto out;
491
492 for (i = 0; i < nr_zones; i++) {
493 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
494 __set_bit(nreported, zone_info->seq_zones);
ea6f8ddc
NA
495 switch (zones[i].cond) {
496 case BLK_ZONE_COND_EMPTY:
5b316468 497 __set_bit(nreported, zone_info->empty_zones);
ea6f8ddc
NA
498 break;
499 case BLK_ZONE_COND_IMP_OPEN:
500 case BLK_ZONE_COND_EXP_OPEN:
501 case BLK_ZONE_COND_CLOSED:
502 __set_bit(nreported, zone_info->active_zones);
503 nactive++;
504 break;
505 }
5b316468
NA
506 nreported++;
507 }
508 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
509 }
510
511 if (nreported != zone_info->nr_zones) {
512 btrfs_err_in_rcu(device->fs_info,
513 "inconsistent number of zones on %s (%u/%u)",
514 rcu_str_deref(device->name), nreported,
515 zone_info->nr_zones);
516 ret = -EIO;
517 goto out;
518 }
519
ea6f8ddc
NA
520 if (max_active_zones) {
521 if (nactive > max_active_zones) {
522 btrfs_err_in_rcu(device->fs_info,
523 "zoned: %u active zones on %s exceeds max_active_zones %u",
524 nactive, rcu_str_deref(device->name),
525 max_active_zones);
526 ret = -EIO;
527 goto out;
528 }
529 atomic_set(&zone_info->active_zones_left,
530 max_active_zones - nactive);
531 }
532
12659251
NA
533 /* Validate superblock log */
534 nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 u32 sb_zone;
537 u64 sb_wp;
538 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 if (sb_zone + 1 >= zone_info->nr_zones)
542 continue;
543
5b434df8
NA
544 ret = btrfs_get_dev_zones(device,
545 zone_start_physical(sb_zone, zone_info),
12659251
NA
546 &zone_info->sb_zones[sb_pos],
547 &nr_zones);
548 if (ret)
549 goto out;
550
551 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 btrfs_err_in_rcu(device->fs_info,
553 "zoned: failed to read super block log zone info at devid %llu zone %u",
554 device->devid, sb_zone);
555 ret = -EUCLEAN;
556 goto out;
557 }
558
559 /*
1a9fd417 560 * If zones[0] is conventional, always use the beginning of the
12659251
NA
561 * zone to record superblock. No need to validate in that case.
562 */
563 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 BLK_ZONE_TYPE_CONVENTIONAL)
565 continue;
566
567 ret = sb_write_pointer(device->bdev,
568 &zone_info->sb_zones[sb_pos], &sb_wp);
569 if (ret != -ENOENT && ret) {
570 btrfs_err_in_rcu(device->fs_info,
571 "zoned: super block log zone corrupted devid %llu zone %u",
572 device->devid, sb_zone);
573 ret = -EUCLEAN;
574 goto out;
575 }
576 }
577
578
5b316468
NA
579 kfree(zones);
580
3c9daa09
JT
581 switch (bdev_zoned_model(bdev)) {
582 case BLK_ZONED_HM:
583 model = "host-managed zoned";
584 emulated = "";
585 break;
586 case BLK_ZONED_HA:
587 model = "host-aware zoned";
588 emulated = "";
589 break;
590 case BLK_ZONED_NONE:
591 model = "regular";
592 emulated = "emulated ";
593 break;
594 default:
595 /* Just in case */
596 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597 bdev_zoned_model(bdev),
598 rcu_str_deref(device->name));
599 ret = -EOPNOTSUPP;
600 goto out_free_zone_info;
601 }
602
603 btrfs_info_in_rcu(fs_info,
604 "%s block device %s, %u %szones of %llu bytes",
605 model, rcu_str_deref(device->name), zone_info->nr_zones,
606 emulated, zone_info->zone_size);
5b316468
NA
607
608 return 0;
609
610out:
611 kfree(zones);
3c9daa09 612out_free_zone_info:
16beac87 613 btrfs_destroy_dev_zone_info(device);
5b316468
NA
614
615 return ret;
616}
617
618void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619{
620 struct btrfs_zoned_device_info *zone_info = device->zone_info;
621
622 if (!zone_info)
623 return;
624
ea6f8ddc 625 bitmap_free(zone_info->active_zones);
5b316468
NA
626 bitmap_free(zone_info->seq_zones);
627 bitmap_free(zone_info->empty_zones);
16beac87 628 vfree(zone_info->zone_cache);
5b316468
NA
629 kfree(zone_info);
630 device->zone_info = NULL;
631}
632
633int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
634 struct blk_zone *zone)
635{
636 unsigned int nr_zones = 1;
637 int ret;
638
639 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
640 if (ret != 0 || !nr_zones)
641 return ret ? ret : -EIO;
642
643 return 0;
644}
b70f5097
NA
645
646int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
647{
648 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
649 struct btrfs_device *device;
650 u64 zoned_devices = 0;
651 u64 nr_devices = 0;
652 u64 zone_size = 0;
c2ae7b77 653 u64 max_zone_append_size = 0;
3c9daa09 654 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
b70f5097
NA
655 int ret = 0;
656
657 /* Count zoned devices */
658 list_for_each_entry(device, &fs_devices->devices, dev_list) {
659 enum blk_zoned_model model;
660
661 if (!device->bdev)
662 continue;
663
664 model = bdev_zoned_model(device->bdev);
3c9daa09
JT
665 /*
666 * A Host-Managed zoned device must be used as a zoned device.
667 * A Host-Aware zoned device and a non-zoned devices can be
668 * treated as a zoned device, if ZONED flag is enabled in the
669 * superblock.
670 */
b70f5097 671 if (model == BLK_ZONED_HM ||
3c9daa09
JT
672 (model == BLK_ZONED_HA && incompat_zoned) ||
673 (model == BLK_ZONED_NONE && incompat_zoned)) {
f716fa47 674 struct btrfs_zoned_device_info *zone_info;
862931c7
NA
675
676 zone_info = device->zone_info;
b70f5097
NA
677 zoned_devices++;
678 if (!zone_size) {
862931c7
NA
679 zone_size = zone_info->zone_size;
680 } else if (zone_info->zone_size != zone_size) {
b70f5097
NA
681 btrfs_err(fs_info,
682 "zoned: unequal block device zone sizes: have %llu found %llu",
683 device->zone_info->zone_size,
684 zone_size);
685 ret = -EINVAL;
686 goto out;
687 }
c2ae7b77
NA
688 if (!max_zone_append_size ||
689 (zone_info->max_zone_append_size &&
690 zone_info->max_zone_append_size < max_zone_append_size))
691 max_zone_append_size =
692 zone_info->max_zone_append_size;
b70f5097
NA
693 }
694 nr_devices++;
695 }
696
697 if (!zoned_devices && !incompat_zoned)
698 goto out;
699
700 if (!zoned_devices && incompat_zoned) {
701 /* No zoned block device found on ZONED filesystem */
702 btrfs_err(fs_info,
703 "zoned: no zoned devices found on a zoned filesystem");
704 ret = -EINVAL;
705 goto out;
706 }
707
708 if (zoned_devices && !incompat_zoned) {
709 btrfs_err(fs_info,
710 "zoned: mode not enabled but zoned device found");
711 ret = -EINVAL;
712 goto out;
713 }
714
715 if (zoned_devices != nr_devices) {
716 btrfs_err(fs_info,
717 "zoned: cannot mix zoned and regular devices");
718 ret = -EINVAL;
719 goto out;
720 }
721
722 /*
723 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
f6f39f7a 724 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
b70f5097
NA
725 * check the alignment here.
726 */
727 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
728 btrfs_err(fs_info,
729 "zoned: zone size %llu not aligned to stripe %u",
730 zone_size, BTRFS_STRIPE_LEN);
731 ret = -EINVAL;
732 goto out;
733 }
734
a589dde0
NA
735 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
736 btrfs_err(fs_info, "zoned: mixed block groups not supported");
737 ret = -EINVAL;
738 goto out;
739 }
740
b70f5097 741 fs_info->zone_size = zone_size;
f7b12a62
NA
742 fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
743 fs_info->sectorsize);
1cd6121f 744 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
f7b12a62
NA
745 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
746 fs_info->max_extent_size = fs_info->max_zone_append_size;
b70f5097 747
b53429ba
JT
748 /*
749 * Check mount options here, because we might change fs_info->zoned
750 * from fs_info->zone_size.
751 */
752 ret = btrfs_check_mountopts_zoned(fs_info);
753 if (ret)
754 goto out;
755
b70f5097
NA
756 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
757out:
758 return ret;
759}
5d1ab66c
NA
760
761int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
762{
763 if (!btrfs_is_zoned(info))
764 return 0;
765
766 /*
767 * Space cache writing is not COWed. Disable that to avoid write errors
768 * in sequential zones.
769 */
770 if (btrfs_test_opt(info, SPACE_CACHE)) {
771 btrfs_err(info, "zoned: space cache v1 is not supported");
772 return -EINVAL;
773 }
774
d206e9c9
NA
775 if (btrfs_test_opt(info, NODATACOW)) {
776 btrfs_err(info, "zoned: NODATACOW not supported");
777 return -EINVAL;
778 }
779
5d1ab66c
NA
780 return 0;
781}
12659251
NA
782
783static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
784 int rw, u64 *bytenr_ret)
785{
786 u64 wp;
787 int ret;
788
789 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
790 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
791 return 0;
792 }
793
794 ret = sb_write_pointer(bdev, zones, &wp);
795 if (ret != -ENOENT && ret < 0)
796 return ret;
797
798 if (rw == WRITE) {
799 struct blk_zone *reset = NULL;
800
801 if (wp == zones[0].start << SECTOR_SHIFT)
802 reset = &zones[0];
803 else if (wp == zones[1].start << SECTOR_SHIFT)
804 reset = &zones[1];
805
806 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
5daaf552 807 ASSERT(sb_zone_is_full(reset));
12659251
NA
808
809 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
810 reset->start, reset->len,
811 GFP_NOFS);
812 if (ret)
813 return ret;
814
815 reset->cond = BLK_ZONE_COND_EMPTY;
816 reset->wp = reset->start;
817 }
818 } else if (ret != -ENOENT) {
9658b72e
NA
819 /*
820 * For READ, we want the previous one. Move write pointer to
821 * the end of a zone, if it is at the head of a zone.
822 */
823 u64 zone_end = 0;
824
12659251 825 if (wp == zones[0].start << SECTOR_SHIFT)
9658b72e
NA
826 zone_end = zones[1].start + zones[1].capacity;
827 else if (wp == zones[1].start << SECTOR_SHIFT)
828 zone_end = zones[0].start + zones[0].capacity;
829 if (zone_end)
830 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
831 BTRFS_SUPER_INFO_SIZE);
832
12659251
NA
833 wp -= BTRFS_SUPER_INFO_SIZE;
834 }
835
836 *bytenr_ret = wp;
837 return 0;
838
839}
840
841int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
842 u64 *bytenr_ret)
843{
844 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
d734492a 845 sector_t zone_sectors;
12659251
NA
846 u32 sb_zone;
847 int ret;
12659251
NA
848 u8 zone_sectors_shift;
849 sector_t nr_sectors;
850 u32 nr_zones;
851
852 if (!bdev_is_zoned(bdev)) {
853 *bytenr_ret = btrfs_sb_offset(mirror);
854 return 0;
855 }
856
857 ASSERT(rw == READ || rw == WRITE);
858
859 zone_sectors = bdev_zone_sectors(bdev);
860 if (!is_power_of_2(zone_sectors))
861 return -EINVAL;
12659251 862 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 863 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
864 nr_zones = nr_sectors >> zone_sectors_shift;
865
866 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
867 if (sb_zone + 1 >= nr_zones)
868 return -ENOENT;
869
5b434df8 870 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
12659251
NA
871 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
872 zones);
873 if (ret < 0)
874 return ret;
875 if (ret != BTRFS_NR_SB_LOG_ZONES)
876 return -EIO;
877
878 return sb_log_location(bdev, zones, rw, bytenr_ret);
879}
880
881int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
882 u64 *bytenr_ret)
883{
884 struct btrfs_zoned_device_info *zinfo = device->zone_info;
885 u32 zone_num;
886
d6639b35
NA
887 /*
888 * For a zoned filesystem on a non-zoned block device, use the same
889 * super block locations as regular filesystem. Doing so, the super
890 * block can always be retrieved and the zoned flag of the volume
891 * detected from the super block information.
892 */
893 if (!bdev_is_zoned(device->bdev)) {
12659251
NA
894 *bytenr_ret = btrfs_sb_offset(mirror);
895 return 0;
896 }
897
898 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
899 if (zone_num + 1 >= zinfo->nr_zones)
900 return -ENOENT;
901
902 return sb_log_location(device->bdev,
903 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
904 rw, bytenr_ret);
905}
906
907static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
908 int mirror)
909{
910 u32 zone_num;
911
912 if (!zinfo)
913 return false;
914
915 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
916 if (zone_num + 1 >= zinfo->nr_zones)
917 return false;
918
919 if (!test_bit(zone_num, zinfo->seq_zones))
920 return false;
921
922 return true;
923}
924
8376d9e1 925int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
12659251
NA
926{
927 struct btrfs_zoned_device_info *zinfo = device->zone_info;
928 struct blk_zone *zone;
8376d9e1 929 int i;
12659251
NA
930
931 if (!is_sb_log_zone(zinfo, mirror))
8376d9e1 932 return 0;
12659251
NA
933
934 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
8376d9e1
NA
935 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
936 /* Advance the next zone */
937 if (zone->cond == BLK_ZONE_COND_FULL) {
938 zone++;
939 continue;
940 }
941
12659251
NA
942 if (zone->cond == BLK_ZONE_COND_EMPTY)
943 zone->cond = BLK_ZONE_COND_IMP_OPEN;
944
8376d9e1
NA
945 zone->wp += SUPER_INFO_SECTORS;
946
947 if (sb_zone_is_full(zone)) {
948 /*
949 * No room left to write new superblock. Since
950 * superblock is written with REQ_SYNC, it is safe to
951 * finish the zone now.
952 *
953 * If the write pointer is exactly at the capacity,
954 * explicit ZONE_FINISH is not necessary.
955 */
956 if (zone->wp != zone->start + zone->capacity) {
957 int ret;
958
959 ret = blkdev_zone_mgmt(device->bdev,
960 REQ_OP_ZONE_FINISH, zone->start,
961 zone->len, GFP_NOFS);
962 if (ret)
963 return ret;
964 }
12659251 965
8376d9e1 966 zone->wp = zone->start + zone->len;
12659251 967 zone->cond = BLK_ZONE_COND_FULL;
8376d9e1
NA
968 }
969 return 0;
12659251
NA
970 }
971
8376d9e1
NA
972 /* All the zones are FULL. Should not reach here. */
973 ASSERT(0);
974 return -EIO;
12659251
NA
975}
976
977int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
978{
979 sector_t zone_sectors;
980 sector_t nr_sectors;
981 u8 zone_sectors_shift;
982 u32 sb_zone;
983 u32 nr_zones;
984
985 zone_sectors = bdev_zone_sectors(bdev);
986 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 987 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
988 nr_zones = nr_sectors >> zone_sectors_shift;
989
990 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
991 if (sb_zone + 1 >= nr_zones)
992 return -ENOENT;
993
994 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
5b434df8 995 zone_start_sector(sb_zone, bdev),
12659251
NA
996 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
997}
1cd6121f
NA
998
999/**
1000 * btrfs_find_allocatable_zones - find allocatable zones within a given region
1001 *
1002 * @device: the device to allocate a region on
1003 * @hole_start: the position of the hole to allocate the region
1004 * @num_bytes: size of wanted region
1005 * @hole_end: the end of the hole
1006 * @return: position of allocatable zones
1007 *
1008 * Allocatable region should not contain any superblock locations.
1009 */
1010u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1011 u64 hole_end, u64 num_bytes)
1012{
1013 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1014 const u8 shift = zinfo->zone_size_shift;
1015 u64 nzones = num_bytes >> shift;
1016 u64 pos = hole_start;
1017 u64 begin, end;
1018 bool have_sb;
1019 int i;
1020
1021 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1022 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1023
1024 while (pos < hole_end) {
1025 begin = pos >> shift;
1026 end = begin + nzones;
1027
1028 if (end > zinfo->nr_zones)
1029 return hole_end;
1030
1031 /* Check if zones in the region are all empty */
1032 if (btrfs_dev_is_sequential(device, pos) &&
1033 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1034 pos += zinfo->zone_size;
1035 continue;
1036 }
1037
1038 have_sb = false;
1039 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1040 u32 sb_zone;
1041 u64 sb_pos;
1042
1043 sb_zone = sb_zone_number(shift, i);
1044 if (!(end <= sb_zone ||
1045 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1046 have_sb = true;
5b434df8
NA
1047 pos = zone_start_physical(
1048 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1cd6121f
NA
1049 break;
1050 }
1051
1052 /* We also need to exclude regular superblock positions */
1053 sb_pos = btrfs_sb_offset(i);
1054 if (!(pos + num_bytes <= sb_pos ||
1055 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1056 have_sb = true;
1057 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1058 zinfo->zone_size);
1059 break;
1060 }
1061 }
1062 if (!have_sb)
1063 break;
1064 }
1065
1066 return pos;
1067}
1068
afba2bc0
NA
1069static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1070{
1071 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1072 unsigned int zno = (pos >> zone_info->zone_size_shift);
1073
1074 /* We can use any number of zones */
1075 if (zone_info->max_active_zones == 0)
1076 return true;
1077
1078 if (!test_bit(zno, zone_info->active_zones)) {
1079 /* Active zone left? */
1080 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1081 return false;
1082 if (test_and_set_bit(zno, zone_info->active_zones)) {
1083 /* Someone already set the bit */
1084 atomic_inc(&zone_info->active_zones_left);
1085 }
1086 }
1087
1088 return true;
1089}
1090
1091static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1092{
1093 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1094 unsigned int zno = (pos >> zone_info->zone_size_shift);
1095
1096 /* We can use any number of zones */
1097 if (zone_info->max_active_zones == 0)
1098 return;
1099
1100 if (test_and_clear_bit(zno, zone_info->active_zones))
1101 atomic_inc(&zone_info->active_zones_left);
1102}
1103
1cd6121f
NA
1104int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1105 u64 length, u64 *bytes)
1106{
1107 int ret;
1108
1109 *bytes = 0;
1110 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1111 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1112 GFP_NOFS);
1113 if (ret)
1114 return ret;
1115
1116 *bytes = length;
1117 while (length) {
1118 btrfs_dev_set_zone_empty(device, physical);
afba2bc0 1119 btrfs_dev_clear_active_zone(device, physical);
1cd6121f
NA
1120 physical += device->zone_info->zone_size;
1121 length -= device->zone_info->zone_size;
1122 }
1123
1124 return 0;
1125}
1126
1127int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1128{
1129 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1130 const u8 shift = zinfo->zone_size_shift;
1131 unsigned long begin = start >> shift;
1132 unsigned long end = (start + size) >> shift;
1133 u64 pos;
1134 int ret;
1135
1136 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1137 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1138
1139 if (end > zinfo->nr_zones)
1140 return -ERANGE;
1141
1142 /* All the zones are conventional */
1143 if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1144 return 0;
1145
1146 /* All the zones are sequential and empty */
1147 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1148 find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1149 return 0;
1150
1151 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1152 u64 reset_bytes;
1153
1154 if (!btrfs_dev_is_sequential(device, pos) ||
1155 btrfs_dev_is_empty_zone(device, pos))
1156 continue;
1157
1158 /* Free regions should be empty */
1159 btrfs_warn_in_rcu(
1160 device->fs_info,
1161 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1162 rcu_str_deref(device->name), device->devid, pos >> shift);
1163 WARN_ON_ONCE(1);
1164
1165 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1166 &reset_bytes);
1167 if (ret)
1168 return ret;
1169 }
1170
1171 return 0;
1172}
08e11a3d 1173
a94794d5
NA
1174/*
1175 * Calculate an allocation pointer from the extent allocation information
1176 * for a block group consist of conventional zones. It is pointed to the
1177 * end of the highest addressed extent in the block group as an allocation
1178 * offset.
1179 */
1180static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1181 u64 *offset_ret)
1182{
1183 struct btrfs_fs_info *fs_info = cache->fs_info;
29cbcf40 1184 struct btrfs_root *root;
a94794d5
NA
1185 struct btrfs_path *path;
1186 struct btrfs_key key;
1187 struct btrfs_key found_key;
1188 int ret;
1189 u64 length;
1190
1191 path = btrfs_alloc_path();
1192 if (!path)
1193 return -ENOMEM;
1194
1195 key.objectid = cache->start + cache->length;
1196 key.type = 0;
1197 key.offset = 0;
1198
29cbcf40 1199 root = btrfs_extent_root(fs_info, key.objectid);
a94794d5
NA
1200 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1201 /* We should not find the exact match */
1202 if (!ret)
1203 ret = -EUCLEAN;
1204 if (ret < 0)
1205 goto out;
1206
1207 ret = btrfs_previous_extent_item(root, path, cache->start);
1208 if (ret) {
1209 if (ret == 1) {
1210 ret = 0;
1211 *offset_ret = 0;
1212 }
1213 goto out;
1214 }
1215
1216 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1217
1218 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1219 length = found_key.offset;
1220 else
1221 length = fs_info->nodesize;
1222
1223 if (!(found_key.objectid >= cache->start &&
1224 found_key.objectid + length <= cache->start + cache->length)) {
1225 ret = -EUCLEAN;
1226 goto out;
1227 }
1228 *offset_ret = found_key.objectid + length - cache->start;
1229 ret = 0;
1230
1231out:
1232 btrfs_free_path(path);
1233 return ret;
1234}
1235
1236int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
08e11a3d
NA
1237{
1238 struct btrfs_fs_info *fs_info = cache->fs_info;
1239 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1240 struct extent_map *em;
1241 struct map_lookup *map;
1242 struct btrfs_device *device;
1243 u64 logical = cache->start;
1244 u64 length = cache->length;
08e11a3d
NA
1245 int ret;
1246 int i;
1247 unsigned int nofs_flag;
1248 u64 *alloc_offsets = NULL;
8eae532b 1249 u64 *caps = NULL;
dbfcc18f 1250 u64 *physical = NULL;
68a384b5 1251 unsigned long *active = NULL;
a94794d5 1252 u64 last_alloc = 0;
08e11a3d
NA
1253 u32 num_sequential = 0, num_conventional = 0;
1254
1255 if (!btrfs_is_zoned(fs_info))
1256 return 0;
1257
1258 /* Sanity check */
1259 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1260 btrfs_err(fs_info,
1261 "zoned: block group %llu len %llu unaligned to zone size %llu",
1262 logical, length, fs_info->zone_size);
1263 return -EIO;
1264 }
1265
1266 /* Get the chunk mapping */
1267 read_lock(&em_tree->lock);
1268 em = lookup_extent_mapping(em_tree, logical, length);
1269 read_unlock(&em_tree->lock);
1270
1271 if (!em)
1272 return -EINVAL;
1273
1274 map = em->map_lookup;
1275
64259baa 1276 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
dafc340d
NA
1277 if (!cache->physical_map) {
1278 ret = -ENOMEM;
1279 goto out;
1280 }
1281
08e11a3d
NA
1282 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1283 if (!alloc_offsets) {
dafc340d
NA
1284 ret = -ENOMEM;
1285 goto out;
08e11a3d
NA
1286 }
1287
8eae532b
NA
1288 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1289 if (!caps) {
1290 ret = -ENOMEM;
1291 goto out;
1292 }
1293
dbfcc18f
JT
1294 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1295 if (!physical) {
1296 ret = -ENOMEM;
1297 goto out;
1298 }
1299
68a384b5
NA
1300 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1301 if (!active) {
1302 ret = -ENOMEM;
1303 goto out;
1304 }
1305
08e11a3d
NA
1306 for (i = 0; i < map->num_stripes; i++) {
1307 bool is_sequential;
1308 struct blk_zone zone;
6143c23c
NA
1309 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1310 int dev_replace_is_ongoing = 0;
08e11a3d
NA
1311
1312 device = map->stripes[i].dev;
dbfcc18f 1313 physical[i] = map->stripes[i].physical;
08e11a3d
NA
1314
1315 if (device->bdev == NULL) {
1316 alloc_offsets[i] = WP_MISSING_DEV;
1317 continue;
1318 }
1319
dbfcc18f 1320 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
08e11a3d
NA
1321 if (is_sequential)
1322 num_sequential++;
1323 else
1324 num_conventional++;
1325
1326 if (!is_sequential) {
1327 alloc_offsets[i] = WP_CONVENTIONAL;
1328 continue;
1329 }
1330
1331 /*
1332 * This zone will be used for allocation, so mark this zone
1333 * non-empty.
1334 */
dbfcc18f 1335 btrfs_dev_clear_zone_empty(device, physical[i]);
08e11a3d 1336
6143c23c
NA
1337 down_read(&dev_replace->rwsem);
1338 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1339 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
dbfcc18f 1340 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
6143c23c
NA
1341 up_read(&dev_replace->rwsem);
1342
08e11a3d
NA
1343 /*
1344 * The group is mapped to a sequential zone. Get the zone write
1345 * pointer to determine the allocation offset within the zone.
1346 */
dbfcc18f 1347 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
08e11a3d 1348 nofs_flag = memalloc_nofs_save();
dbfcc18f 1349 ret = btrfs_get_dev_zone(device, physical[i], &zone);
08e11a3d
NA
1350 memalloc_nofs_restore(nofs_flag);
1351 if (ret == -EIO || ret == -EOPNOTSUPP) {
1352 ret = 0;
1353 alloc_offsets[i] = WP_MISSING_DEV;
1354 continue;
1355 } else if (ret) {
1356 goto out;
1357 }
1358
784daf2b 1359 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
47cdfb5e
NA
1360 btrfs_err_in_rcu(fs_info,
1361 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1362 zone.start << SECTOR_SHIFT,
1363 rcu_str_deref(device->name), device->devid);
784daf2b
NA
1364 ret = -EIO;
1365 goto out;
1366 }
1367
8eae532b
NA
1368 caps[i] = (zone.capacity << SECTOR_SHIFT);
1369
08e11a3d
NA
1370 switch (zone.cond) {
1371 case BLK_ZONE_COND_OFFLINE:
1372 case BLK_ZONE_COND_READONLY:
1373 btrfs_err(fs_info,
1374 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
dbfcc18f 1375 physical[i] >> device->zone_info->zone_size_shift,
08e11a3d
NA
1376 rcu_str_deref(device->name), device->devid);
1377 alloc_offsets[i] = WP_MISSING_DEV;
1378 break;
1379 case BLK_ZONE_COND_EMPTY:
1380 alloc_offsets[i] = 0;
1381 break;
1382 case BLK_ZONE_COND_FULL:
8eae532b 1383 alloc_offsets[i] = caps[i];
08e11a3d
NA
1384 break;
1385 default:
1386 /* Partially used zone */
1387 alloc_offsets[i] =
1388 ((zone.wp - zone.start) << SECTOR_SHIFT);
68a384b5 1389 __set_bit(i, active);
08e11a3d
NA
1390 break;
1391 }
68a384b5
NA
1392
1393 /*
1394 * Consider a zone as active if we can allow any number of
1395 * active zones.
1396 */
1397 if (!device->zone_info->max_active_zones)
1398 __set_bit(i, active);
08e11a3d
NA
1399 }
1400
08f45559
JT
1401 if (num_sequential > 0)
1402 cache->seq_zone = true;
1403
08e11a3d
NA
1404 if (num_conventional > 0) {
1405 /*
a94794d5
NA
1406 * Avoid calling calculate_alloc_pointer() for new BG. It
1407 * is no use for new BG. It must be always 0.
1408 *
1409 * Also, we have a lock chain of extent buffer lock ->
1410 * chunk mutex. For new BG, this function is called from
1411 * btrfs_make_block_group() which is already taking the
1412 * chunk mutex. Thus, we cannot call
1413 * calculate_alloc_pointer() which takes extent buffer
1414 * locks to avoid deadlock.
08e11a3d 1415 */
8eae532b
NA
1416
1417 /* Zone capacity is always zone size in emulation */
1418 cache->zone_capacity = cache->length;
a94794d5
NA
1419 if (new) {
1420 cache->alloc_offset = 0;
1421 goto out;
1422 }
1423 ret = calculate_alloc_pointer(cache, &last_alloc);
1424 if (ret || map->num_stripes == num_conventional) {
1425 if (!ret)
1426 cache->alloc_offset = last_alloc;
1427 else
1428 btrfs_err(fs_info,
1429 "zoned: failed to determine allocation offset of bg %llu",
1430 cache->start);
1431 goto out;
1432 }
08e11a3d
NA
1433 }
1434
1435 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1436 case 0: /* single */
06e1e7f4
JT
1437 if (alloc_offsets[0] == WP_MISSING_DEV) {
1438 btrfs_err(fs_info,
1439 "zoned: cannot recover write pointer for zone %llu",
dbfcc18f 1440 physical[0]);
06e1e7f4
JT
1441 ret = -EIO;
1442 goto out;
1443 }
08e11a3d 1444 cache->alloc_offset = alloc_offsets[0];
8eae532b 1445 cache->zone_capacity = caps[0];
68a384b5 1446 cache->zone_is_active = test_bit(0, active);
08e11a3d
NA
1447 break;
1448 case BTRFS_BLOCK_GROUP_DUP:
265f7237
JT
1449 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1450 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1451 ret = -EINVAL;
1452 goto out;
1453 }
1454 if (alloc_offsets[0] == WP_MISSING_DEV) {
1455 btrfs_err(fs_info,
1456 "zoned: cannot recover write pointer for zone %llu",
1457 physical[0]);
1458 ret = -EIO;
1459 goto out;
1460 }
1461 if (alloc_offsets[1] == WP_MISSING_DEV) {
1462 btrfs_err(fs_info,
1463 "zoned: cannot recover write pointer for zone %llu",
1464 physical[1]);
1465 ret = -EIO;
1466 goto out;
1467 }
1468 if (alloc_offsets[0] != alloc_offsets[1]) {
1469 btrfs_err(fs_info,
1470 "zoned: write pointer offset mismatch of zones in DUP profile");
1471 ret = -EIO;
1472 goto out;
1473 }
1474 if (test_bit(0, active) != test_bit(1, active)) {
1475 if (!btrfs_zone_activate(cache)) {
1476 ret = -EIO;
1477 goto out;
1478 }
1479 } else {
1480 cache->zone_is_active = test_bit(0, active);
1481 }
1482 cache->alloc_offset = alloc_offsets[0];
1483 cache->zone_capacity = min(caps[0], caps[1]);
1484 break;
08e11a3d
NA
1485 case BTRFS_BLOCK_GROUP_RAID1:
1486 case BTRFS_BLOCK_GROUP_RAID0:
1487 case BTRFS_BLOCK_GROUP_RAID10:
1488 case BTRFS_BLOCK_GROUP_RAID5:
1489 case BTRFS_BLOCK_GROUP_RAID6:
1490 /* non-single profiles are not supported yet */
1491 default:
1492 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1493 btrfs_bg_type_to_raid_name(map->type));
1494 ret = -EINVAL;
1495 goto out;
1496 }
1497
68a384b5
NA
1498 if (cache->zone_is_active) {
1499 btrfs_get_block_group(cache);
1500 spin_lock(&fs_info->zone_active_bgs_lock);
1501 list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs);
1502 spin_unlock(&fs_info->zone_active_bgs_lock);
1503 }
1504
08e11a3d 1505out:
06e1e7f4
JT
1506 if (cache->alloc_offset > fs_info->zone_size) {
1507 btrfs_err(fs_info,
1508 "zoned: invalid write pointer %llu in block group %llu",
1509 cache->alloc_offset, cache->start);
1510 ret = -EIO;
1511 }
1512
8eae532b
NA
1513 if (cache->alloc_offset > cache->zone_capacity) {
1514 btrfs_err(fs_info,
1515"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1516 cache->alloc_offset, cache->zone_capacity,
1517 cache->start);
1518 ret = -EIO;
1519 }
1520
a94794d5
NA
1521 /* An extent is allocated after the write pointer */
1522 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1523 btrfs_err(fs_info,
1524 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1525 logical, last_alloc, cache->alloc_offset);
1526 ret = -EIO;
1527 }
1528
0bc09ca1
NA
1529 if (!ret)
1530 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1531
dafc340d
NA
1532 if (ret) {
1533 kfree(cache->physical_map);
1534 cache->physical_map = NULL;
1535 }
68a384b5 1536 bitmap_free(active);
dbfcc18f 1537 kfree(physical);
8eae532b 1538 kfree(caps);
08e11a3d
NA
1539 kfree(alloc_offsets);
1540 free_extent_map(em);
1541
1542 return ret;
1543}
169e0da9
NA
1544
1545void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1546{
1547 u64 unusable, free;
1548
1549 if (!btrfs_is_zoned(cache->fs_info))
1550 return;
1551
1552 WARN_ON(cache->bytes_super != 0);
98173255
NA
1553 unusable = (cache->alloc_offset - cache->used) +
1554 (cache->length - cache->zone_capacity);
1555 free = cache->zone_capacity - cache->alloc_offset;
169e0da9
NA
1556
1557 /* We only need ->free_space in ALLOC_SEQ block groups */
1558 cache->last_byte_to_unpin = (u64)-1;
1559 cache->cached = BTRFS_CACHE_FINISHED;
1560 cache->free_space_ctl->free_space = free;
1561 cache->zone_unusable = unusable;
169e0da9 1562}
d3575156
NA
1563
1564void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1565 struct extent_buffer *eb)
1566{
1567 struct btrfs_fs_info *fs_info = eb->fs_info;
1568
1569 if (!btrfs_is_zoned(fs_info) ||
1570 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1571 !list_empty(&eb->release_list))
1572 return;
1573
1574 set_extent_buffer_dirty(eb);
1575 set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1576 eb->start + eb->len - 1, EXTENT_DIRTY);
1577 memzero_extent_buffer(eb, 0, eb->len);
1578 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1579
1580 spin_lock(&trans->releasing_ebs_lock);
1581 list_add_tail(&eb->release_list, &trans->releasing_ebs);
1582 spin_unlock(&trans->releasing_ebs_lock);
1583 atomic_inc(&eb->refs);
1584}
1585
1586void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1587{
1588 spin_lock(&trans->releasing_ebs_lock);
1589 while (!list_empty(&trans->releasing_ebs)) {
1590 struct extent_buffer *eb;
1591
1592 eb = list_first_entry(&trans->releasing_ebs,
1593 struct extent_buffer, release_list);
1594 list_del_init(&eb->release_list);
1595 free_extent_buffer(eb);
1596 }
1597 spin_unlock(&trans->releasing_ebs_lock);
1598}
08f45559 1599
e380adfc 1600bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
08f45559
JT
1601{
1602 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1603 struct btrfs_block_group *cache;
1604 bool ret = false;
1605
1606 if (!btrfs_is_zoned(fs_info))
1607 return false;
1608
08f45559
JT
1609 if (!is_data_inode(&inode->vfs_inode))
1610 return false;
1611
e6d261e3
JT
1612 /*
1613 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1614 * extent layout the relocation code has.
1615 * Furthermore we have set aside own block-group from which only the
1616 * relocation "process" can allocate and make sure only one process at a
1617 * time can add pages to an extent that gets relocated, so it's safe to
1618 * use regular REQ_OP_WRITE for this special case.
1619 */
1620 if (btrfs_is_data_reloc_root(inode->root))
1621 return false;
1622
e380adfc 1623 cache = btrfs_lookup_block_group(fs_info, start);
08f45559
JT
1624 ASSERT(cache);
1625 if (!cache)
1626 return false;
1627
1628 ret = cache->seq_zone;
1629 btrfs_put_block_group(cache);
1630
1631 return ret;
1632}
d8e3fb10
NA
1633
1634void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1635 struct bio *bio)
1636{
1637 struct btrfs_ordered_extent *ordered;
1638 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1639
1640 if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1641 return;
1642
1643 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1644 if (WARN_ON(!ordered))
1645 return;
1646
1647 ordered->physical = physical;
c7c3a6dc 1648 ordered->bdev = bio->bi_bdev;
d8e3fb10
NA
1649
1650 btrfs_put_ordered_extent(ordered);
1651}
1652
1653void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1654{
1655 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1656 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1657 struct extent_map_tree *em_tree;
1658 struct extent_map *em;
1659 struct btrfs_ordered_sum *sum;
d8e3fb10
NA
1660 u64 orig_logical = ordered->disk_bytenr;
1661 u64 *logical = NULL;
1662 int nr, stripe_len;
1663
1664 /* Zoned devices should not have partitions. So, we can assume it is 0 */
c7c3a6dc
CH
1665 ASSERT(!bdev_is_partition(ordered->bdev));
1666 if (WARN_ON(!ordered->bdev))
d8e3fb10
NA
1667 return;
1668
c7c3a6dc 1669 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
d8e3fb10
NA
1670 ordered->physical, &logical, &nr,
1671 &stripe_len)))
1672 goto out;
1673
1674 WARN_ON(nr != 1);
1675
1676 if (orig_logical == *logical)
1677 goto out;
1678
1679 ordered->disk_bytenr = *logical;
1680
1681 em_tree = &inode->extent_tree;
1682 write_lock(&em_tree->lock);
1683 em = search_extent_mapping(em_tree, ordered->file_offset,
1684 ordered->num_bytes);
1685 em->block_start = *logical;
1686 free_extent_map(em);
1687 write_unlock(&em_tree->lock);
1688
1689 list_for_each_entry(sum, &ordered->list, list) {
1690 if (*logical < orig_logical)
1691 sum->bytenr -= orig_logical - *logical;
1692 else
1693 sum->bytenr += *logical - orig_logical;
1694 }
1695
1696out:
1697 kfree(logical);
d8e3fb10 1698}
0bc09ca1
NA
1699
1700bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1701 struct extent_buffer *eb,
1702 struct btrfs_block_group **cache_ret)
1703{
1704 struct btrfs_block_group *cache;
1705 bool ret = true;
1706
1707 if (!btrfs_is_zoned(fs_info))
1708 return true;
1709
8fdf54fe
JT
1710 cache = btrfs_lookup_block_group(fs_info, eb->start);
1711 if (!cache)
1712 return true;
0bc09ca1 1713
8fdf54fe 1714 if (cache->meta_write_pointer != eb->start) {
0bc09ca1
NA
1715 btrfs_put_block_group(cache);
1716 cache = NULL;
8fdf54fe
JT
1717 ret = false;
1718 } else {
1719 cache->meta_write_pointer = eb->start + eb->len;
0bc09ca1
NA
1720 }
1721
8fdf54fe 1722 *cache_ret = cache;
0bc09ca1
NA
1723
1724 return ret;
1725}
1726
1727void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1728 struct extent_buffer *eb)
1729{
1730 if (!btrfs_is_zoned(eb->fs_info) || !cache)
1731 return;
1732
1733 ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1734 cache->meta_write_pointer = eb->start;
1735}
de17addc
NA
1736
1737int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1738{
1739 if (!btrfs_dev_is_sequential(device, physical))
1740 return -EOPNOTSUPP;
1741
1742 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1743 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1744}
7db1c5d1
NA
1745
1746static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1747 struct blk_zone *zone)
1748{
4c664611 1749 struct btrfs_io_context *bioc = NULL;
7db1c5d1
NA
1750 u64 mapped_length = PAGE_SIZE;
1751 unsigned int nofs_flag;
1752 int nmirrors;
1753 int i, ret;
1754
1755 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
4c664611
QW
1756 &mapped_length, &bioc);
1757 if (ret || !bioc || mapped_length < PAGE_SIZE) {
29634578
CH
1758 ret = -EIO;
1759 goto out_put_bioc;
7db1c5d1
NA
1760 }
1761
29634578
CH
1762 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1763 ret = -EINVAL;
1764 goto out_put_bioc;
1765 }
7db1c5d1
NA
1766
1767 nofs_flag = memalloc_nofs_save();
4c664611 1768 nmirrors = (int)bioc->num_stripes;
7db1c5d1 1769 for (i = 0; i < nmirrors; i++) {
4c664611
QW
1770 u64 physical = bioc->stripes[i].physical;
1771 struct btrfs_device *dev = bioc->stripes[i].dev;
7db1c5d1
NA
1772
1773 /* Missing device */
1774 if (!dev->bdev)
1775 continue;
1776
1777 ret = btrfs_get_dev_zone(dev, physical, zone);
1778 /* Failing device */
1779 if (ret == -EIO || ret == -EOPNOTSUPP)
1780 continue;
1781 break;
1782 }
1783 memalloc_nofs_restore(nofs_flag);
29634578
CH
1784out_put_bioc:
1785 btrfs_put_bioc(bioc);
7db1c5d1
NA
1786 return ret;
1787}
1788
1789/*
1790 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1791 * filling zeros between @physical_pos to a write pointer of dev-replace
1792 * source device.
1793 */
1794int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1795 u64 physical_start, u64 physical_pos)
1796{
1797 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1798 struct blk_zone zone;
1799 u64 length;
1800 u64 wp;
1801 int ret;
1802
1803 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1804 return 0;
1805
1806 ret = read_zone_info(fs_info, logical, &zone);
1807 if (ret)
1808 return ret;
1809
1810 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1811
1812 if (physical_pos == wp)
1813 return 0;
1814
1815 if (physical_pos > wp)
1816 return -EUCLEAN;
1817
1818 length = wp - physical_pos;
1819 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1820}
e7ff9e6b
JT
1821
1822struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1823 u64 logical, u64 length)
1824{
1825 struct btrfs_device *device;
1826 struct extent_map *em;
1827 struct map_lookup *map;
1828
1829 em = btrfs_get_chunk_map(fs_info, logical, length);
1830 if (IS_ERR(em))
1831 return ERR_CAST(em);
1832
1833 map = em->map_lookup;
1834 /* We only support single profile for now */
e7ff9e6b
JT
1835 device = map->stripes[0].dev;
1836
1837 free_extent_map(em);
1838
1839 return device;
1840}
afba2bc0
NA
1841
1842/**
1843 * Activate block group and underlying device zones
1844 *
1845 * @block_group: the block group to activate
1846 *
1847 * Return: true on success, false otherwise
1848 */
1849bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1850{
1851 struct btrfs_fs_info *fs_info = block_group->fs_info;
1852 struct map_lookup *map;
1853 struct btrfs_device *device;
1854 u64 physical;
1855 bool ret;
f9a912a3 1856 int i;
afba2bc0
NA
1857
1858 if (!btrfs_is_zoned(block_group->fs_info))
1859 return true;
1860
1861 map = block_group->physical_map;
afba2bc0
NA
1862
1863 spin_lock(&block_group->lock);
afba2bc0
NA
1864 if (block_group->zone_is_active) {
1865 ret = true;
1866 goto out_unlock;
1867 }
1868
54957712 1869 /* No space left */
1bfd4767 1870 if (btrfs_zoned_bg_is_full(block_group)) {
54957712
NA
1871 ret = false;
1872 goto out_unlock;
1873 }
1874
f9a912a3
JT
1875 for (i = 0; i < map->num_stripes; i++) {
1876 device = map->stripes[i].dev;
1877 physical = map->stripes[i].physical;
afba2bc0 1878
f9a912a3
JT
1879 if (device->zone_info->max_active_zones == 0)
1880 continue;
1881
f9a912a3
JT
1882 if (!btrfs_dev_set_active_zone(device, physical)) {
1883 /* Cannot activate the zone */
1884 ret = false;
1885 goto out_unlock;
1886 }
f9a912a3 1887 }
ceb4f608
NA
1888
1889 /* Successfully activated all the zones */
1890 block_group->zone_is_active = 1;
afba2bc0
NA
1891 spin_unlock(&block_group->lock);
1892
ceb4f608
NA
1893 /* For the active block group list */
1894 btrfs_get_block_group(block_group);
afba2bc0 1895
ceb4f608
NA
1896 spin_lock(&fs_info->zone_active_bgs_lock);
1897 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1898 spin_unlock(&fs_info->zone_active_bgs_lock);
afba2bc0
NA
1899
1900 return true;
1901
1902out_unlock:
1903 spin_unlock(&block_group->lock);
1904 return ret;
1905}
1906
d70cbdda 1907static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
afba2bc0
NA
1908{
1909 struct btrfs_fs_info *fs_info = block_group->fs_info;
1910 struct map_lookup *map;
afba2bc0 1911 int ret = 0;
4dcbb8ab 1912 int i;
afba2bc0 1913
afba2bc0
NA
1914 spin_lock(&block_group->lock);
1915 if (!block_group->zone_is_active) {
1916 spin_unlock(&block_group->lock);
1917 return 0;
1918 }
1919
1920 /* Check if we have unwritten allocated space */
1921 if ((block_group->flags &
1922 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) &&
aa9ffadf 1923 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
afba2bc0
NA
1924 spin_unlock(&block_group->lock);
1925 return -EAGAIN;
1926 }
afba2bc0
NA
1927
1928 /*
d70cbdda
NA
1929 * If we are sure that the block group is full (= no more room left for
1930 * new allocation) and the IO for the last usable block is completed, we
1931 * don't need to wait for the other IOs. This holds because we ensure
1932 * the sequential IO submissions using the ZONE_APPEND command for data
1933 * and block_group->meta_write_pointer for metadata.
afba2bc0 1934 */
d70cbdda 1935 if (!fully_written) {
afba2bc0 1936 spin_unlock(&block_group->lock);
afba2bc0 1937
d70cbdda
NA
1938 ret = btrfs_inc_block_group_ro(block_group, false);
1939 if (ret)
1940 return ret;
1941
1942 /* Ensure all writes in this block group finish */
1943 btrfs_wait_block_group_reservations(block_group);
1944 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
1945 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1946 block_group->length);
1947
1948 spin_lock(&block_group->lock);
1949
1950 /*
1951 * Bail out if someone already deactivated the block group, or
1952 * allocated space is left in the block group.
1953 */
1954 if (!block_group->zone_is_active) {
1955 spin_unlock(&block_group->lock);
1956 btrfs_dec_block_group_ro(block_group);
1957 return 0;
1958 }
1959
1960 if (block_group->reserved) {
1961 spin_unlock(&block_group->lock);
1962 btrfs_dec_block_group_ro(block_group);
1963 return -EAGAIN;
1964 }
afba2bc0
NA
1965 }
1966
1967 block_group->zone_is_active = 0;
1968 block_group->alloc_offset = block_group->zone_capacity;
1969 block_group->free_space_ctl->free_space = 0;
1970 btrfs_clear_treelog_bg(block_group);
5911f538 1971 btrfs_clear_data_reloc_bg(block_group);
afba2bc0
NA
1972 spin_unlock(&block_group->lock);
1973
d70cbdda 1974 map = block_group->physical_map;
4dcbb8ab 1975 for (i = 0; i < map->num_stripes; i++) {
d70cbdda
NA
1976 struct btrfs_device *device = map->stripes[i].dev;
1977 const u64 physical = map->stripes[i].physical;
afba2bc0 1978
4dcbb8ab
JT
1979 if (device->zone_info->max_active_zones == 0)
1980 continue;
afba2bc0 1981
b3a3b025
NA
1982 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
1983 physical >> SECTOR_SHIFT,
1984 device->zone_info->zone_size >> SECTOR_SHIFT,
1985 GFP_NOFS);
4dcbb8ab 1986
b3a3b025
NA
1987 if (ret)
1988 return ret;
afba2bc0 1989
4dcbb8ab 1990 btrfs_dev_clear_active_zone(device, physical);
afba2bc0 1991 }
d70cbdda
NA
1992
1993 if (!fully_written)
1994 btrfs_dec_block_group_ro(block_group);
afba2bc0 1995
4dcbb8ab
JT
1996 spin_lock(&fs_info->zone_active_bgs_lock);
1997 ASSERT(!list_empty(&block_group->active_bg_list));
1998 list_del_init(&block_group->active_bg_list);
1999 spin_unlock(&fs_info->zone_active_bgs_lock);
2000
2001 /* For active_bg_list */
2002 btrfs_put_block_group(block_group);
2003
2004 return 0;
afba2bc0 2005}
a85f05e5 2006
d70cbdda
NA
2007int btrfs_zone_finish(struct btrfs_block_group *block_group)
2008{
2009 if (!btrfs_is_zoned(block_group->fs_info))
2010 return 0;
2011
2012 return do_zone_finish(block_group, false);
2013}
2014
82187d2e 2015bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
a85f05e5 2016{
0b9e6676 2017 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
a85f05e5
NA
2018 struct btrfs_device *device;
2019 bool ret = false;
2020
0b9e6676 2021 if (!btrfs_is_zoned(fs_info))
a85f05e5
NA
2022 return true;
2023
a85f05e5 2024 /* Check if there is a device with active zones left */
0b9e6676
JT
2025 mutex_lock(&fs_info->chunk_mutex);
2026 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
a85f05e5
NA
2027 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2028
2029 if (!device->bdev)
2030 continue;
2031
2032 if (!zinfo->max_active_zones ||
2033 atomic_read(&zinfo->active_zones_left)) {
2034 ret = true;
2035 break;
2036 }
2037 }
0b9e6676 2038 mutex_unlock(&fs_info->chunk_mutex);
a85f05e5
NA
2039
2040 return ret;
2041}
be1a1d7a
NA
2042
2043void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2044{
2045 struct btrfs_block_group *block_group;
8b8a5399 2046 u64 min_alloc_bytes;
be1a1d7a
NA
2047
2048 if (!btrfs_is_zoned(fs_info))
2049 return;
2050
2051 block_group = btrfs_lookup_block_group(fs_info, logical);
2052 ASSERT(block_group);
2053
8b8a5399
NA
2054 /* No MIXED_BG on zoned btrfs. */
2055 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2056 min_alloc_bytes = fs_info->sectorsize;
2057 else
2058 min_alloc_bytes = fs_info->nodesize;
be1a1d7a 2059
8b8a5399
NA
2060 /* Bail out if we can allocate more data from this block group. */
2061 if (logical + length + min_alloc_bytes <=
2062 block_group->start + block_group->zone_capacity)
be1a1d7a 2063 goto out;
be1a1d7a 2064
d70cbdda 2065 do_zone_finish(block_group, true);
be1a1d7a 2066
be1a1d7a
NA
2067out:
2068 btrfs_put_block_group(block_group);
2069}
be1a1d7a 2070
56fbb0a4
NA
2071static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2072{
2073 struct btrfs_block_group *bg =
2074 container_of(work, struct btrfs_block_group, zone_finish_work);
be1a1d7a 2075
56fbb0a4
NA
2076 wait_on_extent_buffer_writeback(bg->last_eb);
2077 free_extent_buffer(bg->last_eb);
2078 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2079 btrfs_put_block_group(bg);
2080}
be1a1d7a 2081
56fbb0a4
NA
2082void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2083 struct extent_buffer *eb)
2084{
2085 if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2086 return;
be1a1d7a 2087
56fbb0a4
NA
2088 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2089 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2090 bg->start);
2091 return;
2092 }
be1a1d7a 2093
56fbb0a4
NA
2094 /* For the work */
2095 btrfs_get_block_group(bg);
2096 atomic_inc(&eb->refs);
2097 bg->last_eb = eb;
2098 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2099 queue_work(system_unbound_wq, &bg->zone_finish_work);
be1a1d7a 2100}
c2707a25
JT
2101
2102void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2103{
2104 struct btrfs_fs_info *fs_info = bg->fs_info;
2105
2106 spin_lock(&fs_info->relocation_bg_lock);
2107 if (fs_info->data_reloc_bg == bg->start)
2108 fs_info->data_reloc_bg = 0;
2109 spin_unlock(&fs_info->relocation_bg_lock);
2110}
16beac87
NA
2111
2112void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2113{
2114 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2115 struct btrfs_device *device;
2116
2117 if (!btrfs_is_zoned(fs_info))
2118 return;
2119
2120 mutex_lock(&fs_devices->device_list_mutex);
2121 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2122 if (device->zone_info) {
2123 vfree(device->zone_info->zone_cache);
2124 device->zone_info->zone_cache = NULL;
2125 }
2126 }
2127 mutex_unlock(&fs_devices->device_list_mutex);
2128}
3687fcb0
JT
2129
2130bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2131{
2132 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2133 struct btrfs_device *device;
2134 u64 used = 0;
2135 u64 total = 0;
2136 u64 factor;
2137
2138 ASSERT(btrfs_is_zoned(fs_info));
2139
2140 if (fs_info->bg_reclaim_threshold == 0)
2141 return false;
2142
2143 mutex_lock(&fs_devices->device_list_mutex);
2144 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2145 if (!device->bdev)
2146 continue;
2147
2148 total += device->disk_total_bytes;
2149 used += device->bytes_used;
2150 }
2151 mutex_unlock(&fs_devices->device_list_mutex);
2152
2153 factor = div64_u64(used * 100, total);
2154 return factor >= fs_info->bg_reclaim_threshold;
2155}
343d8a30
NA
2156
2157void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2158 u64 length)
2159{
2160 struct btrfs_block_group *block_group;
2161
2162 if (!btrfs_is_zoned(fs_info))
2163 return;
2164
2165 block_group = btrfs_lookup_block_group(fs_info, logical);
2166 /* It should be called on a previous data relocation block group. */
2167 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2168
2169 spin_lock(&block_group->lock);
2170 if (!block_group->zoned_data_reloc_ongoing)
2171 goto out;
2172
2173 /* All relocation extents are written. */
2174 if (block_group->start + block_group->alloc_offset == logical + length) {
2175 /* Now, release this block group for further allocations. */
2176 block_group->zoned_data_reloc_ongoing = 0;
2177 }
2178
2179out:
2180 spin_unlock(&block_group->lock);
2181 btrfs_put_block_group(block_group);
2182}
393f646e
NA
2183
2184int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2185{
2186 struct btrfs_block_group *block_group;
2187 struct btrfs_block_group *min_bg = NULL;
2188 u64 min_avail = U64_MAX;
2189 int ret;
2190
2191 spin_lock(&fs_info->zone_active_bgs_lock);
2192 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2193 active_bg_list) {
2194 u64 avail;
2195
2196 spin_lock(&block_group->lock);
2197 if (block_group->reserved ||
2198 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2199 spin_unlock(&block_group->lock);
2200 continue;
2201 }
2202
2203 avail = block_group->zone_capacity - block_group->alloc_offset;
2204 if (min_avail > avail) {
2205 if (min_bg)
2206 btrfs_put_block_group(min_bg);
2207 min_bg = block_group;
2208 min_avail = avail;
2209 btrfs_get_block_group(min_bg);
2210 }
2211 spin_unlock(&block_group->lock);
2212 }
2213 spin_unlock(&fs_info->zone_active_bgs_lock);
2214
2215 if (!min_bg)
2216 return 0;
2217
2218 ret = btrfs_zone_finish(min_bg);
2219 btrfs_put_block_group(min_bg);
2220
2221 return ret < 0 ? ret : 1;
2222}