]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/zoned.c
btrfs: zoned: revive max_zone_append_bytes
[people/ms/linux.git] / fs / btrfs / zoned.c
CommitLineData
5b316468
NA
1// SPDX-License-Identifier: GPL-2.0
2
1cd6121f 3#include <linux/bitops.h>
5b316468
NA
4#include <linux/slab.h>
5#include <linux/blkdev.h>
08e11a3d 6#include <linux/sched/mm.h>
ea6f8ddc 7#include <linux/atomic.h>
16beac87 8#include <linux/vmalloc.h>
5b316468
NA
9#include "ctree.h"
10#include "volumes.h"
11#include "zoned.h"
12#include "rcu-string.h"
1cd6121f 13#include "disk-io.h"
08e11a3d 14#include "block-group.h"
d3575156 15#include "transaction.h"
6143c23c 16#include "dev-replace.h"
7db1c5d1 17#include "space-info.h"
5b316468
NA
18
19/* Maximum number of zones to report per blkdev_report_zones() call */
20#define BTRFS_REPORT_NR_ZONES 4096
08e11a3d
NA
21/* Invalid allocation pointer value for missing devices */
22#define WP_MISSING_DEV ((u64)-1)
23/* Pseudo write pointer value for conventional zone */
24#define WP_CONVENTIONAL ((u64)-2)
5b316468 25
53b74fa9
NA
26/*
27 * Location of the first zone of superblock logging zone pairs.
28 *
29 * - primary superblock: 0B (zone 0)
30 * - first copy: 512G (zone starting at that offset)
31 * - second copy: 4T (zone starting at that offset)
32 */
33#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
34#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
35#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
36
37#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39
12659251
NA
40/* Number of superblock log zones */
41#define BTRFS_NR_SB_LOG_ZONES 2
42
ea6f8ddc
NA
43/*
44 * Minimum of active zones we need:
45 *
46 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48 * - 1 zone for tree-log dedicated block group
49 * - 1 zone for relocation
50 */
51#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
52
53b74fa9 53/*
0a05fafe
JT
54 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56 * We do not expect the zone size to become larger than 8GiB or smaller than
57 * 4MiB in the near future.
53b74fa9
NA
58 */
59#define BTRFS_MAX_ZONE_SIZE SZ_8G
0a05fafe 60#define BTRFS_MIN_ZONE_SIZE SZ_4M
53b74fa9 61
5daaf552
NA
62#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63
64static inline bool sb_zone_is_full(const struct blk_zone *zone)
65{
66 return (zone->cond == BLK_ZONE_COND_FULL) ||
67 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68}
69
5b316468
NA
70static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71{
72 struct blk_zone *zones = data;
73
74 memcpy(&zones[idx], zone, sizeof(*zone));
75
76 return 0;
77}
78
12659251
NA
79static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80 u64 *wp_ret)
81{
82 bool empty[BTRFS_NR_SB_LOG_ZONES];
83 bool full[BTRFS_NR_SB_LOG_ZONES];
84 sector_t sector;
5daaf552 85 int i;
12659251 86
5daaf552
NA
87 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90 full[i] = sb_zone_is_full(&zones[i]);
91 }
12659251
NA
92
93 /*
94 * Possible states of log buffer zones
95 *
96 * Empty[0] In use[0] Full[0]
31f37269
PR
97 * Empty[1] * 0 1
98 * In use[1] x x 1
99 * Full[1] 0 0 C
12659251
NA
100 *
101 * Log position:
102 * *: Special case, no superblock is written
103 * 0: Use write pointer of zones[0]
104 * 1: Use write pointer of zones[1]
1a9fd417 105 * C: Compare super blocks from zones[0] and zones[1], use the latest
12659251
NA
106 * one determined by generation
107 * x: Invalid state
108 */
109
110 if (empty[0] && empty[1]) {
111 /* Special case to distinguish no superblock to read */
112 *wp_ret = zones[0].start << SECTOR_SHIFT;
113 return -ENOENT;
114 } else if (full[0] && full[1]) {
115 /* Compare two super blocks */
116 struct address_space *mapping = bdev->bd_inode->i_mapping;
117 struct page *page[BTRFS_NR_SB_LOG_ZONES];
118 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119 int i;
120
121 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122 u64 bytenr;
123
124 bytenr = ((zones[i].start + zones[i].len)
125 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126
127 page[i] = read_cache_page_gfp(mapping,
128 bytenr >> PAGE_SHIFT, GFP_NOFS);
129 if (IS_ERR(page[i])) {
130 if (i == 1)
131 btrfs_release_disk_super(super[0]);
132 return PTR_ERR(page[i]);
133 }
134 super[i] = page_address(page[i]);
135 }
136
137 if (super[0]->generation > super[1]->generation)
138 sector = zones[1].start;
139 else
140 sector = zones[0].start;
141
142 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
143 btrfs_release_disk_super(super[i]);
144 } else if (!full[0] && (empty[1] || full[1])) {
145 sector = zones[0].wp;
146 } else if (full[0]) {
147 sector = zones[1].wp;
148 } else {
149 return -EUCLEAN;
150 }
151 *wp_ret = sector << SECTOR_SHIFT;
152 return 0;
153}
154
155/*
53b74fa9 156 * Get the first zone number of the superblock mirror
12659251
NA
157 */
158static inline u32 sb_zone_number(int shift, int mirror)
159{
53b74fa9 160 u64 zone;
12659251 161
53b74fa9 162 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
12659251 163 switch (mirror) {
53b74fa9
NA
164 case 0: zone = 0; break;
165 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
166 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
12659251
NA
167 }
168
53b74fa9
NA
169 ASSERT(zone <= U32_MAX);
170
171 return (u32)zone;
12659251
NA
172}
173
5b434df8
NA
174static inline sector_t zone_start_sector(u32 zone_number,
175 struct block_device *bdev)
176{
177 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
178}
179
180static inline u64 zone_start_physical(u32 zone_number,
181 struct btrfs_zoned_device_info *zone_info)
182{
183 return (u64)zone_number << zone_info->zone_size_shift;
184}
185
3c9daa09
JT
186/*
187 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
188 * device into static sized chunks and fake a conventional zone on each of
189 * them.
190 */
191static int emulate_report_zones(struct btrfs_device *device, u64 pos,
192 struct blk_zone *zones, unsigned int nr_zones)
193{
194 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
195 sector_t bdev_size = bdev_nr_sectors(device->bdev);
196 unsigned int i;
197
198 pos >>= SECTOR_SHIFT;
199 for (i = 0; i < nr_zones; i++) {
200 zones[i].start = i * zone_sectors + pos;
201 zones[i].len = zone_sectors;
202 zones[i].capacity = zone_sectors;
203 zones[i].wp = zones[i].start + zone_sectors;
204 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
205 zones[i].cond = BLK_ZONE_COND_NOT_WP;
206
207 if (zones[i].wp >= bdev_size) {
208 i++;
209 break;
210 }
211 }
212
213 return i;
214}
215
5b316468
NA
216static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
217 struct blk_zone *zones, unsigned int *nr_zones)
218{
16beac87
NA
219 struct btrfs_zoned_device_info *zinfo = device->zone_info;
220 u32 zno;
5b316468
NA
221 int ret;
222
223 if (!*nr_zones)
224 return 0;
225
3c9daa09
JT
226 if (!bdev_is_zoned(device->bdev)) {
227 ret = emulate_report_zones(device, pos, zones, *nr_zones);
228 *nr_zones = ret;
229 return 0;
230 }
231
16beac87
NA
232 /* Check cache */
233 if (zinfo->zone_cache) {
234 unsigned int i;
235
236 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
237 zno = pos >> zinfo->zone_size_shift;
238 /*
239 * We cannot report zones beyond the zone end. So, it is OK to
240 * cap *nr_zones to at the end.
241 */
242 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
243
244 for (i = 0; i < *nr_zones; i++) {
245 struct blk_zone *zone_info;
246
247 zone_info = &zinfo->zone_cache[zno + i];
248 if (!zone_info->len)
249 break;
250 }
251
252 if (i == *nr_zones) {
253 /* Cache hit on all the zones */
254 memcpy(zones, zinfo->zone_cache + zno,
255 sizeof(*zinfo->zone_cache) * *nr_zones);
256 return 0;
257 }
258 }
259
5b316468
NA
260 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
261 copy_zone_info_cb, zones);
262 if (ret < 0) {
263 btrfs_err_in_rcu(device->fs_info,
264 "zoned: failed to read zone %llu on %s (devid %llu)",
265 pos, rcu_str_deref(device->name),
266 device->devid);
267 return ret;
268 }
269 *nr_zones = ret;
270 if (!ret)
271 return -EIO;
272
16beac87
NA
273 /* Populate cache */
274 if (zinfo->zone_cache)
275 memcpy(zinfo->zone_cache + zno, zones,
276 sizeof(*zinfo->zone_cache) * *nr_zones);
277
5b316468
NA
278 return 0;
279}
280
3c9daa09
JT
281/* The emulated zone size is determined from the size of device extent */
282static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
283{
284 struct btrfs_path *path;
285 struct btrfs_root *root = fs_info->dev_root;
286 struct btrfs_key key;
287 struct extent_buffer *leaf;
288 struct btrfs_dev_extent *dext;
289 int ret = 0;
290
291 key.objectid = 1;
292 key.type = BTRFS_DEV_EXTENT_KEY;
293 key.offset = 0;
294
295 path = btrfs_alloc_path();
296 if (!path)
297 return -ENOMEM;
298
299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
300 if (ret < 0)
301 goto out;
302
303 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 304 ret = btrfs_next_leaf(root, path);
3c9daa09
JT
305 if (ret < 0)
306 goto out;
307 /* No dev extents at all? Not good */
308 if (ret > 0) {
309 ret = -EUCLEAN;
310 goto out;
311 }
312 }
313
314 leaf = path->nodes[0];
315 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
316 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
317 ret = 0;
318
319out:
320 btrfs_free_path(path);
321
322 return ret;
323}
324
73651042
NA
325int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326{
327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
328 struct btrfs_device *device;
329 int ret = 0;
330
331 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
332 if (!btrfs_fs_incompat(fs_info, ZONED))
333 return 0;
334
335 mutex_lock(&fs_devices->device_list_mutex);
336 list_for_each_entry(device, &fs_devices->devices, dev_list) {
337 /* We can skip reading of zone info for missing devices */
338 if (!device->bdev)
339 continue;
340
16beac87 341 ret = btrfs_get_dev_zone_info(device, true);
73651042
NA
342 if (ret)
343 break;
344 }
345 mutex_unlock(&fs_devices->device_list_mutex);
346
347 return ret;
348}
349
16beac87 350int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
5b316468 351{
3c9daa09 352 struct btrfs_fs_info *fs_info = device->fs_info;
5b316468
NA
353 struct btrfs_zoned_device_info *zone_info = NULL;
354 struct block_device *bdev = device->bdev;
ea6f8ddc
NA
355 unsigned int max_active_zones;
356 unsigned int nactive;
5b316468
NA
357 sector_t nr_sectors;
358 sector_t sector = 0;
359 struct blk_zone *zones = NULL;
360 unsigned int i, nreported = 0, nr_zones;
d734492a 361 sector_t zone_sectors;
3c9daa09 362 char *model, *emulated;
5b316468
NA
363 int ret;
364
3c9daa09
JT
365 /*
366 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
367 * yet be set.
368 */
369 if (!btrfs_fs_incompat(fs_info, ZONED))
5b316468
NA
370 return 0;
371
372 if (device->zone_info)
373 return 0;
374
375 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
376 if (!zone_info)
377 return -ENOMEM;
378
16beac87
NA
379 device->zone_info = zone_info;
380
3c9daa09
JT
381 if (!bdev_is_zoned(bdev)) {
382 if (!fs_info->zone_size) {
383 ret = calculate_emulated_zone_size(fs_info);
384 if (ret)
385 goto out;
386 }
387
388 ASSERT(fs_info->zone_size);
389 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
390 } else {
391 zone_sectors = bdev_zone_sectors(bdev);
392 }
393
5b316468
NA
394 /* Check if it's power of 2 (see is_power_of_2) */
395 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
396 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
53b74fa9
NA
397
398 /* We reject devices with a zone size larger than 8GB */
399 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
400 btrfs_err_in_rcu(fs_info,
401 "zoned: %s: zone size %llu larger than supported maximum %llu",
402 rcu_str_deref(device->name),
403 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
404 ret = -EINVAL;
405 goto out;
0a05fafe
JT
406 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
407 btrfs_err_in_rcu(fs_info,
408 "zoned: %s: zone size %llu smaller than supported minimum %u",
409 rcu_str_deref(device->name),
410 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
411 ret = -EINVAL;
412 goto out;
53b74fa9
NA
413 }
414
415 nr_sectors = bdev_nr_sectors(bdev);
5b316468
NA
416 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
417 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
c2ae7b77
NA
418 /*
419 * We limit max_zone_append_size also by max_segments *
420 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
421 * since btrfs adds the pages one by one to a bio, and btrfs cannot
422 * increase the metadata reservation even if it increases the number of
423 * extents, it is safe to stick with the limit.
424 */
425 zone_info->max_zone_append_size =
426 min_t(u64, (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
427 (u64)bdev_max_segments(bdev) << PAGE_SHIFT);
5b316468
NA
428 if (!IS_ALIGNED(nr_sectors, zone_sectors))
429 zone_info->nr_zones++;
430
c1e7b244 431 max_active_zones = bdev_max_active_zones(bdev);
ea6f8ddc
NA
432 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
433 btrfs_err_in_rcu(fs_info,
434"zoned: %s: max active zones %u is too small, need at least %u active zones",
435 rcu_str_deref(device->name), max_active_zones,
436 BTRFS_MIN_ACTIVE_ZONES);
437 ret = -EINVAL;
438 goto out;
439 }
440 zone_info->max_active_zones = max_active_zones;
441
5b316468
NA
442 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
443 if (!zone_info->seq_zones) {
444 ret = -ENOMEM;
445 goto out;
446 }
447
448 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
449 if (!zone_info->empty_zones) {
450 ret = -ENOMEM;
451 goto out;
452 }
453
ea6f8ddc
NA
454 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
455 if (!zone_info->active_zones) {
456 ret = -ENOMEM;
457 goto out;
458 }
459
5b316468
NA
460 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
461 if (!zones) {
462 ret = -ENOMEM;
463 goto out;
464 }
465
16beac87
NA
466 /*
467 * Enable zone cache only for a zoned device. On a non-zoned device, we
468 * fill the zone info with emulated CONVENTIONAL zones, so no need to
469 * use the cache.
470 */
471 if (populate_cache && bdev_is_zoned(device->bdev)) {
472 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
473 zone_info->nr_zones);
474 if (!zone_info->zone_cache) {
475 btrfs_err_in_rcu(device->fs_info,
476 "zoned: failed to allocate zone cache for %s",
477 rcu_str_deref(device->name));
478 ret = -ENOMEM;
479 goto out;
480 }
481 }
482
5b316468 483 /* Get zones type */
ea6f8ddc 484 nactive = 0;
5b316468
NA
485 while (sector < nr_sectors) {
486 nr_zones = BTRFS_REPORT_NR_ZONES;
487 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
488 &nr_zones);
489 if (ret)
490 goto out;
491
492 for (i = 0; i < nr_zones; i++) {
493 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
494 __set_bit(nreported, zone_info->seq_zones);
ea6f8ddc
NA
495 switch (zones[i].cond) {
496 case BLK_ZONE_COND_EMPTY:
5b316468 497 __set_bit(nreported, zone_info->empty_zones);
ea6f8ddc
NA
498 break;
499 case BLK_ZONE_COND_IMP_OPEN:
500 case BLK_ZONE_COND_EXP_OPEN:
501 case BLK_ZONE_COND_CLOSED:
502 __set_bit(nreported, zone_info->active_zones);
503 nactive++;
504 break;
505 }
5b316468
NA
506 nreported++;
507 }
508 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
509 }
510
511 if (nreported != zone_info->nr_zones) {
512 btrfs_err_in_rcu(device->fs_info,
513 "inconsistent number of zones on %s (%u/%u)",
514 rcu_str_deref(device->name), nreported,
515 zone_info->nr_zones);
516 ret = -EIO;
517 goto out;
518 }
519
ea6f8ddc
NA
520 if (max_active_zones) {
521 if (nactive > max_active_zones) {
522 btrfs_err_in_rcu(device->fs_info,
523 "zoned: %u active zones on %s exceeds max_active_zones %u",
524 nactive, rcu_str_deref(device->name),
525 max_active_zones);
526 ret = -EIO;
527 goto out;
528 }
529 atomic_set(&zone_info->active_zones_left,
530 max_active_zones - nactive);
531 }
532
12659251
NA
533 /* Validate superblock log */
534 nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 u32 sb_zone;
537 u64 sb_wp;
538 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 if (sb_zone + 1 >= zone_info->nr_zones)
542 continue;
543
5b434df8
NA
544 ret = btrfs_get_dev_zones(device,
545 zone_start_physical(sb_zone, zone_info),
12659251
NA
546 &zone_info->sb_zones[sb_pos],
547 &nr_zones);
548 if (ret)
549 goto out;
550
551 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 btrfs_err_in_rcu(device->fs_info,
553 "zoned: failed to read super block log zone info at devid %llu zone %u",
554 device->devid, sb_zone);
555 ret = -EUCLEAN;
556 goto out;
557 }
558
559 /*
1a9fd417 560 * If zones[0] is conventional, always use the beginning of the
12659251
NA
561 * zone to record superblock. No need to validate in that case.
562 */
563 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 BLK_ZONE_TYPE_CONVENTIONAL)
565 continue;
566
567 ret = sb_write_pointer(device->bdev,
568 &zone_info->sb_zones[sb_pos], &sb_wp);
569 if (ret != -ENOENT && ret) {
570 btrfs_err_in_rcu(device->fs_info,
571 "zoned: super block log zone corrupted devid %llu zone %u",
572 device->devid, sb_zone);
573 ret = -EUCLEAN;
574 goto out;
575 }
576 }
577
578
5b316468
NA
579 kfree(zones);
580
3c9daa09
JT
581 switch (bdev_zoned_model(bdev)) {
582 case BLK_ZONED_HM:
583 model = "host-managed zoned";
584 emulated = "";
585 break;
586 case BLK_ZONED_HA:
587 model = "host-aware zoned";
588 emulated = "";
589 break;
590 case BLK_ZONED_NONE:
591 model = "regular";
592 emulated = "emulated ";
593 break;
594 default:
595 /* Just in case */
596 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597 bdev_zoned_model(bdev),
598 rcu_str_deref(device->name));
599 ret = -EOPNOTSUPP;
600 goto out_free_zone_info;
601 }
602
603 btrfs_info_in_rcu(fs_info,
604 "%s block device %s, %u %szones of %llu bytes",
605 model, rcu_str_deref(device->name), zone_info->nr_zones,
606 emulated, zone_info->zone_size);
5b316468
NA
607
608 return 0;
609
610out:
611 kfree(zones);
3c9daa09 612out_free_zone_info:
16beac87 613 btrfs_destroy_dev_zone_info(device);
5b316468
NA
614
615 return ret;
616}
617
618void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619{
620 struct btrfs_zoned_device_info *zone_info = device->zone_info;
621
622 if (!zone_info)
623 return;
624
ea6f8ddc 625 bitmap_free(zone_info->active_zones);
5b316468
NA
626 bitmap_free(zone_info->seq_zones);
627 bitmap_free(zone_info->empty_zones);
16beac87 628 vfree(zone_info->zone_cache);
5b316468
NA
629 kfree(zone_info);
630 device->zone_info = NULL;
631}
632
633int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
634 struct blk_zone *zone)
635{
636 unsigned int nr_zones = 1;
637 int ret;
638
639 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
640 if (ret != 0 || !nr_zones)
641 return ret ? ret : -EIO;
642
643 return 0;
644}
b70f5097
NA
645
646int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
647{
648 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
649 struct btrfs_device *device;
650 u64 zoned_devices = 0;
651 u64 nr_devices = 0;
652 u64 zone_size = 0;
c2ae7b77 653 u64 max_zone_append_size = 0;
3c9daa09 654 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
b70f5097
NA
655 int ret = 0;
656
657 /* Count zoned devices */
658 list_for_each_entry(device, &fs_devices->devices, dev_list) {
659 enum blk_zoned_model model;
660
661 if (!device->bdev)
662 continue;
663
664 model = bdev_zoned_model(device->bdev);
3c9daa09
JT
665 /*
666 * A Host-Managed zoned device must be used as a zoned device.
667 * A Host-Aware zoned device and a non-zoned devices can be
668 * treated as a zoned device, if ZONED flag is enabled in the
669 * superblock.
670 */
b70f5097 671 if (model == BLK_ZONED_HM ||
3c9daa09
JT
672 (model == BLK_ZONED_HA && incompat_zoned) ||
673 (model == BLK_ZONED_NONE && incompat_zoned)) {
f716fa47 674 struct btrfs_zoned_device_info *zone_info;
862931c7
NA
675
676 zone_info = device->zone_info;
b70f5097
NA
677 zoned_devices++;
678 if (!zone_size) {
862931c7
NA
679 zone_size = zone_info->zone_size;
680 } else if (zone_info->zone_size != zone_size) {
b70f5097
NA
681 btrfs_err(fs_info,
682 "zoned: unequal block device zone sizes: have %llu found %llu",
683 device->zone_info->zone_size,
684 zone_size);
685 ret = -EINVAL;
686 goto out;
687 }
c2ae7b77
NA
688 if (!max_zone_append_size ||
689 (zone_info->max_zone_append_size &&
690 zone_info->max_zone_append_size < max_zone_append_size))
691 max_zone_append_size =
692 zone_info->max_zone_append_size;
b70f5097
NA
693 }
694 nr_devices++;
695 }
696
697 if (!zoned_devices && !incompat_zoned)
698 goto out;
699
700 if (!zoned_devices && incompat_zoned) {
701 /* No zoned block device found on ZONED filesystem */
702 btrfs_err(fs_info,
703 "zoned: no zoned devices found on a zoned filesystem");
704 ret = -EINVAL;
705 goto out;
706 }
707
708 if (zoned_devices && !incompat_zoned) {
709 btrfs_err(fs_info,
710 "zoned: mode not enabled but zoned device found");
711 ret = -EINVAL;
712 goto out;
713 }
714
715 if (zoned_devices != nr_devices) {
716 btrfs_err(fs_info,
717 "zoned: cannot mix zoned and regular devices");
718 ret = -EINVAL;
719 goto out;
720 }
721
722 /*
723 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
f6f39f7a 724 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
b70f5097
NA
725 * check the alignment here.
726 */
727 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
728 btrfs_err(fs_info,
729 "zoned: zone size %llu not aligned to stripe %u",
730 zone_size, BTRFS_STRIPE_LEN);
731 ret = -EINVAL;
732 goto out;
733 }
734
a589dde0
NA
735 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
736 btrfs_err(fs_info, "zoned: mixed block groups not supported");
737 ret = -EINVAL;
738 goto out;
739 }
740
b70f5097 741 fs_info->zone_size = zone_size;
c2ae7b77 742 fs_info->max_zone_append_size = max_zone_append_size;
1cd6121f 743 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
b70f5097 744
b53429ba
JT
745 /*
746 * Check mount options here, because we might change fs_info->zoned
747 * from fs_info->zone_size.
748 */
749 ret = btrfs_check_mountopts_zoned(fs_info);
750 if (ret)
751 goto out;
752
b70f5097
NA
753 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
754out:
755 return ret;
756}
5d1ab66c
NA
757
758int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
759{
760 if (!btrfs_is_zoned(info))
761 return 0;
762
763 /*
764 * Space cache writing is not COWed. Disable that to avoid write errors
765 * in sequential zones.
766 */
767 if (btrfs_test_opt(info, SPACE_CACHE)) {
768 btrfs_err(info, "zoned: space cache v1 is not supported");
769 return -EINVAL;
770 }
771
d206e9c9
NA
772 if (btrfs_test_opt(info, NODATACOW)) {
773 btrfs_err(info, "zoned: NODATACOW not supported");
774 return -EINVAL;
775 }
776
5d1ab66c
NA
777 return 0;
778}
12659251
NA
779
780static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
781 int rw, u64 *bytenr_ret)
782{
783 u64 wp;
784 int ret;
785
786 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
787 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
788 return 0;
789 }
790
791 ret = sb_write_pointer(bdev, zones, &wp);
792 if (ret != -ENOENT && ret < 0)
793 return ret;
794
795 if (rw == WRITE) {
796 struct blk_zone *reset = NULL;
797
798 if (wp == zones[0].start << SECTOR_SHIFT)
799 reset = &zones[0];
800 else if (wp == zones[1].start << SECTOR_SHIFT)
801 reset = &zones[1];
802
803 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
5daaf552 804 ASSERT(sb_zone_is_full(reset));
12659251
NA
805
806 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
807 reset->start, reset->len,
808 GFP_NOFS);
809 if (ret)
810 return ret;
811
812 reset->cond = BLK_ZONE_COND_EMPTY;
813 reset->wp = reset->start;
814 }
815 } else if (ret != -ENOENT) {
9658b72e
NA
816 /*
817 * For READ, we want the previous one. Move write pointer to
818 * the end of a zone, if it is at the head of a zone.
819 */
820 u64 zone_end = 0;
821
12659251 822 if (wp == zones[0].start << SECTOR_SHIFT)
9658b72e
NA
823 zone_end = zones[1].start + zones[1].capacity;
824 else if (wp == zones[1].start << SECTOR_SHIFT)
825 zone_end = zones[0].start + zones[0].capacity;
826 if (zone_end)
827 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
828 BTRFS_SUPER_INFO_SIZE);
829
12659251
NA
830 wp -= BTRFS_SUPER_INFO_SIZE;
831 }
832
833 *bytenr_ret = wp;
834 return 0;
835
836}
837
838int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
839 u64 *bytenr_ret)
840{
841 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
d734492a 842 sector_t zone_sectors;
12659251
NA
843 u32 sb_zone;
844 int ret;
12659251
NA
845 u8 zone_sectors_shift;
846 sector_t nr_sectors;
847 u32 nr_zones;
848
849 if (!bdev_is_zoned(bdev)) {
850 *bytenr_ret = btrfs_sb_offset(mirror);
851 return 0;
852 }
853
854 ASSERT(rw == READ || rw == WRITE);
855
856 zone_sectors = bdev_zone_sectors(bdev);
857 if (!is_power_of_2(zone_sectors))
858 return -EINVAL;
12659251 859 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 860 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
861 nr_zones = nr_sectors >> zone_sectors_shift;
862
863 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
864 if (sb_zone + 1 >= nr_zones)
865 return -ENOENT;
866
5b434df8 867 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
12659251
NA
868 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
869 zones);
870 if (ret < 0)
871 return ret;
872 if (ret != BTRFS_NR_SB_LOG_ZONES)
873 return -EIO;
874
875 return sb_log_location(bdev, zones, rw, bytenr_ret);
876}
877
878int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
879 u64 *bytenr_ret)
880{
881 struct btrfs_zoned_device_info *zinfo = device->zone_info;
882 u32 zone_num;
883
d6639b35
NA
884 /*
885 * For a zoned filesystem on a non-zoned block device, use the same
886 * super block locations as regular filesystem. Doing so, the super
887 * block can always be retrieved and the zoned flag of the volume
888 * detected from the super block information.
889 */
890 if (!bdev_is_zoned(device->bdev)) {
12659251
NA
891 *bytenr_ret = btrfs_sb_offset(mirror);
892 return 0;
893 }
894
895 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
896 if (zone_num + 1 >= zinfo->nr_zones)
897 return -ENOENT;
898
899 return sb_log_location(device->bdev,
900 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
901 rw, bytenr_ret);
902}
903
904static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
905 int mirror)
906{
907 u32 zone_num;
908
909 if (!zinfo)
910 return false;
911
912 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
913 if (zone_num + 1 >= zinfo->nr_zones)
914 return false;
915
916 if (!test_bit(zone_num, zinfo->seq_zones))
917 return false;
918
919 return true;
920}
921
8376d9e1 922int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
12659251
NA
923{
924 struct btrfs_zoned_device_info *zinfo = device->zone_info;
925 struct blk_zone *zone;
8376d9e1 926 int i;
12659251
NA
927
928 if (!is_sb_log_zone(zinfo, mirror))
8376d9e1 929 return 0;
12659251
NA
930
931 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
8376d9e1
NA
932 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
933 /* Advance the next zone */
934 if (zone->cond == BLK_ZONE_COND_FULL) {
935 zone++;
936 continue;
937 }
938
12659251
NA
939 if (zone->cond == BLK_ZONE_COND_EMPTY)
940 zone->cond = BLK_ZONE_COND_IMP_OPEN;
941
8376d9e1
NA
942 zone->wp += SUPER_INFO_SECTORS;
943
944 if (sb_zone_is_full(zone)) {
945 /*
946 * No room left to write new superblock. Since
947 * superblock is written with REQ_SYNC, it is safe to
948 * finish the zone now.
949 *
950 * If the write pointer is exactly at the capacity,
951 * explicit ZONE_FINISH is not necessary.
952 */
953 if (zone->wp != zone->start + zone->capacity) {
954 int ret;
955
956 ret = blkdev_zone_mgmt(device->bdev,
957 REQ_OP_ZONE_FINISH, zone->start,
958 zone->len, GFP_NOFS);
959 if (ret)
960 return ret;
961 }
12659251 962
8376d9e1 963 zone->wp = zone->start + zone->len;
12659251 964 zone->cond = BLK_ZONE_COND_FULL;
8376d9e1
NA
965 }
966 return 0;
12659251
NA
967 }
968
8376d9e1
NA
969 /* All the zones are FULL. Should not reach here. */
970 ASSERT(0);
971 return -EIO;
12659251
NA
972}
973
974int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
975{
976 sector_t zone_sectors;
977 sector_t nr_sectors;
978 u8 zone_sectors_shift;
979 u32 sb_zone;
980 u32 nr_zones;
981
982 zone_sectors = bdev_zone_sectors(bdev);
983 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 984 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
985 nr_zones = nr_sectors >> zone_sectors_shift;
986
987 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
988 if (sb_zone + 1 >= nr_zones)
989 return -ENOENT;
990
991 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
5b434df8 992 zone_start_sector(sb_zone, bdev),
12659251
NA
993 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
994}
1cd6121f
NA
995
996/**
997 * btrfs_find_allocatable_zones - find allocatable zones within a given region
998 *
999 * @device: the device to allocate a region on
1000 * @hole_start: the position of the hole to allocate the region
1001 * @num_bytes: size of wanted region
1002 * @hole_end: the end of the hole
1003 * @return: position of allocatable zones
1004 *
1005 * Allocatable region should not contain any superblock locations.
1006 */
1007u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1008 u64 hole_end, u64 num_bytes)
1009{
1010 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1011 const u8 shift = zinfo->zone_size_shift;
1012 u64 nzones = num_bytes >> shift;
1013 u64 pos = hole_start;
1014 u64 begin, end;
1015 bool have_sb;
1016 int i;
1017
1018 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1019 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1020
1021 while (pos < hole_end) {
1022 begin = pos >> shift;
1023 end = begin + nzones;
1024
1025 if (end > zinfo->nr_zones)
1026 return hole_end;
1027
1028 /* Check if zones in the region are all empty */
1029 if (btrfs_dev_is_sequential(device, pos) &&
1030 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1031 pos += zinfo->zone_size;
1032 continue;
1033 }
1034
1035 have_sb = false;
1036 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1037 u32 sb_zone;
1038 u64 sb_pos;
1039
1040 sb_zone = sb_zone_number(shift, i);
1041 if (!(end <= sb_zone ||
1042 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1043 have_sb = true;
5b434df8
NA
1044 pos = zone_start_physical(
1045 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1cd6121f
NA
1046 break;
1047 }
1048
1049 /* We also need to exclude regular superblock positions */
1050 sb_pos = btrfs_sb_offset(i);
1051 if (!(pos + num_bytes <= sb_pos ||
1052 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1053 have_sb = true;
1054 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1055 zinfo->zone_size);
1056 break;
1057 }
1058 }
1059 if (!have_sb)
1060 break;
1061 }
1062
1063 return pos;
1064}
1065
afba2bc0
NA
1066static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1067{
1068 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1069 unsigned int zno = (pos >> zone_info->zone_size_shift);
1070
1071 /* We can use any number of zones */
1072 if (zone_info->max_active_zones == 0)
1073 return true;
1074
1075 if (!test_bit(zno, zone_info->active_zones)) {
1076 /* Active zone left? */
1077 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1078 return false;
1079 if (test_and_set_bit(zno, zone_info->active_zones)) {
1080 /* Someone already set the bit */
1081 atomic_inc(&zone_info->active_zones_left);
1082 }
1083 }
1084
1085 return true;
1086}
1087
1088static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1089{
1090 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1091 unsigned int zno = (pos >> zone_info->zone_size_shift);
1092
1093 /* We can use any number of zones */
1094 if (zone_info->max_active_zones == 0)
1095 return;
1096
1097 if (test_and_clear_bit(zno, zone_info->active_zones))
1098 atomic_inc(&zone_info->active_zones_left);
1099}
1100
1cd6121f
NA
1101int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1102 u64 length, u64 *bytes)
1103{
1104 int ret;
1105
1106 *bytes = 0;
1107 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1108 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1109 GFP_NOFS);
1110 if (ret)
1111 return ret;
1112
1113 *bytes = length;
1114 while (length) {
1115 btrfs_dev_set_zone_empty(device, physical);
afba2bc0 1116 btrfs_dev_clear_active_zone(device, physical);
1cd6121f
NA
1117 physical += device->zone_info->zone_size;
1118 length -= device->zone_info->zone_size;
1119 }
1120
1121 return 0;
1122}
1123
1124int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1125{
1126 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1127 const u8 shift = zinfo->zone_size_shift;
1128 unsigned long begin = start >> shift;
1129 unsigned long end = (start + size) >> shift;
1130 u64 pos;
1131 int ret;
1132
1133 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1134 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1135
1136 if (end > zinfo->nr_zones)
1137 return -ERANGE;
1138
1139 /* All the zones are conventional */
1140 if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1141 return 0;
1142
1143 /* All the zones are sequential and empty */
1144 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1145 find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1146 return 0;
1147
1148 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1149 u64 reset_bytes;
1150
1151 if (!btrfs_dev_is_sequential(device, pos) ||
1152 btrfs_dev_is_empty_zone(device, pos))
1153 continue;
1154
1155 /* Free regions should be empty */
1156 btrfs_warn_in_rcu(
1157 device->fs_info,
1158 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1159 rcu_str_deref(device->name), device->devid, pos >> shift);
1160 WARN_ON_ONCE(1);
1161
1162 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1163 &reset_bytes);
1164 if (ret)
1165 return ret;
1166 }
1167
1168 return 0;
1169}
08e11a3d 1170
a94794d5
NA
1171/*
1172 * Calculate an allocation pointer from the extent allocation information
1173 * for a block group consist of conventional zones. It is pointed to the
1174 * end of the highest addressed extent in the block group as an allocation
1175 * offset.
1176 */
1177static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1178 u64 *offset_ret)
1179{
1180 struct btrfs_fs_info *fs_info = cache->fs_info;
29cbcf40 1181 struct btrfs_root *root;
a94794d5
NA
1182 struct btrfs_path *path;
1183 struct btrfs_key key;
1184 struct btrfs_key found_key;
1185 int ret;
1186 u64 length;
1187
1188 path = btrfs_alloc_path();
1189 if (!path)
1190 return -ENOMEM;
1191
1192 key.objectid = cache->start + cache->length;
1193 key.type = 0;
1194 key.offset = 0;
1195
29cbcf40 1196 root = btrfs_extent_root(fs_info, key.objectid);
a94794d5
NA
1197 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1198 /* We should not find the exact match */
1199 if (!ret)
1200 ret = -EUCLEAN;
1201 if (ret < 0)
1202 goto out;
1203
1204 ret = btrfs_previous_extent_item(root, path, cache->start);
1205 if (ret) {
1206 if (ret == 1) {
1207 ret = 0;
1208 *offset_ret = 0;
1209 }
1210 goto out;
1211 }
1212
1213 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1214
1215 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1216 length = found_key.offset;
1217 else
1218 length = fs_info->nodesize;
1219
1220 if (!(found_key.objectid >= cache->start &&
1221 found_key.objectid + length <= cache->start + cache->length)) {
1222 ret = -EUCLEAN;
1223 goto out;
1224 }
1225 *offset_ret = found_key.objectid + length - cache->start;
1226 ret = 0;
1227
1228out:
1229 btrfs_free_path(path);
1230 return ret;
1231}
1232
1233int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
08e11a3d
NA
1234{
1235 struct btrfs_fs_info *fs_info = cache->fs_info;
1236 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1237 struct extent_map *em;
1238 struct map_lookup *map;
1239 struct btrfs_device *device;
1240 u64 logical = cache->start;
1241 u64 length = cache->length;
08e11a3d
NA
1242 int ret;
1243 int i;
1244 unsigned int nofs_flag;
1245 u64 *alloc_offsets = NULL;
8eae532b 1246 u64 *caps = NULL;
dbfcc18f 1247 u64 *physical = NULL;
68a384b5 1248 unsigned long *active = NULL;
a94794d5 1249 u64 last_alloc = 0;
08e11a3d
NA
1250 u32 num_sequential = 0, num_conventional = 0;
1251
1252 if (!btrfs_is_zoned(fs_info))
1253 return 0;
1254
1255 /* Sanity check */
1256 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1257 btrfs_err(fs_info,
1258 "zoned: block group %llu len %llu unaligned to zone size %llu",
1259 logical, length, fs_info->zone_size);
1260 return -EIO;
1261 }
1262
1263 /* Get the chunk mapping */
1264 read_lock(&em_tree->lock);
1265 em = lookup_extent_mapping(em_tree, logical, length);
1266 read_unlock(&em_tree->lock);
1267
1268 if (!em)
1269 return -EINVAL;
1270
1271 map = em->map_lookup;
1272
64259baa 1273 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
dafc340d
NA
1274 if (!cache->physical_map) {
1275 ret = -ENOMEM;
1276 goto out;
1277 }
1278
08e11a3d
NA
1279 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1280 if (!alloc_offsets) {
dafc340d
NA
1281 ret = -ENOMEM;
1282 goto out;
08e11a3d
NA
1283 }
1284
8eae532b
NA
1285 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1286 if (!caps) {
1287 ret = -ENOMEM;
1288 goto out;
1289 }
1290
dbfcc18f
JT
1291 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1292 if (!physical) {
1293 ret = -ENOMEM;
1294 goto out;
1295 }
1296
68a384b5
NA
1297 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1298 if (!active) {
1299 ret = -ENOMEM;
1300 goto out;
1301 }
1302
08e11a3d
NA
1303 for (i = 0; i < map->num_stripes; i++) {
1304 bool is_sequential;
1305 struct blk_zone zone;
6143c23c
NA
1306 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1307 int dev_replace_is_ongoing = 0;
08e11a3d
NA
1308
1309 device = map->stripes[i].dev;
dbfcc18f 1310 physical[i] = map->stripes[i].physical;
08e11a3d
NA
1311
1312 if (device->bdev == NULL) {
1313 alloc_offsets[i] = WP_MISSING_DEV;
1314 continue;
1315 }
1316
dbfcc18f 1317 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
08e11a3d
NA
1318 if (is_sequential)
1319 num_sequential++;
1320 else
1321 num_conventional++;
1322
1323 if (!is_sequential) {
1324 alloc_offsets[i] = WP_CONVENTIONAL;
1325 continue;
1326 }
1327
1328 /*
1329 * This zone will be used for allocation, so mark this zone
1330 * non-empty.
1331 */
dbfcc18f 1332 btrfs_dev_clear_zone_empty(device, physical[i]);
08e11a3d 1333
6143c23c
NA
1334 down_read(&dev_replace->rwsem);
1335 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1336 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
dbfcc18f 1337 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
6143c23c
NA
1338 up_read(&dev_replace->rwsem);
1339
08e11a3d
NA
1340 /*
1341 * The group is mapped to a sequential zone. Get the zone write
1342 * pointer to determine the allocation offset within the zone.
1343 */
dbfcc18f 1344 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
08e11a3d 1345 nofs_flag = memalloc_nofs_save();
dbfcc18f 1346 ret = btrfs_get_dev_zone(device, physical[i], &zone);
08e11a3d
NA
1347 memalloc_nofs_restore(nofs_flag);
1348 if (ret == -EIO || ret == -EOPNOTSUPP) {
1349 ret = 0;
1350 alloc_offsets[i] = WP_MISSING_DEV;
1351 continue;
1352 } else if (ret) {
1353 goto out;
1354 }
1355
784daf2b 1356 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
47cdfb5e
NA
1357 btrfs_err_in_rcu(fs_info,
1358 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1359 zone.start << SECTOR_SHIFT,
1360 rcu_str_deref(device->name), device->devid);
784daf2b
NA
1361 ret = -EIO;
1362 goto out;
1363 }
1364
8eae532b
NA
1365 caps[i] = (zone.capacity << SECTOR_SHIFT);
1366
08e11a3d
NA
1367 switch (zone.cond) {
1368 case BLK_ZONE_COND_OFFLINE:
1369 case BLK_ZONE_COND_READONLY:
1370 btrfs_err(fs_info,
1371 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
dbfcc18f 1372 physical[i] >> device->zone_info->zone_size_shift,
08e11a3d
NA
1373 rcu_str_deref(device->name), device->devid);
1374 alloc_offsets[i] = WP_MISSING_DEV;
1375 break;
1376 case BLK_ZONE_COND_EMPTY:
1377 alloc_offsets[i] = 0;
1378 break;
1379 case BLK_ZONE_COND_FULL:
8eae532b 1380 alloc_offsets[i] = caps[i];
08e11a3d
NA
1381 break;
1382 default:
1383 /* Partially used zone */
1384 alloc_offsets[i] =
1385 ((zone.wp - zone.start) << SECTOR_SHIFT);
68a384b5 1386 __set_bit(i, active);
08e11a3d
NA
1387 break;
1388 }
68a384b5
NA
1389
1390 /*
1391 * Consider a zone as active if we can allow any number of
1392 * active zones.
1393 */
1394 if (!device->zone_info->max_active_zones)
1395 __set_bit(i, active);
08e11a3d
NA
1396 }
1397
08f45559
JT
1398 if (num_sequential > 0)
1399 cache->seq_zone = true;
1400
08e11a3d
NA
1401 if (num_conventional > 0) {
1402 /*
a94794d5
NA
1403 * Avoid calling calculate_alloc_pointer() for new BG. It
1404 * is no use for new BG. It must be always 0.
1405 *
1406 * Also, we have a lock chain of extent buffer lock ->
1407 * chunk mutex. For new BG, this function is called from
1408 * btrfs_make_block_group() which is already taking the
1409 * chunk mutex. Thus, we cannot call
1410 * calculate_alloc_pointer() which takes extent buffer
1411 * locks to avoid deadlock.
08e11a3d 1412 */
8eae532b
NA
1413
1414 /* Zone capacity is always zone size in emulation */
1415 cache->zone_capacity = cache->length;
a94794d5
NA
1416 if (new) {
1417 cache->alloc_offset = 0;
1418 goto out;
1419 }
1420 ret = calculate_alloc_pointer(cache, &last_alloc);
1421 if (ret || map->num_stripes == num_conventional) {
1422 if (!ret)
1423 cache->alloc_offset = last_alloc;
1424 else
1425 btrfs_err(fs_info,
1426 "zoned: failed to determine allocation offset of bg %llu",
1427 cache->start);
1428 goto out;
1429 }
08e11a3d
NA
1430 }
1431
1432 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1433 case 0: /* single */
06e1e7f4
JT
1434 if (alloc_offsets[0] == WP_MISSING_DEV) {
1435 btrfs_err(fs_info,
1436 "zoned: cannot recover write pointer for zone %llu",
dbfcc18f 1437 physical[0]);
06e1e7f4
JT
1438 ret = -EIO;
1439 goto out;
1440 }
08e11a3d 1441 cache->alloc_offset = alloc_offsets[0];
8eae532b 1442 cache->zone_capacity = caps[0];
68a384b5 1443 cache->zone_is_active = test_bit(0, active);
08e11a3d
NA
1444 break;
1445 case BTRFS_BLOCK_GROUP_DUP:
265f7237
JT
1446 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1447 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1448 ret = -EINVAL;
1449 goto out;
1450 }
1451 if (alloc_offsets[0] == WP_MISSING_DEV) {
1452 btrfs_err(fs_info,
1453 "zoned: cannot recover write pointer for zone %llu",
1454 physical[0]);
1455 ret = -EIO;
1456 goto out;
1457 }
1458 if (alloc_offsets[1] == WP_MISSING_DEV) {
1459 btrfs_err(fs_info,
1460 "zoned: cannot recover write pointer for zone %llu",
1461 physical[1]);
1462 ret = -EIO;
1463 goto out;
1464 }
1465 if (alloc_offsets[0] != alloc_offsets[1]) {
1466 btrfs_err(fs_info,
1467 "zoned: write pointer offset mismatch of zones in DUP profile");
1468 ret = -EIO;
1469 goto out;
1470 }
1471 if (test_bit(0, active) != test_bit(1, active)) {
1472 if (!btrfs_zone_activate(cache)) {
1473 ret = -EIO;
1474 goto out;
1475 }
1476 } else {
1477 cache->zone_is_active = test_bit(0, active);
1478 }
1479 cache->alloc_offset = alloc_offsets[0];
1480 cache->zone_capacity = min(caps[0], caps[1]);
1481 break;
08e11a3d
NA
1482 case BTRFS_BLOCK_GROUP_RAID1:
1483 case BTRFS_BLOCK_GROUP_RAID0:
1484 case BTRFS_BLOCK_GROUP_RAID10:
1485 case BTRFS_BLOCK_GROUP_RAID5:
1486 case BTRFS_BLOCK_GROUP_RAID6:
1487 /* non-single profiles are not supported yet */
1488 default:
1489 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1490 btrfs_bg_type_to_raid_name(map->type));
1491 ret = -EINVAL;
1492 goto out;
1493 }
1494
68a384b5
NA
1495 if (cache->zone_is_active) {
1496 btrfs_get_block_group(cache);
1497 spin_lock(&fs_info->zone_active_bgs_lock);
1498 list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs);
1499 spin_unlock(&fs_info->zone_active_bgs_lock);
1500 }
1501
08e11a3d 1502out:
06e1e7f4
JT
1503 if (cache->alloc_offset > fs_info->zone_size) {
1504 btrfs_err(fs_info,
1505 "zoned: invalid write pointer %llu in block group %llu",
1506 cache->alloc_offset, cache->start);
1507 ret = -EIO;
1508 }
1509
8eae532b
NA
1510 if (cache->alloc_offset > cache->zone_capacity) {
1511 btrfs_err(fs_info,
1512"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1513 cache->alloc_offset, cache->zone_capacity,
1514 cache->start);
1515 ret = -EIO;
1516 }
1517
a94794d5
NA
1518 /* An extent is allocated after the write pointer */
1519 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1520 btrfs_err(fs_info,
1521 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1522 logical, last_alloc, cache->alloc_offset);
1523 ret = -EIO;
1524 }
1525
0bc09ca1
NA
1526 if (!ret)
1527 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1528
dafc340d
NA
1529 if (ret) {
1530 kfree(cache->physical_map);
1531 cache->physical_map = NULL;
1532 }
68a384b5 1533 bitmap_free(active);
dbfcc18f 1534 kfree(physical);
8eae532b 1535 kfree(caps);
08e11a3d
NA
1536 kfree(alloc_offsets);
1537 free_extent_map(em);
1538
1539 return ret;
1540}
169e0da9
NA
1541
1542void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1543{
1544 u64 unusable, free;
1545
1546 if (!btrfs_is_zoned(cache->fs_info))
1547 return;
1548
1549 WARN_ON(cache->bytes_super != 0);
98173255
NA
1550 unusable = (cache->alloc_offset - cache->used) +
1551 (cache->length - cache->zone_capacity);
1552 free = cache->zone_capacity - cache->alloc_offset;
169e0da9
NA
1553
1554 /* We only need ->free_space in ALLOC_SEQ block groups */
1555 cache->last_byte_to_unpin = (u64)-1;
1556 cache->cached = BTRFS_CACHE_FINISHED;
1557 cache->free_space_ctl->free_space = free;
1558 cache->zone_unusable = unusable;
169e0da9 1559}
d3575156
NA
1560
1561void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1562 struct extent_buffer *eb)
1563{
1564 struct btrfs_fs_info *fs_info = eb->fs_info;
1565
1566 if (!btrfs_is_zoned(fs_info) ||
1567 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1568 !list_empty(&eb->release_list))
1569 return;
1570
1571 set_extent_buffer_dirty(eb);
1572 set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1573 eb->start + eb->len - 1, EXTENT_DIRTY);
1574 memzero_extent_buffer(eb, 0, eb->len);
1575 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1576
1577 spin_lock(&trans->releasing_ebs_lock);
1578 list_add_tail(&eb->release_list, &trans->releasing_ebs);
1579 spin_unlock(&trans->releasing_ebs_lock);
1580 atomic_inc(&eb->refs);
1581}
1582
1583void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1584{
1585 spin_lock(&trans->releasing_ebs_lock);
1586 while (!list_empty(&trans->releasing_ebs)) {
1587 struct extent_buffer *eb;
1588
1589 eb = list_first_entry(&trans->releasing_ebs,
1590 struct extent_buffer, release_list);
1591 list_del_init(&eb->release_list);
1592 free_extent_buffer(eb);
1593 }
1594 spin_unlock(&trans->releasing_ebs_lock);
1595}
08f45559 1596
e380adfc 1597bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
08f45559
JT
1598{
1599 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1600 struct btrfs_block_group *cache;
1601 bool ret = false;
1602
1603 if (!btrfs_is_zoned(fs_info))
1604 return false;
1605
08f45559
JT
1606 if (!is_data_inode(&inode->vfs_inode))
1607 return false;
1608
e6d261e3
JT
1609 /*
1610 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1611 * extent layout the relocation code has.
1612 * Furthermore we have set aside own block-group from which only the
1613 * relocation "process" can allocate and make sure only one process at a
1614 * time can add pages to an extent that gets relocated, so it's safe to
1615 * use regular REQ_OP_WRITE for this special case.
1616 */
1617 if (btrfs_is_data_reloc_root(inode->root))
1618 return false;
1619
e380adfc 1620 cache = btrfs_lookup_block_group(fs_info, start);
08f45559
JT
1621 ASSERT(cache);
1622 if (!cache)
1623 return false;
1624
1625 ret = cache->seq_zone;
1626 btrfs_put_block_group(cache);
1627
1628 return ret;
1629}
d8e3fb10
NA
1630
1631void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1632 struct bio *bio)
1633{
1634 struct btrfs_ordered_extent *ordered;
1635 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1636
1637 if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1638 return;
1639
1640 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1641 if (WARN_ON(!ordered))
1642 return;
1643
1644 ordered->physical = physical;
c7c3a6dc 1645 ordered->bdev = bio->bi_bdev;
d8e3fb10
NA
1646
1647 btrfs_put_ordered_extent(ordered);
1648}
1649
1650void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1651{
1652 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1653 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1654 struct extent_map_tree *em_tree;
1655 struct extent_map *em;
1656 struct btrfs_ordered_sum *sum;
d8e3fb10
NA
1657 u64 orig_logical = ordered->disk_bytenr;
1658 u64 *logical = NULL;
1659 int nr, stripe_len;
1660
1661 /* Zoned devices should not have partitions. So, we can assume it is 0 */
c7c3a6dc
CH
1662 ASSERT(!bdev_is_partition(ordered->bdev));
1663 if (WARN_ON(!ordered->bdev))
d8e3fb10
NA
1664 return;
1665
c7c3a6dc 1666 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
d8e3fb10
NA
1667 ordered->physical, &logical, &nr,
1668 &stripe_len)))
1669 goto out;
1670
1671 WARN_ON(nr != 1);
1672
1673 if (orig_logical == *logical)
1674 goto out;
1675
1676 ordered->disk_bytenr = *logical;
1677
1678 em_tree = &inode->extent_tree;
1679 write_lock(&em_tree->lock);
1680 em = search_extent_mapping(em_tree, ordered->file_offset,
1681 ordered->num_bytes);
1682 em->block_start = *logical;
1683 free_extent_map(em);
1684 write_unlock(&em_tree->lock);
1685
1686 list_for_each_entry(sum, &ordered->list, list) {
1687 if (*logical < orig_logical)
1688 sum->bytenr -= orig_logical - *logical;
1689 else
1690 sum->bytenr += *logical - orig_logical;
1691 }
1692
1693out:
1694 kfree(logical);
d8e3fb10 1695}
0bc09ca1
NA
1696
1697bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1698 struct extent_buffer *eb,
1699 struct btrfs_block_group **cache_ret)
1700{
1701 struct btrfs_block_group *cache;
1702 bool ret = true;
1703
1704 if (!btrfs_is_zoned(fs_info))
1705 return true;
1706
8fdf54fe
JT
1707 cache = btrfs_lookup_block_group(fs_info, eb->start);
1708 if (!cache)
1709 return true;
0bc09ca1 1710
8fdf54fe 1711 if (cache->meta_write_pointer != eb->start) {
0bc09ca1
NA
1712 btrfs_put_block_group(cache);
1713 cache = NULL;
8fdf54fe
JT
1714 ret = false;
1715 } else {
1716 cache->meta_write_pointer = eb->start + eb->len;
0bc09ca1
NA
1717 }
1718
8fdf54fe 1719 *cache_ret = cache;
0bc09ca1
NA
1720
1721 return ret;
1722}
1723
1724void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1725 struct extent_buffer *eb)
1726{
1727 if (!btrfs_is_zoned(eb->fs_info) || !cache)
1728 return;
1729
1730 ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1731 cache->meta_write_pointer = eb->start;
1732}
de17addc
NA
1733
1734int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1735{
1736 if (!btrfs_dev_is_sequential(device, physical))
1737 return -EOPNOTSUPP;
1738
1739 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1740 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1741}
7db1c5d1
NA
1742
1743static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1744 struct blk_zone *zone)
1745{
4c664611 1746 struct btrfs_io_context *bioc = NULL;
7db1c5d1
NA
1747 u64 mapped_length = PAGE_SIZE;
1748 unsigned int nofs_flag;
1749 int nmirrors;
1750 int i, ret;
1751
1752 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
4c664611
QW
1753 &mapped_length, &bioc);
1754 if (ret || !bioc || mapped_length < PAGE_SIZE) {
29634578
CH
1755 ret = -EIO;
1756 goto out_put_bioc;
7db1c5d1
NA
1757 }
1758
29634578
CH
1759 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1760 ret = -EINVAL;
1761 goto out_put_bioc;
1762 }
7db1c5d1
NA
1763
1764 nofs_flag = memalloc_nofs_save();
4c664611 1765 nmirrors = (int)bioc->num_stripes;
7db1c5d1 1766 for (i = 0; i < nmirrors; i++) {
4c664611
QW
1767 u64 physical = bioc->stripes[i].physical;
1768 struct btrfs_device *dev = bioc->stripes[i].dev;
7db1c5d1
NA
1769
1770 /* Missing device */
1771 if (!dev->bdev)
1772 continue;
1773
1774 ret = btrfs_get_dev_zone(dev, physical, zone);
1775 /* Failing device */
1776 if (ret == -EIO || ret == -EOPNOTSUPP)
1777 continue;
1778 break;
1779 }
1780 memalloc_nofs_restore(nofs_flag);
29634578
CH
1781out_put_bioc:
1782 btrfs_put_bioc(bioc);
7db1c5d1
NA
1783 return ret;
1784}
1785
1786/*
1787 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1788 * filling zeros between @physical_pos to a write pointer of dev-replace
1789 * source device.
1790 */
1791int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1792 u64 physical_start, u64 physical_pos)
1793{
1794 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1795 struct blk_zone zone;
1796 u64 length;
1797 u64 wp;
1798 int ret;
1799
1800 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1801 return 0;
1802
1803 ret = read_zone_info(fs_info, logical, &zone);
1804 if (ret)
1805 return ret;
1806
1807 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1808
1809 if (physical_pos == wp)
1810 return 0;
1811
1812 if (physical_pos > wp)
1813 return -EUCLEAN;
1814
1815 length = wp - physical_pos;
1816 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1817}
e7ff9e6b
JT
1818
1819struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1820 u64 logical, u64 length)
1821{
1822 struct btrfs_device *device;
1823 struct extent_map *em;
1824 struct map_lookup *map;
1825
1826 em = btrfs_get_chunk_map(fs_info, logical, length);
1827 if (IS_ERR(em))
1828 return ERR_CAST(em);
1829
1830 map = em->map_lookup;
1831 /* We only support single profile for now */
e7ff9e6b
JT
1832 device = map->stripes[0].dev;
1833
1834 free_extent_map(em);
1835
1836 return device;
1837}
afba2bc0
NA
1838
1839/**
1840 * Activate block group and underlying device zones
1841 *
1842 * @block_group: the block group to activate
1843 *
1844 * Return: true on success, false otherwise
1845 */
1846bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1847{
1848 struct btrfs_fs_info *fs_info = block_group->fs_info;
1849 struct map_lookup *map;
1850 struct btrfs_device *device;
1851 u64 physical;
1852 bool ret;
f9a912a3 1853 int i;
afba2bc0
NA
1854
1855 if (!btrfs_is_zoned(block_group->fs_info))
1856 return true;
1857
1858 map = block_group->physical_map;
afba2bc0
NA
1859
1860 spin_lock(&block_group->lock);
afba2bc0
NA
1861 if (block_group->zone_is_active) {
1862 ret = true;
1863 goto out_unlock;
1864 }
1865
54957712 1866 /* No space left */
1bfd4767 1867 if (btrfs_zoned_bg_is_full(block_group)) {
54957712
NA
1868 ret = false;
1869 goto out_unlock;
1870 }
1871
f9a912a3
JT
1872 for (i = 0; i < map->num_stripes; i++) {
1873 device = map->stripes[i].dev;
1874 physical = map->stripes[i].physical;
afba2bc0 1875
f9a912a3
JT
1876 if (device->zone_info->max_active_zones == 0)
1877 continue;
1878
f9a912a3
JT
1879 if (!btrfs_dev_set_active_zone(device, physical)) {
1880 /* Cannot activate the zone */
1881 ret = false;
1882 goto out_unlock;
1883 }
f9a912a3 1884 }
ceb4f608
NA
1885
1886 /* Successfully activated all the zones */
1887 block_group->zone_is_active = 1;
afba2bc0
NA
1888 spin_unlock(&block_group->lock);
1889
ceb4f608
NA
1890 /* For the active block group list */
1891 btrfs_get_block_group(block_group);
afba2bc0 1892
ceb4f608
NA
1893 spin_lock(&fs_info->zone_active_bgs_lock);
1894 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1895 spin_unlock(&fs_info->zone_active_bgs_lock);
afba2bc0
NA
1896
1897 return true;
1898
1899out_unlock:
1900 spin_unlock(&block_group->lock);
1901 return ret;
1902}
1903
d70cbdda 1904static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
afba2bc0
NA
1905{
1906 struct btrfs_fs_info *fs_info = block_group->fs_info;
1907 struct map_lookup *map;
afba2bc0 1908 int ret = 0;
4dcbb8ab 1909 int i;
afba2bc0 1910
afba2bc0
NA
1911 spin_lock(&block_group->lock);
1912 if (!block_group->zone_is_active) {
1913 spin_unlock(&block_group->lock);
1914 return 0;
1915 }
1916
1917 /* Check if we have unwritten allocated space */
1918 if ((block_group->flags &
1919 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) &&
aa9ffadf 1920 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
afba2bc0
NA
1921 spin_unlock(&block_group->lock);
1922 return -EAGAIN;
1923 }
afba2bc0
NA
1924
1925 /*
d70cbdda
NA
1926 * If we are sure that the block group is full (= no more room left for
1927 * new allocation) and the IO for the last usable block is completed, we
1928 * don't need to wait for the other IOs. This holds because we ensure
1929 * the sequential IO submissions using the ZONE_APPEND command for data
1930 * and block_group->meta_write_pointer for metadata.
afba2bc0 1931 */
d70cbdda 1932 if (!fully_written) {
afba2bc0 1933 spin_unlock(&block_group->lock);
afba2bc0 1934
d70cbdda
NA
1935 ret = btrfs_inc_block_group_ro(block_group, false);
1936 if (ret)
1937 return ret;
1938
1939 /* Ensure all writes in this block group finish */
1940 btrfs_wait_block_group_reservations(block_group);
1941 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
1942 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1943 block_group->length);
1944
1945 spin_lock(&block_group->lock);
1946
1947 /*
1948 * Bail out if someone already deactivated the block group, or
1949 * allocated space is left in the block group.
1950 */
1951 if (!block_group->zone_is_active) {
1952 spin_unlock(&block_group->lock);
1953 btrfs_dec_block_group_ro(block_group);
1954 return 0;
1955 }
1956
1957 if (block_group->reserved) {
1958 spin_unlock(&block_group->lock);
1959 btrfs_dec_block_group_ro(block_group);
1960 return -EAGAIN;
1961 }
afba2bc0
NA
1962 }
1963
1964 block_group->zone_is_active = 0;
1965 block_group->alloc_offset = block_group->zone_capacity;
1966 block_group->free_space_ctl->free_space = 0;
1967 btrfs_clear_treelog_bg(block_group);
5911f538 1968 btrfs_clear_data_reloc_bg(block_group);
afba2bc0
NA
1969 spin_unlock(&block_group->lock);
1970
d70cbdda 1971 map = block_group->physical_map;
4dcbb8ab 1972 for (i = 0; i < map->num_stripes; i++) {
d70cbdda
NA
1973 struct btrfs_device *device = map->stripes[i].dev;
1974 const u64 physical = map->stripes[i].physical;
afba2bc0 1975
4dcbb8ab
JT
1976 if (device->zone_info->max_active_zones == 0)
1977 continue;
afba2bc0 1978
b3a3b025
NA
1979 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
1980 physical >> SECTOR_SHIFT,
1981 device->zone_info->zone_size >> SECTOR_SHIFT,
1982 GFP_NOFS);
4dcbb8ab 1983
b3a3b025
NA
1984 if (ret)
1985 return ret;
afba2bc0 1986
4dcbb8ab 1987 btrfs_dev_clear_active_zone(device, physical);
afba2bc0 1988 }
d70cbdda
NA
1989
1990 if (!fully_written)
1991 btrfs_dec_block_group_ro(block_group);
afba2bc0 1992
4dcbb8ab
JT
1993 spin_lock(&fs_info->zone_active_bgs_lock);
1994 ASSERT(!list_empty(&block_group->active_bg_list));
1995 list_del_init(&block_group->active_bg_list);
1996 spin_unlock(&fs_info->zone_active_bgs_lock);
1997
1998 /* For active_bg_list */
1999 btrfs_put_block_group(block_group);
2000
2001 return 0;
afba2bc0 2002}
a85f05e5 2003
d70cbdda
NA
2004int btrfs_zone_finish(struct btrfs_block_group *block_group)
2005{
2006 if (!btrfs_is_zoned(block_group->fs_info))
2007 return 0;
2008
2009 return do_zone_finish(block_group, false);
2010}
2011
82187d2e 2012bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
a85f05e5 2013{
0b9e6676 2014 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
a85f05e5
NA
2015 struct btrfs_device *device;
2016 bool ret = false;
2017
0b9e6676 2018 if (!btrfs_is_zoned(fs_info))
a85f05e5
NA
2019 return true;
2020
a85f05e5 2021 /* Check if there is a device with active zones left */
0b9e6676
JT
2022 mutex_lock(&fs_info->chunk_mutex);
2023 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
a85f05e5
NA
2024 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2025
2026 if (!device->bdev)
2027 continue;
2028
2029 if (!zinfo->max_active_zones ||
2030 atomic_read(&zinfo->active_zones_left)) {
2031 ret = true;
2032 break;
2033 }
2034 }
0b9e6676 2035 mutex_unlock(&fs_info->chunk_mutex);
a85f05e5
NA
2036
2037 return ret;
2038}
be1a1d7a
NA
2039
2040void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2041{
2042 struct btrfs_block_group *block_group;
8b8a5399 2043 u64 min_alloc_bytes;
be1a1d7a
NA
2044
2045 if (!btrfs_is_zoned(fs_info))
2046 return;
2047
2048 block_group = btrfs_lookup_block_group(fs_info, logical);
2049 ASSERT(block_group);
2050
8b8a5399
NA
2051 /* No MIXED_BG on zoned btrfs. */
2052 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2053 min_alloc_bytes = fs_info->sectorsize;
2054 else
2055 min_alloc_bytes = fs_info->nodesize;
be1a1d7a 2056
8b8a5399
NA
2057 /* Bail out if we can allocate more data from this block group. */
2058 if (logical + length + min_alloc_bytes <=
2059 block_group->start + block_group->zone_capacity)
be1a1d7a 2060 goto out;
be1a1d7a 2061
d70cbdda 2062 do_zone_finish(block_group, true);
be1a1d7a 2063
be1a1d7a
NA
2064out:
2065 btrfs_put_block_group(block_group);
2066}
be1a1d7a 2067
56fbb0a4
NA
2068static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2069{
2070 struct btrfs_block_group *bg =
2071 container_of(work, struct btrfs_block_group, zone_finish_work);
be1a1d7a 2072
56fbb0a4
NA
2073 wait_on_extent_buffer_writeback(bg->last_eb);
2074 free_extent_buffer(bg->last_eb);
2075 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2076 btrfs_put_block_group(bg);
2077}
be1a1d7a 2078
56fbb0a4
NA
2079void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2080 struct extent_buffer *eb)
2081{
2082 if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2083 return;
be1a1d7a 2084
56fbb0a4
NA
2085 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2086 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2087 bg->start);
2088 return;
2089 }
be1a1d7a 2090
56fbb0a4
NA
2091 /* For the work */
2092 btrfs_get_block_group(bg);
2093 atomic_inc(&eb->refs);
2094 bg->last_eb = eb;
2095 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2096 queue_work(system_unbound_wq, &bg->zone_finish_work);
be1a1d7a 2097}
c2707a25
JT
2098
2099void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2100{
2101 struct btrfs_fs_info *fs_info = bg->fs_info;
2102
2103 spin_lock(&fs_info->relocation_bg_lock);
2104 if (fs_info->data_reloc_bg == bg->start)
2105 fs_info->data_reloc_bg = 0;
2106 spin_unlock(&fs_info->relocation_bg_lock);
2107}
16beac87
NA
2108
2109void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2110{
2111 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2112 struct btrfs_device *device;
2113
2114 if (!btrfs_is_zoned(fs_info))
2115 return;
2116
2117 mutex_lock(&fs_devices->device_list_mutex);
2118 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2119 if (device->zone_info) {
2120 vfree(device->zone_info->zone_cache);
2121 device->zone_info->zone_cache = NULL;
2122 }
2123 }
2124 mutex_unlock(&fs_devices->device_list_mutex);
2125}
3687fcb0
JT
2126
2127bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2128{
2129 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2130 struct btrfs_device *device;
2131 u64 used = 0;
2132 u64 total = 0;
2133 u64 factor;
2134
2135 ASSERT(btrfs_is_zoned(fs_info));
2136
2137 if (fs_info->bg_reclaim_threshold == 0)
2138 return false;
2139
2140 mutex_lock(&fs_devices->device_list_mutex);
2141 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2142 if (!device->bdev)
2143 continue;
2144
2145 total += device->disk_total_bytes;
2146 used += device->bytes_used;
2147 }
2148 mutex_unlock(&fs_devices->device_list_mutex);
2149
2150 factor = div64_u64(used * 100, total);
2151 return factor >= fs_info->bg_reclaim_threshold;
2152}
343d8a30
NA
2153
2154void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2155 u64 length)
2156{
2157 struct btrfs_block_group *block_group;
2158
2159 if (!btrfs_is_zoned(fs_info))
2160 return;
2161
2162 block_group = btrfs_lookup_block_group(fs_info, logical);
2163 /* It should be called on a previous data relocation block group. */
2164 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2165
2166 spin_lock(&block_group->lock);
2167 if (!block_group->zoned_data_reloc_ongoing)
2168 goto out;
2169
2170 /* All relocation extents are written. */
2171 if (block_group->start + block_group->alloc_offset == logical + length) {
2172 /* Now, release this block group for further allocations. */
2173 block_group->zoned_data_reloc_ongoing = 0;
2174 }
2175
2176out:
2177 spin_unlock(&block_group->lock);
2178 btrfs_put_block_group(block_group);
2179}