]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/zoned.c
btrfs: keep track of the last logged keys when logging a directory
[people/ms/linux.git] / fs / btrfs / zoned.c
CommitLineData
5b316468
NA
1// SPDX-License-Identifier: GPL-2.0
2
1cd6121f 3#include <linux/bitops.h>
5b316468
NA
4#include <linux/slab.h>
5#include <linux/blkdev.h>
08e11a3d 6#include <linux/sched/mm.h>
ea6f8ddc 7#include <linux/atomic.h>
5b316468
NA
8#include "ctree.h"
9#include "volumes.h"
10#include "zoned.h"
11#include "rcu-string.h"
1cd6121f 12#include "disk-io.h"
08e11a3d 13#include "block-group.h"
d3575156 14#include "transaction.h"
6143c23c 15#include "dev-replace.h"
7db1c5d1 16#include "space-info.h"
5b316468
NA
17
18/* Maximum number of zones to report per blkdev_report_zones() call */
19#define BTRFS_REPORT_NR_ZONES 4096
08e11a3d
NA
20/* Invalid allocation pointer value for missing devices */
21#define WP_MISSING_DEV ((u64)-1)
22/* Pseudo write pointer value for conventional zone */
23#define WP_CONVENTIONAL ((u64)-2)
5b316468 24
53b74fa9
NA
25/*
26 * Location of the first zone of superblock logging zone pairs.
27 *
28 * - primary superblock: 0B (zone 0)
29 * - first copy: 512G (zone starting at that offset)
30 * - second copy: 4T (zone starting at that offset)
31 */
32#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
33#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
34#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
35
36#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
37#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
38
12659251
NA
39/* Number of superblock log zones */
40#define BTRFS_NR_SB_LOG_ZONES 2
41
ea6f8ddc
NA
42/*
43 * Minimum of active zones we need:
44 *
45 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
46 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
47 * - 1 zone for tree-log dedicated block group
48 * - 1 zone for relocation
49 */
50#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
51
53b74fa9
NA
52/*
53 * Maximum supported zone size. Currently, SMR disks have a zone size of
54 * 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. We do not
55 * expect the zone size to become larger than 8GiB in the near future.
56 */
57#define BTRFS_MAX_ZONE_SIZE SZ_8G
58
5daaf552
NA
59#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
60
61static inline bool sb_zone_is_full(const struct blk_zone *zone)
62{
63 return (zone->cond == BLK_ZONE_COND_FULL) ||
64 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
65}
66
5b316468
NA
67static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
68{
69 struct blk_zone *zones = data;
70
71 memcpy(&zones[idx], zone, sizeof(*zone));
72
73 return 0;
74}
75
12659251
NA
76static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
77 u64 *wp_ret)
78{
79 bool empty[BTRFS_NR_SB_LOG_ZONES];
80 bool full[BTRFS_NR_SB_LOG_ZONES];
81 sector_t sector;
5daaf552 82 int i;
12659251 83
5daaf552
NA
84 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
85 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
86 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
87 full[i] = sb_zone_is_full(&zones[i]);
88 }
12659251
NA
89
90 /*
91 * Possible states of log buffer zones
92 *
93 * Empty[0] In use[0] Full[0]
94 * Empty[1] * x 0
95 * In use[1] 0 x 0
96 * Full[1] 1 1 C
97 *
98 * Log position:
99 * *: Special case, no superblock is written
100 * 0: Use write pointer of zones[0]
101 * 1: Use write pointer of zones[1]
1a9fd417 102 * C: Compare super blocks from zones[0] and zones[1], use the latest
12659251
NA
103 * one determined by generation
104 * x: Invalid state
105 */
106
107 if (empty[0] && empty[1]) {
108 /* Special case to distinguish no superblock to read */
109 *wp_ret = zones[0].start << SECTOR_SHIFT;
110 return -ENOENT;
111 } else if (full[0] && full[1]) {
112 /* Compare two super blocks */
113 struct address_space *mapping = bdev->bd_inode->i_mapping;
114 struct page *page[BTRFS_NR_SB_LOG_ZONES];
115 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
116 int i;
117
118 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
119 u64 bytenr;
120
121 bytenr = ((zones[i].start + zones[i].len)
122 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
123
124 page[i] = read_cache_page_gfp(mapping,
125 bytenr >> PAGE_SHIFT, GFP_NOFS);
126 if (IS_ERR(page[i])) {
127 if (i == 1)
128 btrfs_release_disk_super(super[0]);
129 return PTR_ERR(page[i]);
130 }
131 super[i] = page_address(page[i]);
132 }
133
134 if (super[0]->generation > super[1]->generation)
135 sector = zones[1].start;
136 else
137 sector = zones[0].start;
138
139 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
140 btrfs_release_disk_super(super[i]);
141 } else if (!full[0] && (empty[1] || full[1])) {
142 sector = zones[0].wp;
143 } else if (full[0]) {
144 sector = zones[1].wp;
145 } else {
146 return -EUCLEAN;
147 }
148 *wp_ret = sector << SECTOR_SHIFT;
149 return 0;
150}
151
152/*
53b74fa9 153 * Get the first zone number of the superblock mirror
12659251
NA
154 */
155static inline u32 sb_zone_number(int shift, int mirror)
156{
53b74fa9 157 u64 zone;
12659251 158
53b74fa9 159 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
12659251 160 switch (mirror) {
53b74fa9
NA
161 case 0: zone = 0; break;
162 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
163 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
12659251
NA
164 }
165
53b74fa9
NA
166 ASSERT(zone <= U32_MAX);
167
168 return (u32)zone;
12659251
NA
169}
170
5b434df8
NA
171static inline sector_t zone_start_sector(u32 zone_number,
172 struct block_device *bdev)
173{
174 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
175}
176
177static inline u64 zone_start_physical(u32 zone_number,
178 struct btrfs_zoned_device_info *zone_info)
179{
180 return (u64)zone_number << zone_info->zone_size_shift;
181}
182
3c9daa09
JT
183/*
184 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
185 * device into static sized chunks and fake a conventional zone on each of
186 * them.
187 */
188static int emulate_report_zones(struct btrfs_device *device, u64 pos,
189 struct blk_zone *zones, unsigned int nr_zones)
190{
191 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
192 sector_t bdev_size = bdev_nr_sectors(device->bdev);
193 unsigned int i;
194
195 pos >>= SECTOR_SHIFT;
196 for (i = 0; i < nr_zones; i++) {
197 zones[i].start = i * zone_sectors + pos;
198 zones[i].len = zone_sectors;
199 zones[i].capacity = zone_sectors;
200 zones[i].wp = zones[i].start + zone_sectors;
201 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
202 zones[i].cond = BLK_ZONE_COND_NOT_WP;
203
204 if (zones[i].wp >= bdev_size) {
205 i++;
206 break;
207 }
208 }
209
210 return i;
211}
212
5b316468
NA
213static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
214 struct blk_zone *zones, unsigned int *nr_zones)
215{
216 int ret;
217
218 if (!*nr_zones)
219 return 0;
220
3c9daa09
JT
221 if (!bdev_is_zoned(device->bdev)) {
222 ret = emulate_report_zones(device, pos, zones, *nr_zones);
223 *nr_zones = ret;
224 return 0;
225 }
226
5b316468
NA
227 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
228 copy_zone_info_cb, zones);
229 if (ret < 0) {
230 btrfs_err_in_rcu(device->fs_info,
231 "zoned: failed to read zone %llu on %s (devid %llu)",
232 pos, rcu_str_deref(device->name),
233 device->devid);
234 return ret;
235 }
236 *nr_zones = ret;
237 if (!ret)
238 return -EIO;
239
240 return 0;
241}
242
3c9daa09
JT
243/* The emulated zone size is determined from the size of device extent */
244static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
245{
246 struct btrfs_path *path;
247 struct btrfs_root *root = fs_info->dev_root;
248 struct btrfs_key key;
249 struct extent_buffer *leaf;
250 struct btrfs_dev_extent *dext;
251 int ret = 0;
252
253 key.objectid = 1;
254 key.type = BTRFS_DEV_EXTENT_KEY;
255 key.offset = 0;
256
257 path = btrfs_alloc_path();
258 if (!path)
259 return -ENOMEM;
260
261 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
262 if (ret < 0)
263 goto out;
264
265 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 266 ret = btrfs_next_leaf(root, path);
3c9daa09
JT
267 if (ret < 0)
268 goto out;
269 /* No dev extents at all? Not good */
270 if (ret > 0) {
271 ret = -EUCLEAN;
272 goto out;
273 }
274 }
275
276 leaf = path->nodes[0];
277 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
278 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
279 ret = 0;
280
281out:
282 btrfs_free_path(path);
283
284 return ret;
285}
286
73651042
NA
287int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
288{
289 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
290 struct btrfs_device *device;
291 int ret = 0;
292
293 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
294 if (!btrfs_fs_incompat(fs_info, ZONED))
295 return 0;
296
297 mutex_lock(&fs_devices->device_list_mutex);
298 list_for_each_entry(device, &fs_devices->devices, dev_list) {
299 /* We can skip reading of zone info for missing devices */
300 if (!device->bdev)
301 continue;
302
303 ret = btrfs_get_dev_zone_info(device);
304 if (ret)
305 break;
306 }
307 mutex_unlock(&fs_devices->device_list_mutex);
308
309 return ret;
310}
311
5b316468
NA
312int btrfs_get_dev_zone_info(struct btrfs_device *device)
313{
3c9daa09 314 struct btrfs_fs_info *fs_info = device->fs_info;
5b316468
NA
315 struct btrfs_zoned_device_info *zone_info = NULL;
316 struct block_device *bdev = device->bdev;
ea6f8ddc
NA
317 struct request_queue *queue = bdev_get_queue(bdev);
318 unsigned int max_active_zones;
319 unsigned int nactive;
5b316468
NA
320 sector_t nr_sectors;
321 sector_t sector = 0;
322 struct blk_zone *zones = NULL;
323 unsigned int i, nreported = 0, nr_zones;
d734492a 324 sector_t zone_sectors;
3c9daa09 325 char *model, *emulated;
5b316468
NA
326 int ret;
327
3c9daa09
JT
328 /*
329 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
330 * yet be set.
331 */
332 if (!btrfs_fs_incompat(fs_info, ZONED))
5b316468
NA
333 return 0;
334
335 if (device->zone_info)
336 return 0;
337
338 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
339 if (!zone_info)
340 return -ENOMEM;
341
3c9daa09
JT
342 if (!bdev_is_zoned(bdev)) {
343 if (!fs_info->zone_size) {
344 ret = calculate_emulated_zone_size(fs_info);
345 if (ret)
346 goto out;
347 }
348
349 ASSERT(fs_info->zone_size);
350 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
351 } else {
352 zone_sectors = bdev_zone_sectors(bdev);
353 }
354
5b316468
NA
355 /* Check if it's power of 2 (see is_power_of_2) */
356 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
357 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
53b74fa9
NA
358
359 /* We reject devices with a zone size larger than 8GB */
360 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
361 btrfs_err_in_rcu(fs_info,
362 "zoned: %s: zone size %llu larger than supported maximum %llu",
363 rcu_str_deref(device->name),
364 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
365 ret = -EINVAL;
366 goto out;
367 }
368
369 nr_sectors = bdev_nr_sectors(bdev);
5b316468
NA
370 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
371 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
372 if (!IS_ALIGNED(nr_sectors, zone_sectors))
373 zone_info->nr_zones++;
374
ea6f8ddc
NA
375 max_active_zones = queue_max_active_zones(queue);
376 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
377 btrfs_err_in_rcu(fs_info,
378"zoned: %s: max active zones %u is too small, need at least %u active zones",
379 rcu_str_deref(device->name), max_active_zones,
380 BTRFS_MIN_ACTIVE_ZONES);
381 ret = -EINVAL;
382 goto out;
383 }
384 zone_info->max_active_zones = max_active_zones;
385
5b316468
NA
386 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
387 if (!zone_info->seq_zones) {
388 ret = -ENOMEM;
389 goto out;
390 }
391
392 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
393 if (!zone_info->empty_zones) {
394 ret = -ENOMEM;
395 goto out;
396 }
397
ea6f8ddc
NA
398 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
399 if (!zone_info->active_zones) {
400 ret = -ENOMEM;
401 goto out;
402 }
403
5b316468
NA
404 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
405 if (!zones) {
406 ret = -ENOMEM;
407 goto out;
408 }
409
410 /* Get zones type */
ea6f8ddc 411 nactive = 0;
5b316468
NA
412 while (sector < nr_sectors) {
413 nr_zones = BTRFS_REPORT_NR_ZONES;
414 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
415 &nr_zones);
416 if (ret)
417 goto out;
418
419 for (i = 0; i < nr_zones; i++) {
420 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
421 __set_bit(nreported, zone_info->seq_zones);
ea6f8ddc
NA
422 switch (zones[i].cond) {
423 case BLK_ZONE_COND_EMPTY:
5b316468 424 __set_bit(nreported, zone_info->empty_zones);
ea6f8ddc
NA
425 break;
426 case BLK_ZONE_COND_IMP_OPEN:
427 case BLK_ZONE_COND_EXP_OPEN:
428 case BLK_ZONE_COND_CLOSED:
429 __set_bit(nreported, zone_info->active_zones);
430 nactive++;
431 break;
432 }
5b316468
NA
433 nreported++;
434 }
435 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
436 }
437
438 if (nreported != zone_info->nr_zones) {
439 btrfs_err_in_rcu(device->fs_info,
440 "inconsistent number of zones on %s (%u/%u)",
441 rcu_str_deref(device->name), nreported,
442 zone_info->nr_zones);
443 ret = -EIO;
444 goto out;
445 }
446
ea6f8ddc
NA
447 if (max_active_zones) {
448 if (nactive > max_active_zones) {
449 btrfs_err_in_rcu(device->fs_info,
450 "zoned: %u active zones on %s exceeds max_active_zones %u",
451 nactive, rcu_str_deref(device->name),
452 max_active_zones);
453 ret = -EIO;
454 goto out;
455 }
456 atomic_set(&zone_info->active_zones_left,
457 max_active_zones - nactive);
458 }
459
12659251
NA
460 /* Validate superblock log */
461 nr_zones = BTRFS_NR_SB_LOG_ZONES;
462 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
463 u32 sb_zone;
464 u64 sb_wp;
465 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
466
467 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
468 if (sb_zone + 1 >= zone_info->nr_zones)
469 continue;
470
5b434df8
NA
471 ret = btrfs_get_dev_zones(device,
472 zone_start_physical(sb_zone, zone_info),
12659251
NA
473 &zone_info->sb_zones[sb_pos],
474 &nr_zones);
475 if (ret)
476 goto out;
477
478 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
479 btrfs_err_in_rcu(device->fs_info,
480 "zoned: failed to read super block log zone info at devid %llu zone %u",
481 device->devid, sb_zone);
482 ret = -EUCLEAN;
483 goto out;
484 }
485
486 /*
1a9fd417 487 * If zones[0] is conventional, always use the beginning of the
12659251
NA
488 * zone to record superblock. No need to validate in that case.
489 */
490 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
491 BLK_ZONE_TYPE_CONVENTIONAL)
492 continue;
493
494 ret = sb_write_pointer(device->bdev,
495 &zone_info->sb_zones[sb_pos], &sb_wp);
496 if (ret != -ENOENT && ret) {
497 btrfs_err_in_rcu(device->fs_info,
498 "zoned: super block log zone corrupted devid %llu zone %u",
499 device->devid, sb_zone);
500 ret = -EUCLEAN;
501 goto out;
502 }
503 }
504
505
5b316468
NA
506 kfree(zones);
507
508 device->zone_info = zone_info;
509
3c9daa09
JT
510 switch (bdev_zoned_model(bdev)) {
511 case BLK_ZONED_HM:
512 model = "host-managed zoned";
513 emulated = "";
514 break;
515 case BLK_ZONED_HA:
516 model = "host-aware zoned";
517 emulated = "";
518 break;
519 case BLK_ZONED_NONE:
520 model = "regular";
521 emulated = "emulated ";
522 break;
523 default:
524 /* Just in case */
525 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
526 bdev_zoned_model(bdev),
527 rcu_str_deref(device->name));
528 ret = -EOPNOTSUPP;
529 goto out_free_zone_info;
530 }
531
532 btrfs_info_in_rcu(fs_info,
533 "%s block device %s, %u %szones of %llu bytes",
534 model, rcu_str_deref(device->name), zone_info->nr_zones,
535 emulated, zone_info->zone_size);
5b316468
NA
536
537 return 0;
538
539out:
540 kfree(zones);
3c9daa09 541out_free_zone_info:
ea6f8ddc 542 bitmap_free(zone_info->active_zones);
5b316468
NA
543 bitmap_free(zone_info->empty_zones);
544 bitmap_free(zone_info->seq_zones);
545 kfree(zone_info);
3c9daa09 546 device->zone_info = NULL;
5b316468
NA
547
548 return ret;
549}
550
551void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
552{
553 struct btrfs_zoned_device_info *zone_info = device->zone_info;
554
555 if (!zone_info)
556 return;
557
ea6f8ddc 558 bitmap_free(zone_info->active_zones);
5b316468
NA
559 bitmap_free(zone_info->seq_zones);
560 bitmap_free(zone_info->empty_zones);
561 kfree(zone_info);
562 device->zone_info = NULL;
563}
564
565int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
566 struct blk_zone *zone)
567{
568 unsigned int nr_zones = 1;
569 int ret;
570
571 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
572 if (ret != 0 || !nr_zones)
573 return ret ? ret : -EIO;
574
575 return 0;
576}
b70f5097
NA
577
578int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
579{
580 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
581 struct btrfs_device *device;
582 u64 zoned_devices = 0;
583 u64 nr_devices = 0;
584 u64 zone_size = 0;
3c9daa09 585 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
b70f5097
NA
586 int ret = 0;
587
588 /* Count zoned devices */
589 list_for_each_entry(device, &fs_devices->devices, dev_list) {
590 enum blk_zoned_model model;
591
592 if (!device->bdev)
593 continue;
594
595 model = bdev_zoned_model(device->bdev);
3c9daa09
JT
596 /*
597 * A Host-Managed zoned device must be used as a zoned device.
598 * A Host-Aware zoned device and a non-zoned devices can be
599 * treated as a zoned device, if ZONED flag is enabled in the
600 * superblock.
601 */
b70f5097 602 if (model == BLK_ZONED_HM ||
3c9daa09
JT
603 (model == BLK_ZONED_HA && incompat_zoned) ||
604 (model == BLK_ZONED_NONE && incompat_zoned)) {
605 struct btrfs_zoned_device_info *zone_info =
606 device->zone_info;
862931c7
NA
607
608 zone_info = device->zone_info;
b70f5097
NA
609 zoned_devices++;
610 if (!zone_size) {
862931c7
NA
611 zone_size = zone_info->zone_size;
612 } else if (zone_info->zone_size != zone_size) {
b70f5097
NA
613 btrfs_err(fs_info,
614 "zoned: unequal block device zone sizes: have %llu found %llu",
615 device->zone_info->zone_size,
616 zone_size);
617 ret = -EINVAL;
618 goto out;
619 }
620 }
621 nr_devices++;
622 }
623
624 if (!zoned_devices && !incompat_zoned)
625 goto out;
626
627 if (!zoned_devices && incompat_zoned) {
628 /* No zoned block device found on ZONED filesystem */
629 btrfs_err(fs_info,
630 "zoned: no zoned devices found on a zoned filesystem");
631 ret = -EINVAL;
632 goto out;
633 }
634
635 if (zoned_devices && !incompat_zoned) {
636 btrfs_err(fs_info,
637 "zoned: mode not enabled but zoned device found");
638 ret = -EINVAL;
639 goto out;
640 }
641
642 if (zoned_devices != nr_devices) {
643 btrfs_err(fs_info,
644 "zoned: cannot mix zoned and regular devices");
645 ret = -EINVAL;
646 goto out;
647 }
648
649 /*
650 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
f6f39f7a 651 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
b70f5097
NA
652 * check the alignment here.
653 */
654 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
655 btrfs_err(fs_info,
656 "zoned: zone size %llu not aligned to stripe %u",
657 zone_size, BTRFS_STRIPE_LEN);
658 ret = -EINVAL;
659 goto out;
660 }
661
a589dde0
NA
662 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
663 btrfs_err(fs_info, "zoned: mixed block groups not supported");
664 ret = -EINVAL;
665 goto out;
666 }
667
b70f5097 668 fs_info->zone_size = zone_size;
1cd6121f 669 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
b70f5097 670
b53429ba
JT
671 /*
672 * Check mount options here, because we might change fs_info->zoned
673 * from fs_info->zone_size.
674 */
675 ret = btrfs_check_mountopts_zoned(fs_info);
676 if (ret)
677 goto out;
678
b70f5097
NA
679 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
680out:
681 return ret;
682}
5d1ab66c
NA
683
684int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
685{
686 if (!btrfs_is_zoned(info))
687 return 0;
688
689 /*
690 * Space cache writing is not COWed. Disable that to avoid write errors
691 * in sequential zones.
692 */
693 if (btrfs_test_opt(info, SPACE_CACHE)) {
694 btrfs_err(info, "zoned: space cache v1 is not supported");
695 return -EINVAL;
696 }
697
d206e9c9
NA
698 if (btrfs_test_opt(info, NODATACOW)) {
699 btrfs_err(info, "zoned: NODATACOW not supported");
700 return -EINVAL;
701 }
702
5d1ab66c
NA
703 return 0;
704}
12659251
NA
705
706static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
707 int rw, u64 *bytenr_ret)
708{
709 u64 wp;
710 int ret;
711
712 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
713 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
714 return 0;
715 }
716
717 ret = sb_write_pointer(bdev, zones, &wp);
718 if (ret != -ENOENT && ret < 0)
719 return ret;
720
721 if (rw == WRITE) {
722 struct blk_zone *reset = NULL;
723
724 if (wp == zones[0].start << SECTOR_SHIFT)
725 reset = &zones[0];
726 else if (wp == zones[1].start << SECTOR_SHIFT)
727 reset = &zones[1];
728
729 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
5daaf552 730 ASSERT(sb_zone_is_full(reset));
12659251
NA
731
732 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
733 reset->start, reset->len,
734 GFP_NOFS);
735 if (ret)
736 return ret;
737
738 reset->cond = BLK_ZONE_COND_EMPTY;
739 reset->wp = reset->start;
740 }
741 } else if (ret != -ENOENT) {
9658b72e
NA
742 /*
743 * For READ, we want the previous one. Move write pointer to
744 * the end of a zone, if it is at the head of a zone.
745 */
746 u64 zone_end = 0;
747
12659251 748 if (wp == zones[0].start << SECTOR_SHIFT)
9658b72e
NA
749 zone_end = zones[1].start + zones[1].capacity;
750 else if (wp == zones[1].start << SECTOR_SHIFT)
751 zone_end = zones[0].start + zones[0].capacity;
752 if (zone_end)
753 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
754 BTRFS_SUPER_INFO_SIZE);
755
12659251
NA
756 wp -= BTRFS_SUPER_INFO_SIZE;
757 }
758
759 *bytenr_ret = wp;
760 return 0;
761
762}
763
764int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
765 u64 *bytenr_ret)
766{
767 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
d734492a 768 sector_t zone_sectors;
12659251
NA
769 u32 sb_zone;
770 int ret;
12659251
NA
771 u8 zone_sectors_shift;
772 sector_t nr_sectors;
773 u32 nr_zones;
774
775 if (!bdev_is_zoned(bdev)) {
776 *bytenr_ret = btrfs_sb_offset(mirror);
777 return 0;
778 }
779
780 ASSERT(rw == READ || rw == WRITE);
781
782 zone_sectors = bdev_zone_sectors(bdev);
783 if (!is_power_of_2(zone_sectors))
784 return -EINVAL;
12659251 785 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 786 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
787 nr_zones = nr_sectors >> zone_sectors_shift;
788
789 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
790 if (sb_zone + 1 >= nr_zones)
791 return -ENOENT;
792
5b434df8 793 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
12659251
NA
794 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
795 zones);
796 if (ret < 0)
797 return ret;
798 if (ret != BTRFS_NR_SB_LOG_ZONES)
799 return -EIO;
800
801 return sb_log_location(bdev, zones, rw, bytenr_ret);
802}
803
804int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
805 u64 *bytenr_ret)
806{
807 struct btrfs_zoned_device_info *zinfo = device->zone_info;
808 u32 zone_num;
809
d6639b35
NA
810 /*
811 * For a zoned filesystem on a non-zoned block device, use the same
812 * super block locations as regular filesystem. Doing so, the super
813 * block can always be retrieved and the zoned flag of the volume
814 * detected from the super block information.
815 */
816 if (!bdev_is_zoned(device->bdev)) {
12659251
NA
817 *bytenr_ret = btrfs_sb_offset(mirror);
818 return 0;
819 }
820
821 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
822 if (zone_num + 1 >= zinfo->nr_zones)
823 return -ENOENT;
824
825 return sb_log_location(device->bdev,
826 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
827 rw, bytenr_ret);
828}
829
830static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
831 int mirror)
832{
833 u32 zone_num;
834
835 if (!zinfo)
836 return false;
837
838 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
839 if (zone_num + 1 >= zinfo->nr_zones)
840 return false;
841
842 if (!test_bit(zone_num, zinfo->seq_zones))
843 return false;
844
845 return true;
846}
847
8376d9e1 848int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
12659251
NA
849{
850 struct btrfs_zoned_device_info *zinfo = device->zone_info;
851 struct blk_zone *zone;
8376d9e1 852 int i;
12659251
NA
853
854 if (!is_sb_log_zone(zinfo, mirror))
8376d9e1 855 return 0;
12659251
NA
856
857 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
8376d9e1
NA
858 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
859 /* Advance the next zone */
860 if (zone->cond == BLK_ZONE_COND_FULL) {
861 zone++;
862 continue;
863 }
864
12659251
NA
865 if (zone->cond == BLK_ZONE_COND_EMPTY)
866 zone->cond = BLK_ZONE_COND_IMP_OPEN;
867
8376d9e1
NA
868 zone->wp += SUPER_INFO_SECTORS;
869
870 if (sb_zone_is_full(zone)) {
871 /*
872 * No room left to write new superblock. Since
873 * superblock is written with REQ_SYNC, it is safe to
874 * finish the zone now.
875 *
876 * If the write pointer is exactly at the capacity,
877 * explicit ZONE_FINISH is not necessary.
878 */
879 if (zone->wp != zone->start + zone->capacity) {
880 int ret;
881
882 ret = blkdev_zone_mgmt(device->bdev,
883 REQ_OP_ZONE_FINISH, zone->start,
884 zone->len, GFP_NOFS);
885 if (ret)
886 return ret;
887 }
12659251 888
8376d9e1 889 zone->wp = zone->start + zone->len;
12659251 890 zone->cond = BLK_ZONE_COND_FULL;
8376d9e1
NA
891 }
892 return 0;
12659251
NA
893 }
894
8376d9e1
NA
895 /* All the zones are FULL. Should not reach here. */
896 ASSERT(0);
897 return -EIO;
12659251
NA
898}
899
900int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
901{
902 sector_t zone_sectors;
903 sector_t nr_sectors;
904 u8 zone_sectors_shift;
905 u32 sb_zone;
906 u32 nr_zones;
907
908 zone_sectors = bdev_zone_sectors(bdev);
909 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 910 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
911 nr_zones = nr_sectors >> zone_sectors_shift;
912
913 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
914 if (sb_zone + 1 >= nr_zones)
915 return -ENOENT;
916
917 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
5b434df8 918 zone_start_sector(sb_zone, bdev),
12659251
NA
919 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
920}
1cd6121f
NA
921
922/**
923 * btrfs_find_allocatable_zones - find allocatable zones within a given region
924 *
925 * @device: the device to allocate a region on
926 * @hole_start: the position of the hole to allocate the region
927 * @num_bytes: size of wanted region
928 * @hole_end: the end of the hole
929 * @return: position of allocatable zones
930 *
931 * Allocatable region should not contain any superblock locations.
932 */
933u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
934 u64 hole_end, u64 num_bytes)
935{
936 struct btrfs_zoned_device_info *zinfo = device->zone_info;
937 const u8 shift = zinfo->zone_size_shift;
938 u64 nzones = num_bytes >> shift;
939 u64 pos = hole_start;
940 u64 begin, end;
941 bool have_sb;
942 int i;
943
944 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
945 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
946
947 while (pos < hole_end) {
948 begin = pos >> shift;
949 end = begin + nzones;
950
951 if (end > zinfo->nr_zones)
952 return hole_end;
953
954 /* Check if zones in the region are all empty */
955 if (btrfs_dev_is_sequential(device, pos) &&
956 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
957 pos += zinfo->zone_size;
958 continue;
959 }
960
961 have_sb = false;
962 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
963 u32 sb_zone;
964 u64 sb_pos;
965
966 sb_zone = sb_zone_number(shift, i);
967 if (!(end <= sb_zone ||
968 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
969 have_sb = true;
5b434df8
NA
970 pos = zone_start_physical(
971 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1cd6121f
NA
972 break;
973 }
974
975 /* We also need to exclude regular superblock positions */
976 sb_pos = btrfs_sb_offset(i);
977 if (!(pos + num_bytes <= sb_pos ||
978 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
979 have_sb = true;
980 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
981 zinfo->zone_size);
982 break;
983 }
984 }
985 if (!have_sb)
986 break;
987 }
988
989 return pos;
990}
991
afba2bc0
NA
992static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
993{
994 struct btrfs_zoned_device_info *zone_info = device->zone_info;
995 unsigned int zno = (pos >> zone_info->zone_size_shift);
996
997 /* We can use any number of zones */
998 if (zone_info->max_active_zones == 0)
999 return true;
1000
1001 if (!test_bit(zno, zone_info->active_zones)) {
1002 /* Active zone left? */
1003 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1004 return false;
1005 if (test_and_set_bit(zno, zone_info->active_zones)) {
1006 /* Someone already set the bit */
1007 atomic_inc(&zone_info->active_zones_left);
1008 }
1009 }
1010
1011 return true;
1012}
1013
1014static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1015{
1016 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1017 unsigned int zno = (pos >> zone_info->zone_size_shift);
1018
1019 /* We can use any number of zones */
1020 if (zone_info->max_active_zones == 0)
1021 return;
1022
1023 if (test_and_clear_bit(zno, zone_info->active_zones))
1024 atomic_inc(&zone_info->active_zones_left);
1025}
1026
1cd6121f
NA
1027int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1028 u64 length, u64 *bytes)
1029{
1030 int ret;
1031
1032 *bytes = 0;
1033 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1034 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1035 GFP_NOFS);
1036 if (ret)
1037 return ret;
1038
1039 *bytes = length;
1040 while (length) {
1041 btrfs_dev_set_zone_empty(device, physical);
afba2bc0 1042 btrfs_dev_clear_active_zone(device, physical);
1cd6121f
NA
1043 physical += device->zone_info->zone_size;
1044 length -= device->zone_info->zone_size;
1045 }
1046
1047 return 0;
1048}
1049
1050int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1051{
1052 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1053 const u8 shift = zinfo->zone_size_shift;
1054 unsigned long begin = start >> shift;
1055 unsigned long end = (start + size) >> shift;
1056 u64 pos;
1057 int ret;
1058
1059 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1060 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1061
1062 if (end > zinfo->nr_zones)
1063 return -ERANGE;
1064
1065 /* All the zones are conventional */
1066 if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1067 return 0;
1068
1069 /* All the zones are sequential and empty */
1070 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1071 find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1072 return 0;
1073
1074 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1075 u64 reset_bytes;
1076
1077 if (!btrfs_dev_is_sequential(device, pos) ||
1078 btrfs_dev_is_empty_zone(device, pos))
1079 continue;
1080
1081 /* Free regions should be empty */
1082 btrfs_warn_in_rcu(
1083 device->fs_info,
1084 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1085 rcu_str_deref(device->name), device->devid, pos >> shift);
1086 WARN_ON_ONCE(1);
1087
1088 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1089 &reset_bytes);
1090 if (ret)
1091 return ret;
1092 }
1093
1094 return 0;
1095}
08e11a3d 1096
a94794d5
NA
1097/*
1098 * Calculate an allocation pointer from the extent allocation information
1099 * for a block group consist of conventional zones. It is pointed to the
1100 * end of the highest addressed extent in the block group as an allocation
1101 * offset.
1102 */
1103static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1104 u64 *offset_ret)
1105{
1106 struct btrfs_fs_info *fs_info = cache->fs_info;
1107 struct btrfs_root *root = fs_info->extent_root;
1108 struct btrfs_path *path;
1109 struct btrfs_key key;
1110 struct btrfs_key found_key;
1111 int ret;
1112 u64 length;
1113
1114 path = btrfs_alloc_path();
1115 if (!path)
1116 return -ENOMEM;
1117
1118 key.objectid = cache->start + cache->length;
1119 key.type = 0;
1120 key.offset = 0;
1121
1122 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123 /* We should not find the exact match */
1124 if (!ret)
1125 ret = -EUCLEAN;
1126 if (ret < 0)
1127 goto out;
1128
1129 ret = btrfs_previous_extent_item(root, path, cache->start);
1130 if (ret) {
1131 if (ret == 1) {
1132 ret = 0;
1133 *offset_ret = 0;
1134 }
1135 goto out;
1136 }
1137
1138 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1139
1140 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1141 length = found_key.offset;
1142 else
1143 length = fs_info->nodesize;
1144
1145 if (!(found_key.objectid >= cache->start &&
1146 found_key.objectid + length <= cache->start + cache->length)) {
1147 ret = -EUCLEAN;
1148 goto out;
1149 }
1150 *offset_ret = found_key.objectid + length - cache->start;
1151 ret = 0;
1152
1153out:
1154 btrfs_free_path(path);
1155 return ret;
1156}
1157
1158int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
08e11a3d
NA
1159{
1160 struct btrfs_fs_info *fs_info = cache->fs_info;
1161 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1162 struct extent_map *em;
1163 struct map_lookup *map;
1164 struct btrfs_device *device;
1165 u64 logical = cache->start;
1166 u64 length = cache->length;
1167 u64 physical = 0;
1168 int ret;
1169 int i;
1170 unsigned int nofs_flag;
1171 u64 *alloc_offsets = NULL;
8eae532b 1172 u64 *caps = NULL;
68a384b5 1173 unsigned long *active = NULL;
a94794d5 1174 u64 last_alloc = 0;
08e11a3d
NA
1175 u32 num_sequential = 0, num_conventional = 0;
1176
1177 if (!btrfs_is_zoned(fs_info))
1178 return 0;
1179
1180 /* Sanity check */
1181 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1182 btrfs_err(fs_info,
1183 "zoned: block group %llu len %llu unaligned to zone size %llu",
1184 logical, length, fs_info->zone_size);
1185 return -EIO;
1186 }
1187
1188 /* Get the chunk mapping */
1189 read_lock(&em_tree->lock);
1190 em = lookup_extent_mapping(em_tree, logical, length);
1191 read_unlock(&em_tree->lock);
1192
1193 if (!em)
1194 return -EINVAL;
1195
1196 map = em->map_lookup;
1197
dafc340d
NA
1198 cache->physical_map = kmalloc(map_lookup_size(map->num_stripes), GFP_NOFS);
1199 if (!cache->physical_map) {
1200 ret = -ENOMEM;
1201 goto out;
1202 }
1203
1204 memcpy(cache->physical_map, map, map_lookup_size(map->num_stripes));
1205
08e11a3d
NA
1206 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1207 if (!alloc_offsets) {
dafc340d
NA
1208 ret = -ENOMEM;
1209 goto out;
08e11a3d
NA
1210 }
1211
8eae532b
NA
1212 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1213 if (!caps) {
1214 ret = -ENOMEM;
1215 goto out;
1216 }
1217
68a384b5
NA
1218 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1219 if (!active) {
1220 ret = -ENOMEM;
1221 goto out;
1222 }
1223
08e11a3d
NA
1224 for (i = 0; i < map->num_stripes; i++) {
1225 bool is_sequential;
1226 struct blk_zone zone;
6143c23c
NA
1227 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1228 int dev_replace_is_ongoing = 0;
08e11a3d
NA
1229
1230 device = map->stripes[i].dev;
1231 physical = map->stripes[i].physical;
1232
1233 if (device->bdev == NULL) {
1234 alloc_offsets[i] = WP_MISSING_DEV;
1235 continue;
1236 }
1237
1238 is_sequential = btrfs_dev_is_sequential(device, physical);
1239 if (is_sequential)
1240 num_sequential++;
1241 else
1242 num_conventional++;
1243
1244 if (!is_sequential) {
1245 alloc_offsets[i] = WP_CONVENTIONAL;
1246 continue;
1247 }
1248
1249 /*
1250 * This zone will be used for allocation, so mark this zone
1251 * non-empty.
1252 */
1253 btrfs_dev_clear_zone_empty(device, physical);
1254
6143c23c
NA
1255 down_read(&dev_replace->rwsem);
1256 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1257 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1258 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical);
1259 up_read(&dev_replace->rwsem);
1260
08e11a3d
NA
1261 /*
1262 * The group is mapped to a sequential zone. Get the zone write
1263 * pointer to determine the allocation offset within the zone.
1264 */
1265 WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size));
1266 nofs_flag = memalloc_nofs_save();
1267 ret = btrfs_get_dev_zone(device, physical, &zone);
1268 memalloc_nofs_restore(nofs_flag);
1269 if (ret == -EIO || ret == -EOPNOTSUPP) {
1270 ret = 0;
1271 alloc_offsets[i] = WP_MISSING_DEV;
1272 continue;
1273 } else if (ret) {
1274 goto out;
1275 }
1276
784daf2b 1277 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
47cdfb5e
NA
1278 btrfs_err_in_rcu(fs_info,
1279 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1280 zone.start << SECTOR_SHIFT,
1281 rcu_str_deref(device->name), device->devid);
784daf2b
NA
1282 ret = -EIO;
1283 goto out;
1284 }
1285
8eae532b
NA
1286 caps[i] = (zone.capacity << SECTOR_SHIFT);
1287
08e11a3d
NA
1288 switch (zone.cond) {
1289 case BLK_ZONE_COND_OFFLINE:
1290 case BLK_ZONE_COND_READONLY:
1291 btrfs_err(fs_info,
1292 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1293 physical >> device->zone_info->zone_size_shift,
1294 rcu_str_deref(device->name), device->devid);
1295 alloc_offsets[i] = WP_MISSING_DEV;
1296 break;
1297 case BLK_ZONE_COND_EMPTY:
1298 alloc_offsets[i] = 0;
1299 break;
1300 case BLK_ZONE_COND_FULL:
8eae532b 1301 alloc_offsets[i] = caps[i];
08e11a3d
NA
1302 break;
1303 default:
1304 /* Partially used zone */
1305 alloc_offsets[i] =
1306 ((zone.wp - zone.start) << SECTOR_SHIFT);
68a384b5 1307 __set_bit(i, active);
08e11a3d
NA
1308 break;
1309 }
68a384b5
NA
1310
1311 /*
1312 * Consider a zone as active if we can allow any number of
1313 * active zones.
1314 */
1315 if (!device->zone_info->max_active_zones)
1316 __set_bit(i, active);
08e11a3d
NA
1317 }
1318
08f45559
JT
1319 if (num_sequential > 0)
1320 cache->seq_zone = true;
1321
08e11a3d
NA
1322 if (num_conventional > 0) {
1323 /*
a94794d5
NA
1324 * Avoid calling calculate_alloc_pointer() for new BG. It
1325 * is no use for new BG. It must be always 0.
1326 *
1327 * Also, we have a lock chain of extent buffer lock ->
1328 * chunk mutex. For new BG, this function is called from
1329 * btrfs_make_block_group() which is already taking the
1330 * chunk mutex. Thus, we cannot call
1331 * calculate_alloc_pointer() which takes extent buffer
1332 * locks to avoid deadlock.
08e11a3d 1333 */
8eae532b
NA
1334
1335 /* Zone capacity is always zone size in emulation */
1336 cache->zone_capacity = cache->length;
a94794d5
NA
1337 if (new) {
1338 cache->alloc_offset = 0;
1339 goto out;
1340 }
1341 ret = calculate_alloc_pointer(cache, &last_alloc);
1342 if (ret || map->num_stripes == num_conventional) {
1343 if (!ret)
1344 cache->alloc_offset = last_alloc;
1345 else
1346 btrfs_err(fs_info,
1347 "zoned: failed to determine allocation offset of bg %llu",
1348 cache->start);
1349 goto out;
1350 }
08e11a3d
NA
1351 }
1352
1353 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1354 case 0: /* single */
06e1e7f4
JT
1355 if (alloc_offsets[0] == WP_MISSING_DEV) {
1356 btrfs_err(fs_info,
1357 "zoned: cannot recover write pointer for zone %llu",
1358 physical);
1359 ret = -EIO;
1360 goto out;
1361 }
08e11a3d 1362 cache->alloc_offset = alloc_offsets[0];
8eae532b 1363 cache->zone_capacity = caps[0];
68a384b5 1364 cache->zone_is_active = test_bit(0, active);
08e11a3d
NA
1365 break;
1366 case BTRFS_BLOCK_GROUP_DUP:
1367 case BTRFS_BLOCK_GROUP_RAID1:
1368 case BTRFS_BLOCK_GROUP_RAID0:
1369 case BTRFS_BLOCK_GROUP_RAID10:
1370 case BTRFS_BLOCK_GROUP_RAID5:
1371 case BTRFS_BLOCK_GROUP_RAID6:
1372 /* non-single profiles are not supported yet */
1373 default:
1374 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1375 btrfs_bg_type_to_raid_name(map->type));
1376 ret = -EINVAL;
1377 goto out;
1378 }
1379
68a384b5
NA
1380 if (cache->zone_is_active) {
1381 btrfs_get_block_group(cache);
1382 spin_lock(&fs_info->zone_active_bgs_lock);
1383 list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs);
1384 spin_unlock(&fs_info->zone_active_bgs_lock);
1385 }
1386
08e11a3d 1387out:
06e1e7f4
JT
1388 if (cache->alloc_offset > fs_info->zone_size) {
1389 btrfs_err(fs_info,
1390 "zoned: invalid write pointer %llu in block group %llu",
1391 cache->alloc_offset, cache->start);
1392 ret = -EIO;
1393 }
1394
8eae532b
NA
1395 if (cache->alloc_offset > cache->zone_capacity) {
1396 btrfs_err(fs_info,
1397"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1398 cache->alloc_offset, cache->zone_capacity,
1399 cache->start);
1400 ret = -EIO;
1401 }
1402
a94794d5
NA
1403 /* An extent is allocated after the write pointer */
1404 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1405 btrfs_err(fs_info,
1406 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1407 logical, last_alloc, cache->alloc_offset);
1408 ret = -EIO;
1409 }
1410
0bc09ca1
NA
1411 if (!ret)
1412 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1413
dafc340d
NA
1414 if (ret) {
1415 kfree(cache->physical_map);
1416 cache->physical_map = NULL;
1417 }
68a384b5 1418 bitmap_free(active);
8eae532b 1419 kfree(caps);
08e11a3d
NA
1420 kfree(alloc_offsets);
1421 free_extent_map(em);
1422
1423 return ret;
1424}
169e0da9
NA
1425
1426void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1427{
1428 u64 unusable, free;
1429
1430 if (!btrfs_is_zoned(cache->fs_info))
1431 return;
1432
1433 WARN_ON(cache->bytes_super != 0);
98173255
NA
1434 unusable = (cache->alloc_offset - cache->used) +
1435 (cache->length - cache->zone_capacity);
1436 free = cache->zone_capacity - cache->alloc_offset;
169e0da9
NA
1437
1438 /* We only need ->free_space in ALLOC_SEQ block groups */
1439 cache->last_byte_to_unpin = (u64)-1;
1440 cache->cached = BTRFS_CACHE_FINISHED;
1441 cache->free_space_ctl->free_space = free;
1442 cache->zone_unusable = unusable;
169e0da9 1443}
d3575156
NA
1444
1445void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1446 struct extent_buffer *eb)
1447{
1448 struct btrfs_fs_info *fs_info = eb->fs_info;
1449
1450 if (!btrfs_is_zoned(fs_info) ||
1451 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1452 !list_empty(&eb->release_list))
1453 return;
1454
1455 set_extent_buffer_dirty(eb);
1456 set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1457 eb->start + eb->len - 1, EXTENT_DIRTY);
1458 memzero_extent_buffer(eb, 0, eb->len);
1459 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1460
1461 spin_lock(&trans->releasing_ebs_lock);
1462 list_add_tail(&eb->release_list, &trans->releasing_ebs);
1463 spin_unlock(&trans->releasing_ebs_lock);
1464 atomic_inc(&eb->refs);
1465}
1466
1467void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1468{
1469 spin_lock(&trans->releasing_ebs_lock);
1470 while (!list_empty(&trans->releasing_ebs)) {
1471 struct extent_buffer *eb;
1472
1473 eb = list_first_entry(&trans->releasing_ebs,
1474 struct extent_buffer, release_list);
1475 list_del_init(&eb->release_list);
1476 free_extent_buffer(eb);
1477 }
1478 spin_unlock(&trans->releasing_ebs_lock);
1479}
08f45559 1480
e380adfc 1481bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
08f45559
JT
1482{
1483 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1484 struct btrfs_block_group *cache;
1485 bool ret = false;
1486
1487 if (!btrfs_is_zoned(fs_info))
1488 return false;
1489
08f45559
JT
1490 if (!is_data_inode(&inode->vfs_inode))
1491 return false;
1492
e6d261e3
JT
1493 /*
1494 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1495 * extent layout the relocation code has.
1496 * Furthermore we have set aside own block-group from which only the
1497 * relocation "process" can allocate and make sure only one process at a
1498 * time can add pages to an extent that gets relocated, so it's safe to
1499 * use regular REQ_OP_WRITE for this special case.
1500 */
1501 if (btrfs_is_data_reloc_root(inode->root))
1502 return false;
1503
e380adfc 1504 cache = btrfs_lookup_block_group(fs_info, start);
08f45559
JT
1505 ASSERT(cache);
1506 if (!cache)
1507 return false;
1508
1509 ret = cache->seq_zone;
1510 btrfs_put_block_group(cache);
1511
1512 return ret;
1513}
d8e3fb10
NA
1514
1515void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1516 struct bio *bio)
1517{
1518 struct btrfs_ordered_extent *ordered;
1519 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1520
1521 if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1522 return;
1523
1524 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1525 if (WARN_ON(!ordered))
1526 return;
1527
1528 ordered->physical = physical;
c7c3a6dc 1529 ordered->bdev = bio->bi_bdev;
d8e3fb10
NA
1530
1531 btrfs_put_ordered_extent(ordered);
1532}
1533
1534void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1535{
1536 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1537 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1538 struct extent_map_tree *em_tree;
1539 struct extent_map *em;
1540 struct btrfs_ordered_sum *sum;
d8e3fb10
NA
1541 u64 orig_logical = ordered->disk_bytenr;
1542 u64 *logical = NULL;
1543 int nr, stripe_len;
1544
1545 /* Zoned devices should not have partitions. So, we can assume it is 0 */
c7c3a6dc
CH
1546 ASSERT(!bdev_is_partition(ordered->bdev));
1547 if (WARN_ON(!ordered->bdev))
d8e3fb10
NA
1548 return;
1549
c7c3a6dc 1550 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
d8e3fb10
NA
1551 ordered->physical, &logical, &nr,
1552 &stripe_len)))
1553 goto out;
1554
1555 WARN_ON(nr != 1);
1556
1557 if (orig_logical == *logical)
1558 goto out;
1559
1560 ordered->disk_bytenr = *logical;
1561
1562 em_tree = &inode->extent_tree;
1563 write_lock(&em_tree->lock);
1564 em = search_extent_mapping(em_tree, ordered->file_offset,
1565 ordered->num_bytes);
1566 em->block_start = *logical;
1567 free_extent_map(em);
1568 write_unlock(&em_tree->lock);
1569
1570 list_for_each_entry(sum, &ordered->list, list) {
1571 if (*logical < orig_logical)
1572 sum->bytenr -= orig_logical - *logical;
1573 else
1574 sum->bytenr += *logical - orig_logical;
1575 }
1576
1577out:
1578 kfree(logical);
d8e3fb10 1579}
0bc09ca1
NA
1580
1581bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1582 struct extent_buffer *eb,
1583 struct btrfs_block_group **cache_ret)
1584{
1585 struct btrfs_block_group *cache;
1586 bool ret = true;
1587
1588 if (!btrfs_is_zoned(fs_info))
1589 return true;
1590
1591 cache = *cache_ret;
1592
1593 if (cache && (eb->start < cache->start ||
1594 cache->start + cache->length <= eb->start)) {
1595 btrfs_put_block_group(cache);
1596 cache = NULL;
1597 *cache_ret = NULL;
1598 }
1599
1600 if (!cache)
1601 cache = btrfs_lookup_block_group(fs_info, eb->start);
1602
1603 if (cache) {
1604 if (cache->meta_write_pointer != eb->start) {
1605 btrfs_put_block_group(cache);
1606 cache = NULL;
1607 ret = false;
1608 } else {
1609 cache->meta_write_pointer = eb->start + eb->len;
1610 }
1611
1612 *cache_ret = cache;
1613 }
1614
1615 return ret;
1616}
1617
1618void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1619 struct extent_buffer *eb)
1620{
1621 if (!btrfs_is_zoned(eb->fs_info) || !cache)
1622 return;
1623
1624 ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1625 cache->meta_write_pointer = eb->start;
1626}
de17addc
NA
1627
1628int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1629{
1630 if (!btrfs_dev_is_sequential(device, physical))
1631 return -EOPNOTSUPP;
1632
1633 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1634 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1635}
7db1c5d1
NA
1636
1637static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1638 struct blk_zone *zone)
1639{
1640 struct btrfs_bio *bbio = NULL;
1641 u64 mapped_length = PAGE_SIZE;
1642 unsigned int nofs_flag;
1643 int nmirrors;
1644 int i, ret;
1645
1646 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1647 &mapped_length, &bbio);
1648 if (ret || !bbio || mapped_length < PAGE_SIZE) {
1649 btrfs_put_bbio(bbio);
1650 return -EIO;
1651 }
1652
1653 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1654 return -EINVAL;
1655
1656 nofs_flag = memalloc_nofs_save();
1657 nmirrors = (int)bbio->num_stripes;
1658 for (i = 0; i < nmirrors; i++) {
1659 u64 physical = bbio->stripes[i].physical;
1660 struct btrfs_device *dev = bbio->stripes[i].dev;
1661
1662 /* Missing device */
1663 if (!dev->bdev)
1664 continue;
1665
1666 ret = btrfs_get_dev_zone(dev, physical, zone);
1667 /* Failing device */
1668 if (ret == -EIO || ret == -EOPNOTSUPP)
1669 continue;
1670 break;
1671 }
1672 memalloc_nofs_restore(nofs_flag);
1673
1674 return ret;
1675}
1676
1677/*
1678 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1679 * filling zeros between @physical_pos to a write pointer of dev-replace
1680 * source device.
1681 */
1682int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1683 u64 physical_start, u64 physical_pos)
1684{
1685 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1686 struct blk_zone zone;
1687 u64 length;
1688 u64 wp;
1689 int ret;
1690
1691 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1692 return 0;
1693
1694 ret = read_zone_info(fs_info, logical, &zone);
1695 if (ret)
1696 return ret;
1697
1698 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1699
1700 if (physical_pos == wp)
1701 return 0;
1702
1703 if (physical_pos > wp)
1704 return -EUCLEAN;
1705
1706 length = wp - physical_pos;
1707 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1708}
e7ff9e6b
JT
1709
1710struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1711 u64 logical, u64 length)
1712{
1713 struct btrfs_device *device;
1714 struct extent_map *em;
1715 struct map_lookup *map;
1716
1717 em = btrfs_get_chunk_map(fs_info, logical, length);
1718 if (IS_ERR(em))
1719 return ERR_CAST(em);
1720
1721 map = em->map_lookup;
1722 /* We only support single profile for now */
1723 ASSERT(map->num_stripes == 1);
1724 device = map->stripes[0].dev;
1725
1726 free_extent_map(em);
1727
1728 return device;
1729}
afba2bc0
NA
1730
1731/**
1732 * Activate block group and underlying device zones
1733 *
1734 * @block_group: the block group to activate
1735 *
1736 * Return: true on success, false otherwise
1737 */
1738bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1739{
1740 struct btrfs_fs_info *fs_info = block_group->fs_info;
1741 struct map_lookup *map;
1742 struct btrfs_device *device;
1743 u64 physical;
1744 bool ret;
1745
1746 if (!btrfs_is_zoned(block_group->fs_info))
1747 return true;
1748
1749 map = block_group->physical_map;
1750 /* Currently support SINGLE profile only */
1751 ASSERT(map->num_stripes == 1);
1752 device = map->stripes[0].dev;
1753 physical = map->stripes[0].physical;
1754
1755 if (device->zone_info->max_active_zones == 0)
1756 return true;
1757
1758 spin_lock(&block_group->lock);
1759
1760 if (block_group->zone_is_active) {
1761 ret = true;
1762 goto out_unlock;
1763 }
1764
1765 /* No space left */
1766 if (block_group->alloc_offset == block_group->zone_capacity) {
1767 ret = false;
1768 goto out_unlock;
1769 }
1770
1771 if (!btrfs_dev_set_active_zone(device, physical)) {
1772 /* Cannot activate the zone */
1773 ret = false;
1774 goto out_unlock;
1775 }
1776
1777 /* Successfully activated all the zones */
1778 block_group->zone_is_active = 1;
1779
1780 spin_unlock(&block_group->lock);
1781
1782 /* For the active block group list */
1783 btrfs_get_block_group(block_group);
1784
1785 spin_lock(&fs_info->zone_active_bgs_lock);
1786 ASSERT(list_empty(&block_group->active_bg_list));
1787 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1788 spin_unlock(&fs_info->zone_active_bgs_lock);
1789
1790 return true;
1791
1792out_unlock:
1793 spin_unlock(&block_group->lock);
1794 return ret;
1795}
1796
1797int btrfs_zone_finish(struct btrfs_block_group *block_group)
1798{
1799 struct btrfs_fs_info *fs_info = block_group->fs_info;
1800 struct map_lookup *map;
1801 struct btrfs_device *device;
1802 u64 physical;
1803 int ret = 0;
1804
1805 if (!btrfs_is_zoned(fs_info))
1806 return 0;
1807
1808 map = block_group->physical_map;
1809 /* Currently support SINGLE profile only */
1810 ASSERT(map->num_stripes == 1);
1811
1812 device = map->stripes[0].dev;
1813 physical = map->stripes[0].physical;
1814
1815 if (device->zone_info->max_active_zones == 0)
1816 return 0;
1817
1818 spin_lock(&block_group->lock);
1819 if (!block_group->zone_is_active) {
1820 spin_unlock(&block_group->lock);
1821 return 0;
1822 }
1823
1824 /* Check if we have unwritten allocated space */
1825 if ((block_group->flags &
1826 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) &&
1827 block_group->alloc_offset > block_group->meta_write_pointer) {
1828 spin_unlock(&block_group->lock);
1829 return -EAGAIN;
1830 }
1831 spin_unlock(&block_group->lock);
1832
1833 ret = btrfs_inc_block_group_ro(block_group, false);
1834 if (ret)
1835 return ret;
1836
1837 /* Ensure all writes in this block group finish */
1838 btrfs_wait_block_group_reservations(block_group);
1839 /* No need to wait for NOCOW writers. Zoned mode does not allow that. */
1840 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1841 block_group->length);
1842
1843 spin_lock(&block_group->lock);
1844
1845 /*
1846 * Bail out if someone already deactivated the block group, or
1847 * allocated space is left in the block group.
1848 */
1849 if (!block_group->zone_is_active) {
1850 spin_unlock(&block_group->lock);
1851 btrfs_dec_block_group_ro(block_group);
1852 return 0;
1853 }
1854
1855 if (block_group->reserved) {
1856 spin_unlock(&block_group->lock);
1857 btrfs_dec_block_group_ro(block_group);
1858 return -EAGAIN;
1859 }
1860
1861 block_group->zone_is_active = 0;
1862 block_group->alloc_offset = block_group->zone_capacity;
1863 block_group->free_space_ctl->free_space = 0;
1864 btrfs_clear_treelog_bg(block_group);
1865 spin_unlock(&block_group->lock);
1866
1867 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
1868 physical >> SECTOR_SHIFT,
1869 device->zone_info->zone_size >> SECTOR_SHIFT,
1870 GFP_NOFS);
1871 btrfs_dec_block_group_ro(block_group);
1872
1873 if (!ret) {
1874 btrfs_dev_clear_active_zone(device, physical);
1875
1876 spin_lock(&fs_info->zone_active_bgs_lock);
1877 ASSERT(!list_empty(&block_group->active_bg_list));
1878 list_del_init(&block_group->active_bg_list);
1879 spin_unlock(&fs_info->zone_active_bgs_lock);
1880
1881 /* For active_bg_list */
1882 btrfs_put_block_group(block_group);
1883 }
1884
1885 return ret;
1886}
a85f05e5
NA
1887
1888bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, int raid_index)
1889{
1890 struct btrfs_device *device;
1891 bool ret = false;
1892
1893 if (!btrfs_is_zoned(fs_devices->fs_info))
1894 return true;
1895
1896 /* Non-single profiles are not supported yet */
1897 if (raid_index != BTRFS_RAID_SINGLE)
1898 return false;
1899
1900 /* Check if there is a device with active zones left */
1901 mutex_lock(&fs_devices->device_list_mutex);
1902 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1903 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1904
1905 if (!device->bdev)
1906 continue;
1907
1908 if (!zinfo->max_active_zones ||
1909 atomic_read(&zinfo->active_zones_left)) {
1910 ret = true;
1911 break;
1912 }
1913 }
1914 mutex_unlock(&fs_devices->device_list_mutex);
1915
1916 return ret;
1917}
be1a1d7a
NA
1918
1919void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
1920{
1921 struct btrfs_block_group *block_group;
1922 struct map_lookup *map;
1923 struct btrfs_device *device;
1924 u64 physical;
1925
1926 if (!btrfs_is_zoned(fs_info))
1927 return;
1928
1929 block_group = btrfs_lookup_block_group(fs_info, logical);
1930 ASSERT(block_group);
1931
1932 if (logical + length < block_group->start + block_group->zone_capacity)
1933 goto out;
1934
1935 spin_lock(&block_group->lock);
1936
1937 if (!block_group->zone_is_active) {
1938 spin_unlock(&block_group->lock);
1939 goto out;
1940 }
1941
1942 block_group->zone_is_active = 0;
1943 /* We should have consumed all the free space */
1944 ASSERT(block_group->alloc_offset == block_group->zone_capacity);
1945 ASSERT(block_group->free_space_ctl->free_space == 0);
1946 btrfs_clear_treelog_bg(block_group);
1947 spin_unlock(&block_group->lock);
1948
1949 map = block_group->physical_map;
1950 device = map->stripes[0].dev;
1951 physical = map->stripes[0].physical;
1952
1953 if (!device->zone_info->max_active_zones)
1954 goto out;
1955
1956 btrfs_dev_clear_active_zone(device, physical);
1957
1958 spin_lock(&fs_info->zone_active_bgs_lock);
1959 ASSERT(!list_empty(&block_group->active_bg_list));
1960 list_del_init(&block_group->active_bg_list);
1961 spin_unlock(&fs_info->zone_active_bgs_lock);
1962
1963 btrfs_put_block_group(block_group);
1964
1965out:
1966 btrfs_put_block_group(block_group);
1967}
c2707a25
JT
1968
1969void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
1970{
1971 struct btrfs_fs_info *fs_info = bg->fs_info;
1972
1973 spin_lock(&fs_info->relocation_bg_lock);
1974 if (fs_info->data_reloc_bg == bg->start)
1975 fs_info->data_reloc_bg = 0;
1976 spin_unlock(&fs_info->relocation_bg_lock);
1977}