]> git.ipfire.org Git - people/ms/linux.git/blame - fs/dax.c
dax: Remove optimisation from dax_lock_mapping_entry
[people/ms/linux.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
289c6aed 28#include <linux/sched.h>
f361bf4a 29#include <linux/sched/signal.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
4b4bb46d 34#include <linux/mmu_notifier.h>
a254e568
CH
35#include <linux/iomap.h>
36#include "internal.h"
d475c634 37
282a8e03
RZ
38#define CREATE_TRACE_POINTS
39#include <trace/events/fs_dax.h>
40
cfc93c6c
MW
41static inline unsigned int pe_order(enum page_entry_size pe_size)
42{
43 if (pe_size == PE_SIZE_PTE)
44 return PAGE_SHIFT - PAGE_SHIFT;
45 if (pe_size == PE_SIZE_PMD)
46 return PMD_SHIFT - PAGE_SHIFT;
47 if (pe_size == PE_SIZE_PUD)
48 return PUD_SHIFT - PAGE_SHIFT;
49 return ~0;
50}
51
ac401cc7
JK
52/* We choose 4096 entries - same as per-zone page wait tables */
53#define DAX_WAIT_TABLE_BITS 12
54#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
917f3452
RZ
56/* The 'colour' (ie low bits) within a PMD of a page offset. */
57#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 58#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 59
cfc93c6c
MW
60/* The order of a PMD entry */
61#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
62
ce95ab0f 63static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
64
65static int __init init_dax_wait_table(void)
66{
67 int i;
68
69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 init_waitqueue_head(wait_table + i);
71 return 0;
72}
73fs_initcall(init_dax_wait_table);
74
527b19d0 75/*
3159f943
MW
76 * DAX pagecache entries use XArray value entries so they can't be mistaken
77 * for pages. We use one bit for locking, one bit for the entry size (PMD)
78 * and two more to tell us if the entry is a zero page or an empty entry that
79 * is just used for locking. In total four special bits.
527b19d0
RZ
80 *
81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83 * block allocation.
84 */
3159f943
MW
85#define DAX_SHIFT (4)
86#define DAX_LOCKED (1UL << 0)
87#define DAX_PMD (1UL << 1)
88#define DAX_ZERO_PAGE (1UL << 2)
89#define DAX_EMPTY (1UL << 3)
527b19d0 90
a77d19f4 91static unsigned long dax_to_pfn(void *entry)
527b19d0 92{
3159f943 93 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
94}
95
9f32d221
MW
96static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97{
98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99}
100
101static void *dax_make_page_entry(struct page *page)
102{
103 pfn_t pfn = page_to_pfn_t(page);
104 return dax_make_entry(pfn, PageHead(page) ? DAX_PMD : 0);
105}
106
cfc93c6c
MW
107static bool dax_is_locked(void *entry)
108{
109 return xa_to_value(entry) & DAX_LOCKED;
110}
111
a77d19f4 112static unsigned int dax_entry_order(void *entry)
527b19d0 113{
3159f943 114 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 115 return PMD_ORDER;
527b19d0
RZ
116 return 0;
117}
118
642261ac 119static int dax_is_pmd_entry(void *entry)
d1a5f2b4 120{
3159f943 121 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
122}
123
642261ac 124static int dax_is_pte_entry(void *entry)
d475c634 125{
3159f943 126 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
127}
128
642261ac 129static int dax_is_zero_entry(void *entry)
d475c634 130{
3159f943 131 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
132}
133
642261ac 134static int dax_is_empty_entry(void *entry)
b2e0d162 135{
3159f943 136 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
137}
138
ac401cc7 139/*
a77d19f4 140 * DAX page cache entry locking
ac401cc7
JK
141 */
142struct exceptional_entry_key {
ec4907ff 143 struct xarray *xa;
63e95b5c 144 pgoff_t entry_start;
ac401cc7
JK
145};
146
147struct wait_exceptional_entry_queue {
ac6424b9 148 wait_queue_entry_t wait;
ac401cc7
JK
149 struct exceptional_entry_key key;
150};
151
b15cd800
MW
152static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
153 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
154{
155 unsigned long hash;
b15cd800 156 unsigned long index = xas->xa_index;
63e95b5c
RZ
157
158 /*
159 * If 'entry' is a PMD, align the 'index' that we use for the wait
160 * queue to the start of that PMD. This ensures that all offsets in
161 * the range covered by the PMD map to the same bit lock.
162 */
642261ac 163 if (dax_is_pmd_entry(entry))
917f3452 164 index &= ~PG_PMD_COLOUR;
b15cd800 165 key->xa = xas->xa;
63e95b5c
RZ
166 key->entry_start = index;
167
b15cd800 168 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
169 return wait_table + hash;
170}
171
ec4907ff
MW
172static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
173 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
174{
175 struct exceptional_entry_key *key = keyp;
176 struct wait_exceptional_entry_queue *ewait =
177 container_of(wait, struct wait_exceptional_entry_queue, wait);
178
ec4907ff 179 if (key->xa != ewait->key.xa ||
63e95b5c 180 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
181 return 0;
182 return autoremove_wake_function(wait, mode, sync, NULL);
183}
184
e30331ff 185/*
b93b0163
MW
186 * @entry may no longer be the entry at the index in the mapping.
187 * The important information it's conveying is whether the entry at
188 * this index used to be a PMD entry.
e30331ff 189 */
b15cd800 190static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
191{
192 struct exceptional_entry_key key;
193 wait_queue_head_t *wq;
194
b15cd800 195 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
196
197 /*
198 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 199 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
200 * So at this point all tasks that could have seen our entry locked
201 * must be in the waitqueue and the following check will see them.
202 */
203 if (waitqueue_active(wq))
204 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
205}
206
cfc93c6c
MW
207/*
208 * Look up entry in page cache, wait for it to become unlocked if it
209 * is a DAX entry and return it. The caller must subsequently call
210 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
211 * if it did.
212 *
213 * Must be called with the i_pages lock held.
214 */
215static void *get_unlocked_entry(struct xa_state *xas)
216{
217 void *entry;
218 struct wait_exceptional_entry_queue ewait;
219 wait_queue_head_t *wq;
220
221 init_wait(&ewait.wait);
222 ewait.wait.func = wake_exceptional_entry_func;
223
224 for (;;) {
225 entry = xas_load(xas);
226 if (!entry || xa_is_internal(entry) ||
227 WARN_ON_ONCE(!xa_is_value(entry)) ||
228 !dax_is_locked(entry))
229 return entry;
230
b15cd800 231 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
232 prepare_to_wait_exclusive(wq, &ewait.wait,
233 TASK_UNINTERRUPTIBLE);
234 xas_unlock_irq(xas);
235 xas_reset(xas);
236 schedule();
237 finish_wait(wq, &ewait.wait);
238 xas_lock_irq(xas);
239 }
240}
241
242static void put_unlocked_entry(struct xa_state *xas, void *entry)
243{
244 /* If we were the only waiter woken, wake the next one */
245 if (entry)
246 dax_wake_entry(xas, entry, false);
247}
248
249/*
250 * We used the xa_state to get the entry, but then we locked the entry and
251 * dropped the xa_lock, so we know the xa_state is stale and must be reset
252 * before use.
253 */
254static void dax_unlock_entry(struct xa_state *xas, void *entry)
255{
256 void *old;
257
258 xas_reset(xas);
259 xas_lock_irq(xas);
260 old = xas_store(xas, entry);
261 xas_unlock_irq(xas);
262 BUG_ON(!dax_is_locked(old));
263 dax_wake_entry(xas, entry, false);
264}
265
266/*
267 * Return: The entry stored at this location before it was locked.
268 */
269static void *dax_lock_entry(struct xa_state *xas, void *entry)
270{
271 unsigned long v = xa_to_value(entry);
272 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
273}
274
d2c997c0
DW
275static unsigned long dax_entry_size(void *entry)
276{
277 if (dax_is_zero_entry(entry))
278 return 0;
279 else if (dax_is_empty_entry(entry))
280 return 0;
281 else if (dax_is_pmd_entry(entry))
282 return PMD_SIZE;
283 else
284 return PAGE_SIZE;
285}
286
a77d19f4 287static unsigned long dax_end_pfn(void *entry)
d2c997c0 288{
a77d19f4 289 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
290}
291
292/*
293 * Iterate through all mapped pfns represented by an entry, i.e. skip
294 * 'empty' and 'zero' entries.
295 */
296#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
297 for (pfn = dax_to_pfn(entry); \
298 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 299
73449daf
DW
300/*
301 * TODO: for reflink+dax we need a way to associate a single page with
302 * multiple address_space instances at different linear_page_index()
303 * offsets.
304 */
305static void dax_associate_entry(void *entry, struct address_space *mapping,
306 struct vm_area_struct *vma, unsigned long address)
d2c997c0 307{
73449daf
DW
308 unsigned long size = dax_entry_size(entry), pfn, index;
309 int i = 0;
d2c997c0
DW
310
311 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
312 return;
313
73449daf 314 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
315 for_each_mapped_pfn(entry, pfn) {
316 struct page *page = pfn_to_page(pfn);
317
318 WARN_ON_ONCE(page->mapping);
319 page->mapping = mapping;
73449daf 320 page->index = index + i++;
d2c997c0
DW
321 }
322}
323
324static void dax_disassociate_entry(void *entry, struct address_space *mapping,
325 bool trunc)
326{
327 unsigned long pfn;
328
329 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
330 return;
331
332 for_each_mapped_pfn(entry, pfn) {
333 struct page *page = pfn_to_page(pfn);
334
335 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
336 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
337 page->mapping = NULL;
73449daf 338 page->index = 0;
d2c997c0
DW
339 }
340}
341
5fac7408
DW
342static struct page *dax_busy_page(void *entry)
343{
344 unsigned long pfn;
345
346 for_each_mapped_pfn(entry, pfn) {
347 struct page *page = pfn_to_page(pfn);
348
349 if (page_ref_count(page) > 1)
350 return page;
351 }
352 return NULL;
353}
354
c2a7d2a1
DW
355bool dax_lock_mapping_entry(struct page *page)
356{
9f32d221
MW
357 XA_STATE(xas, NULL, 0);
358 void *entry;
c2a7d2a1 359
c2a7d2a1 360 for (;;) {
9f32d221 361 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1
DW
362
363 if (!dax_mapping(mapping))
9f32d221 364 return false;
c2a7d2a1
DW
365
366 /*
367 * In the device-dax case there's no need to lock, a
368 * struct dev_pagemap pin is sufficient to keep the
369 * inode alive, and we assume we have dev_pagemap pin
370 * otherwise we would not have a valid pfn_to_page()
371 * translation.
372 */
9f32d221
MW
373 if (S_ISCHR(mapping->host->i_mode))
374 return true;
c2a7d2a1 375
9f32d221
MW
376 xas.xa = &mapping->i_pages;
377 xas_lock_irq(&xas);
c2a7d2a1 378 if (mapping != page->mapping) {
9f32d221 379 xas_unlock_irq(&xas);
c2a7d2a1
DW
380 continue;
381 }
9f32d221
MW
382 xas_set(&xas, page->index);
383 entry = xas_load(&xas);
384 if (dax_is_locked(entry)) {
385 entry = get_unlocked_entry(&xas);
6d7cd8c1
MW
386 xas_unlock_irq(&xas);
387 continue;
c2a7d2a1 388 }
9f32d221
MW
389 dax_lock_entry(&xas, entry);
390 xas_unlock_irq(&xas);
391 return true;
c2a7d2a1 392 }
c2a7d2a1
DW
393}
394
395void dax_unlock_mapping_entry(struct page *page)
396{
397 struct address_space *mapping = page->mapping;
9f32d221 398 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 399
9f32d221 400 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
401 return;
402
9f32d221 403 dax_unlock_entry(&xas, dax_make_page_entry(page));
c2a7d2a1
DW
404}
405
ac401cc7 406/*
a77d19f4
MW
407 * Find page cache entry at given index. If it is a DAX entry, return it
408 * with the entry locked. If the page cache doesn't contain an entry at
409 * that index, add a locked empty entry.
ac401cc7 410 *
3159f943 411 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
412 * either return that locked entry or will return VM_FAULT_FALLBACK.
413 * This will happen if there are any PTE entries within the PMD range
414 * that we are requesting.
642261ac 415 *
b15cd800
MW
416 * We always favor PTE entries over PMD entries. There isn't a flow where we
417 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
418 * insertion will fail if it finds any PTE entries already in the tree, and a
419 * PTE insertion will cause an existing PMD entry to be unmapped and
420 * downgraded to PTE entries. This happens for both PMD zero pages as
421 * well as PMD empty entries.
642261ac 422 *
b15cd800
MW
423 * The exception to this downgrade path is for PMD entries that have
424 * real storage backing them. We will leave these real PMD entries in
425 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 426 *
ac401cc7
JK
427 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
428 * persistent memory the benefit is doubtful. We can add that later if we can
429 * show it helps.
b15cd800
MW
430 *
431 * On error, this function does not return an ERR_PTR. Instead it returns
432 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
433 * overlap with xarray value entries.
ac401cc7 434 */
b15cd800
MW
435static void *grab_mapping_entry(struct xa_state *xas,
436 struct address_space *mapping, unsigned long size_flag)
ac401cc7 437{
b15cd800
MW
438 unsigned long index = xas->xa_index;
439 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
440 void *entry;
642261ac 441
b15cd800
MW
442retry:
443 xas_lock_irq(xas);
444 entry = get_unlocked_entry(xas);
445 if (xa_is_internal(entry))
446 goto fallback;
91d25ba8 447
642261ac 448 if (entry) {
b15cd800
MW
449 if (WARN_ON_ONCE(!xa_is_value(entry))) {
450 xas_set_err(xas, EIO);
451 goto out_unlock;
452 }
453
3159f943 454 if (size_flag & DAX_PMD) {
91d25ba8 455 if (dax_is_pte_entry(entry)) {
b15cd800
MW
456 put_unlocked_entry(xas, entry);
457 goto fallback;
642261ac
RZ
458 }
459 } else { /* trying to grab a PTE entry */
91d25ba8 460 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
461 (dax_is_zero_entry(entry) ||
462 dax_is_empty_entry(entry))) {
463 pmd_downgrade = true;
464 }
465 }
466 }
467
b15cd800
MW
468 if (pmd_downgrade) {
469 /*
470 * Make sure 'entry' remains valid while we drop
471 * the i_pages lock.
472 */
473 dax_lock_entry(xas, entry);
642261ac 474
642261ac
RZ
475 /*
476 * Besides huge zero pages the only other thing that gets
477 * downgraded are empty entries which don't need to be
478 * unmapped.
479 */
b15cd800
MW
480 if (dax_is_zero_entry(entry)) {
481 xas_unlock_irq(xas);
482 unmap_mapping_pages(mapping,
483 xas->xa_index & ~PG_PMD_COLOUR,
484 PG_PMD_NR, false);
485 xas_reset(xas);
486 xas_lock_irq(xas);
e11f8b7b
RZ
487 }
488
b15cd800
MW
489 dax_disassociate_entry(entry, mapping, false);
490 xas_store(xas, NULL); /* undo the PMD join */
491 dax_wake_entry(xas, entry, true);
492 mapping->nrexceptional--;
493 entry = NULL;
494 xas_set(xas, index);
495 }
642261ac 496
b15cd800
MW
497 if (entry) {
498 dax_lock_entry(xas, entry);
499 } else {
500 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
501 dax_lock_entry(xas, entry);
502 if (xas_error(xas))
503 goto out_unlock;
ac401cc7 504 mapping->nrexceptional++;
ac401cc7 505 }
b15cd800
MW
506
507out_unlock:
508 xas_unlock_irq(xas);
509 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
510 goto retry;
511 if (xas->xa_node == XA_ERROR(-ENOMEM))
512 return xa_mk_internal(VM_FAULT_OOM);
513 if (xas_error(xas))
514 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 515 return entry;
b15cd800
MW
516fallback:
517 xas_unlock_irq(xas);
518 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
519}
520
5fac7408
DW
521/**
522 * dax_layout_busy_page - find first pinned page in @mapping
523 * @mapping: address space to scan for a page with ref count > 1
524 *
525 * DAX requires ZONE_DEVICE mapped pages. These pages are never
526 * 'onlined' to the page allocator so they are considered idle when
527 * page->count == 1. A filesystem uses this interface to determine if
528 * any page in the mapping is busy, i.e. for DMA, or other
529 * get_user_pages() usages.
530 *
531 * It is expected that the filesystem is holding locks to block the
532 * establishment of new mappings in this address_space. I.e. it expects
533 * to be able to run unmap_mapping_range() and subsequently not race
534 * mapping_mapped() becoming true.
535 */
536struct page *dax_layout_busy_page(struct address_space *mapping)
537{
084a8990
MW
538 XA_STATE(xas, &mapping->i_pages, 0);
539 void *entry;
540 unsigned int scanned = 0;
5fac7408 541 struct page *page = NULL;
5fac7408
DW
542
543 /*
544 * In the 'limited' case get_user_pages() for dax is disabled.
545 */
546 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
547 return NULL;
548
549 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
550 return NULL;
551
5fac7408
DW
552 /*
553 * If we race get_user_pages_fast() here either we'll see the
084a8990 554 * elevated page count in the iteration and wait, or
5fac7408
DW
555 * get_user_pages_fast() will see that the page it took a reference
556 * against is no longer mapped in the page tables and bail to the
557 * get_user_pages() slow path. The slow path is protected by
558 * pte_lock() and pmd_lock(). New references are not taken without
559 * holding those locks, and unmap_mapping_range() will not zero the
560 * pte or pmd without holding the respective lock, so we are
561 * guaranteed to either see new references or prevent new
562 * references from being established.
563 */
564 unmap_mapping_range(mapping, 0, 0, 1);
565
084a8990
MW
566 xas_lock_irq(&xas);
567 xas_for_each(&xas, entry, ULONG_MAX) {
568 if (WARN_ON_ONCE(!xa_is_value(entry)))
569 continue;
570 if (unlikely(dax_is_locked(entry)))
571 entry = get_unlocked_entry(&xas);
572 if (entry)
573 page = dax_busy_page(entry);
574 put_unlocked_entry(&xas, entry);
5fac7408
DW
575 if (page)
576 break;
084a8990
MW
577 if (++scanned % XA_CHECK_SCHED)
578 continue;
579
580 xas_pause(&xas);
581 xas_unlock_irq(&xas);
582 cond_resched();
583 xas_lock_irq(&xas);
5fac7408 584 }
084a8990 585 xas_unlock_irq(&xas);
5fac7408
DW
586 return page;
587}
588EXPORT_SYMBOL_GPL(dax_layout_busy_page);
589
a77d19f4 590static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
591 pgoff_t index, bool trunc)
592{
07f2d89c 593 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
594 int ret = 0;
595 void *entry;
c6dcf52c 596
07f2d89c
MW
597 xas_lock_irq(&xas);
598 entry = get_unlocked_entry(&xas);
3159f943 599 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
600 goto out;
601 if (!trunc &&
07f2d89c
MW
602 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
603 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 604 goto out;
d2c997c0 605 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 606 xas_store(&xas, NULL);
c6dcf52c
JK
607 mapping->nrexceptional--;
608 ret = 1;
609out:
07f2d89c
MW
610 put_unlocked_entry(&xas, entry);
611 xas_unlock_irq(&xas);
c6dcf52c
JK
612 return ret;
613}
07f2d89c 614
ac401cc7 615/*
3159f943
MW
616 * Delete DAX entry at @index from @mapping. Wait for it
617 * to be unlocked before deleting it.
ac401cc7
JK
618 */
619int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
620{
a77d19f4 621 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 622
ac401cc7
JK
623 /*
624 * This gets called from truncate / punch_hole path. As such, the caller
625 * must hold locks protecting against concurrent modifications of the
a77d19f4 626 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 627 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
628 * at that index as well...
629 */
c6dcf52c
JK
630 WARN_ON_ONCE(!ret);
631 return ret;
632}
633
c6dcf52c 634/*
3159f943 635 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
636 */
637int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
638 pgoff_t index)
639{
a77d19f4 640 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
641}
642
cccbce67
DW
643static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
644 sector_t sector, size_t size, struct page *to,
645 unsigned long vaddr)
f7ca90b1 646{
cccbce67
DW
647 void *vto, *kaddr;
648 pgoff_t pgoff;
cccbce67
DW
649 long rc;
650 int id;
651
652 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
653 if (rc)
654 return rc;
655
656 id = dax_read_lock();
86ed913b 657 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
658 if (rc < 0) {
659 dax_read_unlock(id);
660 return rc;
661 }
f7ca90b1 662 vto = kmap_atomic(to);
cccbce67 663 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 664 kunmap_atomic(vto);
cccbce67 665 dax_read_unlock(id);
f7ca90b1
MW
666 return 0;
667}
668
642261ac
RZ
669/*
670 * By this point grab_mapping_entry() has ensured that we have a locked entry
671 * of the appropriate size so we don't have to worry about downgrading PMDs to
672 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
673 * already in the tree, we will skip the insertion and just dirty the PMD as
674 * appropriate.
675 */
b15cd800
MW
676static void *dax_insert_entry(struct xa_state *xas,
677 struct address_space *mapping, struct vm_fault *vmf,
678 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 679{
b15cd800 680 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 681
f5b7b748 682 if (dirty)
d2b2a28e 683 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 684
3159f943 685 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 686 unsigned long index = xas->xa_index;
91d25ba8
RZ
687 /* we are replacing a zero page with block mapping */
688 if (dax_is_pmd_entry(entry))
977fbdcd 689 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 690 PG_PMD_NR, false);
91d25ba8 691 else /* pte entry */
b15cd800 692 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
693 }
694
b15cd800
MW
695 xas_reset(xas);
696 xas_lock_irq(xas);
d2c997c0
DW
697 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
698 dax_disassociate_entry(entry, mapping, false);
73449daf 699 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
d2c997c0 700 }
642261ac 701
91d25ba8 702 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac 703 /*
a77d19f4 704 * Only swap our new entry into the page cache if the current
642261ac 705 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 706 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
707 * means that if we are trying to insert a PTE and the
708 * existing entry is a PMD, we will just leave the PMD in the
709 * tree and dirty it if necessary.
710 */
b15cd800
MW
711 void *old = dax_lock_entry(xas, new_entry);
712 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
713 DAX_LOCKED));
91d25ba8 714 entry = new_entry;
b15cd800
MW
715 } else {
716 xas_load(xas); /* Walk the xa_state */
9973c98e 717 }
91d25ba8 718
f5b7b748 719 if (dirty)
b15cd800 720 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 721
b15cd800 722 xas_unlock_irq(xas);
91d25ba8 723 return entry;
9973c98e
RZ
724}
725
a77d19f4
MW
726static inline
727unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
728{
729 unsigned long address;
730
731 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
732 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
733 return address;
734}
735
736/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
737static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
738 unsigned long pfn)
4b4bb46d
JK
739{
740 struct vm_area_struct *vma;
f729c8c9
RZ
741 pte_t pte, *ptep = NULL;
742 pmd_t *pmdp = NULL;
4b4bb46d 743 spinlock_t *ptl;
4b4bb46d
JK
744
745 i_mmap_lock_read(mapping);
746 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
a4d1a885 747 unsigned long address, start, end;
4b4bb46d
JK
748
749 cond_resched();
750
751 if (!(vma->vm_flags & VM_SHARED))
752 continue;
753
754 address = pgoff_address(index, vma);
a4d1a885
JG
755
756 /*
757 * Note because we provide start/end to follow_pte_pmd it will
758 * call mmu_notifier_invalidate_range_start() on our behalf
759 * before taking any lock.
760 */
761 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
4b4bb46d 762 continue;
4b4bb46d 763
0f10851e
JG
764 /*
765 * No need to call mmu_notifier_invalidate_range() as we are
766 * downgrading page table protection not changing it to point
767 * to a new page.
768 *
ad56b738 769 * See Documentation/vm/mmu_notifier.rst
0f10851e 770 */
f729c8c9
RZ
771 if (pmdp) {
772#ifdef CONFIG_FS_DAX_PMD
773 pmd_t pmd;
774
775 if (pfn != pmd_pfn(*pmdp))
776 goto unlock_pmd;
f6f37321 777 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
778 goto unlock_pmd;
779
780 flush_cache_page(vma, address, pfn);
781 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
782 pmd = pmd_wrprotect(pmd);
783 pmd = pmd_mkclean(pmd);
784 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 785unlock_pmd:
f729c8c9 786#endif
ee190ca6 787 spin_unlock(ptl);
f729c8c9
RZ
788 } else {
789 if (pfn != pte_pfn(*ptep))
790 goto unlock_pte;
791 if (!pte_dirty(*ptep) && !pte_write(*ptep))
792 goto unlock_pte;
793
794 flush_cache_page(vma, address, pfn);
795 pte = ptep_clear_flush(vma, address, ptep);
796 pte = pte_wrprotect(pte);
797 pte = pte_mkclean(pte);
798 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
799unlock_pte:
800 pte_unmap_unlock(ptep, ptl);
801 }
4b4bb46d 802
a4d1a885 803 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
4b4bb46d
JK
804 }
805 i_mmap_unlock_read(mapping);
806}
807
9fc747f6
MW
808static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
809 struct address_space *mapping, void *entry)
9973c98e 810{
3fe0791c
DW
811 unsigned long pfn;
812 long ret = 0;
cccbce67 813 size_t size;
9973c98e 814
9973c98e 815 /*
a6abc2c0
JK
816 * A page got tagged dirty in DAX mapping? Something is seriously
817 * wrong.
9973c98e 818 */
3159f943 819 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 820 return -EIO;
9973c98e 821
9fc747f6
MW
822 if (unlikely(dax_is_locked(entry))) {
823 void *old_entry = entry;
824
825 entry = get_unlocked_entry(xas);
826
827 /* Entry got punched out / reallocated? */
828 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
829 goto put_unlocked;
830 /*
831 * Entry got reallocated elsewhere? No need to writeback.
832 * We have to compare pfns as we must not bail out due to
833 * difference in lockbit or entry type.
834 */
835 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
836 goto put_unlocked;
837 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
838 dax_is_zero_entry(entry))) {
839 ret = -EIO;
840 goto put_unlocked;
841 }
842
843 /* Another fsync thread may have already done this entry */
844 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
845 goto put_unlocked;
9973c98e
RZ
846 }
847
a6abc2c0 848 /* Lock the entry to serialize with page faults */
9fc747f6
MW
849 dax_lock_entry(xas, entry);
850
a6abc2c0
JK
851 /*
852 * We can clear the tag now but we have to be careful so that concurrent
853 * dax_writeback_one() calls for the same index cannot finish before we
854 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
855 * at the entry only under the i_pages lock and once they do that
856 * they will see the entry locked and wait for it to unlock.
a6abc2c0 857 */
9fc747f6
MW
858 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
859 xas_unlock_irq(xas);
a6abc2c0 860
642261ac
RZ
861 /*
862 * Even if dax_writeback_mapping_range() was given a wbc->range_start
863 * in the middle of a PMD, the 'index' we are given will be aligned to
3fe0791c
DW
864 * the start index of the PMD, as will the pfn we pull from 'entry'.
865 * This allows us to flush for PMD_SIZE and not have to worry about
866 * partial PMD writebacks.
642261ac 867 */
a77d19f4
MW
868 pfn = dax_to_pfn(entry);
869 size = PAGE_SIZE << dax_entry_order(entry);
cccbce67 870
9fc747f6 871 dax_entry_mkclean(mapping, xas->xa_index, pfn);
3fe0791c 872 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
4b4bb46d
JK
873 /*
874 * After we have flushed the cache, we can clear the dirty tag. There
875 * cannot be new dirty data in the pfn after the flush has completed as
876 * the pfn mappings are writeprotected and fault waits for mapping
877 * entry lock.
878 */
9fc747f6
MW
879 xas_reset(xas);
880 xas_lock_irq(xas);
881 xas_store(xas, entry);
882 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
883 dax_wake_entry(xas, entry, false);
884
885 trace_dax_writeback_one(mapping->host, xas->xa_index,
886 size >> PAGE_SHIFT);
9973c98e
RZ
887 return ret;
888
a6abc2c0 889 put_unlocked:
9fc747f6 890 put_unlocked_entry(xas, entry);
9973c98e
RZ
891 return ret;
892}
893
894/*
895 * Flush the mapping to the persistent domain within the byte range of [start,
896 * end]. This is required by data integrity operations to ensure file data is
897 * on persistent storage prior to completion of the operation.
898 */
7f6d5b52
RZ
899int dax_writeback_mapping_range(struct address_space *mapping,
900 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 901{
9fc747f6 902 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 903 struct inode *inode = mapping->host;
9fc747f6 904 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 905 struct dax_device *dax_dev;
9fc747f6
MW
906 void *entry;
907 int ret = 0;
908 unsigned int scanned = 0;
9973c98e
RZ
909
910 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
911 return -EIO;
912
7f6d5b52
RZ
913 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
914 return 0;
915
cccbce67
DW
916 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
917 if (!dax_dev)
918 return -EIO;
919
9fc747f6 920 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 921
9fc747f6 922 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 923
9fc747f6
MW
924 xas_lock_irq(&xas);
925 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
926 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
927 if (ret < 0) {
928 mapping_set_error(mapping, ret);
9973c98e 929 break;
9973c98e 930 }
9fc747f6
MW
931 if (++scanned % XA_CHECK_SCHED)
932 continue;
933
934 xas_pause(&xas);
935 xas_unlock_irq(&xas);
936 cond_resched();
937 xas_lock_irq(&xas);
9973c98e 938 }
9fc747f6 939 xas_unlock_irq(&xas);
cccbce67 940 put_dax(dax_dev);
9fc747f6
MW
941 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
942 return ret;
9973c98e
RZ
943}
944EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
945
31a6f1a6 946static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 947{
a3841f94 948 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
949}
950
5e161e40
JK
951static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
952 pfn_t *pfnp)
f7ca90b1 953{
31a6f1a6 954 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
955 pgoff_t pgoff;
956 int id, rc;
5e161e40 957 long length;
f7ca90b1 958
5e161e40 959 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
960 if (rc)
961 return rc;
cccbce67 962 id = dax_read_lock();
5e161e40 963 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 964 NULL, pfnp);
5e161e40
JK
965 if (length < 0) {
966 rc = length;
967 goto out;
cccbce67 968 }
5e161e40
JK
969 rc = -EINVAL;
970 if (PFN_PHYS(length) < size)
971 goto out;
972 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
973 goto out;
974 /* For larger pages we need devmap */
975 if (length > 1 && !pfn_t_devmap(*pfnp))
976 goto out;
977 rc = 0;
978out:
cccbce67 979 dax_read_unlock(id);
5e161e40 980 return rc;
0e3b210c 981}
0e3b210c 982
e30331ff 983/*
91d25ba8
RZ
984 * The user has performed a load from a hole in the file. Allocating a new
985 * page in the file would cause excessive storage usage for workloads with
986 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
987 * If this page is ever written to we will re-fault and change the mapping to
988 * point to real DAX storage instead.
e30331ff 989 */
b15cd800
MW
990static vm_fault_t dax_load_hole(struct xa_state *xas,
991 struct address_space *mapping, void **entry,
992 struct vm_fault *vmf)
e30331ff
RZ
993{
994 struct inode *inode = mapping->host;
91d25ba8 995 unsigned long vaddr = vmf->address;
b90ca5cc
MW
996 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
997 vm_fault_t ret;
e30331ff 998
b15cd800 999 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1000 DAX_ZERO_PAGE, false);
1001
ab77dab4 1002 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1003 trace_dax_load_hole(inode, vmf, ret);
1004 return ret;
1005}
1006
4b0228fa
VV
1007static bool dax_range_is_aligned(struct block_device *bdev,
1008 unsigned int offset, unsigned int length)
1009{
1010 unsigned short sector_size = bdev_logical_block_size(bdev);
1011
1012 if (!IS_ALIGNED(offset, sector_size))
1013 return false;
1014 if (!IS_ALIGNED(length, sector_size))
1015 return false;
1016
1017 return true;
1018}
1019
cccbce67
DW
1020int __dax_zero_page_range(struct block_device *bdev,
1021 struct dax_device *dax_dev, sector_t sector,
1022 unsigned int offset, unsigned int size)
679c8bd3 1023{
cccbce67
DW
1024 if (dax_range_is_aligned(bdev, offset, size)) {
1025 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1026
1027 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1028 size >> 9, GFP_NOFS, 0);
4b0228fa 1029 } else {
cccbce67
DW
1030 pgoff_t pgoff;
1031 long rc, id;
1032 void *kaddr;
cccbce67 1033
e84b83b9 1034 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1035 if (rc)
1036 return rc;
1037
1038 id = dax_read_lock();
86ed913b 1039 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1040 if (rc < 0) {
1041 dax_read_unlock(id);
1042 return rc;
1043 }
81f55870 1044 memset(kaddr + offset, 0, size);
c3ca015f 1045 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1046 dax_read_unlock(id);
4b0228fa 1047 }
679c8bd3
CH
1048 return 0;
1049}
1050EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1051
a254e568 1052static loff_t
11c59c92 1053dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1054 struct iomap *iomap)
1055{
cccbce67
DW
1056 struct block_device *bdev = iomap->bdev;
1057 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1058 struct iov_iter *iter = data;
1059 loff_t end = pos + length, done = 0;
1060 ssize_t ret = 0;
a77d4786 1061 size_t xfer;
cccbce67 1062 int id;
a254e568
CH
1063
1064 if (iov_iter_rw(iter) == READ) {
1065 end = min(end, i_size_read(inode));
1066 if (pos >= end)
1067 return 0;
1068
1069 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1070 return iov_iter_zero(min(length, end - pos), iter);
1071 }
1072
1073 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1074 return -EIO;
1075
e3fce68c
JK
1076 /*
1077 * Write can allocate block for an area which has a hole page mapped
1078 * into page tables. We have to tear down these mappings so that data
1079 * written by write(2) is visible in mmap.
1080 */
cd656375 1081 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1082 invalidate_inode_pages2_range(inode->i_mapping,
1083 pos >> PAGE_SHIFT,
1084 (end - 1) >> PAGE_SHIFT);
1085 }
1086
cccbce67 1087 id = dax_read_lock();
a254e568
CH
1088 while (pos < end) {
1089 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1090 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1091 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1092 ssize_t map_len;
cccbce67
DW
1093 pgoff_t pgoff;
1094 void *kaddr;
a254e568 1095
d1908f52
MH
1096 if (fatal_signal_pending(current)) {
1097 ret = -EINTR;
1098 break;
1099 }
1100
cccbce67
DW
1101 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1102 if (ret)
1103 break;
1104
1105 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1106 &kaddr, NULL);
a254e568
CH
1107 if (map_len < 0) {
1108 ret = map_len;
1109 break;
1110 }
1111
cccbce67
DW
1112 map_len = PFN_PHYS(map_len);
1113 kaddr += offset;
a254e568
CH
1114 map_len -= offset;
1115 if (map_len > end - pos)
1116 map_len = end - pos;
1117
a2e050f5
RZ
1118 /*
1119 * The userspace address for the memory copy has already been
1120 * validated via access_ok() in either vfs_read() or
1121 * vfs_write(), depending on which operation we are doing.
1122 */
a254e568 1123 if (iov_iter_rw(iter) == WRITE)
a77d4786 1124 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1125 map_len, iter);
a254e568 1126 else
a77d4786 1127 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1128 map_len, iter);
a254e568 1129
a77d4786
DW
1130 pos += xfer;
1131 length -= xfer;
1132 done += xfer;
1133
1134 if (xfer == 0)
1135 ret = -EFAULT;
1136 if (xfer < map_len)
1137 break;
a254e568 1138 }
cccbce67 1139 dax_read_unlock(id);
a254e568
CH
1140
1141 return done ? done : ret;
1142}
1143
1144/**
11c59c92 1145 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1146 * @iocb: The control block for this I/O
1147 * @iter: The addresses to do I/O from or to
1148 * @ops: iomap ops passed from the file system
1149 *
1150 * This function performs read and write operations to directly mapped
1151 * persistent memory. The callers needs to take care of read/write exclusion
1152 * and evicting any page cache pages in the region under I/O.
1153 */
1154ssize_t
11c59c92 1155dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1156 const struct iomap_ops *ops)
a254e568
CH
1157{
1158 struct address_space *mapping = iocb->ki_filp->f_mapping;
1159 struct inode *inode = mapping->host;
1160 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1161 unsigned flags = 0;
1162
168316db
CH
1163 if (iov_iter_rw(iter) == WRITE) {
1164 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1165 flags |= IOMAP_WRITE;
168316db
CH
1166 } else {
1167 lockdep_assert_held(&inode->i_rwsem);
1168 }
a254e568 1169
a254e568
CH
1170 while (iov_iter_count(iter)) {
1171 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1172 iter, dax_iomap_actor);
a254e568
CH
1173 if (ret <= 0)
1174 break;
1175 pos += ret;
1176 done += ret;
1177 }
1178
1179 iocb->ki_pos += done;
1180 return done ? done : ret;
1181}
11c59c92 1182EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1183
ab77dab4 1184static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1185{
1186 if (error == 0)
1187 return VM_FAULT_NOPAGE;
1188 if (error == -ENOMEM)
1189 return VM_FAULT_OOM;
1190 return VM_FAULT_SIGBUS;
1191}
1192
aaa422c4
DW
1193/*
1194 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1195 * flushed on write-faults (non-cow), but not read-faults.
1196 */
1197static bool dax_fault_is_synchronous(unsigned long flags,
1198 struct vm_area_struct *vma, struct iomap *iomap)
1199{
1200 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1201 && (iomap->flags & IOMAP_F_DIRTY);
1202}
1203
ab77dab4 1204static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1205 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1206{
a0987ad5
JK
1207 struct vm_area_struct *vma = vmf->vma;
1208 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1209 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1210 struct inode *inode = mapping->host;
1a29d85e 1211 unsigned long vaddr = vmf->address;
a7d73fe6 1212 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1213 struct iomap iomap = { 0 };
9484ab1b 1214 unsigned flags = IOMAP_FAULT;
a7d73fe6 1215 int error, major = 0;
d2c43ef1 1216 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1217 bool sync;
ab77dab4 1218 vm_fault_t ret = 0;
a7d73fe6 1219 void *entry;
1b5a1cb2 1220 pfn_t pfn;
a7d73fe6 1221
ab77dab4 1222 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1223 /*
1224 * Check whether offset isn't beyond end of file now. Caller is supposed
1225 * to hold locks serializing us with truncate / punch hole so this is
1226 * a reliable test.
1227 */
a9c42b33 1228 if (pos >= i_size_read(inode)) {
ab77dab4 1229 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1230 goto out;
1231 }
a7d73fe6 1232
d2c43ef1 1233 if (write && !vmf->cow_page)
a7d73fe6
CH
1234 flags |= IOMAP_WRITE;
1235
b15cd800
MW
1236 entry = grab_mapping_entry(&xas, mapping, 0);
1237 if (xa_is_internal(entry)) {
1238 ret = xa_to_internal(entry);
13e451fd
JK
1239 goto out;
1240 }
1241
e2093926
RZ
1242 /*
1243 * It is possible, particularly with mixed reads & writes to private
1244 * mappings, that we have raced with a PMD fault that overlaps with
1245 * the PTE we need to set up. If so just return and the fault will be
1246 * retried.
1247 */
1248 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1249 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1250 goto unlock_entry;
1251 }
1252
a7d73fe6
CH
1253 /*
1254 * Note that we don't bother to use iomap_apply here: DAX required
1255 * the file system block size to be equal the page size, which means
1256 * that we never have to deal with more than a single extent here.
1257 */
1258 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1259 if (iomap_errp)
1260 *iomap_errp = error;
a9c42b33 1261 if (error) {
ab77dab4 1262 ret = dax_fault_return(error);
13e451fd 1263 goto unlock_entry;
a9c42b33 1264 }
a7d73fe6 1265 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1266 error = -EIO; /* fs corruption? */
1267 goto error_finish_iomap;
a7d73fe6
CH
1268 }
1269
a7d73fe6 1270 if (vmf->cow_page) {
31a6f1a6
JK
1271 sector_t sector = dax_iomap_sector(&iomap, pos);
1272
a7d73fe6
CH
1273 switch (iomap.type) {
1274 case IOMAP_HOLE:
1275 case IOMAP_UNWRITTEN:
1276 clear_user_highpage(vmf->cow_page, vaddr);
1277 break;
1278 case IOMAP_MAPPED:
cccbce67
DW
1279 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1280 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1281 break;
1282 default:
1283 WARN_ON_ONCE(1);
1284 error = -EIO;
1285 break;
1286 }
1287
1288 if (error)
13e451fd 1289 goto error_finish_iomap;
b1aa812b
JK
1290
1291 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1292 ret = finish_fault(vmf);
1293 if (!ret)
1294 ret = VM_FAULT_DONE_COW;
13e451fd 1295 goto finish_iomap;
a7d73fe6
CH
1296 }
1297
aaa422c4 1298 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1299
a7d73fe6
CH
1300 switch (iomap.type) {
1301 case IOMAP_MAPPED:
1302 if (iomap.flags & IOMAP_F_NEW) {
1303 count_vm_event(PGMAJFAULT);
a0987ad5 1304 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1305 major = VM_FAULT_MAJOR;
1306 }
1b5a1cb2
JK
1307 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1308 if (error < 0)
1309 goto error_finish_iomap;
1310
b15cd800 1311 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1312 0, write && !sync);
1b5a1cb2 1313
caa51d26
JK
1314 /*
1315 * If we are doing synchronous page fault and inode needs fsync,
1316 * we can insert PTE into page tables only after that happens.
1317 * Skip insertion for now and return the pfn so that caller can
1318 * insert it after fsync is done.
1319 */
1320 if (sync) {
1321 if (WARN_ON_ONCE(!pfnp)) {
1322 error = -EIO;
1323 goto error_finish_iomap;
1324 }
1325 *pfnp = pfn;
ab77dab4 1326 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1327 goto finish_iomap;
1328 }
1b5a1cb2
JK
1329 trace_dax_insert_mapping(inode, vmf, entry);
1330 if (write)
ab77dab4 1331 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1332 else
ab77dab4 1333 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1334
ab77dab4 1335 goto finish_iomap;
a7d73fe6
CH
1336 case IOMAP_UNWRITTEN:
1337 case IOMAP_HOLE:
d2c43ef1 1338 if (!write) {
b15cd800 1339 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1340 goto finish_iomap;
1550290b 1341 }
a7d73fe6
CH
1342 /*FALLTHRU*/
1343 default:
1344 WARN_ON_ONCE(1);
1345 error = -EIO;
1346 break;
1347 }
1348
13e451fd 1349 error_finish_iomap:
ab77dab4 1350 ret = dax_fault_return(error);
9f141d6e
JK
1351 finish_iomap:
1352 if (ops->iomap_end) {
1353 int copied = PAGE_SIZE;
1354
ab77dab4 1355 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1356 copied = 0;
1357 /*
1358 * The fault is done by now and there's no way back (other
1359 * thread may be already happily using PTE we have installed).
1360 * Just ignore error from ->iomap_end since we cannot do much
1361 * with it.
1362 */
1363 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1364 }
13e451fd 1365 unlock_entry:
b15cd800 1366 dax_unlock_entry(&xas, entry);
13e451fd 1367 out:
ab77dab4
SJ
1368 trace_dax_pte_fault_done(inode, vmf, ret);
1369 return ret | major;
a7d73fe6 1370}
642261ac
RZ
1371
1372#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1373static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1374 struct iomap *iomap, void **entry)
642261ac 1375{
f4200391
DJ
1376 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1377 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1378 struct inode *inode = mapping->host;
642261ac
RZ
1379 struct page *zero_page;
1380 spinlock_t *ptl;
1381 pmd_t pmd_entry;
3fe0791c 1382 pfn_t pfn;
642261ac 1383
f4200391 1384 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1385
1386 if (unlikely(!zero_page))
653b2ea3 1387 goto fallback;
642261ac 1388
3fe0791c 1389 pfn = page_to_pfn_t(zero_page);
b15cd800 1390 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1391 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1392
f4200391
DJ
1393 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1394 if (!pmd_none(*(vmf->pmd))) {
642261ac 1395 spin_unlock(ptl);
653b2ea3 1396 goto fallback;
642261ac
RZ
1397 }
1398
f4200391 1399 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1400 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1401 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1402 spin_unlock(ptl);
b15cd800 1403 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1404 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1405
1406fallback:
b15cd800 1407 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1408 return VM_FAULT_FALLBACK;
642261ac
RZ
1409}
1410
ab77dab4 1411static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1412 const struct iomap_ops *ops)
642261ac 1413{
f4200391 1414 struct vm_area_struct *vma = vmf->vma;
642261ac 1415 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1416 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1417 unsigned long pmd_addr = vmf->address & PMD_MASK;
1418 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1419 bool sync;
9484ab1b 1420 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1421 struct inode *inode = mapping->host;
ab77dab4 1422 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac 1423 struct iomap iomap = { 0 };
b15cd800 1424 pgoff_t max_pgoff;
642261ac
RZ
1425 void *entry;
1426 loff_t pos;
1427 int error;
302a5e31 1428 pfn_t pfn;
642261ac 1429
282a8e03
RZ
1430 /*
1431 * Check whether offset isn't beyond end of file now. Caller is
1432 * supposed to hold locks serializing us with truncate / punch hole so
1433 * this is a reliable test.
1434 */
957ac8c4 1435 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1436
f4200391 1437 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1438
fffa281b
RZ
1439 /*
1440 * Make sure that the faulting address's PMD offset (color) matches
1441 * the PMD offset from the start of the file. This is necessary so
1442 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1443 * range in the page cache.
fffa281b
RZ
1444 */
1445 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1446 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1447 goto fallback;
1448
642261ac
RZ
1449 /* Fall back to PTEs if we're going to COW */
1450 if (write && !(vma->vm_flags & VM_SHARED))
1451 goto fallback;
1452
1453 /* If the PMD would extend outside the VMA */
1454 if (pmd_addr < vma->vm_start)
1455 goto fallback;
1456 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1457 goto fallback;
1458
b15cd800 1459 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1460 result = VM_FAULT_SIGBUS;
1461 goto out;
1462 }
642261ac
RZ
1463
1464 /* If the PMD would extend beyond the file size */
b15cd800 1465 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1466 goto fallback;
1467
876f2946 1468 /*
b15cd800
MW
1469 * grab_mapping_entry() will make sure we get an empty PMD entry,
1470 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1471 * entry is already in the array, for instance), it will return
1472 * VM_FAULT_FALLBACK.
876f2946 1473 */
b15cd800
MW
1474 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1475 if (xa_is_internal(entry)) {
1476 result = xa_to_internal(entry);
876f2946 1477 goto fallback;
b15cd800 1478 }
876f2946 1479
e2093926
RZ
1480 /*
1481 * It is possible, particularly with mixed reads & writes to private
1482 * mappings, that we have raced with a PTE fault that overlaps with
1483 * the PMD we need to set up. If so just return and the fault will be
1484 * retried.
1485 */
1486 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1487 !pmd_devmap(*vmf->pmd)) {
1488 result = 0;
1489 goto unlock_entry;
1490 }
1491
642261ac
RZ
1492 /*
1493 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1494 * setting up a mapping, so really we're using iomap_begin() as a way
1495 * to look up our filesystem block.
1496 */
b15cd800 1497 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
642261ac
RZ
1498 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1499 if (error)
876f2946 1500 goto unlock_entry;
9f141d6e 1501
642261ac
RZ
1502 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1503 goto finish_iomap;
1504
aaa422c4 1505 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1506
642261ac
RZ
1507 switch (iomap.type) {
1508 case IOMAP_MAPPED:
302a5e31
JK
1509 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1510 if (error < 0)
1511 goto finish_iomap;
1512
b15cd800 1513 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1514 DAX_PMD, write && !sync);
302a5e31 1515
caa51d26
JK
1516 /*
1517 * If we are doing synchronous page fault and inode needs fsync,
1518 * we can insert PMD into page tables only after that happens.
1519 * Skip insertion for now and return the pfn so that caller can
1520 * insert it after fsync is done.
1521 */
1522 if (sync) {
1523 if (WARN_ON_ONCE(!pfnp))
1524 goto finish_iomap;
1525 *pfnp = pfn;
1526 result = VM_FAULT_NEEDDSYNC;
1527 goto finish_iomap;
1528 }
1529
302a5e31
JK
1530 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1531 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1532 write);
642261ac
RZ
1533 break;
1534 case IOMAP_UNWRITTEN:
1535 case IOMAP_HOLE:
1536 if (WARN_ON_ONCE(write))
876f2946 1537 break;
b15cd800 1538 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1539 break;
1540 default:
1541 WARN_ON_ONCE(1);
1542 break;
1543 }
1544
1545 finish_iomap:
1546 if (ops->iomap_end) {
9f141d6e
JK
1547 int copied = PMD_SIZE;
1548
1549 if (result == VM_FAULT_FALLBACK)
1550 copied = 0;
1551 /*
1552 * The fault is done by now and there's no way back (other
1553 * thread may be already happily using PMD we have installed).
1554 * Just ignore error from ->iomap_end since we cannot do much
1555 * with it.
1556 */
1557 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1558 &iomap);
642261ac 1559 }
876f2946 1560 unlock_entry:
b15cd800 1561 dax_unlock_entry(&xas, entry);
642261ac
RZ
1562 fallback:
1563 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1564 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1565 count_vm_event(THP_FAULT_FALLBACK);
1566 }
282a8e03 1567out:
f4200391 1568 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1569 return result;
1570}
a2d58167 1571#else
ab77dab4 1572static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1573 const struct iomap_ops *ops)
a2d58167
DJ
1574{
1575 return VM_FAULT_FALLBACK;
1576}
642261ac 1577#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1578
1579/**
1580 * dax_iomap_fault - handle a page fault on a DAX file
1581 * @vmf: The description of the fault
cec04e8c 1582 * @pe_size: Size of the page to fault in
9a0dd422 1583 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1584 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1585 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1586 *
1587 * When a page fault occurs, filesystems may call this helper in
1588 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1589 * has done all the necessary locking for page fault to proceed
1590 * successfully.
1591 */
ab77dab4 1592vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1593 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1594{
c791ace1
DJ
1595 switch (pe_size) {
1596 case PE_SIZE_PTE:
c0b24625 1597 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1598 case PE_SIZE_PMD:
9a0dd422 1599 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1600 default:
1601 return VM_FAULT_FALLBACK;
1602 }
1603}
1604EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1605
a77d19f4 1606/*
71eab6df
JK
1607 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1608 * @vmf: The description of the fault
71eab6df 1609 * @pfn: PFN to insert
cfc93c6c 1610 * @order: Order of entry to insert.
71eab6df 1611 *
a77d19f4
MW
1612 * This function inserts a writeable PTE or PMD entry into the page tables
1613 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1614 */
cfc93c6c
MW
1615static vm_fault_t
1616dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1617{
1618 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1619 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1620 void *entry;
ab77dab4 1621 vm_fault_t ret;
71eab6df 1622
cfc93c6c
MW
1623 xas_lock_irq(&xas);
1624 entry = get_unlocked_entry(&xas);
71eab6df
JK
1625 /* Did we race with someone splitting entry or so? */
1626 if (!entry ||
cfc93c6c
MW
1627 (order == 0 && !dax_is_pte_entry(entry)) ||
1628 (order == PMD_ORDER && (xa_is_internal(entry) ||
1629 !dax_is_pmd_entry(entry)))) {
1630 put_unlocked_entry(&xas, entry);
1631 xas_unlock_irq(&xas);
71eab6df
JK
1632 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1633 VM_FAULT_NOPAGE);
1634 return VM_FAULT_NOPAGE;
1635 }
cfc93c6c
MW
1636 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1637 dax_lock_entry(&xas, entry);
1638 xas_unlock_irq(&xas);
1639 if (order == 0)
ab77dab4 1640 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1641#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1642 else if (order == PMD_ORDER)
ab77dab4 1643 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
71eab6df 1644 pfn, true);
71eab6df 1645#endif
cfc93c6c 1646 else
ab77dab4 1647 ret = VM_FAULT_FALLBACK;
cfc93c6c 1648 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1649 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1650 return ret;
71eab6df
JK
1651}
1652
1653/**
1654 * dax_finish_sync_fault - finish synchronous page fault
1655 * @vmf: The description of the fault
1656 * @pe_size: Size of entry to be inserted
1657 * @pfn: PFN to insert
1658 *
1659 * This function ensures that the file range touched by the page fault is
1660 * stored persistently on the media and handles inserting of appropriate page
1661 * table entry.
1662 */
ab77dab4
SJ
1663vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1664 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1665{
1666 int err;
1667 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1668 unsigned int order = pe_order(pe_size);
1669 size_t len = PAGE_SIZE << order;
71eab6df 1670
71eab6df
JK
1671 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1672 if (err)
1673 return VM_FAULT_SIGBUS;
cfc93c6c 1674 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1675}
1676EXPORT_SYMBOL_GPL(dax_finish_sync_fault);