]> git.ipfire.org Git - people/ms/linux.git/blame - fs/dax.c
dax: remove dax_pmd_fault()
[people/ms/linux.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
2765cfbb 28#include <linux/pmem.h>
289c6aed 29#include <linux/sched.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
a254e568
CH
34#include <linux/iomap.h>
35#include "internal.h"
d475c634 36
e804315d
JK
37/*
38 * We use lowest available bit in exceptional entry for locking, other two
39 * bits to determine entry type. In total 3 special bits.
40 */
41#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
42#define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
43#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
44#define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
45#define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
78a9be0a
N
46#define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
47#define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
e804315d
JK
48 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
49 RADIX_TREE_EXCEPTIONAL_ENTRY))
e4b27491 50
ac401cc7
JK
51/* We choose 4096 entries - same as per-zone page wait tables */
52#define DAX_WAIT_TABLE_BITS 12
53#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
54
ce95ab0f 55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
56
57static int __init init_dax_wait_table(void)
58{
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64}
65fs_initcall(init_dax_wait_table);
66
b2e0d162
DW
67static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
68{
69 struct request_queue *q = bdev->bd_queue;
70 long rc = -EIO;
71
7a9eb206 72 dax->addr = ERR_PTR(-EIO);
b2e0d162
DW
73 if (blk_queue_enter(q, true) != 0)
74 return rc;
75
76 rc = bdev_direct_access(bdev, dax);
77 if (rc < 0) {
7a9eb206 78 dax->addr = ERR_PTR(rc);
b2e0d162
DW
79 blk_queue_exit(q);
80 return rc;
81 }
82 return rc;
83}
84
85static void dax_unmap_atomic(struct block_device *bdev,
86 const struct blk_dax_ctl *dax)
87{
88 if (IS_ERR(dax->addr))
89 return;
90 blk_queue_exit(bdev->bd_queue);
91}
92
d1a5f2b4
DW
93struct page *read_dax_sector(struct block_device *bdev, sector_t n)
94{
95 struct page *page = alloc_pages(GFP_KERNEL, 0);
96 struct blk_dax_ctl dax = {
97 .size = PAGE_SIZE,
98 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
99 };
100 long rc;
101
102 if (!page)
103 return ERR_PTR(-ENOMEM);
104
105 rc = dax_map_atomic(bdev, &dax);
106 if (rc < 0)
107 return ERR_PTR(rc);
108 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
109 dax_unmap_atomic(bdev, &dax);
110 return page;
111}
112
d475c634
MW
113static bool buffer_written(struct buffer_head *bh)
114{
115 return buffer_mapped(bh) && !buffer_unwritten(bh);
116}
117
b2e0d162
DW
118static sector_t to_sector(const struct buffer_head *bh,
119 const struct inode *inode)
120{
121 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
122
123 return sector;
124}
125
a95cd631
OS
126static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
127 loff_t start, loff_t end, get_block_t get_block,
128 struct buffer_head *bh)
d475c634 129{
b2e0d162 130 loff_t pos = start, max = start, bh_max = start;
14df6a4e 131 bool hole = false;
b2e0d162
DW
132 struct block_device *bdev = NULL;
133 int rw = iov_iter_rw(iter), rc;
134 long map_len = 0;
135 struct blk_dax_ctl dax = {
7a9eb206 136 .addr = ERR_PTR(-EIO),
b2e0d162 137 };
069c77bc
JK
138 unsigned blkbits = inode->i_blkbits;
139 sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
140 >> blkbits;
b2e0d162
DW
141
142 if (rw == READ)
d475c634
MW
143 end = min(end, i_size_read(inode));
144
145 while (pos < end) {
2765cfbb 146 size_t len;
d475c634 147 if (pos == max) {
e94f5a22
JM
148 long page = pos >> PAGE_SHIFT;
149 sector_t block = page << (PAGE_SHIFT - blkbits);
d475c634
MW
150 unsigned first = pos - (block << blkbits);
151 long size;
152
153 if (pos == bh_max) {
154 bh->b_size = PAGE_ALIGN(end - pos);
155 bh->b_state = 0;
b2e0d162
DW
156 rc = get_block(inode, block, bh, rw == WRITE);
157 if (rc)
d475c634 158 break;
d475c634 159 bh_max = pos - first + bh->b_size;
b2e0d162 160 bdev = bh->b_bdev;
069c77bc
JK
161 /*
162 * We allow uninitialized buffers for writes
163 * beyond EOF as those cannot race with faults
164 */
165 WARN_ON_ONCE(
166 (buffer_new(bh) && block < file_blks) ||
167 (rw == WRITE && buffer_unwritten(bh)));
d475c634
MW
168 } else {
169 unsigned done = bh->b_size -
170 (bh_max - (pos - first));
171 bh->b_blocknr += done >> blkbits;
172 bh->b_size -= done;
173 }
174
b2e0d162 175 hole = rw == READ && !buffer_written(bh);
d475c634 176 if (hole) {
d475c634
MW
177 size = bh->b_size - first;
178 } else {
b2e0d162
DW
179 dax_unmap_atomic(bdev, &dax);
180 dax.sector = to_sector(bh, inode);
181 dax.size = bh->b_size;
182 map_len = dax_map_atomic(bdev, &dax);
183 if (map_len < 0) {
184 rc = map_len;
d475c634 185 break;
b2e0d162 186 }
b2e0d162
DW
187 dax.addr += first;
188 size = map_len - first;
d475c634 189 }
02395435
ES
190 /*
191 * pos + size is one past the last offset for IO,
192 * so pos + size can overflow loff_t at extreme offsets.
193 * Cast to u64 to catch this and get the true minimum.
194 */
195 max = min_t(u64, pos + size, end);
d475c634
MW
196 }
197
2765cfbb 198 if (iov_iter_rw(iter) == WRITE) {
b2e0d162 199 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
2765cfbb 200 } else if (!hole)
b2e0d162 201 len = copy_to_iter((void __force *) dax.addr, max - pos,
e2e05394 202 iter);
d475c634
MW
203 else
204 len = iov_iter_zero(max - pos, iter);
205
cadfbb6e 206 if (!len) {
b2e0d162 207 rc = -EFAULT;
d475c634 208 break;
cadfbb6e 209 }
d475c634
MW
210
211 pos += len;
b2e0d162
DW
212 if (!IS_ERR(dax.addr))
213 dax.addr += len;
d475c634
MW
214 }
215
b2e0d162 216 dax_unmap_atomic(bdev, &dax);
2765cfbb 217
b2e0d162 218 return (pos == start) ? rc : pos - start;
d475c634
MW
219}
220
221/**
222 * dax_do_io - Perform I/O to a DAX file
d475c634
MW
223 * @iocb: The control block for this I/O
224 * @inode: The file which the I/O is directed at
225 * @iter: The addresses to do I/O from or to
d475c634
MW
226 * @get_block: The filesystem method used to translate file offsets to blocks
227 * @end_io: A filesystem callback for I/O completion
228 * @flags: See below
229 *
230 * This function uses the same locking scheme as do_blockdev_direct_IO:
231 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
232 * caller for writes. For reads, we take and release the i_mutex ourselves.
233 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
234 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
235 * is in progress.
236 */
a95cd631 237ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
c8b8e32d 238 struct iov_iter *iter, get_block_t get_block,
a95cd631 239 dio_iodone_t end_io, int flags)
d475c634
MW
240{
241 struct buffer_head bh;
242 ssize_t retval = -EINVAL;
c8b8e32d 243 loff_t pos = iocb->ki_pos;
d475c634
MW
244 loff_t end = pos + iov_iter_count(iter);
245
246 memset(&bh, 0, sizeof(bh));
eab95db6 247 bh.b_bdev = inode->i_sb->s_bdev;
d475c634 248
c3d98e39 249 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
5955102c 250 inode_lock(inode);
d475c634
MW
251
252 /* Protects against truncate */
bbab37dd
MW
253 if (!(flags & DIO_SKIP_DIO_COUNT))
254 inode_dio_begin(inode);
d475c634 255
a95cd631 256 retval = dax_io(inode, iter, pos, end, get_block, &bh);
d475c634 257
a95cd631 258 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
5955102c 259 inode_unlock(inode);
d475c634 260
187372a3
CH
261 if (end_io) {
262 int err;
263
264 err = end_io(iocb, pos, retval, bh.b_private);
265 if (err)
266 retval = err;
267 }
d475c634 268
bbab37dd
MW
269 if (!(flags & DIO_SKIP_DIO_COUNT))
270 inode_dio_end(inode);
d475c634
MW
271 return retval;
272}
273EXPORT_SYMBOL_GPL(dax_do_io);
f7ca90b1 274
ac401cc7
JK
275/*
276 * DAX radix tree locking
277 */
278struct exceptional_entry_key {
279 struct address_space *mapping;
63e95b5c 280 pgoff_t entry_start;
ac401cc7
JK
281};
282
283struct wait_exceptional_entry_queue {
284 wait_queue_t wait;
285 struct exceptional_entry_key key;
286};
287
63e95b5c
RZ
288static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
289 pgoff_t index, void *entry, struct exceptional_entry_key *key)
290{
291 unsigned long hash;
292
293 /*
294 * If 'entry' is a PMD, align the 'index' that we use for the wait
295 * queue to the start of that PMD. This ensures that all offsets in
296 * the range covered by the PMD map to the same bit lock.
297 */
298 if (RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
299 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
300
301 key->mapping = mapping;
302 key->entry_start = index;
303
304 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
305 return wait_table + hash;
306}
307
ac401cc7
JK
308static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
309 int sync, void *keyp)
310{
311 struct exceptional_entry_key *key = keyp;
312 struct wait_exceptional_entry_queue *ewait =
313 container_of(wait, struct wait_exceptional_entry_queue, wait);
314
315 if (key->mapping != ewait->key.mapping ||
63e95b5c 316 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
317 return 0;
318 return autoremove_wake_function(wait, mode, sync, NULL);
319}
320
321/*
322 * Check whether the given slot is locked. The function must be called with
323 * mapping->tree_lock held
324 */
325static inline int slot_locked(struct address_space *mapping, void **slot)
326{
327 unsigned long entry = (unsigned long)
328 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
329 return entry & RADIX_DAX_ENTRY_LOCK;
330}
331
332/*
333 * Mark the given slot is locked. The function must be called with
334 * mapping->tree_lock held
335 */
336static inline void *lock_slot(struct address_space *mapping, void **slot)
337{
338 unsigned long entry = (unsigned long)
339 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
340
341 entry |= RADIX_DAX_ENTRY_LOCK;
342 radix_tree_replace_slot(slot, (void *)entry);
343 return (void *)entry;
344}
345
346/*
347 * Mark the given slot is unlocked. The function must be called with
348 * mapping->tree_lock held
349 */
350static inline void *unlock_slot(struct address_space *mapping, void **slot)
351{
352 unsigned long entry = (unsigned long)
353 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
354
355 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
356 radix_tree_replace_slot(slot, (void *)entry);
357 return (void *)entry;
358}
359
360/*
361 * Lookup entry in radix tree, wait for it to become unlocked if it is
362 * exceptional entry and return it. The caller must call
363 * put_unlocked_mapping_entry() when he decided not to lock the entry or
364 * put_locked_mapping_entry() when he locked the entry and now wants to
365 * unlock it.
366 *
367 * The function must be called with mapping->tree_lock held.
368 */
369static void *get_unlocked_mapping_entry(struct address_space *mapping,
370 pgoff_t index, void ***slotp)
371{
e3ad61c6 372 void *entry, **slot;
ac401cc7 373 struct wait_exceptional_entry_queue ewait;
63e95b5c 374 wait_queue_head_t *wq;
ac401cc7
JK
375
376 init_wait(&ewait.wait);
377 ewait.wait.func = wake_exceptional_entry_func;
ac401cc7
JK
378
379 for (;;) {
e3ad61c6 380 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
ac401cc7 381 &slot);
e3ad61c6 382 if (!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
383 !slot_locked(mapping, slot)) {
384 if (slotp)
385 *slotp = slot;
e3ad61c6 386 return entry;
ac401cc7 387 }
63e95b5c
RZ
388
389 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
ac401cc7
JK
390 prepare_to_wait_exclusive(wq, &ewait.wait,
391 TASK_UNINTERRUPTIBLE);
392 spin_unlock_irq(&mapping->tree_lock);
393 schedule();
394 finish_wait(wq, &ewait.wait);
395 spin_lock_irq(&mapping->tree_lock);
396 }
397}
398
399/*
400 * Find radix tree entry at given index. If it points to a page, return with
401 * the page locked. If it points to the exceptional entry, return with the
402 * radix tree entry locked. If the radix tree doesn't contain given index,
403 * create empty exceptional entry for the index and return with it locked.
404 *
405 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
406 * persistent memory the benefit is doubtful. We can add that later if we can
407 * show it helps.
408 */
409static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
410{
e3ad61c6 411 void *entry, **slot;
ac401cc7
JK
412
413restart:
414 spin_lock_irq(&mapping->tree_lock);
e3ad61c6 415 entry = get_unlocked_mapping_entry(mapping, index, &slot);
ac401cc7 416 /* No entry for given index? Make sure radix tree is big enough. */
e3ad61c6 417 if (!entry) {
ac401cc7
JK
418 int err;
419
420 spin_unlock_irq(&mapping->tree_lock);
421 err = radix_tree_preload(
422 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
423 if (err)
424 return ERR_PTR(err);
e3ad61c6 425 entry = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
ac401cc7
JK
426 RADIX_DAX_ENTRY_LOCK);
427 spin_lock_irq(&mapping->tree_lock);
e3ad61c6 428 err = radix_tree_insert(&mapping->page_tree, index, entry);
ac401cc7
JK
429 radix_tree_preload_end();
430 if (err) {
431 spin_unlock_irq(&mapping->tree_lock);
432 /* Someone already created the entry? */
433 if (err == -EEXIST)
434 goto restart;
435 return ERR_PTR(err);
436 }
437 /* Good, we have inserted empty locked entry into the tree. */
438 mapping->nrexceptional++;
439 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 440 return entry;
ac401cc7
JK
441 }
442 /* Normal page in radix tree? */
e3ad61c6
RZ
443 if (!radix_tree_exceptional_entry(entry)) {
444 struct page *page = entry;
ac401cc7
JK
445
446 get_page(page);
447 spin_unlock_irq(&mapping->tree_lock);
448 lock_page(page);
449 /* Page got truncated? Retry... */
450 if (unlikely(page->mapping != mapping)) {
451 unlock_page(page);
452 put_page(page);
453 goto restart;
454 }
455 return page;
456 }
e3ad61c6 457 entry = lock_slot(mapping, slot);
ac401cc7 458 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 459 return entry;
ac401cc7
JK
460}
461
63e95b5c
RZ
462/*
463 * We do not necessarily hold the mapping->tree_lock when we call this
464 * function so it is possible that 'entry' is no longer a valid item in the
465 * radix tree. This is okay, though, because all we really need to do is to
466 * find the correct waitqueue where tasks might be sleeping waiting for that
467 * old 'entry' and wake them.
468 */
ac401cc7 469void dax_wake_mapping_entry_waiter(struct address_space *mapping,
63e95b5c 470 pgoff_t index, void *entry, bool wake_all)
ac401cc7 471{
63e95b5c
RZ
472 struct exceptional_entry_key key;
473 wait_queue_head_t *wq;
474
475 wq = dax_entry_waitqueue(mapping, index, entry, &key);
ac401cc7
JK
476
477 /*
478 * Checking for locked entry and prepare_to_wait_exclusive() happens
479 * under mapping->tree_lock, ditto for entry handling in our callers.
480 * So at this point all tasks that could have seen our entry locked
481 * must be in the waitqueue and the following check will see them.
482 */
63e95b5c 483 if (waitqueue_active(wq))
ac401cc7 484 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
ac401cc7
JK
485}
486
bc2466e4 487void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
ac401cc7 488{
e3ad61c6 489 void *entry, **slot;
ac401cc7
JK
490
491 spin_lock_irq(&mapping->tree_lock);
e3ad61c6
RZ
492 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
493 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
494 !slot_locked(mapping, slot))) {
495 spin_unlock_irq(&mapping->tree_lock);
496 return;
497 }
498 unlock_slot(mapping, slot);
499 spin_unlock_irq(&mapping->tree_lock);
63e95b5c 500 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
ac401cc7
JK
501}
502
503static void put_locked_mapping_entry(struct address_space *mapping,
504 pgoff_t index, void *entry)
505{
506 if (!radix_tree_exceptional_entry(entry)) {
507 unlock_page(entry);
508 put_page(entry);
509 } else {
bc2466e4 510 dax_unlock_mapping_entry(mapping, index);
ac401cc7
JK
511 }
512}
513
514/*
515 * Called when we are done with radix tree entry we looked up via
516 * get_unlocked_mapping_entry() and which we didn't lock in the end.
517 */
518static void put_unlocked_mapping_entry(struct address_space *mapping,
519 pgoff_t index, void *entry)
520{
521 if (!radix_tree_exceptional_entry(entry))
522 return;
523
524 /* We have to wake up next waiter for the radix tree entry lock */
63e95b5c 525 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
ac401cc7
JK
526}
527
528/*
529 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
530 * entry to get unlocked before deleting it.
531 */
532int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
533{
534 void *entry;
535
536 spin_lock_irq(&mapping->tree_lock);
537 entry = get_unlocked_mapping_entry(mapping, index, NULL);
538 /*
539 * This gets called from truncate / punch_hole path. As such, the caller
540 * must hold locks protecting against concurrent modifications of the
541 * radix tree (usually fs-private i_mmap_sem for writing). Since the
542 * caller has seen exceptional entry for this index, we better find it
543 * at that index as well...
544 */
545 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
546 spin_unlock_irq(&mapping->tree_lock);
547 return 0;
548 }
549 radix_tree_delete(&mapping->page_tree, index);
550 mapping->nrexceptional--;
551 spin_unlock_irq(&mapping->tree_lock);
63e95b5c 552 dax_wake_mapping_entry_waiter(mapping, index, entry, true);
ac401cc7
JK
553
554 return 1;
555}
556
f7ca90b1
MW
557/*
558 * The user has performed a load from a hole in the file. Allocating
559 * a new page in the file would cause excessive storage usage for
560 * workloads with sparse files. We allocate a page cache page instead.
561 * We'll kick it out of the page cache if it's ever written to,
562 * otherwise it will simply fall out of the page cache under memory
563 * pressure without ever having been dirtied.
564 */
ac401cc7
JK
565static int dax_load_hole(struct address_space *mapping, void *entry,
566 struct vm_fault *vmf)
f7ca90b1 567{
ac401cc7 568 struct page *page;
f7ca90b1 569
ac401cc7
JK
570 /* Hole page already exists? Return it... */
571 if (!radix_tree_exceptional_entry(entry)) {
572 vmf->page = entry;
573 return VM_FAULT_LOCKED;
574 }
f7ca90b1 575
ac401cc7
JK
576 /* This will replace locked radix tree entry with a hole page */
577 page = find_or_create_page(mapping, vmf->pgoff,
578 vmf->gfp_mask | __GFP_ZERO);
579 if (!page) {
580 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
581 return VM_FAULT_OOM;
582 }
f7ca90b1
MW
583 vmf->page = page;
584 return VM_FAULT_LOCKED;
585}
586
b0d5e82f
CH
587static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
588 struct page *to, unsigned long vaddr)
f7ca90b1 589{
b2e0d162 590 struct blk_dax_ctl dax = {
b0d5e82f
CH
591 .sector = sector,
592 .size = size,
b2e0d162 593 };
e2e05394
RZ
594 void *vto;
595
b2e0d162
DW
596 if (dax_map_atomic(bdev, &dax) < 0)
597 return PTR_ERR(dax.addr);
f7ca90b1 598 vto = kmap_atomic(to);
b2e0d162 599 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
f7ca90b1 600 kunmap_atomic(vto);
b2e0d162 601 dax_unmap_atomic(bdev, &dax);
f7ca90b1
MW
602 return 0;
603}
604
09cbfeaf 605#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
9973c98e 606
ac401cc7
JK
607static void *dax_insert_mapping_entry(struct address_space *mapping,
608 struct vm_fault *vmf,
609 void *entry, sector_t sector)
9973c98e
RZ
610{
611 struct radix_tree_root *page_tree = &mapping->page_tree;
ac401cc7
JK
612 int error = 0;
613 bool hole_fill = false;
614 void *new_entry;
615 pgoff_t index = vmf->pgoff;
9973c98e 616
ac401cc7 617 if (vmf->flags & FAULT_FLAG_WRITE)
d2b2a28e 618 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 619
ac401cc7
JK
620 /* Replacing hole page with block mapping? */
621 if (!radix_tree_exceptional_entry(entry)) {
622 hole_fill = true;
623 /*
624 * Unmap the page now before we remove it from page cache below.
625 * The page is locked so it cannot be faulted in again.
626 */
627 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
628 PAGE_SIZE, 0);
629 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
630 if (error)
631 return ERR_PTR(error);
9973c98e
RZ
632 }
633
ac401cc7
JK
634 spin_lock_irq(&mapping->tree_lock);
635 new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) |
636 RADIX_DAX_ENTRY_LOCK);
637 if (hole_fill) {
638 __delete_from_page_cache(entry, NULL);
639 /* Drop pagecache reference */
640 put_page(entry);
641 error = radix_tree_insert(page_tree, index, new_entry);
642 if (error) {
643 new_entry = ERR_PTR(error);
9973c98e
RZ
644 goto unlock;
645 }
ac401cc7
JK
646 mapping->nrexceptional++;
647 } else {
648 void **slot;
649 void *ret;
9973c98e 650
ac401cc7
JK
651 ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
652 WARN_ON_ONCE(ret != entry);
653 radix_tree_replace_slot(slot, new_entry);
9973c98e 654 }
ac401cc7 655 if (vmf->flags & FAULT_FLAG_WRITE)
9973c98e
RZ
656 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
657 unlock:
658 spin_unlock_irq(&mapping->tree_lock);
ac401cc7
JK
659 if (hole_fill) {
660 radix_tree_preload_end();
661 /*
662 * We don't need hole page anymore, it has been replaced with
663 * locked radix tree entry now.
664 */
665 if (mapping->a_ops->freepage)
666 mapping->a_ops->freepage(entry);
667 unlock_page(entry);
668 put_page(entry);
669 }
670 return new_entry;
9973c98e
RZ
671}
672
673static int dax_writeback_one(struct block_device *bdev,
674 struct address_space *mapping, pgoff_t index, void *entry)
675{
676 struct radix_tree_root *page_tree = &mapping->page_tree;
677 int type = RADIX_DAX_TYPE(entry);
678 struct radix_tree_node *node;
679 struct blk_dax_ctl dax;
680 void **slot;
681 int ret = 0;
682
683 spin_lock_irq(&mapping->tree_lock);
684 /*
685 * Regular page slots are stabilized by the page lock even
686 * without the tree itself locked. These unlocked entries
687 * need verification under the tree lock.
688 */
689 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
690 goto unlock;
691 if (*slot != entry)
692 goto unlock;
693
694 /* another fsync thread may have already written back this entry */
695 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
696 goto unlock;
697
698 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
699 ret = -EIO;
700 goto unlock;
701 }
702
703 dax.sector = RADIX_DAX_SECTOR(entry);
704 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
705 spin_unlock_irq(&mapping->tree_lock);
706
707 /*
708 * We cannot hold tree_lock while calling dax_map_atomic() because it
709 * eventually calls cond_resched().
710 */
711 ret = dax_map_atomic(bdev, &dax);
712 if (ret < 0)
713 return ret;
714
715 if (WARN_ON_ONCE(ret < dax.size)) {
716 ret = -EIO;
717 goto unmap;
718 }
719
720 wb_cache_pmem(dax.addr, dax.size);
721
722 spin_lock_irq(&mapping->tree_lock);
723 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
724 spin_unlock_irq(&mapping->tree_lock);
725 unmap:
726 dax_unmap_atomic(bdev, &dax);
727 return ret;
728
729 unlock:
730 spin_unlock_irq(&mapping->tree_lock);
731 return ret;
732}
733
734/*
735 * Flush the mapping to the persistent domain within the byte range of [start,
736 * end]. This is required by data integrity operations to ensure file data is
737 * on persistent storage prior to completion of the operation.
738 */
7f6d5b52
RZ
739int dax_writeback_mapping_range(struct address_space *mapping,
740 struct block_device *bdev, struct writeback_control *wbc)
9973c98e
RZ
741{
742 struct inode *inode = mapping->host;
9973c98e
RZ
743 pgoff_t start_index, end_index, pmd_index;
744 pgoff_t indices[PAGEVEC_SIZE];
745 struct pagevec pvec;
746 bool done = false;
747 int i, ret = 0;
748 void *entry;
749
750 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
751 return -EIO;
752
7f6d5b52
RZ
753 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
754 return 0;
755
09cbfeaf
KS
756 start_index = wbc->range_start >> PAGE_SHIFT;
757 end_index = wbc->range_end >> PAGE_SHIFT;
9973c98e
RZ
758 pmd_index = DAX_PMD_INDEX(start_index);
759
760 rcu_read_lock();
761 entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
762 rcu_read_unlock();
763
764 /* see if the start of our range is covered by a PMD entry */
765 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
766 start_index = pmd_index;
767
768 tag_pages_for_writeback(mapping, start_index, end_index);
769
770 pagevec_init(&pvec, 0);
771 while (!done) {
772 pvec.nr = find_get_entries_tag(mapping, start_index,
773 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
774 pvec.pages, indices);
775
776 if (pvec.nr == 0)
777 break;
778
779 for (i = 0; i < pvec.nr; i++) {
780 if (indices[i] > end_index) {
781 done = true;
782 break;
783 }
784
785 ret = dax_writeback_one(bdev, mapping, indices[i],
786 pvec.pages[i]);
787 if (ret < 0)
788 return ret;
789 }
790 }
9973c98e
RZ
791 return 0;
792}
793EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
794
ac401cc7 795static int dax_insert_mapping(struct address_space *mapping,
1aaba095
CH
796 struct block_device *bdev, sector_t sector, size_t size,
797 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
f7ca90b1 798{
f7ca90b1 799 unsigned long vaddr = (unsigned long)vmf->virtual_address;
b2e0d162 800 struct blk_dax_ctl dax = {
1aaba095
CH
801 .sector = sector,
802 .size = size,
b2e0d162 803 };
ac401cc7
JK
804 void *ret;
805 void *entry = *entryp;
f7ca90b1 806
4d9a2c87
JK
807 if (dax_map_atomic(bdev, &dax) < 0)
808 return PTR_ERR(dax.addr);
b2e0d162 809 dax_unmap_atomic(bdev, &dax);
f7ca90b1 810
ac401cc7 811 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector);
4d9a2c87
JK
812 if (IS_ERR(ret))
813 return PTR_ERR(ret);
ac401cc7 814 *entryp = ret;
9973c98e 815
4d9a2c87 816 return vm_insert_mixed(vma, vaddr, dax.pfn);
f7ca90b1
MW
817}
818
ce5c5d55 819/**
6b524995 820 * dax_fault - handle a page fault on a DAX file
ce5c5d55
DC
821 * @vma: The virtual memory area where the fault occurred
822 * @vmf: The description of the fault
823 * @get_block: The filesystem method used to translate file offsets to blocks
824 *
825 * When a page fault occurs, filesystems may call this helper in their
6b524995 826 * fault handler for DAX files. dax_fault() assumes the caller has done all
ce5c5d55
DC
827 * the necessary locking for the page fault to proceed successfully.
828 */
6b524995 829int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
02fbd139 830 get_block_t get_block)
f7ca90b1
MW
831{
832 struct file *file = vma->vm_file;
833 struct address_space *mapping = file->f_mapping;
834 struct inode *inode = mapping->host;
ac401cc7 835 void *entry;
f7ca90b1
MW
836 struct buffer_head bh;
837 unsigned long vaddr = (unsigned long)vmf->virtual_address;
838 unsigned blkbits = inode->i_blkbits;
839 sector_t block;
840 pgoff_t size;
841 int error;
842 int major = 0;
843
ac401cc7
JK
844 /*
845 * Check whether offset isn't beyond end of file now. Caller is supposed
846 * to hold locks serializing us with truncate / punch hole so this is
847 * a reliable test.
848 */
f7ca90b1
MW
849 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
850 if (vmf->pgoff >= size)
851 return VM_FAULT_SIGBUS;
852
853 memset(&bh, 0, sizeof(bh));
854 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
eab95db6 855 bh.b_bdev = inode->i_sb->s_bdev;
f7ca90b1
MW
856 bh.b_size = PAGE_SIZE;
857
ac401cc7
JK
858 entry = grab_mapping_entry(mapping, vmf->pgoff);
859 if (IS_ERR(entry)) {
860 error = PTR_ERR(entry);
861 goto out;
f7ca90b1
MW
862 }
863
864 error = get_block(inode, block, &bh, 0);
865 if (!error && (bh.b_size < PAGE_SIZE))
866 error = -EIO; /* fs corruption? */
867 if (error)
ac401cc7 868 goto unlock_entry;
f7ca90b1
MW
869
870 if (vmf->cow_page) {
871 struct page *new_page = vmf->cow_page;
872 if (buffer_written(&bh))
b0d5e82f
CH
873 error = copy_user_dax(bh.b_bdev, to_sector(&bh, inode),
874 bh.b_size, new_page, vaddr);
f7ca90b1
MW
875 else
876 clear_user_highpage(new_page, vaddr);
877 if (error)
ac401cc7
JK
878 goto unlock_entry;
879 if (!radix_tree_exceptional_entry(entry)) {
880 vmf->page = entry;
bc2466e4 881 return VM_FAULT_LOCKED;
ac401cc7 882 }
bc2466e4
JK
883 vmf->entry = entry;
884 return VM_FAULT_DAX_LOCKED;
f7ca90b1 885 }
f7ca90b1 886
ac401cc7 887 if (!buffer_mapped(&bh)) {
f7ca90b1
MW
888 if (vmf->flags & FAULT_FLAG_WRITE) {
889 error = get_block(inode, block, &bh, 1);
890 count_vm_event(PGMAJFAULT);
891 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
892 major = VM_FAULT_MAJOR;
893 if (!error && (bh.b_size < PAGE_SIZE))
894 error = -EIO;
895 if (error)
ac401cc7 896 goto unlock_entry;
f7ca90b1 897 } else {
ac401cc7 898 return dax_load_hole(mapping, entry, vmf);
f7ca90b1
MW
899 }
900 }
901
02fbd139 902 /* Filesystem should not return unwritten buffers to us! */
2b10945c 903 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
1aaba095
CH
904 error = dax_insert_mapping(mapping, bh.b_bdev, to_sector(&bh, inode),
905 bh.b_size, &entry, vma, vmf);
ac401cc7
JK
906 unlock_entry:
907 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
f7ca90b1
MW
908 out:
909 if (error == -ENOMEM)
910 return VM_FAULT_OOM | major;
911 /* -EBUSY is fine, somebody else faulted on the same PTE */
912 if ((error < 0) && (error != -EBUSY))
913 return VM_FAULT_SIGBUS | major;
914 return VM_FAULT_NOPAGE | major;
f7ca90b1 915}
f7ca90b1 916EXPORT_SYMBOL_GPL(dax_fault);
4c0ccfef 917
0e3b210c
BH
918/**
919 * dax_pfn_mkwrite - handle first write to DAX page
920 * @vma: The virtual memory area where the fault occurred
921 * @vmf: The description of the fault
0e3b210c
BH
922 */
923int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
924{
9973c98e 925 struct file *file = vma->vm_file;
ac401cc7
JK
926 struct address_space *mapping = file->f_mapping;
927 void *entry;
928 pgoff_t index = vmf->pgoff;
30f471fd 929
ac401cc7
JK
930 spin_lock_irq(&mapping->tree_lock);
931 entry = get_unlocked_mapping_entry(mapping, index, NULL);
932 if (!entry || !radix_tree_exceptional_entry(entry))
933 goto out;
934 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
935 put_unlocked_mapping_entry(mapping, index, entry);
936out:
937 spin_unlock_irq(&mapping->tree_lock);
0e3b210c
BH
938 return VM_FAULT_NOPAGE;
939}
940EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
941
4b0228fa
VV
942static bool dax_range_is_aligned(struct block_device *bdev,
943 unsigned int offset, unsigned int length)
944{
945 unsigned short sector_size = bdev_logical_block_size(bdev);
946
947 if (!IS_ALIGNED(offset, sector_size))
948 return false;
949 if (!IS_ALIGNED(length, sector_size))
950 return false;
951
952 return true;
953}
954
679c8bd3
CH
955int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
956 unsigned int offset, unsigned int length)
957{
958 struct blk_dax_ctl dax = {
959 .sector = sector,
960 .size = PAGE_SIZE,
961 };
962
4b0228fa
VV
963 if (dax_range_is_aligned(bdev, offset, length)) {
964 sector_t start_sector = dax.sector + (offset >> 9);
965
966 return blkdev_issue_zeroout(bdev, start_sector,
967 length >> 9, GFP_NOFS, true);
968 } else {
969 if (dax_map_atomic(bdev, &dax) < 0)
970 return PTR_ERR(dax.addr);
971 clear_pmem(dax.addr + offset, length);
4b0228fa
VV
972 dax_unmap_atomic(bdev, &dax);
973 }
679c8bd3
CH
974 return 0;
975}
976EXPORT_SYMBOL_GPL(__dax_zero_page_range);
977
4c0ccfef 978/**
25726bc1 979 * dax_zero_page_range - zero a range within a page of a DAX file
4c0ccfef
MW
980 * @inode: The file being truncated
981 * @from: The file offset that is being truncated to
25726bc1 982 * @length: The number of bytes to zero
4c0ccfef
MW
983 * @get_block: The filesystem method used to translate file offsets to blocks
984 *
25726bc1
MW
985 * This function can be called by a filesystem when it is zeroing part of a
986 * page in a DAX file. This is intended for hole-punch operations. If
987 * you are truncating a file, the helper function dax_truncate_page() may be
988 * more convenient.
4c0ccfef 989 */
25726bc1
MW
990int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
991 get_block_t get_block)
4c0ccfef
MW
992{
993 struct buffer_head bh;
09cbfeaf
KS
994 pgoff_t index = from >> PAGE_SHIFT;
995 unsigned offset = from & (PAGE_SIZE-1);
4c0ccfef
MW
996 int err;
997
998 /* Block boundary? Nothing to do */
999 if (!length)
1000 return 0;
aada54f9
RZ
1001 if (WARN_ON_ONCE((offset + length) > PAGE_SIZE))
1002 return -EINVAL;
4c0ccfef
MW
1003
1004 memset(&bh, 0, sizeof(bh));
eab95db6 1005 bh.b_bdev = inode->i_sb->s_bdev;
09cbfeaf 1006 bh.b_size = PAGE_SIZE;
4c0ccfef 1007 err = get_block(inode, index, &bh, 0);
679c8bd3 1008 if (err < 0 || !buffer_written(&bh))
4c0ccfef 1009 return err;
4c0ccfef 1010
679c8bd3
CH
1011 return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode),
1012 offset, length);
4c0ccfef 1013}
25726bc1
MW
1014EXPORT_SYMBOL_GPL(dax_zero_page_range);
1015
1016/**
1017 * dax_truncate_page - handle a partial page being truncated in a DAX file
1018 * @inode: The file being truncated
1019 * @from: The file offset that is being truncated to
1020 * @get_block: The filesystem method used to translate file offsets to blocks
1021 *
1022 * Similar to block_truncate_page(), this function can be called by a
1023 * filesystem when it is truncating a DAX file to handle the partial page.
25726bc1
MW
1024 */
1025int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1026{
09cbfeaf 1027 unsigned length = PAGE_ALIGN(from) - from;
25726bc1
MW
1028 return dax_zero_page_range(inode, from, length, get_block);
1029}
4c0ccfef 1030EXPORT_SYMBOL_GPL(dax_truncate_page);
a254e568
CH
1031
1032#ifdef CONFIG_FS_IOMAP
1033static loff_t
1034iomap_dax_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1035 struct iomap *iomap)
1036{
1037 struct iov_iter *iter = data;
1038 loff_t end = pos + length, done = 0;
1039 ssize_t ret = 0;
1040
1041 if (iov_iter_rw(iter) == READ) {
1042 end = min(end, i_size_read(inode));
1043 if (pos >= end)
1044 return 0;
1045
1046 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1047 return iov_iter_zero(min(length, end - pos), iter);
1048 }
1049
1050 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1051 return -EIO;
1052
1053 while (pos < end) {
1054 unsigned offset = pos & (PAGE_SIZE - 1);
1055 struct blk_dax_ctl dax = { 0 };
1056 ssize_t map_len;
1057
1058 dax.sector = iomap->blkno +
1059 (((pos & PAGE_MASK) - iomap->offset) >> 9);
1060 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1061 map_len = dax_map_atomic(iomap->bdev, &dax);
1062 if (map_len < 0) {
1063 ret = map_len;
1064 break;
1065 }
1066
1067 dax.addr += offset;
1068 map_len -= offset;
1069 if (map_len > end - pos)
1070 map_len = end - pos;
1071
1072 if (iov_iter_rw(iter) == WRITE)
1073 map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
1074 else
1075 map_len = copy_to_iter(dax.addr, map_len, iter);
1076 dax_unmap_atomic(iomap->bdev, &dax);
1077 if (map_len <= 0) {
1078 ret = map_len ? map_len : -EFAULT;
1079 break;
1080 }
1081
1082 pos += map_len;
1083 length -= map_len;
1084 done += map_len;
1085 }
1086
1087 return done ? done : ret;
1088}
1089
1090/**
1091 * iomap_dax_rw - Perform I/O to a DAX file
1092 * @iocb: The control block for this I/O
1093 * @iter: The addresses to do I/O from or to
1094 * @ops: iomap ops passed from the file system
1095 *
1096 * This function performs read and write operations to directly mapped
1097 * persistent memory. The callers needs to take care of read/write exclusion
1098 * and evicting any page cache pages in the region under I/O.
1099 */
1100ssize_t
1101iomap_dax_rw(struct kiocb *iocb, struct iov_iter *iter,
1102 struct iomap_ops *ops)
1103{
1104 struct address_space *mapping = iocb->ki_filp->f_mapping;
1105 struct inode *inode = mapping->host;
1106 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1107 unsigned flags = 0;
1108
1109 if (iov_iter_rw(iter) == WRITE)
1110 flags |= IOMAP_WRITE;
1111
1112 /*
1113 * Yes, even DAX files can have page cache attached to them: A zeroed
1114 * page is inserted into the pagecache when we have to serve a write
1115 * fault on a hole. It should never be dirtied and can simply be
1116 * dropped from the pagecache once we get real data for the page.
1117 *
1118 * XXX: This is racy against mmap, and there's nothing we can do about
1119 * it. We'll eventually need to shift this down even further so that
1120 * we can check if we allocated blocks over a hole first.
1121 */
1122 if (mapping->nrpages) {
1123 ret = invalidate_inode_pages2_range(mapping,
1124 pos >> PAGE_SHIFT,
1125 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
1126 WARN_ON_ONCE(ret);
1127 }
1128
1129 while (iov_iter_count(iter)) {
1130 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1131 iter, iomap_dax_actor);
1132 if (ret <= 0)
1133 break;
1134 pos += ret;
1135 done += ret;
1136 }
1137
1138 iocb->ki_pos += done;
1139 return done ? done : ret;
1140}
1141EXPORT_SYMBOL_GPL(iomap_dax_rw);
a7d73fe6
CH
1142
1143/**
1144 * iomap_dax_fault - handle a page fault on a DAX file
1145 * @vma: The virtual memory area where the fault occurred
1146 * @vmf: The description of the fault
1147 * @ops: iomap ops passed from the file system
1148 *
1149 * When a page fault occurs, filesystems may call this helper in their fault
1150 * or mkwrite handler for DAX files. Assumes the caller has done all the
1151 * necessary locking for the page fault to proceed successfully.
1152 */
1153int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
1154 struct iomap_ops *ops)
1155{
1156 struct address_space *mapping = vma->vm_file->f_mapping;
1157 struct inode *inode = mapping->host;
1158 unsigned long vaddr = (unsigned long)vmf->virtual_address;
1159 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1160 sector_t sector;
1161 struct iomap iomap = { 0 };
1162 unsigned flags = 0;
1163 int error, major = 0;
1164 void *entry;
1165
1166 /*
1167 * Check whether offset isn't beyond end of file now. Caller is supposed
1168 * to hold locks serializing us with truncate / punch hole so this is
1169 * a reliable test.
1170 */
1171 if (pos >= i_size_read(inode))
1172 return VM_FAULT_SIGBUS;
1173
1174 entry = grab_mapping_entry(mapping, vmf->pgoff);
1175 if (IS_ERR(entry)) {
1176 error = PTR_ERR(entry);
1177 goto out;
1178 }
1179
1180 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1181 flags |= IOMAP_WRITE;
1182
1183 /*
1184 * Note that we don't bother to use iomap_apply here: DAX required
1185 * the file system block size to be equal the page size, which means
1186 * that we never have to deal with more than a single extent here.
1187 */
1188 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1189 if (error)
1190 goto unlock_entry;
1191 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1192 error = -EIO; /* fs corruption? */
1193 goto unlock_entry;
1194 }
1195
1196 sector = iomap.blkno + (((pos & PAGE_MASK) - iomap.offset) >> 9);
1197
1198 if (vmf->cow_page) {
1199 switch (iomap.type) {
1200 case IOMAP_HOLE:
1201 case IOMAP_UNWRITTEN:
1202 clear_user_highpage(vmf->cow_page, vaddr);
1203 break;
1204 case IOMAP_MAPPED:
1205 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1206 vmf->cow_page, vaddr);
1207 break;
1208 default:
1209 WARN_ON_ONCE(1);
1210 error = -EIO;
1211 break;
1212 }
1213
1214 if (error)
1215 goto unlock_entry;
1216 if (!radix_tree_exceptional_entry(entry)) {
1217 vmf->page = entry;
1218 return VM_FAULT_LOCKED;
1219 }
1220 vmf->entry = entry;
1221 return VM_FAULT_DAX_LOCKED;
1222 }
1223
1224 switch (iomap.type) {
1225 case IOMAP_MAPPED:
1226 if (iomap.flags & IOMAP_F_NEW) {
1227 count_vm_event(PGMAJFAULT);
1228 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1229 major = VM_FAULT_MAJOR;
1230 }
1231 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1232 PAGE_SIZE, &entry, vma, vmf);
1233 break;
1234 case IOMAP_UNWRITTEN:
1235 case IOMAP_HOLE:
1236 if (!(vmf->flags & FAULT_FLAG_WRITE))
1237 return dax_load_hole(mapping, entry, vmf);
1238 /*FALLTHRU*/
1239 default:
1240 WARN_ON_ONCE(1);
1241 error = -EIO;
1242 break;
1243 }
1244
1245 unlock_entry:
1246 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1247 out:
1248 if (error == -ENOMEM)
1249 return VM_FAULT_OOM | major;
1250 /* -EBUSY is fine, somebody else faulted on the same PTE */
1251 if (error < 0 && error != -EBUSY)
1252 return VM_FAULT_SIGBUS | major;
1253 return VM_FAULT_NOPAGE | major;
1254}
1255EXPORT_SYMBOL_GPL(iomap_dax_fault);
a254e568 1256#endif /* CONFIG_FS_IOMAP */