]> git.ipfire.org Git - people/ms/linux.git/blame - fs/dax.c
dax: consistent variable naming for DAX entries
[people/ms/linux.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
2765cfbb 28#include <linux/pmem.h>
289c6aed 29#include <linux/sched.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
a254e568
CH
34#include <linux/iomap.h>
35#include "internal.h"
d475c634 36
e804315d
JK
37/*
38 * We use lowest available bit in exceptional entry for locking, other two
39 * bits to determine entry type. In total 3 special bits.
40 */
41#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
42#define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
43#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
44#define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
45#define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
78a9be0a
N
46#define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
47#define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
e804315d
JK
48 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
49 RADIX_TREE_EXCEPTIONAL_ENTRY))
e4b27491 50
ac401cc7
JK
51/* We choose 4096 entries - same as per-zone page wait tables */
52#define DAX_WAIT_TABLE_BITS 12
53#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
54
ce95ab0f 55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
56
57static int __init init_dax_wait_table(void)
58{
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64}
65fs_initcall(init_dax_wait_table);
66
67static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
68 pgoff_t index)
69{
70 unsigned long hash = hash_long((unsigned long)mapping ^ index,
71 DAX_WAIT_TABLE_BITS);
72 return wait_table + hash;
73}
78a9be0a 74
b2e0d162
DW
75static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
76{
77 struct request_queue *q = bdev->bd_queue;
78 long rc = -EIO;
79
7a9eb206 80 dax->addr = ERR_PTR(-EIO);
b2e0d162
DW
81 if (blk_queue_enter(q, true) != 0)
82 return rc;
83
84 rc = bdev_direct_access(bdev, dax);
85 if (rc < 0) {
7a9eb206 86 dax->addr = ERR_PTR(rc);
b2e0d162
DW
87 blk_queue_exit(q);
88 return rc;
89 }
90 return rc;
91}
92
93static void dax_unmap_atomic(struct block_device *bdev,
94 const struct blk_dax_ctl *dax)
95{
96 if (IS_ERR(dax->addr))
97 return;
98 blk_queue_exit(bdev->bd_queue);
99}
100
d1a5f2b4
DW
101struct page *read_dax_sector(struct block_device *bdev, sector_t n)
102{
103 struct page *page = alloc_pages(GFP_KERNEL, 0);
104 struct blk_dax_ctl dax = {
105 .size = PAGE_SIZE,
106 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
107 };
108 long rc;
109
110 if (!page)
111 return ERR_PTR(-ENOMEM);
112
113 rc = dax_map_atomic(bdev, &dax);
114 if (rc < 0)
115 return ERR_PTR(rc);
116 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
117 dax_unmap_atomic(bdev, &dax);
118 return page;
119}
120
d475c634
MW
121static bool buffer_written(struct buffer_head *bh)
122{
123 return buffer_mapped(bh) && !buffer_unwritten(bh);
124}
125
b2e0d162
DW
126static sector_t to_sector(const struct buffer_head *bh,
127 const struct inode *inode)
128{
129 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
130
131 return sector;
132}
133
a95cd631
OS
134static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
135 loff_t start, loff_t end, get_block_t get_block,
136 struct buffer_head *bh)
d475c634 137{
b2e0d162 138 loff_t pos = start, max = start, bh_max = start;
14df6a4e 139 bool hole = false;
b2e0d162
DW
140 struct block_device *bdev = NULL;
141 int rw = iov_iter_rw(iter), rc;
142 long map_len = 0;
143 struct blk_dax_ctl dax = {
7a9eb206 144 .addr = ERR_PTR(-EIO),
b2e0d162 145 };
069c77bc
JK
146 unsigned blkbits = inode->i_blkbits;
147 sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
148 >> blkbits;
b2e0d162
DW
149
150 if (rw == READ)
d475c634
MW
151 end = min(end, i_size_read(inode));
152
153 while (pos < end) {
2765cfbb 154 size_t len;
d475c634 155 if (pos == max) {
e94f5a22
JM
156 long page = pos >> PAGE_SHIFT;
157 sector_t block = page << (PAGE_SHIFT - blkbits);
d475c634
MW
158 unsigned first = pos - (block << blkbits);
159 long size;
160
161 if (pos == bh_max) {
162 bh->b_size = PAGE_ALIGN(end - pos);
163 bh->b_state = 0;
b2e0d162
DW
164 rc = get_block(inode, block, bh, rw == WRITE);
165 if (rc)
d475c634 166 break;
d475c634 167 bh_max = pos - first + bh->b_size;
b2e0d162 168 bdev = bh->b_bdev;
069c77bc
JK
169 /*
170 * We allow uninitialized buffers for writes
171 * beyond EOF as those cannot race with faults
172 */
173 WARN_ON_ONCE(
174 (buffer_new(bh) && block < file_blks) ||
175 (rw == WRITE && buffer_unwritten(bh)));
d475c634
MW
176 } else {
177 unsigned done = bh->b_size -
178 (bh_max - (pos - first));
179 bh->b_blocknr += done >> blkbits;
180 bh->b_size -= done;
181 }
182
b2e0d162 183 hole = rw == READ && !buffer_written(bh);
d475c634 184 if (hole) {
d475c634
MW
185 size = bh->b_size - first;
186 } else {
b2e0d162
DW
187 dax_unmap_atomic(bdev, &dax);
188 dax.sector = to_sector(bh, inode);
189 dax.size = bh->b_size;
190 map_len = dax_map_atomic(bdev, &dax);
191 if (map_len < 0) {
192 rc = map_len;
d475c634 193 break;
b2e0d162 194 }
b2e0d162
DW
195 dax.addr += first;
196 size = map_len - first;
d475c634 197 }
02395435
ES
198 /*
199 * pos + size is one past the last offset for IO,
200 * so pos + size can overflow loff_t at extreme offsets.
201 * Cast to u64 to catch this and get the true minimum.
202 */
203 max = min_t(u64, pos + size, end);
d475c634
MW
204 }
205
2765cfbb 206 if (iov_iter_rw(iter) == WRITE) {
b2e0d162 207 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
2765cfbb 208 } else if (!hole)
b2e0d162 209 len = copy_to_iter((void __force *) dax.addr, max - pos,
e2e05394 210 iter);
d475c634
MW
211 else
212 len = iov_iter_zero(max - pos, iter);
213
cadfbb6e 214 if (!len) {
b2e0d162 215 rc = -EFAULT;
d475c634 216 break;
cadfbb6e 217 }
d475c634
MW
218
219 pos += len;
b2e0d162
DW
220 if (!IS_ERR(dax.addr))
221 dax.addr += len;
d475c634
MW
222 }
223
b2e0d162 224 dax_unmap_atomic(bdev, &dax);
2765cfbb 225
b2e0d162 226 return (pos == start) ? rc : pos - start;
d475c634
MW
227}
228
229/**
230 * dax_do_io - Perform I/O to a DAX file
d475c634
MW
231 * @iocb: The control block for this I/O
232 * @inode: The file which the I/O is directed at
233 * @iter: The addresses to do I/O from or to
d475c634
MW
234 * @get_block: The filesystem method used to translate file offsets to blocks
235 * @end_io: A filesystem callback for I/O completion
236 * @flags: See below
237 *
238 * This function uses the same locking scheme as do_blockdev_direct_IO:
239 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
240 * caller for writes. For reads, we take and release the i_mutex ourselves.
241 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
242 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
243 * is in progress.
244 */
a95cd631 245ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
c8b8e32d 246 struct iov_iter *iter, get_block_t get_block,
a95cd631 247 dio_iodone_t end_io, int flags)
d475c634
MW
248{
249 struct buffer_head bh;
250 ssize_t retval = -EINVAL;
c8b8e32d 251 loff_t pos = iocb->ki_pos;
d475c634
MW
252 loff_t end = pos + iov_iter_count(iter);
253
254 memset(&bh, 0, sizeof(bh));
eab95db6 255 bh.b_bdev = inode->i_sb->s_bdev;
d475c634 256
c3d98e39 257 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
5955102c 258 inode_lock(inode);
d475c634
MW
259
260 /* Protects against truncate */
bbab37dd
MW
261 if (!(flags & DIO_SKIP_DIO_COUNT))
262 inode_dio_begin(inode);
d475c634 263
a95cd631 264 retval = dax_io(inode, iter, pos, end, get_block, &bh);
d475c634 265
a95cd631 266 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
5955102c 267 inode_unlock(inode);
d475c634 268
187372a3
CH
269 if (end_io) {
270 int err;
271
272 err = end_io(iocb, pos, retval, bh.b_private);
273 if (err)
274 retval = err;
275 }
d475c634 276
bbab37dd
MW
277 if (!(flags & DIO_SKIP_DIO_COUNT))
278 inode_dio_end(inode);
d475c634
MW
279 return retval;
280}
281EXPORT_SYMBOL_GPL(dax_do_io);
f7ca90b1 282
ac401cc7
JK
283/*
284 * DAX radix tree locking
285 */
286struct exceptional_entry_key {
287 struct address_space *mapping;
288 unsigned long index;
289};
290
291struct wait_exceptional_entry_queue {
292 wait_queue_t wait;
293 struct exceptional_entry_key key;
294};
295
296static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
297 int sync, void *keyp)
298{
299 struct exceptional_entry_key *key = keyp;
300 struct wait_exceptional_entry_queue *ewait =
301 container_of(wait, struct wait_exceptional_entry_queue, wait);
302
303 if (key->mapping != ewait->key.mapping ||
304 key->index != ewait->key.index)
305 return 0;
306 return autoremove_wake_function(wait, mode, sync, NULL);
307}
308
309/*
310 * Check whether the given slot is locked. The function must be called with
311 * mapping->tree_lock held
312 */
313static inline int slot_locked(struct address_space *mapping, void **slot)
314{
315 unsigned long entry = (unsigned long)
316 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
317 return entry & RADIX_DAX_ENTRY_LOCK;
318}
319
320/*
321 * Mark the given slot is locked. The function must be called with
322 * mapping->tree_lock held
323 */
324static inline void *lock_slot(struct address_space *mapping, void **slot)
325{
326 unsigned long entry = (unsigned long)
327 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
328
329 entry |= RADIX_DAX_ENTRY_LOCK;
330 radix_tree_replace_slot(slot, (void *)entry);
331 return (void *)entry;
332}
333
334/*
335 * Mark the given slot is unlocked. The function must be called with
336 * mapping->tree_lock held
337 */
338static inline void *unlock_slot(struct address_space *mapping, void **slot)
339{
340 unsigned long entry = (unsigned long)
341 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
342
343 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
344 radix_tree_replace_slot(slot, (void *)entry);
345 return (void *)entry;
346}
347
348/*
349 * Lookup entry in radix tree, wait for it to become unlocked if it is
350 * exceptional entry and return it. The caller must call
351 * put_unlocked_mapping_entry() when he decided not to lock the entry or
352 * put_locked_mapping_entry() when he locked the entry and now wants to
353 * unlock it.
354 *
355 * The function must be called with mapping->tree_lock held.
356 */
357static void *get_unlocked_mapping_entry(struct address_space *mapping,
358 pgoff_t index, void ***slotp)
359{
e3ad61c6 360 void *entry, **slot;
ac401cc7
JK
361 struct wait_exceptional_entry_queue ewait;
362 wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
363
364 init_wait(&ewait.wait);
365 ewait.wait.func = wake_exceptional_entry_func;
366 ewait.key.mapping = mapping;
367 ewait.key.index = index;
368
369 for (;;) {
e3ad61c6 370 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
ac401cc7 371 &slot);
e3ad61c6 372 if (!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
373 !slot_locked(mapping, slot)) {
374 if (slotp)
375 *slotp = slot;
e3ad61c6 376 return entry;
ac401cc7
JK
377 }
378 prepare_to_wait_exclusive(wq, &ewait.wait,
379 TASK_UNINTERRUPTIBLE);
380 spin_unlock_irq(&mapping->tree_lock);
381 schedule();
382 finish_wait(wq, &ewait.wait);
383 spin_lock_irq(&mapping->tree_lock);
384 }
385}
386
387/*
388 * Find radix tree entry at given index. If it points to a page, return with
389 * the page locked. If it points to the exceptional entry, return with the
390 * radix tree entry locked. If the radix tree doesn't contain given index,
391 * create empty exceptional entry for the index and return with it locked.
392 *
393 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
394 * persistent memory the benefit is doubtful. We can add that later if we can
395 * show it helps.
396 */
397static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
398{
e3ad61c6 399 void *entry, **slot;
ac401cc7
JK
400
401restart:
402 spin_lock_irq(&mapping->tree_lock);
e3ad61c6 403 entry = get_unlocked_mapping_entry(mapping, index, &slot);
ac401cc7 404 /* No entry for given index? Make sure radix tree is big enough. */
e3ad61c6 405 if (!entry) {
ac401cc7
JK
406 int err;
407
408 spin_unlock_irq(&mapping->tree_lock);
409 err = radix_tree_preload(
410 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
411 if (err)
412 return ERR_PTR(err);
e3ad61c6 413 entry = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
ac401cc7
JK
414 RADIX_DAX_ENTRY_LOCK);
415 spin_lock_irq(&mapping->tree_lock);
e3ad61c6 416 err = radix_tree_insert(&mapping->page_tree, index, entry);
ac401cc7
JK
417 radix_tree_preload_end();
418 if (err) {
419 spin_unlock_irq(&mapping->tree_lock);
420 /* Someone already created the entry? */
421 if (err == -EEXIST)
422 goto restart;
423 return ERR_PTR(err);
424 }
425 /* Good, we have inserted empty locked entry into the tree. */
426 mapping->nrexceptional++;
427 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 428 return entry;
ac401cc7
JK
429 }
430 /* Normal page in radix tree? */
e3ad61c6
RZ
431 if (!radix_tree_exceptional_entry(entry)) {
432 struct page *page = entry;
ac401cc7
JK
433
434 get_page(page);
435 spin_unlock_irq(&mapping->tree_lock);
436 lock_page(page);
437 /* Page got truncated? Retry... */
438 if (unlikely(page->mapping != mapping)) {
439 unlock_page(page);
440 put_page(page);
441 goto restart;
442 }
443 return page;
444 }
e3ad61c6 445 entry = lock_slot(mapping, slot);
ac401cc7 446 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 447 return entry;
ac401cc7
JK
448}
449
450void dax_wake_mapping_entry_waiter(struct address_space *mapping,
451 pgoff_t index, bool wake_all)
452{
453 wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
454
455 /*
456 * Checking for locked entry and prepare_to_wait_exclusive() happens
457 * under mapping->tree_lock, ditto for entry handling in our callers.
458 * So at this point all tasks that could have seen our entry locked
459 * must be in the waitqueue and the following check will see them.
460 */
461 if (waitqueue_active(wq)) {
462 struct exceptional_entry_key key;
463
464 key.mapping = mapping;
465 key.index = index;
466 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
467 }
468}
469
bc2466e4 470void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
ac401cc7 471{
e3ad61c6 472 void *entry, **slot;
ac401cc7
JK
473
474 spin_lock_irq(&mapping->tree_lock);
e3ad61c6
RZ
475 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
476 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
477 !slot_locked(mapping, slot))) {
478 spin_unlock_irq(&mapping->tree_lock);
479 return;
480 }
481 unlock_slot(mapping, slot);
482 spin_unlock_irq(&mapping->tree_lock);
483 dax_wake_mapping_entry_waiter(mapping, index, false);
484}
485
486static void put_locked_mapping_entry(struct address_space *mapping,
487 pgoff_t index, void *entry)
488{
489 if (!radix_tree_exceptional_entry(entry)) {
490 unlock_page(entry);
491 put_page(entry);
492 } else {
bc2466e4 493 dax_unlock_mapping_entry(mapping, index);
ac401cc7
JK
494 }
495}
496
497/*
498 * Called when we are done with radix tree entry we looked up via
499 * get_unlocked_mapping_entry() and which we didn't lock in the end.
500 */
501static void put_unlocked_mapping_entry(struct address_space *mapping,
502 pgoff_t index, void *entry)
503{
504 if (!radix_tree_exceptional_entry(entry))
505 return;
506
507 /* We have to wake up next waiter for the radix tree entry lock */
508 dax_wake_mapping_entry_waiter(mapping, index, false);
509}
510
511/*
512 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
513 * entry to get unlocked before deleting it.
514 */
515int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
516{
517 void *entry;
518
519 spin_lock_irq(&mapping->tree_lock);
520 entry = get_unlocked_mapping_entry(mapping, index, NULL);
521 /*
522 * This gets called from truncate / punch_hole path. As such, the caller
523 * must hold locks protecting against concurrent modifications of the
524 * radix tree (usually fs-private i_mmap_sem for writing). Since the
525 * caller has seen exceptional entry for this index, we better find it
526 * at that index as well...
527 */
528 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
529 spin_unlock_irq(&mapping->tree_lock);
530 return 0;
531 }
532 radix_tree_delete(&mapping->page_tree, index);
533 mapping->nrexceptional--;
534 spin_unlock_irq(&mapping->tree_lock);
535 dax_wake_mapping_entry_waiter(mapping, index, true);
536
537 return 1;
538}
539
f7ca90b1
MW
540/*
541 * The user has performed a load from a hole in the file. Allocating
542 * a new page in the file would cause excessive storage usage for
543 * workloads with sparse files. We allocate a page cache page instead.
544 * We'll kick it out of the page cache if it's ever written to,
545 * otherwise it will simply fall out of the page cache under memory
546 * pressure without ever having been dirtied.
547 */
ac401cc7
JK
548static int dax_load_hole(struct address_space *mapping, void *entry,
549 struct vm_fault *vmf)
f7ca90b1 550{
ac401cc7 551 struct page *page;
f7ca90b1 552
ac401cc7
JK
553 /* Hole page already exists? Return it... */
554 if (!radix_tree_exceptional_entry(entry)) {
555 vmf->page = entry;
556 return VM_FAULT_LOCKED;
557 }
f7ca90b1 558
ac401cc7
JK
559 /* This will replace locked radix tree entry with a hole page */
560 page = find_or_create_page(mapping, vmf->pgoff,
561 vmf->gfp_mask | __GFP_ZERO);
562 if (!page) {
563 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
564 return VM_FAULT_OOM;
565 }
f7ca90b1
MW
566 vmf->page = page;
567 return VM_FAULT_LOCKED;
568}
569
b0d5e82f
CH
570static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
571 struct page *to, unsigned long vaddr)
f7ca90b1 572{
b2e0d162 573 struct blk_dax_ctl dax = {
b0d5e82f
CH
574 .sector = sector,
575 .size = size,
b2e0d162 576 };
e2e05394
RZ
577 void *vto;
578
b2e0d162
DW
579 if (dax_map_atomic(bdev, &dax) < 0)
580 return PTR_ERR(dax.addr);
f7ca90b1 581 vto = kmap_atomic(to);
b2e0d162 582 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
f7ca90b1 583 kunmap_atomic(vto);
b2e0d162 584 dax_unmap_atomic(bdev, &dax);
f7ca90b1
MW
585 return 0;
586}
587
09cbfeaf 588#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
9973c98e 589
ac401cc7
JK
590static void *dax_insert_mapping_entry(struct address_space *mapping,
591 struct vm_fault *vmf,
592 void *entry, sector_t sector)
9973c98e
RZ
593{
594 struct radix_tree_root *page_tree = &mapping->page_tree;
ac401cc7
JK
595 int error = 0;
596 bool hole_fill = false;
597 void *new_entry;
598 pgoff_t index = vmf->pgoff;
9973c98e 599
ac401cc7 600 if (vmf->flags & FAULT_FLAG_WRITE)
d2b2a28e 601 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 602
ac401cc7
JK
603 /* Replacing hole page with block mapping? */
604 if (!radix_tree_exceptional_entry(entry)) {
605 hole_fill = true;
606 /*
607 * Unmap the page now before we remove it from page cache below.
608 * The page is locked so it cannot be faulted in again.
609 */
610 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
611 PAGE_SIZE, 0);
612 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
613 if (error)
614 return ERR_PTR(error);
9973c98e
RZ
615 }
616
ac401cc7
JK
617 spin_lock_irq(&mapping->tree_lock);
618 new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) |
619 RADIX_DAX_ENTRY_LOCK);
620 if (hole_fill) {
621 __delete_from_page_cache(entry, NULL);
622 /* Drop pagecache reference */
623 put_page(entry);
624 error = radix_tree_insert(page_tree, index, new_entry);
625 if (error) {
626 new_entry = ERR_PTR(error);
9973c98e
RZ
627 goto unlock;
628 }
ac401cc7
JK
629 mapping->nrexceptional++;
630 } else {
631 void **slot;
632 void *ret;
9973c98e 633
ac401cc7
JK
634 ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
635 WARN_ON_ONCE(ret != entry);
636 radix_tree_replace_slot(slot, new_entry);
9973c98e 637 }
ac401cc7 638 if (vmf->flags & FAULT_FLAG_WRITE)
9973c98e
RZ
639 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
640 unlock:
641 spin_unlock_irq(&mapping->tree_lock);
ac401cc7
JK
642 if (hole_fill) {
643 radix_tree_preload_end();
644 /*
645 * We don't need hole page anymore, it has been replaced with
646 * locked radix tree entry now.
647 */
648 if (mapping->a_ops->freepage)
649 mapping->a_ops->freepage(entry);
650 unlock_page(entry);
651 put_page(entry);
652 }
653 return new_entry;
9973c98e
RZ
654}
655
656static int dax_writeback_one(struct block_device *bdev,
657 struct address_space *mapping, pgoff_t index, void *entry)
658{
659 struct radix_tree_root *page_tree = &mapping->page_tree;
660 int type = RADIX_DAX_TYPE(entry);
661 struct radix_tree_node *node;
662 struct blk_dax_ctl dax;
663 void **slot;
664 int ret = 0;
665
666 spin_lock_irq(&mapping->tree_lock);
667 /*
668 * Regular page slots are stabilized by the page lock even
669 * without the tree itself locked. These unlocked entries
670 * need verification under the tree lock.
671 */
672 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
673 goto unlock;
674 if (*slot != entry)
675 goto unlock;
676
677 /* another fsync thread may have already written back this entry */
678 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
679 goto unlock;
680
681 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
682 ret = -EIO;
683 goto unlock;
684 }
685
686 dax.sector = RADIX_DAX_SECTOR(entry);
687 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
688 spin_unlock_irq(&mapping->tree_lock);
689
690 /*
691 * We cannot hold tree_lock while calling dax_map_atomic() because it
692 * eventually calls cond_resched().
693 */
694 ret = dax_map_atomic(bdev, &dax);
695 if (ret < 0)
696 return ret;
697
698 if (WARN_ON_ONCE(ret < dax.size)) {
699 ret = -EIO;
700 goto unmap;
701 }
702
703 wb_cache_pmem(dax.addr, dax.size);
704
705 spin_lock_irq(&mapping->tree_lock);
706 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
707 spin_unlock_irq(&mapping->tree_lock);
708 unmap:
709 dax_unmap_atomic(bdev, &dax);
710 return ret;
711
712 unlock:
713 spin_unlock_irq(&mapping->tree_lock);
714 return ret;
715}
716
717/*
718 * Flush the mapping to the persistent domain within the byte range of [start,
719 * end]. This is required by data integrity operations to ensure file data is
720 * on persistent storage prior to completion of the operation.
721 */
7f6d5b52
RZ
722int dax_writeback_mapping_range(struct address_space *mapping,
723 struct block_device *bdev, struct writeback_control *wbc)
9973c98e
RZ
724{
725 struct inode *inode = mapping->host;
9973c98e
RZ
726 pgoff_t start_index, end_index, pmd_index;
727 pgoff_t indices[PAGEVEC_SIZE];
728 struct pagevec pvec;
729 bool done = false;
730 int i, ret = 0;
731 void *entry;
732
733 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
734 return -EIO;
735
7f6d5b52
RZ
736 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
737 return 0;
738
09cbfeaf
KS
739 start_index = wbc->range_start >> PAGE_SHIFT;
740 end_index = wbc->range_end >> PAGE_SHIFT;
9973c98e
RZ
741 pmd_index = DAX_PMD_INDEX(start_index);
742
743 rcu_read_lock();
744 entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
745 rcu_read_unlock();
746
747 /* see if the start of our range is covered by a PMD entry */
748 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
749 start_index = pmd_index;
750
751 tag_pages_for_writeback(mapping, start_index, end_index);
752
753 pagevec_init(&pvec, 0);
754 while (!done) {
755 pvec.nr = find_get_entries_tag(mapping, start_index,
756 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
757 pvec.pages, indices);
758
759 if (pvec.nr == 0)
760 break;
761
762 for (i = 0; i < pvec.nr; i++) {
763 if (indices[i] > end_index) {
764 done = true;
765 break;
766 }
767
768 ret = dax_writeback_one(bdev, mapping, indices[i],
769 pvec.pages[i]);
770 if (ret < 0)
771 return ret;
772 }
773 }
9973c98e
RZ
774 return 0;
775}
776EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
777
ac401cc7 778static int dax_insert_mapping(struct address_space *mapping,
1aaba095
CH
779 struct block_device *bdev, sector_t sector, size_t size,
780 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
f7ca90b1 781{
f7ca90b1 782 unsigned long vaddr = (unsigned long)vmf->virtual_address;
b2e0d162 783 struct blk_dax_ctl dax = {
1aaba095
CH
784 .sector = sector,
785 .size = size,
b2e0d162 786 };
ac401cc7
JK
787 void *ret;
788 void *entry = *entryp;
f7ca90b1 789
4d9a2c87
JK
790 if (dax_map_atomic(bdev, &dax) < 0)
791 return PTR_ERR(dax.addr);
b2e0d162 792 dax_unmap_atomic(bdev, &dax);
f7ca90b1 793
ac401cc7 794 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector);
4d9a2c87
JK
795 if (IS_ERR(ret))
796 return PTR_ERR(ret);
ac401cc7 797 *entryp = ret;
9973c98e 798
4d9a2c87 799 return vm_insert_mixed(vma, vaddr, dax.pfn);
f7ca90b1
MW
800}
801
ce5c5d55 802/**
6b524995 803 * dax_fault - handle a page fault on a DAX file
ce5c5d55
DC
804 * @vma: The virtual memory area where the fault occurred
805 * @vmf: The description of the fault
806 * @get_block: The filesystem method used to translate file offsets to blocks
807 *
808 * When a page fault occurs, filesystems may call this helper in their
6b524995 809 * fault handler for DAX files. dax_fault() assumes the caller has done all
ce5c5d55
DC
810 * the necessary locking for the page fault to proceed successfully.
811 */
6b524995 812int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
02fbd139 813 get_block_t get_block)
f7ca90b1
MW
814{
815 struct file *file = vma->vm_file;
816 struct address_space *mapping = file->f_mapping;
817 struct inode *inode = mapping->host;
ac401cc7 818 void *entry;
f7ca90b1
MW
819 struct buffer_head bh;
820 unsigned long vaddr = (unsigned long)vmf->virtual_address;
821 unsigned blkbits = inode->i_blkbits;
822 sector_t block;
823 pgoff_t size;
824 int error;
825 int major = 0;
826
ac401cc7
JK
827 /*
828 * Check whether offset isn't beyond end of file now. Caller is supposed
829 * to hold locks serializing us with truncate / punch hole so this is
830 * a reliable test.
831 */
f7ca90b1
MW
832 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
833 if (vmf->pgoff >= size)
834 return VM_FAULT_SIGBUS;
835
836 memset(&bh, 0, sizeof(bh));
837 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
eab95db6 838 bh.b_bdev = inode->i_sb->s_bdev;
f7ca90b1
MW
839 bh.b_size = PAGE_SIZE;
840
ac401cc7
JK
841 entry = grab_mapping_entry(mapping, vmf->pgoff);
842 if (IS_ERR(entry)) {
843 error = PTR_ERR(entry);
844 goto out;
f7ca90b1
MW
845 }
846
847 error = get_block(inode, block, &bh, 0);
848 if (!error && (bh.b_size < PAGE_SIZE))
849 error = -EIO; /* fs corruption? */
850 if (error)
ac401cc7 851 goto unlock_entry;
f7ca90b1
MW
852
853 if (vmf->cow_page) {
854 struct page *new_page = vmf->cow_page;
855 if (buffer_written(&bh))
b0d5e82f
CH
856 error = copy_user_dax(bh.b_bdev, to_sector(&bh, inode),
857 bh.b_size, new_page, vaddr);
f7ca90b1
MW
858 else
859 clear_user_highpage(new_page, vaddr);
860 if (error)
ac401cc7
JK
861 goto unlock_entry;
862 if (!radix_tree_exceptional_entry(entry)) {
863 vmf->page = entry;
bc2466e4 864 return VM_FAULT_LOCKED;
ac401cc7 865 }
bc2466e4
JK
866 vmf->entry = entry;
867 return VM_FAULT_DAX_LOCKED;
f7ca90b1 868 }
f7ca90b1 869
ac401cc7 870 if (!buffer_mapped(&bh)) {
f7ca90b1
MW
871 if (vmf->flags & FAULT_FLAG_WRITE) {
872 error = get_block(inode, block, &bh, 1);
873 count_vm_event(PGMAJFAULT);
874 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
875 major = VM_FAULT_MAJOR;
876 if (!error && (bh.b_size < PAGE_SIZE))
877 error = -EIO;
878 if (error)
ac401cc7 879 goto unlock_entry;
f7ca90b1 880 } else {
ac401cc7 881 return dax_load_hole(mapping, entry, vmf);
f7ca90b1
MW
882 }
883 }
884
02fbd139 885 /* Filesystem should not return unwritten buffers to us! */
2b10945c 886 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
1aaba095
CH
887 error = dax_insert_mapping(mapping, bh.b_bdev, to_sector(&bh, inode),
888 bh.b_size, &entry, vma, vmf);
ac401cc7
JK
889 unlock_entry:
890 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
f7ca90b1
MW
891 out:
892 if (error == -ENOMEM)
893 return VM_FAULT_OOM | major;
894 /* -EBUSY is fine, somebody else faulted on the same PTE */
895 if ((error < 0) && (error != -EBUSY))
896 return VM_FAULT_SIGBUS | major;
897 return VM_FAULT_NOPAGE | major;
f7ca90b1 898}
f7ca90b1 899EXPORT_SYMBOL_GPL(dax_fault);
4c0ccfef 900
348e967a 901#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
844f35db
MW
902/*
903 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
904 * more often than one might expect in the below function.
905 */
906#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
907
cbb38e41
DW
908static void __dax_dbg(struct buffer_head *bh, unsigned long address,
909 const char *reason, const char *fn)
910{
911 if (bh) {
912 char bname[BDEVNAME_SIZE];
913 bdevname(bh->b_bdev, bname);
914 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
915 "length %zd fallback: %s\n", fn, current->comm,
916 address, bname, bh->b_state, (u64)bh->b_blocknr,
917 bh->b_size, reason);
918 } else {
919 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
920 current->comm, address, reason);
921 }
922}
923
924#define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
925
6b524995
RZ
926/**
927 * dax_pmd_fault - handle a PMD fault on a DAX file
928 * @vma: The virtual memory area where the fault occurred
929 * @vmf: The description of the fault
930 * @get_block: The filesystem method used to translate file offsets to blocks
931 *
932 * When a page fault occurs, filesystems may call this helper in their
933 * pmd_fault handler for DAX files.
934 */
935int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
02fbd139 936 pmd_t *pmd, unsigned int flags, get_block_t get_block)
844f35db
MW
937{
938 struct file *file = vma->vm_file;
939 struct address_space *mapping = file->f_mapping;
940 struct inode *inode = mapping->host;
941 struct buffer_head bh;
942 unsigned blkbits = inode->i_blkbits;
943 unsigned long pmd_addr = address & PMD_MASK;
944 bool write = flags & FAULT_FLAG_WRITE;
b2e0d162 945 struct block_device *bdev;
844f35db 946 pgoff_t size, pgoff;
b2e0d162 947 sector_t block;
ac401cc7 948 int result = 0;
9973c98e 949 bool alloc = false;
844f35db 950
c046c321 951 /* dax pmd mappings require pfn_t_devmap() */
ee82c9ed
DW
952 if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
953 return VM_FAULT_FALLBACK;
954
844f35db 955 /* Fall back to PTEs if we're going to COW */
59bf4fb9
TK
956 if (write && !(vma->vm_flags & VM_SHARED)) {
957 split_huge_pmd(vma, pmd, address);
cbb38e41 958 dax_pmd_dbg(NULL, address, "cow write");
844f35db 959 return VM_FAULT_FALLBACK;
59bf4fb9 960 }
844f35db 961 /* If the PMD would extend outside the VMA */
cbb38e41
DW
962 if (pmd_addr < vma->vm_start) {
963 dax_pmd_dbg(NULL, address, "vma start unaligned");
844f35db 964 return VM_FAULT_FALLBACK;
cbb38e41
DW
965 }
966 if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
967 dax_pmd_dbg(NULL, address, "vma end unaligned");
844f35db 968 return VM_FAULT_FALLBACK;
cbb38e41 969 }
844f35db 970
3fdd1b47 971 pgoff = linear_page_index(vma, pmd_addr);
844f35db
MW
972 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
973 if (pgoff >= size)
974 return VM_FAULT_SIGBUS;
975 /* If the PMD would cover blocks out of the file */
cbb38e41
DW
976 if ((pgoff | PG_PMD_COLOUR) >= size) {
977 dax_pmd_dbg(NULL, address,
978 "offset + huge page size > file size");
844f35db 979 return VM_FAULT_FALLBACK;
cbb38e41 980 }
844f35db
MW
981
982 memset(&bh, 0, sizeof(bh));
d4bbe706 983 bh.b_bdev = inode->i_sb->s_bdev;
844f35db
MW
984 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
985
986 bh.b_size = PMD_SIZE;
9973c98e
RZ
987
988 if (get_block(inode, block, &bh, 0) != 0)
844f35db 989 return VM_FAULT_SIGBUS;
9973c98e
RZ
990
991 if (!buffer_mapped(&bh) && write) {
992 if (get_block(inode, block, &bh, 1) != 0)
993 return VM_FAULT_SIGBUS;
994 alloc = true;
2b10945c 995 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
9973c98e
RZ
996 }
997
b2e0d162 998 bdev = bh.b_bdev;
844f35db 999
fa0d3fce 1000 if (bh.b_size < PMD_SIZE) {
cbb38e41 1001 dax_pmd_dbg(&bh, address, "allocated block too small");
9973c98e
RZ
1002 return VM_FAULT_FALLBACK;
1003 }
1004
1005 /*
1006 * If we allocated new storage, make sure no process has any
1007 * zero pages covering this hole
1008 */
1009 if (alloc) {
1010 loff_t lstart = pgoff << PAGE_SHIFT;
1011 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
1012
1013 truncate_pagecache_range(inode, lstart, lend);
cbb38e41 1014 }
844f35db 1015
b9953536 1016 if (!write && !buffer_mapped(&bh)) {
844f35db 1017 spinlock_t *ptl;
d295e341 1018 pmd_t entry;
6fcb52a5 1019 struct page *zero_page = mm_get_huge_zero_page(vma->vm_mm);
d295e341 1020
cbb38e41
DW
1021 if (unlikely(!zero_page)) {
1022 dax_pmd_dbg(&bh, address, "no zero page");
844f35db 1023 goto fallback;
cbb38e41 1024 }
844f35db 1025
d295e341
KS
1026 ptl = pmd_lock(vma->vm_mm, pmd);
1027 if (!pmd_none(*pmd)) {
1028 spin_unlock(ptl);
cbb38e41 1029 dax_pmd_dbg(&bh, address, "pmd already present");
d295e341
KS
1030 goto fallback;
1031 }
1032
cbb38e41
DW
1033 dev_dbg(part_to_dev(bdev->bd_part),
1034 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
1035 __func__, current->comm, address,
1036 (unsigned long long) to_sector(&bh, inode));
1037
d295e341
KS
1038 entry = mk_pmd(zero_page, vma->vm_page_prot);
1039 entry = pmd_mkhuge(entry);
1040 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
844f35db 1041 result = VM_FAULT_NOPAGE;
d295e341 1042 spin_unlock(ptl);
844f35db 1043 } else {
b2e0d162
DW
1044 struct blk_dax_ctl dax = {
1045 .sector = to_sector(&bh, inode),
1046 .size = PMD_SIZE,
1047 };
1048 long length = dax_map_atomic(bdev, &dax);
1049
844f35db 1050 if (length < 0) {
8b3db979
DW
1051 dax_pmd_dbg(&bh, address, "dax-error fallback");
1052 goto fallback;
844f35db 1053 }
cbb38e41
DW
1054 if (length < PMD_SIZE) {
1055 dax_pmd_dbg(&bh, address, "dax-length too small");
1056 dax_unmap_atomic(bdev, &dax);
1057 goto fallback;
1058 }
1059 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
1060 dax_pmd_dbg(&bh, address, "pfn unaligned");
b2e0d162 1061 dax_unmap_atomic(bdev, &dax);
844f35db 1062 goto fallback;
b2e0d162 1063 }
844f35db 1064
c046c321 1065 if (!pfn_t_devmap(dax.pfn)) {
b2e0d162 1066 dax_unmap_atomic(bdev, &dax);
cbb38e41 1067 dax_pmd_dbg(&bh, address, "pfn not in memmap");
152d7bd8 1068 goto fallback;
b2e0d162 1069 }
b2e0d162 1070 dax_unmap_atomic(bdev, &dax);
0f90cc66 1071
9973c98e
RZ
1072 /*
1073 * For PTE faults we insert a radix tree entry for reads, and
1074 * leave it clean. Then on the first write we dirty the radix
1075 * tree entry via the dax_pfn_mkwrite() path. This sequence
1076 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
1077 * call into get_block() to translate the pgoff to a sector in
1078 * order to be able to create a new radix tree entry.
1079 *
1080 * The PMD path doesn't have an equivalent to
1081 * dax_pfn_mkwrite(), though, so for a read followed by a
6b524995 1082 * write we traverse all the way through dax_pmd_fault()
9973c98e
RZ
1083 * twice. This means we can just skip inserting a radix tree
1084 * entry completely on the initial read and just wait until
1085 * the write to insert a dirty entry.
1086 */
1087 if (write) {
ac401cc7
JK
1088 /*
1089 * We should insert radix-tree entry and dirty it here.
1090 * For now this is broken...
1091 */
9973c98e
RZ
1092 }
1093
cbb38e41
DW
1094 dev_dbg(part_to_dev(bdev->bd_part),
1095 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
1096 __func__, current->comm, address,
1097 pfn_t_to_pfn(dax.pfn),
1098 (unsigned long long) dax.sector);
34c0fd54 1099 result |= vmf_insert_pfn_pmd(vma, address, pmd,
f25748e3 1100 dax.pfn, write);
844f35db
MW
1101 }
1102
1103 out:
844f35db
MW
1104 return result;
1105
1106 fallback:
1107 count_vm_event(THP_FAULT_FALLBACK);
1108 result = VM_FAULT_FALLBACK;
1109 goto out;
1110}
844f35db 1111EXPORT_SYMBOL_GPL(dax_pmd_fault);
dd8a2b6c 1112#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
844f35db 1113
0e3b210c
BH
1114/**
1115 * dax_pfn_mkwrite - handle first write to DAX page
1116 * @vma: The virtual memory area where the fault occurred
1117 * @vmf: The description of the fault
0e3b210c
BH
1118 */
1119int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1120{
9973c98e 1121 struct file *file = vma->vm_file;
ac401cc7
JK
1122 struct address_space *mapping = file->f_mapping;
1123 void *entry;
1124 pgoff_t index = vmf->pgoff;
30f471fd 1125
ac401cc7
JK
1126 spin_lock_irq(&mapping->tree_lock);
1127 entry = get_unlocked_mapping_entry(mapping, index, NULL);
1128 if (!entry || !radix_tree_exceptional_entry(entry))
1129 goto out;
1130 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1131 put_unlocked_mapping_entry(mapping, index, entry);
1132out:
1133 spin_unlock_irq(&mapping->tree_lock);
0e3b210c
BH
1134 return VM_FAULT_NOPAGE;
1135}
1136EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1137
4b0228fa
VV
1138static bool dax_range_is_aligned(struct block_device *bdev,
1139 unsigned int offset, unsigned int length)
1140{
1141 unsigned short sector_size = bdev_logical_block_size(bdev);
1142
1143 if (!IS_ALIGNED(offset, sector_size))
1144 return false;
1145 if (!IS_ALIGNED(length, sector_size))
1146 return false;
1147
1148 return true;
1149}
1150
679c8bd3
CH
1151int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
1152 unsigned int offset, unsigned int length)
1153{
1154 struct blk_dax_ctl dax = {
1155 .sector = sector,
1156 .size = PAGE_SIZE,
1157 };
1158
4b0228fa
VV
1159 if (dax_range_is_aligned(bdev, offset, length)) {
1160 sector_t start_sector = dax.sector + (offset >> 9);
1161
1162 return blkdev_issue_zeroout(bdev, start_sector,
1163 length >> 9, GFP_NOFS, true);
1164 } else {
1165 if (dax_map_atomic(bdev, &dax) < 0)
1166 return PTR_ERR(dax.addr);
1167 clear_pmem(dax.addr + offset, length);
4b0228fa
VV
1168 dax_unmap_atomic(bdev, &dax);
1169 }
679c8bd3
CH
1170 return 0;
1171}
1172EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1173
4c0ccfef 1174/**
25726bc1 1175 * dax_zero_page_range - zero a range within a page of a DAX file
4c0ccfef
MW
1176 * @inode: The file being truncated
1177 * @from: The file offset that is being truncated to
25726bc1 1178 * @length: The number of bytes to zero
4c0ccfef
MW
1179 * @get_block: The filesystem method used to translate file offsets to blocks
1180 *
25726bc1
MW
1181 * This function can be called by a filesystem when it is zeroing part of a
1182 * page in a DAX file. This is intended for hole-punch operations. If
1183 * you are truncating a file, the helper function dax_truncate_page() may be
1184 * more convenient.
4c0ccfef 1185 */
25726bc1
MW
1186int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1187 get_block_t get_block)
4c0ccfef
MW
1188{
1189 struct buffer_head bh;
09cbfeaf
KS
1190 pgoff_t index = from >> PAGE_SHIFT;
1191 unsigned offset = from & (PAGE_SIZE-1);
4c0ccfef
MW
1192 int err;
1193
1194 /* Block boundary? Nothing to do */
1195 if (!length)
1196 return 0;
aada54f9
RZ
1197 if (WARN_ON_ONCE((offset + length) > PAGE_SIZE))
1198 return -EINVAL;
4c0ccfef
MW
1199
1200 memset(&bh, 0, sizeof(bh));
eab95db6 1201 bh.b_bdev = inode->i_sb->s_bdev;
09cbfeaf 1202 bh.b_size = PAGE_SIZE;
4c0ccfef 1203 err = get_block(inode, index, &bh, 0);
679c8bd3 1204 if (err < 0 || !buffer_written(&bh))
4c0ccfef 1205 return err;
4c0ccfef 1206
679c8bd3
CH
1207 return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode),
1208 offset, length);
4c0ccfef 1209}
25726bc1
MW
1210EXPORT_SYMBOL_GPL(dax_zero_page_range);
1211
1212/**
1213 * dax_truncate_page - handle a partial page being truncated in a DAX file
1214 * @inode: The file being truncated
1215 * @from: The file offset that is being truncated to
1216 * @get_block: The filesystem method used to translate file offsets to blocks
1217 *
1218 * Similar to block_truncate_page(), this function can be called by a
1219 * filesystem when it is truncating a DAX file to handle the partial page.
25726bc1
MW
1220 */
1221int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1222{
09cbfeaf 1223 unsigned length = PAGE_ALIGN(from) - from;
25726bc1
MW
1224 return dax_zero_page_range(inode, from, length, get_block);
1225}
4c0ccfef 1226EXPORT_SYMBOL_GPL(dax_truncate_page);
a254e568
CH
1227
1228#ifdef CONFIG_FS_IOMAP
1229static loff_t
1230iomap_dax_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1231 struct iomap *iomap)
1232{
1233 struct iov_iter *iter = data;
1234 loff_t end = pos + length, done = 0;
1235 ssize_t ret = 0;
1236
1237 if (iov_iter_rw(iter) == READ) {
1238 end = min(end, i_size_read(inode));
1239 if (pos >= end)
1240 return 0;
1241
1242 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1243 return iov_iter_zero(min(length, end - pos), iter);
1244 }
1245
1246 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1247 return -EIO;
1248
1249 while (pos < end) {
1250 unsigned offset = pos & (PAGE_SIZE - 1);
1251 struct blk_dax_ctl dax = { 0 };
1252 ssize_t map_len;
1253
1254 dax.sector = iomap->blkno +
1255 (((pos & PAGE_MASK) - iomap->offset) >> 9);
1256 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1257 map_len = dax_map_atomic(iomap->bdev, &dax);
1258 if (map_len < 0) {
1259 ret = map_len;
1260 break;
1261 }
1262
1263 dax.addr += offset;
1264 map_len -= offset;
1265 if (map_len > end - pos)
1266 map_len = end - pos;
1267
1268 if (iov_iter_rw(iter) == WRITE)
1269 map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
1270 else
1271 map_len = copy_to_iter(dax.addr, map_len, iter);
1272 dax_unmap_atomic(iomap->bdev, &dax);
1273 if (map_len <= 0) {
1274 ret = map_len ? map_len : -EFAULT;
1275 break;
1276 }
1277
1278 pos += map_len;
1279 length -= map_len;
1280 done += map_len;
1281 }
1282
1283 return done ? done : ret;
1284}
1285
1286/**
1287 * iomap_dax_rw - Perform I/O to a DAX file
1288 * @iocb: The control block for this I/O
1289 * @iter: The addresses to do I/O from or to
1290 * @ops: iomap ops passed from the file system
1291 *
1292 * This function performs read and write operations to directly mapped
1293 * persistent memory. The callers needs to take care of read/write exclusion
1294 * and evicting any page cache pages in the region under I/O.
1295 */
1296ssize_t
1297iomap_dax_rw(struct kiocb *iocb, struct iov_iter *iter,
1298 struct iomap_ops *ops)
1299{
1300 struct address_space *mapping = iocb->ki_filp->f_mapping;
1301 struct inode *inode = mapping->host;
1302 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1303 unsigned flags = 0;
1304
1305 if (iov_iter_rw(iter) == WRITE)
1306 flags |= IOMAP_WRITE;
1307
1308 /*
1309 * Yes, even DAX files can have page cache attached to them: A zeroed
1310 * page is inserted into the pagecache when we have to serve a write
1311 * fault on a hole. It should never be dirtied and can simply be
1312 * dropped from the pagecache once we get real data for the page.
1313 *
1314 * XXX: This is racy against mmap, and there's nothing we can do about
1315 * it. We'll eventually need to shift this down even further so that
1316 * we can check if we allocated blocks over a hole first.
1317 */
1318 if (mapping->nrpages) {
1319 ret = invalidate_inode_pages2_range(mapping,
1320 pos >> PAGE_SHIFT,
1321 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
1322 WARN_ON_ONCE(ret);
1323 }
1324
1325 while (iov_iter_count(iter)) {
1326 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1327 iter, iomap_dax_actor);
1328 if (ret <= 0)
1329 break;
1330 pos += ret;
1331 done += ret;
1332 }
1333
1334 iocb->ki_pos += done;
1335 return done ? done : ret;
1336}
1337EXPORT_SYMBOL_GPL(iomap_dax_rw);
a7d73fe6
CH
1338
1339/**
1340 * iomap_dax_fault - handle a page fault on a DAX file
1341 * @vma: The virtual memory area where the fault occurred
1342 * @vmf: The description of the fault
1343 * @ops: iomap ops passed from the file system
1344 *
1345 * When a page fault occurs, filesystems may call this helper in their fault
1346 * or mkwrite handler for DAX files. Assumes the caller has done all the
1347 * necessary locking for the page fault to proceed successfully.
1348 */
1349int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
1350 struct iomap_ops *ops)
1351{
1352 struct address_space *mapping = vma->vm_file->f_mapping;
1353 struct inode *inode = mapping->host;
1354 unsigned long vaddr = (unsigned long)vmf->virtual_address;
1355 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1356 sector_t sector;
1357 struct iomap iomap = { 0 };
1358 unsigned flags = 0;
1359 int error, major = 0;
1360 void *entry;
1361
1362 /*
1363 * Check whether offset isn't beyond end of file now. Caller is supposed
1364 * to hold locks serializing us with truncate / punch hole so this is
1365 * a reliable test.
1366 */
1367 if (pos >= i_size_read(inode))
1368 return VM_FAULT_SIGBUS;
1369
1370 entry = grab_mapping_entry(mapping, vmf->pgoff);
1371 if (IS_ERR(entry)) {
1372 error = PTR_ERR(entry);
1373 goto out;
1374 }
1375
1376 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1377 flags |= IOMAP_WRITE;
1378
1379 /*
1380 * Note that we don't bother to use iomap_apply here: DAX required
1381 * the file system block size to be equal the page size, which means
1382 * that we never have to deal with more than a single extent here.
1383 */
1384 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1385 if (error)
1386 goto unlock_entry;
1387 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1388 error = -EIO; /* fs corruption? */
1389 goto unlock_entry;
1390 }
1391
1392 sector = iomap.blkno + (((pos & PAGE_MASK) - iomap.offset) >> 9);
1393
1394 if (vmf->cow_page) {
1395 switch (iomap.type) {
1396 case IOMAP_HOLE:
1397 case IOMAP_UNWRITTEN:
1398 clear_user_highpage(vmf->cow_page, vaddr);
1399 break;
1400 case IOMAP_MAPPED:
1401 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1402 vmf->cow_page, vaddr);
1403 break;
1404 default:
1405 WARN_ON_ONCE(1);
1406 error = -EIO;
1407 break;
1408 }
1409
1410 if (error)
1411 goto unlock_entry;
1412 if (!radix_tree_exceptional_entry(entry)) {
1413 vmf->page = entry;
1414 return VM_FAULT_LOCKED;
1415 }
1416 vmf->entry = entry;
1417 return VM_FAULT_DAX_LOCKED;
1418 }
1419
1420 switch (iomap.type) {
1421 case IOMAP_MAPPED:
1422 if (iomap.flags & IOMAP_F_NEW) {
1423 count_vm_event(PGMAJFAULT);
1424 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1425 major = VM_FAULT_MAJOR;
1426 }
1427 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1428 PAGE_SIZE, &entry, vma, vmf);
1429 break;
1430 case IOMAP_UNWRITTEN:
1431 case IOMAP_HOLE:
1432 if (!(vmf->flags & FAULT_FLAG_WRITE))
1433 return dax_load_hole(mapping, entry, vmf);
1434 /*FALLTHRU*/
1435 default:
1436 WARN_ON_ONCE(1);
1437 error = -EIO;
1438 break;
1439 }
1440
1441 unlock_entry:
1442 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1443 out:
1444 if (error == -ENOMEM)
1445 return VM_FAULT_OOM | major;
1446 /* -EBUSY is fine, somebody else faulted on the same PTE */
1447 if (error < 0 && error != -EBUSY)
1448 return VM_FAULT_SIGBUS | major;
1449 return VM_FAULT_NOPAGE | major;
1450}
1451EXPORT_SYMBOL_GPL(iomap_dax_fault);
a254e568 1452#endif /* CONFIG_FS_IOMAP */