]> git.ipfire.org Git - people/ms/linux.git/blame - fs/mpage.c
block: default BLOCK_LEGACY_AUTOLOAD to y
[people/ms/linux.git] / fs / mpage.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * fs/mpage.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains functions related to preparing and submitting BIOs which contain
8 * multiple pagecache pages.
9 *
e1f8e874 10 * 15May2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 * 27Jun2002 axboe@suse.de
13 * use bio_add_page() to build bio's just the right size
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4
LT
18#include <linux/mm.h>
19#include <linux/kdev_t.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/bio.h>
22#include <linux/fs.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/highmem.h>
26#include <linux/prefetch.h>
27#include <linux/mpage.h>
02c43638 28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/writeback.h>
30#include <linux/backing-dev.h>
31#include <linux/pagevec.h>
4db96b71 32#include "internal.h"
1da177e4
LT
33
34/*
35 * I/O completion handler for multipage BIOs.
36 *
37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
38 * If a page does not map to a contiguous run of blocks then it simply falls
39 * back to block_read_full_page().
40 *
41 * Why is this? If a page's completion depends on a number of different BIOs
42 * which can complete in any order (or at the same time) then determining the
43 * status of that page is hard. See end_buffer_async_read() for the details.
44 * There is no point in duplicating all that complexity.
45 */
4246a0b6 46static void mpage_end_io(struct bio *bio)
1da177e4 47{
2c30c71b 48 struct bio_vec *bv;
6dc4f100 49 struct bvec_iter_all iter_all;
1da177e4 50
2b070cfe 51 bio_for_each_segment_all(bv, bio, iter_all) {
2c30c71b 52 struct page *page = bv->bv_page;
3f289dcb
TH
53 page_endio(page, bio_op(bio),
54 blk_status_to_errno(bio->bi_status));
2c30c71b
KO
55 }
56
1da177e4 57 bio_put(bio);
1da177e4
LT
58}
59
eed25cd5 60static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
1da177e4 61{
c32b0d4b 62 bio->bi_end_io = mpage_end_io;
eed25cd5 63 bio_set_op_attrs(bio, op, op_flags);
83c9c547 64 guard_bio_eod(bio);
4e49ea4a 65 submit_bio(bio);
1da177e4
LT
66 return NULL;
67}
68
1da177e4 69/*
d4388340 70 * support function for mpage_readahead. The fs supplied get_block might
1da177e4
LT
71 * return an up to date buffer. This is used to map that buffer into
72 * the page, which allows readpage to avoid triggering a duplicate call
73 * to get_block.
74 *
75 * The idea is to avoid adding buffers to pages that don't already have
76 * them. So when the buffer is up to date and the page size == block size,
77 * this marks the page up to date instead of adding new buffers.
78 */
79static void
80map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
81{
82 struct inode *inode = page->mapping->host;
83 struct buffer_head *page_bh, *head;
84 int block = 0;
85
86 if (!page_has_buffers(page)) {
87 /*
88 * don't make any buffers if there is only one buffer on
89 * the page and the page just needs to be set up to date
90 */
09cbfeaf 91 if (inode->i_blkbits == PAGE_SHIFT &&
1da177e4
LT
92 buffer_uptodate(bh)) {
93 SetPageUptodate(page);
94 return;
95 }
93407472 96 create_empty_buffers(page, i_blocksize(inode), 0);
1da177e4
LT
97 }
98 head = page_buffers(page);
99 page_bh = head;
100 do {
101 if (block == page_block) {
102 page_bh->b_state = bh->b_state;
103 page_bh->b_bdev = bh->b_bdev;
104 page_bh->b_blocknr = bh->b_blocknr;
105 break;
106 }
107 page_bh = page_bh->b_this_page;
108 block++;
109 } while (page_bh != head);
110}
111
357c1206
JA
112struct mpage_readpage_args {
113 struct bio *bio;
114 struct page *page;
115 unsigned int nr_pages;
74c8164e 116 bool is_readahead;
357c1206
JA
117 sector_t last_block_in_bio;
118 struct buffer_head map_bh;
119 unsigned long first_logical_block;
120 get_block_t *get_block;
357c1206
JA
121};
122
fa30bd05
BP
123/*
124 * This is the worker routine which does all the work of mapping the disk
125 * blocks and constructs largest possible bios, submits them for IO if the
126 * blocks are not contiguous on the disk.
127 *
128 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
129 * represent the validity of its disk mapping and to decide when to do the next
130 * get_block() call.
131 */
357c1206 132static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
1da177e4 133{
357c1206 134 struct page *page = args->page;
1da177e4
LT
135 struct inode *inode = page->mapping->host;
136 const unsigned blkbits = inode->i_blkbits;
09cbfeaf 137 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
1da177e4 138 const unsigned blocksize = 1 << blkbits;
357c1206 139 struct buffer_head *map_bh = &args->map_bh;
1da177e4
LT
140 sector_t block_in_file;
141 sector_t last_block;
fa30bd05 142 sector_t last_block_in_file;
1da177e4
LT
143 sector_t blocks[MAX_BUF_PER_PAGE];
144 unsigned page_block;
145 unsigned first_hole = blocks_per_page;
146 struct block_device *bdev = NULL;
1da177e4
LT
147 int length;
148 int fully_mapped = 1;
74c8164e 149 int op_flags;
fa30bd05
BP
150 unsigned nblocks;
151 unsigned relative_block;
74c8164e
JA
152 gfp_t gfp;
153
154 if (args->is_readahead) {
155 op_flags = REQ_RAHEAD;
156 gfp = readahead_gfp_mask(page->mapping);
157 } else {
158 op_flags = 0;
159 gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
160 }
1da177e4
LT
161
162 if (page_has_buffers(page))
163 goto confused;
164
09cbfeaf 165 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
357c1206 166 last_block = block_in_file + args->nr_pages * blocks_per_page;
fa30bd05
BP
167 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
168 if (last_block > last_block_in_file)
169 last_block = last_block_in_file;
170 page_block = 0;
171
172 /*
173 * Map blocks using the result from the previous get_blocks call first.
174 */
175 nblocks = map_bh->b_size >> blkbits;
357c1206
JA
176 if (buffer_mapped(map_bh) &&
177 block_in_file > args->first_logical_block &&
178 block_in_file < (args->first_logical_block + nblocks)) {
179 unsigned map_offset = block_in_file - args->first_logical_block;
fa30bd05
BP
180 unsigned last = nblocks - map_offset;
181
182 for (relative_block = 0; ; relative_block++) {
183 if (relative_block == last) {
184 clear_buffer_mapped(map_bh);
185 break;
186 }
187 if (page_block == blocks_per_page)
188 break;
189 blocks[page_block] = map_bh->b_blocknr + map_offset +
190 relative_block;
191 page_block++;
192 block_in_file++;
193 }
194 bdev = map_bh->b_bdev;
195 }
196
197 /*
198 * Then do more get_blocks calls until we are done with this page.
199 */
200 map_bh->b_page = page;
201 while (page_block < blocks_per_page) {
202 map_bh->b_state = 0;
203 map_bh->b_size = 0;
1da177e4 204
1da177e4 205 if (block_in_file < last_block) {
fa30bd05 206 map_bh->b_size = (last_block-block_in_file) << blkbits;
357c1206 207 if (args->get_block(inode, block_in_file, map_bh, 0))
1da177e4 208 goto confused;
357c1206 209 args->first_logical_block = block_in_file;
1da177e4
LT
210 }
211
fa30bd05 212 if (!buffer_mapped(map_bh)) {
1da177e4
LT
213 fully_mapped = 0;
214 if (first_hole == blocks_per_page)
215 first_hole = page_block;
fa30bd05
BP
216 page_block++;
217 block_in_file++;
1da177e4
LT
218 continue;
219 }
220
221 /* some filesystems will copy data into the page during
222 * the get_block call, in which case we don't want to
223 * read it again. map_buffer_to_page copies the data
224 * we just collected from get_block into the page's buffers
225 * so readpage doesn't have to repeat the get_block call
226 */
fa30bd05
BP
227 if (buffer_uptodate(map_bh)) {
228 map_buffer_to_page(page, map_bh, page_block);
1da177e4
LT
229 goto confused;
230 }
231
232 if (first_hole != blocks_per_page)
233 goto confused; /* hole -> non-hole */
234
235 /* Contiguous blocks? */
fa30bd05 236 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
1da177e4 237 goto confused;
fa30bd05
BP
238 nblocks = map_bh->b_size >> blkbits;
239 for (relative_block = 0; ; relative_block++) {
240 if (relative_block == nblocks) {
241 clear_buffer_mapped(map_bh);
242 break;
243 } else if (page_block == blocks_per_page)
244 break;
245 blocks[page_block] = map_bh->b_blocknr+relative_block;
246 page_block++;
247 block_in_file++;
248 }
249 bdev = map_bh->b_bdev;
1da177e4
LT
250 }
251
252 if (first_hole != blocks_per_page) {
09cbfeaf 253 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
1da177e4
LT
254 if (first_hole == 0) {
255 SetPageUptodate(page);
256 unlock_page(page);
257 goto out;
258 }
259 } else if (fully_mapped) {
260 SetPageMappedToDisk(page);
261 }
262
263 /*
264 * This page will go to BIO. Do we need to send this BIO off first?
265 */
357c1206 266 if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
74c8164e 267 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
1da177e4
LT
268
269alloc_new:
357c1206 270 if (args->bio == NULL) {
47a191fd
MW
271 if (first_hole == blocks_per_page) {
272 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
273 page))
274 goto out;
275 }
07888c66
CH
276 args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), 0,
277 gfp);
357c1206 278 if (args->bio == NULL)
1da177e4 279 goto confused;
d5f68a42 280 args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
1da177e4
LT
281 }
282
283 length = first_hole << blkbits;
357c1206 284 if (bio_add_page(args->bio, page, length, 0) < length) {
74c8164e 285 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
1da177e4
LT
286 goto alloc_new;
287 }
288
357c1206 289 relative_block = block_in_file - args->first_logical_block;
38c8e618
MS
290 nblocks = map_bh->b_size >> blkbits;
291 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
292 (first_hole != blocks_per_page))
74c8164e 293 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
1da177e4 294 else
357c1206 295 args->last_block_in_bio = blocks[blocks_per_page - 1];
1da177e4 296out:
357c1206 297 return args->bio;
1da177e4
LT
298
299confused:
357c1206 300 if (args->bio)
74c8164e 301 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
1da177e4 302 if (!PageUptodate(page))
357c1206 303 block_read_full_page(page, args->get_block);
1da177e4
LT
304 else
305 unlock_page(page);
306 goto out;
307}
308
67be2dd1 309/**
d4388340
MWO
310 * mpage_readahead - start reads against pages
311 * @rac: Describes which pages to read.
67be2dd1
MW
312 * @get_block: The filesystem's block mapper function.
313 *
314 * This function walks the pages and the blocks within each page, building and
315 * emitting large BIOs.
316 *
317 * If anything unusual happens, such as:
318 *
319 * - encountering a page which has buffers
320 * - encountering a page which has a non-hole after a hole
321 * - encountering a page with non-contiguous blocks
322 *
323 * then this code just gives up and calls the buffer_head-based read function.
324 * It does handle a page which has holes at the end - that is a common case:
ea1754a0 325 * the end-of-file on blocksize < PAGE_SIZE setups.
67be2dd1
MW
326 *
327 * BH_Boundary explanation:
328 *
329 * There is a problem. The mpage read code assembles several pages, gets all
330 * their disk mappings, and then submits them all. That's fine, but obtaining
331 * the disk mappings may require I/O. Reads of indirect blocks, for example.
332 *
333 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
334 * submitted in the following order:
0117d427 335 *
67be2dd1 336 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
78a4a50a 337 *
67be2dd1
MW
338 * because the indirect block has to be read to get the mappings of blocks
339 * 13,14,15,16. Obviously, this impacts performance.
340 *
341 * So what we do it to allow the filesystem's get_block() function to set
342 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
343 * after this one will require I/O against a block which is probably close to
344 * this one. So you should push what I/O you have currently accumulated.
345 *
346 * This all causes the disk requests to be issued in the correct order.
347 */
d4388340 348void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
1da177e4 349{
d4388340 350 struct page *page;
357c1206
JA
351 struct mpage_readpage_args args = {
352 .get_block = get_block,
74c8164e 353 .is_readahead = true,
357c1206 354 };
1da177e4 355
d4388340 356 while ((page = readahead_page(rac))) {
1da177e4 357 prefetchw(&page->flags);
d4388340
MWO
358 args.page = page;
359 args.nr_pages = readahead_count(rac);
360 args.bio = do_mpage_readpage(&args);
09cbfeaf 361 put_page(page);
1da177e4 362 }
357c1206 363 if (args.bio)
74c8164e 364 mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
1da177e4 365}
d4388340 366EXPORT_SYMBOL(mpage_readahead);
1da177e4
LT
367
368/*
369 * This isn't called much at all
370 */
371int mpage_readpage(struct page *page, get_block_t get_block)
372{
357c1206
JA
373 struct mpage_readpage_args args = {
374 .page = page,
375 .nr_pages = 1,
376 .get_block = get_block,
357c1206
JA
377 };
378
379 args.bio = do_mpage_readpage(&args);
380 if (args.bio)
381 mpage_bio_submit(REQ_OP_READ, 0, args.bio);
1da177e4
LT
382 return 0;
383}
384EXPORT_SYMBOL(mpage_readpage);
385
386/*
387 * Writing is not so simple.
388 *
389 * If the page has buffers then they will be used for obtaining the disk
390 * mapping. We only support pages which are fully mapped-and-dirty, with a
391 * special case for pages which are unmapped at the end: end-of-file.
392 *
393 * If the page has no buffers (preferred) then the page is mapped here.
394 *
395 * If all blocks are found to be contiguous then the page can go into the
396 * BIO. Otherwise fall back to the mapping's writepage().
397 *
398 * FIXME: This code wants an estimate of how many pages are still to be
399 * written, so it can intelligently allocate a suitably-sized BIO. For now,
400 * just allocate full-size (16-page) BIOs.
401 */
0ea97180 402
ced117c7
DV
403struct mpage_data {
404 struct bio *bio;
405 sector_t last_block_in_bio;
406 get_block_t *get_block;
407 unsigned use_writepage;
408};
409
90768eee
MW
410/*
411 * We have our BIO, so we can now mark the buffers clean. Make
412 * sure to only clean buffers which we know we'll be writing.
413 */
414static void clean_buffers(struct page *page, unsigned first_unmapped)
415{
416 unsigned buffer_counter = 0;
417 struct buffer_head *bh, *head;
418 if (!page_has_buffers(page))
419 return;
420 head = page_buffers(page);
421 bh = head;
422
423 do {
424 if (buffer_counter++ == first_unmapped)
425 break;
426 clear_buffer_dirty(bh);
427 bh = bh->b_this_page;
428 } while (bh != head);
429
430 /*
431 * we cannot drop the bh if the page is not uptodate or a concurrent
432 * readpage would fail to serialize with the bh and it would read from
433 * disk before we reach the platter.
434 */
435 if (buffer_heads_over_limit && PageUptodate(page))
436 try_to_free_buffers(page);
437}
438
f892760a
MW
439/*
440 * For situations where we want to clean all buffers attached to a page.
441 * We don't need to calculate how many buffers are attached to the page,
442 * we just need to specify a number larger than the maximum number of buffers.
443 */
444void clean_page_buffers(struct page *page)
445{
446 clean_buffers(page, ~0U);
447}
448
ced117c7 449static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
29a814d2 450 void *data)
1da177e4 451{
0ea97180
MS
452 struct mpage_data *mpd = data;
453 struct bio *bio = mpd->bio;
1da177e4
LT
454 struct address_space *mapping = page->mapping;
455 struct inode *inode = page->mapping->host;
456 const unsigned blkbits = inode->i_blkbits;
457 unsigned long end_index;
09cbfeaf 458 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
1da177e4
LT
459 sector_t last_block;
460 sector_t block_in_file;
461 sector_t blocks[MAX_BUF_PER_PAGE];
462 unsigned page_block;
463 unsigned first_unmapped = blocks_per_page;
464 struct block_device *bdev = NULL;
465 int boundary = 0;
466 sector_t boundary_block = 0;
467 struct block_device *boundary_bdev = NULL;
468 int length;
469 struct buffer_head map_bh;
470 loff_t i_size = i_size_read(inode);
0ea97180 471 int ret = 0;
7637241e 472 int op_flags = wbc_to_write_flags(wbc);
1da177e4
LT
473
474 if (page_has_buffers(page)) {
475 struct buffer_head *head = page_buffers(page);
476 struct buffer_head *bh = head;
477
478 /* If they're all mapped and dirty, do it */
479 page_block = 0;
480 do {
481 BUG_ON(buffer_locked(bh));
482 if (!buffer_mapped(bh)) {
483 /*
484 * unmapped dirty buffers are created by
485 * __set_page_dirty_buffers -> mmapped data
486 */
487 if (buffer_dirty(bh))
488 goto confused;
489 if (first_unmapped == blocks_per_page)
490 first_unmapped = page_block;
491 continue;
492 }
493
494 if (first_unmapped != blocks_per_page)
495 goto confused; /* hole -> non-hole */
496
497 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
498 goto confused;
499 if (page_block) {
500 if (bh->b_blocknr != blocks[page_block-1] + 1)
501 goto confused;
502 }
503 blocks[page_block++] = bh->b_blocknr;
504 boundary = buffer_boundary(bh);
505 if (boundary) {
506 boundary_block = bh->b_blocknr;
507 boundary_bdev = bh->b_bdev;
508 }
509 bdev = bh->b_bdev;
510 } while ((bh = bh->b_this_page) != head);
511
512 if (first_unmapped)
513 goto page_is_mapped;
514
515 /*
516 * Page has buffers, but they are all unmapped. The page was
517 * created by pagein or read over a hole which was handled by
518 * block_read_full_page(). If this address_space is also
d4388340 519 * using mpage_readahead then this can rarely happen.
1da177e4
LT
520 */
521 goto confused;
522 }
523
524 /*
525 * The page has no buffers: map it to disk
526 */
527 BUG_ON(!PageUptodate(page));
09cbfeaf 528 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
529 last_block = (i_size - 1) >> blkbits;
530 map_bh.b_page = page;
531 for (page_block = 0; page_block < blocks_per_page; ) {
532
533 map_bh.b_state = 0;
b0cf2321 534 map_bh.b_size = 1 << blkbits;
0ea97180 535 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
1da177e4
LT
536 goto confused;
537 if (buffer_new(&map_bh))
e64855c6 538 clean_bdev_bh_alias(&map_bh);
1da177e4
LT
539 if (buffer_boundary(&map_bh)) {
540 boundary_block = map_bh.b_blocknr;
541 boundary_bdev = map_bh.b_bdev;
542 }
543 if (page_block) {
544 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
545 goto confused;
546 }
547 blocks[page_block++] = map_bh.b_blocknr;
548 boundary = buffer_boundary(&map_bh);
549 bdev = map_bh.b_bdev;
550 if (block_in_file == last_block)
551 break;
552 block_in_file++;
553 }
554 BUG_ON(page_block == 0);
555
556 first_unmapped = page_block;
557
558page_is_mapped:
09cbfeaf 559 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
560 if (page->index >= end_index) {
561 /*
562 * The page straddles i_size. It must be zeroed out on each
2a61aa40 563 * and every writepage invocation because it may be mmapped.
1da177e4
LT
564 * "A file is mapped in multiples of the page size. For a file
565 * that is not a multiple of the page size, the remaining memory
566 * is zeroed when mapped, and writes to that region are not
567 * written out to the file."
568 */
09cbfeaf 569 unsigned offset = i_size & (PAGE_SIZE - 1);
1da177e4
LT
570
571 if (page->index > end_index || !offset)
572 goto confused;
09cbfeaf 573 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
574 }
575
576 /*
577 * This page will go to BIO. Do we need to send this BIO off first?
578 */
0ea97180 579 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
eed25cd5 580 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
1da177e4
LT
581
582alloc_new:
583 if (bio == NULL) {
47a191fd
MW
584 if (first_unmapped == blocks_per_page) {
585 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
f892760a 586 page, wbc))
47a191fd 587 goto out;
47a191fd 588 }
07888c66 589 bio = bio_alloc(bdev, BIO_MAX_VECS, 0, GFP_NOFS);
d5f68a42 590 bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
429b3fb0 591
b16b1deb 592 wbc_init_bio(wbc, bio);
8e8f9298 593 bio->bi_write_hint = inode->i_write_hint;
1da177e4
LT
594 }
595
596 /*
597 * Must try to add the page before marking the buffer clean or
598 * the confused fail path above (OOM) will be very confused when
599 * it finds all bh marked clean (i.e. it will not write anything)
600 */
34e51a5e 601 wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
1da177e4
LT
602 length = first_unmapped << blkbits;
603 if (bio_add_page(bio, page, length, 0) < length) {
eed25cd5 604 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
1da177e4
LT
605 goto alloc_new;
606 }
607
90768eee 608 clean_buffers(page, first_unmapped);
1da177e4
LT
609
610 BUG_ON(PageWriteback(page));
611 set_page_writeback(page);
612 unlock_page(page);
613 if (boundary || (first_unmapped != blocks_per_page)) {
eed25cd5 614 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
1da177e4
LT
615 if (boundary_block) {
616 write_boundary_block(boundary_bdev,
617 boundary_block, 1 << blkbits);
618 }
619 } else {
0ea97180 620 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
1da177e4
LT
621 }
622 goto out;
623
624confused:
625 if (bio)
eed25cd5 626 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
1da177e4 627
0ea97180
MS
628 if (mpd->use_writepage) {
629 ret = mapping->a_ops->writepage(page, wbc);
1da177e4 630 } else {
0ea97180 631 ret = -EAGAIN;
1da177e4
LT
632 goto out;
633 }
634 /*
635 * The caller has a ref on the inode, so *mapping is stable
636 */
0ea97180 637 mapping_set_error(mapping, ret);
1da177e4 638out:
0ea97180
MS
639 mpd->bio = bio;
640 return ret;
1da177e4
LT
641}
642
643/**
78a4a50a 644 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
1da177e4
LT
645 * @mapping: address space structure to write
646 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
647 * @get_block: the filesystem's block mapper function.
648 * If this is NULL then use a_ops->writepage. Otherwise, go
649 * direct-to-BIO.
650 *
651 * This is a library function, which implements the writepages()
652 * address_space_operation.
653 *
654 * If a page is already under I/O, generic_writepages() skips it, even
655 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
656 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
657 * and msync() need to guarantee that all the data which was dirty at the time
658 * the call was made get new I/O started against them. If wbc->sync_mode is
659 * WB_SYNC_ALL then we were called for data integrity and we must wait for
660 * existing IO to complete.
661 */
662int
663mpage_writepages(struct address_space *mapping,
664 struct writeback_control *wbc, get_block_t get_block)
1da177e4 665{
2ed1a6bc 666 struct blk_plug plug;
0ea97180
MS
667 int ret;
668
2ed1a6bc
JA
669 blk_start_plug(&plug);
670
0ea97180
MS
671 if (!get_block)
672 ret = generic_writepages(mapping, wbc);
673 else {
674 struct mpage_data mpd = {
675 .bio = NULL,
676 .last_block_in_bio = 0,
677 .get_block = get_block,
678 .use_writepage = 1,
679 };
680
681 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
5948edbc 682 if (mpd.bio) {
eed25cd5 683 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
70fd7614 684 REQ_SYNC : 0);
eed25cd5 685 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
5948edbc 686 }
1da177e4 687 }
2ed1a6bc 688 blk_finish_plug(&plug);
1da177e4
LT
689 return ret;
690}
691EXPORT_SYMBOL(mpage_writepages);
1da177e4
LT
692
693int mpage_writepage(struct page *page, get_block_t get_block,
694 struct writeback_control *wbc)
695{
0ea97180
MS
696 struct mpage_data mpd = {
697 .bio = NULL,
698 .last_block_in_bio = 0,
699 .get_block = get_block,
700 .use_writepage = 0,
701 };
702 int ret = __mpage_writepage(page, wbc, &mpd);
5948edbc 703 if (mpd.bio) {
eed25cd5 704 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
70fd7614 705 REQ_SYNC : 0);
eed25cd5 706 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
5948edbc 707 }
1da177e4
LT
708 return ret;
709}
710EXPORT_SYMBOL(mpage_writepage);