]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
constify struct path argument of finish_automount()/do_add_mount()
[people/ms/linux.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9caccd41 28#include <linux/proc_fs.h>
9ea459e1 29#include <linux/task_work.h>
9164bb4a 30#include <linux/sched/task.h>
e262e32d 31#include <uapi/linux/mount.h>
9bc61ab1 32#include <linux/fs_context.h>
037f11b4 33#include <linux/shmem_fs.h>
bd303368 34#include <linux/mnt_idmapping.h>
9164bb4a 35
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
d2921684 39/* Maximum number of mounts in a mount namespace */
ab171b95 40static unsigned int sysctl_mount_max __read_mostly = 100000;
d2921684 41
0818bf27
AV
42static unsigned int m_hash_mask __read_mostly;
43static unsigned int m_hash_shift __read_mostly;
44static unsigned int mp_hash_mask __read_mostly;
45static unsigned int mp_hash_shift __read_mostly;
46
47static __initdata unsigned long mhash_entries;
48static int __init set_mhash_entries(char *str)
49{
50 if (!str)
51 return 0;
52 mhash_entries = simple_strtoul(str, &str, 0);
53 return 1;
54}
55__setup("mhash_entries=", set_mhash_entries);
56
57static __initdata unsigned long mphash_entries;
58static int __init set_mphash_entries(char *str)
59{
60 if (!str)
61 return 0;
62 mphash_entries = simple_strtoul(str, &str, 0);
63 return 1;
64}
65__setup("mphash_entries=", set_mphash_entries);
13f14b4d 66
c7999c36 67static u64 event;
73cd49ec 68static DEFINE_IDA(mnt_id_ida);
719f5d7f 69static DEFINE_IDA(mnt_group_ida);
1da177e4 70
38129a13 71static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 72static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 73static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 74static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
75static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 77
2a186721
CB
78struct mount_kattr {
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
83 bool recurse;
9caccd41 84 struct user_namespace *mnt_userns;
2a186721
CB
85};
86
f87fd4c2 87/* /sys/fs */
00d26666
GKH
88struct kobject *fs_kobj;
89EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 90
99b7db7b
NP
91/*
92 * vfsmount lock may be taken for read to prevent changes to the
93 * vfsmount hash, ie. during mountpoint lookups or walking back
94 * up the tree.
95 *
96 * It should be taken for write in all cases where the vfsmount
97 * tree or hash is modified or when a vfsmount structure is modified.
98 */
48a066e7 99__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 100
d033cb67
CB
101static inline void lock_mount_hash(void)
102{
103 write_seqlock(&mount_lock);
104}
105
106static inline void unlock_mount_hash(void)
107{
108 write_sequnlock(&mount_lock);
109}
110
38129a13 111static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 112{
b58fed8b
RP
113 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
114 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
115 tmp = tmp + (tmp >> m_hash_shift);
116 return &mount_hashtable[tmp & m_hash_mask];
117}
118
119static inline struct hlist_head *mp_hash(struct dentry *dentry)
120{
121 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
122 tmp = tmp + (tmp >> mp_hash_shift);
123 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
124}
125
b105e270 126static int mnt_alloc_id(struct mount *mnt)
73cd49ec 127{
169b480e
MW
128 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
129
130 if (res < 0)
131 return res;
132 mnt->mnt_id = res;
133 return 0;
73cd49ec
MS
134}
135
b105e270 136static void mnt_free_id(struct mount *mnt)
73cd49ec 137{
169b480e 138 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
139}
140
719f5d7f
MS
141/*
142 * Allocate a new peer group ID
719f5d7f 143 */
4b8b21f4 144static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 145{
169b480e 146 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 147
169b480e
MW
148 if (res < 0)
149 return res;
150 mnt->mnt_group_id = res;
151 return 0;
719f5d7f
MS
152}
153
154/*
155 * Release a peer group ID
156 */
4b8b21f4 157void mnt_release_group_id(struct mount *mnt)
719f5d7f 158{
169b480e 159 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 160 mnt->mnt_group_id = 0;
719f5d7f
MS
161}
162
b3e19d92
NP
163/*
164 * vfsmount lock must be held for read
165 */
83adc753 166static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
167{
168#ifdef CONFIG_SMP
68e8a9fe 169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
170#else
171 preempt_disable();
68e8a9fe 172 mnt->mnt_count += n;
b3e19d92
NP
173 preempt_enable();
174#endif
175}
176
b3e19d92
NP
177/*
178 * vfsmount lock must be held for write
179 */
edf7ddbf 180int mnt_get_count(struct mount *mnt)
b3e19d92
NP
181{
182#ifdef CONFIG_SMP
edf7ddbf 183 int count = 0;
b3e19d92
NP
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
68e8a9fe 187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
188 }
189
190 return count;
191#else
68e8a9fe 192 return mnt->mnt_count;
b3e19d92
NP
193#endif
194}
195
b105e270 196static struct mount *alloc_vfsmnt(const char *name)
1da177e4 197{
c63181e6
AV
198 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
199 if (mnt) {
73cd49ec
MS
200 int err;
201
c63181e6 202 err = mnt_alloc_id(mnt);
88b38782
LZ
203 if (err)
204 goto out_free_cache;
205
206 if (name) {
79f6540b
VA
207 mnt->mnt_devname = kstrdup_const(name,
208 GFP_KERNEL_ACCOUNT);
c63181e6 209 if (!mnt->mnt_devname)
88b38782 210 goto out_free_id;
73cd49ec
MS
211 }
212
b3e19d92 213#ifdef CONFIG_SMP
c63181e6
AV
214 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
215 if (!mnt->mnt_pcp)
b3e19d92
NP
216 goto out_free_devname;
217
c63181e6 218 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 219#else
c63181e6
AV
220 mnt->mnt_count = 1;
221 mnt->mnt_writers = 0;
b3e19d92
NP
222#endif
223
38129a13 224 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
225 INIT_LIST_HEAD(&mnt->mnt_child);
226 INIT_LIST_HEAD(&mnt->mnt_mounts);
227 INIT_LIST_HEAD(&mnt->mnt_list);
228 INIT_LIST_HEAD(&mnt->mnt_expire);
229 INIT_LIST_HEAD(&mnt->mnt_share);
230 INIT_LIST_HEAD(&mnt->mnt_slave_list);
231 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 232 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 233 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 234 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
a6435940 235 mnt->mnt.mnt_userns = &init_user_ns;
1da177e4 236 }
c63181e6 237 return mnt;
88b38782 238
d3ef3d73
NP
239#ifdef CONFIG_SMP
240out_free_devname:
fcc139ae 241 kfree_const(mnt->mnt_devname);
d3ef3d73 242#endif
88b38782 243out_free_id:
c63181e6 244 mnt_free_id(mnt);
88b38782 245out_free_cache:
c63181e6 246 kmem_cache_free(mnt_cache, mnt);
88b38782 247 return NULL;
1da177e4
LT
248}
249
3d733633
DH
250/*
251 * Most r/o checks on a fs are for operations that take
252 * discrete amounts of time, like a write() or unlink().
253 * We must keep track of when those operations start
254 * (for permission checks) and when they end, so that
255 * we can determine when writes are able to occur to
256 * a filesystem.
257 */
258/*
259 * __mnt_is_readonly: check whether a mount is read-only
260 * @mnt: the mount to check for its write status
261 *
262 * This shouldn't be used directly ouside of the VFS.
263 * It does not guarantee that the filesystem will stay
264 * r/w, just that it is right *now*. This can not and
265 * should not be used in place of IS_RDONLY(inode).
266 * mnt_want/drop_write() will _keep_ the filesystem
267 * r/w.
268 */
43f5e655 269bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 270{
43f5e655 271 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
272}
273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
83adc753 275static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
276{
277#ifdef CONFIG_SMP
68e8a9fe 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 279#else
68e8a9fe 280 mnt->mnt_writers++;
d3ef3d73
NP
281#endif
282}
3d733633 283
83adc753 284static inline void mnt_dec_writers(struct mount *mnt)
3d733633 285{
d3ef3d73 286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers--;
d3ef3d73 290#endif
3d733633 291}
3d733633 292
83adc753 293static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 294{
d3ef3d73
NP
295#ifdef CONFIG_SMP
296 unsigned int count = 0;
3d733633 297 int cpu;
3d733633
DH
298
299 for_each_possible_cpu(cpu) {
68e8a9fe 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 301 }
3d733633 302
d3ef3d73
NP
303 return count;
304#else
305 return mnt->mnt_writers;
306#endif
3d733633
DH
307}
308
4ed5e82f
MS
309static int mnt_is_readonly(struct vfsmount *mnt)
310{
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316}
317
8366025e 318/*
eb04c282
JK
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
8366025e
DH
323 */
324/**
eb04c282 325 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 326 * @m: the mount on which to take a write
8366025e 327 *
eb04c282
JK
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
8366025e 333 */
eb04c282 334int __mnt_want_write(struct vfsmount *m)
8366025e 335{
83adc753 336 struct mount *mnt = real_mount(m);
3d733633 337 int ret = 0;
3d733633 338
d3ef3d73 339 preempt_disable();
c6653a83 340 mnt_inc_writers(mnt);
d3ef3d73 341 /*
c6653a83 342 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
6aa7de05 347 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
348 cpu_relax();
349 /*
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
353 */
354 smp_rmb();
4ed5e82f 355 if (mnt_is_readonly(m)) {
c6653a83 356 mnt_dec_writers(mnt);
3d733633 357 ret = -EROFS;
3d733633 358 }
d3ef3d73 359 preempt_enable();
eb04c282
JK
360
361 return ret;
362}
363
364/**
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
367 *
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 */
373int mnt_want_write(struct vfsmount *m)
374{
375 int ret;
376
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
3d733633 381 return ret;
8366025e
DH
382}
383EXPORT_SYMBOL_GPL(mnt_want_write);
384
96029c4e 385/**
eb04c282 386 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
387 * @file: the file who's mount on which to take a write
388 *
14e43bf4
EB
389 * This is like __mnt_want_write, but if the file is already open for writing it
390 * skips incrementing mnt_writers (since the open file already has a reference)
391 * and instead only does the check for emergency r/o remounts. This must be
392 * paired with __mnt_drop_write_file.
96029c4e 393 */
eb04c282 394int __mnt_want_write_file(struct file *file)
96029c4e 395{
14e43bf4
EB
396 if (file->f_mode & FMODE_WRITER) {
397 /*
398 * Superblock may have become readonly while there are still
399 * writable fd's, e.g. due to a fs error with errors=remount-ro
400 */
401 if (__mnt_is_readonly(file->f_path.mnt))
402 return -EROFS;
403 return 0;
404 }
405 return __mnt_want_write(file->f_path.mnt);
96029c4e 406}
eb04c282 407
7c6893e3
MS
408/**
409 * mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
411 *
14e43bf4
EB
412 * This is like mnt_want_write, but if the file is already open for writing it
413 * skips incrementing mnt_writers (since the open file already has a reference)
414 * and instead only does the freeze protection and the check for emergency r/o
415 * remounts. This must be paired with mnt_drop_write_file.
7c6893e3
MS
416 */
417int mnt_want_write_file(struct file *file)
418{
419 int ret;
420
a6795a58 421 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
422 ret = __mnt_want_write_file(file);
423 if (ret)
a6795a58 424 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
425 return ret;
426}
96029c4e
NP
427EXPORT_SYMBOL_GPL(mnt_want_write_file);
428
8366025e 429/**
eb04c282 430 * __mnt_drop_write - give up write access to a mount
8366025e
DH
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done
434 * performing writes to it. Must be matched with
eb04c282 435 * __mnt_want_write() call above.
8366025e 436 */
eb04c282 437void __mnt_drop_write(struct vfsmount *mnt)
8366025e 438{
d3ef3d73 439 preempt_disable();
83adc753 440 mnt_dec_writers(real_mount(mnt));
d3ef3d73 441 preempt_enable();
8366025e 442}
eb04c282
JK
443
444/**
445 * mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done performing writes to it and
449 * also allows filesystem to be frozen again. Must be matched with
450 * mnt_want_write() call above.
451 */
452void mnt_drop_write(struct vfsmount *mnt)
453{
454 __mnt_drop_write(mnt);
455 sb_end_write(mnt->mnt_sb);
456}
8366025e
DH
457EXPORT_SYMBOL_GPL(mnt_drop_write);
458
eb04c282
JK
459void __mnt_drop_write_file(struct file *file)
460{
14e43bf4
EB
461 if (!(file->f_mode & FMODE_WRITER))
462 __mnt_drop_write(file->f_path.mnt);
eb04c282
JK
463}
464
7c6893e3
MS
465void mnt_drop_write_file(struct file *file)
466{
a6795a58 467 __mnt_drop_write_file(file);
7c6893e3
MS
468 sb_end_write(file_inode(file)->i_sb);
469}
2a79f17e
AV
470EXPORT_SYMBOL(mnt_drop_write_file);
471
fbdc2f6c 472static inline int mnt_hold_writers(struct mount *mnt)
8366025e 473{
83adc753 474 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 475 /*
d3ef3d73
NP
476 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
477 * should be visible before we do.
3d733633 478 */
d3ef3d73
NP
479 smp_mb();
480
3d733633 481 /*
d3ef3d73
NP
482 * With writers on hold, if this value is zero, then there are
483 * definitely no active writers (although held writers may subsequently
484 * increment the count, they'll have to wait, and decrement it after
485 * seeing MNT_READONLY).
486 *
487 * It is OK to have counter incremented on one CPU and decremented on
488 * another: the sum will add up correctly. The danger would be when we
489 * sum up each counter, if we read a counter before it is incremented,
490 * but then read another CPU's count which it has been subsequently
491 * decremented from -- we would see more decrements than we should.
492 * MNT_WRITE_HOLD protects against this scenario, because
493 * mnt_want_write first increments count, then smp_mb, then spins on
494 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
495 * we're counting up here.
3d733633 496 */
c6653a83 497 if (mnt_get_writers(mnt) > 0)
fbdc2f6c
CB
498 return -EBUSY;
499
500 return 0;
501}
502
503static inline void mnt_unhold_writers(struct mount *mnt)
504{
d3ef3d73
NP
505 /*
506 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
507 * that become unheld will see MNT_READONLY.
508 */
509 smp_wmb();
83adc753 510 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
fbdc2f6c
CB
511}
512
513static int mnt_make_readonly(struct mount *mnt)
514{
515 int ret;
516
517 ret = mnt_hold_writers(mnt);
518 if (!ret)
519 mnt->mnt.mnt_flags |= MNT_READONLY;
520 mnt_unhold_writers(mnt);
3d733633 521 return ret;
8366025e 522}
8366025e 523
4ed5e82f
MS
524int sb_prepare_remount_readonly(struct super_block *sb)
525{
526 struct mount *mnt;
527 int err = 0;
528
8e8b8796
MS
529 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
530 if (atomic_long_read(&sb->s_remove_count))
531 return -EBUSY;
532
719ea2fb 533 lock_mount_hash();
4ed5e82f
MS
534 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
535 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
536 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
537 smp_mb();
538 if (mnt_get_writers(mnt) > 0) {
539 err = -EBUSY;
540 break;
541 }
542 }
543 }
8e8b8796
MS
544 if (!err && atomic_long_read(&sb->s_remove_count))
545 err = -EBUSY;
546
4ed5e82f
MS
547 if (!err) {
548 sb->s_readonly_remount = 1;
549 smp_wmb();
550 }
551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
553 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
554 }
719ea2fb 555 unlock_mount_hash();
4ed5e82f
MS
556
557 return err;
558}
559
b105e270 560static void free_vfsmnt(struct mount *mnt)
1da177e4 561{
a6435940
CB
562 struct user_namespace *mnt_userns;
563
564 mnt_userns = mnt_user_ns(&mnt->mnt);
bd303368 565 if (!initial_idmapping(mnt_userns))
a6435940 566 put_user_ns(mnt_userns);
fcc139ae 567 kfree_const(mnt->mnt_devname);
d3ef3d73 568#ifdef CONFIG_SMP
68e8a9fe 569 free_percpu(mnt->mnt_pcp);
d3ef3d73 570#endif
b105e270 571 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
572}
573
8ffcb32e
DH
574static void delayed_free_vfsmnt(struct rcu_head *head)
575{
576 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
577}
578
48a066e7 579/* call under rcu_read_lock */
294d71ff 580int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
581{
582 struct mount *mnt;
583 if (read_seqretry(&mount_lock, seq))
294d71ff 584 return 1;
48a066e7 585 if (bastard == NULL)
294d71ff 586 return 0;
48a066e7
AV
587 mnt = real_mount(bastard);
588 mnt_add_count(mnt, 1);
119e1ef8 589 smp_mb(); // see mntput_no_expire()
48a066e7 590 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 591 return 0;
48a066e7
AV
592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 mnt_add_count(mnt, -1);
294d71ff
AV
594 return 1;
595 }
119e1ef8
AV
596 lock_mount_hash();
597 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
598 mnt_add_count(mnt, -1);
599 unlock_mount_hash();
600 return 1;
601 }
602 unlock_mount_hash();
603 /* caller will mntput() */
294d71ff
AV
604 return -1;
605}
606
607/* call under rcu_read_lock */
608bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
609{
610 int res = __legitimize_mnt(bastard, seq);
611 if (likely(!res))
612 return true;
613 if (unlikely(res < 0)) {
614 rcu_read_unlock();
615 mntput(bastard);
616 rcu_read_lock();
48a066e7 617 }
48a066e7
AV
618 return false;
619}
620
1da177e4 621/*
474279dc 622 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 623 * call under rcu_read_lock()
1da177e4 624 */
474279dc 625struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 626{
38129a13 627 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
628 struct mount *p;
629
38129a13 630 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
631 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
632 return p;
633 return NULL;
634}
635
a05964f3 636/*
f015f126
DH
637 * lookup_mnt - Return the first child mount mounted at path
638 *
639 * "First" means first mounted chronologically. If you create the
640 * following mounts:
641 *
642 * mount /dev/sda1 /mnt
643 * mount /dev/sda2 /mnt
644 * mount /dev/sda3 /mnt
645 *
646 * Then lookup_mnt() on the base /mnt dentry in the root mount will
647 * return successively the root dentry and vfsmount of /dev/sda1, then
648 * /dev/sda2, then /dev/sda3, then NULL.
649 *
650 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 651 */
ca71cf71 652struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 653{
c7105365 654 struct mount *child_mnt;
48a066e7
AV
655 struct vfsmount *m;
656 unsigned seq;
99b7db7b 657
48a066e7
AV
658 rcu_read_lock();
659 do {
660 seq = read_seqbegin(&mount_lock);
661 child_mnt = __lookup_mnt(path->mnt, path->dentry);
662 m = child_mnt ? &child_mnt->mnt : NULL;
663 } while (!legitimize_mnt(m, seq));
664 rcu_read_unlock();
665 return m;
a05964f3
RP
666}
667
9f6c61f9
MS
668static inline void lock_ns_list(struct mnt_namespace *ns)
669{
670 spin_lock(&ns->ns_lock);
671}
672
673static inline void unlock_ns_list(struct mnt_namespace *ns)
674{
675 spin_unlock(&ns->ns_lock);
676}
677
678static inline bool mnt_is_cursor(struct mount *mnt)
679{
680 return mnt->mnt.mnt_flags & MNT_CURSOR;
681}
682
7af1364f
EB
683/*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698bool __is_local_mountpoint(struct dentry *dentry)
699{
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
7af1364f 704 down_read(&namespace_sem);
9f6c61f9 705 lock_ns_list(ns);
7af1364f 706 list_for_each_entry(mnt, &ns->list, mnt_list) {
9f6c61f9
MS
707 if (mnt_is_cursor(mnt))
708 continue;
7af1364f
EB
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
9f6c61f9 713 unlock_ns_list(ns);
7af1364f 714 up_read(&namespace_sem);
5ad05cc8 715
7af1364f
EB
716 return is_covered;
717}
718
e2dfa935 719static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 720{
0818bf27 721 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
722 struct mountpoint *mp;
723
0818bf27 724 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 725 if (mp->m_dentry == dentry) {
84d17192
AV
726 mp->m_count++;
727 return mp;
728 }
729 }
e2dfa935
EB
730 return NULL;
731}
732
3895dbf8 733static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 734{
3895dbf8 735 struct mountpoint *mp, *new = NULL;
e2dfa935 736 int ret;
84d17192 737
3895dbf8 738 if (d_mountpoint(dentry)) {
1e9c75fb
BC
739 /* might be worth a WARN_ON() */
740 if (d_unlinked(dentry))
741 return ERR_PTR(-ENOENT);
3895dbf8
EB
742mountpoint:
743 read_seqlock_excl(&mount_lock);
744 mp = lookup_mountpoint(dentry);
745 read_sequnlock_excl(&mount_lock);
746 if (mp)
747 goto done;
748 }
749
750 if (!new)
751 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
752 if (!new)
84d17192
AV
753 return ERR_PTR(-ENOMEM);
754
3895dbf8
EB
755
756 /* Exactly one processes may set d_mounted */
eed81007 757 ret = d_set_mounted(dentry);
eed81007 758
3895dbf8
EB
759 /* Someone else set d_mounted? */
760 if (ret == -EBUSY)
761 goto mountpoint;
762
763 /* The dentry is not available as a mountpoint? */
764 mp = ERR_PTR(ret);
765 if (ret)
766 goto done;
767
768 /* Add the new mountpoint to the hash table */
769 read_seqlock_excl(&mount_lock);
4edbe133 770 new->m_dentry = dget(dentry);
3895dbf8
EB
771 new->m_count = 1;
772 hlist_add_head(&new->m_hash, mp_hash(dentry));
773 INIT_HLIST_HEAD(&new->m_list);
774 read_sequnlock_excl(&mount_lock);
775
776 mp = new;
777 new = NULL;
778done:
779 kfree(new);
84d17192
AV
780 return mp;
781}
782
4edbe133
AV
783/*
784 * vfsmount lock must be held. Additionally, the caller is responsible
785 * for serializing calls for given disposal list.
786 */
787static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
788{
789 if (!--mp->m_count) {
790 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 791 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
792 spin_lock(&dentry->d_lock);
793 dentry->d_flags &= ~DCACHE_MOUNTED;
794 spin_unlock(&dentry->d_lock);
4edbe133 795 dput_to_list(dentry, list);
0818bf27 796 hlist_del(&mp->m_hash);
84d17192
AV
797 kfree(mp);
798 }
799}
800
4edbe133
AV
801/* called with namespace_lock and vfsmount lock */
802static void put_mountpoint(struct mountpoint *mp)
803{
804 __put_mountpoint(mp, &ex_mountpoints);
805}
806
143c8c91 807static inline int check_mnt(struct mount *mnt)
1da177e4 808{
6b3286ed 809 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
810}
811
99b7db7b
NP
812/*
813 * vfsmount lock must be held for write
814 */
6b3286ed 815static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
816{
817 if (ns) {
818 ns->event = ++event;
819 wake_up_interruptible(&ns->poll);
820 }
821}
822
99b7db7b
NP
823/*
824 * vfsmount lock must be held for write
825 */
6b3286ed 826static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
827{
828 if (ns && ns->event != event) {
829 ns->event = event;
830 wake_up_interruptible(&ns->poll);
831 }
832}
833
99b7db7b
NP
834/*
835 * vfsmount lock must be held for write
836 */
e4e59906 837static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 838{
e4e59906 839 struct mountpoint *mp;
0714a533 840 mnt->mnt_parent = mnt;
a73324da 841 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 842 list_del_init(&mnt->mnt_child);
38129a13 843 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 844 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 845 mp = mnt->mnt_mp;
84d17192 846 mnt->mnt_mp = NULL;
e4e59906 847 return mp;
7bdb11de
EB
848}
849
6a46c573
EB
850/*
851 * vfsmount lock must be held for write
852 */
853static void umount_mnt(struct mount *mnt)
854{
e4e59906 855 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
856}
857
99b7db7b
NP
858/*
859 * vfsmount lock must be held for write
860 */
84d17192
AV
861void mnt_set_mountpoint(struct mount *mnt,
862 struct mountpoint *mp,
44d964d6 863 struct mount *child_mnt)
b90fa9ae 864{
84d17192 865 mp->m_count++;
3a2393d7 866 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 867 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 868 child_mnt->mnt_parent = mnt;
84d17192 869 child_mnt->mnt_mp = mp;
0a5eb7c8 870 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
871}
872
1064f874
EB
873static void __attach_mnt(struct mount *mnt, struct mount *parent)
874{
875 hlist_add_head_rcu(&mnt->mnt_hash,
876 m_hash(&parent->mnt, mnt->mnt_mountpoint));
877 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
878}
879
99b7db7b
NP
880/*
881 * vfsmount lock must be held for write
882 */
84d17192
AV
883static void attach_mnt(struct mount *mnt,
884 struct mount *parent,
885 struct mountpoint *mp)
1da177e4 886{
84d17192 887 mnt_set_mountpoint(parent, mp, mnt);
1064f874 888 __attach_mnt(mnt, parent);
b90fa9ae
RP
889}
890
1064f874 891void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 892{
1064f874 893 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
894 struct mount *old_parent = mnt->mnt_parent;
895
896 list_del_init(&mnt->mnt_child);
897 hlist_del_init(&mnt->mnt_mp_list);
898 hlist_del_init_rcu(&mnt->mnt_hash);
899
900 attach_mnt(mnt, parent, mp);
901
902 put_mountpoint(old_mp);
1064f874 903 mnt_add_count(old_parent, -1);
12a5b529
AV
904}
905
b90fa9ae 906/*
99b7db7b 907 * vfsmount lock must be held for write
b90fa9ae 908 */
1064f874 909static void commit_tree(struct mount *mnt)
b90fa9ae 910{
0714a533 911 struct mount *parent = mnt->mnt_parent;
83adc753 912 struct mount *m;
b90fa9ae 913 LIST_HEAD(head);
143c8c91 914 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 915
0714a533 916 BUG_ON(parent == mnt);
b90fa9ae 917
1a4eeaf2 918 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 919 list_for_each_entry(m, &head, mnt_list)
143c8c91 920 m->mnt_ns = n;
f03c6599 921
b90fa9ae
RP
922 list_splice(&head, n->list.prev);
923
d2921684
EB
924 n->mounts += n->pending_mounts;
925 n->pending_mounts = 0;
926
1064f874 927 __attach_mnt(mnt, parent);
6b3286ed 928 touch_mnt_namespace(n);
1da177e4
LT
929}
930
909b0a88 931static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 932{
6b41d536
AV
933 struct list_head *next = p->mnt_mounts.next;
934 if (next == &p->mnt_mounts) {
1da177e4 935 while (1) {
909b0a88 936 if (p == root)
1da177e4 937 return NULL;
6b41d536
AV
938 next = p->mnt_child.next;
939 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 940 break;
0714a533 941 p = p->mnt_parent;
1da177e4
LT
942 }
943 }
6b41d536 944 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
945}
946
315fc83e 947static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 948{
6b41d536
AV
949 struct list_head *prev = p->mnt_mounts.prev;
950 while (prev != &p->mnt_mounts) {
951 p = list_entry(prev, struct mount, mnt_child);
952 prev = p->mnt_mounts.prev;
9676f0c6
RP
953 }
954 return p;
955}
956
8f291889
AV
957/**
958 * vfs_create_mount - Create a mount for a configured superblock
959 * @fc: The configuration context with the superblock attached
960 *
961 * Create a mount to an already configured superblock. If necessary, the
962 * caller should invoke vfs_get_tree() before calling this.
963 *
964 * Note that this does not attach the mount to anything.
965 */
966struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 967{
b105e270 968 struct mount *mnt;
bd303368 969 struct user_namespace *fs_userns;
9d412a43 970
8f291889
AV
971 if (!fc->root)
972 return ERR_PTR(-EINVAL);
9d412a43 973
8f291889 974 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
975 if (!mnt)
976 return ERR_PTR(-ENOMEM);
977
8f291889 978 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 979 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 980
8f291889
AV
981 atomic_inc(&fc->root->d_sb->s_active);
982 mnt->mnt.mnt_sb = fc->root->d_sb;
983 mnt->mnt.mnt_root = dget(fc->root);
984 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
985 mnt->mnt_parent = mnt;
9d412a43 986
bd303368
CB
987 fs_userns = mnt->mnt.mnt_sb->s_user_ns;
988 if (!initial_idmapping(fs_userns))
989 mnt->mnt.mnt_userns = get_user_ns(fs_userns);
990
719ea2fb 991 lock_mount_hash();
8f291889 992 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 993 unlock_mount_hash();
b105e270 994 return &mnt->mnt;
9d412a43 995}
8f291889
AV
996EXPORT_SYMBOL(vfs_create_mount);
997
998struct vfsmount *fc_mount(struct fs_context *fc)
999{
1000 int err = vfs_get_tree(fc);
1001 if (!err) {
1002 up_write(&fc->root->d_sb->s_umount);
1003 return vfs_create_mount(fc);
1004 }
1005 return ERR_PTR(err);
1006}
1007EXPORT_SYMBOL(fc_mount);
1008
9bc61ab1
DH
1009struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1010 int flags, const char *name,
1011 void *data)
9d412a43 1012{
9bc61ab1 1013 struct fs_context *fc;
8f291889 1014 struct vfsmount *mnt;
9bc61ab1 1015 int ret = 0;
9d412a43
AV
1016
1017 if (!type)
3e1aeb00 1018 return ERR_PTR(-EINVAL);
9d412a43 1019
9bc61ab1
DH
1020 fc = fs_context_for_mount(type, flags);
1021 if (IS_ERR(fc))
1022 return ERR_CAST(fc);
1023
3e1aeb00
DH
1024 if (name)
1025 ret = vfs_parse_fs_string(fc, "source",
1026 name, strlen(name));
9bc61ab1
DH
1027 if (!ret)
1028 ret = parse_monolithic_mount_data(fc, data);
1029 if (!ret)
8f291889
AV
1030 mnt = fc_mount(fc);
1031 else
1032 mnt = ERR_PTR(ret);
9d412a43 1033
9bc61ab1 1034 put_fs_context(fc);
8f291889 1035 return mnt;
9d412a43
AV
1036}
1037EXPORT_SYMBOL_GPL(vfs_kern_mount);
1038
93faccbb
EB
1039struct vfsmount *
1040vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1041 const char *name, void *data)
1042{
1043 /* Until it is worked out how to pass the user namespace
1044 * through from the parent mount to the submount don't support
1045 * unprivileged mounts with submounts.
1046 */
1047 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1048 return ERR_PTR(-EPERM);
1049
e462ec50 1050 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1051}
1052EXPORT_SYMBOL_GPL(vfs_submount);
1053
87129cc0 1054static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1055 int flag)
1da177e4 1056{
87129cc0 1057 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1058 struct mount *mnt;
1059 int err;
1da177e4 1060
be34d1a3
DH
1061 mnt = alloc_vfsmnt(old->mnt_devname);
1062 if (!mnt)
1063 return ERR_PTR(-ENOMEM);
719f5d7f 1064
7a472ef4 1065 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1066 mnt->mnt_group_id = 0; /* not a peer of original */
1067 else
1068 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1069
be34d1a3
DH
1070 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1071 err = mnt_alloc_group_id(mnt);
1072 if (err)
1073 goto out_free;
1da177e4 1074 }
be34d1a3 1075
16a34adb
AV
1076 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1077 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1078
be34d1a3 1079 atomic_inc(&sb->s_active);
a6435940 1080 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
bd303368 1081 if (!initial_idmapping(mnt->mnt.mnt_userns))
a6435940 1082 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
be34d1a3
DH
1083 mnt->mnt.mnt_sb = sb;
1084 mnt->mnt.mnt_root = dget(root);
1085 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1086 mnt->mnt_parent = mnt;
719ea2fb 1087 lock_mount_hash();
be34d1a3 1088 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1089 unlock_mount_hash();
be34d1a3 1090
7a472ef4
EB
1091 if ((flag & CL_SLAVE) ||
1092 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1093 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1094 mnt->mnt_master = old;
1095 CLEAR_MNT_SHARED(mnt);
1096 } else if (!(flag & CL_PRIVATE)) {
1097 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1098 list_add(&mnt->mnt_share, &old->mnt_share);
1099 if (IS_MNT_SLAVE(old))
1100 list_add(&mnt->mnt_slave, &old->mnt_slave);
1101 mnt->mnt_master = old->mnt_master;
5235d448
AV
1102 } else {
1103 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1104 }
1105 if (flag & CL_MAKE_SHARED)
1106 set_mnt_shared(mnt);
1107
1108 /* stick the duplicate mount on the same expiry list
1109 * as the original if that was on one */
1110 if (flag & CL_EXPIRE) {
1111 if (!list_empty(&old->mnt_expire))
1112 list_add(&mnt->mnt_expire, &old->mnt_expire);
1113 }
1114
cb338d06 1115 return mnt;
719f5d7f
MS
1116
1117 out_free:
8ffcb32e 1118 mnt_free_id(mnt);
719f5d7f 1119 free_vfsmnt(mnt);
be34d1a3 1120 return ERR_PTR(err);
1da177e4
LT
1121}
1122
9ea459e1
AV
1123static void cleanup_mnt(struct mount *mnt)
1124{
56cbb429
AV
1125 struct hlist_node *p;
1126 struct mount *m;
9ea459e1 1127 /*
56cbb429
AV
1128 * The warning here probably indicates that somebody messed
1129 * up a mnt_want/drop_write() pair. If this happens, the
1130 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1131 * The locking used to deal with mnt_count decrement provides barriers,
1132 * so mnt_get_writers() below is safe.
1133 */
1134 WARN_ON(mnt_get_writers(mnt));
1135 if (unlikely(mnt->mnt_pins.first))
1136 mnt_pin_kill(mnt);
56cbb429
AV
1137 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1138 hlist_del(&m->mnt_umount);
1139 mntput(&m->mnt);
1140 }
9ea459e1
AV
1141 fsnotify_vfsmount_delete(&mnt->mnt);
1142 dput(mnt->mnt.mnt_root);
1143 deactivate_super(mnt->mnt.mnt_sb);
1144 mnt_free_id(mnt);
1145 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1146}
1147
1148static void __cleanup_mnt(struct rcu_head *head)
1149{
1150 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1151}
1152
1153static LLIST_HEAD(delayed_mntput_list);
1154static void delayed_mntput(struct work_struct *unused)
1155{
1156 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1157 struct mount *m, *t;
9ea459e1 1158
29785735
BP
1159 llist_for_each_entry_safe(m, t, node, mnt_llist)
1160 cleanup_mnt(m);
9ea459e1
AV
1161}
1162static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1163
900148dc 1164static void mntput_no_expire(struct mount *mnt)
b3e19d92 1165{
4edbe133 1166 LIST_HEAD(list);
edf7ddbf 1167 int count;
4edbe133 1168
48a066e7 1169 rcu_read_lock();
9ea0a46c
AV
1170 if (likely(READ_ONCE(mnt->mnt_ns))) {
1171 /*
1172 * Since we don't do lock_mount_hash() here,
1173 * ->mnt_ns can change under us. However, if it's
1174 * non-NULL, then there's a reference that won't
1175 * be dropped until after an RCU delay done after
1176 * turning ->mnt_ns NULL. So if we observe it
1177 * non-NULL under rcu_read_lock(), the reference
1178 * we are dropping is not the final one.
1179 */
1180 mnt_add_count(mnt, -1);
48a066e7 1181 rcu_read_unlock();
f03c6599 1182 return;
b3e19d92 1183 }
719ea2fb 1184 lock_mount_hash();
119e1ef8
AV
1185 /*
1186 * make sure that if __legitimize_mnt() has not seen us grab
1187 * mount_lock, we'll see their refcount increment here.
1188 */
1189 smp_mb();
9ea0a46c 1190 mnt_add_count(mnt, -1);
edf7ddbf
EB
1191 count = mnt_get_count(mnt);
1192 if (count != 0) {
1193 WARN_ON(count < 0);
48a066e7 1194 rcu_read_unlock();
719ea2fb 1195 unlock_mount_hash();
99b7db7b
NP
1196 return;
1197 }
48a066e7
AV
1198 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1199 rcu_read_unlock();
1200 unlock_mount_hash();
1201 return;
1202 }
1203 mnt->mnt.mnt_flags |= MNT_DOOMED;
1204 rcu_read_unlock();
962830df 1205
39f7c4db 1206 list_del(&mnt->mnt_instance);
ce07d891
EB
1207
1208 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1209 struct mount *p, *tmp;
1210 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1211 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1212 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1213 }
1214 }
719ea2fb 1215 unlock_mount_hash();
4edbe133 1216 shrink_dentry_list(&list);
649a795a 1217
9ea459e1
AV
1218 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1219 struct task_struct *task = current;
1220 if (likely(!(task->flags & PF_KTHREAD))) {
1221 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
91989c70 1222 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
9ea459e1
AV
1223 return;
1224 }
1225 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1226 schedule_delayed_work(&delayed_mntput_work, 1);
1227 return;
1228 }
1229 cleanup_mnt(mnt);
b3e19d92 1230}
b3e19d92
NP
1231
1232void mntput(struct vfsmount *mnt)
1233{
1234 if (mnt) {
863d684f 1235 struct mount *m = real_mount(mnt);
b3e19d92 1236 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1237 if (unlikely(m->mnt_expiry_mark))
1238 m->mnt_expiry_mark = 0;
1239 mntput_no_expire(m);
b3e19d92
NP
1240 }
1241}
1242EXPORT_SYMBOL(mntput);
1243
1244struct vfsmount *mntget(struct vfsmount *mnt)
1245{
1246 if (mnt)
83adc753 1247 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1248 return mnt;
1249}
1250EXPORT_SYMBOL(mntget);
1251
1f287bc4
RD
1252/**
1253 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1254 * @path: path to check
c6609c0a
IK
1255 *
1256 * d_mountpoint() can only be used reliably to establish if a dentry is
1257 * not mounted in any namespace and that common case is handled inline.
1258 * d_mountpoint() isn't aware of the possibility there may be multiple
1259 * mounts using a given dentry in a different namespace. This function
1260 * checks if the passed in path is a mountpoint rather than the dentry
1261 * alone.
1262 */
1263bool path_is_mountpoint(const struct path *path)
1264{
1265 unsigned seq;
1266 bool res;
1267
1268 if (!d_mountpoint(path->dentry))
1269 return false;
1270
1271 rcu_read_lock();
1272 do {
1273 seq = read_seqbegin(&mount_lock);
1274 res = __path_is_mountpoint(path);
1275 } while (read_seqretry(&mount_lock, seq));
1276 rcu_read_unlock();
1277
1278 return res;
1279}
1280EXPORT_SYMBOL(path_is_mountpoint);
1281
ca71cf71 1282struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1283{
3064c356
AV
1284 struct mount *p;
1285 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1286 if (IS_ERR(p))
1287 return ERR_CAST(p);
1288 p->mnt.mnt_flags |= MNT_INTERNAL;
1289 return &p->mnt;
7b7b1ace 1290}
1da177e4 1291
a1a2c409 1292#ifdef CONFIG_PROC_FS
9f6c61f9
MS
1293static struct mount *mnt_list_next(struct mnt_namespace *ns,
1294 struct list_head *p)
1295{
1296 struct mount *mnt, *ret = NULL;
1297
1298 lock_ns_list(ns);
1299 list_for_each_continue(p, &ns->list) {
1300 mnt = list_entry(p, typeof(*mnt), mnt_list);
1301 if (!mnt_is_cursor(mnt)) {
1302 ret = mnt;
1303 break;
1304 }
1305 }
1306 unlock_ns_list(ns);
1307
1308 return ret;
1309}
1310
0226f492 1311/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1312static void *m_start(struct seq_file *m, loff_t *pos)
1313{
ede1bf0d 1314 struct proc_mounts *p = m->private;
9f6c61f9 1315 struct list_head *prev;
1da177e4 1316
390c6843 1317 down_read(&namespace_sem);
9f6c61f9
MS
1318 if (!*pos) {
1319 prev = &p->ns->list;
1320 } else {
1321 prev = &p->cursor.mnt_list;
1322
1323 /* Read after we'd reached the end? */
1324 if (list_empty(prev))
1325 return NULL;
c7999c36
AV
1326 }
1327
9f6c61f9 1328 return mnt_list_next(p->ns, prev);
1da177e4
LT
1329}
1330
1331static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1332{
ede1bf0d 1333 struct proc_mounts *p = m->private;
9f6c61f9 1334 struct mount *mnt = v;
b0765fb8 1335
9f6c61f9
MS
1336 ++*pos;
1337 return mnt_list_next(p->ns, &mnt->mnt_list);
1da177e4
LT
1338}
1339
1340static void m_stop(struct seq_file *m, void *v)
1341{
9f6c61f9
MS
1342 struct proc_mounts *p = m->private;
1343 struct mount *mnt = v;
1344
1345 lock_ns_list(p->ns);
1346 if (mnt)
1347 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1348 else
1349 list_del_init(&p->cursor.mnt_list);
1350 unlock_ns_list(p->ns);
390c6843 1351 up_read(&namespace_sem);
1da177e4
LT
1352}
1353
0226f492 1354static int m_show(struct seq_file *m, void *v)
2d4d4864 1355{
ede1bf0d 1356 struct proc_mounts *p = m->private;
9f6c61f9 1357 struct mount *r = v;
0226f492 1358 return p->show(m, &r->mnt);
1da177e4
LT
1359}
1360
a1a2c409 1361const struct seq_operations mounts_op = {
1da177e4
LT
1362 .start = m_start,
1363 .next = m_next,
1364 .stop = m_stop,
0226f492 1365 .show = m_show,
b4629fe2 1366};
9f6c61f9
MS
1367
1368void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1369{
1370 down_read(&namespace_sem);
1371 lock_ns_list(ns);
1372 list_del(&cursor->mnt_list);
1373 unlock_ns_list(ns);
1374 up_read(&namespace_sem);
1375}
a1a2c409 1376#endif /* CONFIG_PROC_FS */
b4629fe2 1377
1da177e4
LT
1378/**
1379 * may_umount_tree - check if a mount tree is busy
1f287bc4 1380 * @m: root of mount tree
1da177e4
LT
1381 *
1382 * This is called to check if a tree of mounts has any
1383 * open files, pwds, chroots or sub mounts that are
1384 * busy.
1385 */
909b0a88 1386int may_umount_tree(struct vfsmount *m)
1da177e4 1387{
909b0a88 1388 struct mount *mnt = real_mount(m);
36341f64
RP
1389 int actual_refs = 0;
1390 int minimum_refs = 0;
315fc83e 1391 struct mount *p;
909b0a88 1392 BUG_ON(!m);
1da177e4 1393
b3e19d92 1394 /* write lock needed for mnt_get_count */
719ea2fb 1395 lock_mount_hash();
909b0a88 1396 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1397 actual_refs += mnt_get_count(p);
1da177e4 1398 minimum_refs += 2;
1da177e4 1399 }
719ea2fb 1400 unlock_mount_hash();
1da177e4
LT
1401
1402 if (actual_refs > minimum_refs)
e3474a8e 1403 return 0;
1da177e4 1404
e3474a8e 1405 return 1;
1da177e4
LT
1406}
1407
1408EXPORT_SYMBOL(may_umount_tree);
1409
1410/**
1411 * may_umount - check if a mount point is busy
1412 * @mnt: root of mount
1413 *
1414 * This is called to check if a mount point has any
1415 * open files, pwds, chroots or sub mounts. If the
1416 * mount has sub mounts this will return busy
1417 * regardless of whether the sub mounts are busy.
1418 *
1419 * Doesn't take quota and stuff into account. IOW, in some cases it will
1420 * give false negatives. The main reason why it's here is that we need
1421 * a non-destructive way to look for easily umountable filesystems.
1422 */
1423int may_umount(struct vfsmount *mnt)
1424{
e3474a8e 1425 int ret = 1;
8ad08d8a 1426 down_read(&namespace_sem);
719ea2fb 1427 lock_mount_hash();
1ab59738 1428 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1429 ret = 0;
719ea2fb 1430 unlock_mount_hash();
8ad08d8a 1431 up_read(&namespace_sem);
a05964f3 1432 return ret;
1da177e4
LT
1433}
1434
1435EXPORT_SYMBOL(may_umount);
1436
97216be0 1437static void namespace_unlock(void)
70fbcdf4 1438{
a3b3c562 1439 struct hlist_head head;
56cbb429
AV
1440 struct hlist_node *p;
1441 struct mount *m;
4edbe133 1442 LIST_HEAD(list);
97216be0 1443
a3b3c562 1444 hlist_move_list(&unmounted, &head);
4edbe133 1445 list_splice_init(&ex_mountpoints, &list);
97216be0 1446
97216be0
AV
1447 up_write(&namespace_sem);
1448
4edbe133
AV
1449 shrink_dentry_list(&list);
1450
a3b3c562
EB
1451 if (likely(hlist_empty(&head)))
1452 return;
1453
22cb7405 1454 synchronize_rcu_expedited();
48a066e7 1455
56cbb429
AV
1456 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1457 hlist_del(&m->mnt_umount);
1458 mntput(&m->mnt);
1459 }
70fbcdf4
RP
1460}
1461
97216be0 1462static inline void namespace_lock(void)
e3197d83 1463{
97216be0 1464 down_write(&namespace_sem);
e3197d83
AV
1465}
1466
e819f152
EB
1467enum umount_tree_flags {
1468 UMOUNT_SYNC = 1,
1469 UMOUNT_PROPAGATE = 2,
e0c9c0af 1470 UMOUNT_CONNECTED = 4,
e819f152 1471};
f2d0a123
EB
1472
1473static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1474{
1475 /* Leaving mounts connected is only valid for lazy umounts */
1476 if (how & UMOUNT_SYNC)
1477 return true;
1478
1479 /* A mount without a parent has nothing to be connected to */
1480 if (!mnt_has_parent(mnt))
1481 return true;
1482
1483 /* Because the reference counting rules change when mounts are
1484 * unmounted and connected, umounted mounts may not be
1485 * connected to mounted mounts.
1486 */
1487 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1488 return true;
1489
1490 /* Has it been requested that the mount remain connected? */
1491 if (how & UMOUNT_CONNECTED)
1492 return false;
1493
1494 /* Is the mount locked such that it needs to remain connected? */
1495 if (IS_MNT_LOCKED(mnt))
1496 return false;
1497
1498 /* By default disconnect the mount */
1499 return true;
1500}
1501
99b7db7b 1502/*
48a066e7 1503 * mount_lock must be held
99b7db7b
NP
1504 * namespace_sem must be held for write
1505 */
e819f152 1506static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1507{
c003b26f 1508 LIST_HEAD(tmp_list);
315fc83e 1509 struct mount *p;
1da177e4 1510
5d88457e
EB
1511 if (how & UMOUNT_PROPAGATE)
1512 propagate_mount_unlock(mnt);
1513
c003b26f 1514 /* Gather the mounts to umount */
590ce4bc
EB
1515 for (p = mnt; p; p = next_mnt(p, mnt)) {
1516 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1517 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1518 }
1da177e4 1519
411a938b 1520 /* Hide the mounts from mnt_mounts */
c003b26f 1521 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1522 list_del_init(&p->mnt_child);
c003b26f 1523 }
88b368f2 1524
c003b26f 1525 /* Add propogated mounts to the tmp_list */
e819f152 1526 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1527 propagate_umount(&tmp_list);
a05964f3 1528
c003b26f 1529 while (!list_empty(&tmp_list)) {
d2921684 1530 struct mnt_namespace *ns;
ce07d891 1531 bool disconnect;
c003b26f 1532 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1533 list_del_init(&p->mnt_expire);
1a4eeaf2 1534 list_del_init(&p->mnt_list);
d2921684
EB
1535 ns = p->mnt_ns;
1536 if (ns) {
1537 ns->mounts--;
1538 __touch_mnt_namespace(ns);
1539 }
143c8c91 1540 p->mnt_ns = NULL;
e819f152 1541 if (how & UMOUNT_SYNC)
48a066e7 1542 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1543
f2d0a123 1544 disconnect = disconnect_mount(p, how);
676da58d 1545 if (mnt_has_parent(p)) {
81b6b061 1546 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1547 if (!disconnect) {
1548 /* Don't forget about p */
1549 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1550 } else {
1551 umount_mnt(p);
1552 }
7c4b93d8 1553 }
0f0afb1d 1554 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1555 if (disconnect)
1556 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1557 }
1558}
1559
b54b9be7 1560static void shrink_submounts(struct mount *mnt);
c35038be 1561
8d0347f6
DH
1562static int do_umount_root(struct super_block *sb)
1563{
1564 int ret = 0;
1565
1566 down_write(&sb->s_umount);
1567 if (!sb_rdonly(sb)) {
1568 struct fs_context *fc;
1569
1570 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1571 SB_RDONLY);
1572 if (IS_ERR(fc)) {
1573 ret = PTR_ERR(fc);
1574 } else {
1575 ret = parse_monolithic_mount_data(fc, NULL);
1576 if (!ret)
1577 ret = reconfigure_super(fc);
1578 put_fs_context(fc);
1579 }
1580 }
1581 up_write(&sb->s_umount);
1582 return ret;
1583}
1584
1ab59738 1585static int do_umount(struct mount *mnt, int flags)
1da177e4 1586{
1ab59738 1587 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1588 int retval;
1589
1ab59738 1590 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1591 if (retval)
1592 return retval;
1593
1594 /*
1595 * Allow userspace to request a mountpoint be expired rather than
1596 * unmounting unconditionally. Unmount only happens if:
1597 * (1) the mark is already set (the mark is cleared by mntput())
1598 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1599 */
1600 if (flags & MNT_EXPIRE) {
1ab59738 1601 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1602 flags & (MNT_FORCE | MNT_DETACH))
1603 return -EINVAL;
1604
b3e19d92
NP
1605 /*
1606 * probably don't strictly need the lock here if we examined
1607 * all race cases, but it's a slowpath.
1608 */
719ea2fb 1609 lock_mount_hash();
83adc753 1610 if (mnt_get_count(mnt) != 2) {
719ea2fb 1611 unlock_mount_hash();
1da177e4 1612 return -EBUSY;
b3e19d92 1613 }
719ea2fb 1614 unlock_mount_hash();
1da177e4 1615
863d684f 1616 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1617 return -EAGAIN;
1618 }
1619
1620 /*
1621 * If we may have to abort operations to get out of this
1622 * mount, and they will themselves hold resources we must
1623 * allow the fs to do things. In the Unix tradition of
1624 * 'Gee thats tricky lets do it in userspace' the umount_begin
1625 * might fail to complete on the first run through as other tasks
1626 * must return, and the like. Thats for the mount program to worry
1627 * about for the moment.
1628 */
1629
42faad99 1630 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1631 sb->s_op->umount_begin(sb);
42faad99 1632 }
1da177e4
LT
1633
1634 /*
1635 * No sense to grab the lock for this test, but test itself looks
1636 * somewhat bogus. Suggestions for better replacement?
1637 * Ho-hum... In principle, we might treat that as umount + switch
1638 * to rootfs. GC would eventually take care of the old vfsmount.
1639 * Actually it makes sense, especially if rootfs would contain a
1640 * /reboot - static binary that would close all descriptors and
1641 * call reboot(9). Then init(8) could umount root and exec /reboot.
1642 */
1ab59738 1643 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1644 /*
1645 * Special case for "unmounting" root ...
1646 * we just try to remount it readonly.
1647 */
bc6155d1 1648 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1649 return -EPERM;
8d0347f6 1650 return do_umount_root(sb);
1da177e4
LT
1651 }
1652
97216be0 1653 namespace_lock();
719ea2fb 1654 lock_mount_hash();
1da177e4 1655
25d202ed
EB
1656 /* Recheck MNT_LOCKED with the locks held */
1657 retval = -EINVAL;
1658 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1659 goto out;
1660
1661 event++;
48a066e7 1662 if (flags & MNT_DETACH) {
1a4eeaf2 1663 if (!list_empty(&mnt->mnt_list))
e819f152 1664 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1665 retval = 0;
48a066e7
AV
1666 } else {
1667 shrink_submounts(mnt);
1668 retval = -EBUSY;
1669 if (!propagate_mount_busy(mnt, 2)) {
1670 if (!list_empty(&mnt->mnt_list))
e819f152 1671 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1672 retval = 0;
1673 }
1da177e4 1674 }
25d202ed 1675out:
719ea2fb 1676 unlock_mount_hash();
e3197d83 1677 namespace_unlock();
1da177e4
LT
1678 return retval;
1679}
1680
80b5dce8
EB
1681/*
1682 * __detach_mounts - lazily unmount all mounts on the specified dentry
1683 *
1684 * During unlink, rmdir, and d_drop it is possible to loose the path
1685 * to an existing mountpoint, and wind up leaking the mount.
1686 * detach_mounts allows lazily unmounting those mounts instead of
1687 * leaking them.
1688 *
1689 * The caller may hold dentry->d_inode->i_mutex.
1690 */
1691void __detach_mounts(struct dentry *dentry)
1692{
1693 struct mountpoint *mp;
1694 struct mount *mnt;
1695
1696 namespace_lock();
3895dbf8 1697 lock_mount_hash();
80b5dce8 1698 mp = lookup_mountpoint(dentry);
adc9b5c0 1699 if (!mp)
80b5dce8
EB
1700 goto out_unlock;
1701
e06b933e 1702 event++;
80b5dce8
EB
1703 while (!hlist_empty(&mp->m_list)) {
1704 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1705 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1706 umount_mnt(mnt);
56cbb429 1707 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1708 }
e0c9c0af 1709 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1710 }
80b5dce8
EB
1711 put_mountpoint(mp);
1712out_unlock:
3895dbf8 1713 unlock_mount_hash();
80b5dce8
EB
1714 namespace_unlock();
1715}
1716
dd111b31 1717/*
9b40bc90
AV
1718 * Is the caller allowed to modify his namespace?
1719 */
1720static inline bool may_mount(void)
1721{
1722 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1723}
1724
f7e33bdb 1725static void warn_mandlock(void)
9e8925b6 1726{
f7e33bdb
JL
1727 pr_warn_once("=======================================================\n"
1728 "WARNING: The mand mount option has been deprecated and\n"
1729 " and is ignored by this kernel. Remove the mand\n"
1730 " option from the mount to silence this warning.\n"
1731 "=======================================================\n");
9e8925b6
JL
1732}
1733
25ccd24f 1734static int can_umount(const struct path *path, int flags)
1da177e4 1735{
25ccd24f 1736 struct mount *mnt = real_mount(path->mnt);
1da177e4 1737
9b40bc90
AV
1738 if (!may_mount())
1739 return -EPERM;
41525f56 1740 if (path->dentry != path->mnt->mnt_root)
25ccd24f 1741 return -EINVAL;
143c8c91 1742 if (!check_mnt(mnt))
25ccd24f 1743 return -EINVAL;
25d202ed 1744 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
25ccd24f 1745 return -EINVAL;
b2f5d4dc 1746 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
25ccd24f
CH
1747 return -EPERM;
1748 return 0;
1749}
1750
a0a6df9a 1751// caller is responsible for flags being sane
25ccd24f
CH
1752int path_umount(struct path *path, int flags)
1753{
1754 struct mount *mnt = real_mount(path->mnt);
1755 int ret;
1756
1757 ret = can_umount(path, flags);
1758 if (!ret)
1759 ret = do_umount(mnt, flags);
1da177e4 1760
429731b1 1761 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
41525f56 1762 dput(path->dentry);
900148dc 1763 mntput_no_expire(mnt);
25ccd24f 1764 return ret;
1da177e4
LT
1765}
1766
09267def 1767static int ksys_umount(char __user *name, int flags)
41525f56
CH
1768{
1769 int lookup_flags = LOOKUP_MOUNTPOINT;
1770 struct path path;
1771 int ret;
1772
a0a6df9a
AV
1773 // basic validity checks done first
1774 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1775 return -EINVAL;
1776
41525f56
CH
1777 if (!(flags & UMOUNT_NOFOLLOW))
1778 lookup_flags |= LOOKUP_FOLLOW;
1779 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1780 if (ret)
1781 return ret;
1782 return path_umount(&path, flags);
1783}
1784
3a18ef5c
DB
1785SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1786{
1787 return ksys_umount(name, flags);
1788}
1789
1da177e4
LT
1790#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1791
1792/*
b58fed8b 1793 * The 2.0 compatible umount. No flags.
1da177e4 1794 */
bdc480e3 1795SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1796{
3a18ef5c 1797 return ksys_umount(name, 0);
1da177e4
LT
1798}
1799
1800#endif
1801
4ce5d2b1 1802static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1803{
4ce5d2b1 1804 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1805 return dentry->d_op == &ns_dentry_operations &&
1806 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1807}
1808
213921f9 1809static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
58be2825
AV
1810{
1811 return container_of(ns, struct mnt_namespace, ns);
1812}
1813
303cc571
CB
1814struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1815{
1816 return &mnt->ns;
1817}
1818
4ce5d2b1
EB
1819static bool mnt_ns_loop(struct dentry *dentry)
1820{
1821 /* Could bind mounting the mount namespace inode cause a
1822 * mount namespace loop?
1823 */
1824 struct mnt_namespace *mnt_ns;
1825 if (!is_mnt_ns_file(dentry))
1826 return false;
1827
f77c8014 1828 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1829 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1830}
1831
87129cc0 1832struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1833 int flag)
1da177e4 1834{
84d17192 1835 struct mount *res, *p, *q, *r, *parent;
1da177e4 1836
4ce5d2b1
EB
1837 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1838 return ERR_PTR(-EINVAL);
1839
1840 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1841 return ERR_PTR(-EINVAL);
9676f0c6 1842
36341f64 1843 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1844 if (IS_ERR(q))
1845 return q;
1846
a73324da 1847 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1848
1849 p = mnt;
6b41d536 1850 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1851 struct mount *s;
7ec02ef1 1852 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1853 continue;
1854
909b0a88 1855 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1856 if (!(flag & CL_COPY_UNBINDABLE) &&
1857 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1858 if (s->mnt.mnt_flags & MNT_LOCKED) {
1859 /* Both unbindable and locked. */
1860 q = ERR_PTR(-EPERM);
1861 goto out;
1862 } else {
1863 s = skip_mnt_tree(s);
1864 continue;
1865 }
4ce5d2b1
EB
1866 }
1867 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1868 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1869 s = skip_mnt_tree(s);
1870 continue;
1871 }
0714a533
AV
1872 while (p != s->mnt_parent) {
1873 p = p->mnt_parent;
1874 q = q->mnt_parent;
1da177e4 1875 }
87129cc0 1876 p = s;
84d17192 1877 parent = q;
87129cc0 1878 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1879 if (IS_ERR(q))
1880 goto out;
719ea2fb 1881 lock_mount_hash();
1a4eeaf2 1882 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1883 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1884 unlock_mount_hash();
1da177e4
LT
1885 }
1886 }
1887 return res;
be34d1a3 1888out:
1da177e4 1889 if (res) {
719ea2fb 1890 lock_mount_hash();
e819f152 1891 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1892 unlock_mount_hash();
1da177e4 1893 }
be34d1a3 1894 return q;
1da177e4
LT
1895}
1896
be34d1a3
DH
1897/* Caller should check returned pointer for errors */
1898
ca71cf71 1899struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1900{
cb338d06 1901 struct mount *tree;
97216be0 1902 namespace_lock();
cd4a4017
EB
1903 if (!check_mnt(real_mount(path->mnt)))
1904 tree = ERR_PTR(-EINVAL);
1905 else
1906 tree = copy_tree(real_mount(path->mnt), path->dentry,
1907 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1908 namespace_unlock();
be34d1a3 1909 if (IS_ERR(tree))
52e220d3 1910 return ERR_CAST(tree);
be34d1a3 1911 return &tree->mnt;
8aec0809
AV
1912}
1913
a07b2000
AV
1914static void free_mnt_ns(struct mnt_namespace *);
1915static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1916
1917void dissolve_on_fput(struct vfsmount *mnt)
1918{
1919 struct mnt_namespace *ns;
1920 namespace_lock();
1921 lock_mount_hash();
1922 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1923 if (ns) {
1924 if (is_anon_ns(ns))
1925 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1926 else
1927 ns = NULL;
1928 }
a07b2000
AV
1929 unlock_mount_hash();
1930 namespace_unlock();
44dfd84a
DH
1931 if (ns)
1932 free_mnt_ns(ns);
a07b2000
AV
1933}
1934
8aec0809
AV
1935void drop_collected_mounts(struct vfsmount *mnt)
1936{
97216be0 1937 namespace_lock();
719ea2fb 1938 lock_mount_hash();
9c8e0a1b 1939 umount_tree(real_mount(mnt), 0);
719ea2fb 1940 unlock_mount_hash();
3ab6abee 1941 namespace_unlock();
8aec0809
AV
1942}
1943
427215d8
MS
1944static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1945{
1946 struct mount *child;
1947
1948 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1949 if (!is_subdir(child->mnt_mountpoint, dentry))
1950 continue;
1951
1952 if (child->mnt.mnt_flags & MNT_LOCKED)
1953 return true;
1954 }
1955 return false;
1956}
1957
c771d683
MS
1958/**
1959 * clone_private_mount - create a private clone of a path
1f287bc4 1960 * @path: path to clone
c771d683 1961 *
1f287bc4
RD
1962 * This creates a new vfsmount, which will be the clone of @path. The new mount
1963 * will not be attached anywhere in the namespace and will be private (i.e.
1964 * changes to the originating mount won't be propagated into this).
c771d683
MS
1965 *
1966 * Release with mntput().
1967 */
ca71cf71 1968struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1969{
1970 struct mount *old_mnt = real_mount(path->mnt);
1971 struct mount *new_mnt;
1972
427215d8 1973 down_read(&namespace_sem);
c771d683 1974 if (IS_MNT_UNBINDABLE(old_mnt))
427215d8
MS
1975 goto invalid;
1976
1977 if (!check_mnt(old_mnt))
1978 goto invalid;
1979
1980 if (has_locked_children(old_mnt, path->dentry))
1981 goto invalid;
c771d683 1982
c771d683 1983 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
427215d8
MS
1984 up_read(&namespace_sem);
1985
c771d683
MS
1986 if (IS_ERR(new_mnt))
1987 return ERR_CAST(new_mnt);
1988
df820f8d
MS
1989 /* Longterm mount to be removed by kern_unmount*() */
1990 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1991
c771d683 1992 return &new_mnt->mnt;
427215d8
MS
1993
1994invalid:
1995 up_read(&namespace_sem);
1996 return ERR_PTR(-EINVAL);
c771d683
MS
1997}
1998EXPORT_SYMBOL_GPL(clone_private_mount);
1999
1f707137
AV
2000int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2001 struct vfsmount *root)
2002{
1a4eeaf2 2003 struct mount *mnt;
1f707137
AV
2004 int res = f(root, arg);
2005 if (res)
2006 return res;
1a4eeaf2
AV
2007 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2008 res = f(&mnt->mnt, arg);
1f707137
AV
2009 if (res)
2010 return res;
2011 }
2012 return 0;
2013}
2014
3bd045cc
AV
2015static void lock_mnt_tree(struct mount *mnt)
2016{
2017 struct mount *p;
2018
2019 for (p = mnt; p; p = next_mnt(p, mnt)) {
2020 int flags = p->mnt.mnt_flags;
2021 /* Don't allow unprivileged users to change mount flags */
2022 flags |= MNT_LOCK_ATIME;
2023
2024 if (flags & MNT_READONLY)
2025 flags |= MNT_LOCK_READONLY;
2026
2027 if (flags & MNT_NODEV)
2028 flags |= MNT_LOCK_NODEV;
2029
2030 if (flags & MNT_NOSUID)
2031 flags |= MNT_LOCK_NOSUID;
2032
2033 if (flags & MNT_NOEXEC)
2034 flags |= MNT_LOCK_NOEXEC;
2035 /* Don't allow unprivileged users to reveal what is under a mount */
2036 if (list_empty(&p->mnt_expire))
2037 flags |= MNT_LOCKED;
2038 p->mnt.mnt_flags = flags;
2039 }
2040}
2041
4b8b21f4 2042static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 2043{
315fc83e 2044 struct mount *p;
719f5d7f 2045
909b0a88 2046 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 2047 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 2048 mnt_release_group_id(p);
719f5d7f
MS
2049 }
2050}
2051
4b8b21f4 2052static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 2053{
315fc83e 2054 struct mount *p;
719f5d7f 2055
909b0a88 2056 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 2057 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 2058 int err = mnt_alloc_group_id(p);
719f5d7f 2059 if (err) {
4b8b21f4 2060 cleanup_group_ids(mnt, p);
719f5d7f
MS
2061 return err;
2062 }
2063 }
2064 }
2065
2066 return 0;
2067}
2068
d2921684
EB
2069int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2070{
2071 unsigned int max = READ_ONCE(sysctl_mount_max);
2072 unsigned int mounts = 0, old, pending, sum;
2073 struct mount *p;
2074
2075 for (p = mnt; p; p = next_mnt(p, mnt))
2076 mounts++;
2077
2078 old = ns->mounts;
2079 pending = ns->pending_mounts;
2080 sum = old + pending;
2081 if ((old > sum) ||
2082 (pending > sum) ||
2083 (max < sum) ||
2084 (mounts > (max - sum)))
2085 return -ENOSPC;
2086
2087 ns->pending_mounts = pending + mounts;
2088 return 0;
2089}
2090
b90fa9ae
RP
2091/*
2092 * @source_mnt : mount tree to be attached
21444403
RP
2093 * @nd : place the mount tree @source_mnt is attached
2094 * @parent_nd : if non-null, detach the source_mnt from its parent and
2095 * store the parent mount and mountpoint dentry.
2096 * (done when source_mnt is moved)
b90fa9ae
RP
2097 *
2098 * NOTE: in the table below explains the semantics when a source mount
2099 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
2100 * ---------------------------------------------------------------------------
2101 * | BIND MOUNT OPERATION |
2102 * |**************************************************************************
2103 * | source-->| shared | private | slave | unbindable |
2104 * | dest | | | | |
2105 * | | | | | | |
2106 * | v | | | | |
2107 * |**************************************************************************
2108 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2109 * | | | | | |
2110 * |non-shared| shared (+) | private | slave (*) | invalid |
2111 * ***************************************************************************
b90fa9ae
RP
2112 * A bind operation clones the source mount and mounts the clone on the
2113 * destination mount.
2114 *
2115 * (++) the cloned mount is propagated to all the mounts in the propagation
2116 * tree of the destination mount and the cloned mount is added to
2117 * the peer group of the source mount.
2118 * (+) the cloned mount is created under the destination mount and is marked
2119 * as shared. The cloned mount is added to the peer group of the source
2120 * mount.
5afe0022
RP
2121 * (+++) the mount is propagated to all the mounts in the propagation tree
2122 * of the destination mount and the cloned mount is made slave
2123 * of the same master as that of the source mount. The cloned mount
2124 * is marked as 'shared and slave'.
2125 * (*) the cloned mount is made a slave of the same master as that of the
2126 * source mount.
2127 *
9676f0c6
RP
2128 * ---------------------------------------------------------------------------
2129 * | MOVE MOUNT OPERATION |
2130 * |**************************************************************************
2131 * | source-->| shared | private | slave | unbindable |
2132 * | dest | | | | |
2133 * | | | | | | |
2134 * | v | | | | |
2135 * |**************************************************************************
2136 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2137 * | | | | | |
2138 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2139 * ***************************************************************************
5afe0022
RP
2140 *
2141 * (+) the mount is moved to the destination. And is then propagated to
2142 * all the mounts in the propagation tree of the destination mount.
21444403 2143 * (+*) the mount is moved to the destination.
5afe0022
RP
2144 * (+++) the mount is moved to the destination and is then propagated to
2145 * all the mounts belonging to the destination mount's propagation tree.
2146 * the mount is marked as 'shared and slave'.
2147 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2148 *
2149 * if the source mount is a tree, the operations explained above is
2150 * applied to each mount in the tree.
2151 * Must be called without spinlocks held, since this function can sleep
2152 * in allocations.
2153 */
0fb54e50 2154static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2155 struct mount *dest_mnt,
2156 struct mountpoint *dest_mp,
2763d119 2157 bool moving)
b90fa9ae 2158{
3bd045cc 2159 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2160 HLIST_HEAD(tree_list);
d2921684 2161 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2162 struct mountpoint *smp;
315fc83e 2163 struct mount *child, *p;
38129a13 2164 struct hlist_node *n;
719f5d7f 2165 int err;
b90fa9ae 2166
1064f874
EB
2167 /* Preallocate a mountpoint in case the new mounts need
2168 * to be tucked under other mounts.
2169 */
2170 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2171 if (IS_ERR(smp))
2172 return PTR_ERR(smp);
2173
d2921684 2174 /* Is there space to add these mounts to the mount namespace? */
2763d119 2175 if (!moving) {
d2921684
EB
2176 err = count_mounts(ns, source_mnt);
2177 if (err)
2178 goto out;
2179 }
2180
fc7be130 2181 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2182 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2183 if (err)
2184 goto out;
0b1b901b 2185 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2186 lock_mount_hash();
0b1b901b
AV
2187 if (err)
2188 goto out_cleanup_ids;
909b0a88 2189 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2190 set_mnt_shared(p);
0b1b901b
AV
2191 } else {
2192 lock_mount_hash();
b90fa9ae 2193 }
2763d119
AV
2194 if (moving) {
2195 unhash_mnt(source_mnt);
84d17192 2196 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2197 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2198 } else {
44dfd84a
DH
2199 if (source_mnt->mnt_ns) {
2200 /* move from anon - the caller will destroy */
2201 list_del_init(&source_mnt->mnt_ns->list);
2202 }
84d17192 2203 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2204 commit_tree(source_mnt);
21444403 2205 }
b90fa9ae 2206
38129a13 2207 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2208 struct mount *q;
38129a13 2209 hlist_del_init(&child->mnt_hash);
1064f874
EB
2210 q = __lookup_mnt(&child->mnt_parent->mnt,
2211 child->mnt_mountpoint);
2212 if (q)
2213 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2214 /* Notice when we are propagating across user namespaces */
2215 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2216 lock_mnt_tree(child);
d728cf79 2217 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2218 commit_tree(child);
b90fa9ae 2219 }
1064f874 2220 put_mountpoint(smp);
719ea2fb 2221 unlock_mount_hash();
99b7db7b 2222
b90fa9ae 2223 return 0;
719f5d7f
MS
2224
2225 out_cleanup_ids:
f2ebb3a9
AV
2226 while (!hlist_empty(&tree_list)) {
2227 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2228 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2229 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2230 }
2231 unlock_mount_hash();
0b1b901b 2232 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2233 out:
d2921684 2234 ns->pending_mounts = 0;
1064f874
EB
2235
2236 read_seqlock_excl(&mount_lock);
2237 put_mountpoint(smp);
2238 read_sequnlock_excl(&mount_lock);
2239
719f5d7f 2240 return err;
b90fa9ae
RP
2241}
2242
84d17192 2243static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2244{
2245 struct vfsmount *mnt;
84d17192 2246 struct dentry *dentry = path->dentry;
b12cea91 2247retry:
5955102c 2248 inode_lock(dentry->d_inode);
84d17192 2249 if (unlikely(cant_mount(dentry))) {
5955102c 2250 inode_unlock(dentry->d_inode);
84d17192 2251 return ERR_PTR(-ENOENT);
b12cea91 2252 }
97216be0 2253 namespace_lock();
b12cea91 2254 mnt = lookup_mnt(path);
84d17192 2255 if (likely(!mnt)) {
3895dbf8 2256 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2257 if (IS_ERR(mp)) {
97216be0 2258 namespace_unlock();
5955102c 2259 inode_unlock(dentry->d_inode);
84d17192
AV
2260 return mp;
2261 }
2262 return mp;
2263 }
97216be0 2264 namespace_unlock();
5955102c 2265 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2266 path_put(path);
2267 path->mnt = mnt;
84d17192 2268 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2269 goto retry;
2270}
2271
84d17192 2272static void unlock_mount(struct mountpoint *where)
b12cea91 2273{
84d17192 2274 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2275
2276 read_seqlock_excl(&mount_lock);
84d17192 2277 put_mountpoint(where);
3895dbf8
EB
2278 read_sequnlock_excl(&mount_lock);
2279
328e6d90 2280 namespace_unlock();
5955102c 2281 inode_unlock(dentry->d_inode);
b12cea91
AV
2282}
2283
84d17192 2284static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2285{
e462ec50 2286 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2287 return -EINVAL;
2288
e36cb0b8
DH
2289 if (d_is_dir(mp->m_dentry) !=
2290 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2291 return -ENOTDIR;
2292
2763d119 2293 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2294}
2295
7a2e8a8f
VA
2296/*
2297 * Sanity check the flags to change_mnt_propagation.
2298 */
2299
e462ec50 2300static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2301{
e462ec50 2302 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2303
2304 /* Fail if any non-propagation flags are set */
2305 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2306 return 0;
2307 /* Only one propagation flag should be set */
2308 if (!is_power_of_2(type))
2309 return 0;
2310 return type;
2311}
2312
07b20889
RP
2313/*
2314 * recursively change the type of the mountpoint.
2315 */
e462ec50 2316static int do_change_type(struct path *path, int ms_flags)
07b20889 2317{
315fc83e 2318 struct mount *m;
4b8b21f4 2319 struct mount *mnt = real_mount(path->mnt);
e462ec50 2320 int recurse = ms_flags & MS_REC;
7a2e8a8f 2321 int type;
719f5d7f 2322 int err = 0;
07b20889 2323
2d92ab3c 2324 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2325 return -EINVAL;
2326
e462ec50 2327 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2328 if (!type)
2329 return -EINVAL;
2330
97216be0 2331 namespace_lock();
719f5d7f
MS
2332 if (type == MS_SHARED) {
2333 err = invent_group_ids(mnt, recurse);
2334 if (err)
2335 goto out_unlock;
2336 }
2337
719ea2fb 2338 lock_mount_hash();
909b0a88 2339 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2340 change_mnt_propagation(m, type);
719ea2fb 2341 unlock_mount_hash();
719f5d7f
MS
2342
2343 out_unlock:
97216be0 2344 namespace_unlock();
719f5d7f 2345 return err;
07b20889
RP
2346}
2347
a07b2000
AV
2348static struct mount *__do_loopback(struct path *old_path, int recurse)
2349{
2350 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2351
2352 if (IS_MNT_UNBINDABLE(old))
2353 return mnt;
2354
2355 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2356 return mnt;
2357
2358 if (!recurse && has_locked_children(old, old_path->dentry))
2359 return mnt;
2360
2361 if (recurse)
2362 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2363 else
2364 mnt = clone_mnt(old, old_path->dentry, 0);
2365
2366 if (!IS_ERR(mnt))
2367 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2368
2369 return mnt;
2370}
2371
1da177e4
LT
2372/*
2373 * do loopback mount.
2374 */
808d4e3c 2375static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2376 int recurse)
1da177e4 2377{
2d92ab3c 2378 struct path old_path;
a07b2000 2379 struct mount *mnt = NULL, *parent;
84d17192 2380 struct mountpoint *mp;
57eccb83 2381 int err;
1da177e4
LT
2382 if (!old_name || !*old_name)
2383 return -EINVAL;
815d405c 2384 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2385 if (err)
2386 return err;
2387
8823c079 2388 err = -EINVAL;
4ce5d2b1 2389 if (mnt_ns_loop(old_path.dentry))
dd111b31 2390 goto out;
8823c079 2391
84d17192 2392 mp = lock_mount(path);
a07b2000
AV
2393 if (IS_ERR(mp)) {
2394 err = PTR_ERR(mp);
b12cea91 2395 goto out;
a07b2000 2396 }
b12cea91 2397
84d17192 2398 parent = real_mount(path->mnt);
e149ed2b
AV
2399 if (!check_mnt(parent))
2400 goto out2;
2401
a07b2000 2402 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2403 if (IS_ERR(mnt)) {
2404 err = PTR_ERR(mnt);
e9c5d8a5 2405 goto out2;
be34d1a3 2406 }
ccd48bc7 2407
84d17192 2408 err = graft_tree(mnt, parent, mp);
ccd48bc7 2409 if (err) {
719ea2fb 2410 lock_mount_hash();
e819f152 2411 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2412 unlock_mount_hash();
5b83d2c5 2413 }
b12cea91 2414out2:
84d17192 2415 unlock_mount(mp);
ccd48bc7 2416out:
2d92ab3c 2417 path_put(&old_path);
1da177e4
LT
2418 return err;
2419}
2420
a07b2000
AV
2421static struct file *open_detached_copy(struct path *path, bool recursive)
2422{
2423 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2424 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2425 struct mount *mnt, *p;
2426 struct file *file;
2427
2428 if (IS_ERR(ns))
2429 return ERR_CAST(ns);
2430
2431 namespace_lock();
2432 mnt = __do_loopback(path, recursive);
2433 if (IS_ERR(mnt)) {
2434 namespace_unlock();
2435 free_mnt_ns(ns);
2436 return ERR_CAST(mnt);
2437 }
2438
2439 lock_mount_hash();
2440 for (p = mnt; p; p = next_mnt(p, mnt)) {
2441 p->mnt_ns = ns;
2442 ns->mounts++;
2443 }
2444 ns->root = mnt;
2445 list_add_tail(&ns->list, &mnt->mnt_list);
2446 mntget(&mnt->mnt);
2447 unlock_mount_hash();
2448 namespace_unlock();
2449
2450 mntput(path->mnt);
2451 path->mnt = &mnt->mnt;
2452 file = dentry_open(path, O_PATH, current_cred());
2453 if (IS_ERR(file))
2454 dissolve_on_fput(path->mnt);
2455 else
2456 file->f_mode |= FMODE_NEED_UNMOUNT;
2457 return file;
2458}
2459
2658ce09 2460SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
a07b2000
AV
2461{
2462 struct file *file;
2463 struct path path;
2464 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2465 bool detached = flags & OPEN_TREE_CLONE;
2466 int error;
2467 int fd;
2468
2469 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2470
2471 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2472 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2473 OPEN_TREE_CLOEXEC))
2474 return -EINVAL;
2475
2476 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2477 return -EINVAL;
2478
2479 if (flags & AT_NO_AUTOMOUNT)
2480 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2481 if (flags & AT_SYMLINK_NOFOLLOW)
2482 lookup_flags &= ~LOOKUP_FOLLOW;
2483 if (flags & AT_EMPTY_PATH)
2484 lookup_flags |= LOOKUP_EMPTY;
2485
2486 if (detached && !may_mount())
2487 return -EPERM;
2488
2489 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2490 if (fd < 0)
2491 return fd;
2492
2493 error = user_path_at(dfd, filename, lookup_flags, &path);
2494 if (unlikely(error)) {
2495 file = ERR_PTR(error);
2496 } else {
2497 if (detached)
2498 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2499 else
2500 file = dentry_open(&path, O_PATH, current_cred());
2501 path_put(&path);
2502 }
2503 if (IS_ERR(file)) {
2504 put_unused_fd(fd);
2505 return PTR_ERR(file);
2506 }
2507 fd_install(fd, file);
2508 return fd;
2509}
2510
43f5e655
DH
2511/*
2512 * Don't allow locked mount flags to be cleared.
2513 *
2514 * No locks need to be held here while testing the various MNT_LOCK
2515 * flags because those flags can never be cleared once they are set.
2516 */
2517static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2518{
43f5e655
DH
2519 unsigned int fl = mnt->mnt.mnt_flags;
2520
2521 if ((fl & MNT_LOCK_READONLY) &&
2522 !(mnt_flags & MNT_READONLY))
2523 return false;
2524
2525 if ((fl & MNT_LOCK_NODEV) &&
2526 !(mnt_flags & MNT_NODEV))
2527 return false;
2528
2529 if ((fl & MNT_LOCK_NOSUID) &&
2530 !(mnt_flags & MNT_NOSUID))
2531 return false;
2532
2533 if ((fl & MNT_LOCK_NOEXEC) &&
2534 !(mnt_flags & MNT_NOEXEC))
2535 return false;
2536
2537 if ((fl & MNT_LOCK_ATIME) &&
2538 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2539 return false;
2e4b7fcd 2540
43f5e655
DH
2541 return true;
2542}
2543
2544static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2545{
43f5e655 2546 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2547
43f5e655 2548 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2549 return 0;
2550
2551 if (readonly_request)
43f5e655
DH
2552 return mnt_make_readonly(mnt);
2553
68847c94
CB
2554 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2555 return 0;
43f5e655
DH
2556}
2557
43f5e655
DH
2558static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2559{
43f5e655
DH
2560 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2561 mnt->mnt.mnt_flags = mnt_flags;
2562 touch_mnt_namespace(mnt->mnt_ns);
43f5e655
DH
2563}
2564
f8b92ba6
DD
2565static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2566{
2567 struct super_block *sb = mnt->mnt_sb;
2568
2569 if (!__mnt_is_readonly(mnt) &&
2570 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2571 char *buf = (char *)__get_free_page(GFP_KERNEL);
2572 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2573 struct tm tm;
2574
2575 time64_to_tm(sb->s_time_max, 0, &tm);
2576
0ecee669
EB
2577 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2578 sb->s_type->name,
2579 is_mounted(mnt) ? "remounted" : "mounted",
2580 mntpath,
f8b92ba6
DD
2581 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2582
2583 free_page((unsigned long)buf);
2584 }
2585}
2586
43f5e655
DH
2587/*
2588 * Handle reconfiguration of the mountpoint only without alteration of the
2589 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2590 * to mount(2).
2591 */
2592static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2593{
2594 struct super_block *sb = path->mnt->mnt_sb;
2595 struct mount *mnt = real_mount(path->mnt);
2596 int ret;
2597
2598 if (!check_mnt(mnt))
2599 return -EINVAL;
2600
2601 if (path->dentry != mnt->mnt.mnt_root)
2602 return -EINVAL;
2603
2604 if (!can_change_locked_flags(mnt, mnt_flags))
2605 return -EPERM;
2606
e58ace1a
CB
2607 /*
2608 * We're only checking whether the superblock is read-only not
2609 * changing it, so only take down_read(&sb->s_umount).
2610 */
2611 down_read(&sb->s_umount);
68847c94 2612 lock_mount_hash();
43f5e655
DH
2613 ret = change_mount_ro_state(mnt, mnt_flags);
2614 if (ret == 0)
2615 set_mount_attributes(mnt, mnt_flags);
68847c94 2616 unlock_mount_hash();
e58ace1a 2617 up_read(&sb->s_umount);
f8b92ba6
DD
2618
2619 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2620
43f5e655 2621 return ret;
2e4b7fcd
DH
2622}
2623
1da177e4
LT
2624/*
2625 * change filesystem flags. dir should be a physical root of filesystem.
2626 * If you've mounted a non-root directory somewhere and want to do remount
2627 * on it - tough luck.
2628 */
e462ec50
DH
2629static int do_remount(struct path *path, int ms_flags, int sb_flags,
2630 int mnt_flags, void *data)
1da177e4
LT
2631{
2632 int err;
2d92ab3c 2633 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2634 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2635 struct fs_context *fc;
1da177e4 2636
143c8c91 2637 if (!check_mnt(mnt))
1da177e4
LT
2638 return -EINVAL;
2639
2d92ab3c 2640 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2641 return -EINVAL;
2642
43f5e655 2643 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2644 return -EPERM;
9566d674 2645
8d0347f6
DH
2646 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2647 if (IS_ERR(fc))
2648 return PTR_ERR(fc);
ff36fe2c 2649
b330966f 2650 fc->oldapi = true;
8d0347f6
DH
2651 err = parse_monolithic_mount_data(fc, data);
2652 if (!err) {
2653 down_write(&sb->s_umount);
2654 err = -EPERM;
2655 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2656 err = reconfigure_super(fc);
68847c94
CB
2657 if (!err) {
2658 lock_mount_hash();
8d0347f6 2659 set_mount_attributes(mnt, mnt_flags);
68847c94
CB
2660 unlock_mount_hash();
2661 }
8d0347f6
DH
2662 }
2663 up_write(&sb->s_umount);
0e55a7cc 2664 }
f8b92ba6
DD
2665
2666 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2667
8d0347f6 2668 put_fs_context(fc);
1da177e4
LT
2669 return err;
2670}
2671
cbbe362c 2672static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2673{
315fc83e 2674 struct mount *p;
909b0a88 2675 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2676 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2677 return 1;
2678 }
2679 return 0;
2680}
2681
44dfd84a
DH
2682/*
2683 * Check that there aren't references to earlier/same mount namespaces in the
2684 * specified subtree. Such references can act as pins for mount namespaces
2685 * that aren't checked by the mount-cycle checking code, thereby allowing
2686 * cycles to be made.
2687 */
2688static bool check_for_nsfs_mounts(struct mount *subtree)
2689{
2690 struct mount *p;
2691 bool ret = false;
2692
2693 lock_mount_hash();
2694 for (p = subtree; p; p = next_mnt(p, subtree))
2695 if (mnt_ns_loop(p->mnt.mnt_root))
2696 goto out;
2697
2698 ret = true;
2699out:
2700 unlock_mount_hash();
2701 return ret;
2702}
2703
9ffb14ef
PT
2704static int do_set_group(struct path *from_path, struct path *to_path)
2705{
2706 struct mount *from, *to;
2707 int err;
2708
2709 from = real_mount(from_path->mnt);
2710 to = real_mount(to_path->mnt);
2711
2712 namespace_lock();
2713
2714 err = -EINVAL;
2715 /* To and From must be mounted */
2716 if (!is_mounted(&from->mnt))
2717 goto out;
2718 if (!is_mounted(&to->mnt))
2719 goto out;
2720
2721 err = -EPERM;
2722 /* We should be allowed to modify mount namespaces of both mounts */
2723 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2724 goto out;
2725 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2726 goto out;
2727
2728 err = -EINVAL;
2729 /* To and From paths should be mount roots */
2730 if (from_path->dentry != from_path->mnt->mnt_root)
2731 goto out;
2732 if (to_path->dentry != to_path->mnt->mnt_root)
2733 goto out;
2734
2735 /* Setting sharing groups is only allowed across same superblock */
2736 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2737 goto out;
2738
2739 /* From mount root should be wider than To mount root */
2740 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2741 goto out;
2742
2743 /* From mount should not have locked children in place of To's root */
2744 if (has_locked_children(from, to->mnt.mnt_root))
2745 goto out;
2746
2747 /* Setting sharing groups is only allowed on private mounts */
2748 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2749 goto out;
2750
2751 /* From should not be private */
2752 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2753 goto out;
2754
2755 if (IS_MNT_SLAVE(from)) {
2756 struct mount *m = from->mnt_master;
2757
2758 list_add(&to->mnt_slave, &m->mnt_slave_list);
2759 to->mnt_master = m;
2760 }
2761
2762 if (IS_MNT_SHARED(from)) {
2763 to->mnt_group_id = from->mnt_group_id;
2764 list_add(&to->mnt_share, &from->mnt_share);
2765 lock_mount_hash();
2766 set_mnt_shared(to);
2767 unlock_mount_hash();
2768 }
2769
2770 err = 0;
2771out:
2772 namespace_unlock();
2773 return err;
2774}
2775
2db154b3 2776static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2777{
44dfd84a 2778 struct mnt_namespace *ns;
676da58d 2779 struct mount *p;
0fb54e50 2780 struct mount *old;
2763d119
AV
2781 struct mount *parent;
2782 struct mountpoint *mp, *old_mp;
57eccb83 2783 int err;
44dfd84a 2784 bool attached;
1da177e4 2785
2db154b3 2786 mp = lock_mount(new_path);
84d17192 2787 if (IS_ERR(mp))
2db154b3 2788 return PTR_ERR(mp);
cc53ce53 2789
2db154b3
DH
2790 old = real_mount(old_path->mnt);
2791 p = real_mount(new_path->mnt);
2763d119 2792 parent = old->mnt_parent;
44dfd84a 2793 attached = mnt_has_parent(old);
2763d119 2794 old_mp = old->mnt_mp;
44dfd84a 2795 ns = old->mnt_ns;
143c8c91 2796
1da177e4 2797 err = -EINVAL;
44dfd84a
DH
2798 /* The mountpoint must be in our namespace. */
2799 if (!check_mnt(p))
2db154b3 2800 goto out;
1da177e4 2801
570d7a98
EB
2802 /* The thing moved must be mounted... */
2803 if (!is_mounted(&old->mnt))
44dfd84a
DH
2804 goto out;
2805
570d7a98
EB
2806 /* ... and either ours or the root of anon namespace */
2807 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2808 goto out;
5ff9d8a6 2809
2db154b3
DH
2810 if (old->mnt.mnt_flags & MNT_LOCKED)
2811 goto out;
1da177e4 2812
2db154b3
DH
2813 if (old_path->dentry != old_path->mnt->mnt_root)
2814 goto out;
1da177e4 2815
2db154b3
DH
2816 if (d_is_dir(new_path->dentry) !=
2817 d_is_dir(old_path->dentry))
2818 goto out;
21444403
RP
2819 /*
2820 * Don't move a mount residing in a shared parent.
2821 */
2763d119 2822 if (attached && IS_MNT_SHARED(parent))
2db154b3 2823 goto out;
9676f0c6
RP
2824 /*
2825 * Don't move a mount tree containing unbindable mounts to a destination
2826 * mount which is shared.
2827 */
fc7be130 2828 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2829 goto out;
1da177e4 2830 err = -ELOOP;
44dfd84a
DH
2831 if (!check_for_nsfs_mounts(old))
2832 goto out;
fc7be130 2833 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2834 if (p == old)
2db154b3 2835 goto out;
1da177e4 2836
2db154b3 2837 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2838 attached);
4ac91378 2839 if (err)
2db154b3 2840 goto out;
1da177e4
LT
2841
2842 /* if the mount is moved, it should no longer be expire
2843 * automatically */
6776db3d 2844 list_del_init(&old->mnt_expire);
2763d119
AV
2845 if (attached)
2846 put_mountpoint(old_mp);
1da177e4 2847out:
2db154b3 2848 unlock_mount(mp);
44dfd84a 2849 if (!err) {
2763d119
AV
2850 if (attached)
2851 mntput_no_expire(parent);
2852 else
44dfd84a
DH
2853 free_mnt_ns(ns);
2854 }
2db154b3
DH
2855 return err;
2856}
2857
2858static int do_move_mount_old(struct path *path, const char *old_name)
2859{
2860 struct path old_path;
2861 int err;
2862
2863 if (!old_name || !*old_name)
2864 return -EINVAL;
2865
2866 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2867 if (err)
2868 return err;
2869
2870 err = do_move_mount(&old_path, path);
2d92ab3c 2871 path_put(&old_path);
1da177e4
LT
2872 return err;
2873}
2874
9d412a43
AV
2875/*
2876 * add a mount into a namespace's mount tree
2877 */
8f11538e 2878static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
1e2d8464 2879 const struct path *path, int mnt_flags)
9d412a43 2880{
8f11538e 2881 struct mount *parent = real_mount(path->mnt);
9d412a43 2882
f2ebb3a9 2883 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2884
84d17192 2885 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2886 /* that's acceptable only for automounts done in private ns */
2887 if (!(mnt_flags & MNT_SHRINKABLE))
8f11538e 2888 return -EINVAL;
156cacb1 2889 /* ... and for those we'd better have mountpoint still alive */
84d17192 2890 if (!parent->mnt_ns)
8f11538e 2891 return -EINVAL;
156cacb1 2892 }
9d412a43
AV
2893
2894 /* Refuse the same filesystem on the same mount point */
95bc5f25 2895 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43 2896 path->mnt->mnt_root == path->dentry)
8f11538e 2897 return -EBUSY;
9d412a43 2898
e36cb0b8 2899 if (d_is_symlink(newmnt->mnt.mnt_root))
8f11538e 2900 return -EINVAL;
9d412a43 2901
95bc5f25 2902 newmnt->mnt.mnt_flags = mnt_flags;
8f11538e 2903 return graft_tree(newmnt, parent, mp);
9d412a43 2904}
b1e75df4 2905
132e4608
DH
2906static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2907
2908/*
2909 * Create a new mount using a superblock configuration and request it
2910 * be added to the namespace tree.
2911 */
2912static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2913 unsigned int mnt_flags)
2914{
2915 struct vfsmount *mnt;
8f11538e 2916 struct mountpoint *mp;
132e4608
DH
2917 struct super_block *sb = fc->root->d_sb;
2918 int error;
2919
c9ce29ed
AV
2920 error = security_sb_kern_mount(sb);
2921 if (!error && mount_too_revealing(sb, &mnt_flags))
2922 error = -EPERM;
2923
2924 if (unlikely(error)) {
2925 fc_drop_locked(fc);
2926 return error;
132e4608
DH
2927 }
2928
2929 up_write(&sb->s_umount);
2930
2931 mnt = vfs_create_mount(fc);
2932 if (IS_ERR(mnt))
2933 return PTR_ERR(mnt);
2934
f8b92ba6
DD
2935 mnt_warn_timestamp_expiry(mountpoint, mnt);
2936
8f11538e
AV
2937 mp = lock_mount(mountpoint);
2938 if (IS_ERR(mp)) {
2939 mntput(mnt);
2940 return PTR_ERR(mp);
2941 }
2942 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2943 unlock_mount(mp);
0ecee669
EB
2944 if (error < 0)
2945 mntput(mnt);
132e4608
DH
2946 return error;
2947}
1b852bce 2948
1da177e4
LT
2949/*
2950 * create a new mount for userspace and request it to be added into the
2951 * namespace's tree
2952 */
e462ec50 2953static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2954 int mnt_flags, const char *name, void *data)
1da177e4 2955{
0c55cfc4 2956 struct file_system_type *type;
a0c9a8b8
AV
2957 struct fs_context *fc;
2958 const char *subtype = NULL;
2959 int err = 0;
1da177e4 2960
0c55cfc4 2961 if (!fstype)
1da177e4
LT
2962 return -EINVAL;
2963
0c55cfc4
EB
2964 type = get_fs_type(fstype);
2965 if (!type)
2966 return -ENODEV;
2967
a0c9a8b8
AV
2968 if (type->fs_flags & FS_HAS_SUBTYPE) {
2969 subtype = strchr(fstype, '.');
2970 if (subtype) {
2971 subtype++;
2972 if (!*subtype) {
2973 put_filesystem(type);
2974 return -EINVAL;
2975 }
a0c9a8b8
AV
2976 }
2977 }
0c55cfc4 2978
a0c9a8b8 2979 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2980 put_filesystem(type);
a0c9a8b8
AV
2981 if (IS_ERR(fc))
2982 return PTR_ERR(fc);
2983
3e1aeb00
DH
2984 if (subtype)
2985 err = vfs_parse_fs_string(fc, "subtype",
2986 subtype, strlen(subtype));
2987 if (!err && name)
2988 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2989 if (!err)
2990 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
2991 if (!err && !mount_capable(fc))
2992 err = -EPERM;
a0c9a8b8
AV
2993 if (!err)
2994 err = vfs_get_tree(fc);
132e4608
DH
2995 if (!err)
2996 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2997
a0c9a8b8 2998 put_fs_context(fc);
15f9a3f3 2999 return err;
1da177e4
LT
3000}
3001
1e2d8464 3002int finish_automount(struct vfsmount *m, const struct path *path)
19a167af 3003{
26df6034 3004 struct dentry *dentry = path->dentry;
8f11538e 3005 struct mountpoint *mp;
25e195aa 3006 struct mount *mnt;
19a167af 3007 int err;
25e195aa
AV
3008
3009 if (!m)
3010 return 0;
3011 if (IS_ERR(m))
3012 return PTR_ERR(m);
3013
3014 mnt = real_mount(m);
19a167af
AV
3015 /* The new mount record should have at least 2 refs to prevent it being
3016 * expired before we get a chance to add it
3017 */
6776db3d 3018 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
3019
3020 if (m->mnt_sb == path->mnt->mnt_sb &&
26df6034 3021 m->mnt_root == dentry) {
b1e75df4 3022 err = -ELOOP;
26df6034 3023 goto discard;
19a167af
AV
3024 }
3025
26df6034
AV
3026 /*
3027 * we don't want to use lock_mount() - in this case finding something
3028 * that overmounts our mountpoint to be means "quitely drop what we've
3029 * got", not "try to mount it on top".
3030 */
3031 inode_lock(dentry->d_inode);
3032 namespace_lock();
3033 if (unlikely(cant_mount(dentry))) {
3034 err = -ENOENT;
3035 goto discard_locked;
3036 }
3037 rcu_read_lock();
3038 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3039 rcu_read_unlock();
3040 err = 0;
3041 goto discard_locked;
3042 }
3043 rcu_read_unlock();
3044 mp = get_mountpoint(dentry);
8f11538e
AV
3045 if (IS_ERR(mp)) {
3046 err = PTR_ERR(mp);
26df6034 3047 goto discard_locked;
8f11538e 3048 }
26df6034 3049
8f11538e
AV
3050 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3051 unlock_mount(mp);
26df6034
AV
3052 if (unlikely(err))
3053 goto discard;
3054 mntput(m);
3055 return 0;
3056
3057discard_locked:
3058 namespace_unlock();
3059 inode_unlock(dentry->d_inode);
3060discard:
b1e75df4 3061 /* remove m from any expiration list it may be on */
6776db3d 3062 if (!list_empty(&mnt->mnt_expire)) {
97216be0 3063 namespace_lock();
6776db3d 3064 list_del_init(&mnt->mnt_expire);
97216be0 3065 namespace_unlock();
19a167af 3066 }
b1e75df4
AV
3067 mntput(m);
3068 mntput(m);
19a167af
AV
3069 return err;
3070}
3071
ea5b778a
DH
3072/**
3073 * mnt_set_expiry - Put a mount on an expiration list
3074 * @mnt: The mount to list.
3075 * @expiry_list: The list to add the mount to.
3076 */
3077void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3078{
97216be0 3079 namespace_lock();
ea5b778a 3080
6776db3d 3081 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 3082
97216be0 3083 namespace_unlock();
ea5b778a
DH
3084}
3085EXPORT_SYMBOL(mnt_set_expiry);
3086
1da177e4
LT
3087/*
3088 * process a list of expirable mountpoints with the intent of discarding any
3089 * mountpoints that aren't in use and haven't been touched since last we came
3090 * here
3091 */
3092void mark_mounts_for_expiry(struct list_head *mounts)
3093{
761d5c38 3094 struct mount *mnt, *next;
1da177e4
LT
3095 LIST_HEAD(graveyard);
3096
3097 if (list_empty(mounts))
3098 return;
3099
97216be0 3100 namespace_lock();
719ea2fb 3101 lock_mount_hash();
1da177e4
LT
3102
3103 /* extract from the expiration list every vfsmount that matches the
3104 * following criteria:
3105 * - only referenced by its parent vfsmount
3106 * - still marked for expiry (marked on the last call here; marks are
3107 * cleared by mntput())
3108 */
6776db3d 3109 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 3110 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 3111 propagate_mount_busy(mnt, 1))
1da177e4 3112 continue;
6776db3d 3113 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 3114 }
bcc5c7d2 3115 while (!list_empty(&graveyard)) {
6776db3d 3116 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 3117 touch_mnt_namespace(mnt->mnt_ns);
e819f152 3118 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 3119 }
719ea2fb 3120 unlock_mount_hash();
3ab6abee 3121 namespace_unlock();
5528f911
TM
3122}
3123
3124EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3125
3126/*
3127 * Ripoff of 'select_parent()'
3128 *
3129 * search the list of submounts for a given mountpoint, and move any
3130 * shrinkable submounts to the 'graveyard' list.
3131 */
692afc31 3132static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 3133{
692afc31 3134 struct mount *this_parent = parent;
5528f911
TM
3135 struct list_head *next;
3136 int found = 0;
3137
3138repeat:
6b41d536 3139 next = this_parent->mnt_mounts.next;
5528f911 3140resume:
6b41d536 3141 while (next != &this_parent->mnt_mounts) {
5528f911 3142 struct list_head *tmp = next;
6b41d536 3143 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
3144
3145 next = tmp->next;
692afc31 3146 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 3147 continue;
5528f911
TM
3148 /*
3149 * Descend a level if the d_mounts list is non-empty.
3150 */
6b41d536 3151 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
3152 this_parent = mnt;
3153 goto repeat;
3154 }
1da177e4 3155
1ab59738 3156 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 3157 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
3158 found++;
3159 }
1da177e4 3160 }
5528f911
TM
3161 /*
3162 * All done at this level ... ascend and resume the search
3163 */
3164 if (this_parent != parent) {
6b41d536 3165 next = this_parent->mnt_child.next;
0714a533 3166 this_parent = this_parent->mnt_parent;
5528f911
TM
3167 goto resume;
3168 }
3169 return found;
3170}
3171
3172/*
3173 * process a list of expirable mountpoints with the intent of discarding any
3174 * submounts of a specific parent mountpoint
99b7db7b 3175 *
48a066e7 3176 * mount_lock must be held for write
5528f911 3177 */
b54b9be7 3178static void shrink_submounts(struct mount *mnt)
5528f911
TM
3179{
3180 LIST_HEAD(graveyard);
761d5c38 3181 struct mount *m;
5528f911 3182
5528f911 3183 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 3184 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 3185 while (!list_empty(&graveyard)) {
761d5c38 3186 m = list_first_entry(&graveyard, struct mount,
6776db3d 3187 mnt_expire);
143c8c91 3188 touch_mnt_namespace(m->mnt_ns);
e819f152 3189 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
3190 }
3191 }
1da177e4
LT
3192}
3193
028abd92 3194static void *copy_mount_options(const void __user * data)
1da177e4 3195{
b40ef869 3196 char *copy;
d563d678 3197 unsigned left, offset;
b58fed8b 3198
1da177e4 3199 if (!data)
b40ef869 3200 return NULL;
1da177e4 3201
b40ef869
AV
3202 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3203 if (!copy)
3204 return ERR_PTR(-ENOMEM);
1da177e4 3205
d563d678 3206 left = copy_from_user(copy, data, PAGE_SIZE);
1da177e4 3207
d563d678
CM
3208 /*
3209 * Not all architectures have an exact copy_from_user(). Resort to
3210 * byte at a time.
3211 */
3212 offset = PAGE_SIZE - left;
3213 while (left) {
3214 char c;
3215 if (get_user(c, (const char __user *)data + offset))
3216 break;
3217 copy[offset] = c;
3218 left--;
3219 offset++;
3220 }
3221
3222 if (left == PAGE_SIZE) {
b40ef869
AV
3223 kfree(copy);
3224 return ERR_PTR(-EFAULT);
1da177e4 3225 }
d563d678 3226
b40ef869 3227 return copy;
1da177e4
LT
3228}
3229
028abd92 3230static char *copy_mount_string(const void __user *data)
eca6f534 3231{
fbdb4401 3232 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3233}
3234
1da177e4
LT
3235/*
3236 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3237 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3238 *
3239 * data is a (void *) that can point to any structure up to
3240 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3241 * information (or be NULL).
3242 *
3243 * Pre-0.97 versions of mount() didn't have a flags word.
3244 * When the flags word was introduced its top half was required
3245 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3246 * Therefore, if this magic number is present, it carries no information
3247 * and must be discarded.
3248 */
c60166f0 3249int path_mount(const char *dev_name, struct path *path,
808d4e3c 3250 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3251{
e462ec50 3252 unsigned int mnt_flags = 0, sb_flags;
a1e6aaa3 3253 int ret;
1da177e4
LT
3254
3255 /* Discard magic */
3256 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3257 flags &= ~MS_MGC_MSK;
3258
3259 /* Basic sanity checks */
1da177e4
LT
3260 if (data_page)
3261 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3262
e462ec50
DH
3263 if (flags & MS_NOUSER)
3264 return -EINVAL;
3265
a1e6aaa3
CH
3266 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3267 if (ret)
3268 return ret;
3269 if (!may_mount())
3270 return -EPERM;
f7e33bdb
JL
3271 if (flags & SB_MANDLOCK)
3272 warn_mandlock();
a27ab9f2 3273
613cbe3d
AK
3274 /* Default to relatime unless overriden */
3275 if (!(flags & MS_NOATIME))
3276 mnt_flags |= MNT_RELATIME;
0a1c01c9 3277
1da177e4
LT
3278 /* Separate the per-mountpoint flags */
3279 if (flags & MS_NOSUID)
3280 mnt_flags |= MNT_NOSUID;
3281 if (flags & MS_NODEV)
3282 mnt_flags |= MNT_NODEV;
3283 if (flags & MS_NOEXEC)
3284 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3285 if (flags & MS_NOATIME)
3286 mnt_flags |= MNT_NOATIME;
3287 if (flags & MS_NODIRATIME)
3288 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3289 if (flags & MS_STRICTATIME)
3290 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3291 if (flags & MS_RDONLY)
2e4b7fcd 3292 mnt_flags |= MNT_READONLY;
dab741e0
MN
3293 if (flags & MS_NOSYMFOLLOW)
3294 mnt_flags |= MNT_NOSYMFOLLOW;
fc33a7bb 3295
ffbc6f0e
EB
3296 /* The default atime for remount is preservation */
3297 if ((flags & MS_REMOUNT) &&
3298 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3299 MS_STRICTATIME)) == 0)) {
3300 mnt_flags &= ~MNT_ATIME_MASK;
a1e6aaa3 3301 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
ffbc6f0e
EB
3302 }
3303
e462ec50
DH
3304 sb_flags = flags & (SB_RDONLY |
3305 SB_SYNCHRONOUS |
3306 SB_MANDLOCK |
3307 SB_DIRSYNC |
3308 SB_SILENT |
917086ff 3309 SB_POSIXACL |
d7ee9469 3310 SB_LAZYTIME |
917086ff 3311 SB_I_VERSION);
1da177e4 3312
43f5e655 3313 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
a1e6aaa3
CH
3314 return do_reconfigure_mnt(path, mnt_flags);
3315 if (flags & MS_REMOUNT)
3316 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3317 if (flags & MS_BIND)
3318 return do_loopback(path, dev_name, flags & MS_REC);
3319 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3320 return do_change_type(path, flags);
3321 if (flags & MS_MOVE)
3322 return do_move_mount_old(path, dev_name);
3323
3324 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3325 data_page);
3326}
3327
3328long do_mount(const char *dev_name, const char __user *dir_name,
3329 const char *type_page, unsigned long flags, void *data_page)
3330{
3331 struct path path;
3332 int ret;
3333
3334 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3335 if (ret)
3336 return ret;
3337 ret = path_mount(dev_name, &path, type_page, flags, data_page);
2d92ab3c 3338 path_put(&path);
a1e6aaa3 3339 return ret;
1da177e4
LT
3340}
3341
537f7ccb
EB
3342static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3343{
3344 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3345}
3346
3347static void dec_mnt_namespaces(struct ucounts *ucounts)
3348{
3349 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3350}
3351
771b1371
EB
3352static void free_mnt_ns(struct mnt_namespace *ns)
3353{
74e83122
AV
3354 if (!is_anon_ns(ns))
3355 ns_free_inum(&ns->ns);
537f7ccb 3356 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3357 put_user_ns(ns->user_ns);
3358 kfree(ns);
3359}
3360
8823c079
EB
3361/*
3362 * Assign a sequence number so we can detect when we attempt to bind
3363 * mount a reference to an older mount namespace into the current
3364 * mount namespace, preventing reference counting loops. A 64bit
3365 * number incrementing at 10Ghz will take 12,427 years to wrap which
3366 * is effectively never, so we can ignore the possibility.
3367 */
3368static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3369
74e83122 3370static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3371{
3372 struct mnt_namespace *new_ns;
537f7ccb 3373 struct ucounts *ucounts;
98f842e6 3374 int ret;
cf8d2c11 3375
537f7ccb
EB
3376 ucounts = inc_mnt_namespaces(user_ns);
3377 if (!ucounts)
df75e774 3378 return ERR_PTR(-ENOSPC);
537f7ccb 3379
30acd0bd 3380 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
537f7ccb
EB
3381 if (!new_ns) {
3382 dec_mnt_namespaces(ucounts);
cf8d2c11 3383 return ERR_PTR(-ENOMEM);
537f7ccb 3384 }
74e83122
AV
3385 if (!anon) {
3386 ret = ns_alloc_inum(&new_ns->ns);
3387 if (ret) {
3388 kfree(new_ns);
3389 dec_mnt_namespaces(ucounts);
3390 return ERR_PTR(ret);
3391 }
98f842e6 3392 }
33c42940 3393 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3394 if (!anon)
3395 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
1a7b8969 3396 refcount_set(&new_ns->ns.count, 1);
cf8d2c11
TM
3397 INIT_LIST_HEAD(&new_ns->list);
3398 init_waitqueue_head(&new_ns->poll);
9f6c61f9 3399 spin_lock_init(&new_ns->ns_lock);
771b1371 3400 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3401 new_ns->ucounts = ucounts;
cf8d2c11
TM
3402 return new_ns;
3403}
3404
0766f788 3405__latent_entropy
9559f689
AV
3406struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3407 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3408{
6b3286ed 3409 struct mnt_namespace *new_ns;
7f2da1e7 3410 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3411 struct mount *p, *q;
9559f689 3412 struct mount *old;
cb338d06 3413 struct mount *new;
7a472ef4 3414 int copy_flags;
1da177e4 3415
9559f689
AV
3416 BUG_ON(!ns);
3417
3418 if (likely(!(flags & CLONE_NEWNS))) {
3419 get_mnt_ns(ns);
3420 return ns;
3421 }
3422
3423 old = ns->root;
3424
74e83122 3425 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3426 if (IS_ERR(new_ns))
3427 return new_ns;
1da177e4 3428
97216be0 3429 namespace_lock();
1da177e4 3430 /* First pass: copy the tree topology */
4ce5d2b1 3431 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3432 if (user_ns != ns->user_ns)
3bd045cc 3433 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3434 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3435 if (IS_ERR(new)) {
328e6d90 3436 namespace_unlock();
771b1371 3437 free_mnt_ns(new_ns);
be34d1a3 3438 return ERR_CAST(new);
1da177e4 3439 }
3bd045cc
AV
3440 if (user_ns != ns->user_ns) {
3441 lock_mount_hash();
3442 lock_mnt_tree(new);
3443 unlock_mount_hash();
3444 }
be08d6d2 3445 new_ns->root = new;
1a4eeaf2 3446 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3447
3448 /*
3449 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3450 * as belonging to new namespace. We have already acquired a private
3451 * fs_struct, so tsk->fs->lock is not needed.
3452 */
909b0a88 3453 p = old;
cb338d06 3454 q = new;
1da177e4 3455 while (p) {
143c8c91 3456 q->mnt_ns = new_ns;
d2921684 3457 new_ns->mounts++;
9559f689
AV
3458 if (new_fs) {
3459 if (&p->mnt == new_fs->root.mnt) {
3460 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3461 rootmnt = &p->mnt;
1da177e4 3462 }
9559f689
AV
3463 if (&p->mnt == new_fs->pwd.mnt) {
3464 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3465 pwdmnt = &p->mnt;
1da177e4 3466 }
1da177e4 3467 }
909b0a88
AV
3468 p = next_mnt(p, old);
3469 q = next_mnt(q, new);
4ce5d2b1
EB
3470 if (!q)
3471 break;
3472 while (p->mnt.mnt_root != q->mnt.mnt_root)
3473 p = next_mnt(p, old);
1da177e4 3474 }
328e6d90 3475 namespace_unlock();
1da177e4 3476
1da177e4 3477 if (rootmnt)
f03c6599 3478 mntput(rootmnt);
1da177e4 3479 if (pwdmnt)
f03c6599 3480 mntput(pwdmnt);
1da177e4 3481
741a2951 3482 return new_ns;
1da177e4
LT
3483}
3484
74e83122 3485struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3486{
74e83122 3487 struct mount *mnt = real_mount(m);
ea441d11 3488 struct mnt_namespace *ns;
d31da0f0 3489 struct super_block *s;
ea441d11
AV
3490 struct path path;
3491 int err;
3492
74e83122
AV
3493 ns = alloc_mnt_ns(&init_user_ns, true);
3494 if (IS_ERR(ns)) {
3495 mntput(m);
ea441d11 3496 return ERR_CAST(ns);
74e83122
AV
3497 }
3498 mnt->mnt_ns = ns;
3499 ns->root = mnt;
3500 ns->mounts++;
3501 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3502
74e83122 3503 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3504 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3505
3506 put_mnt_ns(ns);
3507
3508 if (err)
3509 return ERR_PTR(err);
3510
3511 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3512 s = path.mnt->mnt_sb;
3513 atomic_inc(&s->s_active);
ea441d11
AV
3514 mntput(path.mnt);
3515 /* lock the sucker */
d31da0f0 3516 down_write(&s->s_umount);
ea441d11
AV
3517 /* ... and return the root of (sub)tree on it */
3518 return path.dentry;
3519}
3520EXPORT_SYMBOL(mount_subtree);
3521
cccaa5e3
DB
3522SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3523 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3524{
eca6f534
VN
3525 int ret;
3526 char *kernel_type;
eca6f534 3527 char *kernel_dev;
b40ef869 3528 void *options;
1da177e4 3529
b8850d1f
TG
3530 kernel_type = copy_mount_string(type);
3531 ret = PTR_ERR(kernel_type);
3532 if (IS_ERR(kernel_type))
eca6f534 3533 goto out_type;
1da177e4 3534
b8850d1f
TG
3535 kernel_dev = copy_mount_string(dev_name);
3536 ret = PTR_ERR(kernel_dev);
3537 if (IS_ERR(kernel_dev))
eca6f534 3538 goto out_dev;
1da177e4 3539
b40ef869
AV
3540 options = copy_mount_options(data);
3541 ret = PTR_ERR(options);
3542 if (IS_ERR(options))
eca6f534 3543 goto out_data;
1da177e4 3544
b40ef869 3545 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3546
b40ef869 3547 kfree(options);
eca6f534
VN
3548out_data:
3549 kfree(kernel_dev);
3550out_dev:
eca6f534
VN
3551 kfree(kernel_type);
3552out_type:
3553 return ret;
1da177e4
LT
3554}
3555
dd8b477f
CB
3556#define FSMOUNT_VALID_FLAGS \
3557 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3558 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3559 MOUNT_ATTR_NOSYMFOLLOW)
5b490500 3560
9caccd41 3561#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
2a186721
CB
3562
3563#define MOUNT_SETATTR_PROPAGATION_FLAGS \
3564 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3565
5b490500
CB
3566static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3567{
3568 unsigned int mnt_flags = 0;
3569
3570 if (attr_flags & MOUNT_ATTR_RDONLY)
3571 mnt_flags |= MNT_READONLY;
3572 if (attr_flags & MOUNT_ATTR_NOSUID)
3573 mnt_flags |= MNT_NOSUID;
3574 if (attr_flags & MOUNT_ATTR_NODEV)
3575 mnt_flags |= MNT_NODEV;
3576 if (attr_flags & MOUNT_ATTR_NOEXEC)
3577 mnt_flags |= MNT_NOEXEC;
3578 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3579 mnt_flags |= MNT_NODIRATIME;
dd8b477f
CB
3580 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3581 mnt_flags |= MNT_NOSYMFOLLOW;
5b490500
CB
3582
3583 return mnt_flags;
3584}
3585
2db154b3 3586/*
93766fbd
DH
3587 * Create a kernel mount representation for a new, prepared superblock
3588 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3589 */
3590SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3591 unsigned int, attr_flags)
3592{
3593 struct mnt_namespace *ns;
3594 struct fs_context *fc;
3595 struct file *file;
3596 struct path newmount;
3597 struct mount *mnt;
3598 struct fd f;
3599 unsigned int mnt_flags = 0;
3600 long ret;
3601
3602 if (!may_mount())
3603 return -EPERM;
3604
3605 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3606 return -EINVAL;
3607
5b490500 3608 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
93766fbd
DH
3609 return -EINVAL;
3610
5b490500 3611 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
93766fbd
DH
3612
3613 switch (attr_flags & MOUNT_ATTR__ATIME) {
3614 case MOUNT_ATTR_STRICTATIME:
3615 break;
3616 case MOUNT_ATTR_NOATIME:
3617 mnt_flags |= MNT_NOATIME;
3618 break;
3619 case MOUNT_ATTR_RELATIME:
3620 mnt_flags |= MNT_RELATIME;
3621 break;
3622 default:
3623 return -EINVAL;
3624 }
3625
3626 f = fdget(fs_fd);
3627 if (!f.file)
3628 return -EBADF;
3629
3630 ret = -EINVAL;
3631 if (f.file->f_op != &fscontext_fops)
3632 goto err_fsfd;
3633
3634 fc = f.file->private_data;
3635
3636 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3637 if (ret < 0)
3638 goto err_fsfd;
3639
3640 /* There must be a valid superblock or we can't mount it */
3641 ret = -EINVAL;
3642 if (!fc->root)
3643 goto err_unlock;
3644
3645 ret = -EPERM;
3646 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3647 pr_warn("VFS: Mount too revealing\n");
3648 goto err_unlock;
3649 }
3650
3651 ret = -EBUSY;
3652 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3653 goto err_unlock;
3654
f7e33bdb
JL
3655 if (fc->sb_flags & SB_MANDLOCK)
3656 warn_mandlock();
93766fbd
DH
3657
3658 newmount.mnt = vfs_create_mount(fc);
3659 if (IS_ERR(newmount.mnt)) {
3660 ret = PTR_ERR(newmount.mnt);
3661 goto err_unlock;
3662 }
3663 newmount.dentry = dget(fc->root);
3664 newmount.mnt->mnt_flags = mnt_flags;
3665
3666 /* We've done the mount bit - now move the file context into more or
3667 * less the same state as if we'd done an fspick(). We don't want to
3668 * do any memory allocation or anything like that at this point as we
3669 * don't want to have to handle any errors incurred.
3670 */
3671 vfs_clean_context(fc);
3672
3673 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3674 if (IS_ERR(ns)) {
3675 ret = PTR_ERR(ns);
3676 goto err_path;
3677 }
3678 mnt = real_mount(newmount.mnt);
3679 mnt->mnt_ns = ns;
3680 ns->root = mnt;
3681 ns->mounts = 1;
3682 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3683 mntget(newmount.mnt);
93766fbd
DH
3684
3685 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3686 * it, not just simply put it.
3687 */
3688 file = dentry_open(&newmount, O_PATH, fc->cred);
3689 if (IS_ERR(file)) {
3690 dissolve_on_fput(newmount.mnt);
3691 ret = PTR_ERR(file);
3692 goto err_path;
3693 }
3694 file->f_mode |= FMODE_NEED_UNMOUNT;
3695
3696 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3697 if (ret >= 0)
3698 fd_install(ret, file);
3699 else
3700 fput(file);
3701
3702err_path:
3703 path_put(&newmount);
3704err_unlock:
3705 mutex_unlock(&fc->uapi_mutex);
3706err_fsfd:
3707 fdput(f);
3708 return ret;
3709}
3710
3711/*
3712 * Move a mount from one place to another. In combination with
3713 * fsopen()/fsmount() this is used to install a new mount and in combination
3714 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3715 * a mount subtree.
2db154b3
DH
3716 *
3717 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3718 */
3719SYSCALL_DEFINE5(move_mount,
2658ce09
BD
3720 int, from_dfd, const char __user *, from_pathname,
3721 int, to_dfd, const char __user *, to_pathname,
2db154b3
DH
3722 unsigned int, flags)
3723{
3724 struct path from_path, to_path;
3725 unsigned int lflags;
3726 int ret = 0;
3727
3728 if (!may_mount())
3729 return -EPERM;
3730
3731 if (flags & ~MOVE_MOUNT__MASK)
3732 return -EINVAL;
3733
3734 /* If someone gives a pathname, they aren't permitted to move
3735 * from an fd that requires unmount as we can't get at the flag
3736 * to clear it afterwards.
3737 */
3738 lflags = 0;
3739 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3740 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3741 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3742
3743 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3744 if (ret < 0)
3745 return ret;
3746
3747 lflags = 0;
3748 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3749 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3750 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3751
3752 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3753 if (ret < 0)
3754 goto out_from;
3755
3756 ret = security_move_mount(&from_path, &to_path);
3757 if (ret < 0)
3758 goto out_to;
3759
9ffb14ef
PT
3760 if (flags & MOVE_MOUNT_SET_GROUP)
3761 ret = do_set_group(&from_path, &to_path);
3762 else
3763 ret = do_move_mount(&from_path, &to_path);
2db154b3
DH
3764
3765out_to:
3766 path_put(&to_path);
3767out_from:
3768 path_put(&from_path);
3769 return ret;
3770}
3771
afac7cba
AV
3772/*
3773 * Return true if path is reachable from root
3774 *
48a066e7 3775 * namespace_sem or mount_lock is held
afac7cba 3776 */
643822b4 3777bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3778 const struct path *root)
3779{
643822b4 3780 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3781 dentry = mnt->mnt_mountpoint;
0714a533 3782 mnt = mnt->mnt_parent;
afac7cba 3783 }
643822b4 3784 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3785}
3786
640eb7e7 3787bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3788{
25ab4c9b 3789 bool res;
48a066e7 3790 read_seqlock_excl(&mount_lock);
643822b4 3791 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3792 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3793 return res;
3794}
3795EXPORT_SYMBOL(path_is_under);
3796
1da177e4
LT
3797/*
3798 * pivot_root Semantics:
3799 * Moves the root file system of the current process to the directory put_old,
3800 * makes new_root as the new root file system of the current process, and sets
3801 * root/cwd of all processes which had them on the current root to new_root.
3802 *
3803 * Restrictions:
3804 * The new_root and put_old must be directories, and must not be on the
3805 * same file system as the current process root. The put_old must be
3806 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3807 * pointed to by put_old must yield the same directory as new_root. No other
3808 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3809 *
4a0d11fa 3810 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
0c1bc6b8 3811 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4a0d11fa
NB
3812 * in this situation.
3813 *
1da177e4
LT
3814 * Notes:
3815 * - we don't move root/cwd if they are not at the root (reason: if something
3816 * cared enough to change them, it's probably wrong to force them elsewhere)
3817 * - it's okay to pick a root that isn't the root of a file system, e.g.
3818 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3819 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3820 * first.
3821 */
3480b257
HC
3822SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3823 const char __user *, put_old)
1da177e4 3824{
2763d119
AV
3825 struct path new, old, root;
3826 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3827 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3828 int error;
3829
9b40bc90 3830 if (!may_mount())
1da177e4
LT
3831 return -EPERM;
3832
ce6595a2
AV
3833 error = user_path_at(AT_FDCWD, new_root,
3834 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3835 if (error)
3836 goto out0;
1da177e4 3837
ce6595a2
AV
3838 error = user_path_at(AT_FDCWD, put_old,
3839 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3840 if (error)
3841 goto out1;
3842
2d8f3038 3843 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3844 if (error)
3845 goto out2;
1da177e4 3846
f7ad3c6b 3847 get_fs_root(current->fs, &root);
84d17192
AV
3848 old_mp = lock_mount(&old);
3849 error = PTR_ERR(old_mp);
3850 if (IS_ERR(old_mp))
b12cea91
AV
3851 goto out3;
3852
1da177e4 3853 error = -EINVAL;
419148da
AV
3854 new_mnt = real_mount(new.mnt);
3855 root_mnt = real_mount(root.mnt);
84d17192 3856 old_mnt = real_mount(old.mnt);
2763d119
AV
3857 ex_parent = new_mnt->mnt_parent;
3858 root_parent = root_mnt->mnt_parent;
84d17192 3859 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3860 IS_MNT_SHARED(ex_parent) ||
3861 IS_MNT_SHARED(root_parent))
b12cea91 3862 goto out4;
143c8c91 3863 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3864 goto out4;
5ff9d8a6
EB
3865 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3866 goto out4;
1da177e4 3867 error = -ENOENT;
f3da392e 3868 if (d_unlinked(new.dentry))
b12cea91 3869 goto out4;
1da177e4 3870 error = -EBUSY;
84d17192 3871 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3872 goto out4; /* loop, on the same file system */
1da177e4 3873 error = -EINVAL;
8c3ee42e 3874 if (root.mnt->mnt_root != root.dentry)
b12cea91 3875 goto out4; /* not a mountpoint */
676da58d 3876 if (!mnt_has_parent(root_mnt))
b12cea91 3877 goto out4; /* not attached */
2d8f3038 3878 if (new.mnt->mnt_root != new.dentry)
b12cea91 3879 goto out4; /* not a mountpoint */
676da58d 3880 if (!mnt_has_parent(new_mnt))
b12cea91 3881 goto out4; /* not attached */
4ac91378 3882 /* make sure we can reach put_old from new_root */
84d17192 3883 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3884 goto out4;
0d082601
EB
3885 /* make certain new is below the root */
3886 if (!is_path_reachable(new_mnt, new.dentry, &root))
3887 goto out4;
719ea2fb 3888 lock_mount_hash();
2763d119
AV
3889 umount_mnt(new_mnt);
3890 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3891 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3892 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3893 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3894 }
4ac91378 3895 /* mount old root on put_old */
84d17192 3896 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3897 /* mount new_root on / */
2763d119
AV
3898 attach_mnt(new_mnt, root_parent, root_mp);
3899 mnt_add_count(root_parent, -1);
6b3286ed 3900 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3901 /* A moved mount should not expire automatically */
3902 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3903 put_mountpoint(root_mp);
719ea2fb 3904 unlock_mount_hash();
2d8f3038 3905 chroot_fs_refs(&root, &new);
1da177e4 3906 error = 0;
b12cea91 3907out4:
84d17192 3908 unlock_mount(old_mp);
2763d119
AV
3909 if (!error)
3910 mntput_no_expire(ex_parent);
b12cea91 3911out3:
8c3ee42e 3912 path_put(&root);
b12cea91 3913out2:
2d8f3038 3914 path_put(&old);
1da177e4 3915out1:
2d8f3038 3916 path_put(&new);
1da177e4 3917out0:
1da177e4 3918 return error;
1da177e4
LT
3919}
3920
2a186721
CB
3921static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3922{
3923 unsigned int flags = mnt->mnt.mnt_flags;
3924
3925 /* flags to clear */
3926 flags &= ~kattr->attr_clr;
3927 /* flags to raise */
3928 flags |= kattr->attr_set;
3929
3930 return flags;
3931}
3932
9caccd41
CB
3933static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3934{
3935 struct vfsmount *m = &mnt->mnt;
bd303368 3936 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
9caccd41
CB
3937
3938 if (!kattr->mnt_userns)
3939 return 0;
3940
bd303368
CB
3941 /*
3942 * Creating an idmapped mount with the filesystem wide idmapping
3943 * doesn't make sense so block that. We don't allow mushy semantics.
3944 */
3945 if (kattr->mnt_userns == fs_userns)
3946 return -EINVAL;
3947
9caccd41
CB
3948 /*
3949 * Once a mount has been idmapped we don't allow it to change its
3950 * mapping. It makes things simpler and callers can just create
3951 * another bind-mount they can idmap if they want to.
3952 */
bb49e9e7 3953 if (is_idmapped_mnt(m))
9caccd41
CB
3954 return -EPERM;
3955
3956 /* The underlying filesystem doesn't support idmapped mounts yet. */
3957 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3958 return -EINVAL;
3959
3960 /* We're not controlling the superblock. */
bd303368 3961 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
9caccd41
CB
3962 return -EPERM;
3963
3964 /* Mount has already been visible in the filesystem hierarchy. */
3965 if (!is_anon_ns(mnt->mnt_ns))
3966 return -EINVAL;
3967
3968 return 0;
3969}
3970
2a186721
CB
3971static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3972 struct mount *mnt, int *err)
3973{
3974 struct mount *m = mnt, *last = NULL;
3975
3976 if (!is_mounted(&m->mnt)) {
3977 *err = -EINVAL;
3978 goto out;
3979 }
3980
3981 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3982 *err = -EINVAL;
3983 goto out;
3984 }
3985
3986 do {
3987 unsigned int flags;
3988
3989 flags = recalc_flags(kattr, m);
3990 if (!can_change_locked_flags(m, flags)) {
3991 *err = -EPERM;
3992 goto out;
3993 }
3994
9caccd41
CB
3995 *err = can_idmap_mount(kattr, m);
3996 if (*err)
3997 goto out;
3998
2a186721
CB
3999 last = m;
4000
4001 if ((kattr->attr_set & MNT_READONLY) &&
4002 !(m->mnt.mnt_flags & MNT_READONLY)) {
4003 *err = mnt_hold_writers(m);
4004 if (*err)
4005 goto out;
4006 }
4007 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4008
4009out:
4010 return last;
4011}
4012
9caccd41
CB
4013static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4014{
bd303368 4015 struct user_namespace *mnt_userns, *old_mnt_userns;
9caccd41
CB
4016
4017 if (!kattr->mnt_userns)
4018 return;
4019
bd303368
CB
4020 /*
4021 * We're the only ones able to change the mount's idmapping. So
4022 * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4023 */
4024 old_mnt_userns = mnt->mnt.mnt_userns;
4025
9caccd41
CB
4026 mnt_userns = get_user_ns(kattr->mnt_userns);
4027 /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4028 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
bd303368
CB
4029
4030 /*
4031 * If this is an idmapped filesystem drop the reference we've taken
4032 * in vfs_create_mount() before.
4033 */
4034 if (!initial_idmapping(old_mnt_userns))
4035 put_user_ns(old_mnt_userns);
9caccd41
CB
4036}
4037
2a186721
CB
4038static void mount_setattr_commit(struct mount_kattr *kattr,
4039 struct mount *mnt, struct mount *last,
4040 int err)
4041{
4042 struct mount *m = mnt;
4043
4044 do {
4045 if (!err) {
4046 unsigned int flags;
4047
9caccd41 4048 do_idmap_mount(kattr, m);
2a186721
CB
4049 flags = recalc_flags(kattr, m);
4050 WRITE_ONCE(m->mnt.mnt_flags, flags);
4051 }
4052
4053 /*
4054 * We either set MNT_READONLY above so make it visible
4055 * before ~MNT_WRITE_HOLD or we failed to recursively
4056 * apply mount options.
4057 */
4058 if ((kattr->attr_set & MNT_READONLY) &&
4059 (m->mnt.mnt_flags & MNT_WRITE_HOLD))
4060 mnt_unhold_writers(m);
4061
4062 if (!err && kattr->propagation)
4063 change_mnt_propagation(m, kattr->propagation);
4064
4065 /*
4066 * On failure, only cleanup until we found the first mount
4067 * we failed to handle.
4068 */
4069 if (err && m == last)
4070 break;
4071 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4072
4073 if (!err)
4074 touch_mnt_namespace(mnt->mnt_ns);
4075}
4076
4077static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4078{
4079 struct mount *mnt = real_mount(path->mnt), *last = NULL;
4080 int err = 0;
4081
4082 if (path->dentry != mnt->mnt.mnt_root)
4083 return -EINVAL;
4084
4085 if (kattr->propagation) {
4086 /*
4087 * Only take namespace_lock() if we're actually changing
4088 * propagation.
4089 */
4090 namespace_lock();
4091 if (kattr->propagation == MS_SHARED) {
4092 err = invent_group_ids(mnt, kattr->recurse);
4093 if (err) {
4094 namespace_unlock();
4095 return err;
4096 }
4097 }
4098 }
4099
4100 lock_mount_hash();
4101
4102 /*
4103 * Get the mount tree in a shape where we can change mount
4104 * properties without failure.
4105 */
4106 last = mount_setattr_prepare(kattr, mnt, &err);
4107 if (last) /* Commit all changes or revert to the old state. */
4108 mount_setattr_commit(kattr, mnt, last, err);
4109
4110 unlock_mount_hash();
4111
4112 if (kattr->propagation) {
4113 namespace_unlock();
4114 if (err)
4115 cleanup_group_ids(mnt, NULL);
4116 }
4117
4118 return err;
4119}
4120
9caccd41
CB
4121static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4122 struct mount_kattr *kattr, unsigned int flags)
4123{
4124 int err = 0;
4125 struct ns_common *ns;
4126 struct user_namespace *mnt_userns;
4127 struct file *file;
4128
4129 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4130 return 0;
4131
4132 /*
4133 * We currently do not support clearing an idmapped mount. If this ever
4134 * is a use-case we can revisit this but for now let's keep it simple
4135 * and not allow it.
4136 */
4137 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4138 return -EINVAL;
4139
4140 if (attr->userns_fd > INT_MAX)
4141 return -EINVAL;
4142
4143 file = fget(attr->userns_fd);
4144 if (!file)
4145 return -EBADF;
4146
4147 if (!proc_ns_file(file)) {
4148 err = -EINVAL;
4149 goto out_fput;
4150 }
4151
4152 ns = get_proc_ns(file_inode(file));
4153 if (ns->ops->type != CLONE_NEWUSER) {
4154 err = -EINVAL;
4155 goto out_fput;
4156 }
4157
4158 /*
bd303368
CB
4159 * The initial idmapping cannot be used to create an idmapped
4160 * mount. We use the initial idmapping as an indicator of a mount
4161 * that is not idmapped. It can simply be passed into helpers that
4162 * are aware of idmapped mounts as a convenient shortcut. A user
4163 * can just create a dedicated identity mapping to achieve the same
4164 * result.
9caccd41
CB
4165 */
4166 mnt_userns = container_of(ns, struct user_namespace, ns);
bd303368 4167 if (initial_idmapping(mnt_userns)) {
9caccd41
CB
4168 err = -EPERM;
4169 goto out_fput;
4170 }
4171 kattr->mnt_userns = get_user_ns(mnt_userns);
4172
4173out_fput:
4174 fput(file);
4175 return err;
4176}
4177
4178static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
2a186721
CB
4179 struct mount_kattr *kattr, unsigned int flags)
4180{
4181 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4182
4183 if (flags & AT_NO_AUTOMOUNT)
4184 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4185 if (flags & AT_SYMLINK_NOFOLLOW)
4186 lookup_flags &= ~LOOKUP_FOLLOW;
4187 if (flags & AT_EMPTY_PATH)
4188 lookup_flags |= LOOKUP_EMPTY;
4189
4190 *kattr = (struct mount_kattr) {
4191 .lookup_flags = lookup_flags,
4192 .recurse = !!(flags & AT_RECURSIVE),
4193 };
4194
4195 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4196 return -EINVAL;
4197 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4198 return -EINVAL;
4199 kattr->propagation = attr->propagation;
4200
4201 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4202 return -EINVAL;
4203
2a186721
CB
4204 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4205 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4206
4207 /*
4208 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4209 * users wanting to transition to a different atime setting cannot
4210 * simply specify the atime setting in @attr_set, but must also
4211 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4212 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4213 * @attr_clr and that @attr_set can't have any atime bits set if
4214 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4215 */
4216 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4217 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4218 return -EINVAL;
4219
4220 /*
4221 * Clear all previous time settings as they are mutually
4222 * exclusive.
4223 */
4224 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4225 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4226 case MOUNT_ATTR_RELATIME:
4227 kattr->attr_set |= MNT_RELATIME;
4228 break;
4229 case MOUNT_ATTR_NOATIME:
4230 kattr->attr_set |= MNT_NOATIME;
4231 break;
4232 case MOUNT_ATTR_STRICTATIME:
4233 break;
4234 default:
4235 return -EINVAL;
4236 }
4237 } else {
4238 if (attr->attr_set & MOUNT_ATTR__ATIME)
4239 return -EINVAL;
4240 }
4241
9caccd41
CB
4242 return build_mount_idmapped(attr, usize, kattr, flags);
4243}
4244
4245static void finish_mount_kattr(struct mount_kattr *kattr)
4246{
4247 put_user_ns(kattr->mnt_userns);
4248 kattr->mnt_userns = NULL;
2a186721
CB
4249}
4250
4251SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4252 unsigned int, flags, struct mount_attr __user *, uattr,
4253 size_t, usize)
4254{
4255 int err;
4256 struct path target;
4257 struct mount_attr attr;
4258 struct mount_kattr kattr;
4259
4260 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4261
4262 if (flags & ~(AT_EMPTY_PATH |
4263 AT_RECURSIVE |
4264 AT_SYMLINK_NOFOLLOW |
4265 AT_NO_AUTOMOUNT))
4266 return -EINVAL;
4267
4268 if (unlikely(usize > PAGE_SIZE))
4269 return -E2BIG;
4270 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4271 return -EINVAL;
4272
4273 if (!may_mount())
4274 return -EPERM;
4275
4276 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4277 if (err)
4278 return err;
4279
4280 /* Don't bother walking through the mounts if this is a nop. */
4281 if (attr.attr_set == 0 &&
4282 attr.attr_clr == 0 &&
4283 attr.propagation == 0)
4284 return 0;
4285
9caccd41 4286 err = build_mount_kattr(&attr, usize, &kattr, flags);
2a186721
CB
4287 if (err)
4288 return err;
4289
4290 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
012e3322
CB
4291 if (!err) {
4292 err = do_mount_setattr(&target, &kattr);
4293 path_put(&target);
4294 }
9caccd41 4295 finish_mount_kattr(&kattr);
2a186721
CB
4296 return err;
4297}
4298
1da177e4
LT
4299static void __init init_mount_tree(void)
4300{
4301 struct vfsmount *mnt;
74e83122 4302 struct mount *m;
6b3286ed 4303 struct mnt_namespace *ns;
ac748a09 4304 struct path root;
1da177e4 4305
fd3e007f 4306 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
4307 if (IS_ERR(mnt))
4308 panic("Can't create rootfs");
b3e19d92 4309
74e83122 4310 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 4311 if (IS_ERR(ns))
1da177e4 4312 panic("Can't allocate initial namespace");
74e83122
AV
4313 m = real_mount(mnt);
4314 m->mnt_ns = ns;
4315 ns->root = m;
4316 ns->mounts = 1;
4317 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
4318 init_task.nsproxy->mnt_ns = ns;
4319 get_mnt_ns(ns);
4320
be08d6d2
AV
4321 root.mnt = mnt;
4322 root.dentry = mnt->mnt_root;
da362b09 4323 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
4324
4325 set_fs_pwd(current->fs, &root);
4326 set_fs_root(current->fs, &root);
1da177e4
LT
4327}
4328
74bf17cf 4329void __init mnt_init(void)
1da177e4 4330{
15a67dd8 4331 int err;
1da177e4 4332
7d6fec45 4333 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
79f6540b 4334 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 4335
0818bf27 4336 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 4337 sizeof(struct hlist_head),
0818bf27 4338 mhash_entries, 19,
3d375d78 4339 HASH_ZERO,
0818bf27
AV
4340 &m_hash_shift, &m_hash_mask, 0, 0);
4341 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4342 sizeof(struct hlist_head),
4343 mphash_entries, 19,
3d375d78 4344 HASH_ZERO,
0818bf27 4345 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 4346
84d17192 4347 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
4348 panic("Failed to allocate mount hash table\n");
4349
4b93dc9b
TH
4350 kernfs_init();
4351
15a67dd8
RD
4352 err = sysfs_init();
4353 if (err)
4354 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 4355 __func__, err);
00d26666
GKH
4356 fs_kobj = kobject_create_and_add("fs", NULL);
4357 if (!fs_kobj)
8e24eea7 4358 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 4359 shmem_init();
1da177e4
LT
4360 init_rootfs();
4361 init_mount_tree();
4362}
4363
616511d0 4364void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 4365{
1a7b8969 4366 if (!refcount_dec_and_test(&ns->ns.count))
616511d0 4367 return;
7b00ed6f 4368 drop_collected_mounts(&ns->root->mnt);
771b1371 4369 free_mnt_ns(ns);
1da177e4 4370}
9d412a43 4371
d911b458 4372struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 4373{
423e0ab0 4374 struct vfsmount *mnt;
d911b458 4375 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
4376 if (!IS_ERR(mnt)) {
4377 /*
4378 * it is a longterm mount, don't release mnt until
4379 * we unmount before file sys is unregistered
4380 */
f7a99c5b 4381 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
4382 }
4383 return mnt;
9d412a43 4384}
d911b458 4385EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
4386
4387void kern_unmount(struct vfsmount *mnt)
4388{
4389 /* release long term mount so mount point can be released */
4390 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 4391 real_mount(mnt)->mnt_ns = NULL;
48a066e7 4392 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
4393 mntput(mnt);
4394 }
4395}
4396EXPORT_SYMBOL(kern_unmount);
02125a82 4397
df820f8d
MS
4398void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4399{
4400 unsigned int i;
4401
4402 for (i = 0; i < num; i++)
4403 if (mnt[i])
4404 real_mount(mnt[i])->mnt_ns = NULL;
4405 synchronize_rcu_expedited();
4406 for (i = 0; i < num; i++)
4407 mntput(mnt[i]);
4408}
4409EXPORT_SYMBOL(kern_unmount_array);
4410
02125a82
AV
4411bool our_mnt(struct vfsmount *mnt)
4412{
143c8c91 4413 return check_mnt(real_mount(mnt));
02125a82 4414}
8823c079 4415
3151527e
EB
4416bool current_chrooted(void)
4417{
4418 /* Does the current process have a non-standard root */
4419 struct path ns_root;
4420 struct path fs_root;
4421 bool chrooted;
4422
4423 /* Find the namespace root */
4424 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4425 ns_root.dentry = ns_root.mnt->mnt_root;
4426 path_get(&ns_root);
4427 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4428 ;
4429
4430 get_fs_root(current->fs, &fs_root);
4431
4432 chrooted = !path_equal(&fs_root, &ns_root);
4433
4434 path_put(&fs_root);
4435 path_put(&ns_root);
4436
4437 return chrooted;
4438}
4439
132e4608
DH
4440static bool mnt_already_visible(struct mnt_namespace *ns,
4441 const struct super_block *sb,
8654df4e 4442 int *new_mnt_flags)
87a8ebd6 4443{
8c6cf9cc 4444 int new_flags = *new_mnt_flags;
87a8ebd6 4445 struct mount *mnt;
e51db735 4446 bool visible = false;
87a8ebd6 4447
44bb4385 4448 down_read(&namespace_sem);
9f6c61f9 4449 lock_ns_list(ns);
87a8ebd6 4450 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 4451 struct mount *child;
77b1a97d
EB
4452 int mnt_flags;
4453
9f6c61f9
MS
4454 if (mnt_is_cursor(mnt))
4455 continue;
4456
132e4608 4457 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
4458 continue;
4459
7e96c1b0
EB
4460 /* This mount is not fully visible if it's root directory
4461 * is not the root directory of the filesystem.
4462 */
4463 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4464 continue;
4465
a1935c17 4466 /* A local view of the mount flags */
77b1a97d 4467 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 4468
695e9df0 4469 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 4470 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
4471 mnt_flags |= MNT_LOCK_READONLY;
4472
8c6cf9cc
EB
4473 /* Verify the mount flags are equal to or more permissive
4474 * than the proposed new mount.
4475 */
77b1a97d 4476 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
4477 !(new_flags & MNT_READONLY))
4478 continue;
77b1a97d
EB
4479 if ((mnt_flags & MNT_LOCK_ATIME) &&
4480 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
4481 continue;
4482
ceeb0e5d
EB
4483 /* This mount is not fully visible if there are any
4484 * locked child mounts that cover anything except for
4485 * empty directories.
e51db735
EB
4486 */
4487 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4488 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 4489 /* Only worry about locked mounts */
d71ed6c9 4490 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 4491 continue;
7236c85e
EB
4492 /* Is the directory permanetly empty? */
4493 if (!is_empty_dir_inode(inode))
e51db735 4494 goto next;
87a8ebd6 4495 }
8c6cf9cc 4496 /* Preserve the locked attributes */
77b1a97d 4497 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 4498 MNT_LOCK_ATIME);
e51db735
EB
4499 visible = true;
4500 goto found;
4501 next: ;
87a8ebd6 4502 }
e51db735 4503found:
9f6c61f9 4504 unlock_ns_list(ns);
44bb4385 4505 up_read(&namespace_sem);
e51db735 4506 return visible;
87a8ebd6
EB
4507}
4508
132e4608 4509static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 4510{
a1935c17 4511 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
4512 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4513 unsigned long s_iflags;
4514
4515 if (ns->user_ns == &init_user_ns)
4516 return false;
4517
4518 /* Can this filesystem be too revealing? */
132e4608 4519 s_iflags = sb->s_iflags;
8654df4e
EB
4520 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4521 return false;
4522
a1935c17
EB
4523 if ((s_iflags & required_iflags) != required_iflags) {
4524 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4525 required_iflags);
4526 return true;
4527 }
4528
132e4608 4529 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
4530}
4531
380cf5ba
AL
4532bool mnt_may_suid(struct vfsmount *mnt)
4533{
4534 /*
4535 * Foreign mounts (accessed via fchdir or through /proc
4536 * symlinks) are always treated as if they are nosuid. This
4537 * prevents namespaces from trusting potentially unsafe
4538 * suid/sgid bits, file caps, or security labels that originate
4539 * in other namespaces.
4540 */
4541 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4542 current_in_userns(mnt->mnt_sb->s_user_ns);
4543}
4544
64964528 4545static struct ns_common *mntns_get(struct task_struct *task)
8823c079 4546{
58be2825 4547 struct ns_common *ns = NULL;
8823c079
EB
4548 struct nsproxy *nsproxy;
4549
728dba3a
EB
4550 task_lock(task);
4551 nsproxy = task->nsproxy;
8823c079 4552 if (nsproxy) {
58be2825
AV
4553 ns = &nsproxy->mnt_ns->ns;
4554 get_mnt_ns(to_mnt_ns(ns));
8823c079 4555 }
728dba3a 4556 task_unlock(task);
8823c079
EB
4557
4558 return ns;
4559}
4560
64964528 4561static void mntns_put(struct ns_common *ns)
8823c079 4562{
58be2825 4563 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
4564}
4565
f2a8d52e 4566static int mntns_install(struct nsset *nsset, struct ns_common *ns)
8823c079 4567{
f2a8d52e
CB
4568 struct nsproxy *nsproxy = nsset->nsproxy;
4569 struct fs_struct *fs = nsset->fs;
4f757f3c 4570 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
f2a8d52e 4571 struct user_namespace *user_ns = nsset->cred->user_ns;
8823c079 4572 struct path root;
4f757f3c 4573 int err;
8823c079 4574
0c55cfc4 4575 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
f2a8d52e
CB
4576 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4577 !ns_capable(user_ns, CAP_SYS_ADMIN))
ae11e0f1 4578 return -EPERM;
8823c079 4579
74e83122
AV
4580 if (is_anon_ns(mnt_ns))
4581 return -EINVAL;
4582
8823c079
EB
4583 if (fs->users != 1)
4584 return -EINVAL;
4585
4586 get_mnt_ns(mnt_ns);
4f757f3c 4587 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
4588 nsproxy->mnt_ns = mnt_ns;
4589
4590 /* Find the root */
4f757f3c
AV
4591 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4592 "/", LOOKUP_DOWN, &root);
4593 if (err) {
4594 /* revert to old namespace */
4595 nsproxy->mnt_ns = old_mnt_ns;
4596 put_mnt_ns(mnt_ns);
4597 return err;
4598 }
8823c079 4599
4068367c
AV
4600 put_mnt_ns(old_mnt_ns);
4601
8823c079
EB
4602 /* Update the pwd and root */
4603 set_fs_pwd(fs, &root);
4604 set_fs_root(fs, &root);
4605
4606 path_put(&root);
4607 return 0;
4608}
4609
bcac25a5
AV
4610static struct user_namespace *mntns_owner(struct ns_common *ns)
4611{
4612 return to_mnt_ns(ns)->user_ns;
4613}
4614
8823c079
EB
4615const struct proc_ns_operations mntns_operations = {
4616 .name = "mnt",
4617 .type = CLONE_NEWNS,
4618 .get = mntns_get,
4619 .put = mntns_put,
4620 .install = mntns_install,
bcac25a5 4621 .owner = mntns_owner,
8823c079 4622};
ab171b95
LC
4623
4624#ifdef CONFIG_SYSCTL
4625static struct ctl_table fs_namespace_sysctls[] = {
4626 {
4627 .procname = "mount-max",
4628 .data = &sysctl_mount_max,
4629 .maxlen = sizeof(unsigned int),
4630 .mode = 0644,
4631 .proc_handler = proc_dointvec_minmax,
4632 .extra1 = SYSCTL_ONE,
4633 },
4634 { }
4635};
4636
4637static int __init init_fs_namespace_sysctls(void)
4638{
4639 register_sysctl_init("fs", fs_namespace_sysctls);
4640 return 0;
4641}
4642fs_initcall(init_fs_namespace_sysctls);
4643
4644#endif /* CONFIG_SYSCTL */