]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
vfs: move fsnotify junk to struct mount
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
b105e270 81static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
15169fe7 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 89 if (!res)
15169fe7 90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
b105e270 98static void mnt_free_id(struct mount *mnt)
73cd49ec 99{
15169fe7 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
4b8b21f4 113static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
15169fe7 122 &mnt->mnt_group_id);
f21f6220 123 if (!res)
15169fe7 124 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
4b8b21f4 132void mnt_release_group_id(struct mount *mnt)
719f5d7f 133{
15169fe7 134 int id = mnt->mnt_group_id;
f21f6220
AV
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
15169fe7 138 mnt->mnt_group_id = 0;
719f5d7f
MS
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
83adc753 144static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
145{
146#ifdef CONFIG_SMP
68e8a9fe 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
148#else
149 preempt_disable();
68e8a9fe 150 mnt->mnt_count += n;
b3e19d92
NP
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
83adc753 158unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
68e8a9fe 165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
166 }
167
168 return count;
169#else
68e8a9fe 170 return mnt->mnt_count;
b3e19d92
NP
171#endif
172}
173
b105e270 174static struct mount *alloc_vfsmnt(const char *name)
1da177e4 175{
c63181e6
AV
176 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (mnt) {
73cd49ec
MS
178 int err;
179
c63181e6 180 err = mnt_alloc_id(mnt);
88b38782
LZ
181 if (err)
182 goto out_free_cache;
183
184 if (name) {
c63181e6
AV
185 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
186 if (!mnt->mnt_devname)
88b38782 187 goto out_free_id;
73cd49ec
MS
188 }
189
b3e19d92 190#ifdef CONFIG_SMP
c63181e6
AV
191 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
192 if (!mnt->mnt_pcp)
b3e19d92
NP
193 goto out_free_devname;
194
c63181e6 195 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 196#else
c63181e6
AV
197 mnt->mnt_count = 1;
198 mnt->mnt_writers = 0;
b3e19d92
NP
199#endif
200
c63181e6
AV
201 INIT_LIST_HEAD(&mnt->mnt_hash);
202 INIT_LIST_HEAD(&mnt->mnt_child);
203 INIT_LIST_HEAD(&mnt->mnt_mounts);
204 INIT_LIST_HEAD(&mnt->mnt_list);
205 INIT_LIST_HEAD(&mnt->mnt_expire);
206 INIT_LIST_HEAD(&mnt->mnt_share);
207 INIT_LIST_HEAD(&mnt->mnt_slave_list);
208 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
209#ifdef CONFIG_FSNOTIFY
210 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 211#endif
1da177e4 212 }
c63181e6 213 return mnt;
88b38782 214
d3ef3d73
NP
215#ifdef CONFIG_SMP
216out_free_devname:
c63181e6 217 kfree(mnt->mnt_devname);
d3ef3d73 218#endif
88b38782 219out_free_id:
c63181e6 220 mnt_free_id(mnt);
88b38782 221out_free_cache:
c63181e6 222 kmem_cache_free(mnt_cache, mnt);
88b38782 223 return NULL;
1da177e4
LT
224}
225
3d733633
DH
226/*
227 * Most r/o checks on a fs are for operations that take
228 * discrete amounts of time, like a write() or unlink().
229 * We must keep track of when those operations start
230 * (for permission checks) and when they end, so that
231 * we can determine when writes are able to occur to
232 * a filesystem.
233 */
234/*
235 * __mnt_is_readonly: check whether a mount is read-only
236 * @mnt: the mount to check for its write status
237 *
238 * This shouldn't be used directly ouside of the VFS.
239 * It does not guarantee that the filesystem will stay
240 * r/w, just that it is right *now*. This can not and
241 * should not be used in place of IS_RDONLY(inode).
242 * mnt_want/drop_write() will _keep_ the filesystem
243 * r/w.
244 */
245int __mnt_is_readonly(struct vfsmount *mnt)
246{
2e4b7fcd
DH
247 if (mnt->mnt_flags & MNT_READONLY)
248 return 1;
249 if (mnt->mnt_sb->s_flags & MS_RDONLY)
250 return 1;
251 return 0;
3d733633
DH
252}
253EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254
83adc753 255static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
256{
257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers++;
d3ef3d73
NP
261#endif
262}
3d733633 263
83adc753 264static inline void mnt_dec_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
68e8a9fe 267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 268#else
68e8a9fe 269 mnt->mnt_writers--;
d3ef3d73 270#endif
3d733633 271}
3d733633 272
83adc753 273static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 274{
d3ef3d73
NP
275#ifdef CONFIG_SMP
276 unsigned int count = 0;
3d733633 277 int cpu;
3d733633
DH
278
279 for_each_possible_cpu(cpu) {
68e8a9fe 280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 281 }
3d733633 282
d3ef3d73
NP
283 return count;
284#else
285 return mnt->mnt_writers;
286#endif
3d733633
DH
287}
288
8366025e
DH
289/*
290 * Most r/o checks on a fs are for operations that take
291 * discrete amounts of time, like a write() or unlink().
292 * We must keep track of when those operations start
293 * (for permission checks) and when they end, so that
294 * we can determine when writes are able to occur to
295 * a filesystem.
296 */
297/**
298 * mnt_want_write - get write access to a mount
83adc753 299 * @m: the mount on which to take a write
8366025e
DH
300 *
301 * This tells the low-level filesystem that a write is
302 * about to be performed to it, and makes sure that
303 * writes are allowed before returning success. When
304 * the write operation is finished, mnt_drop_write()
305 * must be called. This is effectively a refcount.
306 */
83adc753 307int mnt_want_write(struct vfsmount *m)
8366025e 308{
83adc753 309 struct mount *mnt = real_mount(m);
3d733633 310 int ret = 0;
3d733633 311
d3ef3d73 312 preempt_disable();
c6653a83 313 mnt_inc_writers(mnt);
d3ef3d73 314 /*
c6653a83 315 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
316 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
317 * incremented count after it has set MNT_WRITE_HOLD.
318 */
319 smp_mb();
83adc753 320 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73
NP
321 cpu_relax();
322 /*
323 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
324 * be set to match its requirements. So we must not load that until
325 * MNT_WRITE_HOLD is cleared.
326 */
327 smp_rmb();
83adc753 328 if (__mnt_is_readonly(m)) {
c6653a83 329 mnt_dec_writers(mnt);
3d733633
DH
330 ret = -EROFS;
331 goto out;
332 }
3d733633 333out:
d3ef3d73 334 preempt_enable();
3d733633 335 return ret;
8366025e
DH
336}
337EXPORT_SYMBOL_GPL(mnt_want_write);
338
96029c4e
NP
339/**
340 * mnt_clone_write - get write access to a mount
341 * @mnt: the mount on which to take a write
342 *
343 * This is effectively like mnt_want_write, except
344 * it must only be used to take an extra write reference
345 * on a mountpoint that we already know has a write reference
346 * on it. This allows some optimisation.
347 *
348 * After finished, mnt_drop_write must be called as usual to
349 * drop the reference.
350 */
351int mnt_clone_write(struct vfsmount *mnt)
352{
353 /* superblock may be r/o */
354 if (__mnt_is_readonly(mnt))
355 return -EROFS;
356 preempt_disable();
83adc753 357 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
358 preempt_enable();
359 return 0;
360}
361EXPORT_SYMBOL_GPL(mnt_clone_write);
362
363/**
364 * mnt_want_write_file - get write access to a file's mount
365 * @file: the file who's mount on which to take a write
366 *
367 * This is like mnt_want_write, but it takes a file and can
368 * do some optimisations if the file is open for write already
369 */
370int mnt_want_write_file(struct file *file)
371{
2d8dd38a
OH
372 struct inode *inode = file->f_dentry->d_inode;
373 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e
NP
374 return mnt_want_write(file->f_path.mnt);
375 else
376 return mnt_clone_write(file->f_path.mnt);
377}
378EXPORT_SYMBOL_GPL(mnt_want_write_file);
379
8366025e
DH
380/**
381 * mnt_drop_write - give up write access to a mount
382 * @mnt: the mount on which to give up write access
383 *
384 * Tells the low-level filesystem that we are done
385 * performing writes to it. Must be matched with
386 * mnt_want_write() call above.
387 */
388void mnt_drop_write(struct vfsmount *mnt)
389{
d3ef3d73 390 preempt_disable();
83adc753 391 mnt_dec_writers(real_mount(mnt));
d3ef3d73 392 preempt_enable();
8366025e
DH
393}
394EXPORT_SYMBOL_GPL(mnt_drop_write);
395
2a79f17e
AV
396void mnt_drop_write_file(struct file *file)
397{
398 mnt_drop_write(file->f_path.mnt);
399}
400EXPORT_SYMBOL(mnt_drop_write_file);
401
83adc753 402static int mnt_make_readonly(struct mount *mnt)
8366025e 403{
3d733633
DH
404 int ret = 0;
405
99b7db7b 406 br_write_lock(vfsmount_lock);
83adc753 407 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 408 /*
d3ef3d73
NP
409 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
410 * should be visible before we do.
3d733633 411 */
d3ef3d73
NP
412 smp_mb();
413
3d733633 414 /*
d3ef3d73
NP
415 * With writers on hold, if this value is zero, then there are
416 * definitely no active writers (although held writers may subsequently
417 * increment the count, they'll have to wait, and decrement it after
418 * seeing MNT_READONLY).
419 *
420 * It is OK to have counter incremented on one CPU and decremented on
421 * another: the sum will add up correctly. The danger would be when we
422 * sum up each counter, if we read a counter before it is incremented,
423 * but then read another CPU's count which it has been subsequently
424 * decremented from -- we would see more decrements than we should.
425 * MNT_WRITE_HOLD protects against this scenario, because
426 * mnt_want_write first increments count, then smp_mb, then spins on
427 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
428 * we're counting up here.
3d733633 429 */
c6653a83 430 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
431 ret = -EBUSY;
432 else
83adc753 433 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
434 /*
435 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
436 * that become unheld will see MNT_READONLY.
437 */
438 smp_wmb();
83adc753 439 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 440 br_write_unlock(vfsmount_lock);
3d733633 441 return ret;
8366025e 442}
8366025e 443
83adc753 444static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 445{
99b7db7b 446 br_write_lock(vfsmount_lock);
83adc753 447 mnt->mnt.mnt_flags &= ~MNT_READONLY;
99b7db7b 448 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
449}
450
b105e270 451static void free_vfsmnt(struct mount *mnt)
1da177e4 452{
52ba1621 453 kfree(mnt->mnt_devname);
73cd49ec 454 mnt_free_id(mnt);
d3ef3d73 455#ifdef CONFIG_SMP
68e8a9fe 456 free_percpu(mnt->mnt_pcp);
d3ef3d73 457#endif
b105e270 458 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
459}
460
461/*
a05964f3
RP
462 * find the first or last mount at @dentry on vfsmount @mnt depending on
463 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 464 * vfsmount_lock must be held for read or write.
1da177e4 465 */
c7105365 466struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 467 int dir)
1da177e4 468{
b58fed8b
RP
469 struct list_head *head = mount_hashtable + hash(mnt, dentry);
470 struct list_head *tmp = head;
c7105365 471 struct mount *p, *found = NULL;
1da177e4 472
1da177e4 473 for (;;) {
a05964f3 474 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
475 p = NULL;
476 if (tmp == head)
477 break;
1b8e5564 478 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 479 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 480 found = p;
1da177e4
LT
481 break;
482 }
483 }
1da177e4
LT
484 return found;
485}
486
a05964f3
RP
487/*
488 * lookup_mnt increments the ref count before returning
489 * the vfsmount struct.
490 */
1c755af4 491struct vfsmount *lookup_mnt(struct path *path)
a05964f3 492{
c7105365 493 struct mount *child_mnt;
99b7db7b
NP
494
495 br_read_lock(vfsmount_lock);
c7105365
AV
496 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
497 if (child_mnt) {
498 mnt_add_count(child_mnt, 1);
499 br_read_unlock(vfsmount_lock);
500 return &child_mnt->mnt;
501 } else {
502 br_read_unlock(vfsmount_lock);
503 return NULL;
504 }
a05964f3
RP
505}
506
143c8c91 507static inline int check_mnt(struct mount *mnt)
1da177e4 508{
6b3286ed 509 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
510}
511
99b7db7b
NP
512/*
513 * vfsmount lock must be held for write
514 */
6b3286ed 515static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
516{
517 if (ns) {
518 ns->event = ++event;
519 wake_up_interruptible(&ns->poll);
520 }
521}
522
99b7db7b
NP
523/*
524 * vfsmount lock must be held for write
525 */
6b3286ed 526static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
527{
528 if (ns && ns->event != event) {
529 ns->event = event;
530 wake_up_interruptible(&ns->poll);
531 }
532}
533
5f57cbcc
NP
534/*
535 * Clear dentry's mounted state if it has no remaining mounts.
536 * vfsmount_lock must be held for write.
537 */
aa0a4cf0 538static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
539{
540 unsigned u;
541
542 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 543 struct mount *p;
5f57cbcc 544
1b8e5564 545 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 546 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
547 return;
548 }
549 }
550 spin_lock(&dentry->d_lock);
551 dentry->d_flags &= ~DCACHE_MOUNTED;
552 spin_unlock(&dentry->d_lock);
553}
554
99b7db7b
NP
555/*
556 * vfsmount lock must be held for write
557 */
419148da
AV
558static void detach_mnt(struct mount *mnt, struct path *old_path)
559{
a73324da 560 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
561 old_path->mnt = &mnt->mnt_parent->mnt;
562 mnt->mnt_parent = mnt;
a73324da 563 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 564 list_del_init(&mnt->mnt_child);
1b8e5564 565 list_del_init(&mnt->mnt_hash);
aa0a4cf0 566 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
567}
568
99b7db7b
NP
569/*
570 * vfsmount lock must be held for write
571 */
14cf1fa8 572void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 573 struct mount *child_mnt)
b90fa9ae 574{
14cf1fa8 575 child_mnt->mnt_parent = real_mount(mntget(&mnt->mnt));
a73324da 576 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
577 spin_lock(&dentry->d_lock);
578 dentry->d_flags |= DCACHE_MOUNTED;
579 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
580}
581
99b7db7b
NP
582/*
583 * vfsmount lock must be held for write
584 */
419148da 585static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 586{
14cf1fa8 587 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 588 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 589 hash(path->mnt, path->dentry));
6b41d536 590 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
591}
592
83adc753 593static inline void __mnt_make_longterm(struct mount *mnt)
7e3d0eb0
AV
594{
595#ifdef CONFIG_SMP
68e8a9fe 596 atomic_inc(&mnt->mnt_longterm);
7e3d0eb0
AV
597#endif
598}
599
600/* needs vfsmount lock for write */
83adc753 601static inline void __mnt_make_shortterm(struct mount *mnt)
7e3d0eb0
AV
602{
603#ifdef CONFIG_SMP
68e8a9fe 604 atomic_dec(&mnt->mnt_longterm);
7e3d0eb0
AV
605#endif
606}
607
b90fa9ae 608/*
99b7db7b 609 * vfsmount lock must be held for write
b90fa9ae 610 */
4b2619a5 611static void commit_tree(struct mount *mnt)
b90fa9ae 612{
0714a533 613 struct mount *parent = mnt->mnt_parent;
83adc753 614 struct mount *m;
b90fa9ae 615 LIST_HEAD(head);
143c8c91 616 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 617
0714a533 618 BUG_ON(parent == mnt);
b90fa9ae 619
1a4eeaf2
AV
620 list_add_tail(&head, &mnt->mnt_list);
621 list_for_each_entry(m, &head, mnt_list) {
143c8c91 622 m->mnt_ns = n;
7e3d0eb0 623 __mnt_make_longterm(m);
f03c6599
AV
624 }
625
b90fa9ae
RP
626 list_splice(&head, n->list.prev);
627
1b8e5564 628 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 629 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 630 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 631 touch_mnt_namespace(n);
1da177e4
LT
632}
633
315fc83e 634static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
1da177e4 635{
6b41d536
AV
636 struct list_head *next = p->mnt_mounts.next;
637 if (next == &p->mnt_mounts) {
1da177e4 638 while (1) {
315fc83e 639 if (&p->mnt == root)
1da177e4 640 return NULL;
6b41d536
AV
641 next = p->mnt_child.next;
642 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 643 break;
0714a533 644 p = p->mnt_parent;
1da177e4
LT
645 }
646 }
6b41d536 647 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
648}
649
315fc83e 650static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 651{
6b41d536
AV
652 struct list_head *prev = p->mnt_mounts.prev;
653 while (prev != &p->mnt_mounts) {
654 p = list_entry(prev, struct mount, mnt_child);
655 prev = p->mnt_mounts.prev;
9676f0c6
RP
656 }
657 return p;
658}
659
9d412a43
AV
660struct vfsmount *
661vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
662{
b105e270 663 struct mount *mnt;
9d412a43
AV
664 struct dentry *root;
665
666 if (!type)
667 return ERR_PTR(-ENODEV);
668
669 mnt = alloc_vfsmnt(name);
670 if (!mnt)
671 return ERR_PTR(-ENOMEM);
672
673 if (flags & MS_KERNMOUNT)
b105e270 674 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
675
676 root = mount_fs(type, flags, name, data);
677 if (IS_ERR(root)) {
678 free_vfsmnt(mnt);
679 return ERR_CAST(root);
680 }
681
b105e270
AV
682 mnt->mnt.mnt_root = root;
683 mnt->mnt.mnt_sb = root->d_sb;
a73324da 684 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 685 mnt->mnt_parent = mnt;
b105e270 686 return &mnt->mnt;
9d412a43
AV
687}
688EXPORT_SYMBOL_GPL(vfs_kern_mount);
689
87129cc0 690static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 691 int flag)
1da177e4 692{
87129cc0 693 struct super_block *sb = old->mnt.mnt_sb;
52ba1621 694 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
1da177e4
LT
695
696 if (mnt) {
719f5d7f 697 if (flag & (CL_SLAVE | CL_PRIVATE))
15169fe7 698 mnt->mnt_group_id = 0; /* not a peer of original */
719f5d7f 699 else
15169fe7 700 mnt->mnt_group_id = old->mnt_group_id;
719f5d7f 701
15169fe7 702 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
b105e270 703 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
704 if (err)
705 goto out_free;
706 }
707
87129cc0 708 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 709 atomic_inc(&sb->s_active);
b105e270
AV
710 mnt->mnt.mnt_sb = sb;
711 mnt->mnt.mnt_root = dget(root);
a73324da 712 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 713 mnt->mnt_parent = mnt;
b90fa9ae 714
5afe0022 715 if (flag & CL_SLAVE) {
6776db3d 716 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
32301920 717 mnt->mnt_master = old;
fc7be130 718 CLEAR_MNT_SHARED(mnt);
8aec0809 719 } else if (!(flag & CL_PRIVATE)) {
fc7be130 720 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
6776db3d 721 list_add(&mnt->mnt_share, &old->mnt_share);
d10e8def 722 if (IS_MNT_SLAVE(old))
6776db3d 723 list_add(&mnt->mnt_slave, &old->mnt_slave);
d10e8def 724 mnt->mnt_master = old->mnt_master;
5afe0022 725 }
b90fa9ae 726 if (flag & CL_MAKE_SHARED)
0f0afb1d 727 set_mnt_shared(mnt);
1da177e4
LT
728
729 /* stick the duplicate mount on the same expiry list
730 * as the original if that was on one */
36341f64 731 if (flag & CL_EXPIRE) {
6776db3d
AV
732 if (!list_empty(&old->mnt_expire))
733 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 734 }
1da177e4 735 }
cb338d06 736 return mnt;
719f5d7f
MS
737
738 out_free:
739 free_vfsmnt(mnt);
740 return NULL;
1da177e4
LT
741}
742
83adc753 743static inline void mntfree(struct mount *mnt)
1da177e4 744{
83adc753
AV
745 struct vfsmount *m = &mnt->mnt;
746 struct super_block *sb = m->mnt_sb;
b3e19d92 747
3d733633
DH
748 /*
749 * This probably indicates that somebody messed
750 * up a mnt_want/drop_write() pair. If this
751 * happens, the filesystem was probably unable
752 * to make r/w->r/o transitions.
753 */
d3ef3d73 754 /*
b3e19d92
NP
755 * The locking used to deal with mnt_count decrement provides barriers,
756 * so mnt_get_writers() below is safe.
d3ef3d73 757 */
c6653a83 758 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
759 fsnotify_vfsmount_delete(m);
760 dput(m->mnt_root);
761 free_vfsmnt(mnt);
1da177e4
LT
762 deactivate_super(sb);
763}
764
900148dc 765static void mntput_no_expire(struct mount *mnt)
b3e19d92 766{
b3e19d92 767put_again:
f03c6599
AV
768#ifdef CONFIG_SMP
769 br_read_lock(vfsmount_lock);
68e8a9fe 770 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 771 mnt_add_count(mnt, -1);
b3e19d92 772 br_read_unlock(vfsmount_lock);
f03c6599 773 return;
b3e19d92 774 }
f03c6599 775 br_read_unlock(vfsmount_lock);
b3e19d92 776
99b7db7b 777 br_write_lock(vfsmount_lock);
aa9c0e07 778 mnt_add_count(mnt, -1);
b3e19d92 779 if (mnt_get_count(mnt)) {
99b7db7b
NP
780 br_write_unlock(vfsmount_lock);
781 return;
782 }
b3e19d92 783#else
aa9c0e07 784 mnt_add_count(mnt, -1);
b3e19d92 785 if (likely(mnt_get_count(mnt)))
99b7db7b 786 return;
b3e19d92 787 br_write_lock(vfsmount_lock);
f03c6599 788#endif
863d684f
AV
789 if (unlikely(mnt->mnt_pinned)) {
790 mnt_add_count(mnt, mnt->mnt_pinned + 1);
791 mnt->mnt_pinned = 0;
b3e19d92 792 br_write_unlock(vfsmount_lock);
900148dc 793 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 794 goto put_again;
7b7b1ace 795 }
99b7db7b 796 br_write_unlock(vfsmount_lock);
b3e19d92
NP
797 mntfree(mnt);
798}
b3e19d92
NP
799
800void mntput(struct vfsmount *mnt)
801{
802 if (mnt) {
863d684f 803 struct mount *m = real_mount(mnt);
b3e19d92 804 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
805 if (unlikely(m->mnt_expiry_mark))
806 m->mnt_expiry_mark = 0;
807 mntput_no_expire(m);
b3e19d92
NP
808 }
809}
810EXPORT_SYMBOL(mntput);
811
812struct vfsmount *mntget(struct vfsmount *mnt)
813{
814 if (mnt)
83adc753 815 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
816 return mnt;
817}
818EXPORT_SYMBOL(mntget);
819
7b7b1ace
AV
820void mnt_pin(struct vfsmount *mnt)
821{
99b7db7b 822 br_write_lock(vfsmount_lock);
863d684f 823 real_mount(mnt)->mnt_pinned++;
99b7db7b 824 br_write_unlock(vfsmount_lock);
7b7b1ace 825}
7b7b1ace
AV
826EXPORT_SYMBOL(mnt_pin);
827
863d684f 828void mnt_unpin(struct vfsmount *m)
7b7b1ace 829{
863d684f 830 struct mount *mnt = real_mount(m);
99b7db7b 831 br_write_lock(vfsmount_lock);
7b7b1ace 832 if (mnt->mnt_pinned) {
863d684f 833 mnt_add_count(mnt, 1);
7b7b1ace
AV
834 mnt->mnt_pinned--;
835 }
99b7db7b 836 br_write_unlock(vfsmount_lock);
7b7b1ace 837}
7b7b1ace 838EXPORT_SYMBOL(mnt_unpin);
1da177e4 839
b3b304a2
MS
840static inline void mangle(struct seq_file *m, const char *s)
841{
842 seq_escape(m, s, " \t\n\\");
843}
844
845/*
846 * Simple .show_options callback for filesystems which don't want to
847 * implement more complex mount option showing.
848 *
849 * See also save_mount_options().
850 */
851int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
852{
2a32cebd
AV
853 const char *options;
854
855 rcu_read_lock();
856 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
857
858 if (options != NULL && options[0]) {
859 seq_putc(m, ',');
860 mangle(m, options);
861 }
2a32cebd 862 rcu_read_unlock();
b3b304a2
MS
863
864 return 0;
865}
866EXPORT_SYMBOL(generic_show_options);
867
868/*
869 * If filesystem uses generic_show_options(), this function should be
870 * called from the fill_super() callback.
871 *
872 * The .remount_fs callback usually needs to be handled in a special
873 * way, to make sure, that previous options are not overwritten if the
874 * remount fails.
875 *
876 * Also note, that if the filesystem's .remount_fs function doesn't
877 * reset all options to their default value, but changes only newly
878 * given options, then the displayed options will not reflect reality
879 * any more.
880 */
881void save_mount_options(struct super_block *sb, char *options)
882{
2a32cebd
AV
883 BUG_ON(sb->s_options);
884 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
885}
886EXPORT_SYMBOL(save_mount_options);
887
2a32cebd
AV
888void replace_mount_options(struct super_block *sb, char *options)
889{
890 char *old = sb->s_options;
891 rcu_assign_pointer(sb->s_options, options);
892 if (old) {
893 synchronize_rcu();
894 kfree(old);
895 }
896}
897EXPORT_SYMBOL(replace_mount_options);
898
a1a2c409 899#ifdef CONFIG_PROC_FS
1da177e4
LT
900/* iterator */
901static void *m_start(struct seq_file *m, loff_t *pos)
902{
a1a2c409 903 struct proc_mounts *p = m->private;
1da177e4 904
390c6843 905 down_read(&namespace_sem);
a1a2c409 906 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
907}
908
909static void *m_next(struct seq_file *m, void *v, loff_t *pos)
910{
a1a2c409 911 struct proc_mounts *p = m->private;
b0765fb8 912
a1a2c409 913 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
914}
915
916static void m_stop(struct seq_file *m, void *v)
917{
390c6843 918 up_read(&namespace_sem);
1da177e4
LT
919}
920
9f5596af
AV
921int mnt_had_events(struct proc_mounts *p)
922{
923 struct mnt_namespace *ns = p->ns;
924 int res = 0;
925
99b7db7b 926 br_read_lock(vfsmount_lock);
f1514638
KS
927 if (p->m.poll_event != ns->event) {
928 p->m.poll_event = ns->event;
9f5596af
AV
929 res = 1;
930 }
99b7db7b 931 br_read_unlock(vfsmount_lock);
9f5596af
AV
932
933 return res;
934}
935
2d4d4864
RP
936struct proc_fs_info {
937 int flag;
938 const char *str;
939};
940
2069f457 941static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 942{
2d4d4864 943 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
944 { MS_SYNCHRONOUS, ",sync" },
945 { MS_DIRSYNC, ",dirsync" },
946 { MS_MANDLOCK, ",mand" },
1da177e4
LT
947 { 0, NULL }
948 };
2d4d4864
RP
949 const struct proc_fs_info *fs_infop;
950
951 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
952 if (sb->s_flags & fs_infop->flag)
953 seq_puts(m, fs_infop->str);
954 }
2069f457
EP
955
956 return security_sb_show_options(m, sb);
2d4d4864
RP
957}
958
959static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
960{
961 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
962 { MNT_NOSUID, ",nosuid" },
963 { MNT_NODEV, ",nodev" },
964 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
965 { MNT_NOATIME, ",noatime" },
966 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 967 { MNT_RELATIME, ",relatime" },
1da177e4
LT
968 { 0, NULL }
969 };
2d4d4864
RP
970 const struct proc_fs_info *fs_infop;
971
972 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
973 if (mnt->mnt_flags & fs_infop->flag)
974 seq_puts(m, fs_infop->str);
975 }
976}
977
978static void show_type(struct seq_file *m, struct super_block *sb)
979{
980 mangle(m, sb->s_type->name);
981 if (sb->s_subtype && sb->s_subtype[0]) {
982 seq_putc(m, '.');
983 mangle(m, sb->s_subtype);
984 }
985}
986
987static int show_vfsmnt(struct seq_file *m, void *v)
988{
1a4eeaf2
AV
989 struct mount *r = list_entry(v, struct mount, mnt_list);
990 struct vfsmount *mnt = &r->mnt;
2d4d4864 991 int err = 0;
c32c2f63 992 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4 993
c7f404b4
AV
994 if (mnt->mnt_sb->s_op->show_devname) {
995 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
996 if (err)
997 goto out;
998 } else {
52ba1621 999 mangle(m, r->mnt_devname ? r->mnt_devname : "none");
c7f404b4 1000 }
1da177e4 1001 seq_putc(m, ' ');
c32c2f63 1002 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 1003 seq_putc(m, ' ');
2d4d4864 1004 show_type(m, mnt->mnt_sb);
2e4b7fcd 1005 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
1006 err = show_sb_opts(m, mnt->mnt_sb);
1007 if (err)
1008 goto out;
2d4d4864 1009 show_mnt_opts(m, mnt);
1da177e4
LT
1010 if (mnt->mnt_sb->s_op->show_options)
1011 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1012 seq_puts(m, " 0 0\n");
2069f457 1013out:
1da177e4
LT
1014 return err;
1015}
1016
a1a2c409 1017const struct seq_operations mounts_op = {
1da177e4
LT
1018 .start = m_start,
1019 .next = m_next,
1020 .stop = m_stop,
1021 .show = show_vfsmnt
1022};
1023
2d4d4864
RP
1024static int show_mountinfo(struct seq_file *m, void *v)
1025{
1026 struct proc_mounts *p = m->private;
1a4eeaf2
AV
1027 struct mount *r = list_entry(v, struct mount, mnt_list);
1028 struct vfsmount *mnt = &r->mnt;
2d4d4864
RP
1029 struct super_block *sb = mnt->mnt_sb;
1030 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1031 struct path root = p->root;
1032 int err = 0;
1033
15169fe7 1034 seq_printf(m, "%i %i %u:%u ", r->mnt_id, r->mnt_parent->mnt_id,
2d4d4864 1035 MAJOR(sb->s_dev), MINOR(sb->s_dev));
c7f404b4
AV
1036 if (sb->s_op->show_path)
1037 err = sb->s_op->show_path(m, mnt);
1038 else
1039 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1040 if (err)
1041 goto out;
2d4d4864 1042 seq_putc(m, ' ');
02125a82
AV
1043
1044 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1045 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1046 if (err)
1047 goto out;
1048
2d4d4864
RP
1049 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1050 show_mnt_opts(m, mnt);
1051
1052 /* Tagged fields ("foo:X" or "bar") */
fc7be130 1053 if (IS_MNT_SHARED(r))
15169fe7 1054 seq_printf(m, " shared:%i", r->mnt_group_id);
d10e8def 1055 if (IS_MNT_SLAVE(r)) {
15169fe7 1056 int master = r->mnt_master->mnt_group_id;
6fc7871f 1057 int dom = get_dominating_id(r, &p->root);
97e7e0f7
MS
1058 seq_printf(m, " master:%i", master);
1059 if (dom && dom != master)
1060 seq_printf(m, " propagate_from:%i", dom);
1061 }
fc7be130 1062 if (IS_MNT_UNBINDABLE(r))
2d4d4864
RP
1063 seq_puts(m, " unbindable");
1064
1065 /* Filesystem specific data */
1066 seq_puts(m, " - ");
1067 show_type(m, sb);
1068 seq_putc(m, ' ');
c7f404b4
AV
1069 if (sb->s_op->show_devname)
1070 err = sb->s_op->show_devname(m, mnt);
1071 else
52ba1621 1072 mangle(m, r->mnt_devname ? r->mnt_devname : "none");
c7f404b4
AV
1073 if (err)
1074 goto out;
2d4d4864 1075 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1076 err = show_sb_opts(m, sb);
1077 if (err)
1078 goto out;
2d4d4864
RP
1079 if (sb->s_op->show_options)
1080 err = sb->s_op->show_options(m, mnt);
1081 seq_putc(m, '\n');
2069f457 1082out:
2d4d4864
RP
1083 return err;
1084}
1085
1086const struct seq_operations mountinfo_op = {
1087 .start = m_start,
1088 .next = m_next,
1089 .stop = m_stop,
1090 .show = show_mountinfo,
1091};
1092
b4629fe2
CL
1093static int show_vfsstat(struct seq_file *m, void *v)
1094{
1a4eeaf2
AV
1095 struct mount *r = list_entry(v, struct mount, mnt_list);
1096 struct vfsmount *mnt = &r->mnt;
c32c2f63 1097 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1098 int err = 0;
1099
1100 /* device */
c7f404b4 1101 if (mnt->mnt_sb->s_op->show_devname) {
a877ee03 1102 seq_puts(m, "device ");
c7f404b4
AV
1103 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1104 } else {
52ba1621 1105 if (r->mnt_devname) {
c7f404b4 1106 seq_puts(m, "device ");
52ba1621 1107 mangle(m, r->mnt_devname);
c7f404b4
AV
1108 } else
1109 seq_puts(m, "no device");
1110 }
b4629fe2
CL
1111
1112 /* mount point */
1113 seq_puts(m, " mounted on ");
c32c2f63 1114 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1115 seq_putc(m, ' ');
1116
1117 /* file system type */
1118 seq_puts(m, "with fstype ");
2d4d4864 1119 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1120
1121 /* optional statistics */
1122 if (mnt->mnt_sb->s_op->show_stats) {
1123 seq_putc(m, ' ');
c7f404b4
AV
1124 if (!err)
1125 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
b4629fe2
CL
1126 }
1127
1128 seq_putc(m, '\n');
1129 return err;
1130}
1131
a1a2c409 1132const struct seq_operations mountstats_op = {
b4629fe2
CL
1133 .start = m_start,
1134 .next = m_next,
1135 .stop = m_stop,
1136 .show = show_vfsstat,
1137};
a1a2c409 1138#endif /* CONFIG_PROC_FS */
b4629fe2 1139
1da177e4
LT
1140/**
1141 * may_umount_tree - check if a mount tree is busy
1142 * @mnt: root of mount tree
1143 *
1144 * This is called to check if a tree of mounts has any
1145 * open files, pwds, chroots or sub mounts that are
1146 * busy.
1147 */
1148int may_umount_tree(struct vfsmount *mnt)
1149{
36341f64
RP
1150 int actual_refs = 0;
1151 int minimum_refs = 0;
315fc83e
AV
1152 struct mount *p;
1153 BUG_ON(!mnt);
1da177e4 1154
b3e19d92
NP
1155 /* write lock needed for mnt_get_count */
1156 br_write_lock(vfsmount_lock);
315fc83e 1157 for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
83adc753 1158 actual_refs += mnt_get_count(p);
1da177e4 1159 minimum_refs += 2;
1da177e4 1160 }
b3e19d92 1161 br_write_unlock(vfsmount_lock);
1da177e4
LT
1162
1163 if (actual_refs > minimum_refs)
e3474a8e 1164 return 0;
1da177e4 1165
e3474a8e 1166 return 1;
1da177e4
LT
1167}
1168
1169EXPORT_SYMBOL(may_umount_tree);
1170
1171/**
1172 * may_umount - check if a mount point is busy
1173 * @mnt: root of mount
1174 *
1175 * This is called to check if a mount point has any
1176 * open files, pwds, chroots or sub mounts. If the
1177 * mount has sub mounts this will return busy
1178 * regardless of whether the sub mounts are busy.
1179 *
1180 * Doesn't take quota and stuff into account. IOW, in some cases it will
1181 * give false negatives. The main reason why it's here is that we need
1182 * a non-destructive way to look for easily umountable filesystems.
1183 */
1184int may_umount(struct vfsmount *mnt)
1185{
e3474a8e 1186 int ret = 1;
8ad08d8a 1187 down_read(&namespace_sem);
b3e19d92 1188 br_write_lock(vfsmount_lock);
1ab59738 1189 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1190 ret = 0;
b3e19d92 1191 br_write_unlock(vfsmount_lock);
8ad08d8a 1192 up_read(&namespace_sem);
a05964f3 1193 return ret;
1da177e4
LT
1194}
1195
1196EXPORT_SYMBOL(may_umount);
1197
b90fa9ae 1198void release_mounts(struct list_head *head)
70fbcdf4 1199{
d5e50f74 1200 struct mount *mnt;
bf066c7d 1201 while (!list_empty(head)) {
1b8e5564
AV
1202 mnt = list_first_entry(head, struct mount, mnt_hash);
1203 list_del_init(&mnt->mnt_hash);
676da58d 1204 if (mnt_has_parent(mnt)) {
70fbcdf4 1205 struct dentry *dentry;
863d684f 1206 struct mount *m;
99b7db7b
NP
1207
1208 br_write_lock(vfsmount_lock);
a73324da 1209 dentry = mnt->mnt_mountpoint;
863d684f 1210 m = mnt->mnt_parent;
a73324da 1211 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1212 mnt->mnt_parent = mnt;
7c4b93d8 1213 m->mnt_ghosts--;
99b7db7b 1214 br_write_unlock(vfsmount_lock);
70fbcdf4 1215 dput(dentry);
863d684f 1216 mntput(&m->mnt);
70fbcdf4 1217 }
d5e50f74 1218 mntput(&mnt->mnt);
70fbcdf4
RP
1219 }
1220}
1221
99b7db7b
NP
1222/*
1223 * vfsmount lock must be held for write
1224 * namespace_sem must be held for write
1225 */
761d5c38 1226void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1227{
7b8a53fd 1228 LIST_HEAD(tmp_list);
315fc83e 1229 struct mount *p;
1da177e4 1230
761d5c38 1231 for (p = mnt; p; p = next_mnt(p, &mnt->mnt))
1b8e5564 1232 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1233
a05964f3 1234 if (propagate)
7b8a53fd 1235 propagate_umount(&tmp_list);
a05964f3 1236
1b8e5564 1237 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1238 list_del_init(&p->mnt_expire);
1a4eeaf2 1239 list_del_init(&p->mnt_list);
143c8c91
AV
1240 __touch_mnt_namespace(p->mnt_ns);
1241 p->mnt_ns = NULL;
83adc753 1242 __mnt_make_shortterm(p);
6b41d536 1243 list_del_init(&p->mnt_child);
676da58d 1244 if (mnt_has_parent(p)) {
863d684f 1245 p->mnt_parent->mnt_ghosts++;
a73324da 1246 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1247 }
0f0afb1d 1248 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1249 }
7b8a53fd 1250 list_splice(&tmp_list, kill);
1da177e4
LT
1251}
1252
692afc31 1253static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1254
1ab59738 1255static int do_umount(struct mount *mnt, int flags)
1da177e4 1256{
1ab59738 1257 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1258 int retval;
70fbcdf4 1259 LIST_HEAD(umount_list);
1da177e4 1260
1ab59738 1261 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1262 if (retval)
1263 return retval;
1264
1265 /*
1266 * Allow userspace to request a mountpoint be expired rather than
1267 * unmounting unconditionally. Unmount only happens if:
1268 * (1) the mark is already set (the mark is cleared by mntput())
1269 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1270 */
1271 if (flags & MNT_EXPIRE) {
1ab59738 1272 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1273 flags & (MNT_FORCE | MNT_DETACH))
1274 return -EINVAL;
1275
b3e19d92
NP
1276 /*
1277 * probably don't strictly need the lock here if we examined
1278 * all race cases, but it's a slowpath.
1279 */
1280 br_write_lock(vfsmount_lock);
83adc753 1281 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1282 br_write_unlock(vfsmount_lock);
1da177e4 1283 return -EBUSY;
b3e19d92
NP
1284 }
1285 br_write_unlock(vfsmount_lock);
1da177e4 1286
863d684f 1287 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1288 return -EAGAIN;
1289 }
1290
1291 /*
1292 * If we may have to abort operations to get out of this
1293 * mount, and they will themselves hold resources we must
1294 * allow the fs to do things. In the Unix tradition of
1295 * 'Gee thats tricky lets do it in userspace' the umount_begin
1296 * might fail to complete on the first run through as other tasks
1297 * must return, and the like. Thats for the mount program to worry
1298 * about for the moment.
1299 */
1300
42faad99 1301 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1302 sb->s_op->umount_begin(sb);
42faad99 1303 }
1da177e4
LT
1304
1305 /*
1306 * No sense to grab the lock for this test, but test itself looks
1307 * somewhat bogus. Suggestions for better replacement?
1308 * Ho-hum... In principle, we might treat that as umount + switch
1309 * to rootfs. GC would eventually take care of the old vfsmount.
1310 * Actually it makes sense, especially if rootfs would contain a
1311 * /reboot - static binary that would close all descriptors and
1312 * call reboot(9). Then init(8) could umount root and exec /reboot.
1313 */
1ab59738 1314 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1315 /*
1316 * Special case for "unmounting" root ...
1317 * we just try to remount it readonly.
1318 */
1319 down_write(&sb->s_umount);
4aa98cf7 1320 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1321 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1322 up_write(&sb->s_umount);
1323 return retval;
1324 }
1325
390c6843 1326 down_write(&namespace_sem);
99b7db7b 1327 br_write_lock(vfsmount_lock);
5addc5dd 1328 event++;
1da177e4 1329
c35038be 1330 if (!(flags & MNT_DETACH))
1ab59738 1331 shrink_submounts(mnt, &umount_list);
c35038be 1332
1da177e4 1333 retval = -EBUSY;
a05964f3 1334 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1335 if (!list_empty(&mnt->mnt_list))
1ab59738 1336 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1337 retval = 0;
1338 }
99b7db7b 1339 br_write_unlock(vfsmount_lock);
390c6843 1340 up_write(&namespace_sem);
70fbcdf4 1341 release_mounts(&umount_list);
1da177e4
LT
1342 return retval;
1343}
1344
1345/*
1346 * Now umount can handle mount points as well as block devices.
1347 * This is important for filesystems which use unnamed block devices.
1348 *
1349 * We now support a flag for forced unmount like the other 'big iron'
1350 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1351 */
1352
bdc480e3 1353SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1354{
2d8f3038 1355 struct path path;
900148dc 1356 struct mount *mnt;
1da177e4 1357 int retval;
db1f05bb 1358 int lookup_flags = 0;
1da177e4 1359
db1f05bb
MS
1360 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1361 return -EINVAL;
1362
1363 if (!(flags & UMOUNT_NOFOLLOW))
1364 lookup_flags |= LOOKUP_FOLLOW;
1365
1366 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1367 if (retval)
1368 goto out;
900148dc 1369 mnt = real_mount(path.mnt);
1da177e4 1370 retval = -EINVAL;
2d8f3038 1371 if (path.dentry != path.mnt->mnt_root)
1da177e4 1372 goto dput_and_out;
143c8c91 1373 if (!check_mnt(mnt))
1da177e4
LT
1374 goto dput_and_out;
1375
1376 retval = -EPERM;
1377 if (!capable(CAP_SYS_ADMIN))
1378 goto dput_and_out;
1379
900148dc 1380 retval = do_umount(mnt, flags);
1da177e4 1381dput_and_out:
429731b1 1382 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1383 dput(path.dentry);
900148dc 1384 mntput_no_expire(mnt);
1da177e4
LT
1385out:
1386 return retval;
1387}
1388
1389#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1390
1391/*
b58fed8b 1392 * The 2.0 compatible umount. No flags.
1da177e4 1393 */
bdc480e3 1394SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1395{
b58fed8b 1396 return sys_umount(name, 0);
1da177e4
LT
1397}
1398
1399#endif
1400
2d92ab3c 1401static int mount_is_safe(struct path *path)
1da177e4
LT
1402{
1403 if (capable(CAP_SYS_ADMIN))
1404 return 0;
1405 return -EPERM;
1406#ifdef notyet
2d92ab3c 1407 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1408 return -EPERM;
2d92ab3c 1409 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1410 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1411 return -EPERM;
1412 }
2d92ab3c 1413 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1414 return -EPERM;
1415 return 0;
1416#endif
1417}
1418
87129cc0 1419struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1420 int flag)
1da177e4 1421{
a73324da 1422 struct mount *res, *p, *q, *r;
1a390689 1423 struct path path;
1da177e4 1424
fc7be130 1425 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
9676f0c6
RP
1426 return NULL;
1427
36341f64 1428 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1429 if (!q)
1430 goto Enomem;
a73324da 1431 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1432
1433 p = mnt;
6b41d536 1434 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1435 struct mount *s;
7ec02ef1 1436 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1437 continue;
1438
a73324da 1439 for (s = r; s; s = next_mnt(s, &r->mnt)) {
fc7be130 1440 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1441 s = skip_mnt_tree(s);
1442 continue;
1443 }
0714a533
AV
1444 while (p != s->mnt_parent) {
1445 p = p->mnt_parent;
1446 q = q->mnt_parent;
1da177e4 1447 }
87129cc0 1448 p = s;
cb338d06 1449 path.mnt = &q->mnt;
a73324da 1450 path.dentry = p->mnt_mountpoint;
87129cc0 1451 q = clone_mnt(p, p->mnt.mnt_root, flag);
1da177e4
LT
1452 if (!q)
1453 goto Enomem;
99b7db7b 1454 br_write_lock(vfsmount_lock);
1a4eeaf2 1455 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1456 attach_mnt(q, &path);
99b7db7b 1457 br_write_unlock(vfsmount_lock);
1da177e4
LT
1458 }
1459 }
1460 return res;
b58fed8b 1461Enomem:
1da177e4 1462 if (res) {
70fbcdf4 1463 LIST_HEAD(umount_list);
99b7db7b 1464 br_write_lock(vfsmount_lock);
761d5c38 1465 umount_tree(res, 0, &umount_list);
99b7db7b 1466 br_write_unlock(vfsmount_lock);
70fbcdf4 1467 release_mounts(&umount_list);
1da177e4
LT
1468 }
1469 return NULL;
1470}
1471
589ff870 1472struct vfsmount *collect_mounts(struct path *path)
8aec0809 1473{
cb338d06 1474 struct mount *tree;
1a60a280 1475 down_write(&namespace_sem);
87129cc0
AV
1476 tree = copy_tree(real_mount(path->mnt), path->dentry,
1477 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1478 up_write(&namespace_sem);
cb338d06 1479 return tree ? &tree->mnt : NULL;
8aec0809
AV
1480}
1481
1482void drop_collected_mounts(struct vfsmount *mnt)
1483{
1484 LIST_HEAD(umount_list);
1a60a280 1485 down_write(&namespace_sem);
99b7db7b 1486 br_write_lock(vfsmount_lock);
761d5c38 1487 umount_tree(real_mount(mnt), 0, &umount_list);
99b7db7b 1488 br_write_unlock(vfsmount_lock);
1a60a280 1489 up_write(&namespace_sem);
8aec0809
AV
1490 release_mounts(&umount_list);
1491}
1492
1f707137
AV
1493int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1494 struct vfsmount *root)
1495{
1a4eeaf2 1496 struct mount *mnt;
1f707137
AV
1497 int res = f(root, arg);
1498 if (res)
1499 return res;
1a4eeaf2
AV
1500 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1501 res = f(&mnt->mnt, arg);
1f707137
AV
1502 if (res)
1503 return res;
1504 }
1505 return 0;
1506}
1507
4b8b21f4 1508static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1509{
315fc83e 1510 struct mount *p;
719f5d7f 1511
4b8b21f4 1512 for (p = mnt; p != end; p = next_mnt(p, &mnt->mnt)) {
fc7be130 1513 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1514 mnt_release_group_id(p);
719f5d7f
MS
1515 }
1516}
1517
4b8b21f4 1518static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1519{
315fc83e 1520 struct mount *p;
719f5d7f 1521
4b8b21f4 1522 for (p = mnt; p; p = recurse ? next_mnt(p, &mnt->mnt) : NULL) {
fc7be130 1523 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1524 int err = mnt_alloc_group_id(p);
719f5d7f 1525 if (err) {
4b8b21f4 1526 cleanup_group_ids(mnt, p);
719f5d7f
MS
1527 return err;
1528 }
1529 }
1530 }
1531
1532 return 0;
1533}
1534
b90fa9ae
RP
1535/*
1536 * @source_mnt : mount tree to be attached
21444403
RP
1537 * @nd : place the mount tree @source_mnt is attached
1538 * @parent_nd : if non-null, detach the source_mnt from its parent and
1539 * store the parent mount and mountpoint dentry.
1540 * (done when source_mnt is moved)
b90fa9ae
RP
1541 *
1542 * NOTE: in the table below explains the semantics when a source mount
1543 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1544 * ---------------------------------------------------------------------------
1545 * | BIND MOUNT OPERATION |
1546 * |**************************************************************************
1547 * | source-->| shared | private | slave | unbindable |
1548 * | dest | | | | |
1549 * | | | | | | |
1550 * | v | | | | |
1551 * |**************************************************************************
1552 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1553 * | | | | | |
1554 * |non-shared| shared (+) | private | slave (*) | invalid |
1555 * ***************************************************************************
b90fa9ae
RP
1556 * A bind operation clones the source mount and mounts the clone on the
1557 * destination mount.
1558 *
1559 * (++) the cloned mount is propagated to all the mounts in the propagation
1560 * tree of the destination mount and the cloned mount is added to
1561 * the peer group of the source mount.
1562 * (+) the cloned mount is created under the destination mount and is marked
1563 * as shared. The cloned mount is added to the peer group of the source
1564 * mount.
5afe0022
RP
1565 * (+++) the mount is propagated to all the mounts in the propagation tree
1566 * of the destination mount and the cloned mount is made slave
1567 * of the same master as that of the source mount. The cloned mount
1568 * is marked as 'shared and slave'.
1569 * (*) the cloned mount is made a slave of the same master as that of the
1570 * source mount.
1571 *
9676f0c6
RP
1572 * ---------------------------------------------------------------------------
1573 * | MOVE MOUNT OPERATION |
1574 * |**************************************************************************
1575 * | source-->| shared | private | slave | unbindable |
1576 * | dest | | | | |
1577 * | | | | | | |
1578 * | v | | | | |
1579 * |**************************************************************************
1580 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1581 * | | | | | |
1582 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1583 * ***************************************************************************
5afe0022
RP
1584 *
1585 * (+) the mount is moved to the destination. And is then propagated to
1586 * all the mounts in the propagation tree of the destination mount.
21444403 1587 * (+*) the mount is moved to the destination.
5afe0022
RP
1588 * (+++) the mount is moved to the destination and is then propagated to
1589 * all the mounts belonging to the destination mount's propagation tree.
1590 * the mount is marked as 'shared and slave'.
1591 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1592 *
1593 * if the source mount is a tree, the operations explained above is
1594 * applied to each mount in the tree.
1595 * Must be called without spinlocks held, since this function can sleep
1596 * in allocations.
1597 */
0fb54e50 1598static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1599 struct path *path, struct path *parent_path)
b90fa9ae
RP
1600{
1601 LIST_HEAD(tree_list);
a8d56d8e 1602 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1603 struct dentry *dest_dentry = path->dentry;
315fc83e 1604 struct mount *child, *p;
719f5d7f 1605 int err;
b90fa9ae 1606
fc7be130 1607 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1608 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1609 if (err)
1610 goto out;
1611 }
a8d56d8e 1612 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1613 if (err)
1614 goto out_cleanup_ids;
b90fa9ae 1615
99b7db7b 1616 br_write_lock(vfsmount_lock);
df1a1ad2 1617
fc7be130 1618 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1619 for (p = source_mnt; p; p = next_mnt(p, &source_mnt->mnt))
0f0afb1d 1620 set_mnt_shared(p);
b90fa9ae 1621 }
1a390689 1622 if (parent_path) {
0fb54e50
AV
1623 detach_mnt(source_mnt, parent_path);
1624 attach_mnt(source_mnt, path);
143c8c91 1625 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1626 } else {
14cf1fa8 1627 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1628 commit_tree(source_mnt);
21444403 1629 }
b90fa9ae 1630
1b8e5564
AV
1631 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1632 list_del_init(&child->mnt_hash);
4b2619a5 1633 commit_tree(child);
b90fa9ae 1634 }
99b7db7b
NP
1635 br_write_unlock(vfsmount_lock);
1636
b90fa9ae 1637 return 0;
719f5d7f
MS
1638
1639 out_cleanup_ids:
fc7be130 1640 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1641 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1642 out:
1643 return err;
b90fa9ae
RP
1644}
1645
b12cea91
AV
1646static int lock_mount(struct path *path)
1647{
1648 struct vfsmount *mnt;
1649retry:
1650 mutex_lock(&path->dentry->d_inode->i_mutex);
1651 if (unlikely(cant_mount(path->dentry))) {
1652 mutex_unlock(&path->dentry->d_inode->i_mutex);
1653 return -ENOENT;
1654 }
1655 down_write(&namespace_sem);
1656 mnt = lookup_mnt(path);
1657 if (likely(!mnt))
1658 return 0;
1659 up_write(&namespace_sem);
1660 mutex_unlock(&path->dentry->d_inode->i_mutex);
1661 path_put(path);
1662 path->mnt = mnt;
1663 path->dentry = dget(mnt->mnt_root);
1664 goto retry;
1665}
1666
1667static void unlock_mount(struct path *path)
1668{
1669 up_write(&namespace_sem);
1670 mutex_unlock(&path->dentry->d_inode->i_mutex);
1671}
1672
95bc5f25 1673static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1674{
95bc5f25 1675 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1676 return -EINVAL;
1677
8c3ee42e 1678 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1679 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1680 return -ENOTDIR;
1681
b12cea91
AV
1682 if (d_unlinked(path->dentry))
1683 return -ENOENT;
1da177e4 1684
95bc5f25 1685 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1686}
1687
7a2e8a8f
VA
1688/*
1689 * Sanity check the flags to change_mnt_propagation.
1690 */
1691
1692static int flags_to_propagation_type(int flags)
1693{
7c6e984d 1694 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1695
1696 /* Fail if any non-propagation flags are set */
1697 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1698 return 0;
1699 /* Only one propagation flag should be set */
1700 if (!is_power_of_2(type))
1701 return 0;
1702 return type;
1703}
1704
07b20889
RP
1705/*
1706 * recursively change the type of the mountpoint.
1707 */
0a0d8a46 1708static int do_change_type(struct path *path, int flag)
07b20889 1709{
315fc83e 1710 struct mount *m;
4b8b21f4 1711 struct mount *mnt = real_mount(path->mnt);
07b20889 1712 int recurse = flag & MS_REC;
7a2e8a8f 1713 int type;
719f5d7f 1714 int err = 0;
07b20889 1715
ee6f9582
MS
1716 if (!capable(CAP_SYS_ADMIN))
1717 return -EPERM;
1718
2d92ab3c 1719 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1720 return -EINVAL;
1721
7a2e8a8f
VA
1722 type = flags_to_propagation_type(flag);
1723 if (!type)
1724 return -EINVAL;
1725
07b20889 1726 down_write(&namespace_sem);
719f5d7f
MS
1727 if (type == MS_SHARED) {
1728 err = invent_group_ids(mnt, recurse);
1729 if (err)
1730 goto out_unlock;
1731 }
1732
99b7db7b 1733 br_write_lock(vfsmount_lock);
4b8b21f4 1734 for (m = mnt; m; m = (recurse ? next_mnt(m, &mnt->mnt) : NULL))
0f0afb1d 1735 change_mnt_propagation(m, type);
99b7db7b 1736 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1737
1738 out_unlock:
07b20889 1739 up_write(&namespace_sem);
719f5d7f 1740 return err;
07b20889
RP
1741}
1742
1da177e4
LT
1743/*
1744 * do loopback mount.
1745 */
0a0d8a46 1746static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1747 int recurse)
1da177e4 1748{
b12cea91 1749 LIST_HEAD(umount_list);
2d92ab3c 1750 struct path old_path;
87129cc0 1751 struct mount *mnt = NULL, *old;
2d92ab3c 1752 int err = mount_is_safe(path);
1da177e4
LT
1753 if (err)
1754 return err;
1755 if (!old_name || !*old_name)
1756 return -EINVAL;
815d405c 1757 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1758 if (err)
1759 return err;
1760
b12cea91
AV
1761 err = lock_mount(path);
1762 if (err)
1763 goto out;
1764
87129cc0
AV
1765 old = real_mount(old_path.mnt);
1766
1da177e4 1767 err = -EINVAL;
fc7be130 1768 if (IS_MNT_UNBINDABLE(old))
b12cea91 1769 goto out2;
9676f0c6 1770
143c8c91 1771 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1772 goto out2;
1da177e4 1773
ccd48bc7
AV
1774 err = -ENOMEM;
1775 if (recurse)
87129cc0 1776 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1777 else
87129cc0 1778 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7
AV
1779
1780 if (!mnt)
b12cea91 1781 goto out2;
ccd48bc7 1782
95bc5f25 1783 err = graft_tree(mnt, path);
ccd48bc7 1784 if (err) {
99b7db7b 1785 br_write_lock(vfsmount_lock);
761d5c38 1786 umount_tree(mnt, 0, &umount_list);
99b7db7b 1787 br_write_unlock(vfsmount_lock);
5b83d2c5 1788 }
b12cea91
AV
1789out2:
1790 unlock_mount(path);
1791 release_mounts(&umount_list);
ccd48bc7 1792out:
2d92ab3c 1793 path_put(&old_path);
1da177e4
LT
1794 return err;
1795}
1796
2e4b7fcd
DH
1797static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1798{
1799 int error = 0;
1800 int readonly_request = 0;
1801
1802 if (ms_flags & MS_RDONLY)
1803 readonly_request = 1;
1804 if (readonly_request == __mnt_is_readonly(mnt))
1805 return 0;
1806
1807 if (readonly_request)
83adc753 1808 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1809 else
83adc753 1810 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1811 return error;
1812}
1813
1da177e4
LT
1814/*
1815 * change filesystem flags. dir should be a physical root of filesystem.
1816 * If you've mounted a non-root directory somewhere and want to do remount
1817 * on it - tough luck.
1818 */
0a0d8a46 1819static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1820 void *data)
1821{
1822 int err;
2d92ab3c 1823 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1824 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1825
1826 if (!capable(CAP_SYS_ADMIN))
1827 return -EPERM;
1828
143c8c91 1829 if (!check_mnt(mnt))
1da177e4
LT
1830 return -EINVAL;
1831
2d92ab3c 1832 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1833 return -EINVAL;
1834
ff36fe2c
EP
1835 err = security_sb_remount(sb, data);
1836 if (err)
1837 return err;
1838
1da177e4 1839 down_write(&sb->s_umount);
2e4b7fcd 1840 if (flags & MS_BIND)
2d92ab3c 1841 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1842 else
2e4b7fcd 1843 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1844 if (!err) {
99b7db7b 1845 br_write_lock(vfsmount_lock);
143c8c91
AV
1846 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1847 mnt->mnt.mnt_flags = mnt_flags;
99b7db7b 1848 br_write_unlock(vfsmount_lock);
7b43a79f 1849 }
1da177e4 1850 up_write(&sb->s_umount);
0e55a7cc 1851 if (!err) {
99b7db7b 1852 br_write_lock(vfsmount_lock);
143c8c91 1853 touch_mnt_namespace(mnt->mnt_ns);
99b7db7b 1854 br_write_unlock(vfsmount_lock);
0e55a7cc 1855 }
1da177e4
LT
1856 return err;
1857}
1858
cbbe362c 1859static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1860{
315fc83e 1861 struct mount *p;
cbbe362c 1862 for (p = mnt; p; p = next_mnt(p, &mnt->mnt)) {
fc7be130 1863 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1864 return 1;
1865 }
1866 return 0;
1867}
1868
0a0d8a46 1869static int do_move_mount(struct path *path, char *old_name)
1da177e4 1870{
2d92ab3c 1871 struct path old_path, parent_path;
676da58d 1872 struct mount *p;
0fb54e50 1873 struct mount *old;
1da177e4
LT
1874 int err = 0;
1875 if (!capable(CAP_SYS_ADMIN))
1876 return -EPERM;
1877 if (!old_name || !*old_name)
1878 return -EINVAL;
2d92ab3c 1879 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1880 if (err)
1881 return err;
1882
b12cea91 1883 err = lock_mount(path);
cc53ce53
DH
1884 if (err < 0)
1885 goto out;
1886
143c8c91 1887 old = real_mount(old_path.mnt);
fc7be130 1888 p = real_mount(path->mnt);
143c8c91 1889
1da177e4 1890 err = -EINVAL;
fc7be130 1891 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1892 goto out1;
1893
f3da392e 1894 if (d_unlinked(path->dentry))
21444403 1895 goto out1;
1da177e4
LT
1896
1897 err = -EINVAL;
2d92ab3c 1898 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1899 goto out1;
1da177e4 1900
676da58d 1901 if (!mnt_has_parent(old))
21444403 1902 goto out1;
1da177e4 1903
2d92ab3c
AV
1904 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1905 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1906 goto out1;
1907 /*
1908 * Don't move a mount residing in a shared parent.
1909 */
fc7be130 1910 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1911 goto out1;
9676f0c6
RP
1912 /*
1913 * Don't move a mount tree containing unbindable mounts to a destination
1914 * mount which is shared.
1915 */
fc7be130 1916 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1917 goto out1;
1da177e4 1918 err = -ELOOP;
fc7be130 1919 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1920 if (p == old)
21444403 1921 goto out1;
1da177e4 1922
0fb54e50 1923 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1924 if (err)
21444403 1925 goto out1;
1da177e4
LT
1926
1927 /* if the mount is moved, it should no longer be expire
1928 * automatically */
6776db3d 1929 list_del_init(&old->mnt_expire);
1da177e4 1930out1:
b12cea91 1931 unlock_mount(path);
1da177e4 1932out:
1da177e4 1933 if (!err)
1a390689 1934 path_put(&parent_path);
2d92ab3c 1935 path_put(&old_path);
1da177e4
LT
1936 return err;
1937}
1938
9d412a43
AV
1939static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1940{
1941 int err;
1942 const char *subtype = strchr(fstype, '.');
1943 if (subtype) {
1944 subtype++;
1945 err = -EINVAL;
1946 if (!subtype[0])
1947 goto err;
1948 } else
1949 subtype = "";
1950
1951 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1952 err = -ENOMEM;
1953 if (!mnt->mnt_sb->s_subtype)
1954 goto err;
1955 return mnt;
1956
1957 err:
1958 mntput(mnt);
1959 return ERR_PTR(err);
1960}
1961
79e801a9 1962static struct vfsmount *
9d412a43
AV
1963do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1964{
1965 struct file_system_type *type = get_fs_type(fstype);
1966 struct vfsmount *mnt;
1967 if (!type)
1968 return ERR_PTR(-ENODEV);
1969 mnt = vfs_kern_mount(type, flags, name, data);
1970 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1971 !mnt->mnt_sb->s_subtype)
1972 mnt = fs_set_subtype(mnt, fstype);
1973 put_filesystem(type);
1974 return mnt;
1975}
9d412a43
AV
1976
1977/*
1978 * add a mount into a namespace's mount tree
1979 */
95bc5f25 1980static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1981{
1982 int err;
1983
1984 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1985
b12cea91
AV
1986 err = lock_mount(path);
1987 if (err)
1988 return err;
9d412a43
AV
1989
1990 err = -EINVAL;
143c8c91 1991 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1992 goto unlock;
1993
1994 /* Refuse the same filesystem on the same mount point */
1995 err = -EBUSY;
95bc5f25 1996 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1997 path->mnt->mnt_root == path->dentry)
1998 goto unlock;
1999
2000 err = -EINVAL;
95bc5f25 2001 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2002 goto unlock;
2003
95bc5f25 2004 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
2005 err = graft_tree(newmnt, path);
2006
2007unlock:
b12cea91 2008 unlock_mount(path);
9d412a43
AV
2009 return err;
2010}
b1e75df4 2011
1da177e4
LT
2012/*
2013 * create a new mount for userspace and request it to be added into the
2014 * namespace's tree
2015 */
0a0d8a46 2016static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
2017 int mnt_flags, char *name, void *data)
2018{
2019 struct vfsmount *mnt;
15f9a3f3 2020 int err;
1da177e4 2021
eca6f534 2022 if (!type)
1da177e4
LT
2023 return -EINVAL;
2024
2025 /* we need capabilities... */
2026 if (!capable(CAP_SYS_ADMIN))
2027 return -EPERM;
2028
2029 mnt = do_kern_mount(type, flags, name, data);
2030 if (IS_ERR(mnt))
2031 return PTR_ERR(mnt);
2032
95bc5f25 2033 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2034 if (err)
2035 mntput(mnt);
2036 return err;
1da177e4
LT
2037}
2038
19a167af
AV
2039int finish_automount(struct vfsmount *m, struct path *path)
2040{
6776db3d 2041 struct mount *mnt = real_mount(m);
19a167af
AV
2042 int err;
2043 /* The new mount record should have at least 2 refs to prevent it being
2044 * expired before we get a chance to add it
2045 */
6776db3d 2046 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2047
2048 if (m->mnt_sb == path->mnt->mnt_sb &&
2049 m->mnt_root == path->dentry) {
b1e75df4
AV
2050 err = -ELOOP;
2051 goto fail;
19a167af
AV
2052 }
2053
95bc5f25 2054 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2055 if (!err)
2056 return 0;
2057fail:
2058 /* remove m from any expiration list it may be on */
6776db3d 2059 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4
AV
2060 down_write(&namespace_sem);
2061 br_write_lock(vfsmount_lock);
6776db3d 2062 list_del_init(&mnt->mnt_expire);
b1e75df4
AV
2063 br_write_unlock(vfsmount_lock);
2064 up_write(&namespace_sem);
19a167af 2065 }
b1e75df4
AV
2066 mntput(m);
2067 mntput(m);
19a167af
AV
2068 return err;
2069}
2070
ea5b778a
DH
2071/**
2072 * mnt_set_expiry - Put a mount on an expiration list
2073 * @mnt: The mount to list.
2074 * @expiry_list: The list to add the mount to.
2075 */
2076void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2077{
2078 down_write(&namespace_sem);
2079 br_write_lock(vfsmount_lock);
2080
6776db3d 2081 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a
DH
2082
2083 br_write_unlock(vfsmount_lock);
2084 up_write(&namespace_sem);
2085}
2086EXPORT_SYMBOL(mnt_set_expiry);
2087
1da177e4
LT
2088/*
2089 * process a list of expirable mountpoints with the intent of discarding any
2090 * mountpoints that aren't in use and haven't been touched since last we came
2091 * here
2092 */
2093void mark_mounts_for_expiry(struct list_head *mounts)
2094{
761d5c38 2095 struct mount *mnt, *next;
1da177e4 2096 LIST_HEAD(graveyard);
bcc5c7d2 2097 LIST_HEAD(umounts);
1da177e4
LT
2098
2099 if (list_empty(mounts))
2100 return;
2101
bcc5c7d2 2102 down_write(&namespace_sem);
99b7db7b 2103 br_write_lock(vfsmount_lock);
1da177e4
LT
2104
2105 /* extract from the expiration list every vfsmount that matches the
2106 * following criteria:
2107 * - only referenced by its parent vfsmount
2108 * - still marked for expiry (marked on the last call here; marks are
2109 * cleared by mntput())
2110 */
6776db3d 2111 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2112 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2113 propagate_mount_busy(mnt, 1))
1da177e4 2114 continue;
6776db3d 2115 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2116 }
bcc5c7d2 2117 while (!list_empty(&graveyard)) {
6776db3d 2118 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2119 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
2120 umount_tree(mnt, 1, &umounts);
2121 }
99b7db7b 2122 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
2123 up_write(&namespace_sem);
2124
2125 release_mounts(&umounts);
5528f911
TM
2126}
2127
2128EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2129
2130/*
2131 * Ripoff of 'select_parent()'
2132 *
2133 * search the list of submounts for a given mountpoint, and move any
2134 * shrinkable submounts to the 'graveyard' list.
2135 */
692afc31 2136static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2137{
692afc31 2138 struct mount *this_parent = parent;
5528f911
TM
2139 struct list_head *next;
2140 int found = 0;
2141
2142repeat:
6b41d536 2143 next = this_parent->mnt_mounts.next;
5528f911 2144resume:
6b41d536 2145 while (next != &this_parent->mnt_mounts) {
5528f911 2146 struct list_head *tmp = next;
6b41d536 2147 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2148
2149 next = tmp->next;
692afc31 2150 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2151 continue;
5528f911
TM
2152 /*
2153 * Descend a level if the d_mounts list is non-empty.
2154 */
6b41d536 2155 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2156 this_parent = mnt;
2157 goto repeat;
2158 }
1da177e4 2159
1ab59738 2160 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2161 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2162 found++;
2163 }
1da177e4 2164 }
5528f911
TM
2165 /*
2166 * All done at this level ... ascend and resume the search
2167 */
2168 if (this_parent != parent) {
6b41d536 2169 next = this_parent->mnt_child.next;
0714a533 2170 this_parent = this_parent->mnt_parent;
5528f911
TM
2171 goto resume;
2172 }
2173 return found;
2174}
2175
2176/*
2177 * process a list of expirable mountpoints with the intent of discarding any
2178 * submounts of a specific parent mountpoint
99b7db7b
NP
2179 *
2180 * vfsmount_lock must be held for write
5528f911 2181 */
692afc31 2182static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2183{
2184 LIST_HEAD(graveyard);
761d5c38 2185 struct mount *m;
5528f911 2186
5528f911 2187 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2188 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2189 while (!list_empty(&graveyard)) {
761d5c38 2190 m = list_first_entry(&graveyard, struct mount,
6776db3d 2191 mnt_expire);
143c8c91 2192 touch_mnt_namespace(m->mnt_ns);
afef80b3 2193 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2194 }
2195 }
1da177e4
LT
2196}
2197
1da177e4
LT
2198/*
2199 * Some copy_from_user() implementations do not return the exact number of
2200 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2201 * Note that this function differs from copy_from_user() in that it will oops
2202 * on bad values of `to', rather than returning a short copy.
2203 */
b58fed8b
RP
2204static long exact_copy_from_user(void *to, const void __user * from,
2205 unsigned long n)
1da177e4
LT
2206{
2207 char *t = to;
2208 const char __user *f = from;
2209 char c;
2210
2211 if (!access_ok(VERIFY_READ, from, n))
2212 return n;
2213
2214 while (n) {
2215 if (__get_user(c, f)) {
2216 memset(t, 0, n);
2217 break;
2218 }
2219 *t++ = c;
2220 f++;
2221 n--;
2222 }
2223 return n;
2224}
2225
b58fed8b 2226int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2227{
2228 int i;
2229 unsigned long page;
2230 unsigned long size;
b58fed8b 2231
1da177e4
LT
2232 *where = 0;
2233 if (!data)
2234 return 0;
2235
2236 if (!(page = __get_free_page(GFP_KERNEL)))
2237 return -ENOMEM;
2238
2239 /* We only care that *some* data at the address the user
2240 * gave us is valid. Just in case, we'll zero
2241 * the remainder of the page.
2242 */
2243 /* copy_from_user cannot cross TASK_SIZE ! */
2244 size = TASK_SIZE - (unsigned long)data;
2245 if (size > PAGE_SIZE)
2246 size = PAGE_SIZE;
2247
2248 i = size - exact_copy_from_user((void *)page, data, size);
2249 if (!i) {
b58fed8b 2250 free_page(page);
1da177e4
LT
2251 return -EFAULT;
2252 }
2253 if (i != PAGE_SIZE)
2254 memset((char *)page + i, 0, PAGE_SIZE - i);
2255 *where = page;
2256 return 0;
2257}
2258
eca6f534
VN
2259int copy_mount_string(const void __user *data, char **where)
2260{
2261 char *tmp;
2262
2263 if (!data) {
2264 *where = NULL;
2265 return 0;
2266 }
2267
2268 tmp = strndup_user(data, PAGE_SIZE);
2269 if (IS_ERR(tmp))
2270 return PTR_ERR(tmp);
2271
2272 *where = tmp;
2273 return 0;
2274}
2275
1da177e4
LT
2276/*
2277 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2278 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2279 *
2280 * data is a (void *) that can point to any structure up to
2281 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2282 * information (or be NULL).
2283 *
2284 * Pre-0.97 versions of mount() didn't have a flags word.
2285 * When the flags word was introduced its top half was required
2286 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2287 * Therefore, if this magic number is present, it carries no information
2288 * and must be discarded.
2289 */
b58fed8b 2290long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2291 unsigned long flags, void *data_page)
2292{
2d92ab3c 2293 struct path path;
1da177e4
LT
2294 int retval = 0;
2295 int mnt_flags = 0;
2296
2297 /* Discard magic */
2298 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2299 flags &= ~MS_MGC_MSK;
2300
2301 /* Basic sanity checks */
2302
2303 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2304 return -EINVAL;
1da177e4
LT
2305
2306 if (data_page)
2307 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2308
a27ab9f2
TH
2309 /* ... and get the mountpoint */
2310 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2311 if (retval)
2312 return retval;
2313
2314 retval = security_sb_mount(dev_name, &path,
2315 type_page, flags, data_page);
2316 if (retval)
2317 goto dput_out;
2318
613cbe3d
AK
2319 /* Default to relatime unless overriden */
2320 if (!(flags & MS_NOATIME))
2321 mnt_flags |= MNT_RELATIME;
0a1c01c9 2322
1da177e4
LT
2323 /* Separate the per-mountpoint flags */
2324 if (flags & MS_NOSUID)
2325 mnt_flags |= MNT_NOSUID;
2326 if (flags & MS_NODEV)
2327 mnt_flags |= MNT_NODEV;
2328 if (flags & MS_NOEXEC)
2329 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2330 if (flags & MS_NOATIME)
2331 mnt_flags |= MNT_NOATIME;
2332 if (flags & MS_NODIRATIME)
2333 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2334 if (flags & MS_STRICTATIME)
2335 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2336 if (flags & MS_RDONLY)
2337 mnt_flags |= MNT_READONLY;
fc33a7bb 2338
7a4dec53 2339 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2340 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2341 MS_STRICTATIME);
1da177e4 2342
1da177e4 2343 if (flags & MS_REMOUNT)
2d92ab3c 2344 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2345 data_page);
2346 else if (flags & MS_BIND)
2d92ab3c 2347 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2348 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2349 retval = do_change_type(&path, flags);
1da177e4 2350 else if (flags & MS_MOVE)
2d92ab3c 2351 retval = do_move_mount(&path, dev_name);
1da177e4 2352 else
2d92ab3c 2353 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2354 dev_name, data_page);
2355dput_out:
2d92ab3c 2356 path_put(&path);
1da177e4
LT
2357 return retval;
2358}
2359
cf8d2c11
TM
2360static struct mnt_namespace *alloc_mnt_ns(void)
2361{
2362 struct mnt_namespace *new_ns;
2363
2364 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2365 if (!new_ns)
2366 return ERR_PTR(-ENOMEM);
2367 atomic_set(&new_ns->count, 1);
2368 new_ns->root = NULL;
2369 INIT_LIST_HEAD(&new_ns->list);
2370 init_waitqueue_head(&new_ns->poll);
2371 new_ns->event = 0;
2372 return new_ns;
2373}
2374
f03c6599
AV
2375void mnt_make_longterm(struct vfsmount *mnt)
2376{
83adc753 2377 __mnt_make_longterm(real_mount(mnt));
f03c6599
AV
2378}
2379
83adc753 2380void mnt_make_shortterm(struct vfsmount *m)
f03c6599 2381{
7e3d0eb0 2382#ifdef CONFIG_SMP
83adc753 2383 struct mount *mnt = real_mount(m);
68e8a9fe 2384 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
f03c6599
AV
2385 return;
2386 br_write_lock(vfsmount_lock);
68e8a9fe 2387 atomic_dec(&mnt->mnt_longterm);
f03c6599 2388 br_write_unlock(vfsmount_lock);
7e3d0eb0 2389#endif
f03c6599
AV
2390}
2391
741a2951
JD
2392/*
2393 * Allocate a new namespace structure and populate it with contents
2394 * copied from the namespace of the passed in task structure.
2395 */
e3222c4e 2396static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2397 struct fs_struct *fs)
1da177e4 2398{
6b3286ed 2399 struct mnt_namespace *new_ns;
7f2da1e7 2400 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2401 struct mount *p, *q;
cb338d06 2402 struct mount *new;
1da177e4 2403
cf8d2c11
TM
2404 new_ns = alloc_mnt_ns();
2405 if (IS_ERR(new_ns))
2406 return new_ns;
1da177e4 2407
390c6843 2408 down_write(&namespace_sem);
1da177e4 2409 /* First pass: copy the tree topology */
87129cc0 2410 new = copy_tree(real_mount(mnt_ns->root), mnt_ns->root->mnt_root,
9676f0c6 2411 CL_COPY_ALL | CL_EXPIRE);
cb338d06 2412 if (!new) {
390c6843 2413 up_write(&namespace_sem);
1da177e4 2414 kfree(new_ns);
5cc4a034 2415 return ERR_PTR(-ENOMEM);
1da177e4 2416 }
cb338d06 2417 new_ns->root = &new->mnt;
99b7db7b 2418 br_write_lock(vfsmount_lock);
1a4eeaf2 2419 list_add_tail(&new_ns->list, &new->mnt_list);
99b7db7b 2420 br_write_unlock(vfsmount_lock);
1da177e4
LT
2421
2422 /*
2423 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2424 * as belonging to new namespace. We have already acquired a private
2425 * fs_struct, so tsk->fs->lock is not needed.
2426 */
315fc83e 2427 p = real_mount(mnt_ns->root);
cb338d06 2428 q = new;
1da177e4 2429 while (p) {
143c8c91 2430 q->mnt_ns = new_ns;
83adc753 2431 __mnt_make_longterm(q);
1da177e4 2432 if (fs) {
315fc83e
AV
2433 if (&p->mnt == fs->root.mnt) {
2434 fs->root.mnt = mntget(&q->mnt);
83adc753 2435 __mnt_make_longterm(q);
315fc83e
AV
2436 mnt_make_shortterm(&p->mnt);
2437 rootmnt = &p->mnt;
1da177e4 2438 }
315fc83e
AV
2439 if (&p->mnt == fs->pwd.mnt) {
2440 fs->pwd.mnt = mntget(&q->mnt);
83adc753 2441 __mnt_make_longterm(q);
315fc83e
AV
2442 mnt_make_shortterm(&p->mnt);
2443 pwdmnt = &p->mnt;
1da177e4 2444 }
1da177e4 2445 }
6b3286ed 2446 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2447 q = next_mnt(q, new_ns->root);
2448 }
390c6843 2449 up_write(&namespace_sem);
1da177e4 2450
1da177e4 2451 if (rootmnt)
f03c6599 2452 mntput(rootmnt);
1da177e4 2453 if (pwdmnt)
f03c6599 2454 mntput(pwdmnt);
1da177e4 2455
741a2951
JD
2456 return new_ns;
2457}
2458
213dd266 2459struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2460 struct fs_struct *new_fs)
741a2951 2461{
6b3286ed 2462 struct mnt_namespace *new_ns;
741a2951 2463
e3222c4e 2464 BUG_ON(!ns);
6b3286ed 2465 get_mnt_ns(ns);
741a2951
JD
2466
2467 if (!(flags & CLONE_NEWNS))
e3222c4e 2468 return ns;
741a2951 2469
e3222c4e 2470 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2471
6b3286ed 2472 put_mnt_ns(ns);
e3222c4e 2473 return new_ns;
1da177e4
LT
2474}
2475
cf8d2c11
TM
2476/**
2477 * create_mnt_ns - creates a private namespace and adds a root filesystem
2478 * @mnt: pointer to the new root filesystem mountpoint
2479 */
1a4eeaf2 2480static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2481{
1a4eeaf2 2482 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2483 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2484 struct mount *mnt = real_mount(m);
2485 mnt->mnt_ns = new_ns;
2486 __mnt_make_longterm(mnt);
2487 new_ns->root = m;
2488 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2489 } else {
1a4eeaf2 2490 mntput(m);
cf8d2c11
TM
2491 }
2492 return new_ns;
2493}
cf8d2c11 2494
ea441d11
AV
2495struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2496{
2497 struct mnt_namespace *ns;
d31da0f0 2498 struct super_block *s;
ea441d11
AV
2499 struct path path;
2500 int err;
2501
2502 ns = create_mnt_ns(mnt);
2503 if (IS_ERR(ns))
2504 return ERR_CAST(ns);
2505
2506 err = vfs_path_lookup(mnt->mnt_root, mnt,
2507 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2508
2509 put_mnt_ns(ns);
2510
2511 if (err)
2512 return ERR_PTR(err);
2513
2514 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2515 s = path.mnt->mnt_sb;
2516 atomic_inc(&s->s_active);
ea441d11
AV
2517 mntput(path.mnt);
2518 /* lock the sucker */
d31da0f0 2519 down_write(&s->s_umount);
ea441d11
AV
2520 /* ... and return the root of (sub)tree on it */
2521 return path.dentry;
2522}
2523EXPORT_SYMBOL(mount_subtree);
2524
bdc480e3
HC
2525SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2526 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2527{
eca6f534
VN
2528 int ret;
2529 char *kernel_type;
2530 char *kernel_dir;
2531 char *kernel_dev;
1da177e4 2532 unsigned long data_page;
1da177e4 2533
eca6f534
VN
2534 ret = copy_mount_string(type, &kernel_type);
2535 if (ret < 0)
2536 goto out_type;
1da177e4 2537
eca6f534
VN
2538 kernel_dir = getname(dir_name);
2539 if (IS_ERR(kernel_dir)) {
2540 ret = PTR_ERR(kernel_dir);
2541 goto out_dir;
2542 }
1da177e4 2543
eca6f534
VN
2544 ret = copy_mount_string(dev_name, &kernel_dev);
2545 if (ret < 0)
2546 goto out_dev;
1da177e4 2547
eca6f534
VN
2548 ret = copy_mount_options(data, &data_page);
2549 if (ret < 0)
2550 goto out_data;
1da177e4 2551
eca6f534
VN
2552 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2553 (void *) data_page);
1da177e4 2554
eca6f534
VN
2555 free_page(data_page);
2556out_data:
2557 kfree(kernel_dev);
2558out_dev:
2559 putname(kernel_dir);
2560out_dir:
2561 kfree(kernel_type);
2562out_type:
2563 return ret;
1da177e4
LT
2564}
2565
afac7cba
AV
2566/*
2567 * Return true if path is reachable from root
2568 *
2569 * namespace_sem or vfsmount_lock is held
2570 */
643822b4 2571bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2572 const struct path *root)
2573{
643822b4 2574 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2575 dentry = mnt->mnt_mountpoint;
0714a533 2576 mnt = mnt->mnt_parent;
afac7cba 2577 }
643822b4 2578 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2579}
2580
2581int path_is_under(struct path *path1, struct path *path2)
2582{
2583 int res;
2584 br_read_lock(vfsmount_lock);
643822b4 2585 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
afac7cba
AV
2586 br_read_unlock(vfsmount_lock);
2587 return res;
2588}
2589EXPORT_SYMBOL(path_is_under);
2590
1da177e4
LT
2591/*
2592 * pivot_root Semantics:
2593 * Moves the root file system of the current process to the directory put_old,
2594 * makes new_root as the new root file system of the current process, and sets
2595 * root/cwd of all processes which had them on the current root to new_root.
2596 *
2597 * Restrictions:
2598 * The new_root and put_old must be directories, and must not be on the
2599 * same file system as the current process root. The put_old must be
2600 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2601 * pointed to by put_old must yield the same directory as new_root. No other
2602 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2603 *
4a0d11fa
NB
2604 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2605 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2606 * in this situation.
2607 *
1da177e4
LT
2608 * Notes:
2609 * - we don't move root/cwd if they are not at the root (reason: if something
2610 * cared enough to change them, it's probably wrong to force them elsewhere)
2611 * - it's okay to pick a root that isn't the root of a file system, e.g.
2612 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2613 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2614 * first.
2615 */
3480b257
HC
2616SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2617 const char __user *, put_old)
1da177e4 2618{
2d8f3038 2619 struct path new, old, parent_path, root_parent, root;
419148da 2620 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2621 int error;
2622
2623 if (!capable(CAP_SYS_ADMIN))
2624 return -EPERM;
2625
2d8f3038 2626 error = user_path_dir(new_root, &new);
1da177e4
LT
2627 if (error)
2628 goto out0;
1da177e4 2629
2d8f3038 2630 error = user_path_dir(put_old, &old);
1da177e4
LT
2631 if (error)
2632 goto out1;
2633
2d8f3038 2634 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2635 if (error)
2636 goto out2;
1da177e4 2637
f7ad3c6b 2638 get_fs_root(current->fs, &root);
b12cea91
AV
2639 error = lock_mount(&old);
2640 if (error)
2641 goto out3;
2642
1da177e4 2643 error = -EINVAL;
419148da
AV
2644 new_mnt = real_mount(new.mnt);
2645 root_mnt = real_mount(root.mnt);
fc7be130
AV
2646 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2647 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2648 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2649 goto out4;
143c8c91 2650 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2651 goto out4;
1da177e4 2652 error = -ENOENT;
f3da392e 2653 if (d_unlinked(new.dentry))
b12cea91 2654 goto out4;
f3da392e 2655 if (d_unlinked(old.dentry))
b12cea91 2656 goto out4;
1da177e4 2657 error = -EBUSY;
2d8f3038
AV
2658 if (new.mnt == root.mnt ||
2659 old.mnt == root.mnt)
b12cea91 2660 goto out4; /* loop, on the same file system */
1da177e4 2661 error = -EINVAL;
8c3ee42e 2662 if (root.mnt->mnt_root != root.dentry)
b12cea91 2663 goto out4; /* not a mountpoint */
676da58d 2664 if (!mnt_has_parent(root_mnt))
b12cea91 2665 goto out4; /* not attached */
2d8f3038 2666 if (new.mnt->mnt_root != new.dentry)
b12cea91 2667 goto out4; /* not a mountpoint */
676da58d 2668 if (!mnt_has_parent(new_mnt))
b12cea91 2669 goto out4; /* not attached */
4ac91378 2670 /* make sure we can reach put_old from new_root */
643822b4 2671 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2672 goto out4;
27cb1572 2673 br_write_lock(vfsmount_lock);
419148da
AV
2674 detach_mnt(new_mnt, &parent_path);
2675 detach_mnt(root_mnt, &root_parent);
4ac91378 2676 /* mount old root on put_old */
419148da 2677 attach_mnt(root_mnt, &old);
4ac91378 2678 /* mount new_root on / */
419148da 2679 attach_mnt(new_mnt, &root_parent);
6b3286ed 2680 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2681 br_write_unlock(vfsmount_lock);
2d8f3038 2682 chroot_fs_refs(&root, &new);
1da177e4 2683 error = 0;
b12cea91
AV
2684out4:
2685 unlock_mount(&old);
2686 if (!error) {
2687 path_put(&root_parent);
2688 path_put(&parent_path);
2689 }
2690out3:
8c3ee42e 2691 path_put(&root);
b12cea91 2692out2:
2d8f3038 2693 path_put(&old);
1da177e4 2694out1:
2d8f3038 2695 path_put(&new);
1da177e4 2696out0:
1da177e4 2697 return error;
1da177e4
LT
2698}
2699
2700static void __init init_mount_tree(void)
2701{
2702 struct vfsmount *mnt;
6b3286ed 2703 struct mnt_namespace *ns;
ac748a09 2704 struct path root;
1da177e4
LT
2705
2706 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2707 if (IS_ERR(mnt))
2708 panic("Can't create rootfs");
b3e19d92 2709
3b22edc5
TM
2710 ns = create_mnt_ns(mnt);
2711 if (IS_ERR(ns))
1da177e4 2712 panic("Can't allocate initial namespace");
6b3286ed
KK
2713
2714 init_task.nsproxy->mnt_ns = ns;
2715 get_mnt_ns(ns);
2716
ac748a09
JB
2717 root.mnt = ns->root;
2718 root.dentry = ns->root->mnt_root;
2719
2720 set_fs_pwd(current->fs, &root);
2721 set_fs_root(current->fs, &root);
1da177e4
LT
2722}
2723
74bf17cf 2724void __init mnt_init(void)
1da177e4 2725{
13f14b4d 2726 unsigned u;
15a67dd8 2727 int err;
1da177e4 2728
390c6843
RP
2729 init_rwsem(&namespace_sem);
2730
7d6fec45 2731 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2732 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2733
b58fed8b 2734 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2735
2736 if (!mount_hashtable)
2737 panic("Failed to allocate mount hash table\n");
2738
80cdc6da 2739 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2740
2741 for (u = 0; u < HASH_SIZE; u++)
2742 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2743
99b7db7b
NP
2744 br_lock_init(vfsmount_lock);
2745
15a67dd8
RD
2746 err = sysfs_init();
2747 if (err)
2748 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2749 __func__, err);
00d26666
GKH
2750 fs_kobj = kobject_create_and_add("fs", NULL);
2751 if (!fs_kobj)
8e24eea7 2752 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2753 init_rootfs();
2754 init_mount_tree();
2755}
2756
616511d0 2757void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2758{
70fbcdf4 2759 LIST_HEAD(umount_list);
616511d0 2760
d498b25a 2761 if (!atomic_dec_and_test(&ns->count))
616511d0 2762 return;
390c6843 2763 down_write(&namespace_sem);
99b7db7b 2764 br_write_lock(vfsmount_lock);
761d5c38 2765 umount_tree(real_mount(ns->root), 0, &umount_list);
99b7db7b 2766 br_write_unlock(vfsmount_lock);
390c6843 2767 up_write(&namespace_sem);
70fbcdf4 2768 release_mounts(&umount_list);
6b3286ed 2769 kfree(ns);
1da177e4 2770}
9d412a43
AV
2771
2772struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2773{
423e0ab0
TC
2774 struct vfsmount *mnt;
2775 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2776 if (!IS_ERR(mnt)) {
2777 /*
2778 * it is a longterm mount, don't release mnt until
2779 * we unmount before file sys is unregistered
2780 */
2781 mnt_make_longterm(mnt);
2782 }
2783 return mnt;
9d412a43
AV
2784}
2785EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2786
2787void kern_unmount(struct vfsmount *mnt)
2788{
2789 /* release long term mount so mount point can be released */
2790 if (!IS_ERR_OR_NULL(mnt)) {
2791 mnt_make_shortterm(mnt);
2792 mntput(mnt);
2793 }
2794}
2795EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2796
2797bool our_mnt(struct vfsmount *mnt)
2798{
143c8c91 2799 return check_mnt(real_mount(mnt));
02125a82 2800}