]> git.ipfire.org Git - people/ms/linux.git/blame - fs/xfs/libxfs/xfs_ialloc.c
xfs: throttle inode inactivation queuing on memory reclaim
[people/ms/linux.git] / fs / xfs / libxfs / xfs_ialloc.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
1da177e4 13#include "xfs_mount.h"
1da177e4 14#include "xfs_inode.h"
a844f451
NS
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
a4fbe6ab 17#include "xfs_ialloc_btree.h"
1da177e4 18#include "xfs_alloc.h"
e9e899a2 19#include "xfs_errortag.h"
1da177e4
LT
20#include "xfs_error.h"
21#include "xfs_bmap.h"
239880ef 22#include "xfs_trans.h"
983d09ff 23#include "xfs_buf_item.h"
ddf6ad01 24#include "xfs_icreate_item.h"
7bb85ef3 25#include "xfs_icache.h"
d123031a 26#include "xfs_trace.h"
a45086e2 27#include "xfs_log.h"
340785cc 28#include "xfs_rmap.h"
9bbafc71 29#include "xfs_ag.h"
1da177e4 30
fe033cc8 31/*
21875505 32 * Lookup a record by ino in the btree given by cur.
fe033cc8 33 */
81e25176 34int /* error */
21875505 35xfs_inobt_lookup(
fe033cc8
CH
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
21875505 38 xfs_lookup_t dir, /* <=, >=, == */
fe033cc8
CH
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
5419040f
BF
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
21875505
CH
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
fe033cc8
CH
47}
48
278d0ca1 49/*
afabc24a 50 * Update the record referred to by cur to the value given.
278d0ca1
CH
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
afabc24a 56 xfs_inobt_rec_incore_t *irec) /* btree record */
278d0ca1
CH
57{
58 union xfs_btree_rec rec;
59
afabc24a 60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
5419040f
BF
61 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
afabc24a 69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
278d0ca1
CH
70 return xfs_btree_update(cur, &rec);
71}
72
e936945e
DW
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
8cc938fe 79{
5419040f 80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
e936945e 81 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
5419040f
BF
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
8cc938fe 94 }
5419040f 95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
e936945e
DW
96}
97
98/*
99 * Get the data from the pointed-to record.
100 */
101int
102xfs_inobt_get_rec(
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
105 int *stat)
106{
9e6c08d4 107 struct xfs_mount *mp = cur->bc_mp;
50f02fe3 108 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno;
e936945e
DW
109 union xfs_btree_rec *rec;
110 int error;
9e6c08d4 111 uint64_t realfree;
e936945e
DW
112
113 error = xfs_btree_get_rec(cur, &rec, stat);
114 if (error || *stat == 0)
115 return error;
116
9e6c08d4
DC
117 xfs_inobt_btrec_to_irec(mp, rec, irec);
118
119 if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 goto out_bad_rec;
121 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 irec->ir_count > XFS_INODES_PER_CHUNK)
123 goto out_bad_rec;
124 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 goto out_bad_rec;
126
127 /* if there are no holes, return the first available offset */
128 if (!xfs_inobt_issparse(irec->ir_holemask))
129 realfree = irec->ir_free;
130 else
131 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 if (hweight64(realfree) != irec->ir_freecount)
133 goto out_bad_rec;
5419040f
BF
134
135 return 0;
9e6c08d4
DC
136
137out_bad_rec:
138 xfs_warn(mp,
139 "%s Inode BTree record corruption in AG %d detected!",
140 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 xfs_warn(mp,
142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
8cc938fe
CH
146}
147
0aa0a756
BF
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
7f8f1313 151int
0aa0a756
BF
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
c8ce540d
DW
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
0aa0a756
BF
157 xfs_inofree_t free,
158 int *stat)
159{
5419040f
BF
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
0aa0a756
BF
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
7b13c515 175 struct xfs_perag *pag,
0aa0a756
BF
176 xfs_agino_t newino,
177 xfs_agino_t newlen,
178 xfs_btnum_t btnum)
179{
180 struct xfs_btree_cur *cur;
0aa0a756
BF
181 xfs_agino_t thisino;
182 int i;
183 int error;
184
7b13c515 185 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
0aa0a756
BF
186
187 for (thisino = newino;
188 thisino < newino + newlen;
189 thisino += XFS_INODES_PER_CHUNK) {
190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
191 if (error) {
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 return error;
194 }
195 ASSERT(i == 0);
196
5419040f
BF
197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
198 XFS_INODES_PER_CHUNK,
199 XFS_INODES_PER_CHUNK,
0aa0a756
BF
200 XFS_INOBT_ALL_FREE, &i);
201 if (error) {
202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
203 return error;
204 }
205 ASSERT(i == 1);
206 }
207
208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
209
210 return 0;
211}
212
0b48db80
DC
213/*
214 * Verify that the number of free inodes in the AGI is correct.
215 */
216#ifdef DEBUG
9ba0889e 217static int
0b48db80 218xfs_check_agi_freecount(
9ba0889e 219 struct xfs_btree_cur *cur)
0b48db80
DC
220{
221 if (cur->bc_nlevels == 1) {
222 xfs_inobt_rec_incore_t rec;
223 int freecount = 0;
224 int error;
225 int i;
226
21875505 227 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
0b48db80
DC
228 if (error)
229 return error;
230
231 do {
232 error = xfs_inobt_get_rec(cur, &rec, &i);
233 if (error)
234 return error;
235
236 if (i) {
237 freecount += rec.ir_freecount;
238 error = xfs_btree_increment(cur, 0, &i);
239 if (error)
240 return error;
241 }
242 } while (i == 1);
243
244 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
9ba0889e 245 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
0b48db80
DC
246 }
247 return 0;
248}
249#else
9ba0889e 250#define xfs_check_agi_freecount(cur) 0
0b48db80
DC
251#endif
252
85c0b2ab 253/*
28c8e41a
DC
254 * Initialise a new set of inodes. When called without a transaction context
255 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
256 * than logging them (which in a transaction context puts them into the AIL
257 * for writeback rather than the xfsbufd queue).
85c0b2ab 258 */
ddf6ad01 259int
85c0b2ab
DC
260xfs_ialloc_inode_init(
261 struct xfs_mount *mp,
262 struct xfs_trans *tp,
28c8e41a 263 struct list_head *buffer_list,
463958af 264 int icount,
85c0b2ab
DC
265 xfs_agnumber_t agno,
266 xfs_agblock_t agbno,
267 xfs_agblock_t length,
268 unsigned int gen)
269{
270 struct xfs_buf *fbuf;
271 struct xfs_dinode *free;
83dcdb44 272 int nbufs;
85c0b2ab
DC
273 int version;
274 int i, j;
275 xfs_daddr_t d;
93848a99 276 xfs_ino_t ino = 0;
ce92464c 277 int error;
85c0b2ab
DC
278
279 /*
6e0c7b8c
JL
280 * Loop over the new block(s), filling in the inodes. For small block
281 * sizes, manipulate the inodes in buffers which are multiples of the
282 * blocks size.
85c0b2ab 283 */
ef325959 284 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
85c0b2ab
DC
285
286 /*
93848a99
CH
287 * Figure out what version number to use in the inodes we create. If
288 * the superblock version has caught up to the one that supports the new
289 * inode format, then use the new inode version. Otherwise use the old
290 * version so that old kernels will continue to be able to use the file
291 * system.
292 *
293 * For v3 inodes, we also need to write the inode number into the inode,
294 * so calculate the first inode number of the chunk here as
43004b2a 295 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
93848a99
CH
296 * across multiple filesystem blocks (such as a cluster) and so cannot
297 * be used in the cluster buffer loop below.
298 *
299 * Further, because we are writing the inode directly into the buffer
300 * and calculating a CRC on the entire inode, we have ot log the entire
301 * inode so that the entire range the CRC covers is present in the log.
302 * That means for v3 inode we log the entire buffer rather than just the
303 * inode cores.
85c0b2ab 304 */
b81b79f4 305 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
93848a99 306 version = 3;
43004b2a 307 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
ddf6ad01
DC
308
309 /*
310 * log the initialisation that is about to take place as an
311 * logical operation. This means the transaction does not
312 * need to log the physical changes to the inode buffers as log
313 * recovery will know what initialisation is actually needed.
314 * Hence we only need to log the buffers as "ordered" buffers so
315 * they track in the AIL as if they were physically logged.
316 */
317 if (tp)
463958af 318 xfs_icreate_log(tp, agno, agbno, icount,
ddf6ad01 319 mp->m_sb.sb_inodesize, length, gen);
263997a6 320 } else
85c0b2ab 321 version = 2;
85c0b2ab
DC
322
323 for (j = 0; j < nbufs; j++) {
324 /*
325 * Get the block.
326 */
83dcdb44 327 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
ef325959 328 (j * M_IGEO(mp)->blocks_per_cluster));
ce92464c
DW
329 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
330 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
331 XBF_UNMAPPED, &fbuf);
332 if (error)
333 return error;
ddf6ad01
DC
334
335 /* Initialize the inode buffers and log them appropriately. */
1813dd64 336 fbuf->b_ops = &xfs_inode_buf_ops;
93848a99 337 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
ef325959 338 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
85c0b2ab 339 int ioffset = i << mp->m_sb.sb_inodelog;
e9e2eae8 340 uint isize = XFS_DINODE_SIZE(&mp->m_sb);
85c0b2ab
DC
341
342 free = xfs_make_iptr(mp, fbuf, i);
343 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
344 free->di_version = version;
345 free->di_gen = cpu_to_be32(gen);
346 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
93848a99
CH
347
348 if (version == 3) {
349 free->di_ino = cpu_to_be64(ino);
350 ino++;
ce748eaa
ES
351 uuid_copy(&free->di_uuid,
352 &mp->m_sb.sb_meta_uuid);
93848a99 353 xfs_dinode_calc_crc(mp, free);
28c8e41a 354 } else if (tp) {
93848a99
CH
355 /* just log the inode core */
356 xfs_trans_log_buf(tp, fbuf, ioffset,
357 ioffset + isize - 1);
358 }
359 }
28c8e41a
DC
360
361 if (tp) {
362 /*
363 * Mark the buffer as an inode allocation buffer so it
364 * sticks in AIL at the point of this allocation
365 * transaction. This ensures the they are on disk before
366 * the tail of the log can be moved past this
367 * transaction (i.e. by preventing relogging from moving
368 * it forward in the log).
369 */
370 xfs_trans_inode_alloc_buf(tp, fbuf);
371 if (version == 3) {
ddf6ad01
DC
372 /*
373 * Mark the buffer as ordered so that they are
374 * not physically logged in the transaction but
375 * still tracked in the AIL as part of the
376 * transaction and pin the log appropriately.
377 */
378 xfs_trans_ordered_buf(tp, fbuf);
28c8e41a
DC
379 }
380 } else {
381 fbuf->b_flags |= XBF_DONE;
382 xfs_buf_delwri_queue(fbuf, buffer_list);
383 xfs_buf_relse(fbuf);
85c0b2ab 384 }
85c0b2ab 385 }
2a30f36d 386 return 0;
85c0b2ab
DC
387}
388
56d1115c
BF
389/*
390 * Align startino and allocmask for a recently allocated sparse chunk such that
391 * they are fit for insertion (or merge) into the on-disk inode btrees.
392 *
393 * Background:
394 *
395 * When enabled, sparse inode support increases the inode alignment from cluster
396 * size to inode chunk size. This means that the minimum range between two
397 * non-adjacent inode records in the inobt is large enough for a full inode
398 * record. This allows for cluster sized, cluster aligned block allocation
399 * without need to worry about whether the resulting inode record overlaps with
400 * another record in the tree. Without this basic rule, we would have to deal
401 * with the consequences of overlap by potentially undoing recent allocations in
402 * the inode allocation codepath.
403 *
404 * Because of this alignment rule (which is enforced on mount), there are two
405 * inobt possibilities for newly allocated sparse chunks. One is that the
406 * aligned inode record for the chunk covers a range of inodes not already
407 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
408 * other is that a record already exists at the aligned startino that considers
409 * the newly allocated range as sparse. In the latter case, record content is
410 * merged in hope that sparse inode chunks fill to full chunks over time.
411 */
412STATIC void
413xfs_align_sparse_ino(
414 struct xfs_mount *mp,
415 xfs_agino_t *startino,
416 uint16_t *allocmask)
417{
418 xfs_agblock_t agbno;
419 xfs_agblock_t mod;
420 int offset;
421
422 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
423 mod = agbno % mp->m_sb.sb_inoalignmt;
424 if (!mod)
425 return;
426
427 /* calculate the inode offset and align startino */
43004b2a 428 offset = XFS_AGB_TO_AGINO(mp, mod);
56d1115c
BF
429 *startino -= offset;
430
431 /*
432 * Since startino has been aligned down, left shift allocmask such that
433 * it continues to represent the same physical inodes relative to the
434 * new startino.
435 */
436 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
437}
438
439/*
440 * Determine whether the source inode record can merge into the target. Both
441 * records must be sparse, the inode ranges must match and there must be no
442 * allocation overlap between the records.
443 */
444STATIC bool
445__xfs_inobt_can_merge(
446 struct xfs_inobt_rec_incore *trec, /* tgt record */
447 struct xfs_inobt_rec_incore *srec) /* src record */
448{
449 uint64_t talloc;
450 uint64_t salloc;
451
452 /* records must cover the same inode range */
453 if (trec->ir_startino != srec->ir_startino)
454 return false;
455
456 /* both records must be sparse */
457 if (!xfs_inobt_issparse(trec->ir_holemask) ||
458 !xfs_inobt_issparse(srec->ir_holemask))
459 return false;
460
461 /* both records must track some inodes */
462 if (!trec->ir_count || !srec->ir_count)
463 return false;
464
465 /* can't exceed capacity of a full record */
466 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
467 return false;
468
469 /* verify there is no allocation overlap */
470 talloc = xfs_inobt_irec_to_allocmask(trec);
471 salloc = xfs_inobt_irec_to_allocmask(srec);
472 if (talloc & salloc)
473 return false;
474
475 return true;
476}
477
478/*
479 * Merge the source inode record into the target. The caller must call
480 * __xfs_inobt_can_merge() to ensure the merge is valid.
481 */
482STATIC void
483__xfs_inobt_rec_merge(
484 struct xfs_inobt_rec_incore *trec, /* target */
485 struct xfs_inobt_rec_incore *srec) /* src */
486{
487 ASSERT(trec->ir_startino == srec->ir_startino);
488
489 /* combine the counts */
490 trec->ir_count += srec->ir_count;
491 trec->ir_freecount += srec->ir_freecount;
492
493 /*
494 * Merge the holemask and free mask. For both fields, 0 bits refer to
495 * allocated inodes. We combine the allocated ranges with bitwise AND.
496 */
497 trec->ir_holemask &= srec->ir_holemask;
498 trec->ir_free &= srec->ir_free;
499}
500
501/*
502 * Insert a new sparse inode chunk into the associated inode btree. The inode
503 * record for the sparse chunk is pre-aligned to a startino that should match
504 * any pre-existing sparse inode record in the tree. This allows sparse chunks
505 * to fill over time.
506 *
507 * This function supports two modes of handling preexisting records depending on
508 * the merge flag. If merge is true, the provided record is merged with the
509 * existing record and updated in place. The merged record is returned in nrec.
510 * If merge is false, an existing record is replaced with the provided record.
511 * If no preexisting record exists, the provided record is always inserted.
512 *
513 * It is considered corruption if a merge is requested and not possible. Given
514 * the sparse inode alignment constraints, this should never happen.
515 */
516STATIC int
517xfs_inobt_insert_sprec(
518 struct xfs_mount *mp,
519 struct xfs_trans *tp,
520 struct xfs_buf *agbp,
7b13c515 521 struct xfs_perag *pag,
56d1115c
BF
522 int btnum,
523 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
524 bool merge) /* merge or replace */
525{
526 struct xfs_btree_cur *cur;
56d1115c
BF
527 int error;
528 int i;
529 struct xfs_inobt_rec_incore rec;
530
7b13c515 531 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
56d1115c
BF
532
533 /* the new record is pre-aligned so we know where to look */
534 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
535 if (error)
536 goto error;
537 /* if nothing there, insert a new record and return */
538 if (i == 0) {
539 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
540 nrec->ir_count, nrec->ir_freecount,
541 nrec->ir_free, &i);
542 if (error)
543 goto error;
f9e03706
DW
544 if (XFS_IS_CORRUPT(mp, i != 1)) {
545 error = -EFSCORRUPTED;
546 goto error;
547 }
56d1115c
BF
548
549 goto out;
550 }
551
552 /*
553 * A record exists at this startino. Merge or replace the record
554 * depending on what we've been asked to do.
555 */
556 if (merge) {
557 error = xfs_inobt_get_rec(cur, &rec, &i);
558 if (error)
559 goto error;
f9e03706
DW
560 if (XFS_IS_CORRUPT(mp, i != 1)) {
561 error = -EFSCORRUPTED;
562 goto error;
563 }
564 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
565 error = -EFSCORRUPTED;
566 goto error;
567 }
56d1115c
BF
568
569 /*
570 * This should never fail. If we have coexisting records that
571 * cannot merge, something is seriously wrong.
572 */
f9e03706
DW
573 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
574 error = -EFSCORRUPTED;
575 goto error;
576 }
56d1115c 577
7b13c515 578 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
56d1115c
BF
579 rec.ir_holemask, nrec->ir_startino,
580 nrec->ir_holemask);
581
582 /* merge to nrec to output the updated record */
583 __xfs_inobt_rec_merge(nrec, &rec);
584
7b13c515 585 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
56d1115c
BF
586 nrec->ir_holemask);
587
588 error = xfs_inobt_rec_check_count(mp, nrec);
589 if (error)
590 goto error;
591 }
592
593 error = xfs_inobt_update(cur, nrec);
594 if (error)
595 goto error;
596
597out:
598 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
599 return 0;
600error:
601 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
602 return error;
603}
604
1da177e4 605/*
8237fbf5
DC
606 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
607 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
608 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
609 * inode count threshold, or the usual negative error code for other errors.
1da177e4 610 */
ef325959 611STATIC int
1da177e4 612xfs_ialloc_ag_alloc(
ef325959 613 struct xfs_trans *tp,
7b13c515
DC
614 struct xfs_buf *agbp,
615 struct xfs_perag *pag)
1da177e4 616{
ef325959
DW
617 struct xfs_agi *agi;
618 struct xfs_alloc_arg args;
ef325959
DW
619 int error;
620 xfs_agino_t newino; /* new first inode's number */
621 xfs_agino_t newlen; /* new number of inodes */
622 int isaligned = 0; /* inode allocation at stripe */
623 /* unit boundary */
624 /* init. to full chunk */
56d1115c 625 struct xfs_inobt_rec_incore rec;
ef325959 626 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
7b13c515 627 uint16_t allocmask = (uint16_t) -1;
ef325959 628 int do_sparse = 0;
1cdadee1 629
a0041684 630 memset(&args, 0, sizeof(args));
1da177e4
LT
631 args.tp = tp;
632 args.mp = tp->t_mountp;
1cdadee1 633 args.fsbno = NULLFSBLOCK;
7280feda 634 args.oinfo = XFS_RMAP_OINFO_INODES;
1da177e4 635
46fc58da
BF
636#ifdef DEBUG
637 /* randomly do sparse inode allocations */
638 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
ef325959 639 igeo->ialloc_min_blks < igeo->ialloc_blks)
46fc58da
BF
640 do_sparse = prandom_u32() & 1;
641#endif
642
1da177e4
LT
643 /*
644 * Locking will ensure that we don't have two callers in here
645 * at one time.
646 */
ef325959
DW
647 newlen = igeo->ialloc_inos;
648 if (igeo->maxicount &&
74f9ce1c 649 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
ef325959 650 igeo->maxicount)
2451337d 651 return -ENOSPC;
ef325959 652 args.minlen = args.maxlen = igeo->ialloc_blks;
1da177e4 653 /*
3ccb8b5f
GO
654 * First try to allocate inodes contiguous with the last-allocated
655 * chunk of inodes. If the filesystem is striped, this will fill
656 * an entire stripe unit with inodes.
28c8e41a 657 */
370c782b 658 agi = agbp->b_addr;
3ccb8b5f 659 newino = be32_to_cpu(agi->agi_newino);
019ff2d5 660 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
ef325959 661 igeo->ialloc_blks;
1cdadee1
BF
662 if (do_sparse)
663 goto sparse_alloc;
019ff2d5
NS
664 if (likely(newino != NULLAGINO &&
665 (args.agbno < be32_to_cpu(agi->agi_length)))) {
7b13c515 666 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
3ccb8b5f 667 args.type = XFS_ALLOCTYPE_THIS_BNO;
3ccb8b5f 668 args.prod = 1;
75de2a91 669
3ccb8b5f 670 /*
75de2a91
DC
671 * We need to take into account alignment here to ensure that
672 * we don't modify the free list if we fail to have an exact
673 * block. If we don't have an exact match, and every oher
674 * attempt allocation attempt fails, we'll end up cancelling
675 * a dirty transaction and shutting down.
676 *
677 * For an exact allocation, alignment must be 1,
678 * however we need to take cluster alignment into account when
679 * fixing up the freelist. Use the minalignslop field to
680 * indicate that extra blocks might be required for alignment,
681 * but not to use them in the actual exact allocation.
3ccb8b5f 682 */
75de2a91 683 args.alignment = 1;
ef325959 684 args.minalignslop = igeo->cluster_align - 1;
75de2a91
DC
685
686 /* Allow space for the inode btree to split. */
657f1019 687 args.minleft = igeo->inobt_maxlevels;
3ccb8b5f
GO
688 if ((error = xfs_alloc_vextent(&args)))
689 return error;
e480a723
BF
690
691 /*
692 * This request might have dirtied the transaction if the AG can
693 * satisfy the request, but the exact block was not available.
694 * If the allocation did fail, subsequent requests will relax
695 * the exact agbno requirement and increase the alignment
696 * instead. It is critical that the total size of the request
697 * (len + alignment + slop) does not increase from this point
698 * on, so reset minalignslop to ensure it is not included in
699 * subsequent requests.
700 */
701 args.minalignslop = 0;
1cdadee1 702 }
1da177e4 703
3ccb8b5f
GO
704 if (unlikely(args.fsbno == NULLFSBLOCK)) {
705 /*
706 * Set the alignment for the allocation.
707 * If stripe alignment is turned on then align at stripe unit
708 * boundary.
019ff2d5
NS
709 * If the cluster size is smaller than a filesystem block
710 * then we're doing I/O for inodes in filesystem block size
3ccb8b5f
GO
711 * pieces, so don't need alignment anyway.
712 */
713 isaligned = 0;
ef325959 714 if (igeo->ialloc_align) {
3ccb8b5f
GO
715 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
716 args.alignment = args.mp->m_dalign;
717 isaligned = 1;
75de2a91 718 } else
ef325959 719 args.alignment = igeo->cluster_align;
3ccb8b5f
GO
720 /*
721 * Need to figure out where to allocate the inode blocks.
722 * Ideally they should be spaced out through the a.g.
723 * For now, just allocate blocks up front.
724 */
725 args.agbno = be32_to_cpu(agi->agi_root);
7b13c515 726 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
3ccb8b5f
GO
727 /*
728 * Allocate a fixed-size extent of inodes.
729 */
730 args.type = XFS_ALLOCTYPE_NEAR_BNO;
3ccb8b5f
GO
731 args.prod = 1;
732 /*
733 * Allow space for the inode btree to split.
734 */
657f1019 735 args.minleft = igeo->inobt_maxlevels;
3ccb8b5f
GO
736 if ((error = xfs_alloc_vextent(&args)))
737 return error;
738 }
019ff2d5 739
1da177e4
LT
740 /*
741 * If stripe alignment is turned on, then try again with cluster
742 * alignment.
743 */
744 if (isaligned && args.fsbno == NULLFSBLOCK) {
745 args.type = XFS_ALLOCTYPE_NEAR_BNO;
16259e7d 746 args.agbno = be32_to_cpu(agi->agi_root);
7b13c515 747 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
ef325959 748 args.alignment = igeo->cluster_align;
1da177e4
LT
749 if ((error = xfs_alloc_vextent(&args)))
750 return error;
751 }
752
56d1115c
BF
753 /*
754 * Finally, try a sparse allocation if the filesystem supports it and
755 * the sparse allocation length is smaller than a full chunk.
756 */
757 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
ef325959 758 igeo->ialloc_min_blks < igeo->ialloc_blks &&
56d1115c 759 args.fsbno == NULLFSBLOCK) {
1cdadee1 760sparse_alloc:
56d1115c
BF
761 args.type = XFS_ALLOCTYPE_NEAR_BNO;
762 args.agbno = be32_to_cpu(agi->agi_root);
7b13c515 763 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
56d1115c
BF
764 args.alignment = args.mp->m_sb.sb_spino_align;
765 args.prod = 1;
766
ef325959 767 args.minlen = igeo->ialloc_min_blks;
56d1115c
BF
768 args.maxlen = args.minlen;
769
770 /*
771 * The inode record will be aligned to full chunk size. We must
772 * prevent sparse allocation from AG boundaries that result in
773 * invalid inode records, such as records that start at agbno 0
774 * or extend beyond the AG.
775 *
776 * Set min agbno to the first aligned, non-zero agbno and max to
777 * the last aligned agbno that is at least one full chunk from
778 * the end of the AG.
779 */
780 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
781 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
782 args.mp->m_sb.sb_inoalignmt) -
ef325959 783 igeo->ialloc_blks;
56d1115c
BF
784
785 error = xfs_alloc_vextent(&args);
786 if (error)
787 return error;
788
43004b2a 789 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
46fc58da 790 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
56d1115c
BF
791 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
792 }
793
3937493c 794 if (args.fsbno == NULLFSBLOCK)
8237fbf5 795 return -EAGAIN;
3937493c 796
1da177e4 797 ASSERT(args.len == args.minlen);
1da177e4 798
359346a9 799 /*
85c0b2ab
DC
800 * Stamp and write the inode buffers.
801 *
359346a9
DC
802 * Seed the new inode cluster with a random generation number. This
803 * prevents short-term reuse of generation numbers if a chunk is
804 * freed and then immediately reallocated. We use random numbers
805 * rather than a linear progression to prevent the next generation
806 * number from being easily guessable.
807 */
7b13c515 808 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
463958af 809 args.agbno, args.len, prandom_u32());
d42f08f6 810
2a30f36d
CS
811 if (error)
812 return error;
85c0b2ab
DC
813 /*
814 * Convert the results.
815 */
43004b2a 816 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
56d1115c
BF
817
818 if (xfs_inobt_issparse(~allocmask)) {
819 /*
820 * We've allocated a sparse chunk. Align the startino and mask.
821 */
822 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
823
824 rec.ir_startino = newino;
825 rec.ir_holemask = ~allocmask;
826 rec.ir_count = newlen;
827 rec.ir_freecount = newlen;
828 rec.ir_free = XFS_INOBT_ALL_FREE;
829
830 /*
831 * Insert the sparse record into the inobt and allow for a merge
832 * if necessary. If a merge does occur, rec is updated to the
833 * merged record.
834 */
7b13c515
DC
835 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
836 XFS_BTNUM_INO, &rec, true);
56d1115c
BF
837 if (error == -EFSCORRUPTED) {
838 xfs_alert(args.mp,
839 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
7b13c515 840 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
56d1115c
BF
841 rec.ir_startino),
842 rec.ir_holemask, rec.ir_count);
843 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
844 }
845 if (error)
846 return error;
847
848 /*
849 * We can't merge the part we've just allocated as for the inobt
850 * due to finobt semantics. The original record may or may not
851 * exist independent of whether physical inodes exist in this
852 * sparse chunk.
853 *
854 * We must update the finobt record based on the inobt record.
855 * rec contains the fully merged and up to date inobt record
856 * from the previous call. Set merge false to replace any
857 * existing record with this one.
858 */
859 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
7b13c515
DC
860 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
861 XFS_BTNUM_FINO, &rec, false);
56d1115c
BF
862 if (error)
863 return error;
864 }
865 } else {
866 /* full chunk - insert new records to both btrees */
7b13c515 867 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
56d1115c
BF
868 XFS_BTNUM_INO);
869 if (error)
870 return error;
871
872 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
7b13c515 873 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
56d1115c
BF
874 newlen, XFS_BTNUM_FINO);
875 if (error)
876 return error;
877 }
878 }
879
880 /*
881 * Update AGI counts and newino.
882 */
413d57c9
MS
883 be32_add_cpu(&agi->agi_count, newlen);
884 be32_add_cpu(&agi->agi_freecount, newlen);
44b56e0a 885 pag->pagi_freecount += newlen;
89e9b5c0 886 pag->pagi_count += newlen;
16259e7d 887 agi->agi_newino = cpu_to_be32(newino);
85c0b2ab 888
1da177e4
LT
889 /*
890 * Log allocation group header fields
891 */
892 xfs_ialloc_log_agi(tp, agbp,
893 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
894 /*
895 * Modify/log superblock values for inode count and inode free count.
896 */
897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
898 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
1da177e4
LT
899 return 0;
900}
901
4254b0bb
CH
902/*
903 * Try to retrieve the next record to the left/right from the current one.
904 */
905STATIC int
906xfs_ialloc_next_rec(
907 struct xfs_btree_cur *cur,
908 xfs_inobt_rec_incore_t *rec,
909 int *done,
910 int left)
911{
912 int error;
913 int i;
914
915 if (left)
916 error = xfs_btree_decrement(cur, 0, &i);
917 else
918 error = xfs_btree_increment(cur, 0, &i);
919
920 if (error)
921 return error;
922 *done = !i;
923 if (i) {
924 error = xfs_inobt_get_rec(cur, rec, &i);
925 if (error)
926 return error;
f9e03706
DW
927 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
928 return -EFSCORRUPTED;
4254b0bb
CH
929 }
930
931 return 0;
932}
933
bd169565
DC
934STATIC int
935xfs_ialloc_get_rec(
936 struct xfs_btree_cur *cur,
937 xfs_agino_t agino,
938 xfs_inobt_rec_incore_t *rec,
43df2ee6 939 int *done)
bd169565
DC
940{
941 int error;
942 int i;
943
944 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
945 if (error)
946 return error;
947 *done = !i;
948 if (i) {
949 error = xfs_inobt_get_rec(cur, rec, &i);
950 if (error)
951 return error;
f9e03706
DW
952 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
953 return -EFSCORRUPTED;
bd169565
DC
954 }
955
956 return 0;
957}
0b48db80 958
d4cc540b 959/*
26dd5217
BF
960 * Return the offset of the first free inode in the record. If the inode chunk
961 * is sparsely allocated, we convert the record holemask to inode granularity
962 * and mask off the unallocated regions from the inode free mask.
d4cc540b
BF
963 */
964STATIC int
965xfs_inobt_first_free_inode(
966 struct xfs_inobt_rec_incore *rec)
967{
26dd5217
BF
968 xfs_inofree_t realfree;
969
970 /* if there are no holes, return the first available offset */
971 if (!xfs_inobt_issparse(rec->ir_holemask))
972 return xfs_lowbit64(rec->ir_free);
973
974 realfree = xfs_inobt_irec_to_allocmask(rec);
975 realfree &= rec->ir_free;
976
977 return xfs_lowbit64(realfree);
d4cc540b
BF
978}
979
1da177e4 980/*
6dd8638e 981 * Allocate an inode using the inobt-only algorithm.
1da177e4 982 */
f2ecc5e4 983STATIC int
6dd8638e 984xfs_dialloc_ag_inobt(
f2ecc5e4
CH
985 struct xfs_trans *tp,
986 struct xfs_buf *agbp,
7b13c515 987 struct xfs_perag *pag,
f2ecc5e4
CH
988 xfs_ino_t parent,
989 xfs_ino_t *inop)
1da177e4 990{
f2ecc5e4 991 struct xfs_mount *mp = tp->t_mountp;
370c782b 992 struct xfs_agi *agi = agbp->b_addr;
f2ecc5e4
CH
993 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
994 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
f2ecc5e4
CH
995 struct xfs_btree_cur *cur, *tcur;
996 struct xfs_inobt_rec_incore rec, trec;
997 xfs_ino_t ino;
998 int error;
999 int offset;
1000 int i, j;
2d32311c 1001 int searchdistance = 10;
1da177e4 1002
4bb61069
CH
1003 ASSERT(pag->pagi_init);
1004 ASSERT(pag->pagi_inodeok);
1005 ASSERT(pag->pagi_freecount > 0);
1006
bd169565 1007 restart_pagno:
7b13c515 1008 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1da177e4
LT
1009 /*
1010 * If pagino is 0 (this is the root inode allocation) use newino.
1011 * This must work because we've just allocated some.
1012 */
1013 if (!pagino)
16259e7d 1014 pagino = be32_to_cpu(agi->agi_newino);
1da177e4 1015
9ba0889e 1016 error = xfs_check_agi_freecount(cur);
0b48db80
DC
1017 if (error)
1018 goto error0;
1da177e4 1019
1da177e4 1020 /*
4254b0bb 1021 * If in the same AG as the parent, try to get near the parent.
1da177e4 1022 */
7b13c515 1023 if (pagno == pag->pag_agno) {
4254b0bb
CH
1024 int doneleft; /* done, to the left */
1025 int doneright; /* done, to the right */
1026
21875505 1027 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
4254b0bb 1028 if (error)
1da177e4 1029 goto error0;
f9e03706
DW
1030 if (XFS_IS_CORRUPT(mp, i != 1)) {
1031 error = -EFSCORRUPTED;
1032 goto error0;
1033 }
4254b0bb
CH
1034
1035 error = xfs_inobt_get_rec(cur, &rec, &j);
1036 if (error)
1037 goto error0;
f9e03706
DW
1038 if (XFS_IS_CORRUPT(mp, j != 1)) {
1039 error = -EFSCORRUPTED;
1040 goto error0;
1041 }
4254b0bb
CH
1042
1043 if (rec.ir_freecount > 0) {
1da177e4
LT
1044 /*
1045 * Found a free inode in the same chunk
4254b0bb 1046 * as the parent, done.
1da177e4 1047 */
4254b0bb 1048 goto alloc_inode;
1da177e4 1049 }
4254b0bb
CH
1050
1051
1da177e4 1052 /*
4254b0bb 1053 * In the same AG as parent, but parent's chunk is full.
1da177e4 1054 */
1da177e4 1055
4254b0bb
CH
1056 /* duplicate the cursor, search left & right simultaneously */
1057 error = xfs_btree_dup_cursor(cur, &tcur);
1058 if (error)
1059 goto error0;
1060
bd169565
DC
1061 /*
1062 * Skip to last blocks looked up if same parent inode.
1063 */
1064 if (pagino != NULLAGINO &&
1065 pag->pagl_pagino == pagino &&
1066 pag->pagl_leftrec != NULLAGINO &&
1067 pag->pagl_rightrec != NULLAGINO) {
1068 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
43df2ee6 1069 &trec, &doneleft);
bd169565
DC
1070 if (error)
1071 goto error1;
4254b0bb 1072
bd169565 1073 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
43df2ee6 1074 &rec, &doneright);
bd169565
DC
1075 if (error)
1076 goto error1;
1077 } else {
1078 /* search left with tcur, back up 1 record */
1079 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1080 if (error)
1081 goto error1;
1082
1083 /* search right with cur, go forward 1 record. */
1084 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1085 if (error)
1086 goto error1;
1087 }
4254b0bb
CH
1088
1089 /*
1090 * Loop until we find an inode chunk with a free inode.
1091 */
2d32311c 1092 while (--searchdistance > 0 && (!doneleft || !doneright)) {
4254b0bb
CH
1093 int useleft; /* using left inode chunk this time */
1094
1095 /* figure out the closer block if both are valid. */
1096 if (!doneleft && !doneright) {
1097 useleft = pagino -
1098 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1099 rec.ir_startino - pagino;
1100 } else {
1101 useleft = !doneleft;
1da177e4 1102 }
4254b0bb
CH
1103
1104 /* free inodes to the left? */
1105 if (useleft && trec.ir_freecount) {
4254b0bb
CH
1106 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1107 cur = tcur;
bd169565
DC
1108
1109 pag->pagl_leftrec = trec.ir_startino;
1110 pag->pagl_rightrec = rec.ir_startino;
1111 pag->pagl_pagino = pagino;
c44245b3 1112 rec = trec;
4254b0bb 1113 goto alloc_inode;
1da177e4 1114 }
1da177e4 1115
4254b0bb
CH
1116 /* free inodes to the right? */
1117 if (!useleft && rec.ir_freecount) {
1118 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1119
1120 pag->pagl_leftrec = trec.ir_startino;
1121 pag->pagl_rightrec = rec.ir_startino;
1122 pag->pagl_pagino = pagino;
4254b0bb 1123 goto alloc_inode;
1da177e4 1124 }
4254b0bb
CH
1125
1126 /* get next record to check */
1127 if (useleft) {
1128 error = xfs_ialloc_next_rec(tcur, &trec,
1129 &doneleft, 1);
1130 } else {
1131 error = xfs_ialloc_next_rec(cur, &rec,
1132 &doneright, 0);
1133 }
1134 if (error)
1135 goto error1;
1da177e4 1136 }
bd169565 1137
2d32311c
CM
1138 if (searchdistance <= 0) {
1139 /*
1140 * Not in range - save last search
1141 * location and allocate a new inode
1142 */
1143 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1144 pag->pagl_leftrec = trec.ir_startino;
1145 pag->pagl_rightrec = rec.ir_startino;
1146 pag->pagl_pagino = pagino;
1147
1148 } else {
1149 /*
1150 * We've reached the end of the btree. because
1151 * we are only searching a small chunk of the
1152 * btree each search, there is obviously free
1153 * inodes closer to the parent inode than we
1154 * are now. restart the search again.
1155 */
1156 pag->pagl_pagino = NULLAGINO;
1157 pag->pagl_leftrec = NULLAGINO;
1158 pag->pagl_rightrec = NULLAGINO;
1159 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1160 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1161 goto restart_pagno;
1162 }
1da177e4 1163 }
4254b0bb 1164
1da177e4 1165 /*
4254b0bb 1166 * In a different AG from the parent.
1da177e4
LT
1167 * See if the most recently allocated block has any free.
1168 */
69ef921b 1169 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
21875505
CH
1170 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1171 XFS_LOOKUP_EQ, &i);
4254b0bb 1172 if (error)
1da177e4 1173 goto error0;
4254b0bb
CH
1174
1175 if (i == 1) {
1176 error = xfs_inobt_get_rec(cur, &rec, &j);
1177 if (error)
1178 goto error0;
1179
1180 if (j == 1 && rec.ir_freecount > 0) {
1181 /*
1182 * The last chunk allocated in the group
1183 * still has a free inode.
1184 */
1185 goto alloc_inode;
1186 }
1da177e4 1187 }
bd169565 1188 }
4254b0bb 1189
bd169565
DC
1190 /*
1191 * None left in the last group, search the whole AG
1192 */
1193 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1194 if (error)
1195 goto error0;
f9e03706
DW
1196 if (XFS_IS_CORRUPT(mp, i != 1)) {
1197 error = -EFSCORRUPTED;
1198 goto error0;
1199 }
bd169565
DC
1200
1201 for (;;) {
1202 error = xfs_inobt_get_rec(cur, &rec, &i);
1203 if (error)
1204 goto error0;
f9e03706
DW
1205 if (XFS_IS_CORRUPT(mp, i != 1)) {
1206 error = -EFSCORRUPTED;
1207 goto error0;
1208 }
bd169565
DC
1209 if (rec.ir_freecount > 0)
1210 break;
1211 error = xfs_btree_increment(cur, 0, &i);
4254b0bb
CH
1212 if (error)
1213 goto error0;
f9e03706
DW
1214 if (XFS_IS_CORRUPT(mp, i != 1)) {
1215 error = -EFSCORRUPTED;
1216 goto error0;
1217 }
1da177e4 1218 }
4254b0bb
CH
1219
1220alloc_inode:
d4cc540b 1221 offset = xfs_inobt_first_free_inode(&rec);
1da177e4
LT
1222 ASSERT(offset >= 0);
1223 ASSERT(offset < XFS_INODES_PER_CHUNK);
1224 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1225 XFS_INODES_PER_CHUNK) == 0);
7b13c515 1226 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
0d87e656 1227 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1da177e4 1228 rec.ir_freecount--;
afabc24a
CH
1229 error = xfs_inobt_update(cur, &rec);
1230 if (error)
1da177e4 1231 goto error0;
413d57c9 1232 be32_add_cpu(&agi->agi_freecount, -1);
1da177e4 1233 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a 1234 pag->pagi_freecount--;
1da177e4 1235
9ba0889e 1236 error = xfs_check_agi_freecount(cur);
0b48db80
DC
1237 if (error)
1238 goto error0;
1239
1da177e4
LT
1240 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1241 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1242 *inop = ino;
1243 return 0;
1244error1:
1245 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1246error0:
1247 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1248 return error;
1249}
1250
6dd8638e
BF
1251/*
1252 * Use the free inode btree to allocate an inode based on distance from the
1253 * parent. Note that the provided cursor may be deleted and replaced.
1254 */
1255STATIC int
1256xfs_dialloc_ag_finobt_near(
1257 xfs_agino_t pagino,
1258 struct xfs_btree_cur **ocur,
1259 struct xfs_inobt_rec_incore *rec)
1260{
1261 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1262 struct xfs_btree_cur *rcur; /* right search cursor */
1263 struct xfs_inobt_rec_incore rrec;
1264 int error;
1265 int i, j;
1266
1267 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1268 if (error)
1269 return error;
1270
1271 if (i == 1) {
1272 error = xfs_inobt_get_rec(lcur, rec, &i);
1273 if (error)
1274 return error;
f9e03706
DW
1275 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1276 return -EFSCORRUPTED;
6dd8638e
BF
1277
1278 /*
1279 * See if we've landed in the parent inode record. The finobt
1280 * only tracks chunks with at least one free inode, so record
1281 * existence is enough.
1282 */
1283 if (pagino >= rec->ir_startino &&
1284 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1285 return 0;
1286 }
1287
1288 error = xfs_btree_dup_cursor(lcur, &rcur);
1289 if (error)
1290 return error;
1291
1292 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1293 if (error)
1294 goto error_rcur;
1295 if (j == 1) {
1296 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1297 if (error)
1298 goto error_rcur;
f9e03706
DW
1299 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1300 error = -EFSCORRUPTED;
1301 goto error_rcur;
1302 }
6dd8638e
BF
1303 }
1304
f9e03706
DW
1305 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1306 error = -EFSCORRUPTED;
1307 goto error_rcur;
1308 }
6dd8638e
BF
1309 if (i == 1 && j == 1) {
1310 /*
1311 * Both the left and right records are valid. Choose the closer
1312 * inode chunk to the target.
1313 */
1314 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1315 (rrec.ir_startino - pagino)) {
1316 *rec = rrec;
1317 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1318 *ocur = rcur;
1319 } else {
1320 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1321 }
1322 } else if (j == 1) {
1323 /* only the right record is valid */
1324 *rec = rrec;
1325 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1326 *ocur = rcur;
1327 } else if (i == 1) {
1328 /* only the left record is valid */
1329 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1330 }
1331
1332 return 0;
1333
1334error_rcur:
1335 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1336 return error;
1337}
1338
1339/*
1340 * Use the free inode btree to find a free inode based on a newino hint. If
1341 * the hint is NULL, find the first free inode in the AG.
1342 */
1343STATIC int
1344xfs_dialloc_ag_finobt_newino(
1345 struct xfs_agi *agi,
1346 struct xfs_btree_cur *cur,
1347 struct xfs_inobt_rec_incore *rec)
1348{
1349 int error;
1350 int i;
1351
1352 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
e68ed775
DC
1353 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1354 XFS_LOOKUP_EQ, &i);
6dd8638e
BF
1355 if (error)
1356 return error;
1357 if (i == 1) {
1358 error = xfs_inobt_get_rec(cur, rec, &i);
1359 if (error)
1360 return error;
f9e03706
DW
1361 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1362 return -EFSCORRUPTED;
6dd8638e
BF
1363 return 0;
1364 }
1365 }
1366
1367 /*
1368 * Find the first inode available in the AG.
1369 */
1370 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1371 if (error)
1372 return error;
f9e03706
DW
1373 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1374 return -EFSCORRUPTED;
6dd8638e
BF
1375
1376 error = xfs_inobt_get_rec(cur, rec, &i);
1377 if (error)
1378 return error;
f9e03706
DW
1379 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1380 return -EFSCORRUPTED;
6dd8638e
BF
1381
1382 return 0;
1383}
1384
1385/*
1386 * Update the inobt based on a modification made to the finobt. Also ensure that
1387 * the records from both trees are equivalent post-modification.
1388 */
1389STATIC int
1390xfs_dialloc_ag_update_inobt(
1391 struct xfs_btree_cur *cur, /* inobt cursor */
1392 struct xfs_inobt_rec_incore *frec, /* finobt record */
1393 int offset) /* inode offset */
1394{
1395 struct xfs_inobt_rec_incore rec;
1396 int error;
1397 int i;
1398
1399 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1400 if (error)
1401 return error;
f9e03706
DW
1402 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1403 return -EFSCORRUPTED;
6dd8638e
BF
1404
1405 error = xfs_inobt_get_rec(cur, &rec, &i);
1406 if (error)
1407 return error;
f9e03706
DW
1408 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1409 return -EFSCORRUPTED;
6dd8638e
BF
1410 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1411 XFS_INODES_PER_CHUNK) == 0);
1412
1413 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1414 rec.ir_freecount--;
1415
f9e03706
DW
1416 if (XFS_IS_CORRUPT(cur->bc_mp,
1417 rec.ir_free != frec->ir_free ||
1418 rec.ir_freecount != frec->ir_freecount))
1419 return -EFSCORRUPTED;
6dd8638e 1420
b72091f2 1421 return xfs_inobt_update(cur, &rec);
6dd8638e
BF
1422}
1423
1424/*
1425 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1426 * back to the inobt search algorithm.
1427 *
1428 * The caller selected an AG for us, and made sure that free inodes are
1429 * available.
1430 */
b652afd9 1431static int
6dd8638e
BF
1432xfs_dialloc_ag(
1433 struct xfs_trans *tp,
1434 struct xfs_buf *agbp,
309161f6 1435 struct xfs_perag *pag,
6dd8638e
BF
1436 xfs_ino_t parent,
1437 xfs_ino_t *inop)
1438{
1439 struct xfs_mount *mp = tp->t_mountp;
370c782b 1440 struct xfs_agi *agi = agbp->b_addr;
6dd8638e
BF
1441 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1442 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
6dd8638e
BF
1443 struct xfs_btree_cur *cur; /* finobt cursor */
1444 struct xfs_btree_cur *icur; /* inobt cursor */
1445 struct xfs_inobt_rec_incore rec;
1446 xfs_ino_t ino;
1447 int error;
1448 int offset;
1449 int i;
1450
1451 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
7b13c515 1452 return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
6dd8638e 1453
6dd8638e
BF
1454 /*
1455 * If pagino is 0 (this is the root inode allocation) use newino.
1456 * This must work because we've just allocated some.
1457 */
1458 if (!pagino)
1459 pagino = be32_to_cpu(agi->agi_newino);
1460
7b13c515 1461 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
6dd8638e 1462
9ba0889e 1463 error = xfs_check_agi_freecount(cur);
6dd8638e
BF
1464 if (error)
1465 goto error_cur;
1466
1467 /*
1468 * The search algorithm depends on whether we're in the same AG as the
1469 * parent. If so, find the closest available inode to the parent. If
1470 * not, consider the agi hint or find the first free inode in the AG.
1471 */
7b13c515 1472 if (pag->pag_agno == pagno)
6dd8638e
BF
1473 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1474 else
1475 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1476 if (error)
1477 goto error_cur;
1478
d4cc540b 1479 offset = xfs_inobt_first_free_inode(&rec);
6dd8638e
BF
1480 ASSERT(offset >= 0);
1481 ASSERT(offset < XFS_INODES_PER_CHUNK);
1482 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1483 XFS_INODES_PER_CHUNK) == 0);
7b13c515 1484 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
6dd8638e
BF
1485
1486 /*
1487 * Modify or remove the finobt record.
1488 */
1489 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1490 rec.ir_freecount--;
1491 if (rec.ir_freecount)
1492 error = xfs_inobt_update(cur, &rec);
1493 else
1494 error = xfs_btree_delete(cur, &i);
1495 if (error)
1496 goto error_cur;
1497
1498 /*
1499 * The finobt has now been updated appropriately. We haven't updated the
1500 * agi and superblock yet, so we can create an inobt cursor and validate
1501 * the original freecount. If all is well, make the equivalent update to
1502 * the inobt using the finobt record and offset information.
1503 */
7b13c515 1504 icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
6dd8638e 1505
9ba0889e 1506 error = xfs_check_agi_freecount(icur);
6dd8638e
BF
1507 if (error)
1508 goto error_icur;
1509
1510 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1511 if (error)
1512 goto error_icur;
1513
1514 /*
1515 * Both trees have now been updated. We must update the perag and
1516 * superblock before we can check the freecount for each btree.
1517 */
1518 be32_add_cpu(&agi->agi_freecount, -1);
1519 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
7b13c515 1520 pag->pagi_freecount--;
6dd8638e
BF
1521
1522 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1523
9ba0889e 1524 error = xfs_check_agi_freecount(icur);
6dd8638e
BF
1525 if (error)
1526 goto error_icur;
9ba0889e 1527 error = xfs_check_agi_freecount(cur);
6dd8638e
BF
1528 if (error)
1529 goto error_icur;
1530
1531 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1532 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
6dd8638e
BF
1533 *inop = ino;
1534 return 0;
1535
1536error_icur:
1537 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1538error_cur:
1539 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
6dd8638e
BF
1540 return error;
1541}
1542
f3bf6e0f 1543static int
aececc9f
DC
1544xfs_dialloc_roll(
1545 struct xfs_trans **tpp,
1546 struct xfs_buf *agibp)
1547{
1548 struct xfs_trans *tp = *tpp;
1549 struct xfs_dquot_acct *dqinfo;
1550 int error;
1551
1552 /*
1553 * Hold to on to the agibp across the commit so no other allocation can
1554 * come in and take the free inodes we just allocated for our caller.
1555 */
1556 xfs_trans_bhold(tp, agibp);
1557
1558 /*
1559 * We want the quota changes to be associated with the next transaction,
1560 * NOT this one. So, detach the dqinfo from this and attach it to the
1561 * next transaction.
1562 */
1563 dqinfo = tp->t_dqinfo;
1564 tp->t_dqinfo = NULL;
1565
1566 error = xfs_trans_roll(&tp);
1567
1568 /* Re-attach the quota info that we detached from prev trx. */
1569 tp->t_dqinfo = dqinfo;
1570
8237fbf5
DC
1571 /*
1572 * Join the buffer even on commit error so that the buffer is released
1573 * when the caller cancels the transaction and doesn't have to handle
1574 * this error case specially.
1575 */
aececc9f 1576 xfs_trans_bjoin(tp, agibp);
8237fbf5
DC
1577 *tpp = tp;
1578 return error;
aececc9f
DC
1579}
1580
8237fbf5 1581static xfs_agnumber_t
89b1f55a
DC
1582xfs_ialloc_next_ag(
1583 xfs_mount_t *mp)
1584{
1585 xfs_agnumber_t agno;
1586
1587 spin_lock(&mp->m_agirotor_lock);
1588 agno = mp->m_agirotor;
1589 if (++mp->m_agirotor >= mp->m_maxagi)
1590 mp->m_agirotor = 0;
1591 spin_unlock(&mp->m_agirotor_lock);
1592
1593 return agno;
1594}
1595
8237fbf5
DC
1596static bool
1597xfs_dialloc_good_ag(
1598 struct xfs_trans *tp,
1599 struct xfs_perag *pag,
1600 umode_t mode,
1601 int flags,
1602 bool ok_alloc)
1603{
1604 struct xfs_mount *mp = tp->t_mountp;
1605 xfs_extlen_t ineed;
1606 xfs_extlen_t longest = 0;
1607 int needspace;
1608 int error;
1609
1610 if (!pag->pagi_inodeok)
1611 return false;
1612
1613 if (!pag->pagi_init) {
1614 error = xfs_ialloc_pagi_init(mp, tp, pag->pag_agno);
1615 if (error)
1616 return false;
1617 }
1618
1619 if (pag->pagi_freecount)
1620 return true;
1621 if (!ok_alloc)
1622 return false;
1623
1624 if (!pag->pagf_init) {
1625 error = xfs_alloc_pagf_init(mp, tp, pag->pag_agno, flags);
1626 if (error)
1627 return false;
1628 }
1629
1630 /*
1631 * Check that there is enough free space for the file plus a chunk of
1632 * inodes if we need to allocate some. If this is the first pass across
1633 * the AGs, take into account the potential space needed for alignment
1634 * of inode chunks when checking the longest contiguous free space in
1635 * the AG - this prevents us from getting ENOSPC because we have free
1636 * space larger than ialloc_blks but alignment constraints prevent us
1637 * from using it.
1638 *
1639 * If we can't find an AG with space for full alignment slack to be
1640 * taken into account, we must be near ENOSPC in all AGs. Hence we
1641 * don't include alignment for the second pass and so if we fail
1642 * allocation due to alignment issues then it is most likely a real
1643 * ENOSPC condition.
1644 *
1645 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1646 * reservations that xfs_alloc_fix_freelist() now does via
1647 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1648 * be more than large enough for the check below to succeed, but
1649 * xfs_alloc_space_available() will fail because of the non-zero
1650 * metadata reservation and hence we won't actually be able to allocate
1651 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1652 * because of this.
1653 */
1654 ineed = M_IGEO(mp)->ialloc_min_blks;
1655 if (flags && ineed > 1)
1656 ineed += M_IGEO(mp)->cluster_align;
1657 longest = pag->pagf_longest;
1658 if (!longest)
1659 longest = pag->pagf_flcount > 0;
1660 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1661
1662 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1663 return false;
1664 return true;
1665}
1666
1667static int
1668xfs_dialloc_try_ag(
1669 struct xfs_trans **tpp,
1670 struct xfs_perag *pag,
1671 xfs_ino_t parent,
1672 xfs_ino_t *new_ino,
1673 bool ok_alloc)
1674{
1675 struct xfs_buf *agbp;
1676 xfs_ino_t ino;
1677 int error;
1678
1679 /*
1680 * Then read in the AGI buffer and recheck with the AGI buffer
1681 * lock held.
1682 */
1683 error = xfs_ialloc_read_agi(pag->pag_mount, *tpp, pag->pag_agno, &agbp);
1684 if (error)
1685 return error;
1686
1687 if (!pag->pagi_freecount) {
1688 if (!ok_alloc) {
1689 error = -EAGAIN;
1690 goto out_release;
1691 }
1692
1693 error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
1694 if (error < 0)
1695 goto out_release;
1696
1697 /*
1698 * We successfully allocated space for an inode cluster in this
1699 * AG. Roll the transaction so that we can allocate one of the
1700 * new inodes.
1701 */
1702 ASSERT(pag->pagi_freecount > 0);
1703 error = xfs_dialloc_roll(tpp, agbp);
1704 if (error)
1705 goto out_release;
1706 }
1707
1708 /* Allocate an inode in the found AG */
1709 error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
1710 if (!error)
1711 *new_ino = ino;
1712 return error;
1713
1714out_release:
1715 xfs_trans_brelse(*tpp, agbp);
1716 return error;
1717}
1718
f2ecc5e4 1719/*
8237fbf5 1720 * Allocate an on-disk inode.
f2ecc5e4 1721 *
8d822dc3 1722 * Mode is used to tell whether the new inode is a directory and hence where to
8237fbf5
DC
1723 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1724 * on success, otherwise an error will be set to indicate the failure (e.g.
1725 * -ENOSPC).
f2ecc5e4
CH
1726 */
1727int
b652afd9 1728xfs_dialloc(
f3bf6e0f 1729 struct xfs_trans **tpp,
f2ecc5e4
CH
1730 xfs_ino_t parent,
1731 umode_t mode,
b652afd9 1732 xfs_ino_t *new_ino)
f2ecc5e4 1733{
f3bf6e0f 1734 struct xfs_mount *mp = (*tpp)->t_mountp;
f2ecc5e4 1735 xfs_agnumber_t agno;
b652afd9 1736 int error = 0;
be60fe54 1737 xfs_agnumber_t start_agno;
f2ecc5e4 1738 struct xfs_perag *pag;
ef325959 1739 struct xfs_ino_geometry *igeo = M_IGEO(mp);
8237fbf5 1740 bool ok_alloc = true;
89b1f55a 1741 int flags;
b652afd9 1742 xfs_ino_t ino;
8d822dc3 1743
4bb61069 1744 /*
89b1f55a
DC
1745 * Directories, symlinks, and regular files frequently allocate at least
1746 * one block, so factor that potential expansion when we examine whether
1747 * an AG has enough space for file creation.
4bb61069 1748 */
89b1f55a
DC
1749 if (S_ISDIR(mode))
1750 start_agno = xfs_ialloc_next_ag(mp);
1751 else {
1752 start_agno = XFS_INO_TO_AGNO(mp, parent);
1753 if (start_agno >= mp->m_maxagi)
1754 start_agno = 0;
1755 }
55d6af64 1756
f2ecc5e4
CH
1757 /*
1758 * If we have already hit the ceiling of inode blocks then clear
8237fbf5 1759 * ok_alloc so we scan all available agi structures for a free
f2ecc5e4 1760 * inode.
74f9ce1c
GW
1761 *
1762 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1763 * which will sacrifice the preciseness but improve the performance.
f2ecc5e4 1764 */
ef325959
DW
1765 if (igeo->maxicount &&
1766 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1767 > igeo->maxicount) {
8237fbf5 1768 ok_alloc = false;
f2ecc5e4
CH
1769 }
1770
1771 /*
1772 * Loop until we find an allocation group that either has free inodes
1773 * or in which we can allocate some inodes. Iterate through the
1774 * allocation groups upward, wrapping at the end.
1775 */
be60fe54 1776 agno = start_agno;
89b1f55a 1777 flags = XFS_ALLOC_FLAG_TRYLOCK;
be60fe54
CH
1778 for (;;) {
1779 pag = xfs_perag_get(mp, agno);
8237fbf5
DC
1780 if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
1781 error = xfs_dialloc_try_ag(tpp, pag, parent,
1782 &ino, ok_alloc);
1783 if (error != -EAGAIN)
42685473 1784 break;
f2ecc5e4 1785 }
be60fe54 1786
89b1f55a
DC
1787 if (XFS_FORCED_SHUTDOWN(mp)) {
1788 error = -EFSCORRUPTED;
42685473 1789 break;
89b1f55a
DC
1790 }
1791 if (++agno == mp->m_maxagi)
1792 agno = 0;
1793 if (agno == start_agno) {
8237fbf5
DC
1794 if (!flags) {
1795 error = -ENOSPC;
89b1f55a 1796 break;
8237fbf5 1797 }
89b1f55a
DC
1798 flags = 0;
1799 }
42685473 1800 xfs_perag_put(pag);
f2ecc5e4
CH
1801 }
1802
8237fbf5
DC
1803 if (!error)
1804 *new_ino = ino;
be60fe54 1805 xfs_perag_put(pag);
8237fbf5 1806 return error;
f2ecc5e4
CH
1807}
1808
10ae3dc7
BF
1809/*
1810 * Free the blocks of an inode chunk. We must consider that the inode chunk
1811 * might be sparse and only free the regions that are allocated as part of the
1812 * chunk.
1813 */
1814STATIC void
1815xfs_difree_inode_chunk(
0f37d178 1816 struct xfs_trans *tp,
10ae3dc7 1817 xfs_agnumber_t agno,
0f37d178 1818 struct xfs_inobt_rec_incore *rec)
10ae3dc7 1819{
0f37d178
BF
1820 struct xfs_mount *mp = tp->t_mountp;
1821 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1822 rec->ir_startino);
1823 int startidx, endidx;
1824 int nextbit;
1825 xfs_agblock_t agbno;
1826 int contigblk;
10ae3dc7
BF
1827 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1828
1829 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1830 /* not sparse, calculate extent info directly */
0f37d178 1831 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
ef325959
DW
1832 M_IGEO(mp)->ialloc_blks,
1833 &XFS_RMAP_OINFO_INODES);
10ae3dc7
BF
1834 return;
1835 }
1836
1837 /* holemask is only 16-bits (fits in an unsigned long) */
1838 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1839 holemask[0] = rec->ir_holemask;
1840
1841 /*
1842 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1843 * holemask and convert the start/end index of each range to an extent.
1844 * We start with the start and end index both pointing at the first 0 in
1845 * the mask.
1846 */
1847 startidx = endidx = find_first_zero_bit(holemask,
1848 XFS_INOBT_HOLEMASK_BITS);
1849 nextbit = startidx + 1;
1850 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1851 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1852 nextbit);
1853 /*
1854 * If the next zero bit is contiguous, update the end index of
1855 * the current range and continue.
1856 */
1857 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1858 nextbit == endidx + 1) {
1859 endidx = nextbit;
1860 goto next;
1861 }
1862
1863 /*
1864 * nextbit is not contiguous with the current end index. Convert
1865 * the current start/end to an extent and add it to the free
1866 * list.
1867 */
1868 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1869 mp->m_sb.sb_inopblock;
1870 contigblk = ((endidx - startidx + 1) *
1871 XFS_INODES_PER_HOLEMASK_BIT) /
1872 mp->m_sb.sb_inopblock;
1873
1874 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1875 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
0f37d178 1876 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
7280feda 1877 contigblk, &XFS_RMAP_OINFO_INODES);
10ae3dc7
BF
1878
1879 /* reset range to current bit and carry on... */
1880 startidx = endidx = nextbit;
1881
1882next:
1883 nextbit++;
1884 }
1885}
1886
2b64ee5c
BF
1887STATIC int
1888xfs_difree_inobt(
1889 struct xfs_mount *mp,
1890 struct xfs_trans *tp,
1891 struct xfs_buf *agbp,
7b13c515 1892 struct xfs_perag *pag,
2b64ee5c 1893 xfs_agino_t agino,
09b56604 1894 struct xfs_icluster *xic,
2b64ee5c 1895 struct xfs_inobt_rec_incore *orec)
1da177e4 1896{
370c782b 1897 struct xfs_agi *agi = agbp->b_addr;
2b64ee5c
BF
1898 struct xfs_btree_cur *cur;
1899 struct xfs_inobt_rec_incore rec;
1900 int ilen;
1901 int error;
1902 int i;
1903 int off;
1da177e4 1904
69ef921b 1905 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2b64ee5c
BF
1906 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1907
1da177e4
LT
1908 /*
1909 * Initialize the cursor.
1910 */
7b13c515 1911 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1da177e4 1912
9ba0889e 1913 error = xfs_check_agi_freecount(cur);
0b48db80
DC
1914 if (error)
1915 goto error0;
1916
1da177e4
LT
1917 /*
1918 * Look for the entry describing this inode.
1919 */
21875505 1920 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
0b932ccc
DC
1921 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1922 __func__, error);
1da177e4
LT
1923 goto error0;
1924 }
f9e03706
DW
1925 if (XFS_IS_CORRUPT(mp, i != 1)) {
1926 error = -EFSCORRUPTED;
1927 goto error0;
1928 }
2e287a73
CH
1929 error = xfs_inobt_get_rec(cur, &rec, &i);
1930 if (error) {
0b932ccc
DC
1931 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1932 __func__, error);
1da177e4
LT
1933 goto error0;
1934 }
f9e03706
DW
1935 if (XFS_IS_CORRUPT(mp, i != 1)) {
1936 error = -EFSCORRUPTED;
1937 goto error0;
1938 }
1da177e4
LT
1939 /*
1940 * Get the offset in the inode chunk.
1941 */
1942 off = agino - rec.ir_startino;
1943 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
0d87e656 1944 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1da177e4
LT
1945 /*
1946 * Mark the inode free & increment the count.
1947 */
0d87e656 1948 rec.ir_free |= XFS_INOBT_MASK(off);
1da177e4
LT
1949 rec.ir_freecount++;
1950
1951 /*
999633d3
BF
1952 * When an inode chunk is free, it becomes eligible for removal. Don't
1953 * remove the chunk if the block size is large enough for multiple inode
1954 * chunks (that might not be free).
1da177e4 1955 */
1bd960ee 1956 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
999633d3
BF
1957 rec.ir_free == XFS_INOBT_ALL_FREE &&
1958 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
92a00544
GX
1959 struct xfs_perag *pag = agbp->b_pag;
1960
749f24f3 1961 xic->deleted = true;
7b13c515
DC
1962 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1963 rec.ir_startino);
09b56604 1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1da177e4
LT
1965
1966 /*
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1970 */
999633d3 1971 ilen = rec.ir_freecount;
413d57c9
MS
1972 be32_add_cpu(&agi->agi_count, -ilen);
1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1da177e4 1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
44b56e0a 1975 pag->pagi_freecount -= ilen - 1;
89e9b5c0 1976 pag->pagi_count -= ilen;
1da177e4
LT
1977 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1979
91cca5df 1980 if ((error = xfs_btree_delete(cur, &i))) {
0b932ccc
DC
1981 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1982 __func__, error);
1da177e4
LT
1983 goto error0;
1984 }
1985
7b13c515 1986 xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
1da177e4 1987 } else {
749f24f3 1988 xic->deleted = false;
1da177e4 1989
afabc24a
CH
1990 error = xfs_inobt_update(cur, &rec);
1991 if (error) {
0b932ccc
DC
1992 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1993 __func__, error);
1da177e4
LT
1994 goto error0;
1995 }
afabc24a 1996
1da177e4
LT
1997 /*
1998 * Change the inode free counts and log the ag/sb changes.
1999 */
413d57c9 2000 be32_add_cpu(&agi->agi_freecount, 1);
1da177e4 2001 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
7b13c515 2002 pag->pagi_freecount++;
1da177e4
LT
2003 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2004 }
2005
9ba0889e 2006 error = xfs_check_agi_freecount(cur);
0b48db80
DC
2007 if (error)
2008 goto error0;
1da177e4 2009
2b64ee5c 2010 *orec = rec;
1da177e4
LT
2011 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2012 return 0;
2013
2014error0:
2015 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2016 return error;
2017}
2018
3efa4ffd
BF
2019/*
2020 * Free an inode in the free inode btree.
2021 */
2022STATIC int
2023xfs_difree_finobt(
2024 struct xfs_mount *mp,
2025 struct xfs_trans *tp,
2026 struct xfs_buf *agbp,
7b13c515 2027 struct xfs_perag *pag,
3efa4ffd
BF
2028 xfs_agino_t agino,
2029 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2030{
3efa4ffd
BF
2031 struct xfs_btree_cur *cur;
2032 struct xfs_inobt_rec_incore rec;
2033 int offset = agino - ibtrec->ir_startino;
2034 int error;
2035 int i;
2036
7b13c515 2037 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
3efa4ffd
BF
2038
2039 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2040 if (error)
2041 goto error;
2042 if (i == 0) {
2043 /*
2044 * If the record does not exist in the finobt, we must have just
2045 * freed an inode in a previously fully allocated chunk. If not,
2046 * something is out of sync.
2047 */
f9e03706
DW
2048 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2049 error = -EFSCORRUPTED;
2050 goto error;
2051 }
3efa4ffd 2052
5419040f
BF
2053 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2054 ibtrec->ir_count,
2055 ibtrec->ir_freecount,
3efa4ffd
BF
2056 ibtrec->ir_free, &i);
2057 if (error)
2058 goto error;
2059 ASSERT(i == 1);
2060
2061 goto out;
2062 }
2063
2064 /*
2065 * Read and update the existing record. We could just copy the ibtrec
2066 * across here, but that would defeat the purpose of having redundant
2067 * metadata. By making the modifications independently, we can catch
2068 * corruptions that we wouldn't see if we just copied from one record
2069 * to another.
2070 */
2071 error = xfs_inobt_get_rec(cur, &rec, &i);
2072 if (error)
2073 goto error;
f9e03706
DW
2074 if (XFS_IS_CORRUPT(mp, i != 1)) {
2075 error = -EFSCORRUPTED;
2076 goto error;
2077 }
3efa4ffd
BF
2078
2079 rec.ir_free |= XFS_INOBT_MASK(offset);
2080 rec.ir_freecount++;
2081
f9e03706
DW
2082 if (XFS_IS_CORRUPT(mp,
2083 rec.ir_free != ibtrec->ir_free ||
2084 rec.ir_freecount != ibtrec->ir_freecount)) {
2085 error = -EFSCORRUPTED;
2086 goto error;
2087 }
3efa4ffd
BF
2088
2089 /*
2090 * The content of inobt records should always match between the inobt
2091 * and finobt. The lifecycle of records in the finobt is different from
2092 * the inobt in that the finobt only tracks records with at least one
2093 * free inode. Hence, if all of the inodes are free and we aren't
2094 * keeping inode chunks permanently on disk, remove the record.
2095 * Otherwise, update the record with the new information.
999633d3
BF
2096 *
2097 * Note that we currently can't free chunks when the block size is large
2098 * enough for multiple chunks. Leave the finobt record to remain in sync
2099 * with the inobt.
3efa4ffd 2100 */
999633d3
BF
2101 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2102 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
3efa4ffd
BF
2103 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2104 error = xfs_btree_delete(cur, &i);
2105 if (error)
2106 goto error;
2107 ASSERT(i == 1);
2108 } else {
2109 error = xfs_inobt_update(cur, &rec);
2110 if (error)
2111 goto error;
2112 }
2113
2114out:
9ba0889e 2115 error = xfs_check_agi_freecount(cur);
3efa4ffd
BF
2116 if (error)
2117 goto error;
2118
2119 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2120 return 0;
2121
2122error:
2123 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2124 return error;
2125}
2126
2b64ee5c
BF
2127/*
2128 * Free disk inode. Carefully avoids touching the incore inode, all
2129 * manipulations incore are the caller's responsibility.
2130 * The on-disk inode is not changed by this operation, only the
2131 * btree (free inode mask) is changed.
2132 */
2133int
2134xfs_difree(
f40aadb2
DC
2135 struct xfs_trans *tp,
2136 struct xfs_perag *pag,
2137 xfs_ino_t inode,
2138 struct xfs_icluster *xic)
2b64ee5c
BF
2139{
2140 /* REFERENCED */
2141 xfs_agblock_t agbno; /* block number containing inode */
2142 struct xfs_buf *agbp; /* buffer for allocation group header */
2143 xfs_agino_t agino; /* allocation group inode number */
2b64ee5c 2144 int error; /* error return value */
7b13c515 2145 struct xfs_mount *mp = tp->t_mountp;
2b64ee5c 2146 struct xfs_inobt_rec_incore rec;/* btree record */
2b64ee5c
BF
2147
2148 /*
2149 * Break up inode number into its components.
2150 */
f40aadb2
DC
2151 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2152 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2153 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2b64ee5c 2154 ASSERT(0);
2451337d 2155 return -EINVAL;
2b64ee5c
BF
2156 }
2157 agino = XFS_INO_TO_AGINO(mp, inode);
f40aadb2 2158 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2b64ee5c
BF
2159 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2160 __func__, (unsigned long long)inode,
f40aadb2 2161 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2b64ee5c 2162 ASSERT(0);
2451337d 2163 return -EINVAL;
2b64ee5c
BF
2164 }
2165 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2166 if (agbno >= mp->m_sb.sb_agblocks) {
2167 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2168 __func__, agbno, mp->m_sb.sb_agblocks);
2169 ASSERT(0);
2451337d 2170 return -EINVAL;
2b64ee5c
BF
2171 }
2172 /*
2173 * Get the allocation group header.
2174 */
f40aadb2 2175 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
2b64ee5c
BF
2176 if (error) {
2177 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2178 __func__, error);
2179 return error;
2180 }
2181
2182 /*
2183 * Fix up the inode allocation btree.
2184 */
7b13c515 2185 error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
2b64ee5c
BF
2186 if (error)
2187 goto error0;
2188
3efa4ffd
BF
2189 /*
2190 * Fix up the free inode btree.
2191 */
2192 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
7b13c515 2193 error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
3efa4ffd
BF
2194 if (error)
2195 goto error0;
2196 }
2197
2b64ee5c
BF
2198 return 0;
2199
2200error0:
2201 return error;
2202}
2203
7124fe0a
DC
2204STATIC int
2205xfs_imap_lookup(
2206 struct xfs_mount *mp,
2207 struct xfs_trans *tp,
7b13c515 2208 struct xfs_perag *pag,
7124fe0a
DC
2209 xfs_agino_t agino,
2210 xfs_agblock_t agbno,
2211 xfs_agblock_t *chunk_agbno,
2212 xfs_agblock_t *offset_agbno,
2213 int flags)
2214{
2215 struct xfs_inobt_rec_incore rec;
2216 struct xfs_btree_cur *cur;
2217 struct xfs_buf *agbp;
7124fe0a
DC
2218 int error;
2219 int i;
2220
7b13c515 2221 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
7124fe0a 2222 if (error) {
53487786
DC
2223 xfs_alert(mp,
2224 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
7b13c515 2225 __func__, error, pag->pag_agno);
7124fe0a
DC
2226 return error;
2227 }
2228
2229 /*
4536f2ad
DC
2230 * Lookup the inode record for the given agino. If the record cannot be
2231 * found, then it's an invalid inode number and we should abort. Once
2232 * we have a record, we need to ensure it contains the inode number
2233 * we are looking up.
7124fe0a 2234 */
7b13c515 2235 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
4536f2ad 2236 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
7124fe0a
DC
2237 if (!error) {
2238 if (i)
2239 error = xfs_inobt_get_rec(cur, &rec, &i);
2240 if (!error && i == 0)
2451337d 2241 error = -EINVAL;
7124fe0a
DC
2242 }
2243
2244 xfs_trans_brelse(tp, agbp);
0b04b6b8 2245 xfs_btree_del_cursor(cur, error);
7124fe0a
DC
2246 if (error)
2247 return error;
2248
4536f2ad
DC
2249 /* check that the returned record contains the required inode */
2250 if (rec.ir_startino > agino ||
ef325959 2251 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2451337d 2252 return -EINVAL;
4536f2ad 2253
7124fe0a 2254 /* for untrusted inodes check it is allocated first */
1920779e 2255 if ((flags & XFS_IGET_UNTRUSTED) &&
7124fe0a 2256 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2451337d 2257 return -EINVAL;
7124fe0a
DC
2258
2259 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2260 *offset_agbno = agbno - *chunk_agbno;
2261 return 0;
2262}
2263
1da177e4 2264/*
94e1b69d 2265 * Return the location of the inode in imap, for mapping it into a buffer.
1da177e4 2266 */
1da177e4 2267int
94e1b69d 2268xfs_imap(
7b13c515
DC
2269 struct xfs_mount *mp, /* file system mount structure */
2270 struct xfs_trans *tp, /* transaction pointer */
2271 xfs_ino_t ino, /* inode to locate */
2272 struct xfs_imap *imap, /* location map structure */
2273 uint flags) /* flags for inode btree lookup */
1da177e4 2274{
7b13c515
DC
2275 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2276 xfs_agino_t agino; /* inode number within alloc group */
2277 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2278 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2279 int error; /* error code */
2280 int offset; /* index of inode in its buffer */
2281 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2282 struct xfs_perag *pag;
1da177e4
LT
2283
2284 ASSERT(ino != NULLFSINO);
94e1b69d 2285
1da177e4
LT
2286 /*
2287 * Split up the inode number into its parts.
2288 */
7b13c515 2289 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
1da177e4
LT
2290 agino = XFS_INO_TO_AGINO(mp, ino);
2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
7b13c515
DC
2292 if (!pag || agbno >= mp->m_sb.sb_agblocks ||
2293 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2294 error = -EINVAL;
1da177e4 2295#ifdef DEBUG
1920779e
DC
2296 /*
2297 * Don't output diagnostic information for untrusted inodes
2298 * as they can be invalid without implying corruption.
2299 */
2300 if (flags & XFS_IGET_UNTRUSTED)
7b13c515
DC
2301 goto out_drop;
2302 if (!pag) {
53487786
DC
2303 xfs_alert(mp,
2304 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
7b13c515
DC
2305 __func__, XFS_INO_TO_AGNO(mp, ino),
2306 mp->m_sb.sb_agcount);
1da177e4
LT
2307 }
2308 if (agbno >= mp->m_sb.sb_agblocks) {
53487786
DC
2309 xfs_alert(mp,
2310 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2311 __func__, (unsigned long long)agbno,
2312 (unsigned long)mp->m_sb.sb_agblocks);
1da177e4 2313 }
7b13c515 2314 if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
53487786
DC
2315 xfs_alert(mp,
2316 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2317 __func__, ino,
7b13c515 2318 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
1da177e4 2319 }
745b1f47 2320 xfs_stack_trace();
1da177e4 2321#endif /* DEBUG */
7b13c515 2322 goto out_drop;
1da177e4 2323 }
94e1b69d 2324
7124fe0a
DC
2325 /*
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2331 */
1920779e 2332 if (flags & XFS_IGET_UNTRUSTED) {
7b13c515 2333 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
7124fe0a
DC
2334 &chunk_agbno, &offset_agbno, flags);
2335 if (error)
7b13c515 2336 goto out_drop;
7124fe0a
DC
2337 goto out_map;
2338 }
2339
94e1b69d
CH
2340 /*
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2343 */
ef325959 2344 if (M_IGEO(mp)->blocks_per_cluster == 1) {
1da177e4
LT
2345 offset = XFS_INO_TO_OFFSET(mp, ino);
2346 ASSERT(offset < mp->m_sb.sb_inopblock);
94e1b69d 2347
7b13c515 2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
94e1b69d 2349 imap->im_len = XFS_FSB_TO_BB(mp, 1);
755c7bf5
DW
2350 imap->im_boffset = (unsigned short)(offset <<
2351 mp->m_sb.sb_inodelog);
7b13c515
DC
2352 error = 0;
2353 goto out_drop;
1da177e4 2354 }
94e1b69d 2355
94e1b69d
CH
2356 /*
2357 * If the inode chunks are aligned then use simple maths to
2358 * find the location. Otherwise we have to do a btree
2359 * lookup to find the location.
2360 */
ef325959
DW
2361 if (M_IGEO(mp)->inoalign_mask) {
2362 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
1da177e4
LT
2363 chunk_agbno = agbno - offset_agbno;
2364 } else {
7b13c515 2365 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
7124fe0a 2366 &chunk_agbno, &offset_agbno, flags);
1da177e4 2367 if (error)
7b13c515 2368 goto out_drop;
1da177e4 2369 }
94e1b69d 2370
7124fe0a 2371out_map:
1da177e4
LT
2372 ASSERT(agbno >= chunk_agbno);
2373 cluster_agbno = chunk_agbno +
ef325959
DW
2374 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2375 M_IGEO(mp)->blocks_per_cluster);
1da177e4
LT
2376 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2377 XFS_INO_TO_OFFSET(mp, ino);
94e1b69d 2378
7b13c515 2379 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
ef325959 2380 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
755c7bf5 2381 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
94e1b69d
CH
2382
2383 /*
2384 * If the inode number maps to a block outside the bounds
2385 * of the file system then return NULL rather than calling
2386 * read_buf and panicing when we get an error from the
2387 * driver.
2388 */
2389 if ((imap->im_blkno + imap->im_len) >
2390 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
53487786
DC
2391 xfs_alert(mp,
2392 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2393 __func__, (unsigned long long) imap->im_blkno,
94e1b69d
CH
2394 (unsigned long long) imap->im_len,
2395 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
7b13c515
DC
2396 error = -EINVAL;
2397 goto out_drop;
94e1b69d 2398 }
7b13c515
DC
2399 error = 0;
2400out_drop:
90e2c1c2
DC
2401 if (pag)
2402 xfs_perag_put(pag);
7b13c515 2403 return error;
1da177e4
LT
2404}
2405
1da177e4 2406/*
aafc3c24
BF
2407 * Log specified fields for the ag hdr (inode section). The growth of the agi
2408 * structure over time requires that we interpret the buffer as two logical
2409 * regions delineated by the end of the unlinked list. This is due to the size
2410 * of the hash table and its location in the middle of the agi.
2411 *
2412 * For example, a request to log a field before agi_unlinked and a field after
2413 * agi_unlinked could cause us to log the entire hash table and use an excessive
2414 * amount of log space. To avoid this behavior, log the region up through
2415 * agi_unlinked in one call and the region after agi_unlinked through the end of
2416 * the structure in another.
1da177e4
LT
2417 */
2418void
2419xfs_ialloc_log_agi(
2420 xfs_trans_t *tp, /* transaction pointer */
e8222613 2421 struct xfs_buf *bp, /* allocation group header buffer */
1da177e4
LT
2422 int fields) /* bitmask of fields to log */
2423{
2424 int first; /* first byte number */
2425 int last; /* last byte number */
2426 static const short offsets[] = { /* field starting offsets */
2427 /* keep in sync with bit definitions */
2428 offsetof(xfs_agi_t, agi_magicnum),
2429 offsetof(xfs_agi_t, agi_versionnum),
2430 offsetof(xfs_agi_t, agi_seqno),
2431 offsetof(xfs_agi_t, agi_length),
2432 offsetof(xfs_agi_t, agi_count),
2433 offsetof(xfs_agi_t, agi_root),
2434 offsetof(xfs_agi_t, agi_level),
2435 offsetof(xfs_agi_t, agi_freecount),
2436 offsetof(xfs_agi_t, agi_newino),
2437 offsetof(xfs_agi_t, agi_dirino),
2438 offsetof(xfs_agi_t, agi_unlinked),
aafc3c24
BF
2439 offsetof(xfs_agi_t, agi_free_root),
2440 offsetof(xfs_agi_t, agi_free_level),
2a39946c 2441 offsetof(xfs_agi_t, agi_iblocks),
1da177e4
LT
2442 sizeof(xfs_agi_t)
2443 };
2444#ifdef DEBUG
370c782b 2445 struct xfs_agi *agi = bp->b_addr;
1da177e4 2446
69ef921b 2447 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1da177e4 2448#endif
aafc3c24 2449
1da177e4 2450 /*
aafc3c24
BF
2451 * Compute byte offsets for the first and last fields in the first
2452 * region and log the agi buffer. This only logs up through
2453 * agi_unlinked.
1da177e4 2454 */
aafc3c24
BF
2455 if (fields & XFS_AGI_ALL_BITS_R1) {
2456 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2457 &first, &last);
2458 xfs_trans_log_buf(tp, bp, first, last);
2459 }
2460
1da177e4 2461 /*
aafc3c24
BF
2462 * Mask off the bits in the first region and calculate the first and
2463 * last field offsets for any bits in the second region.
1da177e4 2464 */
aafc3c24
BF
2465 fields &= ~XFS_AGI_ALL_BITS_R1;
2466 if (fields) {
2467 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2468 &first, &last);
2469 xfs_trans_log_buf(tp, bp, first, last);
2470 }
1da177e4
LT
2471}
2472
a6a781a5 2473static xfs_failaddr_t
612cfbfe 2474xfs_agi_verify(
3702ce6e
DC
2475 struct xfs_buf *bp)
2476{
dbd329f1 2477 struct xfs_mount *mp = bp->b_mount;
370c782b 2478 struct xfs_agi *agi = bp->b_addr;
9f96cc95 2479 int i;
3702ce6e 2480
a45086e2
BF
2481 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2482 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
a6a781a5 2483 return __this_address;
370c782b 2484 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
a6a781a5 2485 return __this_address;
a45086e2
BF
2486 }
2487
3702ce6e
DC
2488 /*
2489 * Validate the magic number of the agi block.
2490 */
39708c20 2491 if (!xfs_verify_magic(bp, agi->agi_magicnum))
a6a781a5 2492 return __this_address;
983d09ff 2493 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
a6a781a5 2494 return __this_address;
3702ce6e 2495
d2a047f3 2496 if (be32_to_cpu(agi->agi_level) < 1 ||
973975b7 2497 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
a6a781a5 2498 return __this_address;
d2a047f3
DW
2499
2500 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2501 (be32_to_cpu(agi->agi_free_level) < 1 ||
973975b7 2502 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
a6a781a5 2503 return __this_address;
d2a047f3 2504
3702ce6e
DC
2505 /*
2506 * during growfs operations, the perag is not fully initialised,
2507 * so we can't use it for any useful checking. growfs ensures we can't
2508 * use it by using uncached buffers that don't have the perag attached
2509 * so we can detect and avoid this problem.
2510 */
983d09ff 2511 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
a6a781a5 2512 return __this_address;
3702ce6e 2513
9f96cc95 2514 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
5089eaff 2515 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
9f96cc95
DC
2516 continue;
2517 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2518 return __this_address;
2519 }
2520
a6a781a5 2521 return NULL;
612cfbfe
DC
2522}
2523
1813dd64
DC
2524static void
2525xfs_agi_read_verify(
612cfbfe
DC
2526 struct xfs_buf *bp)
2527{
dbd329f1 2528 struct xfs_mount *mp = bp->b_mount;
bc1a09b8 2529 xfs_failaddr_t fa;
983d09ff 2530
ce5028cf
ES
2531 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2532 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
bc1a09b8
DW
2533 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2534 else {
2535 fa = xfs_agi_verify(bp);
2536 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2537 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2538 }
612cfbfe
DC
2539}
2540
b0f539de 2541static void
1813dd64 2542xfs_agi_write_verify(
612cfbfe
DC
2543 struct xfs_buf *bp)
2544{
dbd329f1 2545 struct xfs_mount *mp = bp->b_mount;
fb1755a6 2546 struct xfs_buf_log_item *bip = bp->b_log_item;
370c782b 2547 struct xfs_agi *agi = bp->b_addr;
bc1a09b8 2548 xfs_failaddr_t fa;
983d09ff 2549
bc1a09b8
DW
2550 fa = xfs_agi_verify(bp);
2551 if (fa) {
2552 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
983d09ff
DC
2553 return;
2554 }
2555
2556 if (!xfs_sb_version_hascrc(&mp->m_sb))
2557 return;
2558
2559 if (bip)
370c782b 2560 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
f1dbcd7e 2561 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
3702ce6e
DC
2562}
2563
1813dd64 2564const struct xfs_buf_ops xfs_agi_buf_ops = {
233135b7 2565 .name = "xfs_agi",
39708c20 2566 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
1813dd64
DC
2567 .verify_read = xfs_agi_read_verify,
2568 .verify_write = xfs_agi_write_verify,
b5572597 2569 .verify_struct = xfs_agi_verify,
1813dd64
DC
2570};
2571
1da177e4
LT
2572/*
2573 * Read in the allocation group header (inode allocation section)
2574 */
2575int
5e1be0fb
CH
2576xfs_read_agi(
2577 struct xfs_mount *mp, /* file system mount structure */
2578 struct xfs_trans *tp, /* transaction pointer */
2579 xfs_agnumber_t agno, /* allocation group number */
2580 struct xfs_buf **bpp) /* allocation group hdr buf */
1da177e4 2581{
5e1be0fb 2582 int error;
1da177e4 2583
d123031a 2584 trace_xfs_read_agi(mp, agno);
5e1be0fb 2585
d123031a 2586 ASSERT(agno != NULLAGNUMBER);
5e1be0fb 2587 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1da177e4 2588 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1813dd64 2589 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1da177e4
LT
2590 if (error)
2591 return error;
200237d6
ES
2592 if (tp)
2593 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
5e1be0fb 2594
38f23232 2595 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
5e1be0fb
CH
2596 return 0;
2597}
2598
2599int
2600xfs_ialloc_read_agi(
2601 struct xfs_mount *mp, /* file system mount structure */
2602 struct xfs_trans *tp, /* transaction pointer */
2603 xfs_agnumber_t agno, /* allocation group number */
2604 struct xfs_buf **bpp) /* allocation group hdr buf */
2605{
2606 struct xfs_agi *agi; /* allocation group header */
2607 struct xfs_perag *pag; /* per allocation group data */
2608 int error;
2609
d123031a
DC
2610 trace_xfs_ialloc_read_agi(mp, agno);
2611
5e1be0fb
CH
2612 error = xfs_read_agi(mp, tp, agno, bpp);
2613 if (error)
2614 return error;
2615
370c782b 2616 agi = (*bpp)->b_addr;
92a00544 2617 pag = (*bpp)->b_pag;
1da177e4 2618 if (!pag->pagi_init) {
16259e7d 2619 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
92821e2b 2620 pag->pagi_count = be32_to_cpu(agi->agi_count);
1da177e4 2621 pag->pagi_init = 1;
1da177e4 2622 }
1da177e4 2623
5e1be0fb
CH
2624 /*
2625 * It's possible for these to be out of sync if
2626 * we are in the middle of a forced shutdown.
2627 */
2628 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2629 XFS_FORCED_SHUTDOWN(mp));
1da177e4
LT
2630 return 0;
2631}
92821e2b
DC
2632
2633/*
2634 * Read in the agi to initialise the per-ag data in the mount structure
2635 */
2636int
2637xfs_ialloc_pagi_init(
2638 xfs_mount_t *mp, /* file system mount structure */
2639 xfs_trans_t *tp, /* transaction pointer */
2640 xfs_agnumber_t agno) /* allocation group number */
2641{
e8222613 2642 struct xfs_buf *bp = NULL;
92821e2b
DC
2643 int error;
2644
2645 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2646 if (error)
2647 return error;
2648 if (bp)
2649 xfs_trans_brelse(tp, bp);
2650 return 0;
2651}
91fb9afc 2652
2e001266
DW
2653/* Is there an inode record covering a given range of inode numbers? */
2654int
2655xfs_ialloc_has_inode_record(
2656 struct xfs_btree_cur *cur,
2657 xfs_agino_t low,
2658 xfs_agino_t high,
2659 bool *exists)
2660{
2661 struct xfs_inobt_rec_incore irec;
2662 xfs_agino_t agino;
2663 uint16_t holemask;
2664 int has_record;
2665 int i;
2666 int error;
2667
2668 *exists = false;
2669 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2670 while (error == 0 && has_record) {
2671 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2672 if (error || irec.ir_startino > high)
2673 break;
2674
2675 agino = irec.ir_startino;
2676 holemask = irec.ir_holemask;
2677 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2678 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2679 if (holemask & 1)
2680 continue;
2681 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2682 agino <= high) {
2683 *exists = true;
2684 return 0;
2685 }
2686 }
2687
2688 error = xfs_btree_increment(cur, 0, &has_record);
2689 }
2690 return error;
2691}
2692
2693/* Is there an inode record covering a given extent? */
2694int
2695xfs_ialloc_has_inodes_at_extent(
2696 struct xfs_btree_cur *cur,
2697 xfs_agblock_t bno,
2698 xfs_extlen_t len,
2699 bool *exists)
2700{
2701 xfs_agino_t low;
2702 xfs_agino_t high;
2703
43004b2a
DW
2704 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2705 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2e001266
DW
2706
2707 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2708}
2709
2710struct xfs_ialloc_count_inodes {
2711 xfs_agino_t count;
2712 xfs_agino_t freecount;
2713};
2714
2715/* Record inode counts across all inobt records. */
2716STATIC int
2717xfs_ialloc_count_inodes_rec(
2718 struct xfs_btree_cur *cur,
2719 union xfs_btree_rec *rec,
2720 void *priv)
2721{
2722 struct xfs_inobt_rec_incore irec;
2723 struct xfs_ialloc_count_inodes *ci = priv;
2724
2725 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2726 ci->count += irec.ir_count;
2727 ci->freecount += irec.ir_freecount;
2728
2729 return 0;
2730}
2731
2732/* Count allocated and free inodes under an inobt. */
2733int
2734xfs_ialloc_count_inodes(
2735 struct xfs_btree_cur *cur,
2736 xfs_agino_t *count,
2737 xfs_agino_t *freecount)
2738{
2739 struct xfs_ialloc_count_inodes ci = {0};
2740 int error;
2741
2742 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2743 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2744 if (error)
2745 return error;
2746
2747 *count = ci.count;
2748 *freecount = ci.freecount;
2749 return 0;
2750}
494dba7b
DW
2751
2752/*
2753 * Initialize inode-related geometry information.
2754 *
2755 * Compute the inode btree min and max levels and set maxicount.
2756 *
2757 * Set the inode cluster size. This may still be overridden by the file
2758 * system block size if it is larger than the chosen cluster size.
2759 *
2760 * For v5 filesystems, scale the cluster size with the inode size to keep a
2761 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2762 * inode alignment value appropriately for larger cluster sizes.
2763 *
2764 * Then compute the inode cluster alignment information.
2765 */
2766void
2767xfs_ialloc_setup_geometry(
2768 struct xfs_mount *mp)
2769{
2770 struct xfs_sb *sbp = &mp->m_sb;
2771 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2772 uint64_t icount;
2773 uint inodes;
2774
f93e5436
DW
2775 igeo->new_diflags2 = 0;
2776 if (xfs_sb_version_hasbigtime(&mp->m_sb))
2777 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2778
494dba7b
DW
2779 /* Compute inode btree geometry. */
2780 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2781 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2782 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2783 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2784 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2785
2786 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2787 sbp->sb_inopblock);
2788 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2789
2790 if (sbp->sb_spino_align)
2791 igeo->ialloc_min_blks = sbp->sb_spino_align;
2792 else
2793 igeo->ialloc_min_blks = igeo->ialloc_blks;
2794
2795 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2796 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2797 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2798 inodes);
2799
c94613fe
DW
2800 /*
2801 * Set the maximum inode count for this filesystem, being careful not
2802 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2803 * users should never get here due to failing sb verification, but
2804 * certain users (xfs_db) need to be usable even with corrupt metadata.
2805 */
2806 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
494dba7b
DW
2807 /*
2808 * Make sure the maximum inode count is a multiple
2809 * of the units we allocate inodes in.
2810 */
2811 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2812 do_div(icount, 100);
2813 do_div(icount, igeo->ialloc_blks);
2814 igeo->maxicount = XFS_FSB_TO_INO(mp,
2815 icount * igeo->ialloc_blks);
2816 } else {
2817 igeo->maxicount = 0;
2818 }
2819
490d451f
DW
2820 /*
2821 * Compute the desired size of an inode cluster buffer size, which
2822 * starts at 8K and (on v5 filesystems) scales up with larger inode
2823 * sizes.
2824 *
2825 * Preserve the desired inode cluster size because the sparse inodes
2826 * feature uses that desired size (not the actual size) to compute the
2827 * sparse inode alignment. The mount code validates this value, so we
2828 * cannot change the behavior.
2829 */
2830 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
b81b79f4 2831 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
490d451f 2832 int new_size = igeo->inode_cluster_size_raw;
494dba7b
DW
2833
2834 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2835 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
490d451f 2836 igeo->inode_cluster_size_raw = new_size;
494dba7b
DW
2837 }
2838
2839 /* Calculate inode cluster ratios. */
490d451f 2840 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
494dba7b 2841 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
490d451f 2842 igeo->inode_cluster_size_raw);
494dba7b
DW
2843 else
2844 igeo->blocks_per_cluster = 1;
490d451f 2845 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
494dba7b
DW
2846 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2847
2848 /* Calculate inode cluster alignment. */
2849 if (xfs_sb_version_hasalign(&mp->m_sb) &&
2850 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2851 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2852 else
2853 igeo->cluster_align = 1;
2854 igeo->inoalign_mask = igeo->cluster_align - 1;
2855 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2856
2857 /*
2858 * If we are using stripe alignment, check whether
2859 * the stripe unit is a multiple of the inode alignment
2860 */
2861 if (mp->m_dalign && igeo->inoalign_mask &&
2862 !(mp->m_dalign & igeo->inoalign_mask))
2863 igeo->ialloc_align = mp->m_dalign;
2864 else
2865 igeo->ialloc_align = 0;
2866}
13eaec4b
DW
2867
2868/* Compute the location of the root directory inode that is laid out by mkfs. */
2869xfs_ino_t
2870xfs_ialloc_calc_rootino(
2871 struct xfs_mount *mp,
2872 int sunit)
2873{
2874 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2875 xfs_agblock_t first_bno;
2876
2877 /*
2878 * Pre-calculate the geometry of AG 0. We know what it looks like
2879 * because libxfs knows how to create allocation groups now.
2880 *
2881 * first_bno is the first block in which mkfs could possibly have
2882 * allocated the root directory inode, once we factor in the metadata
2883 * that mkfs formats before it. Namely, the four AG headers...
2884 */
2885 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2886
2887 /* ...the two free space btree roots... */
2888 first_bno += 2;
2889
2890 /* ...the inode btree root... */
2891 first_bno += 1;
2892
2893 /* ...the initial AGFL... */
2894 first_bno += xfs_alloc_min_freelist(mp, NULL);
2895
2896 /* ...the free inode btree root... */
2897 if (xfs_sb_version_hasfinobt(&mp->m_sb))
2898 first_bno++;
2899
2900 /* ...the reverse mapping btree root... */
2901 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2902 first_bno++;
2903
2904 /* ...the reference count btree... */
2905 if (xfs_sb_version_hasreflink(&mp->m_sb))
2906 first_bno++;
2907
2908 /*
2909 * ...and the log, if it is allocated in the first allocation group.
2910 *
2911 * This can happen with filesystems that only have a single
2912 * allocation group, or very odd geometries created by old mkfs
2913 * versions on very small filesystems.
2914 */
2915 if (mp->m_sb.sb_logstart &&
2916 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2917 first_bno += mp->m_sb.sb_logblocks;
2918
2919 /*
2920 * Now round first_bno up to whatever allocation alignment is given
2921 * by the filesystem or was passed in.
2922 */
2923 if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2924 first_bno = roundup(first_bno, sunit);
2925 else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2926 mp->m_sb.sb_inoalignmt > 1)
2927 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2928
2929 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2930}
da062d16
DW
2931
2932/*
2933 * Ensure there are not sparse inode clusters that cross the new EOAG.
2934 *
2935 * This is a no-op for non-spinode filesystems since clusters are always fully
2936 * allocated and checking the bnobt suffices. However, a spinode filesystem
2937 * could have a record where the upper inodes are free blocks. If those blocks
2938 * were removed from the filesystem, the inode record would extend beyond EOAG,
2939 * which will be flagged as corruption.
2940 */
2941int
2942xfs_ialloc_check_shrink(
2943 struct xfs_trans *tp,
2944 xfs_agnumber_t agno,
2945 struct xfs_buf *agibp,
2946 xfs_agblock_t new_length)
2947{
2948 struct xfs_inobt_rec_incore rec;
2949 struct xfs_btree_cur *cur;
2950 struct xfs_mount *mp = tp->t_mountp;
2951 struct xfs_perag *pag;
2952 xfs_agino_t agino = XFS_AGB_TO_AGINO(mp, new_length);
2953 int has;
2954 int error;
2955
2956 if (!xfs_sb_version_hassparseinodes(&mp->m_sb))
2957 return 0;
2958
2959 pag = xfs_perag_get(mp, agno);
2960 cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO);
2961
2962 /* Look up the inobt record that would correspond to the new EOFS. */
2963 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2964 if (error || !has)
2965 goto out;
2966
2967 error = xfs_inobt_get_rec(cur, &rec, &has);
2968 if (error)
2969 goto out;
2970
2971 if (!has) {
2972 error = -EFSCORRUPTED;
2973 goto out;
2974 }
2975
2976 /* If the record covers inodes that would be beyond EOFS, bail out. */
2977 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2978 error = -ENOSPC;
2979 goto out;
2980 }
2981out:
2982 xfs_btree_del_cursor(cur, error);
2983 xfs_perag_put(pag);
2984 return error;
2985}