]> git.ipfire.org Git - people/ms/linux.git/blame - fs/xfs/libxfs/xfs_ialloc.c
Linux 4.2-rc2
[people/ms/linux.git] / fs / xfs / libxfs / xfs_ialloc.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
1da177e4 27#include "xfs_inode.h"
a844f451
NS
28#include "xfs_btree.h"
29#include "xfs_ialloc.h"
a4fbe6ab 30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_alloc.h"
1da177e4
LT
32#include "xfs_rtalloc.h"
33#include "xfs_error.h"
34#include "xfs_bmap.h"
983d09ff 35#include "xfs_cksum.h"
239880ef 36#include "xfs_trans.h"
983d09ff 37#include "xfs_buf_item.h"
ddf6ad01 38#include "xfs_icreate_item.h"
7bb85ef3 39#include "xfs_icache.h"
d123031a 40#include "xfs_trace.h"
1da177e4 41
1da177e4
LT
42
43/*
44 * Allocation group level functions.
45 */
75de2a91
DC
46static inline int
47xfs_ialloc_cluster_alignment(
7a1df156 48 struct xfs_mount *mp)
75de2a91 49{
7a1df156
DC
50 if (xfs_sb_version_hasalign(&mp->m_sb) &&
51 mp->m_sb.sb_inoalignmt >=
52 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53 return mp->m_sb.sb_inoalignmt;
75de2a91
DC
54 return 1;
55}
1da177e4 56
fe033cc8 57/*
21875505 58 * Lookup a record by ino in the btree given by cur.
fe033cc8 59 */
81e25176 60int /* error */
21875505 61xfs_inobt_lookup(
fe033cc8
CH
62 struct xfs_btree_cur *cur, /* btree cursor */
63 xfs_agino_t ino, /* starting inode of chunk */
21875505 64 xfs_lookup_t dir, /* <=, >=, == */
fe033cc8
CH
65 int *stat) /* success/failure */
66{
67 cur->bc_rec.i.ir_startino = ino;
5419040f
BF
68 cur->bc_rec.i.ir_holemask = 0;
69 cur->bc_rec.i.ir_count = 0;
21875505
CH
70 cur->bc_rec.i.ir_freecount = 0;
71 cur->bc_rec.i.ir_free = 0;
72 return xfs_btree_lookup(cur, dir, stat);
fe033cc8
CH
73}
74
278d0ca1 75/*
afabc24a 76 * Update the record referred to by cur to the value given.
278d0ca1
CH
77 * This either works (return 0) or gets an EFSCORRUPTED error.
78 */
79STATIC int /* error */
80xfs_inobt_update(
81 struct xfs_btree_cur *cur, /* btree cursor */
afabc24a 82 xfs_inobt_rec_incore_t *irec) /* btree record */
278d0ca1
CH
83{
84 union xfs_btree_rec rec;
85
afabc24a 86 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
5419040f
BF
87 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
88 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
89 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
90 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
91 } else {
92 /* ir_holemask/ir_count not supported on-disk */
93 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
94 }
afabc24a 95 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
278d0ca1
CH
96 return xfs_btree_update(cur, &rec);
97}
98
8cc938fe
CH
99/*
100 * Get the data from the pointed-to record.
101 */
102int /* error */
103xfs_inobt_get_rec(
104 struct xfs_btree_cur *cur, /* btree cursor */
2e287a73 105 xfs_inobt_rec_incore_t *irec, /* btree record */
8cc938fe
CH
106 int *stat) /* output: success/failure */
107{
108 union xfs_btree_rec *rec;
109 int error;
110
111 error = xfs_btree_get_rec(cur, &rec, stat);
5419040f
BF
112 if (error || *stat == 0)
113 return error;
114
115 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
116 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
117 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
118 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
119 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
120 } else {
121 /*
122 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
123 * values for full inode chunks.
124 */
125 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
126 irec->ir_count = XFS_INODES_PER_CHUNK;
127 irec->ir_freecount =
128 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
8cc938fe 129 }
5419040f
BF
130 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
131
132 return 0;
8cc938fe
CH
133}
134
0aa0a756
BF
135/*
136 * Insert a single inobt record. Cursor must already point to desired location.
137 */
138STATIC int
139xfs_inobt_insert_rec(
140 struct xfs_btree_cur *cur,
5419040f
BF
141 __uint16_t holemask,
142 __uint8_t count,
0aa0a756
BF
143 __int32_t freecount,
144 xfs_inofree_t free,
145 int *stat)
146{
5419040f
BF
147 cur->bc_rec.i.ir_holemask = holemask;
148 cur->bc_rec.i.ir_count = count;
0aa0a756
BF
149 cur->bc_rec.i.ir_freecount = freecount;
150 cur->bc_rec.i.ir_free = free;
151 return xfs_btree_insert(cur, stat);
152}
153
154/*
155 * Insert records describing a newly allocated inode chunk into the inobt.
156 */
157STATIC int
158xfs_inobt_insert(
159 struct xfs_mount *mp,
160 struct xfs_trans *tp,
161 struct xfs_buf *agbp,
162 xfs_agino_t newino,
163 xfs_agino_t newlen,
164 xfs_btnum_t btnum)
165{
166 struct xfs_btree_cur *cur;
167 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
168 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
169 xfs_agino_t thisino;
170 int i;
171 int error;
172
173 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
174
175 for (thisino = newino;
176 thisino < newino + newlen;
177 thisino += XFS_INODES_PER_CHUNK) {
178 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
179 if (error) {
180 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
181 return error;
182 }
183 ASSERT(i == 0);
184
5419040f
BF
185 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
186 XFS_INODES_PER_CHUNK,
187 XFS_INODES_PER_CHUNK,
0aa0a756
BF
188 XFS_INOBT_ALL_FREE, &i);
189 if (error) {
190 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
191 return error;
192 }
193 ASSERT(i == 1);
194 }
195
196 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
197
198 return 0;
199}
200
0b48db80
DC
201/*
202 * Verify that the number of free inodes in the AGI is correct.
203 */
204#ifdef DEBUG
205STATIC int
206xfs_check_agi_freecount(
207 struct xfs_btree_cur *cur,
208 struct xfs_agi *agi)
209{
210 if (cur->bc_nlevels == 1) {
211 xfs_inobt_rec_incore_t rec;
212 int freecount = 0;
213 int error;
214 int i;
215
21875505 216 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
0b48db80
DC
217 if (error)
218 return error;
219
220 do {
221 error = xfs_inobt_get_rec(cur, &rec, &i);
222 if (error)
223 return error;
224
225 if (i) {
226 freecount += rec.ir_freecount;
227 error = xfs_btree_increment(cur, 0, &i);
228 if (error)
229 return error;
230 }
231 } while (i == 1);
232
233 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
234 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
235 }
236 return 0;
237}
238#else
239#define xfs_check_agi_freecount(cur, agi) 0
240#endif
241
85c0b2ab 242/*
28c8e41a
DC
243 * Initialise a new set of inodes. When called without a transaction context
244 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
245 * than logging them (which in a transaction context puts them into the AIL
246 * for writeback rather than the xfsbufd queue).
85c0b2ab 247 */
ddf6ad01 248int
85c0b2ab
DC
249xfs_ialloc_inode_init(
250 struct xfs_mount *mp,
251 struct xfs_trans *tp,
28c8e41a 252 struct list_head *buffer_list,
463958af 253 int icount,
85c0b2ab
DC
254 xfs_agnumber_t agno,
255 xfs_agblock_t agbno,
256 xfs_agblock_t length,
257 unsigned int gen)
258{
259 struct xfs_buf *fbuf;
260 struct xfs_dinode *free;
6e0c7b8c 261 int nbufs, blks_per_cluster, inodes_per_cluster;
85c0b2ab
DC
262 int version;
263 int i, j;
264 xfs_daddr_t d;
93848a99 265 xfs_ino_t ino = 0;
85c0b2ab
DC
266
267 /*
6e0c7b8c
JL
268 * Loop over the new block(s), filling in the inodes. For small block
269 * sizes, manipulate the inodes in buffers which are multiples of the
270 * blocks size.
85c0b2ab 271 */
6e0c7b8c
JL
272 blks_per_cluster = xfs_icluster_size_fsb(mp);
273 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
274 nbufs = length / blks_per_cluster;
85c0b2ab
DC
275
276 /*
93848a99
CH
277 * Figure out what version number to use in the inodes we create. If
278 * the superblock version has caught up to the one that supports the new
279 * inode format, then use the new inode version. Otherwise use the old
280 * version so that old kernels will continue to be able to use the file
281 * system.
282 *
283 * For v3 inodes, we also need to write the inode number into the inode,
284 * so calculate the first inode number of the chunk here as
285 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
286 * across multiple filesystem blocks (such as a cluster) and so cannot
287 * be used in the cluster buffer loop below.
288 *
289 * Further, because we are writing the inode directly into the buffer
290 * and calculating a CRC on the entire inode, we have ot log the entire
291 * inode so that the entire range the CRC covers is present in the log.
292 * That means for v3 inode we log the entire buffer rather than just the
293 * inode cores.
85c0b2ab 294 */
93848a99
CH
295 if (xfs_sb_version_hascrc(&mp->m_sb)) {
296 version = 3;
297 ino = XFS_AGINO_TO_INO(mp, agno,
298 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
ddf6ad01
DC
299
300 /*
301 * log the initialisation that is about to take place as an
302 * logical operation. This means the transaction does not
303 * need to log the physical changes to the inode buffers as log
304 * recovery will know what initialisation is actually needed.
305 * Hence we only need to log the buffers as "ordered" buffers so
306 * they track in the AIL as if they were physically logged.
307 */
308 if (tp)
463958af 309 xfs_icreate_log(tp, agno, agbno, icount,
ddf6ad01 310 mp->m_sb.sb_inodesize, length, gen);
263997a6 311 } else
85c0b2ab 312 version = 2;
85c0b2ab
DC
313
314 for (j = 0; j < nbufs; j++) {
315 /*
316 * Get the block.
317 */
318 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
319 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
7c4cebe8
DC
320 mp->m_bsize * blks_per_cluster,
321 XBF_UNMAPPED);
2a30f36d 322 if (!fbuf)
2451337d 323 return -ENOMEM;
ddf6ad01
DC
324
325 /* Initialize the inode buffers and log them appropriately. */
1813dd64 326 fbuf->b_ops = &xfs_inode_buf_ops;
93848a99 327 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
6e0c7b8c 328 for (i = 0; i < inodes_per_cluster; i++) {
85c0b2ab 329 int ioffset = i << mp->m_sb.sb_inodelog;
93848a99 330 uint isize = xfs_dinode_size(version);
85c0b2ab
DC
331
332 free = xfs_make_iptr(mp, fbuf, i);
333 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
334 free->di_version = version;
335 free->di_gen = cpu_to_be32(gen);
336 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
93848a99
CH
337
338 if (version == 3) {
339 free->di_ino = cpu_to_be64(ino);
340 ino++;
341 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
342 xfs_dinode_calc_crc(mp, free);
28c8e41a 343 } else if (tp) {
93848a99
CH
344 /* just log the inode core */
345 xfs_trans_log_buf(tp, fbuf, ioffset,
346 ioffset + isize - 1);
347 }
348 }
28c8e41a
DC
349
350 if (tp) {
351 /*
352 * Mark the buffer as an inode allocation buffer so it
353 * sticks in AIL at the point of this allocation
354 * transaction. This ensures the they are on disk before
355 * the tail of the log can be moved past this
356 * transaction (i.e. by preventing relogging from moving
357 * it forward in the log).
358 */
359 xfs_trans_inode_alloc_buf(tp, fbuf);
360 if (version == 3) {
ddf6ad01
DC
361 /*
362 * Mark the buffer as ordered so that they are
363 * not physically logged in the transaction but
364 * still tracked in the AIL as part of the
365 * transaction and pin the log appropriately.
366 */
367 xfs_trans_ordered_buf(tp, fbuf);
28c8e41a
DC
368 xfs_trans_log_buf(tp, fbuf, 0,
369 BBTOB(fbuf->b_length) - 1);
370 }
371 } else {
372 fbuf->b_flags |= XBF_DONE;
373 xfs_buf_delwri_queue(fbuf, buffer_list);
374 xfs_buf_relse(fbuf);
85c0b2ab 375 }
85c0b2ab 376 }
2a30f36d 377 return 0;
85c0b2ab
DC
378}
379
56d1115c
BF
380/*
381 * Align startino and allocmask for a recently allocated sparse chunk such that
382 * they are fit for insertion (or merge) into the on-disk inode btrees.
383 *
384 * Background:
385 *
386 * When enabled, sparse inode support increases the inode alignment from cluster
387 * size to inode chunk size. This means that the minimum range between two
388 * non-adjacent inode records in the inobt is large enough for a full inode
389 * record. This allows for cluster sized, cluster aligned block allocation
390 * without need to worry about whether the resulting inode record overlaps with
391 * another record in the tree. Without this basic rule, we would have to deal
392 * with the consequences of overlap by potentially undoing recent allocations in
393 * the inode allocation codepath.
394 *
395 * Because of this alignment rule (which is enforced on mount), there are two
396 * inobt possibilities for newly allocated sparse chunks. One is that the
397 * aligned inode record for the chunk covers a range of inodes not already
398 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
399 * other is that a record already exists at the aligned startino that considers
400 * the newly allocated range as sparse. In the latter case, record content is
401 * merged in hope that sparse inode chunks fill to full chunks over time.
402 */
403STATIC void
404xfs_align_sparse_ino(
405 struct xfs_mount *mp,
406 xfs_agino_t *startino,
407 uint16_t *allocmask)
408{
409 xfs_agblock_t agbno;
410 xfs_agblock_t mod;
411 int offset;
412
413 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
414 mod = agbno % mp->m_sb.sb_inoalignmt;
415 if (!mod)
416 return;
417
418 /* calculate the inode offset and align startino */
419 offset = mod << mp->m_sb.sb_inopblog;
420 *startino -= offset;
421
422 /*
423 * Since startino has been aligned down, left shift allocmask such that
424 * it continues to represent the same physical inodes relative to the
425 * new startino.
426 */
427 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
428}
429
430/*
431 * Determine whether the source inode record can merge into the target. Both
432 * records must be sparse, the inode ranges must match and there must be no
433 * allocation overlap between the records.
434 */
435STATIC bool
436__xfs_inobt_can_merge(
437 struct xfs_inobt_rec_incore *trec, /* tgt record */
438 struct xfs_inobt_rec_incore *srec) /* src record */
439{
440 uint64_t talloc;
441 uint64_t salloc;
442
443 /* records must cover the same inode range */
444 if (trec->ir_startino != srec->ir_startino)
445 return false;
446
447 /* both records must be sparse */
448 if (!xfs_inobt_issparse(trec->ir_holemask) ||
449 !xfs_inobt_issparse(srec->ir_holemask))
450 return false;
451
452 /* both records must track some inodes */
453 if (!trec->ir_count || !srec->ir_count)
454 return false;
455
456 /* can't exceed capacity of a full record */
457 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
458 return false;
459
460 /* verify there is no allocation overlap */
461 talloc = xfs_inobt_irec_to_allocmask(trec);
462 salloc = xfs_inobt_irec_to_allocmask(srec);
463 if (talloc & salloc)
464 return false;
465
466 return true;
467}
468
469/*
470 * Merge the source inode record into the target. The caller must call
471 * __xfs_inobt_can_merge() to ensure the merge is valid.
472 */
473STATIC void
474__xfs_inobt_rec_merge(
475 struct xfs_inobt_rec_incore *trec, /* target */
476 struct xfs_inobt_rec_incore *srec) /* src */
477{
478 ASSERT(trec->ir_startino == srec->ir_startino);
479
480 /* combine the counts */
481 trec->ir_count += srec->ir_count;
482 trec->ir_freecount += srec->ir_freecount;
483
484 /*
485 * Merge the holemask and free mask. For both fields, 0 bits refer to
486 * allocated inodes. We combine the allocated ranges with bitwise AND.
487 */
488 trec->ir_holemask &= srec->ir_holemask;
489 trec->ir_free &= srec->ir_free;
490}
491
492/*
493 * Insert a new sparse inode chunk into the associated inode btree. The inode
494 * record for the sparse chunk is pre-aligned to a startino that should match
495 * any pre-existing sparse inode record in the tree. This allows sparse chunks
496 * to fill over time.
497 *
498 * This function supports two modes of handling preexisting records depending on
499 * the merge flag. If merge is true, the provided record is merged with the
500 * existing record and updated in place. The merged record is returned in nrec.
501 * If merge is false, an existing record is replaced with the provided record.
502 * If no preexisting record exists, the provided record is always inserted.
503 *
504 * It is considered corruption if a merge is requested and not possible. Given
505 * the sparse inode alignment constraints, this should never happen.
506 */
507STATIC int
508xfs_inobt_insert_sprec(
509 struct xfs_mount *mp,
510 struct xfs_trans *tp,
511 struct xfs_buf *agbp,
512 int btnum,
513 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
514 bool merge) /* merge or replace */
515{
516 struct xfs_btree_cur *cur;
517 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
518 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
519 int error;
520 int i;
521 struct xfs_inobt_rec_incore rec;
522
523 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
524
525 /* the new record is pre-aligned so we know where to look */
526 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
527 if (error)
528 goto error;
529 /* if nothing there, insert a new record and return */
530 if (i == 0) {
531 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
532 nrec->ir_count, nrec->ir_freecount,
533 nrec->ir_free, &i);
534 if (error)
535 goto error;
536 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
537
538 goto out;
539 }
540
541 /*
542 * A record exists at this startino. Merge or replace the record
543 * depending on what we've been asked to do.
544 */
545 if (merge) {
546 error = xfs_inobt_get_rec(cur, &rec, &i);
547 if (error)
548 goto error;
549 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
550 XFS_WANT_CORRUPTED_GOTO(mp,
551 rec.ir_startino == nrec->ir_startino,
552 error);
553
554 /*
555 * This should never fail. If we have coexisting records that
556 * cannot merge, something is seriously wrong.
557 */
558 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
559 error);
560
561 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
562 rec.ir_holemask, nrec->ir_startino,
563 nrec->ir_holemask);
564
565 /* merge to nrec to output the updated record */
566 __xfs_inobt_rec_merge(nrec, &rec);
567
568 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
569 nrec->ir_holemask);
570
571 error = xfs_inobt_rec_check_count(mp, nrec);
572 if (error)
573 goto error;
574 }
575
576 error = xfs_inobt_update(cur, nrec);
577 if (error)
578 goto error;
579
580out:
581 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
582 return 0;
583error:
584 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
585 return error;
586}
587
1da177e4
LT
588/*
589 * Allocate new inodes in the allocation group specified by agbp.
590 * Return 0 for success, else error code.
591 */
592STATIC int /* error code or 0 */
593xfs_ialloc_ag_alloc(
594 xfs_trans_t *tp, /* transaction pointer */
595 xfs_buf_t *agbp, /* alloc group buffer */
596 int *alloc)
597{
598 xfs_agi_t *agi; /* allocation group header */
599 xfs_alloc_arg_t args; /* allocation argument structure */
92821e2b 600 xfs_agnumber_t agno;
1da177e4 601 int error;
1da177e4
LT
602 xfs_agino_t newino; /* new first inode's number */
603 xfs_agino_t newlen; /* new number of inodes */
3ccb8b5f 604 int isaligned = 0; /* inode allocation at stripe unit */
1da177e4 605 /* boundary */
56d1115c
BF
606 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
607 struct xfs_inobt_rec_incore rec;
44b56e0a 608 struct xfs_perag *pag;
1cdadee1
BF
609 int do_sparse = 0;
610
a0041684 611 memset(&args, 0, sizeof(args));
1da177e4
LT
612 args.tp = tp;
613 args.mp = tp->t_mountp;
1cdadee1 614 args.fsbno = NULLFSBLOCK;
1da177e4 615
46fc58da
BF
616#ifdef DEBUG
617 /* randomly do sparse inode allocations */
618 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
619 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
620 do_sparse = prandom_u32() & 1;
621#endif
622
1da177e4
LT
623 /*
624 * Locking will ensure that we don't have two callers in here
625 * at one time.
626 */
71783438 627 newlen = args.mp->m_ialloc_inos;
1da177e4 628 if (args.mp->m_maxicount &&
74f9ce1c 629 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
501ab323 630 args.mp->m_maxicount)
2451337d 631 return -ENOSPC;
126cd105 632 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
1da177e4 633 /*
3ccb8b5f
GO
634 * First try to allocate inodes contiguous with the last-allocated
635 * chunk of inodes. If the filesystem is striped, this will fill
636 * an entire stripe unit with inodes.
28c8e41a 637 */
1da177e4 638 agi = XFS_BUF_TO_AGI(agbp);
3ccb8b5f 639 newino = be32_to_cpu(agi->agi_newino);
85c0b2ab 640 agno = be32_to_cpu(agi->agi_seqno);
019ff2d5 641 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
126cd105 642 args.mp->m_ialloc_blks;
1cdadee1
BF
643 if (do_sparse)
644 goto sparse_alloc;
019ff2d5
NS
645 if (likely(newino != NULLAGINO &&
646 (args.agbno < be32_to_cpu(agi->agi_length)))) {
85c0b2ab 647 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f 648 args.type = XFS_ALLOCTYPE_THIS_BNO;
3ccb8b5f 649 args.prod = 1;
75de2a91 650
3ccb8b5f 651 /*
75de2a91
DC
652 * We need to take into account alignment here to ensure that
653 * we don't modify the free list if we fail to have an exact
654 * block. If we don't have an exact match, and every oher
655 * attempt allocation attempt fails, we'll end up cancelling
656 * a dirty transaction and shutting down.
657 *
658 * For an exact allocation, alignment must be 1,
659 * however we need to take cluster alignment into account when
660 * fixing up the freelist. Use the minalignslop field to
661 * indicate that extra blocks might be required for alignment,
662 * but not to use them in the actual exact allocation.
3ccb8b5f 663 */
75de2a91 664 args.alignment = 1;
7a1df156 665 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
75de2a91
DC
666
667 /* Allow space for the inode btree to split. */
0d87e656 668 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
669 if ((error = xfs_alloc_vextent(&args)))
670 return error;
e480a723
BF
671
672 /*
673 * This request might have dirtied the transaction if the AG can
674 * satisfy the request, but the exact block was not available.
675 * If the allocation did fail, subsequent requests will relax
676 * the exact agbno requirement and increase the alignment
677 * instead. It is critical that the total size of the request
678 * (len + alignment + slop) does not increase from this point
679 * on, so reset minalignslop to ensure it is not included in
680 * subsequent requests.
681 */
682 args.minalignslop = 0;
1cdadee1 683 }
1da177e4 684
3ccb8b5f
GO
685 if (unlikely(args.fsbno == NULLFSBLOCK)) {
686 /*
687 * Set the alignment for the allocation.
688 * If stripe alignment is turned on then align at stripe unit
689 * boundary.
019ff2d5
NS
690 * If the cluster size is smaller than a filesystem block
691 * then we're doing I/O for inodes in filesystem block size
3ccb8b5f
GO
692 * pieces, so don't need alignment anyway.
693 */
694 isaligned = 0;
695 if (args.mp->m_sinoalign) {
696 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
697 args.alignment = args.mp->m_dalign;
698 isaligned = 1;
75de2a91 699 } else
7a1df156 700 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
3ccb8b5f
GO
701 /*
702 * Need to figure out where to allocate the inode blocks.
703 * Ideally they should be spaced out through the a.g.
704 * For now, just allocate blocks up front.
705 */
706 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 707 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f
GO
708 /*
709 * Allocate a fixed-size extent of inodes.
710 */
711 args.type = XFS_ALLOCTYPE_NEAR_BNO;
3ccb8b5f
GO
712 args.prod = 1;
713 /*
714 * Allow space for the inode btree to split.
715 */
0d87e656 716 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
717 if ((error = xfs_alloc_vextent(&args)))
718 return error;
719 }
019ff2d5 720
1da177e4
LT
721 /*
722 * If stripe alignment is turned on, then try again with cluster
723 * alignment.
724 */
725 if (isaligned && args.fsbno == NULLFSBLOCK) {
726 args.type = XFS_ALLOCTYPE_NEAR_BNO;
16259e7d 727 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 728 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
7a1df156 729 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
1da177e4
LT
730 if ((error = xfs_alloc_vextent(&args)))
731 return error;
732 }
733
56d1115c
BF
734 /*
735 * Finally, try a sparse allocation if the filesystem supports it and
736 * the sparse allocation length is smaller than a full chunk.
737 */
738 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
739 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
740 args.fsbno == NULLFSBLOCK) {
1cdadee1 741sparse_alloc:
56d1115c
BF
742 args.type = XFS_ALLOCTYPE_NEAR_BNO;
743 args.agbno = be32_to_cpu(agi->agi_root);
744 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
745 args.alignment = args.mp->m_sb.sb_spino_align;
746 args.prod = 1;
747
748 args.minlen = args.mp->m_ialloc_min_blks;
749 args.maxlen = args.minlen;
750
751 /*
752 * The inode record will be aligned to full chunk size. We must
753 * prevent sparse allocation from AG boundaries that result in
754 * invalid inode records, such as records that start at agbno 0
755 * or extend beyond the AG.
756 *
757 * Set min agbno to the first aligned, non-zero agbno and max to
758 * the last aligned agbno that is at least one full chunk from
759 * the end of the AG.
760 */
761 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
762 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
763 args.mp->m_sb.sb_inoalignmt) -
764 args.mp->m_ialloc_blks;
765
766 error = xfs_alloc_vextent(&args);
767 if (error)
768 return error;
769
770 newlen = args.len << args.mp->m_sb.sb_inopblog;
46fc58da 771 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
56d1115c
BF
772 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
773 }
774
1da177e4
LT
775 if (args.fsbno == NULLFSBLOCK) {
776 *alloc = 0;
777 return 0;
778 }
779 ASSERT(args.len == args.minlen);
1da177e4 780
359346a9 781 /*
85c0b2ab
DC
782 * Stamp and write the inode buffers.
783 *
359346a9
DC
784 * Seed the new inode cluster with a random generation number. This
785 * prevents short-term reuse of generation numbers if a chunk is
786 * freed and then immediately reallocated. We use random numbers
787 * rather than a linear progression to prevent the next generation
788 * number from being easily guessable.
789 */
463958af
BF
790 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
791 args.agbno, args.len, prandom_u32());
d42f08f6 792
2a30f36d
CS
793 if (error)
794 return error;
85c0b2ab
DC
795 /*
796 * Convert the results.
797 */
798 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
56d1115c
BF
799
800 if (xfs_inobt_issparse(~allocmask)) {
801 /*
802 * We've allocated a sparse chunk. Align the startino and mask.
803 */
804 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
805
806 rec.ir_startino = newino;
807 rec.ir_holemask = ~allocmask;
808 rec.ir_count = newlen;
809 rec.ir_freecount = newlen;
810 rec.ir_free = XFS_INOBT_ALL_FREE;
811
812 /*
813 * Insert the sparse record into the inobt and allow for a merge
814 * if necessary. If a merge does occur, rec is updated to the
815 * merged record.
816 */
817 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
818 &rec, true);
819 if (error == -EFSCORRUPTED) {
820 xfs_alert(args.mp,
821 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
822 XFS_AGINO_TO_INO(args.mp, agno,
823 rec.ir_startino),
824 rec.ir_holemask, rec.ir_count);
825 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
826 }
827 if (error)
828 return error;
829
830 /*
831 * We can't merge the part we've just allocated as for the inobt
832 * due to finobt semantics. The original record may or may not
833 * exist independent of whether physical inodes exist in this
834 * sparse chunk.
835 *
836 * We must update the finobt record based on the inobt record.
837 * rec contains the fully merged and up to date inobt record
838 * from the previous call. Set merge false to replace any
839 * existing record with this one.
840 */
841 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
842 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
843 XFS_BTNUM_FINO, &rec,
844 false);
845 if (error)
846 return error;
847 }
848 } else {
849 /* full chunk - insert new records to both btrees */
850 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
851 XFS_BTNUM_INO);
852 if (error)
853 return error;
854
855 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
856 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
857 newlen, XFS_BTNUM_FINO);
858 if (error)
859 return error;
860 }
861 }
862
863 /*
864 * Update AGI counts and newino.
865 */
413d57c9
MS
866 be32_add_cpu(&agi->agi_count, newlen);
867 be32_add_cpu(&agi->agi_freecount, newlen);
44b56e0a
DC
868 pag = xfs_perag_get(args.mp, agno);
869 pag->pagi_freecount += newlen;
870 xfs_perag_put(pag);
16259e7d 871 agi->agi_newino = cpu_to_be32(newino);
85c0b2ab 872
1da177e4
LT
873 /*
874 * Log allocation group header fields
875 */
876 xfs_ialloc_log_agi(tp, agbp,
877 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
878 /*
879 * Modify/log superblock values for inode count and inode free count.
880 */
881 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
882 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
883 *alloc = 1;
884 return 0;
885}
886
b8f82a4a 887STATIC xfs_agnumber_t
1da177e4
LT
888xfs_ialloc_next_ag(
889 xfs_mount_t *mp)
890{
891 xfs_agnumber_t agno;
892
893 spin_lock(&mp->m_agirotor_lock);
894 agno = mp->m_agirotor;
8aea3ff4 895 if (++mp->m_agirotor >= mp->m_maxagi)
1da177e4
LT
896 mp->m_agirotor = 0;
897 spin_unlock(&mp->m_agirotor_lock);
898
899 return agno;
900}
901
902/*
903 * Select an allocation group to look for a free inode in, based on the parent
2f21ff1c 904 * inode and the mode. Return the allocation group buffer.
1da177e4 905 */
55d6af64 906STATIC xfs_agnumber_t
1da177e4
LT
907xfs_ialloc_ag_select(
908 xfs_trans_t *tp, /* transaction pointer */
909 xfs_ino_t parent, /* parent directory inode number */
576b1d67 910 umode_t mode, /* bits set to indicate file type */
1da177e4
LT
911 int okalloc) /* ok to allocate more space */
912{
1da177e4
LT
913 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
914 xfs_agnumber_t agno; /* current ag number */
915 int flags; /* alloc buffer locking flags */
916 xfs_extlen_t ineed; /* blocks needed for inode allocation */
917 xfs_extlen_t longest = 0; /* longest extent available */
918 xfs_mount_t *mp; /* mount point structure */
919 int needspace; /* file mode implies space allocated */
920 xfs_perag_t *pag; /* per allocation group data */
921 xfs_agnumber_t pagno; /* parent (starting) ag number */
55d6af64 922 int error;
1da177e4
LT
923
924 /*
925 * Files of these types need at least one block if length > 0
926 * (and they won't fit in the inode, but that's hard to figure out).
927 */
928 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
929 mp = tp->t_mountp;
930 agcount = mp->m_maxagi;
931 if (S_ISDIR(mode))
932 pagno = xfs_ialloc_next_ag(mp);
933 else {
934 pagno = XFS_INO_TO_AGNO(mp, parent);
935 if (pagno >= agcount)
936 pagno = 0;
937 }
55d6af64 938
1da177e4 939 ASSERT(pagno < agcount);
55d6af64 940
1da177e4
LT
941 /*
942 * Loop through allocation groups, looking for one with a little
943 * free space in it. Note we don't look for free inodes, exactly.
944 * Instead, we include whether there is a need to allocate inodes
945 * to mean that blocks must be allocated for them,
946 * if none are currently free.
947 */
948 agno = pagno;
949 flags = XFS_ALLOC_FLAG_TRYLOCK;
1da177e4 950 for (;;) {
44b56e0a 951 pag = xfs_perag_get(mp, agno);
55d6af64
CH
952 if (!pag->pagi_inodeok) {
953 xfs_ialloc_next_ag(mp);
954 goto nextag;
955 }
956
1da177e4 957 if (!pag->pagi_init) {
55d6af64
CH
958 error = xfs_ialloc_pagi_init(mp, tp, agno);
959 if (error)
1da177e4 960 goto nextag;
55d6af64 961 }
1da177e4 962
55d6af64
CH
963 if (pag->pagi_freecount) {
964 xfs_perag_put(pag);
965 return agno;
1da177e4
LT
966 }
967
55d6af64
CH
968 if (!okalloc)
969 goto nextag;
970
971 if (!pag->pagf_init) {
972 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
973 if (error)
1da177e4 974 goto nextag;
1da177e4 975 }
55d6af64
CH
976
977 /*
7a1df156
DC
978 * Check that there is enough free space for the file plus a
979 * chunk of inodes if we need to allocate some. If this is the
980 * first pass across the AGs, take into account the potential
981 * space needed for alignment of inode chunks when checking the
982 * longest contiguous free space in the AG - this prevents us
983 * from getting ENOSPC because we have free space larger than
984 * m_ialloc_blks but alignment constraints prevent us from using
985 * it.
986 *
987 * If we can't find an AG with space for full alignment slack to
988 * be taken into account, we must be near ENOSPC in all AGs.
989 * Hence we don't include alignment for the second pass and so
990 * if we fail allocation due to alignment issues then it is most
991 * likely a real ENOSPC condition.
55d6af64 992 */
066a1884 993 ineed = mp->m_ialloc_min_blks;
7a1df156
DC
994 if (flags && ineed > 1)
995 ineed += xfs_ialloc_cluster_alignment(mp);
55d6af64
CH
996 longest = pag->pagf_longest;
997 if (!longest)
998 longest = pag->pagf_flcount > 0;
999
1000 if (pag->pagf_freeblks >= needspace + ineed &&
1001 longest >= ineed) {
1002 xfs_perag_put(pag);
1003 return agno;
1da177e4 1004 }
1da177e4 1005nextag:
44b56e0a 1006 xfs_perag_put(pag);
1da177e4
LT
1007 /*
1008 * No point in iterating over the rest, if we're shutting
1009 * down.
1010 */
1c1c6ebc 1011 if (XFS_FORCED_SHUTDOWN(mp))
55d6af64 1012 return NULLAGNUMBER;
1da177e4
LT
1013 agno++;
1014 if (agno >= agcount)
1015 agno = 0;
1016 if (agno == pagno) {
1c1c6ebc 1017 if (flags == 0)
55d6af64 1018 return NULLAGNUMBER;
1da177e4
LT
1019 flags = 0;
1020 }
1021 }
1022}
1023
4254b0bb
CH
1024/*
1025 * Try to retrieve the next record to the left/right from the current one.
1026 */
1027STATIC int
1028xfs_ialloc_next_rec(
1029 struct xfs_btree_cur *cur,
1030 xfs_inobt_rec_incore_t *rec,
1031 int *done,
1032 int left)
1033{
1034 int error;
1035 int i;
1036
1037 if (left)
1038 error = xfs_btree_decrement(cur, 0, &i);
1039 else
1040 error = xfs_btree_increment(cur, 0, &i);
1041
1042 if (error)
1043 return error;
1044 *done = !i;
1045 if (i) {
1046 error = xfs_inobt_get_rec(cur, rec, &i);
1047 if (error)
1048 return error;
5fb5aeee 1049 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
4254b0bb
CH
1050 }
1051
1052 return 0;
1053}
1054
bd169565
DC
1055STATIC int
1056xfs_ialloc_get_rec(
1057 struct xfs_btree_cur *cur,
1058 xfs_agino_t agino,
1059 xfs_inobt_rec_incore_t *rec,
43df2ee6 1060 int *done)
bd169565
DC
1061{
1062 int error;
1063 int i;
1064
1065 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1066 if (error)
1067 return error;
1068 *done = !i;
1069 if (i) {
1070 error = xfs_inobt_get_rec(cur, rec, &i);
1071 if (error)
1072 return error;
5fb5aeee 1073 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
bd169565
DC
1074 }
1075
1076 return 0;
1077}
0b48db80 1078
d4cc540b 1079/*
26dd5217
BF
1080 * Return the offset of the first free inode in the record. If the inode chunk
1081 * is sparsely allocated, we convert the record holemask to inode granularity
1082 * and mask off the unallocated regions from the inode free mask.
d4cc540b
BF
1083 */
1084STATIC int
1085xfs_inobt_first_free_inode(
1086 struct xfs_inobt_rec_incore *rec)
1087{
26dd5217
BF
1088 xfs_inofree_t realfree;
1089
1090 /* if there are no holes, return the first available offset */
1091 if (!xfs_inobt_issparse(rec->ir_holemask))
1092 return xfs_lowbit64(rec->ir_free);
1093
1094 realfree = xfs_inobt_irec_to_allocmask(rec);
1095 realfree &= rec->ir_free;
1096
1097 return xfs_lowbit64(realfree);
d4cc540b
BF
1098}
1099
1da177e4 1100/*
6dd8638e 1101 * Allocate an inode using the inobt-only algorithm.
1da177e4 1102 */
f2ecc5e4 1103STATIC int
6dd8638e 1104xfs_dialloc_ag_inobt(
f2ecc5e4
CH
1105 struct xfs_trans *tp,
1106 struct xfs_buf *agbp,
1107 xfs_ino_t parent,
1108 xfs_ino_t *inop)
1da177e4 1109{
f2ecc5e4
CH
1110 struct xfs_mount *mp = tp->t_mountp;
1111 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1112 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1113 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1114 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1115 struct xfs_perag *pag;
1116 struct xfs_btree_cur *cur, *tcur;
1117 struct xfs_inobt_rec_incore rec, trec;
1118 xfs_ino_t ino;
1119 int error;
1120 int offset;
1121 int i, j;
1da177e4 1122
44b56e0a 1123 pag = xfs_perag_get(mp, agno);
bd169565 1124
4bb61069
CH
1125 ASSERT(pag->pagi_init);
1126 ASSERT(pag->pagi_inodeok);
1127 ASSERT(pag->pagi_freecount > 0);
1128
bd169565 1129 restart_pagno:
57bd3dbe 1130 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4
LT
1131 /*
1132 * If pagino is 0 (this is the root inode allocation) use newino.
1133 * This must work because we've just allocated some.
1134 */
1135 if (!pagino)
16259e7d 1136 pagino = be32_to_cpu(agi->agi_newino);
1da177e4 1137
0b48db80
DC
1138 error = xfs_check_agi_freecount(cur, agi);
1139 if (error)
1140 goto error0;
1da177e4 1141
1da177e4 1142 /*
4254b0bb 1143 * If in the same AG as the parent, try to get near the parent.
1da177e4
LT
1144 */
1145 if (pagno == agno) {
4254b0bb
CH
1146 int doneleft; /* done, to the left */
1147 int doneright; /* done, to the right */
bd169565 1148 int searchdistance = 10;
4254b0bb 1149
21875505 1150 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
4254b0bb 1151 if (error)
1da177e4 1152 goto error0;
c29aad41 1153 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
4254b0bb
CH
1154
1155 error = xfs_inobt_get_rec(cur, &rec, &j);
1156 if (error)
1157 goto error0;
c29aad41 1158 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
4254b0bb
CH
1159
1160 if (rec.ir_freecount > 0) {
1da177e4
LT
1161 /*
1162 * Found a free inode in the same chunk
4254b0bb 1163 * as the parent, done.
1da177e4 1164 */
4254b0bb 1165 goto alloc_inode;
1da177e4 1166 }
4254b0bb
CH
1167
1168
1da177e4 1169 /*
4254b0bb 1170 * In the same AG as parent, but parent's chunk is full.
1da177e4 1171 */
1da177e4 1172
4254b0bb
CH
1173 /* duplicate the cursor, search left & right simultaneously */
1174 error = xfs_btree_dup_cursor(cur, &tcur);
1175 if (error)
1176 goto error0;
1177
bd169565
DC
1178 /*
1179 * Skip to last blocks looked up if same parent inode.
1180 */
1181 if (pagino != NULLAGINO &&
1182 pag->pagl_pagino == pagino &&
1183 pag->pagl_leftrec != NULLAGINO &&
1184 pag->pagl_rightrec != NULLAGINO) {
1185 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
43df2ee6 1186 &trec, &doneleft);
bd169565
DC
1187 if (error)
1188 goto error1;
4254b0bb 1189
bd169565 1190 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
43df2ee6 1191 &rec, &doneright);
bd169565
DC
1192 if (error)
1193 goto error1;
1194 } else {
1195 /* search left with tcur, back up 1 record */
1196 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1197 if (error)
1198 goto error1;
1199
1200 /* search right with cur, go forward 1 record. */
1201 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1202 if (error)
1203 goto error1;
1204 }
4254b0bb
CH
1205
1206 /*
1207 * Loop until we find an inode chunk with a free inode.
1208 */
1209 while (!doneleft || !doneright) {
1210 int useleft; /* using left inode chunk this time */
1211
bd169565
DC
1212 if (!--searchdistance) {
1213 /*
1214 * Not in range - save last search
1215 * location and allocate a new inode
1216 */
3b826386 1217 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1218 pag->pagl_leftrec = trec.ir_startino;
1219 pag->pagl_rightrec = rec.ir_startino;
1220 pag->pagl_pagino = pagino;
1221 goto newino;
1222 }
1223
4254b0bb
CH
1224 /* figure out the closer block if both are valid. */
1225 if (!doneleft && !doneright) {
1226 useleft = pagino -
1227 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1228 rec.ir_startino - pagino;
1229 } else {
1230 useleft = !doneleft;
1da177e4 1231 }
4254b0bb
CH
1232
1233 /* free inodes to the left? */
1234 if (useleft && trec.ir_freecount) {
1235 rec = trec;
1236 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1237 cur = tcur;
bd169565
DC
1238
1239 pag->pagl_leftrec = trec.ir_startino;
1240 pag->pagl_rightrec = rec.ir_startino;
1241 pag->pagl_pagino = pagino;
4254b0bb 1242 goto alloc_inode;
1da177e4 1243 }
1da177e4 1244
4254b0bb
CH
1245 /* free inodes to the right? */
1246 if (!useleft && rec.ir_freecount) {
1247 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1248
1249 pag->pagl_leftrec = trec.ir_startino;
1250 pag->pagl_rightrec = rec.ir_startino;
1251 pag->pagl_pagino = pagino;
4254b0bb 1252 goto alloc_inode;
1da177e4 1253 }
4254b0bb
CH
1254
1255 /* get next record to check */
1256 if (useleft) {
1257 error = xfs_ialloc_next_rec(tcur, &trec,
1258 &doneleft, 1);
1259 } else {
1260 error = xfs_ialloc_next_rec(cur, &rec,
1261 &doneright, 0);
1262 }
1263 if (error)
1264 goto error1;
1da177e4 1265 }
bd169565
DC
1266
1267 /*
1268 * We've reached the end of the btree. because
1269 * we are only searching a small chunk of the
1270 * btree each search, there is obviously free
1271 * inodes closer to the parent inode than we
1272 * are now. restart the search again.
1273 */
1274 pag->pagl_pagino = NULLAGINO;
1275 pag->pagl_leftrec = NULLAGINO;
1276 pag->pagl_rightrec = NULLAGINO;
1277 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1278 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1279 goto restart_pagno;
1da177e4 1280 }
4254b0bb 1281
1da177e4 1282 /*
4254b0bb 1283 * In a different AG from the parent.
1da177e4
LT
1284 * See if the most recently allocated block has any free.
1285 */
bd169565 1286newino:
69ef921b 1287 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
21875505
CH
1288 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1289 XFS_LOOKUP_EQ, &i);
4254b0bb 1290 if (error)
1da177e4 1291 goto error0;
4254b0bb
CH
1292
1293 if (i == 1) {
1294 error = xfs_inobt_get_rec(cur, &rec, &j);
1295 if (error)
1296 goto error0;
1297
1298 if (j == 1 && rec.ir_freecount > 0) {
1299 /*
1300 * The last chunk allocated in the group
1301 * still has a free inode.
1302 */
1303 goto alloc_inode;
1304 }
1da177e4 1305 }
bd169565 1306 }
4254b0bb 1307
bd169565
DC
1308 /*
1309 * None left in the last group, search the whole AG
1310 */
1311 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1312 if (error)
1313 goto error0;
c29aad41 1314 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1315
1316 for (;;) {
1317 error = xfs_inobt_get_rec(cur, &rec, &i);
1318 if (error)
1319 goto error0;
c29aad41 1320 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1321 if (rec.ir_freecount > 0)
1322 break;
1323 error = xfs_btree_increment(cur, 0, &i);
4254b0bb
CH
1324 if (error)
1325 goto error0;
c29aad41 1326 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4 1327 }
4254b0bb
CH
1328
1329alloc_inode:
d4cc540b 1330 offset = xfs_inobt_first_free_inode(&rec);
1da177e4
LT
1331 ASSERT(offset >= 0);
1332 ASSERT(offset < XFS_INODES_PER_CHUNK);
1333 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1334 XFS_INODES_PER_CHUNK) == 0);
1335 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
0d87e656 1336 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1da177e4 1337 rec.ir_freecount--;
afabc24a
CH
1338 error = xfs_inobt_update(cur, &rec);
1339 if (error)
1da177e4 1340 goto error0;
413d57c9 1341 be32_add_cpu(&agi->agi_freecount, -1);
1da177e4 1342 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a 1343 pag->pagi_freecount--;
1da177e4 1344
0b48db80
DC
1345 error = xfs_check_agi_freecount(cur, agi);
1346 if (error)
1347 goto error0;
1348
1da177e4
LT
1349 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1350 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
44b56e0a 1351 xfs_perag_put(pag);
1da177e4
LT
1352 *inop = ino;
1353 return 0;
1354error1:
1355 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1356error0:
1357 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
44b56e0a 1358 xfs_perag_put(pag);
1da177e4
LT
1359 return error;
1360}
1361
6dd8638e
BF
1362/*
1363 * Use the free inode btree to allocate an inode based on distance from the
1364 * parent. Note that the provided cursor may be deleted and replaced.
1365 */
1366STATIC int
1367xfs_dialloc_ag_finobt_near(
1368 xfs_agino_t pagino,
1369 struct xfs_btree_cur **ocur,
1370 struct xfs_inobt_rec_incore *rec)
1371{
1372 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1373 struct xfs_btree_cur *rcur; /* right search cursor */
1374 struct xfs_inobt_rec_incore rrec;
1375 int error;
1376 int i, j;
1377
1378 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1379 if (error)
1380 return error;
1381
1382 if (i == 1) {
1383 error = xfs_inobt_get_rec(lcur, rec, &i);
1384 if (error)
1385 return error;
5fb5aeee 1386 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
6dd8638e
BF
1387
1388 /*
1389 * See if we've landed in the parent inode record. The finobt
1390 * only tracks chunks with at least one free inode, so record
1391 * existence is enough.
1392 */
1393 if (pagino >= rec->ir_startino &&
1394 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1395 return 0;
1396 }
1397
1398 error = xfs_btree_dup_cursor(lcur, &rcur);
1399 if (error)
1400 return error;
1401
1402 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1403 if (error)
1404 goto error_rcur;
1405 if (j == 1) {
1406 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1407 if (error)
1408 goto error_rcur;
c29aad41 1409 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
6dd8638e
BF
1410 }
1411
c29aad41 1412 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
6dd8638e
BF
1413 if (i == 1 && j == 1) {
1414 /*
1415 * Both the left and right records are valid. Choose the closer
1416 * inode chunk to the target.
1417 */
1418 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1419 (rrec.ir_startino - pagino)) {
1420 *rec = rrec;
1421 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1422 *ocur = rcur;
1423 } else {
1424 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1425 }
1426 } else if (j == 1) {
1427 /* only the right record is valid */
1428 *rec = rrec;
1429 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 *ocur = rcur;
1431 } else if (i == 1) {
1432 /* only the left record is valid */
1433 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1434 }
1435
1436 return 0;
1437
1438error_rcur:
1439 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1440 return error;
1441}
1442
1443/*
1444 * Use the free inode btree to find a free inode based on a newino hint. If
1445 * the hint is NULL, find the first free inode in the AG.
1446 */
1447STATIC int
1448xfs_dialloc_ag_finobt_newino(
1449 struct xfs_agi *agi,
1450 struct xfs_btree_cur *cur,
1451 struct xfs_inobt_rec_incore *rec)
1452{
1453 int error;
1454 int i;
1455
1456 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
e68ed775
DC
1457 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1458 XFS_LOOKUP_EQ, &i);
6dd8638e
BF
1459 if (error)
1460 return error;
1461 if (i == 1) {
1462 error = xfs_inobt_get_rec(cur, rec, &i);
1463 if (error)
1464 return error;
5fb5aeee 1465 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1466 return 0;
1467 }
1468 }
1469
1470 /*
1471 * Find the first inode available in the AG.
1472 */
1473 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1474 if (error)
1475 return error;
5fb5aeee 1476 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1477
1478 error = xfs_inobt_get_rec(cur, rec, &i);
1479 if (error)
1480 return error;
5fb5aeee 1481 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1482
1483 return 0;
1484}
1485
1486/*
1487 * Update the inobt based on a modification made to the finobt. Also ensure that
1488 * the records from both trees are equivalent post-modification.
1489 */
1490STATIC int
1491xfs_dialloc_ag_update_inobt(
1492 struct xfs_btree_cur *cur, /* inobt cursor */
1493 struct xfs_inobt_rec_incore *frec, /* finobt record */
1494 int offset) /* inode offset */
1495{
1496 struct xfs_inobt_rec_incore rec;
1497 int error;
1498 int i;
1499
1500 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1501 if (error)
1502 return error;
5fb5aeee 1503 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1504
1505 error = xfs_inobt_get_rec(cur, &rec, &i);
1506 if (error)
1507 return error;
5fb5aeee 1508 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1509 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1510 XFS_INODES_PER_CHUNK) == 0);
1511
1512 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1513 rec.ir_freecount--;
1514
5fb5aeee 1515 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
6dd8638e
BF
1516 (rec.ir_freecount == frec->ir_freecount));
1517
b72091f2 1518 return xfs_inobt_update(cur, &rec);
6dd8638e
BF
1519}
1520
1521/*
1522 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1523 * back to the inobt search algorithm.
1524 *
1525 * The caller selected an AG for us, and made sure that free inodes are
1526 * available.
1527 */
1528STATIC int
1529xfs_dialloc_ag(
1530 struct xfs_trans *tp,
1531 struct xfs_buf *agbp,
1532 xfs_ino_t parent,
1533 xfs_ino_t *inop)
1534{
1535 struct xfs_mount *mp = tp->t_mountp;
1536 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1537 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1538 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1539 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1540 struct xfs_perag *pag;
1541 struct xfs_btree_cur *cur; /* finobt cursor */
1542 struct xfs_btree_cur *icur; /* inobt cursor */
1543 struct xfs_inobt_rec_incore rec;
1544 xfs_ino_t ino;
1545 int error;
1546 int offset;
1547 int i;
1548
1549 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1550 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1551
1552 pag = xfs_perag_get(mp, agno);
1553
1554 /*
1555 * If pagino is 0 (this is the root inode allocation) use newino.
1556 * This must work because we've just allocated some.
1557 */
1558 if (!pagino)
1559 pagino = be32_to_cpu(agi->agi_newino);
1560
1561 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1562
1563 error = xfs_check_agi_freecount(cur, agi);
1564 if (error)
1565 goto error_cur;
1566
1567 /*
1568 * The search algorithm depends on whether we're in the same AG as the
1569 * parent. If so, find the closest available inode to the parent. If
1570 * not, consider the agi hint or find the first free inode in the AG.
1571 */
1572 if (agno == pagno)
1573 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1574 else
1575 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1576 if (error)
1577 goto error_cur;
1578
d4cc540b 1579 offset = xfs_inobt_first_free_inode(&rec);
6dd8638e
BF
1580 ASSERT(offset >= 0);
1581 ASSERT(offset < XFS_INODES_PER_CHUNK);
1582 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1583 XFS_INODES_PER_CHUNK) == 0);
1584 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1585
1586 /*
1587 * Modify or remove the finobt record.
1588 */
1589 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1590 rec.ir_freecount--;
1591 if (rec.ir_freecount)
1592 error = xfs_inobt_update(cur, &rec);
1593 else
1594 error = xfs_btree_delete(cur, &i);
1595 if (error)
1596 goto error_cur;
1597
1598 /*
1599 * The finobt has now been updated appropriately. We haven't updated the
1600 * agi and superblock yet, so we can create an inobt cursor and validate
1601 * the original freecount. If all is well, make the equivalent update to
1602 * the inobt using the finobt record and offset information.
1603 */
1604 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1605
1606 error = xfs_check_agi_freecount(icur, agi);
1607 if (error)
1608 goto error_icur;
1609
1610 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1611 if (error)
1612 goto error_icur;
1613
1614 /*
1615 * Both trees have now been updated. We must update the perag and
1616 * superblock before we can check the freecount for each btree.
1617 */
1618 be32_add_cpu(&agi->agi_freecount, -1);
1619 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1620 pag->pagi_freecount--;
1621
1622 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1623
1624 error = xfs_check_agi_freecount(icur, agi);
1625 if (error)
1626 goto error_icur;
1627 error = xfs_check_agi_freecount(cur, agi);
1628 if (error)
1629 goto error_icur;
1630
1631 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1632 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1633 xfs_perag_put(pag);
1634 *inop = ino;
1635 return 0;
1636
1637error_icur:
1638 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1639error_cur:
1640 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1641 xfs_perag_put(pag);
1642 return error;
1643}
1644
f2ecc5e4
CH
1645/*
1646 * Allocate an inode on disk.
1647 *
1648 * Mode is used to tell whether the new inode will need space, and whether it
1649 * is a directory.
1650 *
1651 * This function is designed to be called twice if it has to do an allocation
1652 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1653 * If an inode is available without having to performn an allocation, an inode
cd856db6
CM
1654 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1655 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1656 * The caller should then commit the current transaction, allocate a
f2ecc5e4
CH
1657 * new transaction, and call xfs_dialloc() again, passing in the previous value
1658 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1659 * buffer is locked across the two calls, the second call is guaranteed to have
1660 * a free inode available.
1661 *
1662 * Once we successfully pick an inode its number is returned and the on-disk
1663 * data structures are updated. The inode itself is not read in, since doing so
1664 * would break ordering constraints with xfs_reclaim.
1665 */
1666int
1667xfs_dialloc(
1668 struct xfs_trans *tp,
1669 xfs_ino_t parent,
1670 umode_t mode,
1671 int okalloc,
1672 struct xfs_buf **IO_agbp,
f2ecc5e4
CH
1673 xfs_ino_t *inop)
1674{
55d6af64 1675 struct xfs_mount *mp = tp->t_mountp;
f2ecc5e4
CH
1676 struct xfs_buf *agbp;
1677 xfs_agnumber_t agno;
f2ecc5e4
CH
1678 int error;
1679 int ialloced;
1680 int noroom = 0;
be60fe54 1681 xfs_agnumber_t start_agno;
f2ecc5e4
CH
1682 struct xfs_perag *pag;
1683
4bb61069 1684 if (*IO_agbp) {
f2ecc5e4 1685 /*
4bb61069
CH
1686 * If the caller passes in a pointer to the AGI buffer,
1687 * continue where we left off before. In this case, we
f2ecc5e4
CH
1688 * know that the allocation group has free inodes.
1689 */
1690 agbp = *IO_agbp;
4bb61069 1691 goto out_alloc;
f2ecc5e4 1692 }
4bb61069
CH
1693
1694 /*
1695 * We do not have an agbp, so select an initial allocation
1696 * group for inode allocation.
1697 */
be60fe54
CH
1698 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1699 if (start_agno == NULLAGNUMBER) {
4bb61069
CH
1700 *inop = NULLFSINO;
1701 return 0;
1702 }
55d6af64 1703
f2ecc5e4
CH
1704 /*
1705 * If we have already hit the ceiling of inode blocks then clear
1706 * okalloc so we scan all available agi structures for a free
1707 * inode.
74f9ce1c
GW
1708 *
1709 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1710 * which will sacrifice the preciseness but improve the performance.
f2ecc5e4 1711 */
f2ecc5e4 1712 if (mp->m_maxicount &&
74f9ce1c
GW
1713 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1714 > mp->m_maxicount) {
f2ecc5e4
CH
1715 noroom = 1;
1716 okalloc = 0;
1717 }
1718
1719 /*
1720 * Loop until we find an allocation group that either has free inodes
1721 * or in which we can allocate some inodes. Iterate through the
1722 * allocation groups upward, wrapping at the end.
1723 */
be60fe54
CH
1724 agno = start_agno;
1725 for (;;) {
1726 pag = xfs_perag_get(mp, agno);
1727 if (!pag->pagi_inodeok) {
1728 xfs_ialloc_next_ag(mp);
1729 goto nextag;
1730 }
1731
1732 if (!pag->pagi_init) {
1733 error = xfs_ialloc_pagi_init(mp, tp, agno);
1734 if (error)
1735 goto out_error;
f2ecc5e4 1736 }
be60fe54 1737
f2ecc5e4 1738 /*
be60fe54 1739 * Do a first racy fast path check if this AG is usable.
f2ecc5e4 1740 */
be60fe54
CH
1741 if (!pag->pagi_freecount && !okalloc)
1742 goto nextag;
1743
c4982110
CH
1744 /*
1745 * Then read in the AGI buffer and recheck with the AGI buffer
1746 * lock held.
1747 */
be60fe54
CH
1748 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1749 if (error)
1750 goto out_error;
1751
be60fe54
CH
1752 if (pag->pagi_freecount) {
1753 xfs_perag_put(pag);
1754 goto out_alloc;
1755 }
1756
c4982110
CH
1757 if (!okalloc)
1758 goto nextag_relse_buffer;
1759
be60fe54
CH
1760
1761 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1762 if (error) {
1763 xfs_trans_brelse(tp, agbp);
1764
2451337d 1765 if (error != -ENOSPC)
be60fe54
CH
1766 goto out_error;
1767
1768 xfs_perag_put(pag);
f2ecc5e4 1769 *inop = NULLFSINO;
be60fe54 1770 return 0;
f2ecc5e4 1771 }
be60fe54
CH
1772
1773 if (ialloced) {
1774 /*
1775 * We successfully allocated some inodes, return
1776 * the current context to the caller so that it
1777 * can commit the current transaction and call
1778 * us again where we left off.
1779 */
1780 ASSERT(pag->pagi_freecount > 0);
f2ecc5e4 1781 xfs_perag_put(pag);
be60fe54
CH
1782
1783 *IO_agbp = agbp;
1784 *inop = NULLFSINO;
1785 return 0;
f2ecc5e4 1786 }
be60fe54 1787
c4982110
CH
1788nextag_relse_buffer:
1789 xfs_trans_brelse(tp, agbp);
be60fe54 1790nextag:
f2ecc5e4 1791 xfs_perag_put(pag);
be60fe54
CH
1792 if (++agno == mp->m_sb.sb_agcount)
1793 agno = 0;
1794 if (agno == start_agno) {
1795 *inop = NULLFSINO;
2451337d 1796 return noroom ? -ENOSPC : 0;
be60fe54 1797 }
f2ecc5e4
CH
1798 }
1799
4bb61069 1800out_alloc:
f2ecc5e4
CH
1801 *IO_agbp = NULL;
1802 return xfs_dialloc_ag(tp, agbp, parent, inop);
be60fe54
CH
1803out_error:
1804 xfs_perag_put(pag);
b474c7ae 1805 return error;
f2ecc5e4
CH
1806}
1807
10ae3dc7
BF
1808/*
1809 * Free the blocks of an inode chunk. We must consider that the inode chunk
1810 * might be sparse and only free the regions that are allocated as part of the
1811 * chunk.
1812 */
1813STATIC void
1814xfs_difree_inode_chunk(
1815 struct xfs_mount *mp,
1816 xfs_agnumber_t agno,
1817 struct xfs_inobt_rec_incore *rec,
1818 struct xfs_bmap_free *flist)
1819{
1820 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1821 int startidx, endidx;
1822 int nextbit;
1823 xfs_agblock_t agbno;
1824 int contigblk;
1825 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1826
1827 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1828 /* not sparse, calculate extent info directly */
1829 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1830 XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
1831 mp->m_ialloc_blks, flist, mp);
1832 return;
1833 }
1834
1835 /* holemask is only 16-bits (fits in an unsigned long) */
1836 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1837 holemask[0] = rec->ir_holemask;
1838
1839 /*
1840 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1841 * holemask and convert the start/end index of each range to an extent.
1842 * We start with the start and end index both pointing at the first 0 in
1843 * the mask.
1844 */
1845 startidx = endidx = find_first_zero_bit(holemask,
1846 XFS_INOBT_HOLEMASK_BITS);
1847 nextbit = startidx + 1;
1848 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1849 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1850 nextbit);
1851 /*
1852 * If the next zero bit is contiguous, update the end index of
1853 * the current range and continue.
1854 */
1855 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1856 nextbit == endidx + 1) {
1857 endidx = nextbit;
1858 goto next;
1859 }
1860
1861 /*
1862 * nextbit is not contiguous with the current end index. Convert
1863 * the current start/end to an extent and add it to the free
1864 * list.
1865 */
1866 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1867 mp->m_sb.sb_inopblock;
1868 contigblk = ((endidx - startidx + 1) *
1869 XFS_INODES_PER_HOLEMASK_BIT) /
1870 mp->m_sb.sb_inopblock;
1871
1872 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1873 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1874 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1875 flist, mp);
1876
1877 /* reset range to current bit and carry on... */
1878 startidx = endidx = nextbit;
1879
1880next:
1881 nextbit++;
1882 }
1883}
1884
2b64ee5c
BF
1885STATIC int
1886xfs_difree_inobt(
1887 struct xfs_mount *mp,
1888 struct xfs_trans *tp,
1889 struct xfs_buf *agbp,
1890 xfs_agino_t agino,
1891 struct xfs_bmap_free *flist,
09b56604 1892 struct xfs_icluster *xic,
2b64ee5c 1893 struct xfs_inobt_rec_incore *orec)
1da177e4 1894{
2b64ee5c
BF
1895 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1896 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1897 struct xfs_perag *pag;
1898 struct xfs_btree_cur *cur;
1899 struct xfs_inobt_rec_incore rec;
1900 int ilen;
1901 int error;
1902 int i;
1903 int off;
1da177e4 1904
69ef921b 1905 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2b64ee5c
BF
1906 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1907
1da177e4
LT
1908 /*
1909 * Initialize the cursor.
1910 */
57bd3dbe 1911 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4 1912
0b48db80
DC
1913 error = xfs_check_agi_freecount(cur, agi);
1914 if (error)
1915 goto error0;
1916
1da177e4
LT
1917 /*
1918 * Look for the entry describing this inode.
1919 */
21875505 1920 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
0b932ccc
DC
1921 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1922 __func__, error);
1da177e4
LT
1923 goto error0;
1924 }
c29aad41 1925 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
2e287a73
CH
1926 error = xfs_inobt_get_rec(cur, &rec, &i);
1927 if (error) {
0b932ccc
DC
1928 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1929 __func__, error);
1da177e4
LT
1930 goto error0;
1931 }
c29aad41 1932 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4
LT
1933 /*
1934 * Get the offset in the inode chunk.
1935 */
1936 off = agino - rec.ir_startino;
1937 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
0d87e656 1938 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1da177e4
LT
1939 /*
1940 * Mark the inode free & increment the count.
1941 */
0d87e656 1942 rec.ir_free |= XFS_INOBT_MASK(off);
1da177e4
LT
1943 rec.ir_freecount++;
1944
1945 /*
999633d3
BF
1946 * When an inode chunk is free, it becomes eligible for removal. Don't
1947 * remove the chunk if the block size is large enough for multiple inode
1948 * chunks (that might not be free).
1da177e4 1949 */
1bd960ee 1950 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
999633d3
BF
1951 rec.ir_free == XFS_INOBT_ALL_FREE &&
1952 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
09b56604
BF
1953 xic->deleted = 1;
1954 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1955 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1da177e4
LT
1956
1957 /*
1958 * Remove the inode cluster from the AGI B+Tree, adjust the
1959 * AGI and Superblock inode counts, and mark the disk space
1960 * to be freed when the transaction is committed.
1961 */
999633d3 1962 ilen = rec.ir_freecount;
413d57c9
MS
1963 be32_add_cpu(&agi->agi_count, -ilen);
1964 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1da177e4 1965 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
44b56e0a
DC
1966 pag = xfs_perag_get(mp, agno);
1967 pag->pagi_freecount -= ilen - 1;
1968 xfs_perag_put(pag);
1da177e4
LT
1969 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1970 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1971
91cca5df 1972 if ((error = xfs_btree_delete(cur, &i))) {
0b932ccc
DC
1973 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1974 __func__, error);
1da177e4
LT
1975 goto error0;
1976 }
1977
10ae3dc7 1978 xfs_difree_inode_chunk(mp, agno, &rec, flist);
1da177e4 1979 } else {
09b56604 1980 xic->deleted = 0;
1da177e4 1981
afabc24a
CH
1982 error = xfs_inobt_update(cur, &rec);
1983 if (error) {
0b932ccc
DC
1984 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1985 __func__, error);
1da177e4
LT
1986 goto error0;
1987 }
afabc24a 1988
1da177e4
LT
1989 /*
1990 * Change the inode free counts and log the ag/sb changes.
1991 */
413d57c9 1992 be32_add_cpu(&agi->agi_freecount, 1);
1da177e4 1993 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a
DC
1994 pag = xfs_perag_get(mp, agno);
1995 pag->pagi_freecount++;
1996 xfs_perag_put(pag);
1da177e4
LT
1997 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1998 }
1999
0b48db80
DC
2000 error = xfs_check_agi_freecount(cur, agi);
2001 if (error)
2002 goto error0;
1da177e4 2003
2b64ee5c 2004 *orec = rec;
1da177e4
LT
2005 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2006 return 0;
2007
2008error0:
2009 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2010 return error;
2011}
2012
3efa4ffd
BF
2013/*
2014 * Free an inode in the free inode btree.
2015 */
2016STATIC int
2017xfs_difree_finobt(
2018 struct xfs_mount *mp,
2019 struct xfs_trans *tp,
2020 struct xfs_buf *agbp,
2021 xfs_agino_t agino,
2022 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2023{
2024 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2025 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2026 struct xfs_btree_cur *cur;
2027 struct xfs_inobt_rec_incore rec;
2028 int offset = agino - ibtrec->ir_startino;
2029 int error;
2030 int i;
2031
2032 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2033
2034 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2035 if (error)
2036 goto error;
2037 if (i == 0) {
2038 /*
2039 * If the record does not exist in the finobt, we must have just
2040 * freed an inode in a previously fully allocated chunk. If not,
2041 * something is out of sync.
2042 */
c29aad41 2043 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
3efa4ffd 2044
5419040f
BF
2045 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2046 ibtrec->ir_count,
2047 ibtrec->ir_freecount,
3efa4ffd
BF
2048 ibtrec->ir_free, &i);
2049 if (error)
2050 goto error;
2051 ASSERT(i == 1);
2052
2053 goto out;
2054 }
2055
2056 /*
2057 * Read and update the existing record. We could just copy the ibtrec
2058 * across here, but that would defeat the purpose of having redundant
2059 * metadata. By making the modifications independently, we can catch
2060 * corruptions that we wouldn't see if we just copied from one record
2061 * to another.
2062 */
2063 error = xfs_inobt_get_rec(cur, &rec, &i);
2064 if (error)
2065 goto error;
c29aad41 2066 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
3efa4ffd
BF
2067
2068 rec.ir_free |= XFS_INOBT_MASK(offset);
2069 rec.ir_freecount++;
2070
c29aad41 2071 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
3efa4ffd
BF
2072 (rec.ir_freecount == ibtrec->ir_freecount),
2073 error);
2074
2075 /*
2076 * The content of inobt records should always match between the inobt
2077 * and finobt. The lifecycle of records in the finobt is different from
2078 * the inobt in that the finobt only tracks records with at least one
2079 * free inode. Hence, if all of the inodes are free and we aren't
2080 * keeping inode chunks permanently on disk, remove the record.
2081 * Otherwise, update the record with the new information.
999633d3
BF
2082 *
2083 * Note that we currently can't free chunks when the block size is large
2084 * enough for multiple chunks. Leave the finobt record to remain in sync
2085 * with the inobt.
3efa4ffd 2086 */
999633d3
BF
2087 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2088 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
3efa4ffd
BF
2089 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2090 error = xfs_btree_delete(cur, &i);
2091 if (error)
2092 goto error;
2093 ASSERT(i == 1);
2094 } else {
2095 error = xfs_inobt_update(cur, &rec);
2096 if (error)
2097 goto error;
2098 }
2099
2100out:
2101 error = xfs_check_agi_freecount(cur, agi);
2102 if (error)
2103 goto error;
2104
2105 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2106 return 0;
2107
2108error:
2109 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2110 return error;
2111}
2112
2b64ee5c
BF
2113/*
2114 * Free disk inode. Carefully avoids touching the incore inode, all
2115 * manipulations incore are the caller's responsibility.
2116 * The on-disk inode is not changed by this operation, only the
2117 * btree (free inode mask) is changed.
2118 */
2119int
2120xfs_difree(
2121 struct xfs_trans *tp, /* transaction pointer */
2122 xfs_ino_t inode, /* inode to be freed */
2123 struct xfs_bmap_free *flist, /* extents to free */
09b56604 2124 struct xfs_icluster *xic) /* cluster info if deleted */
2b64ee5c
BF
2125{
2126 /* REFERENCED */
2127 xfs_agblock_t agbno; /* block number containing inode */
2128 struct xfs_buf *agbp; /* buffer for allocation group header */
2129 xfs_agino_t agino; /* allocation group inode number */
2130 xfs_agnumber_t agno; /* allocation group number */
2131 int error; /* error return value */
2132 struct xfs_mount *mp; /* mount structure for filesystem */
2133 struct xfs_inobt_rec_incore rec;/* btree record */
2134
2135 mp = tp->t_mountp;
2136
2137 /*
2138 * Break up inode number into its components.
2139 */
2140 agno = XFS_INO_TO_AGNO(mp, inode);
2141 if (agno >= mp->m_sb.sb_agcount) {
2142 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2143 __func__, agno, mp->m_sb.sb_agcount);
2144 ASSERT(0);
2451337d 2145 return -EINVAL;
2b64ee5c
BF
2146 }
2147 agino = XFS_INO_TO_AGINO(mp, inode);
2148 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2149 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2150 __func__, (unsigned long long)inode,
2151 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2152 ASSERT(0);
2451337d 2153 return -EINVAL;
2b64ee5c
BF
2154 }
2155 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2156 if (agbno >= mp->m_sb.sb_agblocks) {
2157 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2158 __func__, agbno, mp->m_sb.sb_agblocks);
2159 ASSERT(0);
2451337d 2160 return -EINVAL;
2b64ee5c
BF
2161 }
2162 /*
2163 * Get the allocation group header.
2164 */
2165 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2166 if (error) {
2167 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2168 __func__, error);
2169 return error;
2170 }
2171
2172 /*
2173 * Fix up the inode allocation btree.
2174 */
09b56604 2175 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec);
2b64ee5c
BF
2176 if (error)
2177 goto error0;
2178
3efa4ffd
BF
2179 /*
2180 * Fix up the free inode btree.
2181 */
2182 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2183 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2184 if (error)
2185 goto error0;
2186 }
2187
2b64ee5c
BF
2188 return 0;
2189
2190error0:
2191 return error;
2192}
2193
7124fe0a
DC
2194STATIC int
2195xfs_imap_lookup(
2196 struct xfs_mount *mp,
2197 struct xfs_trans *tp,
2198 xfs_agnumber_t agno,
2199 xfs_agino_t agino,
2200 xfs_agblock_t agbno,
2201 xfs_agblock_t *chunk_agbno,
2202 xfs_agblock_t *offset_agbno,
2203 int flags)
2204{
2205 struct xfs_inobt_rec_incore rec;
2206 struct xfs_btree_cur *cur;
2207 struct xfs_buf *agbp;
7124fe0a
DC
2208 int error;
2209 int i;
2210
2211 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2212 if (error) {
53487786
DC
2213 xfs_alert(mp,
2214 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2215 __func__, error, agno);
7124fe0a
DC
2216 return error;
2217 }
2218
2219 /*
4536f2ad
DC
2220 * Lookup the inode record for the given agino. If the record cannot be
2221 * found, then it's an invalid inode number and we should abort. Once
2222 * we have a record, we need to ensure it contains the inode number
2223 * we are looking up.
7124fe0a 2224 */
57bd3dbe 2225 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
4536f2ad 2226 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
7124fe0a
DC
2227 if (!error) {
2228 if (i)
2229 error = xfs_inobt_get_rec(cur, &rec, &i);
2230 if (!error && i == 0)
2451337d 2231 error = -EINVAL;
7124fe0a
DC
2232 }
2233
2234 xfs_trans_brelse(tp, agbp);
2235 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2236 if (error)
2237 return error;
2238
4536f2ad
DC
2239 /* check that the returned record contains the required inode */
2240 if (rec.ir_startino > agino ||
71783438 2241 rec.ir_startino + mp->m_ialloc_inos <= agino)
2451337d 2242 return -EINVAL;
4536f2ad 2243
7124fe0a 2244 /* for untrusted inodes check it is allocated first */
1920779e 2245 if ((flags & XFS_IGET_UNTRUSTED) &&
7124fe0a 2246 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2451337d 2247 return -EINVAL;
7124fe0a
DC
2248
2249 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2250 *offset_agbno = agbno - *chunk_agbno;
2251 return 0;
2252}
2253
1da177e4 2254/*
94e1b69d 2255 * Return the location of the inode in imap, for mapping it into a buffer.
1da177e4 2256 */
1da177e4 2257int
94e1b69d
CH
2258xfs_imap(
2259 xfs_mount_t *mp, /* file system mount structure */
2260 xfs_trans_t *tp, /* transaction pointer */
1da177e4 2261 xfs_ino_t ino, /* inode to locate */
94e1b69d
CH
2262 struct xfs_imap *imap, /* location map structure */
2263 uint flags) /* flags for inode btree lookup */
1da177e4
LT
2264{
2265 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1da177e4
LT
2266 xfs_agino_t agino; /* inode number within alloc group */
2267 xfs_agnumber_t agno; /* allocation group number */
2268 int blks_per_cluster; /* num blocks per inode cluster */
2269 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1da177e4 2270 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1da177e4 2271 int error; /* error code */
1da177e4 2272 int offset; /* index of inode in its buffer */
836a94ad 2273 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1da177e4
LT
2274
2275 ASSERT(ino != NULLFSINO);
94e1b69d 2276
1da177e4
LT
2277 /*
2278 * Split up the inode number into its parts.
2279 */
2280 agno = XFS_INO_TO_AGNO(mp, ino);
2281 agino = XFS_INO_TO_AGINO(mp, ino);
2282 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2283 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2284 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2285#ifdef DEBUG
1920779e
DC
2286 /*
2287 * Don't output diagnostic information for untrusted inodes
2288 * as they can be invalid without implying corruption.
2289 */
2290 if (flags & XFS_IGET_UNTRUSTED)
2451337d 2291 return -EINVAL;
1da177e4 2292 if (agno >= mp->m_sb.sb_agcount) {
53487786
DC
2293 xfs_alert(mp,
2294 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2295 __func__, agno, mp->m_sb.sb_agcount);
1da177e4
LT
2296 }
2297 if (agbno >= mp->m_sb.sb_agblocks) {
53487786
DC
2298 xfs_alert(mp,
2299 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2300 __func__, (unsigned long long)agbno,
2301 (unsigned long)mp->m_sb.sb_agblocks);
1da177e4
LT
2302 }
2303 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
53487786
DC
2304 xfs_alert(mp,
2305 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2306 __func__, ino,
2307 XFS_AGINO_TO_INO(mp, agno, agino));
1da177e4 2308 }
745b1f47 2309 xfs_stack_trace();
1da177e4 2310#endif /* DEBUG */
2451337d 2311 return -EINVAL;
1da177e4 2312 }
94e1b69d 2313
f9e5abcf 2314 blks_per_cluster = xfs_icluster_size_fsb(mp);
7124fe0a
DC
2315
2316 /*
2317 * For bulkstat and handle lookups, we have an untrusted inode number
2318 * that we have to verify is valid. We cannot do this just by reading
2319 * the inode buffer as it may have been unlinked and removed leaving
2320 * inodes in stale state on disk. Hence we have to do a btree lookup
2321 * in all cases where an untrusted inode number is passed.
2322 */
1920779e 2323 if (flags & XFS_IGET_UNTRUSTED) {
7124fe0a
DC
2324 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2325 &chunk_agbno, &offset_agbno, flags);
2326 if (error)
2327 return error;
2328 goto out_map;
2329 }
2330
94e1b69d
CH
2331 /*
2332 * If the inode cluster size is the same as the blocksize or
2333 * smaller we get to the buffer by simple arithmetics.
2334 */
f9e5abcf 2335 if (blks_per_cluster == 1) {
1da177e4
LT
2336 offset = XFS_INO_TO_OFFSET(mp, ino);
2337 ASSERT(offset < mp->m_sb.sb_inopblock);
94e1b69d
CH
2338
2339 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2340 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2341 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1da177e4
LT
2342 return 0;
2343 }
94e1b69d 2344
94e1b69d
CH
2345 /*
2346 * If the inode chunks are aligned then use simple maths to
2347 * find the location. Otherwise we have to do a btree
2348 * lookup to find the location.
2349 */
1da177e4
LT
2350 if (mp->m_inoalign_mask) {
2351 offset_agbno = agbno & mp->m_inoalign_mask;
2352 chunk_agbno = agbno - offset_agbno;
2353 } else {
7124fe0a
DC
2354 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2355 &chunk_agbno, &offset_agbno, flags);
1da177e4
LT
2356 if (error)
2357 return error;
1da177e4 2358 }
94e1b69d 2359
7124fe0a 2360out_map:
1da177e4
LT
2361 ASSERT(agbno >= chunk_agbno);
2362 cluster_agbno = chunk_agbno +
2363 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2364 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2365 XFS_INO_TO_OFFSET(mp, ino);
94e1b69d
CH
2366
2367 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2368 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2369 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2370
2371 /*
2372 * If the inode number maps to a block outside the bounds
2373 * of the file system then return NULL rather than calling
2374 * read_buf and panicing when we get an error from the
2375 * driver.
2376 */
2377 if ((imap->im_blkno + imap->im_len) >
2378 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
53487786
DC
2379 xfs_alert(mp,
2380 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2381 __func__, (unsigned long long) imap->im_blkno,
94e1b69d
CH
2382 (unsigned long long) imap->im_len,
2383 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2451337d 2384 return -EINVAL;
94e1b69d 2385 }
1da177e4 2386 return 0;
1da177e4
LT
2387}
2388
2389/*
2390 * Compute and fill in value of m_in_maxlevels.
2391 */
2392void
2393xfs_ialloc_compute_maxlevels(
2394 xfs_mount_t *mp) /* file system mount structure */
2395{
2396 int level;
2397 uint maxblocks;
2398 uint maxleafents;
2399 int minleafrecs;
2400 int minnoderecs;
2401
2402 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
2403 XFS_INODES_PER_CHUNK_LOG;
2404 minleafrecs = mp->m_alloc_mnr[0];
2405 minnoderecs = mp->m_alloc_mnr[1];
2406 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
2407 for (level = 1; maxblocks > 1; level++)
2408 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
2409 mp->m_in_maxlevels = level;
2410}
2411
2412/*
aafc3c24
BF
2413 * Log specified fields for the ag hdr (inode section). The growth of the agi
2414 * structure over time requires that we interpret the buffer as two logical
2415 * regions delineated by the end of the unlinked list. This is due to the size
2416 * of the hash table and its location in the middle of the agi.
2417 *
2418 * For example, a request to log a field before agi_unlinked and a field after
2419 * agi_unlinked could cause us to log the entire hash table and use an excessive
2420 * amount of log space. To avoid this behavior, log the region up through
2421 * agi_unlinked in one call and the region after agi_unlinked through the end of
2422 * the structure in another.
1da177e4
LT
2423 */
2424void
2425xfs_ialloc_log_agi(
2426 xfs_trans_t *tp, /* transaction pointer */
2427 xfs_buf_t *bp, /* allocation group header buffer */
2428 int fields) /* bitmask of fields to log */
2429{
2430 int first; /* first byte number */
2431 int last; /* last byte number */
2432 static const short offsets[] = { /* field starting offsets */
2433 /* keep in sync with bit definitions */
2434 offsetof(xfs_agi_t, agi_magicnum),
2435 offsetof(xfs_agi_t, agi_versionnum),
2436 offsetof(xfs_agi_t, agi_seqno),
2437 offsetof(xfs_agi_t, agi_length),
2438 offsetof(xfs_agi_t, agi_count),
2439 offsetof(xfs_agi_t, agi_root),
2440 offsetof(xfs_agi_t, agi_level),
2441 offsetof(xfs_agi_t, agi_freecount),
2442 offsetof(xfs_agi_t, agi_newino),
2443 offsetof(xfs_agi_t, agi_dirino),
2444 offsetof(xfs_agi_t, agi_unlinked),
aafc3c24
BF
2445 offsetof(xfs_agi_t, agi_free_root),
2446 offsetof(xfs_agi_t, agi_free_level),
1da177e4
LT
2447 sizeof(xfs_agi_t)
2448 };
2449#ifdef DEBUG
2450 xfs_agi_t *agi; /* allocation group header */
2451
2452 agi = XFS_BUF_TO_AGI(bp);
69ef921b 2453 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1da177e4 2454#endif
aafc3c24
BF
2455
2456 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2457
1da177e4 2458 /*
aafc3c24
BF
2459 * Compute byte offsets for the first and last fields in the first
2460 * region and log the agi buffer. This only logs up through
2461 * agi_unlinked.
1da177e4 2462 */
aafc3c24
BF
2463 if (fields & XFS_AGI_ALL_BITS_R1) {
2464 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2465 &first, &last);
2466 xfs_trans_log_buf(tp, bp, first, last);
2467 }
2468
1da177e4 2469 /*
aafc3c24
BF
2470 * Mask off the bits in the first region and calculate the first and
2471 * last field offsets for any bits in the second region.
1da177e4 2472 */
aafc3c24
BF
2473 fields &= ~XFS_AGI_ALL_BITS_R1;
2474 if (fields) {
2475 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2476 &first, &last);
2477 xfs_trans_log_buf(tp, bp, first, last);
2478 }
1da177e4
LT
2479}
2480
5e1be0fb
CH
2481#ifdef DEBUG
2482STATIC void
2483xfs_check_agi_unlinked(
2484 struct xfs_agi *agi)
2485{
2486 int i;
2487
2488 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2489 ASSERT(agi->agi_unlinked[i]);
2490}
2491#else
2492#define xfs_check_agi_unlinked(agi)
2493#endif
2494
983d09ff 2495static bool
612cfbfe 2496xfs_agi_verify(
3702ce6e
DC
2497 struct xfs_buf *bp)
2498{
2499 struct xfs_mount *mp = bp->b_target->bt_mount;
2500 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
3702ce6e 2501
983d09ff
DC
2502 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2503 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2504 return false;
3702ce6e
DC
2505 /*
2506 * Validate the magic number of the agi block.
2507 */
983d09ff
DC
2508 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2509 return false;
2510 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2511 return false;
3702ce6e 2512
e1b05723
ES
2513 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2514 return false;
3702ce6e
DC
2515 /*
2516 * during growfs operations, the perag is not fully initialised,
2517 * so we can't use it for any useful checking. growfs ensures we can't
2518 * use it by using uncached buffers that don't have the perag attached
2519 * so we can detect and avoid this problem.
2520 */
983d09ff
DC
2521 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2522 return false;
3702ce6e 2523
3702ce6e 2524 xfs_check_agi_unlinked(agi);
983d09ff 2525 return true;
612cfbfe
DC
2526}
2527
1813dd64
DC
2528static void
2529xfs_agi_read_verify(
612cfbfe
DC
2530 struct xfs_buf *bp)
2531{
983d09ff 2532 struct xfs_mount *mp = bp->b_target->bt_mount;
983d09ff 2533
ce5028cf
ES
2534 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2535 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2451337d 2536 xfs_buf_ioerror(bp, -EFSBADCRC);
ce5028cf
ES
2537 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2538 XFS_ERRTAG_IALLOC_READ_AGI,
2539 XFS_RANDOM_IALLOC_READ_AGI))
2451337d 2540 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf
ES
2541
2542 if (bp->b_error)
2543 xfs_verifier_error(bp);
612cfbfe
DC
2544}
2545
b0f539de 2546static void
1813dd64 2547xfs_agi_write_verify(
612cfbfe
DC
2548 struct xfs_buf *bp)
2549{
983d09ff
DC
2550 struct xfs_mount *mp = bp->b_target->bt_mount;
2551 struct xfs_buf_log_item *bip = bp->b_fspriv;
2552
2553 if (!xfs_agi_verify(bp)) {
2451337d 2554 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf 2555 xfs_verifier_error(bp);
983d09ff
DC
2556 return;
2557 }
2558
2559 if (!xfs_sb_version_hascrc(&mp->m_sb))
2560 return;
2561
2562 if (bip)
2563 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
f1dbcd7e 2564 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
3702ce6e
DC
2565}
2566
1813dd64
DC
2567const struct xfs_buf_ops xfs_agi_buf_ops = {
2568 .verify_read = xfs_agi_read_verify,
2569 .verify_write = xfs_agi_write_verify,
2570};
2571
1da177e4
LT
2572/*
2573 * Read in the allocation group header (inode allocation section)
2574 */
2575int
5e1be0fb
CH
2576xfs_read_agi(
2577 struct xfs_mount *mp, /* file system mount structure */
2578 struct xfs_trans *tp, /* transaction pointer */
2579 xfs_agnumber_t agno, /* allocation group number */
2580 struct xfs_buf **bpp) /* allocation group hdr buf */
1da177e4 2581{
5e1be0fb 2582 int error;
1da177e4 2583
d123031a 2584 trace_xfs_read_agi(mp, agno);
5e1be0fb 2585
d123031a 2586 ASSERT(agno != NULLAGNUMBER);
5e1be0fb 2587 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1da177e4 2588 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1813dd64 2589 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1da177e4
LT
2590 if (error)
2591 return error;
5e1be0fb 2592
38f23232 2593 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
5e1be0fb
CH
2594 return 0;
2595}
2596
2597int
2598xfs_ialloc_read_agi(
2599 struct xfs_mount *mp, /* file system mount structure */
2600 struct xfs_trans *tp, /* transaction pointer */
2601 xfs_agnumber_t agno, /* allocation group number */
2602 struct xfs_buf **bpp) /* allocation group hdr buf */
2603{
2604 struct xfs_agi *agi; /* allocation group header */
2605 struct xfs_perag *pag; /* per allocation group data */
2606 int error;
2607
d123031a
DC
2608 trace_xfs_ialloc_read_agi(mp, agno);
2609
5e1be0fb
CH
2610 error = xfs_read_agi(mp, tp, agno, bpp);
2611 if (error)
2612 return error;
2613
2614 agi = XFS_BUF_TO_AGI(*bpp);
44b56e0a 2615 pag = xfs_perag_get(mp, agno);
1da177e4 2616 if (!pag->pagi_init) {
16259e7d 2617 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
92821e2b 2618 pag->pagi_count = be32_to_cpu(agi->agi_count);
1da177e4 2619 pag->pagi_init = 1;
1da177e4 2620 }
1da177e4 2621
5e1be0fb
CH
2622 /*
2623 * It's possible for these to be out of sync if
2624 * we are in the middle of a forced shutdown.
2625 */
2626 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2627 XFS_FORCED_SHUTDOWN(mp));
44b56e0a 2628 xfs_perag_put(pag);
1da177e4
LT
2629 return 0;
2630}
92821e2b
DC
2631
2632/*
2633 * Read in the agi to initialise the per-ag data in the mount structure
2634 */
2635int
2636xfs_ialloc_pagi_init(
2637 xfs_mount_t *mp, /* file system mount structure */
2638 xfs_trans_t *tp, /* transaction pointer */
2639 xfs_agnumber_t agno) /* allocation group number */
2640{
2641 xfs_buf_t *bp = NULL;
2642 int error;
2643
2644 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2645 if (error)
2646 return error;
2647 if (bp)
2648 xfs_trans_brelse(tp, bp);
2649 return 0;
2650}