]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-aarch64.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
6f2750fe 3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
79enum neon_el_type
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q
87};
88
89/* Bits for DEFINED field in neon_type_el. */
90#define NTA_HASTYPE 1
91#define NTA_HASINDEX 2
92
93struct neon_type_el
94{
95 enum neon_el_type type;
96 unsigned char defined;
97 unsigned width;
98 int64_t index;
99};
100
101#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
102
103struct reloc
104{
105 bfd_reloc_code_real_type type;
106 expressionS exp;
107 int pc_rel;
108 enum aarch64_opnd opnd;
109 uint32_t flags;
110 unsigned need_libopcodes_p : 1;
111};
112
113struct aarch64_instruction
114{
115 /* libopcodes structure for instruction intermediate representation. */
116 aarch64_inst base;
117 /* Record assembly errors found during the parsing. */
118 struct
119 {
120 enum aarch64_operand_error_kind kind;
121 const char *error;
122 } parsing_error;
123 /* The condition that appears in the assembly line. */
124 int cond;
125 /* Relocation information (including the GAS internal fixup). */
126 struct reloc reloc;
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
129};
130
131typedef struct aarch64_instruction aarch64_instruction;
132
133static aarch64_instruction inst;
134
135static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
137
138/* Diagnostics inline function utilites.
139
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
150
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
153 templates. */
154
155static inline void
156clear_error (void)
157{
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
160}
161
162static inline bfd_boolean
163error_p (void)
164{
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
166}
167
168static inline const char *
169get_error_message (void)
170{
171 return inst.parsing_error.error;
172}
173
a06ea964
NC
174static inline enum aarch64_operand_error_kind
175get_error_kind (void)
176{
177 return inst.parsing_error.kind;
178}
179
a06ea964
NC
180static inline void
181set_error (enum aarch64_operand_error_kind kind, const char *error)
182{
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
185}
186
187static inline void
188set_recoverable_error (const char *error)
189{
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
191}
192
193/* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
195static inline void
196set_default_error (void)
197{
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
199}
200
201static inline void
202set_syntax_error (const char *error)
203{
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
205}
206
207static inline void
208set_first_syntax_error (const char *error)
209{
210 if (! error_p ())
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
212}
213
214static inline void
215set_fatal_syntax_error (const char *error)
216{
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
218}
219\f
220/* Number of littlenums required to hold an extended precision number. */
221#define MAX_LITTLENUMS 6
222
223/* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
225 success. */
226#define PARSE_FAIL -1
227
228/* This is an invalid condition code that means no conditional field is
229 present. */
230#define COND_ALWAYS 0x10
231
232typedef struct
233{
234 const char *template;
235 unsigned long value;
236} asm_barrier_opt;
237
238typedef struct
239{
240 const char *template;
241 uint32_t value;
242} asm_nzcv;
243
244struct reloc_entry
245{
246 char *name;
247 bfd_reloc_code_real_type reloc;
248};
249
250/* Structure for a hash table entry for a register. */
251typedef struct
252{
253 const char *name;
254 unsigned char number;
255 unsigned char type;
256 unsigned char builtin;
257} reg_entry;
258
259/* Macros to define the register types and masks for the purpose
260 of parsing. */
261
262#undef AARCH64_REG_TYPES
263#define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
296 BASIC_REG_TYPE(MAX)
297
298#undef BASIC_REG_TYPE
299#define BASIC_REG_TYPE(T) REG_TYPE_##T,
300#undef MULTI_REG_TYPE
301#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
302
303/* Register type enumerators. */
304typedef enum
305{
306 /* A list of REG_TYPE_*. */
307 AARCH64_REG_TYPES
308} aarch64_reg_type;
309
310#undef BASIC_REG_TYPE
311#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
312#undef REG_TYPE
313#define REG_TYPE(T) (1 << REG_TYPE_##T)
314#undef MULTI_REG_TYPE
315#define MULTI_REG_TYPE(T,V) V,
316
317/* Values indexed by aarch64_reg_type to assist the type checking. */
318static const unsigned reg_type_masks[] =
319{
320 AARCH64_REG_TYPES
321};
322
323#undef BASIC_REG_TYPE
324#undef REG_TYPE
325#undef MULTI_REG_TYPE
326#undef AARCH64_REG_TYPES
327
328/* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
330 above. */
331static const char *
332get_reg_expected_msg (aarch64_reg_type reg_type)
333{
334 const char *msg;
335
336 switch (reg_type)
337 {
338 case REG_TYPE_R_32:
339 msg = N_("integer 32-bit register expected");
340 break;
341 case REG_TYPE_R_64:
342 msg = N_("integer 64-bit register expected");
343 break;
344 case REG_TYPE_R_N:
345 msg = N_("integer register expected");
346 break;
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
349 break;
350 case REG_TYPE_FP_B:
351 msg = N_("8-bit SIMD scalar register expected");
352 break;
353 case REG_TYPE_FP_H:
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
356 break;
357 case REG_TYPE_FP_S:
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
360 break;
361 case REG_TYPE_FP_D:
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
364 break;
365 case REG_TYPE_FP_Q:
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
368 break;
369 case REG_TYPE_CN:
370 msg = N_("C0 - C15 expected");
371 break;
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
374 break;
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
377 break;
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
380 break;
381 default:
382 as_fatal (_("invalid register type %d"), reg_type);
383 }
384 return msg;
385}
386
387/* Some well known registers that we refer to directly elsewhere. */
388#define REG_SP 31
389
390/* Instructions take 4 bytes in the object file. */
391#define INSN_SIZE 4
392
393/* Define some common error messages. */
394#define BAD_SP _("SP not allowed here")
395
396static struct hash_control *aarch64_ops_hsh;
397static struct hash_control *aarch64_cond_hsh;
398static struct hash_control *aarch64_shift_hsh;
399static struct hash_control *aarch64_sys_regs_hsh;
400static struct hash_control *aarch64_pstatefield_hsh;
401static struct hash_control *aarch64_sys_regs_ic_hsh;
402static struct hash_control *aarch64_sys_regs_dc_hsh;
403static struct hash_control *aarch64_sys_regs_at_hsh;
404static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405static struct hash_control *aarch64_reg_hsh;
406static struct hash_control *aarch64_barrier_opt_hsh;
407static struct hash_control *aarch64_nzcv_hsh;
408static struct hash_control *aarch64_pldop_hsh;
1e6f4800 409static struct hash_control *aarch64_hint_opt_hsh;
a06ea964
NC
410
411/* Stuff needed to resolve the label ambiguity
412 As:
413 ...
414 label: <insn>
415 may differ from:
416 ...
417 label:
418 <insn> */
419
420static symbolS *last_label_seen;
421
422/* Literal pool structure. Held on a per-section
423 and per-sub-section basis. */
424
425#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
426typedef struct literal_expression
427{
428 expressionS exp;
429 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
430 LITTLENUM_TYPE * bignum;
431} literal_expression;
432
a06ea964
NC
433typedef struct literal_pool
434{
55d9b4c1 435 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
436 unsigned int next_free_entry;
437 unsigned int id;
438 symbolS *symbol;
439 segT section;
440 subsegT sub_section;
441 int size;
442 struct literal_pool *next;
443} literal_pool;
444
445/* Pointer to a linked list of literal pools. */
446static literal_pool *list_of_pools = NULL;
447\f
448/* Pure syntax. */
449
450/* This array holds the chars that always start a comment. If the
451 pre-processor is disabled, these aren't very useful. */
452const char comment_chars[] = "";
453
454/* This array holds the chars that only start a comment at the beginning of
455 a line. If the line seems to have the form '# 123 filename'
456 .line and .file directives will appear in the pre-processed output. */
457/* Note that input_file.c hand checks for '#' at the beginning of the
458 first line of the input file. This is because the compiler outputs
459 #NO_APP at the beginning of its output. */
460/* Also note that comments like this one will always work. */
461const char line_comment_chars[] = "#";
462
463const char line_separator_chars[] = ";";
464
465/* Chars that can be used to separate mant
466 from exp in floating point numbers. */
467const char EXP_CHARS[] = "eE";
468
469/* Chars that mean this number is a floating point constant. */
470/* As in 0f12.456 */
471/* or 0d1.2345e12 */
472
473const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
474
475/* Prefix character that indicates the start of an immediate value. */
476#define is_immediate_prefix(C) ((C) == '#')
477
478/* Separator character handling. */
479
480#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
481
482static inline bfd_boolean
483skip_past_char (char **str, char c)
484{
485 if (**str == c)
486 {
487 (*str)++;
488 return TRUE;
489 }
490 else
491 return FALSE;
492}
493
494#define skip_past_comma(str) skip_past_char (str, ',')
495
496/* Arithmetic expressions (possibly involving symbols). */
497
a06ea964
NC
498static bfd_boolean in_my_get_expression_p = FALSE;
499
500/* Third argument to my_get_expression. */
501#define GE_NO_PREFIX 0
502#define GE_OPT_PREFIX 1
503
504/* Return TRUE if the string pointed by *STR is successfully parsed
505 as an valid expression; *EP will be filled with the information of
506 such an expression. Otherwise return FALSE. */
507
508static bfd_boolean
509my_get_expression (expressionS * ep, char **str, int prefix_mode,
510 int reject_absent)
511{
512 char *save_in;
513 segT seg;
514 int prefix_present_p = 0;
515
516 switch (prefix_mode)
517 {
518 case GE_NO_PREFIX:
519 break;
520 case GE_OPT_PREFIX:
521 if (is_immediate_prefix (**str))
522 {
523 (*str)++;
524 prefix_present_p = 1;
525 }
526 break;
527 default:
528 abort ();
529 }
530
531 memset (ep, 0, sizeof (expressionS));
532
533 save_in = input_line_pointer;
534 input_line_pointer = *str;
535 in_my_get_expression_p = TRUE;
536 seg = expression (ep);
537 in_my_get_expression_p = FALSE;
538
539 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
540 {
541 /* We found a bad expression in md_operand(). */
542 *str = input_line_pointer;
543 input_line_pointer = save_in;
544 if (prefix_present_p && ! error_p ())
545 set_fatal_syntax_error (_("bad expression"));
546 else
547 set_first_syntax_error (_("bad expression"));
548 return FALSE;
549 }
550
551#ifdef OBJ_AOUT
552 if (seg != absolute_section
553 && seg != text_section
554 && seg != data_section
555 && seg != bss_section && seg != undefined_section)
556 {
557 set_syntax_error (_("bad segment"));
558 *str = input_line_pointer;
559 input_line_pointer = save_in;
560 return FALSE;
561 }
562#else
563 (void) seg;
564#endif
565
a06ea964
NC
566 *str = input_line_pointer;
567 input_line_pointer = save_in;
568 return TRUE;
569}
570
571/* Turn a string in input_line_pointer into a floating point constant
572 of type TYPE, and store the appropriate bytes in *LITP. The number
573 of LITTLENUMS emitted is stored in *SIZEP. An error message is
574 returned, or NULL on OK. */
575
6d4af3c2 576const char *
a06ea964
NC
577md_atof (int type, char *litP, int *sizeP)
578{
579 return ieee_md_atof (type, litP, sizeP, target_big_endian);
580}
581
582/* We handle all bad expressions here, so that we can report the faulty
583 instruction in the error message. */
584void
585md_operand (expressionS * exp)
586{
587 if (in_my_get_expression_p)
588 exp->X_op = O_illegal;
589}
590
591/* Immediate values. */
592
593/* Errors may be set multiple times during parsing or bit encoding
594 (particularly in the Neon bits), but usually the earliest error which is set
595 will be the most meaningful. Avoid overwriting it with later (cascading)
596 errors by calling this function. */
597
598static void
599first_error (const char *error)
600{
601 if (! error_p ())
602 set_syntax_error (error);
603}
604
605/* Similiar to first_error, but this function accepts formatted error
606 message. */
607static void
608first_error_fmt (const char *format, ...)
609{
610 va_list args;
611 enum
612 { size = 100 };
613 /* N.B. this single buffer will not cause error messages for different
614 instructions to pollute each other; this is because at the end of
615 processing of each assembly line, error message if any will be
616 collected by as_bad. */
617 static char buffer[size];
618
619 if (! error_p ())
620 {
3e0baa28 621 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
622 va_start (args, format);
623 ret = vsnprintf (buffer, size, format, args);
624 know (ret <= size - 1 && ret >= 0);
625 va_end (args);
626 set_syntax_error (buffer);
627 }
628}
629
630/* Register parsing. */
631
632/* Generic register parser which is called by other specialized
633 register parsers.
634 CCP points to what should be the beginning of a register name.
635 If it is indeed a valid register name, advance CCP over it and
636 return the reg_entry structure; otherwise return NULL.
637 It does not issue diagnostics. */
638
639static reg_entry *
640parse_reg (char **ccp)
641{
642 char *start = *ccp;
643 char *p;
644 reg_entry *reg;
645
646#ifdef REGISTER_PREFIX
647 if (*start != REGISTER_PREFIX)
648 return NULL;
649 start++;
650#endif
651
652 p = start;
653 if (!ISALPHA (*p) || !is_name_beginner (*p))
654 return NULL;
655
656 do
657 p++;
658 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
659
660 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
661
662 if (!reg)
663 return NULL;
664
665 *ccp = p;
666 return reg;
667}
668
669/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
670 return FALSE. */
671static bfd_boolean
672aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
673{
674 if (reg->type == type)
675 return TRUE;
676
677 switch (type)
678 {
679 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
680 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
681 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
682 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
683 case REG_TYPE_VN: /* Vector register. */
684 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
685 return ((reg_type_masks[reg->type] & reg_type_masks[type])
686 == reg_type_masks[reg->type]);
687 default:
688 as_fatal ("unhandled type %d", type);
689 abort ();
690 }
691}
692
693/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
694 Return the register number otherwise. *ISREG32 is set to one if the
695 register is 32-bit wide; *ISREGZERO is set to one if the register is
696 of type Z_32 or Z_64.
697 Note that this function does not issue any diagnostics. */
698
699static int
700aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
701 int *isreg32, int *isregzero)
702{
703 char *str = *ccp;
704 const reg_entry *reg = parse_reg (&str);
705
706 if (reg == NULL)
707 return PARSE_FAIL;
708
709 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
710 return PARSE_FAIL;
711
712 switch (reg->type)
713 {
714 case REG_TYPE_SP_32:
715 case REG_TYPE_SP_64:
716 if (reject_sp)
717 return PARSE_FAIL;
718 *isreg32 = reg->type == REG_TYPE_SP_32;
719 *isregzero = 0;
720 break;
721 case REG_TYPE_R_32:
722 case REG_TYPE_R_64:
723 *isreg32 = reg->type == REG_TYPE_R_32;
724 *isregzero = 0;
725 break;
726 case REG_TYPE_Z_32:
727 case REG_TYPE_Z_64:
728 if (reject_rz)
729 return PARSE_FAIL;
730 *isreg32 = reg->type == REG_TYPE_Z_32;
731 *isregzero = 1;
732 break;
733 default:
734 return PARSE_FAIL;
735 }
736
737 *ccp = str;
738
739 return reg->number;
740}
741
742/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
743 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
744 otherwise return FALSE.
745
746 Accept only one occurrence of:
3067d3b9 747 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964
NC
748 b h s d q */
749static bfd_boolean
750parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
751{
752 char *ptr = *str;
753 unsigned width;
754 unsigned element_size;
755 enum neon_el_type type;
756
757 /* skip '.' */
758 ptr++;
759
760 if (!ISDIGIT (*ptr))
761 {
762 width = 0;
763 goto elt_size;
764 }
765 width = strtoul (ptr, &ptr, 10);
766 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
767 {
768 first_error_fmt (_("bad size %d in vector width specifier"), width);
769 return FALSE;
770 }
771
772elt_size:
773 switch (TOLOWER (*ptr))
774 {
775 case 'b':
776 type = NT_b;
777 element_size = 8;
778 break;
779 case 'h':
780 type = NT_h;
781 element_size = 16;
782 break;
783 case 's':
784 type = NT_s;
785 element_size = 32;
786 break;
787 case 'd':
788 type = NT_d;
789 element_size = 64;
790 break;
791 case 'q':
792 if (width == 1)
793 {
794 type = NT_q;
795 element_size = 128;
796 break;
797 }
798 /* fall through. */
799 default:
800 if (*ptr != '\0')
801 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
802 else
803 first_error (_("missing element size"));
804 return FALSE;
805 }
3067d3b9
MW
806 if (width != 0 && width * element_size != 64 && width * element_size != 128
807 && !(width == 2 && element_size == 16))
a06ea964
NC
808 {
809 first_error_fmt (_
810 ("invalid element size %d and vector size combination %c"),
811 width, *ptr);
812 return FALSE;
813 }
814 ptr++;
815
816 parsed_type->type = type;
817 parsed_type->width = width;
818
819 *str = ptr;
820
821 return TRUE;
822}
823
824/* Parse a single type, e.g. ".8b", leading period included.
825 Only applicable to Vn registers.
826
827 Return TRUE on success; otherwise return FALSE. */
828static bfd_boolean
829parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
830{
831 char *str = *ccp;
832
833 if (*str == '.')
834 {
835 if (! parse_neon_type_for_operand (vectype, &str))
836 {
837 first_error (_("vector type expected"));
838 return FALSE;
839 }
840 }
841 else
842 return FALSE;
843
844 *ccp = str;
845
846 return TRUE;
847}
848
849/* Parse a register of the type TYPE.
850
851 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
852 name or the parsed register is not of TYPE.
853
854 Otherwise return the register number, and optionally fill in the actual
855 type of the register in *RTYPE when multiple alternatives were given, and
856 return the register shape and element index information in *TYPEINFO.
857
858 IN_REG_LIST should be set with TRUE if the caller is parsing a register
859 list. */
860
861static int
862parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
863 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
864{
865 char *str = *ccp;
866 const reg_entry *reg = parse_reg (&str);
867 struct neon_type_el atype;
868 struct neon_type_el parsetype;
869 bfd_boolean is_typed_vecreg = FALSE;
870
871 atype.defined = 0;
872 atype.type = NT_invtype;
873 atype.width = -1;
874 atype.index = 0;
875
876 if (reg == NULL)
877 {
878 if (typeinfo)
879 *typeinfo = atype;
880 set_default_error ();
881 return PARSE_FAIL;
882 }
883
884 if (! aarch64_check_reg_type (reg, type))
885 {
886 DEBUG_TRACE ("reg type check failed");
887 set_default_error ();
888 return PARSE_FAIL;
889 }
890 type = reg->type;
891
892 if (type == REG_TYPE_VN
893 && parse_neon_operand_type (&parsetype, &str))
894 {
895 /* Register if of the form Vn.[bhsdq]. */
896 is_typed_vecreg = TRUE;
897
898 if (parsetype.width == 0)
899 /* Expect index. In the new scheme we cannot have
900 Vn.[bhsdq] represent a scalar. Therefore any
901 Vn.[bhsdq] should have an index following it.
902 Except in reglists ofcourse. */
903 atype.defined |= NTA_HASINDEX;
904 else
905 atype.defined |= NTA_HASTYPE;
906
907 atype.type = parsetype.type;
908 atype.width = parsetype.width;
909 }
910
911 if (skip_past_char (&str, '['))
912 {
913 expressionS exp;
914
915 /* Reject Sn[index] syntax. */
916 if (!is_typed_vecreg)
917 {
918 first_error (_("this type of register can't be indexed"));
919 return PARSE_FAIL;
920 }
921
922 if (in_reg_list == TRUE)
923 {
924 first_error (_("index not allowed inside register list"));
925 return PARSE_FAIL;
926 }
927
928 atype.defined |= NTA_HASINDEX;
929
930 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
931
932 if (exp.X_op != O_constant)
933 {
934 first_error (_("constant expression required"));
935 return PARSE_FAIL;
936 }
937
938 if (! skip_past_char (&str, ']'))
939 return PARSE_FAIL;
940
941 atype.index = exp.X_add_number;
942 }
943 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
944 {
945 /* Indexed vector register expected. */
946 first_error (_("indexed vector register expected"));
947 return PARSE_FAIL;
948 }
949
950 /* A vector reg Vn should be typed or indexed. */
951 if (type == REG_TYPE_VN && atype.defined == 0)
952 {
953 first_error (_("invalid use of vector register"));
954 }
955
956 if (typeinfo)
957 *typeinfo = atype;
958
959 if (rtype)
960 *rtype = type;
961
962 *ccp = str;
963
964 return reg->number;
965}
966
967/* Parse register.
968
969 Return the register number on success; return PARSE_FAIL otherwise.
970
971 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
972 the register (e.g. NEON double or quad reg when either has been requested).
973
974 If this is a NEON vector register with additional type information, fill
975 in the struct pointed to by VECTYPE (if non-NULL).
976
977 This parser does not handle register list. */
978
979static int
980aarch64_reg_parse (char **ccp, aarch64_reg_type type,
981 aarch64_reg_type *rtype, struct neon_type_el *vectype)
982{
983 struct neon_type_el atype;
984 char *str = *ccp;
985 int reg = parse_typed_reg (&str, type, rtype, &atype,
986 /*in_reg_list= */ FALSE);
987
988 if (reg == PARSE_FAIL)
989 return PARSE_FAIL;
990
991 if (vectype)
992 *vectype = atype;
993
994 *ccp = str;
995
996 return reg;
997}
998
999static inline bfd_boolean
1000eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
1001{
1002 return
1003 e1.type == e2.type
1004 && e1.defined == e2.defined
1005 && e1.width == e2.width && e1.index == e2.index;
1006}
1007
1008/* This function parses the NEON register list. On success, it returns
1009 the parsed register list information in the following encoded format:
1010
1011 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1012 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1013
1014 The information of the register shape and/or index is returned in
1015 *VECTYPE.
1016
1017 It returns PARSE_FAIL if the register list is invalid.
1018
1019 The list contains one to four registers.
1020 Each register can be one of:
1021 <Vt>.<T>[<index>]
1022 <Vt>.<T>
1023 All <T> should be identical.
1024 All <index> should be identical.
1025 There are restrictions on <Vt> numbers which are checked later
1026 (by reg_list_valid_p). */
1027
1028static int
1029parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1030{
1031 char *str = *ccp;
1032 int nb_regs;
1033 struct neon_type_el typeinfo, typeinfo_first;
1034 int val, val_range;
1035 int in_range;
1036 int ret_val;
1037 int i;
1038 bfd_boolean error = FALSE;
1039 bfd_boolean expect_index = FALSE;
1040
1041 if (*str != '{')
1042 {
1043 set_syntax_error (_("expecting {"));
1044 return PARSE_FAIL;
1045 }
1046 str++;
1047
1048 nb_regs = 0;
1049 typeinfo_first.defined = 0;
1050 typeinfo_first.type = NT_invtype;
1051 typeinfo_first.width = -1;
1052 typeinfo_first.index = 0;
1053 ret_val = 0;
1054 val = -1;
1055 val_range = -1;
1056 in_range = 0;
1057 do
1058 {
1059 if (in_range)
1060 {
1061 str++; /* skip over '-' */
1062 val_range = val;
1063 }
1064 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1065 /*in_reg_list= */ TRUE);
1066 if (val == PARSE_FAIL)
1067 {
1068 set_first_syntax_error (_("invalid vector register in list"));
1069 error = TRUE;
1070 continue;
1071 }
1072 /* reject [bhsd]n */
1073 if (typeinfo.defined == 0)
1074 {
1075 set_first_syntax_error (_("invalid scalar register in list"));
1076 error = TRUE;
1077 continue;
1078 }
1079
1080 if (typeinfo.defined & NTA_HASINDEX)
1081 expect_index = TRUE;
1082
1083 if (in_range)
1084 {
1085 if (val < val_range)
1086 {
1087 set_first_syntax_error
1088 (_("invalid range in vector register list"));
1089 error = TRUE;
1090 }
1091 val_range++;
1092 }
1093 else
1094 {
1095 val_range = val;
1096 if (nb_regs == 0)
1097 typeinfo_first = typeinfo;
1098 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1099 {
1100 set_first_syntax_error
1101 (_("type mismatch in vector register list"));
1102 error = TRUE;
1103 }
1104 }
1105 if (! error)
1106 for (i = val_range; i <= val; i++)
1107 {
1108 ret_val |= i << (5 * nb_regs);
1109 nb_regs++;
1110 }
1111 in_range = 0;
1112 }
1113 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1114
1115 skip_whitespace (str);
1116 if (*str != '}')
1117 {
1118 set_first_syntax_error (_("end of vector register list not found"));
1119 error = TRUE;
1120 }
1121 str++;
1122
1123 skip_whitespace (str);
1124
1125 if (expect_index)
1126 {
1127 if (skip_past_char (&str, '['))
1128 {
1129 expressionS exp;
1130
1131 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1132 if (exp.X_op != O_constant)
1133 {
1134 set_first_syntax_error (_("constant expression required."));
1135 error = TRUE;
1136 }
1137 if (! skip_past_char (&str, ']'))
1138 error = TRUE;
1139 else
1140 typeinfo_first.index = exp.X_add_number;
1141 }
1142 else
1143 {
1144 set_first_syntax_error (_("expected index"));
1145 error = TRUE;
1146 }
1147 }
1148
1149 if (nb_regs > 4)
1150 {
1151 set_first_syntax_error (_("too many registers in vector register list"));
1152 error = TRUE;
1153 }
1154 else if (nb_regs == 0)
1155 {
1156 set_first_syntax_error (_("empty vector register list"));
1157 error = TRUE;
1158 }
1159
1160 *ccp = str;
1161 if (! error)
1162 *vectype = typeinfo_first;
1163
1164 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1165}
1166
1167/* Directives: register aliases. */
1168
1169static reg_entry *
1170insert_reg_alias (char *str, int number, aarch64_reg_type type)
1171{
1172 reg_entry *new;
1173 const char *name;
1174
1175 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1176 {
1177 if (new->builtin)
1178 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1179 str);
1180
1181 /* Only warn about a redefinition if it's not defined as the
1182 same register. */
1183 else if (new->number != number || new->type != type)
1184 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1185
1186 return NULL;
1187 }
1188
1189 name = xstrdup (str);
1190 new = xmalloc (sizeof (reg_entry));
1191
1192 new->name = name;
1193 new->number = number;
1194 new->type = type;
1195 new->builtin = FALSE;
1196
1197 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1198 abort ();
1199
1200 return new;
1201}
1202
1203/* Look for the .req directive. This is of the form:
1204
1205 new_register_name .req existing_register_name
1206
1207 If we find one, or if it looks sufficiently like one that we want to
1208 handle any error here, return TRUE. Otherwise return FALSE. */
1209
1210static bfd_boolean
1211create_register_alias (char *newname, char *p)
1212{
1213 const reg_entry *old;
1214 char *oldname, *nbuf;
1215 size_t nlen;
1216
1217 /* The input scrubber ensures that whitespace after the mnemonic is
1218 collapsed to single spaces. */
1219 oldname = p;
1220 if (strncmp (oldname, " .req ", 6) != 0)
1221 return FALSE;
1222
1223 oldname += 6;
1224 if (*oldname == '\0')
1225 return FALSE;
1226
1227 old = hash_find (aarch64_reg_hsh, oldname);
1228 if (!old)
1229 {
1230 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1231 return TRUE;
1232 }
1233
1234 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1235 the desired alias name, and p points to its end. If not, then
1236 the desired alias name is in the global original_case_string. */
1237#ifdef TC_CASE_SENSITIVE
1238 nlen = p - newname;
1239#else
1240 newname = original_case_string;
1241 nlen = strlen (newname);
1242#endif
1243
e1fa0163 1244 nbuf = xmalloc (nlen + 1);
a06ea964
NC
1245 memcpy (nbuf, newname, nlen);
1246 nbuf[nlen] = '\0';
1247
1248 /* Create aliases under the new name as stated; an all-lowercase
1249 version of the new name; and an all-uppercase version of the new
1250 name. */
1251 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1252 {
1253 for (p = nbuf; *p; p++)
1254 *p = TOUPPER (*p);
1255
1256 if (strncmp (nbuf, newname, nlen))
1257 {
1258 /* If this attempt to create an additional alias fails, do not bother
1259 trying to create the all-lower case alias. We will fail and issue
1260 a second, duplicate error message. This situation arises when the
1261 programmer does something like:
1262 foo .req r0
1263 Foo .req r1
1264 The second .req creates the "Foo" alias but then fails to create
1265 the artificial FOO alias because it has already been created by the
1266 first .req. */
1267 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
1268 {
1269 free (nbuf);
1270 return TRUE;
1271 }
a06ea964
NC
1272 }
1273
1274 for (p = nbuf; *p; p++)
1275 *p = TOLOWER (*p);
1276
1277 if (strncmp (nbuf, newname, nlen))
1278 insert_reg_alias (nbuf, old->number, old->type);
1279 }
1280
e1fa0163 1281 free (nbuf);
a06ea964
NC
1282 return TRUE;
1283}
1284
1285/* Should never be called, as .req goes between the alias and the
1286 register name, not at the beginning of the line. */
1287static void
1288s_req (int a ATTRIBUTE_UNUSED)
1289{
1290 as_bad (_("invalid syntax for .req directive"));
1291}
1292
1293/* The .unreq directive deletes an alias which was previously defined
1294 by .req. For example:
1295
1296 my_alias .req r11
1297 .unreq my_alias */
1298
1299static void
1300s_unreq (int a ATTRIBUTE_UNUSED)
1301{
1302 char *name;
1303 char saved_char;
1304
1305 name = input_line_pointer;
1306
1307 while (*input_line_pointer != 0
1308 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1309 ++input_line_pointer;
1310
1311 saved_char = *input_line_pointer;
1312 *input_line_pointer = 0;
1313
1314 if (!*name)
1315 as_bad (_("invalid syntax for .unreq directive"));
1316 else
1317 {
1318 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1319
1320 if (!reg)
1321 as_bad (_("unknown register alias '%s'"), name);
1322 else if (reg->builtin)
1323 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1324 name);
1325 else
1326 {
1327 char *p;
1328 char *nbuf;
1329
1330 hash_delete (aarch64_reg_hsh, name, FALSE);
1331 free ((char *) reg->name);
1332 free (reg);
1333
1334 /* Also locate the all upper case and all lower case versions.
1335 Do not complain if we cannot find one or the other as it
1336 was probably deleted above. */
1337
1338 nbuf = strdup (name);
1339 for (p = nbuf; *p; p++)
1340 *p = TOUPPER (*p);
1341 reg = hash_find (aarch64_reg_hsh, nbuf);
1342 if (reg)
1343 {
1344 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1345 free ((char *) reg->name);
1346 free (reg);
1347 }
1348
1349 for (p = nbuf; *p; p++)
1350 *p = TOLOWER (*p);
1351 reg = hash_find (aarch64_reg_hsh, nbuf);
1352 if (reg)
1353 {
1354 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1355 free ((char *) reg->name);
1356 free (reg);
1357 }
1358
1359 free (nbuf);
1360 }
1361 }
1362
1363 *input_line_pointer = saved_char;
1364 demand_empty_rest_of_line ();
1365}
1366
1367/* Directives: Instruction set selection. */
1368
1369#ifdef OBJ_ELF
1370/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1371 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1372 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1373 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1374
1375/* Create a new mapping symbol for the transition to STATE. */
1376
1377static void
1378make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1379{
1380 symbolS *symbolP;
1381 const char *symname;
1382 int type;
1383
1384 switch (state)
1385 {
1386 case MAP_DATA:
1387 symname = "$d";
1388 type = BSF_NO_FLAGS;
1389 break;
1390 case MAP_INSN:
1391 symname = "$x";
1392 type = BSF_NO_FLAGS;
1393 break;
1394 default:
1395 abort ();
1396 }
1397
1398 symbolP = symbol_new (symname, now_seg, value, frag);
1399 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1400
1401 /* Save the mapping symbols for future reference. Also check that
1402 we do not place two mapping symbols at the same offset within a
1403 frag. We'll handle overlap between frags in
1404 check_mapping_symbols.
1405
1406 If .fill or other data filling directive generates zero sized data,
1407 the mapping symbol for the following code will have the same value
1408 as the one generated for the data filling directive. In this case,
1409 we replace the old symbol with the new one at the same address. */
1410 if (value == 0)
1411 {
1412 if (frag->tc_frag_data.first_map != NULL)
1413 {
1414 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1415 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1416 &symbol_lastP);
1417 }
1418 frag->tc_frag_data.first_map = symbolP;
1419 }
1420 if (frag->tc_frag_data.last_map != NULL)
1421 {
1422 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1423 S_GET_VALUE (symbolP));
1424 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1425 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1426 &symbol_lastP);
1427 }
1428 frag->tc_frag_data.last_map = symbolP;
1429}
1430
1431/* We must sometimes convert a region marked as code to data during
1432 code alignment, if an odd number of bytes have to be padded. The
1433 code mapping symbol is pushed to an aligned address. */
1434
1435static void
1436insert_data_mapping_symbol (enum mstate state,
1437 valueT value, fragS * frag, offsetT bytes)
1438{
1439 /* If there was already a mapping symbol, remove it. */
1440 if (frag->tc_frag_data.last_map != NULL
1441 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1442 frag->fr_address + value)
1443 {
1444 symbolS *symp = frag->tc_frag_data.last_map;
1445
1446 if (value == 0)
1447 {
1448 know (frag->tc_frag_data.first_map == symp);
1449 frag->tc_frag_data.first_map = NULL;
1450 }
1451 frag->tc_frag_data.last_map = NULL;
1452 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1453 }
1454
1455 make_mapping_symbol (MAP_DATA, value, frag);
1456 make_mapping_symbol (state, value + bytes, frag);
1457}
1458
1459static void mapping_state_2 (enum mstate state, int max_chars);
1460
1461/* Set the mapping state to STATE. Only call this when about to
1462 emit some STATE bytes to the file. */
1463
1464void
1465mapping_state (enum mstate state)
1466{
1467 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1468
a578ef7e
JW
1469 if (state == MAP_INSN)
1470 /* AArch64 instructions require 4-byte alignment. When emitting
1471 instructions into any section, record the appropriate section
1472 alignment. */
1473 record_alignment (now_seg, 2);
1474
448eb63d
RL
1475 if (mapstate == state)
1476 /* The mapping symbol has already been emitted.
1477 There is nothing else to do. */
1478 return;
1479
c1baaddf 1480#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1481 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1482 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1483 evaluated later in the next else. */
a06ea964 1484 return;
c1baaddf
RL
1485 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1486 {
1487 /* Only add the symbol if the offset is > 0:
1488 if we're at the first frag, check it's size > 0;
1489 if we're not at the first frag, then for sure
1490 the offset is > 0. */
1491 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1492 const int add_symbol = (frag_now != frag_first)
1493 || (frag_now_fix () > 0);
1494
1495 if (add_symbol)
1496 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1497 }
1498#undef TRANSITION
a06ea964
NC
1499
1500 mapping_state_2 (state, 0);
a06ea964
NC
1501}
1502
1503/* Same as mapping_state, but MAX_CHARS bytes have already been
1504 allocated. Put the mapping symbol that far back. */
1505
1506static void
1507mapping_state_2 (enum mstate state, int max_chars)
1508{
1509 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1510
1511 if (!SEG_NORMAL (now_seg))
1512 return;
1513
1514 if (mapstate == state)
1515 /* The mapping symbol has already been emitted.
1516 There is nothing else to do. */
1517 return;
1518
1519 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1520 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1521}
1522#else
1523#define mapping_state(x) /* nothing */
1524#define mapping_state_2(x, y) /* nothing */
1525#endif
1526
1527/* Directives: sectioning and alignment. */
1528
1529static void
1530s_bss (int ignore ATTRIBUTE_UNUSED)
1531{
1532 /* We don't support putting frags in the BSS segment, we fake it by
1533 marking in_bss, then looking at s_skip for clues. */
1534 subseg_set (bss_section, 0);
1535 demand_empty_rest_of_line ();
1536 mapping_state (MAP_DATA);
1537}
1538
1539static void
1540s_even (int ignore ATTRIBUTE_UNUSED)
1541{
1542 /* Never make frag if expect extra pass. */
1543 if (!need_pass_2)
1544 frag_align (1, 0, 0);
1545
1546 record_alignment (now_seg, 1);
1547
1548 demand_empty_rest_of_line ();
1549}
1550
1551/* Directives: Literal pools. */
1552
1553static literal_pool *
1554find_literal_pool (int size)
1555{
1556 literal_pool *pool;
1557
1558 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1559 {
1560 if (pool->section == now_seg
1561 && pool->sub_section == now_subseg && pool->size == size)
1562 break;
1563 }
1564
1565 return pool;
1566}
1567
1568static literal_pool *
1569find_or_make_literal_pool (int size)
1570{
1571 /* Next literal pool ID number. */
1572 static unsigned int latest_pool_num = 1;
1573 literal_pool *pool;
1574
1575 pool = find_literal_pool (size);
1576
1577 if (pool == NULL)
1578 {
1579 /* Create a new pool. */
1580 pool = xmalloc (sizeof (*pool));
1581 if (!pool)
1582 return NULL;
1583
1584 /* Currently we always put the literal pool in the current text
1585 section. If we were generating "small" model code where we
1586 knew that all code and initialised data was within 1MB then
1587 we could output literals to mergeable, read-only data
1588 sections. */
1589
1590 pool->next_free_entry = 0;
1591 pool->section = now_seg;
1592 pool->sub_section = now_subseg;
1593 pool->size = size;
1594 pool->next = list_of_pools;
1595 pool->symbol = NULL;
1596
1597 /* Add it to the list. */
1598 list_of_pools = pool;
1599 }
1600
1601 /* New pools, and emptied pools, will have a NULL symbol. */
1602 if (pool->symbol == NULL)
1603 {
1604 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1605 (valueT) 0, &zero_address_frag);
1606 pool->id = latest_pool_num++;
1607 }
1608
1609 /* Done. */
1610 return pool;
1611}
1612
1613/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1614 Return TRUE on success, otherwise return FALSE. */
1615static bfd_boolean
1616add_to_lit_pool (expressionS *exp, int size)
1617{
1618 literal_pool *pool;
1619 unsigned int entry;
1620
1621 pool = find_or_make_literal_pool (size);
1622
1623 /* Check if this literal value is already in the pool. */
1624 for (entry = 0; entry < pool->next_free_entry; entry++)
1625 {
55d9b4c1
NC
1626 expressionS * litexp = & pool->literals[entry].exp;
1627
1628 if ((litexp->X_op == exp->X_op)
a06ea964 1629 && (exp->X_op == O_constant)
55d9b4c1
NC
1630 && (litexp->X_add_number == exp->X_add_number)
1631 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1632 break;
1633
55d9b4c1 1634 if ((litexp->X_op == exp->X_op)
a06ea964 1635 && (exp->X_op == O_symbol)
55d9b4c1
NC
1636 && (litexp->X_add_number == exp->X_add_number)
1637 && (litexp->X_add_symbol == exp->X_add_symbol)
1638 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1639 break;
1640 }
1641
1642 /* Do we need to create a new entry? */
1643 if (entry == pool->next_free_entry)
1644 {
1645 if (entry >= MAX_LITERAL_POOL_SIZE)
1646 {
1647 set_syntax_error (_("literal pool overflow"));
1648 return FALSE;
1649 }
1650
55d9b4c1 1651 pool->literals[entry].exp = *exp;
a06ea964 1652 pool->next_free_entry += 1;
55d9b4c1
NC
1653 if (exp->X_op == O_big)
1654 {
1655 /* PR 16688: Bignums are held in a single global array. We must
1656 copy and preserve that value now, before it is overwritten. */
1657 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1658 memcpy (pool->literals[entry].bignum, generic_bignum,
1659 CHARS_PER_LITTLENUM * exp->X_add_number);
1660 }
1661 else
1662 pool->literals[entry].bignum = NULL;
a06ea964
NC
1663 }
1664
1665 exp->X_op = O_symbol;
1666 exp->X_add_number = ((int) entry) * size;
1667 exp->X_add_symbol = pool->symbol;
1668
1669 return TRUE;
1670}
1671
1672/* Can't use symbol_new here, so have to create a symbol and then at
1673 a later date assign it a value. Thats what these functions do. */
1674
1675static void
1676symbol_locate (symbolS * symbolP,
1677 const char *name,/* It is copied, the caller can modify. */
1678 segT segment, /* Segment identifier (SEG_<something>). */
1679 valueT valu, /* Symbol value. */
1680 fragS * frag) /* Associated fragment. */
1681{
e57e6ddc 1682 size_t name_length;
a06ea964
NC
1683 char *preserved_copy_of_name;
1684
1685 name_length = strlen (name) + 1; /* +1 for \0. */
1686 obstack_grow (&notes, name, name_length);
1687 preserved_copy_of_name = obstack_finish (&notes);
1688
1689#ifdef tc_canonicalize_symbol_name
1690 preserved_copy_of_name =
1691 tc_canonicalize_symbol_name (preserved_copy_of_name);
1692#endif
1693
1694 S_SET_NAME (symbolP, preserved_copy_of_name);
1695
1696 S_SET_SEGMENT (symbolP, segment);
1697 S_SET_VALUE (symbolP, valu);
1698 symbol_clear_list_pointers (symbolP);
1699
1700 symbol_set_frag (symbolP, frag);
1701
1702 /* Link to end of symbol chain. */
1703 {
1704 extern int symbol_table_frozen;
1705
1706 if (symbol_table_frozen)
1707 abort ();
1708 }
1709
1710 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1711
1712 obj_symbol_new_hook (symbolP);
1713
1714#ifdef tc_symbol_new_hook
1715 tc_symbol_new_hook (symbolP);
1716#endif
1717
1718#ifdef DEBUG_SYMS
1719 verify_symbol_chain (symbol_rootP, symbol_lastP);
1720#endif /* DEBUG_SYMS */
1721}
1722
1723
1724static void
1725s_ltorg (int ignored ATTRIBUTE_UNUSED)
1726{
1727 unsigned int entry;
1728 literal_pool *pool;
1729 char sym_name[20];
1730 int align;
1731
67a32447 1732 for (align = 2; align <= 4; align++)
a06ea964
NC
1733 {
1734 int size = 1 << align;
1735
1736 pool = find_literal_pool (size);
1737 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1738 continue;
1739
1740 mapping_state (MAP_DATA);
1741
1742 /* Align pool as you have word accesses.
1743 Only make a frag if we have to. */
1744 if (!need_pass_2)
1745 frag_align (align, 0, 0);
1746
1747 record_alignment (now_seg, align);
1748
1749 sprintf (sym_name, "$$lit_\002%x", pool->id);
1750
1751 symbol_locate (pool->symbol, sym_name, now_seg,
1752 (valueT) frag_now_fix (), frag_now);
1753 symbol_table_insert (pool->symbol);
1754
1755 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1756 {
1757 expressionS * exp = & pool->literals[entry].exp;
1758
1759 if (exp->X_op == O_big)
1760 {
1761 /* PR 16688: Restore the global bignum value. */
1762 gas_assert (pool->literals[entry].bignum != NULL);
1763 memcpy (generic_bignum, pool->literals[entry].bignum,
1764 CHARS_PER_LITTLENUM * exp->X_add_number);
1765 }
1766
1767 /* First output the expression in the instruction to the pool. */
1768 emit_expr (exp, size); /* .word|.xword */
1769
1770 if (exp->X_op == O_big)
1771 {
1772 free (pool->literals[entry].bignum);
1773 pool->literals[entry].bignum = NULL;
1774 }
1775 }
a06ea964
NC
1776
1777 /* Mark the pool as empty. */
1778 pool->next_free_entry = 0;
1779 pool->symbol = NULL;
1780 }
1781}
1782
1783#ifdef OBJ_ELF
1784/* Forward declarations for functions below, in the MD interface
1785 section. */
1786static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1787static struct reloc_table_entry * find_reloc_table_entry (char **);
1788
1789/* Directives: Data. */
1790/* N.B. the support for relocation suffix in this directive needs to be
1791 implemented properly. */
1792
1793static void
1794s_aarch64_elf_cons (int nbytes)
1795{
1796 expressionS exp;
1797
1798#ifdef md_flush_pending_output
1799 md_flush_pending_output ();
1800#endif
1801
1802 if (is_it_end_of_statement ())
1803 {
1804 demand_empty_rest_of_line ();
1805 return;
1806 }
1807
1808#ifdef md_cons_align
1809 md_cons_align (nbytes);
1810#endif
1811
1812 mapping_state (MAP_DATA);
1813 do
1814 {
1815 struct reloc_table_entry *reloc;
1816
1817 expression (&exp);
1818
1819 if (exp.X_op != O_symbol)
1820 emit_expr (&exp, (unsigned int) nbytes);
1821 else
1822 {
1823 skip_past_char (&input_line_pointer, '#');
1824 if (skip_past_char (&input_line_pointer, ':'))
1825 {
1826 reloc = find_reloc_table_entry (&input_line_pointer);
1827 if (reloc == NULL)
1828 as_bad (_("unrecognized relocation suffix"));
1829 else
1830 as_bad (_("unimplemented relocation suffix"));
1831 ignore_rest_of_line ();
1832 return;
1833 }
1834 else
1835 emit_expr (&exp, (unsigned int) nbytes);
1836 }
1837 }
1838 while (*input_line_pointer++ == ',');
1839
1840 /* Put terminator back into stream. */
1841 input_line_pointer--;
1842 demand_empty_rest_of_line ();
1843}
1844
1845#endif /* OBJ_ELF */
1846
1847/* Output a 32-bit word, but mark as an instruction. */
1848
1849static void
1850s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1851{
1852 expressionS exp;
1853
1854#ifdef md_flush_pending_output
1855 md_flush_pending_output ();
1856#endif
1857
1858 if (is_it_end_of_statement ())
1859 {
1860 demand_empty_rest_of_line ();
1861 return;
1862 }
1863
a97902de 1864 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1865 MAP_DATA symbol pending. So we only align the address during
1866 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1867 For other sections, this is not guaranteed. */
c1baaddf 1868 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1869 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1870 frag_align_code (2, 0);
c1baaddf 1871
a06ea964
NC
1872#ifdef OBJ_ELF
1873 mapping_state (MAP_INSN);
1874#endif
1875
1876 do
1877 {
1878 expression (&exp);
1879 if (exp.X_op != O_constant)
1880 {
1881 as_bad (_("constant expression required"));
1882 ignore_rest_of_line ();
1883 return;
1884 }
1885
1886 if (target_big_endian)
1887 {
1888 unsigned int val = exp.X_add_number;
1889 exp.X_add_number = SWAP_32 (val);
1890 }
1891 emit_expr (&exp, 4);
1892 }
1893 while (*input_line_pointer++ == ',');
1894
1895 /* Put terminator back into stream. */
1896 input_line_pointer--;
1897 demand_empty_rest_of_line ();
1898}
1899
1900#ifdef OBJ_ELF
43a357f9
RL
1901/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1902
1903static void
1904s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1905{
1906 expressionS exp;
1907
1908 expression (&exp);
1909 frag_grow (4);
1910 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1911 BFD_RELOC_AARCH64_TLSDESC_ADD);
1912
1913 demand_empty_rest_of_line ();
1914}
1915
a06ea964
NC
1916/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1917
1918static void
1919s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1920{
1921 expressionS exp;
1922
1923 /* Since we're just labelling the code, there's no need to define a
1924 mapping symbol. */
1925 expression (&exp);
1926 /* Make sure there is enough room in this frag for the following
1927 blr. This trick only works if the blr follows immediately after
1928 the .tlsdesc directive. */
1929 frag_grow (4);
1930 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1931 BFD_RELOC_AARCH64_TLSDESC_CALL);
1932
1933 demand_empty_rest_of_line ();
1934}
43a357f9
RL
1935
1936/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
1937
1938static void
1939s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
1940{
1941 expressionS exp;
1942
1943 expression (&exp);
1944 frag_grow (4);
1945 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1946 BFD_RELOC_AARCH64_TLSDESC_LDR);
1947
1948 demand_empty_rest_of_line ();
1949}
a06ea964
NC
1950#endif /* OBJ_ELF */
1951
1952static void s_aarch64_arch (int);
1953static void s_aarch64_cpu (int);
ae527cd8 1954static void s_aarch64_arch_extension (int);
a06ea964
NC
1955
1956/* This table describes all the machine specific pseudo-ops the assembler
1957 has to support. The fields are:
1958 pseudo-op name without dot
1959 function to call to execute this pseudo-op
1960 Integer arg to pass to the function. */
1961
1962const pseudo_typeS md_pseudo_table[] = {
1963 /* Never called because '.req' does not start a line. */
1964 {"req", s_req, 0},
1965 {"unreq", s_unreq, 0},
1966 {"bss", s_bss, 0},
1967 {"even", s_even, 0},
1968 {"ltorg", s_ltorg, 0},
1969 {"pool", s_ltorg, 0},
1970 {"cpu", s_aarch64_cpu, 0},
1971 {"arch", s_aarch64_arch, 0},
ae527cd8 1972 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
1973 {"inst", s_aarch64_inst, 0},
1974#ifdef OBJ_ELF
43a357f9 1975 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 1976 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 1977 {"tlsdescldr", s_tlsdescldr, 0},
a06ea964
NC
1978 {"word", s_aarch64_elf_cons, 4},
1979 {"long", s_aarch64_elf_cons, 4},
1980 {"xword", s_aarch64_elf_cons, 8},
1981 {"dword", s_aarch64_elf_cons, 8},
1982#endif
1983 {0, 0, 0}
1984};
1985\f
1986
1987/* Check whether STR points to a register name followed by a comma or the
1988 end of line; REG_TYPE indicates which register types are checked
1989 against. Return TRUE if STR is such a register name; otherwise return
1990 FALSE. The function does not intend to produce any diagnostics, but since
1991 the register parser aarch64_reg_parse, which is called by this function,
1992 does produce diagnostics, we call clear_error to clear any diagnostics
1993 that may be generated by aarch64_reg_parse.
1994 Also, the function returns FALSE directly if there is any user error
1995 present at the function entry. This prevents the existing diagnostics
1996 state from being spoiled.
1997 The function currently serves parse_constant_immediate and
1998 parse_big_immediate only. */
1999static bfd_boolean
2000reg_name_p (char *str, aarch64_reg_type reg_type)
2001{
2002 int reg;
2003
2004 /* Prevent the diagnostics state from being spoiled. */
2005 if (error_p ())
2006 return FALSE;
2007
2008 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2009
2010 /* Clear the parsing error that may be set by the reg parser. */
2011 clear_error ();
2012
2013 if (reg == PARSE_FAIL)
2014 return FALSE;
2015
2016 skip_whitespace (str);
2017 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2018 return TRUE;
2019
2020 return FALSE;
2021}
2022
2023/* Parser functions used exclusively in instruction operands. */
2024
2025/* Parse an immediate expression which may not be constant.
2026
2027 To prevent the expression parser from pushing a register name
2028 into the symbol table as an undefined symbol, firstly a check is
2029 done to find out whether STR is a valid register name followed
2030 by a comma or the end of line. Return FALSE if STR is such a
2031 string. */
2032
2033static bfd_boolean
2034parse_immediate_expression (char **str, expressionS *exp)
2035{
2036 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
2037 {
2038 set_recoverable_error (_("immediate operand required"));
2039 return FALSE;
2040 }
2041
2042 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2043
2044 if (exp->X_op == O_absent)
2045 {
2046 set_fatal_syntax_error (_("missing immediate expression"));
2047 return FALSE;
2048 }
2049
2050 return TRUE;
2051}
2052
2053/* Constant immediate-value read function for use in insn parsing.
2054 STR points to the beginning of the immediate (with the optional
2055 leading #); *VAL receives the value.
2056
2057 Return TRUE on success; otherwise return FALSE. */
2058
2059static bfd_boolean
2060parse_constant_immediate (char **str, int64_t * val)
2061{
2062 expressionS exp;
2063
2064 if (! parse_immediate_expression (str, &exp))
2065 return FALSE;
2066
2067 if (exp.X_op != O_constant)
2068 {
2069 set_syntax_error (_("constant expression required"));
2070 return FALSE;
2071 }
2072
2073 *val = exp.X_add_number;
2074 return TRUE;
2075}
2076
2077static uint32_t
2078encode_imm_float_bits (uint32_t imm)
2079{
2080 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2081 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2082}
2083
62b0d0d5
YZ
2084/* Return TRUE if the single-precision floating-point value encoded in IMM
2085 can be expressed in the AArch64 8-bit signed floating-point format with
2086 3-bit exponent and normalized 4 bits of precision; in other words, the
2087 floating-point value must be expressable as
2088 (+/-) n / 16 * power (2, r)
2089 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2090
a06ea964
NC
2091static bfd_boolean
2092aarch64_imm_float_p (uint32_t imm)
2093{
62b0d0d5
YZ
2094 /* If a single-precision floating-point value has the following bit
2095 pattern, it can be expressed in the AArch64 8-bit floating-point
2096 format:
2097
2098 3 32222222 2221111111111
a06ea964 2099 1 09876543 21098765432109876543210
62b0d0d5
YZ
2100 n Eeeeeexx xxxx0000000000000000000
2101
2102 where n, e and each x are either 0 or 1 independently, with
2103 E == ~ e. */
a06ea964 2104
62b0d0d5
YZ
2105 uint32_t pattern;
2106
2107 /* Prepare the pattern for 'Eeeeee'. */
2108 if (((imm >> 30) & 0x1) == 0)
2109 pattern = 0x3e000000;
a06ea964 2110 else
62b0d0d5
YZ
2111 pattern = 0x40000000;
2112
2113 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2114 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2115}
2116
62b0d0d5
YZ
2117/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2118
2119 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2120 8-bit signed floating-point format with 3-bit exponent and normalized 4
2121 bits of precision (i.e. can be used in an FMOV instruction); return the
2122 equivalent single-precision encoding in *FPWORD.
2123
2124 Otherwise return FALSE. */
2125
a06ea964 2126static bfd_boolean
62b0d0d5
YZ
2127aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2128{
2129 /* If a double-precision floating-point value has the following bit
2130 pattern, it can be expressed in the AArch64 8-bit floating-point
2131 format:
2132
2133 6 66655555555 554444444...21111111111
2134 3 21098765432 109876543...098765432109876543210
2135 n Eeeeeeeeexx xxxx00000...000000000000000000000
2136
2137 where n, e and each x are either 0 or 1 independently, with
2138 E == ~ e. */
2139
2140 uint32_t pattern;
2141 uint32_t high32 = imm >> 32;
2142
2143 /* Lower 32 bits need to be 0s. */
2144 if ((imm & 0xffffffff) != 0)
2145 return FALSE;
2146
2147 /* Prepare the pattern for 'Eeeeeeeee'. */
2148 if (((high32 >> 30) & 0x1) == 0)
2149 pattern = 0x3fc00000;
2150 else
2151 pattern = 0x40000000;
2152
2153 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2154 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2155 {
2156 /* Convert to the single-precision encoding.
2157 i.e. convert
2158 n Eeeeeeeeexx xxxx00000...000000000000000000000
2159 to
2160 n Eeeeeexx xxxx0000000000000000000. */
2161 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2162 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2163 return TRUE;
2164 }
2165 else
2166 return FALSE;
2167}
2168
2169/* Parse a floating-point immediate. Return TRUE on success and return the
2170 value in *IMMED in the format of IEEE754 single-precision encoding.
2171 *CCP points to the start of the string; DP_P is TRUE when the immediate
2172 is expected to be in double-precision (N.B. this only matters when
2173 hexadecimal representation is involved).
2174
2175 N.B. 0.0 is accepted by this function. */
2176
2177static bfd_boolean
2178parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2179{
2180 char *str = *ccp;
2181 char *fpnum;
2182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2183 int found_fpchar = 0;
62b0d0d5
YZ
2184 int64_t val = 0;
2185 unsigned fpword = 0;
2186 bfd_boolean hex_p = FALSE;
a06ea964
NC
2187
2188 skip_past_char (&str, '#');
2189
a06ea964
NC
2190 fpnum = str;
2191 skip_whitespace (fpnum);
2192
2193 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2194 {
2195 /* Support the hexadecimal representation of the IEEE754 encoding.
2196 Double-precision is expected when DP_P is TRUE, otherwise the
2197 representation should be in single-precision. */
2198 if (! parse_constant_immediate (&str, &val))
2199 goto invalid_fp;
2200
2201 if (dp_p)
2202 {
2203 if (! aarch64_double_precision_fmovable (val, &fpword))
2204 goto invalid_fp;
2205 }
2206 else if ((uint64_t) val > 0xffffffff)
2207 goto invalid_fp;
2208 else
2209 fpword = val;
2210
2211 hex_p = TRUE;
2212 }
a06ea964
NC
2213 else
2214 {
62b0d0d5
YZ
2215 /* We must not accidentally parse an integer as a floating-point number.
2216 Make sure that the value we parse is not an integer by checking for
2217 special characters '.' or 'e'. */
a06ea964
NC
2218 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2219 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2220 {
2221 found_fpchar = 1;
2222 break;
2223 }
2224
2225 if (!found_fpchar)
2226 return FALSE;
2227 }
2228
62b0d0d5 2229 if (! hex_p)
a06ea964 2230 {
a06ea964
NC
2231 int i;
2232
62b0d0d5
YZ
2233 if ((str = atof_ieee (str, 's', words)) == NULL)
2234 goto invalid_fp;
2235
a06ea964
NC
2236 /* Our FP word must be 32 bits (single-precision FP). */
2237 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2238 {
2239 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2240 fpword |= words[i];
2241 }
62b0d0d5 2242 }
a06ea964 2243
62b0d0d5
YZ
2244 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2245 {
2246 *immed = fpword;
a06ea964 2247 *ccp = str;
a06ea964
NC
2248 return TRUE;
2249 }
2250
2251invalid_fp:
2252 set_fatal_syntax_error (_("invalid floating-point constant"));
2253 return FALSE;
2254}
2255
2256/* Less-generic immediate-value read function with the possibility of loading
2257 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2258 instructions.
2259
2260 To prevent the expression parser from pushing a register name into the
2261 symbol table as an undefined symbol, a check is firstly done to find
2262 out whether STR is a valid register name followed by a comma or the end
2263 of line. Return FALSE if STR is such a register. */
2264
2265static bfd_boolean
2266parse_big_immediate (char **str, int64_t *imm)
2267{
2268 char *ptr = *str;
2269
2270 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2271 {
2272 set_syntax_error (_("immediate operand required"));
2273 return FALSE;
2274 }
2275
2276 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2277
2278 if (inst.reloc.exp.X_op == O_constant)
2279 *imm = inst.reloc.exp.X_add_number;
2280
2281 *str = ptr;
2282
2283 return TRUE;
2284}
2285
2286/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2287 if NEED_LIBOPCODES is non-zero, the fixup will need
2288 assistance from the libopcodes. */
2289
2290static inline void
2291aarch64_set_gas_internal_fixup (struct reloc *reloc,
2292 const aarch64_opnd_info *operand,
2293 int need_libopcodes_p)
2294{
2295 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2296 reloc->opnd = operand->type;
2297 if (need_libopcodes_p)
2298 reloc->need_libopcodes_p = 1;
2299};
2300
2301/* Return TRUE if the instruction needs to be fixed up later internally by
2302 the GAS; otherwise return FALSE. */
2303
2304static inline bfd_boolean
2305aarch64_gas_internal_fixup_p (void)
2306{
2307 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2308}
2309
2310/* Assign the immediate value to the relavant field in *OPERAND if
2311 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2312 needs an internal fixup in a later stage.
2313 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2314 IMM.VALUE that may get assigned with the constant. */
2315static inline void
2316assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2317 aarch64_opnd_info *operand,
2318 int addr_off_p,
2319 int need_libopcodes_p,
2320 int skip_p)
2321{
2322 if (reloc->exp.X_op == O_constant)
2323 {
2324 if (addr_off_p)
2325 operand->addr.offset.imm = reloc->exp.X_add_number;
2326 else
2327 operand->imm.value = reloc->exp.X_add_number;
2328 reloc->type = BFD_RELOC_UNUSED;
2329 }
2330 else
2331 {
2332 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2333 /* Tell libopcodes to ignore this operand or not. This is helpful
2334 when one of the operands needs to be fixed up later but we need
2335 libopcodes to check the other operands. */
2336 operand->skip = skip_p;
2337 }
2338}
2339
2340/* Relocation modifiers. Each entry in the table contains the textual
2341 name for the relocation which may be placed before a symbol used as
2342 a load/store offset, or add immediate. It must be surrounded by a
2343 leading and trailing colon, for example:
2344
2345 ldr x0, [x1, #:rello:varsym]
2346 add x0, x1, #:rello:varsym */
2347
2348struct reloc_table_entry
2349{
2350 const char *name;
2351 int pc_rel;
6f4a313b 2352 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2353 bfd_reloc_code_real_type adrp_type;
2354 bfd_reloc_code_real_type movw_type;
2355 bfd_reloc_code_real_type add_type;
2356 bfd_reloc_code_real_type ldst_type;
74ad790c 2357 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2358};
2359
2360static struct reloc_table_entry reloc_table[] = {
2361 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2362 {"lo12", 0,
6f4a313b 2363 0, /* adr_type */
a06ea964
NC
2364 0,
2365 0,
2366 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2367 BFD_RELOC_AARCH64_LDST_LO12,
2368 0},
a06ea964
NC
2369
2370 /* Higher 21 bits of pc-relative page offset: ADRP */
2371 {"pg_hi21", 1,
6f4a313b 2372 0, /* adr_type */
a06ea964
NC
2373 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2374 0,
2375 0,
74ad790c 2376 0,
a06ea964
NC
2377 0},
2378
2379 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2380 {"pg_hi21_nc", 1,
6f4a313b 2381 0, /* adr_type */
a06ea964
NC
2382 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2383 0,
2384 0,
74ad790c 2385 0,
a06ea964
NC
2386 0},
2387
2388 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2389 {"abs_g0", 0,
6f4a313b 2390 0, /* adr_type */
a06ea964
NC
2391 0,
2392 BFD_RELOC_AARCH64_MOVW_G0,
2393 0,
74ad790c 2394 0,
a06ea964
NC
2395 0},
2396
2397 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2398 {"abs_g0_s", 0,
6f4a313b 2399 0, /* adr_type */
a06ea964
NC
2400 0,
2401 BFD_RELOC_AARCH64_MOVW_G0_S,
2402 0,
74ad790c 2403 0,
a06ea964
NC
2404 0},
2405
2406 /* Less significant bits 0-15 of address/value: MOVK, no check */
2407 {"abs_g0_nc", 0,
6f4a313b 2408 0, /* adr_type */
a06ea964
NC
2409 0,
2410 BFD_RELOC_AARCH64_MOVW_G0_NC,
2411 0,
74ad790c 2412 0,
a06ea964
NC
2413 0},
2414
2415 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2416 {"abs_g1", 0,
6f4a313b 2417 0, /* adr_type */
a06ea964
NC
2418 0,
2419 BFD_RELOC_AARCH64_MOVW_G1,
2420 0,
74ad790c 2421 0,
a06ea964
NC
2422 0},
2423
2424 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2425 {"abs_g1_s", 0,
6f4a313b 2426 0, /* adr_type */
a06ea964
NC
2427 0,
2428 BFD_RELOC_AARCH64_MOVW_G1_S,
2429 0,
74ad790c 2430 0,
a06ea964
NC
2431 0},
2432
2433 /* Less significant bits 16-31 of address/value: MOVK, no check */
2434 {"abs_g1_nc", 0,
6f4a313b 2435 0, /* adr_type */
a06ea964
NC
2436 0,
2437 BFD_RELOC_AARCH64_MOVW_G1_NC,
2438 0,
74ad790c 2439 0,
a06ea964
NC
2440 0},
2441
2442 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2443 {"abs_g2", 0,
6f4a313b 2444 0, /* adr_type */
a06ea964
NC
2445 0,
2446 BFD_RELOC_AARCH64_MOVW_G2,
2447 0,
74ad790c 2448 0,
a06ea964
NC
2449 0},
2450
2451 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2452 {"abs_g2_s", 0,
6f4a313b 2453 0, /* adr_type */
a06ea964
NC
2454 0,
2455 BFD_RELOC_AARCH64_MOVW_G2_S,
2456 0,
74ad790c 2457 0,
a06ea964
NC
2458 0},
2459
2460 /* Less significant bits 32-47 of address/value: MOVK, no check */
2461 {"abs_g2_nc", 0,
6f4a313b 2462 0, /* adr_type */
a06ea964
NC
2463 0,
2464 BFD_RELOC_AARCH64_MOVW_G2_NC,
2465 0,
74ad790c 2466 0,
a06ea964
NC
2467 0},
2468
2469 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2470 {"abs_g3", 0,
6f4a313b 2471 0, /* adr_type */
a06ea964
NC
2472 0,
2473 BFD_RELOC_AARCH64_MOVW_G3,
2474 0,
74ad790c 2475 0,
a06ea964 2476 0},
4aa2c5e2 2477
a06ea964
NC
2478 /* Get to the page containing GOT entry for a symbol. */
2479 {"got", 1,
6f4a313b 2480 0, /* adr_type */
a06ea964
NC
2481 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2482 0,
2483 0,
74ad790c 2484 0,
4aa2c5e2
MS
2485 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2486
a06ea964
NC
2487 /* 12 bit offset into the page containing GOT entry for that symbol. */
2488 {"got_lo12", 0,
6f4a313b 2489 0, /* adr_type */
a06ea964
NC
2490 0,
2491 0,
2492 0,
74ad790c
MS
2493 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2494 0},
a06ea964 2495
ca632371
RL
2496 /* 0-15 bits of address/value: MOVk, no check. */
2497 {"gotoff_g0_nc", 0,
2498 0, /* adr_type */
2499 0,
2500 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2501 0,
2502 0,
2503 0},
2504
654248e7
RL
2505 /* Most significant bits 16-31 of address/value: MOVZ. */
2506 {"gotoff_g1", 0,
2507 0, /* adr_type */
2508 0,
2509 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2510 0,
2511 0,
2512 0},
2513
87f5fbcc
RL
2514 /* 15 bit offset into the page containing GOT entry for that symbol. */
2515 {"gotoff_lo15", 0,
2516 0, /* adr_type */
2517 0,
2518 0,
2519 0,
2520 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2521 0},
2522
3b957e5b
RL
2523 /* Get to the page containing GOT TLS entry for a symbol */
2524 {"gottprel_g0_nc", 0,
2525 0, /* adr_type */
2526 0,
2527 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2528 0,
2529 0,
2530 0},
2531
2532 /* Get to the page containing GOT TLS entry for a symbol */
2533 {"gottprel_g1", 0,
2534 0, /* adr_type */
2535 0,
2536 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2537 0,
2538 0,
2539 0},
2540
a06ea964
NC
2541 /* Get to the page containing GOT TLS entry for a symbol */
2542 {"tlsgd", 0,
3c12b054 2543 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2544 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2545 0,
2546 0,
74ad790c 2547 0,
a06ea964
NC
2548 0},
2549
2550 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2551 {"tlsgd_lo12", 0,
6f4a313b 2552 0, /* adr_type */
a06ea964
NC
2553 0,
2554 0,
2555 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2556 0,
a06ea964
NC
2557 0},
2558
3e8286c0
RL
2559 /* Lower 16 bits address/value: MOVk. */
2560 {"tlsgd_g0_nc", 0,
2561 0, /* adr_type */
2562 0,
2563 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2564 0,
2565 0,
2566 0},
2567
1aa66fb1
RL
2568 /* Most significant bits 16-31 of address/value: MOVZ. */
2569 {"tlsgd_g1", 0,
2570 0, /* adr_type */
2571 0,
2572 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2573 0,
2574 0,
2575 0},
2576
a06ea964
NC
2577 /* Get to the page containing GOT TLS entry for a symbol */
2578 {"tlsdesc", 0,
389b8029 2579 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2580 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2581 0,
2582 0,
74ad790c 2583 0,
1ada945d 2584 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2585
2586 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2587 {"tlsdesc_lo12", 0,
6f4a313b 2588 0, /* adr_type */
a06ea964
NC
2589 0,
2590 0,
2591 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2592 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2593 0},
a06ea964 2594
6c37fedc
JW
2595 /* Get to the page containing GOT TLS entry for a symbol.
2596 The same as GD, we allocate two consecutive GOT slots
2597 for module index and module offset, the only difference
2598 with GD is the module offset should be intialized to
2599 zero without any outstanding runtime relocation. */
2600 {"tlsldm", 0,
2601 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2602 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2603 0,
2604 0,
2605 0,
2606 0},
2607
a12fad50
JW
2608 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2609 {"tlsldm_lo12_nc", 0,
2610 0, /* adr_type */
2611 0,
2612 0,
2613 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2614 0,
2615 0},
2616
70151fb5
JW
2617 /* 12 bit offset into the module TLS base address. */
2618 {"dtprel_lo12", 0,
2619 0, /* adr_type */
2620 0,
2621 0,
2622 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2623 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2624 0},
2625
13289c10
JW
2626 /* Same as dtprel_lo12, no overflow check. */
2627 {"dtprel_lo12_nc", 0,
2628 0, /* adr_type */
2629 0,
2630 0,
2631 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2632 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2633 0},
2634
49df5539
JW
2635 /* bits[23:12] of offset to the module TLS base address. */
2636 {"dtprel_hi12", 0,
2637 0, /* adr_type */
2638 0,
2639 0,
2640 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2641 0,
2642 0},
2643
2644 /* bits[15:0] of offset to the module TLS base address. */
2645 {"dtprel_g0", 0,
2646 0, /* adr_type */
2647 0,
2648 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2649 0,
2650 0,
2651 0},
2652
2653 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2654 {"dtprel_g0_nc", 0,
2655 0, /* adr_type */
2656 0,
2657 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2658 0,
2659 0,
2660 0},
2661
2662 /* bits[31:16] of offset to the module TLS base address. */
2663 {"dtprel_g1", 0,
2664 0, /* adr_type */
2665 0,
2666 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2667 0,
2668 0,
2669 0},
2670
2671 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2672 {"dtprel_g1_nc", 0,
2673 0, /* adr_type */
2674 0,
2675 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2676 0,
2677 0,
2678 0},
2679
2680 /* bits[47:32] of offset to the module TLS base address. */
2681 {"dtprel_g2", 0,
2682 0, /* adr_type */
2683 0,
2684 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2685 0,
2686 0,
2687 0},
2688
43a357f9
RL
2689 /* Lower 16 bit offset into GOT entry for a symbol */
2690 {"tlsdesc_off_g0_nc", 0,
2691 0, /* adr_type */
2692 0,
2693 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2694 0,
2695 0,
2696 0},
2697
2698 /* Higher 16 bit offset into GOT entry for a symbol */
2699 {"tlsdesc_off_g1", 0,
2700 0, /* adr_type */
2701 0,
2702 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2703 0,
2704 0,
2705 0},
2706
a06ea964
NC
2707 /* Get to the page containing GOT TLS entry for a symbol */
2708 {"gottprel", 0,
6f4a313b 2709 0, /* adr_type */
a06ea964
NC
2710 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2711 0,
2712 0,
74ad790c 2713 0,
043bf05a 2714 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2715
2716 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2717 {"gottprel_lo12", 0,
6f4a313b 2718 0, /* adr_type */
a06ea964
NC
2719 0,
2720 0,
2721 0,
74ad790c
MS
2722 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2723 0},
a06ea964
NC
2724
2725 /* Get tp offset for a symbol. */
2726 {"tprel", 0,
6f4a313b 2727 0, /* adr_type */
a06ea964
NC
2728 0,
2729 0,
2730 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2731 0,
a06ea964
NC
2732 0},
2733
2734 /* Get tp offset for a symbol. */
2735 {"tprel_lo12", 0,
6f4a313b 2736 0, /* adr_type */
a06ea964
NC
2737 0,
2738 0,
2739 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2740 0,
a06ea964
NC
2741 0},
2742
2743 /* Get tp offset for a symbol. */
2744 {"tprel_hi12", 0,
6f4a313b 2745 0, /* adr_type */
a06ea964
NC
2746 0,
2747 0,
2748 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2749 0,
a06ea964
NC
2750 0},
2751
2752 /* Get tp offset for a symbol. */
2753 {"tprel_lo12_nc", 0,
6f4a313b 2754 0, /* adr_type */
a06ea964
NC
2755 0,
2756 0,
2757 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2758 0,
a06ea964
NC
2759 0},
2760
2761 /* Most significant bits 32-47 of address/value: MOVZ. */
2762 {"tprel_g2", 0,
6f4a313b 2763 0, /* adr_type */
a06ea964
NC
2764 0,
2765 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2766 0,
74ad790c 2767 0,
a06ea964
NC
2768 0},
2769
2770 /* Most significant bits 16-31 of address/value: MOVZ. */
2771 {"tprel_g1", 0,
6f4a313b 2772 0, /* adr_type */
a06ea964
NC
2773 0,
2774 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2775 0,
74ad790c 2776 0,
a06ea964
NC
2777 0},
2778
2779 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2780 {"tprel_g1_nc", 0,
6f4a313b 2781 0, /* adr_type */
a06ea964
NC
2782 0,
2783 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2784 0,
74ad790c 2785 0,
a06ea964
NC
2786 0},
2787
2788 /* Most significant bits 0-15 of address/value: MOVZ. */
2789 {"tprel_g0", 0,
6f4a313b 2790 0, /* adr_type */
a06ea964
NC
2791 0,
2792 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2793 0,
74ad790c 2794 0,
a06ea964
NC
2795 0},
2796
2797 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2798 {"tprel_g0_nc", 0,
6f4a313b 2799 0, /* adr_type */
a06ea964
NC
2800 0,
2801 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2802 0,
74ad790c 2803 0,
a06ea964 2804 0},
a921b5bd
JW
2805
2806 /* 15bit offset from got entry to base address of GOT table. */
2807 {"gotpage_lo15", 0,
2808 0,
2809 0,
2810 0,
2811 0,
2812 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2813 0},
3d715ce4
JW
2814
2815 /* 14bit offset from got entry to base address of GOT table. */
2816 {"gotpage_lo14", 0,
2817 0,
2818 0,
2819 0,
2820 0,
2821 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2822 0},
a06ea964
NC
2823};
2824
2825/* Given the address of a pointer pointing to the textual name of a
2826 relocation as may appear in assembler source, attempt to find its
2827 details in reloc_table. The pointer will be updated to the character
2828 after the trailing colon. On failure, NULL will be returned;
2829 otherwise return the reloc_table_entry. */
2830
2831static struct reloc_table_entry *
2832find_reloc_table_entry (char **str)
2833{
2834 unsigned int i;
2835 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2836 {
2837 int length = strlen (reloc_table[i].name);
2838
2839 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2840 && (*str)[length] == ':')
2841 {
2842 *str += (length + 1);
2843 return &reloc_table[i];
2844 }
2845 }
2846
2847 return NULL;
2848}
2849
2850/* Mode argument to parse_shift and parser_shifter_operand. */
2851enum parse_shift_mode
2852{
2853 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2854 "#imm{,lsl #n}" */
2855 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2856 "#imm" */
2857 SHIFTED_LSL, /* bare "lsl #n" */
2858 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2859 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2860};
2861
2862/* Parse a <shift> operator on an AArch64 data processing instruction.
2863 Return TRUE on success; otherwise return FALSE. */
2864static bfd_boolean
2865parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2866{
2867 const struct aarch64_name_value_pair *shift_op;
2868 enum aarch64_modifier_kind kind;
2869 expressionS exp;
2870 int exp_has_prefix;
2871 char *s = *str;
2872 char *p = s;
2873
2874 for (p = *str; ISALPHA (*p); p++)
2875 ;
2876
2877 if (p == *str)
2878 {
2879 set_syntax_error (_("shift expression expected"));
2880 return FALSE;
2881 }
2882
2883 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2884
2885 if (shift_op == NULL)
2886 {
2887 set_syntax_error (_("shift operator expected"));
2888 return FALSE;
2889 }
2890
2891 kind = aarch64_get_operand_modifier (shift_op);
2892
2893 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2894 {
2895 set_syntax_error (_("invalid use of 'MSL'"));
2896 return FALSE;
2897 }
2898
2899 switch (mode)
2900 {
2901 case SHIFTED_LOGIC_IMM:
2902 if (aarch64_extend_operator_p (kind) == TRUE)
2903 {
2904 set_syntax_error (_("extending shift is not permitted"));
2905 return FALSE;
2906 }
2907 break;
2908
2909 case SHIFTED_ARITH_IMM:
2910 if (kind == AARCH64_MOD_ROR)
2911 {
2912 set_syntax_error (_("'ROR' shift is not permitted"));
2913 return FALSE;
2914 }
2915 break;
2916
2917 case SHIFTED_LSL:
2918 if (kind != AARCH64_MOD_LSL)
2919 {
2920 set_syntax_error (_("only 'LSL' shift is permitted"));
2921 return FALSE;
2922 }
2923 break;
2924
2925 case SHIFTED_REG_OFFSET:
2926 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2927 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2928 {
2929 set_fatal_syntax_error
2930 (_("invalid shift for the register offset addressing mode"));
2931 return FALSE;
2932 }
2933 break;
2934
2935 case SHIFTED_LSL_MSL:
2936 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2937 {
2938 set_syntax_error (_("invalid shift operator"));
2939 return FALSE;
2940 }
2941 break;
2942
2943 default:
2944 abort ();
2945 }
2946
2947 /* Whitespace can appear here if the next thing is a bare digit. */
2948 skip_whitespace (p);
2949
2950 /* Parse shift amount. */
2951 exp_has_prefix = 0;
2952 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2953 exp.X_op = O_absent;
2954 else
2955 {
2956 if (is_immediate_prefix (*p))
2957 {
2958 p++;
2959 exp_has_prefix = 1;
2960 }
2961 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2962 }
2963 if (exp.X_op == O_absent)
2964 {
2965 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2966 {
2967 set_syntax_error (_("missing shift amount"));
2968 return FALSE;
2969 }
2970 operand->shifter.amount = 0;
2971 }
2972 else if (exp.X_op != O_constant)
2973 {
2974 set_syntax_error (_("constant shift amount required"));
2975 return FALSE;
2976 }
2977 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2978 {
2979 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2980 return FALSE;
2981 }
2982 else
2983 {
2984 operand->shifter.amount = exp.X_add_number;
2985 operand->shifter.amount_present = 1;
2986 }
2987
2988 operand->shifter.operator_present = 1;
2989 operand->shifter.kind = kind;
2990
2991 *str = p;
2992 return TRUE;
2993}
2994
2995/* Parse a <shifter_operand> for a data processing instruction:
2996
2997 #<immediate>
2998 #<immediate>, LSL #imm
2999
3000 Validation of immediate operands is deferred to md_apply_fix.
3001
3002 Return TRUE on success; otherwise return FALSE. */
3003
3004static bfd_boolean
3005parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3006 enum parse_shift_mode mode)
3007{
3008 char *p;
3009
3010 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3011 return FALSE;
3012
3013 p = *str;
3014
3015 /* Accept an immediate expression. */
3016 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3017 return FALSE;
3018
3019 /* Accept optional LSL for arithmetic immediate values. */
3020 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3021 if (! parse_shift (&p, operand, SHIFTED_LSL))
3022 return FALSE;
3023
3024 /* Not accept any shifter for logical immediate values. */
3025 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3026 && parse_shift (&p, operand, mode))
3027 {
3028 set_syntax_error (_("unexpected shift operator"));
3029 return FALSE;
3030 }
3031
3032 *str = p;
3033 return TRUE;
3034}
3035
3036/* Parse a <shifter_operand> for a data processing instruction:
3037
3038 <Rm>
3039 <Rm>, <shift>
3040 #<immediate>
3041 #<immediate>, LSL #imm
3042
3043 where <shift> is handled by parse_shift above, and the last two
3044 cases are handled by the function above.
3045
3046 Validation of immediate operands is deferred to md_apply_fix.
3047
3048 Return TRUE on success; otherwise return FALSE. */
3049
3050static bfd_boolean
3051parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3052 enum parse_shift_mode mode)
3053{
3054 int reg;
3055 int isreg32, isregzero;
3056 enum aarch64_operand_class opd_class
3057 = aarch64_get_operand_class (operand->type);
3058
3059 if ((reg =
3060 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
3061 {
3062 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3063 {
3064 set_syntax_error (_("unexpected register in the immediate operand"));
3065 return FALSE;
3066 }
3067
3068 if (!isregzero && reg == REG_SP)
3069 {
3070 set_syntax_error (BAD_SP);
3071 return FALSE;
3072 }
3073
3074 operand->reg.regno = reg;
3075 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
3076
3077 /* Accept optional shift operation on register. */
3078 if (! skip_past_comma (str))
3079 return TRUE;
3080
3081 if (! parse_shift (str, operand, mode))
3082 return FALSE;
3083
3084 return TRUE;
3085 }
3086 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3087 {
3088 set_syntax_error
3089 (_("integer register expected in the extended/shifted operand "
3090 "register"));
3091 return FALSE;
3092 }
3093
3094 /* We have a shifted immediate variable. */
3095 return parse_shifter_operand_imm (str, operand, mode);
3096}
3097
3098/* Return TRUE on success; return FALSE otherwise. */
3099
3100static bfd_boolean
3101parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3102 enum parse_shift_mode mode)
3103{
3104 char *p = *str;
3105
3106 /* Determine if we have the sequence of characters #: or just :
3107 coming next. If we do, then we check for a :rello: relocation
3108 modifier. If we don't, punt the whole lot to
3109 parse_shifter_operand. */
3110
3111 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3112 {
3113 struct reloc_table_entry *entry;
3114
3115 if (p[0] == '#')
3116 p += 2;
3117 else
3118 p++;
3119 *str = p;
3120
3121 /* Try to parse a relocation. Anything else is an error. */
3122 if (!(entry = find_reloc_table_entry (str)))
3123 {
3124 set_syntax_error (_("unknown relocation modifier"));
3125 return FALSE;
3126 }
3127
3128 if (entry->add_type == 0)
3129 {
3130 set_syntax_error
3131 (_("this relocation modifier is not allowed on this instruction"));
3132 return FALSE;
3133 }
3134
3135 /* Save str before we decompose it. */
3136 p = *str;
3137
3138 /* Next, we parse the expression. */
3139 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3140 return FALSE;
3141
3142 /* Record the relocation type (use the ADD variant here). */
3143 inst.reloc.type = entry->add_type;
3144 inst.reloc.pc_rel = entry->pc_rel;
3145
3146 /* If str is empty, we've reached the end, stop here. */
3147 if (**str == '\0')
3148 return TRUE;
3149
55d9b4c1 3150 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3151 recover the variable name and continue parsing for the shifter. */
3152 *str = p;
3153 return parse_shifter_operand_imm (str, operand, mode);
3154 }
3155
3156 return parse_shifter_operand (str, operand, mode);
3157}
3158
3159/* Parse all forms of an address expression. Information is written
3160 to *OPERAND and/or inst.reloc.
3161
3162 The A64 instruction set has the following addressing modes:
3163
3164 Offset
3165 [base] // in SIMD ld/st structure
3166 [base{,#0}] // in ld/st exclusive
3167 [base{,#imm}]
3168 [base,Xm{,LSL #imm}]
3169 [base,Xm,SXTX {#imm}]
3170 [base,Wm,(S|U)XTW {#imm}]
3171 Pre-indexed
3172 [base,#imm]!
3173 Post-indexed
3174 [base],#imm
3175 [base],Xm // in SIMD ld/st structure
3176 PC-relative (literal)
3177 label
3178 =immediate
3179
3180 (As a convenience, the notation "=immediate" is permitted in conjunction
3181 with the pc-relative literal load instructions to automatically place an
3182 immediate value or symbolic address in a nearby literal pool and generate
3183 a hidden label which references it.)
3184
3185 Upon a successful parsing, the address structure in *OPERAND will be
3186 filled in the following way:
3187
3188 .base_regno = <base>
3189 .offset.is_reg // 1 if the offset is a register
3190 .offset.imm = <imm>
3191 .offset.regno = <Rm>
3192
3193 For different addressing modes defined in the A64 ISA:
3194
3195 Offset
3196 .pcrel=0; .preind=1; .postind=0; .writeback=0
3197 Pre-indexed
3198 .pcrel=0; .preind=1; .postind=0; .writeback=1
3199 Post-indexed
3200 .pcrel=0; .preind=0; .postind=1; .writeback=1
3201 PC-relative (literal)
3202 .pcrel=1; .preind=1; .postind=0; .writeback=0
3203
3204 The shift/extension information, if any, will be stored in .shifter.
3205
3206 It is the caller's responsibility to check for addressing modes not
3207 supported by the instruction, and to set inst.reloc.type. */
3208
3209static bfd_boolean
3210parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
3211 int accept_reg_post_index)
3212{
3213 char *p = *str;
3214 int reg;
3215 int isreg32, isregzero;
3216 expressionS *exp = &inst.reloc.exp;
3217
3218 if (! skip_past_char (&p, '['))
3219 {
3220 /* =immediate or label. */
3221 operand->addr.pcrel = 1;
3222 operand->addr.preind = 1;
3223
f41aef5f
RE
3224 /* #:<reloc_op>:<symbol> */
3225 skip_past_char (&p, '#');
3226 if (reloc && skip_past_char (&p, ':'))
3227 {
6f4a313b 3228 bfd_reloc_code_real_type ty;
f41aef5f
RE
3229 struct reloc_table_entry *entry;
3230
3231 /* Try to parse a relocation modifier. Anything else is
3232 an error. */
3233 entry = find_reloc_table_entry (&p);
3234 if (! entry)
3235 {
3236 set_syntax_error (_("unknown relocation modifier"));
3237 return FALSE;
3238 }
3239
6f4a313b
MS
3240 switch (operand->type)
3241 {
3242 case AARCH64_OPND_ADDR_PCREL21:
3243 /* adr */
3244 ty = entry->adr_type;
3245 break;
3246
3247 default:
74ad790c 3248 ty = entry->ld_literal_type;
6f4a313b
MS
3249 break;
3250 }
3251
3252 if (ty == 0)
f41aef5f
RE
3253 {
3254 set_syntax_error
3255 (_("this relocation modifier is not allowed on this "
3256 "instruction"));
3257 return FALSE;
3258 }
3259
3260 /* #:<reloc_op>: */
3261 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3262 {
3263 set_syntax_error (_("invalid relocation expression"));
3264 return FALSE;
3265 }
a06ea964 3266
f41aef5f 3267 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3268 /* Record the relocation type. */
3269 inst.reloc.type = ty;
f41aef5f
RE
3270 inst.reloc.pc_rel = entry->pc_rel;
3271 }
3272 else
a06ea964 3273 {
f41aef5f
RE
3274
3275 if (skip_past_char (&p, '='))
3276 /* =immediate; need to generate the literal in the literal pool. */
3277 inst.gen_lit_pool = 1;
3278
3279 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3280 {
3281 set_syntax_error (_("invalid address"));
3282 return FALSE;
3283 }
a06ea964
NC
3284 }
3285
3286 *str = p;
3287 return TRUE;
3288 }
3289
3290 /* [ */
3291
3292 /* Accept SP and reject ZR */
3293 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3294 if (reg == PARSE_FAIL || isreg32)
3295 {
3296 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3297 return FALSE;
3298 }
3299 operand->addr.base_regno = reg;
3300
3301 /* [Xn */
3302 if (skip_past_comma (&p))
3303 {
3304 /* [Xn, */
3305 operand->addr.preind = 1;
3306
3307 /* Reject SP and accept ZR */
3308 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3309 if (reg != PARSE_FAIL)
3310 {
3311 /* [Xn,Rm */
3312 operand->addr.offset.regno = reg;
3313 operand->addr.offset.is_reg = 1;
3314 /* Shifted index. */
3315 if (skip_past_comma (&p))
3316 {
3317 /* [Xn,Rm, */
3318 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3319 /* Use the diagnostics set in parse_shift, so not set new
3320 error message here. */
3321 return FALSE;
3322 }
3323 /* We only accept:
3324 [base,Xm{,LSL #imm}]
3325 [base,Xm,SXTX {#imm}]
3326 [base,Wm,(S|U)XTW {#imm}] */
3327 if (operand->shifter.kind == AARCH64_MOD_NONE
3328 || operand->shifter.kind == AARCH64_MOD_LSL
3329 || operand->shifter.kind == AARCH64_MOD_SXTX)
3330 {
3331 if (isreg32)
3332 {
3333 set_syntax_error (_("invalid use of 32-bit register offset"));
3334 return FALSE;
3335 }
3336 }
3337 else if (!isreg32)
3338 {
3339 set_syntax_error (_("invalid use of 64-bit register offset"));
3340 return FALSE;
3341 }
3342 }
3343 else
3344 {
3345 /* [Xn,#:<reloc_op>:<symbol> */
3346 skip_past_char (&p, '#');
3347 if (reloc && skip_past_char (&p, ':'))
3348 {
3349 struct reloc_table_entry *entry;
3350
3351 /* Try to parse a relocation modifier. Anything else is
3352 an error. */
3353 if (!(entry = find_reloc_table_entry (&p)))
3354 {
3355 set_syntax_error (_("unknown relocation modifier"));
3356 return FALSE;
3357 }
3358
3359 if (entry->ldst_type == 0)
3360 {
3361 set_syntax_error
3362 (_("this relocation modifier is not allowed on this "
3363 "instruction"));
3364 return FALSE;
3365 }
3366
3367 /* [Xn,#:<reloc_op>: */
3368 /* We now have the group relocation table entry corresponding to
3369 the name in the assembler source. Next, we parse the
3370 expression. */
3371 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3372 {
3373 set_syntax_error (_("invalid relocation expression"));
3374 return FALSE;
3375 }
3376
3377 /* [Xn,#:<reloc_op>:<expr> */
3378 /* Record the load/store relocation type. */
3379 inst.reloc.type = entry->ldst_type;
3380 inst.reloc.pc_rel = entry->pc_rel;
3381 }
3382 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3383 {
3384 set_syntax_error (_("invalid expression in the address"));
3385 return FALSE;
3386 }
3387 /* [Xn,<expr> */
3388 }
3389 }
3390
3391 if (! skip_past_char (&p, ']'))
3392 {
3393 set_syntax_error (_("']' expected"));
3394 return FALSE;
3395 }
3396
3397 if (skip_past_char (&p, '!'))
3398 {
3399 if (operand->addr.preind && operand->addr.offset.is_reg)
3400 {
3401 set_syntax_error (_("register offset not allowed in pre-indexed "
3402 "addressing mode"));
3403 return FALSE;
3404 }
3405 /* [Xn]! */
3406 operand->addr.writeback = 1;
3407 }
3408 else if (skip_past_comma (&p))
3409 {
3410 /* [Xn], */
3411 operand->addr.postind = 1;
3412 operand->addr.writeback = 1;
3413
3414 if (operand->addr.preind)
3415 {
3416 set_syntax_error (_("cannot combine pre- and post-indexing"));
3417 return FALSE;
3418 }
3419
3420 if (accept_reg_post_index
3421 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3422 &isregzero)) != PARSE_FAIL)
3423 {
3424 /* [Xn],Xm */
3425 if (isreg32)
3426 {
3427 set_syntax_error (_("invalid 32-bit register offset"));
3428 return FALSE;
3429 }
3430 operand->addr.offset.regno = reg;
3431 operand->addr.offset.is_reg = 1;
3432 }
3433 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3434 {
3435 /* [Xn],#expr */
3436 set_syntax_error (_("invalid expression in the address"));
3437 return FALSE;
3438 }
3439 }
3440
3441 /* If at this point neither .preind nor .postind is set, we have a
3442 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3443 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3444 {
3445 if (operand->addr.writeback)
3446 {
3447 /* Reject [Rn]! */
3448 set_syntax_error (_("missing offset in the pre-indexed address"));
3449 return FALSE;
3450 }
3451 operand->addr.preind = 1;
3452 inst.reloc.exp.X_op = O_constant;
3453 inst.reloc.exp.X_add_number = 0;
3454 }
3455
3456 *str = p;
3457 return TRUE;
3458}
3459
3460/* Return TRUE on success; otherwise return FALSE. */
3461static bfd_boolean
3462parse_address (char **str, aarch64_opnd_info *operand,
3463 int accept_reg_post_index)
3464{
3465 return parse_address_main (str, operand, 0, accept_reg_post_index);
3466}
3467
3468/* Return TRUE on success; otherwise return FALSE. */
3469static bfd_boolean
3470parse_address_reloc (char **str, aarch64_opnd_info *operand)
3471{
3472 return parse_address_main (str, operand, 1, 0);
3473}
3474
3475/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3476 Return TRUE on success; otherwise return FALSE. */
3477static bfd_boolean
3478parse_half (char **str, int *internal_fixup_p)
3479{
671eeb28 3480 char *p = *str;
a06ea964 3481
a06ea964
NC
3482 skip_past_char (&p, '#');
3483
3484 gas_assert (internal_fixup_p);
3485 *internal_fixup_p = 0;
3486
3487 if (*p == ':')
3488 {
3489 struct reloc_table_entry *entry;
3490
3491 /* Try to parse a relocation. Anything else is an error. */
3492 ++p;
3493 if (!(entry = find_reloc_table_entry (&p)))
3494 {
3495 set_syntax_error (_("unknown relocation modifier"));
3496 return FALSE;
3497 }
3498
3499 if (entry->movw_type == 0)
3500 {
3501 set_syntax_error
3502 (_("this relocation modifier is not allowed on this instruction"));
3503 return FALSE;
3504 }
3505
3506 inst.reloc.type = entry->movw_type;
3507 }
3508 else
3509 *internal_fixup_p = 1;
3510
a06ea964
NC
3511 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3512 return FALSE;
3513
3514 *str = p;
3515 return TRUE;
3516}
3517
3518/* Parse an operand for an ADRP instruction:
3519 ADRP <Xd>, <label>
3520 Return TRUE on success; otherwise return FALSE. */
3521
3522static bfd_boolean
3523parse_adrp (char **str)
3524{
3525 char *p;
3526
3527 p = *str;
3528 if (*p == ':')
3529 {
3530 struct reloc_table_entry *entry;
3531
3532 /* Try to parse a relocation. Anything else is an error. */
3533 ++p;
3534 if (!(entry = find_reloc_table_entry (&p)))
3535 {
3536 set_syntax_error (_("unknown relocation modifier"));
3537 return FALSE;
3538 }
3539
3540 if (entry->adrp_type == 0)
3541 {
3542 set_syntax_error
3543 (_("this relocation modifier is not allowed on this instruction"));
3544 return FALSE;
3545 }
3546
3547 inst.reloc.type = entry->adrp_type;
3548 }
3549 else
3550 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3551
3552 inst.reloc.pc_rel = 1;
3553
3554 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3555 return FALSE;
3556
3557 *str = p;
3558 return TRUE;
3559}
3560
3561/* Miscellaneous. */
3562
3563/* Parse an option for a preload instruction. Returns the encoding for the
3564 option, or PARSE_FAIL. */
3565
3566static int
3567parse_pldop (char **str)
3568{
3569 char *p, *q;
3570 const struct aarch64_name_value_pair *o;
3571
3572 p = q = *str;
3573 while (ISALNUM (*q))
3574 q++;
3575
3576 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3577 if (!o)
3578 return PARSE_FAIL;
3579
3580 *str = q;
3581 return o->value;
3582}
3583
3584/* Parse an option for a barrier instruction. Returns the encoding for the
3585 option, or PARSE_FAIL. */
3586
3587static int
3588parse_barrier (char **str)
3589{
3590 char *p, *q;
3591 const asm_barrier_opt *o;
3592
3593 p = q = *str;
3594 while (ISALPHA (*q))
3595 q++;
3596
3597 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3598 if (!o)
3599 return PARSE_FAIL;
3600
3601 *str = q;
3602 return o->value;
3603}
3604
1e6f4800
MW
3605/* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3606 return 0 if successful. Otherwise return PARSE_FAIL. */
3607
3608static int
3609parse_barrier_psb (char **str,
3610 const struct aarch64_name_value_pair ** hint_opt)
3611{
3612 char *p, *q;
3613 const struct aarch64_name_value_pair *o;
3614
3615 p = q = *str;
3616 while (ISALPHA (*q))
3617 q++;
3618
3619 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3620 if (!o)
3621 {
3622 set_fatal_syntax_error
3623 ( _("unknown or missing option to PSB"));
3624 return PARSE_FAIL;
3625 }
3626
3627 if (o->value != 0x11)
3628 {
3629 /* PSB only accepts option name 'CSYNC'. */
3630 set_syntax_error
3631 (_("the specified option is not accepted for PSB"));
3632 return PARSE_FAIL;
3633 }
3634
3635 *str = q;
3636 *hint_opt = o;
3637 return 0;
3638}
3639
a06ea964 3640/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3641 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3642
3643 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3644 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3645
3646 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3647 field, otherwise as a system register.
3648*/
a06ea964
NC
3649
3650static int
72ca8fad
MW
3651parse_sys_reg (char **str, struct hash_control *sys_regs,
3652 int imple_defined_p, int pstatefield_p)
a06ea964
NC
3653{
3654 char *p, *q;
3655 char buf[32];
49eec193 3656 const aarch64_sys_reg *o;
a06ea964
NC
3657 int value;
3658
3659 p = buf;
3660 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3661 if (p < buf + 31)
3662 *p++ = TOLOWER (*q);
3663 *p = '\0';
3664 /* Assert that BUF be large enough. */
3665 gas_assert (p - buf == q - *str);
3666
3667 o = hash_find (sys_regs, buf);
3668 if (!o)
3669 {
3670 if (!imple_defined_p)
3671 return PARSE_FAIL;
3672 else
3673 {
df7b4545 3674 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3675 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3676
3677 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3678 != 5)
a06ea964 3679 return PARSE_FAIL;
df7b4545 3680 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3681 return PARSE_FAIL;
3682 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3683 }
3684 }
3685 else
49eec193 3686 {
72ca8fad
MW
3687 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3688 as_bad (_("selected processor does not support PSTATE field "
3689 "name '%s'"), buf);
3690 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3691 as_bad (_("selected processor does not support system register "
3692 "name '%s'"), buf);
9a73e520 3693 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3694 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3695 "removed in a future release"), buf);
49eec193
YZ
3696 value = o->value;
3697 }
a06ea964
NC
3698
3699 *str = q;
3700 return value;
3701}
3702
3703/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3704 for the option, or NULL. */
3705
3706static const aarch64_sys_ins_reg *
3707parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3708{
3709 char *p, *q;
3710 char buf[32];
3711 const aarch64_sys_ins_reg *o;
3712
3713 p = buf;
3714 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3715 if (p < buf + 31)
3716 *p++ = TOLOWER (*q);
3717 *p = '\0';
3718
3719 o = hash_find (sys_ins_regs, buf);
3720 if (!o)
3721 return NULL;
3722
d6bf7ce6
MW
3723 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
3724 as_bad (_("selected processor does not support system register "
3725 "name '%s'"), buf);
3726
a06ea964
NC
3727 *str = q;
3728 return o;
3729}
3730\f
3731#define po_char_or_fail(chr) do { \
3732 if (! skip_past_char (&str, chr)) \
3733 goto failure; \
3734} while (0)
3735
3736#define po_reg_or_fail(regtype) do { \
3737 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3738 if (val == PARSE_FAIL) \
3739 { \
3740 set_default_error (); \
3741 goto failure; \
3742 } \
3743 } while (0)
3744
3745#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3746 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3747 &isreg32, &isregzero); \
3748 if (val == PARSE_FAIL) \
3749 { \
3750 set_default_error (); \
3751 goto failure; \
3752 } \
3753 info->reg.regno = val; \
3754 if (isreg32) \
3755 info->qualifier = AARCH64_OPND_QLF_W; \
3756 else \
3757 info->qualifier = AARCH64_OPND_QLF_X; \
3758 } while (0)
3759
3760#define po_imm_nc_or_fail() do { \
3761 if (! parse_constant_immediate (&str, &val)) \
3762 goto failure; \
3763 } while (0)
3764
3765#define po_imm_or_fail(min, max) do { \
3766 if (! parse_constant_immediate (&str, &val)) \
3767 goto failure; \
3768 if (val < min || val > max) \
3769 { \
3770 set_fatal_syntax_error (_("immediate value out of range "\
3771#min " to "#max)); \
3772 goto failure; \
3773 } \
3774 } while (0)
3775
3776#define po_misc_or_fail(expr) do { \
3777 if (!expr) \
3778 goto failure; \
3779 } while (0)
3780\f
3781/* encode the 12-bit imm field of Add/sub immediate */
3782static inline uint32_t
3783encode_addsub_imm (uint32_t imm)
3784{
3785 return imm << 10;
3786}
3787
3788/* encode the shift amount field of Add/sub immediate */
3789static inline uint32_t
3790encode_addsub_imm_shift_amount (uint32_t cnt)
3791{
3792 return cnt << 22;
3793}
3794
3795
3796/* encode the imm field of Adr instruction */
3797static inline uint32_t
3798encode_adr_imm (uint32_t imm)
3799{
3800 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3801 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3802}
3803
3804/* encode the immediate field of Move wide immediate */
3805static inline uint32_t
3806encode_movw_imm (uint32_t imm)
3807{
3808 return imm << 5;
3809}
3810
3811/* encode the 26-bit offset of unconditional branch */
3812static inline uint32_t
3813encode_branch_ofs_26 (uint32_t ofs)
3814{
3815 return ofs & ((1 << 26) - 1);
3816}
3817
3818/* encode the 19-bit offset of conditional branch and compare & branch */
3819static inline uint32_t
3820encode_cond_branch_ofs_19 (uint32_t ofs)
3821{
3822 return (ofs & ((1 << 19) - 1)) << 5;
3823}
3824
3825/* encode the 19-bit offset of ld literal */
3826static inline uint32_t
3827encode_ld_lit_ofs_19 (uint32_t ofs)
3828{
3829 return (ofs & ((1 << 19) - 1)) << 5;
3830}
3831
3832/* Encode the 14-bit offset of test & branch. */
3833static inline uint32_t
3834encode_tst_branch_ofs_14 (uint32_t ofs)
3835{
3836 return (ofs & ((1 << 14) - 1)) << 5;
3837}
3838
3839/* Encode the 16-bit imm field of svc/hvc/smc. */
3840static inline uint32_t
3841encode_svc_imm (uint32_t imm)
3842{
3843 return imm << 5;
3844}
3845
3846/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3847static inline uint32_t
3848reencode_addsub_switch_add_sub (uint32_t opcode)
3849{
3850 return opcode ^ (1 << 30);
3851}
3852
3853static inline uint32_t
3854reencode_movzn_to_movz (uint32_t opcode)
3855{
3856 return opcode | (1 << 30);
3857}
3858
3859static inline uint32_t
3860reencode_movzn_to_movn (uint32_t opcode)
3861{
3862 return opcode & ~(1 << 30);
3863}
3864
3865/* Overall per-instruction processing. */
3866
3867/* We need to be able to fix up arbitrary expressions in some statements.
3868 This is so that we can handle symbols that are an arbitrary distance from
3869 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3870 which returns part of an address in a form which will be valid for
3871 a data instruction. We do this by pushing the expression into a symbol
3872 in the expr_section, and creating a fix for that. */
3873
3874static fixS *
3875fix_new_aarch64 (fragS * frag,
3876 int where,
3877 short int size, expressionS * exp, int pc_rel, int reloc)
3878{
3879 fixS *new_fix;
3880
3881 switch (exp->X_op)
3882 {
3883 case O_constant:
3884 case O_symbol:
3885 case O_add:
3886 case O_subtract:
3887 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3888 break;
3889
3890 default:
3891 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3892 pc_rel, reloc);
3893 break;
3894 }
3895 return new_fix;
3896}
3897\f
3898/* Diagnostics on operands errors. */
3899
a52e6fd3
YZ
3900/* By default, output verbose error message.
3901 Disable the verbose error message by -mno-verbose-error. */
3902static int verbose_error_p = 1;
a06ea964
NC
3903
3904#ifdef DEBUG_AARCH64
3905/* N.B. this is only for the purpose of debugging. */
3906const char* operand_mismatch_kind_names[] =
3907{
3908 "AARCH64_OPDE_NIL",
3909 "AARCH64_OPDE_RECOVERABLE",
3910 "AARCH64_OPDE_SYNTAX_ERROR",
3911 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3912 "AARCH64_OPDE_INVALID_VARIANT",
3913 "AARCH64_OPDE_OUT_OF_RANGE",
3914 "AARCH64_OPDE_UNALIGNED",
3915 "AARCH64_OPDE_REG_LIST",
3916 "AARCH64_OPDE_OTHER_ERROR",
3917};
3918#endif /* DEBUG_AARCH64 */
3919
3920/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3921
3922 When multiple errors of different kinds are found in the same assembly
3923 line, only the error of the highest severity will be picked up for
3924 issuing the diagnostics. */
3925
3926static inline bfd_boolean
3927operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3928 enum aarch64_operand_error_kind rhs)
3929{
3930 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3931 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3932 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3933 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3934 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3935 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3936 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3937 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3938 return lhs > rhs;
3939}
3940
3941/* Helper routine to get the mnemonic name from the assembly instruction
3942 line; should only be called for the diagnosis purpose, as there is
3943 string copy operation involved, which may affect the runtime
3944 performance if used in elsewhere. */
3945
3946static const char*
3947get_mnemonic_name (const char *str)
3948{
3949 static char mnemonic[32];
3950 char *ptr;
3951
3952 /* Get the first 15 bytes and assume that the full name is included. */
3953 strncpy (mnemonic, str, 31);
3954 mnemonic[31] = '\0';
3955
3956 /* Scan up to the end of the mnemonic, which must end in white space,
3957 '.', or end of string. */
3958 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3959 ;
3960
3961 *ptr = '\0';
3962
3963 /* Append '...' to the truncated long name. */
3964 if (ptr - mnemonic == 31)
3965 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3966
3967 return mnemonic;
3968}
3969
3970static void
3971reset_aarch64_instruction (aarch64_instruction *instruction)
3972{
3973 memset (instruction, '\0', sizeof (aarch64_instruction));
3974 instruction->reloc.type = BFD_RELOC_UNUSED;
3975}
3976
3977/* Data strutures storing one user error in the assembly code related to
3978 operands. */
3979
3980struct operand_error_record
3981{
3982 const aarch64_opcode *opcode;
3983 aarch64_operand_error detail;
3984 struct operand_error_record *next;
3985};
3986
3987typedef struct operand_error_record operand_error_record;
3988
3989struct operand_errors
3990{
3991 operand_error_record *head;
3992 operand_error_record *tail;
3993};
3994
3995typedef struct operand_errors operand_errors;
3996
3997/* Top-level data structure reporting user errors for the current line of
3998 the assembly code.
3999 The way md_assemble works is that all opcodes sharing the same mnemonic
4000 name are iterated to find a match to the assembly line. In this data
4001 structure, each of the such opcodes will have one operand_error_record
4002 allocated and inserted. In other words, excessive errors related with
4003 a single opcode are disregarded. */
4004operand_errors operand_error_report;
4005
4006/* Free record nodes. */
4007static operand_error_record *free_opnd_error_record_nodes = NULL;
4008
4009/* Initialize the data structure that stores the operand mismatch
4010 information on assembling one line of the assembly code. */
4011static void
4012init_operand_error_report (void)
4013{
4014 if (operand_error_report.head != NULL)
4015 {
4016 gas_assert (operand_error_report.tail != NULL);
4017 operand_error_report.tail->next = free_opnd_error_record_nodes;
4018 free_opnd_error_record_nodes = operand_error_report.head;
4019 operand_error_report.head = NULL;
4020 operand_error_report.tail = NULL;
4021 return;
4022 }
4023 gas_assert (operand_error_report.tail == NULL);
4024}
4025
4026/* Return TRUE if some operand error has been recorded during the
4027 parsing of the current assembly line using the opcode *OPCODE;
4028 otherwise return FALSE. */
4029static inline bfd_boolean
4030opcode_has_operand_error_p (const aarch64_opcode *opcode)
4031{
4032 operand_error_record *record = operand_error_report.head;
4033 return record && record->opcode == opcode;
4034}
4035
4036/* Add the error record *NEW_RECORD to operand_error_report. The record's
4037 OPCODE field is initialized with OPCODE.
4038 N.B. only one record for each opcode, i.e. the maximum of one error is
4039 recorded for each instruction template. */
4040
4041static void
4042add_operand_error_record (const operand_error_record* new_record)
4043{
4044 const aarch64_opcode *opcode = new_record->opcode;
4045 operand_error_record* record = operand_error_report.head;
4046
4047 /* The record may have been created for this opcode. If not, we need
4048 to prepare one. */
4049 if (! opcode_has_operand_error_p (opcode))
4050 {
4051 /* Get one empty record. */
4052 if (free_opnd_error_record_nodes == NULL)
4053 {
325801bd 4054 record = XNEW (operand_error_record);
a06ea964
NC
4055 }
4056 else
4057 {
4058 record = free_opnd_error_record_nodes;
4059 free_opnd_error_record_nodes = record->next;
4060 }
4061 record->opcode = opcode;
4062 /* Insert at the head. */
4063 record->next = operand_error_report.head;
4064 operand_error_report.head = record;
4065 if (operand_error_report.tail == NULL)
4066 operand_error_report.tail = record;
4067 }
4068 else if (record->detail.kind != AARCH64_OPDE_NIL
4069 && record->detail.index <= new_record->detail.index
4070 && operand_error_higher_severity_p (record->detail.kind,
4071 new_record->detail.kind))
4072 {
4073 /* In the case of multiple errors found on operands related with a
4074 single opcode, only record the error of the leftmost operand and
4075 only if the error is of higher severity. */
4076 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4077 " the existing error %s on operand %d",
4078 operand_mismatch_kind_names[new_record->detail.kind],
4079 new_record->detail.index,
4080 operand_mismatch_kind_names[record->detail.kind],
4081 record->detail.index);
4082 return;
4083 }
4084
4085 record->detail = new_record->detail;
4086}
4087
4088static inline void
4089record_operand_error_info (const aarch64_opcode *opcode,
4090 aarch64_operand_error *error_info)
4091{
4092 operand_error_record record;
4093 record.opcode = opcode;
4094 record.detail = *error_info;
4095 add_operand_error_record (&record);
4096}
4097
4098/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4099 error message *ERROR, for operand IDX (count from 0). */
4100
4101static void
4102record_operand_error (const aarch64_opcode *opcode, int idx,
4103 enum aarch64_operand_error_kind kind,
4104 const char* error)
4105{
4106 aarch64_operand_error info;
4107 memset(&info, 0, sizeof (info));
4108 info.index = idx;
4109 info.kind = kind;
4110 info.error = error;
4111 record_operand_error_info (opcode, &info);
4112}
4113
4114static void
4115record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4116 enum aarch64_operand_error_kind kind,
4117 const char* error, const int *extra_data)
4118{
4119 aarch64_operand_error info;
4120 info.index = idx;
4121 info.kind = kind;
4122 info.error = error;
4123 info.data[0] = extra_data[0];
4124 info.data[1] = extra_data[1];
4125 info.data[2] = extra_data[2];
4126 record_operand_error_info (opcode, &info);
4127}
4128
4129static void
4130record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4131 const char* error, int lower_bound,
4132 int upper_bound)
4133{
4134 int data[3] = {lower_bound, upper_bound, 0};
4135 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4136 error, data);
4137}
4138
4139/* Remove the operand error record for *OPCODE. */
4140static void ATTRIBUTE_UNUSED
4141remove_operand_error_record (const aarch64_opcode *opcode)
4142{
4143 if (opcode_has_operand_error_p (opcode))
4144 {
4145 operand_error_record* record = operand_error_report.head;
4146 gas_assert (record != NULL && operand_error_report.tail != NULL);
4147 operand_error_report.head = record->next;
4148 record->next = free_opnd_error_record_nodes;
4149 free_opnd_error_record_nodes = record;
4150 if (operand_error_report.head == NULL)
4151 {
4152 gas_assert (operand_error_report.tail == record);
4153 operand_error_report.tail = NULL;
4154 }
4155 }
4156}
4157
4158/* Given the instruction in *INSTR, return the index of the best matched
4159 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4160
4161 Return -1 if there is no qualifier sequence; return the first match
4162 if there is multiple matches found. */
4163
4164static int
4165find_best_match (const aarch64_inst *instr,
4166 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4167{
4168 int i, num_opnds, max_num_matched, idx;
4169
4170 num_opnds = aarch64_num_of_operands (instr->opcode);
4171 if (num_opnds == 0)
4172 {
4173 DEBUG_TRACE ("no operand");
4174 return -1;
4175 }
4176
4177 max_num_matched = 0;
4178 idx = -1;
4179
4180 /* For each pattern. */
4181 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4182 {
4183 int j, num_matched;
4184 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4185
4186 /* Most opcodes has much fewer patterns in the list. */
4187 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
4188 {
4189 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4190 if (i != 0 && idx == -1)
4191 /* If nothing has been matched, return the 1st sequence. */
4192 idx = 0;
4193 break;
4194 }
4195
4196 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4197 if (*qualifiers == instr->operands[j].qualifier)
4198 ++num_matched;
4199
4200 if (num_matched > max_num_matched)
4201 {
4202 max_num_matched = num_matched;
4203 idx = i;
4204 }
4205 }
4206
4207 DEBUG_TRACE ("return with %d", idx);
4208 return idx;
4209}
4210
4211/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
4212 corresponding operands in *INSTR. */
4213
4214static inline void
4215assign_qualifier_sequence (aarch64_inst *instr,
4216 const aarch64_opnd_qualifier_t *qualifiers)
4217{
4218 int i = 0;
4219 int num_opnds = aarch64_num_of_operands (instr->opcode);
4220 gas_assert (num_opnds);
4221 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4222 instr->operands[i].qualifier = *qualifiers;
4223}
4224
4225/* Print operands for the diagnosis purpose. */
4226
4227static void
4228print_operands (char *buf, const aarch64_opcode *opcode,
4229 const aarch64_opnd_info *opnds)
4230{
4231 int i;
4232
4233 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4234 {
4235 const size_t size = 128;
4236 char str[size];
4237
4238 /* We regard the opcode operand info more, however we also look into
4239 the inst->operands to support the disassembling of the optional
4240 operand.
4241 The two operand code should be the same in all cases, apart from
4242 when the operand can be optional. */
4243 if (opcode->operands[i] == AARCH64_OPND_NIL
4244 || opnds[i].type == AARCH64_OPND_NIL)
4245 break;
4246
4247 /* Generate the operand string in STR. */
4248 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
4249
4250 /* Delimiter. */
4251 if (str[0] != '\0')
4252 strcat (buf, i == 0 ? " " : ",");
4253
4254 /* Append the operand string. */
4255 strcat (buf, str);
4256 }
4257}
4258
4259/* Send to stderr a string as information. */
4260
4261static void
4262output_info (const char *format, ...)
4263{
3b4dbbbf 4264 const char *file;
a06ea964
NC
4265 unsigned int line;
4266 va_list args;
4267
3b4dbbbf 4268 file = as_where (&line);
a06ea964
NC
4269 if (file)
4270 {
4271 if (line != 0)
4272 fprintf (stderr, "%s:%u: ", file, line);
4273 else
4274 fprintf (stderr, "%s: ", file);
4275 }
4276 fprintf (stderr, _("Info: "));
4277 va_start (args, format);
4278 vfprintf (stderr, format, args);
4279 va_end (args);
4280 (void) putc ('\n', stderr);
4281}
4282
4283/* Output one operand error record. */
4284
4285static void
4286output_operand_error_record (const operand_error_record *record, char *str)
4287{
28f013d5
JB
4288 const aarch64_operand_error *detail = &record->detail;
4289 int idx = detail->index;
a06ea964 4290 const aarch64_opcode *opcode = record->opcode;
28f013d5 4291 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4292 : AARCH64_OPND_NIL);
a06ea964
NC
4293
4294 switch (detail->kind)
4295 {
4296 case AARCH64_OPDE_NIL:
4297 gas_assert (0);
4298 break;
4299
4300 case AARCH64_OPDE_SYNTAX_ERROR:
4301 case AARCH64_OPDE_RECOVERABLE:
4302 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4303 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4304 /* Use the prepared error message if there is, otherwise use the
4305 operand description string to describe the error. */
4306 if (detail->error != NULL)
4307 {
28f013d5 4308 if (idx < 0)
a06ea964
NC
4309 as_bad (_("%s -- `%s'"), detail->error, str);
4310 else
4311 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4312 detail->error, idx + 1, str);
a06ea964
NC
4313 }
4314 else
28f013d5
JB
4315 {
4316 gas_assert (idx >= 0);
4317 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 4318 aarch64_get_operand_desc (opd_code), str);
28f013d5 4319 }
a06ea964
NC
4320 break;
4321
4322 case AARCH64_OPDE_INVALID_VARIANT:
4323 as_bad (_("operand mismatch -- `%s'"), str);
4324 if (verbose_error_p)
4325 {
4326 /* We will try to correct the erroneous instruction and also provide
4327 more information e.g. all other valid variants.
4328
4329 The string representation of the corrected instruction and other
4330 valid variants are generated by
4331
4332 1) obtaining the intermediate representation of the erroneous
4333 instruction;
4334 2) manipulating the IR, e.g. replacing the operand qualifier;
4335 3) printing out the instruction by calling the printer functions
4336 shared with the disassembler.
4337
4338 The limitation of this method is that the exact input assembly
4339 line cannot be accurately reproduced in some cases, for example an
4340 optional operand present in the actual assembly line will be
4341 omitted in the output; likewise for the optional syntax rules,
4342 e.g. the # before the immediate. Another limitation is that the
4343 assembly symbols and relocation operations in the assembly line
4344 currently cannot be printed out in the error report. Last but not
4345 least, when there is other error(s) co-exist with this error, the
4346 'corrected' instruction may be still incorrect, e.g. given
4347 'ldnp h0,h1,[x0,#6]!'
4348 this diagnosis will provide the version:
4349 'ldnp s0,s1,[x0,#6]!'
4350 which is still not right. */
4351 size_t len = strlen (get_mnemonic_name (str));
4352 int i, qlf_idx;
4353 bfd_boolean result;
4354 const size_t size = 2048;
4355 char buf[size];
4356 aarch64_inst *inst_base = &inst.base;
4357 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4358
4359 /* Init inst. */
4360 reset_aarch64_instruction (&inst);
4361 inst_base->opcode = opcode;
4362
4363 /* Reset the error report so that there is no side effect on the
4364 following operand parsing. */
4365 init_operand_error_report ();
4366
4367 /* Fill inst. */
4368 result = parse_operands (str + len, opcode)
4369 && programmer_friendly_fixup (&inst);
4370 gas_assert (result);
4371 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4372 NULL, NULL);
4373 gas_assert (!result);
4374
4375 /* Find the most matched qualifier sequence. */
4376 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4377 gas_assert (qlf_idx > -1);
4378
4379 /* Assign the qualifiers. */
4380 assign_qualifier_sequence (inst_base,
4381 opcode->qualifiers_list[qlf_idx]);
4382
4383 /* Print the hint. */
4384 output_info (_(" did you mean this?"));
4385 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4386 print_operands (buf, opcode, inst_base->operands);
4387 output_info (_(" %s"), buf);
4388
4389 /* Print out other variant(s) if there is any. */
4390 if (qlf_idx != 0 ||
4391 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4392 output_info (_(" other valid variant(s):"));
4393
4394 /* For each pattern. */
4395 qualifiers_list = opcode->qualifiers_list;
4396 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4397 {
4398 /* Most opcodes has much fewer patterns in the list.
4399 First NIL qualifier indicates the end in the list. */
4400 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4401 break;
4402
4403 if (i != qlf_idx)
4404 {
4405 /* Mnemonics name. */
4406 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4407
4408 /* Assign the qualifiers. */
4409 assign_qualifier_sequence (inst_base, *qualifiers_list);
4410
4411 /* Print instruction. */
4412 print_operands (buf, opcode, inst_base->operands);
4413
4414 output_info (_(" %s"), buf);
4415 }
4416 }
4417 }
4418 break;
4419
4420 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4421 if (detail->data[0] != detail->data[1])
4422 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4423 detail->error ? detail->error : _("immediate value"),
28f013d5 4424 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4425 else
4426 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4427 detail->error ? detail->error : _("immediate value"),
28f013d5 4428 detail->data[0], idx + 1, str);
a06ea964
NC
4429 break;
4430
4431 case AARCH64_OPDE_REG_LIST:
4432 if (detail->data[0] == 1)
4433 as_bad (_("invalid number of registers in the list; "
4434 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4435 idx + 1, str);
a06ea964
NC
4436 else
4437 as_bad (_("invalid number of registers in the list; "
4438 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4439 detail->data[0], idx + 1, str);
a06ea964
NC
4440 break;
4441
4442 case AARCH64_OPDE_UNALIGNED:
4443 as_bad (_("immediate value should be a multiple of "
4444 "%d at operand %d -- `%s'"),
28f013d5 4445 detail->data[0], idx + 1, str);
a06ea964
NC
4446 break;
4447
4448 default:
4449 gas_assert (0);
4450 break;
4451 }
4452}
4453
4454/* Process and output the error message about the operand mismatching.
4455
4456 When this function is called, the operand error information had
4457 been collected for an assembly line and there will be multiple
4458 errors in the case of mulitple instruction templates; output the
4459 error message that most closely describes the problem. */
4460
4461static void
4462output_operand_error_report (char *str)
4463{
4464 int largest_error_pos;
4465 const char *msg = NULL;
4466 enum aarch64_operand_error_kind kind;
4467 operand_error_record *curr;
4468 operand_error_record *head = operand_error_report.head;
4469 operand_error_record *record = NULL;
4470
4471 /* No error to report. */
4472 if (head == NULL)
4473 return;
4474
4475 gas_assert (head != NULL && operand_error_report.tail != NULL);
4476
4477 /* Only one error. */
4478 if (head == operand_error_report.tail)
4479 {
4480 DEBUG_TRACE ("single opcode entry with error kind: %s",
4481 operand_mismatch_kind_names[head->detail.kind]);
4482 output_operand_error_record (head, str);
4483 return;
4484 }
4485
4486 /* Find the error kind of the highest severity. */
4487 DEBUG_TRACE ("multiple opcode entres with error kind");
4488 kind = AARCH64_OPDE_NIL;
4489 for (curr = head; curr != NULL; curr = curr->next)
4490 {
4491 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4492 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4493 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4494 kind = curr->detail.kind;
4495 }
4496 gas_assert (kind != AARCH64_OPDE_NIL);
4497
4498 /* Pick up one of errors of KIND to report. */
4499 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4500 for (curr = head; curr != NULL; curr = curr->next)
4501 {
4502 if (curr->detail.kind != kind)
4503 continue;
4504 /* If there are multiple errors, pick up the one with the highest
4505 mismatching operand index. In the case of multiple errors with
4506 the equally highest operand index, pick up the first one or the
4507 first one with non-NULL error message. */
4508 if (curr->detail.index > largest_error_pos
4509 || (curr->detail.index == largest_error_pos && msg == NULL
4510 && curr->detail.error != NULL))
4511 {
4512 largest_error_pos = curr->detail.index;
4513 record = curr;
4514 msg = record->detail.error;
4515 }
4516 }
4517
4518 gas_assert (largest_error_pos != -2 && record != NULL);
4519 DEBUG_TRACE ("Pick up error kind %s to report",
4520 operand_mismatch_kind_names[record->detail.kind]);
4521
4522 /* Output. */
4523 output_operand_error_record (record, str);
4524}
4525\f
4526/* Write an AARCH64 instruction to buf - always little-endian. */
4527static void
4528put_aarch64_insn (char *buf, uint32_t insn)
4529{
4530 unsigned char *where = (unsigned char *) buf;
4531 where[0] = insn;
4532 where[1] = insn >> 8;
4533 where[2] = insn >> 16;
4534 where[3] = insn >> 24;
4535}
4536
4537static uint32_t
4538get_aarch64_insn (char *buf)
4539{
4540 unsigned char *where = (unsigned char *) buf;
4541 uint32_t result;
4542 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4543 return result;
4544}
4545
4546static void
4547output_inst (struct aarch64_inst *new_inst)
4548{
4549 char *to = NULL;
4550
4551 to = frag_more (INSN_SIZE);
4552
4553 frag_now->tc_frag_data.recorded = 1;
4554
4555 put_aarch64_insn (to, inst.base.value);
4556
4557 if (inst.reloc.type != BFD_RELOC_UNUSED)
4558 {
4559 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4560 INSN_SIZE, &inst.reloc.exp,
4561 inst.reloc.pc_rel,
4562 inst.reloc.type);
4563 DEBUG_TRACE ("Prepared relocation fix up");
4564 /* Don't check the addend value against the instruction size,
4565 that's the job of our code in md_apply_fix(). */
4566 fixp->fx_no_overflow = 1;
4567 if (new_inst != NULL)
4568 fixp->tc_fix_data.inst = new_inst;
4569 if (aarch64_gas_internal_fixup_p ())
4570 {
4571 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4572 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4573 fixp->fx_addnumber = inst.reloc.flags;
4574 }
4575 }
4576
4577 dwarf2_emit_insn (INSN_SIZE);
4578}
4579
4580/* Link together opcodes of the same name. */
4581
4582struct templates
4583{
4584 aarch64_opcode *opcode;
4585 struct templates *next;
4586};
4587
4588typedef struct templates templates;
4589
4590static templates *
4591lookup_mnemonic (const char *start, int len)
4592{
4593 templates *templ = NULL;
4594
4595 templ = hash_find_n (aarch64_ops_hsh, start, len);
4596 return templ;
4597}
4598
4599/* Subroutine of md_assemble, responsible for looking up the primary
4600 opcode from the mnemonic the user wrote. STR points to the
4601 beginning of the mnemonic. */
4602
4603static templates *
4604opcode_lookup (char **str)
4605{
4606 char *end, *base;
4607 const aarch64_cond *cond;
4608 char condname[16];
4609 int len;
4610
4611 /* Scan up to the end of the mnemonic, which must end in white space,
4612 '.', or end of string. */
4613 for (base = end = *str; is_part_of_name(*end); end++)
4614 if (*end == '.')
4615 break;
4616
4617 if (end == base)
4618 return 0;
4619
4620 inst.cond = COND_ALWAYS;
4621
4622 /* Handle a possible condition. */
4623 if (end[0] == '.')
4624 {
4625 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4626 if (cond)
4627 {
4628 inst.cond = cond->value;
4629 *str = end + 3;
4630 }
4631 else
4632 {
4633 *str = end;
4634 return 0;
4635 }
4636 }
4637 else
4638 *str = end;
4639
4640 len = end - base;
4641
4642 if (inst.cond == COND_ALWAYS)
4643 {
4644 /* Look for unaffixed mnemonic. */
4645 return lookup_mnemonic (base, len);
4646 }
4647 else if (len <= 13)
4648 {
4649 /* append ".c" to mnemonic if conditional */
4650 memcpy (condname, base, len);
4651 memcpy (condname + len, ".c", 2);
4652 base = condname;
4653 len += 2;
4654 return lookup_mnemonic (base, len);
4655 }
4656
4657 return NULL;
4658}
4659
4660/* Internal helper routine converting a vector neon_type_el structure
4661 *VECTYPE to a corresponding operand qualifier. */
4662
4663static inline aarch64_opnd_qualifier_t
4664vectype_to_qualifier (const struct neon_type_el *vectype)
4665{
4666 /* Element size in bytes indexed by neon_el_type. */
4667 const unsigned char ele_size[5]
4668 = {1, 2, 4, 8, 16};
65f2205d
MW
4669 const unsigned int ele_base [5] =
4670 {
4671 AARCH64_OPND_QLF_V_8B,
3067d3b9 4672 AARCH64_OPND_QLF_V_2H,
65f2205d
MW
4673 AARCH64_OPND_QLF_V_2S,
4674 AARCH64_OPND_QLF_V_1D,
4675 AARCH64_OPND_QLF_V_1Q
4676 };
a06ea964
NC
4677
4678 if (!vectype->defined || vectype->type == NT_invtype)
4679 goto vectype_conversion_fail;
4680
4681 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4682
4683 if (vectype->defined & NTA_HASINDEX)
4684 /* Vector element register. */
4685 return AARCH64_OPND_QLF_S_B + vectype->type;
4686 else
4687 {
4688 /* Vector register. */
4689 int reg_size = ele_size[vectype->type] * vectype->width;
4690 unsigned offset;
65f2205d 4691 unsigned shift;
3067d3b9 4692 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
a06ea964 4693 goto vectype_conversion_fail;
65f2205d
MW
4694
4695 /* The conversion is by calculating the offset from the base operand
4696 qualifier for the vector type. The operand qualifiers are regular
4697 enough that the offset can established by shifting the vector width by
4698 a vector-type dependent amount. */
4699 shift = 0;
4700 if (vectype->type == NT_b)
4701 shift = 4;
3067d3b9 4702 else if (vectype->type == NT_h || vectype->type == NT_s)
65f2205d
MW
4703 shift = 2;
4704 else if (vectype->type >= NT_d)
4705 shift = 1;
4706 else
4707 gas_assert (0);
4708
4709 offset = ele_base [vectype->type] + (vectype->width >> shift);
4710 gas_assert (AARCH64_OPND_QLF_V_8B <= offset
4711 && offset <= AARCH64_OPND_QLF_V_1Q);
4712 return offset;
a06ea964
NC
4713 }
4714
4715vectype_conversion_fail:
4716 first_error (_("bad vector arrangement type"));
4717 return AARCH64_OPND_QLF_NIL;
4718}
4719
4720/* Process an optional operand that is found omitted from the assembly line.
4721 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4722 instruction's opcode entry while IDX is the index of this omitted operand.
4723 */
4724
4725static void
4726process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4727 int idx, aarch64_opnd_info *operand)
4728{
4729 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4730 gas_assert (optional_operand_p (opcode, idx));
4731 gas_assert (!operand->present);
4732
4733 switch (type)
4734 {
4735 case AARCH64_OPND_Rd:
4736 case AARCH64_OPND_Rn:
4737 case AARCH64_OPND_Rm:
4738 case AARCH64_OPND_Rt:
4739 case AARCH64_OPND_Rt2:
4740 case AARCH64_OPND_Rs:
4741 case AARCH64_OPND_Ra:
4742 case AARCH64_OPND_Rt_SYS:
4743 case AARCH64_OPND_Rd_SP:
4744 case AARCH64_OPND_Rn_SP:
4745 case AARCH64_OPND_Fd:
4746 case AARCH64_OPND_Fn:
4747 case AARCH64_OPND_Fm:
4748 case AARCH64_OPND_Fa:
4749 case AARCH64_OPND_Ft:
4750 case AARCH64_OPND_Ft2:
4751 case AARCH64_OPND_Sd:
4752 case AARCH64_OPND_Sn:
4753 case AARCH64_OPND_Sm:
4754 case AARCH64_OPND_Vd:
4755 case AARCH64_OPND_Vn:
4756 case AARCH64_OPND_Vm:
4757 case AARCH64_OPND_VdD1:
4758 case AARCH64_OPND_VnD1:
4759 operand->reg.regno = default_value;
4760 break;
4761
4762 case AARCH64_OPND_Ed:
4763 case AARCH64_OPND_En:
4764 case AARCH64_OPND_Em:
4765 operand->reglane.regno = default_value;
4766 break;
4767
4768 case AARCH64_OPND_IDX:
4769 case AARCH64_OPND_BIT_NUM:
4770 case AARCH64_OPND_IMMR:
4771 case AARCH64_OPND_IMMS:
4772 case AARCH64_OPND_SHLL_IMM:
4773 case AARCH64_OPND_IMM_VLSL:
4774 case AARCH64_OPND_IMM_VLSR:
4775 case AARCH64_OPND_CCMP_IMM:
4776 case AARCH64_OPND_FBITS:
4777 case AARCH64_OPND_UIMM4:
4778 case AARCH64_OPND_UIMM3_OP1:
4779 case AARCH64_OPND_UIMM3_OP2:
4780 case AARCH64_OPND_IMM:
4781 case AARCH64_OPND_WIDTH:
4782 case AARCH64_OPND_UIMM7:
4783 case AARCH64_OPND_NZCV:
4784 operand->imm.value = default_value;
4785 break;
4786
4787 case AARCH64_OPND_EXCEPTION:
4788 inst.reloc.type = BFD_RELOC_UNUSED;
4789 break;
4790
4791 case AARCH64_OPND_BARRIER_ISB:
4792 operand->barrier = aarch64_barrier_options + default_value;
4793
4794 default:
4795 break;
4796 }
4797}
4798
4799/* Process the relocation type for move wide instructions.
4800 Return TRUE on success; otherwise return FALSE. */
4801
4802static bfd_boolean
4803process_movw_reloc_info (void)
4804{
4805 int is32;
4806 unsigned shift;
4807
4808 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4809
4810 if (inst.base.opcode->op == OP_MOVK)
4811 switch (inst.reloc.type)
4812 {
4813 case BFD_RELOC_AARCH64_MOVW_G0_S:
4814 case BFD_RELOC_AARCH64_MOVW_G1_S:
4815 case BFD_RELOC_AARCH64_MOVW_G2_S:
1aa66fb1 4816 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 4817 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 4818 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
4819 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4820 set_syntax_error
4821 (_("the specified relocation type is not allowed for MOVK"));
4822 return FALSE;
4823 default:
4824 break;
4825 }
4826
4827 switch (inst.reloc.type)
4828 {
4829 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 4830 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 4831 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 4832 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
43a357f9 4833 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 4834 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 4835 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
4836 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
4837 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
4838 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4839 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4840 shift = 0;
4841 break;
4842 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 4843 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 4844 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 4845 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 4846 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 4847 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 4848 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
4849 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
4850 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
4851 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4852 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4853 shift = 16;
4854 break;
4855 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 4856 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 4857 case BFD_RELOC_AARCH64_MOVW_G2_S:
49df5539 4858 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
4859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4860 if (is32)
4861 {
4862 set_fatal_syntax_error
4863 (_("the specified relocation type is not allowed for 32-bit "
4864 "register"));
4865 return FALSE;
4866 }
4867 shift = 32;
4868 break;
4869 case BFD_RELOC_AARCH64_MOVW_G3:
4870 if (is32)
4871 {
4872 set_fatal_syntax_error
4873 (_("the specified relocation type is not allowed for 32-bit "
4874 "register"));
4875 return FALSE;
4876 }
4877 shift = 48;
4878 break;
4879 default:
4880 /* More cases should be added when more MOVW-related relocation types
4881 are supported in GAS. */
4882 gas_assert (aarch64_gas_internal_fixup_p ());
4883 /* The shift amount should have already been set by the parser. */
4884 return TRUE;
4885 }
4886 inst.base.operands[1].shifter.amount = shift;
4887 return TRUE;
4888}
4889
4890/* A primitive log caculator. */
4891
4892static inline unsigned int
4893get_logsz (unsigned int size)
4894{
4895 const unsigned char ls[16] =
4896 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4897 if (size > 16)
4898 {
4899 gas_assert (0);
4900 return -1;
4901 }
4902 gas_assert (ls[size - 1] != (unsigned char)-1);
4903 return ls[size - 1];
4904}
4905
4906/* Determine and return the real reloc type code for an instruction
4907 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4908
4909static inline bfd_reloc_code_real_type
4910ldst_lo12_determine_real_reloc_type (void)
4911{
4c562523 4912 unsigned logsz;
a06ea964
NC
4913 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4914 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4915
4c562523
JW
4916 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
4917 {
4918 BFD_RELOC_AARCH64_LDST8_LO12,
4919 BFD_RELOC_AARCH64_LDST16_LO12,
4920 BFD_RELOC_AARCH64_LDST32_LO12,
4921 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 4922 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
4923 },
4924 {
4925 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
4926 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
4927 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
4928 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
4929 BFD_RELOC_AARCH64_NONE
4930 },
4931 {
4932 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
4933 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
4934 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
4935 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
4936 BFD_RELOC_AARCH64_NONE
4937 }
a06ea964
NC
4938 };
4939
4c562523
JW
4940 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
4941 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4942 || (inst.reloc.type
4943 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
a06ea964
NC
4944 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4945
4946 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4947 opd1_qlf =
4948 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4949 1, opd0_qlf, 0);
4950 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4951
4952 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523
JW
4953 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4954 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
4955 gas_assert (logsz <= 3);
4956 else
4957 gas_assert (logsz <= 4);
a06ea964 4958
4c562523
JW
4959 /* In reloc.c, these pseudo relocation types should be defined in similar
4960 order as above reloc_ldst_lo12 array. Because the array index calcuation
4961 below relies on this. */
4962 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
4963}
4964
4965/* Check whether a register list REGINFO is valid. The registers must be
4966 numbered in increasing order (modulo 32), in increments of one or two.
4967
4968 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4969 increments of two.
4970
4971 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4972
4973static bfd_boolean
4974reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4975{
4976 uint32_t i, nb_regs, prev_regno, incr;
4977
4978 nb_regs = 1 + (reginfo & 0x3);
4979 reginfo >>= 2;
4980 prev_regno = reginfo & 0x1f;
4981 incr = accept_alternate ? 2 : 1;
4982
4983 for (i = 1; i < nb_regs; ++i)
4984 {
4985 uint32_t curr_regno;
4986 reginfo >>= 5;
4987 curr_regno = reginfo & 0x1f;
4988 if (curr_regno != ((prev_regno + incr) & 0x1f))
4989 return FALSE;
4990 prev_regno = curr_regno;
4991 }
4992
4993 return TRUE;
4994}
4995
4996/* Generic instruction operand parser. This does no encoding and no
4997 semantic validation; it merely squirrels values away in the inst
4998 structure. Returns TRUE or FALSE depending on whether the
4999 specified grammar matched. */
5000
5001static bfd_boolean
5002parse_operands (char *str, const aarch64_opcode *opcode)
5003{
5004 int i;
5005 char *backtrack_pos = 0;
5006 const enum aarch64_opnd *operands = opcode->operands;
5007
5008 clear_error ();
5009 skip_whitespace (str);
5010
5011 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5012 {
5013 int64_t val;
5014 int isreg32, isregzero;
5015 int comma_skipped_p = 0;
5016 aarch64_reg_type rtype;
5017 struct neon_type_el vectype;
5018 aarch64_opnd_info *info = &inst.base.operands[i];
5019
5020 DEBUG_TRACE ("parse operand %d", i);
5021
5022 /* Assign the operand code. */
5023 info->type = operands[i];
5024
5025 if (optional_operand_p (opcode, i))
5026 {
5027 /* Remember where we are in case we need to backtrack. */
5028 gas_assert (!backtrack_pos);
5029 backtrack_pos = str;
5030 }
5031
5032 /* Expect comma between operands; the backtrack mechanizm will take
5033 care of cases of omitted optional operand. */
5034 if (i > 0 && ! skip_past_char (&str, ','))
5035 {
5036 set_syntax_error (_("comma expected between operands"));
5037 goto failure;
5038 }
5039 else
5040 comma_skipped_p = 1;
5041
5042 switch (operands[i])
5043 {
5044 case AARCH64_OPND_Rd:
5045 case AARCH64_OPND_Rn:
5046 case AARCH64_OPND_Rm:
5047 case AARCH64_OPND_Rt:
5048 case AARCH64_OPND_Rt2:
5049 case AARCH64_OPND_Rs:
5050 case AARCH64_OPND_Ra:
5051 case AARCH64_OPND_Rt_SYS:
ee804238 5052 case AARCH64_OPND_PAIRREG:
a06ea964
NC
5053 po_int_reg_or_fail (1, 0);
5054 break;
5055
5056 case AARCH64_OPND_Rd_SP:
5057 case AARCH64_OPND_Rn_SP:
5058 po_int_reg_or_fail (0, 1);
5059 break;
5060
5061 case AARCH64_OPND_Rm_EXT:
5062 case AARCH64_OPND_Rm_SFT:
5063 po_misc_or_fail (parse_shifter_operand
5064 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5065 ? SHIFTED_ARITH_IMM
5066 : SHIFTED_LOGIC_IMM)));
5067 if (!info->shifter.operator_present)
5068 {
5069 /* Default to LSL if not present. Libopcodes prefers shifter
5070 kind to be explicit. */
5071 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5072 info->shifter.kind = AARCH64_MOD_LSL;
5073 /* For Rm_EXT, libopcodes will carry out further check on whether
5074 or not stack pointer is used in the instruction (Recall that
5075 "the extend operator is not optional unless at least one of
5076 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5077 }
5078 break;
5079
5080 case AARCH64_OPND_Fd:
5081 case AARCH64_OPND_Fn:
5082 case AARCH64_OPND_Fm:
5083 case AARCH64_OPND_Fa:
5084 case AARCH64_OPND_Ft:
5085 case AARCH64_OPND_Ft2:
5086 case AARCH64_OPND_Sd:
5087 case AARCH64_OPND_Sn:
5088 case AARCH64_OPND_Sm:
5089 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5090 if (val == PARSE_FAIL)
5091 {
5092 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5093 goto failure;
5094 }
5095 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5096
5097 info->reg.regno = val;
5098 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5099 break;
5100
5101 case AARCH64_OPND_Vd:
5102 case AARCH64_OPND_Vn:
5103 case AARCH64_OPND_Vm:
5104 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5105 if (val == PARSE_FAIL)
5106 {
5107 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5108 goto failure;
5109 }
5110 if (vectype.defined & NTA_HASINDEX)
5111 goto failure;
5112
5113 info->reg.regno = val;
5114 info->qualifier = vectype_to_qualifier (&vectype);
5115 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5116 goto failure;
5117 break;
5118
5119 case AARCH64_OPND_VdD1:
5120 case AARCH64_OPND_VnD1:
5121 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5122 if (val == PARSE_FAIL)
5123 {
5124 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5125 goto failure;
5126 }
5127 if (vectype.type != NT_d || vectype.index != 1)
5128 {
5129 set_fatal_syntax_error
5130 (_("the top half of a 128-bit FP/SIMD register is expected"));
5131 goto failure;
5132 }
5133 info->reg.regno = val;
5134 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5135 here; it is correct for the purpose of encoding/decoding since
5136 only the register number is explicitly encoded in the related
5137 instructions, although this appears a bit hacky. */
5138 info->qualifier = AARCH64_OPND_QLF_S_D;
5139 break;
5140
5141 case AARCH64_OPND_Ed:
5142 case AARCH64_OPND_En:
5143 case AARCH64_OPND_Em:
5144 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5145 if (val == PARSE_FAIL)
5146 {
5147 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5148 goto failure;
5149 }
5150 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5151 goto failure;
5152
5153 info->reglane.regno = val;
5154 info->reglane.index = vectype.index;
5155 info->qualifier = vectype_to_qualifier (&vectype);
5156 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5157 goto failure;
5158 break;
5159
5160 case AARCH64_OPND_LVn:
5161 case AARCH64_OPND_LVt:
5162 case AARCH64_OPND_LVt_AL:
5163 case AARCH64_OPND_LEt:
5164 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
5165 goto failure;
5166 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5167 {
5168 set_fatal_syntax_error (_("invalid register list"));
5169 goto failure;
5170 }
5171 info->reglist.first_regno = (val >> 2) & 0x1f;
5172 info->reglist.num_regs = (val & 0x3) + 1;
5173 if (operands[i] == AARCH64_OPND_LEt)
5174 {
5175 if (!(vectype.defined & NTA_HASINDEX))
5176 goto failure;
5177 info->reglist.has_index = 1;
5178 info->reglist.index = vectype.index;
5179 }
5180 else if (!(vectype.defined & NTA_HASTYPE))
5181 goto failure;
5182 info->qualifier = vectype_to_qualifier (&vectype);
5183 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5184 goto failure;
5185 break;
5186
5187 case AARCH64_OPND_Cn:
5188 case AARCH64_OPND_Cm:
5189 po_reg_or_fail (REG_TYPE_CN);
5190 if (val > 15)
5191 {
5192 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
5193 goto failure;
5194 }
5195 inst.base.operands[i].reg.regno = val;
5196 break;
5197
5198 case AARCH64_OPND_SHLL_IMM:
5199 case AARCH64_OPND_IMM_VLSR:
5200 po_imm_or_fail (1, 64);
5201 info->imm.value = val;
5202 break;
5203
5204 case AARCH64_OPND_CCMP_IMM:
5205 case AARCH64_OPND_FBITS:
5206 case AARCH64_OPND_UIMM4:
5207 case AARCH64_OPND_UIMM3_OP1:
5208 case AARCH64_OPND_UIMM3_OP2:
5209 case AARCH64_OPND_IMM_VLSL:
5210 case AARCH64_OPND_IMM:
5211 case AARCH64_OPND_WIDTH:
5212 po_imm_nc_or_fail ();
5213 info->imm.value = val;
5214 break;
5215
5216 case AARCH64_OPND_UIMM7:
5217 po_imm_or_fail (0, 127);
5218 info->imm.value = val;
5219 break;
5220
5221 case AARCH64_OPND_IDX:
5222 case AARCH64_OPND_BIT_NUM:
5223 case AARCH64_OPND_IMMR:
5224 case AARCH64_OPND_IMMS:
5225 po_imm_or_fail (0, 63);
5226 info->imm.value = val;
5227 break;
5228
5229 case AARCH64_OPND_IMM0:
5230 po_imm_nc_or_fail ();
5231 if (val != 0)
5232 {
5233 set_fatal_syntax_error (_("immediate zero expected"));
5234 goto failure;
5235 }
5236 info->imm.value = 0;
5237 break;
5238
5239 case AARCH64_OPND_FPIMM0:
5240 {
5241 int qfloat;
5242 bfd_boolean res1 = FALSE, res2 = FALSE;
5243 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5244 it is probably not worth the effort to support it. */
62b0d0d5 5245 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
5246 && !(res2 = parse_constant_immediate (&str, &val)))
5247 goto failure;
5248 if ((res1 && qfloat == 0) || (res2 && val == 0))
5249 {
5250 info->imm.value = 0;
5251 info->imm.is_fp = 1;
5252 break;
5253 }
5254 set_fatal_syntax_error (_("immediate zero expected"));
5255 goto failure;
5256 }
5257
5258 case AARCH64_OPND_IMM_MOV:
5259 {
5260 char *saved = str;
8db49cc2
WN
5261 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5262 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
5263 goto failure;
5264 str = saved;
5265 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5266 GE_OPT_PREFIX, 1));
5267 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5268 later. fix_mov_imm_insn will try to determine a machine
5269 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5270 message if the immediate cannot be moved by a single
5271 instruction. */
5272 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5273 inst.base.operands[i].skip = 1;
5274 }
5275 break;
5276
5277 case AARCH64_OPND_SIMD_IMM:
5278 case AARCH64_OPND_SIMD_IMM_SFT:
5279 if (! parse_big_immediate (&str, &val))
5280 goto failure;
5281 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5282 /* addr_off_p */ 0,
5283 /* need_libopcodes_p */ 1,
5284 /* skip_p */ 1);
5285 /* Parse shift.
5286 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5287 shift, we don't check it here; we leave the checking to
5288 the libopcodes (operand_general_constraint_met_p). By
5289 doing this, we achieve better diagnostics. */
5290 if (skip_past_comma (&str)
5291 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5292 goto failure;
5293 if (!info->shifter.operator_present
5294 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5295 {
5296 /* Default to LSL if not present. Libopcodes prefers shifter
5297 kind to be explicit. */
5298 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5299 info->shifter.kind = AARCH64_MOD_LSL;
5300 }
5301 break;
5302
5303 case AARCH64_OPND_FPIMM:
5304 case AARCH64_OPND_SIMD_FPIMM:
5305 {
5306 int qfloat;
62b0d0d5
YZ
5307 bfd_boolean dp_p
5308 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
5309 == 8);
5310 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
5311 goto failure;
5312 if (qfloat == 0)
5313 {
5314 set_fatal_syntax_error (_("invalid floating-point constant"));
5315 goto failure;
5316 }
5317 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5318 inst.base.operands[i].imm.is_fp = 1;
5319 }
5320 break;
5321
5322 case AARCH64_OPND_LIMM:
5323 po_misc_or_fail (parse_shifter_operand (&str, info,
5324 SHIFTED_LOGIC_IMM));
5325 if (info->shifter.operator_present)
5326 {
5327 set_fatal_syntax_error
5328 (_("shift not allowed for bitmask immediate"));
5329 goto failure;
5330 }
5331 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5332 /* addr_off_p */ 0,
5333 /* need_libopcodes_p */ 1,
5334 /* skip_p */ 1);
5335 break;
5336
5337 case AARCH64_OPND_AIMM:
5338 if (opcode->op == OP_ADD)
5339 /* ADD may have relocation types. */
5340 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5341 SHIFTED_ARITH_IMM));
5342 else
5343 po_misc_or_fail (parse_shifter_operand (&str, info,
5344 SHIFTED_ARITH_IMM));
5345 switch (inst.reloc.type)
5346 {
5347 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5348 info->shifter.amount = 12;
5349 break;
5350 case BFD_RELOC_UNUSED:
5351 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5352 if (info->shifter.kind != AARCH64_MOD_NONE)
5353 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5354 inst.reloc.pc_rel = 0;
5355 break;
5356 default:
5357 break;
5358 }
5359 info->imm.value = 0;
5360 if (!info->shifter.operator_present)
5361 {
5362 /* Default to LSL if not present. Libopcodes prefers shifter
5363 kind to be explicit. */
5364 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5365 info->shifter.kind = AARCH64_MOD_LSL;
5366 }
5367 break;
5368
5369 case AARCH64_OPND_HALF:
5370 {
5371 /* #<imm16> or relocation. */
5372 int internal_fixup_p;
5373 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5374 if (internal_fixup_p)
5375 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5376 skip_whitespace (str);
5377 if (skip_past_comma (&str))
5378 {
5379 /* {, LSL #<shift>} */
5380 if (! aarch64_gas_internal_fixup_p ())
5381 {
5382 set_fatal_syntax_error (_("can't mix relocation modifier "
5383 "with explicit shift"));
5384 goto failure;
5385 }
5386 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5387 }
5388 else
5389 inst.base.operands[i].shifter.amount = 0;
5390 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5391 inst.base.operands[i].imm.value = 0;
5392 if (! process_movw_reloc_info ())
5393 goto failure;
5394 }
5395 break;
5396
5397 case AARCH64_OPND_EXCEPTION:
5398 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5399 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5400 /* addr_off_p */ 0,
5401 /* need_libopcodes_p */ 0,
5402 /* skip_p */ 1);
5403 break;
5404
5405 case AARCH64_OPND_NZCV:
5406 {
5407 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5408 if (nzcv != NULL)
5409 {
5410 str += 4;
5411 info->imm.value = nzcv->value;
5412 break;
5413 }
5414 po_imm_or_fail (0, 15);
5415 info->imm.value = val;
5416 }
5417 break;
5418
5419 case AARCH64_OPND_COND:
68a64283 5420 case AARCH64_OPND_COND1:
a06ea964
NC
5421 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5422 str += 2;
5423 if (info->cond == NULL)
5424 {
5425 set_syntax_error (_("invalid condition"));
5426 goto failure;
5427 }
68a64283
YZ
5428 else if (operands[i] == AARCH64_OPND_COND1
5429 && (info->cond->value & 0xe) == 0xe)
5430 {
5431 /* Not allow AL or NV. */
5432 set_default_error ();
5433 goto failure;
5434 }
a06ea964
NC
5435 break;
5436
5437 case AARCH64_OPND_ADDR_ADRP:
5438 po_misc_or_fail (parse_adrp (&str));
5439 /* Clear the value as operand needs to be relocated. */
5440 info->imm.value = 0;
5441 break;
5442
5443 case AARCH64_OPND_ADDR_PCREL14:
5444 case AARCH64_OPND_ADDR_PCREL19:
5445 case AARCH64_OPND_ADDR_PCREL21:
5446 case AARCH64_OPND_ADDR_PCREL26:
5447 po_misc_or_fail (parse_address_reloc (&str, info));
5448 if (!info->addr.pcrel)
5449 {
5450 set_syntax_error (_("invalid pc-relative address"));
5451 goto failure;
5452 }
5453 if (inst.gen_lit_pool
5454 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5455 {
5456 /* Only permit "=value" in the literal load instructions.
5457 The literal will be generated by programmer_friendly_fixup. */
5458 set_syntax_error (_("invalid use of \"=immediate\""));
5459 goto failure;
5460 }
5461 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5462 {
5463 set_syntax_error (_("unrecognized relocation suffix"));
5464 goto failure;
5465 }
5466 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5467 {
5468 info->imm.value = inst.reloc.exp.X_add_number;
5469 inst.reloc.type = BFD_RELOC_UNUSED;
5470 }
5471 else
5472 {
5473 info->imm.value = 0;
f41aef5f
RE
5474 if (inst.reloc.type == BFD_RELOC_UNUSED)
5475 switch (opcode->iclass)
5476 {
5477 case compbranch:
5478 case condbranch:
5479 /* e.g. CBZ or B.COND */
5480 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5481 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5482 break;
5483 case testbranch:
5484 /* e.g. TBZ */
5485 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5486 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5487 break;
5488 case branch_imm:
5489 /* e.g. B or BL */
5490 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5491 inst.reloc.type =
5492 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5493 : BFD_RELOC_AARCH64_JUMP26;
5494 break;
5495 case loadlit:
5496 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5497 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5498 break;
5499 case pcreladdr:
5500 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5501 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5502 break;
5503 default:
5504 gas_assert (0);
5505 abort ();
5506 }
a06ea964
NC
5507 inst.reloc.pc_rel = 1;
5508 }
5509 break;
5510
5511 case AARCH64_OPND_ADDR_SIMPLE:
5512 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5513 /* [<Xn|SP>{, #<simm>}] */
5514 po_char_or_fail ('[');
5515 po_reg_or_fail (REG_TYPE_R64_SP);
5516 /* Accept optional ", #0". */
5517 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5518 && skip_past_char (&str, ','))
5519 {
5520 skip_past_char (&str, '#');
5521 if (! skip_past_char (&str, '0'))
5522 {
5523 set_fatal_syntax_error
5524 (_("the optional immediate offset can only be 0"));
5525 goto failure;
5526 }
5527 }
5528 po_char_or_fail (']');
5529 info->addr.base_regno = val;
5530 break;
5531
5532 case AARCH64_OPND_ADDR_REGOFF:
5533 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5534 po_misc_or_fail (parse_address (&str, info, 0));
5535 if (info->addr.pcrel || !info->addr.offset.is_reg
5536 || !info->addr.preind || info->addr.postind
5537 || info->addr.writeback)
5538 {
5539 set_syntax_error (_("invalid addressing mode"));
5540 goto failure;
5541 }
5542 if (!info->shifter.operator_present)
5543 {
5544 /* Default to LSL if not present. Libopcodes prefers shifter
5545 kind to be explicit. */
5546 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5547 info->shifter.kind = AARCH64_MOD_LSL;
5548 }
5549 /* Qualifier to be deduced by libopcodes. */
5550 break;
5551
5552 case AARCH64_OPND_ADDR_SIMM7:
5553 po_misc_or_fail (parse_address (&str, info, 0));
5554 if (info->addr.pcrel || info->addr.offset.is_reg
5555 || (!info->addr.preind && !info->addr.postind))
5556 {
5557 set_syntax_error (_("invalid addressing mode"));
5558 goto failure;
5559 }
5560 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5561 /* addr_off_p */ 1,
5562 /* need_libopcodes_p */ 1,
5563 /* skip_p */ 0);
5564 break;
5565
5566 case AARCH64_OPND_ADDR_SIMM9:
5567 case AARCH64_OPND_ADDR_SIMM9_2:
5568 po_misc_or_fail (parse_address_reloc (&str, info));
5569 if (info->addr.pcrel || info->addr.offset.is_reg
5570 || (!info->addr.preind && !info->addr.postind)
5571 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5572 && info->addr.writeback))
5573 {
5574 set_syntax_error (_("invalid addressing mode"));
5575 goto failure;
5576 }
5577 if (inst.reloc.type != BFD_RELOC_UNUSED)
5578 {
5579 set_syntax_error (_("relocation not allowed"));
5580 goto failure;
5581 }
5582 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5583 /* addr_off_p */ 1,
5584 /* need_libopcodes_p */ 1,
5585 /* skip_p */ 0);
5586 break;
5587
5588 case AARCH64_OPND_ADDR_UIMM12:
5589 po_misc_or_fail (parse_address_reloc (&str, info));
5590 if (info->addr.pcrel || info->addr.offset.is_reg
5591 || !info->addr.preind || info->addr.writeback)
5592 {
5593 set_syntax_error (_("invalid addressing mode"));
5594 goto failure;
5595 }
5596 if (inst.reloc.type == BFD_RELOC_UNUSED)
5597 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
5598 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5599 || (inst.reloc.type
5600 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
5601 || (inst.reloc.type
5602 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
a06ea964
NC
5603 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5604 /* Leave qualifier to be determined by libopcodes. */
5605 break;
5606
5607 case AARCH64_OPND_SIMD_ADDR_POST:
5608 /* [<Xn|SP>], <Xm|#<amount>> */
5609 po_misc_or_fail (parse_address (&str, info, 1));
5610 if (!info->addr.postind || !info->addr.writeback)
5611 {
5612 set_syntax_error (_("invalid addressing mode"));
5613 goto failure;
5614 }
5615 if (!info->addr.offset.is_reg)
5616 {
5617 if (inst.reloc.exp.X_op == O_constant)
5618 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5619 else
5620 {
5621 set_fatal_syntax_error
5622 (_("writeback value should be an immediate constant"));
5623 goto failure;
5624 }
5625 }
5626 /* No qualifier. */
5627 break;
5628
5629 case AARCH64_OPND_SYSREG:
72ca8fad 5630 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
a203d9b7 5631 == PARSE_FAIL)
a06ea964 5632 {
a203d9b7
YZ
5633 set_syntax_error (_("unknown or missing system register name"));
5634 goto failure;
a06ea964 5635 }
a203d9b7 5636 inst.base.operands[i].sysreg = val;
a06ea964
NC
5637 break;
5638
5639 case AARCH64_OPND_PSTATEFIELD:
72ca8fad 5640 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
a3251895 5641 == PARSE_FAIL)
a06ea964
NC
5642 {
5643 set_syntax_error (_("unknown or missing PSTATE field name"));
5644 goto failure;
5645 }
5646 inst.base.operands[i].pstatefield = val;
5647 break;
5648
5649 case AARCH64_OPND_SYSREG_IC:
5650 inst.base.operands[i].sysins_op =
5651 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5652 goto sys_reg_ins;
5653 case AARCH64_OPND_SYSREG_DC:
5654 inst.base.operands[i].sysins_op =
5655 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5656 goto sys_reg_ins;
5657 case AARCH64_OPND_SYSREG_AT:
5658 inst.base.operands[i].sysins_op =
5659 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5660 goto sys_reg_ins;
5661 case AARCH64_OPND_SYSREG_TLBI:
5662 inst.base.operands[i].sysins_op =
5663 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5664sys_reg_ins:
5665 if (inst.base.operands[i].sysins_op == NULL)
5666 {
5667 set_fatal_syntax_error ( _("unknown or missing operation name"));
5668 goto failure;
5669 }
5670 break;
5671
5672 case AARCH64_OPND_BARRIER:
5673 case AARCH64_OPND_BARRIER_ISB:
5674 val = parse_barrier (&str);
5675 if (val != PARSE_FAIL
5676 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5677 {
5678 /* ISB only accepts options name 'sy'. */
5679 set_syntax_error
5680 (_("the specified option is not accepted in ISB"));
5681 /* Turn off backtrack as this optional operand is present. */
5682 backtrack_pos = 0;
5683 goto failure;
5684 }
5685 /* This is an extension to accept a 0..15 immediate. */
5686 if (val == PARSE_FAIL)
5687 po_imm_or_fail (0, 15);
5688 info->barrier = aarch64_barrier_options + val;
5689 break;
5690
5691 case AARCH64_OPND_PRFOP:
5692 val = parse_pldop (&str);
5693 /* This is an extension to accept a 0..31 immediate. */
5694 if (val == PARSE_FAIL)
5695 po_imm_or_fail (0, 31);
5696 inst.base.operands[i].prfop = aarch64_prfops + val;
5697 break;
5698
1e6f4800
MW
5699 case AARCH64_OPND_BARRIER_PSB:
5700 val = parse_barrier_psb (&str, &(info->hint_option));
5701 if (val == PARSE_FAIL)
5702 goto failure;
5703 break;
5704
a06ea964
NC
5705 default:
5706 as_fatal (_("unhandled operand code %d"), operands[i]);
5707 }
5708
5709 /* If we get here, this operand was successfully parsed. */
5710 inst.base.operands[i].present = 1;
5711 continue;
5712
5713failure:
5714 /* The parse routine should already have set the error, but in case
5715 not, set a default one here. */
5716 if (! error_p ())
5717 set_default_error ();
5718
5719 if (! backtrack_pos)
5720 goto parse_operands_return;
5721
f4c51f60
JW
5722 {
5723 /* We reach here because this operand is marked as optional, and
5724 either no operand was supplied or the operand was supplied but it
5725 was syntactically incorrect. In the latter case we report an
5726 error. In the former case we perform a few more checks before
5727 dropping through to the code to insert the default operand. */
5728
5729 char *tmp = backtrack_pos;
5730 char endchar = END_OF_INSN;
5731
5732 if (i != (aarch64_num_of_operands (opcode) - 1))
5733 endchar = ',';
5734 skip_past_char (&tmp, ',');
5735
5736 if (*tmp != endchar)
5737 /* The user has supplied an operand in the wrong format. */
5738 goto parse_operands_return;
5739
5740 /* Make sure there is not a comma before the optional operand.
5741 For example the fifth operand of 'sys' is optional:
5742
5743 sys #0,c0,c0,#0, <--- wrong
5744 sys #0,c0,c0,#0 <--- correct. */
5745 if (comma_skipped_p && i && endchar == END_OF_INSN)
5746 {
5747 set_fatal_syntax_error
5748 (_("unexpected comma before the omitted optional operand"));
5749 goto parse_operands_return;
5750 }
5751 }
5752
a06ea964
NC
5753 /* Reaching here means we are dealing with an optional operand that is
5754 omitted from the assembly line. */
5755 gas_assert (optional_operand_p (opcode, i));
5756 info->present = 0;
5757 process_omitted_operand (operands[i], opcode, i, info);
5758
5759 /* Try again, skipping the optional operand at backtrack_pos. */
5760 str = backtrack_pos;
5761 backtrack_pos = 0;
5762
a06ea964
NC
5763 /* Clear any error record after the omitted optional operand has been
5764 successfully handled. */
5765 clear_error ();
5766 }
5767
5768 /* Check if we have parsed all the operands. */
5769 if (*str != '\0' && ! error_p ())
5770 {
5771 /* Set I to the index of the last present operand; this is
5772 for the purpose of diagnostics. */
5773 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5774 ;
5775 set_fatal_syntax_error
5776 (_("unexpected characters following instruction"));
5777 }
5778
5779parse_operands_return:
5780
5781 if (error_p ())
5782 {
5783 DEBUG_TRACE ("parsing FAIL: %s - %s",
5784 operand_mismatch_kind_names[get_error_kind ()],
5785 get_error_message ());
5786 /* Record the operand error properly; this is useful when there
5787 are multiple instruction templates for a mnemonic name, so that
5788 later on, we can select the error that most closely describes
5789 the problem. */
5790 record_operand_error (opcode, i, get_error_kind (),
5791 get_error_message ());
5792 return FALSE;
5793 }
5794 else
5795 {
5796 DEBUG_TRACE ("parsing SUCCESS");
5797 return TRUE;
5798 }
5799}
5800
5801/* It does some fix-up to provide some programmer friendly feature while
5802 keeping the libopcodes happy, i.e. libopcodes only accepts
5803 the preferred architectural syntax.
5804 Return FALSE if there is any failure; otherwise return TRUE. */
5805
5806static bfd_boolean
5807programmer_friendly_fixup (aarch64_instruction *instr)
5808{
5809 aarch64_inst *base = &instr->base;
5810 const aarch64_opcode *opcode = base->opcode;
5811 enum aarch64_op op = opcode->op;
5812 aarch64_opnd_info *operands = base->operands;
5813
5814 DEBUG_TRACE ("enter");
5815
5816 switch (opcode->iclass)
5817 {
5818 case testbranch:
5819 /* TBNZ Xn|Wn, #uimm6, label
5820 Test and Branch Not Zero: conditionally jumps to label if bit number
5821 uimm6 in register Xn is not zero. The bit number implies the width of
5822 the register, which may be written and should be disassembled as Wn if
5823 uimm is less than 32. */
5824 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5825 {
5826 if (operands[1].imm.value >= 32)
5827 {
5828 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5829 0, 31);
5830 return FALSE;
5831 }
5832 operands[0].qualifier = AARCH64_OPND_QLF_X;
5833 }
5834 break;
5835 case loadlit:
5836 /* LDR Wt, label | =value
5837 As a convenience assemblers will typically permit the notation
5838 "=value" in conjunction with the pc-relative literal load instructions
5839 to automatically place an immediate value or symbolic address in a
5840 nearby literal pool and generate a hidden label which references it.
5841 ISREG has been set to 0 in the case of =value. */
5842 if (instr->gen_lit_pool
5843 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5844 {
5845 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5846 if (op == OP_LDRSW_LIT)
5847 size = 4;
5848 if (instr->reloc.exp.X_op != O_constant
67a32447 5849 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5850 && instr->reloc.exp.X_op != O_symbol)
5851 {
5852 record_operand_error (opcode, 1,
5853 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5854 _("constant expression expected"));
5855 return FALSE;
5856 }
5857 if (! add_to_lit_pool (&instr->reloc.exp, size))
5858 {
5859 record_operand_error (opcode, 1,
5860 AARCH64_OPDE_OTHER_ERROR,
5861 _("literal pool insertion failed"));
5862 return FALSE;
5863 }
5864 }
5865 break;
a06ea964
NC
5866 case log_shift:
5867 case bitfield:
5868 /* UXT[BHW] Wd, Wn
5869 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5870 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5871 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5872 A programmer-friendly assembler should accept a destination Xd in
5873 place of Wd, however that is not the preferred form for disassembly.
5874 */
5875 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5876 && operands[1].qualifier == AARCH64_OPND_QLF_W
5877 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5878 operands[0].qualifier = AARCH64_OPND_QLF_W;
5879 break;
5880
5881 case addsub_ext:
5882 {
5883 /* In the 64-bit form, the final register operand is written as Wm
5884 for all but the (possibly omitted) UXTX/LSL and SXTX
5885 operators.
5886 As a programmer-friendly assembler, we accept e.g.
5887 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5888 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5889 int idx = aarch64_operand_index (opcode->operands,
5890 AARCH64_OPND_Rm_EXT);
5891 gas_assert (idx == 1 || idx == 2);
5892 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5893 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5894 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5895 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5896 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5897 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5898 }
5899 break;
5900
5901 default:
5902 break;
5903 }
5904
5905 DEBUG_TRACE ("exit with SUCCESS");
5906 return TRUE;
5907}
5908
5c47e525 5909/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
5910
5911static void
5912warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5913{
5914 aarch64_inst *base = &instr->base;
5915 const aarch64_opcode *opcode = base->opcode;
5916 const aarch64_opnd_info *opnds = base->operands;
5917 switch (opcode->iclass)
5918 {
5919 case ldst_pos:
5920 case ldst_imm9:
5921 case ldst_unscaled:
5922 case ldst_unpriv:
5c47e525
RE
5923 /* Loading/storing the base register is unpredictable if writeback. */
5924 if ((aarch64_get_operand_class (opnds[0].type)
5925 == AARCH64_OPND_CLASS_INT_REG)
5926 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 5927 && opnds[1].addr.base_regno != REG_SP
54a28c4c 5928 && opnds[1].addr.writeback)
5c47e525 5929 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
5930 break;
5931 case ldstpair_off:
5932 case ldstnapair_offs:
5933 case ldstpair_indexed:
5c47e525
RE
5934 /* Loading/storing the base register is unpredictable if writeback. */
5935 if ((aarch64_get_operand_class (opnds[0].type)
5936 == AARCH64_OPND_CLASS_INT_REG)
5937 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5938 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 5939 && opnds[2].addr.base_regno != REG_SP
54a28c4c 5940 && opnds[2].addr.writeback)
5c47e525
RE
5941 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5942 /* Load operations must load different registers. */
54a28c4c
JW
5943 if ((opcode->opcode & (1 << 22))
5944 && opnds[0].reg.regno == opnds[1].reg.regno)
5945 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5946 break;
5947 default:
5948 break;
5949 }
5950}
5951
a06ea964
NC
5952/* A wrapper function to interface with libopcodes on encoding and
5953 record the error message if there is any.
5954
5955 Return TRUE on success; otherwise return FALSE. */
5956
5957static bfd_boolean
5958do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5959 aarch64_insn *code)
5960{
5961 aarch64_operand_error error_info;
5962 error_info.kind = AARCH64_OPDE_NIL;
5963 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5964 return TRUE;
5965 else
5966 {
5967 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5968 record_operand_error_info (opcode, &error_info);
5969 return FALSE;
5970 }
5971}
5972
5973#ifdef DEBUG_AARCH64
5974static inline void
5975dump_opcode_operands (const aarch64_opcode *opcode)
5976{
5977 int i = 0;
5978 while (opcode->operands[i] != AARCH64_OPND_NIL)
5979 {
5980 aarch64_verbose ("\t\t opnd%d: %s", i,
5981 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5982 ? aarch64_get_operand_name (opcode->operands[i])
5983 : aarch64_get_operand_desc (opcode->operands[i]));
5984 ++i;
5985 }
5986}
5987#endif /* DEBUG_AARCH64 */
5988
5989/* This is the guts of the machine-dependent assembler. STR points to a
5990 machine dependent instruction. This function is supposed to emit
5991 the frags/bytes it assembles to. */
5992
5993void
5994md_assemble (char *str)
5995{
5996 char *p = str;
5997 templates *template;
5998 aarch64_opcode *opcode;
5999 aarch64_inst *inst_base;
6000 unsigned saved_cond;
6001
6002 /* Align the previous label if needed. */
6003 if (last_label_seen != NULL)
6004 {
6005 symbol_set_frag (last_label_seen, frag_now);
6006 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6007 S_SET_SEGMENT (last_label_seen, now_seg);
6008 }
6009
6010 inst.reloc.type = BFD_RELOC_UNUSED;
6011
6012 DEBUG_TRACE ("\n\n");
6013 DEBUG_TRACE ("==============================");
6014 DEBUG_TRACE ("Enter md_assemble with %s", str);
6015
6016 template = opcode_lookup (&p);
6017 if (!template)
6018 {
6019 /* It wasn't an instruction, but it might be a register alias of
6020 the form alias .req reg directive. */
6021 if (!create_register_alias (str, p))
6022 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6023 str);
6024 return;
6025 }
6026
6027 skip_whitespace (p);
6028 if (*p == ',')
6029 {
6030 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6031 get_mnemonic_name (str), str);
6032 return;
6033 }
6034
6035 init_operand_error_report ();
6036
eb9d6cc9
RL
6037 /* Sections are assumed to start aligned. In executable section, there is no
6038 MAP_DATA symbol pending. So we only align the address during
6039 MAP_DATA --> MAP_INSN transition.
6040 For other sections, this is not guaranteed. */
6041 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6042 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6043 frag_align_code (2, 0);
6044
a06ea964
NC
6045 saved_cond = inst.cond;
6046 reset_aarch64_instruction (&inst);
6047 inst.cond = saved_cond;
6048
6049 /* Iterate through all opcode entries with the same mnemonic name. */
6050 do
6051 {
6052 opcode = template->opcode;
6053
6054 DEBUG_TRACE ("opcode %s found", opcode->name);
6055#ifdef DEBUG_AARCH64
6056 if (debug_dump)
6057 dump_opcode_operands (opcode);
6058#endif /* DEBUG_AARCH64 */
6059
a06ea964
NC
6060 mapping_state (MAP_INSN);
6061
6062 inst_base = &inst.base;
6063 inst_base->opcode = opcode;
6064
6065 /* Truly conditionally executed instructions, e.g. b.cond. */
6066 if (opcode->flags & F_COND)
6067 {
6068 gas_assert (inst.cond != COND_ALWAYS);
6069 inst_base->cond = get_cond_from_value (inst.cond);
6070 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6071 }
6072 else if (inst.cond != COND_ALWAYS)
6073 {
6074 /* It shouldn't arrive here, where the assembly looks like a
6075 conditional instruction but the found opcode is unconditional. */
6076 gas_assert (0);
6077 continue;
6078 }
6079
6080 if (parse_operands (p, opcode)
6081 && programmer_friendly_fixup (&inst)
6082 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6083 {
3f06bfce
YZ
6084 /* Check that this instruction is supported for this CPU. */
6085 if (!opcode->avariant
6086 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
6087 {
6088 as_bad (_("selected processor does not support `%s'"), str);
6089 return;
6090 }
6091
54a28c4c
JW
6092 warn_unpredictable_ldst (&inst, str);
6093
a06ea964
NC
6094 if (inst.reloc.type == BFD_RELOC_UNUSED
6095 || !inst.reloc.need_libopcodes_p)
6096 output_inst (NULL);
6097 else
6098 {
6099 /* If there is relocation generated for the instruction,
6100 store the instruction information for the future fix-up. */
6101 struct aarch64_inst *copy;
6102 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
325801bd 6103 copy = XNEW (struct aarch64_inst);
a06ea964
NC
6104 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6105 output_inst (copy);
6106 }
6107 return;
6108 }
6109
6110 template = template->next;
6111 if (template != NULL)
6112 {
6113 reset_aarch64_instruction (&inst);
6114 inst.cond = saved_cond;
6115 }
6116 }
6117 while (template != NULL);
6118
6119 /* Issue the error messages if any. */
6120 output_operand_error_report (str);
6121}
6122
6123/* Various frobbings of labels and their addresses. */
6124
6125void
6126aarch64_start_line_hook (void)
6127{
6128 last_label_seen = NULL;
6129}
6130
6131void
6132aarch64_frob_label (symbolS * sym)
6133{
6134 last_label_seen = sym;
6135
6136 dwarf2_emit_label (sym);
6137}
6138
6139int
6140aarch64_data_in_code (void)
6141{
6142 if (!strncmp (input_line_pointer + 1, "data:", 5))
6143 {
6144 *input_line_pointer = '/';
6145 input_line_pointer += 5;
6146 *input_line_pointer = 0;
6147 return 1;
6148 }
6149
6150 return 0;
6151}
6152
6153char *
6154aarch64_canonicalize_symbol_name (char *name)
6155{
6156 int len;
6157
6158 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6159 *(name + len - 5) = 0;
6160
6161 return name;
6162}
6163\f
6164/* Table of all register names defined by default. The user can
6165 define additional names with .req. Note that all register names
6166 should appear in both upper and lowercase variants. Some registers
6167 also have mixed-case names. */
6168
6169#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6170#define REGNUM(p,n,t) REGDEF(p##n, n, t)
6171#define REGSET31(p,t) \
6172 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6173 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6174 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6175 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
6176 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6177 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6178 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6179 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6180#define REGSET(p,t) \
6181 REGSET31(p,t), REGNUM(p,31,t)
6182
6183/* These go into aarch64_reg_hsh hash-table. */
6184static const reg_entry reg_names[] = {
6185 /* Integer registers. */
6186 REGSET31 (x, R_64), REGSET31 (X, R_64),
6187 REGSET31 (w, R_32), REGSET31 (W, R_32),
6188
6189 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6190 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6191
6192 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6193 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6194
6195 /* Coprocessor register numbers. */
6196 REGSET (c, CN), REGSET (C, CN),
6197
6198 /* Floating-point single precision registers. */
6199 REGSET (s, FP_S), REGSET (S, FP_S),
6200
6201 /* Floating-point double precision registers. */
6202 REGSET (d, FP_D), REGSET (D, FP_D),
6203
6204 /* Floating-point half precision registers. */
6205 REGSET (h, FP_H), REGSET (H, FP_H),
6206
6207 /* Floating-point byte precision registers. */
6208 REGSET (b, FP_B), REGSET (B, FP_B),
6209
6210 /* Floating-point quad precision registers. */
6211 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6212
6213 /* FP/SIMD registers. */
6214 REGSET (v, VN), REGSET (V, VN),
6215};
6216
6217#undef REGDEF
6218#undef REGNUM
6219#undef REGSET
6220
6221#define N 1
6222#define n 0
6223#define Z 1
6224#define z 0
6225#define C 1
6226#define c 0
6227#define V 1
6228#define v 0
6229#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6230static const asm_nzcv nzcv_names[] = {
6231 {"nzcv", B (n, z, c, v)},
6232 {"nzcV", B (n, z, c, V)},
6233 {"nzCv", B (n, z, C, v)},
6234 {"nzCV", B (n, z, C, V)},
6235 {"nZcv", B (n, Z, c, v)},
6236 {"nZcV", B (n, Z, c, V)},
6237 {"nZCv", B (n, Z, C, v)},
6238 {"nZCV", B (n, Z, C, V)},
6239 {"Nzcv", B (N, z, c, v)},
6240 {"NzcV", B (N, z, c, V)},
6241 {"NzCv", B (N, z, C, v)},
6242 {"NzCV", B (N, z, C, V)},
6243 {"NZcv", B (N, Z, c, v)},
6244 {"NZcV", B (N, Z, c, V)},
6245 {"NZCv", B (N, Z, C, v)},
6246 {"NZCV", B (N, Z, C, V)}
6247};
6248
6249#undef N
6250#undef n
6251#undef Z
6252#undef z
6253#undef C
6254#undef c
6255#undef V
6256#undef v
6257#undef B
6258\f
6259/* MD interface: bits in the object file. */
6260
6261/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6262 for use in the a.out file, and stores them in the array pointed to by buf.
6263 This knows about the endian-ness of the target machine and does
6264 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6265 2 (short) and 4 (long) Floating numbers are put out as a series of
6266 LITTLENUMS (shorts, here at least). */
6267
6268void
6269md_number_to_chars (char *buf, valueT val, int n)
6270{
6271 if (target_big_endian)
6272 number_to_chars_bigendian (buf, val, n);
6273 else
6274 number_to_chars_littleendian (buf, val, n);
6275}
6276
6277/* MD interface: Sections. */
6278
6279/* Estimate the size of a frag before relaxing. Assume everything fits in
6280 4 bytes. */
6281
6282int
6283md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6284{
6285 fragp->fr_var = 4;
6286 return 4;
6287}
6288
6289/* Round up a section size to the appropriate boundary. */
6290
6291valueT
6292md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6293{
6294 return size;
6295}
6296
6297/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
6298 of an rs_align_code fragment.
6299
6300 Here we fill the frag with the appropriate info for padding the
6301 output stream. The resulting frag will consist of a fixed (fr_fix)
6302 and of a repeating (fr_var) part.
6303
6304 The fixed content is always emitted before the repeating content and
6305 these two parts are used as follows in constructing the output:
6306 - the fixed part will be used to align to a valid instruction word
6307 boundary, in case that we start at a misaligned address; as no
6308 executable instruction can live at the misaligned location, we
6309 simply fill with zeros;
6310 - the variable part will be used to cover the remaining padding and
6311 we fill using the AArch64 NOP instruction.
6312
6313 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6314 enough storage space for up to 3 bytes for padding the back to a valid
6315 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
6316
6317void
6318aarch64_handle_align (fragS * fragP)
6319{
6320 /* NOP = d503201f */
6321 /* AArch64 instructions are always little-endian. */
d9235011 6322 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
a06ea964
NC
6323
6324 int bytes, fix, noop_size;
6325 char *p;
a06ea964
NC
6326
6327 if (fragP->fr_type != rs_align_code)
6328 return;
6329
6330 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6331 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
6332
6333#ifdef OBJ_ELF
6334 gas_assert (fragP->tc_frag_data.recorded);
6335#endif
6336
a06ea964 6337 noop_size = sizeof (aarch64_noop);
a06ea964 6338
f803aa8e
DPT
6339 fix = bytes & (noop_size - 1);
6340 if (fix)
a06ea964 6341 {
a06ea964
NC
6342#ifdef OBJ_ELF
6343 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6344#endif
6345 memset (p, 0, fix);
6346 p += fix;
f803aa8e 6347 fragP->fr_fix += fix;
a06ea964
NC
6348 }
6349
f803aa8e
DPT
6350 if (noop_size)
6351 memcpy (p, aarch64_noop, noop_size);
6352 fragP->fr_var = noop_size;
a06ea964
NC
6353}
6354
6355/* Perform target specific initialisation of a frag.
6356 Note - despite the name this initialisation is not done when the frag
6357 is created, but only when its type is assigned. A frag can be created
6358 and used a long time before its type is set, so beware of assuming that
6359 this initialisationis performed first. */
6360
6361#ifndef OBJ_ELF
6362void
6363aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6364 int max_chars ATTRIBUTE_UNUSED)
6365{
6366}
6367
6368#else /* OBJ_ELF is defined. */
6369void
6370aarch64_init_frag (fragS * fragP, int max_chars)
6371{
6372 /* Record a mapping symbol for alignment frags. We will delete this
6373 later if the alignment ends up empty. */
6374 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
6375 fragP->tc_frag_data.recorded = 1;
6376
6377 switch (fragP->fr_type)
a06ea964 6378 {
c7ad08e6
RL
6379 case rs_align:
6380 case rs_align_test:
6381 case rs_fill:
6382 mapping_state_2 (MAP_DATA, max_chars);
6383 break;
6384 case rs_align_code:
6385 mapping_state_2 (MAP_INSN, max_chars);
6386 break;
6387 default:
6388 break;
a06ea964
NC
6389 }
6390}
6391\f
6392/* Initialize the DWARF-2 unwind information for this procedure. */
6393
6394void
6395tc_aarch64_frame_initial_instructions (void)
6396{
6397 cfi_add_CFA_def_cfa (REG_SP, 0);
6398}
6399#endif /* OBJ_ELF */
6400
6401/* Convert REGNAME to a DWARF-2 register number. */
6402
6403int
6404tc_aarch64_regname_to_dw2regnum (char *regname)
6405{
6406 const reg_entry *reg = parse_reg (&regname);
6407 if (reg == NULL)
6408 return -1;
6409
6410 switch (reg->type)
6411 {
6412 case REG_TYPE_SP_32:
6413 case REG_TYPE_SP_64:
6414 case REG_TYPE_R_32:
6415 case REG_TYPE_R_64:
a2cac51c
RH
6416 return reg->number;
6417
a06ea964
NC
6418 case REG_TYPE_FP_B:
6419 case REG_TYPE_FP_H:
6420 case REG_TYPE_FP_S:
6421 case REG_TYPE_FP_D:
6422 case REG_TYPE_FP_Q:
a2cac51c
RH
6423 return reg->number + 64;
6424
a06ea964
NC
6425 default:
6426 break;
6427 }
6428 return -1;
6429}
6430
cec5225b
YZ
6431/* Implement DWARF2_ADDR_SIZE. */
6432
6433int
6434aarch64_dwarf2_addr_size (void)
6435{
6436#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6437 if (ilp32_p)
6438 return 4;
6439#endif
6440 return bfd_arch_bits_per_address (stdoutput) / 8;
6441}
6442
a06ea964
NC
6443/* MD interface: Symbol and relocation handling. */
6444
6445/* Return the address within the segment that a PC-relative fixup is
6446 relative to. For AArch64 PC-relative fixups applied to instructions
6447 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6448
6449long
6450md_pcrel_from_section (fixS * fixP, segT seg)
6451{
6452 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6453
6454 /* If this is pc-relative and we are going to emit a relocation
6455 then we just want to put out any pipeline compensation that the linker
6456 will need. Otherwise we want to use the calculated base. */
6457 if (fixP->fx_pcrel
6458 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6459 || aarch64_force_relocation (fixP)))
6460 base = 0;
6461
6462 /* AArch64 should be consistent for all pc-relative relocations. */
6463 return base + AARCH64_PCREL_OFFSET;
6464}
6465
6466/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6467 Otherwise we have no need to default values of symbols. */
6468
6469symbolS *
6470md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6471{
6472#ifdef OBJ_ELF
6473 if (name[0] == '_' && name[1] == 'G'
6474 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6475 {
6476 if (!GOT_symbol)
6477 {
6478 if (symbol_find (name))
6479 as_bad (_("GOT already in the symbol table"));
6480
6481 GOT_symbol = symbol_new (name, undefined_section,
6482 (valueT) 0, &zero_address_frag);
6483 }
6484
6485 return GOT_symbol;
6486 }
6487#endif
6488
6489 return 0;
6490}
6491
6492/* Return non-zero if the indicated VALUE has overflowed the maximum
6493 range expressible by a unsigned number with the indicated number of
6494 BITS. */
6495
6496static bfd_boolean
6497unsigned_overflow (valueT value, unsigned bits)
6498{
6499 valueT lim;
6500 if (bits >= sizeof (valueT) * 8)
6501 return FALSE;
6502 lim = (valueT) 1 << bits;
6503 return (value >= lim);
6504}
6505
6506
6507/* Return non-zero if the indicated VALUE has overflowed the maximum
6508 range expressible by an signed number with the indicated number of
6509 BITS. */
6510
6511static bfd_boolean
6512signed_overflow (offsetT value, unsigned bits)
6513{
6514 offsetT lim;
6515 if (bits >= sizeof (offsetT) * 8)
6516 return FALSE;
6517 lim = (offsetT) 1 << (bits - 1);
6518 return (value < -lim || value >= lim);
6519}
6520
6521/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6522 unsigned immediate offset load/store instruction, try to encode it as
6523 an unscaled, 9-bit, signed immediate offset load/store instruction.
6524 Return TRUE if it is successful; otherwise return FALSE.
6525
6526 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6527 in response to the standard LDR/STR mnemonics when the immediate offset is
6528 unambiguous, i.e. when it is negative or unaligned. */
6529
6530static bfd_boolean
6531try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6532{
6533 int idx;
6534 enum aarch64_op new_op;
6535 const aarch64_opcode *new_opcode;
6536
6537 gas_assert (instr->opcode->iclass == ldst_pos);
6538
6539 switch (instr->opcode->op)
6540 {
6541 case OP_LDRB_POS:new_op = OP_LDURB; break;
6542 case OP_STRB_POS: new_op = OP_STURB; break;
6543 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6544 case OP_LDRH_POS: new_op = OP_LDURH; break;
6545 case OP_STRH_POS: new_op = OP_STURH; break;
6546 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6547 case OP_LDR_POS: new_op = OP_LDUR; break;
6548 case OP_STR_POS: new_op = OP_STUR; break;
6549 case OP_LDRF_POS: new_op = OP_LDURV; break;
6550 case OP_STRF_POS: new_op = OP_STURV; break;
6551 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6552 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6553 default: new_op = OP_NIL; break;
6554 }
6555
6556 if (new_op == OP_NIL)
6557 return FALSE;
6558
6559 new_opcode = aarch64_get_opcode (new_op);
6560 gas_assert (new_opcode != NULL);
6561
6562 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6563 instr->opcode->op, new_opcode->op);
6564
6565 aarch64_replace_opcode (instr, new_opcode);
6566
6567 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6568 qualifier matching may fail because the out-of-date qualifier will
6569 prevent the operand being updated with a new and correct qualifier. */
6570 idx = aarch64_operand_index (instr->opcode->operands,
6571 AARCH64_OPND_ADDR_SIMM9);
6572 gas_assert (idx == 1);
6573 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6574
6575 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6576
6577 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6578 return FALSE;
6579
6580 return TRUE;
6581}
6582
6583/* Called by fix_insn to fix a MOV immediate alias instruction.
6584
6585 Operand for a generic move immediate instruction, which is an alias
6586 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6587 a 32-bit/64-bit immediate value into general register. An assembler error
6588 shall result if the immediate cannot be created by a single one of these
6589 instructions. If there is a choice, then to ensure reversability an
6590 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6591
6592static void
6593fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6594{
6595 const aarch64_opcode *opcode;
6596
6597 /* Need to check if the destination is SP/ZR. The check has to be done
6598 before any aarch64_replace_opcode. */
6599 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6600 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6601
6602 instr->operands[1].imm.value = value;
6603 instr->operands[1].skip = 0;
6604
6605 if (try_mov_wide_p)
6606 {
6607 /* Try the MOVZ alias. */
6608 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6609 aarch64_replace_opcode (instr, opcode);
6610 if (aarch64_opcode_encode (instr->opcode, instr,
6611 &instr->value, NULL, NULL))
6612 {
6613 put_aarch64_insn (buf, instr->value);
6614 return;
6615 }
6616 /* Try the MOVK alias. */
6617 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6618 aarch64_replace_opcode (instr, opcode);
6619 if (aarch64_opcode_encode (instr->opcode, instr,
6620 &instr->value, NULL, NULL))
6621 {
6622 put_aarch64_insn (buf, instr->value);
6623 return;
6624 }
6625 }
6626
6627 if (try_mov_bitmask_p)
6628 {
6629 /* Try the ORR alias. */
6630 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6631 aarch64_replace_opcode (instr, opcode);
6632 if (aarch64_opcode_encode (instr->opcode, instr,
6633 &instr->value, NULL, NULL))
6634 {
6635 put_aarch64_insn (buf, instr->value);
6636 return;
6637 }
6638 }
6639
6640 as_bad_where (fixP->fx_file, fixP->fx_line,
6641 _("immediate cannot be moved by a single instruction"));
6642}
6643
6644/* An instruction operand which is immediate related may have symbol used
6645 in the assembly, e.g.
6646
6647 mov w0, u32
6648 .set u32, 0x00ffff00
6649
6650 At the time when the assembly instruction is parsed, a referenced symbol,
6651 like 'u32' in the above example may not have been seen; a fixS is created
6652 in such a case and is handled here after symbols have been resolved.
6653 Instruction is fixed up with VALUE using the information in *FIXP plus
6654 extra information in FLAGS.
6655
6656 This function is called by md_apply_fix to fix up instructions that need
6657 a fix-up described above but does not involve any linker-time relocation. */
6658
6659static void
6660fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6661{
6662 int idx;
6663 uint32_t insn;
6664 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6665 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6666 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6667
6668 if (new_inst)
6669 {
6670 /* Now the instruction is about to be fixed-up, so the operand that
6671 was previously marked as 'ignored' needs to be unmarked in order
6672 to get the encoding done properly. */
6673 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6674 new_inst->operands[idx].skip = 0;
6675 }
6676
6677 gas_assert (opnd != AARCH64_OPND_NIL);
6678
6679 switch (opnd)
6680 {
6681 case AARCH64_OPND_EXCEPTION:
6682 if (unsigned_overflow (value, 16))
6683 as_bad_where (fixP->fx_file, fixP->fx_line,
6684 _("immediate out of range"));
6685 insn = get_aarch64_insn (buf);
6686 insn |= encode_svc_imm (value);
6687 put_aarch64_insn (buf, insn);
6688 break;
6689
6690 case AARCH64_OPND_AIMM:
6691 /* ADD or SUB with immediate.
6692 NOTE this assumes we come here with a add/sub shifted reg encoding
6693 3 322|2222|2 2 2 21111 111111
6694 1 098|7654|3 2 1 09876 543210 98765 43210
6695 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6696 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6697 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6698 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6699 ->
6700 3 322|2222|2 2 221111111111
6701 1 098|7654|3 2 109876543210 98765 43210
6702 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6703 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6704 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6705 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6706 Fields sf Rn Rd are already set. */
6707 insn = get_aarch64_insn (buf);
6708 if (value < 0)
6709 {
6710 /* Add <-> sub. */
6711 insn = reencode_addsub_switch_add_sub (insn);
6712 value = -value;
6713 }
6714
6715 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6716 && unsigned_overflow (value, 12))
6717 {
6718 /* Try to shift the value by 12 to make it fit. */
6719 if (((value >> 12) << 12) == value
6720 && ! unsigned_overflow (value, 12 + 12))
6721 {
6722 value >>= 12;
6723 insn |= encode_addsub_imm_shift_amount (1);
6724 }
6725 }
6726
6727 if (unsigned_overflow (value, 12))
6728 as_bad_where (fixP->fx_file, fixP->fx_line,
6729 _("immediate out of range"));
6730
6731 insn |= encode_addsub_imm (value);
6732
6733 put_aarch64_insn (buf, insn);
6734 break;
6735
6736 case AARCH64_OPND_SIMD_IMM:
6737 case AARCH64_OPND_SIMD_IMM_SFT:
6738 case AARCH64_OPND_LIMM:
6739 /* Bit mask immediate. */
6740 gas_assert (new_inst != NULL);
6741 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6742 new_inst->operands[idx].imm.value = value;
6743 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6744 &new_inst->value, NULL, NULL))
6745 put_aarch64_insn (buf, new_inst->value);
6746 else
6747 as_bad_where (fixP->fx_file, fixP->fx_line,
6748 _("invalid immediate"));
6749 break;
6750
6751 case AARCH64_OPND_HALF:
6752 /* 16-bit unsigned immediate. */
6753 if (unsigned_overflow (value, 16))
6754 as_bad_where (fixP->fx_file, fixP->fx_line,
6755 _("immediate out of range"));
6756 insn = get_aarch64_insn (buf);
6757 insn |= encode_movw_imm (value & 0xffff);
6758 put_aarch64_insn (buf, insn);
6759 break;
6760
6761 case AARCH64_OPND_IMM_MOV:
6762 /* Operand for a generic move immediate instruction, which is
6763 an alias instruction that generates a single MOVZ, MOVN or ORR
6764 instruction to loads a 32-bit/64-bit immediate value into general
6765 register. An assembler error shall result if the immediate cannot be
6766 created by a single one of these instructions. If there is a choice,
6767 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6768 and MOVZ or MOVN to ORR. */
6769 gas_assert (new_inst != NULL);
6770 fix_mov_imm_insn (fixP, buf, new_inst, value);
6771 break;
6772
6773 case AARCH64_OPND_ADDR_SIMM7:
6774 case AARCH64_OPND_ADDR_SIMM9:
6775 case AARCH64_OPND_ADDR_SIMM9_2:
6776 case AARCH64_OPND_ADDR_UIMM12:
6777 /* Immediate offset in an address. */
6778 insn = get_aarch64_insn (buf);
6779
6780 gas_assert (new_inst != NULL && new_inst->value == insn);
6781 gas_assert (new_inst->opcode->operands[1] == opnd
6782 || new_inst->opcode->operands[2] == opnd);
6783
6784 /* Get the index of the address operand. */
6785 if (new_inst->opcode->operands[1] == opnd)
6786 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6787 idx = 1;
6788 else
6789 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6790 idx = 2;
6791
6792 /* Update the resolved offset value. */
6793 new_inst->operands[idx].addr.offset.imm = value;
6794
6795 /* Encode/fix-up. */
6796 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6797 &new_inst->value, NULL, NULL))
6798 {
6799 put_aarch64_insn (buf, new_inst->value);
6800 break;
6801 }
6802 else if (new_inst->opcode->iclass == ldst_pos
6803 && try_to_encode_as_unscaled_ldst (new_inst))
6804 {
6805 put_aarch64_insn (buf, new_inst->value);
6806 break;
6807 }
6808
6809 as_bad_where (fixP->fx_file, fixP->fx_line,
6810 _("immediate offset out of range"));
6811 break;
6812
6813 default:
6814 gas_assert (0);
6815 as_fatal (_("unhandled operand code %d"), opnd);
6816 }
6817}
6818
6819/* Apply a fixup (fixP) to segment data, once it has been determined
6820 by our caller that we have all the info we need to fix it up.
6821
6822 Parameter valP is the pointer to the value of the bits. */
6823
6824void
6825md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6826{
6827 offsetT value = *valP;
6828 uint32_t insn;
6829 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6830 int scale;
6831 unsigned flags = fixP->fx_addnumber;
6832
6833 DEBUG_TRACE ("\n\n");
6834 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6835 DEBUG_TRACE ("Enter md_apply_fix");
6836
6837 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6838
6839 /* Note whether this will delete the relocation. */
6840
6841 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6842 fixP->fx_done = 1;
6843
6844 /* Process the relocations. */
6845 switch (fixP->fx_r_type)
6846 {
6847 case BFD_RELOC_NONE:
6848 /* This will need to go in the object file. */
6849 fixP->fx_done = 0;
6850 break;
6851
6852 case BFD_RELOC_8:
6853 case BFD_RELOC_8_PCREL:
6854 if (fixP->fx_done || !seg->use_rela_p)
6855 md_number_to_chars (buf, value, 1);
6856 break;
6857
6858 case BFD_RELOC_16:
6859 case BFD_RELOC_16_PCREL:
6860 if (fixP->fx_done || !seg->use_rela_p)
6861 md_number_to_chars (buf, value, 2);
6862 break;
6863
6864 case BFD_RELOC_32:
6865 case BFD_RELOC_32_PCREL:
6866 if (fixP->fx_done || !seg->use_rela_p)
6867 md_number_to_chars (buf, value, 4);
6868 break;
6869
6870 case BFD_RELOC_64:
6871 case BFD_RELOC_64_PCREL:
6872 if (fixP->fx_done || !seg->use_rela_p)
6873 md_number_to_chars (buf, value, 8);
6874 break;
6875
6876 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6877 /* We claim that these fixups have been processed here, even if
6878 in fact we generate an error because we do not have a reloc
6879 for them, so tc_gen_reloc() will reject them. */
6880 fixP->fx_done = 1;
6881 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6882 {
6883 as_bad_where (fixP->fx_file, fixP->fx_line,
6884 _("undefined symbol %s used as an immediate value"),
6885 S_GET_NAME (fixP->fx_addsy));
6886 goto apply_fix_return;
6887 }
6888 fix_insn (fixP, flags, value);
6889 break;
6890
6891 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6892 if (fixP->fx_done || !seg->use_rela_p)
6893 {
89d2a2a3
MS
6894 if (value & 3)
6895 as_bad_where (fixP->fx_file, fixP->fx_line,
6896 _("pc-relative load offset not word aligned"));
6897 if (signed_overflow (value, 21))
6898 as_bad_where (fixP->fx_file, fixP->fx_line,
6899 _("pc-relative load offset out of range"));
a06ea964
NC
6900 insn = get_aarch64_insn (buf);
6901 insn |= encode_ld_lit_ofs_19 (value >> 2);
6902 put_aarch64_insn (buf, insn);
6903 }
6904 break;
6905
6906 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6907 if (fixP->fx_done || !seg->use_rela_p)
6908 {
89d2a2a3
MS
6909 if (signed_overflow (value, 21))
6910 as_bad_where (fixP->fx_file, fixP->fx_line,
6911 _("pc-relative address offset out of range"));
a06ea964
NC
6912 insn = get_aarch64_insn (buf);
6913 insn |= encode_adr_imm (value);
6914 put_aarch64_insn (buf, insn);
6915 }
6916 break;
6917
6918 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6919 if (fixP->fx_done || !seg->use_rela_p)
6920 {
89d2a2a3
MS
6921 if (value & 3)
6922 as_bad_where (fixP->fx_file, fixP->fx_line,
6923 _("conditional branch target not word aligned"));
6924 if (signed_overflow (value, 21))
6925 as_bad_where (fixP->fx_file, fixP->fx_line,
6926 _("conditional branch out of range"));
a06ea964
NC
6927 insn = get_aarch64_insn (buf);
6928 insn |= encode_cond_branch_ofs_19 (value >> 2);
6929 put_aarch64_insn (buf, insn);
6930 }
6931 break;
6932
6933 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6934 if (fixP->fx_done || !seg->use_rela_p)
6935 {
89d2a2a3
MS
6936 if (value & 3)
6937 as_bad_where (fixP->fx_file, fixP->fx_line,
6938 _("conditional branch target not word aligned"));
6939 if (signed_overflow (value, 16))
6940 as_bad_where (fixP->fx_file, fixP->fx_line,
6941 _("conditional branch out of range"));
a06ea964
NC
6942 insn = get_aarch64_insn (buf);
6943 insn |= encode_tst_branch_ofs_14 (value >> 2);
6944 put_aarch64_insn (buf, insn);
6945 }
6946 break;
6947
a06ea964 6948 case BFD_RELOC_AARCH64_CALL26:
f09c556a 6949 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
6950 if (fixP->fx_done || !seg->use_rela_p)
6951 {
89d2a2a3
MS
6952 if (value & 3)
6953 as_bad_where (fixP->fx_file, fixP->fx_line,
6954 _("branch target not word aligned"));
6955 if (signed_overflow (value, 28))
6956 as_bad_where (fixP->fx_file, fixP->fx_line,
6957 _("branch out of range"));
a06ea964
NC
6958 insn = get_aarch64_insn (buf);
6959 insn |= encode_branch_ofs_26 (value >> 2);
6960 put_aarch64_insn (buf, insn);
6961 }
6962 break;
6963
6964 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 6965 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 6966 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 6967 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
a06ea964
NC
6968 scale = 0;
6969 goto movw_common;
6970 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 6971 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 6972 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 6973 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
6974 scale = 16;
6975 goto movw_common;
43a357f9
RL
6976 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6977 scale = 0;
6978 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6979 /* Should always be exported to object file, see
6980 aarch64_force_relocation(). */
6981 gas_assert (!fixP->fx_done);
6982 gas_assert (seg->use_rela_p);
6983 goto movw_common;
6984 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6985 scale = 16;
6986 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6987 /* Should always be exported to object file, see
6988 aarch64_force_relocation(). */
6989 gas_assert (!fixP->fx_done);
6990 gas_assert (seg->use_rela_p);
6991 goto movw_common;
a06ea964 6992 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 6993 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 6994 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
6995 scale = 32;
6996 goto movw_common;
6997 case BFD_RELOC_AARCH64_MOVW_G3:
6998 scale = 48;
6999 movw_common:
7000 if (fixP->fx_done || !seg->use_rela_p)
7001 {
7002 insn = get_aarch64_insn (buf);
7003
7004 if (!fixP->fx_done)
7005 {
7006 /* REL signed addend must fit in 16 bits */
7007 if (signed_overflow (value, 16))
7008 as_bad_where (fixP->fx_file, fixP->fx_line,
7009 _("offset out of range"));
7010 }
7011 else
7012 {
7013 /* Check for overflow and scale. */
7014 switch (fixP->fx_r_type)
7015 {
7016 case BFD_RELOC_AARCH64_MOVW_G0:
7017 case BFD_RELOC_AARCH64_MOVW_G1:
7018 case BFD_RELOC_AARCH64_MOVW_G2:
7019 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 7020 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 7021 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
7022 if (unsigned_overflow (value, scale + 16))
7023 as_bad_where (fixP->fx_file, fixP->fx_line,
7024 _("unsigned value out of range"));
7025 break;
7026 case BFD_RELOC_AARCH64_MOVW_G0_S:
7027 case BFD_RELOC_AARCH64_MOVW_G1_S:
7028 case BFD_RELOC_AARCH64_MOVW_G2_S:
7029 /* NOTE: We can only come here with movz or movn. */
7030 if (signed_overflow (value, scale + 16))
7031 as_bad_where (fixP->fx_file, fixP->fx_line,
7032 _("signed value out of range"));
7033 if (value < 0)
7034 {
7035 /* Force use of MOVN. */
7036 value = ~value;
7037 insn = reencode_movzn_to_movn (insn);
7038 }
7039 else
7040 {
7041 /* Force use of MOVZ. */
7042 insn = reencode_movzn_to_movz (insn);
7043 }
7044 break;
7045 default:
7046 /* Unchecked relocations. */
7047 break;
7048 }
7049 value >>= scale;
7050 }
7051
7052 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7053 insn |= encode_movw_imm (value & 0xffff);
7054
7055 put_aarch64_insn (buf, insn);
7056 }
7057 break;
7058
a6bb11b2
YZ
7059 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7060 fixP->fx_r_type = (ilp32_p
7061 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7062 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7063 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7064 /* Should always be exported to object file, see
7065 aarch64_force_relocation(). */
7066 gas_assert (!fixP->fx_done);
7067 gas_assert (seg->use_rela_p);
7068 break;
7069
7070 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7071 fixP->fx_r_type = (ilp32_p
7072 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7073 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
7074 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7075 /* Should always be exported to object file, see
7076 aarch64_force_relocation(). */
7077 gas_assert (!fixP->fx_done);
7078 gas_assert (seg->use_rela_p);
7079 break;
7080
2c0a3565
MS
7081 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7082 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7083 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7084 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7085 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7086 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 7087 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7088 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7089 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7090 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7091 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7092 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7093 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7094 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7095 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7096 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7097 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 7098 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7099 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7100 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7101 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7102 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7103 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7104 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7105 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7106 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7107 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7108 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7109 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7110 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7111 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7112 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7113 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7114 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7115 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7116 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7117 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7118 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7119 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7120 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7121 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7122 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7123 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7124 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7125 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7126 /* Should always be exported to object file, see
7127 aarch64_force_relocation(). */
7128 gas_assert (!fixP->fx_done);
7129 gas_assert (seg->use_rela_p);
7130 break;
7131
a6bb11b2
YZ
7132 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7133 /* Should always be exported to object file, see
7134 aarch64_force_relocation(). */
7135 fixP->fx_r_type = (ilp32_p
7136 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7137 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7138 gas_assert (!fixP->fx_done);
7139 gas_assert (seg->use_rela_p);
7140 break;
7141
a06ea964 7142 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
7143 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7144 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7145 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7146 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7147 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7148 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7149 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7150 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
7151 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7152 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
7153 case BFD_RELOC_AARCH64_LDST16_LO12:
7154 case BFD_RELOC_AARCH64_LDST32_LO12:
7155 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 7156 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
7157 /* Should always be exported to object file, see
7158 aarch64_force_relocation(). */
7159 gas_assert (!fixP->fx_done);
7160 gas_assert (seg->use_rela_p);
7161 break;
7162
7163 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 7164 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 7165 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
7166 break;
7167
b97e87cc
NC
7168 case BFD_RELOC_UNUSED:
7169 /* An error will already have been reported. */
7170 break;
7171
a06ea964
NC
7172 default:
7173 as_bad_where (fixP->fx_file, fixP->fx_line,
7174 _("unexpected %s fixup"),
7175 bfd_get_reloc_code_name (fixP->fx_r_type));
7176 break;
7177 }
7178
7179apply_fix_return:
7180 /* Free the allocated the struct aarch64_inst.
7181 N.B. currently there are very limited number of fix-up types actually use
7182 this field, so the impact on the performance should be minimal . */
7183 if (fixP->tc_fix_data.inst != NULL)
7184 free (fixP->tc_fix_data.inst);
7185
7186 return;
7187}
7188
7189/* Translate internal representation of relocation info to BFD target
7190 format. */
7191
7192arelent *
7193tc_gen_reloc (asection * section, fixS * fixp)
7194{
7195 arelent *reloc;
7196 bfd_reloc_code_real_type code;
7197
325801bd 7198 reloc = XNEW (arelent);
a06ea964 7199
325801bd 7200 reloc->sym_ptr_ptr = XNEW (asymbol *);
a06ea964
NC
7201 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7202 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7203
7204 if (fixp->fx_pcrel)
7205 {
7206 if (section->use_rela_p)
7207 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7208 else
7209 fixp->fx_offset = reloc->address;
7210 }
7211 reloc->addend = fixp->fx_offset;
7212
7213 code = fixp->fx_r_type;
7214 switch (code)
7215 {
7216 case BFD_RELOC_16:
7217 if (fixp->fx_pcrel)
7218 code = BFD_RELOC_16_PCREL;
7219 break;
7220
7221 case BFD_RELOC_32:
7222 if (fixp->fx_pcrel)
7223 code = BFD_RELOC_32_PCREL;
7224 break;
7225
7226 case BFD_RELOC_64:
7227 if (fixp->fx_pcrel)
7228 code = BFD_RELOC_64_PCREL;
7229 break;
7230
7231 default:
7232 break;
7233 }
7234
7235 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7236 if (reloc->howto == NULL)
7237 {
7238 as_bad_where (fixp->fx_file, fixp->fx_line,
7239 _
7240 ("cannot represent %s relocation in this object file format"),
7241 bfd_get_reloc_code_name (code));
7242 return NULL;
7243 }
7244
7245 return reloc;
7246}
7247
7248/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7249
7250void
7251cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7252{
7253 bfd_reloc_code_real_type type;
7254 int pcrel = 0;
7255
7256 /* Pick a reloc.
7257 FIXME: @@ Should look at CPU word size. */
7258 switch (size)
7259 {
7260 case 1:
7261 type = BFD_RELOC_8;
7262 break;
7263 case 2:
7264 type = BFD_RELOC_16;
7265 break;
7266 case 4:
7267 type = BFD_RELOC_32;
7268 break;
7269 case 8:
7270 type = BFD_RELOC_64;
7271 break;
7272 default:
7273 as_bad (_("cannot do %u-byte relocation"), size);
7274 type = BFD_RELOC_UNUSED;
7275 break;
7276 }
7277
7278 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7279}
7280
7281int
7282aarch64_force_relocation (struct fix *fixp)
7283{
7284 switch (fixp->fx_r_type)
7285 {
7286 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7287 /* Perform these "immediate" internal relocations
7288 even if the symbol is extern or weak. */
7289 return 0;
7290
a6bb11b2 7291 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
7292 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7293 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
7294 /* Pseudo relocs that need to be fixed up according to
7295 ilp32_p. */
7296 return 0;
7297
2c0a3565
MS
7298 case BFD_RELOC_AARCH64_ADD_LO12:
7299 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7300 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7301 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7302 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7303 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7304 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7305 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7306 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
7307 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7308 case BFD_RELOC_AARCH64_LDST128_LO12:
7309 case BFD_RELOC_AARCH64_LDST16_LO12:
7310 case BFD_RELOC_AARCH64_LDST32_LO12:
7311 case BFD_RELOC_AARCH64_LDST64_LO12:
7312 case BFD_RELOC_AARCH64_LDST8_LO12:
7313 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7314 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7315 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7316 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7317 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7318 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
43a357f9
RL
7319 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7320 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964 7321 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7322 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7323 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7324 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7325 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7326 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7327 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7328 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7329 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7330 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7331 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7332 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7333 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7334 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7335 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7336 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7337 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7338 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7339 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7340 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7341 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7342 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7343 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7344 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7345 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7346 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7347 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7348 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7349 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7350 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7351 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7352 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7353 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7354 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7355 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7356 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7357 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7358 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7359 /* Always leave these relocations for the linker. */
7360 return 1;
7361
7362 default:
7363 break;
7364 }
7365
7366 return generic_force_reloc (fixp);
7367}
7368
7369#ifdef OBJ_ELF
7370
7371const char *
7372elf64_aarch64_target_format (void)
7373{
a75cf613
ES
7374 if (strcmp (TARGET_OS, "cloudabi") == 0)
7375 {
7376 /* FIXME: What to do for ilp32_p ? */
7377 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
7378 }
a06ea964 7379 if (target_big_endian)
cec5225b 7380 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 7381 else
cec5225b 7382 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
7383}
7384
7385void
7386aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7387{
7388 elf_frob_symbol (symp, puntp);
7389}
7390#endif
7391
7392/* MD interface: Finalization. */
7393
7394/* A good place to do this, although this was probably not intended
7395 for this kind of use. We need to dump the literal pool before
7396 references are made to a null symbol pointer. */
7397
7398void
7399aarch64_cleanup (void)
7400{
7401 literal_pool *pool;
7402
7403 for (pool = list_of_pools; pool; pool = pool->next)
7404 {
7405 /* Put it at the end of the relevant section. */
7406 subseg_set (pool->section, pool->sub_section);
7407 s_ltorg (0);
7408 }
7409}
7410
7411#ifdef OBJ_ELF
7412/* Remove any excess mapping symbols generated for alignment frags in
7413 SEC. We may have created a mapping symbol before a zero byte
7414 alignment; remove it if there's a mapping symbol after the
7415 alignment. */
7416static void
7417check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7418 void *dummy ATTRIBUTE_UNUSED)
7419{
7420 segment_info_type *seginfo = seg_info (sec);
7421 fragS *fragp;
7422
7423 if (seginfo == NULL || seginfo->frchainP == NULL)
7424 return;
7425
7426 for (fragp = seginfo->frchainP->frch_root;
7427 fragp != NULL; fragp = fragp->fr_next)
7428 {
7429 symbolS *sym = fragp->tc_frag_data.last_map;
7430 fragS *next = fragp->fr_next;
7431
7432 /* Variable-sized frags have been converted to fixed size by
7433 this point. But if this was variable-sized to start with,
7434 there will be a fixed-size frag after it. So don't handle
7435 next == NULL. */
7436 if (sym == NULL || next == NULL)
7437 continue;
7438
7439 if (S_GET_VALUE (sym) < next->fr_address)
7440 /* Not at the end of this frag. */
7441 continue;
7442 know (S_GET_VALUE (sym) == next->fr_address);
7443
7444 do
7445 {
7446 if (next->tc_frag_data.first_map != NULL)
7447 {
7448 /* Next frag starts with a mapping symbol. Discard this
7449 one. */
7450 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7451 break;
7452 }
7453
7454 if (next->fr_next == NULL)
7455 {
7456 /* This mapping symbol is at the end of the section. Discard
7457 it. */
7458 know (next->fr_fix == 0 && next->fr_var == 0);
7459 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7460 break;
7461 }
7462
7463 /* As long as we have empty frags without any mapping symbols,
7464 keep looking. */
7465 /* If the next frag is non-empty and does not start with a
7466 mapping symbol, then this mapping symbol is required. */
7467 if (next->fr_address != next->fr_next->fr_address)
7468 break;
7469
7470 next = next->fr_next;
7471 }
7472 while (next != NULL);
7473 }
7474}
7475#endif
7476
7477/* Adjust the symbol table. */
7478
7479void
7480aarch64_adjust_symtab (void)
7481{
7482#ifdef OBJ_ELF
7483 /* Remove any overlapping mapping symbols generated by alignment frags. */
7484 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7485 /* Now do generic ELF adjustments. */
7486 elf_adjust_symtab ();
7487#endif
7488}
7489
7490static void
7491checked_hash_insert (struct hash_control *table, const char *key, void *value)
7492{
7493 const char *hash_err;
7494
7495 hash_err = hash_insert (table, key, value);
7496 if (hash_err)
7497 printf ("Internal Error: Can't hash %s\n", key);
7498}
7499
7500static void
7501fill_instruction_hash_table (void)
7502{
7503 aarch64_opcode *opcode = aarch64_opcode_table;
7504
7505 while (opcode->name != NULL)
7506 {
7507 templates *templ, *new_templ;
7508 templ = hash_find (aarch64_ops_hsh, opcode->name);
7509
7510 new_templ = (templates *) xmalloc (sizeof (templates));
7511 new_templ->opcode = opcode;
7512 new_templ->next = NULL;
7513
7514 if (!templ)
7515 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7516 else
7517 {
7518 new_templ->next = templ->next;
7519 templ->next = new_templ;
7520 }
7521 ++opcode;
7522 }
7523}
7524
7525static inline void
7526convert_to_upper (char *dst, const char *src, size_t num)
7527{
7528 unsigned int i;
7529 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7530 *dst = TOUPPER (*src);
7531 *dst = '\0';
7532}
7533
7534/* Assume STR point to a lower-case string, allocate, convert and return
7535 the corresponding upper-case string. */
7536static inline const char*
7537get_upper_str (const char *str)
7538{
7539 char *ret;
7540 size_t len = strlen (str);
325801bd 7541 ret = XNEWVEC (char, len + 1);
a06ea964
NC
7542 convert_to_upper (ret, str, len);
7543 return ret;
7544}
7545
7546/* MD interface: Initialization. */
7547
7548void
7549md_begin (void)
7550{
7551 unsigned mach;
7552 unsigned int i;
7553
7554 if ((aarch64_ops_hsh = hash_new ()) == NULL
7555 || (aarch64_cond_hsh = hash_new ()) == NULL
7556 || (aarch64_shift_hsh = hash_new ()) == NULL
7557 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7558 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7559 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7560 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7561 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7562 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7563 || (aarch64_reg_hsh = hash_new ()) == NULL
7564 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7565 || (aarch64_nzcv_hsh = hash_new ()) == NULL
1e6f4800
MW
7566 || (aarch64_pldop_hsh = hash_new ()) == NULL
7567 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
a06ea964
NC
7568 as_fatal (_("virtual memory exhausted"));
7569
7570 fill_instruction_hash_table ();
7571
7572 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7573 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7574 (void *) (aarch64_sys_regs + i));
7575
7576 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7577 checked_hash_insert (aarch64_pstatefield_hsh,
7578 aarch64_pstatefields[i].name,
7579 (void *) (aarch64_pstatefields + i));
7580
875880c6 7581 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
a06ea964 7582 checked_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 7583 aarch64_sys_regs_ic[i].name,
a06ea964
NC
7584 (void *) (aarch64_sys_regs_ic + i));
7585
875880c6 7586 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
a06ea964 7587 checked_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 7588 aarch64_sys_regs_dc[i].name,
a06ea964
NC
7589 (void *) (aarch64_sys_regs_dc + i));
7590
875880c6 7591 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
a06ea964 7592 checked_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 7593 aarch64_sys_regs_at[i].name,
a06ea964
NC
7594 (void *) (aarch64_sys_regs_at + i));
7595
875880c6 7596 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
a06ea964 7597 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 7598 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
7599 (void *) (aarch64_sys_regs_tlbi + i));
7600
7601 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7602 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7603 (void *) (reg_names + i));
7604
7605 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7606 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7607 (void *) (nzcv_names + i));
7608
7609 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7610 {
7611 const char *name = aarch64_operand_modifiers[i].name;
7612 checked_hash_insert (aarch64_shift_hsh, name,
7613 (void *) (aarch64_operand_modifiers + i));
7614 /* Also hash the name in the upper case. */
7615 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7616 (void *) (aarch64_operand_modifiers + i));
7617 }
7618
7619 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7620 {
7621 unsigned int j;
7622 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7623 the same condition code. */
7624 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7625 {
7626 const char *name = aarch64_conds[i].names[j];
7627 if (name == NULL)
7628 break;
7629 checked_hash_insert (aarch64_cond_hsh, name,
7630 (void *) (aarch64_conds + i));
7631 /* Also hash the name in the upper case. */
7632 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7633 (void *) (aarch64_conds + i));
7634 }
7635 }
7636
7637 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7638 {
7639 const char *name = aarch64_barrier_options[i].name;
7640 /* Skip xx00 - the unallocated values of option. */
7641 if ((i & 0x3) == 0)
7642 continue;
7643 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7644 (void *) (aarch64_barrier_options + i));
7645 /* Also hash the name in the upper case. */
7646 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7647 (void *) (aarch64_barrier_options + i));
7648 }
7649
7650 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7651 {
7652 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7653 /* Skip the unallocated hint encodings. */
7654 if (name == NULL)
a06ea964
NC
7655 continue;
7656 checked_hash_insert (aarch64_pldop_hsh, name,
7657 (void *) (aarch64_prfops + i));
7658 /* Also hash the name in the upper case. */
7659 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7660 (void *) (aarch64_prfops + i));
7661 }
7662
1e6f4800
MW
7663 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
7664 {
7665 const char* name = aarch64_hint_options[i].name;
7666
7667 checked_hash_insert (aarch64_hint_opt_hsh, name,
7668 (void *) (aarch64_hint_options + i));
7669 /* Also hash the name in the upper case. */
7670 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7671 (void *) (aarch64_hint_options + i));
7672 }
7673
a06ea964
NC
7674 /* Set the cpu variant based on the command-line options. */
7675 if (!mcpu_cpu_opt)
7676 mcpu_cpu_opt = march_cpu_opt;
7677
7678 if (!mcpu_cpu_opt)
7679 mcpu_cpu_opt = &cpu_default;
7680
7681 cpu_variant = *mcpu_cpu_opt;
7682
7683 /* Record the CPU type. */
cec5225b 7684 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7685
7686 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7687}
7688
7689/* Command line processing. */
7690
7691const char *md_shortopts = "m:";
7692
7693#ifdef AARCH64_BI_ENDIAN
7694#define OPTION_EB (OPTION_MD_BASE + 0)
7695#define OPTION_EL (OPTION_MD_BASE + 1)
7696#else
7697#if TARGET_BYTES_BIG_ENDIAN
7698#define OPTION_EB (OPTION_MD_BASE + 0)
7699#else
7700#define OPTION_EL (OPTION_MD_BASE + 1)
7701#endif
7702#endif
7703
7704struct option md_longopts[] = {
7705#ifdef OPTION_EB
7706 {"EB", no_argument, NULL, OPTION_EB},
7707#endif
7708#ifdef OPTION_EL
7709 {"EL", no_argument, NULL, OPTION_EL},
7710#endif
7711 {NULL, no_argument, NULL, 0}
7712};
7713
7714size_t md_longopts_size = sizeof (md_longopts);
7715
7716struct aarch64_option_table
7717{
e0471c16
TS
7718 const char *option; /* Option name to match. */
7719 const char *help; /* Help information. */
a06ea964
NC
7720 int *var; /* Variable to change. */
7721 int value; /* What to change it to. */
7722 char *deprecated; /* If non-null, print this message. */
7723};
7724
7725static struct aarch64_option_table aarch64_opts[] = {
7726 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7727 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7728 NULL},
7729#ifdef DEBUG_AARCH64
7730 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7731#endif /* DEBUG_AARCH64 */
7732 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7733 NULL},
a52e6fd3
YZ
7734 {"mno-verbose-error", N_("do not output verbose error messages"),
7735 &verbose_error_p, 0, NULL},
a06ea964
NC
7736 {NULL, NULL, NULL, 0, NULL}
7737};
7738
7739struct aarch64_cpu_option_table
7740{
e0471c16 7741 const char *name;
a06ea964
NC
7742 const aarch64_feature_set value;
7743 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7744 case. */
7745 const char *canonical_name;
7746};
7747
7748/* This list should, at a minimum, contain all the cpu names
7749 recognized by GCC. */
7750static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7751 {"all", AARCH64_ANY, NULL},
9c352f1c
JG
7752 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
7753 AARCH64_FEATURE_CRC), "Cortex-A35"},
aa31c464
JW
7754 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7755 AARCH64_FEATURE_CRC), "Cortex-A53"},
7756 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7757 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
7758 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7759 AARCH64_FEATURE_CRC), "Cortex-A72"},
2412d878
EM
7760 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7761 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7762 "Samsung Exynos M1"},
6b21c2bf
JW
7763 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7764 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7765 "Qualcomm QDF24XX"},
faade851
JW
7766 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7767 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7768 "Cavium ThunderX"},
070cb956
PT
7769 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7770 in earlier releases and is superseded by 'xgene1' in all
7771 tools. */
9877c63c 7772 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 7773 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
7774 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7775 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
7776 {"generic", AARCH64_ARCH_V8, NULL},
7777
a06ea964
NC
7778 {NULL, AARCH64_ARCH_NONE, NULL}
7779};
7780
7781struct aarch64_arch_option_table
7782{
e0471c16 7783 const char *name;
a06ea964
NC
7784 const aarch64_feature_set value;
7785};
7786
7787/* This list should, at a minimum, contain all the architecture names
7788 recognized by GCC. */
7789static const struct aarch64_arch_option_table aarch64_archs[] = {
7790 {"all", AARCH64_ANY},
5a1ad39d 7791 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 7792 {"armv8.1-a", AARCH64_ARCH_V8_1},
acb787b0 7793 {"armv8.2-a", AARCH64_ARCH_V8_2},
a06ea964
NC
7794 {NULL, AARCH64_ARCH_NONE}
7795};
7796
7797/* ISA extensions. */
7798struct aarch64_option_cpu_value_table
7799{
e0471c16 7800 const char *name;
a06ea964
NC
7801 const aarch64_feature_set value;
7802};
7803
7804static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7805 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7806 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7807 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7808 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964 7809 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
72ca8fad 7810 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0)},
290806fd 7811 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0)},
50cc854c 7812 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0)},
9e1f0fa7
MW
7813 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_SIMD
7814 | AARCH64_FEATURE_RDMA, 0)},
87018195
MW
7815 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16
7816 | AARCH64_FEATURE_FP, 0)},
73af8ed6 7817 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0)},
a06ea964
NC
7818 {NULL, AARCH64_ARCH_NONE}
7819};
7820
7821struct aarch64_long_option_table
7822{
e0471c16
TS
7823 const char *option; /* Substring to match. */
7824 const char *help; /* Help information. */
17b9d67d 7825 int (*func) (const char *subopt); /* Function to decode sub-option. */
a06ea964
NC
7826 char *deprecated; /* If non-null, print this message. */
7827};
7828
7829static int
82b8a785 7830aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
ae527cd8 7831 bfd_boolean ext_only)
a06ea964
NC
7832{
7833 /* We insist on extensions being added before being removed. We achieve
7834 this by using the ADDING_VALUE variable to indicate whether we are
7835 adding an extension (1) or removing it (0) and only allowing it to
7836 change in the order -1 -> 1 -> 0. */
7837 int adding_value = -1;
325801bd 7838 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
a06ea964
NC
7839
7840 /* Copy the feature set, so that we can modify it. */
7841 *ext_set = **opt_p;
7842 *opt_p = ext_set;
7843
7844 while (str != NULL && *str != 0)
7845 {
7846 const struct aarch64_option_cpu_value_table *opt;
82b8a785 7847 const char *ext = NULL;
a06ea964
NC
7848 int optlen;
7849
ae527cd8 7850 if (!ext_only)
a06ea964 7851 {
ae527cd8
JB
7852 if (*str != '+')
7853 {
7854 as_bad (_("invalid architectural extension"));
7855 return 0;
7856 }
a06ea964 7857
ae527cd8
JB
7858 ext = strchr (++str, '+');
7859 }
a06ea964
NC
7860
7861 if (ext != NULL)
7862 optlen = ext - str;
7863 else
7864 optlen = strlen (str);
7865
7866 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7867 {
7868 if (adding_value != 0)
7869 adding_value = 0;
7870 optlen -= 2;
7871 str += 2;
7872 }
7873 else if (optlen > 0)
7874 {
7875 if (adding_value == -1)
7876 adding_value = 1;
7877 else if (adding_value != 1)
7878 {
7879 as_bad (_("must specify extensions to add before specifying "
7880 "those to remove"));
7881 return FALSE;
7882 }
7883 }
7884
7885 if (optlen == 0)
7886 {
7887 as_bad (_("missing architectural extension"));
7888 return 0;
7889 }
7890
7891 gas_assert (adding_value != -1);
7892
7893 for (opt = aarch64_features; opt->name != NULL; opt++)
7894 if (strncmp (opt->name, str, optlen) == 0)
7895 {
7896 /* Add or remove the extension. */
7897 if (adding_value)
7898 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7899 else
7900 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7901 break;
7902 }
7903
7904 if (opt->name == NULL)
7905 {
7906 as_bad (_("unknown architectural extension `%s'"), str);
7907 return 0;
7908 }
7909
7910 str = ext;
7911 };
7912
7913 return 1;
7914}
7915
7916static int
17b9d67d 7917aarch64_parse_cpu (const char *str)
a06ea964
NC
7918{
7919 const struct aarch64_cpu_option_table *opt;
82b8a785 7920 const char *ext = strchr (str, '+');
a06ea964
NC
7921 size_t optlen;
7922
7923 if (ext != NULL)
7924 optlen = ext - str;
7925 else
7926 optlen = strlen (str);
7927
7928 if (optlen == 0)
7929 {
7930 as_bad (_("missing cpu name `%s'"), str);
7931 return 0;
7932 }
7933
7934 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7935 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7936 {
7937 mcpu_cpu_opt = &opt->value;
7938 if (ext != NULL)
ae527cd8 7939 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
7940
7941 return 1;
7942 }
7943
7944 as_bad (_("unknown cpu `%s'"), str);
7945 return 0;
7946}
7947
7948static int
17b9d67d 7949aarch64_parse_arch (const char *str)
a06ea964
NC
7950{
7951 const struct aarch64_arch_option_table *opt;
82b8a785 7952 const char *ext = strchr (str, '+');
a06ea964
NC
7953 size_t optlen;
7954
7955 if (ext != NULL)
7956 optlen = ext - str;
7957 else
7958 optlen = strlen (str);
7959
7960 if (optlen == 0)
7961 {
7962 as_bad (_("missing architecture name `%s'"), str);
7963 return 0;
7964 }
7965
7966 for (opt = aarch64_archs; opt->name != NULL; opt++)
7967 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7968 {
7969 march_cpu_opt = &opt->value;
7970 if (ext != NULL)
ae527cd8 7971 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
7972
7973 return 1;
7974 }
7975
7976 as_bad (_("unknown architecture `%s'\n"), str);
7977 return 0;
7978}
7979
69091a2c
YZ
7980/* ABIs. */
7981struct aarch64_option_abi_value_table
7982{
e0471c16 7983 const char *name;
69091a2c
YZ
7984 enum aarch64_abi_type value;
7985};
7986
7987static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7988 {"ilp32", AARCH64_ABI_ILP32},
7989 {"lp64", AARCH64_ABI_LP64},
7990 {NULL, 0}
7991};
7992
7993static int
17b9d67d 7994aarch64_parse_abi (const char *str)
69091a2c
YZ
7995{
7996 const struct aarch64_option_abi_value_table *opt;
7997 size_t optlen = strlen (str);
7998
7999 if (optlen == 0)
8000 {
8001 as_bad (_("missing abi name `%s'"), str);
8002 return 0;
8003 }
8004
8005 for (opt = aarch64_abis; opt->name != NULL; opt++)
8006 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8007 {
8008 aarch64_abi = opt->value;
8009 return 1;
8010 }
8011
8012 as_bad (_("unknown abi `%s'\n"), str);
8013 return 0;
8014}
8015
a06ea964 8016static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
8017#ifdef OBJ_ELF
8018 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8019 aarch64_parse_abi, NULL},
8020#endif /* OBJ_ELF */
a06ea964
NC
8021 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8022 aarch64_parse_cpu, NULL},
8023 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8024 aarch64_parse_arch, NULL},
8025 {NULL, NULL, 0, NULL}
8026};
8027
8028int
17b9d67d 8029md_parse_option (int c, const char *arg)
a06ea964
NC
8030{
8031 struct aarch64_option_table *opt;
8032 struct aarch64_long_option_table *lopt;
8033
8034 switch (c)
8035 {
8036#ifdef OPTION_EB
8037 case OPTION_EB:
8038 target_big_endian = 1;
8039 break;
8040#endif
8041
8042#ifdef OPTION_EL
8043 case OPTION_EL:
8044 target_big_endian = 0;
8045 break;
8046#endif
8047
8048 case 'a':
8049 /* Listing option. Just ignore these, we don't support additional
8050 ones. */
8051 return 0;
8052
8053 default:
8054 for (opt = aarch64_opts; opt->option != NULL; opt++)
8055 {
8056 if (c == opt->option[0]
8057 && ((arg == NULL && opt->option[1] == 0)
8058 || streq (arg, opt->option + 1)))
8059 {
8060 /* If the option is deprecated, tell the user. */
8061 if (opt->deprecated != NULL)
8062 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8063 arg ? arg : "", _(opt->deprecated));
8064
8065 if (opt->var != NULL)
8066 *opt->var = opt->value;
8067
8068 return 1;
8069 }
8070 }
8071
8072 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8073 {
8074 /* These options are expected to have an argument. */
8075 if (c == lopt->option[0]
8076 && arg != NULL
8077 && strncmp (arg, lopt->option + 1,
8078 strlen (lopt->option + 1)) == 0)
8079 {
8080 /* If the option is deprecated, tell the user. */
8081 if (lopt->deprecated != NULL)
8082 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8083 _(lopt->deprecated));
8084
8085 /* Call the sup-option parser. */
8086 return lopt->func (arg + strlen (lopt->option) - 1);
8087 }
8088 }
8089
8090 return 0;
8091 }
8092
8093 return 1;
8094}
8095
8096void
8097md_show_usage (FILE * fp)
8098{
8099 struct aarch64_option_table *opt;
8100 struct aarch64_long_option_table *lopt;
8101
8102 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8103
8104 for (opt = aarch64_opts; opt->option != NULL; opt++)
8105 if (opt->help != NULL)
8106 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8107
8108 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8109 if (lopt->help != NULL)
8110 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8111
8112#ifdef OPTION_EB
8113 fprintf (fp, _("\
8114 -EB assemble code for a big-endian cpu\n"));
8115#endif
8116
8117#ifdef OPTION_EL
8118 fprintf (fp, _("\
8119 -EL assemble code for a little-endian cpu\n"));
8120#endif
8121}
8122
8123/* Parse a .cpu directive. */
8124
8125static void
8126s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
8127{
8128 const struct aarch64_cpu_option_table *opt;
8129 char saved_char;
8130 char *name;
8131 char *ext;
8132 size_t optlen;
8133
8134 name = input_line_pointer;
8135 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8136 input_line_pointer++;
8137 saved_char = *input_line_pointer;
8138 *input_line_pointer = 0;
8139
8140 ext = strchr (name, '+');
8141
8142 if (ext != NULL)
8143 optlen = ext - name;
8144 else
8145 optlen = strlen (name);
8146
8147 /* Skip the first "all" entry. */
8148 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
8149 if (strlen (opt->name) == optlen
8150 && strncmp (name, opt->name, optlen) == 0)
8151 {
8152 mcpu_cpu_opt = &opt->value;
8153 if (ext != NULL)
ae527cd8 8154 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8155 return;
8156
8157 cpu_variant = *mcpu_cpu_opt;
8158
8159 *input_line_pointer = saved_char;
8160 demand_empty_rest_of_line ();
8161 return;
8162 }
8163 as_bad (_("unknown cpu `%s'"), name);
8164 *input_line_pointer = saved_char;
8165 ignore_rest_of_line ();
8166}
8167
8168
8169/* Parse a .arch directive. */
8170
8171static void
8172s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
8173{
8174 const struct aarch64_arch_option_table *opt;
8175 char saved_char;
8176 char *name;
8177 char *ext;
8178 size_t optlen;
8179
8180 name = input_line_pointer;
8181 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8182 input_line_pointer++;
8183 saved_char = *input_line_pointer;
8184 *input_line_pointer = 0;
8185
8186 ext = strchr (name, '+');
8187
8188 if (ext != NULL)
8189 optlen = ext - name;
8190 else
8191 optlen = strlen (name);
8192
8193 /* Skip the first "all" entry. */
8194 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
8195 if (strlen (opt->name) == optlen
8196 && strncmp (name, opt->name, optlen) == 0)
8197 {
8198 mcpu_cpu_opt = &opt->value;
8199 if (ext != NULL)
ae527cd8 8200 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8201 return;
8202
8203 cpu_variant = *mcpu_cpu_opt;
8204
8205 *input_line_pointer = saved_char;
8206 demand_empty_rest_of_line ();
8207 return;
8208 }
8209
8210 as_bad (_("unknown architecture `%s'\n"), name);
8211 *input_line_pointer = saved_char;
8212 ignore_rest_of_line ();
8213}
8214
ae527cd8
JB
8215/* Parse a .arch_extension directive. */
8216
8217static void
8218s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8219{
8220 char saved_char;
8221 char *ext = input_line_pointer;;
8222
8223 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8224 input_line_pointer++;
8225 saved_char = *input_line_pointer;
8226 *input_line_pointer = 0;
8227
8228 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8229 return;
8230
8231 cpu_variant = *mcpu_cpu_opt;
8232
8233 *input_line_pointer = saved_char;
8234 demand_empty_rest_of_line ();
8235}
8236
a06ea964
NC
8237/* Copy symbol information. */
8238
8239void
8240aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8241{
8242 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
8243}