]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-aarch64.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
6f2750fe 3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
79enum neon_el_type
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q
87};
88
89/* Bits for DEFINED field in neon_type_el. */
90#define NTA_HASTYPE 1
91#define NTA_HASINDEX 2
92
93struct neon_type_el
94{
95 enum neon_el_type type;
96 unsigned char defined;
97 unsigned width;
98 int64_t index;
99};
100
101#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
102
103struct reloc
104{
105 bfd_reloc_code_real_type type;
106 expressionS exp;
107 int pc_rel;
108 enum aarch64_opnd opnd;
109 uint32_t flags;
110 unsigned need_libopcodes_p : 1;
111};
112
113struct aarch64_instruction
114{
115 /* libopcodes structure for instruction intermediate representation. */
116 aarch64_inst base;
117 /* Record assembly errors found during the parsing. */
118 struct
119 {
120 enum aarch64_operand_error_kind kind;
121 const char *error;
122 } parsing_error;
123 /* The condition that appears in the assembly line. */
124 int cond;
125 /* Relocation information (including the GAS internal fixup). */
126 struct reloc reloc;
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
129};
130
131typedef struct aarch64_instruction aarch64_instruction;
132
133static aarch64_instruction inst;
134
135static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
137
138/* Diagnostics inline function utilites.
139
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
150
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
153 templates. */
154
155static inline void
156clear_error (void)
157{
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
160}
161
162static inline bfd_boolean
163error_p (void)
164{
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
166}
167
168static inline const char *
169get_error_message (void)
170{
171 return inst.parsing_error.error;
172}
173
a06ea964
NC
174static inline enum aarch64_operand_error_kind
175get_error_kind (void)
176{
177 return inst.parsing_error.kind;
178}
179
a06ea964
NC
180static inline void
181set_error (enum aarch64_operand_error_kind kind, const char *error)
182{
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
185}
186
187static inline void
188set_recoverable_error (const char *error)
189{
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
191}
192
193/* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
195static inline void
196set_default_error (void)
197{
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
199}
200
201static inline void
202set_syntax_error (const char *error)
203{
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
205}
206
207static inline void
208set_first_syntax_error (const char *error)
209{
210 if (! error_p ())
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
212}
213
214static inline void
215set_fatal_syntax_error (const char *error)
216{
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
218}
219\f
220/* Number of littlenums required to hold an extended precision number. */
221#define MAX_LITTLENUMS 6
222
223/* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
225 success. */
226#define PARSE_FAIL -1
227
228/* This is an invalid condition code that means no conditional field is
229 present. */
230#define COND_ALWAYS 0x10
231
232typedef struct
233{
234 const char *template;
235 unsigned long value;
236} asm_barrier_opt;
237
238typedef struct
239{
240 const char *template;
241 uint32_t value;
242} asm_nzcv;
243
244struct reloc_entry
245{
246 char *name;
247 bfd_reloc_code_real_type reloc;
248};
249
250/* Structure for a hash table entry for a register. */
251typedef struct
252{
253 const char *name;
254 unsigned char number;
255 unsigned char type;
256 unsigned char builtin;
257} reg_entry;
258
259/* Macros to define the register types and masks for the purpose
260 of parsing. */
261
262#undef AARCH64_REG_TYPES
263#define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
296 BASIC_REG_TYPE(MAX)
297
298#undef BASIC_REG_TYPE
299#define BASIC_REG_TYPE(T) REG_TYPE_##T,
300#undef MULTI_REG_TYPE
301#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
302
303/* Register type enumerators. */
304typedef enum
305{
306 /* A list of REG_TYPE_*. */
307 AARCH64_REG_TYPES
308} aarch64_reg_type;
309
310#undef BASIC_REG_TYPE
311#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
312#undef REG_TYPE
313#define REG_TYPE(T) (1 << REG_TYPE_##T)
314#undef MULTI_REG_TYPE
315#define MULTI_REG_TYPE(T,V) V,
316
317/* Values indexed by aarch64_reg_type to assist the type checking. */
318static const unsigned reg_type_masks[] =
319{
320 AARCH64_REG_TYPES
321};
322
323#undef BASIC_REG_TYPE
324#undef REG_TYPE
325#undef MULTI_REG_TYPE
326#undef AARCH64_REG_TYPES
327
328/* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
330 above. */
331static const char *
332get_reg_expected_msg (aarch64_reg_type reg_type)
333{
334 const char *msg;
335
336 switch (reg_type)
337 {
338 case REG_TYPE_R_32:
339 msg = N_("integer 32-bit register expected");
340 break;
341 case REG_TYPE_R_64:
342 msg = N_("integer 64-bit register expected");
343 break;
344 case REG_TYPE_R_N:
345 msg = N_("integer register expected");
346 break;
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
349 break;
350 case REG_TYPE_FP_B:
351 msg = N_("8-bit SIMD scalar register expected");
352 break;
353 case REG_TYPE_FP_H:
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
356 break;
357 case REG_TYPE_FP_S:
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
360 break;
361 case REG_TYPE_FP_D:
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
364 break;
365 case REG_TYPE_FP_Q:
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
368 break;
369 case REG_TYPE_CN:
370 msg = N_("C0 - C15 expected");
371 break;
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
374 break;
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
377 break;
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
380 break;
381 default:
382 as_fatal (_("invalid register type %d"), reg_type);
383 }
384 return msg;
385}
386
387/* Some well known registers that we refer to directly elsewhere. */
388#define REG_SP 31
389
390/* Instructions take 4 bytes in the object file. */
391#define INSN_SIZE 4
392
393/* Define some common error messages. */
394#define BAD_SP _("SP not allowed here")
395
396static struct hash_control *aarch64_ops_hsh;
397static struct hash_control *aarch64_cond_hsh;
398static struct hash_control *aarch64_shift_hsh;
399static struct hash_control *aarch64_sys_regs_hsh;
400static struct hash_control *aarch64_pstatefield_hsh;
401static struct hash_control *aarch64_sys_regs_ic_hsh;
402static struct hash_control *aarch64_sys_regs_dc_hsh;
403static struct hash_control *aarch64_sys_regs_at_hsh;
404static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405static struct hash_control *aarch64_reg_hsh;
406static struct hash_control *aarch64_barrier_opt_hsh;
407static struct hash_control *aarch64_nzcv_hsh;
408static struct hash_control *aarch64_pldop_hsh;
1e6f4800 409static struct hash_control *aarch64_hint_opt_hsh;
a06ea964
NC
410
411/* Stuff needed to resolve the label ambiguity
412 As:
413 ...
414 label: <insn>
415 may differ from:
416 ...
417 label:
418 <insn> */
419
420static symbolS *last_label_seen;
421
422/* Literal pool structure. Held on a per-section
423 and per-sub-section basis. */
424
425#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
426typedef struct literal_expression
427{
428 expressionS exp;
429 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
430 LITTLENUM_TYPE * bignum;
431} literal_expression;
432
a06ea964
NC
433typedef struct literal_pool
434{
55d9b4c1 435 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
436 unsigned int next_free_entry;
437 unsigned int id;
438 symbolS *symbol;
439 segT section;
440 subsegT sub_section;
441 int size;
442 struct literal_pool *next;
443} literal_pool;
444
445/* Pointer to a linked list of literal pools. */
446static literal_pool *list_of_pools = NULL;
447\f
448/* Pure syntax. */
449
450/* This array holds the chars that always start a comment. If the
451 pre-processor is disabled, these aren't very useful. */
452const char comment_chars[] = "";
453
454/* This array holds the chars that only start a comment at the beginning of
455 a line. If the line seems to have the form '# 123 filename'
456 .line and .file directives will appear in the pre-processed output. */
457/* Note that input_file.c hand checks for '#' at the beginning of the
458 first line of the input file. This is because the compiler outputs
459 #NO_APP at the beginning of its output. */
460/* Also note that comments like this one will always work. */
461const char line_comment_chars[] = "#";
462
463const char line_separator_chars[] = ";";
464
465/* Chars that can be used to separate mant
466 from exp in floating point numbers. */
467const char EXP_CHARS[] = "eE";
468
469/* Chars that mean this number is a floating point constant. */
470/* As in 0f12.456 */
471/* or 0d1.2345e12 */
472
473const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
474
475/* Prefix character that indicates the start of an immediate value. */
476#define is_immediate_prefix(C) ((C) == '#')
477
478/* Separator character handling. */
479
480#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
481
482static inline bfd_boolean
483skip_past_char (char **str, char c)
484{
485 if (**str == c)
486 {
487 (*str)++;
488 return TRUE;
489 }
490 else
491 return FALSE;
492}
493
494#define skip_past_comma(str) skip_past_char (str, ',')
495
496/* Arithmetic expressions (possibly involving symbols). */
497
a06ea964
NC
498static bfd_boolean in_my_get_expression_p = FALSE;
499
500/* Third argument to my_get_expression. */
501#define GE_NO_PREFIX 0
502#define GE_OPT_PREFIX 1
503
504/* Return TRUE if the string pointed by *STR is successfully parsed
505 as an valid expression; *EP will be filled with the information of
506 such an expression. Otherwise return FALSE. */
507
508static bfd_boolean
509my_get_expression (expressionS * ep, char **str, int prefix_mode,
510 int reject_absent)
511{
512 char *save_in;
513 segT seg;
514 int prefix_present_p = 0;
515
516 switch (prefix_mode)
517 {
518 case GE_NO_PREFIX:
519 break;
520 case GE_OPT_PREFIX:
521 if (is_immediate_prefix (**str))
522 {
523 (*str)++;
524 prefix_present_p = 1;
525 }
526 break;
527 default:
528 abort ();
529 }
530
531 memset (ep, 0, sizeof (expressionS));
532
533 save_in = input_line_pointer;
534 input_line_pointer = *str;
535 in_my_get_expression_p = TRUE;
536 seg = expression (ep);
537 in_my_get_expression_p = FALSE;
538
539 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
540 {
541 /* We found a bad expression in md_operand(). */
542 *str = input_line_pointer;
543 input_line_pointer = save_in;
544 if (prefix_present_p && ! error_p ())
545 set_fatal_syntax_error (_("bad expression"));
546 else
547 set_first_syntax_error (_("bad expression"));
548 return FALSE;
549 }
550
551#ifdef OBJ_AOUT
552 if (seg != absolute_section
553 && seg != text_section
554 && seg != data_section
555 && seg != bss_section && seg != undefined_section)
556 {
557 set_syntax_error (_("bad segment"));
558 *str = input_line_pointer;
559 input_line_pointer = save_in;
560 return FALSE;
561 }
562#else
563 (void) seg;
564#endif
565
a06ea964
NC
566 *str = input_line_pointer;
567 input_line_pointer = save_in;
568 return TRUE;
569}
570
571/* Turn a string in input_line_pointer into a floating point constant
572 of type TYPE, and store the appropriate bytes in *LITP. The number
573 of LITTLENUMS emitted is stored in *SIZEP. An error message is
574 returned, or NULL on OK. */
575
576char *
577md_atof (int type, char *litP, int *sizeP)
578{
579 return ieee_md_atof (type, litP, sizeP, target_big_endian);
580}
581
582/* We handle all bad expressions here, so that we can report the faulty
583 instruction in the error message. */
584void
585md_operand (expressionS * exp)
586{
587 if (in_my_get_expression_p)
588 exp->X_op = O_illegal;
589}
590
591/* Immediate values. */
592
593/* Errors may be set multiple times during parsing or bit encoding
594 (particularly in the Neon bits), but usually the earliest error which is set
595 will be the most meaningful. Avoid overwriting it with later (cascading)
596 errors by calling this function. */
597
598static void
599first_error (const char *error)
600{
601 if (! error_p ())
602 set_syntax_error (error);
603}
604
605/* Similiar to first_error, but this function accepts formatted error
606 message. */
607static void
608first_error_fmt (const char *format, ...)
609{
610 va_list args;
611 enum
612 { size = 100 };
613 /* N.B. this single buffer will not cause error messages for different
614 instructions to pollute each other; this is because at the end of
615 processing of each assembly line, error message if any will be
616 collected by as_bad. */
617 static char buffer[size];
618
619 if (! error_p ())
620 {
3e0baa28 621 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
622 va_start (args, format);
623 ret = vsnprintf (buffer, size, format, args);
624 know (ret <= size - 1 && ret >= 0);
625 va_end (args);
626 set_syntax_error (buffer);
627 }
628}
629
630/* Register parsing. */
631
632/* Generic register parser which is called by other specialized
633 register parsers.
634 CCP points to what should be the beginning of a register name.
635 If it is indeed a valid register name, advance CCP over it and
636 return the reg_entry structure; otherwise return NULL.
637 It does not issue diagnostics. */
638
639static reg_entry *
640parse_reg (char **ccp)
641{
642 char *start = *ccp;
643 char *p;
644 reg_entry *reg;
645
646#ifdef REGISTER_PREFIX
647 if (*start != REGISTER_PREFIX)
648 return NULL;
649 start++;
650#endif
651
652 p = start;
653 if (!ISALPHA (*p) || !is_name_beginner (*p))
654 return NULL;
655
656 do
657 p++;
658 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
659
660 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
661
662 if (!reg)
663 return NULL;
664
665 *ccp = p;
666 return reg;
667}
668
669/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
670 return FALSE. */
671static bfd_boolean
672aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
673{
674 if (reg->type == type)
675 return TRUE;
676
677 switch (type)
678 {
679 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
680 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
681 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
682 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
683 case REG_TYPE_VN: /* Vector register. */
684 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
685 return ((reg_type_masks[reg->type] & reg_type_masks[type])
686 == reg_type_masks[reg->type]);
687 default:
688 as_fatal ("unhandled type %d", type);
689 abort ();
690 }
691}
692
693/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
694 Return the register number otherwise. *ISREG32 is set to one if the
695 register is 32-bit wide; *ISREGZERO is set to one if the register is
696 of type Z_32 or Z_64.
697 Note that this function does not issue any diagnostics. */
698
699static int
700aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
701 int *isreg32, int *isregzero)
702{
703 char *str = *ccp;
704 const reg_entry *reg = parse_reg (&str);
705
706 if (reg == NULL)
707 return PARSE_FAIL;
708
709 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
710 return PARSE_FAIL;
711
712 switch (reg->type)
713 {
714 case REG_TYPE_SP_32:
715 case REG_TYPE_SP_64:
716 if (reject_sp)
717 return PARSE_FAIL;
718 *isreg32 = reg->type == REG_TYPE_SP_32;
719 *isregzero = 0;
720 break;
721 case REG_TYPE_R_32:
722 case REG_TYPE_R_64:
723 *isreg32 = reg->type == REG_TYPE_R_32;
724 *isregzero = 0;
725 break;
726 case REG_TYPE_Z_32:
727 case REG_TYPE_Z_64:
728 if (reject_rz)
729 return PARSE_FAIL;
730 *isreg32 = reg->type == REG_TYPE_Z_32;
731 *isregzero = 1;
732 break;
733 default:
734 return PARSE_FAIL;
735 }
736
737 *ccp = str;
738
739 return reg->number;
740}
741
742/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
743 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
744 otherwise return FALSE.
745
746 Accept only one occurrence of:
3067d3b9 747 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964
NC
748 b h s d q */
749static bfd_boolean
750parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
751{
752 char *ptr = *str;
753 unsigned width;
754 unsigned element_size;
755 enum neon_el_type type;
756
757 /* skip '.' */
758 ptr++;
759
760 if (!ISDIGIT (*ptr))
761 {
762 width = 0;
763 goto elt_size;
764 }
765 width = strtoul (ptr, &ptr, 10);
766 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
767 {
768 first_error_fmt (_("bad size %d in vector width specifier"), width);
769 return FALSE;
770 }
771
772elt_size:
773 switch (TOLOWER (*ptr))
774 {
775 case 'b':
776 type = NT_b;
777 element_size = 8;
778 break;
779 case 'h':
780 type = NT_h;
781 element_size = 16;
782 break;
783 case 's':
784 type = NT_s;
785 element_size = 32;
786 break;
787 case 'd':
788 type = NT_d;
789 element_size = 64;
790 break;
791 case 'q':
792 if (width == 1)
793 {
794 type = NT_q;
795 element_size = 128;
796 break;
797 }
798 /* fall through. */
799 default:
800 if (*ptr != '\0')
801 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
802 else
803 first_error (_("missing element size"));
804 return FALSE;
805 }
3067d3b9
MW
806 if (width != 0 && width * element_size != 64 && width * element_size != 128
807 && !(width == 2 && element_size == 16))
a06ea964
NC
808 {
809 first_error_fmt (_
810 ("invalid element size %d and vector size combination %c"),
811 width, *ptr);
812 return FALSE;
813 }
814 ptr++;
815
816 parsed_type->type = type;
817 parsed_type->width = width;
818
819 *str = ptr;
820
821 return TRUE;
822}
823
824/* Parse a single type, e.g. ".8b", leading period included.
825 Only applicable to Vn registers.
826
827 Return TRUE on success; otherwise return FALSE. */
828static bfd_boolean
829parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
830{
831 char *str = *ccp;
832
833 if (*str == '.')
834 {
835 if (! parse_neon_type_for_operand (vectype, &str))
836 {
837 first_error (_("vector type expected"));
838 return FALSE;
839 }
840 }
841 else
842 return FALSE;
843
844 *ccp = str;
845
846 return TRUE;
847}
848
849/* Parse a register of the type TYPE.
850
851 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
852 name or the parsed register is not of TYPE.
853
854 Otherwise return the register number, and optionally fill in the actual
855 type of the register in *RTYPE when multiple alternatives were given, and
856 return the register shape and element index information in *TYPEINFO.
857
858 IN_REG_LIST should be set with TRUE if the caller is parsing a register
859 list. */
860
861static int
862parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
863 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
864{
865 char *str = *ccp;
866 const reg_entry *reg = parse_reg (&str);
867 struct neon_type_el atype;
868 struct neon_type_el parsetype;
869 bfd_boolean is_typed_vecreg = FALSE;
870
871 atype.defined = 0;
872 atype.type = NT_invtype;
873 atype.width = -1;
874 atype.index = 0;
875
876 if (reg == NULL)
877 {
878 if (typeinfo)
879 *typeinfo = atype;
880 set_default_error ();
881 return PARSE_FAIL;
882 }
883
884 if (! aarch64_check_reg_type (reg, type))
885 {
886 DEBUG_TRACE ("reg type check failed");
887 set_default_error ();
888 return PARSE_FAIL;
889 }
890 type = reg->type;
891
892 if (type == REG_TYPE_VN
893 && parse_neon_operand_type (&parsetype, &str))
894 {
895 /* Register if of the form Vn.[bhsdq]. */
896 is_typed_vecreg = TRUE;
897
898 if (parsetype.width == 0)
899 /* Expect index. In the new scheme we cannot have
900 Vn.[bhsdq] represent a scalar. Therefore any
901 Vn.[bhsdq] should have an index following it.
902 Except in reglists ofcourse. */
903 atype.defined |= NTA_HASINDEX;
904 else
905 atype.defined |= NTA_HASTYPE;
906
907 atype.type = parsetype.type;
908 atype.width = parsetype.width;
909 }
910
911 if (skip_past_char (&str, '['))
912 {
913 expressionS exp;
914
915 /* Reject Sn[index] syntax. */
916 if (!is_typed_vecreg)
917 {
918 first_error (_("this type of register can't be indexed"));
919 return PARSE_FAIL;
920 }
921
922 if (in_reg_list == TRUE)
923 {
924 first_error (_("index not allowed inside register list"));
925 return PARSE_FAIL;
926 }
927
928 atype.defined |= NTA_HASINDEX;
929
930 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
931
932 if (exp.X_op != O_constant)
933 {
934 first_error (_("constant expression required"));
935 return PARSE_FAIL;
936 }
937
938 if (! skip_past_char (&str, ']'))
939 return PARSE_FAIL;
940
941 atype.index = exp.X_add_number;
942 }
943 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
944 {
945 /* Indexed vector register expected. */
946 first_error (_("indexed vector register expected"));
947 return PARSE_FAIL;
948 }
949
950 /* A vector reg Vn should be typed or indexed. */
951 if (type == REG_TYPE_VN && atype.defined == 0)
952 {
953 first_error (_("invalid use of vector register"));
954 }
955
956 if (typeinfo)
957 *typeinfo = atype;
958
959 if (rtype)
960 *rtype = type;
961
962 *ccp = str;
963
964 return reg->number;
965}
966
967/* Parse register.
968
969 Return the register number on success; return PARSE_FAIL otherwise.
970
971 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
972 the register (e.g. NEON double or quad reg when either has been requested).
973
974 If this is a NEON vector register with additional type information, fill
975 in the struct pointed to by VECTYPE (if non-NULL).
976
977 This parser does not handle register list. */
978
979static int
980aarch64_reg_parse (char **ccp, aarch64_reg_type type,
981 aarch64_reg_type *rtype, struct neon_type_el *vectype)
982{
983 struct neon_type_el atype;
984 char *str = *ccp;
985 int reg = parse_typed_reg (&str, type, rtype, &atype,
986 /*in_reg_list= */ FALSE);
987
988 if (reg == PARSE_FAIL)
989 return PARSE_FAIL;
990
991 if (vectype)
992 *vectype = atype;
993
994 *ccp = str;
995
996 return reg;
997}
998
999static inline bfd_boolean
1000eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
1001{
1002 return
1003 e1.type == e2.type
1004 && e1.defined == e2.defined
1005 && e1.width == e2.width && e1.index == e2.index;
1006}
1007
1008/* This function parses the NEON register list. On success, it returns
1009 the parsed register list information in the following encoded format:
1010
1011 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1012 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1013
1014 The information of the register shape and/or index is returned in
1015 *VECTYPE.
1016
1017 It returns PARSE_FAIL if the register list is invalid.
1018
1019 The list contains one to four registers.
1020 Each register can be one of:
1021 <Vt>.<T>[<index>]
1022 <Vt>.<T>
1023 All <T> should be identical.
1024 All <index> should be identical.
1025 There are restrictions on <Vt> numbers which are checked later
1026 (by reg_list_valid_p). */
1027
1028static int
1029parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1030{
1031 char *str = *ccp;
1032 int nb_regs;
1033 struct neon_type_el typeinfo, typeinfo_first;
1034 int val, val_range;
1035 int in_range;
1036 int ret_val;
1037 int i;
1038 bfd_boolean error = FALSE;
1039 bfd_boolean expect_index = FALSE;
1040
1041 if (*str != '{')
1042 {
1043 set_syntax_error (_("expecting {"));
1044 return PARSE_FAIL;
1045 }
1046 str++;
1047
1048 nb_regs = 0;
1049 typeinfo_first.defined = 0;
1050 typeinfo_first.type = NT_invtype;
1051 typeinfo_first.width = -1;
1052 typeinfo_first.index = 0;
1053 ret_val = 0;
1054 val = -1;
1055 val_range = -1;
1056 in_range = 0;
1057 do
1058 {
1059 if (in_range)
1060 {
1061 str++; /* skip over '-' */
1062 val_range = val;
1063 }
1064 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1065 /*in_reg_list= */ TRUE);
1066 if (val == PARSE_FAIL)
1067 {
1068 set_first_syntax_error (_("invalid vector register in list"));
1069 error = TRUE;
1070 continue;
1071 }
1072 /* reject [bhsd]n */
1073 if (typeinfo.defined == 0)
1074 {
1075 set_first_syntax_error (_("invalid scalar register in list"));
1076 error = TRUE;
1077 continue;
1078 }
1079
1080 if (typeinfo.defined & NTA_HASINDEX)
1081 expect_index = TRUE;
1082
1083 if (in_range)
1084 {
1085 if (val < val_range)
1086 {
1087 set_first_syntax_error
1088 (_("invalid range in vector register list"));
1089 error = TRUE;
1090 }
1091 val_range++;
1092 }
1093 else
1094 {
1095 val_range = val;
1096 if (nb_regs == 0)
1097 typeinfo_first = typeinfo;
1098 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1099 {
1100 set_first_syntax_error
1101 (_("type mismatch in vector register list"));
1102 error = TRUE;
1103 }
1104 }
1105 if (! error)
1106 for (i = val_range; i <= val; i++)
1107 {
1108 ret_val |= i << (5 * nb_regs);
1109 nb_regs++;
1110 }
1111 in_range = 0;
1112 }
1113 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1114
1115 skip_whitespace (str);
1116 if (*str != '}')
1117 {
1118 set_first_syntax_error (_("end of vector register list not found"));
1119 error = TRUE;
1120 }
1121 str++;
1122
1123 skip_whitespace (str);
1124
1125 if (expect_index)
1126 {
1127 if (skip_past_char (&str, '['))
1128 {
1129 expressionS exp;
1130
1131 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1132 if (exp.X_op != O_constant)
1133 {
1134 set_first_syntax_error (_("constant expression required."));
1135 error = TRUE;
1136 }
1137 if (! skip_past_char (&str, ']'))
1138 error = TRUE;
1139 else
1140 typeinfo_first.index = exp.X_add_number;
1141 }
1142 else
1143 {
1144 set_first_syntax_error (_("expected index"));
1145 error = TRUE;
1146 }
1147 }
1148
1149 if (nb_regs > 4)
1150 {
1151 set_first_syntax_error (_("too many registers in vector register list"));
1152 error = TRUE;
1153 }
1154 else if (nb_regs == 0)
1155 {
1156 set_first_syntax_error (_("empty vector register list"));
1157 error = TRUE;
1158 }
1159
1160 *ccp = str;
1161 if (! error)
1162 *vectype = typeinfo_first;
1163
1164 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1165}
1166
1167/* Directives: register aliases. */
1168
1169static reg_entry *
1170insert_reg_alias (char *str, int number, aarch64_reg_type type)
1171{
1172 reg_entry *new;
1173 const char *name;
1174
1175 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1176 {
1177 if (new->builtin)
1178 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1179 str);
1180
1181 /* Only warn about a redefinition if it's not defined as the
1182 same register. */
1183 else if (new->number != number || new->type != type)
1184 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1185
1186 return NULL;
1187 }
1188
1189 name = xstrdup (str);
1190 new = xmalloc (sizeof (reg_entry));
1191
1192 new->name = name;
1193 new->number = number;
1194 new->type = type;
1195 new->builtin = FALSE;
1196
1197 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1198 abort ();
1199
1200 return new;
1201}
1202
1203/* Look for the .req directive. This is of the form:
1204
1205 new_register_name .req existing_register_name
1206
1207 If we find one, or if it looks sufficiently like one that we want to
1208 handle any error here, return TRUE. Otherwise return FALSE. */
1209
1210static bfd_boolean
1211create_register_alias (char *newname, char *p)
1212{
1213 const reg_entry *old;
1214 char *oldname, *nbuf;
1215 size_t nlen;
1216
1217 /* The input scrubber ensures that whitespace after the mnemonic is
1218 collapsed to single spaces. */
1219 oldname = p;
1220 if (strncmp (oldname, " .req ", 6) != 0)
1221 return FALSE;
1222
1223 oldname += 6;
1224 if (*oldname == '\0')
1225 return FALSE;
1226
1227 old = hash_find (aarch64_reg_hsh, oldname);
1228 if (!old)
1229 {
1230 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1231 return TRUE;
1232 }
1233
1234 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1235 the desired alias name, and p points to its end. If not, then
1236 the desired alias name is in the global original_case_string. */
1237#ifdef TC_CASE_SENSITIVE
1238 nlen = p - newname;
1239#else
1240 newname = original_case_string;
1241 nlen = strlen (newname);
1242#endif
1243
e1fa0163 1244 nbuf = xmalloc (nlen + 1);
a06ea964
NC
1245 memcpy (nbuf, newname, nlen);
1246 nbuf[nlen] = '\0';
1247
1248 /* Create aliases under the new name as stated; an all-lowercase
1249 version of the new name; and an all-uppercase version of the new
1250 name. */
1251 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1252 {
1253 for (p = nbuf; *p; p++)
1254 *p = TOUPPER (*p);
1255
1256 if (strncmp (nbuf, newname, nlen))
1257 {
1258 /* If this attempt to create an additional alias fails, do not bother
1259 trying to create the all-lower case alias. We will fail and issue
1260 a second, duplicate error message. This situation arises when the
1261 programmer does something like:
1262 foo .req r0
1263 Foo .req r1
1264 The second .req creates the "Foo" alias but then fails to create
1265 the artificial FOO alias because it has already been created by the
1266 first .req. */
1267 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
1268 {
1269 free (nbuf);
1270 return TRUE;
1271 }
a06ea964
NC
1272 }
1273
1274 for (p = nbuf; *p; p++)
1275 *p = TOLOWER (*p);
1276
1277 if (strncmp (nbuf, newname, nlen))
1278 insert_reg_alias (nbuf, old->number, old->type);
1279 }
1280
e1fa0163 1281 free (nbuf);
a06ea964
NC
1282 return TRUE;
1283}
1284
1285/* Should never be called, as .req goes between the alias and the
1286 register name, not at the beginning of the line. */
1287static void
1288s_req (int a ATTRIBUTE_UNUSED)
1289{
1290 as_bad (_("invalid syntax for .req directive"));
1291}
1292
1293/* The .unreq directive deletes an alias which was previously defined
1294 by .req. For example:
1295
1296 my_alias .req r11
1297 .unreq my_alias */
1298
1299static void
1300s_unreq (int a ATTRIBUTE_UNUSED)
1301{
1302 char *name;
1303 char saved_char;
1304
1305 name = input_line_pointer;
1306
1307 while (*input_line_pointer != 0
1308 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1309 ++input_line_pointer;
1310
1311 saved_char = *input_line_pointer;
1312 *input_line_pointer = 0;
1313
1314 if (!*name)
1315 as_bad (_("invalid syntax for .unreq directive"));
1316 else
1317 {
1318 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1319
1320 if (!reg)
1321 as_bad (_("unknown register alias '%s'"), name);
1322 else if (reg->builtin)
1323 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1324 name);
1325 else
1326 {
1327 char *p;
1328 char *nbuf;
1329
1330 hash_delete (aarch64_reg_hsh, name, FALSE);
1331 free ((char *) reg->name);
1332 free (reg);
1333
1334 /* Also locate the all upper case and all lower case versions.
1335 Do not complain if we cannot find one or the other as it
1336 was probably deleted above. */
1337
1338 nbuf = strdup (name);
1339 for (p = nbuf; *p; p++)
1340 *p = TOUPPER (*p);
1341 reg = hash_find (aarch64_reg_hsh, nbuf);
1342 if (reg)
1343 {
1344 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1345 free ((char *) reg->name);
1346 free (reg);
1347 }
1348
1349 for (p = nbuf; *p; p++)
1350 *p = TOLOWER (*p);
1351 reg = hash_find (aarch64_reg_hsh, nbuf);
1352 if (reg)
1353 {
1354 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1355 free ((char *) reg->name);
1356 free (reg);
1357 }
1358
1359 free (nbuf);
1360 }
1361 }
1362
1363 *input_line_pointer = saved_char;
1364 demand_empty_rest_of_line ();
1365}
1366
1367/* Directives: Instruction set selection. */
1368
1369#ifdef OBJ_ELF
1370/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1371 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1372 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1373 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1374
1375/* Create a new mapping symbol for the transition to STATE. */
1376
1377static void
1378make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1379{
1380 symbolS *symbolP;
1381 const char *symname;
1382 int type;
1383
1384 switch (state)
1385 {
1386 case MAP_DATA:
1387 symname = "$d";
1388 type = BSF_NO_FLAGS;
1389 break;
1390 case MAP_INSN:
1391 symname = "$x";
1392 type = BSF_NO_FLAGS;
1393 break;
1394 default:
1395 abort ();
1396 }
1397
1398 symbolP = symbol_new (symname, now_seg, value, frag);
1399 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1400
1401 /* Save the mapping symbols for future reference. Also check that
1402 we do not place two mapping symbols at the same offset within a
1403 frag. We'll handle overlap between frags in
1404 check_mapping_symbols.
1405
1406 If .fill or other data filling directive generates zero sized data,
1407 the mapping symbol for the following code will have the same value
1408 as the one generated for the data filling directive. In this case,
1409 we replace the old symbol with the new one at the same address. */
1410 if (value == 0)
1411 {
1412 if (frag->tc_frag_data.first_map != NULL)
1413 {
1414 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1415 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1416 &symbol_lastP);
1417 }
1418 frag->tc_frag_data.first_map = symbolP;
1419 }
1420 if (frag->tc_frag_data.last_map != NULL)
1421 {
1422 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1423 S_GET_VALUE (symbolP));
1424 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1425 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1426 &symbol_lastP);
1427 }
1428 frag->tc_frag_data.last_map = symbolP;
1429}
1430
1431/* We must sometimes convert a region marked as code to data during
1432 code alignment, if an odd number of bytes have to be padded. The
1433 code mapping symbol is pushed to an aligned address. */
1434
1435static void
1436insert_data_mapping_symbol (enum mstate state,
1437 valueT value, fragS * frag, offsetT bytes)
1438{
1439 /* If there was already a mapping symbol, remove it. */
1440 if (frag->tc_frag_data.last_map != NULL
1441 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1442 frag->fr_address + value)
1443 {
1444 symbolS *symp = frag->tc_frag_data.last_map;
1445
1446 if (value == 0)
1447 {
1448 know (frag->tc_frag_data.first_map == symp);
1449 frag->tc_frag_data.first_map = NULL;
1450 }
1451 frag->tc_frag_data.last_map = NULL;
1452 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1453 }
1454
1455 make_mapping_symbol (MAP_DATA, value, frag);
1456 make_mapping_symbol (state, value + bytes, frag);
1457}
1458
1459static void mapping_state_2 (enum mstate state, int max_chars);
1460
1461/* Set the mapping state to STATE. Only call this when about to
1462 emit some STATE bytes to the file. */
1463
1464void
1465mapping_state (enum mstate state)
1466{
1467 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1468
a578ef7e
JW
1469 if (state == MAP_INSN)
1470 /* AArch64 instructions require 4-byte alignment. When emitting
1471 instructions into any section, record the appropriate section
1472 alignment. */
1473 record_alignment (now_seg, 2);
1474
448eb63d
RL
1475 if (mapstate == state)
1476 /* The mapping symbol has already been emitted.
1477 There is nothing else to do. */
1478 return;
1479
c1baaddf 1480#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1481 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1482 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1483 evaluated later in the next else. */
a06ea964 1484 return;
c1baaddf
RL
1485 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1486 {
1487 /* Only add the symbol if the offset is > 0:
1488 if we're at the first frag, check it's size > 0;
1489 if we're not at the first frag, then for sure
1490 the offset is > 0. */
1491 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1492 const int add_symbol = (frag_now != frag_first)
1493 || (frag_now_fix () > 0);
1494
1495 if (add_symbol)
1496 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1497 }
1498#undef TRANSITION
a06ea964
NC
1499
1500 mapping_state_2 (state, 0);
a06ea964
NC
1501}
1502
1503/* Same as mapping_state, but MAX_CHARS bytes have already been
1504 allocated. Put the mapping symbol that far back. */
1505
1506static void
1507mapping_state_2 (enum mstate state, int max_chars)
1508{
1509 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1510
1511 if (!SEG_NORMAL (now_seg))
1512 return;
1513
1514 if (mapstate == state)
1515 /* The mapping symbol has already been emitted.
1516 There is nothing else to do. */
1517 return;
1518
1519 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1520 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1521}
1522#else
1523#define mapping_state(x) /* nothing */
1524#define mapping_state_2(x, y) /* nothing */
1525#endif
1526
1527/* Directives: sectioning and alignment. */
1528
1529static void
1530s_bss (int ignore ATTRIBUTE_UNUSED)
1531{
1532 /* We don't support putting frags in the BSS segment, we fake it by
1533 marking in_bss, then looking at s_skip for clues. */
1534 subseg_set (bss_section, 0);
1535 demand_empty_rest_of_line ();
1536 mapping_state (MAP_DATA);
1537}
1538
1539static void
1540s_even (int ignore ATTRIBUTE_UNUSED)
1541{
1542 /* Never make frag if expect extra pass. */
1543 if (!need_pass_2)
1544 frag_align (1, 0, 0);
1545
1546 record_alignment (now_seg, 1);
1547
1548 demand_empty_rest_of_line ();
1549}
1550
1551/* Directives: Literal pools. */
1552
1553static literal_pool *
1554find_literal_pool (int size)
1555{
1556 literal_pool *pool;
1557
1558 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1559 {
1560 if (pool->section == now_seg
1561 && pool->sub_section == now_subseg && pool->size == size)
1562 break;
1563 }
1564
1565 return pool;
1566}
1567
1568static literal_pool *
1569find_or_make_literal_pool (int size)
1570{
1571 /* Next literal pool ID number. */
1572 static unsigned int latest_pool_num = 1;
1573 literal_pool *pool;
1574
1575 pool = find_literal_pool (size);
1576
1577 if (pool == NULL)
1578 {
1579 /* Create a new pool. */
1580 pool = xmalloc (sizeof (*pool));
1581 if (!pool)
1582 return NULL;
1583
1584 /* Currently we always put the literal pool in the current text
1585 section. If we were generating "small" model code where we
1586 knew that all code and initialised data was within 1MB then
1587 we could output literals to mergeable, read-only data
1588 sections. */
1589
1590 pool->next_free_entry = 0;
1591 pool->section = now_seg;
1592 pool->sub_section = now_subseg;
1593 pool->size = size;
1594 pool->next = list_of_pools;
1595 pool->symbol = NULL;
1596
1597 /* Add it to the list. */
1598 list_of_pools = pool;
1599 }
1600
1601 /* New pools, and emptied pools, will have a NULL symbol. */
1602 if (pool->symbol == NULL)
1603 {
1604 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1605 (valueT) 0, &zero_address_frag);
1606 pool->id = latest_pool_num++;
1607 }
1608
1609 /* Done. */
1610 return pool;
1611}
1612
1613/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1614 Return TRUE on success, otherwise return FALSE. */
1615static bfd_boolean
1616add_to_lit_pool (expressionS *exp, int size)
1617{
1618 literal_pool *pool;
1619 unsigned int entry;
1620
1621 pool = find_or_make_literal_pool (size);
1622
1623 /* Check if this literal value is already in the pool. */
1624 for (entry = 0; entry < pool->next_free_entry; entry++)
1625 {
55d9b4c1
NC
1626 expressionS * litexp = & pool->literals[entry].exp;
1627
1628 if ((litexp->X_op == exp->X_op)
a06ea964 1629 && (exp->X_op == O_constant)
55d9b4c1
NC
1630 && (litexp->X_add_number == exp->X_add_number)
1631 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1632 break;
1633
55d9b4c1 1634 if ((litexp->X_op == exp->X_op)
a06ea964 1635 && (exp->X_op == O_symbol)
55d9b4c1
NC
1636 && (litexp->X_add_number == exp->X_add_number)
1637 && (litexp->X_add_symbol == exp->X_add_symbol)
1638 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1639 break;
1640 }
1641
1642 /* Do we need to create a new entry? */
1643 if (entry == pool->next_free_entry)
1644 {
1645 if (entry >= MAX_LITERAL_POOL_SIZE)
1646 {
1647 set_syntax_error (_("literal pool overflow"));
1648 return FALSE;
1649 }
1650
55d9b4c1 1651 pool->literals[entry].exp = *exp;
a06ea964 1652 pool->next_free_entry += 1;
55d9b4c1
NC
1653 if (exp->X_op == O_big)
1654 {
1655 /* PR 16688: Bignums are held in a single global array. We must
1656 copy and preserve that value now, before it is overwritten. */
1657 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1658 memcpy (pool->literals[entry].bignum, generic_bignum,
1659 CHARS_PER_LITTLENUM * exp->X_add_number);
1660 }
1661 else
1662 pool->literals[entry].bignum = NULL;
a06ea964
NC
1663 }
1664
1665 exp->X_op = O_symbol;
1666 exp->X_add_number = ((int) entry) * size;
1667 exp->X_add_symbol = pool->symbol;
1668
1669 return TRUE;
1670}
1671
1672/* Can't use symbol_new here, so have to create a symbol and then at
1673 a later date assign it a value. Thats what these functions do. */
1674
1675static void
1676symbol_locate (symbolS * symbolP,
1677 const char *name,/* It is copied, the caller can modify. */
1678 segT segment, /* Segment identifier (SEG_<something>). */
1679 valueT valu, /* Symbol value. */
1680 fragS * frag) /* Associated fragment. */
1681{
e57e6ddc 1682 size_t name_length;
a06ea964
NC
1683 char *preserved_copy_of_name;
1684
1685 name_length = strlen (name) + 1; /* +1 for \0. */
1686 obstack_grow (&notes, name, name_length);
1687 preserved_copy_of_name = obstack_finish (&notes);
1688
1689#ifdef tc_canonicalize_symbol_name
1690 preserved_copy_of_name =
1691 tc_canonicalize_symbol_name (preserved_copy_of_name);
1692#endif
1693
1694 S_SET_NAME (symbolP, preserved_copy_of_name);
1695
1696 S_SET_SEGMENT (symbolP, segment);
1697 S_SET_VALUE (symbolP, valu);
1698 symbol_clear_list_pointers (symbolP);
1699
1700 symbol_set_frag (symbolP, frag);
1701
1702 /* Link to end of symbol chain. */
1703 {
1704 extern int symbol_table_frozen;
1705
1706 if (symbol_table_frozen)
1707 abort ();
1708 }
1709
1710 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1711
1712 obj_symbol_new_hook (symbolP);
1713
1714#ifdef tc_symbol_new_hook
1715 tc_symbol_new_hook (symbolP);
1716#endif
1717
1718#ifdef DEBUG_SYMS
1719 verify_symbol_chain (symbol_rootP, symbol_lastP);
1720#endif /* DEBUG_SYMS */
1721}
1722
1723
1724static void
1725s_ltorg (int ignored ATTRIBUTE_UNUSED)
1726{
1727 unsigned int entry;
1728 literal_pool *pool;
1729 char sym_name[20];
1730 int align;
1731
67a32447 1732 for (align = 2; align <= 4; align++)
a06ea964
NC
1733 {
1734 int size = 1 << align;
1735
1736 pool = find_literal_pool (size);
1737 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1738 continue;
1739
1740 mapping_state (MAP_DATA);
1741
1742 /* Align pool as you have word accesses.
1743 Only make a frag if we have to. */
1744 if (!need_pass_2)
1745 frag_align (align, 0, 0);
1746
1747 record_alignment (now_seg, align);
1748
1749 sprintf (sym_name, "$$lit_\002%x", pool->id);
1750
1751 symbol_locate (pool->symbol, sym_name, now_seg,
1752 (valueT) frag_now_fix (), frag_now);
1753 symbol_table_insert (pool->symbol);
1754
1755 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1756 {
1757 expressionS * exp = & pool->literals[entry].exp;
1758
1759 if (exp->X_op == O_big)
1760 {
1761 /* PR 16688: Restore the global bignum value. */
1762 gas_assert (pool->literals[entry].bignum != NULL);
1763 memcpy (generic_bignum, pool->literals[entry].bignum,
1764 CHARS_PER_LITTLENUM * exp->X_add_number);
1765 }
1766
1767 /* First output the expression in the instruction to the pool. */
1768 emit_expr (exp, size); /* .word|.xword */
1769
1770 if (exp->X_op == O_big)
1771 {
1772 free (pool->literals[entry].bignum);
1773 pool->literals[entry].bignum = NULL;
1774 }
1775 }
a06ea964
NC
1776
1777 /* Mark the pool as empty. */
1778 pool->next_free_entry = 0;
1779 pool->symbol = NULL;
1780 }
1781}
1782
1783#ifdef OBJ_ELF
1784/* Forward declarations for functions below, in the MD interface
1785 section. */
1786static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1787static struct reloc_table_entry * find_reloc_table_entry (char **);
1788
1789/* Directives: Data. */
1790/* N.B. the support for relocation suffix in this directive needs to be
1791 implemented properly. */
1792
1793static void
1794s_aarch64_elf_cons (int nbytes)
1795{
1796 expressionS exp;
1797
1798#ifdef md_flush_pending_output
1799 md_flush_pending_output ();
1800#endif
1801
1802 if (is_it_end_of_statement ())
1803 {
1804 demand_empty_rest_of_line ();
1805 return;
1806 }
1807
1808#ifdef md_cons_align
1809 md_cons_align (nbytes);
1810#endif
1811
1812 mapping_state (MAP_DATA);
1813 do
1814 {
1815 struct reloc_table_entry *reloc;
1816
1817 expression (&exp);
1818
1819 if (exp.X_op != O_symbol)
1820 emit_expr (&exp, (unsigned int) nbytes);
1821 else
1822 {
1823 skip_past_char (&input_line_pointer, '#');
1824 if (skip_past_char (&input_line_pointer, ':'))
1825 {
1826 reloc = find_reloc_table_entry (&input_line_pointer);
1827 if (reloc == NULL)
1828 as_bad (_("unrecognized relocation suffix"));
1829 else
1830 as_bad (_("unimplemented relocation suffix"));
1831 ignore_rest_of_line ();
1832 return;
1833 }
1834 else
1835 emit_expr (&exp, (unsigned int) nbytes);
1836 }
1837 }
1838 while (*input_line_pointer++ == ',');
1839
1840 /* Put terminator back into stream. */
1841 input_line_pointer--;
1842 demand_empty_rest_of_line ();
1843}
1844
1845#endif /* OBJ_ELF */
1846
1847/* Output a 32-bit word, but mark as an instruction. */
1848
1849static void
1850s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1851{
1852 expressionS exp;
1853
1854#ifdef md_flush_pending_output
1855 md_flush_pending_output ();
1856#endif
1857
1858 if (is_it_end_of_statement ())
1859 {
1860 demand_empty_rest_of_line ();
1861 return;
1862 }
1863
a97902de 1864 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1865 MAP_DATA symbol pending. So we only align the address during
1866 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1867 For other sections, this is not guaranteed. */
c1baaddf 1868 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1869 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1870 frag_align_code (2, 0);
c1baaddf 1871
a06ea964
NC
1872#ifdef OBJ_ELF
1873 mapping_state (MAP_INSN);
1874#endif
1875
1876 do
1877 {
1878 expression (&exp);
1879 if (exp.X_op != O_constant)
1880 {
1881 as_bad (_("constant expression required"));
1882 ignore_rest_of_line ();
1883 return;
1884 }
1885
1886 if (target_big_endian)
1887 {
1888 unsigned int val = exp.X_add_number;
1889 exp.X_add_number = SWAP_32 (val);
1890 }
1891 emit_expr (&exp, 4);
1892 }
1893 while (*input_line_pointer++ == ',');
1894
1895 /* Put terminator back into stream. */
1896 input_line_pointer--;
1897 demand_empty_rest_of_line ();
1898}
1899
1900#ifdef OBJ_ELF
43a357f9
RL
1901/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1902
1903static void
1904s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1905{
1906 expressionS exp;
1907
1908 expression (&exp);
1909 frag_grow (4);
1910 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1911 BFD_RELOC_AARCH64_TLSDESC_ADD);
1912
1913 demand_empty_rest_of_line ();
1914}
1915
a06ea964
NC
1916/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1917
1918static void
1919s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1920{
1921 expressionS exp;
1922
1923 /* Since we're just labelling the code, there's no need to define a
1924 mapping symbol. */
1925 expression (&exp);
1926 /* Make sure there is enough room in this frag for the following
1927 blr. This trick only works if the blr follows immediately after
1928 the .tlsdesc directive. */
1929 frag_grow (4);
1930 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1931 BFD_RELOC_AARCH64_TLSDESC_CALL);
1932
1933 demand_empty_rest_of_line ();
1934}
43a357f9
RL
1935
1936/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
1937
1938static void
1939s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
1940{
1941 expressionS exp;
1942
1943 expression (&exp);
1944 frag_grow (4);
1945 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1946 BFD_RELOC_AARCH64_TLSDESC_LDR);
1947
1948 demand_empty_rest_of_line ();
1949}
a06ea964
NC
1950#endif /* OBJ_ELF */
1951
1952static void s_aarch64_arch (int);
1953static void s_aarch64_cpu (int);
ae527cd8 1954static void s_aarch64_arch_extension (int);
a06ea964
NC
1955
1956/* This table describes all the machine specific pseudo-ops the assembler
1957 has to support. The fields are:
1958 pseudo-op name without dot
1959 function to call to execute this pseudo-op
1960 Integer arg to pass to the function. */
1961
1962const pseudo_typeS md_pseudo_table[] = {
1963 /* Never called because '.req' does not start a line. */
1964 {"req", s_req, 0},
1965 {"unreq", s_unreq, 0},
1966 {"bss", s_bss, 0},
1967 {"even", s_even, 0},
1968 {"ltorg", s_ltorg, 0},
1969 {"pool", s_ltorg, 0},
1970 {"cpu", s_aarch64_cpu, 0},
1971 {"arch", s_aarch64_arch, 0},
ae527cd8 1972 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
1973 {"inst", s_aarch64_inst, 0},
1974#ifdef OBJ_ELF
43a357f9 1975 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 1976 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 1977 {"tlsdescldr", s_tlsdescldr, 0},
a06ea964
NC
1978 {"word", s_aarch64_elf_cons, 4},
1979 {"long", s_aarch64_elf_cons, 4},
1980 {"xword", s_aarch64_elf_cons, 8},
1981 {"dword", s_aarch64_elf_cons, 8},
1982#endif
1983 {0, 0, 0}
1984};
1985\f
1986
1987/* Check whether STR points to a register name followed by a comma or the
1988 end of line; REG_TYPE indicates which register types are checked
1989 against. Return TRUE if STR is such a register name; otherwise return
1990 FALSE. The function does not intend to produce any diagnostics, but since
1991 the register parser aarch64_reg_parse, which is called by this function,
1992 does produce diagnostics, we call clear_error to clear any diagnostics
1993 that may be generated by aarch64_reg_parse.
1994 Also, the function returns FALSE directly if there is any user error
1995 present at the function entry. This prevents the existing diagnostics
1996 state from being spoiled.
1997 The function currently serves parse_constant_immediate and
1998 parse_big_immediate only. */
1999static bfd_boolean
2000reg_name_p (char *str, aarch64_reg_type reg_type)
2001{
2002 int reg;
2003
2004 /* Prevent the diagnostics state from being spoiled. */
2005 if (error_p ())
2006 return FALSE;
2007
2008 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2009
2010 /* Clear the parsing error that may be set by the reg parser. */
2011 clear_error ();
2012
2013 if (reg == PARSE_FAIL)
2014 return FALSE;
2015
2016 skip_whitespace (str);
2017 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2018 return TRUE;
2019
2020 return FALSE;
2021}
2022
2023/* Parser functions used exclusively in instruction operands. */
2024
2025/* Parse an immediate expression which may not be constant.
2026
2027 To prevent the expression parser from pushing a register name
2028 into the symbol table as an undefined symbol, firstly a check is
2029 done to find out whether STR is a valid register name followed
2030 by a comma or the end of line. Return FALSE if STR is such a
2031 string. */
2032
2033static bfd_boolean
2034parse_immediate_expression (char **str, expressionS *exp)
2035{
2036 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
2037 {
2038 set_recoverable_error (_("immediate operand required"));
2039 return FALSE;
2040 }
2041
2042 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2043
2044 if (exp->X_op == O_absent)
2045 {
2046 set_fatal_syntax_error (_("missing immediate expression"));
2047 return FALSE;
2048 }
2049
2050 return TRUE;
2051}
2052
2053/* Constant immediate-value read function for use in insn parsing.
2054 STR points to the beginning of the immediate (with the optional
2055 leading #); *VAL receives the value.
2056
2057 Return TRUE on success; otherwise return FALSE. */
2058
2059static bfd_boolean
2060parse_constant_immediate (char **str, int64_t * val)
2061{
2062 expressionS exp;
2063
2064 if (! parse_immediate_expression (str, &exp))
2065 return FALSE;
2066
2067 if (exp.X_op != O_constant)
2068 {
2069 set_syntax_error (_("constant expression required"));
2070 return FALSE;
2071 }
2072
2073 *val = exp.X_add_number;
2074 return TRUE;
2075}
2076
2077static uint32_t
2078encode_imm_float_bits (uint32_t imm)
2079{
2080 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2081 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2082}
2083
62b0d0d5
YZ
2084/* Return TRUE if the single-precision floating-point value encoded in IMM
2085 can be expressed in the AArch64 8-bit signed floating-point format with
2086 3-bit exponent and normalized 4 bits of precision; in other words, the
2087 floating-point value must be expressable as
2088 (+/-) n / 16 * power (2, r)
2089 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2090
a06ea964
NC
2091static bfd_boolean
2092aarch64_imm_float_p (uint32_t imm)
2093{
62b0d0d5
YZ
2094 /* If a single-precision floating-point value has the following bit
2095 pattern, it can be expressed in the AArch64 8-bit floating-point
2096 format:
2097
2098 3 32222222 2221111111111
a06ea964 2099 1 09876543 21098765432109876543210
62b0d0d5
YZ
2100 n Eeeeeexx xxxx0000000000000000000
2101
2102 where n, e and each x are either 0 or 1 independently, with
2103 E == ~ e. */
a06ea964 2104
62b0d0d5
YZ
2105 uint32_t pattern;
2106
2107 /* Prepare the pattern for 'Eeeeee'. */
2108 if (((imm >> 30) & 0x1) == 0)
2109 pattern = 0x3e000000;
a06ea964 2110 else
62b0d0d5
YZ
2111 pattern = 0x40000000;
2112
2113 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2114 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2115}
2116
62b0d0d5
YZ
2117/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2118
2119 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2120 8-bit signed floating-point format with 3-bit exponent and normalized 4
2121 bits of precision (i.e. can be used in an FMOV instruction); return the
2122 equivalent single-precision encoding in *FPWORD.
2123
2124 Otherwise return FALSE. */
2125
a06ea964 2126static bfd_boolean
62b0d0d5
YZ
2127aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2128{
2129 /* If a double-precision floating-point value has the following bit
2130 pattern, it can be expressed in the AArch64 8-bit floating-point
2131 format:
2132
2133 6 66655555555 554444444...21111111111
2134 3 21098765432 109876543...098765432109876543210
2135 n Eeeeeeeeexx xxxx00000...000000000000000000000
2136
2137 where n, e and each x are either 0 or 1 independently, with
2138 E == ~ e. */
2139
2140 uint32_t pattern;
2141 uint32_t high32 = imm >> 32;
2142
2143 /* Lower 32 bits need to be 0s. */
2144 if ((imm & 0xffffffff) != 0)
2145 return FALSE;
2146
2147 /* Prepare the pattern for 'Eeeeeeeee'. */
2148 if (((high32 >> 30) & 0x1) == 0)
2149 pattern = 0x3fc00000;
2150 else
2151 pattern = 0x40000000;
2152
2153 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2154 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2155 {
2156 /* Convert to the single-precision encoding.
2157 i.e. convert
2158 n Eeeeeeeeexx xxxx00000...000000000000000000000
2159 to
2160 n Eeeeeexx xxxx0000000000000000000. */
2161 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2162 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2163 return TRUE;
2164 }
2165 else
2166 return FALSE;
2167}
2168
2169/* Parse a floating-point immediate. Return TRUE on success and return the
2170 value in *IMMED in the format of IEEE754 single-precision encoding.
2171 *CCP points to the start of the string; DP_P is TRUE when the immediate
2172 is expected to be in double-precision (N.B. this only matters when
2173 hexadecimal representation is involved).
2174
2175 N.B. 0.0 is accepted by this function. */
2176
2177static bfd_boolean
2178parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2179{
2180 char *str = *ccp;
2181 char *fpnum;
2182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2183 int found_fpchar = 0;
62b0d0d5
YZ
2184 int64_t val = 0;
2185 unsigned fpword = 0;
2186 bfd_boolean hex_p = FALSE;
a06ea964
NC
2187
2188 skip_past_char (&str, '#');
2189
a06ea964
NC
2190 fpnum = str;
2191 skip_whitespace (fpnum);
2192
2193 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2194 {
2195 /* Support the hexadecimal representation of the IEEE754 encoding.
2196 Double-precision is expected when DP_P is TRUE, otherwise the
2197 representation should be in single-precision. */
2198 if (! parse_constant_immediate (&str, &val))
2199 goto invalid_fp;
2200
2201 if (dp_p)
2202 {
2203 if (! aarch64_double_precision_fmovable (val, &fpword))
2204 goto invalid_fp;
2205 }
2206 else if ((uint64_t) val > 0xffffffff)
2207 goto invalid_fp;
2208 else
2209 fpword = val;
2210
2211 hex_p = TRUE;
2212 }
a06ea964
NC
2213 else
2214 {
62b0d0d5
YZ
2215 /* We must not accidentally parse an integer as a floating-point number.
2216 Make sure that the value we parse is not an integer by checking for
2217 special characters '.' or 'e'. */
a06ea964
NC
2218 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2219 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2220 {
2221 found_fpchar = 1;
2222 break;
2223 }
2224
2225 if (!found_fpchar)
2226 return FALSE;
2227 }
2228
62b0d0d5 2229 if (! hex_p)
a06ea964 2230 {
a06ea964
NC
2231 int i;
2232
62b0d0d5
YZ
2233 if ((str = atof_ieee (str, 's', words)) == NULL)
2234 goto invalid_fp;
2235
a06ea964
NC
2236 /* Our FP word must be 32 bits (single-precision FP). */
2237 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2238 {
2239 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2240 fpword |= words[i];
2241 }
62b0d0d5 2242 }
a06ea964 2243
62b0d0d5
YZ
2244 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2245 {
2246 *immed = fpword;
a06ea964 2247 *ccp = str;
a06ea964
NC
2248 return TRUE;
2249 }
2250
2251invalid_fp:
2252 set_fatal_syntax_error (_("invalid floating-point constant"));
2253 return FALSE;
2254}
2255
2256/* Less-generic immediate-value read function with the possibility of loading
2257 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2258 instructions.
2259
2260 To prevent the expression parser from pushing a register name into the
2261 symbol table as an undefined symbol, a check is firstly done to find
2262 out whether STR is a valid register name followed by a comma or the end
2263 of line. Return FALSE if STR is such a register. */
2264
2265static bfd_boolean
2266parse_big_immediate (char **str, int64_t *imm)
2267{
2268 char *ptr = *str;
2269
2270 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2271 {
2272 set_syntax_error (_("immediate operand required"));
2273 return FALSE;
2274 }
2275
2276 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2277
2278 if (inst.reloc.exp.X_op == O_constant)
2279 *imm = inst.reloc.exp.X_add_number;
2280
2281 *str = ptr;
2282
2283 return TRUE;
2284}
2285
2286/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2287 if NEED_LIBOPCODES is non-zero, the fixup will need
2288 assistance from the libopcodes. */
2289
2290static inline void
2291aarch64_set_gas_internal_fixup (struct reloc *reloc,
2292 const aarch64_opnd_info *operand,
2293 int need_libopcodes_p)
2294{
2295 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2296 reloc->opnd = operand->type;
2297 if (need_libopcodes_p)
2298 reloc->need_libopcodes_p = 1;
2299};
2300
2301/* Return TRUE if the instruction needs to be fixed up later internally by
2302 the GAS; otherwise return FALSE. */
2303
2304static inline bfd_boolean
2305aarch64_gas_internal_fixup_p (void)
2306{
2307 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2308}
2309
2310/* Assign the immediate value to the relavant field in *OPERAND if
2311 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2312 needs an internal fixup in a later stage.
2313 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2314 IMM.VALUE that may get assigned with the constant. */
2315static inline void
2316assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2317 aarch64_opnd_info *operand,
2318 int addr_off_p,
2319 int need_libopcodes_p,
2320 int skip_p)
2321{
2322 if (reloc->exp.X_op == O_constant)
2323 {
2324 if (addr_off_p)
2325 operand->addr.offset.imm = reloc->exp.X_add_number;
2326 else
2327 operand->imm.value = reloc->exp.X_add_number;
2328 reloc->type = BFD_RELOC_UNUSED;
2329 }
2330 else
2331 {
2332 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2333 /* Tell libopcodes to ignore this operand or not. This is helpful
2334 when one of the operands needs to be fixed up later but we need
2335 libopcodes to check the other operands. */
2336 operand->skip = skip_p;
2337 }
2338}
2339
2340/* Relocation modifiers. Each entry in the table contains the textual
2341 name for the relocation which may be placed before a symbol used as
2342 a load/store offset, or add immediate. It must be surrounded by a
2343 leading and trailing colon, for example:
2344
2345 ldr x0, [x1, #:rello:varsym]
2346 add x0, x1, #:rello:varsym */
2347
2348struct reloc_table_entry
2349{
2350 const char *name;
2351 int pc_rel;
6f4a313b 2352 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2353 bfd_reloc_code_real_type adrp_type;
2354 bfd_reloc_code_real_type movw_type;
2355 bfd_reloc_code_real_type add_type;
2356 bfd_reloc_code_real_type ldst_type;
74ad790c 2357 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2358};
2359
2360static struct reloc_table_entry reloc_table[] = {
2361 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2362 {"lo12", 0,
6f4a313b 2363 0, /* adr_type */
a06ea964
NC
2364 0,
2365 0,
2366 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2367 BFD_RELOC_AARCH64_LDST_LO12,
2368 0},
a06ea964
NC
2369
2370 /* Higher 21 bits of pc-relative page offset: ADRP */
2371 {"pg_hi21", 1,
6f4a313b 2372 0, /* adr_type */
a06ea964
NC
2373 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2374 0,
2375 0,
74ad790c 2376 0,
a06ea964
NC
2377 0},
2378
2379 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2380 {"pg_hi21_nc", 1,
6f4a313b 2381 0, /* adr_type */
a06ea964
NC
2382 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2383 0,
2384 0,
74ad790c 2385 0,
a06ea964
NC
2386 0},
2387
2388 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2389 {"abs_g0", 0,
6f4a313b 2390 0, /* adr_type */
a06ea964
NC
2391 0,
2392 BFD_RELOC_AARCH64_MOVW_G0,
2393 0,
74ad790c 2394 0,
a06ea964
NC
2395 0},
2396
2397 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2398 {"abs_g0_s", 0,
6f4a313b 2399 0, /* adr_type */
a06ea964
NC
2400 0,
2401 BFD_RELOC_AARCH64_MOVW_G0_S,
2402 0,
74ad790c 2403 0,
a06ea964
NC
2404 0},
2405
2406 /* Less significant bits 0-15 of address/value: MOVK, no check */
2407 {"abs_g0_nc", 0,
6f4a313b 2408 0, /* adr_type */
a06ea964
NC
2409 0,
2410 BFD_RELOC_AARCH64_MOVW_G0_NC,
2411 0,
74ad790c 2412 0,
a06ea964
NC
2413 0},
2414
2415 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2416 {"abs_g1", 0,
6f4a313b 2417 0, /* adr_type */
a06ea964
NC
2418 0,
2419 BFD_RELOC_AARCH64_MOVW_G1,
2420 0,
74ad790c 2421 0,
a06ea964
NC
2422 0},
2423
2424 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2425 {"abs_g1_s", 0,
6f4a313b 2426 0, /* adr_type */
a06ea964
NC
2427 0,
2428 BFD_RELOC_AARCH64_MOVW_G1_S,
2429 0,
74ad790c 2430 0,
a06ea964
NC
2431 0},
2432
2433 /* Less significant bits 16-31 of address/value: MOVK, no check */
2434 {"abs_g1_nc", 0,
6f4a313b 2435 0, /* adr_type */
a06ea964
NC
2436 0,
2437 BFD_RELOC_AARCH64_MOVW_G1_NC,
2438 0,
74ad790c 2439 0,
a06ea964
NC
2440 0},
2441
2442 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2443 {"abs_g2", 0,
6f4a313b 2444 0, /* adr_type */
a06ea964
NC
2445 0,
2446 BFD_RELOC_AARCH64_MOVW_G2,
2447 0,
74ad790c 2448 0,
a06ea964
NC
2449 0},
2450
2451 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2452 {"abs_g2_s", 0,
6f4a313b 2453 0, /* adr_type */
a06ea964
NC
2454 0,
2455 BFD_RELOC_AARCH64_MOVW_G2_S,
2456 0,
74ad790c 2457 0,
a06ea964
NC
2458 0},
2459
2460 /* Less significant bits 32-47 of address/value: MOVK, no check */
2461 {"abs_g2_nc", 0,
6f4a313b 2462 0, /* adr_type */
a06ea964
NC
2463 0,
2464 BFD_RELOC_AARCH64_MOVW_G2_NC,
2465 0,
74ad790c 2466 0,
a06ea964
NC
2467 0},
2468
2469 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2470 {"abs_g3", 0,
6f4a313b 2471 0, /* adr_type */
a06ea964
NC
2472 0,
2473 BFD_RELOC_AARCH64_MOVW_G3,
2474 0,
74ad790c 2475 0,
a06ea964 2476 0},
4aa2c5e2 2477
a06ea964
NC
2478 /* Get to the page containing GOT entry for a symbol. */
2479 {"got", 1,
6f4a313b 2480 0, /* adr_type */
a06ea964
NC
2481 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2482 0,
2483 0,
74ad790c 2484 0,
4aa2c5e2
MS
2485 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2486
a06ea964
NC
2487 /* 12 bit offset into the page containing GOT entry for that symbol. */
2488 {"got_lo12", 0,
6f4a313b 2489 0, /* adr_type */
a06ea964
NC
2490 0,
2491 0,
2492 0,
74ad790c
MS
2493 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2494 0},
a06ea964 2495
ca632371
RL
2496 /* 0-15 bits of address/value: MOVk, no check. */
2497 {"gotoff_g0_nc", 0,
2498 0, /* adr_type */
2499 0,
2500 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2501 0,
2502 0,
2503 0},
2504
654248e7
RL
2505 /* Most significant bits 16-31 of address/value: MOVZ. */
2506 {"gotoff_g1", 0,
2507 0, /* adr_type */
2508 0,
2509 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2510 0,
2511 0,
2512 0},
2513
87f5fbcc
RL
2514 /* 15 bit offset into the page containing GOT entry for that symbol. */
2515 {"gotoff_lo15", 0,
2516 0, /* adr_type */
2517 0,
2518 0,
2519 0,
2520 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2521 0},
2522
3b957e5b
RL
2523 /* Get to the page containing GOT TLS entry for a symbol */
2524 {"gottprel_g0_nc", 0,
2525 0, /* adr_type */
2526 0,
2527 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2528 0,
2529 0,
2530 0},
2531
2532 /* Get to the page containing GOT TLS entry for a symbol */
2533 {"gottprel_g1", 0,
2534 0, /* adr_type */
2535 0,
2536 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2537 0,
2538 0,
2539 0},
2540
a06ea964
NC
2541 /* Get to the page containing GOT TLS entry for a symbol */
2542 {"tlsgd", 0,
3c12b054 2543 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2544 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2545 0,
2546 0,
74ad790c 2547 0,
a06ea964
NC
2548 0},
2549
2550 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2551 {"tlsgd_lo12", 0,
6f4a313b 2552 0, /* adr_type */
a06ea964
NC
2553 0,
2554 0,
2555 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2556 0,
a06ea964
NC
2557 0},
2558
3e8286c0
RL
2559 /* Lower 16 bits address/value: MOVk. */
2560 {"tlsgd_g0_nc", 0,
2561 0, /* adr_type */
2562 0,
2563 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2564 0,
2565 0,
2566 0},
2567
1aa66fb1
RL
2568 /* Most significant bits 16-31 of address/value: MOVZ. */
2569 {"tlsgd_g1", 0,
2570 0, /* adr_type */
2571 0,
2572 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2573 0,
2574 0,
2575 0},
2576
a06ea964
NC
2577 /* Get to the page containing GOT TLS entry for a symbol */
2578 {"tlsdesc", 0,
389b8029 2579 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2580 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2581 0,
2582 0,
74ad790c 2583 0,
1ada945d 2584 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2585
2586 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2587 {"tlsdesc_lo12", 0,
6f4a313b 2588 0, /* adr_type */
a06ea964
NC
2589 0,
2590 0,
2591 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2592 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2593 0},
a06ea964 2594
6c37fedc
JW
2595 /* Get to the page containing GOT TLS entry for a symbol.
2596 The same as GD, we allocate two consecutive GOT slots
2597 for module index and module offset, the only difference
2598 with GD is the module offset should be intialized to
2599 zero without any outstanding runtime relocation. */
2600 {"tlsldm", 0,
2601 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2602 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2603 0,
2604 0,
2605 0,
2606 0},
2607
a12fad50
JW
2608 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2609 {"tlsldm_lo12_nc", 0,
2610 0, /* adr_type */
2611 0,
2612 0,
2613 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2614 0,
2615 0},
2616
70151fb5
JW
2617 /* 12 bit offset into the module TLS base address. */
2618 {"dtprel_lo12", 0,
2619 0, /* adr_type */
2620 0,
2621 0,
2622 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2623 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2624 0},
2625
13289c10
JW
2626 /* Same as dtprel_lo12, no overflow check. */
2627 {"dtprel_lo12_nc", 0,
2628 0, /* adr_type */
2629 0,
2630 0,
2631 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2632 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2633 0},
2634
49df5539
JW
2635 /* bits[23:12] of offset to the module TLS base address. */
2636 {"dtprel_hi12", 0,
2637 0, /* adr_type */
2638 0,
2639 0,
2640 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2641 0,
2642 0},
2643
2644 /* bits[15:0] of offset to the module TLS base address. */
2645 {"dtprel_g0", 0,
2646 0, /* adr_type */
2647 0,
2648 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2649 0,
2650 0,
2651 0},
2652
2653 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2654 {"dtprel_g0_nc", 0,
2655 0, /* adr_type */
2656 0,
2657 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2658 0,
2659 0,
2660 0},
2661
2662 /* bits[31:16] of offset to the module TLS base address. */
2663 {"dtprel_g1", 0,
2664 0, /* adr_type */
2665 0,
2666 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2667 0,
2668 0,
2669 0},
2670
2671 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2672 {"dtprel_g1_nc", 0,
2673 0, /* adr_type */
2674 0,
2675 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2676 0,
2677 0,
2678 0},
2679
2680 /* bits[47:32] of offset to the module TLS base address. */
2681 {"dtprel_g2", 0,
2682 0, /* adr_type */
2683 0,
2684 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2685 0,
2686 0,
2687 0},
2688
43a357f9
RL
2689 /* Lower 16 bit offset into GOT entry for a symbol */
2690 {"tlsdesc_off_g0_nc", 0,
2691 0, /* adr_type */
2692 0,
2693 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2694 0,
2695 0,
2696 0},
2697
2698 /* Higher 16 bit offset into GOT entry for a symbol */
2699 {"tlsdesc_off_g1", 0,
2700 0, /* adr_type */
2701 0,
2702 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2703 0,
2704 0,
2705 0},
2706
a06ea964
NC
2707 /* Get to the page containing GOT TLS entry for a symbol */
2708 {"gottprel", 0,
6f4a313b 2709 0, /* adr_type */
a06ea964
NC
2710 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2711 0,
2712 0,
74ad790c 2713 0,
043bf05a 2714 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2715
2716 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2717 {"gottprel_lo12", 0,
6f4a313b 2718 0, /* adr_type */
a06ea964
NC
2719 0,
2720 0,
2721 0,
74ad790c
MS
2722 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2723 0},
a06ea964
NC
2724
2725 /* Get tp offset for a symbol. */
2726 {"tprel", 0,
6f4a313b 2727 0, /* adr_type */
a06ea964
NC
2728 0,
2729 0,
2730 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2731 0,
a06ea964
NC
2732 0},
2733
2734 /* Get tp offset for a symbol. */
2735 {"tprel_lo12", 0,
6f4a313b 2736 0, /* adr_type */
a06ea964
NC
2737 0,
2738 0,
2739 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2740 0,
a06ea964
NC
2741 0},
2742
2743 /* Get tp offset for a symbol. */
2744 {"tprel_hi12", 0,
6f4a313b 2745 0, /* adr_type */
a06ea964
NC
2746 0,
2747 0,
2748 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2749 0,
a06ea964
NC
2750 0},
2751
2752 /* Get tp offset for a symbol. */
2753 {"tprel_lo12_nc", 0,
6f4a313b 2754 0, /* adr_type */
a06ea964
NC
2755 0,
2756 0,
2757 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2758 0,
a06ea964
NC
2759 0},
2760
2761 /* Most significant bits 32-47 of address/value: MOVZ. */
2762 {"tprel_g2", 0,
6f4a313b 2763 0, /* adr_type */
a06ea964
NC
2764 0,
2765 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2766 0,
74ad790c 2767 0,
a06ea964
NC
2768 0},
2769
2770 /* Most significant bits 16-31 of address/value: MOVZ. */
2771 {"tprel_g1", 0,
6f4a313b 2772 0, /* adr_type */
a06ea964
NC
2773 0,
2774 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2775 0,
74ad790c 2776 0,
a06ea964
NC
2777 0},
2778
2779 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2780 {"tprel_g1_nc", 0,
6f4a313b 2781 0, /* adr_type */
a06ea964
NC
2782 0,
2783 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2784 0,
74ad790c 2785 0,
a06ea964
NC
2786 0},
2787
2788 /* Most significant bits 0-15 of address/value: MOVZ. */
2789 {"tprel_g0", 0,
6f4a313b 2790 0, /* adr_type */
a06ea964
NC
2791 0,
2792 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2793 0,
74ad790c 2794 0,
a06ea964
NC
2795 0},
2796
2797 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2798 {"tprel_g0_nc", 0,
6f4a313b 2799 0, /* adr_type */
a06ea964
NC
2800 0,
2801 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2802 0,
74ad790c 2803 0,
a06ea964 2804 0},
a921b5bd
JW
2805
2806 /* 15bit offset from got entry to base address of GOT table. */
2807 {"gotpage_lo15", 0,
2808 0,
2809 0,
2810 0,
2811 0,
2812 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2813 0},
3d715ce4
JW
2814
2815 /* 14bit offset from got entry to base address of GOT table. */
2816 {"gotpage_lo14", 0,
2817 0,
2818 0,
2819 0,
2820 0,
2821 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2822 0},
a06ea964
NC
2823};
2824
2825/* Given the address of a pointer pointing to the textual name of a
2826 relocation as may appear in assembler source, attempt to find its
2827 details in reloc_table. The pointer will be updated to the character
2828 after the trailing colon. On failure, NULL will be returned;
2829 otherwise return the reloc_table_entry. */
2830
2831static struct reloc_table_entry *
2832find_reloc_table_entry (char **str)
2833{
2834 unsigned int i;
2835 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2836 {
2837 int length = strlen (reloc_table[i].name);
2838
2839 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2840 && (*str)[length] == ':')
2841 {
2842 *str += (length + 1);
2843 return &reloc_table[i];
2844 }
2845 }
2846
2847 return NULL;
2848}
2849
2850/* Mode argument to parse_shift and parser_shifter_operand. */
2851enum parse_shift_mode
2852{
2853 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2854 "#imm{,lsl #n}" */
2855 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2856 "#imm" */
2857 SHIFTED_LSL, /* bare "lsl #n" */
2858 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2859 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2860};
2861
2862/* Parse a <shift> operator on an AArch64 data processing instruction.
2863 Return TRUE on success; otherwise return FALSE. */
2864static bfd_boolean
2865parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2866{
2867 const struct aarch64_name_value_pair *shift_op;
2868 enum aarch64_modifier_kind kind;
2869 expressionS exp;
2870 int exp_has_prefix;
2871 char *s = *str;
2872 char *p = s;
2873
2874 for (p = *str; ISALPHA (*p); p++)
2875 ;
2876
2877 if (p == *str)
2878 {
2879 set_syntax_error (_("shift expression expected"));
2880 return FALSE;
2881 }
2882
2883 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2884
2885 if (shift_op == NULL)
2886 {
2887 set_syntax_error (_("shift operator expected"));
2888 return FALSE;
2889 }
2890
2891 kind = aarch64_get_operand_modifier (shift_op);
2892
2893 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2894 {
2895 set_syntax_error (_("invalid use of 'MSL'"));
2896 return FALSE;
2897 }
2898
2899 switch (mode)
2900 {
2901 case SHIFTED_LOGIC_IMM:
2902 if (aarch64_extend_operator_p (kind) == TRUE)
2903 {
2904 set_syntax_error (_("extending shift is not permitted"));
2905 return FALSE;
2906 }
2907 break;
2908
2909 case SHIFTED_ARITH_IMM:
2910 if (kind == AARCH64_MOD_ROR)
2911 {
2912 set_syntax_error (_("'ROR' shift is not permitted"));
2913 return FALSE;
2914 }
2915 break;
2916
2917 case SHIFTED_LSL:
2918 if (kind != AARCH64_MOD_LSL)
2919 {
2920 set_syntax_error (_("only 'LSL' shift is permitted"));
2921 return FALSE;
2922 }
2923 break;
2924
2925 case SHIFTED_REG_OFFSET:
2926 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2927 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2928 {
2929 set_fatal_syntax_error
2930 (_("invalid shift for the register offset addressing mode"));
2931 return FALSE;
2932 }
2933 break;
2934
2935 case SHIFTED_LSL_MSL:
2936 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2937 {
2938 set_syntax_error (_("invalid shift operator"));
2939 return FALSE;
2940 }
2941 break;
2942
2943 default:
2944 abort ();
2945 }
2946
2947 /* Whitespace can appear here if the next thing is a bare digit. */
2948 skip_whitespace (p);
2949
2950 /* Parse shift amount. */
2951 exp_has_prefix = 0;
2952 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2953 exp.X_op = O_absent;
2954 else
2955 {
2956 if (is_immediate_prefix (*p))
2957 {
2958 p++;
2959 exp_has_prefix = 1;
2960 }
2961 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2962 }
2963 if (exp.X_op == O_absent)
2964 {
2965 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2966 {
2967 set_syntax_error (_("missing shift amount"));
2968 return FALSE;
2969 }
2970 operand->shifter.amount = 0;
2971 }
2972 else if (exp.X_op != O_constant)
2973 {
2974 set_syntax_error (_("constant shift amount required"));
2975 return FALSE;
2976 }
2977 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2978 {
2979 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2980 return FALSE;
2981 }
2982 else
2983 {
2984 operand->shifter.amount = exp.X_add_number;
2985 operand->shifter.amount_present = 1;
2986 }
2987
2988 operand->shifter.operator_present = 1;
2989 operand->shifter.kind = kind;
2990
2991 *str = p;
2992 return TRUE;
2993}
2994
2995/* Parse a <shifter_operand> for a data processing instruction:
2996
2997 #<immediate>
2998 #<immediate>, LSL #imm
2999
3000 Validation of immediate operands is deferred to md_apply_fix.
3001
3002 Return TRUE on success; otherwise return FALSE. */
3003
3004static bfd_boolean
3005parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3006 enum parse_shift_mode mode)
3007{
3008 char *p;
3009
3010 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3011 return FALSE;
3012
3013 p = *str;
3014
3015 /* Accept an immediate expression. */
3016 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3017 return FALSE;
3018
3019 /* Accept optional LSL for arithmetic immediate values. */
3020 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3021 if (! parse_shift (&p, operand, SHIFTED_LSL))
3022 return FALSE;
3023
3024 /* Not accept any shifter for logical immediate values. */
3025 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3026 && parse_shift (&p, operand, mode))
3027 {
3028 set_syntax_error (_("unexpected shift operator"));
3029 return FALSE;
3030 }
3031
3032 *str = p;
3033 return TRUE;
3034}
3035
3036/* Parse a <shifter_operand> for a data processing instruction:
3037
3038 <Rm>
3039 <Rm>, <shift>
3040 #<immediate>
3041 #<immediate>, LSL #imm
3042
3043 where <shift> is handled by parse_shift above, and the last two
3044 cases are handled by the function above.
3045
3046 Validation of immediate operands is deferred to md_apply_fix.
3047
3048 Return TRUE on success; otherwise return FALSE. */
3049
3050static bfd_boolean
3051parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3052 enum parse_shift_mode mode)
3053{
3054 int reg;
3055 int isreg32, isregzero;
3056 enum aarch64_operand_class opd_class
3057 = aarch64_get_operand_class (operand->type);
3058
3059 if ((reg =
3060 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
3061 {
3062 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3063 {
3064 set_syntax_error (_("unexpected register in the immediate operand"));
3065 return FALSE;
3066 }
3067
3068 if (!isregzero && reg == REG_SP)
3069 {
3070 set_syntax_error (BAD_SP);
3071 return FALSE;
3072 }
3073
3074 operand->reg.regno = reg;
3075 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
3076
3077 /* Accept optional shift operation on register. */
3078 if (! skip_past_comma (str))
3079 return TRUE;
3080
3081 if (! parse_shift (str, operand, mode))
3082 return FALSE;
3083
3084 return TRUE;
3085 }
3086 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3087 {
3088 set_syntax_error
3089 (_("integer register expected in the extended/shifted operand "
3090 "register"));
3091 return FALSE;
3092 }
3093
3094 /* We have a shifted immediate variable. */
3095 return parse_shifter_operand_imm (str, operand, mode);
3096}
3097
3098/* Return TRUE on success; return FALSE otherwise. */
3099
3100static bfd_boolean
3101parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3102 enum parse_shift_mode mode)
3103{
3104 char *p = *str;
3105
3106 /* Determine if we have the sequence of characters #: or just :
3107 coming next. If we do, then we check for a :rello: relocation
3108 modifier. If we don't, punt the whole lot to
3109 parse_shifter_operand. */
3110
3111 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3112 {
3113 struct reloc_table_entry *entry;
3114
3115 if (p[0] == '#')
3116 p += 2;
3117 else
3118 p++;
3119 *str = p;
3120
3121 /* Try to parse a relocation. Anything else is an error. */
3122 if (!(entry = find_reloc_table_entry (str)))
3123 {
3124 set_syntax_error (_("unknown relocation modifier"));
3125 return FALSE;
3126 }
3127
3128 if (entry->add_type == 0)
3129 {
3130 set_syntax_error
3131 (_("this relocation modifier is not allowed on this instruction"));
3132 return FALSE;
3133 }
3134
3135 /* Save str before we decompose it. */
3136 p = *str;
3137
3138 /* Next, we parse the expression. */
3139 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3140 return FALSE;
3141
3142 /* Record the relocation type (use the ADD variant here). */
3143 inst.reloc.type = entry->add_type;
3144 inst.reloc.pc_rel = entry->pc_rel;
3145
3146 /* If str is empty, we've reached the end, stop here. */
3147 if (**str == '\0')
3148 return TRUE;
3149
55d9b4c1 3150 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3151 recover the variable name and continue parsing for the shifter. */
3152 *str = p;
3153 return parse_shifter_operand_imm (str, operand, mode);
3154 }
3155
3156 return parse_shifter_operand (str, operand, mode);
3157}
3158
3159/* Parse all forms of an address expression. Information is written
3160 to *OPERAND and/or inst.reloc.
3161
3162 The A64 instruction set has the following addressing modes:
3163
3164 Offset
3165 [base] // in SIMD ld/st structure
3166 [base{,#0}] // in ld/st exclusive
3167 [base{,#imm}]
3168 [base,Xm{,LSL #imm}]
3169 [base,Xm,SXTX {#imm}]
3170 [base,Wm,(S|U)XTW {#imm}]
3171 Pre-indexed
3172 [base,#imm]!
3173 Post-indexed
3174 [base],#imm
3175 [base],Xm // in SIMD ld/st structure
3176 PC-relative (literal)
3177 label
3178 =immediate
3179
3180 (As a convenience, the notation "=immediate" is permitted in conjunction
3181 with the pc-relative literal load instructions to automatically place an
3182 immediate value or symbolic address in a nearby literal pool and generate
3183 a hidden label which references it.)
3184
3185 Upon a successful parsing, the address structure in *OPERAND will be
3186 filled in the following way:
3187
3188 .base_regno = <base>
3189 .offset.is_reg // 1 if the offset is a register
3190 .offset.imm = <imm>
3191 .offset.regno = <Rm>
3192
3193 For different addressing modes defined in the A64 ISA:
3194
3195 Offset
3196 .pcrel=0; .preind=1; .postind=0; .writeback=0
3197 Pre-indexed
3198 .pcrel=0; .preind=1; .postind=0; .writeback=1
3199 Post-indexed
3200 .pcrel=0; .preind=0; .postind=1; .writeback=1
3201 PC-relative (literal)
3202 .pcrel=1; .preind=1; .postind=0; .writeback=0
3203
3204 The shift/extension information, if any, will be stored in .shifter.
3205
3206 It is the caller's responsibility to check for addressing modes not
3207 supported by the instruction, and to set inst.reloc.type. */
3208
3209static bfd_boolean
3210parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
3211 int accept_reg_post_index)
3212{
3213 char *p = *str;
3214 int reg;
3215 int isreg32, isregzero;
3216 expressionS *exp = &inst.reloc.exp;
3217
3218 if (! skip_past_char (&p, '['))
3219 {
3220 /* =immediate or label. */
3221 operand->addr.pcrel = 1;
3222 operand->addr.preind = 1;
3223
f41aef5f
RE
3224 /* #:<reloc_op>:<symbol> */
3225 skip_past_char (&p, '#');
3226 if (reloc && skip_past_char (&p, ':'))
3227 {
6f4a313b 3228 bfd_reloc_code_real_type ty;
f41aef5f
RE
3229 struct reloc_table_entry *entry;
3230
3231 /* Try to parse a relocation modifier. Anything else is
3232 an error. */
3233 entry = find_reloc_table_entry (&p);
3234 if (! entry)
3235 {
3236 set_syntax_error (_("unknown relocation modifier"));
3237 return FALSE;
3238 }
3239
6f4a313b
MS
3240 switch (operand->type)
3241 {
3242 case AARCH64_OPND_ADDR_PCREL21:
3243 /* adr */
3244 ty = entry->adr_type;
3245 break;
3246
3247 default:
74ad790c 3248 ty = entry->ld_literal_type;
6f4a313b
MS
3249 break;
3250 }
3251
3252 if (ty == 0)
f41aef5f
RE
3253 {
3254 set_syntax_error
3255 (_("this relocation modifier is not allowed on this "
3256 "instruction"));
3257 return FALSE;
3258 }
3259
3260 /* #:<reloc_op>: */
3261 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3262 {
3263 set_syntax_error (_("invalid relocation expression"));
3264 return FALSE;
3265 }
a06ea964 3266
f41aef5f 3267 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3268 /* Record the relocation type. */
3269 inst.reloc.type = ty;
f41aef5f
RE
3270 inst.reloc.pc_rel = entry->pc_rel;
3271 }
3272 else
a06ea964 3273 {
f41aef5f
RE
3274
3275 if (skip_past_char (&p, '='))
3276 /* =immediate; need to generate the literal in the literal pool. */
3277 inst.gen_lit_pool = 1;
3278
3279 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3280 {
3281 set_syntax_error (_("invalid address"));
3282 return FALSE;
3283 }
a06ea964
NC
3284 }
3285
3286 *str = p;
3287 return TRUE;
3288 }
3289
3290 /* [ */
3291
3292 /* Accept SP and reject ZR */
3293 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3294 if (reg == PARSE_FAIL || isreg32)
3295 {
3296 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3297 return FALSE;
3298 }
3299 operand->addr.base_regno = reg;
3300
3301 /* [Xn */
3302 if (skip_past_comma (&p))
3303 {
3304 /* [Xn, */
3305 operand->addr.preind = 1;
3306
3307 /* Reject SP and accept ZR */
3308 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3309 if (reg != PARSE_FAIL)
3310 {
3311 /* [Xn,Rm */
3312 operand->addr.offset.regno = reg;
3313 operand->addr.offset.is_reg = 1;
3314 /* Shifted index. */
3315 if (skip_past_comma (&p))
3316 {
3317 /* [Xn,Rm, */
3318 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3319 /* Use the diagnostics set in parse_shift, so not set new
3320 error message here. */
3321 return FALSE;
3322 }
3323 /* We only accept:
3324 [base,Xm{,LSL #imm}]
3325 [base,Xm,SXTX {#imm}]
3326 [base,Wm,(S|U)XTW {#imm}] */
3327 if (operand->shifter.kind == AARCH64_MOD_NONE
3328 || operand->shifter.kind == AARCH64_MOD_LSL
3329 || operand->shifter.kind == AARCH64_MOD_SXTX)
3330 {
3331 if (isreg32)
3332 {
3333 set_syntax_error (_("invalid use of 32-bit register offset"));
3334 return FALSE;
3335 }
3336 }
3337 else if (!isreg32)
3338 {
3339 set_syntax_error (_("invalid use of 64-bit register offset"));
3340 return FALSE;
3341 }
3342 }
3343 else
3344 {
3345 /* [Xn,#:<reloc_op>:<symbol> */
3346 skip_past_char (&p, '#');
3347 if (reloc && skip_past_char (&p, ':'))
3348 {
3349 struct reloc_table_entry *entry;
3350
3351 /* Try to parse a relocation modifier. Anything else is
3352 an error. */
3353 if (!(entry = find_reloc_table_entry (&p)))
3354 {
3355 set_syntax_error (_("unknown relocation modifier"));
3356 return FALSE;
3357 }
3358
3359 if (entry->ldst_type == 0)
3360 {
3361 set_syntax_error
3362 (_("this relocation modifier is not allowed on this "
3363 "instruction"));
3364 return FALSE;
3365 }
3366
3367 /* [Xn,#:<reloc_op>: */
3368 /* We now have the group relocation table entry corresponding to
3369 the name in the assembler source. Next, we parse the
3370 expression. */
3371 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3372 {
3373 set_syntax_error (_("invalid relocation expression"));
3374 return FALSE;
3375 }
3376
3377 /* [Xn,#:<reloc_op>:<expr> */
3378 /* Record the load/store relocation type. */
3379 inst.reloc.type = entry->ldst_type;
3380 inst.reloc.pc_rel = entry->pc_rel;
3381 }
3382 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3383 {
3384 set_syntax_error (_("invalid expression in the address"));
3385 return FALSE;
3386 }
3387 /* [Xn,<expr> */
3388 }
3389 }
3390
3391 if (! skip_past_char (&p, ']'))
3392 {
3393 set_syntax_error (_("']' expected"));
3394 return FALSE;
3395 }
3396
3397 if (skip_past_char (&p, '!'))
3398 {
3399 if (operand->addr.preind && operand->addr.offset.is_reg)
3400 {
3401 set_syntax_error (_("register offset not allowed in pre-indexed "
3402 "addressing mode"));
3403 return FALSE;
3404 }
3405 /* [Xn]! */
3406 operand->addr.writeback = 1;
3407 }
3408 else if (skip_past_comma (&p))
3409 {
3410 /* [Xn], */
3411 operand->addr.postind = 1;
3412 operand->addr.writeback = 1;
3413
3414 if (operand->addr.preind)
3415 {
3416 set_syntax_error (_("cannot combine pre- and post-indexing"));
3417 return FALSE;
3418 }
3419
3420 if (accept_reg_post_index
3421 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3422 &isregzero)) != PARSE_FAIL)
3423 {
3424 /* [Xn],Xm */
3425 if (isreg32)
3426 {
3427 set_syntax_error (_("invalid 32-bit register offset"));
3428 return FALSE;
3429 }
3430 operand->addr.offset.regno = reg;
3431 operand->addr.offset.is_reg = 1;
3432 }
3433 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3434 {
3435 /* [Xn],#expr */
3436 set_syntax_error (_("invalid expression in the address"));
3437 return FALSE;
3438 }
3439 }
3440
3441 /* If at this point neither .preind nor .postind is set, we have a
3442 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3443 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3444 {
3445 if (operand->addr.writeback)
3446 {
3447 /* Reject [Rn]! */
3448 set_syntax_error (_("missing offset in the pre-indexed address"));
3449 return FALSE;
3450 }
3451 operand->addr.preind = 1;
3452 inst.reloc.exp.X_op = O_constant;
3453 inst.reloc.exp.X_add_number = 0;
3454 }
3455
3456 *str = p;
3457 return TRUE;
3458}
3459
3460/* Return TRUE on success; otherwise return FALSE. */
3461static bfd_boolean
3462parse_address (char **str, aarch64_opnd_info *operand,
3463 int accept_reg_post_index)
3464{
3465 return parse_address_main (str, operand, 0, accept_reg_post_index);
3466}
3467
3468/* Return TRUE on success; otherwise return FALSE. */
3469static bfd_boolean
3470parse_address_reloc (char **str, aarch64_opnd_info *operand)
3471{
3472 return parse_address_main (str, operand, 1, 0);
3473}
3474
3475/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3476 Return TRUE on success; otherwise return FALSE. */
3477static bfd_boolean
3478parse_half (char **str, int *internal_fixup_p)
3479{
671eeb28 3480 char *p = *str;
a06ea964 3481
a06ea964
NC
3482 skip_past_char (&p, '#');
3483
3484 gas_assert (internal_fixup_p);
3485 *internal_fixup_p = 0;
3486
3487 if (*p == ':')
3488 {
3489 struct reloc_table_entry *entry;
3490
3491 /* Try to parse a relocation. Anything else is an error. */
3492 ++p;
3493 if (!(entry = find_reloc_table_entry (&p)))
3494 {
3495 set_syntax_error (_("unknown relocation modifier"));
3496 return FALSE;
3497 }
3498
3499 if (entry->movw_type == 0)
3500 {
3501 set_syntax_error
3502 (_("this relocation modifier is not allowed on this instruction"));
3503 return FALSE;
3504 }
3505
3506 inst.reloc.type = entry->movw_type;
3507 }
3508 else
3509 *internal_fixup_p = 1;
3510
a06ea964
NC
3511 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3512 return FALSE;
3513
3514 *str = p;
3515 return TRUE;
3516}
3517
3518/* Parse an operand for an ADRP instruction:
3519 ADRP <Xd>, <label>
3520 Return TRUE on success; otherwise return FALSE. */
3521
3522static bfd_boolean
3523parse_adrp (char **str)
3524{
3525 char *p;
3526
3527 p = *str;
3528 if (*p == ':')
3529 {
3530 struct reloc_table_entry *entry;
3531
3532 /* Try to parse a relocation. Anything else is an error. */
3533 ++p;
3534 if (!(entry = find_reloc_table_entry (&p)))
3535 {
3536 set_syntax_error (_("unknown relocation modifier"));
3537 return FALSE;
3538 }
3539
3540 if (entry->adrp_type == 0)
3541 {
3542 set_syntax_error
3543 (_("this relocation modifier is not allowed on this instruction"));
3544 return FALSE;
3545 }
3546
3547 inst.reloc.type = entry->adrp_type;
3548 }
3549 else
3550 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3551
3552 inst.reloc.pc_rel = 1;
3553
3554 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3555 return FALSE;
3556
3557 *str = p;
3558 return TRUE;
3559}
3560
3561/* Miscellaneous. */
3562
3563/* Parse an option for a preload instruction. Returns the encoding for the
3564 option, or PARSE_FAIL. */
3565
3566static int
3567parse_pldop (char **str)
3568{
3569 char *p, *q;
3570 const struct aarch64_name_value_pair *o;
3571
3572 p = q = *str;
3573 while (ISALNUM (*q))
3574 q++;
3575
3576 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3577 if (!o)
3578 return PARSE_FAIL;
3579
3580 *str = q;
3581 return o->value;
3582}
3583
3584/* Parse an option for a barrier instruction. Returns the encoding for the
3585 option, or PARSE_FAIL. */
3586
3587static int
3588parse_barrier (char **str)
3589{
3590 char *p, *q;
3591 const asm_barrier_opt *o;
3592
3593 p = q = *str;
3594 while (ISALPHA (*q))
3595 q++;
3596
3597 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3598 if (!o)
3599 return PARSE_FAIL;
3600
3601 *str = q;
3602 return o->value;
3603}
3604
1e6f4800
MW
3605/* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3606 return 0 if successful. Otherwise return PARSE_FAIL. */
3607
3608static int
3609parse_barrier_psb (char **str,
3610 const struct aarch64_name_value_pair ** hint_opt)
3611{
3612 char *p, *q;
3613 const struct aarch64_name_value_pair *o;
3614
3615 p = q = *str;
3616 while (ISALPHA (*q))
3617 q++;
3618
3619 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3620 if (!o)
3621 {
3622 set_fatal_syntax_error
3623 ( _("unknown or missing option to PSB"));
3624 return PARSE_FAIL;
3625 }
3626
3627 if (o->value != 0x11)
3628 {
3629 /* PSB only accepts option name 'CSYNC'. */
3630 set_syntax_error
3631 (_("the specified option is not accepted for PSB"));
3632 return PARSE_FAIL;
3633 }
3634
3635 *str = q;
3636 *hint_opt = o;
3637 return 0;
3638}
3639
a06ea964 3640/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3641 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3642
3643 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3644 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3645
3646 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3647 field, otherwise as a system register.
3648*/
a06ea964
NC
3649
3650static int
72ca8fad
MW
3651parse_sys_reg (char **str, struct hash_control *sys_regs,
3652 int imple_defined_p, int pstatefield_p)
a06ea964
NC
3653{
3654 char *p, *q;
3655 char buf[32];
49eec193 3656 const aarch64_sys_reg *o;
a06ea964
NC
3657 int value;
3658
3659 p = buf;
3660 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3661 if (p < buf + 31)
3662 *p++ = TOLOWER (*q);
3663 *p = '\0';
3664 /* Assert that BUF be large enough. */
3665 gas_assert (p - buf == q - *str);
3666
3667 o = hash_find (sys_regs, buf);
3668 if (!o)
3669 {
3670 if (!imple_defined_p)
3671 return PARSE_FAIL;
3672 else
3673 {
df7b4545 3674 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3675 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3676
3677 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3678 != 5)
a06ea964 3679 return PARSE_FAIL;
df7b4545 3680 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3681 return PARSE_FAIL;
3682 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3683 }
3684 }
3685 else
49eec193 3686 {
72ca8fad
MW
3687 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3688 as_bad (_("selected processor does not support PSTATE field "
3689 "name '%s'"), buf);
3690 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3691 as_bad (_("selected processor does not support system register "
3692 "name '%s'"), buf);
9a73e520 3693 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3694 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3695 "removed in a future release"), buf);
49eec193
YZ
3696 value = o->value;
3697 }
a06ea964
NC
3698
3699 *str = q;
3700 return value;
3701}
3702
3703/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3704 for the option, or NULL. */
3705
3706static const aarch64_sys_ins_reg *
3707parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3708{
3709 char *p, *q;
3710 char buf[32];
3711 const aarch64_sys_ins_reg *o;
3712
3713 p = buf;
3714 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3715 if (p < buf + 31)
3716 *p++ = TOLOWER (*q);
3717 *p = '\0';
3718
3719 o = hash_find (sys_ins_regs, buf);
3720 if (!o)
3721 return NULL;
3722
d6bf7ce6
MW
3723 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
3724 as_bad (_("selected processor does not support system register "
3725 "name '%s'"), buf);
3726
a06ea964
NC
3727 *str = q;
3728 return o;
3729}
3730\f
3731#define po_char_or_fail(chr) do { \
3732 if (! skip_past_char (&str, chr)) \
3733 goto failure; \
3734} while (0)
3735
3736#define po_reg_or_fail(regtype) do { \
3737 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3738 if (val == PARSE_FAIL) \
3739 { \
3740 set_default_error (); \
3741 goto failure; \
3742 } \
3743 } while (0)
3744
3745#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3746 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3747 &isreg32, &isregzero); \
3748 if (val == PARSE_FAIL) \
3749 { \
3750 set_default_error (); \
3751 goto failure; \
3752 } \
3753 info->reg.regno = val; \
3754 if (isreg32) \
3755 info->qualifier = AARCH64_OPND_QLF_W; \
3756 else \
3757 info->qualifier = AARCH64_OPND_QLF_X; \
3758 } while (0)
3759
3760#define po_imm_nc_or_fail() do { \
3761 if (! parse_constant_immediate (&str, &val)) \
3762 goto failure; \
3763 } while (0)
3764
3765#define po_imm_or_fail(min, max) do { \
3766 if (! parse_constant_immediate (&str, &val)) \
3767 goto failure; \
3768 if (val < min || val > max) \
3769 { \
3770 set_fatal_syntax_error (_("immediate value out of range "\
3771#min " to "#max)); \
3772 goto failure; \
3773 } \
3774 } while (0)
3775
3776#define po_misc_or_fail(expr) do { \
3777 if (!expr) \
3778 goto failure; \
3779 } while (0)
3780\f
3781/* encode the 12-bit imm field of Add/sub immediate */
3782static inline uint32_t
3783encode_addsub_imm (uint32_t imm)
3784{
3785 return imm << 10;
3786}
3787
3788/* encode the shift amount field of Add/sub immediate */
3789static inline uint32_t
3790encode_addsub_imm_shift_amount (uint32_t cnt)
3791{
3792 return cnt << 22;
3793}
3794
3795
3796/* encode the imm field of Adr instruction */
3797static inline uint32_t
3798encode_adr_imm (uint32_t imm)
3799{
3800 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3801 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3802}
3803
3804/* encode the immediate field of Move wide immediate */
3805static inline uint32_t
3806encode_movw_imm (uint32_t imm)
3807{
3808 return imm << 5;
3809}
3810
3811/* encode the 26-bit offset of unconditional branch */
3812static inline uint32_t
3813encode_branch_ofs_26 (uint32_t ofs)
3814{
3815 return ofs & ((1 << 26) - 1);
3816}
3817
3818/* encode the 19-bit offset of conditional branch and compare & branch */
3819static inline uint32_t
3820encode_cond_branch_ofs_19 (uint32_t ofs)
3821{
3822 return (ofs & ((1 << 19) - 1)) << 5;
3823}
3824
3825/* encode the 19-bit offset of ld literal */
3826static inline uint32_t
3827encode_ld_lit_ofs_19 (uint32_t ofs)
3828{
3829 return (ofs & ((1 << 19) - 1)) << 5;
3830}
3831
3832/* Encode the 14-bit offset of test & branch. */
3833static inline uint32_t
3834encode_tst_branch_ofs_14 (uint32_t ofs)
3835{
3836 return (ofs & ((1 << 14) - 1)) << 5;
3837}
3838
3839/* Encode the 16-bit imm field of svc/hvc/smc. */
3840static inline uint32_t
3841encode_svc_imm (uint32_t imm)
3842{
3843 return imm << 5;
3844}
3845
3846/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3847static inline uint32_t
3848reencode_addsub_switch_add_sub (uint32_t opcode)
3849{
3850 return opcode ^ (1 << 30);
3851}
3852
3853static inline uint32_t
3854reencode_movzn_to_movz (uint32_t opcode)
3855{
3856 return opcode | (1 << 30);
3857}
3858
3859static inline uint32_t
3860reencode_movzn_to_movn (uint32_t opcode)
3861{
3862 return opcode & ~(1 << 30);
3863}
3864
3865/* Overall per-instruction processing. */
3866
3867/* We need to be able to fix up arbitrary expressions in some statements.
3868 This is so that we can handle symbols that are an arbitrary distance from
3869 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3870 which returns part of an address in a form which will be valid for
3871 a data instruction. We do this by pushing the expression into a symbol
3872 in the expr_section, and creating a fix for that. */
3873
3874static fixS *
3875fix_new_aarch64 (fragS * frag,
3876 int where,
3877 short int size, expressionS * exp, int pc_rel, int reloc)
3878{
3879 fixS *new_fix;
3880
3881 switch (exp->X_op)
3882 {
3883 case O_constant:
3884 case O_symbol:
3885 case O_add:
3886 case O_subtract:
3887 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3888 break;
3889
3890 default:
3891 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3892 pc_rel, reloc);
3893 break;
3894 }
3895 return new_fix;
3896}
3897\f
3898/* Diagnostics on operands errors. */
3899
a52e6fd3
YZ
3900/* By default, output verbose error message.
3901 Disable the verbose error message by -mno-verbose-error. */
3902static int verbose_error_p = 1;
a06ea964
NC
3903
3904#ifdef DEBUG_AARCH64
3905/* N.B. this is only for the purpose of debugging. */
3906const char* operand_mismatch_kind_names[] =
3907{
3908 "AARCH64_OPDE_NIL",
3909 "AARCH64_OPDE_RECOVERABLE",
3910 "AARCH64_OPDE_SYNTAX_ERROR",
3911 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3912 "AARCH64_OPDE_INVALID_VARIANT",
3913 "AARCH64_OPDE_OUT_OF_RANGE",
3914 "AARCH64_OPDE_UNALIGNED",
3915 "AARCH64_OPDE_REG_LIST",
3916 "AARCH64_OPDE_OTHER_ERROR",
3917};
3918#endif /* DEBUG_AARCH64 */
3919
3920/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3921
3922 When multiple errors of different kinds are found in the same assembly
3923 line, only the error of the highest severity will be picked up for
3924 issuing the diagnostics. */
3925
3926static inline bfd_boolean
3927operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3928 enum aarch64_operand_error_kind rhs)
3929{
3930 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3931 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3932 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3933 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3934 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3935 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3936 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3937 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3938 return lhs > rhs;
3939}
3940
3941/* Helper routine to get the mnemonic name from the assembly instruction
3942 line; should only be called for the diagnosis purpose, as there is
3943 string copy operation involved, which may affect the runtime
3944 performance if used in elsewhere. */
3945
3946static const char*
3947get_mnemonic_name (const char *str)
3948{
3949 static char mnemonic[32];
3950 char *ptr;
3951
3952 /* Get the first 15 bytes and assume that the full name is included. */
3953 strncpy (mnemonic, str, 31);
3954 mnemonic[31] = '\0';
3955
3956 /* Scan up to the end of the mnemonic, which must end in white space,
3957 '.', or end of string. */
3958 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3959 ;
3960
3961 *ptr = '\0';
3962
3963 /* Append '...' to the truncated long name. */
3964 if (ptr - mnemonic == 31)
3965 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3966
3967 return mnemonic;
3968}
3969
3970static void
3971reset_aarch64_instruction (aarch64_instruction *instruction)
3972{
3973 memset (instruction, '\0', sizeof (aarch64_instruction));
3974 instruction->reloc.type = BFD_RELOC_UNUSED;
3975}
3976
3977/* Data strutures storing one user error in the assembly code related to
3978 operands. */
3979
3980struct operand_error_record
3981{
3982 const aarch64_opcode *opcode;
3983 aarch64_operand_error detail;
3984 struct operand_error_record *next;
3985};
3986
3987typedef struct operand_error_record operand_error_record;
3988
3989struct operand_errors
3990{
3991 operand_error_record *head;
3992 operand_error_record *tail;
3993};
3994
3995typedef struct operand_errors operand_errors;
3996
3997/* Top-level data structure reporting user errors for the current line of
3998 the assembly code.
3999 The way md_assemble works is that all opcodes sharing the same mnemonic
4000 name are iterated to find a match to the assembly line. In this data
4001 structure, each of the such opcodes will have one operand_error_record
4002 allocated and inserted. In other words, excessive errors related with
4003 a single opcode are disregarded. */
4004operand_errors operand_error_report;
4005
4006/* Free record nodes. */
4007static operand_error_record *free_opnd_error_record_nodes = NULL;
4008
4009/* Initialize the data structure that stores the operand mismatch
4010 information on assembling one line of the assembly code. */
4011static void
4012init_operand_error_report (void)
4013{
4014 if (operand_error_report.head != NULL)
4015 {
4016 gas_assert (operand_error_report.tail != NULL);
4017 operand_error_report.tail->next = free_opnd_error_record_nodes;
4018 free_opnd_error_record_nodes = operand_error_report.head;
4019 operand_error_report.head = NULL;
4020 operand_error_report.tail = NULL;
4021 return;
4022 }
4023 gas_assert (operand_error_report.tail == NULL);
4024}
4025
4026/* Return TRUE if some operand error has been recorded during the
4027 parsing of the current assembly line using the opcode *OPCODE;
4028 otherwise return FALSE. */
4029static inline bfd_boolean
4030opcode_has_operand_error_p (const aarch64_opcode *opcode)
4031{
4032 operand_error_record *record = operand_error_report.head;
4033 return record && record->opcode == opcode;
4034}
4035
4036/* Add the error record *NEW_RECORD to operand_error_report. The record's
4037 OPCODE field is initialized with OPCODE.
4038 N.B. only one record for each opcode, i.e. the maximum of one error is
4039 recorded for each instruction template. */
4040
4041static void
4042add_operand_error_record (const operand_error_record* new_record)
4043{
4044 const aarch64_opcode *opcode = new_record->opcode;
4045 operand_error_record* record = operand_error_report.head;
4046
4047 /* The record may have been created for this opcode. If not, we need
4048 to prepare one. */
4049 if (! opcode_has_operand_error_p (opcode))
4050 {
4051 /* Get one empty record. */
4052 if (free_opnd_error_record_nodes == NULL)
4053 {
4054 record = xmalloc (sizeof (operand_error_record));
4055 if (record == NULL)
4056 abort ();
4057 }
4058 else
4059 {
4060 record = free_opnd_error_record_nodes;
4061 free_opnd_error_record_nodes = record->next;
4062 }
4063 record->opcode = opcode;
4064 /* Insert at the head. */
4065 record->next = operand_error_report.head;
4066 operand_error_report.head = record;
4067 if (operand_error_report.tail == NULL)
4068 operand_error_report.tail = record;
4069 }
4070 else if (record->detail.kind != AARCH64_OPDE_NIL
4071 && record->detail.index <= new_record->detail.index
4072 && operand_error_higher_severity_p (record->detail.kind,
4073 new_record->detail.kind))
4074 {
4075 /* In the case of multiple errors found on operands related with a
4076 single opcode, only record the error of the leftmost operand and
4077 only if the error is of higher severity. */
4078 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4079 " the existing error %s on operand %d",
4080 operand_mismatch_kind_names[new_record->detail.kind],
4081 new_record->detail.index,
4082 operand_mismatch_kind_names[record->detail.kind],
4083 record->detail.index);
4084 return;
4085 }
4086
4087 record->detail = new_record->detail;
4088}
4089
4090static inline void
4091record_operand_error_info (const aarch64_opcode *opcode,
4092 aarch64_operand_error *error_info)
4093{
4094 operand_error_record record;
4095 record.opcode = opcode;
4096 record.detail = *error_info;
4097 add_operand_error_record (&record);
4098}
4099
4100/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4101 error message *ERROR, for operand IDX (count from 0). */
4102
4103static void
4104record_operand_error (const aarch64_opcode *opcode, int idx,
4105 enum aarch64_operand_error_kind kind,
4106 const char* error)
4107{
4108 aarch64_operand_error info;
4109 memset(&info, 0, sizeof (info));
4110 info.index = idx;
4111 info.kind = kind;
4112 info.error = error;
4113 record_operand_error_info (opcode, &info);
4114}
4115
4116static void
4117record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4118 enum aarch64_operand_error_kind kind,
4119 const char* error, const int *extra_data)
4120{
4121 aarch64_operand_error info;
4122 info.index = idx;
4123 info.kind = kind;
4124 info.error = error;
4125 info.data[0] = extra_data[0];
4126 info.data[1] = extra_data[1];
4127 info.data[2] = extra_data[2];
4128 record_operand_error_info (opcode, &info);
4129}
4130
4131static void
4132record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4133 const char* error, int lower_bound,
4134 int upper_bound)
4135{
4136 int data[3] = {lower_bound, upper_bound, 0};
4137 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4138 error, data);
4139}
4140
4141/* Remove the operand error record for *OPCODE. */
4142static void ATTRIBUTE_UNUSED
4143remove_operand_error_record (const aarch64_opcode *opcode)
4144{
4145 if (opcode_has_operand_error_p (opcode))
4146 {
4147 operand_error_record* record = operand_error_report.head;
4148 gas_assert (record != NULL && operand_error_report.tail != NULL);
4149 operand_error_report.head = record->next;
4150 record->next = free_opnd_error_record_nodes;
4151 free_opnd_error_record_nodes = record;
4152 if (operand_error_report.head == NULL)
4153 {
4154 gas_assert (operand_error_report.tail == record);
4155 operand_error_report.tail = NULL;
4156 }
4157 }
4158}
4159
4160/* Given the instruction in *INSTR, return the index of the best matched
4161 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4162
4163 Return -1 if there is no qualifier sequence; return the first match
4164 if there is multiple matches found. */
4165
4166static int
4167find_best_match (const aarch64_inst *instr,
4168 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4169{
4170 int i, num_opnds, max_num_matched, idx;
4171
4172 num_opnds = aarch64_num_of_operands (instr->opcode);
4173 if (num_opnds == 0)
4174 {
4175 DEBUG_TRACE ("no operand");
4176 return -1;
4177 }
4178
4179 max_num_matched = 0;
4180 idx = -1;
4181
4182 /* For each pattern. */
4183 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4184 {
4185 int j, num_matched;
4186 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4187
4188 /* Most opcodes has much fewer patterns in the list. */
4189 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
4190 {
4191 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4192 if (i != 0 && idx == -1)
4193 /* If nothing has been matched, return the 1st sequence. */
4194 idx = 0;
4195 break;
4196 }
4197
4198 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4199 if (*qualifiers == instr->operands[j].qualifier)
4200 ++num_matched;
4201
4202 if (num_matched > max_num_matched)
4203 {
4204 max_num_matched = num_matched;
4205 idx = i;
4206 }
4207 }
4208
4209 DEBUG_TRACE ("return with %d", idx);
4210 return idx;
4211}
4212
4213/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
4214 corresponding operands in *INSTR. */
4215
4216static inline void
4217assign_qualifier_sequence (aarch64_inst *instr,
4218 const aarch64_opnd_qualifier_t *qualifiers)
4219{
4220 int i = 0;
4221 int num_opnds = aarch64_num_of_operands (instr->opcode);
4222 gas_assert (num_opnds);
4223 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4224 instr->operands[i].qualifier = *qualifiers;
4225}
4226
4227/* Print operands for the diagnosis purpose. */
4228
4229static void
4230print_operands (char *buf, const aarch64_opcode *opcode,
4231 const aarch64_opnd_info *opnds)
4232{
4233 int i;
4234
4235 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4236 {
4237 const size_t size = 128;
4238 char str[size];
4239
4240 /* We regard the opcode operand info more, however we also look into
4241 the inst->operands to support the disassembling of the optional
4242 operand.
4243 The two operand code should be the same in all cases, apart from
4244 when the operand can be optional. */
4245 if (opcode->operands[i] == AARCH64_OPND_NIL
4246 || opnds[i].type == AARCH64_OPND_NIL)
4247 break;
4248
4249 /* Generate the operand string in STR. */
4250 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
4251
4252 /* Delimiter. */
4253 if (str[0] != '\0')
4254 strcat (buf, i == 0 ? " " : ",");
4255
4256 /* Append the operand string. */
4257 strcat (buf, str);
4258 }
4259}
4260
4261/* Send to stderr a string as information. */
4262
4263static void
4264output_info (const char *format, ...)
4265{
3b4dbbbf 4266 const char *file;
a06ea964
NC
4267 unsigned int line;
4268 va_list args;
4269
3b4dbbbf 4270 file = as_where (&line);
a06ea964
NC
4271 if (file)
4272 {
4273 if (line != 0)
4274 fprintf (stderr, "%s:%u: ", file, line);
4275 else
4276 fprintf (stderr, "%s: ", file);
4277 }
4278 fprintf (stderr, _("Info: "));
4279 va_start (args, format);
4280 vfprintf (stderr, format, args);
4281 va_end (args);
4282 (void) putc ('\n', stderr);
4283}
4284
4285/* Output one operand error record. */
4286
4287static void
4288output_operand_error_record (const operand_error_record *record, char *str)
4289{
28f013d5
JB
4290 const aarch64_operand_error *detail = &record->detail;
4291 int idx = detail->index;
a06ea964 4292 const aarch64_opcode *opcode = record->opcode;
28f013d5 4293 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4294 : AARCH64_OPND_NIL);
a06ea964
NC
4295
4296 switch (detail->kind)
4297 {
4298 case AARCH64_OPDE_NIL:
4299 gas_assert (0);
4300 break;
4301
4302 case AARCH64_OPDE_SYNTAX_ERROR:
4303 case AARCH64_OPDE_RECOVERABLE:
4304 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4305 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4306 /* Use the prepared error message if there is, otherwise use the
4307 operand description string to describe the error. */
4308 if (detail->error != NULL)
4309 {
28f013d5 4310 if (idx < 0)
a06ea964
NC
4311 as_bad (_("%s -- `%s'"), detail->error, str);
4312 else
4313 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4314 detail->error, idx + 1, str);
a06ea964
NC
4315 }
4316 else
28f013d5
JB
4317 {
4318 gas_assert (idx >= 0);
4319 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 4320 aarch64_get_operand_desc (opd_code), str);
28f013d5 4321 }
a06ea964
NC
4322 break;
4323
4324 case AARCH64_OPDE_INVALID_VARIANT:
4325 as_bad (_("operand mismatch -- `%s'"), str);
4326 if (verbose_error_p)
4327 {
4328 /* We will try to correct the erroneous instruction and also provide
4329 more information e.g. all other valid variants.
4330
4331 The string representation of the corrected instruction and other
4332 valid variants are generated by
4333
4334 1) obtaining the intermediate representation of the erroneous
4335 instruction;
4336 2) manipulating the IR, e.g. replacing the operand qualifier;
4337 3) printing out the instruction by calling the printer functions
4338 shared with the disassembler.
4339
4340 The limitation of this method is that the exact input assembly
4341 line cannot be accurately reproduced in some cases, for example an
4342 optional operand present in the actual assembly line will be
4343 omitted in the output; likewise for the optional syntax rules,
4344 e.g. the # before the immediate. Another limitation is that the
4345 assembly symbols and relocation operations in the assembly line
4346 currently cannot be printed out in the error report. Last but not
4347 least, when there is other error(s) co-exist with this error, the
4348 'corrected' instruction may be still incorrect, e.g. given
4349 'ldnp h0,h1,[x0,#6]!'
4350 this diagnosis will provide the version:
4351 'ldnp s0,s1,[x0,#6]!'
4352 which is still not right. */
4353 size_t len = strlen (get_mnemonic_name (str));
4354 int i, qlf_idx;
4355 bfd_boolean result;
4356 const size_t size = 2048;
4357 char buf[size];
4358 aarch64_inst *inst_base = &inst.base;
4359 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4360
4361 /* Init inst. */
4362 reset_aarch64_instruction (&inst);
4363 inst_base->opcode = opcode;
4364
4365 /* Reset the error report so that there is no side effect on the
4366 following operand parsing. */
4367 init_operand_error_report ();
4368
4369 /* Fill inst. */
4370 result = parse_operands (str + len, opcode)
4371 && programmer_friendly_fixup (&inst);
4372 gas_assert (result);
4373 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4374 NULL, NULL);
4375 gas_assert (!result);
4376
4377 /* Find the most matched qualifier sequence. */
4378 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4379 gas_assert (qlf_idx > -1);
4380
4381 /* Assign the qualifiers. */
4382 assign_qualifier_sequence (inst_base,
4383 opcode->qualifiers_list[qlf_idx]);
4384
4385 /* Print the hint. */
4386 output_info (_(" did you mean this?"));
4387 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4388 print_operands (buf, opcode, inst_base->operands);
4389 output_info (_(" %s"), buf);
4390
4391 /* Print out other variant(s) if there is any. */
4392 if (qlf_idx != 0 ||
4393 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4394 output_info (_(" other valid variant(s):"));
4395
4396 /* For each pattern. */
4397 qualifiers_list = opcode->qualifiers_list;
4398 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4399 {
4400 /* Most opcodes has much fewer patterns in the list.
4401 First NIL qualifier indicates the end in the list. */
4402 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4403 break;
4404
4405 if (i != qlf_idx)
4406 {
4407 /* Mnemonics name. */
4408 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4409
4410 /* Assign the qualifiers. */
4411 assign_qualifier_sequence (inst_base, *qualifiers_list);
4412
4413 /* Print instruction. */
4414 print_operands (buf, opcode, inst_base->operands);
4415
4416 output_info (_(" %s"), buf);
4417 }
4418 }
4419 }
4420 break;
4421
4422 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4423 if (detail->data[0] != detail->data[1])
4424 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4425 detail->error ? detail->error : _("immediate value"),
28f013d5 4426 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4427 else
4428 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4429 detail->error ? detail->error : _("immediate value"),
28f013d5 4430 detail->data[0], idx + 1, str);
a06ea964
NC
4431 break;
4432
4433 case AARCH64_OPDE_REG_LIST:
4434 if (detail->data[0] == 1)
4435 as_bad (_("invalid number of registers in the list; "
4436 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4437 idx + 1, str);
a06ea964
NC
4438 else
4439 as_bad (_("invalid number of registers in the list; "
4440 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4441 detail->data[0], idx + 1, str);
a06ea964
NC
4442 break;
4443
4444 case AARCH64_OPDE_UNALIGNED:
4445 as_bad (_("immediate value should be a multiple of "
4446 "%d at operand %d -- `%s'"),
28f013d5 4447 detail->data[0], idx + 1, str);
a06ea964
NC
4448 break;
4449
4450 default:
4451 gas_assert (0);
4452 break;
4453 }
4454}
4455
4456/* Process and output the error message about the operand mismatching.
4457
4458 When this function is called, the operand error information had
4459 been collected for an assembly line and there will be multiple
4460 errors in the case of mulitple instruction templates; output the
4461 error message that most closely describes the problem. */
4462
4463static void
4464output_operand_error_report (char *str)
4465{
4466 int largest_error_pos;
4467 const char *msg = NULL;
4468 enum aarch64_operand_error_kind kind;
4469 operand_error_record *curr;
4470 operand_error_record *head = operand_error_report.head;
4471 operand_error_record *record = NULL;
4472
4473 /* No error to report. */
4474 if (head == NULL)
4475 return;
4476
4477 gas_assert (head != NULL && operand_error_report.tail != NULL);
4478
4479 /* Only one error. */
4480 if (head == operand_error_report.tail)
4481 {
4482 DEBUG_TRACE ("single opcode entry with error kind: %s",
4483 operand_mismatch_kind_names[head->detail.kind]);
4484 output_operand_error_record (head, str);
4485 return;
4486 }
4487
4488 /* Find the error kind of the highest severity. */
4489 DEBUG_TRACE ("multiple opcode entres with error kind");
4490 kind = AARCH64_OPDE_NIL;
4491 for (curr = head; curr != NULL; curr = curr->next)
4492 {
4493 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4494 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4495 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4496 kind = curr->detail.kind;
4497 }
4498 gas_assert (kind != AARCH64_OPDE_NIL);
4499
4500 /* Pick up one of errors of KIND to report. */
4501 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4502 for (curr = head; curr != NULL; curr = curr->next)
4503 {
4504 if (curr->detail.kind != kind)
4505 continue;
4506 /* If there are multiple errors, pick up the one with the highest
4507 mismatching operand index. In the case of multiple errors with
4508 the equally highest operand index, pick up the first one or the
4509 first one with non-NULL error message. */
4510 if (curr->detail.index > largest_error_pos
4511 || (curr->detail.index == largest_error_pos && msg == NULL
4512 && curr->detail.error != NULL))
4513 {
4514 largest_error_pos = curr->detail.index;
4515 record = curr;
4516 msg = record->detail.error;
4517 }
4518 }
4519
4520 gas_assert (largest_error_pos != -2 && record != NULL);
4521 DEBUG_TRACE ("Pick up error kind %s to report",
4522 operand_mismatch_kind_names[record->detail.kind]);
4523
4524 /* Output. */
4525 output_operand_error_record (record, str);
4526}
4527\f
4528/* Write an AARCH64 instruction to buf - always little-endian. */
4529static void
4530put_aarch64_insn (char *buf, uint32_t insn)
4531{
4532 unsigned char *where = (unsigned char *) buf;
4533 where[0] = insn;
4534 where[1] = insn >> 8;
4535 where[2] = insn >> 16;
4536 where[3] = insn >> 24;
4537}
4538
4539static uint32_t
4540get_aarch64_insn (char *buf)
4541{
4542 unsigned char *where = (unsigned char *) buf;
4543 uint32_t result;
4544 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4545 return result;
4546}
4547
4548static void
4549output_inst (struct aarch64_inst *new_inst)
4550{
4551 char *to = NULL;
4552
4553 to = frag_more (INSN_SIZE);
4554
4555 frag_now->tc_frag_data.recorded = 1;
4556
4557 put_aarch64_insn (to, inst.base.value);
4558
4559 if (inst.reloc.type != BFD_RELOC_UNUSED)
4560 {
4561 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4562 INSN_SIZE, &inst.reloc.exp,
4563 inst.reloc.pc_rel,
4564 inst.reloc.type);
4565 DEBUG_TRACE ("Prepared relocation fix up");
4566 /* Don't check the addend value against the instruction size,
4567 that's the job of our code in md_apply_fix(). */
4568 fixp->fx_no_overflow = 1;
4569 if (new_inst != NULL)
4570 fixp->tc_fix_data.inst = new_inst;
4571 if (aarch64_gas_internal_fixup_p ())
4572 {
4573 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4574 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4575 fixp->fx_addnumber = inst.reloc.flags;
4576 }
4577 }
4578
4579 dwarf2_emit_insn (INSN_SIZE);
4580}
4581
4582/* Link together opcodes of the same name. */
4583
4584struct templates
4585{
4586 aarch64_opcode *opcode;
4587 struct templates *next;
4588};
4589
4590typedef struct templates templates;
4591
4592static templates *
4593lookup_mnemonic (const char *start, int len)
4594{
4595 templates *templ = NULL;
4596
4597 templ = hash_find_n (aarch64_ops_hsh, start, len);
4598 return templ;
4599}
4600
4601/* Subroutine of md_assemble, responsible for looking up the primary
4602 opcode from the mnemonic the user wrote. STR points to the
4603 beginning of the mnemonic. */
4604
4605static templates *
4606opcode_lookup (char **str)
4607{
4608 char *end, *base;
4609 const aarch64_cond *cond;
4610 char condname[16];
4611 int len;
4612
4613 /* Scan up to the end of the mnemonic, which must end in white space,
4614 '.', or end of string. */
4615 for (base = end = *str; is_part_of_name(*end); end++)
4616 if (*end == '.')
4617 break;
4618
4619 if (end == base)
4620 return 0;
4621
4622 inst.cond = COND_ALWAYS;
4623
4624 /* Handle a possible condition. */
4625 if (end[0] == '.')
4626 {
4627 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4628 if (cond)
4629 {
4630 inst.cond = cond->value;
4631 *str = end + 3;
4632 }
4633 else
4634 {
4635 *str = end;
4636 return 0;
4637 }
4638 }
4639 else
4640 *str = end;
4641
4642 len = end - base;
4643
4644 if (inst.cond == COND_ALWAYS)
4645 {
4646 /* Look for unaffixed mnemonic. */
4647 return lookup_mnemonic (base, len);
4648 }
4649 else if (len <= 13)
4650 {
4651 /* append ".c" to mnemonic if conditional */
4652 memcpy (condname, base, len);
4653 memcpy (condname + len, ".c", 2);
4654 base = condname;
4655 len += 2;
4656 return lookup_mnemonic (base, len);
4657 }
4658
4659 return NULL;
4660}
4661
4662/* Internal helper routine converting a vector neon_type_el structure
4663 *VECTYPE to a corresponding operand qualifier. */
4664
4665static inline aarch64_opnd_qualifier_t
4666vectype_to_qualifier (const struct neon_type_el *vectype)
4667{
4668 /* Element size in bytes indexed by neon_el_type. */
4669 const unsigned char ele_size[5]
4670 = {1, 2, 4, 8, 16};
65f2205d
MW
4671 const unsigned int ele_base [5] =
4672 {
4673 AARCH64_OPND_QLF_V_8B,
3067d3b9 4674 AARCH64_OPND_QLF_V_2H,
65f2205d
MW
4675 AARCH64_OPND_QLF_V_2S,
4676 AARCH64_OPND_QLF_V_1D,
4677 AARCH64_OPND_QLF_V_1Q
4678 };
a06ea964
NC
4679
4680 if (!vectype->defined || vectype->type == NT_invtype)
4681 goto vectype_conversion_fail;
4682
4683 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4684
4685 if (vectype->defined & NTA_HASINDEX)
4686 /* Vector element register. */
4687 return AARCH64_OPND_QLF_S_B + vectype->type;
4688 else
4689 {
4690 /* Vector register. */
4691 int reg_size = ele_size[vectype->type] * vectype->width;
4692 unsigned offset;
65f2205d 4693 unsigned shift;
3067d3b9 4694 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
a06ea964 4695 goto vectype_conversion_fail;
65f2205d
MW
4696
4697 /* The conversion is by calculating the offset from the base operand
4698 qualifier for the vector type. The operand qualifiers are regular
4699 enough that the offset can established by shifting the vector width by
4700 a vector-type dependent amount. */
4701 shift = 0;
4702 if (vectype->type == NT_b)
4703 shift = 4;
3067d3b9 4704 else if (vectype->type == NT_h || vectype->type == NT_s)
65f2205d
MW
4705 shift = 2;
4706 else if (vectype->type >= NT_d)
4707 shift = 1;
4708 else
4709 gas_assert (0);
4710
4711 offset = ele_base [vectype->type] + (vectype->width >> shift);
4712 gas_assert (AARCH64_OPND_QLF_V_8B <= offset
4713 && offset <= AARCH64_OPND_QLF_V_1Q);
4714 return offset;
a06ea964
NC
4715 }
4716
4717vectype_conversion_fail:
4718 first_error (_("bad vector arrangement type"));
4719 return AARCH64_OPND_QLF_NIL;
4720}
4721
4722/* Process an optional operand that is found omitted from the assembly line.
4723 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4724 instruction's opcode entry while IDX is the index of this omitted operand.
4725 */
4726
4727static void
4728process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4729 int idx, aarch64_opnd_info *operand)
4730{
4731 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4732 gas_assert (optional_operand_p (opcode, idx));
4733 gas_assert (!operand->present);
4734
4735 switch (type)
4736 {
4737 case AARCH64_OPND_Rd:
4738 case AARCH64_OPND_Rn:
4739 case AARCH64_OPND_Rm:
4740 case AARCH64_OPND_Rt:
4741 case AARCH64_OPND_Rt2:
4742 case AARCH64_OPND_Rs:
4743 case AARCH64_OPND_Ra:
4744 case AARCH64_OPND_Rt_SYS:
4745 case AARCH64_OPND_Rd_SP:
4746 case AARCH64_OPND_Rn_SP:
4747 case AARCH64_OPND_Fd:
4748 case AARCH64_OPND_Fn:
4749 case AARCH64_OPND_Fm:
4750 case AARCH64_OPND_Fa:
4751 case AARCH64_OPND_Ft:
4752 case AARCH64_OPND_Ft2:
4753 case AARCH64_OPND_Sd:
4754 case AARCH64_OPND_Sn:
4755 case AARCH64_OPND_Sm:
4756 case AARCH64_OPND_Vd:
4757 case AARCH64_OPND_Vn:
4758 case AARCH64_OPND_Vm:
4759 case AARCH64_OPND_VdD1:
4760 case AARCH64_OPND_VnD1:
4761 operand->reg.regno = default_value;
4762 break;
4763
4764 case AARCH64_OPND_Ed:
4765 case AARCH64_OPND_En:
4766 case AARCH64_OPND_Em:
4767 operand->reglane.regno = default_value;
4768 break;
4769
4770 case AARCH64_OPND_IDX:
4771 case AARCH64_OPND_BIT_NUM:
4772 case AARCH64_OPND_IMMR:
4773 case AARCH64_OPND_IMMS:
4774 case AARCH64_OPND_SHLL_IMM:
4775 case AARCH64_OPND_IMM_VLSL:
4776 case AARCH64_OPND_IMM_VLSR:
4777 case AARCH64_OPND_CCMP_IMM:
4778 case AARCH64_OPND_FBITS:
4779 case AARCH64_OPND_UIMM4:
4780 case AARCH64_OPND_UIMM3_OP1:
4781 case AARCH64_OPND_UIMM3_OP2:
4782 case AARCH64_OPND_IMM:
4783 case AARCH64_OPND_WIDTH:
4784 case AARCH64_OPND_UIMM7:
4785 case AARCH64_OPND_NZCV:
4786 operand->imm.value = default_value;
4787 break;
4788
4789 case AARCH64_OPND_EXCEPTION:
4790 inst.reloc.type = BFD_RELOC_UNUSED;
4791 break;
4792
4793 case AARCH64_OPND_BARRIER_ISB:
4794 operand->barrier = aarch64_barrier_options + default_value;
4795
4796 default:
4797 break;
4798 }
4799}
4800
4801/* Process the relocation type for move wide instructions.
4802 Return TRUE on success; otherwise return FALSE. */
4803
4804static bfd_boolean
4805process_movw_reloc_info (void)
4806{
4807 int is32;
4808 unsigned shift;
4809
4810 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4811
4812 if (inst.base.opcode->op == OP_MOVK)
4813 switch (inst.reloc.type)
4814 {
4815 case BFD_RELOC_AARCH64_MOVW_G0_S:
4816 case BFD_RELOC_AARCH64_MOVW_G1_S:
4817 case BFD_RELOC_AARCH64_MOVW_G2_S:
1aa66fb1 4818 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 4819 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 4820 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
4821 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4822 set_syntax_error
4823 (_("the specified relocation type is not allowed for MOVK"));
4824 return FALSE;
4825 default:
4826 break;
4827 }
4828
4829 switch (inst.reloc.type)
4830 {
4831 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 4832 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 4833 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 4834 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
43a357f9 4835 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 4836 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 4837 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
4838 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
4839 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
4840 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4841 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4842 shift = 0;
4843 break;
4844 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 4845 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 4846 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 4847 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 4848 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 4849 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 4850 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
4851 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
4852 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
4853 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4854 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4855 shift = 16;
4856 break;
4857 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 4858 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 4859 case BFD_RELOC_AARCH64_MOVW_G2_S:
49df5539 4860 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
4861 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4862 if (is32)
4863 {
4864 set_fatal_syntax_error
4865 (_("the specified relocation type is not allowed for 32-bit "
4866 "register"));
4867 return FALSE;
4868 }
4869 shift = 32;
4870 break;
4871 case BFD_RELOC_AARCH64_MOVW_G3:
4872 if (is32)
4873 {
4874 set_fatal_syntax_error
4875 (_("the specified relocation type is not allowed for 32-bit "
4876 "register"));
4877 return FALSE;
4878 }
4879 shift = 48;
4880 break;
4881 default:
4882 /* More cases should be added when more MOVW-related relocation types
4883 are supported in GAS. */
4884 gas_assert (aarch64_gas_internal_fixup_p ());
4885 /* The shift amount should have already been set by the parser. */
4886 return TRUE;
4887 }
4888 inst.base.operands[1].shifter.amount = shift;
4889 return TRUE;
4890}
4891
4892/* A primitive log caculator. */
4893
4894static inline unsigned int
4895get_logsz (unsigned int size)
4896{
4897 const unsigned char ls[16] =
4898 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4899 if (size > 16)
4900 {
4901 gas_assert (0);
4902 return -1;
4903 }
4904 gas_assert (ls[size - 1] != (unsigned char)-1);
4905 return ls[size - 1];
4906}
4907
4908/* Determine and return the real reloc type code for an instruction
4909 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4910
4911static inline bfd_reloc_code_real_type
4912ldst_lo12_determine_real_reloc_type (void)
4913{
4c562523 4914 unsigned logsz;
a06ea964
NC
4915 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4916 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4917
4c562523
JW
4918 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
4919 {
4920 BFD_RELOC_AARCH64_LDST8_LO12,
4921 BFD_RELOC_AARCH64_LDST16_LO12,
4922 BFD_RELOC_AARCH64_LDST32_LO12,
4923 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 4924 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
4925 },
4926 {
4927 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
4928 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
4929 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
4930 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
4931 BFD_RELOC_AARCH64_NONE
4932 },
4933 {
4934 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
4935 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
4936 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
4937 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
4938 BFD_RELOC_AARCH64_NONE
4939 }
a06ea964
NC
4940 };
4941
4c562523
JW
4942 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
4943 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4944 || (inst.reloc.type
4945 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
a06ea964
NC
4946 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4947
4948 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4949 opd1_qlf =
4950 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4951 1, opd0_qlf, 0);
4952 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4953
4954 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523
JW
4955 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4956 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
4957 gas_assert (logsz <= 3);
4958 else
4959 gas_assert (logsz <= 4);
a06ea964 4960
4c562523
JW
4961 /* In reloc.c, these pseudo relocation types should be defined in similar
4962 order as above reloc_ldst_lo12 array. Because the array index calcuation
4963 below relies on this. */
4964 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
4965}
4966
4967/* Check whether a register list REGINFO is valid. The registers must be
4968 numbered in increasing order (modulo 32), in increments of one or two.
4969
4970 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4971 increments of two.
4972
4973 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4974
4975static bfd_boolean
4976reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4977{
4978 uint32_t i, nb_regs, prev_regno, incr;
4979
4980 nb_regs = 1 + (reginfo & 0x3);
4981 reginfo >>= 2;
4982 prev_regno = reginfo & 0x1f;
4983 incr = accept_alternate ? 2 : 1;
4984
4985 for (i = 1; i < nb_regs; ++i)
4986 {
4987 uint32_t curr_regno;
4988 reginfo >>= 5;
4989 curr_regno = reginfo & 0x1f;
4990 if (curr_regno != ((prev_regno + incr) & 0x1f))
4991 return FALSE;
4992 prev_regno = curr_regno;
4993 }
4994
4995 return TRUE;
4996}
4997
4998/* Generic instruction operand parser. This does no encoding and no
4999 semantic validation; it merely squirrels values away in the inst
5000 structure. Returns TRUE or FALSE depending on whether the
5001 specified grammar matched. */
5002
5003static bfd_boolean
5004parse_operands (char *str, const aarch64_opcode *opcode)
5005{
5006 int i;
5007 char *backtrack_pos = 0;
5008 const enum aarch64_opnd *operands = opcode->operands;
5009
5010 clear_error ();
5011 skip_whitespace (str);
5012
5013 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5014 {
5015 int64_t val;
5016 int isreg32, isregzero;
5017 int comma_skipped_p = 0;
5018 aarch64_reg_type rtype;
5019 struct neon_type_el vectype;
5020 aarch64_opnd_info *info = &inst.base.operands[i];
5021
5022 DEBUG_TRACE ("parse operand %d", i);
5023
5024 /* Assign the operand code. */
5025 info->type = operands[i];
5026
5027 if (optional_operand_p (opcode, i))
5028 {
5029 /* Remember where we are in case we need to backtrack. */
5030 gas_assert (!backtrack_pos);
5031 backtrack_pos = str;
5032 }
5033
5034 /* Expect comma between operands; the backtrack mechanizm will take
5035 care of cases of omitted optional operand. */
5036 if (i > 0 && ! skip_past_char (&str, ','))
5037 {
5038 set_syntax_error (_("comma expected between operands"));
5039 goto failure;
5040 }
5041 else
5042 comma_skipped_p = 1;
5043
5044 switch (operands[i])
5045 {
5046 case AARCH64_OPND_Rd:
5047 case AARCH64_OPND_Rn:
5048 case AARCH64_OPND_Rm:
5049 case AARCH64_OPND_Rt:
5050 case AARCH64_OPND_Rt2:
5051 case AARCH64_OPND_Rs:
5052 case AARCH64_OPND_Ra:
5053 case AARCH64_OPND_Rt_SYS:
ee804238 5054 case AARCH64_OPND_PAIRREG:
a06ea964
NC
5055 po_int_reg_or_fail (1, 0);
5056 break;
5057
5058 case AARCH64_OPND_Rd_SP:
5059 case AARCH64_OPND_Rn_SP:
5060 po_int_reg_or_fail (0, 1);
5061 break;
5062
5063 case AARCH64_OPND_Rm_EXT:
5064 case AARCH64_OPND_Rm_SFT:
5065 po_misc_or_fail (parse_shifter_operand
5066 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5067 ? SHIFTED_ARITH_IMM
5068 : SHIFTED_LOGIC_IMM)));
5069 if (!info->shifter.operator_present)
5070 {
5071 /* Default to LSL if not present. Libopcodes prefers shifter
5072 kind to be explicit. */
5073 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5074 info->shifter.kind = AARCH64_MOD_LSL;
5075 /* For Rm_EXT, libopcodes will carry out further check on whether
5076 or not stack pointer is used in the instruction (Recall that
5077 "the extend operator is not optional unless at least one of
5078 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5079 }
5080 break;
5081
5082 case AARCH64_OPND_Fd:
5083 case AARCH64_OPND_Fn:
5084 case AARCH64_OPND_Fm:
5085 case AARCH64_OPND_Fa:
5086 case AARCH64_OPND_Ft:
5087 case AARCH64_OPND_Ft2:
5088 case AARCH64_OPND_Sd:
5089 case AARCH64_OPND_Sn:
5090 case AARCH64_OPND_Sm:
5091 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5092 if (val == PARSE_FAIL)
5093 {
5094 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5095 goto failure;
5096 }
5097 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5098
5099 info->reg.regno = val;
5100 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5101 break;
5102
5103 case AARCH64_OPND_Vd:
5104 case AARCH64_OPND_Vn:
5105 case AARCH64_OPND_Vm:
5106 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5107 if (val == PARSE_FAIL)
5108 {
5109 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5110 goto failure;
5111 }
5112 if (vectype.defined & NTA_HASINDEX)
5113 goto failure;
5114
5115 info->reg.regno = val;
5116 info->qualifier = vectype_to_qualifier (&vectype);
5117 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5118 goto failure;
5119 break;
5120
5121 case AARCH64_OPND_VdD1:
5122 case AARCH64_OPND_VnD1:
5123 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5124 if (val == PARSE_FAIL)
5125 {
5126 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5127 goto failure;
5128 }
5129 if (vectype.type != NT_d || vectype.index != 1)
5130 {
5131 set_fatal_syntax_error
5132 (_("the top half of a 128-bit FP/SIMD register is expected"));
5133 goto failure;
5134 }
5135 info->reg.regno = val;
5136 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5137 here; it is correct for the purpose of encoding/decoding since
5138 only the register number is explicitly encoded in the related
5139 instructions, although this appears a bit hacky. */
5140 info->qualifier = AARCH64_OPND_QLF_S_D;
5141 break;
5142
5143 case AARCH64_OPND_Ed:
5144 case AARCH64_OPND_En:
5145 case AARCH64_OPND_Em:
5146 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5147 if (val == PARSE_FAIL)
5148 {
5149 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5150 goto failure;
5151 }
5152 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5153 goto failure;
5154
5155 info->reglane.regno = val;
5156 info->reglane.index = vectype.index;
5157 info->qualifier = vectype_to_qualifier (&vectype);
5158 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5159 goto failure;
5160 break;
5161
5162 case AARCH64_OPND_LVn:
5163 case AARCH64_OPND_LVt:
5164 case AARCH64_OPND_LVt_AL:
5165 case AARCH64_OPND_LEt:
5166 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
5167 goto failure;
5168 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5169 {
5170 set_fatal_syntax_error (_("invalid register list"));
5171 goto failure;
5172 }
5173 info->reglist.first_regno = (val >> 2) & 0x1f;
5174 info->reglist.num_regs = (val & 0x3) + 1;
5175 if (operands[i] == AARCH64_OPND_LEt)
5176 {
5177 if (!(vectype.defined & NTA_HASINDEX))
5178 goto failure;
5179 info->reglist.has_index = 1;
5180 info->reglist.index = vectype.index;
5181 }
5182 else if (!(vectype.defined & NTA_HASTYPE))
5183 goto failure;
5184 info->qualifier = vectype_to_qualifier (&vectype);
5185 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5186 goto failure;
5187 break;
5188
5189 case AARCH64_OPND_Cn:
5190 case AARCH64_OPND_Cm:
5191 po_reg_or_fail (REG_TYPE_CN);
5192 if (val > 15)
5193 {
5194 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
5195 goto failure;
5196 }
5197 inst.base.operands[i].reg.regno = val;
5198 break;
5199
5200 case AARCH64_OPND_SHLL_IMM:
5201 case AARCH64_OPND_IMM_VLSR:
5202 po_imm_or_fail (1, 64);
5203 info->imm.value = val;
5204 break;
5205
5206 case AARCH64_OPND_CCMP_IMM:
5207 case AARCH64_OPND_FBITS:
5208 case AARCH64_OPND_UIMM4:
5209 case AARCH64_OPND_UIMM3_OP1:
5210 case AARCH64_OPND_UIMM3_OP2:
5211 case AARCH64_OPND_IMM_VLSL:
5212 case AARCH64_OPND_IMM:
5213 case AARCH64_OPND_WIDTH:
5214 po_imm_nc_or_fail ();
5215 info->imm.value = val;
5216 break;
5217
5218 case AARCH64_OPND_UIMM7:
5219 po_imm_or_fail (0, 127);
5220 info->imm.value = val;
5221 break;
5222
5223 case AARCH64_OPND_IDX:
5224 case AARCH64_OPND_BIT_NUM:
5225 case AARCH64_OPND_IMMR:
5226 case AARCH64_OPND_IMMS:
5227 po_imm_or_fail (0, 63);
5228 info->imm.value = val;
5229 break;
5230
5231 case AARCH64_OPND_IMM0:
5232 po_imm_nc_or_fail ();
5233 if (val != 0)
5234 {
5235 set_fatal_syntax_error (_("immediate zero expected"));
5236 goto failure;
5237 }
5238 info->imm.value = 0;
5239 break;
5240
5241 case AARCH64_OPND_FPIMM0:
5242 {
5243 int qfloat;
5244 bfd_boolean res1 = FALSE, res2 = FALSE;
5245 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5246 it is probably not worth the effort to support it. */
62b0d0d5 5247 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
5248 && !(res2 = parse_constant_immediate (&str, &val)))
5249 goto failure;
5250 if ((res1 && qfloat == 0) || (res2 && val == 0))
5251 {
5252 info->imm.value = 0;
5253 info->imm.is_fp = 1;
5254 break;
5255 }
5256 set_fatal_syntax_error (_("immediate zero expected"));
5257 goto failure;
5258 }
5259
5260 case AARCH64_OPND_IMM_MOV:
5261 {
5262 char *saved = str;
8db49cc2
WN
5263 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5264 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
5265 goto failure;
5266 str = saved;
5267 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5268 GE_OPT_PREFIX, 1));
5269 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5270 later. fix_mov_imm_insn will try to determine a machine
5271 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5272 message if the immediate cannot be moved by a single
5273 instruction. */
5274 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5275 inst.base.operands[i].skip = 1;
5276 }
5277 break;
5278
5279 case AARCH64_OPND_SIMD_IMM:
5280 case AARCH64_OPND_SIMD_IMM_SFT:
5281 if (! parse_big_immediate (&str, &val))
5282 goto failure;
5283 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5284 /* addr_off_p */ 0,
5285 /* need_libopcodes_p */ 1,
5286 /* skip_p */ 1);
5287 /* Parse shift.
5288 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5289 shift, we don't check it here; we leave the checking to
5290 the libopcodes (operand_general_constraint_met_p). By
5291 doing this, we achieve better diagnostics. */
5292 if (skip_past_comma (&str)
5293 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5294 goto failure;
5295 if (!info->shifter.operator_present
5296 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5297 {
5298 /* Default to LSL if not present. Libopcodes prefers shifter
5299 kind to be explicit. */
5300 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5301 info->shifter.kind = AARCH64_MOD_LSL;
5302 }
5303 break;
5304
5305 case AARCH64_OPND_FPIMM:
5306 case AARCH64_OPND_SIMD_FPIMM:
5307 {
5308 int qfloat;
62b0d0d5
YZ
5309 bfd_boolean dp_p
5310 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
5311 == 8);
5312 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
5313 goto failure;
5314 if (qfloat == 0)
5315 {
5316 set_fatal_syntax_error (_("invalid floating-point constant"));
5317 goto failure;
5318 }
5319 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5320 inst.base.operands[i].imm.is_fp = 1;
5321 }
5322 break;
5323
5324 case AARCH64_OPND_LIMM:
5325 po_misc_or_fail (parse_shifter_operand (&str, info,
5326 SHIFTED_LOGIC_IMM));
5327 if (info->shifter.operator_present)
5328 {
5329 set_fatal_syntax_error
5330 (_("shift not allowed for bitmask immediate"));
5331 goto failure;
5332 }
5333 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5334 /* addr_off_p */ 0,
5335 /* need_libopcodes_p */ 1,
5336 /* skip_p */ 1);
5337 break;
5338
5339 case AARCH64_OPND_AIMM:
5340 if (opcode->op == OP_ADD)
5341 /* ADD may have relocation types. */
5342 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5343 SHIFTED_ARITH_IMM));
5344 else
5345 po_misc_or_fail (parse_shifter_operand (&str, info,
5346 SHIFTED_ARITH_IMM));
5347 switch (inst.reloc.type)
5348 {
5349 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5350 info->shifter.amount = 12;
5351 break;
5352 case BFD_RELOC_UNUSED:
5353 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5354 if (info->shifter.kind != AARCH64_MOD_NONE)
5355 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5356 inst.reloc.pc_rel = 0;
5357 break;
5358 default:
5359 break;
5360 }
5361 info->imm.value = 0;
5362 if (!info->shifter.operator_present)
5363 {
5364 /* Default to LSL if not present. Libopcodes prefers shifter
5365 kind to be explicit. */
5366 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5367 info->shifter.kind = AARCH64_MOD_LSL;
5368 }
5369 break;
5370
5371 case AARCH64_OPND_HALF:
5372 {
5373 /* #<imm16> or relocation. */
5374 int internal_fixup_p;
5375 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5376 if (internal_fixup_p)
5377 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5378 skip_whitespace (str);
5379 if (skip_past_comma (&str))
5380 {
5381 /* {, LSL #<shift>} */
5382 if (! aarch64_gas_internal_fixup_p ())
5383 {
5384 set_fatal_syntax_error (_("can't mix relocation modifier "
5385 "with explicit shift"));
5386 goto failure;
5387 }
5388 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5389 }
5390 else
5391 inst.base.operands[i].shifter.amount = 0;
5392 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5393 inst.base.operands[i].imm.value = 0;
5394 if (! process_movw_reloc_info ())
5395 goto failure;
5396 }
5397 break;
5398
5399 case AARCH64_OPND_EXCEPTION:
5400 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5401 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5402 /* addr_off_p */ 0,
5403 /* need_libopcodes_p */ 0,
5404 /* skip_p */ 1);
5405 break;
5406
5407 case AARCH64_OPND_NZCV:
5408 {
5409 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5410 if (nzcv != NULL)
5411 {
5412 str += 4;
5413 info->imm.value = nzcv->value;
5414 break;
5415 }
5416 po_imm_or_fail (0, 15);
5417 info->imm.value = val;
5418 }
5419 break;
5420
5421 case AARCH64_OPND_COND:
68a64283 5422 case AARCH64_OPND_COND1:
a06ea964
NC
5423 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5424 str += 2;
5425 if (info->cond == NULL)
5426 {
5427 set_syntax_error (_("invalid condition"));
5428 goto failure;
5429 }
68a64283
YZ
5430 else if (operands[i] == AARCH64_OPND_COND1
5431 && (info->cond->value & 0xe) == 0xe)
5432 {
5433 /* Not allow AL or NV. */
5434 set_default_error ();
5435 goto failure;
5436 }
a06ea964
NC
5437 break;
5438
5439 case AARCH64_OPND_ADDR_ADRP:
5440 po_misc_or_fail (parse_adrp (&str));
5441 /* Clear the value as operand needs to be relocated. */
5442 info->imm.value = 0;
5443 break;
5444
5445 case AARCH64_OPND_ADDR_PCREL14:
5446 case AARCH64_OPND_ADDR_PCREL19:
5447 case AARCH64_OPND_ADDR_PCREL21:
5448 case AARCH64_OPND_ADDR_PCREL26:
5449 po_misc_or_fail (parse_address_reloc (&str, info));
5450 if (!info->addr.pcrel)
5451 {
5452 set_syntax_error (_("invalid pc-relative address"));
5453 goto failure;
5454 }
5455 if (inst.gen_lit_pool
5456 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5457 {
5458 /* Only permit "=value" in the literal load instructions.
5459 The literal will be generated by programmer_friendly_fixup. */
5460 set_syntax_error (_("invalid use of \"=immediate\""));
5461 goto failure;
5462 }
5463 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5464 {
5465 set_syntax_error (_("unrecognized relocation suffix"));
5466 goto failure;
5467 }
5468 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5469 {
5470 info->imm.value = inst.reloc.exp.X_add_number;
5471 inst.reloc.type = BFD_RELOC_UNUSED;
5472 }
5473 else
5474 {
5475 info->imm.value = 0;
f41aef5f
RE
5476 if (inst.reloc.type == BFD_RELOC_UNUSED)
5477 switch (opcode->iclass)
5478 {
5479 case compbranch:
5480 case condbranch:
5481 /* e.g. CBZ or B.COND */
5482 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5483 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5484 break;
5485 case testbranch:
5486 /* e.g. TBZ */
5487 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5488 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5489 break;
5490 case branch_imm:
5491 /* e.g. B or BL */
5492 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5493 inst.reloc.type =
5494 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5495 : BFD_RELOC_AARCH64_JUMP26;
5496 break;
5497 case loadlit:
5498 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5499 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5500 break;
5501 case pcreladdr:
5502 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5503 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5504 break;
5505 default:
5506 gas_assert (0);
5507 abort ();
5508 }
a06ea964
NC
5509 inst.reloc.pc_rel = 1;
5510 }
5511 break;
5512
5513 case AARCH64_OPND_ADDR_SIMPLE:
5514 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5515 /* [<Xn|SP>{, #<simm>}] */
5516 po_char_or_fail ('[');
5517 po_reg_or_fail (REG_TYPE_R64_SP);
5518 /* Accept optional ", #0". */
5519 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5520 && skip_past_char (&str, ','))
5521 {
5522 skip_past_char (&str, '#');
5523 if (! skip_past_char (&str, '0'))
5524 {
5525 set_fatal_syntax_error
5526 (_("the optional immediate offset can only be 0"));
5527 goto failure;
5528 }
5529 }
5530 po_char_or_fail (']');
5531 info->addr.base_regno = val;
5532 break;
5533
5534 case AARCH64_OPND_ADDR_REGOFF:
5535 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5536 po_misc_or_fail (parse_address (&str, info, 0));
5537 if (info->addr.pcrel || !info->addr.offset.is_reg
5538 || !info->addr.preind || info->addr.postind
5539 || info->addr.writeback)
5540 {
5541 set_syntax_error (_("invalid addressing mode"));
5542 goto failure;
5543 }
5544 if (!info->shifter.operator_present)
5545 {
5546 /* Default to LSL if not present. Libopcodes prefers shifter
5547 kind to be explicit. */
5548 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5549 info->shifter.kind = AARCH64_MOD_LSL;
5550 }
5551 /* Qualifier to be deduced by libopcodes. */
5552 break;
5553
5554 case AARCH64_OPND_ADDR_SIMM7:
5555 po_misc_or_fail (parse_address (&str, info, 0));
5556 if (info->addr.pcrel || info->addr.offset.is_reg
5557 || (!info->addr.preind && !info->addr.postind))
5558 {
5559 set_syntax_error (_("invalid addressing mode"));
5560 goto failure;
5561 }
5562 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5563 /* addr_off_p */ 1,
5564 /* need_libopcodes_p */ 1,
5565 /* skip_p */ 0);
5566 break;
5567
5568 case AARCH64_OPND_ADDR_SIMM9:
5569 case AARCH64_OPND_ADDR_SIMM9_2:
5570 po_misc_or_fail (parse_address_reloc (&str, info));
5571 if (info->addr.pcrel || info->addr.offset.is_reg
5572 || (!info->addr.preind && !info->addr.postind)
5573 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5574 && info->addr.writeback))
5575 {
5576 set_syntax_error (_("invalid addressing mode"));
5577 goto failure;
5578 }
5579 if (inst.reloc.type != BFD_RELOC_UNUSED)
5580 {
5581 set_syntax_error (_("relocation not allowed"));
5582 goto failure;
5583 }
5584 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5585 /* addr_off_p */ 1,
5586 /* need_libopcodes_p */ 1,
5587 /* skip_p */ 0);
5588 break;
5589
5590 case AARCH64_OPND_ADDR_UIMM12:
5591 po_misc_or_fail (parse_address_reloc (&str, info));
5592 if (info->addr.pcrel || info->addr.offset.is_reg
5593 || !info->addr.preind || info->addr.writeback)
5594 {
5595 set_syntax_error (_("invalid addressing mode"));
5596 goto failure;
5597 }
5598 if (inst.reloc.type == BFD_RELOC_UNUSED)
5599 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
5600 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5601 || (inst.reloc.type
5602 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
5603 || (inst.reloc.type
5604 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
a06ea964
NC
5605 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5606 /* Leave qualifier to be determined by libopcodes. */
5607 break;
5608
5609 case AARCH64_OPND_SIMD_ADDR_POST:
5610 /* [<Xn|SP>], <Xm|#<amount>> */
5611 po_misc_or_fail (parse_address (&str, info, 1));
5612 if (!info->addr.postind || !info->addr.writeback)
5613 {
5614 set_syntax_error (_("invalid addressing mode"));
5615 goto failure;
5616 }
5617 if (!info->addr.offset.is_reg)
5618 {
5619 if (inst.reloc.exp.X_op == O_constant)
5620 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5621 else
5622 {
5623 set_fatal_syntax_error
5624 (_("writeback value should be an immediate constant"));
5625 goto failure;
5626 }
5627 }
5628 /* No qualifier. */
5629 break;
5630
5631 case AARCH64_OPND_SYSREG:
72ca8fad 5632 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
a203d9b7 5633 == PARSE_FAIL)
a06ea964 5634 {
a203d9b7
YZ
5635 set_syntax_error (_("unknown or missing system register name"));
5636 goto failure;
a06ea964 5637 }
a203d9b7 5638 inst.base.operands[i].sysreg = val;
a06ea964
NC
5639 break;
5640
5641 case AARCH64_OPND_PSTATEFIELD:
72ca8fad 5642 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
a3251895 5643 == PARSE_FAIL)
a06ea964
NC
5644 {
5645 set_syntax_error (_("unknown or missing PSTATE field name"));
5646 goto failure;
5647 }
5648 inst.base.operands[i].pstatefield = val;
5649 break;
5650
5651 case AARCH64_OPND_SYSREG_IC:
5652 inst.base.operands[i].sysins_op =
5653 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5654 goto sys_reg_ins;
5655 case AARCH64_OPND_SYSREG_DC:
5656 inst.base.operands[i].sysins_op =
5657 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5658 goto sys_reg_ins;
5659 case AARCH64_OPND_SYSREG_AT:
5660 inst.base.operands[i].sysins_op =
5661 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5662 goto sys_reg_ins;
5663 case AARCH64_OPND_SYSREG_TLBI:
5664 inst.base.operands[i].sysins_op =
5665 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5666sys_reg_ins:
5667 if (inst.base.operands[i].sysins_op == NULL)
5668 {
5669 set_fatal_syntax_error ( _("unknown or missing operation name"));
5670 goto failure;
5671 }
5672 break;
5673
5674 case AARCH64_OPND_BARRIER:
5675 case AARCH64_OPND_BARRIER_ISB:
5676 val = parse_barrier (&str);
5677 if (val != PARSE_FAIL
5678 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5679 {
5680 /* ISB only accepts options name 'sy'. */
5681 set_syntax_error
5682 (_("the specified option is not accepted in ISB"));
5683 /* Turn off backtrack as this optional operand is present. */
5684 backtrack_pos = 0;
5685 goto failure;
5686 }
5687 /* This is an extension to accept a 0..15 immediate. */
5688 if (val == PARSE_FAIL)
5689 po_imm_or_fail (0, 15);
5690 info->barrier = aarch64_barrier_options + val;
5691 break;
5692
5693 case AARCH64_OPND_PRFOP:
5694 val = parse_pldop (&str);
5695 /* This is an extension to accept a 0..31 immediate. */
5696 if (val == PARSE_FAIL)
5697 po_imm_or_fail (0, 31);
5698 inst.base.operands[i].prfop = aarch64_prfops + val;
5699 break;
5700
1e6f4800
MW
5701 case AARCH64_OPND_BARRIER_PSB:
5702 val = parse_barrier_psb (&str, &(info->hint_option));
5703 if (val == PARSE_FAIL)
5704 goto failure;
5705 break;
5706
a06ea964
NC
5707 default:
5708 as_fatal (_("unhandled operand code %d"), operands[i]);
5709 }
5710
5711 /* If we get here, this operand was successfully parsed. */
5712 inst.base.operands[i].present = 1;
5713 continue;
5714
5715failure:
5716 /* The parse routine should already have set the error, but in case
5717 not, set a default one here. */
5718 if (! error_p ())
5719 set_default_error ();
5720
5721 if (! backtrack_pos)
5722 goto parse_operands_return;
5723
f4c51f60
JW
5724 {
5725 /* We reach here because this operand is marked as optional, and
5726 either no operand was supplied or the operand was supplied but it
5727 was syntactically incorrect. In the latter case we report an
5728 error. In the former case we perform a few more checks before
5729 dropping through to the code to insert the default operand. */
5730
5731 char *tmp = backtrack_pos;
5732 char endchar = END_OF_INSN;
5733
5734 if (i != (aarch64_num_of_operands (opcode) - 1))
5735 endchar = ',';
5736 skip_past_char (&tmp, ',');
5737
5738 if (*tmp != endchar)
5739 /* The user has supplied an operand in the wrong format. */
5740 goto parse_operands_return;
5741
5742 /* Make sure there is not a comma before the optional operand.
5743 For example the fifth operand of 'sys' is optional:
5744
5745 sys #0,c0,c0,#0, <--- wrong
5746 sys #0,c0,c0,#0 <--- correct. */
5747 if (comma_skipped_p && i && endchar == END_OF_INSN)
5748 {
5749 set_fatal_syntax_error
5750 (_("unexpected comma before the omitted optional operand"));
5751 goto parse_operands_return;
5752 }
5753 }
5754
a06ea964
NC
5755 /* Reaching here means we are dealing with an optional operand that is
5756 omitted from the assembly line. */
5757 gas_assert (optional_operand_p (opcode, i));
5758 info->present = 0;
5759 process_omitted_operand (operands[i], opcode, i, info);
5760
5761 /* Try again, skipping the optional operand at backtrack_pos. */
5762 str = backtrack_pos;
5763 backtrack_pos = 0;
5764
a06ea964
NC
5765 /* Clear any error record after the omitted optional operand has been
5766 successfully handled. */
5767 clear_error ();
5768 }
5769
5770 /* Check if we have parsed all the operands. */
5771 if (*str != '\0' && ! error_p ())
5772 {
5773 /* Set I to the index of the last present operand; this is
5774 for the purpose of diagnostics. */
5775 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5776 ;
5777 set_fatal_syntax_error
5778 (_("unexpected characters following instruction"));
5779 }
5780
5781parse_operands_return:
5782
5783 if (error_p ())
5784 {
5785 DEBUG_TRACE ("parsing FAIL: %s - %s",
5786 operand_mismatch_kind_names[get_error_kind ()],
5787 get_error_message ());
5788 /* Record the operand error properly; this is useful when there
5789 are multiple instruction templates for a mnemonic name, so that
5790 later on, we can select the error that most closely describes
5791 the problem. */
5792 record_operand_error (opcode, i, get_error_kind (),
5793 get_error_message ());
5794 return FALSE;
5795 }
5796 else
5797 {
5798 DEBUG_TRACE ("parsing SUCCESS");
5799 return TRUE;
5800 }
5801}
5802
5803/* It does some fix-up to provide some programmer friendly feature while
5804 keeping the libopcodes happy, i.e. libopcodes only accepts
5805 the preferred architectural syntax.
5806 Return FALSE if there is any failure; otherwise return TRUE. */
5807
5808static bfd_boolean
5809programmer_friendly_fixup (aarch64_instruction *instr)
5810{
5811 aarch64_inst *base = &instr->base;
5812 const aarch64_opcode *opcode = base->opcode;
5813 enum aarch64_op op = opcode->op;
5814 aarch64_opnd_info *operands = base->operands;
5815
5816 DEBUG_TRACE ("enter");
5817
5818 switch (opcode->iclass)
5819 {
5820 case testbranch:
5821 /* TBNZ Xn|Wn, #uimm6, label
5822 Test and Branch Not Zero: conditionally jumps to label if bit number
5823 uimm6 in register Xn is not zero. The bit number implies the width of
5824 the register, which may be written and should be disassembled as Wn if
5825 uimm is less than 32. */
5826 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5827 {
5828 if (operands[1].imm.value >= 32)
5829 {
5830 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5831 0, 31);
5832 return FALSE;
5833 }
5834 operands[0].qualifier = AARCH64_OPND_QLF_X;
5835 }
5836 break;
5837 case loadlit:
5838 /* LDR Wt, label | =value
5839 As a convenience assemblers will typically permit the notation
5840 "=value" in conjunction with the pc-relative literal load instructions
5841 to automatically place an immediate value or symbolic address in a
5842 nearby literal pool and generate a hidden label which references it.
5843 ISREG has been set to 0 in the case of =value. */
5844 if (instr->gen_lit_pool
5845 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5846 {
5847 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5848 if (op == OP_LDRSW_LIT)
5849 size = 4;
5850 if (instr->reloc.exp.X_op != O_constant
67a32447 5851 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5852 && instr->reloc.exp.X_op != O_symbol)
5853 {
5854 record_operand_error (opcode, 1,
5855 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5856 _("constant expression expected"));
5857 return FALSE;
5858 }
5859 if (! add_to_lit_pool (&instr->reloc.exp, size))
5860 {
5861 record_operand_error (opcode, 1,
5862 AARCH64_OPDE_OTHER_ERROR,
5863 _("literal pool insertion failed"));
5864 return FALSE;
5865 }
5866 }
5867 break;
a06ea964
NC
5868 case log_shift:
5869 case bitfield:
5870 /* UXT[BHW] Wd, Wn
5871 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5872 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5873 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5874 A programmer-friendly assembler should accept a destination Xd in
5875 place of Wd, however that is not the preferred form for disassembly.
5876 */
5877 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5878 && operands[1].qualifier == AARCH64_OPND_QLF_W
5879 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5880 operands[0].qualifier = AARCH64_OPND_QLF_W;
5881 break;
5882
5883 case addsub_ext:
5884 {
5885 /* In the 64-bit form, the final register operand is written as Wm
5886 for all but the (possibly omitted) UXTX/LSL and SXTX
5887 operators.
5888 As a programmer-friendly assembler, we accept e.g.
5889 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5890 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5891 int idx = aarch64_operand_index (opcode->operands,
5892 AARCH64_OPND_Rm_EXT);
5893 gas_assert (idx == 1 || idx == 2);
5894 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5895 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5896 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5897 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5898 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5899 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5900 }
5901 break;
5902
5903 default:
5904 break;
5905 }
5906
5907 DEBUG_TRACE ("exit with SUCCESS");
5908 return TRUE;
5909}
5910
5c47e525 5911/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
5912
5913static void
5914warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5915{
5916 aarch64_inst *base = &instr->base;
5917 const aarch64_opcode *opcode = base->opcode;
5918 const aarch64_opnd_info *opnds = base->operands;
5919 switch (opcode->iclass)
5920 {
5921 case ldst_pos:
5922 case ldst_imm9:
5923 case ldst_unscaled:
5924 case ldst_unpriv:
5c47e525
RE
5925 /* Loading/storing the base register is unpredictable if writeback. */
5926 if ((aarch64_get_operand_class (opnds[0].type)
5927 == AARCH64_OPND_CLASS_INT_REG)
5928 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 5929 && opnds[1].addr.base_regno != REG_SP
54a28c4c 5930 && opnds[1].addr.writeback)
5c47e525 5931 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
5932 break;
5933 case ldstpair_off:
5934 case ldstnapair_offs:
5935 case ldstpair_indexed:
5c47e525
RE
5936 /* Loading/storing the base register is unpredictable if writeback. */
5937 if ((aarch64_get_operand_class (opnds[0].type)
5938 == AARCH64_OPND_CLASS_INT_REG)
5939 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5940 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 5941 && opnds[2].addr.base_regno != REG_SP
54a28c4c 5942 && opnds[2].addr.writeback)
5c47e525
RE
5943 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5944 /* Load operations must load different registers. */
54a28c4c
JW
5945 if ((opcode->opcode & (1 << 22))
5946 && opnds[0].reg.regno == opnds[1].reg.regno)
5947 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5948 break;
5949 default:
5950 break;
5951 }
5952}
5953
a06ea964
NC
5954/* A wrapper function to interface with libopcodes on encoding and
5955 record the error message if there is any.
5956
5957 Return TRUE on success; otherwise return FALSE. */
5958
5959static bfd_boolean
5960do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5961 aarch64_insn *code)
5962{
5963 aarch64_operand_error error_info;
5964 error_info.kind = AARCH64_OPDE_NIL;
5965 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5966 return TRUE;
5967 else
5968 {
5969 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5970 record_operand_error_info (opcode, &error_info);
5971 return FALSE;
5972 }
5973}
5974
5975#ifdef DEBUG_AARCH64
5976static inline void
5977dump_opcode_operands (const aarch64_opcode *opcode)
5978{
5979 int i = 0;
5980 while (opcode->operands[i] != AARCH64_OPND_NIL)
5981 {
5982 aarch64_verbose ("\t\t opnd%d: %s", i,
5983 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5984 ? aarch64_get_operand_name (opcode->operands[i])
5985 : aarch64_get_operand_desc (opcode->operands[i]));
5986 ++i;
5987 }
5988}
5989#endif /* DEBUG_AARCH64 */
5990
5991/* This is the guts of the machine-dependent assembler. STR points to a
5992 machine dependent instruction. This function is supposed to emit
5993 the frags/bytes it assembles to. */
5994
5995void
5996md_assemble (char *str)
5997{
5998 char *p = str;
5999 templates *template;
6000 aarch64_opcode *opcode;
6001 aarch64_inst *inst_base;
6002 unsigned saved_cond;
6003
6004 /* Align the previous label if needed. */
6005 if (last_label_seen != NULL)
6006 {
6007 symbol_set_frag (last_label_seen, frag_now);
6008 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6009 S_SET_SEGMENT (last_label_seen, now_seg);
6010 }
6011
6012 inst.reloc.type = BFD_RELOC_UNUSED;
6013
6014 DEBUG_TRACE ("\n\n");
6015 DEBUG_TRACE ("==============================");
6016 DEBUG_TRACE ("Enter md_assemble with %s", str);
6017
6018 template = opcode_lookup (&p);
6019 if (!template)
6020 {
6021 /* It wasn't an instruction, but it might be a register alias of
6022 the form alias .req reg directive. */
6023 if (!create_register_alias (str, p))
6024 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6025 str);
6026 return;
6027 }
6028
6029 skip_whitespace (p);
6030 if (*p == ',')
6031 {
6032 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6033 get_mnemonic_name (str), str);
6034 return;
6035 }
6036
6037 init_operand_error_report ();
6038
eb9d6cc9
RL
6039 /* Sections are assumed to start aligned. In executable section, there is no
6040 MAP_DATA symbol pending. So we only align the address during
6041 MAP_DATA --> MAP_INSN transition.
6042 For other sections, this is not guaranteed. */
6043 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6044 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6045 frag_align_code (2, 0);
6046
a06ea964
NC
6047 saved_cond = inst.cond;
6048 reset_aarch64_instruction (&inst);
6049 inst.cond = saved_cond;
6050
6051 /* Iterate through all opcode entries with the same mnemonic name. */
6052 do
6053 {
6054 opcode = template->opcode;
6055
6056 DEBUG_TRACE ("opcode %s found", opcode->name);
6057#ifdef DEBUG_AARCH64
6058 if (debug_dump)
6059 dump_opcode_operands (opcode);
6060#endif /* DEBUG_AARCH64 */
6061
a06ea964
NC
6062 mapping_state (MAP_INSN);
6063
6064 inst_base = &inst.base;
6065 inst_base->opcode = opcode;
6066
6067 /* Truly conditionally executed instructions, e.g. b.cond. */
6068 if (opcode->flags & F_COND)
6069 {
6070 gas_assert (inst.cond != COND_ALWAYS);
6071 inst_base->cond = get_cond_from_value (inst.cond);
6072 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6073 }
6074 else if (inst.cond != COND_ALWAYS)
6075 {
6076 /* It shouldn't arrive here, where the assembly looks like a
6077 conditional instruction but the found opcode is unconditional. */
6078 gas_assert (0);
6079 continue;
6080 }
6081
6082 if (parse_operands (p, opcode)
6083 && programmer_friendly_fixup (&inst)
6084 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6085 {
3f06bfce
YZ
6086 /* Check that this instruction is supported for this CPU. */
6087 if (!opcode->avariant
6088 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
6089 {
6090 as_bad (_("selected processor does not support `%s'"), str);
6091 return;
6092 }
6093
54a28c4c
JW
6094 warn_unpredictable_ldst (&inst, str);
6095
a06ea964
NC
6096 if (inst.reloc.type == BFD_RELOC_UNUSED
6097 || !inst.reloc.need_libopcodes_p)
6098 output_inst (NULL);
6099 else
6100 {
6101 /* If there is relocation generated for the instruction,
6102 store the instruction information for the future fix-up. */
6103 struct aarch64_inst *copy;
6104 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
6105 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
6106 abort ();
6107 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6108 output_inst (copy);
6109 }
6110 return;
6111 }
6112
6113 template = template->next;
6114 if (template != NULL)
6115 {
6116 reset_aarch64_instruction (&inst);
6117 inst.cond = saved_cond;
6118 }
6119 }
6120 while (template != NULL);
6121
6122 /* Issue the error messages if any. */
6123 output_operand_error_report (str);
6124}
6125
6126/* Various frobbings of labels and their addresses. */
6127
6128void
6129aarch64_start_line_hook (void)
6130{
6131 last_label_seen = NULL;
6132}
6133
6134void
6135aarch64_frob_label (symbolS * sym)
6136{
6137 last_label_seen = sym;
6138
6139 dwarf2_emit_label (sym);
6140}
6141
6142int
6143aarch64_data_in_code (void)
6144{
6145 if (!strncmp (input_line_pointer + 1, "data:", 5))
6146 {
6147 *input_line_pointer = '/';
6148 input_line_pointer += 5;
6149 *input_line_pointer = 0;
6150 return 1;
6151 }
6152
6153 return 0;
6154}
6155
6156char *
6157aarch64_canonicalize_symbol_name (char *name)
6158{
6159 int len;
6160
6161 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6162 *(name + len - 5) = 0;
6163
6164 return name;
6165}
6166\f
6167/* Table of all register names defined by default. The user can
6168 define additional names with .req. Note that all register names
6169 should appear in both upper and lowercase variants. Some registers
6170 also have mixed-case names. */
6171
6172#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6173#define REGNUM(p,n,t) REGDEF(p##n, n, t)
6174#define REGSET31(p,t) \
6175 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6176 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6177 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6178 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
6179 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6180 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6181 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6182 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6183#define REGSET(p,t) \
6184 REGSET31(p,t), REGNUM(p,31,t)
6185
6186/* These go into aarch64_reg_hsh hash-table. */
6187static const reg_entry reg_names[] = {
6188 /* Integer registers. */
6189 REGSET31 (x, R_64), REGSET31 (X, R_64),
6190 REGSET31 (w, R_32), REGSET31 (W, R_32),
6191
6192 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6193 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6194
6195 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6196 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6197
6198 /* Coprocessor register numbers. */
6199 REGSET (c, CN), REGSET (C, CN),
6200
6201 /* Floating-point single precision registers. */
6202 REGSET (s, FP_S), REGSET (S, FP_S),
6203
6204 /* Floating-point double precision registers. */
6205 REGSET (d, FP_D), REGSET (D, FP_D),
6206
6207 /* Floating-point half precision registers. */
6208 REGSET (h, FP_H), REGSET (H, FP_H),
6209
6210 /* Floating-point byte precision registers. */
6211 REGSET (b, FP_B), REGSET (B, FP_B),
6212
6213 /* Floating-point quad precision registers. */
6214 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6215
6216 /* FP/SIMD registers. */
6217 REGSET (v, VN), REGSET (V, VN),
6218};
6219
6220#undef REGDEF
6221#undef REGNUM
6222#undef REGSET
6223
6224#define N 1
6225#define n 0
6226#define Z 1
6227#define z 0
6228#define C 1
6229#define c 0
6230#define V 1
6231#define v 0
6232#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6233static const asm_nzcv nzcv_names[] = {
6234 {"nzcv", B (n, z, c, v)},
6235 {"nzcV", B (n, z, c, V)},
6236 {"nzCv", B (n, z, C, v)},
6237 {"nzCV", B (n, z, C, V)},
6238 {"nZcv", B (n, Z, c, v)},
6239 {"nZcV", B (n, Z, c, V)},
6240 {"nZCv", B (n, Z, C, v)},
6241 {"nZCV", B (n, Z, C, V)},
6242 {"Nzcv", B (N, z, c, v)},
6243 {"NzcV", B (N, z, c, V)},
6244 {"NzCv", B (N, z, C, v)},
6245 {"NzCV", B (N, z, C, V)},
6246 {"NZcv", B (N, Z, c, v)},
6247 {"NZcV", B (N, Z, c, V)},
6248 {"NZCv", B (N, Z, C, v)},
6249 {"NZCV", B (N, Z, C, V)}
6250};
6251
6252#undef N
6253#undef n
6254#undef Z
6255#undef z
6256#undef C
6257#undef c
6258#undef V
6259#undef v
6260#undef B
6261\f
6262/* MD interface: bits in the object file. */
6263
6264/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6265 for use in the a.out file, and stores them in the array pointed to by buf.
6266 This knows about the endian-ness of the target machine and does
6267 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6268 2 (short) and 4 (long) Floating numbers are put out as a series of
6269 LITTLENUMS (shorts, here at least). */
6270
6271void
6272md_number_to_chars (char *buf, valueT val, int n)
6273{
6274 if (target_big_endian)
6275 number_to_chars_bigendian (buf, val, n);
6276 else
6277 number_to_chars_littleendian (buf, val, n);
6278}
6279
6280/* MD interface: Sections. */
6281
6282/* Estimate the size of a frag before relaxing. Assume everything fits in
6283 4 bytes. */
6284
6285int
6286md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6287{
6288 fragp->fr_var = 4;
6289 return 4;
6290}
6291
6292/* Round up a section size to the appropriate boundary. */
6293
6294valueT
6295md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6296{
6297 return size;
6298}
6299
6300/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
6301 of an rs_align_code fragment.
6302
6303 Here we fill the frag with the appropriate info for padding the
6304 output stream. The resulting frag will consist of a fixed (fr_fix)
6305 and of a repeating (fr_var) part.
6306
6307 The fixed content is always emitted before the repeating content and
6308 these two parts are used as follows in constructing the output:
6309 - the fixed part will be used to align to a valid instruction word
6310 boundary, in case that we start at a misaligned address; as no
6311 executable instruction can live at the misaligned location, we
6312 simply fill with zeros;
6313 - the variable part will be used to cover the remaining padding and
6314 we fill using the AArch64 NOP instruction.
6315
6316 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6317 enough storage space for up to 3 bytes for padding the back to a valid
6318 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
6319
6320void
6321aarch64_handle_align (fragS * fragP)
6322{
6323 /* NOP = d503201f */
6324 /* AArch64 instructions are always little-endian. */
6325 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6326
6327 int bytes, fix, noop_size;
6328 char *p;
a06ea964
NC
6329
6330 if (fragP->fr_type != rs_align_code)
6331 return;
6332
6333 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6334 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
6335
6336#ifdef OBJ_ELF
6337 gas_assert (fragP->tc_frag_data.recorded);
6338#endif
6339
a06ea964 6340 noop_size = sizeof (aarch64_noop);
a06ea964 6341
f803aa8e
DPT
6342 fix = bytes & (noop_size - 1);
6343 if (fix)
a06ea964 6344 {
a06ea964
NC
6345#ifdef OBJ_ELF
6346 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6347#endif
6348 memset (p, 0, fix);
6349 p += fix;
f803aa8e 6350 fragP->fr_fix += fix;
a06ea964
NC
6351 }
6352
f803aa8e
DPT
6353 if (noop_size)
6354 memcpy (p, aarch64_noop, noop_size);
6355 fragP->fr_var = noop_size;
a06ea964
NC
6356}
6357
6358/* Perform target specific initialisation of a frag.
6359 Note - despite the name this initialisation is not done when the frag
6360 is created, but only when its type is assigned. A frag can be created
6361 and used a long time before its type is set, so beware of assuming that
6362 this initialisationis performed first. */
6363
6364#ifndef OBJ_ELF
6365void
6366aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6367 int max_chars ATTRIBUTE_UNUSED)
6368{
6369}
6370
6371#else /* OBJ_ELF is defined. */
6372void
6373aarch64_init_frag (fragS * fragP, int max_chars)
6374{
6375 /* Record a mapping symbol for alignment frags. We will delete this
6376 later if the alignment ends up empty. */
6377 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
6378 fragP->tc_frag_data.recorded = 1;
6379
6380 switch (fragP->fr_type)
a06ea964 6381 {
c7ad08e6
RL
6382 case rs_align:
6383 case rs_align_test:
6384 case rs_fill:
6385 mapping_state_2 (MAP_DATA, max_chars);
6386 break;
6387 case rs_align_code:
6388 mapping_state_2 (MAP_INSN, max_chars);
6389 break;
6390 default:
6391 break;
a06ea964
NC
6392 }
6393}
6394\f
6395/* Initialize the DWARF-2 unwind information for this procedure. */
6396
6397void
6398tc_aarch64_frame_initial_instructions (void)
6399{
6400 cfi_add_CFA_def_cfa (REG_SP, 0);
6401}
6402#endif /* OBJ_ELF */
6403
6404/* Convert REGNAME to a DWARF-2 register number. */
6405
6406int
6407tc_aarch64_regname_to_dw2regnum (char *regname)
6408{
6409 const reg_entry *reg = parse_reg (&regname);
6410 if (reg == NULL)
6411 return -1;
6412
6413 switch (reg->type)
6414 {
6415 case REG_TYPE_SP_32:
6416 case REG_TYPE_SP_64:
6417 case REG_TYPE_R_32:
6418 case REG_TYPE_R_64:
a2cac51c
RH
6419 return reg->number;
6420
a06ea964
NC
6421 case REG_TYPE_FP_B:
6422 case REG_TYPE_FP_H:
6423 case REG_TYPE_FP_S:
6424 case REG_TYPE_FP_D:
6425 case REG_TYPE_FP_Q:
a2cac51c
RH
6426 return reg->number + 64;
6427
a06ea964
NC
6428 default:
6429 break;
6430 }
6431 return -1;
6432}
6433
cec5225b
YZ
6434/* Implement DWARF2_ADDR_SIZE. */
6435
6436int
6437aarch64_dwarf2_addr_size (void)
6438{
6439#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6440 if (ilp32_p)
6441 return 4;
6442#endif
6443 return bfd_arch_bits_per_address (stdoutput) / 8;
6444}
6445
a06ea964
NC
6446/* MD interface: Symbol and relocation handling. */
6447
6448/* Return the address within the segment that a PC-relative fixup is
6449 relative to. For AArch64 PC-relative fixups applied to instructions
6450 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6451
6452long
6453md_pcrel_from_section (fixS * fixP, segT seg)
6454{
6455 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6456
6457 /* If this is pc-relative and we are going to emit a relocation
6458 then we just want to put out any pipeline compensation that the linker
6459 will need. Otherwise we want to use the calculated base. */
6460 if (fixP->fx_pcrel
6461 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6462 || aarch64_force_relocation (fixP)))
6463 base = 0;
6464
6465 /* AArch64 should be consistent for all pc-relative relocations. */
6466 return base + AARCH64_PCREL_OFFSET;
6467}
6468
6469/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6470 Otherwise we have no need to default values of symbols. */
6471
6472symbolS *
6473md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6474{
6475#ifdef OBJ_ELF
6476 if (name[0] == '_' && name[1] == 'G'
6477 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6478 {
6479 if (!GOT_symbol)
6480 {
6481 if (symbol_find (name))
6482 as_bad (_("GOT already in the symbol table"));
6483
6484 GOT_symbol = symbol_new (name, undefined_section,
6485 (valueT) 0, &zero_address_frag);
6486 }
6487
6488 return GOT_symbol;
6489 }
6490#endif
6491
6492 return 0;
6493}
6494
6495/* Return non-zero if the indicated VALUE has overflowed the maximum
6496 range expressible by a unsigned number with the indicated number of
6497 BITS. */
6498
6499static bfd_boolean
6500unsigned_overflow (valueT value, unsigned bits)
6501{
6502 valueT lim;
6503 if (bits >= sizeof (valueT) * 8)
6504 return FALSE;
6505 lim = (valueT) 1 << bits;
6506 return (value >= lim);
6507}
6508
6509
6510/* Return non-zero if the indicated VALUE has overflowed the maximum
6511 range expressible by an signed number with the indicated number of
6512 BITS. */
6513
6514static bfd_boolean
6515signed_overflow (offsetT value, unsigned bits)
6516{
6517 offsetT lim;
6518 if (bits >= sizeof (offsetT) * 8)
6519 return FALSE;
6520 lim = (offsetT) 1 << (bits - 1);
6521 return (value < -lim || value >= lim);
6522}
6523
6524/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6525 unsigned immediate offset load/store instruction, try to encode it as
6526 an unscaled, 9-bit, signed immediate offset load/store instruction.
6527 Return TRUE if it is successful; otherwise return FALSE.
6528
6529 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6530 in response to the standard LDR/STR mnemonics when the immediate offset is
6531 unambiguous, i.e. when it is negative or unaligned. */
6532
6533static bfd_boolean
6534try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6535{
6536 int idx;
6537 enum aarch64_op new_op;
6538 const aarch64_opcode *new_opcode;
6539
6540 gas_assert (instr->opcode->iclass == ldst_pos);
6541
6542 switch (instr->opcode->op)
6543 {
6544 case OP_LDRB_POS:new_op = OP_LDURB; break;
6545 case OP_STRB_POS: new_op = OP_STURB; break;
6546 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6547 case OP_LDRH_POS: new_op = OP_LDURH; break;
6548 case OP_STRH_POS: new_op = OP_STURH; break;
6549 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6550 case OP_LDR_POS: new_op = OP_LDUR; break;
6551 case OP_STR_POS: new_op = OP_STUR; break;
6552 case OP_LDRF_POS: new_op = OP_LDURV; break;
6553 case OP_STRF_POS: new_op = OP_STURV; break;
6554 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6555 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6556 default: new_op = OP_NIL; break;
6557 }
6558
6559 if (new_op == OP_NIL)
6560 return FALSE;
6561
6562 new_opcode = aarch64_get_opcode (new_op);
6563 gas_assert (new_opcode != NULL);
6564
6565 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6566 instr->opcode->op, new_opcode->op);
6567
6568 aarch64_replace_opcode (instr, new_opcode);
6569
6570 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6571 qualifier matching may fail because the out-of-date qualifier will
6572 prevent the operand being updated with a new and correct qualifier. */
6573 idx = aarch64_operand_index (instr->opcode->operands,
6574 AARCH64_OPND_ADDR_SIMM9);
6575 gas_assert (idx == 1);
6576 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6577
6578 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6579
6580 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6581 return FALSE;
6582
6583 return TRUE;
6584}
6585
6586/* Called by fix_insn to fix a MOV immediate alias instruction.
6587
6588 Operand for a generic move immediate instruction, which is an alias
6589 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6590 a 32-bit/64-bit immediate value into general register. An assembler error
6591 shall result if the immediate cannot be created by a single one of these
6592 instructions. If there is a choice, then to ensure reversability an
6593 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6594
6595static void
6596fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6597{
6598 const aarch64_opcode *opcode;
6599
6600 /* Need to check if the destination is SP/ZR. The check has to be done
6601 before any aarch64_replace_opcode. */
6602 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6603 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6604
6605 instr->operands[1].imm.value = value;
6606 instr->operands[1].skip = 0;
6607
6608 if (try_mov_wide_p)
6609 {
6610 /* Try the MOVZ alias. */
6611 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6612 aarch64_replace_opcode (instr, opcode);
6613 if (aarch64_opcode_encode (instr->opcode, instr,
6614 &instr->value, NULL, NULL))
6615 {
6616 put_aarch64_insn (buf, instr->value);
6617 return;
6618 }
6619 /* Try the MOVK alias. */
6620 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6621 aarch64_replace_opcode (instr, opcode);
6622 if (aarch64_opcode_encode (instr->opcode, instr,
6623 &instr->value, NULL, NULL))
6624 {
6625 put_aarch64_insn (buf, instr->value);
6626 return;
6627 }
6628 }
6629
6630 if (try_mov_bitmask_p)
6631 {
6632 /* Try the ORR alias. */
6633 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6634 aarch64_replace_opcode (instr, opcode);
6635 if (aarch64_opcode_encode (instr->opcode, instr,
6636 &instr->value, NULL, NULL))
6637 {
6638 put_aarch64_insn (buf, instr->value);
6639 return;
6640 }
6641 }
6642
6643 as_bad_where (fixP->fx_file, fixP->fx_line,
6644 _("immediate cannot be moved by a single instruction"));
6645}
6646
6647/* An instruction operand which is immediate related may have symbol used
6648 in the assembly, e.g.
6649
6650 mov w0, u32
6651 .set u32, 0x00ffff00
6652
6653 At the time when the assembly instruction is parsed, a referenced symbol,
6654 like 'u32' in the above example may not have been seen; a fixS is created
6655 in such a case and is handled here after symbols have been resolved.
6656 Instruction is fixed up with VALUE using the information in *FIXP plus
6657 extra information in FLAGS.
6658
6659 This function is called by md_apply_fix to fix up instructions that need
6660 a fix-up described above but does not involve any linker-time relocation. */
6661
6662static void
6663fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6664{
6665 int idx;
6666 uint32_t insn;
6667 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6668 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6669 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6670
6671 if (new_inst)
6672 {
6673 /* Now the instruction is about to be fixed-up, so the operand that
6674 was previously marked as 'ignored' needs to be unmarked in order
6675 to get the encoding done properly. */
6676 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6677 new_inst->operands[idx].skip = 0;
6678 }
6679
6680 gas_assert (opnd != AARCH64_OPND_NIL);
6681
6682 switch (opnd)
6683 {
6684 case AARCH64_OPND_EXCEPTION:
6685 if (unsigned_overflow (value, 16))
6686 as_bad_where (fixP->fx_file, fixP->fx_line,
6687 _("immediate out of range"));
6688 insn = get_aarch64_insn (buf);
6689 insn |= encode_svc_imm (value);
6690 put_aarch64_insn (buf, insn);
6691 break;
6692
6693 case AARCH64_OPND_AIMM:
6694 /* ADD or SUB with immediate.
6695 NOTE this assumes we come here with a add/sub shifted reg encoding
6696 3 322|2222|2 2 2 21111 111111
6697 1 098|7654|3 2 1 09876 543210 98765 43210
6698 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6699 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6700 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6701 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6702 ->
6703 3 322|2222|2 2 221111111111
6704 1 098|7654|3 2 109876543210 98765 43210
6705 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6706 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6707 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6708 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6709 Fields sf Rn Rd are already set. */
6710 insn = get_aarch64_insn (buf);
6711 if (value < 0)
6712 {
6713 /* Add <-> sub. */
6714 insn = reencode_addsub_switch_add_sub (insn);
6715 value = -value;
6716 }
6717
6718 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6719 && unsigned_overflow (value, 12))
6720 {
6721 /* Try to shift the value by 12 to make it fit. */
6722 if (((value >> 12) << 12) == value
6723 && ! unsigned_overflow (value, 12 + 12))
6724 {
6725 value >>= 12;
6726 insn |= encode_addsub_imm_shift_amount (1);
6727 }
6728 }
6729
6730 if (unsigned_overflow (value, 12))
6731 as_bad_where (fixP->fx_file, fixP->fx_line,
6732 _("immediate out of range"));
6733
6734 insn |= encode_addsub_imm (value);
6735
6736 put_aarch64_insn (buf, insn);
6737 break;
6738
6739 case AARCH64_OPND_SIMD_IMM:
6740 case AARCH64_OPND_SIMD_IMM_SFT:
6741 case AARCH64_OPND_LIMM:
6742 /* Bit mask immediate. */
6743 gas_assert (new_inst != NULL);
6744 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6745 new_inst->operands[idx].imm.value = value;
6746 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6747 &new_inst->value, NULL, NULL))
6748 put_aarch64_insn (buf, new_inst->value);
6749 else
6750 as_bad_where (fixP->fx_file, fixP->fx_line,
6751 _("invalid immediate"));
6752 break;
6753
6754 case AARCH64_OPND_HALF:
6755 /* 16-bit unsigned immediate. */
6756 if (unsigned_overflow (value, 16))
6757 as_bad_where (fixP->fx_file, fixP->fx_line,
6758 _("immediate out of range"));
6759 insn = get_aarch64_insn (buf);
6760 insn |= encode_movw_imm (value & 0xffff);
6761 put_aarch64_insn (buf, insn);
6762 break;
6763
6764 case AARCH64_OPND_IMM_MOV:
6765 /* Operand for a generic move immediate instruction, which is
6766 an alias instruction that generates a single MOVZ, MOVN or ORR
6767 instruction to loads a 32-bit/64-bit immediate value into general
6768 register. An assembler error shall result if the immediate cannot be
6769 created by a single one of these instructions. If there is a choice,
6770 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6771 and MOVZ or MOVN to ORR. */
6772 gas_assert (new_inst != NULL);
6773 fix_mov_imm_insn (fixP, buf, new_inst, value);
6774 break;
6775
6776 case AARCH64_OPND_ADDR_SIMM7:
6777 case AARCH64_OPND_ADDR_SIMM9:
6778 case AARCH64_OPND_ADDR_SIMM9_2:
6779 case AARCH64_OPND_ADDR_UIMM12:
6780 /* Immediate offset in an address. */
6781 insn = get_aarch64_insn (buf);
6782
6783 gas_assert (new_inst != NULL && new_inst->value == insn);
6784 gas_assert (new_inst->opcode->operands[1] == opnd
6785 || new_inst->opcode->operands[2] == opnd);
6786
6787 /* Get the index of the address operand. */
6788 if (new_inst->opcode->operands[1] == opnd)
6789 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6790 idx = 1;
6791 else
6792 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6793 idx = 2;
6794
6795 /* Update the resolved offset value. */
6796 new_inst->operands[idx].addr.offset.imm = value;
6797
6798 /* Encode/fix-up. */
6799 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6800 &new_inst->value, NULL, NULL))
6801 {
6802 put_aarch64_insn (buf, new_inst->value);
6803 break;
6804 }
6805 else if (new_inst->opcode->iclass == ldst_pos
6806 && try_to_encode_as_unscaled_ldst (new_inst))
6807 {
6808 put_aarch64_insn (buf, new_inst->value);
6809 break;
6810 }
6811
6812 as_bad_where (fixP->fx_file, fixP->fx_line,
6813 _("immediate offset out of range"));
6814 break;
6815
6816 default:
6817 gas_assert (0);
6818 as_fatal (_("unhandled operand code %d"), opnd);
6819 }
6820}
6821
6822/* Apply a fixup (fixP) to segment data, once it has been determined
6823 by our caller that we have all the info we need to fix it up.
6824
6825 Parameter valP is the pointer to the value of the bits. */
6826
6827void
6828md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6829{
6830 offsetT value = *valP;
6831 uint32_t insn;
6832 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6833 int scale;
6834 unsigned flags = fixP->fx_addnumber;
6835
6836 DEBUG_TRACE ("\n\n");
6837 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6838 DEBUG_TRACE ("Enter md_apply_fix");
6839
6840 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6841
6842 /* Note whether this will delete the relocation. */
6843
6844 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6845 fixP->fx_done = 1;
6846
6847 /* Process the relocations. */
6848 switch (fixP->fx_r_type)
6849 {
6850 case BFD_RELOC_NONE:
6851 /* This will need to go in the object file. */
6852 fixP->fx_done = 0;
6853 break;
6854
6855 case BFD_RELOC_8:
6856 case BFD_RELOC_8_PCREL:
6857 if (fixP->fx_done || !seg->use_rela_p)
6858 md_number_to_chars (buf, value, 1);
6859 break;
6860
6861 case BFD_RELOC_16:
6862 case BFD_RELOC_16_PCREL:
6863 if (fixP->fx_done || !seg->use_rela_p)
6864 md_number_to_chars (buf, value, 2);
6865 break;
6866
6867 case BFD_RELOC_32:
6868 case BFD_RELOC_32_PCREL:
6869 if (fixP->fx_done || !seg->use_rela_p)
6870 md_number_to_chars (buf, value, 4);
6871 break;
6872
6873 case BFD_RELOC_64:
6874 case BFD_RELOC_64_PCREL:
6875 if (fixP->fx_done || !seg->use_rela_p)
6876 md_number_to_chars (buf, value, 8);
6877 break;
6878
6879 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6880 /* We claim that these fixups have been processed here, even if
6881 in fact we generate an error because we do not have a reloc
6882 for them, so tc_gen_reloc() will reject them. */
6883 fixP->fx_done = 1;
6884 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6885 {
6886 as_bad_where (fixP->fx_file, fixP->fx_line,
6887 _("undefined symbol %s used as an immediate value"),
6888 S_GET_NAME (fixP->fx_addsy));
6889 goto apply_fix_return;
6890 }
6891 fix_insn (fixP, flags, value);
6892 break;
6893
6894 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6895 if (fixP->fx_done || !seg->use_rela_p)
6896 {
89d2a2a3
MS
6897 if (value & 3)
6898 as_bad_where (fixP->fx_file, fixP->fx_line,
6899 _("pc-relative load offset not word aligned"));
6900 if (signed_overflow (value, 21))
6901 as_bad_where (fixP->fx_file, fixP->fx_line,
6902 _("pc-relative load offset out of range"));
a06ea964
NC
6903 insn = get_aarch64_insn (buf);
6904 insn |= encode_ld_lit_ofs_19 (value >> 2);
6905 put_aarch64_insn (buf, insn);
6906 }
6907 break;
6908
6909 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6910 if (fixP->fx_done || !seg->use_rela_p)
6911 {
89d2a2a3
MS
6912 if (signed_overflow (value, 21))
6913 as_bad_where (fixP->fx_file, fixP->fx_line,
6914 _("pc-relative address offset out of range"));
a06ea964
NC
6915 insn = get_aarch64_insn (buf);
6916 insn |= encode_adr_imm (value);
6917 put_aarch64_insn (buf, insn);
6918 }
6919 break;
6920
6921 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6922 if (fixP->fx_done || !seg->use_rela_p)
6923 {
89d2a2a3
MS
6924 if (value & 3)
6925 as_bad_where (fixP->fx_file, fixP->fx_line,
6926 _("conditional branch target not word aligned"));
6927 if (signed_overflow (value, 21))
6928 as_bad_where (fixP->fx_file, fixP->fx_line,
6929 _("conditional branch out of range"));
a06ea964
NC
6930 insn = get_aarch64_insn (buf);
6931 insn |= encode_cond_branch_ofs_19 (value >> 2);
6932 put_aarch64_insn (buf, insn);
6933 }
6934 break;
6935
6936 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6937 if (fixP->fx_done || !seg->use_rela_p)
6938 {
89d2a2a3
MS
6939 if (value & 3)
6940 as_bad_where (fixP->fx_file, fixP->fx_line,
6941 _("conditional branch target not word aligned"));
6942 if (signed_overflow (value, 16))
6943 as_bad_where (fixP->fx_file, fixP->fx_line,
6944 _("conditional branch out of range"));
a06ea964
NC
6945 insn = get_aarch64_insn (buf);
6946 insn |= encode_tst_branch_ofs_14 (value >> 2);
6947 put_aarch64_insn (buf, insn);
6948 }
6949 break;
6950
a06ea964 6951 case BFD_RELOC_AARCH64_CALL26:
f09c556a 6952 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
6953 if (fixP->fx_done || !seg->use_rela_p)
6954 {
89d2a2a3
MS
6955 if (value & 3)
6956 as_bad_where (fixP->fx_file, fixP->fx_line,
6957 _("branch target not word aligned"));
6958 if (signed_overflow (value, 28))
6959 as_bad_where (fixP->fx_file, fixP->fx_line,
6960 _("branch out of range"));
a06ea964
NC
6961 insn = get_aarch64_insn (buf);
6962 insn |= encode_branch_ofs_26 (value >> 2);
6963 put_aarch64_insn (buf, insn);
6964 }
6965 break;
6966
6967 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 6968 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 6969 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 6970 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
a06ea964
NC
6971 scale = 0;
6972 goto movw_common;
6973 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 6974 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 6975 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 6976 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
6977 scale = 16;
6978 goto movw_common;
43a357f9
RL
6979 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6980 scale = 0;
6981 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6982 /* Should always be exported to object file, see
6983 aarch64_force_relocation(). */
6984 gas_assert (!fixP->fx_done);
6985 gas_assert (seg->use_rela_p);
6986 goto movw_common;
6987 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6988 scale = 16;
6989 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6990 /* Should always be exported to object file, see
6991 aarch64_force_relocation(). */
6992 gas_assert (!fixP->fx_done);
6993 gas_assert (seg->use_rela_p);
6994 goto movw_common;
a06ea964 6995 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 6996 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 6997 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
6998 scale = 32;
6999 goto movw_common;
7000 case BFD_RELOC_AARCH64_MOVW_G3:
7001 scale = 48;
7002 movw_common:
7003 if (fixP->fx_done || !seg->use_rela_p)
7004 {
7005 insn = get_aarch64_insn (buf);
7006
7007 if (!fixP->fx_done)
7008 {
7009 /* REL signed addend must fit in 16 bits */
7010 if (signed_overflow (value, 16))
7011 as_bad_where (fixP->fx_file, fixP->fx_line,
7012 _("offset out of range"));
7013 }
7014 else
7015 {
7016 /* Check for overflow and scale. */
7017 switch (fixP->fx_r_type)
7018 {
7019 case BFD_RELOC_AARCH64_MOVW_G0:
7020 case BFD_RELOC_AARCH64_MOVW_G1:
7021 case BFD_RELOC_AARCH64_MOVW_G2:
7022 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 7023 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 7024 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
7025 if (unsigned_overflow (value, scale + 16))
7026 as_bad_where (fixP->fx_file, fixP->fx_line,
7027 _("unsigned value out of range"));
7028 break;
7029 case BFD_RELOC_AARCH64_MOVW_G0_S:
7030 case BFD_RELOC_AARCH64_MOVW_G1_S:
7031 case BFD_RELOC_AARCH64_MOVW_G2_S:
7032 /* NOTE: We can only come here with movz or movn. */
7033 if (signed_overflow (value, scale + 16))
7034 as_bad_where (fixP->fx_file, fixP->fx_line,
7035 _("signed value out of range"));
7036 if (value < 0)
7037 {
7038 /* Force use of MOVN. */
7039 value = ~value;
7040 insn = reencode_movzn_to_movn (insn);
7041 }
7042 else
7043 {
7044 /* Force use of MOVZ. */
7045 insn = reencode_movzn_to_movz (insn);
7046 }
7047 break;
7048 default:
7049 /* Unchecked relocations. */
7050 break;
7051 }
7052 value >>= scale;
7053 }
7054
7055 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7056 insn |= encode_movw_imm (value & 0xffff);
7057
7058 put_aarch64_insn (buf, insn);
7059 }
7060 break;
7061
a6bb11b2
YZ
7062 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7063 fixP->fx_r_type = (ilp32_p
7064 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7065 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7066 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7067 /* Should always be exported to object file, see
7068 aarch64_force_relocation(). */
7069 gas_assert (!fixP->fx_done);
7070 gas_assert (seg->use_rela_p);
7071 break;
7072
7073 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7074 fixP->fx_r_type = (ilp32_p
7075 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7076 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
7077 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7078 /* Should always be exported to object file, see
7079 aarch64_force_relocation(). */
7080 gas_assert (!fixP->fx_done);
7081 gas_assert (seg->use_rela_p);
7082 break;
7083
2c0a3565
MS
7084 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7085 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7086 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7087 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7088 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7089 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 7090 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7091 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7092 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7093 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7094 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7095 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7096 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7097 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7098 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7099 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7100 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 7101 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7102 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7103 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7104 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7105 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7106 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7107 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7108 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7109 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7110 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7111 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7112 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7113 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7114 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7115 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7116 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7117 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7118 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7119 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7120 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7121 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7122 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7123 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7124 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7125 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7126 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7127 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7128 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7129 /* Should always be exported to object file, see
7130 aarch64_force_relocation(). */
7131 gas_assert (!fixP->fx_done);
7132 gas_assert (seg->use_rela_p);
7133 break;
7134
a6bb11b2
YZ
7135 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7136 /* Should always be exported to object file, see
7137 aarch64_force_relocation(). */
7138 fixP->fx_r_type = (ilp32_p
7139 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7140 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7141 gas_assert (!fixP->fx_done);
7142 gas_assert (seg->use_rela_p);
7143 break;
7144
a06ea964 7145 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
7146 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7147 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7148 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7149 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7150 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7151 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7152 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7153 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
7154 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7155 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
7156 case BFD_RELOC_AARCH64_LDST16_LO12:
7157 case BFD_RELOC_AARCH64_LDST32_LO12:
7158 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 7159 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
7160 /* Should always be exported to object file, see
7161 aarch64_force_relocation(). */
7162 gas_assert (!fixP->fx_done);
7163 gas_assert (seg->use_rela_p);
7164 break;
7165
7166 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 7167 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 7168 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
7169 break;
7170
b97e87cc
NC
7171 case BFD_RELOC_UNUSED:
7172 /* An error will already have been reported. */
7173 break;
7174
a06ea964
NC
7175 default:
7176 as_bad_where (fixP->fx_file, fixP->fx_line,
7177 _("unexpected %s fixup"),
7178 bfd_get_reloc_code_name (fixP->fx_r_type));
7179 break;
7180 }
7181
7182apply_fix_return:
7183 /* Free the allocated the struct aarch64_inst.
7184 N.B. currently there are very limited number of fix-up types actually use
7185 this field, so the impact on the performance should be minimal . */
7186 if (fixP->tc_fix_data.inst != NULL)
7187 free (fixP->tc_fix_data.inst);
7188
7189 return;
7190}
7191
7192/* Translate internal representation of relocation info to BFD target
7193 format. */
7194
7195arelent *
7196tc_gen_reloc (asection * section, fixS * fixp)
7197{
7198 arelent *reloc;
7199 bfd_reloc_code_real_type code;
7200
7201 reloc = xmalloc (sizeof (arelent));
7202
7203 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
7204 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7205 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7206
7207 if (fixp->fx_pcrel)
7208 {
7209 if (section->use_rela_p)
7210 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7211 else
7212 fixp->fx_offset = reloc->address;
7213 }
7214 reloc->addend = fixp->fx_offset;
7215
7216 code = fixp->fx_r_type;
7217 switch (code)
7218 {
7219 case BFD_RELOC_16:
7220 if (fixp->fx_pcrel)
7221 code = BFD_RELOC_16_PCREL;
7222 break;
7223
7224 case BFD_RELOC_32:
7225 if (fixp->fx_pcrel)
7226 code = BFD_RELOC_32_PCREL;
7227 break;
7228
7229 case BFD_RELOC_64:
7230 if (fixp->fx_pcrel)
7231 code = BFD_RELOC_64_PCREL;
7232 break;
7233
7234 default:
7235 break;
7236 }
7237
7238 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7239 if (reloc->howto == NULL)
7240 {
7241 as_bad_where (fixp->fx_file, fixp->fx_line,
7242 _
7243 ("cannot represent %s relocation in this object file format"),
7244 bfd_get_reloc_code_name (code));
7245 return NULL;
7246 }
7247
7248 return reloc;
7249}
7250
7251/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7252
7253void
7254cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7255{
7256 bfd_reloc_code_real_type type;
7257 int pcrel = 0;
7258
7259 /* Pick a reloc.
7260 FIXME: @@ Should look at CPU word size. */
7261 switch (size)
7262 {
7263 case 1:
7264 type = BFD_RELOC_8;
7265 break;
7266 case 2:
7267 type = BFD_RELOC_16;
7268 break;
7269 case 4:
7270 type = BFD_RELOC_32;
7271 break;
7272 case 8:
7273 type = BFD_RELOC_64;
7274 break;
7275 default:
7276 as_bad (_("cannot do %u-byte relocation"), size);
7277 type = BFD_RELOC_UNUSED;
7278 break;
7279 }
7280
7281 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7282}
7283
7284int
7285aarch64_force_relocation (struct fix *fixp)
7286{
7287 switch (fixp->fx_r_type)
7288 {
7289 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7290 /* Perform these "immediate" internal relocations
7291 even if the symbol is extern or weak. */
7292 return 0;
7293
a6bb11b2 7294 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
7295 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7296 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
7297 /* Pseudo relocs that need to be fixed up according to
7298 ilp32_p. */
7299 return 0;
7300
2c0a3565
MS
7301 case BFD_RELOC_AARCH64_ADD_LO12:
7302 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7303 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7304 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7305 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7306 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7307 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7308 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7309 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
7310 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7311 case BFD_RELOC_AARCH64_LDST128_LO12:
7312 case BFD_RELOC_AARCH64_LDST16_LO12:
7313 case BFD_RELOC_AARCH64_LDST32_LO12:
7314 case BFD_RELOC_AARCH64_LDST64_LO12:
7315 case BFD_RELOC_AARCH64_LDST8_LO12:
7316 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7317 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7318 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7319 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7320 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7321 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
43a357f9
RL
7322 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7323 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964 7324 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7325 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7326 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7327 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7328 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7329 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7330 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7331 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7332 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7333 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7334 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7335 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7336 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7337 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7338 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7339 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7340 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7341 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7342 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7343 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7344 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7345 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7346 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7347 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7348 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7349 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7350 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7351 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7352 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7353 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7354 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7355 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7356 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7357 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7358 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7359 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7360 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7361 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7362 /* Always leave these relocations for the linker. */
7363 return 1;
7364
7365 default:
7366 break;
7367 }
7368
7369 return generic_force_reloc (fixp);
7370}
7371
7372#ifdef OBJ_ELF
7373
7374const char *
7375elf64_aarch64_target_format (void)
7376{
a75cf613
ES
7377 if (strcmp (TARGET_OS, "cloudabi") == 0)
7378 {
7379 /* FIXME: What to do for ilp32_p ? */
7380 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
7381 }
a06ea964 7382 if (target_big_endian)
cec5225b 7383 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 7384 else
cec5225b 7385 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
7386}
7387
7388void
7389aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7390{
7391 elf_frob_symbol (symp, puntp);
7392}
7393#endif
7394
7395/* MD interface: Finalization. */
7396
7397/* A good place to do this, although this was probably not intended
7398 for this kind of use. We need to dump the literal pool before
7399 references are made to a null symbol pointer. */
7400
7401void
7402aarch64_cleanup (void)
7403{
7404 literal_pool *pool;
7405
7406 for (pool = list_of_pools; pool; pool = pool->next)
7407 {
7408 /* Put it at the end of the relevant section. */
7409 subseg_set (pool->section, pool->sub_section);
7410 s_ltorg (0);
7411 }
7412}
7413
7414#ifdef OBJ_ELF
7415/* Remove any excess mapping symbols generated for alignment frags in
7416 SEC. We may have created a mapping symbol before a zero byte
7417 alignment; remove it if there's a mapping symbol after the
7418 alignment. */
7419static void
7420check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7421 void *dummy ATTRIBUTE_UNUSED)
7422{
7423 segment_info_type *seginfo = seg_info (sec);
7424 fragS *fragp;
7425
7426 if (seginfo == NULL || seginfo->frchainP == NULL)
7427 return;
7428
7429 for (fragp = seginfo->frchainP->frch_root;
7430 fragp != NULL; fragp = fragp->fr_next)
7431 {
7432 symbolS *sym = fragp->tc_frag_data.last_map;
7433 fragS *next = fragp->fr_next;
7434
7435 /* Variable-sized frags have been converted to fixed size by
7436 this point. But if this was variable-sized to start with,
7437 there will be a fixed-size frag after it. So don't handle
7438 next == NULL. */
7439 if (sym == NULL || next == NULL)
7440 continue;
7441
7442 if (S_GET_VALUE (sym) < next->fr_address)
7443 /* Not at the end of this frag. */
7444 continue;
7445 know (S_GET_VALUE (sym) == next->fr_address);
7446
7447 do
7448 {
7449 if (next->tc_frag_data.first_map != NULL)
7450 {
7451 /* Next frag starts with a mapping symbol. Discard this
7452 one. */
7453 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7454 break;
7455 }
7456
7457 if (next->fr_next == NULL)
7458 {
7459 /* This mapping symbol is at the end of the section. Discard
7460 it. */
7461 know (next->fr_fix == 0 && next->fr_var == 0);
7462 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7463 break;
7464 }
7465
7466 /* As long as we have empty frags without any mapping symbols,
7467 keep looking. */
7468 /* If the next frag is non-empty and does not start with a
7469 mapping symbol, then this mapping symbol is required. */
7470 if (next->fr_address != next->fr_next->fr_address)
7471 break;
7472
7473 next = next->fr_next;
7474 }
7475 while (next != NULL);
7476 }
7477}
7478#endif
7479
7480/* Adjust the symbol table. */
7481
7482void
7483aarch64_adjust_symtab (void)
7484{
7485#ifdef OBJ_ELF
7486 /* Remove any overlapping mapping symbols generated by alignment frags. */
7487 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7488 /* Now do generic ELF adjustments. */
7489 elf_adjust_symtab ();
7490#endif
7491}
7492
7493static void
7494checked_hash_insert (struct hash_control *table, const char *key, void *value)
7495{
7496 const char *hash_err;
7497
7498 hash_err = hash_insert (table, key, value);
7499 if (hash_err)
7500 printf ("Internal Error: Can't hash %s\n", key);
7501}
7502
7503static void
7504fill_instruction_hash_table (void)
7505{
7506 aarch64_opcode *opcode = aarch64_opcode_table;
7507
7508 while (opcode->name != NULL)
7509 {
7510 templates *templ, *new_templ;
7511 templ = hash_find (aarch64_ops_hsh, opcode->name);
7512
7513 new_templ = (templates *) xmalloc (sizeof (templates));
7514 new_templ->opcode = opcode;
7515 new_templ->next = NULL;
7516
7517 if (!templ)
7518 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7519 else
7520 {
7521 new_templ->next = templ->next;
7522 templ->next = new_templ;
7523 }
7524 ++opcode;
7525 }
7526}
7527
7528static inline void
7529convert_to_upper (char *dst, const char *src, size_t num)
7530{
7531 unsigned int i;
7532 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7533 *dst = TOUPPER (*src);
7534 *dst = '\0';
7535}
7536
7537/* Assume STR point to a lower-case string, allocate, convert and return
7538 the corresponding upper-case string. */
7539static inline const char*
7540get_upper_str (const char *str)
7541{
7542 char *ret;
7543 size_t len = strlen (str);
7544 if ((ret = xmalloc (len + 1)) == NULL)
7545 abort ();
7546 convert_to_upper (ret, str, len);
7547 return ret;
7548}
7549
7550/* MD interface: Initialization. */
7551
7552void
7553md_begin (void)
7554{
7555 unsigned mach;
7556 unsigned int i;
7557
7558 if ((aarch64_ops_hsh = hash_new ()) == NULL
7559 || (aarch64_cond_hsh = hash_new ()) == NULL
7560 || (aarch64_shift_hsh = hash_new ()) == NULL
7561 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7562 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7563 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7564 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7565 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7566 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7567 || (aarch64_reg_hsh = hash_new ()) == NULL
7568 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7569 || (aarch64_nzcv_hsh = hash_new ()) == NULL
1e6f4800
MW
7570 || (aarch64_pldop_hsh = hash_new ()) == NULL
7571 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
a06ea964
NC
7572 as_fatal (_("virtual memory exhausted"));
7573
7574 fill_instruction_hash_table ();
7575
7576 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7577 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7578 (void *) (aarch64_sys_regs + i));
7579
7580 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7581 checked_hash_insert (aarch64_pstatefield_hsh,
7582 aarch64_pstatefields[i].name,
7583 (void *) (aarch64_pstatefields + i));
7584
875880c6 7585 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
a06ea964 7586 checked_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 7587 aarch64_sys_regs_ic[i].name,
a06ea964
NC
7588 (void *) (aarch64_sys_regs_ic + i));
7589
875880c6 7590 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
a06ea964 7591 checked_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 7592 aarch64_sys_regs_dc[i].name,
a06ea964
NC
7593 (void *) (aarch64_sys_regs_dc + i));
7594
875880c6 7595 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
a06ea964 7596 checked_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 7597 aarch64_sys_regs_at[i].name,
a06ea964
NC
7598 (void *) (aarch64_sys_regs_at + i));
7599
875880c6 7600 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
a06ea964 7601 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 7602 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
7603 (void *) (aarch64_sys_regs_tlbi + i));
7604
7605 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7606 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7607 (void *) (reg_names + i));
7608
7609 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7610 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7611 (void *) (nzcv_names + i));
7612
7613 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7614 {
7615 const char *name = aarch64_operand_modifiers[i].name;
7616 checked_hash_insert (aarch64_shift_hsh, name,
7617 (void *) (aarch64_operand_modifiers + i));
7618 /* Also hash the name in the upper case. */
7619 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7620 (void *) (aarch64_operand_modifiers + i));
7621 }
7622
7623 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7624 {
7625 unsigned int j;
7626 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7627 the same condition code. */
7628 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7629 {
7630 const char *name = aarch64_conds[i].names[j];
7631 if (name == NULL)
7632 break;
7633 checked_hash_insert (aarch64_cond_hsh, name,
7634 (void *) (aarch64_conds + i));
7635 /* Also hash the name in the upper case. */
7636 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7637 (void *) (aarch64_conds + i));
7638 }
7639 }
7640
7641 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7642 {
7643 const char *name = aarch64_barrier_options[i].name;
7644 /* Skip xx00 - the unallocated values of option. */
7645 if ((i & 0x3) == 0)
7646 continue;
7647 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7648 (void *) (aarch64_barrier_options + i));
7649 /* Also hash the name in the upper case. */
7650 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7651 (void *) (aarch64_barrier_options + i));
7652 }
7653
7654 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7655 {
7656 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7657 /* Skip the unallocated hint encodings. */
7658 if (name == NULL)
a06ea964
NC
7659 continue;
7660 checked_hash_insert (aarch64_pldop_hsh, name,
7661 (void *) (aarch64_prfops + i));
7662 /* Also hash the name in the upper case. */
7663 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7664 (void *) (aarch64_prfops + i));
7665 }
7666
1e6f4800
MW
7667 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
7668 {
7669 const char* name = aarch64_hint_options[i].name;
7670
7671 checked_hash_insert (aarch64_hint_opt_hsh, name,
7672 (void *) (aarch64_hint_options + i));
7673 /* Also hash the name in the upper case. */
7674 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7675 (void *) (aarch64_hint_options + i));
7676 }
7677
a06ea964
NC
7678 /* Set the cpu variant based on the command-line options. */
7679 if (!mcpu_cpu_opt)
7680 mcpu_cpu_opt = march_cpu_opt;
7681
7682 if (!mcpu_cpu_opt)
7683 mcpu_cpu_opt = &cpu_default;
7684
7685 cpu_variant = *mcpu_cpu_opt;
7686
7687 /* Record the CPU type. */
cec5225b 7688 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7689
7690 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7691}
7692
7693/* Command line processing. */
7694
7695const char *md_shortopts = "m:";
7696
7697#ifdef AARCH64_BI_ENDIAN
7698#define OPTION_EB (OPTION_MD_BASE + 0)
7699#define OPTION_EL (OPTION_MD_BASE + 1)
7700#else
7701#if TARGET_BYTES_BIG_ENDIAN
7702#define OPTION_EB (OPTION_MD_BASE + 0)
7703#else
7704#define OPTION_EL (OPTION_MD_BASE + 1)
7705#endif
7706#endif
7707
7708struct option md_longopts[] = {
7709#ifdef OPTION_EB
7710 {"EB", no_argument, NULL, OPTION_EB},
7711#endif
7712#ifdef OPTION_EL
7713 {"EL", no_argument, NULL, OPTION_EL},
7714#endif
7715 {NULL, no_argument, NULL, 0}
7716};
7717
7718size_t md_longopts_size = sizeof (md_longopts);
7719
7720struct aarch64_option_table
7721{
e0471c16
TS
7722 const char *option; /* Option name to match. */
7723 const char *help; /* Help information. */
a06ea964
NC
7724 int *var; /* Variable to change. */
7725 int value; /* What to change it to. */
7726 char *deprecated; /* If non-null, print this message. */
7727};
7728
7729static struct aarch64_option_table aarch64_opts[] = {
7730 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7731 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7732 NULL},
7733#ifdef DEBUG_AARCH64
7734 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7735#endif /* DEBUG_AARCH64 */
7736 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7737 NULL},
a52e6fd3
YZ
7738 {"mno-verbose-error", N_("do not output verbose error messages"),
7739 &verbose_error_p, 0, NULL},
a06ea964
NC
7740 {NULL, NULL, NULL, 0, NULL}
7741};
7742
7743struct aarch64_cpu_option_table
7744{
e0471c16 7745 const char *name;
a06ea964
NC
7746 const aarch64_feature_set value;
7747 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7748 case. */
7749 const char *canonical_name;
7750};
7751
7752/* This list should, at a minimum, contain all the cpu names
7753 recognized by GCC. */
7754static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7755 {"all", AARCH64_ANY, NULL},
9c352f1c
JG
7756 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
7757 AARCH64_FEATURE_CRC), "Cortex-A35"},
aa31c464
JW
7758 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7759 AARCH64_FEATURE_CRC), "Cortex-A53"},
7760 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7761 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
7762 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7763 AARCH64_FEATURE_CRC), "Cortex-A72"},
2412d878
EM
7764 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7765 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7766 "Samsung Exynos M1"},
6b21c2bf
JW
7767 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7768 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7769 "Qualcomm QDF24XX"},
faade851
JW
7770 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7771 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7772 "Cavium ThunderX"},
070cb956
PT
7773 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7774 in earlier releases and is superseded by 'xgene1' in all
7775 tools. */
9877c63c 7776 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 7777 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
7778 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7779 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
7780 {"generic", AARCH64_ARCH_V8, NULL},
7781
a06ea964
NC
7782 {NULL, AARCH64_ARCH_NONE, NULL}
7783};
7784
7785struct aarch64_arch_option_table
7786{
e0471c16 7787 const char *name;
a06ea964
NC
7788 const aarch64_feature_set value;
7789};
7790
7791/* This list should, at a minimum, contain all the architecture names
7792 recognized by GCC. */
7793static const struct aarch64_arch_option_table aarch64_archs[] = {
7794 {"all", AARCH64_ANY},
5a1ad39d 7795 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 7796 {"armv8.1-a", AARCH64_ARCH_V8_1},
acb787b0 7797 {"armv8.2-a", AARCH64_ARCH_V8_2},
a06ea964
NC
7798 {NULL, AARCH64_ARCH_NONE}
7799};
7800
7801/* ISA extensions. */
7802struct aarch64_option_cpu_value_table
7803{
e0471c16 7804 const char *name;
a06ea964
NC
7805 const aarch64_feature_set value;
7806};
7807
7808static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7809 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7810 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7811 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7812 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964 7813 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
72ca8fad 7814 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0)},
290806fd 7815 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0)},
9e1f0fa7
MW
7816 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_SIMD
7817 | AARCH64_FEATURE_RDMA, 0)},
87018195
MW
7818 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16
7819 | AARCH64_FEATURE_FP, 0)},
73af8ed6 7820 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0)},
a06ea964
NC
7821 {NULL, AARCH64_ARCH_NONE}
7822};
7823
7824struct aarch64_long_option_table
7825{
e0471c16
TS
7826 const char *option; /* Substring to match. */
7827 const char *help; /* Help information. */
a06ea964
NC
7828 int (*func) (char *subopt); /* Function to decode sub-option. */
7829 char *deprecated; /* If non-null, print this message. */
7830};
7831
7832static int
ae527cd8
JB
7833aarch64_parse_features (char *str, const aarch64_feature_set **opt_p,
7834 bfd_boolean ext_only)
a06ea964
NC
7835{
7836 /* We insist on extensions being added before being removed. We achieve
7837 this by using the ADDING_VALUE variable to indicate whether we are
7838 adding an extension (1) or removing it (0) and only allowing it to
7839 change in the order -1 -> 1 -> 0. */
7840 int adding_value = -1;
7841 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7842
7843 /* Copy the feature set, so that we can modify it. */
7844 *ext_set = **opt_p;
7845 *opt_p = ext_set;
7846
7847 while (str != NULL && *str != 0)
7848 {
7849 const struct aarch64_option_cpu_value_table *opt;
ae527cd8 7850 char *ext = NULL;
a06ea964
NC
7851 int optlen;
7852
ae527cd8 7853 if (!ext_only)
a06ea964 7854 {
ae527cd8
JB
7855 if (*str != '+')
7856 {
7857 as_bad (_("invalid architectural extension"));
7858 return 0;
7859 }
a06ea964 7860
ae527cd8
JB
7861 ext = strchr (++str, '+');
7862 }
a06ea964
NC
7863
7864 if (ext != NULL)
7865 optlen = ext - str;
7866 else
7867 optlen = strlen (str);
7868
7869 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7870 {
7871 if (adding_value != 0)
7872 adding_value = 0;
7873 optlen -= 2;
7874 str += 2;
7875 }
7876 else if (optlen > 0)
7877 {
7878 if (adding_value == -1)
7879 adding_value = 1;
7880 else if (adding_value != 1)
7881 {
7882 as_bad (_("must specify extensions to add before specifying "
7883 "those to remove"));
7884 return FALSE;
7885 }
7886 }
7887
7888 if (optlen == 0)
7889 {
7890 as_bad (_("missing architectural extension"));
7891 return 0;
7892 }
7893
7894 gas_assert (adding_value != -1);
7895
7896 for (opt = aarch64_features; opt->name != NULL; opt++)
7897 if (strncmp (opt->name, str, optlen) == 0)
7898 {
7899 /* Add or remove the extension. */
7900 if (adding_value)
7901 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7902 else
7903 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7904 break;
7905 }
7906
7907 if (opt->name == NULL)
7908 {
7909 as_bad (_("unknown architectural extension `%s'"), str);
7910 return 0;
7911 }
7912
7913 str = ext;
7914 };
7915
7916 return 1;
7917}
7918
7919static int
7920aarch64_parse_cpu (char *str)
7921{
7922 const struct aarch64_cpu_option_table *opt;
7923 char *ext = strchr (str, '+');
7924 size_t optlen;
7925
7926 if (ext != NULL)
7927 optlen = ext - str;
7928 else
7929 optlen = strlen (str);
7930
7931 if (optlen == 0)
7932 {
7933 as_bad (_("missing cpu name `%s'"), str);
7934 return 0;
7935 }
7936
7937 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7938 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7939 {
7940 mcpu_cpu_opt = &opt->value;
7941 if (ext != NULL)
ae527cd8 7942 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
7943
7944 return 1;
7945 }
7946
7947 as_bad (_("unknown cpu `%s'"), str);
7948 return 0;
7949}
7950
7951static int
7952aarch64_parse_arch (char *str)
7953{
7954 const struct aarch64_arch_option_table *opt;
7955 char *ext = strchr (str, '+');
7956 size_t optlen;
7957
7958 if (ext != NULL)
7959 optlen = ext - str;
7960 else
7961 optlen = strlen (str);
7962
7963 if (optlen == 0)
7964 {
7965 as_bad (_("missing architecture name `%s'"), str);
7966 return 0;
7967 }
7968
7969 for (opt = aarch64_archs; opt->name != NULL; opt++)
7970 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7971 {
7972 march_cpu_opt = &opt->value;
7973 if (ext != NULL)
ae527cd8 7974 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
7975
7976 return 1;
7977 }
7978
7979 as_bad (_("unknown architecture `%s'\n"), str);
7980 return 0;
7981}
7982
69091a2c
YZ
7983/* ABIs. */
7984struct aarch64_option_abi_value_table
7985{
e0471c16 7986 const char *name;
69091a2c
YZ
7987 enum aarch64_abi_type value;
7988};
7989
7990static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7991 {"ilp32", AARCH64_ABI_ILP32},
7992 {"lp64", AARCH64_ABI_LP64},
7993 {NULL, 0}
7994};
7995
7996static int
7997aarch64_parse_abi (char *str)
7998{
7999 const struct aarch64_option_abi_value_table *opt;
8000 size_t optlen = strlen (str);
8001
8002 if (optlen == 0)
8003 {
8004 as_bad (_("missing abi name `%s'"), str);
8005 return 0;
8006 }
8007
8008 for (opt = aarch64_abis; opt->name != NULL; opt++)
8009 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8010 {
8011 aarch64_abi = opt->value;
8012 return 1;
8013 }
8014
8015 as_bad (_("unknown abi `%s'\n"), str);
8016 return 0;
8017}
8018
a06ea964 8019static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
8020#ifdef OBJ_ELF
8021 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8022 aarch64_parse_abi, NULL},
8023#endif /* OBJ_ELF */
a06ea964
NC
8024 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8025 aarch64_parse_cpu, NULL},
8026 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8027 aarch64_parse_arch, NULL},
8028 {NULL, NULL, 0, NULL}
8029};
8030
8031int
8032md_parse_option (int c, char *arg)
8033{
8034 struct aarch64_option_table *opt;
8035 struct aarch64_long_option_table *lopt;
8036
8037 switch (c)
8038 {
8039#ifdef OPTION_EB
8040 case OPTION_EB:
8041 target_big_endian = 1;
8042 break;
8043#endif
8044
8045#ifdef OPTION_EL
8046 case OPTION_EL:
8047 target_big_endian = 0;
8048 break;
8049#endif
8050
8051 case 'a':
8052 /* Listing option. Just ignore these, we don't support additional
8053 ones. */
8054 return 0;
8055
8056 default:
8057 for (opt = aarch64_opts; opt->option != NULL; opt++)
8058 {
8059 if (c == opt->option[0]
8060 && ((arg == NULL && opt->option[1] == 0)
8061 || streq (arg, opt->option + 1)))
8062 {
8063 /* If the option is deprecated, tell the user. */
8064 if (opt->deprecated != NULL)
8065 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8066 arg ? arg : "", _(opt->deprecated));
8067
8068 if (opt->var != NULL)
8069 *opt->var = opt->value;
8070
8071 return 1;
8072 }
8073 }
8074
8075 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8076 {
8077 /* These options are expected to have an argument. */
8078 if (c == lopt->option[0]
8079 && arg != NULL
8080 && strncmp (arg, lopt->option + 1,
8081 strlen (lopt->option + 1)) == 0)
8082 {
8083 /* If the option is deprecated, tell the user. */
8084 if (lopt->deprecated != NULL)
8085 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8086 _(lopt->deprecated));
8087
8088 /* Call the sup-option parser. */
8089 return lopt->func (arg + strlen (lopt->option) - 1);
8090 }
8091 }
8092
8093 return 0;
8094 }
8095
8096 return 1;
8097}
8098
8099void
8100md_show_usage (FILE * fp)
8101{
8102 struct aarch64_option_table *opt;
8103 struct aarch64_long_option_table *lopt;
8104
8105 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8106
8107 for (opt = aarch64_opts; opt->option != NULL; opt++)
8108 if (opt->help != NULL)
8109 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8110
8111 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8112 if (lopt->help != NULL)
8113 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8114
8115#ifdef OPTION_EB
8116 fprintf (fp, _("\
8117 -EB assemble code for a big-endian cpu\n"));
8118#endif
8119
8120#ifdef OPTION_EL
8121 fprintf (fp, _("\
8122 -EL assemble code for a little-endian cpu\n"));
8123#endif
8124}
8125
8126/* Parse a .cpu directive. */
8127
8128static void
8129s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
8130{
8131 const struct aarch64_cpu_option_table *opt;
8132 char saved_char;
8133 char *name;
8134 char *ext;
8135 size_t optlen;
8136
8137 name = input_line_pointer;
8138 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8139 input_line_pointer++;
8140 saved_char = *input_line_pointer;
8141 *input_line_pointer = 0;
8142
8143 ext = strchr (name, '+');
8144
8145 if (ext != NULL)
8146 optlen = ext - name;
8147 else
8148 optlen = strlen (name);
8149
8150 /* Skip the first "all" entry. */
8151 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
8152 if (strlen (opt->name) == optlen
8153 && strncmp (name, opt->name, optlen) == 0)
8154 {
8155 mcpu_cpu_opt = &opt->value;
8156 if (ext != NULL)
ae527cd8 8157 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8158 return;
8159
8160 cpu_variant = *mcpu_cpu_opt;
8161
8162 *input_line_pointer = saved_char;
8163 demand_empty_rest_of_line ();
8164 return;
8165 }
8166 as_bad (_("unknown cpu `%s'"), name);
8167 *input_line_pointer = saved_char;
8168 ignore_rest_of_line ();
8169}
8170
8171
8172/* Parse a .arch directive. */
8173
8174static void
8175s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
8176{
8177 const struct aarch64_arch_option_table *opt;
8178 char saved_char;
8179 char *name;
8180 char *ext;
8181 size_t optlen;
8182
8183 name = input_line_pointer;
8184 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8185 input_line_pointer++;
8186 saved_char = *input_line_pointer;
8187 *input_line_pointer = 0;
8188
8189 ext = strchr (name, '+');
8190
8191 if (ext != NULL)
8192 optlen = ext - name;
8193 else
8194 optlen = strlen (name);
8195
8196 /* Skip the first "all" entry. */
8197 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
8198 if (strlen (opt->name) == optlen
8199 && strncmp (name, opt->name, optlen) == 0)
8200 {
8201 mcpu_cpu_opt = &opt->value;
8202 if (ext != NULL)
ae527cd8 8203 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8204 return;
8205
8206 cpu_variant = *mcpu_cpu_opt;
8207
8208 *input_line_pointer = saved_char;
8209 demand_empty_rest_of_line ();
8210 return;
8211 }
8212
8213 as_bad (_("unknown architecture `%s'\n"), name);
8214 *input_line_pointer = saved_char;
8215 ignore_rest_of_line ();
8216}
8217
ae527cd8
JB
8218/* Parse a .arch_extension directive. */
8219
8220static void
8221s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8222{
8223 char saved_char;
8224 char *ext = input_line_pointer;;
8225
8226 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8227 input_line_pointer++;
8228 saved_char = *input_line_pointer;
8229 *input_line_pointer = 0;
8230
8231 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8232 return;
8233
8234 cpu_variant = *mcpu_cpu_opt;
8235
8236 *input_line_pointer = saved_char;
8237 demand_empty_rest_of_line ();
8238}
8239
a06ea964
NC
8240/* Copy symbol information. */
8241
8242void
8243aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8244{
8245 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
8246}