]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-aarch64.c
aarch64: Refactor aarch64_sys_ins_reg_supported_p
[thirdparty/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
fd67aa11 3 Copyright (C) 2009-2024 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
3dfb1b6d 25#include <stdint.h>
a06ea964
NC
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
b52c4ee4
IB
33#include "dw2gencfi.h"
34#include "sframe.h"
35#include "gen-sframe.h"
a06ea964
NC
36#endif
37
c60b3806 38#include "dw2gencfi.h"
a06ea964
NC
39#include "dwarf2dbg.h"
40
a06ea964
NC
41#define streq(a, b) (strcmp (a, b) == 0)
42
f4c51f60
JW
43#define END_OF_INSN '\0'
44
a06ea964
NC
45static aarch64_feature_set cpu_variant;
46
47/* Variables that we set while parsing command-line options. Once all
48 options have been read we re-process these values to set the real
49 assembly flags. */
50static const aarch64_feature_set *mcpu_cpu_opt = NULL;
51static const aarch64_feature_set *march_cpu_opt = NULL;
52
53/* Constants for known architecture features. */
4abb672a 54static const aarch64_feature_set cpu_default = AARCH64_ARCH_FEATURES (V8A);
a06ea964 55
7e84b55d
TC
56/* Currently active instruction sequence. */
57static aarch64_instr_sequence *insn_sequence = NULL;
58
a06ea964
NC
59#ifdef OBJ_ELF
60/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
61static symbolS *GOT_symbol;
c60b3806 62#endif
cec5225b 63
69091a2c
YZ
64/* Which ABI to use. */
65enum aarch64_abi_type
66{
3c0367d0
JW
67 AARCH64_ABI_NONE = 0,
68 AARCH64_ABI_LP64 = 1,
c60b3806
JT
69 AARCH64_ABI_ILP32 = 2,
70 AARCH64_ABI_LLP64 = 3
69091a2c
YZ
71};
72
b52c4ee4 73unsigned int aarch64_sframe_cfa_sp_reg;
3e3e792a 74/* The other CFA base register for SFrame stack trace info. */
b52c4ee4
IB
75unsigned int aarch64_sframe_cfa_fp_reg;
76unsigned int aarch64_sframe_cfa_ra_reg;
77
3c0367d0
JW
78#ifndef DEFAULT_ARCH
79#define DEFAULT_ARCH "aarch64"
80#endif
81
c60b3806 82#ifdef OBJ_ELF
3c0367d0
JW
83/* DEFAULT_ARCH is initialized in gas/configure.tgt. */
84static const char *default_arch = DEFAULT_ARCH;
c60b3806 85#endif
3c0367d0 86
69091a2c 87/* AArch64 ABI for the output file. */
3c0367d0 88static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
69091a2c 89
cec5225b
YZ
90/* When non-zero, program to a 32-bit model, in which the C data types
91 int, long and all pointer types are 32-bit objects (ILP32); or to a
92 64-bit model, in which the C int type is 32-bits but the C long type
93 and all pointer types are 64-bit objects (LP64). */
69091a2c 94#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
c60b3806
JT
95
96/* When non zero, C types int and long are 32 bit,
97 pointers, however are 64 bit */
98#define llp64_p (aarch64_abi == AARCH64_ABI_LLP64)
a06ea964 99
f06935a5 100enum vector_el_type
a06ea964
NC
101{
102 NT_invtype = -1,
103 NT_b,
104 NT_h,
105 NT_s,
106 NT_d,
d50c751e
RS
107 NT_q,
108 NT_zero,
109 NT_merge
a06ea964
NC
110};
111
8f9a77af 112/* Bits for DEFINED field in vector_type_el. */
f11ad6bc
RS
113#define NTA_HASTYPE 1
114#define NTA_HASINDEX 2
115#define NTA_HASVARWIDTH 4
a06ea964 116
8f9a77af 117struct vector_type_el
a06ea964 118{
f06935a5 119 enum vector_el_type type;
a06ea964 120 unsigned char defined;
8cde0b98 121 unsigned element_size;
a06ea964
NC
122 unsigned width;
123 int64_t index;
124};
125
126#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
127
128struct reloc
129{
130 bfd_reloc_code_real_type type;
131 expressionS exp;
132 int pc_rel;
133 enum aarch64_opnd opnd;
134 uint32_t flags;
135 unsigned need_libopcodes_p : 1;
136};
137
138struct aarch64_instruction
139{
140 /* libopcodes structure for instruction intermediate representation. */
141 aarch64_inst base;
142 /* Record assembly errors found during the parsing. */
3e4525ca 143 aarch64_operand_error parsing_error;
a06ea964
NC
144 /* The condition that appears in the assembly line. */
145 int cond;
146 /* Relocation information (including the GAS internal fixup). */
147 struct reloc reloc;
148 /* Need to generate an immediate in the literal pool. */
149 unsigned gen_lit_pool : 1;
150};
151
152typedef struct aarch64_instruction aarch64_instruction;
153
154static aarch64_instruction inst;
155
5b7c81bd
AM
156static bool parse_operands (char *, const aarch64_opcode *);
157static bool programmer_friendly_fixup (aarch64_instruction *);
a06ea964 158
e426521e
RS
159/* If an AARCH64_OPDE_SYNTAX_ERROR has no error string, its first three
160 data fields contain the following information:
161
162 data[0].i:
163 A mask of register types that would have been acceptable as bare
164 operands, outside of a register list. In addition, SEF_DEFAULT_ERROR
165 is set if a general parsing error occured for an operand (that is,
166 an error not related to registers, and having no error string).
167
168 data[1].i:
169 A mask of register types that would have been acceptable inside
170 a register list. In addition, SEF_IN_REGLIST is set if the
171 operand contained a '{' and if we got to the point of trying
172 to parse a register inside a list.
173
174 data[2].i:
175 The mask associated with the register that was actually seen, or 0
176 if none. A nonzero value describes a register inside a register
177 list if data[1].i & SEF_IN_REGLIST, otherwise it describes a bare
178 register.
179
180 The idea is that stringless errors from multiple opcode templates can
181 be ORed together to give a summary of the available alternatives. */
182#define SEF_DEFAULT_ERROR (1U << 31)
183#define SEF_IN_REGLIST (1U << 31)
184
33eaf5de 185/* Diagnostics inline function utilities.
a06ea964 186
33eaf5de 187 These are lightweight utilities which should only be called by parse_operands
a06ea964
NC
188 and other parsers. GAS processes each assembly line by parsing it against
189 instruction template(s), in the case of multiple templates (for the same
190 mnemonic name), those templates are tried one by one until one succeeds or
191 all fail. An assembly line may fail a few templates before being
192 successfully parsed; an error saved here in most cases is not a user error
193 but an error indicating the current template is not the right template.
194 Therefore it is very important that errors can be saved at a low cost during
195 the parsing; we don't want to slow down the whole parsing by recording
196 non-user errors in detail.
197
33eaf5de 198 Remember that the objective is to help GAS pick up the most appropriate
a06ea964
NC
199 error message in the case of multiple templates, e.g. FMOV which has 8
200 templates. */
201
202static inline void
203clear_error (void)
204{
3e4525ca 205 memset (&inst.parsing_error, 0, sizeof (inst.parsing_error));
a06ea964 206 inst.parsing_error.kind = AARCH64_OPDE_NIL;
a06ea964
NC
207}
208
5b7c81bd 209static inline bool
a06ea964
NC
210error_p (void)
211{
212 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
213}
214
a06ea964
NC
215static inline void
216set_error (enum aarch64_operand_error_kind kind, const char *error)
217{
3e4525ca
RS
218 memset (&inst.parsing_error, 0, sizeof (inst.parsing_error));
219 inst.parsing_error.index = -1;
a06ea964
NC
220 inst.parsing_error.kind = kind;
221 inst.parsing_error.error = error;
222}
223
224static inline void
225set_recoverable_error (const char *error)
226{
227 set_error (AARCH64_OPDE_RECOVERABLE, error);
228}
229
230/* Use the DESC field of the corresponding aarch64_operand entry to compose
231 the error message. */
232static inline void
233set_default_error (void)
234{
235 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
e426521e
RS
236 inst.parsing_error.data[0].i = SEF_DEFAULT_ERROR;
237}
238
a06ea964
NC
239static inline void
240set_syntax_error (const char *error)
241{
242 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
243}
244
245static inline void
246set_first_syntax_error (const char *error)
247{
248 if (! error_p ())
249 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
250}
251
252static inline void
253set_fatal_syntax_error (const char *error)
254{
255 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
256}
257\f
a06ea964
NC
258/* Return value for certain parsers when the parsing fails; those parsers
259 return the information of the parsed result, e.g. register number, on
260 success. */
261#define PARSE_FAIL -1
262
263/* This is an invalid condition code that means no conditional field is
264 present. */
265#define COND_ALWAYS 0x10
266
a06ea964
NC
267typedef struct
268{
269 const char *template;
270 uint32_t value;
271} asm_nzcv;
272
273struct reloc_entry
274{
275 char *name;
276 bfd_reloc_code_real_type reloc;
277};
278
a06ea964
NC
279/* Macros to define the register types and masks for the purpose
280 of parsing. */
281
282#undef AARCH64_REG_TYPES
283#define AARCH64_REG_TYPES \
284 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
285 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
286 BASIC_REG_TYPE(SP_32) /* wsp */ \
287 BASIC_REG_TYPE(SP_64) /* sp */ \
2f4e3a2c
RS
288 BASIC_REG_TYPE(ZR_32) /* wzr */ \
289 BASIC_REG_TYPE(ZR_64) /* xzr */ \
a06ea964
NC
290 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
291 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
292 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
293 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
294 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
2f4e3a2c
RS
295 BASIC_REG_TYPE(V) /* v[0-31] */ \
296 BASIC_REG_TYPE(Z) /* z[0-31] */ \
297 BASIC_REG_TYPE(P) /* p[0-15] */ \
503fae12 298 BASIC_REG_TYPE(PN) /* pn[0-15] */ \
e9e1ddbb 299 BASIC_REG_TYPE(ZA) /* za */ \
fd855fbb
RS
300 BASIC_REG_TYPE(ZAT) /* za[0-15] (ZA tile) */ \
301 BASIC_REG_TYPE(ZATH) /* za[0-15]h (ZA tile horizontal slice) */ \
302 BASIC_REG_TYPE(ZATV) /* za[0-15]v (ZA tile vertical slice) */ \
cbd11b88 303 BASIC_REG_TYPE(ZT0) /* zt0 */ \
e1b988bb 304 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
a06ea964 305 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
4df068de
RS
306 /* Typecheck: same, plus SVE registers. */ \
307 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
2f4e3a2c 308 | REG_TYPE(Z)) \
e1b988bb 309 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
2f4e3a2c
RS
310 MULTI_REG_TYPE(R_ZR, REG_TYPE(R_32) | REG_TYPE(R_64) \
311 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64)) \
4df068de
RS
312 /* Typecheck: same, plus SVE registers. */ \
313 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
2f4e3a2c
RS
314 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64) \
315 | REG_TYPE(Z)) \
e1b988bb
RS
316 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
317 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
318 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
319 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
2f4e3a2c 320 MULTI_REG_TYPE(R_ZR_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
a06ea964 321 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
2f4e3a2c 322 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64)) \
a06ea964
NC
323 /* Typecheck: any [BHSDQ]P FP. */ \
324 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
325 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
e1b988bb 326 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
2f4e3a2c
RS
327 MULTI_REG_TYPE(R_ZR_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
328 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64) | REG_TYPE(V) \
a06ea964
NC
329 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
330 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
5b2b928e
JB
331 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
332 be used for SVE instructions, since Zn and Pn are valid symbols \
c0890d26 333 in other contexts. */ \
2f4e3a2c 334 MULTI_REG_TYPE(R_ZR_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
5b2b928e 335 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
2f4e3a2c 336 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64) | REG_TYPE(V) \
c0890d26
RS
337 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
338 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
2f4e3a2c 339 | REG_TYPE(Z) | REG_TYPE(P)) \
6efa6601
RS
340 /* Likewise, but with predicate-as-counter registers added. */ \
341 MULTI_REG_TYPE(R_ZR_SP_BHSDQ_VZP_PN, REG_TYPE(R_32) | REG_TYPE(R_64) \
342 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
343 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64) | REG_TYPE(V) \
344 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
345 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
346 | REG_TYPE(Z) | REG_TYPE(P) | REG_TYPE(PN)) \
a06ea964
NC
347 /* Any integer register; used for error messages only. */ \
348 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
349 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
2f4e3a2c 350 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64)) \
e426521e 351 /* Any vector register. */ \
2f4e3a2c 352 MULTI_REG_TYPE(VZ, REG_TYPE(V) | REG_TYPE(Z)) \
e426521e 353 /* An SVE vector or predicate register. */ \
2f4e3a2c 354 MULTI_REG_TYPE(ZP, REG_TYPE(Z) | REG_TYPE(P)) \
e426521e 355 /* Any vector or predicate register. */ \
2f4e3a2c 356 MULTI_REG_TYPE(VZP, REG_TYPE(V) | REG_TYPE(Z) | REG_TYPE(P)) \
e9e1ddbb
RS
357 /* The whole of ZA or a single tile. */ \
358 MULTI_REG_TYPE(ZA_ZAT, REG_TYPE(ZA) | REG_TYPE(ZAT)) \
83dbd40d
RS
359 /* A horizontal or vertical slice of a ZA tile. */ \
360 MULTI_REG_TYPE(ZATHV, REG_TYPE(ZATH) | REG_TYPE(ZATV)) \
a06ea964 361 /* Pseudo type to mark the end of the enumerator sequence. */ \
e426521e 362 END_REG_TYPE(MAX)
a06ea964
NC
363
364#undef BASIC_REG_TYPE
365#define BASIC_REG_TYPE(T) REG_TYPE_##T,
366#undef MULTI_REG_TYPE
367#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
e426521e
RS
368#undef END_REG_TYPE
369#define END_REG_TYPE(T) BASIC_REG_TYPE(T)
a06ea964
NC
370
371/* Register type enumerators. */
8a0b252a 372typedef enum aarch64_reg_type_
a06ea964
NC
373{
374 /* A list of REG_TYPE_*. */
375 AARCH64_REG_TYPES
376} aarch64_reg_type;
377
378#undef BASIC_REG_TYPE
379#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
380#undef REG_TYPE
381#define REG_TYPE(T) (1 << REG_TYPE_##T)
382#undef MULTI_REG_TYPE
383#define MULTI_REG_TYPE(T,V) V,
e426521e
RS
384#undef END_REG_TYPE
385#define END_REG_TYPE(T) 0
a06ea964 386
8a0b252a
TS
387/* Structure for a hash table entry for a register. */
388typedef struct
389{
390 const char *name;
391 unsigned char number;
392 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
393 unsigned char builtin;
394} reg_entry;
395
a06ea964
NC
396/* Values indexed by aarch64_reg_type to assist the type checking. */
397static const unsigned reg_type_masks[] =
398{
399 AARCH64_REG_TYPES
400};
401
402#undef BASIC_REG_TYPE
403#undef REG_TYPE
404#undef MULTI_REG_TYPE
e426521e 405#undef END_REG_TYPE
a06ea964
NC
406#undef AARCH64_REG_TYPES
407
e426521e
RS
408/* We expected one of the registers in MASK to be specified. If a register
409 of some kind was specified, SEEN is a mask that contains that register,
410 otherwise it is zero.
411
412 If it is possible to provide a relatively pithy message that describes
413 the error exactly, return a string that does so, reporting the error
414 against "operand %d". Return null otherwise.
415
416 From a QoI perspective, any REG_TYPE_* that is passed as the first
417 argument to set_expected_reg_error should generally have its own message.
418 Providing messages for combinations of such REG_TYPE_*s can be useful if
419 it is possible to summarize the combination in a relatively natural way.
420 On the other hand, it seems better to avoid long lists of unrelated
421 things. */
422
a06ea964 423static const char *
e426521e
RS
424get_reg_expected_msg (unsigned int mask, unsigned int seen)
425{
426 /* First handle messages that use SEEN. */
427 if ((mask & reg_type_masks[REG_TYPE_ZAT])
428 && (seen & reg_type_masks[REG_TYPE_ZATHV]))
429 return N_("expected an unsuffixed ZA tile at operand %d");
430
431 if ((mask & reg_type_masks[REG_TYPE_ZATHV])
432 && (seen & reg_type_masks[REG_TYPE_ZAT]))
433 return N_("missing horizontal or vertical suffix at operand %d");
434
435 if ((mask & reg_type_masks[REG_TYPE_ZA])
436 && (seen & (reg_type_masks[REG_TYPE_ZAT]
437 | reg_type_masks[REG_TYPE_ZATHV])))
438 return N_("expected 'za' rather than a ZA tile at operand %d");
439
503fae12
RS
440 if ((mask & reg_type_masks[REG_TYPE_PN])
441 && (seen & reg_type_masks[REG_TYPE_P]))
442 return N_("expected a predicate-as-counter rather than predicate-as-mask"
443 " register at operand %d");
444
445 if ((mask & reg_type_masks[REG_TYPE_P])
446 && (seen & reg_type_masks[REG_TYPE_PN]))
447 return N_("expected a predicate-as-mask rather than predicate-as-counter"
448 " register at operand %d");
449
e426521e
RS
450 /* Integer, zero and stack registers. */
451 if (mask == reg_type_masks[REG_TYPE_R_64])
452 return N_("expected a 64-bit integer register at operand %d");
2f4e3a2c 453 if (mask == reg_type_masks[REG_TYPE_R_ZR])
e426521e
RS
454 return N_("expected an integer or zero register at operand %d");
455 if (mask == reg_type_masks[REG_TYPE_R_SP])
456 return N_("expected an integer or stack pointer register at operand %d");
457
458 /* Floating-point and SIMD registers. */
459 if (mask == reg_type_masks[REG_TYPE_BHSDQ])
460 return N_("expected a scalar SIMD or floating-point register"
461 " at operand %d");
2f4e3a2c 462 if (mask == reg_type_masks[REG_TYPE_V])
e426521e 463 return N_("expected an Advanced SIMD vector register at operand %d");
2f4e3a2c 464 if (mask == reg_type_masks[REG_TYPE_Z])
e426521e 465 return N_("expected an SVE vector register at operand %d");
503fae12
RS
466 if (mask == reg_type_masks[REG_TYPE_P]
467 || mask == (reg_type_masks[REG_TYPE_P] | reg_type_masks[REG_TYPE_PN]))
468 /* Use this error for "predicate-as-mask only" and "either kind of
469 predicate". We report a more specific error if P is used where
470 PN is expected, and vice versa, so the issue at this point is
471 "predicate-like" vs. "not predicate-like". */
e426521e 472 return N_("expected an SVE predicate register at operand %d");
99e01a66
RS
473 if (mask == reg_type_masks[REG_TYPE_PN])
474 return N_("expected an SVE predicate-as-counter register at operand %d");
e426521e
RS
475 if (mask == reg_type_masks[REG_TYPE_VZ])
476 return N_("expected a vector register at operand %d");
477 if (mask == reg_type_masks[REG_TYPE_ZP])
478 return N_("expected an SVE vector or predicate register at operand %d");
479 if (mask == reg_type_masks[REG_TYPE_VZP])
480 return N_("expected a vector or predicate register at operand %d");
481
cbd11b88 482 /* SME-related registers. */
e426521e
RS
483 if (mask == reg_type_masks[REG_TYPE_ZA])
484 return N_("expected a ZA array vector at operand %d");
cbd11b88
RS
485 if (mask == (reg_type_masks[REG_TYPE_ZA_ZAT] | reg_type_masks[REG_TYPE_ZT0]))
486 return N_("expected ZT0 or a ZA mask at operand %d");
e426521e
RS
487 if (mask == reg_type_masks[REG_TYPE_ZAT])
488 return N_("expected a ZA tile at operand %d");
489 if (mask == reg_type_masks[REG_TYPE_ZATHV])
490 return N_("expected a ZA tile slice at operand %d");
491
492 /* Integer and vector combos. */
2f4e3a2c 493 if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_V]))
e426521e
RS
494 return N_("expected an integer register or Advanced SIMD vector register"
495 " at operand %d");
2f4e3a2c 496 if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_Z]))
e426521e
RS
497 return N_("expected an integer register or SVE vector register"
498 " at operand %d");
2f4e3a2c 499 if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_VZ]))
e426521e 500 return N_("expected an integer or vector register at operand %d");
2f4e3a2c 501 if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_P]))
e426521e 502 return N_("expected an integer or predicate register at operand %d");
2f4e3a2c 503 if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_VZP]))
e426521e
RS
504 return N_("expected an integer, vector or predicate register"
505 " at operand %d");
506
507 /* SVE and SME combos. */
2f4e3a2c 508 if (mask == (reg_type_masks[REG_TYPE_Z] | reg_type_masks[REG_TYPE_ZATHV]))
e426521e
RS
509 return N_("expected an SVE vector register or ZA tile slice"
510 " at operand %d");
511
512 return NULL;
513}
514
515/* Record that we expected a register of type TYPE but didn't see one.
516 REG is the register that we actually saw, or null if we didn't see a
517 recognized register. FLAGS is SEF_IN_REGLIST if we are parsing the
518 contents of a register list, otherwise it is zero. */
519
520static inline void
521set_expected_reg_error (aarch64_reg_type type, const reg_entry *reg,
522 unsigned int flags)
a06ea964 523{
e426521e
RS
524 assert (flags == 0 || flags == SEF_IN_REGLIST);
525 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
526 if (flags & SEF_IN_REGLIST)
527 inst.parsing_error.data[1].i = reg_type_masks[type] | flags;
528 else
529 inst.parsing_error.data[0].i = reg_type_masks[type];
530 if (reg)
531 inst.parsing_error.data[2].i = reg_type_masks[reg->type];
532}
a06ea964 533
e426521e
RS
534/* Record that we expected a register list containing registers of type TYPE,
535 but didn't see the opening '{'. If we saw a register instead, REG is the
536 register that we saw, otherwise it is null. */
537
538static inline void
539set_expected_reglist_error (aarch64_reg_type type, const reg_entry *reg)
540{
541 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
542 inst.parsing_error.data[1].i = reg_type_masks[type];
543 if (reg)
544 inst.parsing_error.data[2].i = reg_type_masks[reg->type];
a06ea964
NC
545}
546
547/* Some well known registers that we refer to directly elsewhere. */
548#define REG_SP 31
c469c864 549#define REG_ZR 31
a06ea964
NC
550
551/* Instructions take 4 bytes in the object file. */
552#define INSN_SIZE 4
553
629310ab
ML
554static htab_t aarch64_ops_hsh;
555static htab_t aarch64_cond_hsh;
556static htab_t aarch64_shift_hsh;
557static htab_t aarch64_sys_regs_hsh;
558static htab_t aarch64_pstatefield_hsh;
559static htab_t aarch64_sys_regs_ic_hsh;
560static htab_t aarch64_sys_regs_dc_hsh;
561static htab_t aarch64_sys_regs_at_hsh;
562static htab_t aarch64_sys_regs_tlbi_hsh;
563static htab_t aarch64_sys_regs_sr_hsh;
564static htab_t aarch64_reg_hsh;
565static htab_t aarch64_barrier_opt_hsh;
566static htab_t aarch64_nzcv_hsh;
567static htab_t aarch64_pldop_hsh;
568static htab_t aarch64_hint_opt_hsh;
a06ea964
NC
569
570/* Stuff needed to resolve the label ambiguity
571 As:
572 ...
573 label: <insn>
574 may differ from:
575 ...
576 label:
577 <insn> */
578
579static symbolS *last_label_seen;
580
581/* Literal pool structure. Held on a per-section
582 and per-sub-section basis. */
583
584#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
585typedef struct literal_expression
586{
587 expressionS exp;
588 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
589 LITTLENUM_TYPE * bignum;
590} literal_expression;
591
a06ea964
NC
592typedef struct literal_pool
593{
55d9b4c1 594 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
595 unsigned int next_free_entry;
596 unsigned int id;
597 symbolS *symbol;
598 segT section;
599 subsegT sub_section;
600 int size;
601 struct literal_pool *next;
602} literal_pool;
603
604/* Pointer to a linked list of literal pools. */
605static literal_pool *list_of_pools = NULL;
606\f
607/* Pure syntax. */
608
609/* This array holds the chars that always start a comment. If the
610 pre-processor is disabled, these aren't very useful. */
611const char comment_chars[] = "";
612
613/* This array holds the chars that only start a comment at the beginning of
614 a line. If the line seems to have the form '# 123 filename'
615 .line and .file directives will appear in the pre-processed output. */
616/* Note that input_file.c hand checks for '#' at the beginning of the
617 first line of the input file. This is because the compiler outputs
618 #NO_APP at the beginning of its output. */
619/* Also note that comments like this one will always work. */
620const char line_comment_chars[] = "#";
621
622const char line_separator_chars[] = ";";
623
624/* Chars that can be used to separate mant
625 from exp in floating point numbers. */
626const char EXP_CHARS[] = "eE";
627
628/* Chars that mean this number is a floating point constant. */
629/* As in 0f12.456 */
630/* or 0d1.2345e12 */
631
7727283e 632const char FLT_CHARS[] = "rRsSfFdDxXeEpPhHb";
a06ea964
NC
633
634/* Prefix character that indicates the start of an immediate value. */
635#define is_immediate_prefix(C) ((C) == '#')
636
637/* Separator character handling. */
638
639#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
640
5b7c81bd 641static inline bool
a06ea964
NC
642skip_past_char (char **str, char c)
643{
644 if (**str == c)
645 {
646 (*str)++;
5b7c81bd 647 return true;
a06ea964
NC
648 }
649 else
5b7c81bd 650 return false;
a06ea964
NC
651}
652
653#define skip_past_comma(str) skip_past_char (str, ',')
654
655/* Arithmetic expressions (possibly involving symbols). */
656
eac4eb8e 657static bool in_aarch64_get_expression = false;
a06ea964 658
eac4eb8e
NC
659/* Third argument to aarch64_get_expression. */
660#define GE_NO_PREFIX false
661#define GE_OPT_PREFIX true
662
663/* Fourth argument to aarch64_get_expression. */
664#define ALLOW_ABSENT false
665#define REJECT_ABSENT true
666
a06ea964
NC
667/* Return TRUE if the string pointed by *STR is successfully parsed
668 as an valid expression; *EP will be filled with the information of
eac4eb8e
NC
669 such an expression. Otherwise return FALSE.
670
671 If ALLOW_IMMEDIATE_PREFIX is true then skip a '#' at the start.
c1723a81 672 If REJECT_ABSENT is true then trat missing expressions as an error. */
a06ea964 673
5b7c81bd 674static bool
eac4eb8e
NC
675aarch64_get_expression (expressionS * ep,
676 char ** str,
677 bool allow_immediate_prefix,
c1723a81 678 bool reject_absent)
a06ea964
NC
679{
680 char *save_in;
681 segT seg;
eac4eb8e 682 bool prefix_present = false;
a06ea964 683
eac4eb8e 684 if (allow_immediate_prefix)
a06ea964 685 {
a06ea964
NC
686 if (is_immediate_prefix (**str))
687 {
688 (*str)++;
eac4eb8e 689 prefix_present = true;
a06ea964 690 }
a06ea964
NC
691 }
692
693 memset (ep, 0, sizeof (expressionS));
694
695 save_in = input_line_pointer;
696 input_line_pointer = *str;
eac4eb8e 697 in_aarch64_get_expression = true;
c1723a81 698 seg = expression (ep);
eac4eb8e 699 in_aarch64_get_expression = false;
a06ea964
NC
700
701 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
702 {
703 /* We found a bad expression in md_operand(). */
704 *str = input_line_pointer;
705 input_line_pointer = save_in;
eac4eb8e 706 if (prefix_present && ! error_p ())
a06ea964
NC
707 set_fatal_syntax_error (_("bad expression"));
708 else
709 set_first_syntax_error (_("bad expression"));
5b7c81bd 710 return false;
a06ea964
NC
711 }
712
713#ifdef OBJ_AOUT
714 if (seg != absolute_section
715 && seg != text_section
716 && seg != data_section
eac4eb8e
NC
717 && seg != bss_section
718 && seg != undefined_section)
a06ea964
NC
719 {
720 set_syntax_error (_("bad segment"));
721 *str = input_line_pointer;
722 input_line_pointer = save_in;
5b7c81bd 723 return false;
a06ea964
NC
724 }
725#else
726 (void) seg;
727#endif
728
a06ea964
NC
729 *str = input_line_pointer;
730 input_line_pointer = save_in;
5b7c81bd 731 return true;
a06ea964
NC
732}
733
734/* Turn a string in input_line_pointer into a floating point constant
735 of type TYPE, and store the appropriate bytes in *LITP. The number
736 of LITTLENUMS emitted is stored in *SIZEP. An error message is
737 returned, or NULL on OK. */
738
6d4af3c2 739const char *
a06ea964
NC
740md_atof (int type, char *litP, int *sizeP)
741{
742 return ieee_md_atof (type, litP, sizeP, target_big_endian);
743}
744
745/* We handle all bad expressions here, so that we can report the faulty
746 instruction in the error message. */
747void
748md_operand (expressionS * exp)
749{
eac4eb8e 750 if (in_aarch64_get_expression)
a06ea964
NC
751 exp->X_op = O_illegal;
752}
753
754/* Immediate values. */
755
756/* Errors may be set multiple times during parsing or bit encoding
757 (particularly in the Neon bits), but usually the earliest error which is set
758 will be the most meaningful. Avoid overwriting it with later (cascading)
759 errors by calling this function. */
760
761static void
762first_error (const char *error)
763{
764 if (! error_p ())
765 set_syntax_error (error);
766}
767
2b0f3761 768/* Similar to first_error, but this function accepts formatted error
a06ea964
NC
769 message. */
770static void
771first_error_fmt (const char *format, ...)
772{
773 va_list args;
774 enum
775 { size = 100 };
776 /* N.B. this single buffer will not cause error messages for different
777 instructions to pollute each other; this is because at the end of
778 processing of each assembly line, error message if any will be
779 collected by as_bad. */
780 static char buffer[size];
781
782 if (! error_p ())
783 {
3e0baa28 784 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
785 va_start (args, format);
786 ret = vsnprintf (buffer, size, format, args);
787 know (ret <= size - 1 && ret >= 0);
788 va_end (args);
789 set_syntax_error (buffer);
790 }
791}
792
363c5c8b
RS
793/* Internal helper routine converting a vector_type_el structure *VECTYPE
794 to a corresponding operand qualifier. */
795
796static inline aarch64_opnd_qualifier_t
797vectype_to_qualifier (const struct vector_type_el *vectype)
798{
799 /* Element size in bytes indexed by vector_el_type. */
800 const unsigned char ele_size[5]
801 = {1, 2, 4, 8, 16};
802 const unsigned int ele_base [5] =
803 {
804 AARCH64_OPND_QLF_V_4B,
805 AARCH64_OPND_QLF_V_2H,
806 AARCH64_OPND_QLF_V_2S,
807 AARCH64_OPND_QLF_V_1D,
808 AARCH64_OPND_QLF_V_1Q
809 };
810
811 if (!vectype->defined || vectype->type == NT_invtype)
812 goto vectype_conversion_fail;
813
814 if (vectype->type == NT_zero)
815 return AARCH64_OPND_QLF_P_Z;
816 if (vectype->type == NT_merge)
817 return AARCH64_OPND_QLF_P_M;
818
819 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
820
821 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
822 {
823 /* Special case S_4B. */
824 if (vectype->type == NT_b && vectype->width == 4)
825 return AARCH64_OPND_QLF_S_4B;
826
827 /* Special case S_2H. */
828 if (vectype->type == NT_h && vectype->width == 2)
829 return AARCH64_OPND_QLF_S_2H;
830
831 /* Vector element register. */
832 return AARCH64_OPND_QLF_S_B + vectype->type;
833 }
834 else
835 {
836 /* Vector register. */
837 int reg_size = ele_size[vectype->type] * vectype->width;
838 unsigned offset;
839 unsigned shift;
840 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
841 goto vectype_conversion_fail;
842
843 /* The conversion is by calculating the offset from the base operand
844 qualifier for the vector type. The operand qualifiers are regular
845 enough that the offset can established by shifting the vector width by
846 a vector-type dependent amount. */
847 shift = 0;
848 if (vectype->type == NT_b)
849 shift = 3;
850 else if (vectype->type == NT_h || vectype->type == NT_s)
851 shift = 2;
852 else if (vectype->type >= NT_d)
853 shift = 1;
854 else
855 gas_assert (0);
856
857 offset = ele_base [vectype->type] + (vectype->width >> shift);
858 gas_assert (AARCH64_OPND_QLF_V_4B <= offset
859 && offset <= AARCH64_OPND_QLF_V_1Q);
860 return offset;
861 }
862
863 vectype_conversion_fail:
864 first_error (_("bad vector arrangement type"));
865 return AARCH64_OPND_QLF_NIL;
866}
867
a06ea964
NC
868/* Register parsing. */
869
870/* Generic register parser which is called by other specialized
871 register parsers.
872 CCP points to what should be the beginning of a register name.
873 If it is indeed a valid register name, advance CCP over it and
874 return the reg_entry structure; otherwise return NULL.
875 It does not issue diagnostics. */
876
877static reg_entry *
878parse_reg (char **ccp)
879{
880 char *start = *ccp;
881 char *p;
882 reg_entry *reg;
883
884#ifdef REGISTER_PREFIX
885 if (*start != REGISTER_PREFIX)
886 return NULL;
887 start++;
888#endif
889
890 p = start;
891 if (!ISALPHA (*p) || !is_name_beginner (*p))
892 return NULL;
893
894 do
895 p++;
896 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
897
629310ab 898 reg = (reg_entry *) str_hash_find_n (aarch64_reg_hsh, start, p - start);
a06ea964
NC
899
900 if (!reg)
901 return NULL;
902
903 *ccp = p;
904 return reg;
905}
906
30ba1d7e
RS
907/* Return the operand qualifier associated with all uses of REG, or
908 AARCH64_OPND_QLF_NIL if none. AARCH64_OPND_QLF_NIL means either
909 that qualifiers don't apply to REG or that qualifiers are added
910 using suffixes. */
911
912static aarch64_opnd_qualifier_t
913inherent_reg_qualifier (const reg_entry *reg)
914{
915 switch (reg->type)
916 {
917 case REG_TYPE_R_32:
918 case REG_TYPE_SP_32:
2f4e3a2c 919 case REG_TYPE_ZR_32:
30ba1d7e
RS
920 return AARCH64_OPND_QLF_W;
921
922 case REG_TYPE_R_64:
923 case REG_TYPE_SP_64:
2f4e3a2c 924 case REG_TYPE_ZR_64:
30ba1d7e
RS
925 return AARCH64_OPND_QLF_X;
926
927 case REG_TYPE_FP_B:
928 case REG_TYPE_FP_H:
929 case REG_TYPE_FP_S:
930 case REG_TYPE_FP_D:
931 case REG_TYPE_FP_Q:
932 return AARCH64_OPND_QLF_S_B + (reg->type - REG_TYPE_FP_B);
933
934 default:
935 return AARCH64_OPND_QLF_NIL;
936 }
937}
938
a06ea964
NC
939/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
940 return FALSE. */
5b7c81bd 941static bool
a06ea964
NC
942aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
943{
e1b988bb 944 return (reg_type_masks[type] & (1 << reg->type)) != 0;
a06ea964
NC
945}
946
4df068de
RS
947/* Try to parse a base or offset register. Allow SVE base and offset
948 registers if REG_TYPE includes SVE registers. Return the register
949 entry on success, setting *QUALIFIER to the register qualifier.
950 Return null otherwise.
e1b988bb 951
a06ea964
NC
952 Note that this function does not issue any diagnostics. */
953
e1b988bb 954static const reg_entry *
4df068de
RS
955aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
956 aarch64_opnd_qualifier_t *qualifier)
a06ea964
NC
957{
958 char *str = *ccp;
959 const reg_entry *reg = parse_reg (&str);
960
961 if (reg == NULL)
e1b988bb 962 return NULL;
a06ea964
NC
963
964 switch (reg->type)
965 {
2f4e3a2c
RS
966 case REG_TYPE_Z:
967 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_Z)) == 0
4df068de
RS
968 || str[0] != '.')
969 return NULL;
970 switch (TOLOWER (str[1]))
971 {
972 case 's':
973 *qualifier = AARCH64_OPND_QLF_S_S;
974 break;
975 case 'd':
976 *qualifier = AARCH64_OPND_QLF_S_D;
977 break;
978 default:
979 return NULL;
980 }
981 str += 2;
982 break;
983
a06ea964 984 default:
2f4e3a2c 985 if (!aarch64_check_reg_type (reg, REG_TYPE_R_ZR_SP))
30ba1d7e
RS
986 return NULL;
987 *qualifier = inherent_reg_qualifier (reg);
988 break;
a06ea964
NC
989 }
990
991 *ccp = str;
992
e1b988bb 993 return reg;
a06ea964
NC
994}
995
4df068de
RS
996/* Try to parse a base or offset register. Return the register entry
997 on success, setting *QUALIFIER to the register qualifier. Return null
998 otherwise.
999
1000 Note that this function does not issue any diagnostics. */
1001
1002static const reg_entry *
1003aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
1004{
2f4e3a2c 1005 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_ZR_SP, qualifier);
4df068de
RS
1006}
1007
f11ad6bc
RS
1008/* Parse the qualifier of a vector register or vector element of type
1009 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
1010 succeeds; otherwise return FALSE.
a06ea964
NC
1011
1012 Accept only one occurrence of:
65a55fbb 1013 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964 1014 b h s d q */
5b7c81bd 1015static bool
f11ad6bc
RS
1016parse_vector_type_for_operand (aarch64_reg_type reg_type,
1017 struct vector_type_el *parsed_type, char **str)
a06ea964
NC
1018{
1019 char *ptr = *str;
1020 unsigned width;
1021 unsigned element_size;
f06935a5 1022 enum vector_el_type type;
a06ea964
NC
1023
1024 /* skip '.' */
d50c751e 1025 gas_assert (*ptr == '.');
a06ea964
NC
1026 ptr++;
1027
2f4e3a2c 1028 if (reg_type != REG_TYPE_V || !ISDIGIT (*ptr))
a06ea964
NC
1029 {
1030 width = 0;
1031 goto elt_size;
1032 }
1033 width = strtoul (ptr, &ptr, 10);
1034 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
1035 {
1036 first_error_fmt (_("bad size %d in vector width specifier"), width);
5b7c81bd 1037 return false;
a06ea964
NC
1038 }
1039
dc1e8a47 1040 elt_size:
a06ea964
NC
1041 switch (TOLOWER (*ptr))
1042 {
1043 case 'b':
1044 type = NT_b;
1045 element_size = 8;
1046 break;
1047 case 'h':
1048 type = NT_h;
1049 element_size = 16;
1050 break;
1051 case 's':
1052 type = NT_s;
1053 element_size = 32;
1054 break;
1055 case 'd':
1056 type = NT_d;
1057 element_size = 64;
1058 break;
1059 case 'q':
2f4e3a2c 1060 if (reg_type != REG_TYPE_V || width == 1)
a06ea964
NC
1061 {
1062 type = NT_q;
1063 element_size = 128;
1064 break;
1065 }
1066 /* fall through. */
1067 default:
1068 if (*ptr != '\0')
1069 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
1070 else
1071 first_error (_("missing element size"));
5b7c81bd 1072 return false;
a06ea964 1073 }
65a55fbb
TC
1074 if (width != 0 && width * element_size != 64
1075 && width * element_size != 128
1076 && !(width == 2 && element_size == 16)
1077 && !(width == 4 && element_size == 8))
a06ea964
NC
1078 {
1079 first_error_fmt (_
1080 ("invalid element size %d and vector size combination %c"),
1081 width, *ptr);
5b7c81bd 1082 return false;
a06ea964
NC
1083 }
1084 ptr++;
1085
1086 parsed_type->type = type;
1087 parsed_type->width = width;
8cde0b98 1088 parsed_type->element_size = element_size;
a06ea964
NC
1089
1090 *str = ptr;
1091
5b7c81bd 1092 return true;
a06ea964
NC
1093}
1094
d50c751e
RS
1095/* *STR contains an SVE zero/merge predication suffix. Parse it into
1096 *PARSED_TYPE and point *STR at the end of the suffix. */
1097
5b7c81bd 1098static bool
d50c751e
RS
1099parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
1100{
1101 char *ptr = *str;
1102
1103 /* Skip '/'. */
1104 gas_assert (*ptr == '/');
1105 ptr++;
1106 switch (TOLOWER (*ptr))
1107 {
1108 case 'z':
1109 parsed_type->type = NT_zero;
1110 break;
1111 case 'm':
1112 parsed_type->type = NT_merge;
1113 break;
1114 default:
1115 if (*ptr != '\0' && *ptr != ',')
1116 first_error_fmt (_("unexpected character `%c' in predication type"),
1117 *ptr);
1118 else
1119 first_error (_("missing predication type"));
5b7c81bd 1120 return false;
d50c751e
RS
1121 }
1122 parsed_type->width = 0;
1123 *str = ptr + 1;
5b7c81bd 1124 return true;
d50c751e
RS
1125}
1126
c211f268
RS
1127/* Return true if CH is a valid suffix character for registers of
1128 type TYPE. */
1129
1130static bool
1131aarch64_valid_suffix_char_p (aarch64_reg_type type, char ch)
1132{
1133 switch (type)
1134 {
2f4e3a2c
RS
1135 case REG_TYPE_V:
1136 case REG_TYPE_Z:
e9e1ddbb 1137 case REG_TYPE_ZA:
c211f268
RS
1138 case REG_TYPE_ZAT:
1139 case REG_TYPE_ZATH:
1140 case REG_TYPE_ZATV:
1141 return ch == '.';
1142
2f4e3a2c 1143 case REG_TYPE_P:
503fae12 1144 case REG_TYPE_PN:
c211f268
RS
1145 return ch == '.' || ch == '/';
1146
1147 default:
1148 return false;
1149 }
1150}
1151
61dac77e
RS
1152/* Parse an index expression at *STR, storing it in *IMM on success. */
1153
1154static bool
1155parse_index_expression (char **str, int64_t *imm)
1156{
1157 expressionS exp;
1158
1159 aarch64_get_expression (&exp, str, GE_NO_PREFIX, REJECT_ABSENT);
1160 if (exp.X_op != O_constant)
1161 {
1162 first_error (_("constant expression required"));
1163 return false;
1164 }
1165 *imm = exp.X_add_number;
1166 return true;
1167}
1168
a06ea964
NC
1169/* Parse a register of the type TYPE.
1170
074c89d2 1171 Return null if the string pointed to by *CCP is not a valid register
a06ea964
NC
1172 name or the parsed register is not of TYPE.
1173
074c89d2
RS
1174 Otherwise return the register, and optionally return the register
1175 shape and element index information in *TYPEINFO.
a06ea964 1176
c211f268
RS
1177 FLAGS includes PTR_IN_REGLIST if the caller is parsing a register list.
1178
1179 FLAGS includes PTR_FULL_REG if the function should ignore any potential
405f0c41
RS
1180 register index.
1181
1182 FLAGS includes PTR_GOOD_MATCH if we are sufficiently far into parsing
1183 an operand that we can be confident that it is a good match. */
a06ea964 1184
074c89d2 1185#define PTR_IN_REGLIST (1U << 0)
c211f268 1186#define PTR_FULL_REG (1U << 1)
405f0c41 1187#define PTR_GOOD_MATCH (1U << 2)
074c89d2
RS
1188
1189static const reg_entry *
1190parse_typed_reg (char **ccp, aarch64_reg_type type,
1191 struct vector_type_el *typeinfo, unsigned int flags)
a06ea964
NC
1192{
1193 char *str = *ccp;
4f53c99c 1194 bool is_alpha = ISALPHA (*str);
a06ea964 1195 const reg_entry *reg = parse_reg (&str);
8f9a77af
RS
1196 struct vector_type_el atype;
1197 struct vector_type_el parsetype;
5b7c81bd 1198 bool is_typed_vecreg = false;
e426521e 1199 unsigned int err_flags = (flags & PTR_IN_REGLIST) ? SEF_IN_REGLIST : 0;
a06ea964
NC
1200
1201 atype.defined = 0;
1202 atype.type = NT_invtype;
1203 atype.width = -1;
8cde0b98 1204 atype.element_size = 0;
a06ea964
NC
1205 atype.index = 0;
1206
1207 if (reg == NULL)
1208 {
1209 if (typeinfo)
1210 *typeinfo = atype;
4f53c99c 1211 if (!is_alpha && (flags & PTR_IN_REGLIST))
b9ca3896 1212 set_fatal_syntax_error (_("syntax error in register list"));
405f0c41
RS
1213 else if (flags & PTR_GOOD_MATCH)
1214 set_fatal_syntax_error (NULL);
b9ca3896 1215 else
e426521e 1216 set_expected_reg_error (type, reg, err_flags);
074c89d2 1217 return NULL;
a06ea964
NC
1218 }
1219
1220 if (! aarch64_check_reg_type (reg, type))
1221 {
1222 DEBUG_TRACE ("reg type check failed");
405f0c41
RS
1223 if (flags & PTR_GOOD_MATCH)
1224 set_fatal_syntax_error (NULL);
1225 else
e426521e 1226 set_expected_reg_error (type, reg, err_flags);
074c89d2 1227 return NULL;
a06ea964
NC
1228 }
1229 type = reg->type;
1230
c211f268 1231 if (aarch64_valid_suffix_char_p (reg->type, *str))
a06ea964 1232 {
d50c751e
RS
1233 if (*str == '.')
1234 {
1235 if (!parse_vector_type_for_operand (type, &parsetype, &str))
074c89d2 1236 return NULL;
8cde0b98
RS
1237 if ((reg->type == REG_TYPE_ZAT
1238 || reg->type == REG_TYPE_ZATH
1239 || reg->type == REG_TYPE_ZATV)
4f53c99c 1240 && reg->number * 8U >= parsetype.element_size)
8cde0b98
RS
1241 {
1242 set_syntax_error (_("ZA tile number out of range"));
1243 return NULL;
1244 }
d50c751e
RS
1245 }
1246 else
1247 {
1248 if (!parse_predication_for_operand (&parsetype, &str))
074c89d2 1249 return NULL;
d50c751e 1250 }
a235d3ae 1251
a06ea964 1252 /* Register if of the form Vn.[bhsdq]. */
5b7c81bd 1253 is_typed_vecreg = true;
a06ea964 1254
2f4e3a2c 1255 if (type != REG_TYPE_V)
f11ad6bc
RS
1256 {
1257 /* The width is always variable; we don't allow an integer width
1258 to be specified. */
1259 gas_assert (parsetype.width == 0);
1260 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
1261 }
1262 else if (parsetype.width == 0)
a06ea964
NC
1263 /* Expect index. In the new scheme we cannot have
1264 Vn.[bhsdq] represent a scalar. Therefore any
1265 Vn.[bhsdq] should have an index following it.
33eaf5de 1266 Except in reglists of course. */
a06ea964
NC
1267 atype.defined |= NTA_HASINDEX;
1268 else
1269 atype.defined |= NTA_HASTYPE;
1270
1271 atype.type = parsetype.type;
1272 atype.width = parsetype.width;
1273 }
1274
c211f268 1275 if (!(flags & PTR_FULL_REG) && skip_past_char (&str, '['))
a06ea964 1276 {
a06ea964 1277 /* Reject Sn[index] syntax. */
cbd11b88
RS
1278 if (reg->type != REG_TYPE_Z
1279 && reg->type != REG_TYPE_PN
1280 && reg->type != REG_TYPE_ZT0
1281 && !is_typed_vecreg)
a06ea964
NC
1282 {
1283 first_error (_("this type of register can't be indexed"));
074c89d2 1284 return NULL;
a06ea964
NC
1285 }
1286
074c89d2 1287 if (flags & PTR_IN_REGLIST)
a06ea964
NC
1288 {
1289 first_error (_("index not allowed inside register list"));
074c89d2 1290 return NULL;
a06ea964
NC
1291 }
1292
1293 atype.defined |= NTA_HASINDEX;
1294
61dac77e
RS
1295 if (!parse_index_expression (&str, &atype.index))
1296 return NULL;
a06ea964
NC
1297
1298 if (! skip_past_char (&str, ']'))
074c89d2 1299 return NULL;
a06ea964 1300 }
074c89d2 1301 else if (!(flags & PTR_IN_REGLIST) && (atype.defined & NTA_HASINDEX) != 0)
a06ea964
NC
1302 {
1303 /* Indexed vector register expected. */
1304 first_error (_("indexed vector register expected"));
074c89d2 1305 return NULL;
a06ea964
NC
1306 }
1307
1308 /* A vector reg Vn should be typed or indexed. */
2f4e3a2c 1309 if (type == REG_TYPE_V && atype.defined == 0)
a06ea964
NC
1310 {
1311 first_error (_("invalid use of vector register"));
1312 }
1313
1314 if (typeinfo)
1315 *typeinfo = atype;
1316
a06ea964
NC
1317 *ccp = str;
1318
074c89d2 1319 return reg;
a06ea964
NC
1320}
1321
1322/* Parse register.
1323
074c89d2 1324 Return the register on success; return null otherwise.
a06ea964
NC
1325
1326 If this is a NEON vector register with additional type information, fill
1327 in the struct pointed to by VECTYPE (if non-NULL).
1328
074c89d2 1329 This parser does not handle register lists. */
a06ea964 1330
074c89d2 1331static const reg_entry *
a06ea964 1332aarch64_reg_parse (char **ccp, aarch64_reg_type type,
074c89d2 1333 struct vector_type_el *vectype)
a06ea964 1334{
074c89d2 1335 return parse_typed_reg (ccp, type, vectype, 0);
a06ea964
NC
1336}
1337
5b7c81bd 1338static inline bool
8f9a77af 1339eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
a06ea964 1340{
8cde0b98
RS
1341 return (e1.type == e2.type
1342 && e1.defined == e2.defined
1343 && e1.width == e2.width
1344 && e1.element_size == e2.element_size
1345 && e1.index == e2.index);
a06ea964
NC
1346}
1347
99e01a66
RS
1348/* Return the register number mask for registers of type REG_TYPE. */
1349
1350static inline int
1351reg_type_mask (aarch64_reg_type reg_type)
1352{
1353 return reg_type == REG_TYPE_P ? 15 : 31;
1354}
1355
10d76650
RS
1356/* This function parses a list of vector registers of type TYPE.
1357 On success, it returns the parsed register list information in the
1358 following encoded format:
a06ea964
NC
1359
1360 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1361 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1362
1363 The information of the register shape and/or index is returned in
1364 *VECTYPE.
1365
1366 It returns PARSE_FAIL if the register list is invalid.
1367
1368 The list contains one to four registers.
1369 Each register can be one of:
1370 <Vt>.<T>[<index>]
1371 <Vt>.<T>
1372 All <T> should be identical.
1373 All <index> should be identical.
1374 There are restrictions on <Vt> numbers which are checked later
1375 (by reg_list_valid_p). */
1376
1377static int
10d76650
RS
1378parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1379 struct vector_type_el *vectype)
a06ea964
NC
1380{
1381 char *str = *ccp;
1382 int nb_regs;
8f9a77af 1383 struct vector_type_el typeinfo, typeinfo_first;
f679aaa4 1384 uint32_t val, val_range, mask;
a06ea964
NC
1385 int in_range;
1386 int ret_val;
5b7c81bd
AM
1387 bool error = false;
1388 bool expect_index = false;
405f0c41 1389 unsigned int ptr_flags = PTR_IN_REGLIST;
a06ea964
NC
1390
1391 if (*str != '{')
1392 {
e426521e 1393 set_expected_reglist_error (type, parse_reg (&str));
a06ea964
NC
1394 return PARSE_FAIL;
1395 }
1396 str++;
1397
1398 nb_regs = 0;
1399 typeinfo_first.defined = 0;
1400 typeinfo_first.type = NT_invtype;
1401 typeinfo_first.width = -1;
8cde0b98 1402 typeinfo_first.element_size = 0;
a06ea964
NC
1403 typeinfo_first.index = 0;
1404 ret_val = 0;
f679aaa4
AM
1405 val = -1u;
1406 val_range = -1u;
a06ea964 1407 in_range = 0;
99e01a66 1408 mask = reg_type_mask (type);
a06ea964
NC
1409 do
1410 {
1411 if (in_range)
1412 {
1413 str++; /* skip over '-' */
1414 val_range = val;
1415 }
074c89d2 1416 const reg_entry *reg = parse_typed_reg (&str, type, &typeinfo,
405f0c41 1417 ptr_flags);
074c89d2 1418 if (!reg)
a06ea964
NC
1419 {
1420 set_first_syntax_error (_("invalid vector register in list"));
5b7c81bd 1421 error = true;
a06ea964
NC
1422 continue;
1423 }
074c89d2 1424 val = reg->number;
a06ea964 1425 /* reject [bhsd]n */
2f4e3a2c 1426 if (type == REG_TYPE_V && typeinfo.defined == 0)
a06ea964
NC
1427 {
1428 set_first_syntax_error (_("invalid scalar register in list"));
5b7c81bd 1429 error = true;
a06ea964
NC
1430 continue;
1431 }
1432
1433 if (typeinfo.defined & NTA_HASINDEX)
5b7c81bd 1434 expect_index = true;
a06ea964
NC
1435
1436 if (in_range)
1437 {
4eede8c2 1438 if (val == val_range)
a06ea964
NC
1439 {
1440 set_first_syntax_error
1441 (_("invalid range in vector register list"));
5b7c81bd 1442 error = true;
a06ea964 1443 }
99e01a66 1444 val_range = (val_range + 1) & mask;
a06ea964
NC
1445 }
1446 else
1447 {
1448 val_range = val;
1449 if (nb_regs == 0)
1450 typeinfo_first = typeinfo;
8f9a77af 1451 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
a06ea964
NC
1452 {
1453 set_first_syntax_error
1454 (_("type mismatch in vector register list"));
5b7c81bd 1455 error = true;
a06ea964
NC
1456 }
1457 }
1458 if (! error)
4eede8c2 1459 for (;;)
a06ea964 1460 {
f679aaa4 1461 ret_val |= val_range << ((5 * nb_regs) & 31);
a06ea964 1462 nb_regs++;
4eede8c2
RS
1463 if (val_range == val)
1464 break;
99e01a66 1465 val_range = (val_range + 1) & mask;
a06ea964
NC
1466 }
1467 in_range = 0;
405f0c41 1468 ptr_flags |= PTR_GOOD_MATCH;
a06ea964
NC
1469 }
1470 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1471
1472 skip_whitespace (str);
1473 if (*str != '}')
1474 {
1475 set_first_syntax_error (_("end of vector register list not found"));
5b7c81bd 1476 error = true;
a06ea964
NC
1477 }
1478 str++;
1479
1480 skip_whitespace (str);
1481
1482 if (expect_index)
1483 {
1484 if (skip_past_char (&str, '['))
1485 {
61dac77e
RS
1486 if (!parse_index_expression (&str, &typeinfo_first.index))
1487 error = true;
a06ea964 1488 if (! skip_past_char (&str, ']'))
5b7c81bd 1489 error = true;
a06ea964
NC
1490 }
1491 else
1492 {
1493 set_first_syntax_error (_("expected index"));
5b7c81bd 1494 error = true;
a06ea964
NC
1495 }
1496 }
1497
1498 if (nb_regs > 4)
1499 {
1500 set_first_syntax_error (_("too many registers in vector register list"));
5b7c81bd 1501 error = true;
a06ea964
NC
1502 }
1503 else if (nb_regs == 0)
1504 {
1505 set_first_syntax_error (_("empty vector register list"));
5b7c81bd 1506 error = true;
a06ea964
NC
1507 }
1508
1509 *ccp = str;
1510 if (! error)
1511 *vectype = typeinfo_first;
1512
1513 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1514}
1515
1516/* Directives: register aliases. */
1517
1518static reg_entry *
1519insert_reg_alias (char *str, int number, aarch64_reg_type type)
1520{
1521 reg_entry *new;
1522 const char *name;
1523
629310ab 1524 if ((new = str_hash_find (aarch64_reg_hsh, str)) != 0)
a06ea964
NC
1525 {
1526 if (new->builtin)
1527 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1528 str);
1529
1530 /* Only warn about a redefinition if it's not defined as the
1531 same register. */
1532 else if (new->number != number || new->type != type)
1533 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1534
1535 return NULL;
1536 }
1537
1538 name = xstrdup (str);
add39d23 1539 new = XNEW (reg_entry);
a06ea964
NC
1540
1541 new->name = name;
1542 new->number = number;
1543 new->type = type;
5b7c81bd 1544 new->builtin = false;
a06ea964 1545
fe0e921f 1546 str_hash_insert (aarch64_reg_hsh, name, new, 0);
a06ea964
NC
1547
1548 return new;
1549}
1550
1551/* Look for the .req directive. This is of the form:
1552
1553 new_register_name .req existing_register_name
1554
1555 If we find one, or if it looks sufficiently like one that we want to
1556 handle any error here, return TRUE. Otherwise return FALSE. */
1557
5b7c81bd 1558static bool
a06ea964
NC
1559create_register_alias (char *newname, char *p)
1560{
1561 const reg_entry *old;
1562 char *oldname, *nbuf;
1563 size_t nlen;
1564
1565 /* The input scrubber ensures that whitespace after the mnemonic is
1566 collapsed to single spaces. */
1567 oldname = p;
d34049e8 1568 if (!startswith (oldname, " .req "))
5b7c81bd 1569 return false;
a06ea964
NC
1570
1571 oldname += 6;
1572 if (*oldname == '\0')
5b7c81bd 1573 return false;
a06ea964 1574
629310ab 1575 old = str_hash_find (aarch64_reg_hsh, oldname);
a06ea964
NC
1576 if (!old)
1577 {
1578 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
5b7c81bd 1579 return true;
a06ea964
NC
1580 }
1581
1582 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1583 the desired alias name, and p points to its end. If not, then
1584 the desired alias name is in the global original_case_string. */
1585#ifdef TC_CASE_SENSITIVE
1586 nlen = p - newname;
1587#else
1588 newname = original_case_string;
1589 nlen = strlen (newname);
1590#endif
1591
29a2809e 1592 nbuf = xmemdup0 (newname, nlen);
a06ea964
NC
1593
1594 /* Create aliases under the new name as stated; an all-lowercase
1595 version of the new name; and an all-uppercase version of the new
1596 name. */
1597 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1598 {
1599 for (p = nbuf; *p; p++)
1600 *p = TOUPPER (*p);
1601
1602 if (strncmp (nbuf, newname, nlen))
1603 {
1604 /* If this attempt to create an additional alias fails, do not bother
1605 trying to create the all-lower case alias. We will fail and issue
1606 a second, duplicate error message. This situation arises when the
1607 programmer does something like:
1608 foo .req r0
1609 Foo .req r1
1610 The second .req creates the "Foo" alias but then fails to create
1611 the artificial FOO alias because it has already been created by the
1612 first .req. */
1613 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
1614 {
1615 free (nbuf);
5b7c81bd 1616 return true;
e1fa0163 1617 }
a06ea964
NC
1618 }
1619
1620 for (p = nbuf; *p; p++)
1621 *p = TOLOWER (*p);
1622
1623 if (strncmp (nbuf, newname, nlen))
1624 insert_reg_alias (nbuf, old->number, old->type);
1625 }
1626
e1fa0163 1627 free (nbuf);
5b7c81bd 1628 return true;
a06ea964
NC
1629}
1630
1631/* Should never be called, as .req goes between the alias and the
1632 register name, not at the beginning of the line. */
1633static void
1634s_req (int a ATTRIBUTE_UNUSED)
1635{
1636 as_bad (_("invalid syntax for .req directive"));
1637}
1638
1639/* The .unreq directive deletes an alias which was previously defined
1640 by .req. For example:
1641
1642 my_alias .req r11
1643 .unreq my_alias */
1644
1645static void
1646s_unreq (int a ATTRIBUTE_UNUSED)
1647{
1648 char *name;
1649 char saved_char;
1650
1651 name = input_line_pointer;
e8f20526 1652 input_line_pointer = find_end_of_line (input_line_pointer, flag_m68k_mri);
a06ea964
NC
1653 saved_char = *input_line_pointer;
1654 *input_line_pointer = 0;
1655
1656 if (!*name)
1657 as_bad (_("invalid syntax for .unreq directive"));
1658 else
1659 {
629310ab 1660 reg_entry *reg = str_hash_find (aarch64_reg_hsh, name);
a06ea964
NC
1661
1662 if (!reg)
1663 as_bad (_("unknown register alias '%s'"), name);
1664 else if (reg->builtin)
1665 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1666 name);
1667 else
1668 {
1669 char *p;
1670 char *nbuf;
1671
629310ab 1672 str_hash_delete (aarch64_reg_hsh, name);
a06ea964
NC
1673 free ((char *) reg->name);
1674 free (reg);
1675
1676 /* Also locate the all upper case and all lower case versions.
1677 Do not complain if we cannot find one or the other as it
1678 was probably deleted above. */
1679
1680 nbuf = strdup (name);
1681 for (p = nbuf; *p; p++)
1682 *p = TOUPPER (*p);
629310ab 1683 reg = str_hash_find (aarch64_reg_hsh, nbuf);
a06ea964
NC
1684 if (reg)
1685 {
629310ab 1686 str_hash_delete (aarch64_reg_hsh, nbuf);
a06ea964
NC
1687 free ((char *) reg->name);
1688 free (reg);
1689 }
1690
1691 for (p = nbuf; *p; p++)
1692 *p = TOLOWER (*p);
629310ab 1693 reg = str_hash_find (aarch64_reg_hsh, nbuf);
a06ea964
NC
1694 if (reg)
1695 {
629310ab 1696 str_hash_delete (aarch64_reg_hsh, nbuf);
a06ea964
NC
1697 free ((char *) reg->name);
1698 free (reg);
1699 }
1700
1701 free (nbuf);
1702 }
1703 }
1704
1705 *input_line_pointer = saved_char;
1706 demand_empty_rest_of_line ();
1707}
1708
1709/* Directives: Instruction set selection. */
1710
c60b3806 1711#if defined OBJ_ELF || defined OBJ_COFF
a06ea964
NC
1712/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1713 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1714 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1715 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1716
1717/* Create a new mapping symbol for the transition to STATE. */
1718
1719static void
1720make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1721{
1722 symbolS *symbolP;
1723 const char *symname;
1724 int type;
1725
1726 switch (state)
1727 {
1728 case MAP_DATA:
1729 symname = "$d";
1730 type = BSF_NO_FLAGS;
1731 break;
1732 case MAP_INSN:
1733 symname = "$x";
1734 type = BSF_NO_FLAGS;
1735 break;
1736 default:
1737 abort ();
1738 }
1739
e01e1cee 1740 symbolP = symbol_new (symname, now_seg, frag, value);
a06ea964
NC
1741 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1742
1743 /* Save the mapping symbols for future reference. Also check that
1744 we do not place two mapping symbols at the same offset within a
1745 frag. We'll handle overlap between frags in
1746 check_mapping_symbols.
1747
1748 If .fill or other data filling directive generates zero sized data,
1749 the mapping symbol for the following code will have the same value
1750 as the one generated for the data filling directive. In this case,
1751 we replace the old symbol with the new one at the same address. */
1752 if (value == 0)
1753 {
1754 if (frag->tc_frag_data.first_map != NULL)
1755 {
1756 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1757 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1758 &symbol_lastP);
1759 }
1760 frag->tc_frag_data.first_map = symbolP;
1761 }
1762 if (frag->tc_frag_data.last_map != NULL)
1763 {
1764 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1765 S_GET_VALUE (symbolP));
1766 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1767 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1768 &symbol_lastP);
1769 }
1770 frag->tc_frag_data.last_map = symbolP;
1771}
1772
1773/* We must sometimes convert a region marked as code to data during
1774 code alignment, if an odd number of bytes have to be padded. The
1775 code mapping symbol is pushed to an aligned address. */
1776
1777static void
1778insert_data_mapping_symbol (enum mstate state,
1779 valueT value, fragS * frag, offsetT bytes)
1780{
1781 /* If there was already a mapping symbol, remove it. */
1782 if (frag->tc_frag_data.last_map != NULL
1783 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1784 frag->fr_address + value)
1785 {
1786 symbolS *symp = frag->tc_frag_data.last_map;
1787
1788 if (value == 0)
1789 {
1790 know (frag->tc_frag_data.first_map == symp);
1791 frag->tc_frag_data.first_map = NULL;
1792 }
1793 frag->tc_frag_data.last_map = NULL;
1794 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1795 }
1796
1797 make_mapping_symbol (MAP_DATA, value, frag);
1798 make_mapping_symbol (state, value + bytes, frag);
1799}
1800
1801static void mapping_state_2 (enum mstate state, int max_chars);
1802
1803/* Set the mapping state to STATE. Only call this when about to
1804 emit some STATE bytes to the file. */
1805
1806void
1807mapping_state (enum mstate state)
1808{
1809 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1810
a578ef7e
JW
1811 if (state == MAP_INSN)
1812 /* AArch64 instructions require 4-byte alignment. When emitting
1813 instructions into any section, record the appropriate section
1814 alignment. */
1815 record_alignment (now_seg, 2);
1816
448eb63d
RL
1817 if (mapstate == state)
1818 /* The mapping symbol has already been emitted.
1819 There is nothing else to do. */
1820 return;
1821
c1baaddf 1822#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1823 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1824 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1825 evaluated later in the next else. */
a06ea964 1826 return;
c1baaddf
RL
1827 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1828 {
1829 /* Only add the symbol if the offset is > 0:
1830 if we're at the first frag, check it's size > 0;
1831 if we're not at the first frag, then for sure
1832 the offset is > 0. */
1833 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1834 const int add_symbol = (frag_now != frag_first)
1835 || (frag_now_fix () > 0);
1836
1837 if (add_symbol)
1838 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1839 }
1840#undef TRANSITION
a06ea964
NC
1841
1842 mapping_state_2 (state, 0);
a06ea964
NC
1843}
1844
1845/* Same as mapping_state, but MAX_CHARS bytes have already been
1846 allocated. Put the mapping symbol that far back. */
1847
1848static void
1849mapping_state_2 (enum mstate state, int max_chars)
1850{
1851 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1852
1853 if (!SEG_NORMAL (now_seg))
1854 return;
1855
1856 if (mapstate == state)
1857 /* The mapping symbol has already been emitted.
1858 There is nothing else to do. */
1859 return;
1860
1861 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1862 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1863}
1864#else
1865#define mapping_state(x) /* nothing */
1866#define mapping_state_2(x, y) /* nothing */
1867#endif
1868
3e73bcf7 1869/* Directives: alignment. */
a06ea964
NC
1870
1871static void
1872s_even (int ignore ATTRIBUTE_UNUSED)
1873{
1874 /* Never make frag if expect extra pass. */
1875 if (!need_pass_2)
1876 frag_align (1, 0, 0);
1877
1878 record_alignment (now_seg, 1);
1879
1880 demand_empty_rest_of_line ();
1881}
1882
1883/* Directives: Literal pools. */
1884
1885static literal_pool *
1886find_literal_pool (int size)
1887{
1888 literal_pool *pool;
1889
1890 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1891 {
1892 if (pool->section == now_seg
1893 && pool->sub_section == now_subseg && pool->size == size)
1894 break;
1895 }
1896
1897 return pool;
1898}
1899
1900static literal_pool *
1901find_or_make_literal_pool (int size)
1902{
1903 /* Next literal pool ID number. */
1904 static unsigned int latest_pool_num = 1;
1905 literal_pool *pool;
1906
1907 pool = find_literal_pool (size);
1908
1909 if (pool == NULL)
1910 {
1911 /* Create a new pool. */
add39d23 1912 pool = XNEW (literal_pool);
a06ea964
NC
1913 if (!pool)
1914 return NULL;
1915
1916 /* Currently we always put the literal pool in the current text
1917 section. If we were generating "small" model code where we
1918 knew that all code and initialised data was within 1MB then
1919 we could output literals to mergeable, read-only data
1920 sections. */
1921
1922 pool->next_free_entry = 0;
1923 pool->section = now_seg;
1924 pool->sub_section = now_subseg;
1925 pool->size = size;
1926 pool->next = list_of_pools;
1927 pool->symbol = NULL;
1928
1929 /* Add it to the list. */
1930 list_of_pools = pool;
1931 }
1932
1933 /* New pools, and emptied pools, will have a NULL symbol. */
1934 if (pool->symbol == NULL)
1935 {
1936 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
e01e1cee 1937 &zero_address_frag, 0);
a06ea964
NC
1938 pool->id = latest_pool_num++;
1939 }
1940
1941 /* Done. */
1942 return pool;
1943}
1944
1945/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1946 Return TRUE on success, otherwise return FALSE. */
5b7c81bd 1947static bool
a06ea964
NC
1948add_to_lit_pool (expressionS *exp, int size)
1949{
1950 literal_pool *pool;
1951 unsigned int entry;
1952
1953 pool = find_or_make_literal_pool (size);
1954
1955 /* Check if this literal value is already in the pool. */
1956 for (entry = 0; entry < pool->next_free_entry; entry++)
1957 {
55d9b4c1
NC
1958 expressionS * litexp = & pool->literals[entry].exp;
1959
1960 if ((litexp->X_op == exp->X_op)
a06ea964 1961 && (exp->X_op == O_constant)
55d9b4c1
NC
1962 && (litexp->X_add_number == exp->X_add_number)
1963 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1964 break;
1965
55d9b4c1 1966 if ((litexp->X_op == exp->X_op)
a06ea964 1967 && (exp->X_op == O_symbol)
55d9b4c1
NC
1968 && (litexp->X_add_number == exp->X_add_number)
1969 && (litexp->X_add_symbol == exp->X_add_symbol)
1970 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1971 break;
1972 }
1973
1974 /* Do we need to create a new entry? */
1975 if (entry == pool->next_free_entry)
1976 {
1977 if (entry >= MAX_LITERAL_POOL_SIZE)
1978 {
1979 set_syntax_error (_("literal pool overflow"));
5b7c81bd 1980 return false;
a06ea964
NC
1981 }
1982
55d9b4c1 1983 pool->literals[entry].exp = *exp;
a06ea964 1984 pool->next_free_entry += 1;
55d9b4c1
NC
1985 if (exp->X_op == O_big)
1986 {
1987 /* PR 16688: Bignums are held in a single global array. We must
1988 copy and preserve that value now, before it is overwritten. */
add39d23
TS
1989 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1990 exp->X_add_number);
55d9b4c1
NC
1991 memcpy (pool->literals[entry].bignum, generic_bignum,
1992 CHARS_PER_LITTLENUM * exp->X_add_number);
1993 }
1994 else
1995 pool->literals[entry].bignum = NULL;
a06ea964
NC
1996 }
1997
1998 exp->X_op = O_symbol;
1999 exp->X_add_number = ((int) entry) * size;
2000 exp->X_add_symbol = pool->symbol;
2001
5b7c81bd 2002 return true;
a06ea964
NC
2003}
2004
2005/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 2006 a later date assign it a value. That's what these functions do. */
a06ea964
NC
2007
2008static void
2009symbol_locate (symbolS * symbolP,
2010 const char *name,/* It is copied, the caller can modify. */
2011 segT segment, /* Segment identifier (SEG_<something>). */
2012 valueT valu, /* Symbol value. */
2013 fragS * frag) /* Associated fragment. */
2014{
e57e6ddc 2015 size_t name_length;
a06ea964
NC
2016 char *preserved_copy_of_name;
2017
2018 name_length = strlen (name) + 1; /* +1 for \0. */
2019 obstack_grow (&notes, name, name_length);
2020 preserved_copy_of_name = obstack_finish (&notes);
2021
2022#ifdef tc_canonicalize_symbol_name
2023 preserved_copy_of_name =
2024 tc_canonicalize_symbol_name (preserved_copy_of_name);
2025#endif
2026
2027 S_SET_NAME (symbolP, preserved_copy_of_name);
2028
2029 S_SET_SEGMENT (symbolP, segment);
2030 S_SET_VALUE (symbolP, valu);
2031 symbol_clear_list_pointers (symbolP);
2032
2033 symbol_set_frag (symbolP, frag);
2034
2035 /* Link to end of symbol chain. */
2036 {
2037 extern int symbol_table_frozen;
2038
2039 if (symbol_table_frozen)
2040 abort ();
2041 }
2042
2043 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
2044
2045 obj_symbol_new_hook (symbolP);
2046
2047#ifdef tc_symbol_new_hook
2048 tc_symbol_new_hook (symbolP);
2049#endif
2050
2051#ifdef DEBUG_SYMS
2052 verify_symbol_chain (symbol_rootP, symbol_lastP);
2053#endif /* DEBUG_SYMS */
2054}
2055
2056
2057static void
2058s_ltorg (int ignored ATTRIBUTE_UNUSED)
2059{
2060 unsigned int entry;
2061 literal_pool *pool;
2062 char sym_name[20];
2063 int align;
2064
67a32447 2065 for (align = 2; align <= 4; align++)
a06ea964
NC
2066 {
2067 int size = 1 << align;
2068
2069 pool = find_literal_pool (size);
2070 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
2071 continue;
2072
a06ea964
NC
2073 /* Align pool as you have word accesses.
2074 Only make a frag if we have to. */
2075 if (!need_pass_2)
2076 frag_align (align, 0, 0);
2077
7ea12e5c
NC
2078 mapping_state (MAP_DATA);
2079
a06ea964
NC
2080 record_alignment (now_seg, align);
2081
2082 sprintf (sym_name, "$$lit_\002%x", pool->id);
2083
2084 symbol_locate (pool->symbol, sym_name, now_seg,
2085 (valueT) frag_now_fix (), frag_now);
2086 symbol_table_insert (pool->symbol);
2087
2088 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
2089 {
2090 expressionS * exp = & pool->literals[entry].exp;
2091
2092 if (exp->X_op == O_big)
2093 {
2094 /* PR 16688: Restore the global bignum value. */
2095 gas_assert (pool->literals[entry].bignum != NULL);
2096 memcpy (generic_bignum, pool->literals[entry].bignum,
2097 CHARS_PER_LITTLENUM * exp->X_add_number);
2098 }
2099
2100 /* First output the expression in the instruction to the pool. */
2101 emit_expr (exp, size); /* .word|.xword */
2102
2103 if (exp->X_op == O_big)
2104 {
2105 free (pool->literals[entry].bignum);
2106 pool->literals[entry].bignum = NULL;
2107 }
2108 }
a06ea964
NC
2109
2110 /* Mark the pool as empty. */
2111 pool->next_free_entry = 0;
2112 pool->symbol = NULL;
2113 }
2114}
2115
b152649d 2116#if defined(OBJ_ELF) || defined(OBJ_COFF)
a06ea964
NC
2117/* Forward declarations for functions below, in the MD interface
2118 section. */
a06ea964
NC
2119static struct reloc_table_entry * find_reloc_table_entry (char **);
2120
2121/* Directives: Data. */
2122/* N.B. the support for relocation suffix in this directive needs to be
2123 implemented properly. */
2124
2125static void
b152649d 2126s_aarch64_cons (int nbytes)
a06ea964
NC
2127{
2128 expressionS exp;
2129
2130#ifdef md_flush_pending_output
2131 md_flush_pending_output ();
2132#endif
2133
2134 if (is_it_end_of_statement ())
2135 {
2136 demand_empty_rest_of_line ();
2137 return;
2138 }
2139
2140#ifdef md_cons_align
2141 md_cons_align (nbytes);
2142#endif
2143
2144 mapping_state (MAP_DATA);
2145 do
2146 {
2147 struct reloc_table_entry *reloc;
2148
2149 expression (&exp);
2150
2151 if (exp.X_op != O_symbol)
2152 emit_expr (&exp, (unsigned int) nbytes);
2153 else
2154 {
2155 skip_past_char (&input_line_pointer, '#');
2156 if (skip_past_char (&input_line_pointer, ':'))
2157 {
2158 reloc = find_reloc_table_entry (&input_line_pointer);
2159 if (reloc == NULL)
2160 as_bad (_("unrecognized relocation suffix"));
2161 else
2162 as_bad (_("unimplemented relocation suffix"));
2163 ignore_rest_of_line ();
2164 return;
2165 }
2166 else
2167 emit_expr (&exp, (unsigned int) nbytes);
2168 }
2169 }
2170 while (*input_line_pointer++ == ',');
2171
2172 /* Put terminator back into stream. */
2173 input_line_pointer--;
2174 demand_empty_rest_of_line ();
2175}
b152649d
MH
2176#endif
2177
2178#ifdef OBJ_ELF
2179/* Forward declarations for functions below, in the MD interface
2180 section. */
2181 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
a06ea964 2182
f166ae01
SN
2183/* Mark symbol that it follows a variant PCS convention. */
2184
2185static void
2186s_variant_pcs (int ignored ATTRIBUTE_UNUSED)
2187{
2188 char *name;
2189 char c;
2190 symbolS *sym;
2191 asymbol *bfdsym;
2192 elf_symbol_type *elfsym;
2193
2194 c = get_symbol_name (&name);
2195 if (!*name)
2196 as_bad (_("Missing symbol name in directive"));
2197 sym = symbol_find_or_make (name);
2198 restore_line_pointer (c);
2199 demand_empty_rest_of_line ();
2200 bfdsym = symbol_get_bfdsym (sym);
c1229f84 2201 elfsym = elf_symbol_from (bfdsym);
f166ae01
SN
2202 gas_assert (elfsym);
2203 elfsym->internal_elf_sym.st_other |= STO_AARCH64_VARIANT_PCS;
2204}
a06ea964
NC
2205#endif /* OBJ_ELF */
2206
2207/* Output a 32-bit word, but mark as an instruction. */
2208
2209static void
2210s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
2211{
2212 expressionS exp;
0f47cb17 2213 unsigned n = 0;
a06ea964
NC
2214
2215#ifdef md_flush_pending_output
2216 md_flush_pending_output ();
2217#endif
2218
2219 if (is_it_end_of_statement ())
2220 {
2221 demand_empty_rest_of_line ();
2222 return;
2223 }
2224
a97902de 2225 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
2226 MAP_DATA symbol pending. So we only align the address during
2227 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 2228 For other sections, this is not guaranteed. */
c1baaddf 2229 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 2230 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 2231 frag_align_code (2, 0);
c1baaddf 2232
a06ea964
NC
2233#ifdef OBJ_ELF
2234 mapping_state (MAP_INSN);
2235#endif
2236
2237 do
2238 {
2239 expression (&exp);
2240 if (exp.X_op != O_constant)
2241 {
2242 as_bad (_("constant expression required"));
2243 ignore_rest_of_line ();
2244 return;
2245 }
2246
2247 if (target_big_endian)
2248 {
2249 unsigned int val = exp.X_add_number;
2250 exp.X_add_number = SWAP_32 (val);
2251 }
0f47cb17
JB
2252 emit_expr (&exp, INSN_SIZE);
2253 ++n;
a06ea964
NC
2254 }
2255 while (*input_line_pointer++ == ',');
2256
0f47cb17
JB
2257 dwarf2_emit_insn (n * INSN_SIZE);
2258
a06ea964
NC
2259 /* Put terminator back into stream. */
2260 input_line_pointer--;
2261 demand_empty_rest_of_line ();
2262}
2263
3a67e1a6
ST
2264static void
2265s_aarch64_cfi_b_key_frame (int ignored ATTRIBUTE_UNUSED)
2266{
2267 demand_empty_rest_of_line ();
2268 struct fde_entry *fde = frchain_now->frch_cfi_data->cur_fde_data;
2269 fde->pauth_key = AARCH64_PAUTH_KEY_B;
2270}
2271
a06ea964 2272#ifdef OBJ_ELF
43a357f9
RL
2273/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
2274
2275static void
2276s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
2277{
2278 expressionS exp;
2279
2280 expression (&exp);
2281 frag_grow (4);
2282 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2283 BFD_RELOC_AARCH64_TLSDESC_ADD);
2284
2285 demand_empty_rest_of_line ();
2286}
2287
a06ea964
NC
2288/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2289
2290static void
2291s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2292{
2293 expressionS exp;
2294
2295 /* Since we're just labelling the code, there's no need to define a
2296 mapping symbol. */
2297 expression (&exp);
2298 /* Make sure there is enough room in this frag for the following
2299 blr. This trick only works if the blr follows immediately after
2300 the .tlsdesc directive. */
2301 frag_grow (4);
2302 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2303 BFD_RELOC_AARCH64_TLSDESC_CALL);
2304
2305 demand_empty_rest_of_line ();
2306}
43a357f9
RL
2307
2308/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2309
2310static void
2311s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2312{
2313 expressionS exp;
2314
2315 expression (&exp);
2316 frag_grow (4);
2317 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2318 BFD_RELOC_AARCH64_TLSDESC_LDR);
2319
2320 demand_empty_rest_of_line ();
2321}
a06ea964
NC
2322#endif /* OBJ_ELF */
2323
528e4f46
MH
2324#ifdef TE_PE
2325static void
2326s_secrel (int dummy ATTRIBUTE_UNUSED)
2327{
2328 expressionS exp;
2329
2330 do
2331 {
2332 expression (&exp);
2333 if (exp.X_op == O_symbol)
2334 exp.X_op = O_secrel;
2335
2336 emit_expr (&exp, 4);
2337 }
2338 while (*input_line_pointer++ == ',');
2339
2340 input_line_pointer--;
2341 demand_empty_rest_of_line ();
2342}
7697bc65
MH
2343
2344void
2345tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
2346{
2347 expressionS exp;
2348
2349 exp.X_op = O_secrel;
2350 exp.X_add_symbol = symbol;
2351 exp.X_add_number = 0;
2352 emit_expr (&exp, size);
2353}
6f4a117f
MH
2354
2355static void
2356s_secidx (int dummy ATTRIBUTE_UNUSED)
2357{
2358 expressionS exp;
2359
2360 do
2361 {
2362 expression (&exp);
2363 if (exp.X_op == O_symbol)
2364 exp.X_op = O_secidx;
2365
2366 emit_expr (&exp, 2);
2367 }
2368 while (*input_line_pointer++ == ',');
2369
2370 input_line_pointer--;
2371 demand_empty_rest_of_line ();
2372}
528e4f46
MH
2373#endif /* TE_PE */
2374
a06ea964
NC
2375static void s_aarch64_arch (int);
2376static void s_aarch64_cpu (int);
ae527cd8 2377static void s_aarch64_arch_extension (int);
a06ea964
NC
2378
2379/* This table describes all the machine specific pseudo-ops the assembler
2380 has to support. The fields are:
2381 pseudo-op name without dot
2382 function to call to execute this pseudo-op
2383 Integer arg to pass to the function. */
2384
2385const pseudo_typeS md_pseudo_table[] = {
2386 /* Never called because '.req' does not start a line. */
2387 {"req", s_req, 0},
2388 {"unreq", s_unreq, 0},
a06ea964
NC
2389 {"even", s_even, 0},
2390 {"ltorg", s_ltorg, 0},
2391 {"pool", s_ltorg, 0},
2392 {"cpu", s_aarch64_cpu, 0},
2393 {"arch", s_aarch64_arch, 0},
ae527cd8 2394 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964 2395 {"inst", s_aarch64_inst, 0},
3a67e1a6 2396 {"cfi_b_key_frame", s_aarch64_cfi_b_key_frame, 0},
a06ea964 2397#ifdef OBJ_ELF
43a357f9 2398 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 2399 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 2400 {"tlsdescldr", s_tlsdescldr, 0},
f166ae01 2401 {"variant_pcs", s_variant_pcs, 0},
b152649d
MH
2402#endif
2403#if defined(OBJ_ELF) || defined(OBJ_COFF)
2404 {"word", s_aarch64_cons, 4},
2405 {"long", s_aarch64_cons, 4},
2406 {"xword", s_aarch64_cons, 8},
2407 {"dword", s_aarch64_cons, 8},
528e4f46
MH
2408#endif
2409#ifdef TE_PE
2410 {"secrel32", s_secrel, 0},
6f4a117f 2411 {"secidx", s_secidx, 0},
a06ea964 2412#endif
b20d3859 2413 {"float16", float_cons, 'h'},
eb5bbc48 2414 {"bfloat16", float_cons, 'b'},
a06ea964
NC
2415 {0, 0, 0}
2416};
2417\f
2418
2419/* Check whether STR points to a register name followed by a comma or the
2420 end of line; REG_TYPE indicates which register types are checked
2421 against. Return TRUE if STR is such a register name; otherwise return
2422 FALSE. The function does not intend to produce any diagnostics, but since
2423 the register parser aarch64_reg_parse, which is called by this function,
2424 does produce diagnostics, we call clear_error to clear any diagnostics
2425 that may be generated by aarch64_reg_parse.
2426 Also, the function returns FALSE directly if there is any user error
2427 present at the function entry. This prevents the existing diagnostics
2428 state from being spoiled.
2429 The function currently serves parse_constant_immediate and
2430 parse_big_immediate only. */
5b7c81bd 2431static bool
a06ea964
NC
2432reg_name_p (char *str, aarch64_reg_type reg_type)
2433{
074c89d2 2434 const reg_entry *reg;
a06ea964
NC
2435
2436 /* Prevent the diagnostics state from being spoiled. */
2437 if (error_p ())
5b7c81bd 2438 return false;
a06ea964 2439
074c89d2 2440 reg = aarch64_reg_parse (&str, reg_type, NULL);
a06ea964
NC
2441
2442 /* Clear the parsing error that may be set by the reg parser. */
2443 clear_error ();
2444
074c89d2 2445 if (!reg)
5b7c81bd 2446 return false;
a06ea964
NC
2447
2448 skip_whitespace (str);
f405494f 2449 if (*str == ',' || is_end_of_line[(unsigned char) *str])
5b7c81bd 2450 return true;
a06ea964 2451
5b7c81bd 2452 return false;
a06ea964
NC
2453}
2454
2455/* Parser functions used exclusively in instruction operands. */
2456
2457/* Parse an immediate expression which may not be constant.
2458
2459 To prevent the expression parser from pushing a register name
2460 into the symbol table as an undefined symbol, firstly a check is
1799c0d0
RS
2461 done to find out whether STR is a register of type REG_TYPE followed
2462 by a comma or the end of line. Return FALSE if STR is such a string. */
a06ea964 2463
5b7c81bd 2464static bool
1799c0d0
RS
2465parse_immediate_expression (char **str, expressionS *exp,
2466 aarch64_reg_type reg_type)
a06ea964 2467{
1799c0d0 2468 if (reg_name_p (*str, reg_type))
a06ea964
NC
2469 {
2470 set_recoverable_error (_("immediate operand required"));
5b7c81bd 2471 return false;
a06ea964
NC
2472 }
2473
c1723a81 2474 aarch64_get_expression (exp, str, GE_OPT_PREFIX, REJECT_ABSENT);
a06ea964
NC
2475
2476 if (exp->X_op == O_absent)
2477 {
2478 set_fatal_syntax_error (_("missing immediate expression"));
5b7c81bd 2479 return false;
a06ea964
NC
2480 }
2481
5b7c81bd 2482 return true;
a06ea964
NC
2483}
2484
2485/* Constant immediate-value read function for use in insn parsing.
2486 STR points to the beginning of the immediate (with the optional
1799c0d0
RS
2487 leading #); *VAL receives the value. REG_TYPE says which register
2488 names should be treated as registers rather than as symbolic immediates.
a06ea964
NC
2489
2490 Return TRUE on success; otherwise return FALSE. */
2491
5b7c81bd 2492static bool
1799c0d0 2493parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
a06ea964
NC
2494{
2495 expressionS exp;
2496
1799c0d0 2497 if (! parse_immediate_expression (str, &exp, reg_type))
5b7c81bd 2498 return false;
a06ea964
NC
2499
2500 if (exp.X_op != O_constant)
2501 {
2502 set_syntax_error (_("constant expression required"));
5b7c81bd 2503 return false;
a06ea964
NC
2504 }
2505
2506 *val = exp.X_add_number;
5b7c81bd 2507 return true;
a06ea964
NC
2508}
2509
2510static uint32_t
2511encode_imm_float_bits (uint32_t imm)
2512{
2513 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2514 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2515}
2516
62b0d0d5
YZ
2517/* Return TRUE if the single-precision floating-point value encoded in IMM
2518 can be expressed in the AArch64 8-bit signed floating-point format with
2519 3-bit exponent and normalized 4 bits of precision; in other words, the
2520 floating-point value must be expressable as
2521 (+/-) n / 16 * power (2, r)
2522 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2523
5b7c81bd 2524static bool
a06ea964
NC
2525aarch64_imm_float_p (uint32_t imm)
2526{
62b0d0d5
YZ
2527 /* If a single-precision floating-point value has the following bit
2528 pattern, it can be expressed in the AArch64 8-bit floating-point
2529 format:
2530
2531 3 32222222 2221111111111
a06ea964 2532 1 09876543 21098765432109876543210
62b0d0d5
YZ
2533 n Eeeeeexx xxxx0000000000000000000
2534
2535 where n, e and each x are either 0 or 1 independently, with
2536 E == ~ e. */
a06ea964 2537
62b0d0d5
YZ
2538 uint32_t pattern;
2539
2540 /* Prepare the pattern for 'Eeeeee'. */
2541 if (((imm >> 30) & 0x1) == 0)
2542 pattern = 0x3e000000;
a06ea964 2543 else
62b0d0d5
YZ
2544 pattern = 0x40000000;
2545
2546 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2547 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2548}
2549
04a3379a
RS
2550/* Return TRUE if the IEEE double value encoded in IMM can be expressed
2551 as an IEEE float without any loss of precision. Store the value in
2552 *FPWORD if so. */
62b0d0d5 2553
5b7c81bd 2554static bool
04a3379a 2555can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
62b0d0d5
YZ
2556{
2557 /* If a double-precision floating-point value has the following bit
04a3379a 2558 pattern, it can be expressed in a float:
62b0d0d5 2559
04a3379a
RS
2560 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2561 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2562 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
62b0d0d5 2563
04a3379a
RS
2564 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2565 if Eeee_eeee != 1111_1111
2566
2567 where n, e, s and S are either 0 or 1 independently and where ~ is the
2568 inverse of E. */
62b0d0d5
YZ
2569
2570 uint32_t pattern;
2571 uint32_t high32 = imm >> 32;
04a3379a 2572 uint32_t low32 = imm;
62b0d0d5 2573
04a3379a
RS
2574 /* Lower 29 bits need to be 0s. */
2575 if ((imm & 0x1fffffff) != 0)
5b7c81bd 2576 return false;
62b0d0d5
YZ
2577
2578 /* Prepare the pattern for 'Eeeeeeeee'. */
2579 if (((high32 >> 30) & 0x1) == 0)
04a3379a 2580 pattern = 0x38000000;
62b0d0d5
YZ
2581 else
2582 pattern = 0x40000000;
2583
04a3379a
RS
2584 /* Check E~~~. */
2585 if ((high32 & 0x78000000) != pattern)
5b7c81bd 2586 return false;
04a3379a
RS
2587
2588 /* Check Eeee_eeee != 1111_1111. */
2589 if ((high32 & 0x7ff00000) == 0x47f00000)
5b7c81bd 2590 return false;
04a3379a
RS
2591
2592 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2593 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2594 | (low32 >> 29)); /* 3 S bits. */
5b7c81bd 2595 return true;
62b0d0d5
YZ
2596}
2597
165d4950
RS
2598/* Return true if we should treat OPERAND as a double-precision
2599 floating-point operand rather than a single-precision one. */
5b7c81bd 2600static bool
165d4950
RS
2601double_precision_operand_p (const aarch64_opnd_info *operand)
2602{
2603 /* Check for unsuffixed SVE registers, which are allowed
2604 for LDR and STR but not in instructions that require an
2605 immediate. We get better error messages if we arbitrarily
2606 pick one size, parse the immediate normally, and then
2607 report the match failure in the normal way. */
2608 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2609 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2610}
2611
62b0d0d5
YZ
2612/* Parse a floating-point immediate. Return TRUE on success and return the
2613 value in *IMMED in the format of IEEE754 single-precision encoding.
2614 *CCP points to the start of the string; DP_P is TRUE when the immediate
2615 is expected to be in double-precision (N.B. this only matters when
1799c0d0
RS
2616 hexadecimal representation is involved). REG_TYPE says which register
2617 names should be treated as registers rather than as symbolic immediates.
62b0d0d5 2618
874d7e6e
RS
2619 This routine accepts any IEEE float; it is up to the callers to reject
2620 invalid ones. */
62b0d0d5 2621
5b7c81bd
AM
2622static bool
2623parse_aarch64_imm_float (char **ccp, int *immed, bool dp_p,
1799c0d0 2624 aarch64_reg_type reg_type)
a06ea964
NC
2625{
2626 char *str = *ccp;
2627 char *fpnum;
2628 LITTLENUM_TYPE words[MAX_LITTLENUMS];
62b0d0d5
YZ
2629 int64_t val = 0;
2630 unsigned fpword = 0;
5b7c81bd 2631 bool hex_p = false;
a06ea964
NC
2632
2633 skip_past_char (&str, '#');
2634
a06ea964
NC
2635 fpnum = str;
2636 skip_whitespace (fpnum);
2637
d34049e8 2638 if (startswith (fpnum, "0x"))
62b0d0d5
YZ
2639 {
2640 /* Support the hexadecimal representation of the IEEE754 encoding.
2641 Double-precision is expected when DP_P is TRUE, otherwise the
2642 representation should be in single-precision. */
1799c0d0 2643 if (! parse_constant_immediate (&str, &val, reg_type))
62b0d0d5
YZ
2644 goto invalid_fp;
2645
2646 if (dp_p)
2647 {
04a3379a 2648 if (!can_convert_double_to_float (val, &fpword))
62b0d0d5
YZ
2649 goto invalid_fp;
2650 }
2651 else if ((uint64_t) val > 0xffffffff)
2652 goto invalid_fp;
2653 else
2654 fpword = val;
2655
5b7c81bd 2656 hex_p = true;
62b0d0d5 2657 }
66881839
TC
2658 else if (reg_name_p (str, reg_type))
2659 {
2660 set_recoverable_error (_("immediate operand required"));
5b7c81bd 2661 return false;
a06ea964
NC
2662 }
2663
62b0d0d5 2664 if (! hex_p)
a06ea964 2665 {
a06ea964
NC
2666 int i;
2667
62b0d0d5
YZ
2668 if ((str = atof_ieee (str, 's', words)) == NULL)
2669 goto invalid_fp;
2670
a06ea964
NC
2671 /* Our FP word must be 32 bits (single-precision FP). */
2672 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2673 {
2674 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2675 fpword |= words[i];
2676 }
62b0d0d5 2677 }
a06ea964 2678
874d7e6e
RS
2679 *immed = fpword;
2680 *ccp = str;
5b7c81bd 2681 return true;
a06ea964 2682
dc1e8a47 2683 invalid_fp:
a06ea964 2684 set_fatal_syntax_error (_("invalid floating-point constant"));
5b7c81bd 2685 return false;
a06ea964
NC
2686}
2687
2688/* Less-generic immediate-value read function with the possibility of loading
2689 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2690 instructions.
2691
2692 To prevent the expression parser from pushing a register name into the
2693 symbol table as an undefined symbol, a check is firstly done to find
1799c0d0
RS
2694 out whether STR is a register of type REG_TYPE followed by a comma or
2695 the end of line. Return FALSE if STR is such a register. */
a06ea964 2696
5b7c81bd 2697static bool
1799c0d0 2698parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
a06ea964
NC
2699{
2700 char *ptr = *str;
2701
1799c0d0 2702 if (reg_name_p (ptr, reg_type))
a06ea964
NC
2703 {
2704 set_syntax_error (_("immediate operand required"));
5b7c81bd 2705 return false;
a06ea964
NC
2706 }
2707
c1723a81 2708 aarch64_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, REJECT_ABSENT);
a06ea964
NC
2709
2710 if (inst.reloc.exp.X_op == O_constant)
2711 *imm = inst.reloc.exp.X_add_number;
2712
2713 *str = ptr;
2714
5b7c81bd 2715 return true;
a06ea964
NC
2716}
2717
2718/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2719 if NEED_LIBOPCODES is non-zero, the fixup will need
2720 assistance from the libopcodes. */
2721
2722static inline void
2723aarch64_set_gas_internal_fixup (struct reloc *reloc,
2724 const aarch64_opnd_info *operand,
2725 int need_libopcodes_p)
2726{
2727 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2728 reloc->opnd = operand->type;
2729 if (need_libopcodes_p)
2730 reloc->need_libopcodes_p = 1;
2731};
2732
2733/* Return TRUE if the instruction needs to be fixed up later internally by
2734 the GAS; otherwise return FALSE. */
2735
5b7c81bd 2736static inline bool
a06ea964
NC
2737aarch64_gas_internal_fixup_p (void)
2738{
2739 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2740}
2741
33eaf5de 2742/* Assign the immediate value to the relevant field in *OPERAND if
a06ea964
NC
2743 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2744 needs an internal fixup in a later stage.
2745 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2746 IMM.VALUE that may get assigned with the constant. */
2747static inline void
2748assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2749 aarch64_opnd_info *operand,
2750 int addr_off_p,
2751 int need_libopcodes_p,
2752 int skip_p)
2753{
2754 if (reloc->exp.X_op == O_constant)
2755 {
2756 if (addr_off_p)
2757 operand->addr.offset.imm = reloc->exp.X_add_number;
2758 else
2759 operand->imm.value = reloc->exp.X_add_number;
2760 reloc->type = BFD_RELOC_UNUSED;
2761 }
2762 else
2763 {
2764 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2765 /* Tell libopcodes to ignore this operand or not. This is helpful
2766 when one of the operands needs to be fixed up later but we need
2767 libopcodes to check the other operands. */
2768 operand->skip = skip_p;
2769 }
2770}
2771
2772/* Relocation modifiers. Each entry in the table contains the textual
2773 name for the relocation which may be placed before a symbol used as
2774 a load/store offset, or add immediate. It must be surrounded by a
2775 leading and trailing colon, for example:
2776
2777 ldr x0, [x1, #:rello:varsym]
2778 add x0, x1, #:rello:varsym */
2779
2780struct reloc_table_entry
2781{
2782 const char *name;
2783 int pc_rel;
6f4a313b 2784 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2785 bfd_reloc_code_real_type adrp_type;
2786 bfd_reloc_code_real_type movw_type;
2787 bfd_reloc_code_real_type add_type;
2788 bfd_reloc_code_real_type ldst_type;
74ad790c 2789 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2790};
2791
eac4eb8e
NC
2792static struct reloc_table_entry reloc_table[] =
2793{
a06ea964
NC
2794 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2795 {"lo12", 0,
6f4a313b 2796 0, /* adr_type */
a06ea964
NC
2797 0,
2798 0,
2799 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2800 BFD_RELOC_AARCH64_LDST_LO12,
2801 0},
a06ea964
NC
2802
2803 /* Higher 21 bits of pc-relative page offset: ADRP */
2804 {"pg_hi21", 1,
6f4a313b 2805 0, /* adr_type */
a06ea964
NC
2806 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2807 0,
2808 0,
74ad790c 2809 0,
a06ea964
NC
2810 0},
2811
2812 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2813 {"pg_hi21_nc", 1,
6f4a313b 2814 0, /* adr_type */
a06ea964
NC
2815 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2816 0,
2817 0,
74ad790c 2818 0,
a06ea964
NC
2819 0},
2820
2821 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2822 {"abs_g0", 0,
6f4a313b 2823 0, /* adr_type */
a06ea964
NC
2824 0,
2825 BFD_RELOC_AARCH64_MOVW_G0,
2826 0,
74ad790c 2827 0,
a06ea964
NC
2828 0},
2829
2830 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2831 {"abs_g0_s", 0,
6f4a313b 2832 0, /* adr_type */
a06ea964
NC
2833 0,
2834 BFD_RELOC_AARCH64_MOVW_G0_S,
2835 0,
74ad790c 2836 0,
a06ea964
NC
2837 0},
2838
2839 /* Less significant bits 0-15 of address/value: MOVK, no check */
2840 {"abs_g0_nc", 0,
6f4a313b 2841 0, /* adr_type */
a06ea964
NC
2842 0,
2843 BFD_RELOC_AARCH64_MOVW_G0_NC,
2844 0,
74ad790c 2845 0,
a06ea964
NC
2846 0},
2847
2848 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2849 {"abs_g1", 0,
6f4a313b 2850 0, /* adr_type */
a06ea964
NC
2851 0,
2852 BFD_RELOC_AARCH64_MOVW_G1,
2853 0,
74ad790c 2854 0,
a06ea964
NC
2855 0},
2856
2857 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2858 {"abs_g1_s", 0,
6f4a313b 2859 0, /* adr_type */
a06ea964
NC
2860 0,
2861 BFD_RELOC_AARCH64_MOVW_G1_S,
2862 0,
74ad790c 2863 0,
a06ea964
NC
2864 0},
2865
2866 /* Less significant bits 16-31 of address/value: MOVK, no check */
2867 {"abs_g1_nc", 0,
6f4a313b 2868 0, /* adr_type */
a06ea964
NC
2869 0,
2870 BFD_RELOC_AARCH64_MOVW_G1_NC,
2871 0,
74ad790c 2872 0,
a06ea964
NC
2873 0},
2874
2875 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2876 {"abs_g2", 0,
6f4a313b 2877 0, /* adr_type */
a06ea964
NC
2878 0,
2879 BFD_RELOC_AARCH64_MOVW_G2,
2880 0,
74ad790c 2881 0,
a06ea964
NC
2882 0},
2883
2884 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2885 {"abs_g2_s", 0,
6f4a313b 2886 0, /* adr_type */
a06ea964
NC
2887 0,
2888 BFD_RELOC_AARCH64_MOVW_G2_S,
2889 0,
74ad790c 2890 0,
a06ea964
NC
2891 0},
2892
2893 /* Less significant bits 32-47 of address/value: MOVK, no check */
2894 {"abs_g2_nc", 0,
6f4a313b 2895 0, /* adr_type */
a06ea964
NC
2896 0,
2897 BFD_RELOC_AARCH64_MOVW_G2_NC,
2898 0,
74ad790c 2899 0,
a06ea964
NC
2900 0},
2901
2902 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2903 {"abs_g3", 0,
6f4a313b 2904 0, /* adr_type */
a06ea964
NC
2905 0,
2906 BFD_RELOC_AARCH64_MOVW_G3,
2907 0,
74ad790c 2908 0,
a06ea964 2909 0},
4aa2c5e2 2910
32247401
RL
2911 /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
2912 {"prel_g0", 1,
2913 0, /* adr_type */
2914 0,
2915 BFD_RELOC_AARCH64_MOVW_PREL_G0,
2916 0,
2917 0,
2918 0},
2919
2920 /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
2921 {"prel_g0_nc", 1,
2922 0, /* adr_type */
2923 0,
2924 BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
2925 0,
2926 0,
2927 0},
2928
2929 /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
2930 {"prel_g1", 1,
2931 0, /* adr_type */
2932 0,
2933 BFD_RELOC_AARCH64_MOVW_PREL_G1,
2934 0,
2935 0,
2936 0},
2937
2938 /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
2939 {"prel_g1_nc", 1,
2940 0, /* adr_type */
2941 0,
2942 BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
2943 0,
2944 0,
2945 0},
2946
2947 /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
2948 {"prel_g2", 1,
2949 0, /* adr_type */
2950 0,
2951 BFD_RELOC_AARCH64_MOVW_PREL_G2,
2952 0,
2953 0,
2954 0},
2955
2956 /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
2957 {"prel_g2_nc", 1,
2958 0, /* adr_type */
2959 0,
2960 BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
2961 0,
2962 0,
2963 0},
2964
2965 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2966 {"prel_g3", 1,
2967 0, /* adr_type */
2968 0,
2969 BFD_RELOC_AARCH64_MOVW_PREL_G3,
2970 0,
2971 0,
2972 0},
2973
a06ea964
NC
2974 /* Get to the page containing GOT entry for a symbol. */
2975 {"got", 1,
6f4a313b 2976 0, /* adr_type */
a06ea964
NC
2977 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2978 0,
2979 0,
74ad790c 2980 0,
4aa2c5e2
MS
2981 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2982
a06ea964
NC
2983 /* 12 bit offset into the page containing GOT entry for that symbol. */
2984 {"got_lo12", 0,
6f4a313b 2985 0, /* adr_type */
a06ea964
NC
2986 0,
2987 0,
2988 0,
74ad790c
MS
2989 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2990 0},
a06ea964 2991
ca632371
RL
2992 /* 0-15 bits of address/value: MOVk, no check. */
2993 {"gotoff_g0_nc", 0,
2994 0, /* adr_type */
2995 0,
2996 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2997 0,
2998 0,
2999 0},
3000
654248e7
RL
3001 /* Most significant bits 16-31 of address/value: MOVZ. */
3002 {"gotoff_g1", 0,
3003 0, /* adr_type */
3004 0,
3005 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
3006 0,
3007 0,
3008 0},
3009
87f5fbcc
RL
3010 /* 15 bit offset into the page containing GOT entry for that symbol. */
3011 {"gotoff_lo15", 0,
3012 0, /* adr_type */
3013 0,
3014 0,
3015 0,
3016 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
3017 0},
3018
3b957e5b
RL
3019 /* Get to the page containing GOT TLS entry for a symbol */
3020 {"gottprel_g0_nc", 0,
3021 0, /* adr_type */
3022 0,
3023 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
3024 0,
3025 0,
3026 0},
3027
3028 /* Get to the page containing GOT TLS entry for a symbol */
3029 {"gottprel_g1", 0,
3030 0, /* adr_type */
3031 0,
3032 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
3033 0,
3034 0,
3035 0},
3036
a06ea964
NC
3037 /* Get to the page containing GOT TLS entry for a symbol */
3038 {"tlsgd", 0,
3c12b054 3039 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
3040 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
3041 0,
3042 0,
74ad790c 3043 0,
a06ea964
NC
3044 0},
3045
3046 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
3047 {"tlsgd_lo12", 0,
6f4a313b 3048 0, /* adr_type */
a06ea964
NC
3049 0,
3050 0,
3051 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 3052 0,
a06ea964
NC
3053 0},
3054
3e8286c0
RL
3055 /* Lower 16 bits address/value: MOVk. */
3056 {"tlsgd_g0_nc", 0,
3057 0, /* adr_type */
3058 0,
3059 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
3060 0,
3061 0,
3062 0},
3063
1aa66fb1
RL
3064 /* Most significant bits 16-31 of address/value: MOVZ. */
3065 {"tlsgd_g1", 0,
3066 0, /* adr_type */
3067 0,
3068 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
3069 0,
3070 0,
3071 0},
3072
a06ea964
NC
3073 /* Get to the page containing GOT TLS entry for a symbol */
3074 {"tlsdesc", 0,
389b8029 3075 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 3076 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
3077 0,
3078 0,
74ad790c 3079 0,
1ada945d 3080 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
3081
3082 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
3083 {"tlsdesc_lo12", 0,
6f4a313b 3084 0, /* adr_type */
a06ea964
NC
3085 0,
3086 0,
f955cccf 3087 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
74ad790c
MS
3088 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
3089 0},
a06ea964 3090
6c37fedc
JW
3091 /* Get to the page containing GOT TLS entry for a symbol.
3092 The same as GD, we allocate two consecutive GOT slots
3093 for module index and module offset, the only difference
33eaf5de 3094 with GD is the module offset should be initialized to
6c37fedc
JW
3095 zero without any outstanding runtime relocation. */
3096 {"tlsldm", 0,
3097 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 3098 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
3099 0,
3100 0,
3101 0,
3102 0},
3103
a12fad50
JW
3104 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
3105 {"tlsldm_lo12_nc", 0,
3106 0, /* adr_type */
3107 0,
3108 0,
3109 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
3110 0,
3111 0},
3112
70151fb5
JW
3113 /* 12 bit offset into the module TLS base address. */
3114 {"dtprel_lo12", 0,
3115 0, /* adr_type */
3116 0,
3117 0,
3118 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 3119 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
3120 0},
3121
13289c10
JW
3122 /* Same as dtprel_lo12, no overflow check. */
3123 {"dtprel_lo12_nc", 0,
3124 0, /* adr_type */
3125 0,
3126 0,
3127 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 3128 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
3129 0},
3130
49df5539
JW
3131 /* bits[23:12] of offset to the module TLS base address. */
3132 {"dtprel_hi12", 0,
3133 0, /* adr_type */
3134 0,
3135 0,
3136 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
3137 0,
3138 0},
3139
3140 /* bits[15:0] of offset to the module TLS base address. */
3141 {"dtprel_g0", 0,
3142 0, /* adr_type */
3143 0,
3144 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
3145 0,
3146 0,
3147 0},
3148
3149 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
3150 {"dtprel_g0_nc", 0,
3151 0, /* adr_type */
3152 0,
3153 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
3154 0,
3155 0,
3156 0},
3157
3158 /* bits[31:16] of offset to the module TLS base address. */
3159 {"dtprel_g1", 0,
3160 0, /* adr_type */
3161 0,
3162 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
3163 0,
3164 0,
3165 0},
3166
3167 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
3168 {"dtprel_g1_nc", 0,
3169 0, /* adr_type */
3170 0,
3171 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
3172 0,
3173 0,
3174 0},
3175
3176 /* bits[47:32] of offset to the module TLS base address. */
3177 {"dtprel_g2", 0,
3178 0, /* adr_type */
3179 0,
3180 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
3181 0,
3182 0,
3183 0},
3184
43a357f9
RL
3185 /* Lower 16 bit offset into GOT entry for a symbol */
3186 {"tlsdesc_off_g0_nc", 0,
3187 0, /* adr_type */
3188 0,
3189 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
3190 0,
3191 0,
3192 0},
3193
3194 /* Higher 16 bit offset into GOT entry for a symbol */
3195 {"tlsdesc_off_g1", 0,
3196 0, /* adr_type */
3197 0,
3198 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
3199 0,
3200 0,
3201 0},
3202
a06ea964
NC
3203 /* Get to the page containing GOT TLS entry for a symbol */
3204 {"gottprel", 0,
6f4a313b 3205 0, /* adr_type */
a06ea964
NC
3206 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
3207 0,
3208 0,
74ad790c 3209 0,
043bf05a 3210 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
3211
3212 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
3213 {"gottprel_lo12", 0,
6f4a313b 3214 0, /* adr_type */
a06ea964
NC
3215 0,
3216 0,
3217 0,
74ad790c
MS
3218 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
3219 0},
a06ea964
NC
3220
3221 /* Get tp offset for a symbol. */
3222 {"tprel", 0,
6f4a313b 3223 0, /* adr_type */
a06ea964
NC
3224 0,
3225 0,
3226 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 3227 0,
a06ea964
NC
3228 0},
3229
3230 /* Get tp offset for a symbol. */
3231 {"tprel_lo12", 0,
6f4a313b 3232 0, /* adr_type */
a06ea964
NC
3233 0,
3234 0,
3235 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
84f1b9fb 3236 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
a06ea964
NC
3237 0},
3238
3239 /* Get tp offset for a symbol. */
3240 {"tprel_hi12", 0,
6f4a313b 3241 0, /* adr_type */
a06ea964
NC
3242 0,
3243 0,
3244 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 3245 0,
a06ea964
NC
3246 0},
3247
3248 /* Get tp offset for a symbol. */
3249 {"tprel_lo12_nc", 0,
6f4a313b 3250 0, /* adr_type */
a06ea964
NC
3251 0,
3252 0,
3253 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
84f1b9fb 3254 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
a06ea964
NC
3255 0},
3256
3257 /* Most significant bits 32-47 of address/value: MOVZ. */
3258 {"tprel_g2", 0,
6f4a313b 3259 0, /* adr_type */
a06ea964
NC
3260 0,
3261 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
3262 0,
74ad790c 3263 0,
a06ea964
NC
3264 0},
3265
3266 /* Most significant bits 16-31 of address/value: MOVZ. */
3267 {"tprel_g1", 0,
6f4a313b 3268 0, /* adr_type */
a06ea964
NC
3269 0,
3270 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
3271 0,
74ad790c 3272 0,
a06ea964
NC
3273 0},
3274
3275 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
3276 {"tprel_g1_nc", 0,
6f4a313b 3277 0, /* adr_type */
a06ea964
NC
3278 0,
3279 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
3280 0,
74ad790c 3281 0,
a06ea964
NC
3282 0},
3283
3284 /* Most significant bits 0-15 of address/value: MOVZ. */
3285 {"tprel_g0", 0,
6f4a313b 3286 0, /* adr_type */
a06ea964
NC
3287 0,
3288 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
3289 0,
74ad790c 3290 0,
a06ea964
NC
3291 0},
3292
3293 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
3294 {"tprel_g0_nc", 0,
6f4a313b 3295 0, /* adr_type */
a06ea964
NC
3296 0,
3297 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
3298 0,
74ad790c 3299 0,
a06ea964 3300 0},
a921b5bd
JW
3301
3302 /* 15bit offset from got entry to base address of GOT table. */
3303 {"gotpage_lo15", 0,
3304 0,
3305 0,
3306 0,
3307 0,
3308 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
3309 0},
3d715ce4
JW
3310
3311 /* 14bit offset from got entry to base address of GOT table. */
3312 {"gotpage_lo14", 0,
3313 0,
3314 0,
3315 0,
3316 0,
3317 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
3318 0},
a06ea964
NC
3319};
3320
3321/* Given the address of a pointer pointing to the textual name of a
3322 relocation as may appear in assembler source, attempt to find its
3323 details in reloc_table. The pointer will be updated to the character
3324 after the trailing colon. On failure, NULL will be returned;
3325 otherwise return the reloc_table_entry. */
3326
3327static struct reloc_table_entry *
3328find_reloc_table_entry (char **str)
3329{
3330 unsigned int i;
3331 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
3332 {
3333 int length = strlen (reloc_table[i].name);
3334
3335 if (strncasecmp (reloc_table[i].name, *str, length) == 0
3336 && (*str)[length] == ':')
3337 {
3338 *str += (length + 1);
3339 return &reloc_table[i];
3340 }
3341 }
3342
3343 return NULL;
3344}
3345
eac4eb8e
NC
3346/* Returns 0 if the relocation should never be forced,
3347 1 if the relocation must be forced, and -1 if either
3348 result is OK. */
3349
3350static signed int
3351aarch64_force_reloc (unsigned int type)
3352{
3353 switch (type)
3354 {
3355 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
3356 /* Perform these "immediate" internal relocations
3357 even if the symbol is extern or weak. */
3358 return 0;
3359
3360 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
3361 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
3362 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
3363 /* Pseudo relocs that need to be fixed up according to
3364 ilp32_p. */
15b7af6c 3365 return 1;
eac4eb8e
NC
3366
3367 case BFD_RELOC_AARCH64_ADD_LO12:
3368 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3369 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
3370 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3371 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3372 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3373 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
3374 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
3375 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
3376 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3377 case BFD_RELOC_AARCH64_LDST128_LO12:
3378 case BFD_RELOC_AARCH64_LDST16_LO12:
3379 case BFD_RELOC_AARCH64_LDST32_LO12:
3380 case BFD_RELOC_AARCH64_LDST64_LO12:
3381 case BFD_RELOC_AARCH64_LDST8_LO12:
04dfe7aa 3382 case BFD_RELOC_AARCH64_LDST_LO12:
eac4eb8e
NC
3383 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
3384 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3385 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
3386 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
3387 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
3388 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
3389 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3390 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
3391 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3392 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3393 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3394 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3395 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3396 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3397 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
3398 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3399 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3400 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
3401 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
3402 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
3403 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
3404 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
3405 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
3406 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
3407 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
3408 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
3409 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
3410 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
3411 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
3412 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
3413 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
3414 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
3415 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
04dfe7aa
JB
3416 case BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12:
3417 case BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC:
eac4eb8e
NC
3418 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
3419 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
3420 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
3421 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
3422 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
3423 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
3424 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
3425 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
3426 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
3427 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
3428 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
3429 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
3430 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
04dfe7aa
JB
3431 case BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12:
3432 case BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC:
eac4eb8e
NC
3433 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3434 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3435 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3436 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3437 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3438 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3439 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3440 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
3441 /* Always leave these relocations for the linker. */
3442 return 1;
3443
3444 default:
3445 return -1;
3446 }
3447}
3448
3449int
3450aarch64_force_relocation (struct fix *fixp)
3451{
3452 int res = aarch64_force_reloc (fixp->fx_r_type);
3453
3454 if (res == -1)
3455 return generic_force_reloc (fixp);
3456 return res;
3457}
3458
a06ea964
NC
3459/* Mode argument to parse_shift and parser_shifter_operand. */
3460enum parse_shift_mode
3461{
98907a70 3462 SHIFTED_NONE, /* no shifter allowed */
a06ea964
NC
3463 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
3464 "#imm{,lsl #n}" */
3465 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
3466 "#imm" */
3467 SHIFTED_LSL, /* bare "lsl #n" */
2442d846 3468 SHIFTED_MUL, /* bare "mul #n" */
a06ea964 3469 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
98907a70 3470 SHIFTED_MUL_VL, /* "mul vl" */
a06ea964
NC
3471 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
3472};
3473
3474/* Parse a <shift> operator on an AArch64 data processing instruction.
3475 Return TRUE on success; otherwise return FALSE. */
5b7c81bd 3476static bool
a06ea964
NC
3477parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
3478{
3479 const struct aarch64_name_value_pair *shift_op;
3480 enum aarch64_modifier_kind kind;
3481 expressionS exp;
3482 int exp_has_prefix;
3483 char *s = *str;
3484 char *p = s;
3485
3486 for (p = *str; ISALPHA (*p); p++)
3487 ;
3488
3489 if (p == *str)
3490 {
3491 set_syntax_error (_("shift expression expected"));
5b7c81bd 3492 return false;
a06ea964
NC
3493 }
3494
629310ab 3495 shift_op = str_hash_find_n (aarch64_shift_hsh, *str, p - *str);
a06ea964
NC
3496
3497 if (shift_op == NULL)
3498 {
3499 set_syntax_error (_("shift operator expected"));
5b7c81bd 3500 return false;
a06ea964
NC
3501 }
3502
3503 kind = aarch64_get_operand_modifier (shift_op);
3504
3505 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3506 {
3507 set_syntax_error (_("invalid use of 'MSL'"));
5b7c81bd 3508 return false;
a06ea964
NC
3509 }
3510
2442d846 3511 if (kind == AARCH64_MOD_MUL
98907a70
RS
3512 && mode != SHIFTED_MUL
3513 && mode != SHIFTED_MUL_VL)
2442d846
RS
3514 {
3515 set_syntax_error (_("invalid use of 'MUL'"));
5b7c81bd 3516 return false;
2442d846
RS
3517 }
3518
a06ea964
NC
3519 switch (mode)
3520 {
3521 case SHIFTED_LOGIC_IMM:
535b785f 3522 if (aarch64_extend_operator_p (kind))
a06ea964
NC
3523 {
3524 set_syntax_error (_("extending shift is not permitted"));
5b7c81bd 3525 return false;
a06ea964
NC
3526 }
3527 break;
3528
3529 case SHIFTED_ARITH_IMM:
3530 if (kind == AARCH64_MOD_ROR)
3531 {
3532 set_syntax_error (_("'ROR' shift is not permitted"));
5b7c81bd 3533 return false;
a06ea964
NC
3534 }
3535 break;
3536
3537 case SHIFTED_LSL:
3538 if (kind != AARCH64_MOD_LSL)
3539 {
3540 set_syntax_error (_("only 'LSL' shift is permitted"));
5b7c81bd 3541 return false;
a06ea964
NC
3542 }
3543 break;
3544
2442d846
RS
3545 case SHIFTED_MUL:
3546 if (kind != AARCH64_MOD_MUL)
3547 {
3548 set_syntax_error (_("only 'MUL' is permitted"));
5b7c81bd 3549 return false;
2442d846
RS
3550 }
3551 break;
3552
98907a70
RS
3553 case SHIFTED_MUL_VL:
3554 /* "MUL VL" consists of two separate tokens. Require the first
3555 token to be "MUL" and look for a following "VL". */
3556 if (kind == AARCH64_MOD_MUL)
3557 {
3558 skip_whitespace (p);
3559 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3560 {
3561 p += 2;
3562 kind = AARCH64_MOD_MUL_VL;
3563 break;
3564 }
3565 }
3566 set_syntax_error (_("only 'MUL VL' is permitted"));
5b7c81bd 3567 return false;
98907a70 3568
a06ea964
NC
3569 case SHIFTED_REG_OFFSET:
3570 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3571 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3572 {
3573 set_fatal_syntax_error
3574 (_("invalid shift for the register offset addressing mode"));
5b7c81bd 3575 return false;
a06ea964
NC
3576 }
3577 break;
3578
3579 case SHIFTED_LSL_MSL:
3580 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3581 {
3582 set_syntax_error (_("invalid shift operator"));
5b7c81bd 3583 return false;
a06ea964
NC
3584 }
3585 break;
3586
3587 default:
3588 abort ();
3589 }
3590
3591 /* Whitespace can appear here if the next thing is a bare digit. */
3592 skip_whitespace (p);
3593
3594 /* Parse shift amount. */
3595 exp_has_prefix = 0;
98907a70 3596 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
a06ea964
NC
3597 exp.X_op = O_absent;
3598 else
3599 {
3600 if (is_immediate_prefix (*p))
3601 {
3602 p++;
3603 exp_has_prefix = 1;
3604 }
c1723a81 3605 aarch64_get_expression (&exp, &p, GE_NO_PREFIX, ALLOW_ABSENT);
a06ea964 3606 }
98907a70
RS
3607 if (kind == AARCH64_MOD_MUL_VL)
3608 /* For consistency, give MUL VL the same shift amount as an implicit
3609 MUL #1. */
3610 operand->shifter.amount = 1;
3611 else if (exp.X_op == O_absent)
a06ea964 3612 {
535b785f 3613 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
a06ea964
NC
3614 {
3615 set_syntax_error (_("missing shift amount"));
5b7c81bd 3616 return false;
a06ea964
NC
3617 }
3618 operand->shifter.amount = 0;
3619 }
3620 else if (exp.X_op != O_constant)
3621 {
3622 set_syntax_error (_("constant shift amount required"));
5b7c81bd 3623 return false;
a06ea964 3624 }
2442d846
RS
3625 /* For parsing purposes, MUL #n has no inherent range. The range
3626 depends on the operand and will be checked by operand-specific
3627 routines. */
3628 else if (kind != AARCH64_MOD_MUL
3629 && (exp.X_add_number < 0 || exp.X_add_number > 63))
a06ea964
NC
3630 {
3631 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
5b7c81bd 3632 return false;
a06ea964
NC
3633 }
3634 else
3635 {
3636 operand->shifter.amount = exp.X_add_number;
3637 operand->shifter.amount_present = 1;
3638 }
3639
3640 operand->shifter.operator_present = 1;
3641 operand->shifter.kind = kind;
3642
3643 *str = p;
5b7c81bd 3644 return true;
a06ea964
NC
3645}
3646
3647/* Parse a <shifter_operand> for a data processing instruction:
3648
3649 #<immediate>
3650 #<immediate>, LSL #imm
3651
3652 Validation of immediate operands is deferred to md_apply_fix.
3653
3654 Return TRUE on success; otherwise return FALSE. */
3655
5b7c81bd 3656static bool
a06ea964
NC
3657parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3658 enum parse_shift_mode mode)
3659{
3660 char *p;
3661
3662 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
5b7c81bd 3663 return false;
a06ea964
NC
3664
3665 p = *str;
3666
3667 /* Accept an immediate expression. */
eac4eb8e 3668 if (! aarch64_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX,
c1723a81 3669 REJECT_ABSENT))
5b7c81bd 3670 return false;
a06ea964
NC
3671
3672 /* Accept optional LSL for arithmetic immediate values. */
3673 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3674 if (! parse_shift (&p, operand, SHIFTED_LSL))
5b7c81bd 3675 return false;
a06ea964
NC
3676
3677 /* Not accept any shifter for logical immediate values. */
3678 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3679 && parse_shift (&p, operand, mode))
3680 {
3681 set_syntax_error (_("unexpected shift operator"));
5b7c81bd 3682 return false;
a06ea964
NC
3683 }
3684
3685 *str = p;
5b7c81bd 3686 return true;
a06ea964
NC
3687}
3688
3689/* Parse a <shifter_operand> for a data processing instruction:
3690
3691 <Rm>
3692 <Rm>, <shift>
3693 #<immediate>
3694 #<immediate>, LSL #imm
3695
3696 where <shift> is handled by parse_shift above, and the last two
3697 cases are handled by the function above.
3698
3699 Validation of immediate operands is deferred to md_apply_fix.
3700
3701 Return TRUE on success; otherwise return FALSE. */
3702
5b7c81bd 3703static bool
a06ea964
NC
3704parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3705 enum parse_shift_mode mode)
3706{
e1b988bb
RS
3707 const reg_entry *reg;
3708 aarch64_opnd_qualifier_t qualifier;
a06ea964
NC
3709 enum aarch64_operand_class opd_class
3710 = aarch64_get_operand_class (operand->type);
3711
e1b988bb
RS
3712 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3713 if (reg)
a06ea964
NC
3714 {
3715 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3716 {
3717 set_syntax_error (_("unexpected register in the immediate operand"));
5b7c81bd 3718 return false;
a06ea964
NC
3719 }
3720
2f4e3a2c 3721 if (!aarch64_check_reg_type (reg, REG_TYPE_R_ZR))
a06ea964 3722 {
2f4e3a2c 3723 set_expected_reg_error (REG_TYPE_R_ZR, reg, 0);
5b7c81bd 3724 return false;
a06ea964
NC
3725 }
3726
e1b988bb
RS
3727 operand->reg.regno = reg->number;
3728 operand->qualifier = qualifier;
a06ea964
NC
3729
3730 /* Accept optional shift operation on register. */
3731 if (! skip_past_comma (str))
5b7c81bd 3732 return true;
a06ea964
NC
3733
3734 if (! parse_shift (str, operand, mode))
5b7c81bd 3735 return false;
a06ea964 3736
5b7c81bd 3737 return true;
a06ea964
NC
3738 }
3739 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3740 {
3741 set_syntax_error
3742 (_("integer register expected in the extended/shifted operand "
3743 "register"));
5b7c81bd 3744 return false;
a06ea964
NC
3745 }
3746
3747 /* We have a shifted immediate variable. */
3748 return parse_shifter_operand_imm (str, operand, mode);
3749}
3750
3751/* Return TRUE on success; return FALSE otherwise. */
3752
5b7c81bd 3753static bool
a06ea964
NC
3754parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3755 enum parse_shift_mode mode)
3756{
3757 char *p = *str;
3758
3759 /* Determine if we have the sequence of characters #: or just :
3760 coming next. If we do, then we check for a :rello: relocation
3761 modifier. If we don't, punt the whole lot to
3762 parse_shifter_operand. */
3763
3764 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3765 {
3766 struct reloc_table_entry *entry;
3767
3768 if (p[0] == '#')
3769 p += 2;
3770 else
3771 p++;
3772 *str = p;
3773
3774 /* Try to parse a relocation. Anything else is an error. */
3775 if (!(entry = find_reloc_table_entry (str)))
3776 {
3777 set_syntax_error (_("unknown relocation modifier"));
5b7c81bd 3778 return false;
a06ea964
NC
3779 }
3780
3781 if (entry->add_type == 0)
3782 {
3783 set_syntax_error
3784 (_("this relocation modifier is not allowed on this instruction"));
5b7c81bd 3785 return false;
a06ea964
NC
3786 }
3787
3788 /* Save str before we decompose it. */
3789 p = *str;
3790
3791 /* Next, we parse the expression. */
eac4eb8e 3792 if (! aarch64_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX,
c1723a81 3793 REJECT_ABSENT))
5b7c81bd 3794 return false;
eac4eb8e 3795
a06ea964
NC
3796 /* Record the relocation type (use the ADD variant here). */
3797 inst.reloc.type = entry->add_type;
3798 inst.reloc.pc_rel = entry->pc_rel;
3799
3800 /* If str is empty, we've reached the end, stop here. */
3801 if (**str == '\0')
5b7c81bd 3802 return true;
a06ea964 3803
55d9b4c1 3804 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3805 recover the variable name and continue parsing for the shifter. */
3806 *str = p;
3807 return parse_shifter_operand_imm (str, operand, mode);
3808 }
3809
3810 return parse_shifter_operand (str, operand, mode);
3811}
3812
3813/* Parse all forms of an address expression. Information is written
3814 to *OPERAND and/or inst.reloc.
3815
3816 The A64 instruction set has the following addressing modes:
3817
3818 Offset
4df068de
RS
3819 [base] // in SIMD ld/st structure
3820 [base{,#0}] // in ld/st exclusive
a06ea964
NC
3821 [base{,#imm}]
3822 [base,Xm{,LSL #imm}]
3823 [base,Xm,SXTX {#imm}]
3824 [base,Wm,(S|U)XTW {#imm}]
3825 Pre-indexed
1820262b 3826 [base]! // in ldraa/ldrab exclusive
a06ea964
NC
3827 [base,#imm]!
3828 Post-indexed
3829 [base],#imm
4df068de 3830 [base],Xm // in SIMD ld/st structure
a06ea964
NC
3831 PC-relative (literal)
3832 label
4df068de 3833 SVE:
98907a70 3834 [base,#imm,MUL VL]
4df068de
RS
3835 [base,Zm.D{,LSL #imm}]
3836 [base,Zm.S,(S|U)XTW {#imm}]
3837 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3838 [Zn.S,#imm]
3839 [Zn.D,#imm]
c469c864 3840 [Zn.S{, Xm}]
4df068de
RS
3841 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3842 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3843 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
a06ea964
NC
3844
3845 (As a convenience, the notation "=immediate" is permitted in conjunction
3846 with the pc-relative literal load instructions to automatically place an
3847 immediate value or symbolic address in a nearby literal pool and generate
3848 a hidden label which references it.)
3849
3850 Upon a successful parsing, the address structure in *OPERAND will be
3851 filled in the following way:
3852
3853 .base_regno = <base>
3854 .offset.is_reg // 1 if the offset is a register
3855 .offset.imm = <imm>
3856 .offset.regno = <Rm>
3857
3858 For different addressing modes defined in the A64 ISA:
3859
3860 Offset
3861 .pcrel=0; .preind=1; .postind=0; .writeback=0
3862 Pre-indexed
3863 .pcrel=0; .preind=1; .postind=0; .writeback=1
3864 Post-indexed
3865 .pcrel=0; .preind=0; .postind=1; .writeback=1
3866 PC-relative (literal)
3867 .pcrel=1; .preind=1; .postind=0; .writeback=0
3868
3869 The shift/extension information, if any, will be stored in .shifter.
4df068de
RS
3870 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3871 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3872 corresponding register.
a06ea964 3873
4df068de 3874 BASE_TYPE says which types of base register should be accepted and
98907a70
RS
3875 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3876 is the type of shifter that is allowed for immediate offsets,
3877 or SHIFTED_NONE if none.
3878
3879 In all other respects, it is the caller's responsibility to check
3880 for addressing modes not supported by the instruction, and to set
3881 inst.reloc.type. */
a06ea964 3882
5b7c81bd 3883static bool
4df068de
RS
3884parse_address_main (char **str, aarch64_opnd_info *operand,
3885 aarch64_opnd_qualifier_t *base_qualifier,
3886 aarch64_opnd_qualifier_t *offset_qualifier,
98907a70
RS
3887 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3888 enum parse_shift_mode imm_shift_mode)
a06ea964
NC
3889{
3890 char *p = *str;
e1b988bb 3891 const reg_entry *reg;
a06ea964
NC
3892 expressionS *exp = &inst.reloc.exp;
3893
4df068de
RS
3894 *base_qualifier = AARCH64_OPND_QLF_NIL;
3895 *offset_qualifier = AARCH64_OPND_QLF_NIL;
a06ea964
NC
3896 if (! skip_past_char (&p, '['))
3897 {
3898 /* =immediate or label. */
3899 operand->addr.pcrel = 1;
3900 operand->addr.preind = 1;
3901
f41aef5f
RE
3902 /* #:<reloc_op>:<symbol> */
3903 skip_past_char (&p, '#');
73866052 3904 if (skip_past_char (&p, ':'))
f41aef5f 3905 {
6f4a313b 3906 bfd_reloc_code_real_type ty;
f41aef5f
RE
3907 struct reloc_table_entry *entry;
3908
3909 /* Try to parse a relocation modifier. Anything else is
3910 an error. */
3911 entry = find_reloc_table_entry (&p);
3912 if (! entry)
3913 {
3914 set_syntax_error (_("unknown relocation modifier"));
5b7c81bd 3915 return false;
f41aef5f
RE
3916 }
3917
6f4a313b
MS
3918 switch (operand->type)
3919 {
3920 case AARCH64_OPND_ADDR_PCREL21:
3921 /* adr */
3922 ty = entry->adr_type;
3923 break;
3924
3925 default:
74ad790c 3926 ty = entry->ld_literal_type;
6f4a313b
MS
3927 break;
3928 }
3929
3930 if (ty == 0)
f41aef5f
RE
3931 {
3932 set_syntax_error
3933 (_("this relocation modifier is not allowed on this "
3934 "instruction"));
5b7c81bd 3935 return false;
f41aef5f
RE
3936 }
3937
3938 /* #:<reloc_op>: */
c1723a81 3939 if (! aarch64_get_expression (exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
f41aef5f
RE
3940 {
3941 set_syntax_error (_("invalid relocation expression"));
5b7c81bd 3942 return false;
f41aef5f 3943 }
f41aef5f 3944 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3945 /* Record the relocation type. */
3946 inst.reloc.type = ty;
f41aef5f
RE
3947 inst.reloc.pc_rel = entry->pc_rel;
3948 }
3949 else
a06ea964 3950 {
f41aef5f
RE
3951 if (skip_past_char (&p, '='))
3952 /* =immediate; need to generate the literal in the literal pool. */
3953 inst.gen_lit_pool = 1;
3954
c1723a81 3955 if (!aarch64_get_expression (exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
f41aef5f
RE
3956 {
3957 set_syntax_error (_("invalid address"));
5b7c81bd 3958 return false;
f41aef5f 3959 }
a06ea964
NC
3960 }
3961
3962 *str = p;
5b7c81bd 3963 return true;
a06ea964
NC
3964 }
3965
3966 /* [ */
3967
72c1dab0 3968 bool alpha_base_p = ISALPHA (*p);
4df068de
RS
3969 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3970 if (!reg || !aarch64_check_reg_type (reg, base_type))
a06ea964 3971 {
72c1dab0
RS
3972 if (reg
3973 && aarch64_check_reg_type (reg, REG_TYPE_R_SP)
3974 && *base_qualifier == AARCH64_OPND_QLF_W)
3975 set_syntax_error (_("expected a 64-bit base register"));
3976 else if (alpha_base_p)
3977 set_syntax_error (_("invalid base register"));
3978 else
3979 set_syntax_error (_("expected a base register"));
5b7c81bd 3980 return false;
a06ea964 3981 }
e1b988bb 3982 operand->addr.base_regno = reg->number;
a06ea964
NC
3983
3984 /* [Xn */
3985 if (skip_past_comma (&p))
3986 {
3987 /* [Xn, */
3988 operand->addr.preind = 1;
3989
4df068de 3990 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
e1b988bb 3991 if (reg)
a06ea964 3992 {
4df068de 3993 if (!aarch64_check_reg_type (reg, offset_type))
e1b988bb 3994 {
72c1dab0 3995 set_syntax_error (_("invalid offset register"));
5b7c81bd 3996 return false;
e1b988bb
RS
3997 }
3998
a06ea964 3999 /* [Xn,Rm */
e1b988bb 4000 operand->addr.offset.regno = reg->number;
a06ea964
NC
4001 operand->addr.offset.is_reg = 1;
4002 /* Shifted index. */
4003 if (skip_past_comma (&p))
4004 {
4005 /* [Xn,Rm, */
4006 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
4007 /* Use the diagnostics set in parse_shift, so not set new
4008 error message here. */
5b7c81bd 4009 return false;
a06ea964
NC
4010 }
4011 /* We only accept:
c469c864 4012 [base,Xm] # For vector plus scalar SVE2 indexing.
a06ea964
NC
4013 [base,Xm{,LSL #imm}]
4014 [base,Xm,SXTX {#imm}]
4015 [base,Wm,(S|U)XTW {#imm}] */
4016 if (operand->shifter.kind == AARCH64_MOD_NONE
4017 || operand->shifter.kind == AARCH64_MOD_LSL
4018 || operand->shifter.kind == AARCH64_MOD_SXTX)
4019 {
4df068de 4020 if (*offset_qualifier == AARCH64_OPND_QLF_W)
a06ea964
NC
4021 {
4022 set_syntax_error (_("invalid use of 32-bit register offset"));
5b7c81bd 4023 return false;
a06ea964 4024 }
4df068de 4025 if (aarch64_get_qualifier_esize (*base_qualifier)
c469c864
MM
4026 != aarch64_get_qualifier_esize (*offset_qualifier)
4027 && (operand->type != AARCH64_OPND_SVE_ADDR_ZX
4028 || *base_qualifier != AARCH64_OPND_QLF_S_S
4029 || *offset_qualifier != AARCH64_OPND_QLF_X))
4df068de
RS
4030 {
4031 set_syntax_error (_("offset has different size from base"));
5b7c81bd 4032 return false;
4df068de 4033 }
a06ea964 4034 }
4df068de 4035 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
a06ea964
NC
4036 {
4037 set_syntax_error (_("invalid use of 64-bit register offset"));
5b7c81bd 4038 return false;
a06ea964
NC
4039 }
4040 }
4041 else
4042 {
4043 /* [Xn,#:<reloc_op>:<symbol> */
4044 skip_past_char (&p, '#');
73866052 4045 if (skip_past_char (&p, ':'))
a06ea964
NC
4046 {
4047 struct reloc_table_entry *entry;
4048
4049 /* Try to parse a relocation modifier. Anything else is
4050 an error. */
4051 if (!(entry = find_reloc_table_entry (&p)))
4052 {
4053 set_syntax_error (_("unknown relocation modifier"));
5b7c81bd 4054 return false;
a06ea964
NC
4055 }
4056
4057 if (entry->ldst_type == 0)
4058 {
4059 set_syntax_error
4060 (_("this relocation modifier is not allowed on this "
4061 "instruction"));
5b7c81bd 4062 return false;
a06ea964
NC
4063 }
4064
4065 /* [Xn,#:<reloc_op>: */
4066 /* We now have the group relocation table entry corresponding to
4067 the name in the assembler source. Next, we parse the
4068 expression. */
c1723a81 4069 if (! aarch64_get_expression (exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
a06ea964
NC
4070 {
4071 set_syntax_error (_("invalid relocation expression"));
5b7c81bd 4072 return false;
a06ea964
NC
4073 }
4074
4075 /* [Xn,#:<reloc_op>:<expr> */
4076 /* Record the load/store relocation type. */
4077 inst.reloc.type = entry->ldst_type;
4078 inst.reloc.pc_rel = entry->pc_rel;
4079 }
98907a70 4080 else
a06ea964 4081 {
c1723a81 4082 if (! aarch64_get_expression (exp, &p, GE_OPT_PREFIX, REJECT_ABSENT))
98907a70
RS
4083 {
4084 set_syntax_error (_("invalid expression in the address"));
5b7c81bd 4085 return false;
98907a70
RS
4086 }
4087 /* [Xn,<expr> */
4088 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
4089 /* [Xn,<expr>,<shifter> */
4090 if (! parse_shift (&p, operand, imm_shift_mode))
5b7c81bd 4091 return false;
a06ea964 4092 }
a06ea964
NC
4093 }
4094 }
4095
4096 if (! skip_past_char (&p, ']'))
4097 {
4098 set_syntax_error (_("']' expected"));
5b7c81bd 4099 return false;
a06ea964
NC
4100 }
4101
4102 if (skip_past_char (&p, '!'))
4103 {
4104 if (operand->addr.preind && operand->addr.offset.is_reg)
4105 {
4106 set_syntax_error (_("register offset not allowed in pre-indexed "
4107 "addressing mode"));
5b7c81bd 4108 return false;
a06ea964
NC
4109 }
4110 /* [Xn]! */
4111 operand->addr.writeback = 1;
4112 }
4113 else if (skip_past_comma (&p))
4114 {
4115 /* [Xn], */
4116 operand->addr.postind = 1;
4117 operand->addr.writeback = 1;
4118
4119 if (operand->addr.preind)
4120 {
4121 set_syntax_error (_("cannot combine pre- and post-indexing"));
5b7c81bd 4122 return false;
a06ea964
NC
4123 }
4124
4df068de 4125 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
73866052 4126 if (reg)
a06ea964
NC
4127 {
4128 /* [Xn],Xm */
e1b988bb 4129 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
a06ea964 4130 {
72c1dab0 4131 set_syntax_error (_("invalid offset register"));
5b7c81bd 4132 return false;
a06ea964 4133 }
e1b988bb
RS
4134
4135 operand->addr.offset.regno = reg->number;
a06ea964
NC
4136 operand->addr.offset.is_reg = 1;
4137 }
c1723a81 4138 else if (! aarch64_get_expression (exp, &p, GE_OPT_PREFIX, REJECT_ABSENT))
a06ea964
NC
4139 {
4140 /* [Xn],#expr */
4141 set_syntax_error (_("invalid expression in the address"));
5b7c81bd 4142 return false;
a06ea964
NC
4143 }
4144 }
4145
4146 /* If at this point neither .preind nor .postind is set, we have a
1820262b
DB
4147 bare [Rn]{!}; only accept [Rn]! as a shorthand for [Rn,#0]! for ldraa and
4148 ldrab, accept [Rn] as a shorthand for [Rn,#0].
c469c864
MM
4149 For SVE2 vector plus scalar offsets, allow [Zn.<T>] as shorthand for
4150 [Zn.<T>, xzr]. */
a06ea964
NC
4151 if (operand->addr.preind == 0 && operand->addr.postind == 0)
4152 {
550fd7bf 4153 if (operand->addr.writeback)
a06ea964 4154 {
1820262b
DB
4155 if (operand->type == AARCH64_OPND_ADDR_SIMM10)
4156 {
4157 /* Accept [Rn]! as a shorthand for [Rn,#0]! */
4158 operand->addr.offset.is_reg = 0;
4159 operand->addr.offset.imm = 0;
4160 operand->addr.preind = 1;
4161 }
4162 else
4163 {
4164 /* Reject [Rn]! */
4165 set_syntax_error (_("missing offset in the pre-indexed address"));
5b7c81bd 4166 return false;
1820262b 4167 }
a06ea964 4168 }
1820262b 4169 else
c469c864 4170 {
1820262b
DB
4171 operand->addr.preind = 1;
4172 if (operand->type == AARCH64_OPND_SVE_ADDR_ZX)
4173 {
4174 operand->addr.offset.is_reg = 1;
4175 operand->addr.offset.regno = REG_ZR;
4176 *offset_qualifier = AARCH64_OPND_QLF_X;
4177 }
4178 else
4179 {
4180 inst.reloc.exp.X_op = O_constant;
4181 inst.reloc.exp.X_add_number = 0;
4182 }
c469c864 4183 }
a06ea964
NC
4184 }
4185
4186 *str = p;
5b7c81bd 4187 return true;
a06ea964
NC
4188}
4189
73866052
RS
4190/* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
4191 on success. */
5b7c81bd 4192static bool
73866052 4193parse_address (char **str, aarch64_opnd_info *operand)
a06ea964 4194{
4df068de
RS
4195 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
4196 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
2f4e3a2c 4197 REG_TYPE_R64_SP, REG_TYPE_R_ZR, SHIFTED_NONE);
4df068de
RS
4198}
4199
98907a70 4200/* Parse an address in which SVE vector registers and MUL VL are allowed.
4df068de
RS
4201 The arguments have the same meaning as for parse_address_main.
4202 Return TRUE on success. */
5b7c81bd 4203static bool
4df068de
RS
4204parse_sve_address (char **str, aarch64_opnd_info *operand,
4205 aarch64_opnd_qualifier_t *base_qualifier,
4206 aarch64_opnd_qualifier_t *offset_qualifier)
4207{
4208 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
98907a70
RS
4209 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
4210 SHIFTED_MUL_VL);
a06ea964
NC
4211}
4212
6327658e
RS
4213/* Parse a register X0-X30. The register must be 64-bit and register 31
4214 is unallocated. */
4215static bool
4216parse_x0_to_x30 (char **str, aarch64_opnd_info *operand)
4217{
4218 const reg_entry *reg = parse_reg (str);
4219 if (!reg || !aarch64_check_reg_type (reg, REG_TYPE_R_64))
4220 {
e426521e 4221 set_expected_reg_error (REG_TYPE_R_64, reg, 0);
6327658e
RS
4222 return false;
4223 }
4224 operand->reg.regno = reg->number;
4225 operand->qualifier = AARCH64_OPND_QLF_X;
4226 return true;
4227}
4228
a06ea964
NC
4229/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
4230 Return TRUE on success; otherwise return FALSE. */
5b7c81bd 4231static bool
a06ea964
NC
4232parse_half (char **str, int *internal_fixup_p)
4233{
671eeb28 4234 char *p = *str;
a06ea964 4235
a06ea964
NC
4236 skip_past_char (&p, '#');
4237
4238 gas_assert (internal_fixup_p);
4239 *internal_fixup_p = 0;
4240
4241 if (*p == ':')
4242 {
4243 struct reloc_table_entry *entry;
4244
4245 /* Try to parse a relocation. Anything else is an error. */
4246 ++p;
eac4eb8e 4247
a06ea964
NC
4248 if (!(entry = find_reloc_table_entry (&p)))
4249 {
4250 set_syntax_error (_("unknown relocation modifier"));
5b7c81bd 4251 return false;
a06ea964
NC
4252 }
4253
4254 if (entry->movw_type == 0)
4255 {
4256 set_syntax_error
4257 (_("this relocation modifier is not allowed on this instruction"));
5b7c81bd 4258 return false;
a06ea964
NC
4259 }
4260
4261 inst.reloc.type = entry->movw_type;
4262 }
4263 else
4264 *internal_fixup_p = 1;
4265
c1723a81 4266 if (! aarch64_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
5b7c81bd 4267 return false;
a06ea964
NC
4268
4269 *str = p;
5b7c81bd 4270 return true;
a06ea964
NC
4271}
4272
4273/* Parse an operand for an ADRP instruction:
4274 ADRP <Xd>, <label>
4275 Return TRUE on success; otherwise return FALSE. */
4276
5b7c81bd 4277static bool
a06ea964
NC
4278parse_adrp (char **str)
4279{
4280 char *p;
4281
4282 p = *str;
4283 if (*p == ':')
4284 {
4285 struct reloc_table_entry *entry;
4286
4287 /* Try to parse a relocation. Anything else is an error. */
4288 ++p;
4289 if (!(entry = find_reloc_table_entry (&p)))
4290 {
4291 set_syntax_error (_("unknown relocation modifier"));
5b7c81bd 4292 return false;
a06ea964
NC
4293 }
4294
4295 if (entry->adrp_type == 0)
4296 {
4297 set_syntax_error
4298 (_("this relocation modifier is not allowed on this instruction"));
5b7c81bd 4299 return false;
a06ea964
NC
4300 }
4301
4302 inst.reloc.type = entry->adrp_type;
4303 }
4304 else
4305 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
4306
4307 inst.reloc.pc_rel = 1;
c1723a81 4308 if (! aarch64_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
5b7c81bd 4309 return false;
a06ea964 4310 *str = p;
5b7c81bd 4311 return true;
a06ea964
NC
4312}
4313
4314/* Miscellaneous. */
4315
245d2e3f
RS
4316/* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
4317 of SIZE tokens in which index I gives the token for field value I,
99e01a66
RS
4318 or is null if field value I is invalid. If the symbolic operand
4319 can also be given as a 0-based integer, REG_TYPE says which register
4320 names should be treated as registers rather than as symbolic immediates
4321 while parsing that integer. REG_TYPE is REG_TYPE_MAX otherwise.
245d2e3f
RS
4322
4323 Return true on success, moving *STR past the operand and storing the
4324 field value in *VAL. */
4325
4326static int
4327parse_enum_string (char **str, int64_t *val, const char *const *array,
4328 size_t size, aarch64_reg_type reg_type)
4329{
4330 expressionS exp;
4331 char *p, *q;
4332 size_t i;
4333
4334 /* Match C-like tokens. */
4335 p = q = *str;
4336 while (ISALNUM (*q))
4337 q++;
4338
4339 for (i = 0; i < size; ++i)
4340 if (array[i]
4341 && strncasecmp (array[i], p, q - p) == 0
4342 && array[i][q - p] == 0)
4343 {
4344 *val = i;
4345 *str = q;
5b7c81bd 4346 return true;
245d2e3f
RS
4347 }
4348
99e01a66
RS
4349 if (reg_type == REG_TYPE_MAX)
4350 return false;
4351
245d2e3f 4352 if (!parse_immediate_expression (&p, &exp, reg_type))
5b7c81bd 4353 return false;
245d2e3f
RS
4354
4355 if (exp.X_op == O_constant
4356 && (uint64_t) exp.X_add_number < size)
4357 {
4358 *val = exp.X_add_number;
4359 *str = p;
5b7c81bd 4360 return true;
245d2e3f
RS
4361 }
4362
4363 /* Use the default error for this operand. */
5b7c81bd 4364 return false;
245d2e3f
RS
4365}
4366
a06ea964
NC
4367/* Parse an option for a preload instruction. Returns the encoding for the
4368 option, or PARSE_FAIL. */
4369
4370static int
4371parse_pldop (char **str)
4372{
4373 char *p, *q;
4374 const struct aarch64_name_value_pair *o;
4375
4376 p = q = *str;
4377 while (ISALNUM (*q))
4378 q++;
4379
629310ab 4380 o = str_hash_find_n (aarch64_pldop_hsh, p, q - p);
a06ea964
NC
4381 if (!o)
4382 return PARSE_FAIL;
4383
4384 *str = q;
4385 return o->value;
4386}
4387
4388/* Parse an option for a barrier instruction. Returns the encoding for the
4389 option, or PARSE_FAIL. */
4390
4391static int
4392parse_barrier (char **str)
4393{
4394 char *p, *q;
05cfb0d8 4395 const struct aarch64_name_value_pair *o;
a06ea964
NC
4396
4397 p = q = *str;
4398 while (ISALPHA (*q))
4399 q++;
4400
629310ab 4401 o = str_hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
a06ea964
NC
4402 if (!o)
4403 return PARSE_FAIL;
4404
4405 *str = q;
4406 return o->value;
4407}
4408
c58f84d8
SP
4409/* Parse an option for barrier, bti and guarded control stack data
4410 synchronization instructions. Return true on matching the target
4411 options else return false. */
1e6f4800 4412
c58f84d8
SP
4413static bool
4414parse_hint_opt (const char *name, char **str,
4415 const struct aarch64_name_value_pair ** hint_opt)
ff605452
SD
4416{
4417 char *p, *q;
4418 const struct aarch64_name_value_pair *o;
4419
4420 p = q = *str;
4421 while (ISALPHA (*q))
4422 q++;
4423
629310ab 4424 o = str_hash_find_n (aarch64_hint_opt_hsh, p, q - p);
ff605452 4425 if (!o)
c58f84d8 4426 return false;
ff605452 4427
c58f84d8
SP
4428 if ((strcmp ("gcsb", name) == 0 && o->value != HINT_OPD_DSYNC)
4429 || ((strcmp ("psb", name) == 0 || strcmp ("tsb", name) == 0)
4430 && o->value != HINT_OPD_CSYNC)
4431 || ((strcmp ("bti", name) == 0)
4432 && (o->value != HINT_OPD_C && o->value != HINT_OPD_J
4433 && o->value != HINT_OPD_JC)))
4434 return false;
ff605452
SD
4435
4436 *str = q;
4437 *hint_opt = o;
c58f84d8 4438 return true;
ff605452
SD
4439}
4440
971eda73
PW
4441/* Parse STR for reg of REG_TYPE and following '.' and QUALIFIER.
4442 Function returns REG_ENTRY struct and QUALIFIER [bhsdq] or NULL
4443 on failure. Format:
4444
4445 REG_TYPE.QUALIFIER
4446
4447 Side effect: Update STR with current parse position of success.
b9ca3896
RS
4448
4449 FLAGS is as for parse_typed_reg. */
971eda73
PW
4450
4451static const reg_entry *
4452parse_reg_with_qual (char **str, aarch64_reg_type reg_type,
b9ca3896 4453 aarch64_opnd_qualifier_t *qualifier, unsigned int flags)
971eda73 4454{
c211f268
RS
4455 struct vector_type_el vectype;
4456 const reg_entry *reg = parse_typed_reg (str, reg_type, &vectype,
b9ca3896 4457 PTR_FULL_REG | flags);
c211f268
RS
4458 if (!reg)
4459 return NULL;
971eda73 4460
e9e1ddbb
RS
4461 if (vectype.type == NT_invtype)
4462 *qualifier = AARCH64_OPND_QLF_NIL;
4463 else
4464 {
4465 *qualifier = vectype_to_qualifier (&vectype);
4466 if (*qualifier == AARCH64_OPND_QLF_NIL)
4467 return NULL;
4468 }
971eda73 4469
c211f268 4470 return reg;
971eda73
PW
4471}
4472
7bb5f07c
PW
4473/* Parse STR for unsigned, immediate (1-2 digits) in format:
4474
4475 #<imm>
4476 <imm>
4477
4478 Function return TRUE if immediate was found, or FALSE.
4479*/
4480static bool
4481parse_sme_immediate (char **str, int64_t *imm)
4482{
4483 int64_t val;
4484 if (! parse_constant_immediate (str, &val, REG_TYPE_R_N))
4485 return false;
4486
4487 *imm = val;
4488 return true;
4489}
4490
7da28504 4491/* Parse index with selection register and immediate offset:
7bb5f07c
PW
4492
4493 [<Wv>, <imm>]
4494 [<Wv>, #<imm>]
89e06ec1 4495 [<Ws>, <offsf>:<offsl>]
7bb5f07c 4496
1d597b88 4497 Return true on success, populating OPND with the parsed index. */
7bb5f07c 4498
7bb5f07c 4499static bool
1d597b88 4500parse_sme_za_index (char **str, struct aarch64_indexed_za *opnd)
7bb5f07c
PW
4501{
4502 const reg_entry *reg;
4503
4504 if (!skip_past_char (str, '['))
4505 {
4506 set_syntax_error (_("expected '['"));
4507 return false;
4508 }
4509
7da28504 4510 /* The selection register, encoded in the 2-bit Rv field. */
7bb5f07c 4511 reg = parse_reg (str);
7da28504 4512 if (reg == NULL || reg->type != REG_TYPE_R_32)
7bb5f07c 4513 {
7da28504 4514 set_syntax_error (_("expected a 32-bit selection register"));
7bb5f07c
PW
4515 return false;
4516 }
1d597b88 4517 opnd->index.regno = reg->number;
7bb5f07c 4518
f42fba98 4519 if (!skip_past_char (str, ','))
7bb5f07c 4520 {
f42fba98 4521 set_syntax_error (_("missing immediate offset"));
7bb5f07c
PW
4522 return false;
4523 }
4524
1d597b88 4525 if (!parse_sme_immediate (str, &opnd->index.imm))
7bb5f07c 4526 {
f42fba98 4527 set_syntax_error (_("expected a constant immediate offset"));
7bb5f07c
PW
4528 return false;
4529 }
4530
586c6281
RS
4531 if (skip_past_char (str, ':'))
4532 {
4533 int64_t end;
4534 if (!parse_sme_immediate (str, &end))
4535 {
4536 set_syntax_error (_("expected a constant immediate offset"));
4537 return false;
4538 }
4539 if (end < opnd->index.imm)
4540 {
4541 set_syntax_error (_("the last offset is less than the"
4542 " first offset"));
4543 return false;
4544 }
4545 if (end == opnd->index.imm)
4546 {
4547 set_syntax_error (_("the last offset is equal to the"
4548 " first offset"));
4549 return false;
4550 }
4551 opnd->index.countm1 = (uint64_t) end - opnd->index.imm;
4552 }
4553
e2dc4040
RS
4554 opnd->group_size = 0;
4555 if (skip_past_char (str, ','))
4556 {
4557 if (strncasecmp (*str, "vgx2", 4) == 0 && !ISALPHA ((*str)[4]))
4558 {
4559 *str += 4;
4560 opnd->group_size = 2;
4561 }
4562 else if (strncasecmp (*str, "vgx4", 4) == 0 && !ISALPHA ((*str)[4]))
4563 {
4564 *str += 4;
4565 opnd->group_size = 4;
4566 }
4567 else
4568 {
4569 set_syntax_error (_("invalid vector group size"));
4570 return false;
4571 }
4572 }
4573
7bb5f07c
PW
4574 if (!skip_past_char (str, ']'))
4575 {
4576 set_syntax_error (_("expected ']'"));
4577 return false;
4578 }
4579
4580 return true;
4581}
4582
9d862382
RS
4583/* Parse a register of type REG_TYPE that might have an element type
4584 qualifier and that is indexed by two values: a 32-bit register,
7da28504
RS
4585 followed by an immediate. The ranges of the register and the
4586 immediate vary by opcode and are checked in libopcodes.
9d862382 4587
1d597b88 4588 Return true on success, populating OPND with information about
9d862382 4589 the operand and setting QUALIFIER to the register qualifier.
7bb5f07c
PW
4590
4591 Field format examples:
4592
9d862382
RS
4593 <Pm>.<T>[<Wv>< #<imm>]
4594 ZA[<Wv>, #<imm>]
4595 <ZAn><HV>.<T>[<Wv>, #<imm>]
89e06ec1 4596 <ZAn><HV>.<T>[<Ws>, <offsf>:<offsl>]
b9ca3896
RS
4597
4598 FLAGS is as for parse_typed_reg. */
4599
1d597b88 4600static bool
9d862382
RS
4601parse_dual_indexed_reg (char **str, aarch64_reg_type reg_type,
4602 struct aarch64_indexed_za *opnd,
b9ca3896
RS
4603 aarch64_opnd_qualifier_t *qualifier,
4604 unsigned int flags)
7bb5f07c 4605{
b9ca3896 4606 const reg_entry *reg = parse_reg_with_qual (str, reg_type, qualifier, flags);
83dbd40d 4607 if (!reg)
1d597b88 4608 return false;
83dbd40d 4609
1d597b88
RS
4610 opnd->v = aarch64_check_reg_type (reg, REG_TYPE_ZATV);
4611 opnd->regno = reg->number;
7bb5f07c 4612
ff60bcbf 4613 return parse_sme_za_index (str, opnd);
7bb5f07c
PW
4614}
4615
1d597b88
RS
4616/* Like parse_sme_za_hv_tiles_operand, but expect braces around the
4617 operand. */
01a4d082 4618
1d597b88 4619static bool
01a4d082 4620parse_sme_za_hv_tiles_operand_with_braces (char **str,
1d597b88 4621 struct aarch64_indexed_za *opnd,
01a4d082
PW
4622 aarch64_opnd_qualifier_t *qualifier)
4623{
01a4d082
PW
4624 if (!skip_past_char (str, '{'))
4625 {
e426521e 4626 set_expected_reglist_error (REG_TYPE_ZATHV, parse_reg (str));
1d597b88 4627 return false;
01a4d082
PW
4628 }
4629
b9ca3896
RS
4630 if (!parse_dual_indexed_reg (str, REG_TYPE_ZATHV, opnd, qualifier,
4631 PTR_IN_REGLIST))
1d597b88 4632 return false;
01a4d082
PW
4633
4634 if (!skip_past_char (str, '}'))
4635 {
4636 set_syntax_error (_("expected '}'"));
1d597b88 4637 return false;
01a4d082
PW
4638 }
4639
1d597b88 4640 return true;
01a4d082
PW
4641}
4642
1cad938d
PW
4643/* Parse list of up to eight 64-bit element tile names separated by commas in
4644 SME's ZERO instruction:
4645
4646 ZERO { <mask> }
4647
4648 Function returns <mask>:
4649
4650 an 8-bit list of 64-bit element tiles named ZA0.D to ZA7.D.
4651*/
4652static int
4653parse_sme_zero_mask(char **str)
4654{
4655 char *q;
4656 int mask;
4657 aarch64_opnd_qualifier_t qualifier;
405f0c41 4658 unsigned int ptr_flags = PTR_IN_REGLIST;
1cad938d
PW
4659
4660 mask = 0x00;
4661 q = *str;
4662 do
4663 {
e9e1ddbb 4664 const reg_entry *reg = parse_reg_with_qual (&q, REG_TYPE_ZA_ZAT,
405f0c41 4665 &qualifier, ptr_flags);
e9e1ddbb
RS
4666 if (!reg)
4667 return PARSE_FAIL;
4668
4669 if (reg->type == REG_TYPE_ZA)
4670 {
4671 if (qualifier != AARCH64_OPND_QLF_NIL)
4672 {
4673 set_syntax_error ("ZA should not have a size suffix");
4674 return PARSE_FAIL;
4675 }
4676 /* { ZA } is assembled as all-ones immediate. */
4677 mask = 0xff;
4678 }
4679 else
4680 {
1cad938d 4681 int regno = reg->number;
8cde0b98 4682 if (qualifier == AARCH64_OPND_QLF_S_B)
1cad938d
PW
4683 {
4684 /* { ZA0.B } is assembled as all-ones immediate. */
4685 mask = 0xff;
4686 }
8cde0b98 4687 else if (qualifier == AARCH64_OPND_QLF_S_H)
1cad938d 4688 mask |= 0x55 << regno;
8cde0b98 4689 else if (qualifier == AARCH64_OPND_QLF_S_S)
1cad938d 4690 mask |= 0x11 << regno;
8cde0b98 4691 else if (qualifier == AARCH64_OPND_QLF_S_D)
1cad938d 4692 mask |= 0x01 << regno;
e9e1ddbb
RS
4693 else if (qualifier == AARCH64_OPND_QLF_S_Q)
4694 {
4695 set_syntax_error (_("ZA tile masks do not operate at .Q"
4696 " granularity"));
4697 return PARSE_FAIL;
4698 }
4699 else if (qualifier == AARCH64_OPND_QLF_NIL)
4700 {
4701 set_syntax_error (_("missing ZA tile size"));
4702 return PARSE_FAIL;
4703 }
1cad938d
PW
4704 else
4705 {
e9e1ddbb 4706 set_syntax_error (_("invalid ZA tile"));
1cad938d
PW
4707 return PARSE_FAIL;
4708 }
1cad938d 4709 }
405f0c41 4710 ptr_flags |= PTR_GOOD_MATCH;
1cad938d
PW
4711 }
4712 while (skip_past_char (&q, ','));
4713
4714 *str = q;
4715 return mask;
4716}
4717
4718/* Wraps in curly braces <mask> operand ZERO instruction:
4719
4720 ZERO { <mask> }
4721
4722 Function returns value of <mask> bit-field.
4723*/
4724static int
4725parse_sme_list_of_64bit_tiles (char **str)
4726{
4727 int regno;
4728
4729 if (!skip_past_char (str, '{'))
4730 {
4731 set_syntax_error (_("expected '{'"));
4732 return PARSE_FAIL;
4733 }
4734
4735 /* Empty <mask> list is an all-zeros immediate. */
4736 if (!skip_past_char (str, '}'))
4737 {
4738 regno = parse_sme_zero_mask (str);
4739 if (regno == PARSE_FAIL)
4740 return PARSE_FAIL;
4741
4742 if (!skip_past_char (str, '}'))
4743 {
4744 set_syntax_error (_("expected '}'"));
4745 return PARSE_FAIL;
4746 }
4747 }
4748 else
4749 regno = 0x00;
4750
4751 return regno;
4752}
7bb5f07c 4753
3dd032c5
PW
4754/* Parse streaming mode operand for SMSTART and SMSTOP.
4755
4756 {SM | ZA}
4757
4758 Function returns 's' if SM or 'z' if ZM is parsed. Otherwise PARSE_FAIL.
4759*/
4760static int
4761parse_sme_sm_za (char **str)
4762{
4763 char *p, *q;
4764
4765 p = q = *str;
4766 while (ISALPHA (*q))
4767 q++;
4768
4769 if ((q - p != 2)
4770 || (strncasecmp ("sm", p, 2) != 0 && strncasecmp ("za", p, 2) != 0))
4771 {
4772 set_syntax_error (_("expected SM or ZA operand"));
4773 return PARSE_FAIL;
4774 }
4775
4776 *str = q;
4777 return TOLOWER (p[0]);
4778}
4779
a06ea964 4780/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 4781 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
4782
4783 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
4784 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
4785
4786 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
4787 field, otherwise as a system register.
4788*/
a06ea964
NC
4789
4790static int
629310ab 4791parse_sys_reg (char **str, htab_t sys_regs,
561a72d4 4792 int imple_defined_p, int pstatefield_p,
9af8f671 4793 uint32_t* flags, bool sysreg128_p)
a06ea964
NC
4794{
4795 char *p, *q;
fa63795f 4796 char buf[AARCH64_MAX_SYSREG_NAME_LEN];
49eec193 4797 const aarch64_sys_reg *o;
a06ea964
NC
4798 int value;
4799
4800 p = buf;
4801 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
fa63795f 4802 if (p < buf + (sizeof (buf) - 1))
a06ea964
NC
4803 *p++ = TOLOWER (*q);
4804 *p = '\0';
fa63795f
AC
4805
4806 /* If the name is longer than AARCH64_MAX_SYSREG_NAME_LEN then it cannot be a
4807 valid system register. This is enforced by construction of the hash
4808 table. */
4809 if (p - buf != q - *str)
4810 return PARSE_FAIL;
a06ea964 4811
629310ab 4812 o = str_hash_find (sys_regs, buf);
a06ea964
NC
4813 if (!o)
4814 {
4815 if (!imple_defined_p)
4816 return PARSE_FAIL;
4817 else
4818 {
df7b4545 4819 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 4820 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
4821
4822 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
4823 != 5)
a06ea964 4824 return PARSE_FAIL;
df7b4545 4825 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
4826 return PARSE_FAIL;
4827 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
561a72d4
TC
4828 if (flags)
4829 *flags = 0;
a06ea964
NC
4830 }
4831 }
4832 else
49eec193 4833 {
72ca8fad
MW
4834 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
4835 as_bad (_("selected processor does not support PSTATE field "
4836 "name '%s'"), buf);
f7cb161e 4837 if (!pstatefield_p
38cf07a6 4838 && !aarch64_sys_ins_reg_supported_p (cpu_variant, o->name,
63445353 4839 o->flags, &o->features))
72ca8fad
MW
4840 as_bad (_("selected processor does not support system register "
4841 "name '%s'"), buf);
9af8f671
VDN
4842 if (sysreg128_p && !aarch64_sys_reg_128bit_p (o->flags))
4843 as_bad (_("128-bit-wide accsess not allowed on selected system"
4844 " register '%s'"), buf);
f7cb161e 4845 if (aarch64_sys_reg_deprecated_p (o->flags))
49eec193 4846 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 4847 "removed in a future release"), buf);
49eec193 4848 value = o->value;
561a72d4
TC
4849 if (flags)
4850 *flags = o->flags;
49eec193 4851 }
a06ea964
NC
4852
4853 *str = q;
4854 return value;
4855}
4856
4857/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
4858 for the option, or NULL. */
4859
4860static const aarch64_sys_ins_reg *
629310ab 4861parse_sys_ins_reg (char **str, htab_t sys_ins_regs)
a06ea964
NC
4862{
4863 char *p, *q;
fa63795f 4864 char buf[AARCH64_MAX_SYSREG_NAME_LEN];
a06ea964
NC
4865 const aarch64_sys_ins_reg *o;
4866
4867 p = buf;
4868 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
fa63795f 4869 if (p < buf + (sizeof (buf) - 1))
a06ea964
NC
4870 *p++ = TOLOWER (*q);
4871 *p = '\0';
4872
fa63795f
AC
4873 /* If the name is longer than AARCH64_MAX_SYSREG_NAME_LEN then it cannot be a
4874 valid system register. This is enforced by construction of the hash
4875 table. */
4876 if (p - buf != q - *str)
4877 return NULL;
4878
629310ab 4879 o = str_hash_find (sys_ins_regs, buf);
a06ea964
NC
4880 if (!o)
4881 return NULL;
4882
38cf07a6 4883 if (!aarch64_sys_ins_reg_supported_p (cpu_variant,
63445353 4884 o->name, o->flags, &o->features))
d6bf7ce6
MW
4885 as_bad (_("selected processor does not support system register "
4886 "name '%s'"), buf);
f7cb161e
PW
4887 if (aarch64_sys_reg_deprecated_p (o->flags))
4888 as_warn (_("system register name '%s' is deprecated and may be "
4889 "removed in a future release"), buf);
d6bf7ce6 4890
a06ea964
NC
4891 *str = q;
4892 return o;
4893}
4894\f
4895#define po_char_or_fail(chr) do { \
4896 if (! skip_past_char (&str, chr)) \
4897 goto failure; \
4898} while (0)
4899
4900#define po_reg_or_fail(regtype) do { \
074c89d2
RS
4901 reg = aarch64_reg_parse (&str, regtype, NULL); \
4902 if (!reg) \
e426521e 4903 goto failure; \
a06ea964
NC
4904 } while (0)
4905
30ba1d7e
RS
4906#define po_int_fp_reg_or_fail(reg_type) do { \
4907 reg = parse_reg (&str); \
e1b988bb 4908 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
a06ea964 4909 { \
e426521e 4910 set_expected_reg_error (reg_type, reg, 0); \
a06ea964
NC
4911 goto failure; \
4912 } \
e1b988bb 4913 info->reg.regno = reg->number; \
30ba1d7e 4914 info->qualifier = inherent_reg_qualifier (reg); \
a06ea964
NC
4915 } while (0)
4916
4917#define po_imm_nc_or_fail() do { \
1799c0d0 4918 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4919 goto failure; \
4920 } while (0)
4921
4922#define po_imm_or_fail(min, max) do { \
1799c0d0 4923 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4924 goto failure; \
4925 if (val < min || val > max) \
4926 { \
4927 set_fatal_syntax_error (_("immediate value out of range "\
4928#min " to "#max)); \
4929 goto failure; \
4930 } \
4931 } while (0)
4932
245d2e3f
RS
4933#define po_enum_or_fail(array) do { \
4934 if (!parse_enum_string (&str, &val, array, \
4935 ARRAY_SIZE (array), imm_reg_type)) \
4936 goto failure; \
4937 } while (0)
4938
99e01a66
RS
4939#define po_strict_enum_or_fail(array) do { \
4940 if (!parse_enum_string (&str, &val, array, \
4941 ARRAY_SIZE (array), REG_TYPE_MAX)) \
4942 goto failure; \
4943 } while (0)
4944
a06ea964
NC
4945#define po_misc_or_fail(expr) do { \
4946 if (!expr) \
4947 goto failure; \
4948 } while (0)
4949\f
38c5aa5e
RS
4950/* A primitive log calculator. */
4951
4952static inline unsigned int
4953get_log2 (unsigned int n)
4954{
4955 unsigned int count = 0;
4956 while (n > 1)
4957 {
4958 n >>= 1;
4959 count += 1;
4960 }
4961 return count;
4962}
4963
a06ea964
NC
4964/* encode the 12-bit imm field of Add/sub immediate */
4965static inline uint32_t
4966encode_addsub_imm (uint32_t imm)
4967{
4968 return imm << 10;
4969}
4970
4971/* encode the shift amount field of Add/sub immediate */
4972static inline uint32_t
4973encode_addsub_imm_shift_amount (uint32_t cnt)
4974{
4975 return cnt << 22;
4976}
4977
4978
4979/* encode the imm field of Adr instruction */
4980static inline uint32_t
4981encode_adr_imm (uint32_t imm)
4982{
4983 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4984 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4985}
4986
4987/* encode the immediate field of Move wide immediate */
4988static inline uint32_t
4989encode_movw_imm (uint32_t imm)
4990{
4991 return imm << 5;
4992}
4993
4994/* encode the 26-bit offset of unconditional branch */
4995static inline uint32_t
4996encode_branch_ofs_26 (uint32_t ofs)
4997{
4998 return ofs & ((1 << 26) - 1);
4999}
5000
5001/* encode the 19-bit offset of conditional branch and compare & branch */
5002static inline uint32_t
5003encode_cond_branch_ofs_19 (uint32_t ofs)
5004{
5005 return (ofs & ((1 << 19) - 1)) << 5;
5006}
5007
5008/* encode the 19-bit offset of ld literal */
5009static inline uint32_t
5010encode_ld_lit_ofs_19 (uint32_t ofs)
5011{
5012 return (ofs & ((1 << 19) - 1)) << 5;
5013}
5014
5015/* Encode the 14-bit offset of test & branch. */
5016static inline uint32_t
5017encode_tst_branch_ofs_14 (uint32_t ofs)
5018{
5019 return (ofs & ((1 << 14) - 1)) << 5;
5020}
5021
5022/* Encode the 16-bit imm field of svc/hvc/smc. */
5023static inline uint32_t
5024encode_svc_imm (uint32_t imm)
5025{
5026 return imm << 5;
5027}
5028
5029/* Reencode add(s) to sub(s), or sub(s) to add(s). */
5030static inline uint32_t
5031reencode_addsub_switch_add_sub (uint32_t opcode)
5032{
5033 return opcode ^ (1 << 30);
5034}
5035
5036static inline uint32_t
5037reencode_movzn_to_movz (uint32_t opcode)
5038{
5039 return opcode | (1 << 30);
5040}
5041
5042static inline uint32_t
5043reencode_movzn_to_movn (uint32_t opcode)
5044{
5045 return opcode & ~(1 << 30);
5046}
5047
5048/* Overall per-instruction processing. */
5049
5050/* We need to be able to fix up arbitrary expressions in some statements.
5051 This is so that we can handle symbols that are an arbitrary distance from
5052 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
5053 which returns part of an address in a form which will be valid for
5054 a data instruction. We do this by pushing the expression into a symbol
5055 in the expr_section, and creating a fix for that. */
5056
5057static fixS *
5058fix_new_aarch64 (fragS * frag,
5059 int where,
f7cb161e
PW
5060 short int size,
5061 expressionS * exp,
5062 int pc_rel,
5063 int reloc)
a06ea964
NC
5064{
5065 fixS *new_fix;
5066
5067 switch (exp->X_op)
5068 {
5069 case O_constant:
5070 case O_symbol:
5071 case O_add:
5072 case O_subtract:
5073 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
5074 break;
5075
5076 default:
5077 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
5078 pc_rel, reloc);
5079 break;
5080 }
5081 return new_fix;
5082}
5083\f
5084/* Diagnostics on operands errors. */
5085
a52e6fd3
YZ
5086/* By default, output verbose error message.
5087 Disable the verbose error message by -mno-verbose-error. */
5088static int verbose_error_p = 1;
a06ea964
NC
5089
5090#ifdef DEBUG_AARCH64
5091/* N.B. this is only for the purpose of debugging. */
5092const char* operand_mismatch_kind_names[] =
5093{
5094 "AARCH64_OPDE_NIL",
5095 "AARCH64_OPDE_RECOVERABLE",
63eff947
RS
5096 "AARCH64_OPDE_A_SHOULD_FOLLOW_B",
5097 "AARCH64_OPDE_EXPECTED_A_AFTER_B",
a06ea964
NC
5098 "AARCH64_OPDE_SYNTAX_ERROR",
5099 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
5100 "AARCH64_OPDE_INVALID_VARIANT",
e2dc4040 5101 "AARCH64_OPDE_INVALID_VG_SIZE",
f5b57fea
RS
5102 "AARCH64_OPDE_REG_LIST_LENGTH",
5103 "AARCH64_OPDE_REG_LIST_STRIDE",
c1817dc2
RS
5104 "AARCH64_OPDE_UNTIED_IMMS",
5105 "AARCH64_OPDE_UNTIED_OPERAND",
a06ea964
NC
5106 "AARCH64_OPDE_OUT_OF_RANGE",
5107 "AARCH64_OPDE_UNALIGNED",
a06ea964 5108 "AARCH64_OPDE_OTHER_ERROR",
859f51df 5109 "AARCH64_OPDE_INVALID_REGNO",
a06ea964
NC
5110};
5111#endif /* DEBUG_AARCH64 */
5112
5113/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
5114
5115 When multiple errors of different kinds are found in the same assembly
5116 line, only the error of the highest severity will be picked up for
5117 issuing the diagnostics. */
5118
5b7c81bd 5119static inline bool
a06ea964
NC
5120operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
5121 enum aarch64_operand_error_kind rhs)
5122{
5123 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
63eff947
RS
5124 gas_assert (AARCH64_OPDE_A_SHOULD_FOLLOW_B > AARCH64_OPDE_RECOVERABLE);
5125 gas_assert (AARCH64_OPDE_EXPECTED_A_AFTER_B > AARCH64_OPDE_RECOVERABLE);
5126 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_A_SHOULD_FOLLOW_B);
5127 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_EXPECTED_A_AFTER_B);
a06ea964
NC
5128 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
5129 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
e2dc4040
RS
5130 gas_assert (AARCH64_OPDE_INVALID_VG_SIZE > AARCH64_OPDE_INVALID_VARIANT);
5131 gas_assert (AARCH64_OPDE_REG_LIST_LENGTH > AARCH64_OPDE_INVALID_VG_SIZE);
f5b57fea
RS
5132 gas_assert (AARCH64_OPDE_REG_LIST_STRIDE > AARCH64_OPDE_REG_LIST_LENGTH);
5133 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_REG_LIST_STRIDE);
a06ea964 5134 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
f5b57fea 5135 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST_STRIDE);
859f51df 5136 gas_assert (AARCH64_OPDE_INVALID_REGNO > AARCH64_OPDE_OTHER_ERROR);
a06ea964
NC
5137 return lhs > rhs;
5138}
5139
5140/* Helper routine to get the mnemonic name from the assembly instruction
5141 line; should only be called for the diagnosis purpose, as there is
5142 string copy operation involved, which may affect the runtime
5143 performance if used in elsewhere. */
5144
5145static const char*
5146get_mnemonic_name (const char *str)
5147{
5148 static char mnemonic[32];
5149 char *ptr;
5150
5151 /* Get the first 15 bytes and assume that the full name is included. */
5152 strncpy (mnemonic, str, 31);
5153 mnemonic[31] = '\0';
5154
5155 /* Scan up to the end of the mnemonic, which must end in white space,
5156 '.', or end of string. */
5157 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
5158 ;
5159
5160 *ptr = '\0';
5161
5162 /* Append '...' to the truncated long name. */
5163 if (ptr - mnemonic == 31)
5164 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
5165
5166 return mnemonic;
5167}
5168
5169static void
5170reset_aarch64_instruction (aarch64_instruction *instruction)
5171{
5172 memset (instruction, '\0', sizeof (aarch64_instruction));
5173 instruction->reloc.type = BFD_RELOC_UNUSED;
5174}
5175
33eaf5de 5176/* Data structures storing one user error in the assembly code related to
a06ea964
NC
5177 operands. */
5178
5179struct operand_error_record
5180{
5181 const aarch64_opcode *opcode;
5182 aarch64_operand_error detail;
5183 struct operand_error_record *next;
5184};
5185
5186typedef struct operand_error_record operand_error_record;
5187
5188struct operand_errors
5189{
5190 operand_error_record *head;
5191 operand_error_record *tail;
5192};
5193
5194typedef struct operand_errors operand_errors;
5195
5196/* Top-level data structure reporting user errors for the current line of
5197 the assembly code.
5198 The way md_assemble works is that all opcodes sharing the same mnemonic
5199 name are iterated to find a match to the assembly line. In this data
5200 structure, each of the such opcodes will have one operand_error_record
5201 allocated and inserted. In other words, excessive errors related with
5202 a single opcode are disregarded. */
5203operand_errors operand_error_report;
5204
5205/* Free record nodes. */
5206static operand_error_record *free_opnd_error_record_nodes = NULL;
5207
5208/* Initialize the data structure that stores the operand mismatch
5209 information on assembling one line of the assembly code. */
5210static void
5211init_operand_error_report (void)
5212{
5213 if (operand_error_report.head != NULL)
5214 {
5215 gas_assert (operand_error_report.tail != NULL);
5216 operand_error_report.tail->next = free_opnd_error_record_nodes;
5217 free_opnd_error_record_nodes = operand_error_report.head;
5218 operand_error_report.head = NULL;
5219 operand_error_report.tail = NULL;
5220 return;
5221 }
5222 gas_assert (operand_error_report.tail == NULL);
5223}
5224
5225/* Return TRUE if some operand error has been recorded during the
5226 parsing of the current assembly line using the opcode *OPCODE;
5227 otherwise return FALSE. */
5b7c81bd 5228static inline bool
a06ea964
NC
5229opcode_has_operand_error_p (const aarch64_opcode *opcode)
5230{
5231 operand_error_record *record = operand_error_report.head;
5232 return record && record->opcode == opcode;
5233}
5234
5235/* Add the error record *NEW_RECORD to operand_error_report. The record's
5236 OPCODE field is initialized with OPCODE.
5237 N.B. only one record for each opcode, i.e. the maximum of one error is
5238 recorded for each instruction template. */
5239
5240static void
5241add_operand_error_record (const operand_error_record* new_record)
5242{
5243 const aarch64_opcode *opcode = new_record->opcode;
5244 operand_error_record* record = operand_error_report.head;
5245
5246 /* The record may have been created for this opcode. If not, we need
5247 to prepare one. */
5248 if (! opcode_has_operand_error_p (opcode))
5249 {
5250 /* Get one empty record. */
5251 if (free_opnd_error_record_nodes == NULL)
5252 {
325801bd 5253 record = XNEW (operand_error_record);
a06ea964
NC
5254 }
5255 else
5256 {
5257 record = free_opnd_error_record_nodes;
5258 free_opnd_error_record_nodes = record->next;
5259 }
5260 record->opcode = opcode;
5261 /* Insert at the head. */
5262 record->next = operand_error_report.head;
5263 operand_error_report.head = record;
5264 if (operand_error_report.tail == NULL)
5265 operand_error_report.tail = record;
5266 }
5267 else if (record->detail.kind != AARCH64_OPDE_NIL
5268 && record->detail.index <= new_record->detail.index
5269 && operand_error_higher_severity_p (record->detail.kind,
5270 new_record->detail.kind))
5271 {
5272 /* In the case of multiple errors found on operands related with a
5273 single opcode, only record the error of the leftmost operand and
5274 only if the error is of higher severity. */
5275 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
5276 " the existing error %s on operand %d",
5277 operand_mismatch_kind_names[new_record->detail.kind],
5278 new_record->detail.index,
5279 operand_mismatch_kind_names[record->detail.kind],
5280 record->detail.index);
5281 return;
5282 }
5283
5284 record->detail = new_record->detail;
5285}
5286
5287static inline void
5288record_operand_error_info (const aarch64_opcode *opcode,
5289 aarch64_operand_error *error_info)
5290{
5291 operand_error_record record;
5292 record.opcode = opcode;
5293 record.detail = *error_info;
5294 add_operand_error_record (&record);
5295}
5296
5297/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
5298 error message *ERROR, for operand IDX (count from 0). */
5299
5300static void
5301record_operand_error (const aarch64_opcode *opcode, int idx,
5302 enum aarch64_operand_error_kind kind,
5303 const char* error)
5304{
5305 aarch64_operand_error info;
5306 memset(&info, 0, sizeof (info));
5307 info.index = idx;
5308 info.kind = kind;
5309 info.error = error;
5b7c81bd 5310 info.non_fatal = false;
a06ea964
NC
5311 record_operand_error_info (opcode, &info);
5312}
5313
5314static void
5315record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
5316 enum aarch64_operand_error_kind kind,
5317 const char* error, const int *extra_data)
5318{
5319 aarch64_operand_error info;
5320 info.index = idx;
5321 info.kind = kind;
5322 info.error = error;
63eff947
RS
5323 info.data[0].i = extra_data[0];
5324 info.data[1].i = extra_data[1];
5325 info.data[2].i = extra_data[2];
5b7c81bd 5326 info.non_fatal = false;
a06ea964
NC
5327 record_operand_error_info (opcode, &info);
5328}
5329
5330static void
5331record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
5332 const char* error, int lower_bound,
5333 int upper_bound)
5334{
5335 int data[3] = {lower_bound, upper_bound, 0};
5336 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
5337 error, data);
5338}
5339
5340/* Remove the operand error record for *OPCODE. */
5341static void ATTRIBUTE_UNUSED
5342remove_operand_error_record (const aarch64_opcode *opcode)
5343{
5344 if (opcode_has_operand_error_p (opcode))
5345 {
5346 operand_error_record* record = operand_error_report.head;
5347 gas_assert (record != NULL && operand_error_report.tail != NULL);
5348 operand_error_report.head = record->next;
5349 record->next = free_opnd_error_record_nodes;
5350 free_opnd_error_record_nodes = record;
5351 if (operand_error_report.head == NULL)
5352 {
5353 gas_assert (operand_error_report.tail == record);
5354 operand_error_report.tail = NULL;
5355 }
5356 }
5357}
5358
5359/* Given the instruction in *INSTR, return the index of the best matched
5360 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
5361
5362 Return -1 if there is no qualifier sequence; return the first match
5363 if there is multiple matches found. */
5364
5365static int
5366find_best_match (const aarch64_inst *instr,
5367 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
5368{
5369 int i, num_opnds, max_num_matched, idx;
5370
5371 num_opnds = aarch64_num_of_operands (instr->opcode);
5372 if (num_opnds == 0)
5373 {
5374 DEBUG_TRACE ("no operand");
5375 return -1;
5376 }
5377
5378 max_num_matched = 0;
4989adac 5379 idx = 0;
a06ea964
NC
5380
5381 /* For each pattern. */
5382 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
5383 {
5384 int j, num_matched;
5385 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
5386
5387 /* Most opcodes has much fewer patterns in the list. */
535b785f 5388 if (empty_qualifier_sequence_p (qualifiers))
a06ea964
NC
5389 {
5390 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
a06ea964
NC
5391 break;
5392 }
5393
5394 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
5395 if (*qualifiers == instr->operands[j].qualifier)
5396 ++num_matched;
5397
5398 if (num_matched > max_num_matched)
5399 {
5400 max_num_matched = num_matched;
5401 idx = i;
5402 }
5403 }
5404
5405 DEBUG_TRACE ("return with %d", idx);
5406 return idx;
5407}
5408
33eaf5de 5409/* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
a06ea964
NC
5410 corresponding operands in *INSTR. */
5411
5412static inline void
5413assign_qualifier_sequence (aarch64_inst *instr,
5414 const aarch64_opnd_qualifier_t *qualifiers)
5415{
5416 int i = 0;
5417 int num_opnds = aarch64_num_of_operands (instr->opcode);
5418 gas_assert (num_opnds);
5419 for (i = 0; i < num_opnds; ++i, ++qualifiers)
5420 instr->operands[i].qualifier = *qualifiers;
5421}
5422
76a4c1e0
AB
5423/* Callback used by aarch64_print_operand to apply STYLE to the
5424 disassembler output created from FMT and ARGS. The STYLER object holds
5425 any required state. Must return a pointer to a string (created from FMT
5426 and ARGS) that will continue to be valid until the complete disassembled
5427 instruction has been printed.
5428
5429 We don't currently add any styling to the output of the disassembler as
5430 used within assembler error messages, and so STYLE is ignored here. A
5431 new string is allocated on the obstack help within STYLER and returned
5432 to the caller. */
5433
5434static const char *aarch64_apply_style
5435 (struct aarch64_styler *styler,
5436 enum disassembler_style style ATTRIBUTE_UNUSED,
5437 const char *fmt, va_list args)
5438{
5439 int res;
5440 char *ptr;
5441 struct obstack *stack = (struct obstack *) styler->state;
5442 va_list ap;
5443
5444 /* Calculate the required space. */
5445 va_copy (ap, args);
5446 res = vsnprintf (NULL, 0, fmt, ap);
5447 va_end (ap);
5448 gas_assert (res >= 0);
5449
5450 /* Allocate space on the obstack and format the result. */
5451 ptr = (char *) obstack_alloc (stack, res + 1);
5452 res = vsnprintf (ptr, (res + 1), fmt, args);
5453 gas_assert (res >= 0);
5454
5455 return ptr;
5456}
5457
a06ea964
NC
5458/* Print operands for the diagnosis purpose. */
5459
5460static void
5461print_operands (char *buf, const aarch64_opcode *opcode,
5462 const aarch64_opnd_info *opnds)
5463{
5464 int i;
76a4c1e0
AB
5465 struct aarch64_styler styler;
5466 struct obstack content;
5467 obstack_init (&content);
5468
5469 styler.apply_style = aarch64_apply_style;
5470 styler.state = (void *) &content;
a06ea964
NC
5471
5472 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
5473 {
08d3b0cc 5474 char str[128];
6837a663 5475 char cmt[128];
a06ea964
NC
5476
5477 /* We regard the opcode operand info more, however we also look into
5478 the inst->operands to support the disassembling of the optional
5479 operand.
5480 The two operand code should be the same in all cases, apart from
5481 when the operand can be optional. */
5482 if (opcode->operands[i] == AARCH64_OPND_NIL
5483 || opnds[i].type == AARCH64_OPND_NIL)
5484 break;
5485
5486 /* Generate the operand string in STR. */
7d02540a 5487 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL,
76a4c1e0 5488 NULL, cmt, sizeof (cmt), cpu_variant, &styler);
a06ea964
NC
5489
5490 /* Delimiter. */
5491 if (str[0] != '\0')
ad43e107 5492 strcat (buf, i == 0 ? " " : ", ");
a06ea964
NC
5493
5494 /* Append the operand string. */
5495 strcat (buf, str);
6837a663
AB
5496
5497 /* Append a comment. This works because only the last operand ever
5498 adds a comment. If that ever changes then we'll need to be
5499 smarter here. */
5500 if (cmt[0] != '\0')
5501 {
5502 strcat (buf, "\t// ");
5503 strcat (buf, cmt);
5504 }
a06ea964 5505 }
76a4c1e0
AB
5506
5507 obstack_free (&content, NULL);
a06ea964
NC
5508}
5509
5510/* Send to stderr a string as information. */
5511
5512static void
5513output_info (const char *format, ...)
5514{
3b4dbbbf 5515 const char *file;
a06ea964
NC
5516 unsigned int line;
5517 va_list args;
5518
3b4dbbbf 5519 file = as_where (&line);
a06ea964
NC
5520 if (file)
5521 {
5522 if (line != 0)
5523 fprintf (stderr, "%s:%u: ", file, line);
5524 else
5525 fprintf (stderr, "%s: ", file);
5526 }
5527 fprintf (stderr, _("Info: "));
5528 va_start (args, format);
5529 vfprintf (stderr, format, args);
5530 va_end (args);
5531 (void) putc ('\n', stderr);
5532}
5533
e426521e
RS
5534/* See if the AARCH64_OPDE_SYNTAX_ERROR error described by DETAIL
5535 relates to registers or register lists. If so, return a string that
5536 reports the error against "operand %d", otherwise return null. */
5537
5538static const char *
5539get_reg_error_message (const aarch64_operand_error *detail)
5540{
5541 /* Handle the case where we found a register that was expected
5542 to be in a register list outside of a register list. */
5543 if ((detail->data[1].i & detail->data[2].i) != 0
5544 && (detail->data[1].i & SEF_IN_REGLIST) == 0)
5545 return _("missing braces at operand %d");
5546
5547 /* If some opcodes expected a register, and we found a register,
5548 complain about the difference. */
5549 if (detail->data[2].i)
5550 {
5551 unsigned int expected = (detail->data[1].i & SEF_IN_REGLIST
5552 ? detail->data[1].i & ~SEF_IN_REGLIST
5553 : detail->data[0].i & ~SEF_DEFAULT_ERROR);
5554 const char *msg = get_reg_expected_msg (expected, detail->data[2].i);
5555 if (!msg)
5556 msg = N_("unexpected register type at operand %d");
5557 return msg;
5558 }
5559
5560 /* Handle the case where we got to the point of trying to parse a
5561 register within a register list, but didn't find a known register. */
5562 if (detail->data[1].i & SEF_IN_REGLIST)
5563 {
5564 unsigned int expected = detail->data[1].i & ~SEF_IN_REGLIST;
5565 const char *msg = get_reg_expected_msg (expected, 0);
5566 if (!msg)
5567 msg = _("invalid register list at operand %d");
5568 return msg;
5569 }
5570
5571 /* Punt if register-related problems weren't the only errors. */
5572 if (detail->data[0].i & SEF_DEFAULT_ERROR)
5573 return NULL;
5574
5575 /* Handle the case where the only acceptable things are registers. */
5576 if (detail->data[1].i == 0)
5577 {
5578 const char *msg = get_reg_expected_msg (detail->data[0].i, 0);
5579 if (!msg)
5580 msg = _("expected a register at operand %d");
5581 return msg;
5582 }
5583
5584 /* Handle the case where the only acceptable things are register lists,
5585 and there was no opening '{'. */
5586 if (detail->data[0].i == 0)
5587 return _("expected '{' at operand %d");
5588
5589 return _("expected a register or register list at operand %d");
5590}
5591
a06ea964
NC
5592/* Output one operand error record. */
5593
5594static void
5595output_operand_error_record (const operand_error_record *record, char *str)
5596{
28f013d5
JB
5597 const aarch64_operand_error *detail = &record->detail;
5598 int idx = detail->index;
a06ea964 5599 const aarch64_opcode *opcode = record->opcode;
28f013d5 5600 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 5601 : AARCH64_OPND_NIL);
a06ea964 5602
7d02540a
TC
5603 typedef void (*handler_t)(const char *format, ...);
5604 handler_t handler = detail->non_fatal ? as_warn : as_bad;
e426521e 5605 const char *msg = detail->error;
7d02540a 5606
a06ea964
NC
5607 switch (detail->kind)
5608 {
5609 case AARCH64_OPDE_NIL:
5610 gas_assert (0);
5611 break;
63eff947
RS
5612
5613 case AARCH64_OPDE_A_SHOULD_FOLLOW_B:
5614 handler (_("this `%s' should have an immediately preceding `%s'"
5615 " -- `%s'"),
5616 detail->data[0].s, detail->data[1].s, str);
5617 break;
5618
5619 case AARCH64_OPDE_EXPECTED_A_AFTER_B:
5620 handler (_("the preceding `%s' should be followed by `%s` rather"
5621 " than `%s` -- `%s'"),
5622 detail->data[1].s, detail->data[0].s, opcode->name, str);
5623 break;
5624
a06ea964 5625 case AARCH64_OPDE_SYNTAX_ERROR:
e426521e
RS
5626 if (!msg && idx >= 0)
5627 {
5628 msg = get_reg_error_message (detail);
5629 if (msg)
5630 {
5631 char *full_msg = xasprintf (msg, idx + 1);
5632 handler (_("%s -- `%s'"), full_msg, str);
5633 free (full_msg);
5634 break;
5635 }
5636 }
5637 /* Fall through. */
5638
a06ea964
NC
5639 case AARCH64_OPDE_RECOVERABLE:
5640 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
5641 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
5642 /* Use the prepared error message if there is, otherwise use the
5643 operand description string to describe the error. */
e426521e 5644 if (msg != NULL)
a06ea964 5645 {
28f013d5 5646 if (idx < 0)
e426521e 5647 handler (_("%s -- `%s'"), msg, str);
a06ea964 5648 else
7d02540a 5649 handler (_("%s at operand %d -- `%s'"),
e426521e 5650 msg, idx + 1, str);
a06ea964
NC
5651 }
5652 else
28f013d5
JB
5653 {
5654 gas_assert (idx >= 0);
7d02540a
TC
5655 handler (_("operand %d must be %s -- `%s'"), idx + 1,
5656 aarch64_get_operand_desc (opd_code), str);
28f013d5 5657 }
a06ea964
NC
5658 break;
5659
5660 case AARCH64_OPDE_INVALID_VARIANT:
7d02540a 5661 handler (_("operand mismatch -- `%s'"), str);
a06ea964
NC
5662 if (verbose_error_p)
5663 {
5664 /* We will try to correct the erroneous instruction and also provide
5665 more information e.g. all other valid variants.
5666
5667 The string representation of the corrected instruction and other
5668 valid variants are generated by
5669
5670 1) obtaining the intermediate representation of the erroneous
5671 instruction;
5672 2) manipulating the IR, e.g. replacing the operand qualifier;
5673 3) printing out the instruction by calling the printer functions
5674 shared with the disassembler.
5675
5676 The limitation of this method is that the exact input assembly
5677 line cannot be accurately reproduced in some cases, for example an
5678 optional operand present in the actual assembly line will be
5679 omitted in the output; likewise for the optional syntax rules,
5680 e.g. the # before the immediate. Another limitation is that the
5681 assembly symbols and relocation operations in the assembly line
5682 currently cannot be printed out in the error report. Last but not
5683 least, when there is other error(s) co-exist with this error, the
5684 'corrected' instruction may be still incorrect, e.g. given
5685 'ldnp h0,h1,[x0,#6]!'
5686 this diagnosis will provide the version:
5687 'ldnp s0,s1,[x0,#6]!'
5688 which is still not right. */
5689 size_t len = strlen (get_mnemonic_name (str));
5690 int i, qlf_idx;
5b7c81bd 5691 bool result;
08d3b0cc 5692 char buf[2048];
a06ea964
NC
5693 aarch64_inst *inst_base = &inst.base;
5694 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
5695
5696 /* Init inst. */
5697 reset_aarch64_instruction (&inst);
5698 inst_base->opcode = opcode;
5699
5700 /* Reset the error report so that there is no side effect on the
5701 following operand parsing. */
5702 init_operand_error_report ();
5703
5704 /* Fill inst. */
5705 result = parse_operands (str + len, opcode)
5706 && programmer_friendly_fixup (&inst);
5707 gas_assert (result);
5708 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
7e84b55d 5709 NULL, NULL, insn_sequence);
a06ea964
NC
5710 gas_assert (!result);
5711
5712 /* Find the most matched qualifier sequence. */
5713 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
5714 gas_assert (qlf_idx > -1);
5715
5716 /* Assign the qualifiers. */
5717 assign_qualifier_sequence (inst_base,
5718 opcode->qualifiers_list[qlf_idx]);
5719
5720 /* Print the hint. */
5721 output_info (_(" did you mean this?"));
08d3b0cc 5722 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
5723 print_operands (buf, opcode, inst_base->operands);
5724 output_info (_(" %s"), buf);
5725
5726 /* Print out other variant(s) if there is any. */
5727 if (qlf_idx != 0 ||
5728 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
5729 output_info (_(" other valid variant(s):"));
5730
5731 /* For each pattern. */
5732 qualifiers_list = opcode->qualifiers_list;
5733 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
5734 {
5735 /* Most opcodes has much fewer patterns in the list.
5736 First NIL qualifier indicates the end in the list. */
535b785f 5737 if (empty_qualifier_sequence_p (*qualifiers_list))
a06ea964
NC
5738 break;
5739
5740 if (i != qlf_idx)
5741 {
5742 /* Mnemonics name. */
08d3b0cc 5743 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
5744
5745 /* Assign the qualifiers. */
5746 assign_qualifier_sequence (inst_base, *qualifiers_list);
5747
5748 /* Print instruction. */
5749 print_operands (buf, opcode, inst_base->operands);
5750
5751 output_info (_(" %s"), buf);
5752 }
5753 }
5754 }
5755 break;
5756
01a4d082
PW
5757 case AARCH64_OPDE_UNTIED_IMMS:
5758 handler (_("operand %d must have the same immediate value "
5759 "as operand 1 -- `%s'"),
5760 detail->index + 1, str);
5761 break;
5762
0c608d6b 5763 case AARCH64_OPDE_UNTIED_OPERAND:
7d02540a 5764 handler (_("operand %d must be the same register as operand 1 -- `%s'"),
01a4d082 5765 detail->index + 1, str);
0c608d6b
RS
5766 break;
5767
859f51df
RS
5768 case AARCH64_OPDE_INVALID_REGNO:
5769 handler (_("%s%d-%s%d expected at operand %d -- `%s'"),
5770 detail->data[0].s, detail->data[1].i,
5771 detail->data[0].s, detail->data[2].i, idx + 1, str);
5772 break;
5773
a06ea964 5774 case AARCH64_OPDE_OUT_OF_RANGE:
63eff947 5775 if (detail->data[0].i != detail->data[1].i)
7d02540a 5776 handler (_("%s out of range %d to %d at operand %d -- `%s'"),
e426521e 5777 msg ? msg : _("immediate value"),
63eff947 5778 detail->data[0].i, detail->data[1].i, idx + 1, str);
f5555712 5779 else
7d02540a 5780 handler (_("%s must be %d at operand %d -- `%s'"),
e426521e 5781 msg ? msg : _("immediate value"),
63eff947 5782 detail->data[0].i, idx + 1, str);
a06ea964
NC
5783 break;
5784
e2dc4040
RS
5785 case AARCH64_OPDE_INVALID_VG_SIZE:
5786 if (detail->data[0].i == 0)
5787 handler (_("unexpected vector group size at operand %d -- `%s'"),
5788 idx + 1, str);
5789 else
5790 handler (_("operand %d must have a vector group size of %d -- `%s'"),
5791 idx + 1, detail->data[0].i, str);
5792 break;
5793
f5b57fea 5794 case AARCH64_OPDE_REG_LIST_LENGTH:
38c5aa5e 5795 if (detail->data[0].i == (1 << 1))
8c2216b2 5796 handler (_("expected a single-register list at operand %d -- `%s'"),
7d02540a 5797 idx + 1, str);
38c5aa5e 5798 else if ((detail->data[0].i & -detail->data[0].i) == detail->data[0].i)
8c2216b2 5799 handler (_("expected a list of %d registers at operand %d -- `%s'"),
38c5aa5e 5800 get_log2 (detail->data[0].i), idx + 1, str);
b408ebbf
RS
5801 else if (detail->data[0].i == 0x14)
5802 handler (_("expected a list of %d or %d registers at"
5803 " operand %d -- `%s'"),
5804 2, 4, idx + 1, str);
38c5aa5e
RS
5805 else
5806 handler (_("invalid number of registers in the list"
5807 " at operand %d -- `%s'"), idx + 1, str);
a06ea964
NC
5808 break;
5809
f5b57fea
RS
5810 case AARCH64_OPDE_REG_LIST_STRIDE:
5811 if (detail->data[0].i == (1 << 1))
5812 handler (_("the register list must have a stride of %d"
5813 " at operand %d -- `%s'"), 1, idx + 1, str);
b408ebbf
RS
5814 else if (detail->data[0].i == 0x12 || detail->data[0].i == 0x102)
5815 handler (_("the register list must have a stride of %d or %d"
5816 " at operand %d -- `%s`"), 1,
5817 detail->data[0].i == 0x12 ? 4 : 8, idx + 1, str);
f5b57fea
RS
5818 else
5819 handler (_("invalid register stride at operand %d -- `%s'"),
5820 idx + 1, str);
5821 break;
5822
a06ea964 5823 case AARCH64_OPDE_UNALIGNED:
7d02540a
TC
5824 handler (_("immediate value must be a multiple of "
5825 "%d at operand %d -- `%s'"),
63eff947 5826 detail->data[0].i, idx + 1, str);
a06ea964
NC
5827 break;
5828
5829 default:
5830 gas_assert (0);
5831 break;
5832 }
5833}
5834
1be1148d
RS
5835/* Return true if the presence of error A against an instruction means
5836 that error B should not be reported. This is only used as a first pass,
5837 to pick the kind of error that we should report. */
5838
5839static bool
5840better_error_p (operand_error_record *a, operand_error_record *b)
5841{
5842 /* For errors reported during parsing, prefer errors that relate to
5843 later operands, since that implies that the earlier operands were
5844 syntactically valid.
5845
5846 For example, if we see a register R instead of an immediate in
5847 operand N, we'll report that as a recoverable "immediate operand
5848 required" error. This is because there is often another opcode
5849 entry that accepts a register operand N, and any errors about R
5850 should be reported against the register forms of the instruction.
5851 But if no such register form exists, the recoverable error should
5852 still win over a syntax error against operand N-1.
5853
5854 For these purposes, count an error reported at the end of the
5855 assembly string as equivalent to an error reported against the
5856 final operand. This means that opcode entries that expect more
5857 operands win over "unexpected characters following instruction". */
5858 if (a->detail.kind <= AARCH64_OPDE_FATAL_SYNTAX_ERROR
5859 && b->detail.kind <= AARCH64_OPDE_FATAL_SYNTAX_ERROR)
5860 {
5861 int a_index = (a->detail.index < 0
5862 ? aarch64_num_of_operands (a->opcode) - 1
5863 : a->detail.index);
5864 int b_index = (b->detail.index < 0
5865 ? aarch64_num_of_operands (b->opcode) - 1
5866 : b->detail.index);
5867 if (a_index != b_index)
5868 return a_index > b_index;
5869 }
5870 return operand_error_higher_severity_p (a->detail.kind, b->detail.kind);
5871}
5872
a06ea964
NC
5873/* Process and output the error message about the operand mismatching.
5874
5875 When this function is called, the operand error information had
5876 been collected for an assembly line and there will be multiple
33eaf5de 5877 errors in the case of multiple instruction templates; output the
7d02540a
TC
5878 error message that most closely describes the problem.
5879
5880 The errors to be printed can be filtered on printing all errors
5881 or only non-fatal errors. This distinction has to be made because
5882 the error buffer may already be filled with fatal errors we don't want to
5883 print due to the different instruction templates. */
a06ea964
NC
5884
5885static void
5b7c81bd 5886output_operand_error_report (char *str, bool non_fatal_only)
a06ea964 5887{
a06ea964
NC
5888 enum aarch64_operand_error_kind kind;
5889 operand_error_record *curr;
5890 operand_error_record *head = operand_error_report.head;
1be1148d 5891 operand_error_record *record;
a06ea964
NC
5892
5893 /* No error to report. */
5894 if (head == NULL)
5895 return;
5896
5897 gas_assert (head != NULL && operand_error_report.tail != NULL);
5898
5899 /* Only one error. */
5900 if (head == operand_error_report.tail)
5901 {
7d02540a
TC
5902 /* If the only error is a non-fatal one and we don't want to print it,
5903 just exit. */
5904 if (!non_fatal_only || head->detail.non_fatal)
5905 {
5906 DEBUG_TRACE ("single opcode entry with error kind: %s",
5907 operand_mismatch_kind_names[head->detail.kind]);
5908 output_operand_error_record (head, str);
5909 }
a06ea964
NC
5910 return;
5911 }
5912
5913 /* Find the error kind of the highest severity. */
33eaf5de 5914 DEBUG_TRACE ("multiple opcode entries with error kind");
1be1148d 5915 record = NULL;
a06ea964
NC
5916 for (curr = head; curr != NULL; curr = curr->next)
5917 {
5918 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
e426521e
RS
5919 if (curr->detail.kind == AARCH64_OPDE_SYNTAX_ERROR)
5920 {
5921 DEBUG_TRACE ("\t%s [%x, %x, %x]",
5922 operand_mismatch_kind_names[curr->detail.kind],
5923 curr->detail.data[0].i, curr->detail.data[1].i,
5924 curr->detail.data[2].i);
5925 }
f5b57fea
RS
5926 else if (curr->detail.kind == AARCH64_OPDE_REG_LIST_LENGTH
5927 || curr->detail.kind == AARCH64_OPDE_REG_LIST_STRIDE)
38c5aa5e
RS
5928 {
5929 DEBUG_TRACE ("\t%s [%x]",
5930 operand_mismatch_kind_names[curr->detail.kind],
5931 curr->detail.data[0].i);
5932 }
e426521e
RS
5933 else
5934 {
5935 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
5936 }
1be1148d
RS
5937 if ((!non_fatal_only || curr->detail.non_fatal)
5938 && (!record || better_error_p (curr, record)))
5939 record = curr;
a06ea964 5940 }
a68f4cd2 5941
1be1148d 5942 kind = (record ? record->detail.kind : AARCH64_OPDE_NIL);
a68f4cd2 5943 gas_assert (kind != AARCH64_OPDE_NIL || non_fatal_only);
a06ea964
NC
5944
5945 /* Pick up one of errors of KIND to report. */
1be1148d 5946 record = NULL;
a06ea964
NC
5947 for (curr = head; curr != NULL; curr = curr->next)
5948 {
7d02540a
TC
5949 /* If we don't want to print non-fatal errors then don't consider them
5950 at all. */
5951 if (curr->detail.kind != kind
af81c43b 5952 || (non_fatal_only && !curr->detail.non_fatal))
a06ea964
NC
5953 continue;
5954 /* If there are multiple errors, pick up the one with the highest
5955 mismatching operand index. In the case of multiple errors with
5956 the equally highest operand index, pick up the first one or the
5957 first one with non-NULL error message. */
e426521e
RS
5958 if (!record || curr->detail.index > record->detail.index)
5959 record = curr;
5960 else if (curr->detail.index == record->detail.index
5961 && !record->detail.error)
a06ea964 5962 {
e426521e
RS
5963 if (curr->detail.error)
5964 record = curr;
5965 else if (kind == AARCH64_OPDE_SYNTAX_ERROR)
5966 {
5967 record->detail.data[0].i |= curr->detail.data[0].i;
5968 record->detail.data[1].i |= curr->detail.data[1].i;
5969 record->detail.data[2].i |= curr->detail.data[2].i;
5970 DEBUG_TRACE ("\t--> %s [%x, %x, %x]",
5971 operand_mismatch_kind_names[kind],
5972 curr->detail.data[0].i, curr->detail.data[1].i,
5973 curr->detail.data[2].i);
5974 }
f5b57fea
RS
5975 else if (kind == AARCH64_OPDE_REG_LIST_LENGTH
5976 || kind == AARCH64_OPDE_REG_LIST_STRIDE)
38c5aa5e
RS
5977 {
5978 record->detail.data[0].i |= curr->detail.data[0].i;
5979 DEBUG_TRACE ("\t--> %s [%x]",
5980 operand_mismatch_kind_names[kind],
5981 curr->detail.data[0].i);
5982 }
b5b4f665
RS
5983 /* Pick the variant with the cloest match. */
5984 else if (kind == AARCH64_OPDE_INVALID_VARIANT
5985 && record->detail.data[0].i > curr->detail.data[0].i)
5986 record = curr;
a06ea964
NC
5987 }
5988 }
5989
7d02540a
TC
5990 /* The way errors are collected in the back-end is a bit non-intuitive. But
5991 essentially, because each operand template is tried recursively you may
5992 always have errors collected from the previous tried OPND. These are
5993 usually skipped if there is one successful match. However now with the
5994 non-fatal errors we have to ignore those previously collected hard errors
5995 when we're only interested in printing the non-fatal ones. This condition
5996 prevents us from printing errors that are not appropriate, since we did
5997 match a condition, but it also has warnings that it wants to print. */
5998 if (non_fatal_only && !record)
5999 return;
6000
e426521e 6001 gas_assert (record);
a06ea964 6002 DEBUG_TRACE ("Pick up error kind %s to report",
e426521e 6003 operand_mismatch_kind_names[kind]);
a06ea964
NC
6004
6005 /* Output. */
6006 output_operand_error_record (record, str);
6007}
6008\f
6009/* Write an AARCH64 instruction to buf - always little-endian. */
6010static void
6011put_aarch64_insn (char *buf, uint32_t insn)
6012{
6013 unsigned char *where = (unsigned char *) buf;
6014 where[0] = insn;
6015 where[1] = insn >> 8;
6016 where[2] = insn >> 16;
6017 where[3] = insn >> 24;
6018}
6019
6020static uint32_t
6021get_aarch64_insn (char *buf)
6022{
6023 unsigned char *where = (unsigned char *) buf;
6024 uint32_t result;
4f7cc141
AM
6025 result = ((where[0] | (where[1] << 8) | (where[2] << 16)
6026 | ((uint32_t) where[3] << 24)));
a06ea964
NC
6027 return result;
6028}
6029
6030static void
6031output_inst (struct aarch64_inst *new_inst)
6032{
6033 char *to = NULL;
6034
6035 to = frag_more (INSN_SIZE);
6036
6037 frag_now->tc_frag_data.recorded = 1;
6038
6039 put_aarch64_insn (to, inst.base.value);
6040
6041 if (inst.reloc.type != BFD_RELOC_UNUSED)
6042 {
6043 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
6044 INSN_SIZE, &inst.reloc.exp,
6045 inst.reloc.pc_rel,
6046 inst.reloc.type);
6047 DEBUG_TRACE ("Prepared relocation fix up");
6048 /* Don't check the addend value against the instruction size,
6049 that's the job of our code in md_apply_fix(). */
6050 fixp->fx_no_overflow = 1;
6051 if (new_inst != NULL)
6052 fixp->tc_fix_data.inst = new_inst;
6053 if (aarch64_gas_internal_fixup_p ())
6054 {
6055 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
6056 fixp->tc_fix_data.opnd = inst.reloc.opnd;
6057 fixp->fx_addnumber = inst.reloc.flags;
6058 }
6059 }
6060
6061 dwarf2_emit_insn (INSN_SIZE);
6062}
6063
6064/* Link together opcodes of the same name. */
6065
6066struct templates
6067{
6c2ede01 6068 const aarch64_opcode *opcode;
a06ea964
NC
6069 struct templates *next;
6070};
6071
6072typedef struct templates templates;
6073
6074static templates *
6075lookup_mnemonic (const char *start, int len)
6076{
6077 templates *templ = NULL;
6078
629310ab 6079 templ = str_hash_find_n (aarch64_ops_hsh, start, len);
a06ea964
NC
6080 return templ;
6081}
6082
6083/* Subroutine of md_assemble, responsible for looking up the primary
2dd3146b
RS
6084 opcode from the mnemonic the user wrote. BASE points to the beginning
6085 of the mnemonic, DOT points to the first '.' within the mnemonic
6086 (if any) and END points to the end of the mnemonic. */
a06ea964
NC
6087
6088static templates *
2dd3146b 6089opcode_lookup (char *base, char *dot, char *end)
a06ea964 6090{
a06ea964
NC
6091 const aarch64_cond *cond;
6092 char condname[16];
6093 int len;
6094
2dd3146b 6095 if (dot == end)
a06ea964
NC
6096 return 0;
6097
6098 inst.cond = COND_ALWAYS;
6099
6100 /* Handle a possible condition. */
bb7eff52 6101 if (dot)
a06ea964 6102 {
629310ab 6103 cond = str_hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
2dd3146b
RS
6104 if (!cond)
6105 return 0;
6106 inst.cond = cond->value;
bb7eff52 6107 len = dot - base;
a06ea964
NC
6108 }
6109 else
2dd3146b 6110 len = end - base;
a06ea964
NC
6111
6112 if (inst.cond == COND_ALWAYS)
6113 {
6114 /* Look for unaffixed mnemonic. */
6115 return lookup_mnemonic (base, len);
6116 }
6117 else if (len <= 13)
6118 {
6119 /* append ".c" to mnemonic if conditional */
6120 memcpy (condname, base, len);
6121 memcpy (condname + len, ".c", 2);
6122 base = condname;
6123 len += 2;
6124 return lookup_mnemonic (base, len);
6125 }
6126
6127 return NULL;
6128}
6129
a06ea964
NC
6130/* Process an optional operand that is found omitted from the assembly line.
6131 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
6132 instruction's opcode entry while IDX is the index of this omitted operand.
6133 */
6134
6135static void
6136process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
6137 int idx, aarch64_opnd_info *operand)
6138{
6139 aarch64_insn default_value = get_optional_operand_default_value (opcode);
6140 gas_assert (optional_operand_p (opcode, idx));
6141 gas_assert (!operand->present);
6142
6143 switch (type)
6144 {
6145 case AARCH64_OPND_Rd:
6146 case AARCH64_OPND_Rn:
6147 case AARCH64_OPND_Rm:
6148 case AARCH64_OPND_Rt:
6149 case AARCH64_OPND_Rt2:
8edca81e 6150 case AARCH64_OPND_Rt_LS64:
bd7ceb8d 6151 case AARCH64_OPND_Rt_SP:
a06ea964
NC
6152 case AARCH64_OPND_Rs:
6153 case AARCH64_OPND_Ra:
6154 case AARCH64_OPND_Rt_SYS:
6155 case AARCH64_OPND_Rd_SP:
6156 case AARCH64_OPND_Rn_SP:
c84364ec 6157 case AARCH64_OPND_Rm_SP:
a06ea964
NC
6158 case AARCH64_OPND_Fd:
6159 case AARCH64_OPND_Fn:
6160 case AARCH64_OPND_Fm:
6161 case AARCH64_OPND_Fa:
6162 case AARCH64_OPND_Ft:
6163 case AARCH64_OPND_Ft2:
6164 case AARCH64_OPND_Sd:
6165 case AARCH64_OPND_Sn:
6166 case AARCH64_OPND_Sm:
f42f1a1d 6167 case AARCH64_OPND_Va:
a06ea964
NC
6168 case AARCH64_OPND_Vd:
6169 case AARCH64_OPND_Vn:
6170 case AARCH64_OPND_Vm:
6171 case AARCH64_OPND_VdD1:
6172 case AARCH64_OPND_VnD1:
6173 operand->reg.regno = default_value;
6174 break;
f89c290e
VDN
6175 case AARCH64_OPND_PAIRREG_OR_XZR:
6176 if (inst.base.operands[idx - 1].reg.regno == 0x1f)
6177 {
6178 operand->reg.regno = 0x1f;
6179 break;
6180 }
6181 operand->reg.regno = inst.base.operands[idx - 1].reg.regno + 1;
6182 break;
6183 case AARCH64_OPND_PAIRREG:
6184 operand->reg.regno = inst.base.operands[idx - 1].reg.regno + 1;
6185 break;
a06ea964
NC
6186
6187 case AARCH64_OPND_Ed:
6188 case AARCH64_OPND_En:
6189 case AARCH64_OPND_Em:
369c9167 6190 case AARCH64_OPND_Em16:
f42f1a1d 6191 case AARCH64_OPND_SM3_IMM2:
a06ea964
NC
6192 operand->reglane.regno = default_value;
6193 break;
6194
6195 case AARCH64_OPND_IDX:
6196 case AARCH64_OPND_BIT_NUM:
6197 case AARCH64_OPND_IMMR:
6198 case AARCH64_OPND_IMMS:
6199 case AARCH64_OPND_SHLL_IMM:
6200 case AARCH64_OPND_IMM_VLSL:
6201 case AARCH64_OPND_IMM_VLSR:
6202 case AARCH64_OPND_CCMP_IMM:
6203 case AARCH64_OPND_FBITS:
6204 case AARCH64_OPND_UIMM4:
6205 case AARCH64_OPND_UIMM3_OP1:
6206 case AARCH64_OPND_UIMM3_OP2:
6207 case AARCH64_OPND_IMM:
f42f1a1d 6208 case AARCH64_OPND_IMM_2:
a06ea964
NC
6209 case AARCH64_OPND_WIDTH:
6210 case AARCH64_OPND_UIMM7:
6211 case AARCH64_OPND_NZCV:
245d2e3f
RS
6212 case AARCH64_OPND_SVE_PATTERN:
6213 case AARCH64_OPND_SVE_PRFOP:
a06ea964
NC
6214 operand->imm.value = default_value;
6215 break;
6216
2442d846
RS
6217 case AARCH64_OPND_SVE_PATTERN_SCALED:
6218 operand->imm.value = default_value;
6219 operand->shifter.kind = AARCH64_MOD_MUL;
6220 operand->shifter.amount = 1;
6221 break;
6222
a06ea964
NC
6223 case AARCH64_OPND_EXCEPTION:
6224 inst.reloc.type = BFD_RELOC_UNUSED;
6225 break;
6226
6227 case AARCH64_OPND_BARRIER_ISB:
6228 operand->barrier = aarch64_barrier_options + default_value;
ff605452
SD
6229 break;
6230
6231 case AARCH64_OPND_BTI_TARGET:
6232 operand->hint_option = aarch64_hint_options + default_value;
6233 break;
a06ea964
NC
6234
6235 default:
6236 break;
6237 }
6238}
6239
6240/* Process the relocation type for move wide instructions.
6241 Return TRUE on success; otherwise return FALSE. */
6242
5b7c81bd 6243static bool
a06ea964
NC
6244process_movw_reloc_info (void)
6245{
6246 int is32;
6247 unsigned shift;
6248
6249 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
6250
6251 if (inst.base.opcode->op == OP_MOVK)
6252 switch (inst.reloc.type)
6253 {
6254 case BFD_RELOC_AARCH64_MOVW_G0_S:
6255 case BFD_RELOC_AARCH64_MOVW_G1_S:
6256 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
6257 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
6258 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
6259 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
6260 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
1aa66fb1 6261 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 6262 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 6263 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
6264 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6265 set_syntax_error
6266 (_("the specified relocation type is not allowed for MOVK"));
5b7c81bd 6267 return false;
a06ea964
NC
6268 default:
6269 break;
6270 }
6271
6272 switch (inst.reloc.type)
6273 {
6274 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 6275 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 6276 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 6277 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
6278 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
6279 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
43a357f9 6280 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 6281 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 6282 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
6283 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6284 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
6285 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6286 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6287 shift = 0;
6288 break;
6289 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 6290 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 6291 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 6292 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
6293 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
6294 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
43a357f9 6295 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 6296 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 6297 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
6298 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6299 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
6300 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6301 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6302 shift = 16;
6303 break;
6304 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 6305 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 6306 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
6307 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
6308 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
49df5539 6309 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
6310 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6311 if (is32)
6312 {
6313 set_fatal_syntax_error
6314 (_("the specified relocation type is not allowed for 32-bit "
6315 "register"));
5b7c81bd 6316 return false;
a06ea964
NC
6317 }
6318 shift = 32;
6319 break;
6320 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 6321 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
6322 if (is32)
6323 {
6324 set_fatal_syntax_error
6325 (_("the specified relocation type is not allowed for 32-bit "
6326 "register"));
5b7c81bd 6327 return false;
a06ea964
NC
6328 }
6329 shift = 48;
6330 break;
6331 default:
6332 /* More cases should be added when more MOVW-related relocation types
6333 are supported in GAS. */
6334 gas_assert (aarch64_gas_internal_fixup_p ());
6335 /* The shift amount should have already been set by the parser. */
5b7c81bd 6336 return true;
a06ea964
NC
6337 }
6338 inst.base.operands[1].shifter.amount = shift;
5b7c81bd 6339 return true;
a06ea964
NC
6340}
6341
a06ea964
NC
6342/* Determine and return the real reloc type code for an instruction
6343 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
6344
6345static inline bfd_reloc_code_real_type
6346ldst_lo12_determine_real_reloc_type (void)
6347{
96cbfd9f 6348 unsigned logsz, max_logsz;
a06ea964
NC
6349 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
6350 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
6351
84f1b9fb 6352 const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
4c562523
JW
6353 {
6354 BFD_RELOC_AARCH64_LDST8_LO12,
6355 BFD_RELOC_AARCH64_LDST16_LO12,
6356 BFD_RELOC_AARCH64_LDST32_LO12,
6357 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 6358 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
6359 },
6360 {
6361 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
6362 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
6363 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
6364 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
6365 BFD_RELOC_AARCH64_NONE
6366 },
6367 {
6368 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
6369 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
6370 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
6371 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
6372 BFD_RELOC_AARCH64_NONE
84f1b9fb
RL
6373 },
6374 {
6375 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
6376 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
6377 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
6378 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
6379 BFD_RELOC_AARCH64_NONE
6380 },
6381 {
6382 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
6383 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
6384 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
6385 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
6386 BFD_RELOC_AARCH64_NONE
4c562523 6387 }
a06ea964
NC
6388 };
6389
4c562523
JW
6390 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6391 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
6392 || (inst.reloc.type
84f1b9fb
RL
6393 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
6394 || (inst.reloc.type
6395 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
6396 || (inst.reloc.type
6397 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
a06ea964
NC
6398 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
6399
6400 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
6401 opd1_qlf =
6402 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
6403 1, opd0_qlf, 0);
6404 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
6405
38c5aa5e 6406 logsz = get_log2 (aarch64_get_qualifier_esize (opd1_qlf));
96cbfd9f 6407
4c562523 6408 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
84f1b9fb
RL
6409 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
6410 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
6411 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
96cbfd9f 6412 max_logsz = 3;
4c562523 6413 else
96cbfd9f
NC
6414 max_logsz = 4;
6415
6416 if (logsz > max_logsz)
6417 {
6418 /* SEE PR 27904 for an example of this. */
6419 set_fatal_syntax_error
6420 (_("relocation qualifier does not match instruction size"));
6421 return BFD_RELOC_AARCH64_NONE;
6422 }
a06ea964 6423
4c562523 6424 /* In reloc.c, these pseudo relocation types should be defined in similar
33eaf5de 6425 order as above reloc_ldst_lo12 array. Because the array index calculation
4c562523
JW
6426 below relies on this. */
6427 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
6428}
6429
99e01a66
RS
6430/* Check whether a register list REGINFO is valid. The registers have type
6431 REG_TYPE and must be numbered in increasing order (modulo the register
6432 bank size). They must have a consistent stride.
a06ea964 6433
f5b57fea 6434 Return true if the list is valid, describing it in LIST if so. */
a06ea964 6435
5b7c81bd 6436static bool
99e01a66
RS
6437reg_list_valid_p (uint32_t reginfo, struct aarch64_reglist *list,
6438 aarch64_reg_type reg_type)
a06ea964 6439{
99e01a66
RS
6440 uint32_t i, nb_regs, prev_regno, incr, mask;
6441 mask = reg_type_mask (reg_type);
a06ea964
NC
6442
6443 nb_regs = 1 + (reginfo & 0x3);
6444 reginfo >>= 2;
6445 prev_regno = reginfo & 0x1f;
f5b57fea
RS
6446 incr = 1;
6447
6448 list->first_regno = prev_regno;
6449 list->num_regs = nb_regs;
a06ea964
NC
6450
6451 for (i = 1; i < nb_regs; ++i)
6452 {
f5b57fea 6453 uint32_t curr_regno, curr_incr;
a06ea964
NC
6454 reginfo >>= 5;
6455 curr_regno = reginfo & 0x1f;
99e01a66 6456 curr_incr = (curr_regno - prev_regno) & mask;
f5b57fea
RS
6457 if (curr_incr == 0)
6458 return false;
6459 else if (i == 1)
6460 incr = curr_incr;
6461 else if (curr_incr != incr)
5b7c81bd 6462 return false;
a06ea964
NC
6463 prev_regno = curr_regno;
6464 }
6465
f5b57fea 6466 list->stride = incr;
5b7c81bd 6467 return true;
a06ea964
NC
6468}
6469
6470/* Generic instruction operand parser. This does no encoding and no
6471 semantic validation; it merely squirrels values away in the inst
6472 structure. Returns TRUE or FALSE depending on whether the
6473 specified grammar matched. */
6474
5b7c81bd 6475static bool
a06ea964
NC
6476parse_operands (char *str, const aarch64_opcode *opcode)
6477{
6478 int i;
6479 char *backtrack_pos = 0;
6480 const enum aarch64_opnd *operands = opcode->operands;
5517af82 6481 const uint64_t flags = opcode->flags;
1799c0d0 6482 aarch64_reg_type imm_reg_type;
a06ea964
NC
6483
6484 clear_error ();
6485 skip_whitespace (str);
6486
4abb672a 6487 if (AARCH64_CPU_HAS_FEATURE (*opcode->avariant, SME2))
6efa6601 6488 imm_reg_type = REG_TYPE_R_ZR_SP_BHSDQ_VZP_PN;
4abb672a
RS
6489 else if (AARCH64_CPU_HAS_FEATURE (*opcode->avariant, SVE)
6490 || AARCH64_CPU_HAS_FEATURE (*opcode->avariant, SVE2))
2f4e3a2c 6491 imm_reg_type = REG_TYPE_R_ZR_SP_BHSDQ_VZP;
c0890d26 6492 else
2f4e3a2c 6493 imm_reg_type = REG_TYPE_R_ZR_BHSDQ_V;
1799c0d0 6494
a06ea964
NC
6495 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
6496 {
6497 int64_t val;
e1b988bb 6498 const reg_entry *reg;
a06ea964 6499 int comma_skipped_p = 0;
8f9a77af 6500 struct vector_type_el vectype;
4df068de 6501 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
a06ea964 6502 aarch64_opnd_info *info = &inst.base.operands[i];
f11ad6bc 6503 aarch64_reg_type reg_type;
a06ea964
NC
6504
6505 DEBUG_TRACE ("parse operand %d", i);
6506
6507 /* Assign the operand code. */
6508 info->type = operands[i];
6509
6510 if (optional_operand_p (opcode, i))
6511 {
6512 /* Remember where we are in case we need to backtrack. */
6513 gas_assert (!backtrack_pos);
6514 backtrack_pos = str;
6515 }
6516
33eaf5de 6517 /* Expect comma between operands; the backtrack mechanism will take
a06ea964
NC
6518 care of cases of omitted optional operand. */
6519 if (i > 0 && ! skip_past_char (&str, ','))
6520 {
6521 set_syntax_error (_("comma expected between operands"));
6522 goto failure;
6523 }
6524 else
6525 comma_skipped_p = 1;
6526
6527 switch (operands[i])
6528 {
6529 case AARCH64_OPND_Rd:
6530 case AARCH64_OPND_Rn:
6531 case AARCH64_OPND_Rm:
6532 case AARCH64_OPND_Rt:
6533 case AARCH64_OPND_Rt2:
6c0ecdba 6534 case AARCH64_OPND_X16:
a06ea964
NC
6535 case AARCH64_OPND_Rs:
6536 case AARCH64_OPND_Ra:
8edca81e 6537 case AARCH64_OPND_Rt_LS64:
a06ea964 6538 case AARCH64_OPND_Rt_SYS:
ee804238 6539 case AARCH64_OPND_PAIRREG:
d30eb38d 6540 case AARCH64_OPND_PAIRREG_OR_XZR:
047cd301 6541 case AARCH64_OPND_SVE_Rm:
2f4e3a2c 6542 po_int_fp_reg_or_fail (REG_TYPE_R_ZR);
8edca81e 6543
4a3e3e22
PW
6544 /* In LS64 load/store instructions Rt register number must be even
6545 and <=22. */
8edca81e 6546 if (operands[i] == AARCH64_OPND_Rt_LS64)
8edca81e 6547 {
6c0ecdba
SP
6548 /* We've already checked if this is valid register.
6549 This will check if register number (Rt) is not undefined for
6550 LS64 instructions:
6551 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED. */
6552 if ((info->reg.regno & 0x18) == 0x18
6553 || (info->reg.regno & 0x01) == 0x01)
6554 {
6555 set_syntax_error
6556 (_("invalid Rt register number in 64-byte load/store"));
6557 goto failure;
6558 }
6559 }
6560 else if (operands[i] == AARCH64_OPND_X16)
6561 {
6562 if (info->reg.regno != 16)
6563 {
6564 goto failure;
6565 }
8edca81e 6566 }
a06ea964
NC
6567 break;
6568
6569 case AARCH64_OPND_Rd_SP:
6570 case AARCH64_OPND_Rn_SP:
bd7ceb8d 6571 case AARCH64_OPND_Rt_SP:
047cd301 6572 case AARCH64_OPND_SVE_Rn_SP:
c84364ec 6573 case AARCH64_OPND_Rm_SP:
30ba1d7e 6574 po_int_fp_reg_or_fail (REG_TYPE_R_SP);
a06ea964
NC
6575 break;
6576
6577 case AARCH64_OPND_Rm_EXT:
6578 case AARCH64_OPND_Rm_SFT:
6579 po_misc_or_fail (parse_shifter_operand
6580 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
6581 ? SHIFTED_ARITH_IMM
6582 : SHIFTED_LOGIC_IMM)));
6583 if (!info->shifter.operator_present)
6584 {
6585 /* Default to LSL if not present. Libopcodes prefers shifter
6586 kind to be explicit. */
6587 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6588 info->shifter.kind = AARCH64_MOD_LSL;
6589 /* For Rm_EXT, libopcodes will carry out further check on whether
6590 or not stack pointer is used in the instruction (Recall that
6591 "the extend operator is not optional unless at least one of
6592 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
6593 }
6594 break;
6595
6596 case AARCH64_OPND_Fd:
6597 case AARCH64_OPND_Fn:
6598 case AARCH64_OPND_Fm:
6599 case AARCH64_OPND_Fa:
6600 case AARCH64_OPND_Ft:
6601 case AARCH64_OPND_Ft2:
6602 case AARCH64_OPND_Sd:
6603 case AARCH64_OPND_Sn:
6604 case AARCH64_OPND_Sm:
047cd301
RS
6605 case AARCH64_OPND_SVE_VZn:
6606 case AARCH64_OPND_SVE_Vd:
6607 case AARCH64_OPND_SVE_Vm:
6608 case AARCH64_OPND_SVE_Vn:
30ba1d7e 6609 po_int_fp_reg_or_fail (REG_TYPE_BHSDQ);
a06ea964
NC
6610 break;
6611
f11ad6bc
RS
6612 case AARCH64_OPND_SVE_Pd:
6613 case AARCH64_OPND_SVE_Pg3:
6614 case AARCH64_OPND_SVE_Pg4_5:
6615 case AARCH64_OPND_SVE_Pg4_10:
6616 case AARCH64_OPND_SVE_Pg4_16:
6617 case AARCH64_OPND_SVE_Pm:
6618 case AARCH64_OPND_SVE_Pn:
6619 case AARCH64_OPND_SVE_Pt:
971eda73 6620 case AARCH64_OPND_SME_Pm:
2f4e3a2c 6621 reg_type = REG_TYPE_P;
f11ad6bc
RS
6622 goto vector_reg;
6623
6624 case AARCH64_OPND_SVE_Za_5:
6625 case AARCH64_OPND_SVE_Za_16:
6626 case AARCH64_OPND_SVE_Zd:
6627 case AARCH64_OPND_SVE_Zm_5:
6628 case AARCH64_OPND_SVE_Zm_16:
6629 case AARCH64_OPND_SVE_Zn:
6630 case AARCH64_OPND_SVE_Zt:
e87ff672 6631 case AARCH64_OPND_SME_Zm:
2f4e3a2c 6632 reg_type = REG_TYPE_Z;
f11ad6bc
RS
6633 goto vector_reg;
6634
503fae12
RS
6635 case AARCH64_OPND_SVE_PNd:
6636 case AARCH64_OPND_SVE_PNg4_10:
6637 case AARCH64_OPND_SVE_PNn:
6638 case AARCH64_OPND_SVE_PNt:
99e01a66 6639 case AARCH64_OPND_SME_PNd3:
b408ebbf 6640 case AARCH64_OPND_SME_PNg3:
99e01a66 6641 case AARCH64_OPND_SME_PNn:
503fae12
RS
6642 reg_type = REG_TYPE_PN;
6643 goto vector_reg;
6644
f42f1a1d 6645 case AARCH64_OPND_Va:
a06ea964
NC
6646 case AARCH64_OPND_Vd:
6647 case AARCH64_OPND_Vn:
6648 case AARCH64_OPND_Vm:
2f4e3a2c 6649 reg_type = REG_TYPE_V;
f11ad6bc 6650 vector_reg:
074c89d2
RS
6651 reg = aarch64_reg_parse (&str, reg_type, &vectype);
6652 if (!reg)
e426521e 6653 goto failure;
a06ea964
NC
6654 if (vectype.defined & NTA_HASINDEX)
6655 goto failure;
6656
074c89d2 6657 info->reg.regno = reg->number;
503fae12
RS
6658 if ((reg_type == REG_TYPE_P
6659 || reg_type == REG_TYPE_PN
6660 || reg_type == REG_TYPE_Z)
f11ad6bc 6661 && vectype.type == NT_invtype)
2f4e3a2c 6662 /* Unqualified P and Z registers are allowed in certain
f11ad6bc
RS
6663 contexts. Rely on F_STRICT qualifier checking to catch
6664 invalid uses. */
6665 info->qualifier = AARCH64_OPND_QLF_NIL;
6666 else
6667 {
6668 info->qualifier = vectype_to_qualifier (&vectype);
6669 if (info->qualifier == AARCH64_OPND_QLF_NIL)
6670 goto failure;
6671 }
a06ea964
NC
6672 break;
6673
6674 case AARCH64_OPND_VdD1:
6675 case AARCH64_OPND_VnD1:
2f4e3a2c 6676 reg = aarch64_reg_parse (&str, REG_TYPE_V, &vectype);
074c89d2 6677 if (!reg)
e426521e 6678 goto failure;
a06ea964
NC
6679 if (vectype.type != NT_d || vectype.index != 1)
6680 {
6681 set_fatal_syntax_error
6682 (_("the top half of a 128-bit FP/SIMD register is expected"));
6683 goto failure;
6684 }
074c89d2 6685 info->reg.regno = reg->number;
a06ea964
NC
6686 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
6687 here; it is correct for the purpose of encoding/decoding since
6688 only the register number is explicitly encoded in the related
6689 instructions, although this appears a bit hacky. */
6690 info->qualifier = AARCH64_OPND_QLF_S_D;
6691 break;
6692
582e12bf
RS
6693 case AARCH64_OPND_SVE_Zm3_INDEX:
6694 case AARCH64_OPND_SVE_Zm3_22_INDEX:
dfc12f9f 6695 case AARCH64_OPND_SVE_Zm3_19_INDEX:
116adc27 6696 case AARCH64_OPND_SVE_Zm3_11_INDEX:
31e36ab3 6697 case AARCH64_OPND_SVE_Zm4_11_INDEX:
582e12bf 6698 case AARCH64_OPND_SVE_Zm4_INDEX:
f11ad6bc 6699 case AARCH64_OPND_SVE_Zn_INDEX:
39092c7a
SP
6700 case AARCH64_OPND_SVE_Zm_imm4:
6701 case AARCH64_OPND_SVE_Zn_5_INDEX:
80752eb0
RS
6702 case AARCH64_OPND_SME_Zm_INDEX1:
6703 case AARCH64_OPND_SME_Zm_INDEX2:
a8cb21aa 6704 case AARCH64_OPND_SME_Zm_INDEX3_1:
ed429b33
RS
6705 case AARCH64_OPND_SME_Zm_INDEX3_2:
6706 case AARCH64_OPND_SME_Zm_INDEX3_10:
a8cb21aa
RS
6707 case AARCH64_OPND_SME_Zm_INDEX4_1:
6708 case AARCH64_OPND_SME_Zm_INDEX4_10:
cbd11b88
RS
6709 case AARCH64_OPND_SME_Zn_INDEX1_16:
6710 case AARCH64_OPND_SME_Zn_INDEX2_15:
6711 case AARCH64_OPND_SME_Zn_INDEX2_16:
6712 case AARCH64_OPND_SME_Zn_INDEX3_14:
6713 case AARCH64_OPND_SME_Zn_INDEX3_15:
6714 case AARCH64_OPND_SME_Zn_INDEX4_14:
2f4e3a2c 6715 reg_type = REG_TYPE_Z;
f11ad6bc
RS
6716 goto vector_reg_index;
6717
a06ea964
NC
6718 case AARCH64_OPND_Ed:
6719 case AARCH64_OPND_En:
6720 case AARCH64_OPND_Em:
369c9167 6721 case AARCH64_OPND_Em16:
f42f1a1d 6722 case AARCH64_OPND_SM3_IMM2:
2f4e3a2c 6723 reg_type = REG_TYPE_V;
f11ad6bc 6724 vector_reg_index:
074c89d2
RS
6725 reg = aarch64_reg_parse (&str, reg_type, &vectype);
6726 if (!reg)
e426521e 6727 goto failure;
cbd11b88 6728 if (!(vectype.defined & NTA_HASINDEX))
a06ea964
NC
6729 goto failure;
6730
cbd11b88
RS
6731 if (reg->type == REG_TYPE_Z && vectype.type == NT_invtype)
6732 /* Unqualified Zn[index] is allowed in LUTI2 instructions. */
6733 info->qualifier = AARCH64_OPND_QLF_NIL;
6734 else
6735 {
6736 if (vectype.type == NT_invtype)
6737 goto failure;
6738 info->qualifier = vectype_to_qualifier (&vectype);
6739 if (info->qualifier == AARCH64_OPND_QLF_NIL)
6740 goto failure;
6741 }
6742
074c89d2 6743 info->reglane.regno = reg->number;
a06ea964 6744 info->reglane.index = vectype.index;
a06ea964
NC
6745 break;
6746
f11ad6bc
RS
6747 case AARCH64_OPND_SVE_ZnxN:
6748 case AARCH64_OPND_SVE_ZtxN:
d8773a8a
RS
6749 case AARCH64_OPND_SME_Zdnx2:
6750 case AARCH64_OPND_SME_Zdnx4:
b33f1bcd
SP
6751 case AARCH64_OPND_SME_Zt2:
6752 case AARCH64_OPND_SME_Zt3:
6753 case AARCH64_OPND_SME_Zt4:
99e01a66
RS
6754 case AARCH64_OPND_SME_Zmx2:
6755 case AARCH64_OPND_SME_Zmx4:
d8773a8a
RS
6756 case AARCH64_OPND_SME_Znx2:
6757 case AARCH64_OPND_SME_Znx4:
b408ebbf
RS
6758 case AARCH64_OPND_SME_Ztx2_STRIDED:
6759 case AARCH64_OPND_SME_Ztx4_STRIDED:
2f4e3a2c 6760 reg_type = REG_TYPE_Z;
f11ad6bc
RS
6761 goto vector_reg_list;
6762
99e01a66
RS
6763 case AARCH64_OPND_SME_Pdx2:
6764 case AARCH64_OPND_SME_PdxN:
6765 reg_type = REG_TYPE_P;
6766 goto vector_reg_list;
6767
a06ea964
NC
6768 case AARCH64_OPND_LVn:
6769 case AARCH64_OPND_LVt:
6770 case AARCH64_OPND_LVt_AL:
6771 case AARCH64_OPND_LEt:
2f4e3a2c 6772 reg_type = REG_TYPE_V;
f11ad6bc 6773 vector_reg_list:
2f4e3a2c 6774 if (reg_type == REG_TYPE_Z
f11ad6bc
RS
6775 && get_opcode_dependent_value (opcode) == 1
6776 && *str != '{')
a06ea964 6777 {
074c89d2
RS
6778 reg = aarch64_reg_parse (&str, reg_type, &vectype);
6779 if (!reg)
e426521e 6780 goto failure;
074c89d2 6781 info->reglist.first_regno = reg->number;
f11ad6bc 6782 info->reglist.num_regs = 1;
f5b57fea 6783 info->reglist.stride = 1;
f11ad6bc
RS
6784 }
6785 else
6786 {
6787 val = parse_vector_reg_list (&str, reg_type, &vectype);
6788 if (val == PARSE_FAIL)
6789 goto failure;
163b2c58 6790
99e01a66 6791 if (! reg_list_valid_p (val, &info->reglist, reg_type))
f11ad6bc
RS
6792 {
6793 set_fatal_syntax_error (_("invalid register list"));
6794 goto failure;
6795 }
163b2c58 6796
e87ff672 6797 if ((int) vectype.width > 0 && *str != ',')
163b2c58
BW
6798 {
6799 set_fatal_syntax_error
6800 (_("expected element type rather than vector type"));
6801 goto failure;
6802 }
a06ea964 6803 }
a06ea964
NC
6804 if (operands[i] == AARCH64_OPND_LEt)
6805 {
6806 if (!(vectype.defined & NTA_HASINDEX))
6807 goto failure;
6808 info->reglist.has_index = 1;
6809 info->reglist.index = vectype.index;
6810 }
f11ad6bc
RS
6811 else
6812 {
6813 if (vectype.defined & NTA_HASINDEX)
6814 goto failure;
6815 if (!(vectype.defined & NTA_HASTYPE))
6816 {
99e01a66 6817 if (reg_type == REG_TYPE_Z || reg_type == REG_TYPE_P)
f11ad6bc
RS
6818 set_fatal_syntax_error (_("missing type suffix"));
6819 goto failure;
6820 }
6821 }
a06ea964
NC
6822 info->qualifier = vectype_to_qualifier (&vectype);
6823 if (info->qualifier == AARCH64_OPND_QLF_NIL)
6824 goto failure;
6825 break;
6826
a6a51754
RL
6827 case AARCH64_OPND_CRn:
6828 case AARCH64_OPND_CRm:
a06ea964 6829 {
a6a51754
RL
6830 char prefix = *(str++);
6831 if (prefix != 'c' && prefix != 'C')
6832 goto failure;
6833
6834 po_imm_nc_or_fail ();
5517af82
VDN
6835 if (flags & F_OPD_NARROW)
6836 {
6837 if ((operands[i] == AARCH64_OPND_CRn)
6838 && (val < 8 || val > 9))
6839 {
6840 set_fatal_syntax_error (_(N_ ("C8 - C9 expected")));
6841 goto failure;
6842 }
6843 else if ((operands[i] == AARCH64_OPND_CRm)
6844 && (val > 7))
6845 {
6846 set_fatal_syntax_error (_(N_ ("C0 - C7 expected")));
6847 goto failure;
6848 }
6849 }
6850 else if (val > 15)
a6a51754
RL
6851 {
6852 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
6853 goto failure;
6854 }
6855 info->qualifier = AARCH64_OPND_QLF_CR;
6856 info->imm.value = val;
6857 break;
a06ea964 6858 }
a06ea964
NC
6859
6860 case AARCH64_OPND_SHLL_IMM:
6861 case AARCH64_OPND_IMM_VLSR:
6862 po_imm_or_fail (1, 64);
6863 info->imm.value = val;
6864 break;
6865
6866 case AARCH64_OPND_CCMP_IMM:
e950b345 6867 case AARCH64_OPND_SIMM5:
a06ea964 6868 case AARCH64_OPND_FBITS:
b83b4b13 6869 case AARCH64_OPND_TME_UIMM16:
a06ea964 6870 case AARCH64_OPND_UIMM4:
193614f2
SD
6871 case AARCH64_OPND_UIMM4_ADDG:
6872 case AARCH64_OPND_UIMM10:
a06ea964
NC
6873 case AARCH64_OPND_UIMM3_OP1:
6874 case AARCH64_OPND_UIMM3_OP2:
6875 case AARCH64_OPND_IMM_VLSL:
6876 case AARCH64_OPND_IMM:
f42f1a1d 6877 case AARCH64_OPND_IMM_2:
a06ea964 6878 case AARCH64_OPND_WIDTH:
e950b345
RS
6879 case AARCH64_OPND_SVE_INV_LIMM:
6880 case AARCH64_OPND_SVE_LIMM:
6881 case AARCH64_OPND_SVE_LIMM_MOV:
6882 case AARCH64_OPND_SVE_SHLIMM_PRED:
6883 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
28ed815a 6884 case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
6efa6601
RS
6885 case AARCH64_OPND_SME_SHRIMM4:
6886 case AARCH64_OPND_SME_SHRIMM5:
e950b345
RS
6887 case AARCH64_OPND_SVE_SHRIMM_PRED:
6888 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
3c17238b 6889 case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
e950b345
RS
6890 case AARCH64_OPND_SVE_SIMM5:
6891 case AARCH64_OPND_SVE_SIMM5B:
6892 case AARCH64_OPND_SVE_SIMM6:
6893 case AARCH64_OPND_SVE_SIMM8:
6894 case AARCH64_OPND_SVE_UIMM3:
6895 case AARCH64_OPND_SVE_UIMM7:
6896 case AARCH64_OPND_SVE_UIMM8:
6897 case AARCH64_OPND_SVE_UIMM8_53:
c2c4ff8d
SN
6898 case AARCH64_OPND_IMM_ROT1:
6899 case AARCH64_OPND_IMM_ROT2:
6900 case AARCH64_OPND_IMM_ROT3:
582e12bf
RS
6901 case AARCH64_OPND_SVE_IMM_ROT1:
6902 case AARCH64_OPND_SVE_IMM_ROT2:
adccc507 6903 case AARCH64_OPND_SVE_IMM_ROT3:
1f7b42d5
AV
6904 case AARCH64_OPND_CSSC_SIMM8:
6905 case AARCH64_OPND_CSSC_UIMM8:
a06ea964
NC
6906 po_imm_nc_or_fail ();
6907 info->imm.value = val;
6908 break;
6909
e950b345
RS
6910 case AARCH64_OPND_SVE_AIMM:
6911 case AARCH64_OPND_SVE_ASIMM:
6912 po_imm_nc_or_fail ();
6913 info->imm.value = val;
6914 skip_whitespace (str);
6915 if (skip_past_comma (&str))
6916 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
6917 else
6918 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
6919 break;
6920
245d2e3f
RS
6921 case AARCH64_OPND_SVE_PATTERN:
6922 po_enum_or_fail (aarch64_sve_pattern_array);
6923 info->imm.value = val;
6924 break;
6925
2442d846
RS
6926 case AARCH64_OPND_SVE_PATTERN_SCALED:
6927 po_enum_or_fail (aarch64_sve_pattern_array);
6928 info->imm.value = val;
6929 if (skip_past_comma (&str)
6930 && !parse_shift (&str, info, SHIFTED_MUL))
6931 goto failure;
6932 if (!info->shifter.operator_present)
6933 {
6934 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6935 info->shifter.kind = AARCH64_MOD_MUL;
6936 info->shifter.amount = 1;
6937 }
6938 break;
6939
245d2e3f
RS
6940 case AARCH64_OPND_SVE_PRFOP:
6941 po_enum_or_fail (aarch64_sve_prfop_array);
6942 info->imm.value = val;
6943 break;
6944
a06ea964
NC
6945 case AARCH64_OPND_UIMM7:
6946 po_imm_or_fail (0, 127);
6947 info->imm.value = val;
6948 break;
6949
6950 case AARCH64_OPND_IDX:
f42f1a1d 6951 case AARCH64_OPND_MASK:
a06ea964
NC
6952 case AARCH64_OPND_BIT_NUM:
6953 case AARCH64_OPND_IMMR:
6954 case AARCH64_OPND_IMMS:
6955 po_imm_or_fail (0, 63);
6956 info->imm.value = val;
6957 break;
6958
6959 case AARCH64_OPND_IMM0:
6960 po_imm_nc_or_fail ();
6961 if (val != 0)
6962 {
6963 set_fatal_syntax_error (_("immediate zero expected"));
6964 goto failure;
6965 }
6966 info->imm.value = 0;
6967 break;
6968
6969 case AARCH64_OPND_FPIMM0:
6970 {
6971 int qfloat;
5b7c81bd 6972 bool res1 = false, res2 = false;
a06ea964
NC
6973 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
6974 it is probably not worth the effort to support it. */
5b7c81bd 6975 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, false,
1799c0d0 6976 imm_reg_type))
6a9deabe
RS
6977 && (error_p ()
6978 || !(res2 = parse_constant_immediate (&str, &val,
6979 imm_reg_type))))
a06ea964
NC
6980 goto failure;
6981 if ((res1 && qfloat == 0) || (res2 && val == 0))
6982 {
6983 info->imm.value = 0;
6984 info->imm.is_fp = 1;
6985 break;
6986 }
6987 set_fatal_syntax_error (_("immediate zero expected"));
6988 goto failure;
6989 }
6990
6991 case AARCH64_OPND_IMM_MOV:
6992 {
6993 char *saved = str;
2f4e3a2c
RS
6994 if (reg_name_p (str, REG_TYPE_R_ZR_SP)
6995 || reg_name_p (str, REG_TYPE_V))
a06ea964
NC
6996 goto failure;
6997 str = saved;
eac4eb8e 6998 po_misc_or_fail (aarch64_get_expression (&inst.reloc.exp, &str,
c1723a81 6999 GE_OPT_PREFIX, REJECT_ABSENT));
a06ea964
NC
7000 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
7001 later. fix_mov_imm_insn will try to determine a machine
7002 instruction (MOVZ, MOVN or ORR) for it and will issue an error
7003 message if the immediate cannot be moved by a single
7004 instruction. */
7005 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
7006 inst.base.operands[i].skip = 1;
7007 }
7008 break;
7009
7010 case AARCH64_OPND_SIMD_IMM:
7011 case AARCH64_OPND_SIMD_IMM_SFT:
1799c0d0 7012 if (! parse_big_immediate (&str, &val, imm_reg_type))
a06ea964
NC
7013 goto failure;
7014 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
7015 /* addr_off_p */ 0,
7016 /* need_libopcodes_p */ 1,
7017 /* skip_p */ 1);
7018 /* Parse shift.
7019 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
7020 shift, we don't check it here; we leave the checking to
7021 the libopcodes (operand_general_constraint_met_p). By
7022 doing this, we achieve better diagnostics. */
7023 if (skip_past_comma (&str)
7024 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
7025 goto failure;
7026 if (!info->shifter.operator_present
7027 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
7028 {
7029 /* Default to LSL if not present. Libopcodes prefers shifter
7030 kind to be explicit. */
7031 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
7032 info->shifter.kind = AARCH64_MOD_LSL;
7033 }
7034 break;
7035
7036 case AARCH64_OPND_FPIMM:
7037 case AARCH64_OPND_SIMD_FPIMM:
165d4950 7038 case AARCH64_OPND_SVE_FPIMM8:
a06ea964
NC
7039 {
7040 int qfloat;
5b7c81bd 7041 bool dp_p;
165d4950
RS
7042
7043 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6a9deabe 7044 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
874d7e6e 7045 || !aarch64_imm_float_p (qfloat))
a06ea964 7046 {
6a9deabe
RS
7047 if (!error_p ())
7048 set_fatal_syntax_error (_("invalid floating-point"
7049 " constant"));
a06ea964
NC
7050 goto failure;
7051 }
7052 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
7053 inst.base.operands[i].imm.is_fp = 1;
7054 }
7055 break;
7056
165d4950
RS
7057 case AARCH64_OPND_SVE_I1_HALF_ONE:
7058 case AARCH64_OPND_SVE_I1_HALF_TWO:
7059 case AARCH64_OPND_SVE_I1_ZERO_ONE:
7060 {
7061 int qfloat;
5b7c81bd 7062 bool dp_p;
165d4950
RS
7063
7064 dp_p = double_precision_operand_p (&inst.base.operands[0]);
7065 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
7066 {
7067 if (!error_p ())
7068 set_fatal_syntax_error (_("invalid floating-point"
7069 " constant"));
7070 goto failure;
7071 }
7072 inst.base.operands[i].imm.value = qfloat;
7073 inst.base.operands[i].imm.is_fp = 1;
7074 }
7075 break;
7076
a06ea964
NC
7077 case AARCH64_OPND_LIMM:
7078 po_misc_or_fail (parse_shifter_operand (&str, info,
7079 SHIFTED_LOGIC_IMM));
7080 if (info->shifter.operator_present)
7081 {
7082 set_fatal_syntax_error
7083 (_("shift not allowed for bitmask immediate"));
7084 goto failure;
7085 }
7086 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
7087 /* addr_off_p */ 0,
7088 /* need_libopcodes_p */ 1,
7089 /* skip_p */ 1);
7090 break;
7091
7092 case AARCH64_OPND_AIMM:
7093 if (opcode->op == OP_ADD)
7094 /* ADD may have relocation types. */
7095 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
7096 SHIFTED_ARITH_IMM));
7097 else
7098 po_misc_or_fail (parse_shifter_operand (&str, info,
7099 SHIFTED_ARITH_IMM));
7100 switch (inst.reloc.type)
7101 {
7102 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7103 info->shifter.amount = 12;
7104 break;
7105 case BFD_RELOC_UNUSED:
7106 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
7107 if (info->shifter.kind != AARCH64_MOD_NONE)
7108 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
7109 inst.reloc.pc_rel = 0;
7110 break;
7111 default:
7112 break;
7113 }
7114 info->imm.value = 0;
7115 if (!info->shifter.operator_present)
7116 {
7117 /* Default to LSL if not present. Libopcodes prefers shifter
7118 kind to be explicit. */
7119 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
7120 info->shifter.kind = AARCH64_MOD_LSL;
7121 }
7122 break;
7123
7124 case AARCH64_OPND_HALF:
7125 {
7126 /* #<imm16> or relocation. */
7127 int internal_fixup_p;
7128 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
7129 if (internal_fixup_p)
7130 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
7131 skip_whitespace (str);
7132 if (skip_past_comma (&str))
7133 {
7134 /* {, LSL #<shift>} */
7135 if (! aarch64_gas_internal_fixup_p ())
7136 {
7137 set_fatal_syntax_error (_("can't mix relocation modifier "
7138 "with explicit shift"));
7139 goto failure;
7140 }
7141 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
7142 }
7143 else
7144 inst.base.operands[i].shifter.amount = 0;
7145 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
7146 inst.base.operands[i].imm.value = 0;
7147 if (! process_movw_reloc_info ())
7148 goto failure;
7149 }
7150 break;
7151
7152 case AARCH64_OPND_EXCEPTION:
09c1e68a 7153 case AARCH64_OPND_UNDEFINED:
1799c0d0
RS
7154 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
7155 imm_reg_type));
a06ea964
NC
7156 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
7157 /* addr_off_p */ 0,
7158 /* need_libopcodes_p */ 0,
7159 /* skip_p */ 1);
7160 break;
7161
7162 case AARCH64_OPND_NZCV:
7163 {
629310ab 7164 const asm_nzcv *nzcv = str_hash_find_n (aarch64_nzcv_hsh, str, 4);
a06ea964
NC
7165 if (nzcv != NULL)
7166 {
7167 str += 4;
7168 info->imm.value = nzcv->value;
7169 break;
7170 }
7171 po_imm_or_fail (0, 15);
7172 info->imm.value = val;
7173 }
7174 break;
7175
7176 case AARCH64_OPND_COND:
68a64283 7177 case AARCH64_OPND_COND1:
bb7eff52
RS
7178 {
7179 char *start = str;
7180 do
7181 str++;
7182 while (ISALPHA (*str));
629310ab 7183 info->cond = str_hash_find_n (aarch64_cond_hsh, start, str - start);
bb7eff52
RS
7184 if (info->cond == NULL)
7185 {
7186 set_syntax_error (_("invalid condition"));
7187 goto failure;
7188 }
7189 else if (operands[i] == AARCH64_OPND_COND1
7190 && (info->cond->value & 0xe) == 0xe)
7191 {
7192 /* Do not allow AL or NV. */
7193 set_default_error ();
7194 goto failure;
7195 }
7196 }
a06ea964
NC
7197 break;
7198
7199 case AARCH64_OPND_ADDR_ADRP:
7200 po_misc_or_fail (parse_adrp (&str));
7201 /* Clear the value as operand needs to be relocated. */
7202 info->imm.value = 0;
7203 break;
7204
7205 case AARCH64_OPND_ADDR_PCREL14:
7206 case AARCH64_OPND_ADDR_PCREL19:
7207 case AARCH64_OPND_ADDR_PCREL21:
7208 case AARCH64_OPND_ADDR_PCREL26:
73866052 7209 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
7210 if (!info->addr.pcrel)
7211 {
7212 set_syntax_error (_("invalid pc-relative address"));
7213 goto failure;
7214 }
7215 if (inst.gen_lit_pool
7216 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
7217 {
7218 /* Only permit "=value" in the literal load instructions.
7219 The literal will be generated by programmer_friendly_fixup. */
7220 set_syntax_error (_("invalid use of \"=immediate\""));
7221 goto failure;
7222 }
7223 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
7224 {
7225 set_syntax_error (_("unrecognized relocation suffix"));
7226 goto failure;
7227 }
7228 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
7229 {
7230 info->imm.value = inst.reloc.exp.X_add_number;
7231 inst.reloc.type = BFD_RELOC_UNUSED;
7232 }
7233 else
7234 {
7235 info->imm.value = 0;
f41aef5f
RE
7236 if (inst.reloc.type == BFD_RELOC_UNUSED)
7237 switch (opcode->iclass)
7238 {
7239 case compbranch:
7240 case condbranch:
7241 /* e.g. CBZ or B.COND */
7242 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
7243 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
7244 break;
7245 case testbranch:
7246 /* e.g. TBZ */
7247 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
7248 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
7249 break;
7250 case branch_imm:
7251 /* e.g. B or BL */
7252 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
7253 inst.reloc.type =
7254 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
7255 : BFD_RELOC_AARCH64_JUMP26;
7256 break;
7257 case loadlit:
7258 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
7259 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
7260 break;
7261 case pcreladdr:
7262 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
7263 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
7264 break;
7265 default:
7266 gas_assert (0);
7267 abort ();
7268 }
a06ea964
NC
7269 inst.reloc.pc_rel = 1;
7270 }
7271 break;
7272
7273 case AARCH64_OPND_ADDR_SIMPLE:
7274 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
e1b988bb
RS
7275 {
7276 /* [<Xn|SP>{, #<simm>}] */
7277 char *start = str;
7278 /* First use the normal address-parsing routines, to get
7279 the usual syntax errors. */
73866052 7280 po_misc_or_fail (parse_address (&str, info));
e1b988bb
RS
7281 if (info->addr.pcrel || info->addr.offset.is_reg
7282 || !info->addr.preind || info->addr.postind
550fd7bf 7283 || info->addr.writeback)
e1b988bb
RS
7284 {
7285 set_syntax_error (_("invalid addressing mode"));
7286 goto failure;
7287 }
7288
7289 /* Then retry, matching the specific syntax of these addresses. */
7290 str = start;
7291 po_char_or_fail ('[');
7292 po_reg_or_fail (REG_TYPE_R64_SP);
7293 /* Accept optional ", #0". */
7294 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
7295 && skip_past_char (&str, ','))
7296 {
7297 skip_past_char (&str, '#');
7298 if (! skip_past_char (&str, '0'))
7299 {
7300 set_fatal_syntax_error
7301 (_("the optional immediate offset can only be 0"));
7302 goto failure;
7303 }
7304 }
7305 po_char_or_fail (']');
7306 break;
7307 }
a06ea964
NC
7308
7309 case AARCH64_OPND_ADDR_REGOFF:
7310 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
73866052 7311 po_misc_or_fail (parse_address (&str, info));
4df068de 7312 regoff_addr:
a06ea964
NC
7313 if (info->addr.pcrel || !info->addr.offset.is_reg
7314 || !info->addr.preind || info->addr.postind
7315 || info->addr.writeback)
7316 {
7317 set_syntax_error (_("invalid addressing mode"));
7318 goto failure;
7319 }
7320 if (!info->shifter.operator_present)
7321 {
7322 /* Default to LSL if not present. Libopcodes prefers shifter
7323 kind to be explicit. */
7324 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
7325 info->shifter.kind = AARCH64_MOD_LSL;
7326 }
7327 /* Qualifier to be deduced by libopcodes. */
7328 break;
7329
7330 case AARCH64_OPND_ADDR_SIMM7:
73866052 7331 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
7332 if (info->addr.pcrel || info->addr.offset.is_reg
7333 || (!info->addr.preind && !info->addr.postind))
7334 {
7335 set_syntax_error (_("invalid addressing mode"));
7336 goto failure;
7337 }
73866052
RS
7338 if (inst.reloc.type != BFD_RELOC_UNUSED)
7339 {
7340 set_syntax_error (_("relocation not allowed"));
7341 goto failure;
7342 }
a06ea964
NC
7343 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
7344 /* addr_off_p */ 1,
7345 /* need_libopcodes_p */ 1,
7346 /* skip_p */ 0);
7347 break;
7348
7349 case AARCH64_OPND_ADDR_SIMM9:
7350 case AARCH64_OPND_ADDR_SIMM9_2:
fb3265b3
SD
7351 case AARCH64_OPND_ADDR_SIMM11:
7352 case AARCH64_OPND_ADDR_SIMM13:
73866052 7353 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
7354 if (info->addr.pcrel || info->addr.offset.is_reg
7355 || (!info->addr.preind && !info->addr.postind)
7356 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
7357 && info->addr.writeback))
7358 {
7359 set_syntax_error (_("invalid addressing mode"));
7360 goto failure;
7361 }
7362 if (inst.reloc.type != BFD_RELOC_UNUSED)
7363 {
7364 set_syntax_error (_("relocation not allowed"));
7365 goto failure;
7366 }
7367 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
7368 /* addr_off_p */ 1,
7369 /* need_libopcodes_p */ 1,
7370 /* skip_p */ 0);
7371 break;
7372
3f06e550 7373 case AARCH64_OPND_ADDR_SIMM10:
f42f1a1d 7374 case AARCH64_OPND_ADDR_OFFSET:
3f06e550
SN
7375 po_misc_or_fail (parse_address (&str, info));
7376 if (info->addr.pcrel || info->addr.offset.is_reg
7377 || !info->addr.preind || info->addr.postind)
7378 {
7379 set_syntax_error (_("invalid addressing mode"));
7380 goto failure;
7381 }
7382 if (inst.reloc.type != BFD_RELOC_UNUSED)
7383 {
7384 set_syntax_error (_("relocation not allowed"));
7385 goto failure;
7386 }
7387 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
7388 /* addr_off_p */ 1,
7389 /* need_libopcodes_p */ 1,
7390 /* skip_p */ 0);
7391 break;
7392
a06ea964 7393 case AARCH64_OPND_ADDR_UIMM12:
73866052 7394 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
7395 if (info->addr.pcrel || info->addr.offset.is_reg
7396 || !info->addr.preind || info->addr.writeback)
7397 {
7398 set_syntax_error (_("invalid addressing mode"));
7399 goto failure;
7400 }
7401 if (inst.reloc.type == BFD_RELOC_UNUSED)
7402 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
7403 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
7404 || (inst.reloc.type
7405 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
7406 || (inst.reloc.type
84f1b9fb
RL
7407 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
7408 || (inst.reloc.type
7409 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
7410 || (inst.reloc.type
7411 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
a06ea964
NC
7412 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
7413 /* Leave qualifier to be determined by libopcodes. */
7414 break;
7415
7416 case AARCH64_OPND_SIMD_ADDR_POST:
7417 /* [<Xn|SP>], <Xm|#<amount>> */
73866052 7418 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
7419 if (!info->addr.postind || !info->addr.writeback)
7420 {
7421 set_syntax_error (_("invalid addressing mode"));
7422 goto failure;
7423 }
7424 if (!info->addr.offset.is_reg)
7425 {
7426 if (inst.reloc.exp.X_op == O_constant)
7427 info->addr.offset.imm = inst.reloc.exp.X_add_number;
7428 else
7429 {
7430 set_fatal_syntax_error
ab3b8fcf 7431 (_("writeback value must be an immediate constant"));
a06ea964
NC
7432 goto failure;
7433 }
7434 }
7435 /* No qualifier. */
7436 break;
7437
3dd032c5
PW
7438 case AARCH64_OPND_SME_SM_ZA:
7439 /* { SM | ZA } */
7440 if ((val = parse_sme_sm_za (&str)) == PARSE_FAIL)
7441 {
7442 set_syntax_error (_("unknown or missing PSTATE field name"));
7443 goto failure;
7444 }
7445 info->reg.regno = val;
7446 break;
7447
d3de0860 7448 case AARCH64_OPND_SME_PnT_Wm_imm:
2f4e3a2c 7449 if (!parse_dual_indexed_reg (&str, REG_TYPE_P,
b9ca3896 7450 &info->indexed_za, &qualifier, 0))
1d597b88
RS
7451 goto failure;
7452 info->qualifier = qualifier;
7453 break;
d3de0860 7454
582e12bf 7455 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
8382113f 7456 case AARCH64_OPND_SVE_ADDR_RI_S4x32:
98907a70 7457 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
01a4d082 7458 case AARCH64_OPND_SME_ADDR_RI_U4xVL:
98907a70
RS
7459 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
7460 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
7461 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
7462 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
7463 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
4df068de
RS
7464 case AARCH64_OPND_SVE_ADDR_RI_U6:
7465 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
7466 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
7467 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
98907a70
RS
7468 /* [X<n>{, #imm, MUL VL}]
7469 [X<n>{, #imm}]
4df068de
RS
7470 but recognizing SVE registers. */
7471 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
7472 &offset_qualifier));
7473 if (base_qualifier != AARCH64_OPND_QLF_X)
7474 {
7475 set_syntax_error (_("invalid addressing mode"));
7476 goto failure;
7477 }
7478 sve_regimm:
7479 if (info->addr.pcrel || info->addr.offset.is_reg
7480 || !info->addr.preind || info->addr.writeback)
7481 {
7482 set_syntax_error (_("invalid addressing mode"));
7483 goto failure;
7484 }
7485 if (inst.reloc.type != BFD_RELOC_UNUSED
7486 || inst.reloc.exp.X_op != O_constant)
7487 {
7488 /* Make sure this has priority over
7489 "invalid addressing mode". */
7490 set_fatal_syntax_error (_("constant offset required"));
7491 goto failure;
7492 }
7493 info->addr.offset.imm = inst.reloc.exp.X_add_number;
7494 break;
7495
c8d59609
NC
7496 case AARCH64_OPND_SVE_ADDR_R:
7497 /* [<Xn|SP>{, <R><m>}]
7498 but recognizing SVE registers. */
7499 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
7500 &offset_qualifier));
7501 if (offset_qualifier == AARCH64_OPND_QLF_NIL)
7502 {
7503 offset_qualifier = AARCH64_OPND_QLF_X;
7504 info->addr.offset.is_reg = 1;
7505 info->addr.offset.regno = 31;
7506 }
7507 else if (base_qualifier != AARCH64_OPND_QLF_X
7508 || offset_qualifier != AARCH64_OPND_QLF_X)
7509 {
7510 set_syntax_error (_("invalid addressing mode"));
7511 goto failure;
7512 }
7513 goto regoff_addr;
01a4d082 7514
4df068de
RS
7515 case AARCH64_OPND_SVE_ADDR_RR:
7516 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
7517 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
7518 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
01a4d082 7519 case AARCH64_OPND_SVE_ADDR_RR_LSL4:
4df068de
RS
7520 case AARCH64_OPND_SVE_ADDR_RX:
7521 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
7522 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
7523 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
7524 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
7525 but recognizing SVE registers. */
7526 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
7527 &offset_qualifier));
7528 if (base_qualifier != AARCH64_OPND_QLF_X
7529 || offset_qualifier != AARCH64_OPND_QLF_X)
7530 {
7531 set_syntax_error (_("invalid addressing mode"));
7532 goto failure;
7533 }
7534 goto regoff_addr;
7535
7536 case AARCH64_OPND_SVE_ADDR_RZ:
7537 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
7538 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
7539 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
7540 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
7541 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
7542 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
7543 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
7544 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
7545 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
7546 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
7547 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
7548 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
7549 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
7550 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
7551 &offset_qualifier));
7552 if (base_qualifier != AARCH64_OPND_QLF_X
7553 || (offset_qualifier != AARCH64_OPND_QLF_S_S
7554 && offset_qualifier != AARCH64_OPND_QLF_S_D))
7555 {
7556 set_syntax_error (_("invalid addressing mode"));
7557 goto failure;
7558 }
7559 info->qualifier = offset_qualifier;
7560 goto regoff_addr;
7561
c469c864
MM
7562 case AARCH64_OPND_SVE_ADDR_ZX:
7563 /* [Zn.<T>{, <Xm>}]. */
7564 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
7565 &offset_qualifier));
7566 /* Things to check:
7567 base_qualifier either S_S or S_D
7568 offset_qualifier must be X
7569 */
7570 if ((base_qualifier != AARCH64_OPND_QLF_S_S
7571 && base_qualifier != AARCH64_OPND_QLF_S_D)
7572 || offset_qualifier != AARCH64_OPND_QLF_X)
7573 {
7574 set_syntax_error (_("invalid addressing mode"));
7575 goto failure;
7576 }
7577 info->qualifier = base_qualifier;
7578 if (!info->addr.offset.is_reg || info->addr.pcrel
7579 || !info->addr.preind || info->addr.writeback
7580 || info->shifter.operator_present != 0)
7581 {
7582 set_syntax_error (_("invalid addressing mode"));
7583 goto failure;
7584 }
7585 info->shifter.kind = AARCH64_MOD_LSL;
7586 break;
7587
7588
4df068de
RS
7589 case AARCH64_OPND_SVE_ADDR_ZI_U5:
7590 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
7591 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
7592 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
7593 /* [Z<n>.<T>{, #imm}] */
7594 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
7595 &offset_qualifier));
7596 if (base_qualifier != AARCH64_OPND_QLF_S_S
7597 && base_qualifier != AARCH64_OPND_QLF_S_D)
7598 {
7599 set_syntax_error (_("invalid addressing mode"));
7600 goto failure;
7601 }
7602 info->qualifier = base_qualifier;
7603 goto sve_regimm;
7604
7605 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
7606 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
7607 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
7608 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
7609 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
7610
7611 We don't reject:
7612
7613 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
7614
7615 here since we get better error messages by leaving it to
7616 the qualifier checking routines. */
7617 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
7618 &offset_qualifier));
7619 if ((base_qualifier != AARCH64_OPND_QLF_S_S
7620 && base_qualifier != AARCH64_OPND_QLF_S_D)
7621 || offset_qualifier != base_qualifier)
7622 {
7623 set_syntax_error (_("invalid addressing mode"));
7624 goto failure;
7625 }
7626 info->qualifier = base_qualifier;
7627 goto regoff_addr;
a06ea964 7628 case AARCH64_OPND_SYSREG:
9af8f671 7629 case AARCH64_OPND_SYSREG128:
7d02540a 7630 {
9af8f671 7631 bool sysreg128_p = operands[i] == AARCH64_OPND_SYSREG128;
7d02540a
TC
7632 uint32_t sysreg_flags;
7633 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0,
9af8f671
VDN
7634 &sysreg_flags,
7635 sysreg128_p)) == PARSE_FAIL)
7d02540a
TC
7636 {
7637 set_syntax_error (_("unknown or missing system register name"));
7638 goto failure;
7639 }
7640 inst.base.operands[i].sysreg.value = val;
7641 inst.base.operands[i].sysreg.flags = sysreg_flags;
7642 break;
7643 }
a06ea964
NC
7644
7645 case AARCH64_OPND_PSTATEFIELD:
3dd032c5
PW
7646 {
7647 uint32_t sysreg_flags;
7648 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1,
9af8f671 7649 &sysreg_flags, false)) == PARSE_FAIL)
3dd032c5
PW
7650 {
7651 set_syntax_error (_("unknown or missing PSTATE field name"));
7652 goto failure;
7653 }
7654 inst.base.operands[i].pstatefield = val;
7655 inst.base.operands[i].sysreg.flags = sysreg_flags;
7656 break;
7657 }
a06ea964
NC
7658
7659 case AARCH64_OPND_SYSREG_IC:
7660 inst.base.operands[i].sysins_op =
7661 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
7662 goto sys_reg_ins;
2ac435d4 7663
a06ea964
NC
7664 case AARCH64_OPND_SYSREG_DC:
7665 inst.base.operands[i].sysins_op =
7666 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
7667 goto sys_reg_ins;
2ac435d4 7668
a06ea964
NC
7669 case AARCH64_OPND_SYSREG_AT:
7670 inst.base.operands[i].sysins_op =
7671 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
7672 goto sys_reg_ins;
2ac435d4
SD
7673
7674 case AARCH64_OPND_SYSREG_SR:
7675 inst.base.operands[i].sysins_op =
7676 parse_sys_ins_reg (&str, aarch64_sys_regs_sr_hsh);
7677 goto sys_reg_ins;
7678
a06ea964 7679 case AARCH64_OPND_SYSREG_TLBI:
a9e2cefd 7680 case AARCH64_OPND_SYSREG_TLBIP:
a06ea964
NC
7681 inst.base.operands[i].sysins_op =
7682 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
dc1e8a47 7683 sys_reg_ins:
a06ea964
NC
7684 if (inst.base.operands[i].sysins_op == NULL)
7685 {
7686 set_fatal_syntax_error ( _("unknown or missing operation name"));
7687 goto failure;
7688 }
7689 break;
7690
7691 case AARCH64_OPND_BARRIER:
7692 case AARCH64_OPND_BARRIER_ISB:
7693 val = parse_barrier (&str);
7694 if (val != PARSE_FAIL
7695 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
7696 {
7697 /* ISB only accepts options name 'sy'. */
7698 set_syntax_error
7699 (_("the specified option is not accepted in ISB"));
7700 /* Turn off backtrack as this optional operand is present. */
7701 backtrack_pos = 0;
7702 goto failure;
7703 }
fd195909
PW
7704 if (val != PARSE_FAIL
7705 && operands[i] == AARCH64_OPND_BARRIER)
7706 {
7707 /* Regular barriers accept options CRm (C0-C15).
7708 DSB nXS barrier variant accepts values > 15. */
59d5613e
PW
7709 if (val < 0 || val > 15)
7710 {
7711 set_syntax_error (_("the specified option is not accepted in DSB"));
7712 goto failure;
7713 }
fd195909 7714 }
a06ea964
NC
7715 /* This is an extension to accept a 0..15 immediate. */
7716 if (val == PARSE_FAIL)
7717 po_imm_or_fail (0, 15);
7718 info->barrier = aarch64_barrier_options + val;
7719 break;
7720
fd195909
PW
7721 case AARCH64_OPND_BARRIER_DSB_NXS:
7722 val = parse_barrier (&str);
7723 if (val != PARSE_FAIL)
7724 {
7725 /* DSB nXS barrier variant accept only <option>nXS qualifiers. */
7726 if (!(val == 16 || val == 20 || val == 24 || val == 28))
7727 {
7728 set_syntax_error (_("the specified option is not accepted in DSB"));
7729 /* Turn off backtrack as this optional operand is present. */
7730 backtrack_pos = 0;
7731 goto failure;
7732 }
7733 }
7734 else
7735 {
7736 /* DSB nXS barrier variant accept 5-bit unsigned immediate, with
7737 possible values 16, 20, 24 or 28 , encoded as val<3:2>. */
7738 if (! parse_constant_immediate (&str, &val, imm_reg_type))
7739 goto failure;
7740 if (!(val == 16 || val == 20 || val == 24 || val == 28))
7741 {
7742 set_syntax_error (_("immediate value must be 16, 20, 24, 28"));
7743 goto failure;
7744 }
7745 }
7746 /* Option index is encoded as 2-bit value in val<3:2>. */
7747 val = (val >> 2) - 4;
7748 info->barrier = aarch64_barrier_dsb_nxs_options + val;
7749 break;
7750
a06ea964
NC
7751 case AARCH64_OPND_PRFOP:
7752 val = parse_pldop (&str);
7753 /* This is an extension to accept a 0..31 immediate. */
7754 if (val == PARSE_FAIL)
7755 po_imm_or_fail (0, 31);
7756 inst.base.operands[i].prfop = aarch64_prfops + val;
7757 break;
7758
8ff42920
RS
7759 case AARCH64_OPND_RPRFMOP:
7760 po_enum_or_fail (aarch64_rprfmop_array);
7761 info->imm.value = val;
7762 break;
7763
1e6f4800 7764 case AARCH64_OPND_BARRIER_PSB:
c58f84d8 7765 if (!parse_hint_opt (opcode->name, &str, &(info->hint_option)))
1e6f4800
MW
7766 goto failure;
7767 break;
7768
cbd11b88
RS
7769 case AARCH64_OPND_SME_ZT0:
7770 po_reg_or_fail (REG_TYPE_ZT0);
7771 break;
7772
7773 case AARCH64_OPND_SME_ZT0_INDEX:
7774 reg = aarch64_reg_parse (&str, REG_TYPE_ZT0, &vectype);
7775 if (!reg || vectype.type != NT_invtype)
7776 goto failure;
7777 if (!(vectype.defined & NTA_HASINDEX))
7778 {
7779 set_syntax_error (_("missing register index"));
7780 goto failure;
7781 }
7782 info->imm.value = vectype.index;
7783 break;
7784
7785 case AARCH64_OPND_SME_ZT0_LIST:
7786 if (*str != '{')
7787 {
7788 set_expected_reglist_error (REG_TYPE_ZT0, parse_reg (&str));
7789 goto failure;
7790 }
7791 str++;
7792 if (!parse_typed_reg (&str, REG_TYPE_ZT0, &vectype, PTR_IN_REGLIST))
7793 goto failure;
7794 if (*str != '}')
7795 {
7796 set_syntax_error (_("expected '}' after ZT0"));
7797 goto failure;
7798 }
7799 str++;
7800 break;
7801
99e01a66
RS
7802 case AARCH64_OPND_SME_PNn3_INDEX1:
7803 case AARCH64_OPND_SME_PNn3_INDEX2:
7804 reg = aarch64_reg_parse (&str, REG_TYPE_PN, &vectype);
7805 if (!reg)
7806 goto failure;
7807 if (!(vectype.defined & NTA_HASINDEX))
7808 {
7809 set_syntax_error (_("missing register index"));
7810 goto failure;
7811 }
7812 info->reglane.regno = reg->number;
7813 info->reglane.index = vectype.index;
7814 if (vectype.type == NT_invtype)
7815 info->qualifier = AARCH64_OPND_QLF_NIL;
7816 else
7817 info->qualifier = vectype_to_qualifier (&vectype);
7818 break;
7819
c58f84d8
SP
7820 case AARCH64_OPND_BARRIER_GCSB:
7821 if (!parse_hint_opt (opcode->name, &str, &(info->hint_option)))
7822 goto failure;
7823 break;
7824
ff605452 7825 case AARCH64_OPND_BTI_TARGET:
c58f84d8 7826 if (!parse_hint_opt (opcode->name, &str, &(info->hint_option)))
ff605452
SD
7827 goto failure;
7828 break;
7829
971eda73
PW
7830 case AARCH64_OPND_SME_ZAda_2b:
7831 case AARCH64_OPND_SME_ZAda_3b:
b9ca3896 7832 reg = parse_reg_with_qual (&str, REG_TYPE_ZAT, &qualifier, 0);
8cde0b98 7833 if (!reg)
971eda73 7834 goto failure;
8cde0b98 7835 info->reg.regno = reg->number;
971eda73
PW
7836 info->qualifier = qualifier;
7837 break;
7838
7bb5f07c 7839 case AARCH64_OPND_SME_ZA_HV_idx_src:
d8773a8a 7840 case AARCH64_OPND_SME_ZA_HV_idx_srcxN:
7bb5f07c 7841 case AARCH64_OPND_SME_ZA_HV_idx_dest:
d8773a8a 7842 case AARCH64_OPND_SME_ZA_HV_idx_destxN:
01a4d082 7843 case AARCH64_OPND_SME_ZA_HV_idx_ldstr:
1d597b88
RS
7844 if (operands[i] == AARCH64_OPND_SME_ZA_HV_idx_ldstr
7845 ? !parse_sme_za_hv_tiles_operand_with_braces (&str,
7846 &info->indexed_za,
7847 &qualifier)
9d862382 7848 : !parse_dual_indexed_reg (&str, REG_TYPE_ZATHV,
b9ca3896 7849 &info->indexed_za, &qualifier, 0))
1d597b88
RS
7850 goto failure;
7851 info->qualifier = qualifier;
7852 break;
7bb5f07c 7853
1d597b88
RS
7854 case AARCH64_OPND_SME_list_of_64bit_tiles:
7855 val = parse_sme_list_of_64bit_tiles (&str);
7856 if (val == PARSE_FAIL)
7857 goto failure;
7858 info->imm.value = val;
7859 break;
1cad938d 7860
a8cb21aa 7861 case AARCH64_OPND_SME_ZA_array_off1x4:
ed429b33 7862 case AARCH64_OPND_SME_ZA_array_off2x2:
a8cb21aa 7863 case AARCH64_OPND_SME_ZA_array_off2x4:
d8773a8a
RS
7864 case AARCH64_OPND_SME_ZA_array_off3_0:
7865 case AARCH64_OPND_SME_ZA_array_off3_5:
ed429b33 7866 case AARCH64_OPND_SME_ZA_array_off3x2:
90cd80f8 7867 case AARCH64_OPND_SME_ZA_array_off4:
9d862382 7868 if (!parse_dual_indexed_reg (&str, REG_TYPE_ZA,
b9ca3896 7869 &info->indexed_za, &qualifier, 0))
1d597b88 7870 goto failure;
9d862382 7871 info->qualifier = qualifier;
1d597b88 7872 break;
01a4d082 7873
89e06ec1
SP
7874 case AARCH64_OPND_SME_ZA_array_vrsb_1:
7875 case AARCH64_OPND_SME_ZA_array_vrsh_1:
7876 case AARCH64_OPND_SME_ZA_array_vrss_1:
7877 case AARCH64_OPND_SME_ZA_array_vrsd_1:
7878 case AARCH64_OPND_SME_ZA_array_vrsb_2:
7879 case AARCH64_OPND_SME_ZA_array_vrsh_2:
7880 case AARCH64_OPND_SME_ZA_array_vrss_2:
7881 case AARCH64_OPND_SME_ZA_array_vrsd_2:
7882 if (!parse_dual_indexed_reg (&str, REG_TYPE_ZATHV,
7883 &info->indexed_za, &qualifier, 0))
7884 goto failure;
7885 info->qualifier = qualifier;
7886 break;
7887
7888
99e01a66
RS
7889 case AARCH64_OPND_SME_VLxN_10:
7890 case AARCH64_OPND_SME_VLxN_13:
7891 po_strict_enum_or_fail (aarch64_sme_vlxn_array);
7892 info->imm.value = val;
7893 break;
7894
6327658e
RS
7895 case AARCH64_OPND_MOPS_ADDR_Rd:
7896 case AARCH64_OPND_MOPS_ADDR_Rs:
7897 po_char_or_fail ('[');
7898 if (!parse_x0_to_x30 (&str, info))
7899 goto failure;
7900 po_char_or_fail (']');
7901 po_char_or_fail ('!');
7902 break;
7903
7904 case AARCH64_OPND_MOPS_WB_Rn:
7905 if (!parse_x0_to_x30 (&str, info))
7906 goto failure;
7907 po_char_or_fail ('!');
7908 break;
7909
6219f9da
VDN
7910 case AARCH64_OPND_LSE128_Rt:
7911 case AARCH64_OPND_LSE128_Rt2:
7912 po_int_fp_reg_or_fail (REG_TYPE_R_64);
7913 break;
7914
a06ea964
NC
7915 default:
7916 as_fatal (_("unhandled operand code %d"), operands[i]);
7917 }
7918
7919 /* If we get here, this operand was successfully parsed. */
7920 inst.base.operands[i].present = 1;
f89c290e
VDN
7921
7922 /* As instructions can have multiple optional operands, it is imporant to
7923 reset the backtrack_pos variable once we finish processing an operand
7924 successfully. */
7925 backtrack_pos = 0;
7926
a06ea964
NC
7927 continue;
7928
dc1e8a47 7929 failure:
a06ea964
NC
7930 /* The parse routine should already have set the error, but in case
7931 not, set a default one here. */
7932 if (! error_p ())
7933 set_default_error ();
7934
7935 if (! backtrack_pos)
7936 goto parse_operands_return;
7937
f4c51f60
JW
7938 {
7939 /* We reach here because this operand is marked as optional, and
7940 either no operand was supplied or the operand was supplied but it
7941 was syntactically incorrect. In the latter case we report an
7942 error. In the former case we perform a few more checks before
7943 dropping through to the code to insert the default operand. */
7944
7945 char *tmp = backtrack_pos;
7946 char endchar = END_OF_INSN;
7947
f4c51f60
JW
7948 skip_past_char (&tmp, ',');
7949
7950 if (*tmp != endchar)
7951 /* The user has supplied an operand in the wrong format. */
7952 goto parse_operands_return;
7953
7954 /* Make sure there is not a comma before the optional operand.
7955 For example the fifth operand of 'sys' is optional:
7956
7957 sys #0,c0,c0,#0, <--- wrong
7958 sys #0,c0,c0,#0 <--- correct. */
7959 if (comma_skipped_p && i && endchar == END_OF_INSN)
7960 {
7961 set_fatal_syntax_error
7962 (_("unexpected comma before the omitted optional operand"));
7963 goto parse_operands_return;
7964 }
7965 }
7966
a06ea964
NC
7967 /* Reaching here means we are dealing with an optional operand that is
7968 omitted from the assembly line. */
7969 gas_assert (optional_operand_p (opcode, i));
7970 info->present = 0;
7971 process_omitted_operand (operands[i], opcode, i, info);
7972
7973 /* Try again, skipping the optional operand at backtrack_pos. */
7974 str = backtrack_pos;
7975 backtrack_pos = 0;
7976
a06ea964
NC
7977 /* Clear any error record after the omitted optional operand has been
7978 successfully handled. */
7979 clear_error ();
7980 }
7981
7982 /* Check if we have parsed all the operands. */
7983 if (*str != '\0' && ! error_p ())
7984 {
7985 /* Set I to the index of the last present operand; this is
7986 for the purpose of diagnostics. */
7987 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
7988 ;
7989 set_fatal_syntax_error
7990 (_("unexpected characters following instruction"));
7991 }
7992
dc1e8a47 7993 parse_operands_return:
a06ea964
NC
7994
7995 if (error_p ())
7996 {
3e4525ca 7997 inst.parsing_error.index = i;
a06ea964 7998 DEBUG_TRACE ("parsing FAIL: %s - %s",
3e4525ca
RS
7999 operand_mismatch_kind_names[inst.parsing_error.kind],
8000 inst.parsing_error.error);
a06ea964
NC
8001 /* Record the operand error properly; this is useful when there
8002 are multiple instruction templates for a mnemonic name, so that
8003 later on, we can select the error that most closely describes
8004 the problem. */
3e4525ca 8005 record_operand_error_info (opcode, &inst.parsing_error);
5b7c81bd 8006 return false;
a06ea964
NC
8007 }
8008 else
8009 {
8010 DEBUG_TRACE ("parsing SUCCESS");
5b7c81bd 8011 return true;
a06ea964
NC
8012 }
8013}
8014
8015/* It does some fix-up to provide some programmer friendly feature while
8016 keeping the libopcodes happy, i.e. libopcodes only accepts
8017 the preferred architectural syntax.
8018 Return FALSE if there is any failure; otherwise return TRUE. */
8019
5b7c81bd 8020static bool
a06ea964
NC
8021programmer_friendly_fixup (aarch64_instruction *instr)
8022{
8023 aarch64_inst *base = &instr->base;
8024 const aarch64_opcode *opcode = base->opcode;
8025 enum aarch64_op op = opcode->op;
8026 aarch64_opnd_info *operands = base->operands;
8027
8028 DEBUG_TRACE ("enter");
8029
8030 switch (opcode->iclass)
8031 {
8032 case testbranch:
8033 /* TBNZ Xn|Wn, #uimm6, label
8034 Test and Branch Not Zero: conditionally jumps to label if bit number
8035 uimm6 in register Xn is not zero. The bit number implies the width of
8036 the register, which may be written and should be disassembled as Wn if
8037 uimm is less than 32. */
8038 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
8039 {
8040 if (operands[1].imm.value >= 32)
8041 {
8042 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
8043 0, 31);
5b7c81bd 8044 return false;
a06ea964
NC
8045 }
8046 operands[0].qualifier = AARCH64_OPND_QLF_X;
8047 }
8048 break;
8049 case loadlit:
8050 /* LDR Wt, label | =value
8051 As a convenience assemblers will typically permit the notation
8052 "=value" in conjunction with the pc-relative literal load instructions
8053 to automatically place an immediate value or symbolic address in a
8054 nearby literal pool and generate a hidden label which references it.
8055 ISREG has been set to 0 in the case of =value. */
8056 if (instr->gen_lit_pool
8057 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
8058 {
8059 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
8060 if (op == OP_LDRSW_LIT)
8061 size = 4;
8062 if (instr->reloc.exp.X_op != O_constant
67a32447 8063 && instr->reloc.exp.X_op != O_big
a06ea964
NC
8064 && instr->reloc.exp.X_op != O_symbol)
8065 {
8066 record_operand_error (opcode, 1,
8067 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
8068 _("constant expression expected"));
5b7c81bd 8069 return false;
a06ea964
NC
8070 }
8071 if (! add_to_lit_pool (&instr->reloc.exp, size))
8072 {
8073 record_operand_error (opcode, 1,
8074 AARCH64_OPDE_OTHER_ERROR,
8075 _("literal pool insertion failed"));
5b7c81bd 8076 return false;
a06ea964
NC
8077 }
8078 }
8079 break;
a06ea964
NC
8080 case log_shift:
8081 case bitfield:
8082 /* UXT[BHW] Wd, Wn
8083 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
8084 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
8085 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
8086 A programmer-friendly assembler should accept a destination Xd in
8087 place of Wd, however that is not the preferred form for disassembly.
8088 */
8089 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
8090 && operands[1].qualifier == AARCH64_OPND_QLF_W
8091 && operands[0].qualifier == AARCH64_OPND_QLF_X)
8092 operands[0].qualifier = AARCH64_OPND_QLF_W;
8093 break;
8094
8095 case addsub_ext:
8096 {
8097 /* In the 64-bit form, the final register operand is written as Wm
8098 for all but the (possibly omitted) UXTX/LSL and SXTX
8099 operators.
8100 As a programmer-friendly assembler, we accept e.g.
8101 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
8102 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
8103 int idx = aarch64_operand_index (opcode->operands,
8104 AARCH64_OPND_Rm_EXT);
8105 gas_assert (idx == 1 || idx == 2);
8106 if (operands[0].qualifier == AARCH64_OPND_QLF_X
8107 && operands[idx].qualifier == AARCH64_OPND_QLF_X
8108 && operands[idx].shifter.kind != AARCH64_MOD_LSL
8109 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
8110 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
8111 operands[idx].qualifier = AARCH64_OPND_QLF_W;
8112 }
8113 break;
8114
8115 default:
8116 break;
8117 }
8118
8119 DEBUG_TRACE ("exit with SUCCESS");
5b7c81bd 8120 return true;
a06ea964
NC
8121}
8122
5c47e525 8123/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
8124
8125static void
8126warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
8127{
8128 aarch64_inst *base = &instr->base;
8129 const aarch64_opcode *opcode = base->opcode;
8130 const aarch64_opnd_info *opnds = base->operands;
8131 switch (opcode->iclass)
8132 {
8133 case ldst_pos:
8134 case ldst_imm9:
3f06e550 8135 case ldst_imm10:
54a28c4c
JW
8136 case ldst_unscaled:
8137 case ldst_unpriv:
5c47e525
RE
8138 /* Loading/storing the base register is unpredictable if writeback. */
8139 if ((aarch64_get_operand_class (opnds[0].type)
8140 == AARCH64_OPND_CLASS_INT_REG)
8141 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 8142 && opnds[1].addr.base_regno != REG_SP
69105ce4
SD
8143 /* Exempt STG/STZG/ST2G/STZ2G. */
8144 && !(opnds[1].type == AARCH64_OPND_ADDR_SIMM13)
54a28c4c 8145 && opnds[1].addr.writeback)
5c47e525 8146 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c 8147 break;
503ba600 8148
54a28c4c
JW
8149 case ldstpair_off:
8150 case ldstnapair_offs:
8151 case ldstpair_indexed:
5c47e525
RE
8152 /* Loading/storing the base register is unpredictable if writeback. */
8153 if ((aarch64_get_operand_class (opnds[0].type)
8154 == AARCH64_OPND_CLASS_INT_REG)
8155 && (opnds[0].reg.regno == opnds[2].addr.base_regno
8156 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 8157 && opnds[2].addr.base_regno != REG_SP
fb3265b3
SD
8158 /* Exempt STGP. */
8159 && !(opnds[2].type == AARCH64_OPND_ADDR_SIMM11)
54a28c4c 8160 && opnds[2].addr.writeback)
5c47e525
RE
8161 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
8162 /* Load operations must load different registers. */
54a28c4c
JW
8163 if ((opcode->opcode & (1 << 22))
8164 && opnds[0].reg.regno == opnds[1].reg.regno)
8165 as_warn (_("unpredictable load of register pair -- `%s'"), str);
8166 break;
ee943970
RR
8167
8168 case ldstexcl:
ee943970
RR
8169 if ((aarch64_get_operand_class (opnds[0].type)
8170 == AARCH64_OPND_CLASS_INT_REG)
8171 && (aarch64_get_operand_class (opnds[1].type)
dd170203
TB
8172 == AARCH64_OPND_CLASS_INT_REG))
8173 {
8174 if ((opcode->opcode & (1 << 22)))
8175 {
8176 /* It is unpredictable if load-exclusive pair with Rt == Rt2. */
8177 if ((opcode->opcode & (1 << 21))
8178 && opnds[0].reg.regno == opnds[1].reg.regno)
8179 as_warn (_("unpredictable load of register pair -- `%s'"), str);
8180 }
8181 else
8182 {
8183 /* Store-Exclusive is unpredictable if Rt == Rs. */
8184 if (opnds[0].reg.regno == opnds[1].reg.regno)
8185 as_warn
8186 (_("unpredictable: identical transfer and status registers"
8187 " --`%s'"),str);
ee943970 8188
dd170203
TB
8189 if (opnds[0].reg.regno == opnds[2].reg.regno)
8190 {
8191 if (!(opcode->opcode & (1 << 21)))
8192 /* Store-Exclusive is unpredictable if Rn == Rs. */
8193 as_warn
8194 (_("unpredictable: identical base and status registers"
8195 " --`%s'"),str);
8196 else
8197 /* Store-Exclusive pair is unpredictable if Rt2 == Rs. */
8198 as_warn
8199 (_("unpredictable: "
8200 "identical transfer and status registers"
8201 " --`%s'"),str);
8202 }
8203
8204 /* Store-Exclusive pair is unpredictable if Rn == Rs. */
8205 if ((opcode->opcode & (1 << 21))
8206 && opnds[0].reg.regno == opnds[3].reg.regno
8207 && opnds[3].reg.regno != REG_SP)
8208 as_warn (_("unpredictable: identical base and status registers"
8209 " --`%s'"),str);
8210 }
8211 }
ee943970
RR
8212 break;
8213
54a28c4c
JW
8214 default:
8215 break;
8216 }
8217}
8218
4f5d2536
TC
8219static void
8220force_automatic_sequence_close (void)
8221{
a346bb24
RS
8222 struct aarch64_segment_info_type *tc_seg_info;
8223
8224 tc_seg_info = &seg_info (now_seg)->tc_segment_info_data;
8225 if (tc_seg_info->insn_sequence.instr)
4f5d2536 8226 {
a346bb24
RS
8227 as_warn_where (tc_seg_info->last_file, tc_seg_info->last_line,
8228 _("previous `%s' sequence has not been closed"),
8229 tc_seg_info->insn_sequence.instr->opcode->name);
8230 init_insn_sequence (NULL, &tc_seg_info->insn_sequence);
4f5d2536
TC
8231 }
8232}
8233
a06ea964
NC
8234/* A wrapper function to interface with libopcodes on encoding and
8235 record the error message if there is any.
8236
8237 Return TRUE on success; otherwise return FALSE. */
8238
5b7c81bd 8239static bool
a06ea964
NC
8240do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
8241 aarch64_insn *code)
8242{
8243 aarch64_operand_error error_info;
7d02540a 8244 memset (&error_info, '\0', sizeof (error_info));
a06ea964 8245 error_info.kind = AARCH64_OPDE_NIL;
7e84b55d 8246 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info, insn_sequence)
7d02540a 8247 && !error_info.non_fatal)
5b7c81bd 8248 return true;
7d02540a
TC
8249
8250 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
8251 record_operand_error_info (opcode, &error_info);
8252 return error_info.non_fatal;
a06ea964
NC
8253}
8254
8255#ifdef DEBUG_AARCH64
8256static inline void
8257dump_opcode_operands (const aarch64_opcode *opcode)
8258{
8259 int i = 0;
8260 while (opcode->operands[i] != AARCH64_OPND_NIL)
8261 {
8262 aarch64_verbose ("\t\t opnd%d: %s", i,
8263 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
8264 ? aarch64_get_operand_name (opcode->operands[i])
8265 : aarch64_get_operand_desc (opcode->operands[i]));
8266 ++i;
8267 }
8268}
8269#endif /* DEBUG_AARCH64 */
8270
8271/* This is the guts of the machine-dependent assembler. STR points to a
8272 machine dependent instruction. This function is supposed to emit
8273 the frags/bytes it assembles to. */
8274
8275void
8276md_assemble (char *str)
8277{
a06ea964 8278 templates *template;
6c2ede01 8279 const aarch64_opcode *opcode;
a346bb24 8280 struct aarch64_segment_info_type *tc_seg_info;
a06ea964
NC
8281 aarch64_inst *inst_base;
8282 unsigned saved_cond;
8283
8284 /* Align the previous label if needed. */
8285 if (last_label_seen != NULL)
8286 {
8287 symbol_set_frag (last_label_seen, frag_now);
8288 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
8289 S_SET_SEGMENT (last_label_seen, now_seg);
8290 }
8291
7e84b55d 8292 /* Update the current insn_sequence from the segment. */
a346bb24
RS
8293 tc_seg_info = &seg_info (now_seg)->tc_segment_info_data;
8294 insn_sequence = &tc_seg_info->insn_sequence;
8295 tc_seg_info->last_file = as_where (&tc_seg_info->last_line);
7e84b55d 8296
a06ea964
NC
8297 inst.reloc.type = BFD_RELOC_UNUSED;
8298
8299 DEBUG_TRACE ("\n\n");
8300 DEBUG_TRACE ("==============================");
8301 DEBUG_TRACE ("Enter md_assemble with %s", str);
8302
2dd3146b
RS
8303 /* Scan up to the end of the mnemonic, which must end in whitespace,
8304 '.', or end of string. */
8305 char *p = str;
8306 char *dot = 0;
8307 for (; is_part_of_name (*p); p++)
8308 if (*p == '.' && !dot)
8309 dot = p;
8310
8311 if (p == str)
8312 {
8313 as_bad (_("unknown mnemonic -- `%s'"), str);
8314 return;
8315 }
8316
8317 if (!dot && create_register_alias (str, p))
8318 return;
8319
8320 template = opcode_lookup (str, dot, p);
a06ea964
NC
8321 if (!template)
8322 {
2dd3146b
RS
8323 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
8324 str);
a06ea964
NC
8325 return;
8326 }
8327
8328 skip_whitespace (p);
8329 if (*p == ',')
8330 {
8331 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
8332 get_mnemonic_name (str), str);
8333 return;
8334 }
8335
8336 init_operand_error_report ();
8337
eb9d6cc9
RL
8338 /* Sections are assumed to start aligned. In executable section, there is no
8339 MAP_DATA symbol pending. So we only align the address during
8340 MAP_DATA --> MAP_INSN transition.
8341 For other sections, this is not guaranteed. */
8342 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
8343 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
8344 frag_align_code (2, 0);
8345
a06ea964
NC
8346 saved_cond = inst.cond;
8347 reset_aarch64_instruction (&inst);
8348 inst.cond = saved_cond;
8349
8350 /* Iterate through all opcode entries with the same mnemonic name. */
8351 do
8352 {
8353 opcode = template->opcode;
8354
8355 DEBUG_TRACE ("opcode %s found", opcode->name);
8356#ifdef DEBUG_AARCH64
8357 if (debug_dump)
8358 dump_opcode_operands (opcode);
8359#endif /* DEBUG_AARCH64 */
8360
a06ea964
NC
8361 mapping_state (MAP_INSN);
8362
8363 inst_base = &inst.base;
8364 inst_base->opcode = opcode;
8365
8366 /* Truly conditionally executed instructions, e.g. b.cond. */
8367 if (opcode->flags & F_COND)
8368 {
8369 gas_assert (inst.cond != COND_ALWAYS);
8370 inst_base->cond = get_cond_from_value (inst.cond);
8371 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
8372 }
8373 else if (inst.cond != COND_ALWAYS)
8374 {
8375 /* It shouldn't arrive here, where the assembly looks like a
8376 conditional instruction but the found opcode is unconditional. */
8377 gas_assert (0);
8378 continue;
8379 }
8380
8381 if (parse_operands (p, opcode)
8382 && programmer_friendly_fixup (&inst)
8383 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
8384 {
3f06bfce 8385 /* Check that this instruction is supported for this CPU. */
199cfcc4 8386 if (!aarch64_cpu_supports_inst_p (cpu_variant, inst_base))
3f06bfce
YZ
8387 {
8388 as_bad (_("selected processor does not support `%s'"), str);
8389 return;
8390 }
8391
54a28c4c
JW
8392 warn_unpredictable_ldst (&inst, str);
8393
a06ea964
NC
8394 if (inst.reloc.type == BFD_RELOC_UNUSED
8395 || !inst.reloc.need_libopcodes_p)
8396 output_inst (NULL);
8397 else
8398 {
8399 /* If there is relocation generated for the instruction,
8400 store the instruction information for the future fix-up. */
8401 struct aarch64_inst *copy;
8402 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
325801bd 8403 copy = XNEW (struct aarch64_inst);
a06ea964
NC
8404 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
8405 output_inst (copy);
8406 }
7d02540a
TC
8407
8408 /* Issue non-fatal messages if any. */
5b7c81bd 8409 output_operand_error_report (str, true);
a06ea964
NC
8410 return;
8411 }
8412
8413 template = template->next;
8414 if (template != NULL)
8415 {
8416 reset_aarch64_instruction (&inst);
8417 inst.cond = saved_cond;
8418 }
8419 }
8420 while (template != NULL);
8421
8422 /* Issue the error messages if any. */
5b7c81bd 8423 output_operand_error_report (str, false);
a06ea964
NC
8424}
8425
8426/* Various frobbings of labels and their addresses. */
8427
8428void
8429aarch64_start_line_hook (void)
8430{
8431 last_label_seen = NULL;
8432}
8433
8434void
8435aarch64_frob_label (symbolS * sym)
8436{
8437 last_label_seen = sym;
8438
8439 dwarf2_emit_label (sym);
8440}
8441
4f5d2536
TC
8442void
8443aarch64_frob_section (asection *sec ATTRIBUTE_UNUSED)
8444{
8445 /* Check to see if we have a block to close. */
8446 force_automatic_sequence_close ();
8447}
8448
a06ea964
NC
8449int
8450aarch64_data_in_code (void)
8451{
d34049e8 8452 if (startswith (input_line_pointer + 1, "data:"))
a06ea964
NC
8453 {
8454 *input_line_pointer = '/';
8455 input_line_pointer += 5;
8456 *input_line_pointer = 0;
8457 return 1;
8458 }
8459
8460 return 0;
8461}
8462
8463char *
8464aarch64_canonicalize_symbol_name (char *name)
8465{
8466 int len;
8467
8468 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
8469 *(name + len - 5) = 0;
8470
8471 return name;
8472}
8473\f
8474/* Table of all register names defined by default. The user can
8475 define additional names with .req. Note that all register names
8476 should appear in both upper and lowercase variants. Some registers
8477 also have mixed-case names. */
8478
5b7c81bd
AM
8479#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, true }
8480#define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, false}
a06ea964 8481#define REGNUM(p,n,t) REGDEF(p##n, n, t)
7bb5f07c 8482#define REGNUMS(p,n,s,t) REGDEF(p##n##s, n, t)
f11ad6bc 8483#define REGSET16(p,t) \
a06ea964
NC
8484 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
8485 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
8486 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
f11ad6bc 8487 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
7bb5f07c
PW
8488#define REGSET16S(p,s,t) \
8489 REGNUMS(p, 0,s,t), REGNUMS(p, 1,s,t), REGNUMS(p, 2,s,t), REGNUMS(p, 3,s,t), \
8490 REGNUMS(p, 4,s,t), REGNUMS(p, 5,s,t), REGNUMS(p, 6,s,t), REGNUMS(p, 7,s,t), \
8491 REGNUMS(p, 8,s,t), REGNUMS(p, 9,s,t), REGNUMS(p,10,s,t), REGNUMS(p,11,s,t), \
8492 REGNUMS(p,12,s,t), REGNUMS(p,13,s,t), REGNUMS(p,14,s,t), REGNUMS(p,15,s,t)
f11ad6bc
RS
8493#define REGSET31(p,t) \
8494 REGSET16(p, t), \
a06ea964
NC
8495 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
8496 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
8497 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
8498 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
8499#define REGSET(p,t) \
8500 REGSET31(p,t), REGNUM(p,31,t)
8501
8502/* These go into aarch64_reg_hsh hash-table. */
8503static const reg_entry reg_names[] = {
8504 /* Integer registers. */
8505 REGSET31 (x, R_64), REGSET31 (X, R_64),
8506 REGSET31 (w, R_32), REGSET31 (W, R_32),
8507
8975f864 8508 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
f10e937a 8509 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
8975f864
RR
8510 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
8511 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
a06ea964
NC
8512 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
8513 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
8514
2f4e3a2c
RS
8515 REGDEF (wzr, 31, ZR_32), REGDEF (WZR, 31, ZR_32),
8516 REGDEF (xzr, 31, ZR_64), REGDEF (XZR, 31, ZR_64),
a06ea964 8517
a06ea964
NC
8518 /* Floating-point single precision registers. */
8519 REGSET (s, FP_S), REGSET (S, FP_S),
8520
8521 /* Floating-point double precision registers. */
8522 REGSET (d, FP_D), REGSET (D, FP_D),
8523
8524 /* Floating-point half precision registers. */
8525 REGSET (h, FP_H), REGSET (H, FP_H),
8526
8527 /* Floating-point byte precision registers. */
8528 REGSET (b, FP_B), REGSET (B, FP_B),
8529
8530 /* Floating-point quad precision registers. */
8531 REGSET (q, FP_Q), REGSET (Q, FP_Q),
8532
8533 /* FP/SIMD registers. */
2f4e3a2c 8534 REGSET (v, V), REGSET (V, V),
f11ad6bc
RS
8535
8536 /* SVE vector registers. */
2f4e3a2c 8537 REGSET (z, Z), REGSET (Z, Z),
f11ad6bc 8538
503fae12 8539 /* SVE predicate(-as-mask) registers. */
2f4e3a2c 8540 REGSET16 (p, P), REGSET16 (P, P),
971eda73 8541
503fae12
RS
8542 /* SVE predicate-as-counter registers. */
8543 REGSET16 (pn, PN), REGSET16 (PN, PN),
8544
e9e1ddbb
RS
8545 /* SME ZA. We model this as a register because it acts syntactically
8546 like ZA0H, supporting qualifier suffixes and indexing. */
8547 REGDEF (za, 0, ZA), REGDEF (ZA, 0, ZA),
8548
971eda73 8549 /* SME ZA tile registers. */
fd855fbb 8550 REGSET16 (za, ZAT), REGSET16 (ZA, ZAT),
7bb5f07c
PW
8551
8552 /* SME ZA tile registers (horizontal slice). */
fd855fbb 8553 REGSET16S (za, h, ZATH), REGSET16S (ZA, H, ZATH),
7bb5f07c
PW
8554
8555 /* SME ZA tile registers (vertical slice). */
cbd11b88
RS
8556 REGSET16S (za, v, ZATV), REGSET16S (ZA, V, ZATV),
8557
8558 /* SME2 ZT0. */
8559 REGDEF (zt0, 0, ZT0), REGDEF (ZT0, 0, ZT0)
a06ea964
NC
8560};
8561
8562#undef REGDEF
8975f864 8563#undef REGDEF_ALIAS
a06ea964 8564#undef REGNUM
f11ad6bc
RS
8565#undef REGSET16
8566#undef REGSET31
a06ea964
NC
8567#undef REGSET
8568
8569#define N 1
8570#define n 0
8571#define Z 1
8572#define z 0
8573#define C 1
8574#define c 0
8575#define V 1
8576#define v 0
8577#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
8578static const asm_nzcv nzcv_names[] = {
8579 {"nzcv", B (n, z, c, v)},
8580 {"nzcV", B (n, z, c, V)},
8581 {"nzCv", B (n, z, C, v)},
8582 {"nzCV", B (n, z, C, V)},
8583 {"nZcv", B (n, Z, c, v)},
8584 {"nZcV", B (n, Z, c, V)},
8585 {"nZCv", B (n, Z, C, v)},
8586 {"nZCV", B (n, Z, C, V)},
8587 {"Nzcv", B (N, z, c, v)},
8588 {"NzcV", B (N, z, c, V)},
8589 {"NzCv", B (N, z, C, v)},
8590 {"NzCV", B (N, z, C, V)},
8591 {"NZcv", B (N, Z, c, v)},
8592 {"NZcV", B (N, Z, c, V)},
8593 {"NZCv", B (N, Z, C, v)},
8594 {"NZCV", B (N, Z, C, V)}
8595};
8596
8597#undef N
8598#undef n
8599#undef Z
8600#undef z
8601#undef C
8602#undef c
8603#undef V
8604#undef v
8605#undef B
8606\f
8607/* MD interface: bits in the object file. */
8608
8609/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
8610 for use in the a.out file, and stores them in the array pointed to by buf.
8611 This knows about the endian-ness of the target machine and does
8612 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
8613 2 (short) and 4 (long) Floating numbers are put out as a series of
8614 LITTLENUMS (shorts, here at least). */
8615
8616void
8617md_number_to_chars (char *buf, valueT val, int n)
8618{
8619 if (target_big_endian)
8620 number_to_chars_bigendian (buf, val, n);
8621 else
8622 number_to_chars_littleendian (buf, val, n);
8623}
8624
8625/* MD interface: Sections. */
8626
8627/* Estimate the size of a frag before relaxing. Assume everything fits in
8628 4 bytes. */
8629
8630int
8631md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
8632{
8633 fragp->fr_var = 4;
8634 return 4;
8635}
8636
8637/* Round up a section size to the appropriate boundary. */
8638
8639valueT
8640md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
8641{
8642 return size;
8643}
8644
8645/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
8646 of an rs_align_code fragment.
8647
8648 Here we fill the frag with the appropriate info for padding the
8649 output stream. The resulting frag will consist of a fixed (fr_fix)
8650 and of a repeating (fr_var) part.
8651
8652 The fixed content is always emitted before the repeating content and
8653 these two parts are used as follows in constructing the output:
8654 - the fixed part will be used to align to a valid instruction word
8655 boundary, in case that we start at a misaligned address; as no
8656 executable instruction can live at the misaligned location, we
8657 simply fill with zeros;
8658 - the variable part will be used to cover the remaining padding and
8659 we fill using the AArch64 NOP instruction.
8660
8661 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
8662 enough storage space for up to 3 bytes for padding the back to a valid
8663 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
8664
8665void
8666aarch64_handle_align (fragS * fragP)
8667{
8668 /* NOP = d503201f */
8669 /* AArch64 instructions are always little-endian. */
d9235011 8670 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
a06ea964
NC
8671
8672 int bytes, fix, noop_size;
8673 char *p;
a06ea964
NC
8674
8675 if (fragP->fr_type != rs_align_code)
8676 return;
8677
8678 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
8679 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
8680
8681#ifdef OBJ_ELF
8682 gas_assert (fragP->tc_frag_data.recorded);
8683#endif
8684
a06ea964 8685 noop_size = sizeof (aarch64_noop);
a06ea964 8686
f803aa8e
DPT
8687 fix = bytes & (noop_size - 1);
8688 if (fix)
a06ea964 8689 {
c60b3806 8690#if defined OBJ_ELF || defined OBJ_COFF
a06ea964
NC
8691 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
8692#endif
8693 memset (p, 0, fix);
8694 p += fix;
f803aa8e 8695 fragP->fr_fix += fix;
a06ea964
NC
8696 }
8697
f803aa8e
DPT
8698 if (noop_size)
8699 memcpy (p, aarch64_noop, noop_size);
8700 fragP->fr_var = noop_size;
a06ea964
NC
8701}
8702
8703/* Perform target specific initialisation of a frag.
8704 Note - despite the name this initialisation is not done when the frag
8705 is created, but only when its type is assigned. A frag can be created
8706 and used a long time before its type is set, so beware of assuming that
33eaf5de 8707 this initialisation is performed first. */
a06ea964
NC
8708
8709#ifndef OBJ_ELF
8710void
8711aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
8712 int max_chars ATTRIBUTE_UNUSED)
8713{
8714}
8715
8716#else /* OBJ_ELF is defined. */
8717void
8718aarch64_init_frag (fragS * fragP, int max_chars)
8719{
8720 /* Record a mapping symbol for alignment frags. We will delete this
8721 later if the alignment ends up empty. */
8722 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
8723 fragP->tc_frag_data.recorded = 1;
8724
e8d84ca1
NC
8725 /* PR 21809: Do not set a mapping state for debug sections
8726 - it just confuses other tools. */
fd361982 8727 if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
e8d84ca1
NC
8728 return;
8729
c7ad08e6 8730 switch (fragP->fr_type)
a06ea964 8731 {
c7ad08e6
RL
8732 case rs_align_test:
8733 case rs_fill:
8734 mapping_state_2 (MAP_DATA, max_chars);
8735 break;
7ea12e5c
NC
8736 case rs_align:
8737 /* PR 20364: We can get alignment frags in code sections,
8738 so do not just assume that we should use the MAP_DATA state. */
8739 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
8740 break;
c7ad08e6
RL
8741 case rs_align_code:
8742 mapping_state_2 (MAP_INSN, max_chars);
8743 break;
8744 default:
8745 break;
a06ea964
NC
8746 }
8747}
b52c4ee4 8748
3e3e792a 8749/* Whether SFrame stack trace info is supported. */
b52c4ee4
IB
8750
8751bool
8752aarch64_support_sframe_p (void)
8753{
8754 /* At this time, SFrame is supported for aarch64 only. */
8755 return (aarch64_abi == AARCH64_ABI_LP64);
8756}
8757
8758/* Specify if RA tracking is needed. */
8759
8760bool
8761aarch64_sframe_ra_tracking_p (void)
8762{
8763 return true;
8764}
8765
8766/* Specify the fixed offset to recover RA from CFA.
8767 (useful only when RA tracking is not needed). */
8768
8769offsetT
8770aarch64_sframe_cfa_ra_offset (void)
8771{
8772 return (offsetT) SFRAME_CFA_FIXED_RA_INVALID;
8773}
8774
8775/* Get the abi/arch indentifier for SFrame. */
8776
8777unsigned char
8778aarch64_sframe_get_abi_arch (void)
8779{
8780 unsigned char sframe_abi_arch = 0;
8781
8782 if (aarch64_support_sframe_p ())
8783 {
8784 sframe_abi_arch = target_big_endian
8785 ? SFRAME_ABI_AARCH64_ENDIAN_BIG
8786 : SFRAME_ABI_AARCH64_ENDIAN_LITTLE;
8787 }
8788
8789 return sframe_abi_arch;
8790}
8791
c60b3806 8792#endif /* OBJ_ELF */
a06ea964
NC
8793\f
8794/* Initialize the DWARF-2 unwind information for this procedure. */
8795
8796void
8797tc_aarch64_frame_initial_instructions (void)
8798{
8799 cfi_add_CFA_def_cfa (REG_SP, 0);
8800}
a06ea964
NC
8801
8802/* Convert REGNAME to a DWARF-2 register number. */
8803
8804int
8805tc_aarch64_regname_to_dw2regnum (char *regname)
8806{
8807 const reg_entry *reg = parse_reg (&regname);
8808 if (reg == NULL)
8809 return -1;
8810
8811 switch (reg->type)
8812 {
8813 case REG_TYPE_SP_32:
8814 case REG_TYPE_SP_64:
8815 case REG_TYPE_R_32:
8816 case REG_TYPE_R_64:
a2cac51c
RH
8817 return reg->number;
8818
a06ea964
NC
8819 case REG_TYPE_FP_B:
8820 case REG_TYPE_FP_H:
8821 case REG_TYPE_FP_S:
8822 case REG_TYPE_FP_D:
8823 case REG_TYPE_FP_Q:
a2cac51c
RH
8824 return reg->number + 64;
8825
a06ea964
NC
8826 default:
8827 break;
8828 }
8829 return -1;
8830}
8831
cec5225b
YZ
8832/* Implement DWARF2_ADDR_SIZE. */
8833
8834int
8835aarch64_dwarf2_addr_size (void)
8836{
cec5225b
YZ
8837 if (ilp32_p)
8838 return 4;
c60b3806
JT
8839 else if (llp64_p)
8840 return 8;
cec5225b
YZ
8841 return bfd_arch_bits_per_address (stdoutput) / 8;
8842}
8843
a06ea964
NC
8844/* MD interface: Symbol and relocation handling. */
8845
8846/* Return the address within the segment that a PC-relative fixup is
8847 relative to. For AArch64 PC-relative fixups applied to instructions
8848 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
8849
8850long
8851md_pcrel_from_section (fixS * fixP, segT seg)
8852{
8853 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
8854
8855 /* If this is pc-relative and we are going to emit a relocation
8856 then we just want to put out any pipeline compensation that the linker
8857 will need. Otherwise we want to use the calculated base. */
8858 if (fixP->fx_pcrel
8859 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
8860 || aarch64_force_relocation (fixP)))
8861 base = 0;
8862
8863 /* AArch64 should be consistent for all pc-relative relocations. */
8864 return base + AARCH64_PCREL_OFFSET;
8865}
8866
8867/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
8868 Otherwise we have no need to default values of symbols. */
8869
8870symbolS *
8871md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
8872{
8873#ifdef OBJ_ELF
8874 if (name[0] == '_' && name[1] == 'G'
8875 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
8876 {
8877 if (!GOT_symbol)
8878 {
8879 if (symbol_find (name))
8880 as_bad (_("GOT already in the symbol table"));
8881
8882 GOT_symbol = symbol_new (name, undefined_section,
e01e1cee 8883 &zero_address_frag, 0);
a06ea964
NC
8884 }
8885
8886 return GOT_symbol;
8887 }
8888#endif
8889
8890 return 0;
8891}
8892
8893/* Return non-zero if the indicated VALUE has overflowed the maximum
8894 range expressible by a unsigned number with the indicated number of
8895 BITS. */
8896
5b7c81bd 8897static bool
a06ea964
NC
8898unsigned_overflow (valueT value, unsigned bits)
8899{
8900 valueT lim;
8901 if (bits >= sizeof (valueT) * 8)
5b7c81bd 8902 return false;
a06ea964
NC
8903 lim = (valueT) 1 << bits;
8904 return (value >= lim);
8905}
8906
8907
8908/* Return non-zero if the indicated VALUE has overflowed the maximum
8909 range expressible by an signed number with the indicated number of
8910 BITS. */
8911
5b7c81bd 8912static bool
a06ea964
NC
8913signed_overflow (offsetT value, unsigned bits)
8914{
8915 offsetT lim;
8916 if (bits >= sizeof (offsetT) * 8)
5b7c81bd 8917 return false;
a06ea964
NC
8918 lim = (offsetT) 1 << (bits - 1);
8919 return (value < -lim || value >= lim);
8920}
8921
8922/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
8923 unsigned immediate offset load/store instruction, try to encode it as
8924 an unscaled, 9-bit, signed immediate offset load/store instruction.
8925 Return TRUE if it is successful; otherwise return FALSE.
8926
8927 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
8928 in response to the standard LDR/STR mnemonics when the immediate offset is
8929 unambiguous, i.e. when it is negative or unaligned. */
8930
5b7c81bd 8931static bool
a06ea964
NC
8932try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
8933{
8934 int idx;
8935 enum aarch64_op new_op;
8936 const aarch64_opcode *new_opcode;
8937
8938 gas_assert (instr->opcode->iclass == ldst_pos);
8939
8940 switch (instr->opcode->op)
8941 {
8942 case OP_LDRB_POS:new_op = OP_LDURB; break;
8943 case OP_STRB_POS: new_op = OP_STURB; break;
8944 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
8945 case OP_LDRH_POS: new_op = OP_LDURH; break;
8946 case OP_STRH_POS: new_op = OP_STURH; break;
8947 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
8948 case OP_LDR_POS: new_op = OP_LDUR; break;
8949 case OP_STR_POS: new_op = OP_STUR; break;
8950 case OP_LDRF_POS: new_op = OP_LDURV; break;
8951 case OP_STRF_POS: new_op = OP_STURV; break;
8952 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
8953 case OP_PRFM_POS: new_op = OP_PRFUM; break;
8954 default: new_op = OP_NIL; break;
8955 }
8956
8957 if (new_op == OP_NIL)
5b7c81bd 8958 return false;
a06ea964
NC
8959
8960 new_opcode = aarch64_get_opcode (new_op);
8961 gas_assert (new_opcode != NULL);
8962
8963 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
8964 instr->opcode->op, new_opcode->op);
8965
8966 aarch64_replace_opcode (instr, new_opcode);
8967
8968 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
8969 qualifier matching may fail because the out-of-date qualifier will
8970 prevent the operand being updated with a new and correct qualifier. */
8971 idx = aarch64_operand_index (instr->opcode->operands,
8972 AARCH64_OPND_ADDR_SIMM9);
8973 gas_assert (idx == 1);
8974 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
8975
8976 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
8977
7e84b55d
TC
8978 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL,
8979 insn_sequence))
5b7c81bd 8980 return false;
a06ea964 8981
5b7c81bd 8982 return true;
a06ea964
NC
8983}
8984
8985/* Called by fix_insn to fix a MOV immediate alias instruction.
8986
8987 Operand for a generic move immediate instruction, which is an alias
8988 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
8989 a 32-bit/64-bit immediate value into general register. An assembler error
8990 shall result if the immediate cannot be created by a single one of these
8991 instructions. If there is a choice, then to ensure reversability an
8992 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
8993
8994static void
8995fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
8996{
8997 const aarch64_opcode *opcode;
8998
8999 /* Need to check if the destination is SP/ZR. The check has to be done
9000 before any aarch64_replace_opcode. */
9001 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
9002 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
9003
9004 instr->operands[1].imm.value = value;
9005 instr->operands[1].skip = 0;
9006
9007 if (try_mov_wide_p)
9008 {
9009 /* Try the MOVZ alias. */
9010 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
9011 aarch64_replace_opcode (instr, opcode);
9012 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 9013 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
9014 {
9015 put_aarch64_insn (buf, instr->value);
9016 return;
9017 }
9018 /* Try the MOVK alias. */
9019 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
9020 aarch64_replace_opcode (instr, opcode);
9021 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 9022 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
9023 {
9024 put_aarch64_insn (buf, instr->value);
9025 return;
9026 }
9027 }
9028
9029 if (try_mov_bitmask_p)
9030 {
9031 /* Try the ORR alias. */
9032 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
9033 aarch64_replace_opcode (instr, opcode);
9034 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 9035 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
9036 {
9037 put_aarch64_insn (buf, instr->value);
9038 return;
9039 }
9040 }
9041
9042 as_bad_where (fixP->fx_file, fixP->fx_line,
9043 _("immediate cannot be moved by a single instruction"));
9044}
9045
9046/* An instruction operand which is immediate related may have symbol used
9047 in the assembly, e.g.
9048
9049 mov w0, u32
9050 .set u32, 0x00ffff00
9051
9052 At the time when the assembly instruction is parsed, a referenced symbol,
9053 like 'u32' in the above example may not have been seen; a fixS is created
9054 in such a case and is handled here after symbols have been resolved.
9055 Instruction is fixed up with VALUE using the information in *FIXP plus
9056 extra information in FLAGS.
9057
9058 This function is called by md_apply_fix to fix up instructions that need
9059 a fix-up described above but does not involve any linker-time relocation. */
9060
9061static void
9062fix_insn (fixS *fixP, uint32_t flags, offsetT value)
9063{
9064 int idx;
9065 uint32_t insn;
9066 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
9067 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
9068 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
9069
9070 if (new_inst)
9071 {
9072 /* Now the instruction is about to be fixed-up, so the operand that
9073 was previously marked as 'ignored' needs to be unmarked in order
9074 to get the encoding done properly. */
9075 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
9076 new_inst->operands[idx].skip = 0;
9077 }
9078
9079 gas_assert (opnd != AARCH64_OPND_NIL);
9080
9081 switch (opnd)
9082 {
9083 case AARCH64_OPND_EXCEPTION:
09c1e68a 9084 case AARCH64_OPND_UNDEFINED:
a06ea964
NC
9085 if (unsigned_overflow (value, 16))
9086 as_bad_where (fixP->fx_file, fixP->fx_line,
9087 _("immediate out of range"));
9088 insn = get_aarch64_insn (buf);
09c1e68a 9089 insn |= (opnd == AARCH64_OPND_EXCEPTION) ? encode_svc_imm (value) : value;
a06ea964
NC
9090 put_aarch64_insn (buf, insn);
9091 break;
9092
9093 case AARCH64_OPND_AIMM:
9094 /* ADD or SUB with immediate.
9095 NOTE this assumes we come here with a add/sub shifted reg encoding
9096 3 322|2222|2 2 2 21111 111111
9097 1 098|7654|3 2 1 09876 543210 98765 43210
9098 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
9099 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
9100 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
9101 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
9102 ->
9103 3 322|2222|2 2 221111111111
9104 1 098|7654|3 2 109876543210 98765 43210
9105 11000000 sf 001|0001|shift imm12 Rn Rd ADD
9106 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
9107 51000000 sf 101|0001|shift imm12 Rn Rd SUB
9108 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
9109 Fields sf Rn Rd are already set. */
9110 insn = get_aarch64_insn (buf);
9111 if (value < 0)
9112 {
9113 /* Add <-> sub. */
9114 insn = reencode_addsub_switch_add_sub (insn);
9115 value = -value;
9116 }
9117
9118 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
9119 && unsigned_overflow (value, 12))
9120 {
9121 /* Try to shift the value by 12 to make it fit. */
9122 if (((value >> 12) << 12) == value
9123 && ! unsigned_overflow (value, 12 + 12))
9124 {
9125 value >>= 12;
9126 insn |= encode_addsub_imm_shift_amount (1);
9127 }
9128 }
9129
9130 if (unsigned_overflow (value, 12))
9131 as_bad_where (fixP->fx_file, fixP->fx_line,
9132 _("immediate out of range"));
9133
9134 insn |= encode_addsub_imm (value);
9135
9136 put_aarch64_insn (buf, insn);
9137 break;
9138
9139 case AARCH64_OPND_SIMD_IMM:
9140 case AARCH64_OPND_SIMD_IMM_SFT:
9141 case AARCH64_OPND_LIMM:
9142 /* Bit mask immediate. */
9143 gas_assert (new_inst != NULL);
9144 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
9145 new_inst->operands[idx].imm.value = value;
9146 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7e84b55d 9147 &new_inst->value, NULL, NULL, insn_sequence))
a06ea964
NC
9148 put_aarch64_insn (buf, new_inst->value);
9149 else
9150 as_bad_where (fixP->fx_file, fixP->fx_line,
9151 _("invalid immediate"));
9152 break;
9153
9154 case AARCH64_OPND_HALF:
9155 /* 16-bit unsigned immediate. */
9156 if (unsigned_overflow (value, 16))
9157 as_bad_where (fixP->fx_file, fixP->fx_line,
9158 _("immediate out of range"));
9159 insn = get_aarch64_insn (buf);
9160 insn |= encode_movw_imm (value & 0xffff);
9161 put_aarch64_insn (buf, insn);
9162 break;
9163
9164 case AARCH64_OPND_IMM_MOV:
9165 /* Operand for a generic move immediate instruction, which is
9166 an alias instruction that generates a single MOVZ, MOVN or ORR
9167 instruction to loads a 32-bit/64-bit immediate value into general
9168 register. An assembler error shall result if the immediate cannot be
9169 created by a single one of these instructions. If there is a choice,
9170 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
9171 and MOVZ or MOVN to ORR. */
9172 gas_assert (new_inst != NULL);
9173 fix_mov_imm_insn (fixP, buf, new_inst, value);
9174 break;
9175
9176 case AARCH64_OPND_ADDR_SIMM7:
9177 case AARCH64_OPND_ADDR_SIMM9:
9178 case AARCH64_OPND_ADDR_SIMM9_2:
3f06e550 9179 case AARCH64_OPND_ADDR_SIMM10:
a06ea964 9180 case AARCH64_OPND_ADDR_UIMM12:
fb3265b3
SD
9181 case AARCH64_OPND_ADDR_SIMM11:
9182 case AARCH64_OPND_ADDR_SIMM13:
a06ea964
NC
9183 /* Immediate offset in an address. */
9184 insn = get_aarch64_insn (buf);
9185
9186 gas_assert (new_inst != NULL && new_inst->value == insn);
9187 gas_assert (new_inst->opcode->operands[1] == opnd
9188 || new_inst->opcode->operands[2] == opnd);
9189
9190 /* Get the index of the address operand. */
9191 if (new_inst->opcode->operands[1] == opnd)
9192 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
9193 idx = 1;
9194 else
9195 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
9196 idx = 2;
9197
9198 /* Update the resolved offset value. */
9199 new_inst->operands[idx].addr.offset.imm = value;
9200
9201 /* Encode/fix-up. */
9202 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7e84b55d 9203 &new_inst->value, NULL, NULL, insn_sequence))
a06ea964
NC
9204 {
9205 put_aarch64_insn (buf, new_inst->value);
9206 break;
9207 }
9208 else if (new_inst->opcode->iclass == ldst_pos
9209 && try_to_encode_as_unscaled_ldst (new_inst))
9210 {
9211 put_aarch64_insn (buf, new_inst->value);
9212 break;
9213 }
9214
9215 as_bad_where (fixP->fx_file, fixP->fx_line,
9216 _("immediate offset out of range"));
9217 break;
9218
9219 default:
9220 gas_assert (0);
9221 as_fatal (_("unhandled operand code %d"), opnd);
9222 }
9223}
9224
9225/* Apply a fixup (fixP) to segment data, once it has been determined
9226 by our caller that we have all the info we need to fix it up.
9227
9228 Parameter valP is the pointer to the value of the bits. */
9229
9230void
9231md_apply_fix (fixS * fixP, valueT * valP, segT seg)
9232{
9233 offsetT value = *valP;
9234 uint32_t insn;
9235 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
9236 int scale;
9237 unsigned flags = fixP->fx_addnumber;
9238
9239 DEBUG_TRACE ("\n\n");
9240 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
9241 DEBUG_TRACE ("Enter md_apply_fix");
9242
9243 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
9244
9245 /* Note whether this will delete the relocation. */
9246
c1723a81
JB
9247 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel
9248 && aarch64_force_reloc (fixP->fx_r_type) <= 0)
a06ea964
NC
9249 fixP->fx_done = 1;
9250
9251 /* Process the relocations. */
9252 switch (fixP->fx_r_type)
9253 {
9254 case BFD_RELOC_NONE:
9255 /* This will need to go in the object file. */
9256 fixP->fx_done = 0;
9257 break;
9258
9259 case BFD_RELOC_8:
9260 case BFD_RELOC_8_PCREL:
9261 if (fixP->fx_done || !seg->use_rela_p)
9262 md_number_to_chars (buf, value, 1);
9263 break;
9264
9265 case BFD_RELOC_16:
9266 case BFD_RELOC_16_PCREL:
9267 if (fixP->fx_done || !seg->use_rela_p)
9268 md_number_to_chars (buf, value, 2);
9269 break;
9270
9271 case BFD_RELOC_32:
9272 case BFD_RELOC_32_PCREL:
9273 if (fixP->fx_done || !seg->use_rela_p)
9274 md_number_to_chars (buf, value, 4);
9275 break;
9276
9277 case BFD_RELOC_64:
9278 case BFD_RELOC_64_PCREL:
9279 if (fixP->fx_done || !seg->use_rela_p)
9280 md_number_to_chars (buf, value, 8);
9281 break;
9282
9283 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
9284 /* We claim that these fixups have been processed here, even if
9285 in fact we generate an error because we do not have a reloc
9286 for them, so tc_gen_reloc() will reject them. */
9287 fixP->fx_done = 1;
9288 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
9289 {
9290 as_bad_where (fixP->fx_file, fixP->fx_line,
9291 _("undefined symbol %s used as an immediate value"),
9292 S_GET_NAME (fixP->fx_addsy));
9293 goto apply_fix_return;
9294 }
9295 fix_insn (fixP, flags, value);
9296 break;
9297
9298 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
9299 if (fixP->fx_done || !seg->use_rela_p)
9300 {
89d2a2a3
MS
9301 if (value & 3)
9302 as_bad_where (fixP->fx_file, fixP->fx_line,
9303 _("pc-relative load offset not word aligned"));
9304 if (signed_overflow (value, 21))
9305 as_bad_where (fixP->fx_file, fixP->fx_line,
9306 _("pc-relative load offset out of range"));
a06ea964
NC
9307 insn = get_aarch64_insn (buf);
9308 insn |= encode_ld_lit_ofs_19 (value >> 2);
9309 put_aarch64_insn (buf, insn);
9310 }
9311 break;
9312
9313 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
9314 if (fixP->fx_done || !seg->use_rela_p)
9315 {
89d2a2a3
MS
9316 if (signed_overflow (value, 21))
9317 as_bad_where (fixP->fx_file, fixP->fx_line,
9318 _("pc-relative address offset out of range"));
a06ea964
NC
9319 insn = get_aarch64_insn (buf);
9320 insn |= encode_adr_imm (value);
9321 put_aarch64_insn (buf, insn);
9322 }
9323 break;
9324
9325 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
9326 if (fixP->fx_done || !seg->use_rela_p)
9327 {
89d2a2a3
MS
9328 if (value & 3)
9329 as_bad_where (fixP->fx_file, fixP->fx_line,
9330 _("conditional branch target not word aligned"));
9331 if (signed_overflow (value, 21))
9332 as_bad_where (fixP->fx_file, fixP->fx_line,
9333 _("conditional branch out of range"));
a06ea964
NC
9334 insn = get_aarch64_insn (buf);
9335 insn |= encode_cond_branch_ofs_19 (value >> 2);
9336 put_aarch64_insn (buf, insn);
9337 }
9338 break;
9339
9340 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
9341 if (fixP->fx_done || !seg->use_rela_p)
9342 {
89d2a2a3
MS
9343 if (value & 3)
9344 as_bad_where (fixP->fx_file, fixP->fx_line,
9345 _("conditional branch target not word aligned"));
9346 if (signed_overflow (value, 16))
9347 as_bad_where (fixP->fx_file, fixP->fx_line,
9348 _("conditional branch out of range"));
a06ea964
NC
9349 insn = get_aarch64_insn (buf);
9350 insn |= encode_tst_branch_ofs_14 (value >> 2);
9351 put_aarch64_insn (buf, insn);
9352 }
9353 break;
9354
a06ea964 9355 case BFD_RELOC_AARCH64_CALL26:
f09c556a 9356 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
9357 if (fixP->fx_done || !seg->use_rela_p)
9358 {
89d2a2a3
MS
9359 if (value & 3)
9360 as_bad_where (fixP->fx_file, fixP->fx_line,
9361 _("branch target not word aligned"));
9362 if (signed_overflow (value, 28))
9363 as_bad_where (fixP->fx_file, fixP->fx_line,
9364 _("branch out of range"));
a06ea964
NC
9365 insn = get_aarch64_insn (buf);
9366 insn |= encode_branch_ofs_26 (value >> 2);
9367 put_aarch64_insn (buf, insn);
9368 }
9369 break;
9370
9371 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 9372 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 9373 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 9374 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
9375 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
9376 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
a06ea964
NC
9377 scale = 0;
9378 goto movw_common;
9379 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 9380 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 9381 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 9382 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
9383 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
9384 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
a06ea964
NC
9385 scale = 16;
9386 goto movw_common;
43a357f9
RL
9387 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
9388 scale = 0;
9389 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9390 /* Should always be exported to object file, see
9391 aarch64_force_relocation(). */
9392 gas_assert (!fixP->fx_done);
9393 gas_assert (seg->use_rela_p);
9394 goto movw_common;
9395 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
9396 scale = 16;
9397 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9398 /* Should always be exported to object file, see
9399 aarch64_force_relocation(). */
9400 gas_assert (!fixP->fx_done);
9401 gas_assert (seg->use_rela_p);
9402 goto movw_common;
a06ea964 9403 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 9404 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 9405 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
9406 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
9407 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
a06ea964
NC
9408 scale = 32;
9409 goto movw_common;
9410 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 9411 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
9412 scale = 48;
9413 movw_common:
9414 if (fixP->fx_done || !seg->use_rela_p)
9415 {
9416 insn = get_aarch64_insn (buf);
9417
9418 if (!fixP->fx_done)
9419 {
9420 /* REL signed addend must fit in 16 bits */
9421 if (signed_overflow (value, 16))
9422 as_bad_where (fixP->fx_file, fixP->fx_line,
9423 _("offset out of range"));
9424 }
9425 else
9426 {
9427 /* Check for overflow and scale. */
9428 switch (fixP->fx_r_type)
9429 {
9430 case BFD_RELOC_AARCH64_MOVW_G0:
9431 case BFD_RELOC_AARCH64_MOVW_G1:
9432 case BFD_RELOC_AARCH64_MOVW_G2:
9433 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 9434 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 9435 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
9436 if (unsigned_overflow (value, scale + 16))
9437 as_bad_where (fixP->fx_file, fixP->fx_line,
9438 _("unsigned value out of range"));
9439 break;
9440 case BFD_RELOC_AARCH64_MOVW_G0_S:
9441 case BFD_RELOC_AARCH64_MOVW_G1_S:
9442 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
9443 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
9444 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
9445 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
a06ea964
NC
9446 /* NOTE: We can only come here with movz or movn. */
9447 if (signed_overflow (value, scale + 16))
9448 as_bad_where (fixP->fx_file, fixP->fx_line,
9449 _("signed value out of range"));
9450 if (value < 0)
9451 {
9452 /* Force use of MOVN. */
9453 value = ~value;
9454 insn = reencode_movzn_to_movn (insn);
9455 }
9456 else
9457 {
9458 /* Force use of MOVZ. */
9459 insn = reencode_movzn_to_movz (insn);
9460 }
9461 break;
9462 default:
9463 /* Unchecked relocations. */
9464 break;
9465 }
9466 value >>= scale;
9467 }
9468
9469 /* Insert value into MOVN/MOVZ/MOVK instruction. */
9470 insn |= encode_movw_imm (value & 0xffff);
9471
9472 put_aarch64_insn (buf, insn);
9473 }
9474 break;
9475
a6bb11b2
YZ
9476 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
9477 fixP->fx_r_type = (ilp32_p
9478 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
9479 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
9480 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9481 /* Should always be exported to object file, see
9482 aarch64_force_relocation(). */
9483 gas_assert (!fixP->fx_done);
9484 gas_assert (seg->use_rela_p);
9485 break;
9486
9487 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
9488 fixP->fx_r_type = (ilp32_p
9489 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
f955cccf 9490 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
a6bb11b2
YZ
9491 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9492 /* Should always be exported to object file, see
9493 aarch64_force_relocation(). */
9494 gas_assert (!fixP->fx_done);
9495 gas_assert (seg->use_rela_p);
9496 break;
9497
f955cccf 9498 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
2c0a3565 9499 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 9500 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565 9501 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 9502 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 9503 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 9504 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 9505 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 9506 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 9507 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 9508 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 9509 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 9510 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 9511 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 9512 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
9513 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
9514 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 9515 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 9516 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 9517 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 9518 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 9519 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 9520 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
9521 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
9522 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
9523 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
9524 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
9525 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
9526 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
9527 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
9528 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
9529 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
9530 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
9531 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
9532 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
9533 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
84f1b9fb
RL
9534 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
9535 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
9536 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
9537 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
9538 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
9539 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
9540 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
9541 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
a06ea964 9542 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 9543 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 9544 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
9545 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
9546 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
9547 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
9548 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
9549 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
9550 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9551 /* Should always be exported to object file, see
9552 aarch64_force_relocation(). */
9553 gas_assert (!fixP->fx_done);
9554 gas_assert (seg->use_rela_p);
9555 break;
9556
a6bb11b2
YZ
9557 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
9558 /* Should always be exported to object file, see
9559 aarch64_force_relocation(). */
9560 fixP->fx_r_type = (ilp32_p
9561 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
9562 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
9563 gas_assert (!fixP->fx_done);
9564 gas_assert (seg->use_rela_p);
9565 break;
9566
a06ea964 9567 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
9568 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
9569 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
9570 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
9571 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
9572 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 9573 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 9574 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 9575 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
9576 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
9577 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
9578 case BFD_RELOC_AARCH64_LDST16_LO12:
9579 case BFD_RELOC_AARCH64_LDST32_LO12:
9580 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 9581 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
9582 /* Should always be exported to object file, see
9583 aarch64_force_relocation(). */
9584 gas_assert (!fixP->fx_done);
9585 gas_assert (seg->use_rela_p);
9586 break;
9587
9588 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 9589 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 9590 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
9591 break;
9592
b97e87cc
NC
9593 case BFD_RELOC_UNUSED:
9594 /* An error will already have been reported. */
9595 break;
9596
b152649d 9597 case BFD_RELOC_RVA:
528e4f46 9598 case BFD_RELOC_32_SECREL:
6f4a117f 9599 case BFD_RELOC_16_SECIDX:
b152649d
MH
9600 break;
9601
a06ea964
NC
9602 default:
9603 as_bad_where (fixP->fx_file, fixP->fx_line,
9604 _("unexpected %s fixup"),
9605 bfd_get_reloc_code_name (fixP->fx_r_type));
9606 break;
9607 }
9608
dc1e8a47 9609 apply_fix_return:
a06ea964
NC
9610 /* Free the allocated the struct aarch64_inst.
9611 N.B. currently there are very limited number of fix-up types actually use
9612 this field, so the impact on the performance should be minimal . */
9fbb53c7 9613 free (fixP->tc_fix_data.inst);
a06ea964
NC
9614
9615 return;
9616}
9617
9618/* Translate internal representation of relocation info to BFD target
9619 format. */
9620
9621arelent *
9622tc_gen_reloc (asection * section, fixS * fixp)
9623{
9624 arelent *reloc;
9625 bfd_reloc_code_real_type code;
9626
325801bd 9627 reloc = XNEW (arelent);
a06ea964 9628
325801bd 9629 reloc->sym_ptr_ptr = XNEW (asymbol *);
a06ea964
NC
9630 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
9631 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
9632
9633 if (fixp->fx_pcrel)
9634 {
9635 if (section->use_rela_p)
9636 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
9637 else
9638 fixp->fx_offset = reloc->address;
9639 }
9640 reloc->addend = fixp->fx_offset;
9641
9642 code = fixp->fx_r_type;
9643 switch (code)
9644 {
9645 case BFD_RELOC_16:
9646 if (fixp->fx_pcrel)
9647 code = BFD_RELOC_16_PCREL;
9648 break;
9649
9650 case BFD_RELOC_32:
9651 if (fixp->fx_pcrel)
9652 code = BFD_RELOC_32_PCREL;
9653 break;
9654
9655 case BFD_RELOC_64:
9656 if (fixp->fx_pcrel)
9657 code = BFD_RELOC_64_PCREL;
9658 break;
9659
9660 default:
9661 break;
9662 }
9663
9664 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
9665 if (reloc->howto == NULL)
9666 {
9667 as_bad_where (fixp->fx_file, fixp->fx_line,
9668 _
9669 ("cannot represent %s relocation in this object file format"),
9670 bfd_get_reloc_code_name (code));
9671 return NULL;
9672 }
9673
9674 return reloc;
9675}
9676
9677/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
9678
9679void
9680cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
9681{
9682 bfd_reloc_code_real_type type;
9683 int pcrel = 0;
9684
528e4f46
MH
9685#ifdef TE_PE
9686 if (exp->X_op == O_secrel)
a06ea964 9687 {
528e4f46
MH
9688 exp->X_op = O_symbol;
9689 type = BFD_RELOC_32_SECREL;
a06ea964 9690 }
6f4a117f
MH
9691 else if (exp->X_op == O_secidx)
9692 {
9693 exp->X_op = O_symbol;
9694 type = BFD_RELOC_16_SECIDX;
9695 }
528e4f46
MH
9696 else
9697 {
9698#endif
9699 /* Pick a reloc.
9700 FIXME: @@ Should look at CPU word size. */
9701 switch (size)
9702 {
9703 case 1:
9704 type = BFD_RELOC_8;
9705 break;
9706 case 2:
9707 type = BFD_RELOC_16;
9708 break;
9709 case 4:
9710 type = BFD_RELOC_32;
9711 break;
9712 case 8:
9713 type = BFD_RELOC_64;
9714 break;
9715 default:
9716 as_bad (_("cannot do %u-byte relocation"), size);
9717 type = BFD_RELOC_UNUSED;
9718 break;
9719 }
9720#ifdef TE_PE
9721 }
9722#endif
a06ea964
NC
9723
9724 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
9725}
9726
3c0367d0
JW
9727/* Implement md_after_parse_args. This is the earliest time we need to decide
9728 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
9729
9730void
9731aarch64_after_parse_args (void)
9732{
9733 if (aarch64_abi != AARCH64_ABI_NONE)
9734 return;
9735
c60b3806 9736#ifdef OBJ_ELF
3c0367d0
JW
9737 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
9738 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
9739 aarch64_abi = AARCH64_ABI_ILP32;
9740 else
9741 aarch64_abi = AARCH64_ABI_LP64;
c60b3806
JT
9742#else
9743 aarch64_abi = AARCH64_ABI_LLP64;
9744#endif
3c0367d0
JW
9745}
9746
c60b3806 9747#ifdef OBJ_ELF
a06ea964
NC
9748const char *
9749elf64_aarch64_target_format (void)
9750{
12400dcc
AM
9751#ifdef TE_CLOUDABI
9752 /* FIXME: What to do for ilp32_p ? */
9753 if (target_big_endian)
9754 return "elf64-bigaarch64-cloudabi";
9755 else
9756 return "elf64-littleaarch64-cloudabi";
9757#else
a06ea964 9758 if (target_big_endian)
cec5225b 9759 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 9760 else
cec5225b 9761 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
12400dcc 9762#endif
a06ea964
NC
9763}
9764
9765void
9766aarch64elf_frob_symbol (symbolS * symp, int *puntp)
9767{
9768 elf_frob_symbol (symp, puntp);
9769}
c60b3806
JT
9770#elif defined OBJ_COFF
9771const char *
9772coff_aarch64_target_format (void)
9773{
9774 return "pe-aarch64-little";
9775}
a06ea964
NC
9776#endif
9777
9778/* MD interface: Finalization. */
9779
9780/* A good place to do this, although this was probably not intended
9781 for this kind of use. We need to dump the literal pool before
9782 references are made to a null symbol pointer. */
9783
9784void
9785aarch64_cleanup (void)
9786{
9787 literal_pool *pool;
9788
9789 for (pool = list_of_pools; pool; pool = pool->next)
9790 {
9791 /* Put it at the end of the relevant section. */
9792 subseg_set (pool->section, pool->sub_section);
9793 s_ltorg (0);
9794 }
9795}
9796
9797#ifdef OBJ_ELF
9798/* Remove any excess mapping symbols generated for alignment frags in
9799 SEC. We may have created a mapping symbol before a zero byte
9800 alignment; remove it if there's a mapping symbol after the
9801 alignment. */
9802static void
9803check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
9804 void *dummy ATTRIBUTE_UNUSED)
9805{
9806 segment_info_type *seginfo = seg_info (sec);
9807 fragS *fragp;
9808
9809 if (seginfo == NULL || seginfo->frchainP == NULL)
9810 return;
9811
9812 for (fragp = seginfo->frchainP->frch_root;
9813 fragp != NULL; fragp = fragp->fr_next)
9814 {
9815 symbolS *sym = fragp->tc_frag_data.last_map;
9816 fragS *next = fragp->fr_next;
9817
9818 /* Variable-sized frags have been converted to fixed size by
9819 this point. But if this was variable-sized to start with,
9820 there will be a fixed-size frag after it. So don't handle
9821 next == NULL. */
9822 if (sym == NULL || next == NULL)
9823 continue;
9824
9825 if (S_GET_VALUE (sym) < next->fr_address)
9826 /* Not at the end of this frag. */
9827 continue;
9828 know (S_GET_VALUE (sym) == next->fr_address);
9829
9830 do
9831 {
9832 if (next->tc_frag_data.first_map != NULL)
9833 {
9834 /* Next frag starts with a mapping symbol. Discard this
9835 one. */
9836 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
9837 break;
9838 }
9839
9840 if (next->fr_next == NULL)
9841 {
9842 /* This mapping symbol is at the end of the section. Discard
9843 it. */
9844 know (next->fr_fix == 0 && next->fr_var == 0);
9845 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
9846 break;
9847 }
9848
9849 /* As long as we have empty frags without any mapping symbols,
9850 keep looking. */
9851 /* If the next frag is non-empty and does not start with a
9852 mapping symbol, then this mapping symbol is required. */
9853 if (next->fr_address != next->fr_next->fr_address)
9854 break;
9855
9856 next = next->fr_next;
9857 }
9858 while (next != NULL);
9859 }
9860}
9861#endif
9862
9863/* Adjust the symbol table. */
9864
9865void
9866aarch64_adjust_symtab (void)
9867{
9868#ifdef OBJ_ELF
9869 /* Remove any overlapping mapping symbols generated by alignment frags. */
9870 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
9871 /* Now do generic ELF adjustments. */
9872 elf_adjust_symtab ();
9873#endif
9874}
9875
9876static void
629310ab 9877checked_hash_insert (htab_t table, const char *key, void *value)
a06ea964 9878{
fe0e921f 9879 str_hash_insert (table, key, value, 0);
a06ea964
NC
9880}
9881
fa63795f 9882static void
629310ab 9883sysreg_hash_insert (htab_t table, const char *key, void *value)
fa63795f
AC
9884{
9885 gas_assert (strlen (key) < AARCH64_MAX_SYSREG_NAME_LEN);
9886 checked_hash_insert (table, key, value);
9887}
9888
a06ea964
NC
9889static void
9890fill_instruction_hash_table (void)
9891{
6c2ede01 9892 const aarch64_opcode *opcode = aarch64_opcode_table;
a06ea964
NC
9893
9894 while (opcode->name != NULL)
9895 {
9896 templates *templ, *new_templ;
629310ab 9897 templ = str_hash_find (aarch64_ops_hsh, opcode->name);
a06ea964 9898
add39d23 9899 new_templ = XNEW (templates);
a06ea964
NC
9900 new_templ->opcode = opcode;
9901 new_templ->next = NULL;
9902
9903 if (!templ)
9904 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
9905 else
9906 {
9907 new_templ->next = templ->next;
9908 templ->next = new_templ;
9909 }
9910 ++opcode;
9911 }
9912}
9913
9914static inline void
9915convert_to_upper (char *dst, const char *src, size_t num)
9916{
9917 unsigned int i;
9918 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
9919 *dst = TOUPPER (*src);
9920 *dst = '\0';
9921}
9922
9923/* Assume STR point to a lower-case string, allocate, convert and return
9924 the corresponding upper-case string. */
9925static inline const char*
9926get_upper_str (const char *str)
9927{
9928 char *ret;
9929 size_t len = strlen (str);
325801bd 9930 ret = XNEWVEC (char, len + 1);
a06ea964
NC
9931 convert_to_upper (ret, str, len);
9932 return ret;
9933}
9934
9935/* MD interface: Initialization. */
9936
9937void
9938md_begin (void)
9939{
9940 unsigned mach;
9941 unsigned int i;
9942
f16c3d4f
AM
9943 aarch64_ops_hsh = str_htab_create ();
9944 aarch64_cond_hsh = str_htab_create ();
9945 aarch64_shift_hsh = str_htab_create ();
9946 aarch64_sys_regs_hsh = str_htab_create ();
9947 aarch64_pstatefield_hsh = str_htab_create ();
9948 aarch64_sys_regs_ic_hsh = str_htab_create ();
9949 aarch64_sys_regs_dc_hsh = str_htab_create ();
9950 aarch64_sys_regs_at_hsh = str_htab_create ();
9951 aarch64_sys_regs_tlbi_hsh = str_htab_create ();
9952 aarch64_sys_regs_sr_hsh = str_htab_create ();
9953 aarch64_reg_hsh = str_htab_create ();
9954 aarch64_barrier_opt_hsh = str_htab_create ();
9955 aarch64_nzcv_hsh = str_htab_create ();
9956 aarch64_pldop_hsh = str_htab_create ();
9957 aarch64_hint_opt_hsh = str_htab_create ();
a06ea964
NC
9958
9959 fill_instruction_hash_table ();
9960
9961 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
fa63795f 9962 sysreg_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
a06ea964
NC
9963 (void *) (aarch64_sys_regs + i));
9964
9965 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
fa63795f 9966 sysreg_hash_insert (aarch64_pstatefield_hsh,
a06ea964
NC
9967 aarch64_pstatefields[i].name,
9968 (void *) (aarch64_pstatefields + i));
9969
875880c6 9970 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
fa63795f 9971 sysreg_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 9972 aarch64_sys_regs_ic[i].name,
a06ea964
NC
9973 (void *) (aarch64_sys_regs_ic + i));
9974
875880c6 9975 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
fa63795f 9976 sysreg_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 9977 aarch64_sys_regs_dc[i].name,
a06ea964
NC
9978 (void *) (aarch64_sys_regs_dc + i));
9979
875880c6 9980 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
fa63795f 9981 sysreg_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 9982 aarch64_sys_regs_at[i].name,
a06ea964
NC
9983 (void *) (aarch64_sys_regs_at + i));
9984
875880c6 9985 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
fa63795f 9986 sysreg_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 9987 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
9988 (void *) (aarch64_sys_regs_tlbi + i));
9989
2ac435d4 9990 for (i = 0; aarch64_sys_regs_sr[i].name != NULL; i++)
fa63795f 9991 sysreg_hash_insert (aarch64_sys_regs_sr_hsh,
2ac435d4
SD
9992 aarch64_sys_regs_sr[i].name,
9993 (void *) (aarch64_sys_regs_sr + i));
9994
a06ea964
NC
9995 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
9996 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
9997 (void *) (reg_names + i));
9998
9999 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
10000 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
10001 (void *) (nzcv_names + i));
10002
10003 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
10004 {
10005 const char *name = aarch64_operand_modifiers[i].name;
10006 checked_hash_insert (aarch64_shift_hsh, name,
10007 (void *) (aarch64_operand_modifiers + i));
10008 /* Also hash the name in the upper case. */
10009 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
10010 (void *) (aarch64_operand_modifiers + i));
10011 }
10012
10013 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
10014 {
10015 unsigned int j;
10016 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
10017 the same condition code. */
10018 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
10019 {
10020 const char *name = aarch64_conds[i].names[j];
10021 if (name == NULL)
10022 break;
10023 checked_hash_insert (aarch64_cond_hsh, name,
10024 (void *) (aarch64_conds + i));
10025 /* Also hash the name in the upper case. */
10026 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
10027 (void *) (aarch64_conds + i));
10028 }
10029 }
10030
10031 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
10032 {
10033 const char *name = aarch64_barrier_options[i].name;
10034 /* Skip xx00 - the unallocated values of option. */
10035 if ((i & 0x3) == 0)
10036 continue;
10037 checked_hash_insert (aarch64_barrier_opt_hsh, name,
10038 (void *) (aarch64_barrier_options + i));
10039 /* Also hash the name in the upper case. */
10040 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
10041 (void *) (aarch64_barrier_options + i));
10042 }
10043
fd195909
PW
10044 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_dsb_nxs_options); i++)
10045 {
10046 const char *name = aarch64_barrier_dsb_nxs_options[i].name;
10047 checked_hash_insert (aarch64_barrier_opt_hsh, name,
10048 (void *) (aarch64_barrier_dsb_nxs_options + i));
10049 /* Also hash the name in the upper case. */
10050 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
10051 (void *) (aarch64_barrier_dsb_nxs_options + i));
10052 }
10053
a06ea964
NC
10054 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
10055 {
10056 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
10057 /* Skip the unallocated hint encodings. */
10058 if (name == NULL)
a06ea964
NC
10059 continue;
10060 checked_hash_insert (aarch64_pldop_hsh, name,
10061 (void *) (aarch64_prfops + i));
10062 /* Also hash the name in the upper case. */
10063 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
10064 (void *) (aarch64_prfops + i));
10065 }
10066
1e6f4800
MW
10067 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
10068 {
10069 const char* name = aarch64_hint_options[i].name;
0a821c4f 10070 const char* upper_name = get_upper_str(name);
1e6f4800
MW
10071
10072 checked_hash_insert (aarch64_hint_opt_hsh, name,
10073 (void *) (aarch64_hint_options + i));
0a821c4f
AP
10074
10075 /* Also hash the name in the upper case if not the same. */
10076 if (strcmp (name, upper_name) != 0)
10077 checked_hash_insert (aarch64_hint_opt_hsh, upper_name,
10078 (void *) (aarch64_hint_options + i));
1e6f4800
MW
10079 }
10080
a06ea964
NC
10081 /* Set the cpu variant based on the command-line options. */
10082 if (!mcpu_cpu_opt)
10083 mcpu_cpu_opt = march_cpu_opt;
10084
10085 if (!mcpu_cpu_opt)
10086 mcpu_cpu_opt = &cpu_default;
10087
10088 cpu_variant = *mcpu_cpu_opt;
10089
10090 /* Record the CPU type. */
c60b3806
JT
10091 if(ilp32_p)
10092 mach = bfd_mach_aarch64_ilp32;
10093 else if (llp64_p)
10094 mach = bfd_mach_aarch64_llp64;
10095 else
10096 mach = bfd_mach_aarch64;
a06ea964
NC
10097
10098 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
b52c4ee4
IB
10099#ifdef OBJ_ELF
10100 /* FIXME - is there a better way to do it ? */
10101 aarch64_sframe_cfa_sp_reg = 31;
10102 aarch64_sframe_cfa_fp_reg = 29; /* x29. */
10103 aarch64_sframe_cfa_ra_reg = 30;
10104#endif
a06ea964
NC
10105}
10106
10107/* Command line processing. */
10108
10109const char *md_shortopts = "m:";
10110
10111#ifdef AARCH64_BI_ENDIAN
10112#define OPTION_EB (OPTION_MD_BASE + 0)
10113#define OPTION_EL (OPTION_MD_BASE + 1)
10114#else
10115#if TARGET_BYTES_BIG_ENDIAN
10116#define OPTION_EB (OPTION_MD_BASE + 0)
10117#else
10118#define OPTION_EL (OPTION_MD_BASE + 1)
10119#endif
10120#endif
10121
10122struct option md_longopts[] = {
10123#ifdef OPTION_EB
10124 {"EB", no_argument, NULL, OPTION_EB},
10125#endif
10126#ifdef OPTION_EL
10127 {"EL", no_argument, NULL, OPTION_EL},
10128#endif
10129 {NULL, no_argument, NULL, 0}
10130};
10131
10132size_t md_longopts_size = sizeof (md_longopts);
10133
10134struct aarch64_option_table
10135{
e0471c16
TS
10136 const char *option; /* Option name to match. */
10137 const char *help; /* Help information. */
a06ea964
NC
10138 int *var; /* Variable to change. */
10139 int value; /* What to change it to. */
10140 char *deprecated; /* If non-null, print this message. */
10141};
10142
10143static struct aarch64_option_table aarch64_opts[] = {
10144 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
10145 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
10146 NULL},
10147#ifdef DEBUG_AARCH64
10148 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
10149#endif /* DEBUG_AARCH64 */
10150 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
10151 NULL},
a52e6fd3
YZ
10152 {"mno-verbose-error", N_("do not output verbose error messages"),
10153 &verbose_error_p, 0, NULL},
a06ea964
NC
10154 {NULL, NULL, NULL, 0, NULL}
10155};
10156
10157struct aarch64_cpu_option_table
10158{
e0471c16 10159 const char *name;
a06ea964
NC
10160 const aarch64_feature_set value;
10161 /* The canonical name of the CPU, or NULL to use NAME converted to upper
10162 case. */
10163 const char *canonical_name;
10164};
10165
10166/* This list should, at a minimum, contain all the cpu names
10167 recognized by GCC. */
10168static const struct aarch64_cpu_option_table aarch64_cpus[] = {
4abb672a
RS
10169 {"all", AARCH64_ALL_FEATURES, NULL},
10170 {"cortex-a34", AARCH64_CPU_FEATURES (V8A, 1, CRC), "Cortex-A34"},
10171 {"cortex-a35", AARCH64_CPU_FEATURES (V8A, 1, CRC), "Cortex-A35"},
10172 {"cortex-a53", AARCH64_CPU_FEATURES (V8A, 1, CRC), "Cortex-A53"},
10173 {"cortex-a57", AARCH64_CPU_FEATURES (V8A, 1, CRC), "Cortex-A57"},
10174 {"cortex-a72", AARCH64_CPU_FEATURES (V8A, 1, CRC), "Cortex-A72"},
10175 {"cortex-a73", AARCH64_CPU_FEATURES (V8A, 1, CRC), "Cortex-A73"},
10176 {"cortex-a55", AARCH64_CPU_FEATURES (V8_2A, 3, RCPC, F16, DOTPROD),
1e292627 10177 "Cortex-A55"},
4abb672a 10178 {"cortex-a75", AARCH64_CPU_FEATURES (V8_2A, 3, RCPC, F16, DOTPROD),
1e292627 10179 "Cortex-A75"},
4abb672a 10180 {"cortex-a76", AARCH64_CPU_FEATURES (V8_2A, 3, RCPC, F16, DOTPROD),
c2a0f929 10181 "Cortex-A76"},
4abb672a
RS
10182 {"cortex-a76ae", AARCH64_CPU_FEATURES (V8_2A, 4, F16, RCPC, DOTPROD,
10183 SSBS), "Cortex-A76AE"},
10184 {"cortex-a77", AARCH64_CPU_FEATURES (V8_2A, 4, F16, RCPC, DOTPROD,
10185 SSBS), "Cortex-A77"},
10186 {"cortex-a65", AARCH64_CPU_FEATURES (V8_2A, 4, F16, RCPC, DOTPROD,
10187 SSBS), "Cortex-A65"},
10188 {"cortex-a65ae", AARCH64_CPU_FEATURES (V8_2A, 4, F16, RCPC, DOTPROD,
10189 SSBS), "Cortex-A65AE"},
10190 {"cortex-a78", AARCH64_CPU_FEATURES (V8_2A, 5, F16, RCPC, DOTPROD,
10191 SSBS, PROFILE), "Cortex-A78"},
10192 {"cortex-a78ae", AARCH64_CPU_FEATURES (V8_2A, 5, F16, RCPC, DOTPROD,
10193 SSBS, PROFILE), "Cortex-A78AE"},
10194 {"cortex-a78c", AARCH64_CPU_FEATURES (V8_2A, 7, DOTPROD, F16, FLAGM,
10195 PAC, PROFILE, RCPC, SSBS),
10196 "Cortex-A78C"},
10197 {"cortex-a510", AARCH64_CPU_FEATURES (V9A, 4, BFLOAT16, I8MM, MEMTAG,
10198 SVE2_BITPERM), "Cortex-A510"},
10199 {"cortex-a520", AARCH64_CPU_FEATURES (V9_2A, 2, MEMTAG, SVE2_BITPERM),
10200 "Cortex-A520"},
10201 {"cortex-a710", AARCH64_CPU_FEATURES (V9A, 4, BFLOAT16, I8MM, MEMTAG,
10202 SVE2_BITPERM), "Cortex-A710"},
10203 {"cortex-a720", AARCH64_CPU_FEATURES (V9_2A, 3, MEMTAG, PROFILE,
10204 SVE2_BITPERM), "Cortex-A720"},
10205 {"ares", AARCH64_CPU_FEATURES (V8_2A, 4, RCPC, F16, DOTPROD,
10206 PROFILE), "Ares"},
10207 {"exynos-m1", AARCH64_CPU_FEATURES (V8A, 3, CRC, SHA2, AES),
10208 "Samsung Exynos M1"},
10209 {"falkor", AARCH64_CPU_FEATURES (V8A, 4, CRC, SHA2, AES, RDMA),
10210 "Qualcomm Falkor"},
10211 {"neoverse-e1", AARCH64_CPU_FEATURES (V8_2A, 4, RCPC, F16, DOTPROD,
10212 SSBS), "Neoverse E1"},
10213 {"neoverse-n1", AARCH64_CPU_FEATURES (V8_2A, 4, RCPC, F16, DOTPROD,
10214 PROFILE), "Neoverse N1"},
10215 {"neoverse-n2", AARCH64_CPU_FEATURES (V8_5A, 8, BFLOAT16, I8MM, F16,
10216 SVE, SVE2, SVE2_BITPERM, MEMTAG,
10217 RNG), "Neoverse N2"},
10218 {"neoverse-v1", AARCH64_CPU_FEATURES (V8_4A, 8, PROFILE, CVADP, SVE,
10219 SSBS, RNG, F16, BFLOAT16, I8MM),
10220 "Neoverse V1"},
10221 {"qdf24xx", AARCH64_CPU_FEATURES (V8A, 4, CRC, SHA2, AES, RDMA),
10222 "Qualcomm QDF24XX"},
10223 {"saphira", AARCH64_CPU_FEATURES (V8_4A, 3, SHA2, AES, PROFILE),
10224 "Qualcomm Saphira"},
10225 {"thunderx", AARCH64_CPU_FEATURES (V8A, 3, CRC, SHA2, AES),
10226 "Cavium ThunderX"},
10227 {"vulcan", AARCH64_CPU_FEATURES (V8_1A, 2, SHA2, AES),
10228 "Broadcom Vulcan"},
070cb956
PT
10229 /* The 'xgene-1' name is an older name for 'xgene1', which was used
10230 in earlier releases and is superseded by 'xgene1' in all
10231 tools. */
4abb672a
RS
10232 {"xgene-1", AARCH64_ARCH_FEATURES (V8A), "APM X-Gene 1"},
10233 {"xgene1", AARCH64_ARCH_FEATURES (V8A), "APM X-Gene 1"},
10234 {"xgene2", AARCH64_CPU_FEATURES (V8A, 1, CRC), "APM X-Gene 2"},
10235 {"cortex-r82", AARCH64_ARCH_FEATURES (V8R), "Cortex-R82"},
10236 {"cortex-x1", AARCH64_CPU_FEATURES (V8_2A, 5, F16, RCPC, DOTPROD,
10237 SSBS, PROFILE), "Cortex-X1"},
10238 {"cortex-x2", AARCH64_CPU_FEATURES (V9A, 4, BFLOAT16, I8MM, MEMTAG,
10239 SVE2_BITPERM), "Cortex-X2"},
528c1f2b
ML
10240 {"cortex-x3", AARCH64_CPU_FEATURES (V9A, 4, BFLOAT16, I8MM, MEMTAG,
10241 SVE2_BITPERM), "Cortex-X3"},
0515a7b6
SJ
10242 {"cortex-x4", AARCH64_CPU_FEATURES (V9_2A, 3, MEMTAG, PROFILE,
10243 SVE2_BITPERM), "Cortex-X4"},
4abb672a
RS
10244 {"generic", AARCH64_ARCH_FEATURES (V8A), NULL},
10245
10246 {NULL, AARCH64_NO_FEATURES, NULL}
a06ea964
NC
10247};
10248
10249struct aarch64_arch_option_table
10250{
e0471c16 10251 const char *name;
a06ea964
NC
10252 const aarch64_feature_set value;
10253};
10254
10255/* This list should, at a minimum, contain all the architecture names
10256 recognized by GCC. */
10257static const struct aarch64_arch_option_table aarch64_archs[] = {
4abb672a
RS
10258 {"all", AARCH64_ALL_FEATURES},
10259 {"armv8-a", AARCH64_ARCH_FEATURES (V8A)},
10260 {"armv8.1-a", AARCH64_ARCH_FEATURES (V8_1A)},
10261 {"armv8.2-a", AARCH64_ARCH_FEATURES (V8_2A)},
10262 {"armv8.3-a", AARCH64_ARCH_FEATURES (V8_3A)},
10263 {"armv8.4-a", AARCH64_ARCH_FEATURES (V8_4A)},
10264 {"armv8.5-a", AARCH64_ARCH_FEATURES (V8_5A)},
10265 {"armv8.6-a", AARCH64_ARCH_FEATURES (V8_6A)},
10266 {"armv8.7-a", AARCH64_ARCH_FEATURES (V8_7A)},
10267 {"armv8.8-a", AARCH64_ARCH_FEATURES (V8_8A)},
8cee11ca 10268 {"armv8.9-a", AARCH64_ARCH_FEATURES (V8_9A)},
4abb672a
RS
10269 {"armv8-r", AARCH64_ARCH_FEATURES (V8R)},
10270 {"armv9-a", AARCH64_ARCH_FEATURES (V9A)},
10271 {"armv9.1-a", AARCH64_ARCH_FEATURES (V9_1A)},
10272 {"armv9.2-a", AARCH64_ARCH_FEATURES (V9_2A)},
10273 {"armv9.3-a", AARCH64_ARCH_FEATURES (V9_3A)},
8cee11ca 10274 {"armv9.4-a", AARCH64_ARCH_FEATURES (V9_4A)},
4abb672a 10275 {NULL, AARCH64_NO_FEATURES}
a06ea964
NC
10276};
10277
10278/* ISA extensions. */
10279struct aarch64_option_cpu_value_table
10280{
e0471c16 10281 const char *name;
a06ea964 10282 const aarch64_feature_set value;
93d8990c 10283 const aarch64_feature_set require; /* Feature dependencies. */
a06ea964
NC
10284};
10285
10286static const struct aarch64_option_cpu_value_table aarch64_features[] = {
4abb672a
RS
10287 {"crc", AARCH64_FEATURE (CRC), AARCH64_NO_FEATURES},
10288 {"crypto", AARCH64_FEATURES (2, AES, SHA2),
10289 AARCH64_FEATURE (SIMD)},
10290 {"fp", AARCH64_FEATURE (FP), AARCH64_NO_FEATURES},
10291 {"lse", AARCH64_FEATURE (LSE), AARCH64_NO_FEATURES},
79f1989e 10292 {"lse128", AARCH64_FEATURE (LSE128), AARCH64_FEATURE (LSE)},
4abb672a
RS
10293 {"simd", AARCH64_FEATURE (SIMD), AARCH64_FEATURE (FP)},
10294 {"pan", AARCH64_FEATURE (PAN), AARCH64_NO_FEATURES},
10295 {"lor", AARCH64_FEATURE (LOR), AARCH64_NO_FEATURES},
10296 {"ras", AARCH64_FEATURE (RAS), AARCH64_NO_FEATURES},
10297 {"rdma", AARCH64_FEATURE (RDMA), AARCH64_FEATURE (SIMD)},
c17c7aaf 10298 {"rdm", AARCH64_FEATURE (RDMA), AARCH64_FEATURE (SIMD)},
4abb672a
RS
10299 {"fp16", AARCH64_FEATURE (F16), AARCH64_FEATURE (FP)},
10300 {"fp16fml", AARCH64_FEATURE (F16_FML), AARCH64_FEATURE (F16)},
10301 {"profile", AARCH64_FEATURE (PROFILE), AARCH64_NO_FEATURES},
10302 {"sve", AARCH64_FEATURE (SVE), AARCH64_FEATURE (COMPNUM)},
10303 {"tme", AARCH64_FEATURE (TME), AARCH64_NO_FEATURES},
c7c16ea5
AC
10304 {"fcma", AARCH64_FEATURE (COMPNUM),
10305 AARCH64_FEATURES (2, F16, SIMD)},
4abb672a
RS
10306 {"compnum", AARCH64_FEATURE (COMPNUM),
10307 AARCH64_FEATURES (2, F16, SIMD)},
227af30e 10308 {"jscvt", AARCH64_FEATURE (JSCVT), AARCH64_FEATURE (FP)},
4abb672a 10309 {"rcpc", AARCH64_FEATURE (RCPC), AARCH64_NO_FEATURES},
36891070 10310 {"rcpc2", AARCH64_FEATURE (RCPC2), AARCH64_FEATURE (RCPC)},
4abb672a
RS
10311 {"dotprod", AARCH64_FEATURE (DOTPROD), AARCH64_FEATURE (SIMD)},
10312 {"sha2", AARCH64_FEATURE (SHA2), AARCH64_FEATURE (FP)},
ce9fad98 10313 {"frintts", AARCH64_FEATURE (FRINTTS), AARCH64_FEATURE (SIMD)},
4abb672a
RS
10314 {"sb", AARCH64_FEATURE (SB), AARCH64_NO_FEATURES},
10315 {"predres", AARCH64_FEATURE (PREDRES), AARCH64_NO_FEATURES},
88b5a8ae 10316 {"predres2", AARCH64_FEATURE (PREDRES2), AARCH64_FEATURE (PREDRES)},
4abb672a
RS
10317 {"aes", AARCH64_FEATURE (AES), AARCH64_FEATURE (SIMD)},
10318 {"sm4", AARCH64_FEATURE (SM4), AARCH64_FEATURE (SIMD)},
10319 {"sha3", AARCH64_FEATURE (SHA3), AARCH64_FEATURE (SHA2)},
10320 {"rng", AARCH64_FEATURE (RNG), AARCH64_NO_FEATURES},
10321 {"ssbs", AARCH64_FEATURE (SSBS), AARCH64_NO_FEATURES},
10322 {"memtag", AARCH64_FEATURE (MEMTAG), AARCH64_NO_FEATURES},
10323 {"sve2", AARCH64_FEATURE (SVE2), AARCH64_FEATURE (SVE)},
10324 {"sve2-sm4", AARCH64_FEATURE (SVE2_SM4),
10325 AARCH64_FEATURES (2, SVE2, SM4)},
10326 {"sve2-aes", AARCH64_FEATURE (SVE2_AES),
10327 AARCH64_FEATURES (2, SVE2, AES)},
10328 {"sve2-sha3", AARCH64_FEATURE (SVE2_SHA3),
10329 AARCH64_FEATURES (2, SVE2, SHA3)},
10330 {"sve2-bitperm", AARCH64_FEATURE (SVE2_BITPERM),
10331 AARCH64_FEATURE (SVE2)},
10332 {"sme", AARCH64_FEATURE (SME),
10333 AARCH64_FEATURES (2, SVE2, BFLOAT16)},
10334 {"sme-f64", AARCH64_FEATURE (SME_F64F64), AARCH64_FEATURE (SME)},
10335 {"sme-f64f64", AARCH64_FEATURE (SME_F64F64), AARCH64_FEATURE (SME)},
10336 {"sme-i64", AARCH64_FEATURE (SME_I16I64), AARCH64_FEATURE (SME)},
10337 {"sme-i16i64", AARCH64_FEATURE (SME_I16I64), AARCH64_FEATURE (SME)},
10338 {"sme2", AARCH64_FEATURE (SME2), AARCH64_FEATURE (SME)},
10339 {"bf16", AARCH64_FEATURE (BFLOAT16), AARCH64_FEATURE (FP)},
10340 {"i8mm", AARCH64_FEATURE (I8MM), AARCH64_FEATURE (SIMD)},
10341 {"f32mm", AARCH64_FEATURE (F32MM), AARCH64_FEATURE (SVE)},
10342 {"f64mm", AARCH64_FEATURE (F64MM), AARCH64_FEATURE (SVE)},
10343 {"ls64", AARCH64_FEATURE (LS64), AARCH64_NO_FEATURES},
10344 {"flagm", AARCH64_FEATURE (FLAGM), AARCH64_NO_FEATURES},
5329ef9b 10345 {"flagm2", AARCH64_FEATURE (FLAGMANIP), AARCH64_FEATURE (FLAGM)},
4abb672a 10346 {"pauth", AARCH64_FEATURE (PAC), AARCH64_NO_FEATURES},
43291582 10347 {"xs", AARCH64_FEATURE (XS), AARCH64_NO_FEATURES},
59255bf7 10348 {"wfxt", AARCH64_FEATURE (WFXT), AARCH64_NO_FEATURES},
4abb672a
RS
10349 {"mops", AARCH64_FEATURE (MOPS), AARCH64_NO_FEATURES},
10350 {"hbc", AARCH64_FEATURE (HBC), AARCH64_NO_FEATURES},
10351 {"cssc", AARCH64_FEATURE (CSSC), AARCH64_NO_FEATURES},
6c0ecdba 10352 {"chk", AARCH64_FEATURE (CHK), AARCH64_NO_FEATURES},
f985c251 10353 {"gcs", AARCH64_FEATURE (GCS), AARCH64_NO_FEATURES},
9203a155 10354 {"the", AARCH64_FEATURE (THE), AARCH64_NO_FEATURES},
311276f1 10355 {"rasv2", AARCH64_FEATURE (RASv2), AARCH64_FEATURE (RAS)},
d645278c 10356 {"ite", AARCH64_FEATURE (ITE), AARCH64_NO_FEATURES},
7b08cc32
VDN
10357 {"d128", AARCH64_FEATURE (D128),
10358 AARCH64_FEATURE (LSE128)},
7e8d2d87 10359 {"b16b16", AARCH64_FEATURE (B16B16), AARCH64_FEATURE (SVE2)},
89e06ec1 10360 {"sme2p1", AARCH64_FEATURE (SME2p1), AARCH64_FEATURE (SME2)},
88601c2d 10361 {"sve2p1", AARCH64_FEATURE (SVE2p1), AARCH64_FEATURE (SVE2)},
4abb672a 10362 {NULL, AARCH64_NO_FEATURES, AARCH64_NO_FEATURES},
a06ea964
NC
10363};
10364
10365struct aarch64_long_option_table
10366{
e0471c16
TS
10367 const char *option; /* Substring to match. */
10368 const char *help; /* Help information. */
17b9d67d 10369 int (*func) (const char *subopt); /* Function to decode sub-option. */
a06ea964
NC
10370 char *deprecated; /* If non-null, print this message. */
10371};
10372
93d8990c
SN
10373/* Transitive closure of features depending on set. */
10374static aarch64_feature_set
10375aarch64_feature_disable_set (aarch64_feature_set set)
10376{
10377 const struct aarch64_option_cpu_value_table *opt;
4abb672a 10378 aarch64_feature_set prev = AARCH64_NO_FEATURES;
93d8990c 10379
4abb672a
RS
10380 while (!AARCH64_CPU_HAS_ALL_FEATURES (prev, set))
10381 {
10382 prev = set;
10383 for (opt = aarch64_features; opt->name != NULL; opt++)
10384 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
10385 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
10386 }
93d8990c
SN
10387 return set;
10388}
10389
10390/* Transitive closure of dependencies of set. */
10391static aarch64_feature_set
10392aarch64_feature_enable_set (aarch64_feature_set set)
10393{
10394 const struct aarch64_option_cpu_value_table *opt;
4abb672a 10395 aarch64_feature_set prev = AARCH64_NO_FEATURES;
93d8990c 10396
4abb672a
RS
10397 while (!AARCH64_CPU_HAS_ALL_FEATURES (prev, set))
10398 {
10399 prev = set;
10400 for (opt = aarch64_features; opt->name != NULL; opt++)
10401 if (AARCH64_CPU_HAS_ALL_FEATURES (set, opt->value))
10402 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
10403 }
93d8990c
SN
10404 return set;
10405}
10406
a06ea964 10407static int
82b8a785 10408aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
5b7c81bd 10409 bool ext_only)
a06ea964
NC
10410{
10411 /* We insist on extensions being added before being removed. We achieve
10412 this by using the ADDING_VALUE variable to indicate whether we are
10413 adding an extension (1) or removing it (0) and only allowing it to
10414 change in the order -1 -> 1 -> 0. */
10415 int adding_value = -1;
325801bd 10416 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
a06ea964
NC
10417
10418 /* Copy the feature set, so that we can modify it. */
10419 *ext_set = **opt_p;
10420 *opt_p = ext_set;
10421
10422 while (str != NULL && *str != 0)
10423 {
10424 const struct aarch64_option_cpu_value_table *opt;
82b8a785 10425 const char *ext = NULL;
a06ea964
NC
10426 int optlen;
10427
ae527cd8 10428 if (!ext_only)
a06ea964 10429 {
ae527cd8
JB
10430 if (*str != '+')
10431 {
10432 as_bad (_("invalid architectural extension"));
10433 return 0;
10434 }
a06ea964 10435
ae527cd8
JB
10436 ext = strchr (++str, '+');
10437 }
a06ea964
NC
10438
10439 if (ext != NULL)
10440 optlen = ext - str;
10441 else
10442 optlen = strlen (str);
10443
d34049e8 10444 if (optlen >= 2 && startswith (str, "no"))
a06ea964
NC
10445 {
10446 if (adding_value != 0)
10447 adding_value = 0;
10448 optlen -= 2;
10449 str += 2;
10450 }
10451 else if (optlen > 0)
10452 {
10453 if (adding_value == -1)
10454 adding_value = 1;
10455 else if (adding_value != 1)
10456 {
10457 as_bad (_("must specify extensions to add before specifying "
10458 "those to remove"));
5b7c81bd 10459 return false;
a06ea964
NC
10460 }
10461 }
10462
10463 if (optlen == 0)
10464 {
10465 as_bad (_("missing architectural extension"));
10466 return 0;
10467 }
10468
10469 gas_assert (adding_value != -1);
10470
10471 for (opt = aarch64_features; opt->name != NULL; opt++)
c17c7aaf
AC
10472 if (optlen == (int) strlen(opt->name)
10473 && strncmp (opt->name, str, optlen) == 0)
a06ea964 10474 {
93d8990c
SN
10475 aarch64_feature_set set;
10476
a06ea964
NC
10477 /* Add or remove the extension. */
10478 if (adding_value)
93d8990c
SN
10479 {
10480 set = aarch64_feature_enable_set (opt->value);
10481 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
10482 }
a06ea964 10483 else
93d8990c
SN
10484 {
10485 set = aarch64_feature_disable_set (opt->value);
4abb672a 10486 AARCH64_CLEAR_FEATURES (*ext_set, *ext_set, set);
93d8990c 10487 }
a06ea964
NC
10488 break;
10489 }
10490
10491 if (opt->name == NULL)
10492 {
10493 as_bad (_("unknown architectural extension `%s'"), str);
10494 return 0;
10495 }
10496
10497 str = ext;
10498 };
10499
10500 return 1;
10501}
10502
10503static int
17b9d67d 10504aarch64_parse_cpu (const char *str)
a06ea964
NC
10505{
10506 const struct aarch64_cpu_option_table *opt;
82b8a785 10507 const char *ext = strchr (str, '+');
a06ea964
NC
10508 size_t optlen;
10509
10510 if (ext != NULL)
10511 optlen = ext - str;
10512 else
10513 optlen = strlen (str);
10514
10515 if (optlen == 0)
10516 {
10517 as_bad (_("missing cpu name `%s'"), str);
10518 return 0;
10519 }
10520
10521 for (opt = aarch64_cpus; opt->name != NULL; opt++)
10522 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
10523 {
10524 mcpu_cpu_opt = &opt->value;
10525 if (ext != NULL)
5b7c81bd 10526 return aarch64_parse_features (ext, &mcpu_cpu_opt, false);
a06ea964
NC
10527
10528 return 1;
10529 }
10530
10531 as_bad (_("unknown cpu `%s'"), str);
10532 return 0;
10533}
10534
10535static int
17b9d67d 10536aarch64_parse_arch (const char *str)
a06ea964
NC
10537{
10538 const struct aarch64_arch_option_table *opt;
82b8a785 10539 const char *ext = strchr (str, '+');
a06ea964
NC
10540 size_t optlen;
10541
10542 if (ext != NULL)
10543 optlen = ext - str;
10544 else
10545 optlen = strlen (str);
10546
10547 if (optlen == 0)
10548 {
10549 as_bad (_("missing architecture name `%s'"), str);
10550 return 0;
10551 }
10552
10553 for (opt = aarch64_archs; opt->name != NULL; opt++)
10554 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
10555 {
10556 march_cpu_opt = &opt->value;
10557 if (ext != NULL)
5b7c81bd 10558 return aarch64_parse_features (ext, &march_cpu_opt, false);
a06ea964
NC
10559
10560 return 1;
10561 }
10562
10563 as_bad (_("unknown architecture `%s'\n"), str);
10564 return 0;
10565}
10566
69091a2c
YZ
10567/* ABIs. */
10568struct aarch64_option_abi_value_table
10569{
e0471c16 10570 const char *name;
69091a2c
YZ
10571 enum aarch64_abi_type value;
10572};
10573
10574static const struct aarch64_option_abi_value_table aarch64_abis[] = {
c60b3806 10575#ifdef OBJ_ELF
69091a2c
YZ
10576 {"ilp32", AARCH64_ABI_ILP32},
10577 {"lp64", AARCH64_ABI_LP64},
c60b3806
JT
10578#else
10579 {"llp64", AARCH64_ABI_LLP64},
10580#endif
69091a2c
YZ
10581};
10582
10583static int
17b9d67d 10584aarch64_parse_abi (const char *str)
69091a2c 10585{
5703197e 10586 unsigned int i;
69091a2c 10587
5703197e 10588 if (str[0] == '\0')
69091a2c
YZ
10589 {
10590 as_bad (_("missing abi name `%s'"), str);
10591 return 0;
10592 }
10593
5703197e
TS
10594 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
10595 if (strcmp (str, aarch64_abis[i].name) == 0)
69091a2c 10596 {
5703197e 10597 aarch64_abi = aarch64_abis[i].value;
69091a2c
YZ
10598 return 1;
10599 }
10600
10601 as_bad (_("unknown abi `%s'\n"), str);
10602 return 0;
10603}
10604
a06ea964 10605static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
10606 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
10607 aarch64_parse_abi, NULL},
a06ea964
NC
10608 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
10609 aarch64_parse_cpu, NULL},
10610 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
10611 aarch64_parse_arch, NULL},
10612 {NULL, NULL, 0, NULL}
10613};
10614
10615int
17b9d67d 10616md_parse_option (int c, const char *arg)
a06ea964
NC
10617{
10618 struct aarch64_option_table *opt;
10619 struct aarch64_long_option_table *lopt;
10620
10621 switch (c)
10622 {
10623#ifdef OPTION_EB
10624 case OPTION_EB:
10625 target_big_endian = 1;
10626 break;
10627#endif
10628
10629#ifdef OPTION_EL
10630 case OPTION_EL:
10631 target_big_endian = 0;
10632 break;
10633#endif
10634
10635 case 'a':
10636 /* Listing option. Just ignore these, we don't support additional
10637 ones. */
10638 return 0;
10639
10640 default:
10641 for (opt = aarch64_opts; opt->option != NULL; opt++)
10642 {
10643 if (c == opt->option[0]
10644 && ((arg == NULL && opt->option[1] == 0)
10645 || streq (arg, opt->option + 1)))
10646 {
10647 /* If the option is deprecated, tell the user. */
10648 if (opt->deprecated != NULL)
10649 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
10650 arg ? arg : "", _(opt->deprecated));
10651
10652 if (opt->var != NULL)
10653 *opt->var = opt->value;
10654
10655 return 1;
10656 }
10657 }
10658
10659 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
10660 {
10661 /* These options are expected to have an argument. */
10662 if (c == lopt->option[0]
10663 && arg != NULL
d34049e8 10664 && startswith (arg, lopt->option + 1))
a06ea964
NC
10665 {
10666 /* If the option is deprecated, tell the user. */
10667 if (lopt->deprecated != NULL)
10668 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
10669 _(lopt->deprecated));
10670
10671 /* Call the sup-option parser. */
10672 return lopt->func (arg + strlen (lopt->option) - 1);
10673 }
10674 }
10675
10676 return 0;
10677 }
10678
10679 return 1;
10680}
10681
10682void
10683md_show_usage (FILE * fp)
10684{
10685 struct aarch64_option_table *opt;
10686 struct aarch64_long_option_table *lopt;
10687
10688 fprintf (fp, _(" AArch64-specific assembler options:\n"));
10689
10690 for (opt = aarch64_opts; opt->option != NULL; opt++)
10691 if (opt->help != NULL)
10692 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
10693
10694 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
10695 if (lopt->help != NULL)
10696 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
10697
10698#ifdef OPTION_EB
10699 fprintf (fp, _("\
10700 -EB assemble code for a big-endian cpu\n"));
10701#endif
10702
10703#ifdef OPTION_EL
10704 fprintf (fp, _("\
10705 -EL assemble code for a little-endian cpu\n"));
10706#endif
10707}
10708
10709/* Parse a .cpu directive. */
10710
10711static void
10712s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
10713{
10714 const struct aarch64_cpu_option_table *opt;
10715 char saved_char;
10716 char *name;
10717 char *ext;
10718 size_t optlen;
10719
10720 name = input_line_pointer;
e8f20526 10721 input_line_pointer = find_end_of_line (input_line_pointer, flag_m68k_mri);
a06ea964
NC
10722 saved_char = *input_line_pointer;
10723 *input_line_pointer = 0;
10724
10725 ext = strchr (name, '+');
10726
10727 if (ext != NULL)
10728 optlen = ext - name;
10729 else
10730 optlen = strlen (name);
10731
10732 /* Skip the first "all" entry. */
10733 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
10734 if (strlen (opt->name) == optlen
10735 && strncmp (name, opt->name, optlen) == 0)
10736 {
10737 mcpu_cpu_opt = &opt->value;
10738 if (ext != NULL)
5b7c81bd 10739 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, false))
a06ea964
NC
10740 return;
10741
10742 cpu_variant = *mcpu_cpu_opt;
10743
10744 *input_line_pointer = saved_char;
10745 demand_empty_rest_of_line ();
10746 return;
10747 }
10748 as_bad (_("unknown cpu `%s'"), name);
10749 *input_line_pointer = saved_char;
10750 ignore_rest_of_line ();
10751}
10752
10753
10754/* Parse a .arch directive. */
10755
10756static void
10757s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
10758{
10759 const struct aarch64_arch_option_table *opt;
10760 char saved_char;
10761 char *name;
10762 char *ext;
10763 size_t optlen;
10764
10765 name = input_line_pointer;
e8f20526 10766 input_line_pointer = find_end_of_line (input_line_pointer, flag_m68k_mri);
a06ea964
NC
10767 saved_char = *input_line_pointer;
10768 *input_line_pointer = 0;
10769
10770 ext = strchr (name, '+');
10771
10772 if (ext != NULL)
10773 optlen = ext - name;
10774 else
10775 optlen = strlen (name);
10776
10777 /* Skip the first "all" entry. */
10778 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
10779 if (strlen (opt->name) == optlen
10780 && strncmp (name, opt->name, optlen) == 0)
10781 {
10782 mcpu_cpu_opt = &opt->value;
10783 if (ext != NULL)
5b7c81bd 10784 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, false))
a06ea964
NC
10785 return;
10786
10787 cpu_variant = *mcpu_cpu_opt;
10788
10789 *input_line_pointer = saved_char;
10790 demand_empty_rest_of_line ();
10791 return;
10792 }
10793
10794 as_bad (_("unknown architecture `%s'\n"), name);
10795 *input_line_pointer = saved_char;
10796 ignore_rest_of_line ();
10797}
10798
ae527cd8
JB
10799/* Parse a .arch_extension directive. */
10800
10801static void
10802s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
10803{
10804 char saved_char;
e8f20526 10805 char *ext = input_line_pointer;
ae527cd8 10806
e8f20526 10807 input_line_pointer = find_end_of_line (input_line_pointer, flag_m68k_mri);
ae527cd8
JB
10808 saved_char = *input_line_pointer;
10809 *input_line_pointer = 0;
10810
5b7c81bd 10811 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, true))
ae527cd8
JB
10812 return;
10813
10814 cpu_variant = *mcpu_cpu_opt;
10815
10816 *input_line_pointer = saved_char;
10817 demand_empty_rest_of_line ();
10818}
10819
a06ea964
NC
10820/* Copy symbol information. */
10821
10822void
10823aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
10824{
10825 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
10826}
0b4eac57
SN
10827
10828#ifdef OBJ_ELF
10829/* Same as elf_copy_symbol_attributes, but without copying st_other.
10830 This is needed so AArch64 specific st_other values can be independently
10831 specified for an IFUNC resolver (that is called by the dynamic linker)
10832 and the symbol it resolves (aliased to the resolver). In particular,
10833 if a function symbol has special st_other value set via directives,
10834 then attaching an IFUNC resolver to that symbol should not override
10835 the st_other setting. Requiring the directive on the IFUNC resolver
10836 symbol would be unexpected and problematic in C code, where the two
10837 symbols appear as two independent function declarations. */
10838
10839void
10840aarch64_elf_copy_symbol_attributes (symbolS *dest, symbolS *src)
10841{
10842 struct elf_obj_sy *srcelf = symbol_get_obj (src);
10843 struct elf_obj_sy *destelf = symbol_get_obj (dest);
a3a7f5e1
FS
10844 /* If size is unset, copy size from src. Because we don't track whether
10845 .size has been used, we can't differentiate .size dest, 0 from the case
10846 where dest's size is unset. */
10847 if (!destelf->size && S_GET_SIZE (dest) == 0)
0b4eac57 10848 {
a3a7f5e1
FS
10849 if (srcelf->size)
10850 {
10851 destelf->size = XNEW (expressionS);
10852 *destelf->size = *srcelf->size;
10853 }
10854 S_SET_SIZE (dest, S_GET_SIZE (src));
0b4eac57 10855 }
0b4eac57
SN
10856}
10857#endif