]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-aarch64.c
Fix BFD format matching for x86_64-w64-mingw32 -m32 LTO.
[thirdparty/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
6f2750fe 3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
79enum neon_el_type
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q
87};
88
89/* Bits for DEFINED field in neon_type_el. */
90#define NTA_HASTYPE 1
91#define NTA_HASINDEX 2
92
93struct neon_type_el
94{
95 enum neon_el_type type;
96 unsigned char defined;
97 unsigned width;
98 int64_t index;
99};
100
101#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
102
103struct reloc
104{
105 bfd_reloc_code_real_type type;
106 expressionS exp;
107 int pc_rel;
108 enum aarch64_opnd opnd;
109 uint32_t flags;
110 unsigned need_libopcodes_p : 1;
111};
112
113struct aarch64_instruction
114{
115 /* libopcodes structure for instruction intermediate representation. */
116 aarch64_inst base;
117 /* Record assembly errors found during the parsing. */
118 struct
119 {
120 enum aarch64_operand_error_kind kind;
121 const char *error;
122 } parsing_error;
123 /* The condition that appears in the assembly line. */
124 int cond;
125 /* Relocation information (including the GAS internal fixup). */
126 struct reloc reloc;
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
129};
130
131typedef struct aarch64_instruction aarch64_instruction;
132
133static aarch64_instruction inst;
134
135static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
137
138/* Diagnostics inline function utilites.
139
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
150
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
153 templates. */
154
155static inline void
156clear_error (void)
157{
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
160}
161
162static inline bfd_boolean
163error_p (void)
164{
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
166}
167
168static inline const char *
169get_error_message (void)
170{
171 return inst.parsing_error.error;
172}
173
a06ea964
NC
174static inline enum aarch64_operand_error_kind
175get_error_kind (void)
176{
177 return inst.parsing_error.kind;
178}
179
a06ea964
NC
180static inline void
181set_error (enum aarch64_operand_error_kind kind, const char *error)
182{
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
185}
186
187static inline void
188set_recoverable_error (const char *error)
189{
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
191}
192
193/* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
195static inline void
196set_default_error (void)
197{
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
199}
200
201static inline void
202set_syntax_error (const char *error)
203{
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
205}
206
207static inline void
208set_first_syntax_error (const char *error)
209{
210 if (! error_p ())
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
212}
213
214static inline void
215set_fatal_syntax_error (const char *error)
216{
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
218}
219\f
220/* Number of littlenums required to hold an extended precision number. */
221#define MAX_LITTLENUMS 6
222
223/* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
225 success. */
226#define PARSE_FAIL -1
227
228/* This is an invalid condition code that means no conditional field is
229 present. */
230#define COND_ALWAYS 0x10
231
232typedef struct
233{
234 const char *template;
235 unsigned long value;
236} asm_barrier_opt;
237
238typedef struct
239{
240 const char *template;
241 uint32_t value;
242} asm_nzcv;
243
244struct reloc_entry
245{
246 char *name;
247 bfd_reloc_code_real_type reloc;
248};
249
250/* Structure for a hash table entry for a register. */
251typedef struct
252{
253 const char *name;
254 unsigned char number;
255 unsigned char type;
256 unsigned char builtin;
257} reg_entry;
258
259/* Macros to define the register types and masks for the purpose
260 of parsing. */
261
262#undef AARCH64_REG_TYPES
263#define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
296 BASIC_REG_TYPE(MAX)
297
298#undef BASIC_REG_TYPE
299#define BASIC_REG_TYPE(T) REG_TYPE_##T,
300#undef MULTI_REG_TYPE
301#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
302
303/* Register type enumerators. */
304typedef enum
305{
306 /* A list of REG_TYPE_*. */
307 AARCH64_REG_TYPES
308} aarch64_reg_type;
309
310#undef BASIC_REG_TYPE
311#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
312#undef REG_TYPE
313#define REG_TYPE(T) (1 << REG_TYPE_##T)
314#undef MULTI_REG_TYPE
315#define MULTI_REG_TYPE(T,V) V,
316
317/* Values indexed by aarch64_reg_type to assist the type checking. */
318static const unsigned reg_type_masks[] =
319{
320 AARCH64_REG_TYPES
321};
322
323#undef BASIC_REG_TYPE
324#undef REG_TYPE
325#undef MULTI_REG_TYPE
326#undef AARCH64_REG_TYPES
327
328/* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
330 above. */
331static const char *
332get_reg_expected_msg (aarch64_reg_type reg_type)
333{
334 const char *msg;
335
336 switch (reg_type)
337 {
338 case REG_TYPE_R_32:
339 msg = N_("integer 32-bit register expected");
340 break;
341 case REG_TYPE_R_64:
342 msg = N_("integer 64-bit register expected");
343 break;
344 case REG_TYPE_R_N:
345 msg = N_("integer register expected");
346 break;
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
349 break;
350 case REG_TYPE_FP_B:
351 msg = N_("8-bit SIMD scalar register expected");
352 break;
353 case REG_TYPE_FP_H:
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
356 break;
357 case REG_TYPE_FP_S:
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
360 break;
361 case REG_TYPE_FP_D:
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
364 break;
365 case REG_TYPE_FP_Q:
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
368 break;
369 case REG_TYPE_CN:
370 msg = N_("C0 - C15 expected");
371 break;
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
374 break;
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
377 break;
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
380 break;
381 default:
382 as_fatal (_("invalid register type %d"), reg_type);
383 }
384 return msg;
385}
386
387/* Some well known registers that we refer to directly elsewhere. */
388#define REG_SP 31
389
390/* Instructions take 4 bytes in the object file. */
391#define INSN_SIZE 4
392
393/* Define some common error messages. */
394#define BAD_SP _("SP not allowed here")
395
396static struct hash_control *aarch64_ops_hsh;
397static struct hash_control *aarch64_cond_hsh;
398static struct hash_control *aarch64_shift_hsh;
399static struct hash_control *aarch64_sys_regs_hsh;
400static struct hash_control *aarch64_pstatefield_hsh;
401static struct hash_control *aarch64_sys_regs_ic_hsh;
402static struct hash_control *aarch64_sys_regs_dc_hsh;
403static struct hash_control *aarch64_sys_regs_at_hsh;
404static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405static struct hash_control *aarch64_reg_hsh;
406static struct hash_control *aarch64_barrier_opt_hsh;
407static struct hash_control *aarch64_nzcv_hsh;
408static struct hash_control *aarch64_pldop_hsh;
1e6f4800 409static struct hash_control *aarch64_hint_opt_hsh;
a06ea964
NC
410
411/* Stuff needed to resolve the label ambiguity
412 As:
413 ...
414 label: <insn>
415 may differ from:
416 ...
417 label:
418 <insn> */
419
420static symbolS *last_label_seen;
421
422/* Literal pool structure. Held on a per-section
423 and per-sub-section basis. */
424
425#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
426typedef struct literal_expression
427{
428 expressionS exp;
429 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
430 LITTLENUM_TYPE * bignum;
431} literal_expression;
432
a06ea964
NC
433typedef struct literal_pool
434{
55d9b4c1 435 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
436 unsigned int next_free_entry;
437 unsigned int id;
438 symbolS *symbol;
439 segT section;
440 subsegT sub_section;
441 int size;
442 struct literal_pool *next;
443} literal_pool;
444
445/* Pointer to a linked list of literal pools. */
446static literal_pool *list_of_pools = NULL;
447\f
448/* Pure syntax. */
449
450/* This array holds the chars that always start a comment. If the
451 pre-processor is disabled, these aren't very useful. */
452const char comment_chars[] = "";
453
454/* This array holds the chars that only start a comment at the beginning of
455 a line. If the line seems to have the form '# 123 filename'
456 .line and .file directives will appear in the pre-processed output. */
457/* Note that input_file.c hand checks for '#' at the beginning of the
458 first line of the input file. This is because the compiler outputs
459 #NO_APP at the beginning of its output. */
460/* Also note that comments like this one will always work. */
461const char line_comment_chars[] = "#";
462
463const char line_separator_chars[] = ";";
464
465/* Chars that can be used to separate mant
466 from exp in floating point numbers. */
467const char EXP_CHARS[] = "eE";
468
469/* Chars that mean this number is a floating point constant. */
470/* As in 0f12.456 */
471/* or 0d1.2345e12 */
472
473const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
474
475/* Prefix character that indicates the start of an immediate value. */
476#define is_immediate_prefix(C) ((C) == '#')
477
478/* Separator character handling. */
479
480#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
481
482static inline bfd_boolean
483skip_past_char (char **str, char c)
484{
485 if (**str == c)
486 {
487 (*str)++;
488 return TRUE;
489 }
490 else
491 return FALSE;
492}
493
494#define skip_past_comma(str) skip_past_char (str, ',')
495
496/* Arithmetic expressions (possibly involving symbols). */
497
a06ea964
NC
498static bfd_boolean in_my_get_expression_p = FALSE;
499
500/* Third argument to my_get_expression. */
501#define GE_NO_PREFIX 0
502#define GE_OPT_PREFIX 1
503
504/* Return TRUE if the string pointed by *STR is successfully parsed
505 as an valid expression; *EP will be filled with the information of
506 such an expression. Otherwise return FALSE. */
507
508static bfd_boolean
509my_get_expression (expressionS * ep, char **str, int prefix_mode,
510 int reject_absent)
511{
512 char *save_in;
513 segT seg;
514 int prefix_present_p = 0;
515
516 switch (prefix_mode)
517 {
518 case GE_NO_PREFIX:
519 break;
520 case GE_OPT_PREFIX:
521 if (is_immediate_prefix (**str))
522 {
523 (*str)++;
524 prefix_present_p = 1;
525 }
526 break;
527 default:
528 abort ();
529 }
530
531 memset (ep, 0, sizeof (expressionS));
532
533 save_in = input_line_pointer;
534 input_line_pointer = *str;
535 in_my_get_expression_p = TRUE;
536 seg = expression (ep);
537 in_my_get_expression_p = FALSE;
538
539 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
540 {
541 /* We found a bad expression in md_operand(). */
542 *str = input_line_pointer;
543 input_line_pointer = save_in;
544 if (prefix_present_p && ! error_p ())
545 set_fatal_syntax_error (_("bad expression"));
546 else
547 set_first_syntax_error (_("bad expression"));
548 return FALSE;
549 }
550
551#ifdef OBJ_AOUT
552 if (seg != absolute_section
553 && seg != text_section
554 && seg != data_section
555 && seg != bss_section && seg != undefined_section)
556 {
557 set_syntax_error (_("bad segment"));
558 *str = input_line_pointer;
559 input_line_pointer = save_in;
560 return FALSE;
561 }
562#else
563 (void) seg;
564#endif
565
a06ea964
NC
566 *str = input_line_pointer;
567 input_line_pointer = save_in;
568 return TRUE;
569}
570
571/* Turn a string in input_line_pointer into a floating point constant
572 of type TYPE, and store the appropriate bytes in *LITP. The number
573 of LITTLENUMS emitted is stored in *SIZEP. An error message is
574 returned, or NULL on OK. */
575
576char *
577md_atof (int type, char *litP, int *sizeP)
578{
579 return ieee_md_atof (type, litP, sizeP, target_big_endian);
580}
581
582/* We handle all bad expressions here, so that we can report the faulty
583 instruction in the error message. */
584void
585md_operand (expressionS * exp)
586{
587 if (in_my_get_expression_p)
588 exp->X_op = O_illegal;
589}
590
591/* Immediate values. */
592
593/* Errors may be set multiple times during parsing or bit encoding
594 (particularly in the Neon bits), but usually the earliest error which is set
595 will be the most meaningful. Avoid overwriting it with later (cascading)
596 errors by calling this function. */
597
598static void
599first_error (const char *error)
600{
601 if (! error_p ())
602 set_syntax_error (error);
603}
604
605/* Similiar to first_error, but this function accepts formatted error
606 message. */
607static void
608first_error_fmt (const char *format, ...)
609{
610 va_list args;
611 enum
612 { size = 100 };
613 /* N.B. this single buffer will not cause error messages for different
614 instructions to pollute each other; this is because at the end of
615 processing of each assembly line, error message if any will be
616 collected by as_bad. */
617 static char buffer[size];
618
619 if (! error_p ())
620 {
3e0baa28 621 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
622 va_start (args, format);
623 ret = vsnprintf (buffer, size, format, args);
624 know (ret <= size - 1 && ret >= 0);
625 va_end (args);
626 set_syntax_error (buffer);
627 }
628}
629
630/* Register parsing. */
631
632/* Generic register parser which is called by other specialized
633 register parsers.
634 CCP points to what should be the beginning of a register name.
635 If it is indeed a valid register name, advance CCP over it and
636 return the reg_entry structure; otherwise return NULL.
637 It does not issue diagnostics. */
638
639static reg_entry *
640parse_reg (char **ccp)
641{
642 char *start = *ccp;
643 char *p;
644 reg_entry *reg;
645
646#ifdef REGISTER_PREFIX
647 if (*start != REGISTER_PREFIX)
648 return NULL;
649 start++;
650#endif
651
652 p = start;
653 if (!ISALPHA (*p) || !is_name_beginner (*p))
654 return NULL;
655
656 do
657 p++;
658 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
659
660 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
661
662 if (!reg)
663 return NULL;
664
665 *ccp = p;
666 return reg;
667}
668
669/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
670 return FALSE. */
671static bfd_boolean
672aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
673{
674 if (reg->type == type)
675 return TRUE;
676
677 switch (type)
678 {
679 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
680 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
681 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
682 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
683 case REG_TYPE_VN: /* Vector register. */
684 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
685 return ((reg_type_masks[reg->type] & reg_type_masks[type])
686 == reg_type_masks[reg->type]);
687 default:
688 as_fatal ("unhandled type %d", type);
689 abort ();
690 }
691}
692
693/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
694 Return the register number otherwise. *ISREG32 is set to one if the
695 register is 32-bit wide; *ISREGZERO is set to one if the register is
696 of type Z_32 or Z_64.
697 Note that this function does not issue any diagnostics. */
698
699static int
700aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
701 int *isreg32, int *isregzero)
702{
703 char *str = *ccp;
704 const reg_entry *reg = parse_reg (&str);
705
706 if (reg == NULL)
707 return PARSE_FAIL;
708
709 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
710 return PARSE_FAIL;
711
712 switch (reg->type)
713 {
714 case REG_TYPE_SP_32:
715 case REG_TYPE_SP_64:
716 if (reject_sp)
717 return PARSE_FAIL;
718 *isreg32 = reg->type == REG_TYPE_SP_32;
719 *isregzero = 0;
720 break;
721 case REG_TYPE_R_32:
722 case REG_TYPE_R_64:
723 *isreg32 = reg->type == REG_TYPE_R_32;
724 *isregzero = 0;
725 break;
726 case REG_TYPE_Z_32:
727 case REG_TYPE_Z_64:
728 if (reject_rz)
729 return PARSE_FAIL;
730 *isreg32 = reg->type == REG_TYPE_Z_32;
731 *isregzero = 1;
732 break;
733 default:
734 return PARSE_FAIL;
735 }
736
737 *ccp = str;
738
739 return reg->number;
740}
741
742/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
743 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
744 otherwise return FALSE.
745
746 Accept only one occurrence of:
3067d3b9 747 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964
NC
748 b h s d q */
749static bfd_boolean
750parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
751{
752 char *ptr = *str;
753 unsigned width;
754 unsigned element_size;
755 enum neon_el_type type;
756
757 /* skip '.' */
758 ptr++;
759
760 if (!ISDIGIT (*ptr))
761 {
762 width = 0;
763 goto elt_size;
764 }
765 width = strtoul (ptr, &ptr, 10);
766 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
767 {
768 first_error_fmt (_("bad size %d in vector width specifier"), width);
769 return FALSE;
770 }
771
772elt_size:
773 switch (TOLOWER (*ptr))
774 {
775 case 'b':
776 type = NT_b;
777 element_size = 8;
778 break;
779 case 'h':
780 type = NT_h;
781 element_size = 16;
782 break;
783 case 's':
784 type = NT_s;
785 element_size = 32;
786 break;
787 case 'd':
788 type = NT_d;
789 element_size = 64;
790 break;
791 case 'q':
792 if (width == 1)
793 {
794 type = NT_q;
795 element_size = 128;
796 break;
797 }
798 /* fall through. */
799 default:
800 if (*ptr != '\0')
801 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
802 else
803 first_error (_("missing element size"));
804 return FALSE;
805 }
3067d3b9
MW
806 if (width != 0 && width * element_size != 64 && width * element_size != 128
807 && !(width == 2 && element_size == 16))
a06ea964
NC
808 {
809 first_error_fmt (_
810 ("invalid element size %d and vector size combination %c"),
811 width, *ptr);
812 return FALSE;
813 }
814 ptr++;
815
816 parsed_type->type = type;
817 parsed_type->width = width;
818
819 *str = ptr;
820
821 return TRUE;
822}
823
824/* Parse a single type, e.g. ".8b", leading period included.
825 Only applicable to Vn registers.
826
827 Return TRUE on success; otherwise return FALSE. */
828static bfd_boolean
829parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
830{
831 char *str = *ccp;
832
833 if (*str == '.')
834 {
835 if (! parse_neon_type_for_operand (vectype, &str))
836 {
837 first_error (_("vector type expected"));
838 return FALSE;
839 }
840 }
841 else
842 return FALSE;
843
844 *ccp = str;
845
846 return TRUE;
847}
848
849/* Parse a register of the type TYPE.
850
851 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
852 name or the parsed register is not of TYPE.
853
854 Otherwise return the register number, and optionally fill in the actual
855 type of the register in *RTYPE when multiple alternatives were given, and
856 return the register shape and element index information in *TYPEINFO.
857
858 IN_REG_LIST should be set with TRUE if the caller is parsing a register
859 list. */
860
861static int
862parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
863 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
864{
865 char *str = *ccp;
866 const reg_entry *reg = parse_reg (&str);
867 struct neon_type_el atype;
868 struct neon_type_el parsetype;
869 bfd_boolean is_typed_vecreg = FALSE;
870
871 atype.defined = 0;
872 atype.type = NT_invtype;
873 atype.width = -1;
874 atype.index = 0;
875
876 if (reg == NULL)
877 {
878 if (typeinfo)
879 *typeinfo = atype;
880 set_default_error ();
881 return PARSE_FAIL;
882 }
883
884 if (! aarch64_check_reg_type (reg, type))
885 {
886 DEBUG_TRACE ("reg type check failed");
887 set_default_error ();
888 return PARSE_FAIL;
889 }
890 type = reg->type;
891
892 if (type == REG_TYPE_VN
893 && parse_neon_operand_type (&parsetype, &str))
894 {
895 /* Register if of the form Vn.[bhsdq]. */
896 is_typed_vecreg = TRUE;
897
898 if (parsetype.width == 0)
899 /* Expect index. In the new scheme we cannot have
900 Vn.[bhsdq] represent a scalar. Therefore any
901 Vn.[bhsdq] should have an index following it.
902 Except in reglists ofcourse. */
903 atype.defined |= NTA_HASINDEX;
904 else
905 atype.defined |= NTA_HASTYPE;
906
907 atype.type = parsetype.type;
908 atype.width = parsetype.width;
909 }
910
911 if (skip_past_char (&str, '['))
912 {
913 expressionS exp;
914
915 /* Reject Sn[index] syntax. */
916 if (!is_typed_vecreg)
917 {
918 first_error (_("this type of register can't be indexed"));
919 return PARSE_FAIL;
920 }
921
922 if (in_reg_list == TRUE)
923 {
924 first_error (_("index not allowed inside register list"));
925 return PARSE_FAIL;
926 }
927
928 atype.defined |= NTA_HASINDEX;
929
930 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
931
932 if (exp.X_op != O_constant)
933 {
934 first_error (_("constant expression required"));
935 return PARSE_FAIL;
936 }
937
938 if (! skip_past_char (&str, ']'))
939 return PARSE_FAIL;
940
941 atype.index = exp.X_add_number;
942 }
943 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
944 {
945 /* Indexed vector register expected. */
946 first_error (_("indexed vector register expected"));
947 return PARSE_FAIL;
948 }
949
950 /* A vector reg Vn should be typed or indexed. */
951 if (type == REG_TYPE_VN && atype.defined == 0)
952 {
953 first_error (_("invalid use of vector register"));
954 }
955
956 if (typeinfo)
957 *typeinfo = atype;
958
959 if (rtype)
960 *rtype = type;
961
962 *ccp = str;
963
964 return reg->number;
965}
966
967/* Parse register.
968
969 Return the register number on success; return PARSE_FAIL otherwise.
970
971 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
972 the register (e.g. NEON double or quad reg when either has been requested).
973
974 If this is a NEON vector register with additional type information, fill
975 in the struct pointed to by VECTYPE (if non-NULL).
976
977 This parser does not handle register list. */
978
979static int
980aarch64_reg_parse (char **ccp, aarch64_reg_type type,
981 aarch64_reg_type *rtype, struct neon_type_el *vectype)
982{
983 struct neon_type_el atype;
984 char *str = *ccp;
985 int reg = parse_typed_reg (&str, type, rtype, &atype,
986 /*in_reg_list= */ FALSE);
987
988 if (reg == PARSE_FAIL)
989 return PARSE_FAIL;
990
991 if (vectype)
992 *vectype = atype;
993
994 *ccp = str;
995
996 return reg;
997}
998
999static inline bfd_boolean
1000eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
1001{
1002 return
1003 e1.type == e2.type
1004 && e1.defined == e2.defined
1005 && e1.width == e2.width && e1.index == e2.index;
1006}
1007
1008/* This function parses the NEON register list. On success, it returns
1009 the parsed register list information in the following encoded format:
1010
1011 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1012 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1013
1014 The information of the register shape and/or index is returned in
1015 *VECTYPE.
1016
1017 It returns PARSE_FAIL if the register list is invalid.
1018
1019 The list contains one to four registers.
1020 Each register can be one of:
1021 <Vt>.<T>[<index>]
1022 <Vt>.<T>
1023 All <T> should be identical.
1024 All <index> should be identical.
1025 There are restrictions on <Vt> numbers which are checked later
1026 (by reg_list_valid_p). */
1027
1028static int
1029parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1030{
1031 char *str = *ccp;
1032 int nb_regs;
1033 struct neon_type_el typeinfo, typeinfo_first;
1034 int val, val_range;
1035 int in_range;
1036 int ret_val;
1037 int i;
1038 bfd_boolean error = FALSE;
1039 bfd_boolean expect_index = FALSE;
1040
1041 if (*str != '{')
1042 {
1043 set_syntax_error (_("expecting {"));
1044 return PARSE_FAIL;
1045 }
1046 str++;
1047
1048 nb_regs = 0;
1049 typeinfo_first.defined = 0;
1050 typeinfo_first.type = NT_invtype;
1051 typeinfo_first.width = -1;
1052 typeinfo_first.index = 0;
1053 ret_val = 0;
1054 val = -1;
1055 val_range = -1;
1056 in_range = 0;
1057 do
1058 {
1059 if (in_range)
1060 {
1061 str++; /* skip over '-' */
1062 val_range = val;
1063 }
1064 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1065 /*in_reg_list= */ TRUE);
1066 if (val == PARSE_FAIL)
1067 {
1068 set_first_syntax_error (_("invalid vector register in list"));
1069 error = TRUE;
1070 continue;
1071 }
1072 /* reject [bhsd]n */
1073 if (typeinfo.defined == 0)
1074 {
1075 set_first_syntax_error (_("invalid scalar register in list"));
1076 error = TRUE;
1077 continue;
1078 }
1079
1080 if (typeinfo.defined & NTA_HASINDEX)
1081 expect_index = TRUE;
1082
1083 if (in_range)
1084 {
1085 if (val < val_range)
1086 {
1087 set_first_syntax_error
1088 (_("invalid range in vector register list"));
1089 error = TRUE;
1090 }
1091 val_range++;
1092 }
1093 else
1094 {
1095 val_range = val;
1096 if (nb_regs == 0)
1097 typeinfo_first = typeinfo;
1098 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1099 {
1100 set_first_syntax_error
1101 (_("type mismatch in vector register list"));
1102 error = TRUE;
1103 }
1104 }
1105 if (! error)
1106 for (i = val_range; i <= val; i++)
1107 {
1108 ret_val |= i << (5 * nb_regs);
1109 nb_regs++;
1110 }
1111 in_range = 0;
1112 }
1113 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1114
1115 skip_whitespace (str);
1116 if (*str != '}')
1117 {
1118 set_first_syntax_error (_("end of vector register list not found"));
1119 error = TRUE;
1120 }
1121 str++;
1122
1123 skip_whitespace (str);
1124
1125 if (expect_index)
1126 {
1127 if (skip_past_char (&str, '['))
1128 {
1129 expressionS exp;
1130
1131 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1132 if (exp.X_op != O_constant)
1133 {
1134 set_first_syntax_error (_("constant expression required."));
1135 error = TRUE;
1136 }
1137 if (! skip_past_char (&str, ']'))
1138 error = TRUE;
1139 else
1140 typeinfo_first.index = exp.X_add_number;
1141 }
1142 else
1143 {
1144 set_first_syntax_error (_("expected index"));
1145 error = TRUE;
1146 }
1147 }
1148
1149 if (nb_regs > 4)
1150 {
1151 set_first_syntax_error (_("too many registers in vector register list"));
1152 error = TRUE;
1153 }
1154 else if (nb_regs == 0)
1155 {
1156 set_first_syntax_error (_("empty vector register list"));
1157 error = TRUE;
1158 }
1159
1160 *ccp = str;
1161 if (! error)
1162 *vectype = typeinfo_first;
1163
1164 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1165}
1166
1167/* Directives: register aliases. */
1168
1169static reg_entry *
1170insert_reg_alias (char *str, int number, aarch64_reg_type type)
1171{
1172 reg_entry *new;
1173 const char *name;
1174
1175 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1176 {
1177 if (new->builtin)
1178 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1179 str);
1180
1181 /* Only warn about a redefinition if it's not defined as the
1182 same register. */
1183 else if (new->number != number || new->type != type)
1184 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1185
1186 return NULL;
1187 }
1188
1189 name = xstrdup (str);
1190 new = xmalloc (sizeof (reg_entry));
1191
1192 new->name = name;
1193 new->number = number;
1194 new->type = type;
1195 new->builtin = FALSE;
1196
1197 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1198 abort ();
1199
1200 return new;
1201}
1202
1203/* Look for the .req directive. This is of the form:
1204
1205 new_register_name .req existing_register_name
1206
1207 If we find one, or if it looks sufficiently like one that we want to
1208 handle any error here, return TRUE. Otherwise return FALSE. */
1209
1210static bfd_boolean
1211create_register_alias (char *newname, char *p)
1212{
1213 const reg_entry *old;
1214 char *oldname, *nbuf;
1215 size_t nlen;
1216
1217 /* The input scrubber ensures that whitespace after the mnemonic is
1218 collapsed to single spaces. */
1219 oldname = p;
1220 if (strncmp (oldname, " .req ", 6) != 0)
1221 return FALSE;
1222
1223 oldname += 6;
1224 if (*oldname == '\0')
1225 return FALSE;
1226
1227 old = hash_find (aarch64_reg_hsh, oldname);
1228 if (!old)
1229 {
1230 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1231 return TRUE;
1232 }
1233
1234 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1235 the desired alias name, and p points to its end. If not, then
1236 the desired alias name is in the global original_case_string. */
1237#ifdef TC_CASE_SENSITIVE
1238 nlen = p - newname;
1239#else
1240 newname = original_case_string;
1241 nlen = strlen (newname);
1242#endif
1243
1244 nbuf = alloca (nlen + 1);
1245 memcpy (nbuf, newname, nlen);
1246 nbuf[nlen] = '\0';
1247
1248 /* Create aliases under the new name as stated; an all-lowercase
1249 version of the new name; and an all-uppercase version of the new
1250 name. */
1251 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1252 {
1253 for (p = nbuf; *p; p++)
1254 *p = TOUPPER (*p);
1255
1256 if (strncmp (nbuf, newname, nlen))
1257 {
1258 /* If this attempt to create an additional alias fails, do not bother
1259 trying to create the all-lower case alias. We will fail and issue
1260 a second, duplicate error message. This situation arises when the
1261 programmer does something like:
1262 foo .req r0
1263 Foo .req r1
1264 The second .req creates the "Foo" alias but then fails to create
1265 the artificial FOO alias because it has already been created by the
1266 first .req. */
1267 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1268 return TRUE;
1269 }
1270
1271 for (p = nbuf; *p; p++)
1272 *p = TOLOWER (*p);
1273
1274 if (strncmp (nbuf, newname, nlen))
1275 insert_reg_alias (nbuf, old->number, old->type);
1276 }
1277
1278 return TRUE;
1279}
1280
1281/* Should never be called, as .req goes between the alias and the
1282 register name, not at the beginning of the line. */
1283static void
1284s_req (int a ATTRIBUTE_UNUSED)
1285{
1286 as_bad (_("invalid syntax for .req directive"));
1287}
1288
1289/* The .unreq directive deletes an alias which was previously defined
1290 by .req. For example:
1291
1292 my_alias .req r11
1293 .unreq my_alias */
1294
1295static void
1296s_unreq (int a ATTRIBUTE_UNUSED)
1297{
1298 char *name;
1299 char saved_char;
1300
1301 name = input_line_pointer;
1302
1303 while (*input_line_pointer != 0
1304 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1305 ++input_line_pointer;
1306
1307 saved_char = *input_line_pointer;
1308 *input_line_pointer = 0;
1309
1310 if (!*name)
1311 as_bad (_("invalid syntax for .unreq directive"));
1312 else
1313 {
1314 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1315
1316 if (!reg)
1317 as_bad (_("unknown register alias '%s'"), name);
1318 else if (reg->builtin)
1319 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1320 name);
1321 else
1322 {
1323 char *p;
1324 char *nbuf;
1325
1326 hash_delete (aarch64_reg_hsh, name, FALSE);
1327 free ((char *) reg->name);
1328 free (reg);
1329
1330 /* Also locate the all upper case and all lower case versions.
1331 Do not complain if we cannot find one or the other as it
1332 was probably deleted above. */
1333
1334 nbuf = strdup (name);
1335 for (p = nbuf; *p; p++)
1336 *p = TOUPPER (*p);
1337 reg = hash_find (aarch64_reg_hsh, nbuf);
1338 if (reg)
1339 {
1340 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1341 free ((char *) reg->name);
1342 free (reg);
1343 }
1344
1345 for (p = nbuf; *p; p++)
1346 *p = TOLOWER (*p);
1347 reg = hash_find (aarch64_reg_hsh, nbuf);
1348 if (reg)
1349 {
1350 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1351 free ((char *) reg->name);
1352 free (reg);
1353 }
1354
1355 free (nbuf);
1356 }
1357 }
1358
1359 *input_line_pointer = saved_char;
1360 demand_empty_rest_of_line ();
1361}
1362
1363/* Directives: Instruction set selection. */
1364
1365#ifdef OBJ_ELF
1366/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1367 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1368 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1369 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1370
1371/* Create a new mapping symbol for the transition to STATE. */
1372
1373static void
1374make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1375{
1376 symbolS *symbolP;
1377 const char *symname;
1378 int type;
1379
1380 switch (state)
1381 {
1382 case MAP_DATA:
1383 symname = "$d";
1384 type = BSF_NO_FLAGS;
1385 break;
1386 case MAP_INSN:
1387 symname = "$x";
1388 type = BSF_NO_FLAGS;
1389 break;
1390 default:
1391 abort ();
1392 }
1393
1394 symbolP = symbol_new (symname, now_seg, value, frag);
1395 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1396
1397 /* Save the mapping symbols for future reference. Also check that
1398 we do not place two mapping symbols at the same offset within a
1399 frag. We'll handle overlap between frags in
1400 check_mapping_symbols.
1401
1402 If .fill or other data filling directive generates zero sized data,
1403 the mapping symbol for the following code will have the same value
1404 as the one generated for the data filling directive. In this case,
1405 we replace the old symbol with the new one at the same address. */
1406 if (value == 0)
1407 {
1408 if (frag->tc_frag_data.first_map != NULL)
1409 {
1410 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1411 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1412 &symbol_lastP);
1413 }
1414 frag->tc_frag_data.first_map = symbolP;
1415 }
1416 if (frag->tc_frag_data.last_map != NULL)
1417 {
1418 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1419 S_GET_VALUE (symbolP));
1420 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1421 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1422 &symbol_lastP);
1423 }
1424 frag->tc_frag_data.last_map = symbolP;
1425}
1426
1427/* We must sometimes convert a region marked as code to data during
1428 code alignment, if an odd number of bytes have to be padded. The
1429 code mapping symbol is pushed to an aligned address. */
1430
1431static void
1432insert_data_mapping_symbol (enum mstate state,
1433 valueT value, fragS * frag, offsetT bytes)
1434{
1435 /* If there was already a mapping symbol, remove it. */
1436 if (frag->tc_frag_data.last_map != NULL
1437 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1438 frag->fr_address + value)
1439 {
1440 symbolS *symp = frag->tc_frag_data.last_map;
1441
1442 if (value == 0)
1443 {
1444 know (frag->tc_frag_data.first_map == symp);
1445 frag->tc_frag_data.first_map = NULL;
1446 }
1447 frag->tc_frag_data.last_map = NULL;
1448 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1449 }
1450
1451 make_mapping_symbol (MAP_DATA, value, frag);
1452 make_mapping_symbol (state, value + bytes, frag);
1453}
1454
1455static void mapping_state_2 (enum mstate state, int max_chars);
1456
1457/* Set the mapping state to STATE. Only call this when about to
1458 emit some STATE bytes to the file. */
1459
1460void
1461mapping_state (enum mstate state)
1462{
1463 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1464
a578ef7e
JW
1465 if (state == MAP_INSN)
1466 /* AArch64 instructions require 4-byte alignment. When emitting
1467 instructions into any section, record the appropriate section
1468 alignment. */
1469 record_alignment (now_seg, 2);
1470
448eb63d
RL
1471 if (mapstate == state)
1472 /* The mapping symbol has already been emitted.
1473 There is nothing else to do. */
1474 return;
1475
c1baaddf 1476#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1477 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1478 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1479 evaluated later in the next else. */
a06ea964 1480 return;
c1baaddf
RL
1481 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1482 {
1483 /* Only add the symbol if the offset is > 0:
1484 if we're at the first frag, check it's size > 0;
1485 if we're not at the first frag, then for sure
1486 the offset is > 0. */
1487 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1488 const int add_symbol = (frag_now != frag_first)
1489 || (frag_now_fix () > 0);
1490
1491 if (add_symbol)
1492 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1493 }
1494#undef TRANSITION
a06ea964
NC
1495
1496 mapping_state_2 (state, 0);
a06ea964
NC
1497}
1498
1499/* Same as mapping_state, but MAX_CHARS bytes have already been
1500 allocated. Put the mapping symbol that far back. */
1501
1502static void
1503mapping_state_2 (enum mstate state, int max_chars)
1504{
1505 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1506
1507 if (!SEG_NORMAL (now_seg))
1508 return;
1509
1510 if (mapstate == state)
1511 /* The mapping symbol has already been emitted.
1512 There is nothing else to do. */
1513 return;
1514
1515 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1516 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1517}
1518#else
1519#define mapping_state(x) /* nothing */
1520#define mapping_state_2(x, y) /* nothing */
1521#endif
1522
1523/* Directives: sectioning and alignment. */
1524
1525static void
1526s_bss (int ignore ATTRIBUTE_UNUSED)
1527{
1528 /* We don't support putting frags in the BSS segment, we fake it by
1529 marking in_bss, then looking at s_skip for clues. */
1530 subseg_set (bss_section, 0);
1531 demand_empty_rest_of_line ();
1532 mapping_state (MAP_DATA);
1533}
1534
1535static void
1536s_even (int ignore ATTRIBUTE_UNUSED)
1537{
1538 /* Never make frag if expect extra pass. */
1539 if (!need_pass_2)
1540 frag_align (1, 0, 0);
1541
1542 record_alignment (now_seg, 1);
1543
1544 demand_empty_rest_of_line ();
1545}
1546
1547/* Directives: Literal pools. */
1548
1549static literal_pool *
1550find_literal_pool (int size)
1551{
1552 literal_pool *pool;
1553
1554 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1555 {
1556 if (pool->section == now_seg
1557 && pool->sub_section == now_subseg && pool->size == size)
1558 break;
1559 }
1560
1561 return pool;
1562}
1563
1564static literal_pool *
1565find_or_make_literal_pool (int size)
1566{
1567 /* Next literal pool ID number. */
1568 static unsigned int latest_pool_num = 1;
1569 literal_pool *pool;
1570
1571 pool = find_literal_pool (size);
1572
1573 if (pool == NULL)
1574 {
1575 /* Create a new pool. */
1576 pool = xmalloc (sizeof (*pool));
1577 if (!pool)
1578 return NULL;
1579
1580 /* Currently we always put the literal pool in the current text
1581 section. If we were generating "small" model code where we
1582 knew that all code and initialised data was within 1MB then
1583 we could output literals to mergeable, read-only data
1584 sections. */
1585
1586 pool->next_free_entry = 0;
1587 pool->section = now_seg;
1588 pool->sub_section = now_subseg;
1589 pool->size = size;
1590 pool->next = list_of_pools;
1591 pool->symbol = NULL;
1592
1593 /* Add it to the list. */
1594 list_of_pools = pool;
1595 }
1596
1597 /* New pools, and emptied pools, will have a NULL symbol. */
1598 if (pool->symbol == NULL)
1599 {
1600 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1601 (valueT) 0, &zero_address_frag);
1602 pool->id = latest_pool_num++;
1603 }
1604
1605 /* Done. */
1606 return pool;
1607}
1608
1609/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1610 Return TRUE on success, otherwise return FALSE. */
1611static bfd_boolean
1612add_to_lit_pool (expressionS *exp, int size)
1613{
1614 literal_pool *pool;
1615 unsigned int entry;
1616
1617 pool = find_or_make_literal_pool (size);
1618
1619 /* Check if this literal value is already in the pool. */
1620 for (entry = 0; entry < pool->next_free_entry; entry++)
1621 {
55d9b4c1
NC
1622 expressionS * litexp = & pool->literals[entry].exp;
1623
1624 if ((litexp->X_op == exp->X_op)
a06ea964 1625 && (exp->X_op == O_constant)
55d9b4c1
NC
1626 && (litexp->X_add_number == exp->X_add_number)
1627 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1628 break;
1629
55d9b4c1 1630 if ((litexp->X_op == exp->X_op)
a06ea964 1631 && (exp->X_op == O_symbol)
55d9b4c1
NC
1632 && (litexp->X_add_number == exp->X_add_number)
1633 && (litexp->X_add_symbol == exp->X_add_symbol)
1634 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1635 break;
1636 }
1637
1638 /* Do we need to create a new entry? */
1639 if (entry == pool->next_free_entry)
1640 {
1641 if (entry >= MAX_LITERAL_POOL_SIZE)
1642 {
1643 set_syntax_error (_("literal pool overflow"));
1644 return FALSE;
1645 }
1646
55d9b4c1 1647 pool->literals[entry].exp = *exp;
a06ea964 1648 pool->next_free_entry += 1;
55d9b4c1
NC
1649 if (exp->X_op == O_big)
1650 {
1651 /* PR 16688: Bignums are held in a single global array. We must
1652 copy and preserve that value now, before it is overwritten. */
1653 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1654 memcpy (pool->literals[entry].bignum, generic_bignum,
1655 CHARS_PER_LITTLENUM * exp->X_add_number);
1656 }
1657 else
1658 pool->literals[entry].bignum = NULL;
a06ea964
NC
1659 }
1660
1661 exp->X_op = O_symbol;
1662 exp->X_add_number = ((int) entry) * size;
1663 exp->X_add_symbol = pool->symbol;
1664
1665 return TRUE;
1666}
1667
1668/* Can't use symbol_new here, so have to create a symbol and then at
1669 a later date assign it a value. Thats what these functions do. */
1670
1671static void
1672symbol_locate (symbolS * symbolP,
1673 const char *name,/* It is copied, the caller can modify. */
1674 segT segment, /* Segment identifier (SEG_<something>). */
1675 valueT valu, /* Symbol value. */
1676 fragS * frag) /* Associated fragment. */
1677{
e57e6ddc 1678 size_t name_length;
a06ea964
NC
1679 char *preserved_copy_of_name;
1680
1681 name_length = strlen (name) + 1; /* +1 for \0. */
1682 obstack_grow (&notes, name, name_length);
1683 preserved_copy_of_name = obstack_finish (&notes);
1684
1685#ifdef tc_canonicalize_symbol_name
1686 preserved_copy_of_name =
1687 tc_canonicalize_symbol_name (preserved_copy_of_name);
1688#endif
1689
1690 S_SET_NAME (symbolP, preserved_copy_of_name);
1691
1692 S_SET_SEGMENT (symbolP, segment);
1693 S_SET_VALUE (symbolP, valu);
1694 symbol_clear_list_pointers (symbolP);
1695
1696 symbol_set_frag (symbolP, frag);
1697
1698 /* Link to end of symbol chain. */
1699 {
1700 extern int symbol_table_frozen;
1701
1702 if (symbol_table_frozen)
1703 abort ();
1704 }
1705
1706 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1707
1708 obj_symbol_new_hook (symbolP);
1709
1710#ifdef tc_symbol_new_hook
1711 tc_symbol_new_hook (symbolP);
1712#endif
1713
1714#ifdef DEBUG_SYMS
1715 verify_symbol_chain (symbol_rootP, symbol_lastP);
1716#endif /* DEBUG_SYMS */
1717}
1718
1719
1720static void
1721s_ltorg (int ignored ATTRIBUTE_UNUSED)
1722{
1723 unsigned int entry;
1724 literal_pool *pool;
1725 char sym_name[20];
1726 int align;
1727
67a32447 1728 for (align = 2; align <= 4; align++)
a06ea964
NC
1729 {
1730 int size = 1 << align;
1731
1732 pool = find_literal_pool (size);
1733 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1734 continue;
1735
1736 mapping_state (MAP_DATA);
1737
1738 /* Align pool as you have word accesses.
1739 Only make a frag if we have to. */
1740 if (!need_pass_2)
1741 frag_align (align, 0, 0);
1742
1743 record_alignment (now_seg, align);
1744
1745 sprintf (sym_name, "$$lit_\002%x", pool->id);
1746
1747 symbol_locate (pool->symbol, sym_name, now_seg,
1748 (valueT) frag_now_fix (), frag_now);
1749 symbol_table_insert (pool->symbol);
1750
1751 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1752 {
1753 expressionS * exp = & pool->literals[entry].exp;
1754
1755 if (exp->X_op == O_big)
1756 {
1757 /* PR 16688: Restore the global bignum value. */
1758 gas_assert (pool->literals[entry].bignum != NULL);
1759 memcpy (generic_bignum, pool->literals[entry].bignum,
1760 CHARS_PER_LITTLENUM * exp->X_add_number);
1761 }
1762
1763 /* First output the expression in the instruction to the pool. */
1764 emit_expr (exp, size); /* .word|.xword */
1765
1766 if (exp->X_op == O_big)
1767 {
1768 free (pool->literals[entry].bignum);
1769 pool->literals[entry].bignum = NULL;
1770 }
1771 }
a06ea964
NC
1772
1773 /* Mark the pool as empty. */
1774 pool->next_free_entry = 0;
1775 pool->symbol = NULL;
1776 }
1777}
1778
1779#ifdef OBJ_ELF
1780/* Forward declarations for functions below, in the MD interface
1781 section. */
1782static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1783static struct reloc_table_entry * find_reloc_table_entry (char **);
1784
1785/* Directives: Data. */
1786/* N.B. the support for relocation suffix in this directive needs to be
1787 implemented properly. */
1788
1789static void
1790s_aarch64_elf_cons (int nbytes)
1791{
1792 expressionS exp;
1793
1794#ifdef md_flush_pending_output
1795 md_flush_pending_output ();
1796#endif
1797
1798 if (is_it_end_of_statement ())
1799 {
1800 demand_empty_rest_of_line ();
1801 return;
1802 }
1803
1804#ifdef md_cons_align
1805 md_cons_align (nbytes);
1806#endif
1807
1808 mapping_state (MAP_DATA);
1809 do
1810 {
1811 struct reloc_table_entry *reloc;
1812
1813 expression (&exp);
1814
1815 if (exp.X_op != O_symbol)
1816 emit_expr (&exp, (unsigned int) nbytes);
1817 else
1818 {
1819 skip_past_char (&input_line_pointer, '#');
1820 if (skip_past_char (&input_line_pointer, ':'))
1821 {
1822 reloc = find_reloc_table_entry (&input_line_pointer);
1823 if (reloc == NULL)
1824 as_bad (_("unrecognized relocation suffix"));
1825 else
1826 as_bad (_("unimplemented relocation suffix"));
1827 ignore_rest_of_line ();
1828 return;
1829 }
1830 else
1831 emit_expr (&exp, (unsigned int) nbytes);
1832 }
1833 }
1834 while (*input_line_pointer++ == ',');
1835
1836 /* Put terminator back into stream. */
1837 input_line_pointer--;
1838 demand_empty_rest_of_line ();
1839}
1840
1841#endif /* OBJ_ELF */
1842
1843/* Output a 32-bit word, but mark as an instruction. */
1844
1845static void
1846s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1847{
1848 expressionS exp;
1849
1850#ifdef md_flush_pending_output
1851 md_flush_pending_output ();
1852#endif
1853
1854 if (is_it_end_of_statement ())
1855 {
1856 demand_empty_rest_of_line ();
1857 return;
1858 }
1859
a97902de 1860 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1861 MAP_DATA symbol pending. So we only align the address during
1862 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1863 For other sections, this is not guaranteed. */
c1baaddf 1864 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1865 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1866 frag_align_code (2, 0);
c1baaddf 1867
a06ea964
NC
1868#ifdef OBJ_ELF
1869 mapping_state (MAP_INSN);
1870#endif
1871
1872 do
1873 {
1874 expression (&exp);
1875 if (exp.X_op != O_constant)
1876 {
1877 as_bad (_("constant expression required"));
1878 ignore_rest_of_line ();
1879 return;
1880 }
1881
1882 if (target_big_endian)
1883 {
1884 unsigned int val = exp.X_add_number;
1885 exp.X_add_number = SWAP_32 (val);
1886 }
1887 emit_expr (&exp, 4);
1888 }
1889 while (*input_line_pointer++ == ',');
1890
1891 /* Put terminator back into stream. */
1892 input_line_pointer--;
1893 demand_empty_rest_of_line ();
1894}
1895
1896#ifdef OBJ_ELF
43a357f9
RL
1897/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1898
1899static void
1900s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1901{
1902 expressionS exp;
1903
1904 expression (&exp);
1905 frag_grow (4);
1906 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1907 BFD_RELOC_AARCH64_TLSDESC_ADD);
1908
1909 demand_empty_rest_of_line ();
1910}
1911
a06ea964
NC
1912/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1913
1914static void
1915s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1916{
1917 expressionS exp;
1918
1919 /* Since we're just labelling the code, there's no need to define a
1920 mapping symbol. */
1921 expression (&exp);
1922 /* Make sure there is enough room in this frag for the following
1923 blr. This trick only works if the blr follows immediately after
1924 the .tlsdesc directive. */
1925 frag_grow (4);
1926 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1927 BFD_RELOC_AARCH64_TLSDESC_CALL);
1928
1929 demand_empty_rest_of_line ();
1930}
43a357f9
RL
1931
1932/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
1933
1934static void
1935s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
1936{
1937 expressionS exp;
1938
1939 expression (&exp);
1940 frag_grow (4);
1941 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1942 BFD_RELOC_AARCH64_TLSDESC_LDR);
1943
1944 demand_empty_rest_of_line ();
1945}
a06ea964
NC
1946#endif /* OBJ_ELF */
1947
1948static void s_aarch64_arch (int);
1949static void s_aarch64_cpu (int);
ae527cd8 1950static void s_aarch64_arch_extension (int);
a06ea964
NC
1951
1952/* This table describes all the machine specific pseudo-ops the assembler
1953 has to support. The fields are:
1954 pseudo-op name without dot
1955 function to call to execute this pseudo-op
1956 Integer arg to pass to the function. */
1957
1958const pseudo_typeS md_pseudo_table[] = {
1959 /* Never called because '.req' does not start a line. */
1960 {"req", s_req, 0},
1961 {"unreq", s_unreq, 0},
1962 {"bss", s_bss, 0},
1963 {"even", s_even, 0},
1964 {"ltorg", s_ltorg, 0},
1965 {"pool", s_ltorg, 0},
1966 {"cpu", s_aarch64_cpu, 0},
1967 {"arch", s_aarch64_arch, 0},
ae527cd8 1968 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
1969 {"inst", s_aarch64_inst, 0},
1970#ifdef OBJ_ELF
43a357f9 1971 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 1972 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 1973 {"tlsdescldr", s_tlsdescldr, 0},
a06ea964
NC
1974 {"word", s_aarch64_elf_cons, 4},
1975 {"long", s_aarch64_elf_cons, 4},
1976 {"xword", s_aarch64_elf_cons, 8},
1977 {"dword", s_aarch64_elf_cons, 8},
1978#endif
1979 {0, 0, 0}
1980};
1981\f
1982
1983/* Check whether STR points to a register name followed by a comma or the
1984 end of line; REG_TYPE indicates which register types are checked
1985 against. Return TRUE if STR is such a register name; otherwise return
1986 FALSE. The function does not intend to produce any diagnostics, but since
1987 the register parser aarch64_reg_parse, which is called by this function,
1988 does produce diagnostics, we call clear_error to clear any diagnostics
1989 that may be generated by aarch64_reg_parse.
1990 Also, the function returns FALSE directly if there is any user error
1991 present at the function entry. This prevents the existing diagnostics
1992 state from being spoiled.
1993 The function currently serves parse_constant_immediate and
1994 parse_big_immediate only. */
1995static bfd_boolean
1996reg_name_p (char *str, aarch64_reg_type reg_type)
1997{
1998 int reg;
1999
2000 /* Prevent the diagnostics state from being spoiled. */
2001 if (error_p ())
2002 return FALSE;
2003
2004 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2005
2006 /* Clear the parsing error that may be set by the reg parser. */
2007 clear_error ();
2008
2009 if (reg == PARSE_FAIL)
2010 return FALSE;
2011
2012 skip_whitespace (str);
2013 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2014 return TRUE;
2015
2016 return FALSE;
2017}
2018
2019/* Parser functions used exclusively in instruction operands. */
2020
2021/* Parse an immediate expression which may not be constant.
2022
2023 To prevent the expression parser from pushing a register name
2024 into the symbol table as an undefined symbol, firstly a check is
2025 done to find out whether STR is a valid register name followed
2026 by a comma or the end of line. Return FALSE if STR is such a
2027 string. */
2028
2029static bfd_boolean
2030parse_immediate_expression (char **str, expressionS *exp)
2031{
2032 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
2033 {
2034 set_recoverable_error (_("immediate operand required"));
2035 return FALSE;
2036 }
2037
2038 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2039
2040 if (exp->X_op == O_absent)
2041 {
2042 set_fatal_syntax_error (_("missing immediate expression"));
2043 return FALSE;
2044 }
2045
2046 return TRUE;
2047}
2048
2049/* Constant immediate-value read function for use in insn parsing.
2050 STR points to the beginning of the immediate (with the optional
2051 leading #); *VAL receives the value.
2052
2053 Return TRUE on success; otherwise return FALSE. */
2054
2055static bfd_boolean
2056parse_constant_immediate (char **str, int64_t * val)
2057{
2058 expressionS exp;
2059
2060 if (! parse_immediate_expression (str, &exp))
2061 return FALSE;
2062
2063 if (exp.X_op != O_constant)
2064 {
2065 set_syntax_error (_("constant expression required"));
2066 return FALSE;
2067 }
2068
2069 *val = exp.X_add_number;
2070 return TRUE;
2071}
2072
2073static uint32_t
2074encode_imm_float_bits (uint32_t imm)
2075{
2076 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2077 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2078}
2079
62b0d0d5
YZ
2080/* Return TRUE if the single-precision floating-point value encoded in IMM
2081 can be expressed in the AArch64 8-bit signed floating-point format with
2082 3-bit exponent and normalized 4 bits of precision; in other words, the
2083 floating-point value must be expressable as
2084 (+/-) n / 16 * power (2, r)
2085 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2086
a06ea964
NC
2087static bfd_boolean
2088aarch64_imm_float_p (uint32_t imm)
2089{
62b0d0d5
YZ
2090 /* If a single-precision floating-point value has the following bit
2091 pattern, it can be expressed in the AArch64 8-bit floating-point
2092 format:
2093
2094 3 32222222 2221111111111
a06ea964 2095 1 09876543 21098765432109876543210
62b0d0d5
YZ
2096 n Eeeeeexx xxxx0000000000000000000
2097
2098 where n, e and each x are either 0 or 1 independently, with
2099 E == ~ e. */
a06ea964 2100
62b0d0d5
YZ
2101 uint32_t pattern;
2102
2103 /* Prepare the pattern for 'Eeeeee'. */
2104 if (((imm >> 30) & 0x1) == 0)
2105 pattern = 0x3e000000;
a06ea964 2106 else
62b0d0d5
YZ
2107 pattern = 0x40000000;
2108
2109 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2110 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2111}
2112
62b0d0d5
YZ
2113/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2114
2115 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2116 8-bit signed floating-point format with 3-bit exponent and normalized 4
2117 bits of precision (i.e. can be used in an FMOV instruction); return the
2118 equivalent single-precision encoding in *FPWORD.
2119
2120 Otherwise return FALSE. */
2121
a06ea964 2122static bfd_boolean
62b0d0d5
YZ
2123aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2124{
2125 /* If a double-precision floating-point value has the following bit
2126 pattern, it can be expressed in the AArch64 8-bit floating-point
2127 format:
2128
2129 6 66655555555 554444444...21111111111
2130 3 21098765432 109876543...098765432109876543210
2131 n Eeeeeeeeexx xxxx00000...000000000000000000000
2132
2133 where n, e and each x are either 0 or 1 independently, with
2134 E == ~ e. */
2135
2136 uint32_t pattern;
2137 uint32_t high32 = imm >> 32;
2138
2139 /* Lower 32 bits need to be 0s. */
2140 if ((imm & 0xffffffff) != 0)
2141 return FALSE;
2142
2143 /* Prepare the pattern for 'Eeeeeeeee'. */
2144 if (((high32 >> 30) & 0x1) == 0)
2145 pattern = 0x3fc00000;
2146 else
2147 pattern = 0x40000000;
2148
2149 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2150 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2151 {
2152 /* Convert to the single-precision encoding.
2153 i.e. convert
2154 n Eeeeeeeeexx xxxx00000...000000000000000000000
2155 to
2156 n Eeeeeexx xxxx0000000000000000000. */
2157 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2158 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2159 return TRUE;
2160 }
2161 else
2162 return FALSE;
2163}
2164
2165/* Parse a floating-point immediate. Return TRUE on success and return the
2166 value in *IMMED in the format of IEEE754 single-precision encoding.
2167 *CCP points to the start of the string; DP_P is TRUE when the immediate
2168 is expected to be in double-precision (N.B. this only matters when
2169 hexadecimal representation is involved).
2170
2171 N.B. 0.0 is accepted by this function. */
2172
2173static bfd_boolean
2174parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2175{
2176 char *str = *ccp;
2177 char *fpnum;
2178 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2179 int found_fpchar = 0;
62b0d0d5
YZ
2180 int64_t val = 0;
2181 unsigned fpword = 0;
2182 bfd_boolean hex_p = FALSE;
a06ea964
NC
2183
2184 skip_past_char (&str, '#');
2185
a06ea964
NC
2186 fpnum = str;
2187 skip_whitespace (fpnum);
2188
2189 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2190 {
2191 /* Support the hexadecimal representation of the IEEE754 encoding.
2192 Double-precision is expected when DP_P is TRUE, otherwise the
2193 representation should be in single-precision. */
2194 if (! parse_constant_immediate (&str, &val))
2195 goto invalid_fp;
2196
2197 if (dp_p)
2198 {
2199 if (! aarch64_double_precision_fmovable (val, &fpword))
2200 goto invalid_fp;
2201 }
2202 else if ((uint64_t) val > 0xffffffff)
2203 goto invalid_fp;
2204 else
2205 fpword = val;
2206
2207 hex_p = TRUE;
2208 }
a06ea964
NC
2209 else
2210 {
62b0d0d5
YZ
2211 /* We must not accidentally parse an integer as a floating-point number.
2212 Make sure that the value we parse is not an integer by checking for
2213 special characters '.' or 'e'. */
a06ea964
NC
2214 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2215 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2216 {
2217 found_fpchar = 1;
2218 break;
2219 }
2220
2221 if (!found_fpchar)
2222 return FALSE;
2223 }
2224
62b0d0d5 2225 if (! hex_p)
a06ea964 2226 {
a06ea964
NC
2227 int i;
2228
62b0d0d5
YZ
2229 if ((str = atof_ieee (str, 's', words)) == NULL)
2230 goto invalid_fp;
2231
a06ea964
NC
2232 /* Our FP word must be 32 bits (single-precision FP). */
2233 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2234 {
2235 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2236 fpword |= words[i];
2237 }
62b0d0d5 2238 }
a06ea964 2239
62b0d0d5
YZ
2240 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2241 {
2242 *immed = fpword;
a06ea964 2243 *ccp = str;
a06ea964
NC
2244 return TRUE;
2245 }
2246
2247invalid_fp:
2248 set_fatal_syntax_error (_("invalid floating-point constant"));
2249 return FALSE;
2250}
2251
2252/* Less-generic immediate-value read function with the possibility of loading
2253 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2254 instructions.
2255
2256 To prevent the expression parser from pushing a register name into the
2257 symbol table as an undefined symbol, a check is firstly done to find
2258 out whether STR is a valid register name followed by a comma or the end
2259 of line. Return FALSE if STR is such a register. */
2260
2261static bfd_boolean
2262parse_big_immediate (char **str, int64_t *imm)
2263{
2264 char *ptr = *str;
2265
2266 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2267 {
2268 set_syntax_error (_("immediate operand required"));
2269 return FALSE;
2270 }
2271
2272 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2273
2274 if (inst.reloc.exp.X_op == O_constant)
2275 *imm = inst.reloc.exp.X_add_number;
2276
2277 *str = ptr;
2278
2279 return TRUE;
2280}
2281
2282/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2283 if NEED_LIBOPCODES is non-zero, the fixup will need
2284 assistance from the libopcodes. */
2285
2286static inline void
2287aarch64_set_gas_internal_fixup (struct reloc *reloc,
2288 const aarch64_opnd_info *operand,
2289 int need_libopcodes_p)
2290{
2291 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2292 reloc->opnd = operand->type;
2293 if (need_libopcodes_p)
2294 reloc->need_libopcodes_p = 1;
2295};
2296
2297/* Return TRUE if the instruction needs to be fixed up later internally by
2298 the GAS; otherwise return FALSE. */
2299
2300static inline bfd_boolean
2301aarch64_gas_internal_fixup_p (void)
2302{
2303 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2304}
2305
2306/* Assign the immediate value to the relavant field in *OPERAND if
2307 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2308 needs an internal fixup in a later stage.
2309 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2310 IMM.VALUE that may get assigned with the constant. */
2311static inline void
2312assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2313 aarch64_opnd_info *operand,
2314 int addr_off_p,
2315 int need_libopcodes_p,
2316 int skip_p)
2317{
2318 if (reloc->exp.X_op == O_constant)
2319 {
2320 if (addr_off_p)
2321 operand->addr.offset.imm = reloc->exp.X_add_number;
2322 else
2323 operand->imm.value = reloc->exp.X_add_number;
2324 reloc->type = BFD_RELOC_UNUSED;
2325 }
2326 else
2327 {
2328 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2329 /* Tell libopcodes to ignore this operand or not. This is helpful
2330 when one of the operands needs to be fixed up later but we need
2331 libopcodes to check the other operands. */
2332 operand->skip = skip_p;
2333 }
2334}
2335
2336/* Relocation modifiers. Each entry in the table contains the textual
2337 name for the relocation which may be placed before a symbol used as
2338 a load/store offset, or add immediate. It must be surrounded by a
2339 leading and trailing colon, for example:
2340
2341 ldr x0, [x1, #:rello:varsym]
2342 add x0, x1, #:rello:varsym */
2343
2344struct reloc_table_entry
2345{
2346 const char *name;
2347 int pc_rel;
6f4a313b 2348 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2349 bfd_reloc_code_real_type adrp_type;
2350 bfd_reloc_code_real_type movw_type;
2351 bfd_reloc_code_real_type add_type;
2352 bfd_reloc_code_real_type ldst_type;
74ad790c 2353 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2354};
2355
2356static struct reloc_table_entry reloc_table[] = {
2357 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2358 {"lo12", 0,
6f4a313b 2359 0, /* adr_type */
a06ea964
NC
2360 0,
2361 0,
2362 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2363 BFD_RELOC_AARCH64_LDST_LO12,
2364 0},
a06ea964
NC
2365
2366 /* Higher 21 bits of pc-relative page offset: ADRP */
2367 {"pg_hi21", 1,
6f4a313b 2368 0, /* adr_type */
a06ea964
NC
2369 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2370 0,
2371 0,
74ad790c 2372 0,
a06ea964
NC
2373 0},
2374
2375 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2376 {"pg_hi21_nc", 1,
6f4a313b 2377 0, /* adr_type */
a06ea964
NC
2378 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2379 0,
2380 0,
74ad790c 2381 0,
a06ea964
NC
2382 0},
2383
2384 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2385 {"abs_g0", 0,
6f4a313b 2386 0, /* adr_type */
a06ea964
NC
2387 0,
2388 BFD_RELOC_AARCH64_MOVW_G0,
2389 0,
74ad790c 2390 0,
a06ea964
NC
2391 0},
2392
2393 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2394 {"abs_g0_s", 0,
6f4a313b 2395 0, /* adr_type */
a06ea964
NC
2396 0,
2397 BFD_RELOC_AARCH64_MOVW_G0_S,
2398 0,
74ad790c 2399 0,
a06ea964
NC
2400 0},
2401
2402 /* Less significant bits 0-15 of address/value: MOVK, no check */
2403 {"abs_g0_nc", 0,
6f4a313b 2404 0, /* adr_type */
a06ea964
NC
2405 0,
2406 BFD_RELOC_AARCH64_MOVW_G0_NC,
2407 0,
74ad790c 2408 0,
a06ea964
NC
2409 0},
2410
2411 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2412 {"abs_g1", 0,
6f4a313b 2413 0, /* adr_type */
a06ea964
NC
2414 0,
2415 BFD_RELOC_AARCH64_MOVW_G1,
2416 0,
74ad790c 2417 0,
a06ea964
NC
2418 0},
2419
2420 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2421 {"abs_g1_s", 0,
6f4a313b 2422 0, /* adr_type */
a06ea964
NC
2423 0,
2424 BFD_RELOC_AARCH64_MOVW_G1_S,
2425 0,
74ad790c 2426 0,
a06ea964
NC
2427 0},
2428
2429 /* Less significant bits 16-31 of address/value: MOVK, no check */
2430 {"abs_g1_nc", 0,
6f4a313b 2431 0, /* adr_type */
a06ea964
NC
2432 0,
2433 BFD_RELOC_AARCH64_MOVW_G1_NC,
2434 0,
74ad790c 2435 0,
a06ea964
NC
2436 0},
2437
2438 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2439 {"abs_g2", 0,
6f4a313b 2440 0, /* adr_type */
a06ea964
NC
2441 0,
2442 BFD_RELOC_AARCH64_MOVW_G2,
2443 0,
74ad790c 2444 0,
a06ea964
NC
2445 0},
2446
2447 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2448 {"abs_g2_s", 0,
6f4a313b 2449 0, /* adr_type */
a06ea964
NC
2450 0,
2451 BFD_RELOC_AARCH64_MOVW_G2_S,
2452 0,
74ad790c 2453 0,
a06ea964
NC
2454 0},
2455
2456 /* Less significant bits 32-47 of address/value: MOVK, no check */
2457 {"abs_g2_nc", 0,
6f4a313b 2458 0, /* adr_type */
a06ea964
NC
2459 0,
2460 BFD_RELOC_AARCH64_MOVW_G2_NC,
2461 0,
74ad790c 2462 0,
a06ea964
NC
2463 0},
2464
2465 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2466 {"abs_g3", 0,
6f4a313b 2467 0, /* adr_type */
a06ea964
NC
2468 0,
2469 BFD_RELOC_AARCH64_MOVW_G3,
2470 0,
74ad790c 2471 0,
a06ea964 2472 0},
4aa2c5e2 2473
a06ea964
NC
2474 /* Get to the page containing GOT entry for a symbol. */
2475 {"got", 1,
6f4a313b 2476 0, /* adr_type */
a06ea964
NC
2477 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2478 0,
2479 0,
74ad790c 2480 0,
4aa2c5e2
MS
2481 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2482
a06ea964
NC
2483 /* 12 bit offset into the page containing GOT entry for that symbol. */
2484 {"got_lo12", 0,
6f4a313b 2485 0, /* adr_type */
a06ea964
NC
2486 0,
2487 0,
2488 0,
74ad790c
MS
2489 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2490 0},
a06ea964 2491
ca632371
RL
2492 /* 0-15 bits of address/value: MOVk, no check. */
2493 {"gotoff_g0_nc", 0,
2494 0, /* adr_type */
2495 0,
2496 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2497 0,
2498 0,
2499 0},
2500
654248e7
RL
2501 /* Most significant bits 16-31 of address/value: MOVZ. */
2502 {"gotoff_g1", 0,
2503 0, /* adr_type */
2504 0,
2505 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2506 0,
2507 0,
2508 0},
2509
87f5fbcc
RL
2510 /* 15 bit offset into the page containing GOT entry for that symbol. */
2511 {"gotoff_lo15", 0,
2512 0, /* adr_type */
2513 0,
2514 0,
2515 0,
2516 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2517 0},
2518
3b957e5b
RL
2519 /* Get to the page containing GOT TLS entry for a symbol */
2520 {"gottprel_g0_nc", 0,
2521 0, /* adr_type */
2522 0,
2523 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2524 0,
2525 0,
2526 0},
2527
2528 /* Get to the page containing GOT TLS entry for a symbol */
2529 {"gottprel_g1", 0,
2530 0, /* adr_type */
2531 0,
2532 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2533 0,
2534 0,
2535 0},
2536
a06ea964
NC
2537 /* Get to the page containing GOT TLS entry for a symbol */
2538 {"tlsgd", 0,
3c12b054 2539 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2540 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2541 0,
2542 0,
74ad790c 2543 0,
a06ea964
NC
2544 0},
2545
2546 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2547 {"tlsgd_lo12", 0,
6f4a313b 2548 0, /* adr_type */
a06ea964
NC
2549 0,
2550 0,
2551 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2552 0,
a06ea964
NC
2553 0},
2554
3e8286c0
RL
2555 /* Lower 16 bits address/value: MOVk. */
2556 {"tlsgd_g0_nc", 0,
2557 0, /* adr_type */
2558 0,
2559 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2560 0,
2561 0,
2562 0},
2563
1aa66fb1
RL
2564 /* Most significant bits 16-31 of address/value: MOVZ. */
2565 {"tlsgd_g1", 0,
2566 0, /* adr_type */
2567 0,
2568 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2569 0,
2570 0,
2571 0},
2572
a06ea964
NC
2573 /* Get to the page containing GOT TLS entry for a symbol */
2574 {"tlsdesc", 0,
389b8029 2575 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2576 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2577 0,
2578 0,
74ad790c 2579 0,
1ada945d 2580 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2581
2582 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2583 {"tlsdesc_lo12", 0,
6f4a313b 2584 0, /* adr_type */
a06ea964
NC
2585 0,
2586 0,
2587 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2588 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2589 0},
a06ea964 2590
6c37fedc
JW
2591 /* Get to the page containing GOT TLS entry for a symbol.
2592 The same as GD, we allocate two consecutive GOT slots
2593 for module index and module offset, the only difference
2594 with GD is the module offset should be intialized to
2595 zero without any outstanding runtime relocation. */
2596 {"tlsldm", 0,
2597 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2598 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2599 0,
2600 0,
2601 0,
2602 0},
2603
a12fad50
JW
2604 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2605 {"tlsldm_lo12_nc", 0,
2606 0, /* adr_type */
2607 0,
2608 0,
2609 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2610 0,
2611 0},
2612
70151fb5
JW
2613 /* 12 bit offset into the module TLS base address. */
2614 {"dtprel_lo12", 0,
2615 0, /* adr_type */
2616 0,
2617 0,
2618 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2619 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2620 0},
2621
13289c10
JW
2622 /* Same as dtprel_lo12, no overflow check. */
2623 {"dtprel_lo12_nc", 0,
2624 0, /* adr_type */
2625 0,
2626 0,
2627 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2628 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2629 0},
2630
49df5539
JW
2631 /* bits[23:12] of offset to the module TLS base address. */
2632 {"dtprel_hi12", 0,
2633 0, /* adr_type */
2634 0,
2635 0,
2636 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2637 0,
2638 0},
2639
2640 /* bits[15:0] of offset to the module TLS base address. */
2641 {"dtprel_g0", 0,
2642 0, /* adr_type */
2643 0,
2644 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2645 0,
2646 0,
2647 0},
2648
2649 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2650 {"dtprel_g0_nc", 0,
2651 0, /* adr_type */
2652 0,
2653 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2654 0,
2655 0,
2656 0},
2657
2658 /* bits[31:16] of offset to the module TLS base address. */
2659 {"dtprel_g1", 0,
2660 0, /* adr_type */
2661 0,
2662 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2663 0,
2664 0,
2665 0},
2666
2667 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2668 {"dtprel_g1_nc", 0,
2669 0, /* adr_type */
2670 0,
2671 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2672 0,
2673 0,
2674 0},
2675
2676 /* bits[47:32] of offset to the module TLS base address. */
2677 {"dtprel_g2", 0,
2678 0, /* adr_type */
2679 0,
2680 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2681 0,
2682 0,
2683 0},
2684
43a357f9
RL
2685 /* Lower 16 bit offset into GOT entry for a symbol */
2686 {"tlsdesc_off_g0_nc", 0,
2687 0, /* adr_type */
2688 0,
2689 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2690 0,
2691 0,
2692 0},
2693
2694 /* Higher 16 bit offset into GOT entry for a symbol */
2695 {"tlsdesc_off_g1", 0,
2696 0, /* adr_type */
2697 0,
2698 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2699 0,
2700 0,
2701 0},
2702
a06ea964
NC
2703 /* Get to the page containing GOT TLS entry for a symbol */
2704 {"gottprel", 0,
6f4a313b 2705 0, /* adr_type */
a06ea964
NC
2706 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2707 0,
2708 0,
74ad790c 2709 0,
043bf05a 2710 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2711
2712 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2713 {"gottprel_lo12", 0,
6f4a313b 2714 0, /* adr_type */
a06ea964
NC
2715 0,
2716 0,
2717 0,
74ad790c
MS
2718 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2719 0},
a06ea964
NC
2720
2721 /* Get tp offset for a symbol. */
2722 {"tprel", 0,
6f4a313b 2723 0, /* adr_type */
a06ea964
NC
2724 0,
2725 0,
2726 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2727 0,
a06ea964
NC
2728 0},
2729
2730 /* Get tp offset for a symbol. */
2731 {"tprel_lo12", 0,
6f4a313b 2732 0, /* adr_type */
a06ea964
NC
2733 0,
2734 0,
2735 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2736 0,
a06ea964
NC
2737 0},
2738
2739 /* Get tp offset for a symbol. */
2740 {"tprel_hi12", 0,
6f4a313b 2741 0, /* adr_type */
a06ea964
NC
2742 0,
2743 0,
2744 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2745 0,
a06ea964
NC
2746 0},
2747
2748 /* Get tp offset for a symbol. */
2749 {"tprel_lo12_nc", 0,
6f4a313b 2750 0, /* adr_type */
a06ea964
NC
2751 0,
2752 0,
2753 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2754 0,
a06ea964
NC
2755 0},
2756
2757 /* Most significant bits 32-47 of address/value: MOVZ. */
2758 {"tprel_g2", 0,
6f4a313b 2759 0, /* adr_type */
a06ea964
NC
2760 0,
2761 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2762 0,
74ad790c 2763 0,
a06ea964
NC
2764 0},
2765
2766 /* Most significant bits 16-31 of address/value: MOVZ. */
2767 {"tprel_g1", 0,
6f4a313b 2768 0, /* adr_type */
a06ea964
NC
2769 0,
2770 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2771 0,
74ad790c 2772 0,
a06ea964
NC
2773 0},
2774
2775 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2776 {"tprel_g1_nc", 0,
6f4a313b 2777 0, /* adr_type */
a06ea964
NC
2778 0,
2779 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2780 0,
74ad790c 2781 0,
a06ea964
NC
2782 0},
2783
2784 /* Most significant bits 0-15 of address/value: MOVZ. */
2785 {"tprel_g0", 0,
6f4a313b 2786 0, /* adr_type */
a06ea964
NC
2787 0,
2788 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2789 0,
74ad790c 2790 0,
a06ea964
NC
2791 0},
2792
2793 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2794 {"tprel_g0_nc", 0,
6f4a313b 2795 0, /* adr_type */
a06ea964
NC
2796 0,
2797 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2798 0,
74ad790c 2799 0,
a06ea964 2800 0},
a921b5bd
JW
2801
2802 /* 15bit offset from got entry to base address of GOT table. */
2803 {"gotpage_lo15", 0,
2804 0,
2805 0,
2806 0,
2807 0,
2808 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2809 0},
3d715ce4
JW
2810
2811 /* 14bit offset from got entry to base address of GOT table. */
2812 {"gotpage_lo14", 0,
2813 0,
2814 0,
2815 0,
2816 0,
2817 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2818 0},
a06ea964
NC
2819};
2820
2821/* Given the address of a pointer pointing to the textual name of a
2822 relocation as may appear in assembler source, attempt to find its
2823 details in reloc_table. The pointer will be updated to the character
2824 after the trailing colon. On failure, NULL will be returned;
2825 otherwise return the reloc_table_entry. */
2826
2827static struct reloc_table_entry *
2828find_reloc_table_entry (char **str)
2829{
2830 unsigned int i;
2831 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2832 {
2833 int length = strlen (reloc_table[i].name);
2834
2835 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2836 && (*str)[length] == ':')
2837 {
2838 *str += (length + 1);
2839 return &reloc_table[i];
2840 }
2841 }
2842
2843 return NULL;
2844}
2845
2846/* Mode argument to parse_shift and parser_shifter_operand. */
2847enum parse_shift_mode
2848{
2849 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2850 "#imm{,lsl #n}" */
2851 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2852 "#imm" */
2853 SHIFTED_LSL, /* bare "lsl #n" */
2854 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2855 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2856};
2857
2858/* Parse a <shift> operator on an AArch64 data processing instruction.
2859 Return TRUE on success; otherwise return FALSE. */
2860static bfd_boolean
2861parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2862{
2863 const struct aarch64_name_value_pair *shift_op;
2864 enum aarch64_modifier_kind kind;
2865 expressionS exp;
2866 int exp_has_prefix;
2867 char *s = *str;
2868 char *p = s;
2869
2870 for (p = *str; ISALPHA (*p); p++)
2871 ;
2872
2873 if (p == *str)
2874 {
2875 set_syntax_error (_("shift expression expected"));
2876 return FALSE;
2877 }
2878
2879 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2880
2881 if (shift_op == NULL)
2882 {
2883 set_syntax_error (_("shift operator expected"));
2884 return FALSE;
2885 }
2886
2887 kind = aarch64_get_operand_modifier (shift_op);
2888
2889 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2890 {
2891 set_syntax_error (_("invalid use of 'MSL'"));
2892 return FALSE;
2893 }
2894
2895 switch (mode)
2896 {
2897 case SHIFTED_LOGIC_IMM:
2898 if (aarch64_extend_operator_p (kind) == TRUE)
2899 {
2900 set_syntax_error (_("extending shift is not permitted"));
2901 return FALSE;
2902 }
2903 break;
2904
2905 case SHIFTED_ARITH_IMM:
2906 if (kind == AARCH64_MOD_ROR)
2907 {
2908 set_syntax_error (_("'ROR' shift is not permitted"));
2909 return FALSE;
2910 }
2911 break;
2912
2913 case SHIFTED_LSL:
2914 if (kind != AARCH64_MOD_LSL)
2915 {
2916 set_syntax_error (_("only 'LSL' shift is permitted"));
2917 return FALSE;
2918 }
2919 break;
2920
2921 case SHIFTED_REG_OFFSET:
2922 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2923 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2924 {
2925 set_fatal_syntax_error
2926 (_("invalid shift for the register offset addressing mode"));
2927 return FALSE;
2928 }
2929 break;
2930
2931 case SHIFTED_LSL_MSL:
2932 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2933 {
2934 set_syntax_error (_("invalid shift operator"));
2935 return FALSE;
2936 }
2937 break;
2938
2939 default:
2940 abort ();
2941 }
2942
2943 /* Whitespace can appear here if the next thing is a bare digit. */
2944 skip_whitespace (p);
2945
2946 /* Parse shift amount. */
2947 exp_has_prefix = 0;
2948 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2949 exp.X_op = O_absent;
2950 else
2951 {
2952 if (is_immediate_prefix (*p))
2953 {
2954 p++;
2955 exp_has_prefix = 1;
2956 }
2957 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2958 }
2959 if (exp.X_op == O_absent)
2960 {
2961 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2962 {
2963 set_syntax_error (_("missing shift amount"));
2964 return FALSE;
2965 }
2966 operand->shifter.amount = 0;
2967 }
2968 else if (exp.X_op != O_constant)
2969 {
2970 set_syntax_error (_("constant shift amount required"));
2971 return FALSE;
2972 }
2973 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2974 {
2975 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2976 return FALSE;
2977 }
2978 else
2979 {
2980 operand->shifter.amount = exp.X_add_number;
2981 operand->shifter.amount_present = 1;
2982 }
2983
2984 operand->shifter.operator_present = 1;
2985 operand->shifter.kind = kind;
2986
2987 *str = p;
2988 return TRUE;
2989}
2990
2991/* Parse a <shifter_operand> for a data processing instruction:
2992
2993 #<immediate>
2994 #<immediate>, LSL #imm
2995
2996 Validation of immediate operands is deferred to md_apply_fix.
2997
2998 Return TRUE on success; otherwise return FALSE. */
2999
3000static bfd_boolean
3001parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3002 enum parse_shift_mode mode)
3003{
3004 char *p;
3005
3006 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3007 return FALSE;
3008
3009 p = *str;
3010
3011 /* Accept an immediate expression. */
3012 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3013 return FALSE;
3014
3015 /* Accept optional LSL for arithmetic immediate values. */
3016 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3017 if (! parse_shift (&p, operand, SHIFTED_LSL))
3018 return FALSE;
3019
3020 /* Not accept any shifter for logical immediate values. */
3021 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3022 && parse_shift (&p, operand, mode))
3023 {
3024 set_syntax_error (_("unexpected shift operator"));
3025 return FALSE;
3026 }
3027
3028 *str = p;
3029 return TRUE;
3030}
3031
3032/* Parse a <shifter_operand> for a data processing instruction:
3033
3034 <Rm>
3035 <Rm>, <shift>
3036 #<immediate>
3037 #<immediate>, LSL #imm
3038
3039 where <shift> is handled by parse_shift above, and the last two
3040 cases are handled by the function above.
3041
3042 Validation of immediate operands is deferred to md_apply_fix.
3043
3044 Return TRUE on success; otherwise return FALSE. */
3045
3046static bfd_boolean
3047parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3048 enum parse_shift_mode mode)
3049{
3050 int reg;
3051 int isreg32, isregzero;
3052 enum aarch64_operand_class opd_class
3053 = aarch64_get_operand_class (operand->type);
3054
3055 if ((reg =
3056 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
3057 {
3058 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3059 {
3060 set_syntax_error (_("unexpected register in the immediate operand"));
3061 return FALSE;
3062 }
3063
3064 if (!isregzero && reg == REG_SP)
3065 {
3066 set_syntax_error (BAD_SP);
3067 return FALSE;
3068 }
3069
3070 operand->reg.regno = reg;
3071 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
3072
3073 /* Accept optional shift operation on register. */
3074 if (! skip_past_comma (str))
3075 return TRUE;
3076
3077 if (! parse_shift (str, operand, mode))
3078 return FALSE;
3079
3080 return TRUE;
3081 }
3082 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3083 {
3084 set_syntax_error
3085 (_("integer register expected in the extended/shifted operand "
3086 "register"));
3087 return FALSE;
3088 }
3089
3090 /* We have a shifted immediate variable. */
3091 return parse_shifter_operand_imm (str, operand, mode);
3092}
3093
3094/* Return TRUE on success; return FALSE otherwise. */
3095
3096static bfd_boolean
3097parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3098 enum parse_shift_mode mode)
3099{
3100 char *p = *str;
3101
3102 /* Determine if we have the sequence of characters #: or just :
3103 coming next. If we do, then we check for a :rello: relocation
3104 modifier. If we don't, punt the whole lot to
3105 parse_shifter_operand. */
3106
3107 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3108 {
3109 struct reloc_table_entry *entry;
3110
3111 if (p[0] == '#')
3112 p += 2;
3113 else
3114 p++;
3115 *str = p;
3116
3117 /* Try to parse a relocation. Anything else is an error. */
3118 if (!(entry = find_reloc_table_entry (str)))
3119 {
3120 set_syntax_error (_("unknown relocation modifier"));
3121 return FALSE;
3122 }
3123
3124 if (entry->add_type == 0)
3125 {
3126 set_syntax_error
3127 (_("this relocation modifier is not allowed on this instruction"));
3128 return FALSE;
3129 }
3130
3131 /* Save str before we decompose it. */
3132 p = *str;
3133
3134 /* Next, we parse the expression. */
3135 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3136 return FALSE;
3137
3138 /* Record the relocation type (use the ADD variant here). */
3139 inst.reloc.type = entry->add_type;
3140 inst.reloc.pc_rel = entry->pc_rel;
3141
3142 /* If str is empty, we've reached the end, stop here. */
3143 if (**str == '\0')
3144 return TRUE;
3145
55d9b4c1 3146 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3147 recover the variable name and continue parsing for the shifter. */
3148 *str = p;
3149 return parse_shifter_operand_imm (str, operand, mode);
3150 }
3151
3152 return parse_shifter_operand (str, operand, mode);
3153}
3154
3155/* Parse all forms of an address expression. Information is written
3156 to *OPERAND and/or inst.reloc.
3157
3158 The A64 instruction set has the following addressing modes:
3159
3160 Offset
3161 [base] // in SIMD ld/st structure
3162 [base{,#0}] // in ld/st exclusive
3163 [base{,#imm}]
3164 [base,Xm{,LSL #imm}]
3165 [base,Xm,SXTX {#imm}]
3166 [base,Wm,(S|U)XTW {#imm}]
3167 Pre-indexed
3168 [base,#imm]!
3169 Post-indexed
3170 [base],#imm
3171 [base],Xm // in SIMD ld/st structure
3172 PC-relative (literal)
3173 label
3174 =immediate
3175
3176 (As a convenience, the notation "=immediate" is permitted in conjunction
3177 with the pc-relative literal load instructions to automatically place an
3178 immediate value or symbolic address in a nearby literal pool and generate
3179 a hidden label which references it.)
3180
3181 Upon a successful parsing, the address structure in *OPERAND will be
3182 filled in the following way:
3183
3184 .base_regno = <base>
3185 .offset.is_reg // 1 if the offset is a register
3186 .offset.imm = <imm>
3187 .offset.regno = <Rm>
3188
3189 For different addressing modes defined in the A64 ISA:
3190
3191 Offset
3192 .pcrel=0; .preind=1; .postind=0; .writeback=0
3193 Pre-indexed
3194 .pcrel=0; .preind=1; .postind=0; .writeback=1
3195 Post-indexed
3196 .pcrel=0; .preind=0; .postind=1; .writeback=1
3197 PC-relative (literal)
3198 .pcrel=1; .preind=1; .postind=0; .writeback=0
3199
3200 The shift/extension information, if any, will be stored in .shifter.
3201
3202 It is the caller's responsibility to check for addressing modes not
3203 supported by the instruction, and to set inst.reloc.type. */
3204
3205static bfd_boolean
3206parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
3207 int accept_reg_post_index)
3208{
3209 char *p = *str;
3210 int reg;
3211 int isreg32, isregzero;
3212 expressionS *exp = &inst.reloc.exp;
3213
3214 if (! skip_past_char (&p, '['))
3215 {
3216 /* =immediate or label. */
3217 operand->addr.pcrel = 1;
3218 operand->addr.preind = 1;
3219
f41aef5f
RE
3220 /* #:<reloc_op>:<symbol> */
3221 skip_past_char (&p, '#');
3222 if (reloc && skip_past_char (&p, ':'))
3223 {
6f4a313b 3224 bfd_reloc_code_real_type ty;
f41aef5f
RE
3225 struct reloc_table_entry *entry;
3226
3227 /* Try to parse a relocation modifier. Anything else is
3228 an error. */
3229 entry = find_reloc_table_entry (&p);
3230 if (! entry)
3231 {
3232 set_syntax_error (_("unknown relocation modifier"));
3233 return FALSE;
3234 }
3235
6f4a313b
MS
3236 switch (operand->type)
3237 {
3238 case AARCH64_OPND_ADDR_PCREL21:
3239 /* adr */
3240 ty = entry->adr_type;
3241 break;
3242
3243 default:
74ad790c 3244 ty = entry->ld_literal_type;
6f4a313b
MS
3245 break;
3246 }
3247
3248 if (ty == 0)
f41aef5f
RE
3249 {
3250 set_syntax_error
3251 (_("this relocation modifier is not allowed on this "
3252 "instruction"));
3253 return FALSE;
3254 }
3255
3256 /* #:<reloc_op>: */
3257 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3258 {
3259 set_syntax_error (_("invalid relocation expression"));
3260 return FALSE;
3261 }
a06ea964 3262
f41aef5f 3263 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3264 /* Record the relocation type. */
3265 inst.reloc.type = ty;
f41aef5f
RE
3266 inst.reloc.pc_rel = entry->pc_rel;
3267 }
3268 else
a06ea964 3269 {
f41aef5f
RE
3270
3271 if (skip_past_char (&p, '='))
3272 /* =immediate; need to generate the literal in the literal pool. */
3273 inst.gen_lit_pool = 1;
3274
3275 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3276 {
3277 set_syntax_error (_("invalid address"));
3278 return FALSE;
3279 }
a06ea964
NC
3280 }
3281
3282 *str = p;
3283 return TRUE;
3284 }
3285
3286 /* [ */
3287
3288 /* Accept SP and reject ZR */
3289 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3290 if (reg == PARSE_FAIL || isreg32)
3291 {
3292 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3293 return FALSE;
3294 }
3295 operand->addr.base_regno = reg;
3296
3297 /* [Xn */
3298 if (skip_past_comma (&p))
3299 {
3300 /* [Xn, */
3301 operand->addr.preind = 1;
3302
3303 /* Reject SP and accept ZR */
3304 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3305 if (reg != PARSE_FAIL)
3306 {
3307 /* [Xn,Rm */
3308 operand->addr.offset.regno = reg;
3309 operand->addr.offset.is_reg = 1;
3310 /* Shifted index. */
3311 if (skip_past_comma (&p))
3312 {
3313 /* [Xn,Rm, */
3314 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3315 /* Use the diagnostics set in parse_shift, so not set new
3316 error message here. */
3317 return FALSE;
3318 }
3319 /* We only accept:
3320 [base,Xm{,LSL #imm}]
3321 [base,Xm,SXTX {#imm}]
3322 [base,Wm,(S|U)XTW {#imm}] */
3323 if (operand->shifter.kind == AARCH64_MOD_NONE
3324 || operand->shifter.kind == AARCH64_MOD_LSL
3325 || operand->shifter.kind == AARCH64_MOD_SXTX)
3326 {
3327 if (isreg32)
3328 {
3329 set_syntax_error (_("invalid use of 32-bit register offset"));
3330 return FALSE;
3331 }
3332 }
3333 else if (!isreg32)
3334 {
3335 set_syntax_error (_("invalid use of 64-bit register offset"));
3336 return FALSE;
3337 }
3338 }
3339 else
3340 {
3341 /* [Xn,#:<reloc_op>:<symbol> */
3342 skip_past_char (&p, '#');
3343 if (reloc && skip_past_char (&p, ':'))
3344 {
3345 struct reloc_table_entry *entry;
3346
3347 /* Try to parse a relocation modifier. Anything else is
3348 an error. */
3349 if (!(entry = find_reloc_table_entry (&p)))
3350 {
3351 set_syntax_error (_("unknown relocation modifier"));
3352 return FALSE;
3353 }
3354
3355 if (entry->ldst_type == 0)
3356 {
3357 set_syntax_error
3358 (_("this relocation modifier is not allowed on this "
3359 "instruction"));
3360 return FALSE;
3361 }
3362
3363 /* [Xn,#:<reloc_op>: */
3364 /* We now have the group relocation table entry corresponding to
3365 the name in the assembler source. Next, we parse the
3366 expression. */
3367 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3368 {
3369 set_syntax_error (_("invalid relocation expression"));
3370 return FALSE;
3371 }
3372
3373 /* [Xn,#:<reloc_op>:<expr> */
3374 /* Record the load/store relocation type. */
3375 inst.reloc.type = entry->ldst_type;
3376 inst.reloc.pc_rel = entry->pc_rel;
3377 }
3378 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3379 {
3380 set_syntax_error (_("invalid expression in the address"));
3381 return FALSE;
3382 }
3383 /* [Xn,<expr> */
3384 }
3385 }
3386
3387 if (! skip_past_char (&p, ']'))
3388 {
3389 set_syntax_error (_("']' expected"));
3390 return FALSE;
3391 }
3392
3393 if (skip_past_char (&p, '!'))
3394 {
3395 if (operand->addr.preind && operand->addr.offset.is_reg)
3396 {
3397 set_syntax_error (_("register offset not allowed in pre-indexed "
3398 "addressing mode"));
3399 return FALSE;
3400 }
3401 /* [Xn]! */
3402 operand->addr.writeback = 1;
3403 }
3404 else if (skip_past_comma (&p))
3405 {
3406 /* [Xn], */
3407 operand->addr.postind = 1;
3408 operand->addr.writeback = 1;
3409
3410 if (operand->addr.preind)
3411 {
3412 set_syntax_error (_("cannot combine pre- and post-indexing"));
3413 return FALSE;
3414 }
3415
3416 if (accept_reg_post_index
3417 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3418 &isregzero)) != PARSE_FAIL)
3419 {
3420 /* [Xn],Xm */
3421 if (isreg32)
3422 {
3423 set_syntax_error (_("invalid 32-bit register offset"));
3424 return FALSE;
3425 }
3426 operand->addr.offset.regno = reg;
3427 operand->addr.offset.is_reg = 1;
3428 }
3429 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3430 {
3431 /* [Xn],#expr */
3432 set_syntax_error (_("invalid expression in the address"));
3433 return FALSE;
3434 }
3435 }
3436
3437 /* If at this point neither .preind nor .postind is set, we have a
3438 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3439 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3440 {
3441 if (operand->addr.writeback)
3442 {
3443 /* Reject [Rn]! */
3444 set_syntax_error (_("missing offset in the pre-indexed address"));
3445 return FALSE;
3446 }
3447 operand->addr.preind = 1;
3448 inst.reloc.exp.X_op = O_constant;
3449 inst.reloc.exp.X_add_number = 0;
3450 }
3451
3452 *str = p;
3453 return TRUE;
3454}
3455
3456/* Return TRUE on success; otherwise return FALSE. */
3457static bfd_boolean
3458parse_address (char **str, aarch64_opnd_info *operand,
3459 int accept_reg_post_index)
3460{
3461 return parse_address_main (str, operand, 0, accept_reg_post_index);
3462}
3463
3464/* Return TRUE on success; otherwise return FALSE. */
3465static bfd_boolean
3466parse_address_reloc (char **str, aarch64_opnd_info *operand)
3467{
3468 return parse_address_main (str, operand, 1, 0);
3469}
3470
3471/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3472 Return TRUE on success; otherwise return FALSE. */
3473static bfd_boolean
3474parse_half (char **str, int *internal_fixup_p)
3475{
3476 char *p, *saved;
3477 int dummy;
3478
3479 p = *str;
3480 skip_past_char (&p, '#');
3481
3482 gas_assert (internal_fixup_p);
3483 *internal_fixup_p = 0;
3484
3485 if (*p == ':')
3486 {
3487 struct reloc_table_entry *entry;
3488
3489 /* Try to parse a relocation. Anything else is an error. */
3490 ++p;
3491 if (!(entry = find_reloc_table_entry (&p)))
3492 {
3493 set_syntax_error (_("unknown relocation modifier"));
3494 return FALSE;
3495 }
3496
3497 if (entry->movw_type == 0)
3498 {
3499 set_syntax_error
3500 (_("this relocation modifier is not allowed on this instruction"));
3501 return FALSE;
3502 }
3503
3504 inst.reloc.type = entry->movw_type;
3505 }
3506 else
3507 *internal_fixup_p = 1;
3508
3509 /* Avoid parsing a register as a general symbol. */
3510 saved = p;
3511 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3512 return FALSE;
3513 p = saved;
3514
3515 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3516 return FALSE;
3517
3518 *str = p;
3519 return TRUE;
3520}
3521
3522/* Parse an operand for an ADRP instruction:
3523 ADRP <Xd>, <label>
3524 Return TRUE on success; otherwise return FALSE. */
3525
3526static bfd_boolean
3527parse_adrp (char **str)
3528{
3529 char *p;
3530
3531 p = *str;
3532 if (*p == ':')
3533 {
3534 struct reloc_table_entry *entry;
3535
3536 /* Try to parse a relocation. Anything else is an error. */
3537 ++p;
3538 if (!(entry = find_reloc_table_entry (&p)))
3539 {
3540 set_syntax_error (_("unknown relocation modifier"));
3541 return FALSE;
3542 }
3543
3544 if (entry->adrp_type == 0)
3545 {
3546 set_syntax_error
3547 (_("this relocation modifier is not allowed on this instruction"));
3548 return FALSE;
3549 }
3550
3551 inst.reloc.type = entry->adrp_type;
3552 }
3553 else
3554 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3555
3556 inst.reloc.pc_rel = 1;
3557
3558 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3559 return FALSE;
3560
3561 *str = p;
3562 return TRUE;
3563}
3564
3565/* Miscellaneous. */
3566
3567/* Parse an option for a preload instruction. Returns the encoding for the
3568 option, or PARSE_FAIL. */
3569
3570static int
3571parse_pldop (char **str)
3572{
3573 char *p, *q;
3574 const struct aarch64_name_value_pair *o;
3575
3576 p = q = *str;
3577 while (ISALNUM (*q))
3578 q++;
3579
3580 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3581 if (!o)
3582 return PARSE_FAIL;
3583
3584 *str = q;
3585 return o->value;
3586}
3587
3588/* Parse an option for a barrier instruction. Returns the encoding for the
3589 option, or PARSE_FAIL. */
3590
3591static int
3592parse_barrier (char **str)
3593{
3594 char *p, *q;
3595 const asm_barrier_opt *o;
3596
3597 p = q = *str;
3598 while (ISALPHA (*q))
3599 q++;
3600
3601 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3602 if (!o)
3603 return PARSE_FAIL;
3604
3605 *str = q;
3606 return o->value;
3607}
3608
1e6f4800
MW
3609/* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3610 return 0 if successful. Otherwise return PARSE_FAIL. */
3611
3612static int
3613parse_barrier_psb (char **str,
3614 const struct aarch64_name_value_pair ** hint_opt)
3615{
3616 char *p, *q;
3617 const struct aarch64_name_value_pair *o;
3618
3619 p = q = *str;
3620 while (ISALPHA (*q))
3621 q++;
3622
3623 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3624 if (!o)
3625 {
3626 set_fatal_syntax_error
3627 ( _("unknown or missing option to PSB"));
3628 return PARSE_FAIL;
3629 }
3630
3631 if (o->value != 0x11)
3632 {
3633 /* PSB only accepts option name 'CSYNC'. */
3634 set_syntax_error
3635 (_("the specified option is not accepted for PSB"));
3636 return PARSE_FAIL;
3637 }
3638
3639 *str = q;
3640 *hint_opt = o;
3641 return 0;
3642}
3643
a06ea964 3644/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3645 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3646
3647 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3648 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3649
3650 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3651 field, otherwise as a system register.
3652*/
a06ea964
NC
3653
3654static int
72ca8fad
MW
3655parse_sys_reg (char **str, struct hash_control *sys_regs,
3656 int imple_defined_p, int pstatefield_p)
a06ea964
NC
3657{
3658 char *p, *q;
3659 char buf[32];
49eec193 3660 const aarch64_sys_reg *o;
a06ea964
NC
3661 int value;
3662
3663 p = buf;
3664 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3665 if (p < buf + 31)
3666 *p++ = TOLOWER (*q);
3667 *p = '\0';
3668 /* Assert that BUF be large enough. */
3669 gas_assert (p - buf == q - *str);
3670
3671 o = hash_find (sys_regs, buf);
3672 if (!o)
3673 {
3674 if (!imple_defined_p)
3675 return PARSE_FAIL;
3676 else
3677 {
df7b4545 3678 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3679 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3680
3681 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3682 != 5)
a06ea964 3683 return PARSE_FAIL;
df7b4545 3684 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3685 return PARSE_FAIL;
3686 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3687 }
3688 }
3689 else
49eec193 3690 {
72ca8fad
MW
3691 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3692 as_bad (_("selected processor does not support PSTATE field "
3693 "name '%s'"), buf);
3694 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3695 as_bad (_("selected processor does not support system register "
3696 "name '%s'"), buf);
9a73e520 3697 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3698 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3699 "removed in a future release"), buf);
49eec193
YZ
3700 value = o->value;
3701 }
a06ea964
NC
3702
3703 *str = q;
3704 return value;
3705}
3706
3707/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3708 for the option, or NULL. */
3709
3710static const aarch64_sys_ins_reg *
3711parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3712{
3713 char *p, *q;
3714 char buf[32];
3715 const aarch64_sys_ins_reg *o;
3716
3717 p = buf;
3718 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3719 if (p < buf + 31)
3720 *p++ = TOLOWER (*q);
3721 *p = '\0';
3722
3723 o = hash_find (sys_ins_regs, buf);
3724 if (!o)
3725 return NULL;
3726
d6bf7ce6
MW
3727 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
3728 as_bad (_("selected processor does not support system register "
3729 "name '%s'"), buf);
3730
a06ea964
NC
3731 *str = q;
3732 return o;
3733}
3734\f
3735#define po_char_or_fail(chr) do { \
3736 if (! skip_past_char (&str, chr)) \
3737 goto failure; \
3738} while (0)
3739
3740#define po_reg_or_fail(regtype) do { \
3741 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3742 if (val == PARSE_FAIL) \
3743 { \
3744 set_default_error (); \
3745 goto failure; \
3746 } \
3747 } while (0)
3748
3749#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3750 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3751 &isreg32, &isregzero); \
3752 if (val == PARSE_FAIL) \
3753 { \
3754 set_default_error (); \
3755 goto failure; \
3756 } \
3757 info->reg.regno = val; \
3758 if (isreg32) \
3759 info->qualifier = AARCH64_OPND_QLF_W; \
3760 else \
3761 info->qualifier = AARCH64_OPND_QLF_X; \
3762 } while (0)
3763
3764#define po_imm_nc_or_fail() do { \
3765 if (! parse_constant_immediate (&str, &val)) \
3766 goto failure; \
3767 } while (0)
3768
3769#define po_imm_or_fail(min, max) do { \
3770 if (! parse_constant_immediate (&str, &val)) \
3771 goto failure; \
3772 if (val < min || val > max) \
3773 { \
3774 set_fatal_syntax_error (_("immediate value out of range "\
3775#min " to "#max)); \
3776 goto failure; \
3777 } \
3778 } while (0)
3779
3780#define po_misc_or_fail(expr) do { \
3781 if (!expr) \
3782 goto failure; \
3783 } while (0)
3784\f
3785/* encode the 12-bit imm field of Add/sub immediate */
3786static inline uint32_t
3787encode_addsub_imm (uint32_t imm)
3788{
3789 return imm << 10;
3790}
3791
3792/* encode the shift amount field of Add/sub immediate */
3793static inline uint32_t
3794encode_addsub_imm_shift_amount (uint32_t cnt)
3795{
3796 return cnt << 22;
3797}
3798
3799
3800/* encode the imm field of Adr instruction */
3801static inline uint32_t
3802encode_adr_imm (uint32_t imm)
3803{
3804 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3805 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3806}
3807
3808/* encode the immediate field of Move wide immediate */
3809static inline uint32_t
3810encode_movw_imm (uint32_t imm)
3811{
3812 return imm << 5;
3813}
3814
3815/* encode the 26-bit offset of unconditional branch */
3816static inline uint32_t
3817encode_branch_ofs_26 (uint32_t ofs)
3818{
3819 return ofs & ((1 << 26) - 1);
3820}
3821
3822/* encode the 19-bit offset of conditional branch and compare & branch */
3823static inline uint32_t
3824encode_cond_branch_ofs_19 (uint32_t ofs)
3825{
3826 return (ofs & ((1 << 19) - 1)) << 5;
3827}
3828
3829/* encode the 19-bit offset of ld literal */
3830static inline uint32_t
3831encode_ld_lit_ofs_19 (uint32_t ofs)
3832{
3833 return (ofs & ((1 << 19) - 1)) << 5;
3834}
3835
3836/* Encode the 14-bit offset of test & branch. */
3837static inline uint32_t
3838encode_tst_branch_ofs_14 (uint32_t ofs)
3839{
3840 return (ofs & ((1 << 14) - 1)) << 5;
3841}
3842
3843/* Encode the 16-bit imm field of svc/hvc/smc. */
3844static inline uint32_t
3845encode_svc_imm (uint32_t imm)
3846{
3847 return imm << 5;
3848}
3849
3850/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3851static inline uint32_t
3852reencode_addsub_switch_add_sub (uint32_t opcode)
3853{
3854 return opcode ^ (1 << 30);
3855}
3856
3857static inline uint32_t
3858reencode_movzn_to_movz (uint32_t opcode)
3859{
3860 return opcode | (1 << 30);
3861}
3862
3863static inline uint32_t
3864reencode_movzn_to_movn (uint32_t opcode)
3865{
3866 return opcode & ~(1 << 30);
3867}
3868
3869/* Overall per-instruction processing. */
3870
3871/* We need to be able to fix up arbitrary expressions in some statements.
3872 This is so that we can handle symbols that are an arbitrary distance from
3873 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3874 which returns part of an address in a form which will be valid for
3875 a data instruction. We do this by pushing the expression into a symbol
3876 in the expr_section, and creating a fix for that. */
3877
3878static fixS *
3879fix_new_aarch64 (fragS * frag,
3880 int where,
3881 short int size, expressionS * exp, int pc_rel, int reloc)
3882{
3883 fixS *new_fix;
3884
3885 switch (exp->X_op)
3886 {
3887 case O_constant:
3888 case O_symbol:
3889 case O_add:
3890 case O_subtract:
3891 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3892 break;
3893
3894 default:
3895 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3896 pc_rel, reloc);
3897 break;
3898 }
3899 return new_fix;
3900}
3901\f
3902/* Diagnostics on operands errors. */
3903
a52e6fd3
YZ
3904/* By default, output verbose error message.
3905 Disable the verbose error message by -mno-verbose-error. */
3906static int verbose_error_p = 1;
a06ea964
NC
3907
3908#ifdef DEBUG_AARCH64
3909/* N.B. this is only for the purpose of debugging. */
3910const char* operand_mismatch_kind_names[] =
3911{
3912 "AARCH64_OPDE_NIL",
3913 "AARCH64_OPDE_RECOVERABLE",
3914 "AARCH64_OPDE_SYNTAX_ERROR",
3915 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3916 "AARCH64_OPDE_INVALID_VARIANT",
3917 "AARCH64_OPDE_OUT_OF_RANGE",
3918 "AARCH64_OPDE_UNALIGNED",
3919 "AARCH64_OPDE_REG_LIST",
3920 "AARCH64_OPDE_OTHER_ERROR",
3921};
3922#endif /* DEBUG_AARCH64 */
3923
3924/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3925
3926 When multiple errors of different kinds are found in the same assembly
3927 line, only the error of the highest severity will be picked up for
3928 issuing the diagnostics. */
3929
3930static inline bfd_boolean
3931operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3932 enum aarch64_operand_error_kind rhs)
3933{
3934 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3935 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3936 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3937 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3938 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3939 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3940 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3941 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3942 return lhs > rhs;
3943}
3944
3945/* Helper routine to get the mnemonic name from the assembly instruction
3946 line; should only be called for the diagnosis purpose, as there is
3947 string copy operation involved, which may affect the runtime
3948 performance if used in elsewhere. */
3949
3950static const char*
3951get_mnemonic_name (const char *str)
3952{
3953 static char mnemonic[32];
3954 char *ptr;
3955
3956 /* Get the first 15 bytes and assume that the full name is included. */
3957 strncpy (mnemonic, str, 31);
3958 mnemonic[31] = '\0';
3959
3960 /* Scan up to the end of the mnemonic, which must end in white space,
3961 '.', or end of string. */
3962 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3963 ;
3964
3965 *ptr = '\0';
3966
3967 /* Append '...' to the truncated long name. */
3968 if (ptr - mnemonic == 31)
3969 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3970
3971 return mnemonic;
3972}
3973
3974static void
3975reset_aarch64_instruction (aarch64_instruction *instruction)
3976{
3977 memset (instruction, '\0', sizeof (aarch64_instruction));
3978 instruction->reloc.type = BFD_RELOC_UNUSED;
3979}
3980
3981/* Data strutures storing one user error in the assembly code related to
3982 operands. */
3983
3984struct operand_error_record
3985{
3986 const aarch64_opcode *opcode;
3987 aarch64_operand_error detail;
3988 struct operand_error_record *next;
3989};
3990
3991typedef struct operand_error_record operand_error_record;
3992
3993struct operand_errors
3994{
3995 operand_error_record *head;
3996 operand_error_record *tail;
3997};
3998
3999typedef struct operand_errors operand_errors;
4000
4001/* Top-level data structure reporting user errors for the current line of
4002 the assembly code.
4003 The way md_assemble works is that all opcodes sharing the same mnemonic
4004 name are iterated to find a match to the assembly line. In this data
4005 structure, each of the such opcodes will have one operand_error_record
4006 allocated and inserted. In other words, excessive errors related with
4007 a single opcode are disregarded. */
4008operand_errors operand_error_report;
4009
4010/* Free record nodes. */
4011static operand_error_record *free_opnd_error_record_nodes = NULL;
4012
4013/* Initialize the data structure that stores the operand mismatch
4014 information on assembling one line of the assembly code. */
4015static void
4016init_operand_error_report (void)
4017{
4018 if (operand_error_report.head != NULL)
4019 {
4020 gas_assert (operand_error_report.tail != NULL);
4021 operand_error_report.tail->next = free_opnd_error_record_nodes;
4022 free_opnd_error_record_nodes = operand_error_report.head;
4023 operand_error_report.head = NULL;
4024 operand_error_report.tail = NULL;
4025 return;
4026 }
4027 gas_assert (operand_error_report.tail == NULL);
4028}
4029
4030/* Return TRUE if some operand error has been recorded during the
4031 parsing of the current assembly line using the opcode *OPCODE;
4032 otherwise return FALSE. */
4033static inline bfd_boolean
4034opcode_has_operand_error_p (const aarch64_opcode *opcode)
4035{
4036 operand_error_record *record = operand_error_report.head;
4037 return record && record->opcode == opcode;
4038}
4039
4040/* Add the error record *NEW_RECORD to operand_error_report. The record's
4041 OPCODE field is initialized with OPCODE.
4042 N.B. only one record for each opcode, i.e. the maximum of one error is
4043 recorded for each instruction template. */
4044
4045static void
4046add_operand_error_record (const operand_error_record* new_record)
4047{
4048 const aarch64_opcode *opcode = new_record->opcode;
4049 operand_error_record* record = operand_error_report.head;
4050
4051 /* The record may have been created for this opcode. If not, we need
4052 to prepare one. */
4053 if (! opcode_has_operand_error_p (opcode))
4054 {
4055 /* Get one empty record. */
4056 if (free_opnd_error_record_nodes == NULL)
4057 {
4058 record = xmalloc (sizeof (operand_error_record));
4059 if (record == NULL)
4060 abort ();
4061 }
4062 else
4063 {
4064 record = free_opnd_error_record_nodes;
4065 free_opnd_error_record_nodes = record->next;
4066 }
4067 record->opcode = opcode;
4068 /* Insert at the head. */
4069 record->next = operand_error_report.head;
4070 operand_error_report.head = record;
4071 if (operand_error_report.tail == NULL)
4072 operand_error_report.tail = record;
4073 }
4074 else if (record->detail.kind != AARCH64_OPDE_NIL
4075 && record->detail.index <= new_record->detail.index
4076 && operand_error_higher_severity_p (record->detail.kind,
4077 new_record->detail.kind))
4078 {
4079 /* In the case of multiple errors found on operands related with a
4080 single opcode, only record the error of the leftmost operand and
4081 only if the error is of higher severity. */
4082 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4083 " the existing error %s on operand %d",
4084 operand_mismatch_kind_names[new_record->detail.kind],
4085 new_record->detail.index,
4086 operand_mismatch_kind_names[record->detail.kind],
4087 record->detail.index);
4088 return;
4089 }
4090
4091 record->detail = new_record->detail;
4092}
4093
4094static inline void
4095record_operand_error_info (const aarch64_opcode *opcode,
4096 aarch64_operand_error *error_info)
4097{
4098 operand_error_record record;
4099 record.opcode = opcode;
4100 record.detail = *error_info;
4101 add_operand_error_record (&record);
4102}
4103
4104/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4105 error message *ERROR, for operand IDX (count from 0). */
4106
4107static void
4108record_operand_error (const aarch64_opcode *opcode, int idx,
4109 enum aarch64_operand_error_kind kind,
4110 const char* error)
4111{
4112 aarch64_operand_error info;
4113 memset(&info, 0, sizeof (info));
4114 info.index = idx;
4115 info.kind = kind;
4116 info.error = error;
4117 record_operand_error_info (opcode, &info);
4118}
4119
4120static void
4121record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4122 enum aarch64_operand_error_kind kind,
4123 const char* error, const int *extra_data)
4124{
4125 aarch64_operand_error info;
4126 info.index = idx;
4127 info.kind = kind;
4128 info.error = error;
4129 info.data[0] = extra_data[0];
4130 info.data[1] = extra_data[1];
4131 info.data[2] = extra_data[2];
4132 record_operand_error_info (opcode, &info);
4133}
4134
4135static void
4136record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4137 const char* error, int lower_bound,
4138 int upper_bound)
4139{
4140 int data[3] = {lower_bound, upper_bound, 0};
4141 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4142 error, data);
4143}
4144
4145/* Remove the operand error record for *OPCODE. */
4146static void ATTRIBUTE_UNUSED
4147remove_operand_error_record (const aarch64_opcode *opcode)
4148{
4149 if (opcode_has_operand_error_p (opcode))
4150 {
4151 operand_error_record* record = operand_error_report.head;
4152 gas_assert (record != NULL && operand_error_report.tail != NULL);
4153 operand_error_report.head = record->next;
4154 record->next = free_opnd_error_record_nodes;
4155 free_opnd_error_record_nodes = record;
4156 if (operand_error_report.head == NULL)
4157 {
4158 gas_assert (operand_error_report.tail == record);
4159 operand_error_report.tail = NULL;
4160 }
4161 }
4162}
4163
4164/* Given the instruction in *INSTR, return the index of the best matched
4165 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4166
4167 Return -1 if there is no qualifier sequence; return the first match
4168 if there is multiple matches found. */
4169
4170static int
4171find_best_match (const aarch64_inst *instr,
4172 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4173{
4174 int i, num_opnds, max_num_matched, idx;
4175
4176 num_opnds = aarch64_num_of_operands (instr->opcode);
4177 if (num_opnds == 0)
4178 {
4179 DEBUG_TRACE ("no operand");
4180 return -1;
4181 }
4182
4183 max_num_matched = 0;
4184 idx = -1;
4185
4186 /* For each pattern. */
4187 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4188 {
4189 int j, num_matched;
4190 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4191
4192 /* Most opcodes has much fewer patterns in the list. */
4193 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
4194 {
4195 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4196 if (i != 0 && idx == -1)
4197 /* If nothing has been matched, return the 1st sequence. */
4198 idx = 0;
4199 break;
4200 }
4201
4202 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4203 if (*qualifiers == instr->operands[j].qualifier)
4204 ++num_matched;
4205
4206 if (num_matched > max_num_matched)
4207 {
4208 max_num_matched = num_matched;
4209 idx = i;
4210 }
4211 }
4212
4213 DEBUG_TRACE ("return with %d", idx);
4214 return idx;
4215}
4216
4217/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
4218 corresponding operands in *INSTR. */
4219
4220static inline void
4221assign_qualifier_sequence (aarch64_inst *instr,
4222 const aarch64_opnd_qualifier_t *qualifiers)
4223{
4224 int i = 0;
4225 int num_opnds = aarch64_num_of_operands (instr->opcode);
4226 gas_assert (num_opnds);
4227 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4228 instr->operands[i].qualifier = *qualifiers;
4229}
4230
4231/* Print operands for the diagnosis purpose. */
4232
4233static void
4234print_operands (char *buf, const aarch64_opcode *opcode,
4235 const aarch64_opnd_info *opnds)
4236{
4237 int i;
4238
4239 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4240 {
4241 const size_t size = 128;
4242 char str[size];
4243
4244 /* We regard the opcode operand info more, however we also look into
4245 the inst->operands to support the disassembling of the optional
4246 operand.
4247 The two operand code should be the same in all cases, apart from
4248 when the operand can be optional. */
4249 if (opcode->operands[i] == AARCH64_OPND_NIL
4250 || opnds[i].type == AARCH64_OPND_NIL)
4251 break;
4252
4253 /* Generate the operand string in STR. */
4254 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
4255
4256 /* Delimiter. */
4257 if (str[0] != '\0')
4258 strcat (buf, i == 0 ? " " : ",");
4259
4260 /* Append the operand string. */
4261 strcat (buf, str);
4262 }
4263}
4264
4265/* Send to stderr a string as information. */
4266
4267static void
4268output_info (const char *format, ...)
4269{
4270 char *file;
4271 unsigned int line;
4272 va_list args;
4273
4274 as_where (&file, &line);
4275 if (file)
4276 {
4277 if (line != 0)
4278 fprintf (stderr, "%s:%u: ", file, line);
4279 else
4280 fprintf (stderr, "%s: ", file);
4281 }
4282 fprintf (stderr, _("Info: "));
4283 va_start (args, format);
4284 vfprintf (stderr, format, args);
4285 va_end (args);
4286 (void) putc ('\n', stderr);
4287}
4288
4289/* Output one operand error record. */
4290
4291static void
4292output_operand_error_record (const operand_error_record *record, char *str)
4293{
28f013d5
JB
4294 const aarch64_operand_error *detail = &record->detail;
4295 int idx = detail->index;
a06ea964 4296 const aarch64_opcode *opcode = record->opcode;
28f013d5 4297 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4298 : AARCH64_OPND_NIL);
a06ea964
NC
4299
4300 switch (detail->kind)
4301 {
4302 case AARCH64_OPDE_NIL:
4303 gas_assert (0);
4304 break;
4305
4306 case AARCH64_OPDE_SYNTAX_ERROR:
4307 case AARCH64_OPDE_RECOVERABLE:
4308 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4309 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4310 /* Use the prepared error message if there is, otherwise use the
4311 operand description string to describe the error. */
4312 if (detail->error != NULL)
4313 {
28f013d5 4314 if (idx < 0)
a06ea964
NC
4315 as_bad (_("%s -- `%s'"), detail->error, str);
4316 else
4317 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4318 detail->error, idx + 1, str);
a06ea964
NC
4319 }
4320 else
28f013d5
JB
4321 {
4322 gas_assert (idx >= 0);
4323 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 4324 aarch64_get_operand_desc (opd_code), str);
28f013d5 4325 }
a06ea964
NC
4326 break;
4327
4328 case AARCH64_OPDE_INVALID_VARIANT:
4329 as_bad (_("operand mismatch -- `%s'"), str);
4330 if (verbose_error_p)
4331 {
4332 /* We will try to correct the erroneous instruction and also provide
4333 more information e.g. all other valid variants.
4334
4335 The string representation of the corrected instruction and other
4336 valid variants are generated by
4337
4338 1) obtaining the intermediate representation of the erroneous
4339 instruction;
4340 2) manipulating the IR, e.g. replacing the operand qualifier;
4341 3) printing out the instruction by calling the printer functions
4342 shared with the disassembler.
4343
4344 The limitation of this method is that the exact input assembly
4345 line cannot be accurately reproduced in some cases, for example an
4346 optional operand present in the actual assembly line will be
4347 omitted in the output; likewise for the optional syntax rules,
4348 e.g. the # before the immediate. Another limitation is that the
4349 assembly symbols and relocation operations in the assembly line
4350 currently cannot be printed out in the error report. Last but not
4351 least, when there is other error(s) co-exist with this error, the
4352 'corrected' instruction may be still incorrect, e.g. given
4353 'ldnp h0,h1,[x0,#6]!'
4354 this diagnosis will provide the version:
4355 'ldnp s0,s1,[x0,#6]!'
4356 which is still not right. */
4357 size_t len = strlen (get_mnemonic_name (str));
4358 int i, qlf_idx;
4359 bfd_boolean result;
4360 const size_t size = 2048;
4361 char buf[size];
4362 aarch64_inst *inst_base = &inst.base;
4363 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4364
4365 /* Init inst. */
4366 reset_aarch64_instruction (&inst);
4367 inst_base->opcode = opcode;
4368
4369 /* Reset the error report so that there is no side effect on the
4370 following operand parsing. */
4371 init_operand_error_report ();
4372
4373 /* Fill inst. */
4374 result = parse_operands (str + len, opcode)
4375 && programmer_friendly_fixup (&inst);
4376 gas_assert (result);
4377 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4378 NULL, NULL);
4379 gas_assert (!result);
4380
4381 /* Find the most matched qualifier sequence. */
4382 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4383 gas_assert (qlf_idx > -1);
4384
4385 /* Assign the qualifiers. */
4386 assign_qualifier_sequence (inst_base,
4387 opcode->qualifiers_list[qlf_idx]);
4388
4389 /* Print the hint. */
4390 output_info (_(" did you mean this?"));
4391 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4392 print_operands (buf, opcode, inst_base->operands);
4393 output_info (_(" %s"), buf);
4394
4395 /* Print out other variant(s) if there is any. */
4396 if (qlf_idx != 0 ||
4397 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4398 output_info (_(" other valid variant(s):"));
4399
4400 /* For each pattern. */
4401 qualifiers_list = opcode->qualifiers_list;
4402 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4403 {
4404 /* Most opcodes has much fewer patterns in the list.
4405 First NIL qualifier indicates the end in the list. */
4406 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4407 break;
4408
4409 if (i != qlf_idx)
4410 {
4411 /* Mnemonics name. */
4412 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4413
4414 /* Assign the qualifiers. */
4415 assign_qualifier_sequence (inst_base, *qualifiers_list);
4416
4417 /* Print instruction. */
4418 print_operands (buf, opcode, inst_base->operands);
4419
4420 output_info (_(" %s"), buf);
4421 }
4422 }
4423 }
4424 break;
4425
4426 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4427 if (detail->data[0] != detail->data[1])
4428 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4429 detail->error ? detail->error : _("immediate value"),
28f013d5 4430 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4431 else
4432 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4433 detail->error ? detail->error : _("immediate value"),
28f013d5 4434 detail->data[0], idx + 1, str);
a06ea964
NC
4435 break;
4436
4437 case AARCH64_OPDE_REG_LIST:
4438 if (detail->data[0] == 1)
4439 as_bad (_("invalid number of registers in the list; "
4440 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4441 idx + 1, str);
a06ea964
NC
4442 else
4443 as_bad (_("invalid number of registers in the list; "
4444 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4445 detail->data[0], idx + 1, str);
a06ea964
NC
4446 break;
4447
4448 case AARCH64_OPDE_UNALIGNED:
4449 as_bad (_("immediate value should be a multiple of "
4450 "%d at operand %d -- `%s'"),
28f013d5 4451 detail->data[0], idx + 1, str);
a06ea964
NC
4452 break;
4453
4454 default:
4455 gas_assert (0);
4456 break;
4457 }
4458}
4459
4460/* Process and output the error message about the operand mismatching.
4461
4462 When this function is called, the operand error information had
4463 been collected for an assembly line and there will be multiple
4464 errors in the case of mulitple instruction templates; output the
4465 error message that most closely describes the problem. */
4466
4467static void
4468output_operand_error_report (char *str)
4469{
4470 int largest_error_pos;
4471 const char *msg = NULL;
4472 enum aarch64_operand_error_kind kind;
4473 operand_error_record *curr;
4474 operand_error_record *head = operand_error_report.head;
4475 operand_error_record *record = NULL;
4476
4477 /* No error to report. */
4478 if (head == NULL)
4479 return;
4480
4481 gas_assert (head != NULL && operand_error_report.tail != NULL);
4482
4483 /* Only one error. */
4484 if (head == operand_error_report.tail)
4485 {
4486 DEBUG_TRACE ("single opcode entry with error kind: %s",
4487 operand_mismatch_kind_names[head->detail.kind]);
4488 output_operand_error_record (head, str);
4489 return;
4490 }
4491
4492 /* Find the error kind of the highest severity. */
4493 DEBUG_TRACE ("multiple opcode entres with error kind");
4494 kind = AARCH64_OPDE_NIL;
4495 for (curr = head; curr != NULL; curr = curr->next)
4496 {
4497 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4498 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4499 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4500 kind = curr->detail.kind;
4501 }
4502 gas_assert (kind != AARCH64_OPDE_NIL);
4503
4504 /* Pick up one of errors of KIND to report. */
4505 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4506 for (curr = head; curr != NULL; curr = curr->next)
4507 {
4508 if (curr->detail.kind != kind)
4509 continue;
4510 /* If there are multiple errors, pick up the one with the highest
4511 mismatching operand index. In the case of multiple errors with
4512 the equally highest operand index, pick up the first one or the
4513 first one with non-NULL error message. */
4514 if (curr->detail.index > largest_error_pos
4515 || (curr->detail.index == largest_error_pos && msg == NULL
4516 && curr->detail.error != NULL))
4517 {
4518 largest_error_pos = curr->detail.index;
4519 record = curr;
4520 msg = record->detail.error;
4521 }
4522 }
4523
4524 gas_assert (largest_error_pos != -2 && record != NULL);
4525 DEBUG_TRACE ("Pick up error kind %s to report",
4526 operand_mismatch_kind_names[record->detail.kind]);
4527
4528 /* Output. */
4529 output_operand_error_record (record, str);
4530}
4531\f
4532/* Write an AARCH64 instruction to buf - always little-endian. */
4533static void
4534put_aarch64_insn (char *buf, uint32_t insn)
4535{
4536 unsigned char *where = (unsigned char *) buf;
4537 where[0] = insn;
4538 where[1] = insn >> 8;
4539 where[2] = insn >> 16;
4540 where[3] = insn >> 24;
4541}
4542
4543static uint32_t
4544get_aarch64_insn (char *buf)
4545{
4546 unsigned char *where = (unsigned char *) buf;
4547 uint32_t result;
4548 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4549 return result;
4550}
4551
4552static void
4553output_inst (struct aarch64_inst *new_inst)
4554{
4555 char *to = NULL;
4556
4557 to = frag_more (INSN_SIZE);
4558
4559 frag_now->tc_frag_data.recorded = 1;
4560
4561 put_aarch64_insn (to, inst.base.value);
4562
4563 if (inst.reloc.type != BFD_RELOC_UNUSED)
4564 {
4565 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4566 INSN_SIZE, &inst.reloc.exp,
4567 inst.reloc.pc_rel,
4568 inst.reloc.type);
4569 DEBUG_TRACE ("Prepared relocation fix up");
4570 /* Don't check the addend value against the instruction size,
4571 that's the job of our code in md_apply_fix(). */
4572 fixp->fx_no_overflow = 1;
4573 if (new_inst != NULL)
4574 fixp->tc_fix_data.inst = new_inst;
4575 if (aarch64_gas_internal_fixup_p ())
4576 {
4577 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4578 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4579 fixp->fx_addnumber = inst.reloc.flags;
4580 }
4581 }
4582
4583 dwarf2_emit_insn (INSN_SIZE);
4584}
4585
4586/* Link together opcodes of the same name. */
4587
4588struct templates
4589{
4590 aarch64_opcode *opcode;
4591 struct templates *next;
4592};
4593
4594typedef struct templates templates;
4595
4596static templates *
4597lookup_mnemonic (const char *start, int len)
4598{
4599 templates *templ = NULL;
4600
4601 templ = hash_find_n (aarch64_ops_hsh, start, len);
4602 return templ;
4603}
4604
4605/* Subroutine of md_assemble, responsible for looking up the primary
4606 opcode from the mnemonic the user wrote. STR points to the
4607 beginning of the mnemonic. */
4608
4609static templates *
4610opcode_lookup (char **str)
4611{
4612 char *end, *base;
4613 const aarch64_cond *cond;
4614 char condname[16];
4615 int len;
4616
4617 /* Scan up to the end of the mnemonic, which must end in white space,
4618 '.', or end of string. */
4619 for (base = end = *str; is_part_of_name(*end); end++)
4620 if (*end == '.')
4621 break;
4622
4623 if (end == base)
4624 return 0;
4625
4626 inst.cond = COND_ALWAYS;
4627
4628 /* Handle a possible condition. */
4629 if (end[0] == '.')
4630 {
4631 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4632 if (cond)
4633 {
4634 inst.cond = cond->value;
4635 *str = end + 3;
4636 }
4637 else
4638 {
4639 *str = end;
4640 return 0;
4641 }
4642 }
4643 else
4644 *str = end;
4645
4646 len = end - base;
4647
4648 if (inst.cond == COND_ALWAYS)
4649 {
4650 /* Look for unaffixed mnemonic. */
4651 return lookup_mnemonic (base, len);
4652 }
4653 else if (len <= 13)
4654 {
4655 /* append ".c" to mnemonic if conditional */
4656 memcpy (condname, base, len);
4657 memcpy (condname + len, ".c", 2);
4658 base = condname;
4659 len += 2;
4660 return lookup_mnemonic (base, len);
4661 }
4662
4663 return NULL;
4664}
4665
4666/* Internal helper routine converting a vector neon_type_el structure
4667 *VECTYPE to a corresponding operand qualifier. */
4668
4669static inline aarch64_opnd_qualifier_t
4670vectype_to_qualifier (const struct neon_type_el *vectype)
4671{
4672 /* Element size in bytes indexed by neon_el_type. */
4673 const unsigned char ele_size[5]
4674 = {1, 2, 4, 8, 16};
65f2205d
MW
4675 const unsigned int ele_base [5] =
4676 {
4677 AARCH64_OPND_QLF_V_8B,
3067d3b9 4678 AARCH64_OPND_QLF_V_2H,
65f2205d
MW
4679 AARCH64_OPND_QLF_V_2S,
4680 AARCH64_OPND_QLF_V_1D,
4681 AARCH64_OPND_QLF_V_1Q
4682 };
a06ea964
NC
4683
4684 if (!vectype->defined || vectype->type == NT_invtype)
4685 goto vectype_conversion_fail;
4686
4687 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4688
4689 if (vectype->defined & NTA_HASINDEX)
4690 /* Vector element register. */
4691 return AARCH64_OPND_QLF_S_B + vectype->type;
4692 else
4693 {
4694 /* Vector register. */
4695 int reg_size = ele_size[vectype->type] * vectype->width;
4696 unsigned offset;
65f2205d 4697 unsigned shift;
3067d3b9 4698 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
a06ea964 4699 goto vectype_conversion_fail;
65f2205d
MW
4700
4701 /* The conversion is by calculating the offset from the base operand
4702 qualifier for the vector type. The operand qualifiers are regular
4703 enough that the offset can established by shifting the vector width by
4704 a vector-type dependent amount. */
4705 shift = 0;
4706 if (vectype->type == NT_b)
4707 shift = 4;
3067d3b9 4708 else if (vectype->type == NT_h || vectype->type == NT_s)
65f2205d
MW
4709 shift = 2;
4710 else if (vectype->type >= NT_d)
4711 shift = 1;
4712 else
4713 gas_assert (0);
4714
4715 offset = ele_base [vectype->type] + (vectype->width >> shift);
4716 gas_assert (AARCH64_OPND_QLF_V_8B <= offset
4717 && offset <= AARCH64_OPND_QLF_V_1Q);
4718 return offset;
a06ea964
NC
4719 }
4720
4721vectype_conversion_fail:
4722 first_error (_("bad vector arrangement type"));
4723 return AARCH64_OPND_QLF_NIL;
4724}
4725
4726/* Process an optional operand that is found omitted from the assembly line.
4727 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4728 instruction's opcode entry while IDX is the index of this omitted operand.
4729 */
4730
4731static void
4732process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4733 int idx, aarch64_opnd_info *operand)
4734{
4735 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4736 gas_assert (optional_operand_p (opcode, idx));
4737 gas_assert (!operand->present);
4738
4739 switch (type)
4740 {
4741 case AARCH64_OPND_Rd:
4742 case AARCH64_OPND_Rn:
4743 case AARCH64_OPND_Rm:
4744 case AARCH64_OPND_Rt:
4745 case AARCH64_OPND_Rt2:
4746 case AARCH64_OPND_Rs:
4747 case AARCH64_OPND_Ra:
4748 case AARCH64_OPND_Rt_SYS:
4749 case AARCH64_OPND_Rd_SP:
4750 case AARCH64_OPND_Rn_SP:
4751 case AARCH64_OPND_Fd:
4752 case AARCH64_OPND_Fn:
4753 case AARCH64_OPND_Fm:
4754 case AARCH64_OPND_Fa:
4755 case AARCH64_OPND_Ft:
4756 case AARCH64_OPND_Ft2:
4757 case AARCH64_OPND_Sd:
4758 case AARCH64_OPND_Sn:
4759 case AARCH64_OPND_Sm:
4760 case AARCH64_OPND_Vd:
4761 case AARCH64_OPND_Vn:
4762 case AARCH64_OPND_Vm:
4763 case AARCH64_OPND_VdD1:
4764 case AARCH64_OPND_VnD1:
4765 operand->reg.regno = default_value;
4766 break;
4767
4768 case AARCH64_OPND_Ed:
4769 case AARCH64_OPND_En:
4770 case AARCH64_OPND_Em:
4771 operand->reglane.regno = default_value;
4772 break;
4773
4774 case AARCH64_OPND_IDX:
4775 case AARCH64_OPND_BIT_NUM:
4776 case AARCH64_OPND_IMMR:
4777 case AARCH64_OPND_IMMS:
4778 case AARCH64_OPND_SHLL_IMM:
4779 case AARCH64_OPND_IMM_VLSL:
4780 case AARCH64_OPND_IMM_VLSR:
4781 case AARCH64_OPND_CCMP_IMM:
4782 case AARCH64_OPND_FBITS:
4783 case AARCH64_OPND_UIMM4:
4784 case AARCH64_OPND_UIMM3_OP1:
4785 case AARCH64_OPND_UIMM3_OP2:
4786 case AARCH64_OPND_IMM:
4787 case AARCH64_OPND_WIDTH:
4788 case AARCH64_OPND_UIMM7:
4789 case AARCH64_OPND_NZCV:
4790 operand->imm.value = default_value;
4791 break;
4792
4793 case AARCH64_OPND_EXCEPTION:
4794 inst.reloc.type = BFD_RELOC_UNUSED;
4795 break;
4796
4797 case AARCH64_OPND_BARRIER_ISB:
4798 operand->barrier = aarch64_barrier_options + default_value;
4799
4800 default:
4801 break;
4802 }
4803}
4804
4805/* Process the relocation type for move wide instructions.
4806 Return TRUE on success; otherwise return FALSE. */
4807
4808static bfd_boolean
4809process_movw_reloc_info (void)
4810{
4811 int is32;
4812 unsigned shift;
4813
4814 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4815
4816 if (inst.base.opcode->op == OP_MOVK)
4817 switch (inst.reloc.type)
4818 {
4819 case BFD_RELOC_AARCH64_MOVW_G0_S:
4820 case BFD_RELOC_AARCH64_MOVW_G1_S:
4821 case BFD_RELOC_AARCH64_MOVW_G2_S:
1aa66fb1 4822 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 4823 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 4824 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
4825 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4826 set_syntax_error
4827 (_("the specified relocation type is not allowed for MOVK"));
4828 return FALSE;
4829 default:
4830 break;
4831 }
4832
4833 switch (inst.reloc.type)
4834 {
4835 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 4836 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 4837 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 4838 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
43a357f9 4839 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 4840 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 4841 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
4842 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
4843 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
4844 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4845 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4846 shift = 0;
4847 break;
4848 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 4849 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 4850 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 4851 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 4852 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 4853 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 4854 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
4855 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
4856 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
4857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4859 shift = 16;
4860 break;
4861 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 4862 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 4863 case BFD_RELOC_AARCH64_MOVW_G2_S:
49df5539 4864 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
4865 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4866 if (is32)
4867 {
4868 set_fatal_syntax_error
4869 (_("the specified relocation type is not allowed for 32-bit "
4870 "register"));
4871 return FALSE;
4872 }
4873 shift = 32;
4874 break;
4875 case BFD_RELOC_AARCH64_MOVW_G3:
4876 if (is32)
4877 {
4878 set_fatal_syntax_error
4879 (_("the specified relocation type is not allowed for 32-bit "
4880 "register"));
4881 return FALSE;
4882 }
4883 shift = 48;
4884 break;
4885 default:
4886 /* More cases should be added when more MOVW-related relocation types
4887 are supported in GAS. */
4888 gas_assert (aarch64_gas_internal_fixup_p ());
4889 /* The shift amount should have already been set by the parser. */
4890 return TRUE;
4891 }
4892 inst.base.operands[1].shifter.amount = shift;
4893 return TRUE;
4894}
4895
4896/* A primitive log caculator. */
4897
4898static inline unsigned int
4899get_logsz (unsigned int size)
4900{
4901 const unsigned char ls[16] =
4902 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4903 if (size > 16)
4904 {
4905 gas_assert (0);
4906 return -1;
4907 }
4908 gas_assert (ls[size - 1] != (unsigned char)-1);
4909 return ls[size - 1];
4910}
4911
4912/* Determine and return the real reloc type code for an instruction
4913 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4914
4915static inline bfd_reloc_code_real_type
4916ldst_lo12_determine_real_reloc_type (void)
4917{
4c562523 4918 unsigned logsz;
a06ea964
NC
4919 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4920 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4921
4c562523
JW
4922 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
4923 {
4924 BFD_RELOC_AARCH64_LDST8_LO12,
4925 BFD_RELOC_AARCH64_LDST16_LO12,
4926 BFD_RELOC_AARCH64_LDST32_LO12,
4927 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 4928 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
4929 },
4930 {
4931 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
4932 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
4933 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
4934 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
4935 BFD_RELOC_AARCH64_NONE
4936 },
4937 {
4938 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
4939 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
4940 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
4941 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
4942 BFD_RELOC_AARCH64_NONE
4943 }
a06ea964
NC
4944 };
4945
4c562523
JW
4946 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
4947 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4948 || (inst.reloc.type
4949 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
a06ea964
NC
4950 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4951
4952 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4953 opd1_qlf =
4954 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4955 1, opd0_qlf, 0);
4956 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4957
4958 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523
JW
4959 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4960 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
4961 gas_assert (logsz <= 3);
4962 else
4963 gas_assert (logsz <= 4);
a06ea964 4964
4c562523
JW
4965 /* In reloc.c, these pseudo relocation types should be defined in similar
4966 order as above reloc_ldst_lo12 array. Because the array index calcuation
4967 below relies on this. */
4968 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
4969}
4970
4971/* Check whether a register list REGINFO is valid. The registers must be
4972 numbered in increasing order (modulo 32), in increments of one or two.
4973
4974 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4975 increments of two.
4976
4977 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4978
4979static bfd_boolean
4980reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4981{
4982 uint32_t i, nb_regs, prev_regno, incr;
4983
4984 nb_regs = 1 + (reginfo & 0x3);
4985 reginfo >>= 2;
4986 prev_regno = reginfo & 0x1f;
4987 incr = accept_alternate ? 2 : 1;
4988
4989 for (i = 1; i < nb_regs; ++i)
4990 {
4991 uint32_t curr_regno;
4992 reginfo >>= 5;
4993 curr_regno = reginfo & 0x1f;
4994 if (curr_regno != ((prev_regno + incr) & 0x1f))
4995 return FALSE;
4996 prev_regno = curr_regno;
4997 }
4998
4999 return TRUE;
5000}
5001
5002/* Generic instruction operand parser. This does no encoding and no
5003 semantic validation; it merely squirrels values away in the inst
5004 structure. Returns TRUE or FALSE depending on whether the
5005 specified grammar matched. */
5006
5007static bfd_boolean
5008parse_operands (char *str, const aarch64_opcode *opcode)
5009{
5010 int i;
5011 char *backtrack_pos = 0;
5012 const enum aarch64_opnd *operands = opcode->operands;
5013
5014 clear_error ();
5015 skip_whitespace (str);
5016
5017 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5018 {
5019 int64_t val;
5020 int isreg32, isregzero;
5021 int comma_skipped_p = 0;
5022 aarch64_reg_type rtype;
5023 struct neon_type_el vectype;
5024 aarch64_opnd_info *info = &inst.base.operands[i];
5025
5026 DEBUG_TRACE ("parse operand %d", i);
5027
5028 /* Assign the operand code. */
5029 info->type = operands[i];
5030
5031 if (optional_operand_p (opcode, i))
5032 {
5033 /* Remember where we are in case we need to backtrack. */
5034 gas_assert (!backtrack_pos);
5035 backtrack_pos = str;
5036 }
5037
5038 /* Expect comma between operands; the backtrack mechanizm will take
5039 care of cases of omitted optional operand. */
5040 if (i > 0 && ! skip_past_char (&str, ','))
5041 {
5042 set_syntax_error (_("comma expected between operands"));
5043 goto failure;
5044 }
5045 else
5046 comma_skipped_p = 1;
5047
5048 switch (operands[i])
5049 {
5050 case AARCH64_OPND_Rd:
5051 case AARCH64_OPND_Rn:
5052 case AARCH64_OPND_Rm:
5053 case AARCH64_OPND_Rt:
5054 case AARCH64_OPND_Rt2:
5055 case AARCH64_OPND_Rs:
5056 case AARCH64_OPND_Ra:
5057 case AARCH64_OPND_Rt_SYS:
ee804238 5058 case AARCH64_OPND_PAIRREG:
a06ea964
NC
5059 po_int_reg_or_fail (1, 0);
5060 break;
5061
5062 case AARCH64_OPND_Rd_SP:
5063 case AARCH64_OPND_Rn_SP:
5064 po_int_reg_or_fail (0, 1);
5065 break;
5066
5067 case AARCH64_OPND_Rm_EXT:
5068 case AARCH64_OPND_Rm_SFT:
5069 po_misc_or_fail (parse_shifter_operand
5070 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5071 ? SHIFTED_ARITH_IMM
5072 : SHIFTED_LOGIC_IMM)));
5073 if (!info->shifter.operator_present)
5074 {
5075 /* Default to LSL if not present. Libopcodes prefers shifter
5076 kind to be explicit. */
5077 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5078 info->shifter.kind = AARCH64_MOD_LSL;
5079 /* For Rm_EXT, libopcodes will carry out further check on whether
5080 or not stack pointer is used in the instruction (Recall that
5081 "the extend operator is not optional unless at least one of
5082 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5083 }
5084 break;
5085
5086 case AARCH64_OPND_Fd:
5087 case AARCH64_OPND_Fn:
5088 case AARCH64_OPND_Fm:
5089 case AARCH64_OPND_Fa:
5090 case AARCH64_OPND_Ft:
5091 case AARCH64_OPND_Ft2:
5092 case AARCH64_OPND_Sd:
5093 case AARCH64_OPND_Sn:
5094 case AARCH64_OPND_Sm:
5095 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5096 if (val == PARSE_FAIL)
5097 {
5098 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5099 goto failure;
5100 }
5101 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5102
5103 info->reg.regno = val;
5104 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5105 break;
5106
5107 case AARCH64_OPND_Vd:
5108 case AARCH64_OPND_Vn:
5109 case AARCH64_OPND_Vm:
5110 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5111 if (val == PARSE_FAIL)
5112 {
5113 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5114 goto failure;
5115 }
5116 if (vectype.defined & NTA_HASINDEX)
5117 goto failure;
5118
5119 info->reg.regno = val;
5120 info->qualifier = vectype_to_qualifier (&vectype);
5121 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5122 goto failure;
5123 break;
5124
5125 case AARCH64_OPND_VdD1:
5126 case AARCH64_OPND_VnD1:
5127 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5128 if (val == PARSE_FAIL)
5129 {
5130 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5131 goto failure;
5132 }
5133 if (vectype.type != NT_d || vectype.index != 1)
5134 {
5135 set_fatal_syntax_error
5136 (_("the top half of a 128-bit FP/SIMD register is expected"));
5137 goto failure;
5138 }
5139 info->reg.regno = val;
5140 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5141 here; it is correct for the purpose of encoding/decoding since
5142 only the register number is explicitly encoded in the related
5143 instructions, although this appears a bit hacky. */
5144 info->qualifier = AARCH64_OPND_QLF_S_D;
5145 break;
5146
5147 case AARCH64_OPND_Ed:
5148 case AARCH64_OPND_En:
5149 case AARCH64_OPND_Em:
5150 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5151 if (val == PARSE_FAIL)
5152 {
5153 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5154 goto failure;
5155 }
5156 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5157 goto failure;
5158
5159 info->reglane.regno = val;
5160 info->reglane.index = vectype.index;
5161 info->qualifier = vectype_to_qualifier (&vectype);
5162 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5163 goto failure;
5164 break;
5165
5166 case AARCH64_OPND_LVn:
5167 case AARCH64_OPND_LVt:
5168 case AARCH64_OPND_LVt_AL:
5169 case AARCH64_OPND_LEt:
5170 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
5171 goto failure;
5172 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5173 {
5174 set_fatal_syntax_error (_("invalid register list"));
5175 goto failure;
5176 }
5177 info->reglist.first_regno = (val >> 2) & 0x1f;
5178 info->reglist.num_regs = (val & 0x3) + 1;
5179 if (operands[i] == AARCH64_OPND_LEt)
5180 {
5181 if (!(vectype.defined & NTA_HASINDEX))
5182 goto failure;
5183 info->reglist.has_index = 1;
5184 info->reglist.index = vectype.index;
5185 }
5186 else if (!(vectype.defined & NTA_HASTYPE))
5187 goto failure;
5188 info->qualifier = vectype_to_qualifier (&vectype);
5189 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5190 goto failure;
5191 break;
5192
5193 case AARCH64_OPND_Cn:
5194 case AARCH64_OPND_Cm:
5195 po_reg_or_fail (REG_TYPE_CN);
5196 if (val > 15)
5197 {
5198 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
5199 goto failure;
5200 }
5201 inst.base.operands[i].reg.regno = val;
5202 break;
5203
5204 case AARCH64_OPND_SHLL_IMM:
5205 case AARCH64_OPND_IMM_VLSR:
5206 po_imm_or_fail (1, 64);
5207 info->imm.value = val;
5208 break;
5209
5210 case AARCH64_OPND_CCMP_IMM:
5211 case AARCH64_OPND_FBITS:
5212 case AARCH64_OPND_UIMM4:
5213 case AARCH64_OPND_UIMM3_OP1:
5214 case AARCH64_OPND_UIMM3_OP2:
5215 case AARCH64_OPND_IMM_VLSL:
5216 case AARCH64_OPND_IMM:
5217 case AARCH64_OPND_WIDTH:
5218 po_imm_nc_or_fail ();
5219 info->imm.value = val;
5220 break;
5221
5222 case AARCH64_OPND_UIMM7:
5223 po_imm_or_fail (0, 127);
5224 info->imm.value = val;
5225 break;
5226
5227 case AARCH64_OPND_IDX:
5228 case AARCH64_OPND_BIT_NUM:
5229 case AARCH64_OPND_IMMR:
5230 case AARCH64_OPND_IMMS:
5231 po_imm_or_fail (0, 63);
5232 info->imm.value = val;
5233 break;
5234
5235 case AARCH64_OPND_IMM0:
5236 po_imm_nc_or_fail ();
5237 if (val != 0)
5238 {
5239 set_fatal_syntax_error (_("immediate zero expected"));
5240 goto failure;
5241 }
5242 info->imm.value = 0;
5243 break;
5244
5245 case AARCH64_OPND_FPIMM0:
5246 {
5247 int qfloat;
5248 bfd_boolean res1 = FALSE, res2 = FALSE;
5249 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5250 it is probably not worth the effort to support it. */
62b0d0d5 5251 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
5252 && !(res2 = parse_constant_immediate (&str, &val)))
5253 goto failure;
5254 if ((res1 && qfloat == 0) || (res2 && val == 0))
5255 {
5256 info->imm.value = 0;
5257 info->imm.is_fp = 1;
5258 break;
5259 }
5260 set_fatal_syntax_error (_("immediate zero expected"));
5261 goto failure;
5262 }
5263
5264 case AARCH64_OPND_IMM_MOV:
5265 {
5266 char *saved = str;
8db49cc2
WN
5267 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5268 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
5269 goto failure;
5270 str = saved;
5271 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5272 GE_OPT_PREFIX, 1));
5273 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5274 later. fix_mov_imm_insn will try to determine a machine
5275 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5276 message if the immediate cannot be moved by a single
5277 instruction. */
5278 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5279 inst.base.operands[i].skip = 1;
5280 }
5281 break;
5282
5283 case AARCH64_OPND_SIMD_IMM:
5284 case AARCH64_OPND_SIMD_IMM_SFT:
5285 if (! parse_big_immediate (&str, &val))
5286 goto failure;
5287 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5288 /* addr_off_p */ 0,
5289 /* need_libopcodes_p */ 1,
5290 /* skip_p */ 1);
5291 /* Parse shift.
5292 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5293 shift, we don't check it here; we leave the checking to
5294 the libopcodes (operand_general_constraint_met_p). By
5295 doing this, we achieve better diagnostics. */
5296 if (skip_past_comma (&str)
5297 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5298 goto failure;
5299 if (!info->shifter.operator_present
5300 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5301 {
5302 /* Default to LSL if not present. Libopcodes prefers shifter
5303 kind to be explicit. */
5304 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5305 info->shifter.kind = AARCH64_MOD_LSL;
5306 }
5307 break;
5308
5309 case AARCH64_OPND_FPIMM:
5310 case AARCH64_OPND_SIMD_FPIMM:
5311 {
5312 int qfloat;
62b0d0d5
YZ
5313 bfd_boolean dp_p
5314 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
5315 == 8);
5316 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
5317 goto failure;
5318 if (qfloat == 0)
5319 {
5320 set_fatal_syntax_error (_("invalid floating-point constant"));
5321 goto failure;
5322 }
5323 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5324 inst.base.operands[i].imm.is_fp = 1;
5325 }
5326 break;
5327
5328 case AARCH64_OPND_LIMM:
5329 po_misc_or_fail (parse_shifter_operand (&str, info,
5330 SHIFTED_LOGIC_IMM));
5331 if (info->shifter.operator_present)
5332 {
5333 set_fatal_syntax_error
5334 (_("shift not allowed for bitmask immediate"));
5335 goto failure;
5336 }
5337 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5338 /* addr_off_p */ 0,
5339 /* need_libopcodes_p */ 1,
5340 /* skip_p */ 1);
5341 break;
5342
5343 case AARCH64_OPND_AIMM:
5344 if (opcode->op == OP_ADD)
5345 /* ADD may have relocation types. */
5346 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5347 SHIFTED_ARITH_IMM));
5348 else
5349 po_misc_or_fail (parse_shifter_operand (&str, info,
5350 SHIFTED_ARITH_IMM));
5351 switch (inst.reloc.type)
5352 {
5353 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5354 info->shifter.amount = 12;
5355 break;
5356 case BFD_RELOC_UNUSED:
5357 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5358 if (info->shifter.kind != AARCH64_MOD_NONE)
5359 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5360 inst.reloc.pc_rel = 0;
5361 break;
5362 default:
5363 break;
5364 }
5365 info->imm.value = 0;
5366 if (!info->shifter.operator_present)
5367 {
5368 /* Default to LSL if not present. Libopcodes prefers shifter
5369 kind to be explicit. */
5370 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5371 info->shifter.kind = AARCH64_MOD_LSL;
5372 }
5373 break;
5374
5375 case AARCH64_OPND_HALF:
5376 {
5377 /* #<imm16> or relocation. */
5378 int internal_fixup_p;
5379 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5380 if (internal_fixup_p)
5381 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5382 skip_whitespace (str);
5383 if (skip_past_comma (&str))
5384 {
5385 /* {, LSL #<shift>} */
5386 if (! aarch64_gas_internal_fixup_p ())
5387 {
5388 set_fatal_syntax_error (_("can't mix relocation modifier "
5389 "with explicit shift"));
5390 goto failure;
5391 }
5392 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5393 }
5394 else
5395 inst.base.operands[i].shifter.amount = 0;
5396 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5397 inst.base.operands[i].imm.value = 0;
5398 if (! process_movw_reloc_info ())
5399 goto failure;
5400 }
5401 break;
5402
5403 case AARCH64_OPND_EXCEPTION:
5404 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5405 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5406 /* addr_off_p */ 0,
5407 /* need_libopcodes_p */ 0,
5408 /* skip_p */ 1);
5409 break;
5410
5411 case AARCH64_OPND_NZCV:
5412 {
5413 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5414 if (nzcv != NULL)
5415 {
5416 str += 4;
5417 info->imm.value = nzcv->value;
5418 break;
5419 }
5420 po_imm_or_fail (0, 15);
5421 info->imm.value = val;
5422 }
5423 break;
5424
5425 case AARCH64_OPND_COND:
68a64283 5426 case AARCH64_OPND_COND1:
a06ea964
NC
5427 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5428 str += 2;
5429 if (info->cond == NULL)
5430 {
5431 set_syntax_error (_("invalid condition"));
5432 goto failure;
5433 }
68a64283
YZ
5434 else if (operands[i] == AARCH64_OPND_COND1
5435 && (info->cond->value & 0xe) == 0xe)
5436 {
5437 /* Not allow AL or NV. */
5438 set_default_error ();
5439 goto failure;
5440 }
a06ea964
NC
5441 break;
5442
5443 case AARCH64_OPND_ADDR_ADRP:
5444 po_misc_or_fail (parse_adrp (&str));
5445 /* Clear the value as operand needs to be relocated. */
5446 info->imm.value = 0;
5447 break;
5448
5449 case AARCH64_OPND_ADDR_PCREL14:
5450 case AARCH64_OPND_ADDR_PCREL19:
5451 case AARCH64_OPND_ADDR_PCREL21:
5452 case AARCH64_OPND_ADDR_PCREL26:
5453 po_misc_or_fail (parse_address_reloc (&str, info));
5454 if (!info->addr.pcrel)
5455 {
5456 set_syntax_error (_("invalid pc-relative address"));
5457 goto failure;
5458 }
5459 if (inst.gen_lit_pool
5460 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5461 {
5462 /* Only permit "=value" in the literal load instructions.
5463 The literal will be generated by programmer_friendly_fixup. */
5464 set_syntax_error (_("invalid use of \"=immediate\""));
5465 goto failure;
5466 }
5467 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5468 {
5469 set_syntax_error (_("unrecognized relocation suffix"));
5470 goto failure;
5471 }
5472 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5473 {
5474 info->imm.value = inst.reloc.exp.X_add_number;
5475 inst.reloc.type = BFD_RELOC_UNUSED;
5476 }
5477 else
5478 {
5479 info->imm.value = 0;
f41aef5f
RE
5480 if (inst.reloc.type == BFD_RELOC_UNUSED)
5481 switch (opcode->iclass)
5482 {
5483 case compbranch:
5484 case condbranch:
5485 /* e.g. CBZ or B.COND */
5486 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5487 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5488 break;
5489 case testbranch:
5490 /* e.g. TBZ */
5491 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5492 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5493 break;
5494 case branch_imm:
5495 /* e.g. B or BL */
5496 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5497 inst.reloc.type =
5498 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5499 : BFD_RELOC_AARCH64_JUMP26;
5500 break;
5501 case loadlit:
5502 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5503 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5504 break;
5505 case pcreladdr:
5506 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5507 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5508 break;
5509 default:
5510 gas_assert (0);
5511 abort ();
5512 }
a06ea964
NC
5513 inst.reloc.pc_rel = 1;
5514 }
5515 break;
5516
5517 case AARCH64_OPND_ADDR_SIMPLE:
5518 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5519 /* [<Xn|SP>{, #<simm>}] */
5520 po_char_or_fail ('[');
5521 po_reg_or_fail (REG_TYPE_R64_SP);
5522 /* Accept optional ", #0". */
5523 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5524 && skip_past_char (&str, ','))
5525 {
5526 skip_past_char (&str, '#');
5527 if (! skip_past_char (&str, '0'))
5528 {
5529 set_fatal_syntax_error
5530 (_("the optional immediate offset can only be 0"));
5531 goto failure;
5532 }
5533 }
5534 po_char_or_fail (']');
5535 info->addr.base_regno = val;
5536 break;
5537
5538 case AARCH64_OPND_ADDR_REGOFF:
5539 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5540 po_misc_or_fail (parse_address (&str, info, 0));
5541 if (info->addr.pcrel || !info->addr.offset.is_reg
5542 || !info->addr.preind || info->addr.postind
5543 || info->addr.writeback)
5544 {
5545 set_syntax_error (_("invalid addressing mode"));
5546 goto failure;
5547 }
5548 if (!info->shifter.operator_present)
5549 {
5550 /* Default to LSL if not present. Libopcodes prefers shifter
5551 kind to be explicit. */
5552 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5553 info->shifter.kind = AARCH64_MOD_LSL;
5554 }
5555 /* Qualifier to be deduced by libopcodes. */
5556 break;
5557
5558 case AARCH64_OPND_ADDR_SIMM7:
5559 po_misc_or_fail (parse_address (&str, info, 0));
5560 if (info->addr.pcrel || info->addr.offset.is_reg
5561 || (!info->addr.preind && !info->addr.postind))
5562 {
5563 set_syntax_error (_("invalid addressing mode"));
5564 goto failure;
5565 }
5566 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5567 /* addr_off_p */ 1,
5568 /* need_libopcodes_p */ 1,
5569 /* skip_p */ 0);
5570 break;
5571
5572 case AARCH64_OPND_ADDR_SIMM9:
5573 case AARCH64_OPND_ADDR_SIMM9_2:
5574 po_misc_or_fail (parse_address_reloc (&str, info));
5575 if (info->addr.pcrel || info->addr.offset.is_reg
5576 || (!info->addr.preind && !info->addr.postind)
5577 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5578 && info->addr.writeback))
5579 {
5580 set_syntax_error (_("invalid addressing mode"));
5581 goto failure;
5582 }
5583 if (inst.reloc.type != BFD_RELOC_UNUSED)
5584 {
5585 set_syntax_error (_("relocation not allowed"));
5586 goto failure;
5587 }
5588 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5589 /* addr_off_p */ 1,
5590 /* need_libopcodes_p */ 1,
5591 /* skip_p */ 0);
5592 break;
5593
5594 case AARCH64_OPND_ADDR_UIMM12:
5595 po_misc_or_fail (parse_address_reloc (&str, info));
5596 if (info->addr.pcrel || info->addr.offset.is_reg
5597 || !info->addr.preind || info->addr.writeback)
5598 {
5599 set_syntax_error (_("invalid addressing mode"));
5600 goto failure;
5601 }
5602 if (inst.reloc.type == BFD_RELOC_UNUSED)
5603 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
5604 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5605 || (inst.reloc.type
5606 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
5607 || (inst.reloc.type
5608 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
a06ea964
NC
5609 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5610 /* Leave qualifier to be determined by libopcodes. */
5611 break;
5612
5613 case AARCH64_OPND_SIMD_ADDR_POST:
5614 /* [<Xn|SP>], <Xm|#<amount>> */
5615 po_misc_or_fail (parse_address (&str, info, 1));
5616 if (!info->addr.postind || !info->addr.writeback)
5617 {
5618 set_syntax_error (_("invalid addressing mode"));
5619 goto failure;
5620 }
5621 if (!info->addr.offset.is_reg)
5622 {
5623 if (inst.reloc.exp.X_op == O_constant)
5624 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5625 else
5626 {
5627 set_fatal_syntax_error
5628 (_("writeback value should be an immediate constant"));
5629 goto failure;
5630 }
5631 }
5632 /* No qualifier. */
5633 break;
5634
5635 case AARCH64_OPND_SYSREG:
72ca8fad 5636 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
a203d9b7 5637 == PARSE_FAIL)
a06ea964 5638 {
a203d9b7
YZ
5639 set_syntax_error (_("unknown or missing system register name"));
5640 goto failure;
a06ea964 5641 }
a203d9b7 5642 inst.base.operands[i].sysreg = val;
a06ea964
NC
5643 break;
5644
5645 case AARCH64_OPND_PSTATEFIELD:
72ca8fad 5646 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
a3251895 5647 == PARSE_FAIL)
a06ea964
NC
5648 {
5649 set_syntax_error (_("unknown or missing PSTATE field name"));
5650 goto failure;
5651 }
5652 inst.base.operands[i].pstatefield = val;
5653 break;
5654
5655 case AARCH64_OPND_SYSREG_IC:
5656 inst.base.operands[i].sysins_op =
5657 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5658 goto sys_reg_ins;
5659 case AARCH64_OPND_SYSREG_DC:
5660 inst.base.operands[i].sysins_op =
5661 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5662 goto sys_reg_ins;
5663 case AARCH64_OPND_SYSREG_AT:
5664 inst.base.operands[i].sysins_op =
5665 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5666 goto sys_reg_ins;
5667 case AARCH64_OPND_SYSREG_TLBI:
5668 inst.base.operands[i].sysins_op =
5669 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5670sys_reg_ins:
5671 if (inst.base.operands[i].sysins_op == NULL)
5672 {
5673 set_fatal_syntax_error ( _("unknown or missing operation name"));
5674 goto failure;
5675 }
5676 break;
5677
5678 case AARCH64_OPND_BARRIER:
5679 case AARCH64_OPND_BARRIER_ISB:
5680 val = parse_barrier (&str);
5681 if (val != PARSE_FAIL
5682 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5683 {
5684 /* ISB only accepts options name 'sy'. */
5685 set_syntax_error
5686 (_("the specified option is not accepted in ISB"));
5687 /* Turn off backtrack as this optional operand is present. */
5688 backtrack_pos = 0;
5689 goto failure;
5690 }
5691 /* This is an extension to accept a 0..15 immediate. */
5692 if (val == PARSE_FAIL)
5693 po_imm_or_fail (0, 15);
5694 info->barrier = aarch64_barrier_options + val;
5695 break;
5696
5697 case AARCH64_OPND_PRFOP:
5698 val = parse_pldop (&str);
5699 /* This is an extension to accept a 0..31 immediate. */
5700 if (val == PARSE_FAIL)
5701 po_imm_or_fail (0, 31);
5702 inst.base.operands[i].prfop = aarch64_prfops + val;
5703 break;
5704
1e6f4800
MW
5705 case AARCH64_OPND_BARRIER_PSB:
5706 val = parse_barrier_psb (&str, &(info->hint_option));
5707 if (val == PARSE_FAIL)
5708 goto failure;
5709 break;
5710
a06ea964
NC
5711 default:
5712 as_fatal (_("unhandled operand code %d"), operands[i]);
5713 }
5714
5715 /* If we get here, this operand was successfully parsed. */
5716 inst.base.operands[i].present = 1;
5717 continue;
5718
5719failure:
5720 /* The parse routine should already have set the error, but in case
5721 not, set a default one here. */
5722 if (! error_p ())
5723 set_default_error ();
5724
5725 if (! backtrack_pos)
5726 goto parse_operands_return;
5727
f4c51f60
JW
5728 {
5729 /* We reach here because this operand is marked as optional, and
5730 either no operand was supplied or the operand was supplied but it
5731 was syntactically incorrect. In the latter case we report an
5732 error. In the former case we perform a few more checks before
5733 dropping through to the code to insert the default operand. */
5734
5735 char *tmp = backtrack_pos;
5736 char endchar = END_OF_INSN;
5737
5738 if (i != (aarch64_num_of_operands (opcode) - 1))
5739 endchar = ',';
5740 skip_past_char (&tmp, ',');
5741
5742 if (*tmp != endchar)
5743 /* The user has supplied an operand in the wrong format. */
5744 goto parse_operands_return;
5745
5746 /* Make sure there is not a comma before the optional operand.
5747 For example the fifth operand of 'sys' is optional:
5748
5749 sys #0,c0,c0,#0, <--- wrong
5750 sys #0,c0,c0,#0 <--- correct. */
5751 if (comma_skipped_p && i && endchar == END_OF_INSN)
5752 {
5753 set_fatal_syntax_error
5754 (_("unexpected comma before the omitted optional operand"));
5755 goto parse_operands_return;
5756 }
5757 }
5758
a06ea964
NC
5759 /* Reaching here means we are dealing with an optional operand that is
5760 omitted from the assembly line. */
5761 gas_assert (optional_operand_p (opcode, i));
5762 info->present = 0;
5763 process_omitted_operand (operands[i], opcode, i, info);
5764
5765 /* Try again, skipping the optional operand at backtrack_pos. */
5766 str = backtrack_pos;
5767 backtrack_pos = 0;
5768
a06ea964
NC
5769 /* Clear any error record after the omitted optional operand has been
5770 successfully handled. */
5771 clear_error ();
5772 }
5773
5774 /* Check if we have parsed all the operands. */
5775 if (*str != '\0' && ! error_p ())
5776 {
5777 /* Set I to the index of the last present operand; this is
5778 for the purpose of diagnostics. */
5779 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5780 ;
5781 set_fatal_syntax_error
5782 (_("unexpected characters following instruction"));
5783 }
5784
5785parse_operands_return:
5786
5787 if (error_p ())
5788 {
5789 DEBUG_TRACE ("parsing FAIL: %s - %s",
5790 operand_mismatch_kind_names[get_error_kind ()],
5791 get_error_message ());
5792 /* Record the operand error properly; this is useful when there
5793 are multiple instruction templates for a mnemonic name, so that
5794 later on, we can select the error that most closely describes
5795 the problem. */
5796 record_operand_error (opcode, i, get_error_kind (),
5797 get_error_message ());
5798 return FALSE;
5799 }
5800 else
5801 {
5802 DEBUG_TRACE ("parsing SUCCESS");
5803 return TRUE;
5804 }
5805}
5806
5807/* It does some fix-up to provide some programmer friendly feature while
5808 keeping the libopcodes happy, i.e. libopcodes only accepts
5809 the preferred architectural syntax.
5810 Return FALSE if there is any failure; otherwise return TRUE. */
5811
5812static bfd_boolean
5813programmer_friendly_fixup (aarch64_instruction *instr)
5814{
5815 aarch64_inst *base = &instr->base;
5816 const aarch64_opcode *opcode = base->opcode;
5817 enum aarch64_op op = opcode->op;
5818 aarch64_opnd_info *operands = base->operands;
5819
5820 DEBUG_TRACE ("enter");
5821
5822 switch (opcode->iclass)
5823 {
5824 case testbranch:
5825 /* TBNZ Xn|Wn, #uimm6, label
5826 Test and Branch Not Zero: conditionally jumps to label if bit number
5827 uimm6 in register Xn is not zero. The bit number implies the width of
5828 the register, which may be written and should be disassembled as Wn if
5829 uimm is less than 32. */
5830 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5831 {
5832 if (operands[1].imm.value >= 32)
5833 {
5834 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5835 0, 31);
5836 return FALSE;
5837 }
5838 operands[0].qualifier = AARCH64_OPND_QLF_X;
5839 }
5840 break;
5841 case loadlit:
5842 /* LDR Wt, label | =value
5843 As a convenience assemblers will typically permit the notation
5844 "=value" in conjunction with the pc-relative literal load instructions
5845 to automatically place an immediate value or symbolic address in a
5846 nearby literal pool and generate a hidden label which references it.
5847 ISREG has been set to 0 in the case of =value. */
5848 if (instr->gen_lit_pool
5849 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5850 {
5851 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5852 if (op == OP_LDRSW_LIT)
5853 size = 4;
5854 if (instr->reloc.exp.X_op != O_constant
67a32447 5855 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5856 && instr->reloc.exp.X_op != O_symbol)
5857 {
5858 record_operand_error (opcode, 1,
5859 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5860 _("constant expression expected"));
5861 return FALSE;
5862 }
5863 if (! add_to_lit_pool (&instr->reloc.exp, size))
5864 {
5865 record_operand_error (opcode, 1,
5866 AARCH64_OPDE_OTHER_ERROR,
5867 _("literal pool insertion failed"));
5868 return FALSE;
5869 }
5870 }
5871 break;
a06ea964
NC
5872 case log_shift:
5873 case bitfield:
5874 /* UXT[BHW] Wd, Wn
5875 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5876 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5877 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5878 A programmer-friendly assembler should accept a destination Xd in
5879 place of Wd, however that is not the preferred form for disassembly.
5880 */
5881 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5882 && operands[1].qualifier == AARCH64_OPND_QLF_W
5883 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5884 operands[0].qualifier = AARCH64_OPND_QLF_W;
5885 break;
5886
5887 case addsub_ext:
5888 {
5889 /* In the 64-bit form, the final register operand is written as Wm
5890 for all but the (possibly omitted) UXTX/LSL and SXTX
5891 operators.
5892 As a programmer-friendly assembler, we accept e.g.
5893 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5894 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5895 int idx = aarch64_operand_index (opcode->operands,
5896 AARCH64_OPND_Rm_EXT);
5897 gas_assert (idx == 1 || idx == 2);
5898 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5899 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5900 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5901 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5902 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5903 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5904 }
5905 break;
5906
5907 default:
5908 break;
5909 }
5910
5911 DEBUG_TRACE ("exit with SUCCESS");
5912 return TRUE;
5913}
5914
5c47e525 5915/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
5916
5917static void
5918warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5919{
5920 aarch64_inst *base = &instr->base;
5921 const aarch64_opcode *opcode = base->opcode;
5922 const aarch64_opnd_info *opnds = base->operands;
5923 switch (opcode->iclass)
5924 {
5925 case ldst_pos:
5926 case ldst_imm9:
5927 case ldst_unscaled:
5928 case ldst_unpriv:
5c47e525
RE
5929 /* Loading/storing the base register is unpredictable if writeback. */
5930 if ((aarch64_get_operand_class (opnds[0].type)
5931 == AARCH64_OPND_CLASS_INT_REG)
5932 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 5933 && opnds[1].addr.base_regno != REG_SP
54a28c4c 5934 && opnds[1].addr.writeback)
5c47e525 5935 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
5936 break;
5937 case ldstpair_off:
5938 case ldstnapair_offs:
5939 case ldstpair_indexed:
5c47e525
RE
5940 /* Loading/storing the base register is unpredictable if writeback. */
5941 if ((aarch64_get_operand_class (opnds[0].type)
5942 == AARCH64_OPND_CLASS_INT_REG)
5943 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5944 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 5945 && opnds[2].addr.base_regno != REG_SP
54a28c4c 5946 && opnds[2].addr.writeback)
5c47e525
RE
5947 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5948 /* Load operations must load different registers. */
54a28c4c
JW
5949 if ((opcode->opcode & (1 << 22))
5950 && opnds[0].reg.regno == opnds[1].reg.regno)
5951 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5952 break;
5953 default:
5954 break;
5955 }
5956}
5957
a06ea964
NC
5958/* A wrapper function to interface with libopcodes on encoding and
5959 record the error message if there is any.
5960
5961 Return TRUE on success; otherwise return FALSE. */
5962
5963static bfd_boolean
5964do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5965 aarch64_insn *code)
5966{
5967 aarch64_operand_error error_info;
5968 error_info.kind = AARCH64_OPDE_NIL;
5969 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5970 return TRUE;
5971 else
5972 {
5973 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5974 record_operand_error_info (opcode, &error_info);
5975 return FALSE;
5976 }
5977}
5978
5979#ifdef DEBUG_AARCH64
5980static inline void
5981dump_opcode_operands (const aarch64_opcode *opcode)
5982{
5983 int i = 0;
5984 while (opcode->operands[i] != AARCH64_OPND_NIL)
5985 {
5986 aarch64_verbose ("\t\t opnd%d: %s", i,
5987 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5988 ? aarch64_get_operand_name (opcode->operands[i])
5989 : aarch64_get_operand_desc (opcode->operands[i]));
5990 ++i;
5991 }
5992}
5993#endif /* DEBUG_AARCH64 */
5994
5995/* This is the guts of the machine-dependent assembler. STR points to a
5996 machine dependent instruction. This function is supposed to emit
5997 the frags/bytes it assembles to. */
5998
5999void
6000md_assemble (char *str)
6001{
6002 char *p = str;
6003 templates *template;
6004 aarch64_opcode *opcode;
6005 aarch64_inst *inst_base;
6006 unsigned saved_cond;
6007
6008 /* Align the previous label if needed. */
6009 if (last_label_seen != NULL)
6010 {
6011 symbol_set_frag (last_label_seen, frag_now);
6012 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6013 S_SET_SEGMENT (last_label_seen, now_seg);
6014 }
6015
6016 inst.reloc.type = BFD_RELOC_UNUSED;
6017
6018 DEBUG_TRACE ("\n\n");
6019 DEBUG_TRACE ("==============================");
6020 DEBUG_TRACE ("Enter md_assemble with %s", str);
6021
6022 template = opcode_lookup (&p);
6023 if (!template)
6024 {
6025 /* It wasn't an instruction, but it might be a register alias of
6026 the form alias .req reg directive. */
6027 if (!create_register_alias (str, p))
6028 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6029 str);
6030 return;
6031 }
6032
6033 skip_whitespace (p);
6034 if (*p == ',')
6035 {
6036 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6037 get_mnemonic_name (str), str);
6038 return;
6039 }
6040
6041 init_operand_error_report ();
6042
eb9d6cc9
RL
6043 /* Sections are assumed to start aligned. In executable section, there is no
6044 MAP_DATA symbol pending. So we only align the address during
6045 MAP_DATA --> MAP_INSN transition.
6046 For other sections, this is not guaranteed. */
6047 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6048 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6049 frag_align_code (2, 0);
6050
a06ea964
NC
6051 saved_cond = inst.cond;
6052 reset_aarch64_instruction (&inst);
6053 inst.cond = saved_cond;
6054
6055 /* Iterate through all opcode entries with the same mnemonic name. */
6056 do
6057 {
6058 opcode = template->opcode;
6059
6060 DEBUG_TRACE ("opcode %s found", opcode->name);
6061#ifdef DEBUG_AARCH64
6062 if (debug_dump)
6063 dump_opcode_operands (opcode);
6064#endif /* DEBUG_AARCH64 */
6065
a06ea964
NC
6066 mapping_state (MAP_INSN);
6067
6068 inst_base = &inst.base;
6069 inst_base->opcode = opcode;
6070
6071 /* Truly conditionally executed instructions, e.g. b.cond. */
6072 if (opcode->flags & F_COND)
6073 {
6074 gas_assert (inst.cond != COND_ALWAYS);
6075 inst_base->cond = get_cond_from_value (inst.cond);
6076 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6077 }
6078 else if (inst.cond != COND_ALWAYS)
6079 {
6080 /* It shouldn't arrive here, where the assembly looks like a
6081 conditional instruction but the found opcode is unconditional. */
6082 gas_assert (0);
6083 continue;
6084 }
6085
6086 if (parse_operands (p, opcode)
6087 && programmer_friendly_fixup (&inst)
6088 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6089 {
3f06bfce
YZ
6090 /* Check that this instruction is supported for this CPU. */
6091 if (!opcode->avariant
6092 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
6093 {
6094 as_bad (_("selected processor does not support `%s'"), str);
6095 return;
6096 }
6097
54a28c4c
JW
6098 warn_unpredictable_ldst (&inst, str);
6099
a06ea964
NC
6100 if (inst.reloc.type == BFD_RELOC_UNUSED
6101 || !inst.reloc.need_libopcodes_p)
6102 output_inst (NULL);
6103 else
6104 {
6105 /* If there is relocation generated for the instruction,
6106 store the instruction information for the future fix-up. */
6107 struct aarch64_inst *copy;
6108 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
6109 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
6110 abort ();
6111 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6112 output_inst (copy);
6113 }
6114 return;
6115 }
6116
6117 template = template->next;
6118 if (template != NULL)
6119 {
6120 reset_aarch64_instruction (&inst);
6121 inst.cond = saved_cond;
6122 }
6123 }
6124 while (template != NULL);
6125
6126 /* Issue the error messages if any. */
6127 output_operand_error_report (str);
6128}
6129
6130/* Various frobbings of labels and their addresses. */
6131
6132void
6133aarch64_start_line_hook (void)
6134{
6135 last_label_seen = NULL;
6136}
6137
6138void
6139aarch64_frob_label (symbolS * sym)
6140{
6141 last_label_seen = sym;
6142
6143 dwarf2_emit_label (sym);
6144}
6145
6146int
6147aarch64_data_in_code (void)
6148{
6149 if (!strncmp (input_line_pointer + 1, "data:", 5))
6150 {
6151 *input_line_pointer = '/';
6152 input_line_pointer += 5;
6153 *input_line_pointer = 0;
6154 return 1;
6155 }
6156
6157 return 0;
6158}
6159
6160char *
6161aarch64_canonicalize_symbol_name (char *name)
6162{
6163 int len;
6164
6165 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6166 *(name + len - 5) = 0;
6167
6168 return name;
6169}
6170\f
6171/* Table of all register names defined by default. The user can
6172 define additional names with .req. Note that all register names
6173 should appear in both upper and lowercase variants. Some registers
6174 also have mixed-case names. */
6175
6176#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6177#define REGNUM(p,n,t) REGDEF(p##n, n, t)
6178#define REGSET31(p,t) \
6179 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6180 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6181 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6182 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
6183 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6184 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6185 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6186 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6187#define REGSET(p,t) \
6188 REGSET31(p,t), REGNUM(p,31,t)
6189
6190/* These go into aarch64_reg_hsh hash-table. */
6191static const reg_entry reg_names[] = {
6192 /* Integer registers. */
6193 REGSET31 (x, R_64), REGSET31 (X, R_64),
6194 REGSET31 (w, R_32), REGSET31 (W, R_32),
6195
6196 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6197 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6198
6199 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6200 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6201
6202 /* Coprocessor register numbers. */
6203 REGSET (c, CN), REGSET (C, CN),
6204
6205 /* Floating-point single precision registers. */
6206 REGSET (s, FP_S), REGSET (S, FP_S),
6207
6208 /* Floating-point double precision registers. */
6209 REGSET (d, FP_D), REGSET (D, FP_D),
6210
6211 /* Floating-point half precision registers. */
6212 REGSET (h, FP_H), REGSET (H, FP_H),
6213
6214 /* Floating-point byte precision registers. */
6215 REGSET (b, FP_B), REGSET (B, FP_B),
6216
6217 /* Floating-point quad precision registers. */
6218 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6219
6220 /* FP/SIMD registers. */
6221 REGSET (v, VN), REGSET (V, VN),
6222};
6223
6224#undef REGDEF
6225#undef REGNUM
6226#undef REGSET
6227
6228#define N 1
6229#define n 0
6230#define Z 1
6231#define z 0
6232#define C 1
6233#define c 0
6234#define V 1
6235#define v 0
6236#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6237static const asm_nzcv nzcv_names[] = {
6238 {"nzcv", B (n, z, c, v)},
6239 {"nzcV", B (n, z, c, V)},
6240 {"nzCv", B (n, z, C, v)},
6241 {"nzCV", B (n, z, C, V)},
6242 {"nZcv", B (n, Z, c, v)},
6243 {"nZcV", B (n, Z, c, V)},
6244 {"nZCv", B (n, Z, C, v)},
6245 {"nZCV", B (n, Z, C, V)},
6246 {"Nzcv", B (N, z, c, v)},
6247 {"NzcV", B (N, z, c, V)},
6248 {"NzCv", B (N, z, C, v)},
6249 {"NzCV", B (N, z, C, V)},
6250 {"NZcv", B (N, Z, c, v)},
6251 {"NZcV", B (N, Z, c, V)},
6252 {"NZCv", B (N, Z, C, v)},
6253 {"NZCV", B (N, Z, C, V)}
6254};
6255
6256#undef N
6257#undef n
6258#undef Z
6259#undef z
6260#undef C
6261#undef c
6262#undef V
6263#undef v
6264#undef B
6265\f
6266/* MD interface: bits in the object file. */
6267
6268/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6269 for use in the a.out file, and stores them in the array pointed to by buf.
6270 This knows about the endian-ness of the target machine and does
6271 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6272 2 (short) and 4 (long) Floating numbers are put out as a series of
6273 LITTLENUMS (shorts, here at least). */
6274
6275void
6276md_number_to_chars (char *buf, valueT val, int n)
6277{
6278 if (target_big_endian)
6279 number_to_chars_bigendian (buf, val, n);
6280 else
6281 number_to_chars_littleendian (buf, val, n);
6282}
6283
6284/* MD interface: Sections. */
6285
6286/* Estimate the size of a frag before relaxing. Assume everything fits in
6287 4 bytes. */
6288
6289int
6290md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6291{
6292 fragp->fr_var = 4;
6293 return 4;
6294}
6295
6296/* Round up a section size to the appropriate boundary. */
6297
6298valueT
6299md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6300{
6301 return size;
6302}
6303
6304/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
6305 of an rs_align_code fragment.
6306
6307 Here we fill the frag with the appropriate info for padding the
6308 output stream. The resulting frag will consist of a fixed (fr_fix)
6309 and of a repeating (fr_var) part.
6310
6311 The fixed content is always emitted before the repeating content and
6312 these two parts are used as follows in constructing the output:
6313 - the fixed part will be used to align to a valid instruction word
6314 boundary, in case that we start at a misaligned address; as no
6315 executable instruction can live at the misaligned location, we
6316 simply fill with zeros;
6317 - the variable part will be used to cover the remaining padding and
6318 we fill using the AArch64 NOP instruction.
6319
6320 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6321 enough storage space for up to 3 bytes for padding the back to a valid
6322 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
6323
6324void
6325aarch64_handle_align (fragS * fragP)
6326{
6327 /* NOP = d503201f */
6328 /* AArch64 instructions are always little-endian. */
6329 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6330
6331 int bytes, fix, noop_size;
6332 char *p;
a06ea964
NC
6333
6334 if (fragP->fr_type != rs_align_code)
6335 return;
6336
6337 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6338 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
6339
6340#ifdef OBJ_ELF
6341 gas_assert (fragP->tc_frag_data.recorded);
6342#endif
6343
a06ea964 6344 noop_size = sizeof (aarch64_noop);
a06ea964 6345
f803aa8e
DPT
6346 fix = bytes & (noop_size - 1);
6347 if (fix)
a06ea964 6348 {
a06ea964
NC
6349#ifdef OBJ_ELF
6350 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6351#endif
6352 memset (p, 0, fix);
6353 p += fix;
f803aa8e 6354 fragP->fr_fix += fix;
a06ea964
NC
6355 }
6356
f803aa8e
DPT
6357 if (noop_size)
6358 memcpy (p, aarch64_noop, noop_size);
6359 fragP->fr_var = noop_size;
a06ea964
NC
6360}
6361
6362/* Perform target specific initialisation of a frag.
6363 Note - despite the name this initialisation is not done when the frag
6364 is created, but only when its type is assigned. A frag can be created
6365 and used a long time before its type is set, so beware of assuming that
6366 this initialisationis performed first. */
6367
6368#ifndef OBJ_ELF
6369void
6370aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6371 int max_chars ATTRIBUTE_UNUSED)
6372{
6373}
6374
6375#else /* OBJ_ELF is defined. */
6376void
6377aarch64_init_frag (fragS * fragP, int max_chars)
6378{
6379 /* Record a mapping symbol for alignment frags. We will delete this
6380 later if the alignment ends up empty. */
6381 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
6382 fragP->tc_frag_data.recorded = 1;
6383
6384 switch (fragP->fr_type)
a06ea964 6385 {
c7ad08e6
RL
6386 case rs_align:
6387 case rs_align_test:
6388 case rs_fill:
6389 mapping_state_2 (MAP_DATA, max_chars);
6390 break;
6391 case rs_align_code:
6392 mapping_state_2 (MAP_INSN, max_chars);
6393 break;
6394 default:
6395 break;
a06ea964
NC
6396 }
6397}
6398\f
6399/* Initialize the DWARF-2 unwind information for this procedure. */
6400
6401void
6402tc_aarch64_frame_initial_instructions (void)
6403{
6404 cfi_add_CFA_def_cfa (REG_SP, 0);
6405}
6406#endif /* OBJ_ELF */
6407
6408/* Convert REGNAME to a DWARF-2 register number. */
6409
6410int
6411tc_aarch64_regname_to_dw2regnum (char *regname)
6412{
6413 const reg_entry *reg = parse_reg (&regname);
6414 if (reg == NULL)
6415 return -1;
6416
6417 switch (reg->type)
6418 {
6419 case REG_TYPE_SP_32:
6420 case REG_TYPE_SP_64:
6421 case REG_TYPE_R_32:
6422 case REG_TYPE_R_64:
a2cac51c
RH
6423 return reg->number;
6424
a06ea964
NC
6425 case REG_TYPE_FP_B:
6426 case REG_TYPE_FP_H:
6427 case REG_TYPE_FP_S:
6428 case REG_TYPE_FP_D:
6429 case REG_TYPE_FP_Q:
a2cac51c
RH
6430 return reg->number + 64;
6431
a06ea964
NC
6432 default:
6433 break;
6434 }
6435 return -1;
6436}
6437
cec5225b
YZ
6438/* Implement DWARF2_ADDR_SIZE. */
6439
6440int
6441aarch64_dwarf2_addr_size (void)
6442{
6443#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6444 if (ilp32_p)
6445 return 4;
6446#endif
6447 return bfd_arch_bits_per_address (stdoutput) / 8;
6448}
6449
a06ea964
NC
6450/* MD interface: Symbol and relocation handling. */
6451
6452/* Return the address within the segment that a PC-relative fixup is
6453 relative to. For AArch64 PC-relative fixups applied to instructions
6454 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6455
6456long
6457md_pcrel_from_section (fixS * fixP, segT seg)
6458{
6459 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6460
6461 /* If this is pc-relative and we are going to emit a relocation
6462 then we just want to put out any pipeline compensation that the linker
6463 will need. Otherwise we want to use the calculated base. */
6464 if (fixP->fx_pcrel
6465 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6466 || aarch64_force_relocation (fixP)))
6467 base = 0;
6468
6469 /* AArch64 should be consistent for all pc-relative relocations. */
6470 return base + AARCH64_PCREL_OFFSET;
6471}
6472
6473/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6474 Otherwise we have no need to default values of symbols. */
6475
6476symbolS *
6477md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6478{
6479#ifdef OBJ_ELF
6480 if (name[0] == '_' && name[1] == 'G'
6481 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6482 {
6483 if (!GOT_symbol)
6484 {
6485 if (symbol_find (name))
6486 as_bad (_("GOT already in the symbol table"));
6487
6488 GOT_symbol = symbol_new (name, undefined_section,
6489 (valueT) 0, &zero_address_frag);
6490 }
6491
6492 return GOT_symbol;
6493 }
6494#endif
6495
6496 return 0;
6497}
6498
6499/* Return non-zero if the indicated VALUE has overflowed the maximum
6500 range expressible by a unsigned number with the indicated number of
6501 BITS. */
6502
6503static bfd_boolean
6504unsigned_overflow (valueT value, unsigned bits)
6505{
6506 valueT lim;
6507 if (bits >= sizeof (valueT) * 8)
6508 return FALSE;
6509 lim = (valueT) 1 << bits;
6510 return (value >= lim);
6511}
6512
6513
6514/* Return non-zero if the indicated VALUE has overflowed the maximum
6515 range expressible by an signed number with the indicated number of
6516 BITS. */
6517
6518static bfd_boolean
6519signed_overflow (offsetT value, unsigned bits)
6520{
6521 offsetT lim;
6522 if (bits >= sizeof (offsetT) * 8)
6523 return FALSE;
6524 lim = (offsetT) 1 << (bits - 1);
6525 return (value < -lim || value >= lim);
6526}
6527
6528/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6529 unsigned immediate offset load/store instruction, try to encode it as
6530 an unscaled, 9-bit, signed immediate offset load/store instruction.
6531 Return TRUE if it is successful; otherwise return FALSE.
6532
6533 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6534 in response to the standard LDR/STR mnemonics when the immediate offset is
6535 unambiguous, i.e. when it is negative or unaligned. */
6536
6537static bfd_boolean
6538try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6539{
6540 int idx;
6541 enum aarch64_op new_op;
6542 const aarch64_opcode *new_opcode;
6543
6544 gas_assert (instr->opcode->iclass == ldst_pos);
6545
6546 switch (instr->opcode->op)
6547 {
6548 case OP_LDRB_POS:new_op = OP_LDURB; break;
6549 case OP_STRB_POS: new_op = OP_STURB; break;
6550 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6551 case OP_LDRH_POS: new_op = OP_LDURH; break;
6552 case OP_STRH_POS: new_op = OP_STURH; break;
6553 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6554 case OP_LDR_POS: new_op = OP_LDUR; break;
6555 case OP_STR_POS: new_op = OP_STUR; break;
6556 case OP_LDRF_POS: new_op = OP_LDURV; break;
6557 case OP_STRF_POS: new_op = OP_STURV; break;
6558 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6559 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6560 default: new_op = OP_NIL; break;
6561 }
6562
6563 if (new_op == OP_NIL)
6564 return FALSE;
6565
6566 new_opcode = aarch64_get_opcode (new_op);
6567 gas_assert (new_opcode != NULL);
6568
6569 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6570 instr->opcode->op, new_opcode->op);
6571
6572 aarch64_replace_opcode (instr, new_opcode);
6573
6574 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6575 qualifier matching may fail because the out-of-date qualifier will
6576 prevent the operand being updated with a new and correct qualifier. */
6577 idx = aarch64_operand_index (instr->opcode->operands,
6578 AARCH64_OPND_ADDR_SIMM9);
6579 gas_assert (idx == 1);
6580 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6581
6582 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6583
6584 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6585 return FALSE;
6586
6587 return TRUE;
6588}
6589
6590/* Called by fix_insn to fix a MOV immediate alias instruction.
6591
6592 Operand for a generic move immediate instruction, which is an alias
6593 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6594 a 32-bit/64-bit immediate value into general register. An assembler error
6595 shall result if the immediate cannot be created by a single one of these
6596 instructions. If there is a choice, then to ensure reversability an
6597 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6598
6599static void
6600fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6601{
6602 const aarch64_opcode *opcode;
6603
6604 /* Need to check if the destination is SP/ZR. The check has to be done
6605 before any aarch64_replace_opcode. */
6606 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6607 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6608
6609 instr->operands[1].imm.value = value;
6610 instr->operands[1].skip = 0;
6611
6612 if (try_mov_wide_p)
6613 {
6614 /* Try the MOVZ alias. */
6615 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6616 aarch64_replace_opcode (instr, opcode);
6617 if (aarch64_opcode_encode (instr->opcode, instr,
6618 &instr->value, NULL, NULL))
6619 {
6620 put_aarch64_insn (buf, instr->value);
6621 return;
6622 }
6623 /* Try the MOVK alias. */
6624 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6625 aarch64_replace_opcode (instr, opcode);
6626 if (aarch64_opcode_encode (instr->opcode, instr,
6627 &instr->value, NULL, NULL))
6628 {
6629 put_aarch64_insn (buf, instr->value);
6630 return;
6631 }
6632 }
6633
6634 if (try_mov_bitmask_p)
6635 {
6636 /* Try the ORR alias. */
6637 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6638 aarch64_replace_opcode (instr, opcode);
6639 if (aarch64_opcode_encode (instr->opcode, instr,
6640 &instr->value, NULL, NULL))
6641 {
6642 put_aarch64_insn (buf, instr->value);
6643 return;
6644 }
6645 }
6646
6647 as_bad_where (fixP->fx_file, fixP->fx_line,
6648 _("immediate cannot be moved by a single instruction"));
6649}
6650
6651/* An instruction operand which is immediate related may have symbol used
6652 in the assembly, e.g.
6653
6654 mov w0, u32
6655 .set u32, 0x00ffff00
6656
6657 At the time when the assembly instruction is parsed, a referenced symbol,
6658 like 'u32' in the above example may not have been seen; a fixS is created
6659 in such a case and is handled here after symbols have been resolved.
6660 Instruction is fixed up with VALUE using the information in *FIXP plus
6661 extra information in FLAGS.
6662
6663 This function is called by md_apply_fix to fix up instructions that need
6664 a fix-up described above but does not involve any linker-time relocation. */
6665
6666static void
6667fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6668{
6669 int idx;
6670 uint32_t insn;
6671 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6672 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6673 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6674
6675 if (new_inst)
6676 {
6677 /* Now the instruction is about to be fixed-up, so the operand that
6678 was previously marked as 'ignored' needs to be unmarked in order
6679 to get the encoding done properly. */
6680 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6681 new_inst->operands[idx].skip = 0;
6682 }
6683
6684 gas_assert (opnd != AARCH64_OPND_NIL);
6685
6686 switch (opnd)
6687 {
6688 case AARCH64_OPND_EXCEPTION:
6689 if (unsigned_overflow (value, 16))
6690 as_bad_where (fixP->fx_file, fixP->fx_line,
6691 _("immediate out of range"));
6692 insn = get_aarch64_insn (buf);
6693 insn |= encode_svc_imm (value);
6694 put_aarch64_insn (buf, insn);
6695 break;
6696
6697 case AARCH64_OPND_AIMM:
6698 /* ADD or SUB with immediate.
6699 NOTE this assumes we come here with a add/sub shifted reg encoding
6700 3 322|2222|2 2 2 21111 111111
6701 1 098|7654|3 2 1 09876 543210 98765 43210
6702 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6703 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6704 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6705 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6706 ->
6707 3 322|2222|2 2 221111111111
6708 1 098|7654|3 2 109876543210 98765 43210
6709 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6710 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6711 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6712 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6713 Fields sf Rn Rd are already set. */
6714 insn = get_aarch64_insn (buf);
6715 if (value < 0)
6716 {
6717 /* Add <-> sub. */
6718 insn = reencode_addsub_switch_add_sub (insn);
6719 value = -value;
6720 }
6721
6722 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6723 && unsigned_overflow (value, 12))
6724 {
6725 /* Try to shift the value by 12 to make it fit. */
6726 if (((value >> 12) << 12) == value
6727 && ! unsigned_overflow (value, 12 + 12))
6728 {
6729 value >>= 12;
6730 insn |= encode_addsub_imm_shift_amount (1);
6731 }
6732 }
6733
6734 if (unsigned_overflow (value, 12))
6735 as_bad_where (fixP->fx_file, fixP->fx_line,
6736 _("immediate out of range"));
6737
6738 insn |= encode_addsub_imm (value);
6739
6740 put_aarch64_insn (buf, insn);
6741 break;
6742
6743 case AARCH64_OPND_SIMD_IMM:
6744 case AARCH64_OPND_SIMD_IMM_SFT:
6745 case AARCH64_OPND_LIMM:
6746 /* Bit mask immediate. */
6747 gas_assert (new_inst != NULL);
6748 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6749 new_inst->operands[idx].imm.value = value;
6750 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6751 &new_inst->value, NULL, NULL))
6752 put_aarch64_insn (buf, new_inst->value);
6753 else
6754 as_bad_where (fixP->fx_file, fixP->fx_line,
6755 _("invalid immediate"));
6756 break;
6757
6758 case AARCH64_OPND_HALF:
6759 /* 16-bit unsigned immediate. */
6760 if (unsigned_overflow (value, 16))
6761 as_bad_where (fixP->fx_file, fixP->fx_line,
6762 _("immediate out of range"));
6763 insn = get_aarch64_insn (buf);
6764 insn |= encode_movw_imm (value & 0xffff);
6765 put_aarch64_insn (buf, insn);
6766 break;
6767
6768 case AARCH64_OPND_IMM_MOV:
6769 /* Operand for a generic move immediate instruction, which is
6770 an alias instruction that generates a single MOVZ, MOVN or ORR
6771 instruction to loads a 32-bit/64-bit immediate value into general
6772 register. An assembler error shall result if the immediate cannot be
6773 created by a single one of these instructions. If there is a choice,
6774 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6775 and MOVZ or MOVN to ORR. */
6776 gas_assert (new_inst != NULL);
6777 fix_mov_imm_insn (fixP, buf, new_inst, value);
6778 break;
6779
6780 case AARCH64_OPND_ADDR_SIMM7:
6781 case AARCH64_OPND_ADDR_SIMM9:
6782 case AARCH64_OPND_ADDR_SIMM9_2:
6783 case AARCH64_OPND_ADDR_UIMM12:
6784 /* Immediate offset in an address. */
6785 insn = get_aarch64_insn (buf);
6786
6787 gas_assert (new_inst != NULL && new_inst->value == insn);
6788 gas_assert (new_inst->opcode->operands[1] == opnd
6789 || new_inst->opcode->operands[2] == opnd);
6790
6791 /* Get the index of the address operand. */
6792 if (new_inst->opcode->operands[1] == opnd)
6793 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6794 idx = 1;
6795 else
6796 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6797 idx = 2;
6798
6799 /* Update the resolved offset value. */
6800 new_inst->operands[idx].addr.offset.imm = value;
6801
6802 /* Encode/fix-up. */
6803 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6804 &new_inst->value, NULL, NULL))
6805 {
6806 put_aarch64_insn (buf, new_inst->value);
6807 break;
6808 }
6809 else if (new_inst->opcode->iclass == ldst_pos
6810 && try_to_encode_as_unscaled_ldst (new_inst))
6811 {
6812 put_aarch64_insn (buf, new_inst->value);
6813 break;
6814 }
6815
6816 as_bad_where (fixP->fx_file, fixP->fx_line,
6817 _("immediate offset out of range"));
6818 break;
6819
6820 default:
6821 gas_assert (0);
6822 as_fatal (_("unhandled operand code %d"), opnd);
6823 }
6824}
6825
6826/* Apply a fixup (fixP) to segment data, once it has been determined
6827 by our caller that we have all the info we need to fix it up.
6828
6829 Parameter valP is the pointer to the value of the bits. */
6830
6831void
6832md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6833{
6834 offsetT value = *valP;
6835 uint32_t insn;
6836 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6837 int scale;
6838 unsigned flags = fixP->fx_addnumber;
6839
6840 DEBUG_TRACE ("\n\n");
6841 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6842 DEBUG_TRACE ("Enter md_apply_fix");
6843
6844 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6845
6846 /* Note whether this will delete the relocation. */
6847
6848 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6849 fixP->fx_done = 1;
6850
6851 /* Process the relocations. */
6852 switch (fixP->fx_r_type)
6853 {
6854 case BFD_RELOC_NONE:
6855 /* This will need to go in the object file. */
6856 fixP->fx_done = 0;
6857 break;
6858
6859 case BFD_RELOC_8:
6860 case BFD_RELOC_8_PCREL:
6861 if (fixP->fx_done || !seg->use_rela_p)
6862 md_number_to_chars (buf, value, 1);
6863 break;
6864
6865 case BFD_RELOC_16:
6866 case BFD_RELOC_16_PCREL:
6867 if (fixP->fx_done || !seg->use_rela_p)
6868 md_number_to_chars (buf, value, 2);
6869 break;
6870
6871 case BFD_RELOC_32:
6872 case BFD_RELOC_32_PCREL:
6873 if (fixP->fx_done || !seg->use_rela_p)
6874 md_number_to_chars (buf, value, 4);
6875 break;
6876
6877 case BFD_RELOC_64:
6878 case BFD_RELOC_64_PCREL:
6879 if (fixP->fx_done || !seg->use_rela_p)
6880 md_number_to_chars (buf, value, 8);
6881 break;
6882
6883 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6884 /* We claim that these fixups have been processed here, even if
6885 in fact we generate an error because we do not have a reloc
6886 for them, so tc_gen_reloc() will reject them. */
6887 fixP->fx_done = 1;
6888 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6889 {
6890 as_bad_where (fixP->fx_file, fixP->fx_line,
6891 _("undefined symbol %s used as an immediate value"),
6892 S_GET_NAME (fixP->fx_addsy));
6893 goto apply_fix_return;
6894 }
6895 fix_insn (fixP, flags, value);
6896 break;
6897
6898 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6899 if (fixP->fx_done || !seg->use_rela_p)
6900 {
89d2a2a3
MS
6901 if (value & 3)
6902 as_bad_where (fixP->fx_file, fixP->fx_line,
6903 _("pc-relative load offset not word aligned"));
6904 if (signed_overflow (value, 21))
6905 as_bad_where (fixP->fx_file, fixP->fx_line,
6906 _("pc-relative load offset out of range"));
a06ea964
NC
6907 insn = get_aarch64_insn (buf);
6908 insn |= encode_ld_lit_ofs_19 (value >> 2);
6909 put_aarch64_insn (buf, insn);
6910 }
6911 break;
6912
6913 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6914 if (fixP->fx_done || !seg->use_rela_p)
6915 {
89d2a2a3
MS
6916 if (signed_overflow (value, 21))
6917 as_bad_where (fixP->fx_file, fixP->fx_line,
6918 _("pc-relative address offset out of range"));
a06ea964
NC
6919 insn = get_aarch64_insn (buf);
6920 insn |= encode_adr_imm (value);
6921 put_aarch64_insn (buf, insn);
6922 }
6923 break;
6924
6925 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6926 if (fixP->fx_done || !seg->use_rela_p)
6927 {
89d2a2a3
MS
6928 if (value & 3)
6929 as_bad_where (fixP->fx_file, fixP->fx_line,
6930 _("conditional branch target not word aligned"));
6931 if (signed_overflow (value, 21))
6932 as_bad_where (fixP->fx_file, fixP->fx_line,
6933 _("conditional branch out of range"));
a06ea964
NC
6934 insn = get_aarch64_insn (buf);
6935 insn |= encode_cond_branch_ofs_19 (value >> 2);
6936 put_aarch64_insn (buf, insn);
6937 }
6938 break;
6939
6940 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6941 if (fixP->fx_done || !seg->use_rela_p)
6942 {
89d2a2a3
MS
6943 if (value & 3)
6944 as_bad_where (fixP->fx_file, fixP->fx_line,
6945 _("conditional branch target not word aligned"));
6946 if (signed_overflow (value, 16))
6947 as_bad_where (fixP->fx_file, fixP->fx_line,
6948 _("conditional branch out of range"));
a06ea964
NC
6949 insn = get_aarch64_insn (buf);
6950 insn |= encode_tst_branch_ofs_14 (value >> 2);
6951 put_aarch64_insn (buf, insn);
6952 }
6953 break;
6954
a06ea964 6955 case BFD_RELOC_AARCH64_CALL26:
f09c556a 6956 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
6957 if (fixP->fx_done || !seg->use_rela_p)
6958 {
89d2a2a3
MS
6959 if (value & 3)
6960 as_bad_where (fixP->fx_file, fixP->fx_line,
6961 _("branch target not word aligned"));
6962 if (signed_overflow (value, 28))
6963 as_bad_where (fixP->fx_file, fixP->fx_line,
6964 _("branch out of range"));
a06ea964
NC
6965 insn = get_aarch64_insn (buf);
6966 insn |= encode_branch_ofs_26 (value >> 2);
6967 put_aarch64_insn (buf, insn);
6968 }
6969 break;
6970
6971 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 6972 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 6973 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 6974 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
a06ea964
NC
6975 scale = 0;
6976 goto movw_common;
6977 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 6978 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 6979 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 6980 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
6981 scale = 16;
6982 goto movw_common;
43a357f9
RL
6983 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6984 scale = 0;
6985 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6986 /* Should always be exported to object file, see
6987 aarch64_force_relocation(). */
6988 gas_assert (!fixP->fx_done);
6989 gas_assert (seg->use_rela_p);
6990 goto movw_common;
6991 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6992 scale = 16;
6993 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6994 /* Should always be exported to object file, see
6995 aarch64_force_relocation(). */
6996 gas_assert (!fixP->fx_done);
6997 gas_assert (seg->use_rela_p);
6998 goto movw_common;
a06ea964 6999 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 7000 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 7001 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
7002 scale = 32;
7003 goto movw_common;
7004 case BFD_RELOC_AARCH64_MOVW_G3:
7005 scale = 48;
7006 movw_common:
7007 if (fixP->fx_done || !seg->use_rela_p)
7008 {
7009 insn = get_aarch64_insn (buf);
7010
7011 if (!fixP->fx_done)
7012 {
7013 /* REL signed addend must fit in 16 bits */
7014 if (signed_overflow (value, 16))
7015 as_bad_where (fixP->fx_file, fixP->fx_line,
7016 _("offset out of range"));
7017 }
7018 else
7019 {
7020 /* Check for overflow and scale. */
7021 switch (fixP->fx_r_type)
7022 {
7023 case BFD_RELOC_AARCH64_MOVW_G0:
7024 case BFD_RELOC_AARCH64_MOVW_G1:
7025 case BFD_RELOC_AARCH64_MOVW_G2:
7026 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 7027 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 7028 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
7029 if (unsigned_overflow (value, scale + 16))
7030 as_bad_where (fixP->fx_file, fixP->fx_line,
7031 _("unsigned value out of range"));
7032 break;
7033 case BFD_RELOC_AARCH64_MOVW_G0_S:
7034 case BFD_RELOC_AARCH64_MOVW_G1_S:
7035 case BFD_RELOC_AARCH64_MOVW_G2_S:
7036 /* NOTE: We can only come here with movz or movn. */
7037 if (signed_overflow (value, scale + 16))
7038 as_bad_where (fixP->fx_file, fixP->fx_line,
7039 _("signed value out of range"));
7040 if (value < 0)
7041 {
7042 /* Force use of MOVN. */
7043 value = ~value;
7044 insn = reencode_movzn_to_movn (insn);
7045 }
7046 else
7047 {
7048 /* Force use of MOVZ. */
7049 insn = reencode_movzn_to_movz (insn);
7050 }
7051 break;
7052 default:
7053 /* Unchecked relocations. */
7054 break;
7055 }
7056 value >>= scale;
7057 }
7058
7059 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7060 insn |= encode_movw_imm (value & 0xffff);
7061
7062 put_aarch64_insn (buf, insn);
7063 }
7064 break;
7065
a6bb11b2
YZ
7066 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7067 fixP->fx_r_type = (ilp32_p
7068 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7069 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7070 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7071 /* Should always be exported to object file, see
7072 aarch64_force_relocation(). */
7073 gas_assert (!fixP->fx_done);
7074 gas_assert (seg->use_rela_p);
7075 break;
7076
7077 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7078 fixP->fx_r_type = (ilp32_p
7079 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7080 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
7081 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7082 /* Should always be exported to object file, see
7083 aarch64_force_relocation(). */
7084 gas_assert (!fixP->fx_done);
7085 gas_assert (seg->use_rela_p);
7086 break;
7087
2c0a3565
MS
7088 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7089 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7090 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7091 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7092 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7093 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 7094 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7095 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7096 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7097 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7098 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7099 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7100 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7101 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7102 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7103 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7104 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 7105 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7106 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7107 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7108 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7109 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7110 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7111 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7112 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7113 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7114 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7115 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7116 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7117 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7118 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7119 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7120 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7121 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7122 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7123 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7124 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7125 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7126 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7127 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7128 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7129 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7130 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7131 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7132 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7133 /* Should always be exported to object file, see
7134 aarch64_force_relocation(). */
7135 gas_assert (!fixP->fx_done);
7136 gas_assert (seg->use_rela_p);
7137 break;
7138
a6bb11b2
YZ
7139 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7140 /* Should always be exported to object file, see
7141 aarch64_force_relocation(). */
7142 fixP->fx_r_type = (ilp32_p
7143 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7144 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7145 gas_assert (!fixP->fx_done);
7146 gas_assert (seg->use_rela_p);
7147 break;
7148
a06ea964 7149 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
7150 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7151 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7152 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7153 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7154 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7155 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7156 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7157 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
7158 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7159 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
7160 case BFD_RELOC_AARCH64_LDST16_LO12:
7161 case BFD_RELOC_AARCH64_LDST32_LO12:
7162 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 7163 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
7164 /* Should always be exported to object file, see
7165 aarch64_force_relocation(). */
7166 gas_assert (!fixP->fx_done);
7167 gas_assert (seg->use_rela_p);
7168 break;
7169
7170 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 7171 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 7172 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
7173 break;
7174
b97e87cc
NC
7175 case BFD_RELOC_UNUSED:
7176 /* An error will already have been reported. */
7177 break;
7178
a06ea964
NC
7179 default:
7180 as_bad_where (fixP->fx_file, fixP->fx_line,
7181 _("unexpected %s fixup"),
7182 bfd_get_reloc_code_name (fixP->fx_r_type));
7183 break;
7184 }
7185
7186apply_fix_return:
7187 /* Free the allocated the struct aarch64_inst.
7188 N.B. currently there are very limited number of fix-up types actually use
7189 this field, so the impact on the performance should be minimal . */
7190 if (fixP->tc_fix_data.inst != NULL)
7191 free (fixP->tc_fix_data.inst);
7192
7193 return;
7194}
7195
7196/* Translate internal representation of relocation info to BFD target
7197 format. */
7198
7199arelent *
7200tc_gen_reloc (asection * section, fixS * fixp)
7201{
7202 arelent *reloc;
7203 bfd_reloc_code_real_type code;
7204
7205 reloc = xmalloc (sizeof (arelent));
7206
7207 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
7208 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7209 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7210
7211 if (fixp->fx_pcrel)
7212 {
7213 if (section->use_rela_p)
7214 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7215 else
7216 fixp->fx_offset = reloc->address;
7217 }
7218 reloc->addend = fixp->fx_offset;
7219
7220 code = fixp->fx_r_type;
7221 switch (code)
7222 {
7223 case BFD_RELOC_16:
7224 if (fixp->fx_pcrel)
7225 code = BFD_RELOC_16_PCREL;
7226 break;
7227
7228 case BFD_RELOC_32:
7229 if (fixp->fx_pcrel)
7230 code = BFD_RELOC_32_PCREL;
7231 break;
7232
7233 case BFD_RELOC_64:
7234 if (fixp->fx_pcrel)
7235 code = BFD_RELOC_64_PCREL;
7236 break;
7237
7238 default:
7239 break;
7240 }
7241
7242 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7243 if (reloc->howto == NULL)
7244 {
7245 as_bad_where (fixp->fx_file, fixp->fx_line,
7246 _
7247 ("cannot represent %s relocation in this object file format"),
7248 bfd_get_reloc_code_name (code));
7249 return NULL;
7250 }
7251
7252 return reloc;
7253}
7254
7255/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7256
7257void
7258cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7259{
7260 bfd_reloc_code_real_type type;
7261 int pcrel = 0;
7262
7263 /* Pick a reloc.
7264 FIXME: @@ Should look at CPU word size. */
7265 switch (size)
7266 {
7267 case 1:
7268 type = BFD_RELOC_8;
7269 break;
7270 case 2:
7271 type = BFD_RELOC_16;
7272 break;
7273 case 4:
7274 type = BFD_RELOC_32;
7275 break;
7276 case 8:
7277 type = BFD_RELOC_64;
7278 break;
7279 default:
7280 as_bad (_("cannot do %u-byte relocation"), size);
7281 type = BFD_RELOC_UNUSED;
7282 break;
7283 }
7284
7285 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7286}
7287
7288int
7289aarch64_force_relocation (struct fix *fixp)
7290{
7291 switch (fixp->fx_r_type)
7292 {
7293 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7294 /* Perform these "immediate" internal relocations
7295 even if the symbol is extern or weak. */
7296 return 0;
7297
a6bb11b2 7298 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
7299 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7300 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
7301 /* Pseudo relocs that need to be fixed up according to
7302 ilp32_p. */
7303 return 0;
7304
2c0a3565
MS
7305 case BFD_RELOC_AARCH64_ADD_LO12:
7306 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7307 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7308 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7309 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7310 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7311 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7312 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7313 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
7314 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7315 case BFD_RELOC_AARCH64_LDST128_LO12:
7316 case BFD_RELOC_AARCH64_LDST16_LO12:
7317 case BFD_RELOC_AARCH64_LDST32_LO12:
7318 case BFD_RELOC_AARCH64_LDST64_LO12:
7319 case BFD_RELOC_AARCH64_LDST8_LO12:
7320 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7321 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7322 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7323 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7324 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7325 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
43a357f9
RL
7326 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7327 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964 7328 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7329 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7330 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7331 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7332 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7333 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7334 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7335 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7336 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7337 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7338 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7339 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7340 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7341 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7342 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7343 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7344 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7345 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7346 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7347 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7348 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7349 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7350 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7351 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7352 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7353 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7354 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7355 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7356 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7357 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7358 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7359 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7360 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7361 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7362 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7363 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7364 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7365 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7366 /* Always leave these relocations for the linker. */
7367 return 1;
7368
7369 default:
7370 break;
7371 }
7372
7373 return generic_force_reloc (fixp);
7374}
7375
7376#ifdef OBJ_ELF
7377
7378const char *
7379elf64_aarch64_target_format (void)
7380{
a75cf613
ES
7381 if (strcmp (TARGET_OS, "cloudabi") == 0)
7382 {
7383 /* FIXME: What to do for ilp32_p ? */
7384 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
7385 }
a06ea964 7386 if (target_big_endian)
cec5225b 7387 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 7388 else
cec5225b 7389 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
7390}
7391
7392void
7393aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7394{
7395 elf_frob_symbol (symp, puntp);
7396}
7397#endif
7398
7399/* MD interface: Finalization. */
7400
7401/* A good place to do this, although this was probably not intended
7402 for this kind of use. We need to dump the literal pool before
7403 references are made to a null symbol pointer. */
7404
7405void
7406aarch64_cleanup (void)
7407{
7408 literal_pool *pool;
7409
7410 for (pool = list_of_pools; pool; pool = pool->next)
7411 {
7412 /* Put it at the end of the relevant section. */
7413 subseg_set (pool->section, pool->sub_section);
7414 s_ltorg (0);
7415 }
7416}
7417
7418#ifdef OBJ_ELF
7419/* Remove any excess mapping symbols generated for alignment frags in
7420 SEC. We may have created a mapping symbol before a zero byte
7421 alignment; remove it if there's a mapping symbol after the
7422 alignment. */
7423static void
7424check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7425 void *dummy ATTRIBUTE_UNUSED)
7426{
7427 segment_info_type *seginfo = seg_info (sec);
7428 fragS *fragp;
7429
7430 if (seginfo == NULL || seginfo->frchainP == NULL)
7431 return;
7432
7433 for (fragp = seginfo->frchainP->frch_root;
7434 fragp != NULL; fragp = fragp->fr_next)
7435 {
7436 symbolS *sym = fragp->tc_frag_data.last_map;
7437 fragS *next = fragp->fr_next;
7438
7439 /* Variable-sized frags have been converted to fixed size by
7440 this point. But if this was variable-sized to start with,
7441 there will be a fixed-size frag after it. So don't handle
7442 next == NULL. */
7443 if (sym == NULL || next == NULL)
7444 continue;
7445
7446 if (S_GET_VALUE (sym) < next->fr_address)
7447 /* Not at the end of this frag. */
7448 continue;
7449 know (S_GET_VALUE (sym) == next->fr_address);
7450
7451 do
7452 {
7453 if (next->tc_frag_data.first_map != NULL)
7454 {
7455 /* Next frag starts with a mapping symbol. Discard this
7456 one. */
7457 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7458 break;
7459 }
7460
7461 if (next->fr_next == NULL)
7462 {
7463 /* This mapping symbol is at the end of the section. Discard
7464 it. */
7465 know (next->fr_fix == 0 && next->fr_var == 0);
7466 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7467 break;
7468 }
7469
7470 /* As long as we have empty frags without any mapping symbols,
7471 keep looking. */
7472 /* If the next frag is non-empty and does not start with a
7473 mapping symbol, then this mapping symbol is required. */
7474 if (next->fr_address != next->fr_next->fr_address)
7475 break;
7476
7477 next = next->fr_next;
7478 }
7479 while (next != NULL);
7480 }
7481}
7482#endif
7483
7484/* Adjust the symbol table. */
7485
7486void
7487aarch64_adjust_symtab (void)
7488{
7489#ifdef OBJ_ELF
7490 /* Remove any overlapping mapping symbols generated by alignment frags. */
7491 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7492 /* Now do generic ELF adjustments. */
7493 elf_adjust_symtab ();
7494#endif
7495}
7496
7497static void
7498checked_hash_insert (struct hash_control *table, const char *key, void *value)
7499{
7500 const char *hash_err;
7501
7502 hash_err = hash_insert (table, key, value);
7503 if (hash_err)
7504 printf ("Internal Error: Can't hash %s\n", key);
7505}
7506
7507static void
7508fill_instruction_hash_table (void)
7509{
7510 aarch64_opcode *opcode = aarch64_opcode_table;
7511
7512 while (opcode->name != NULL)
7513 {
7514 templates *templ, *new_templ;
7515 templ = hash_find (aarch64_ops_hsh, opcode->name);
7516
7517 new_templ = (templates *) xmalloc (sizeof (templates));
7518 new_templ->opcode = opcode;
7519 new_templ->next = NULL;
7520
7521 if (!templ)
7522 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7523 else
7524 {
7525 new_templ->next = templ->next;
7526 templ->next = new_templ;
7527 }
7528 ++opcode;
7529 }
7530}
7531
7532static inline void
7533convert_to_upper (char *dst, const char *src, size_t num)
7534{
7535 unsigned int i;
7536 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7537 *dst = TOUPPER (*src);
7538 *dst = '\0';
7539}
7540
7541/* Assume STR point to a lower-case string, allocate, convert and return
7542 the corresponding upper-case string. */
7543static inline const char*
7544get_upper_str (const char *str)
7545{
7546 char *ret;
7547 size_t len = strlen (str);
7548 if ((ret = xmalloc (len + 1)) == NULL)
7549 abort ();
7550 convert_to_upper (ret, str, len);
7551 return ret;
7552}
7553
7554/* MD interface: Initialization. */
7555
7556void
7557md_begin (void)
7558{
7559 unsigned mach;
7560 unsigned int i;
7561
7562 if ((aarch64_ops_hsh = hash_new ()) == NULL
7563 || (aarch64_cond_hsh = hash_new ()) == NULL
7564 || (aarch64_shift_hsh = hash_new ()) == NULL
7565 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7566 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7567 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7568 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7569 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7570 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7571 || (aarch64_reg_hsh = hash_new ()) == NULL
7572 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7573 || (aarch64_nzcv_hsh = hash_new ()) == NULL
1e6f4800
MW
7574 || (aarch64_pldop_hsh = hash_new ()) == NULL
7575 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
a06ea964
NC
7576 as_fatal (_("virtual memory exhausted"));
7577
7578 fill_instruction_hash_table ();
7579
7580 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7581 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7582 (void *) (aarch64_sys_regs + i));
7583
7584 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7585 checked_hash_insert (aarch64_pstatefield_hsh,
7586 aarch64_pstatefields[i].name,
7587 (void *) (aarch64_pstatefields + i));
7588
875880c6 7589 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
a06ea964 7590 checked_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 7591 aarch64_sys_regs_ic[i].name,
a06ea964
NC
7592 (void *) (aarch64_sys_regs_ic + i));
7593
875880c6 7594 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
a06ea964 7595 checked_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 7596 aarch64_sys_regs_dc[i].name,
a06ea964
NC
7597 (void *) (aarch64_sys_regs_dc + i));
7598
875880c6 7599 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
a06ea964 7600 checked_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 7601 aarch64_sys_regs_at[i].name,
a06ea964
NC
7602 (void *) (aarch64_sys_regs_at + i));
7603
875880c6 7604 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
a06ea964 7605 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 7606 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
7607 (void *) (aarch64_sys_regs_tlbi + i));
7608
7609 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7610 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7611 (void *) (reg_names + i));
7612
7613 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7614 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7615 (void *) (nzcv_names + i));
7616
7617 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7618 {
7619 const char *name = aarch64_operand_modifiers[i].name;
7620 checked_hash_insert (aarch64_shift_hsh, name,
7621 (void *) (aarch64_operand_modifiers + i));
7622 /* Also hash the name in the upper case. */
7623 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7624 (void *) (aarch64_operand_modifiers + i));
7625 }
7626
7627 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7628 {
7629 unsigned int j;
7630 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7631 the same condition code. */
7632 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7633 {
7634 const char *name = aarch64_conds[i].names[j];
7635 if (name == NULL)
7636 break;
7637 checked_hash_insert (aarch64_cond_hsh, name,
7638 (void *) (aarch64_conds + i));
7639 /* Also hash the name in the upper case. */
7640 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7641 (void *) (aarch64_conds + i));
7642 }
7643 }
7644
7645 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7646 {
7647 const char *name = aarch64_barrier_options[i].name;
7648 /* Skip xx00 - the unallocated values of option. */
7649 if ((i & 0x3) == 0)
7650 continue;
7651 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7652 (void *) (aarch64_barrier_options + i));
7653 /* Also hash the name in the upper case. */
7654 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7655 (void *) (aarch64_barrier_options + i));
7656 }
7657
7658 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7659 {
7660 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7661 /* Skip the unallocated hint encodings. */
7662 if (name == NULL)
a06ea964
NC
7663 continue;
7664 checked_hash_insert (aarch64_pldop_hsh, name,
7665 (void *) (aarch64_prfops + i));
7666 /* Also hash the name in the upper case. */
7667 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7668 (void *) (aarch64_prfops + i));
7669 }
7670
1e6f4800
MW
7671 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
7672 {
7673 const char* name = aarch64_hint_options[i].name;
7674
7675 checked_hash_insert (aarch64_hint_opt_hsh, name,
7676 (void *) (aarch64_hint_options + i));
7677 /* Also hash the name in the upper case. */
7678 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7679 (void *) (aarch64_hint_options + i));
7680 }
7681
a06ea964
NC
7682 /* Set the cpu variant based on the command-line options. */
7683 if (!mcpu_cpu_opt)
7684 mcpu_cpu_opt = march_cpu_opt;
7685
7686 if (!mcpu_cpu_opt)
7687 mcpu_cpu_opt = &cpu_default;
7688
7689 cpu_variant = *mcpu_cpu_opt;
7690
7691 /* Record the CPU type. */
cec5225b 7692 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7693
7694 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7695}
7696
7697/* Command line processing. */
7698
7699const char *md_shortopts = "m:";
7700
7701#ifdef AARCH64_BI_ENDIAN
7702#define OPTION_EB (OPTION_MD_BASE + 0)
7703#define OPTION_EL (OPTION_MD_BASE + 1)
7704#else
7705#if TARGET_BYTES_BIG_ENDIAN
7706#define OPTION_EB (OPTION_MD_BASE + 0)
7707#else
7708#define OPTION_EL (OPTION_MD_BASE + 1)
7709#endif
7710#endif
7711
7712struct option md_longopts[] = {
7713#ifdef OPTION_EB
7714 {"EB", no_argument, NULL, OPTION_EB},
7715#endif
7716#ifdef OPTION_EL
7717 {"EL", no_argument, NULL, OPTION_EL},
7718#endif
7719 {NULL, no_argument, NULL, 0}
7720};
7721
7722size_t md_longopts_size = sizeof (md_longopts);
7723
7724struct aarch64_option_table
7725{
7726 char *option; /* Option name to match. */
7727 char *help; /* Help information. */
7728 int *var; /* Variable to change. */
7729 int value; /* What to change it to. */
7730 char *deprecated; /* If non-null, print this message. */
7731};
7732
7733static struct aarch64_option_table aarch64_opts[] = {
7734 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7735 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7736 NULL},
7737#ifdef DEBUG_AARCH64
7738 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7739#endif /* DEBUG_AARCH64 */
7740 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7741 NULL},
a52e6fd3
YZ
7742 {"mno-verbose-error", N_("do not output verbose error messages"),
7743 &verbose_error_p, 0, NULL},
a06ea964
NC
7744 {NULL, NULL, NULL, 0, NULL}
7745};
7746
7747struct aarch64_cpu_option_table
7748{
7749 char *name;
7750 const aarch64_feature_set value;
7751 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7752 case. */
7753 const char *canonical_name;
7754};
7755
7756/* This list should, at a minimum, contain all the cpu names
7757 recognized by GCC. */
7758static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7759 {"all", AARCH64_ANY, NULL},
9c352f1c
JG
7760 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
7761 AARCH64_FEATURE_CRC), "Cortex-A35"},
aa31c464
JW
7762 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7763 AARCH64_FEATURE_CRC), "Cortex-A53"},
7764 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7765 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
7766 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7767 AARCH64_FEATURE_CRC), "Cortex-A72"},
2412d878
EM
7768 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7769 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7770 "Samsung Exynos M1"},
6b21c2bf
JW
7771 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7772 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7773 "Qualcomm QDF24XX"},
faade851
JW
7774 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7775 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7776 "Cavium ThunderX"},
070cb956
PT
7777 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7778 in earlier releases and is superseded by 'xgene1' in all
7779 tools. */
9877c63c 7780 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 7781 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
7782 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7783 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
7784 {"generic", AARCH64_ARCH_V8, NULL},
7785
a06ea964
NC
7786 {NULL, AARCH64_ARCH_NONE, NULL}
7787};
7788
7789struct aarch64_arch_option_table
7790{
7791 char *name;
7792 const aarch64_feature_set value;
7793};
7794
7795/* This list should, at a minimum, contain all the architecture names
7796 recognized by GCC. */
7797static const struct aarch64_arch_option_table aarch64_archs[] = {
7798 {"all", AARCH64_ANY},
5a1ad39d 7799 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 7800 {"armv8.1-a", AARCH64_ARCH_V8_1},
acb787b0 7801 {"armv8.2-a", AARCH64_ARCH_V8_2},
a06ea964
NC
7802 {NULL, AARCH64_ARCH_NONE}
7803};
7804
7805/* ISA extensions. */
7806struct aarch64_option_cpu_value_table
7807{
7808 char *name;
7809 const aarch64_feature_set value;
7810};
7811
7812static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7813 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7814 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7815 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7816 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964 7817 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
72ca8fad 7818 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0)},
290806fd 7819 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0)},
9e1f0fa7
MW
7820 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_SIMD
7821 | AARCH64_FEATURE_RDMA, 0)},
87018195
MW
7822 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16
7823 | AARCH64_FEATURE_FP, 0)},
73af8ed6 7824 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0)},
a06ea964
NC
7825 {NULL, AARCH64_ARCH_NONE}
7826};
7827
7828struct aarch64_long_option_table
7829{
7830 char *option; /* Substring to match. */
7831 char *help; /* Help information. */
7832 int (*func) (char *subopt); /* Function to decode sub-option. */
7833 char *deprecated; /* If non-null, print this message. */
7834};
7835
7836static int
ae527cd8
JB
7837aarch64_parse_features (char *str, const aarch64_feature_set **opt_p,
7838 bfd_boolean ext_only)
a06ea964
NC
7839{
7840 /* We insist on extensions being added before being removed. We achieve
7841 this by using the ADDING_VALUE variable to indicate whether we are
7842 adding an extension (1) or removing it (0) and only allowing it to
7843 change in the order -1 -> 1 -> 0. */
7844 int adding_value = -1;
7845 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7846
7847 /* Copy the feature set, so that we can modify it. */
7848 *ext_set = **opt_p;
7849 *opt_p = ext_set;
7850
7851 while (str != NULL && *str != 0)
7852 {
7853 const struct aarch64_option_cpu_value_table *opt;
ae527cd8 7854 char *ext = NULL;
a06ea964
NC
7855 int optlen;
7856
ae527cd8 7857 if (!ext_only)
a06ea964 7858 {
ae527cd8
JB
7859 if (*str != '+')
7860 {
7861 as_bad (_("invalid architectural extension"));
7862 return 0;
7863 }
a06ea964 7864
ae527cd8
JB
7865 ext = strchr (++str, '+');
7866 }
a06ea964
NC
7867
7868 if (ext != NULL)
7869 optlen = ext - str;
7870 else
7871 optlen = strlen (str);
7872
7873 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7874 {
7875 if (adding_value != 0)
7876 adding_value = 0;
7877 optlen -= 2;
7878 str += 2;
7879 }
7880 else if (optlen > 0)
7881 {
7882 if (adding_value == -1)
7883 adding_value = 1;
7884 else if (adding_value != 1)
7885 {
7886 as_bad (_("must specify extensions to add before specifying "
7887 "those to remove"));
7888 return FALSE;
7889 }
7890 }
7891
7892 if (optlen == 0)
7893 {
7894 as_bad (_("missing architectural extension"));
7895 return 0;
7896 }
7897
7898 gas_assert (adding_value != -1);
7899
7900 for (opt = aarch64_features; opt->name != NULL; opt++)
7901 if (strncmp (opt->name, str, optlen) == 0)
7902 {
7903 /* Add or remove the extension. */
7904 if (adding_value)
7905 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7906 else
7907 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7908 break;
7909 }
7910
7911 if (opt->name == NULL)
7912 {
7913 as_bad (_("unknown architectural extension `%s'"), str);
7914 return 0;
7915 }
7916
7917 str = ext;
7918 };
7919
7920 return 1;
7921}
7922
7923static int
7924aarch64_parse_cpu (char *str)
7925{
7926 const struct aarch64_cpu_option_table *opt;
7927 char *ext = strchr (str, '+');
7928 size_t optlen;
7929
7930 if (ext != NULL)
7931 optlen = ext - str;
7932 else
7933 optlen = strlen (str);
7934
7935 if (optlen == 0)
7936 {
7937 as_bad (_("missing cpu name `%s'"), str);
7938 return 0;
7939 }
7940
7941 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7942 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7943 {
7944 mcpu_cpu_opt = &opt->value;
7945 if (ext != NULL)
ae527cd8 7946 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
7947
7948 return 1;
7949 }
7950
7951 as_bad (_("unknown cpu `%s'"), str);
7952 return 0;
7953}
7954
7955static int
7956aarch64_parse_arch (char *str)
7957{
7958 const struct aarch64_arch_option_table *opt;
7959 char *ext = strchr (str, '+');
7960 size_t optlen;
7961
7962 if (ext != NULL)
7963 optlen = ext - str;
7964 else
7965 optlen = strlen (str);
7966
7967 if (optlen == 0)
7968 {
7969 as_bad (_("missing architecture name `%s'"), str);
7970 return 0;
7971 }
7972
7973 for (opt = aarch64_archs; opt->name != NULL; opt++)
7974 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7975 {
7976 march_cpu_opt = &opt->value;
7977 if (ext != NULL)
ae527cd8 7978 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
7979
7980 return 1;
7981 }
7982
7983 as_bad (_("unknown architecture `%s'\n"), str);
7984 return 0;
7985}
7986
69091a2c
YZ
7987/* ABIs. */
7988struct aarch64_option_abi_value_table
7989{
7990 char *name;
7991 enum aarch64_abi_type value;
7992};
7993
7994static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7995 {"ilp32", AARCH64_ABI_ILP32},
7996 {"lp64", AARCH64_ABI_LP64},
7997 {NULL, 0}
7998};
7999
8000static int
8001aarch64_parse_abi (char *str)
8002{
8003 const struct aarch64_option_abi_value_table *opt;
8004 size_t optlen = strlen (str);
8005
8006 if (optlen == 0)
8007 {
8008 as_bad (_("missing abi name `%s'"), str);
8009 return 0;
8010 }
8011
8012 for (opt = aarch64_abis; opt->name != NULL; opt++)
8013 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8014 {
8015 aarch64_abi = opt->value;
8016 return 1;
8017 }
8018
8019 as_bad (_("unknown abi `%s'\n"), str);
8020 return 0;
8021}
8022
a06ea964 8023static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
8024#ifdef OBJ_ELF
8025 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8026 aarch64_parse_abi, NULL},
8027#endif /* OBJ_ELF */
a06ea964
NC
8028 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8029 aarch64_parse_cpu, NULL},
8030 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8031 aarch64_parse_arch, NULL},
8032 {NULL, NULL, 0, NULL}
8033};
8034
8035int
8036md_parse_option (int c, char *arg)
8037{
8038 struct aarch64_option_table *opt;
8039 struct aarch64_long_option_table *lopt;
8040
8041 switch (c)
8042 {
8043#ifdef OPTION_EB
8044 case OPTION_EB:
8045 target_big_endian = 1;
8046 break;
8047#endif
8048
8049#ifdef OPTION_EL
8050 case OPTION_EL:
8051 target_big_endian = 0;
8052 break;
8053#endif
8054
8055 case 'a':
8056 /* Listing option. Just ignore these, we don't support additional
8057 ones. */
8058 return 0;
8059
8060 default:
8061 for (opt = aarch64_opts; opt->option != NULL; opt++)
8062 {
8063 if (c == opt->option[0]
8064 && ((arg == NULL && opt->option[1] == 0)
8065 || streq (arg, opt->option + 1)))
8066 {
8067 /* If the option is deprecated, tell the user. */
8068 if (opt->deprecated != NULL)
8069 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8070 arg ? arg : "", _(opt->deprecated));
8071
8072 if (opt->var != NULL)
8073 *opt->var = opt->value;
8074
8075 return 1;
8076 }
8077 }
8078
8079 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8080 {
8081 /* These options are expected to have an argument. */
8082 if (c == lopt->option[0]
8083 && arg != NULL
8084 && strncmp (arg, lopt->option + 1,
8085 strlen (lopt->option + 1)) == 0)
8086 {
8087 /* If the option is deprecated, tell the user. */
8088 if (lopt->deprecated != NULL)
8089 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8090 _(lopt->deprecated));
8091
8092 /* Call the sup-option parser. */
8093 return lopt->func (arg + strlen (lopt->option) - 1);
8094 }
8095 }
8096
8097 return 0;
8098 }
8099
8100 return 1;
8101}
8102
8103void
8104md_show_usage (FILE * fp)
8105{
8106 struct aarch64_option_table *opt;
8107 struct aarch64_long_option_table *lopt;
8108
8109 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8110
8111 for (opt = aarch64_opts; opt->option != NULL; opt++)
8112 if (opt->help != NULL)
8113 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8114
8115 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8116 if (lopt->help != NULL)
8117 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8118
8119#ifdef OPTION_EB
8120 fprintf (fp, _("\
8121 -EB assemble code for a big-endian cpu\n"));
8122#endif
8123
8124#ifdef OPTION_EL
8125 fprintf (fp, _("\
8126 -EL assemble code for a little-endian cpu\n"));
8127#endif
8128}
8129
8130/* Parse a .cpu directive. */
8131
8132static void
8133s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
8134{
8135 const struct aarch64_cpu_option_table *opt;
8136 char saved_char;
8137 char *name;
8138 char *ext;
8139 size_t optlen;
8140
8141 name = input_line_pointer;
8142 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8143 input_line_pointer++;
8144 saved_char = *input_line_pointer;
8145 *input_line_pointer = 0;
8146
8147 ext = strchr (name, '+');
8148
8149 if (ext != NULL)
8150 optlen = ext - name;
8151 else
8152 optlen = strlen (name);
8153
8154 /* Skip the first "all" entry. */
8155 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
8156 if (strlen (opt->name) == optlen
8157 && strncmp (name, opt->name, optlen) == 0)
8158 {
8159 mcpu_cpu_opt = &opt->value;
8160 if (ext != NULL)
ae527cd8 8161 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8162 return;
8163
8164 cpu_variant = *mcpu_cpu_opt;
8165
8166 *input_line_pointer = saved_char;
8167 demand_empty_rest_of_line ();
8168 return;
8169 }
8170 as_bad (_("unknown cpu `%s'"), name);
8171 *input_line_pointer = saved_char;
8172 ignore_rest_of_line ();
8173}
8174
8175
8176/* Parse a .arch directive. */
8177
8178static void
8179s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
8180{
8181 const struct aarch64_arch_option_table *opt;
8182 char saved_char;
8183 char *name;
8184 char *ext;
8185 size_t optlen;
8186
8187 name = input_line_pointer;
8188 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8189 input_line_pointer++;
8190 saved_char = *input_line_pointer;
8191 *input_line_pointer = 0;
8192
8193 ext = strchr (name, '+');
8194
8195 if (ext != NULL)
8196 optlen = ext - name;
8197 else
8198 optlen = strlen (name);
8199
8200 /* Skip the first "all" entry. */
8201 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
8202 if (strlen (opt->name) == optlen
8203 && strncmp (name, opt->name, optlen) == 0)
8204 {
8205 mcpu_cpu_opt = &opt->value;
8206 if (ext != NULL)
ae527cd8 8207 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8208 return;
8209
8210 cpu_variant = *mcpu_cpu_opt;
8211
8212 *input_line_pointer = saved_char;
8213 demand_empty_rest_of_line ();
8214 return;
8215 }
8216
8217 as_bad (_("unknown architecture `%s'\n"), name);
8218 *input_line_pointer = saved_char;
8219 ignore_rest_of_line ();
8220}
8221
ae527cd8
JB
8222/* Parse a .arch_extension directive. */
8223
8224static void
8225s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8226{
8227 char saved_char;
8228 char *ext = input_line_pointer;;
8229
8230 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8231 input_line_pointer++;
8232 saved_char = *input_line_pointer;
8233 *input_line_pointer = 0;
8234
8235 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8236 return;
8237
8238 cpu_variant = *mcpu_cpu_opt;
8239
8240 *input_line_pointer = saved_char;
8241 demand_empty_rest_of_line ();
8242}
8243
a06ea964
NC
8244/* Copy symbol information. */
8245
8246void
8247aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8248{
8249 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
8250}