]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-aarch64.c
Fix a segmentation fault triggered when trying to handle an unresolved PE symbol...
[thirdparty/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
b90efa5b 3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
79enum neon_el_type
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q
87};
88
89/* Bits for DEFINED field in neon_type_el. */
90#define NTA_HASTYPE 1
91#define NTA_HASINDEX 2
92
93struct neon_type_el
94{
95 enum neon_el_type type;
96 unsigned char defined;
97 unsigned width;
98 int64_t index;
99};
100
101#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
102
103struct reloc
104{
105 bfd_reloc_code_real_type type;
106 expressionS exp;
107 int pc_rel;
108 enum aarch64_opnd opnd;
109 uint32_t flags;
110 unsigned need_libopcodes_p : 1;
111};
112
113struct aarch64_instruction
114{
115 /* libopcodes structure for instruction intermediate representation. */
116 aarch64_inst base;
117 /* Record assembly errors found during the parsing. */
118 struct
119 {
120 enum aarch64_operand_error_kind kind;
121 const char *error;
122 } parsing_error;
123 /* The condition that appears in the assembly line. */
124 int cond;
125 /* Relocation information (including the GAS internal fixup). */
126 struct reloc reloc;
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
129};
130
131typedef struct aarch64_instruction aarch64_instruction;
132
133static aarch64_instruction inst;
134
135static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
137
138/* Diagnostics inline function utilites.
139
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
150
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
153 templates. */
154
155static inline void
156clear_error (void)
157{
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
160}
161
162static inline bfd_boolean
163error_p (void)
164{
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
166}
167
168static inline const char *
169get_error_message (void)
170{
171 return inst.parsing_error.error;
172}
173
a06ea964
NC
174static inline enum aarch64_operand_error_kind
175get_error_kind (void)
176{
177 return inst.parsing_error.kind;
178}
179
a06ea964
NC
180static inline void
181set_error (enum aarch64_operand_error_kind kind, const char *error)
182{
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
185}
186
187static inline void
188set_recoverable_error (const char *error)
189{
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
191}
192
193/* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
195static inline void
196set_default_error (void)
197{
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
199}
200
201static inline void
202set_syntax_error (const char *error)
203{
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
205}
206
207static inline void
208set_first_syntax_error (const char *error)
209{
210 if (! error_p ())
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
212}
213
214static inline void
215set_fatal_syntax_error (const char *error)
216{
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
218}
219\f
220/* Number of littlenums required to hold an extended precision number. */
221#define MAX_LITTLENUMS 6
222
223/* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
225 success. */
226#define PARSE_FAIL -1
227
228/* This is an invalid condition code that means no conditional field is
229 present. */
230#define COND_ALWAYS 0x10
231
232typedef struct
233{
234 const char *template;
235 unsigned long value;
236} asm_barrier_opt;
237
238typedef struct
239{
240 const char *template;
241 uint32_t value;
242} asm_nzcv;
243
244struct reloc_entry
245{
246 char *name;
247 bfd_reloc_code_real_type reloc;
248};
249
250/* Structure for a hash table entry for a register. */
251typedef struct
252{
253 const char *name;
254 unsigned char number;
255 unsigned char type;
256 unsigned char builtin;
257} reg_entry;
258
259/* Macros to define the register types and masks for the purpose
260 of parsing. */
261
262#undef AARCH64_REG_TYPES
263#define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
296 BASIC_REG_TYPE(MAX)
297
298#undef BASIC_REG_TYPE
299#define BASIC_REG_TYPE(T) REG_TYPE_##T,
300#undef MULTI_REG_TYPE
301#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
302
303/* Register type enumerators. */
304typedef enum
305{
306 /* A list of REG_TYPE_*. */
307 AARCH64_REG_TYPES
308} aarch64_reg_type;
309
310#undef BASIC_REG_TYPE
311#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
312#undef REG_TYPE
313#define REG_TYPE(T) (1 << REG_TYPE_##T)
314#undef MULTI_REG_TYPE
315#define MULTI_REG_TYPE(T,V) V,
316
317/* Values indexed by aarch64_reg_type to assist the type checking. */
318static const unsigned reg_type_masks[] =
319{
320 AARCH64_REG_TYPES
321};
322
323#undef BASIC_REG_TYPE
324#undef REG_TYPE
325#undef MULTI_REG_TYPE
326#undef AARCH64_REG_TYPES
327
328/* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
330 above. */
331static const char *
332get_reg_expected_msg (aarch64_reg_type reg_type)
333{
334 const char *msg;
335
336 switch (reg_type)
337 {
338 case REG_TYPE_R_32:
339 msg = N_("integer 32-bit register expected");
340 break;
341 case REG_TYPE_R_64:
342 msg = N_("integer 64-bit register expected");
343 break;
344 case REG_TYPE_R_N:
345 msg = N_("integer register expected");
346 break;
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
349 break;
350 case REG_TYPE_FP_B:
351 msg = N_("8-bit SIMD scalar register expected");
352 break;
353 case REG_TYPE_FP_H:
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
356 break;
357 case REG_TYPE_FP_S:
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
360 break;
361 case REG_TYPE_FP_D:
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
364 break;
365 case REG_TYPE_FP_Q:
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
368 break;
369 case REG_TYPE_CN:
370 msg = N_("C0 - C15 expected");
371 break;
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
374 break;
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
377 break;
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
380 break;
381 default:
382 as_fatal (_("invalid register type %d"), reg_type);
383 }
384 return msg;
385}
386
387/* Some well known registers that we refer to directly elsewhere. */
388#define REG_SP 31
389
390/* Instructions take 4 bytes in the object file. */
391#define INSN_SIZE 4
392
393/* Define some common error messages. */
394#define BAD_SP _("SP not allowed here")
395
396static struct hash_control *aarch64_ops_hsh;
397static struct hash_control *aarch64_cond_hsh;
398static struct hash_control *aarch64_shift_hsh;
399static struct hash_control *aarch64_sys_regs_hsh;
400static struct hash_control *aarch64_pstatefield_hsh;
401static struct hash_control *aarch64_sys_regs_ic_hsh;
402static struct hash_control *aarch64_sys_regs_dc_hsh;
403static struct hash_control *aarch64_sys_regs_at_hsh;
404static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405static struct hash_control *aarch64_reg_hsh;
406static struct hash_control *aarch64_barrier_opt_hsh;
407static struct hash_control *aarch64_nzcv_hsh;
408static struct hash_control *aarch64_pldop_hsh;
409
410/* Stuff needed to resolve the label ambiguity
411 As:
412 ...
413 label: <insn>
414 may differ from:
415 ...
416 label:
417 <insn> */
418
419static symbolS *last_label_seen;
420
421/* Literal pool structure. Held on a per-section
422 and per-sub-section basis. */
423
424#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
425typedef struct literal_expression
426{
427 expressionS exp;
428 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
429 LITTLENUM_TYPE * bignum;
430} literal_expression;
431
a06ea964
NC
432typedef struct literal_pool
433{
55d9b4c1 434 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
435 unsigned int next_free_entry;
436 unsigned int id;
437 symbolS *symbol;
438 segT section;
439 subsegT sub_section;
440 int size;
441 struct literal_pool *next;
442} literal_pool;
443
444/* Pointer to a linked list of literal pools. */
445static literal_pool *list_of_pools = NULL;
446\f
447/* Pure syntax. */
448
449/* This array holds the chars that always start a comment. If the
450 pre-processor is disabled, these aren't very useful. */
451const char comment_chars[] = "";
452
453/* This array holds the chars that only start a comment at the beginning of
454 a line. If the line seems to have the form '# 123 filename'
455 .line and .file directives will appear in the pre-processed output. */
456/* Note that input_file.c hand checks for '#' at the beginning of the
457 first line of the input file. This is because the compiler outputs
458 #NO_APP at the beginning of its output. */
459/* Also note that comments like this one will always work. */
460const char line_comment_chars[] = "#";
461
462const char line_separator_chars[] = ";";
463
464/* Chars that can be used to separate mant
465 from exp in floating point numbers. */
466const char EXP_CHARS[] = "eE";
467
468/* Chars that mean this number is a floating point constant. */
469/* As in 0f12.456 */
470/* or 0d1.2345e12 */
471
472const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
473
474/* Prefix character that indicates the start of an immediate value. */
475#define is_immediate_prefix(C) ((C) == '#')
476
477/* Separator character handling. */
478
479#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
480
481static inline bfd_boolean
482skip_past_char (char **str, char c)
483{
484 if (**str == c)
485 {
486 (*str)++;
487 return TRUE;
488 }
489 else
490 return FALSE;
491}
492
493#define skip_past_comma(str) skip_past_char (str, ',')
494
495/* Arithmetic expressions (possibly involving symbols). */
496
a06ea964
NC
497static bfd_boolean in_my_get_expression_p = FALSE;
498
499/* Third argument to my_get_expression. */
500#define GE_NO_PREFIX 0
501#define GE_OPT_PREFIX 1
502
503/* Return TRUE if the string pointed by *STR is successfully parsed
504 as an valid expression; *EP will be filled with the information of
505 such an expression. Otherwise return FALSE. */
506
507static bfd_boolean
508my_get_expression (expressionS * ep, char **str, int prefix_mode,
509 int reject_absent)
510{
511 char *save_in;
512 segT seg;
513 int prefix_present_p = 0;
514
515 switch (prefix_mode)
516 {
517 case GE_NO_PREFIX:
518 break;
519 case GE_OPT_PREFIX:
520 if (is_immediate_prefix (**str))
521 {
522 (*str)++;
523 prefix_present_p = 1;
524 }
525 break;
526 default:
527 abort ();
528 }
529
530 memset (ep, 0, sizeof (expressionS));
531
532 save_in = input_line_pointer;
533 input_line_pointer = *str;
534 in_my_get_expression_p = TRUE;
535 seg = expression (ep);
536 in_my_get_expression_p = FALSE;
537
538 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
539 {
540 /* We found a bad expression in md_operand(). */
541 *str = input_line_pointer;
542 input_line_pointer = save_in;
543 if (prefix_present_p && ! error_p ())
544 set_fatal_syntax_error (_("bad expression"));
545 else
546 set_first_syntax_error (_("bad expression"));
547 return FALSE;
548 }
549
550#ifdef OBJ_AOUT
551 if (seg != absolute_section
552 && seg != text_section
553 && seg != data_section
554 && seg != bss_section && seg != undefined_section)
555 {
556 set_syntax_error (_("bad segment"));
557 *str = input_line_pointer;
558 input_line_pointer = save_in;
559 return FALSE;
560 }
561#else
562 (void) seg;
563#endif
564
a06ea964
NC
565 *str = input_line_pointer;
566 input_line_pointer = save_in;
567 return TRUE;
568}
569
570/* Turn a string in input_line_pointer into a floating point constant
571 of type TYPE, and store the appropriate bytes in *LITP. The number
572 of LITTLENUMS emitted is stored in *SIZEP. An error message is
573 returned, or NULL on OK. */
574
575char *
576md_atof (int type, char *litP, int *sizeP)
577{
578 return ieee_md_atof (type, litP, sizeP, target_big_endian);
579}
580
581/* We handle all bad expressions here, so that we can report the faulty
582 instruction in the error message. */
583void
584md_operand (expressionS * exp)
585{
586 if (in_my_get_expression_p)
587 exp->X_op = O_illegal;
588}
589
590/* Immediate values. */
591
592/* Errors may be set multiple times during parsing or bit encoding
593 (particularly in the Neon bits), but usually the earliest error which is set
594 will be the most meaningful. Avoid overwriting it with later (cascading)
595 errors by calling this function. */
596
597static void
598first_error (const char *error)
599{
600 if (! error_p ())
601 set_syntax_error (error);
602}
603
604/* Similiar to first_error, but this function accepts formatted error
605 message. */
606static void
607first_error_fmt (const char *format, ...)
608{
609 va_list args;
610 enum
611 { size = 100 };
612 /* N.B. this single buffer will not cause error messages for different
613 instructions to pollute each other; this is because at the end of
614 processing of each assembly line, error message if any will be
615 collected by as_bad. */
616 static char buffer[size];
617
618 if (! error_p ())
619 {
3e0baa28 620 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
621 va_start (args, format);
622 ret = vsnprintf (buffer, size, format, args);
623 know (ret <= size - 1 && ret >= 0);
624 va_end (args);
625 set_syntax_error (buffer);
626 }
627}
628
629/* Register parsing. */
630
631/* Generic register parser which is called by other specialized
632 register parsers.
633 CCP points to what should be the beginning of a register name.
634 If it is indeed a valid register name, advance CCP over it and
635 return the reg_entry structure; otherwise return NULL.
636 It does not issue diagnostics. */
637
638static reg_entry *
639parse_reg (char **ccp)
640{
641 char *start = *ccp;
642 char *p;
643 reg_entry *reg;
644
645#ifdef REGISTER_PREFIX
646 if (*start != REGISTER_PREFIX)
647 return NULL;
648 start++;
649#endif
650
651 p = start;
652 if (!ISALPHA (*p) || !is_name_beginner (*p))
653 return NULL;
654
655 do
656 p++;
657 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
658
659 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
660
661 if (!reg)
662 return NULL;
663
664 *ccp = p;
665 return reg;
666}
667
668/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
669 return FALSE. */
670static bfd_boolean
671aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
672{
673 if (reg->type == type)
674 return TRUE;
675
676 switch (type)
677 {
678 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
679 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
680 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
681 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
682 case REG_TYPE_VN: /* Vector register. */
683 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
684 return ((reg_type_masks[reg->type] & reg_type_masks[type])
685 == reg_type_masks[reg->type]);
686 default:
687 as_fatal ("unhandled type %d", type);
688 abort ();
689 }
690}
691
692/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
693 Return the register number otherwise. *ISREG32 is set to one if the
694 register is 32-bit wide; *ISREGZERO is set to one if the register is
695 of type Z_32 or Z_64.
696 Note that this function does not issue any diagnostics. */
697
698static int
699aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
700 int *isreg32, int *isregzero)
701{
702 char *str = *ccp;
703 const reg_entry *reg = parse_reg (&str);
704
705 if (reg == NULL)
706 return PARSE_FAIL;
707
708 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
709 return PARSE_FAIL;
710
711 switch (reg->type)
712 {
713 case REG_TYPE_SP_32:
714 case REG_TYPE_SP_64:
715 if (reject_sp)
716 return PARSE_FAIL;
717 *isreg32 = reg->type == REG_TYPE_SP_32;
718 *isregzero = 0;
719 break;
720 case REG_TYPE_R_32:
721 case REG_TYPE_R_64:
722 *isreg32 = reg->type == REG_TYPE_R_32;
723 *isregzero = 0;
724 break;
725 case REG_TYPE_Z_32:
726 case REG_TYPE_Z_64:
727 if (reject_rz)
728 return PARSE_FAIL;
729 *isreg32 = reg->type == REG_TYPE_Z_32;
730 *isregzero = 1;
731 break;
732 default:
733 return PARSE_FAIL;
734 }
735
736 *ccp = str;
737
738 return reg->number;
739}
740
741/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
742 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
743 otherwise return FALSE.
744
745 Accept only one occurrence of:
746 8b 16b 4h 8h 2s 4s 1d 2d
747 b h s d q */
748static bfd_boolean
749parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
750{
751 char *ptr = *str;
752 unsigned width;
753 unsigned element_size;
754 enum neon_el_type type;
755
756 /* skip '.' */
757 ptr++;
758
759 if (!ISDIGIT (*ptr))
760 {
761 width = 0;
762 goto elt_size;
763 }
764 width = strtoul (ptr, &ptr, 10);
765 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
766 {
767 first_error_fmt (_("bad size %d in vector width specifier"), width);
768 return FALSE;
769 }
770
771elt_size:
772 switch (TOLOWER (*ptr))
773 {
774 case 'b':
775 type = NT_b;
776 element_size = 8;
777 break;
778 case 'h':
779 type = NT_h;
780 element_size = 16;
781 break;
782 case 's':
783 type = NT_s;
784 element_size = 32;
785 break;
786 case 'd':
787 type = NT_d;
788 element_size = 64;
789 break;
790 case 'q':
791 if (width == 1)
792 {
793 type = NT_q;
794 element_size = 128;
795 break;
796 }
797 /* fall through. */
798 default:
799 if (*ptr != '\0')
800 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
801 else
802 first_error (_("missing element size"));
803 return FALSE;
804 }
805 if (width != 0 && width * element_size != 64 && width * element_size != 128)
806 {
807 first_error_fmt (_
808 ("invalid element size %d and vector size combination %c"),
809 width, *ptr);
810 return FALSE;
811 }
812 ptr++;
813
814 parsed_type->type = type;
815 parsed_type->width = width;
816
817 *str = ptr;
818
819 return TRUE;
820}
821
822/* Parse a single type, e.g. ".8b", leading period included.
823 Only applicable to Vn registers.
824
825 Return TRUE on success; otherwise return FALSE. */
826static bfd_boolean
827parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
828{
829 char *str = *ccp;
830
831 if (*str == '.')
832 {
833 if (! parse_neon_type_for_operand (vectype, &str))
834 {
835 first_error (_("vector type expected"));
836 return FALSE;
837 }
838 }
839 else
840 return FALSE;
841
842 *ccp = str;
843
844 return TRUE;
845}
846
847/* Parse a register of the type TYPE.
848
849 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
850 name or the parsed register is not of TYPE.
851
852 Otherwise return the register number, and optionally fill in the actual
853 type of the register in *RTYPE when multiple alternatives were given, and
854 return the register shape and element index information in *TYPEINFO.
855
856 IN_REG_LIST should be set with TRUE if the caller is parsing a register
857 list. */
858
859static int
860parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
861 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
862{
863 char *str = *ccp;
864 const reg_entry *reg = parse_reg (&str);
865 struct neon_type_el atype;
866 struct neon_type_el parsetype;
867 bfd_boolean is_typed_vecreg = FALSE;
868
869 atype.defined = 0;
870 atype.type = NT_invtype;
871 atype.width = -1;
872 atype.index = 0;
873
874 if (reg == NULL)
875 {
876 if (typeinfo)
877 *typeinfo = atype;
878 set_default_error ();
879 return PARSE_FAIL;
880 }
881
882 if (! aarch64_check_reg_type (reg, type))
883 {
884 DEBUG_TRACE ("reg type check failed");
885 set_default_error ();
886 return PARSE_FAIL;
887 }
888 type = reg->type;
889
890 if (type == REG_TYPE_VN
891 && parse_neon_operand_type (&parsetype, &str))
892 {
893 /* Register if of the form Vn.[bhsdq]. */
894 is_typed_vecreg = TRUE;
895
896 if (parsetype.width == 0)
897 /* Expect index. In the new scheme we cannot have
898 Vn.[bhsdq] represent a scalar. Therefore any
899 Vn.[bhsdq] should have an index following it.
900 Except in reglists ofcourse. */
901 atype.defined |= NTA_HASINDEX;
902 else
903 atype.defined |= NTA_HASTYPE;
904
905 atype.type = parsetype.type;
906 atype.width = parsetype.width;
907 }
908
909 if (skip_past_char (&str, '['))
910 {
911 expressionS exp;
912
913 /* Reject Sn[index] syntax. */
914 if (!is_typed_vecreg)
915 {
916 first_error (_("this type of register can't be indexed"));
917 return PARSE_FAIL;
918 }
919
920 if (in_reg_list == TRUE)
921 {
922 first_error (_("index not allowed inside register list"));
923 return PARSE_FAIL;
924 }
925
926 atype.defined |= NTA_HASINDEX;
927
928 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
929
930 if (exp.X_op != O_constant)
931 {
932 first_error (_("constant expression required"));
933 return PARSE_FAIL;
934 }
935
936 if (! skip_past_char (&str, ']'))
937 return PARSE_FAIL;
938
939 atype.index = exp.X_add_number;
940 }
941 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
942 {
943 /* Indexed vector register expected. */
944 first_error (_("indexed vector register expected"));
945 return PARSE_FAIL;
946 }
947
948 /* A vector reg Vn should be typed or indexed. */
949 if (type == REG_TYPE_VN && atype.defined == 0)
950 {
951 first_error (_("invalid use of vector register"));
952 }
953
954 if (typeinfo)
955 *typeinfo = atype;
956
957 if (rtype)
958 *rtype = type;
959
960 *ccp = str;
961
962 return reg->number;
963}
964
965/* Parse register.
966
967 Return the register number on success; return PARSE_FAIL otherwise.
968
969 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
970 the register (e.g. NEON double or quad reg when either has been requested).
971
972 If this is a NEON vector register with additional type information, fill
973 in the struct pointed to by VECTYPE (if non-NULL).
974
975 This parser does not handle register list. */
976
977static int
978aarch64_reg_parse (char **ccp, aarch64_reg_type type,
979 aarch64_reg_type *rtype, struct neon_type_el *vectype)
980{
981 struct neon_type_el atype;
982 char *str = *ccp;
983 int reg = parse_typed_reg (&str, type, rtype, &atype,
984 /*in_reg_list= */ FALSE);
985
986 if (reg == PARSE_FAIL)
987 return PARSE_FAIL;
988
989 if (vectype)
990 *vectype = atype;
991
992 *ccp = str;
993
994 return reg;
995}
996
997static inline bfd_boolean
998eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
999{
1000 return
1001 e1.type == e2.type
1002 && e1.defined == e2.defined
1003 && e1.width == e2.width && e1.index == e2.index;
1004}
1005
1006/* This function parses the NEON register list. On success, it returns
1007 the parsed register list information in the following encoded format:
1008
1009 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1010 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1011
1012 The information of the register shape and/or index is returned in
1013 *VECTYPE.
1014
1015 It returns PARSE_FAIL if the register list is invalid.
1016
1017 The list contains one to four registers.
1018 Each register can be one of:
1019 <Vt>.<T>[<index>]
1020 <Vt>.<T>
1021 All <T> should be identical.
1022 All <index> should be identical.
1023 There are restrictions on <Vt> numbers which are checked later
1024 (by reg_list_valid_p). */
1025
1026static int
1027parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1028{
1029 char *str = *ccp;
1030 int nb_regs;
1031 struct neon_type_el typeinfo, typeinfo_first;
1032 int val, val_range;
1033 int in_range;
1034 int ret_val;
1035 int i;
1036 bfd_boolean error = FALSE;
1037 bfd_boolean expect_index = FALSE;
1038
1039 if (*str != '{')
1040 {
1041 set_syntax_error (_("expecting {"));
1042 return PARSE_FAIL;
1043 }
1044 str++;
1045
1046 nb_regs = 0;
1047 typeinfo_first.defined = 0;
1048 typeinfo_first.type = NT_invtype;
1049 typeinfo_first.width = -1;
1050 typeinfo_first.index = 0;
1051 ret_val = 0;
1052 val = -1;
1053 val_range = -1;
1054 in_range = 0;
1055 do
1056 {
1057 if (in_range)
1058 {
1059 str++; /* skip over '-' */
1060 val_range = val;
1061 }
1062 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1063 /*in_reg_list= */ TRUE);
1064 if (val == PARSE_FAIL)
1065 {
1066 set_first_syntax_error (_("invalid vector register in list"));
1067 error = TRUE;
1068 continue;
1069 }
1070 /* reject [bhsd]n */
1071 if (typeinfo.defined == 0)
1072 {
1073 set_first_syntax_error (_("invalid scalar register in list"));
1074 error = TRUE;
1075 continue;
1076 }
1077
1078 if (typeinfo.defined & NTA_HASINDEX)
1079 expect_index = TRUE;
1080
1081 if (in_range)
1082 {
1083 if (val < val_range)
1084 {
1085 set_first_syntax_error
1086 (_("invalid range in vector register list"));
1087 error = TRUE;
1088 }
1089 val_range++;
1090 }
1091 else
1092 {
1093 val_range = val;
1094 if (nb_regs == 0)
1095 typeinfo_first = typeinfo;
1096 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1097 {
1098 set_first_syntax_error
1099 (_("type mismatch in vector register list"));
1100 error = TRUE;
1101 }
1102 }
1103 if (! error)
1104 for (i = val_range; i <= val; i++)
1105 {
1106 ret_val |= i << (5 * nb_regs);
1107 nb_regs++;
1108 }
1109 in_range = 0;
1110 }
1111 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1112
1113 skip_whitespace (str);
1114 if (*str != '}')
1115 {
1116 set_first_syntax_error (_("end of vector register list not found"));
1117 error = TRUE;
1118 }
1119 str++;
1120
1121 skip_whitespace (str);
1122
1123 if (expect_index)
1124 {
1125 if (skip_past_char (&str, '['))
1126 {
1127 expressionS exp;
1128
1129 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1130 if (exp.X_op != O_constant)
1131 {
1132 set_first_syntax_error (_("constant expression required."));
1133 error = TRUE;
1134 }
1135 if (! skip_past_char (&str, ']'))
1136 error = TRUE;
1137 else
1138 typeinfo_first.index = exp.X_add_number;
1139 }
1140 else
1141 {
1142 set_first_syntax_error (_("expected index"));
1143 error = TRUE;
1144 }
1145 }
1146
1147 if (nb_regs > 4)
1148 {
1149 set_first_syntax_error (_("too many registers in vector register list"));
1150 error = TRUE;
1151 }
1152 else if (nb_regs == 0)
1153 {
1154 set_first_syntax_error (_("empty vector register list"));
1155 error = TRUE;
1156 }
1157
1158 *ccp = str;
1159 if (! error)
1160 *vectype = typeinfo_first;
1161
1162 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1163}
1164
1165/* Directives: register aliases. */
1166
1167static reg_entry *
1168insert_reg_alias (char *str, int number, aarch64_reg_type type)
1169{
1170 reg_entry *new;
1171 const char *name;
1172
1173 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1174 {
1175 if (new->builtin)
1176 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1177 str);
1178
1179 /* Only warn about a redefinition if it's not defined as the
1180 same register. */
1181 else if (new->number != number || new->type != type)
1182 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1183
1184 return NULL;
1185 }
1186
1187 name = xstrdup (str);
1188 new = xmalloc (sizeof (reg_entry));
1189
1190 new->name = name;
1191 new->number = number;
1192 new->type = type;
1193 new->builtin = FALSE;
1194
1195 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1196 abort ();
1197
1198 return new;
1199}
1200
1201/* Look for the .req directive. This is of the form:
1202
1203 new_register_name .req existing_register_name
1204
1205 If we find one, or if it looks sufficiently like one that we want to
1206 handle any error here, return TRUE. Otherwise return FALSE. */
1207
1208static bfd_boolean
1209create_register_alias (char *newname, char *p)
1210{
1211 const reg_entry *old;
1212 char *oldname, *nbuf;
1213 size_t nlen;
1214
1215 /* The input scrubber ensures that whitespace after the mnemonic is
1216 collapsed to single spaces. */
1217 oldname = p;
1218 if (strncmp (oldname, " .req ", 6) != 0)
1219 return FALSE;
1220
1221 oldname += 6;
1222 if (*oldname == '\0')
1223 return FALSE;
1224
1225 old = hash_find (aarch64_reg_hsh, oldname);
1226 if (!old)
1227 {
1228 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1229 return TRUE;
1230 }
1231
1232 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1233 the desired alias name, and p points to its end. If not, then
1234 the desired alias name is in the global original_case_string. */
1235#ifdef TC_CASE_SENSITIVE
1236 nlen = p - newname;
1237#else
1238 newname = original_case_string;
1239 nlen = strlen (newname);
1240#endif
1241
1242 nbuf = alloca (nlen + 1);
1243 memcpy (nbuf, newname, nlen);
1244 nbuf[nlen] = '\0';
1245
1246 /* Create aliases under the new name as stated; an all-lowercase
1247 version of the new name; and an all-uppercase version of the new
1248 name. */
1249 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1250 {
1251 for (p = nbuf; *p; p++)
1252 *p = TOUPPER (*p);
1253
1254 if (strncmp (nbuf, newname, nlen))
1255 {
1256 /* If this attempt to create an additional alias fails, do not bother
1257 trying to create the all-lower case alias. We will fail and issue
1258 a second, duplicate error message. This situation arises when the
1259 programmer does something like:
1260 foo .req r0
1261 Foo .req r1
1262 The second .req creates the "Foo" alias but then fails to create
1263 the artificial FOO alias because it has already been created by the
1264 first .req. */
1265 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1266 return TRUE;
1267 }
1268
1269 for (p = nbuf; *p; p++)
1270 *p = TOLOWER (*p);
1271
1272 if (strncmp (nbuf, newname, nlen))
1273 insert_reg_alias (nbuf, old->number, old->type);
1274 }
1275
1276 return TRUE;
1277}
1278
1279/* Should never be called, as .req goes between the alias and the
1280 register name, not at the beginning of the line. */
1281static void
1282s_req (int a ATTRIBUTE_UNUSED)
1283{
1284 as_bad (_("invalid syntax for .req directive"));
1285}
1286
1287/* The .unreq directive deletes an alias which was previously defined
1288 by .req. For example:
1289
1290 my_alias .req r11
1291 .unreq my_alias */
1292
1293static void
1294s_unreq (int a ATTRIBUTE_UNUSED)
1295{
1296 char *name;
1297 char saved_char;
1298
1299 name = input_line_pointer;
1300
1301 while (*input_line_pointer != 0
1302 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1303 ++input_line_pointer;
1304
1305 saved_char = *input_line_pointer;
1306 *input_line_pointer = 0;
1307
1308 if (!*name)
1309 as_bad (_("invalid syntax for .unreq directive"));
1310 else
1311 {
1312 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1313
1314 if (!reg)
1315 as_bad (_("unknown register alias '%s'"), name);
1316 else if (reg->builtin)
1317 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1318 name);
1319 else
1320 {
1321 char *p;
1322 char *nbuf;
1323
1324 hash_delete (aarch64_reg_hsh, name, FALSE);
1325 free ((char *) reg->name);
1326 free (reg);
1327
1328 /* Also locate the all upper case and all lower case versions.
1329 Do not complain if we cannot find one or the other as it
1330 was probably deleted above. */
1331
1332 nbuf = strdup (name);
1333 for (p = nbuf; *p; p++)
1334 *p = TOUPPER (*p);
1335 reg = hash_find (aarch64_reg_hsh, nbuf);
1336 if (reg)
1337 {
1338 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1339 free ((char *) reg->name);
1340 free (reg);
1341 }
1342
1343 for (p = nbuf; *p; p++)
1344 *p = TOLOWER (*p);
1345 reg = hash_find (aarch64_reg_hsh, nbuf);
1346 if (reg)
1347 {
1348 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1349 free ((char *) reg->name);
1350 free (reg);
1351 }
1352
1353 free (nbuf);
1354 }
1355 }
1356
1357 *input_line_pointer = saved_char;
1358 demand_empty_rest_of_line ();
1359}
1360
1361/* Directives: Instruction set selection. */
1362
1363#ifdef OBJ_ELF
1364/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1365 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1366 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1367 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1368
1369/* Create a new mapping symbol for the transition to STATE. */
1370
1371static void
1372make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1373{
1374 symbolS *symbolP;
1375 const char *symname;
1376 int type;
1377
1378 switch (state)
1379 {
1380 case MAP_DATA:
1381 symname = "$d";
1382 type = BSF_NO_FLAGS;
1383 break;
1384 case MAP_INSN:
1385 symname = "$x";
1386 type = BSF_NO_FLAGS;
1387 break;
1388 default:
1389 abort ();
1390 }
1391
1392 symbolP = symbol_new (symname, now_seg, value, frag);
1393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1394
1395 /* Save the mapping symbols for future reference. Also check that
1396 we do not place two mapping symbols at the same offset within a
1397 frag. We'll handle overlap between frags in
1398 check_mapping_symbols.
1399
1400 If .fill or other data filling directive generates zero sized data,
1401 the mapping symbol for the following code will have the same value
1402 as the one generated for the data filling directive. In this case,
1403 we replace the old symbol with the new one at the same address. */
1404 if (value == 0)
1405 {
1406 if (frag->tc_frag_data.first_map != NULL)
1407 {
1408 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1409 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1410 &symbol_lastP);
1411 }
1412 frag->tc_frag_data.first_map = symbolP;
1413 }
1414 if (frag->tc_frag_data.last_map != NULL)
1415 {
1416 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1417 S_GET_VALUE (symbolP));
1418 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1419 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1420 &symbol_lastP);
1421 }
1422 frag->tc_frag_data.last_map = symbolP;
1423}
1424
1425/* We must sometimes convert a region marked as code to data during
1426 code alignment, if an odd number of bytes have to be padded. The
1427 code mapping symbol is pushed to an aligned address. */
1428
1429static void
1430insert_data_mapping_symbol (enum mstate state,
1431 valueT value, fragS * frag, offsetT bytes)
1432{
1433 /* If there was already a mapping symbol, remove it. */
1434 if (frag->tc_frag_data.last_map != NULL
1435 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1436 frag->fr_address + value)
1437 {
1438 symbolS *symp = frag->tc_frag_data.last_map;
1439
1440 if (value == 0)
1441 {
1442 know (frag->tc_frag_data.first_map == symp);
1443 frag->tc_frag_data.first_map = NULL;
1444 }
1445 frag->tc_frag_data.last_map = NULL;
1446 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1447 }
1448
1449 make_mapping_symbol (MAP_DATA, value, frag);
1450 make_mapping_symbol (state, value + bytes, frag);
1451}
1452
1453static void mapping_state_2 (enum mstate state, int max_chars);
1454
1455/* Set the mapping state to STATE. Only call this when about to
1456 emit some STATE bytes to the file. */
1457
1458void
1459mapping_state (enum mstate state)
1460{
1461 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1462
a578ef7e
JW
1463 if (state == MAP_INSN)
1464 /* AArch64 instructions require 4-byte alignment. When emitting
1465 instructions into any section, record the appropriate section
1466 alignment. */
1467 record_alignment (now_seg, 2);
1468
448eb63d
RL
1469 if (mapstate == state)
1470 /* The mapping symbol has already been emitted.
1471 There is nothing else to do. */
1472 return;
1473
c1baaddf 1474#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1475 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1476 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1477 evaluated later in the next else. */
a06ea964 1478 return;
c1baaddf
RL
1479 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1480 {
1481 /* Only add the symbol if the offset is > 0:
1482 if we're at the first frag, check it's size > 0;
1483 if we're not at the first frag, then for sure
1484 the offset is > 0. */
1485 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1486 const int add_symbol = (frag_now != frag_first)
1487 || (frag_now_fix () > 0);
1488
1489 if (add_symbol)
1490 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1491 }
1492#undef TRANSITION
a06ea964
NC
1493
1494 mapping_state_2 (state, 0);
a06ea964
NC
1495}
1496
1497/* Same as mapping_state, but MAX_CHARS bytes have already been
1498 allocated. Put the mapping symbol that far back. */
1499
1500static void
1501mapping_state_2 (enum mstate state, int max_chars)
1502{
1503 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1504
1505 if (!SEG_NORMAL (now_seg))
1506 return;
1507
1508 if (mapstate == state)
1509 /* The mapping symbol has already been emitted.
1510 There is nothing else to do. */
1511 return;
1512
1513 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1514 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1515}
1516#else
1517#define mapping_state(x) /* nothing */
1518#define mapping_state_2(x, y) /* nothing */
1519#endif
1520
1521/* Directives: sectioning and alignment. */
1522
1523static void
1524s_bss (int ignore ATTRIBUTE_UNUSED)
1525{
1526 /* We don't support putting frags in the BSS segment, we fake it by
1527 marking in_bss, then looking at s_skip for clues. */
1528 subseg_set (bss_section, 0);
1529 demand_empty_rest_of_line ();
1530 mapping_state (MAP_DATA);
1531}
1532
1533static void
1534s_even (int ignore ATTRIBUTE_UNUSED)
1535{
1536 /* Never make frag if expect extra pass. */
1537 if (!need_pass_2)
1538 frag_align (1, 0, 0);
1539
1540 record_alignment (now_seg, 1);
1541
1542 demand_empty_rest_of_line ();
1543}
1544
1545/* Directives: Literal pools. */
1546
1547static literal_pool *
1548find_literal_pool (int size)
1549{
1550 literal_pool *pool;
1551
1552 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1553 {
1554 if (pool->section == now_seg
1555 && pool->sub_section == now_subseg && pool->size == size)
1556 break;
1557 }
1558
1559 return pool;
1560}
1561
1562static literal_pool *
1563find_or_make_literal_pool (int size)
1564{
1565 /* Next literal pool ID number. */
1566 static unsigned int latest_pool_num = 1;
1567 literal_pool *pool;
1568
1569 pool = find_literal_pool (size);
1570
1571 if (pool == NULL)
1572 {
1573 /* Create a new pool. */
1574 pool = xmalloc (sizeof (*pool));
1575 if (!pool)
1576 return NULL;
1577
1578 /* Currently we always put the literal pool in the current text
1579 section. If we were generating "small" model code where we
1580 knew that all code and initialised data was within 1MB then
1581 we could output literals to mergeable, read-only data
1582 sections. */
1583
1584 pool->next_free_entry = 0;
1585 pool->section = now_seg;
1586 pool->sub_section = now_subseg;
1587 pool->size = size;
1588 pool->next = list_of_pools;
1589 pool->symbol = NULL;
1590
1591 /* Add it to the list. */
1592 list_of_pools = pool;
1593 }
1594
1595 /* New pools, and emptied pools, will have a NULL symbol. */
1596 if (pool->symbol == NULL)
1597 {
1598 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1599 (valueT) 0, &zero_address_frag);
1600 pool->id = latest_pool_num++;
1601 }
1602
1603 /* Done. */
1604 return pool;
1605}
1606
1607/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1608 Return TRUE on success, otherwise return FALSE. */
1609static bfd_boolean
1610add_to_lit_pool (expressionS *exp, int size)
1611{
1612 literal_pool *pool;
1613 unsigned int entry;
1614
1615 pool = find_or_make_literal_pool (size);
1616
1617 /* Check if this literal value is already in the pool. */
1618 for (entry = 0; entry < pool->next_free_entry; entry++)
1619 {
55d9b4c1
NC
1620 expressionS * litexp = & pool->literals[entry].exp;
1621
1622 if ((litexp->X_op == exp->X_op)
a06ea964 1623 && (exp->X_op == O_constant)
55d9b4c1
NC
1624 && (litexp->X_add_number == exp->X_add_number)
1625 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1626 break;
1627
55d9b4c1 1628 if ((litexp->X_op == exp->X_op)
a06ea964 1629 && (exp->X_op == O_symbol)
55d9b4c1
NC
1630 && (litexp->X_add_number == exp->X_add_number)
1631 && (litexp->X_add_symbol == exp->X_add_symbol)
1632 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1633 break;
1634 }
1635
1636 /* Do we need to create a new entry? */
1637 if (entry == pool->next_free_entry)
1638 {
1639 if (entry >= MAX_LITERAL_POOL_SIZE)
1640 {
1641 set_syntax_error (_("literal pool overflow"));
1642 return FALSE;
1643 }
1644
55d9b4c1 1645 pool->literals[entry].exp = *exp;
a06ea964 1646 pool->next_free_entry += 1;
55d9b4c1
NC
1647 if (exp->X_op == O_big)
1648 {
1649 /* PR 16688: Bignums are held in a single global array. We must
1650 copy and preserve that value now, before it is overwritten. */
1651 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1652 memcpy (pool->literals[entry].bignum, generic_bignum,
1653 CHARS_PER_LITTLENUM * exp->X_add_number);
1654 }
1655 else
1656 pool->literals[entry].bignum = NULL;
a06ea964
NC
1657 }
1658
1659 exp->X_op = O_symbol;
1660 exp->X_add_number = ((int) entry) * size;
1661 exp->X_add_symbol = pool->symbol;
1662
1663 return TRUE;
1664}
1665
1666/* Can't use symbol_new here, so have to create a symbol and then at
1667 a later date assign it a value. Thats what these functions do. */
1668
1669static void
1670symbol_locate (symbolS * symbolP,
1671 const char *name,/* It is copied, the caller can modify. */
1672 segT segment, /* Segment identifier (SEG_<something>). */
1673 valueT valu, /* Symbol value. */
1674 fragS * frag) /* Associated fragment. */
1675{
e57e6ddc 1676 size_t name_length;
a06ea964
NC
1677 char *preserved_copy_of_name;
1678
1679 name_length = strlen (name) + 1; /* +1 for \0. */
1680 obstack_grow (&notes, name, name_length);
1681 preserved_copy_of_name = obstack_finish (&notes);
1682
1683#ifdef tc_canonicalize_symbol_name
1684 preserved_copy_of_name =
1685 tc_canonicalize_symbol_name (preserved_copy_of_name);
1686#endif
1687
1688 S_SET_NAME (symbolP, preserved_copy_of_name);
1689
1690 S_SET_SEGMENT (symbolP, segment);
1691 S_SET_VALUE (symbolP, valu);
1692 symbol_clear_list_pointers (symbolP);
1693
1694 symbol_set_frag (symbolP, frag);
1695
1696 /* Link to end of symbol chain. */
1697 {
1698 extern int symbol_table_frozen;
1699
1700 if (symbol_table_frozen)
1701 abort ();
1702 }
1703
1704 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1705
1706 obj_symbol_new_hook (symbolP);
1707
1708#ifdef tc_symbol_new_hook
1709 tc_symbol_new_hook (symbolP);
1710#endif
1711
1712#ifdef DEBUG_SYMS
1713 verify_symbol_chain (symbol_rootP, symbol_lastP);
1714#endif /* DEBUG_SYMS */
1715}
1716
1717
1718static void
1719s_ltorg (int ignored ATTRIBUTE_UNUSED)
1720{
1721 unsigned int entry;
1722 literal_pool *pool;
1723 char sym_name[20];
1724 int align;
1725
67a32447 1726 for (align = 2; align <= 4; align++)
a06ea964
NC
1727 {
1728 int size = 1 << align;
1729
1730 pool = find_literal_pool (size);
1731 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1732 continue;
1733
1734 mapping_state (MAP_DATA);
1735
1736 /* Align pool as you have word accesses.
1737 Only make a frag if we have to. */
1738 if (!need_pass_2)
1739 frag_align (align, 0, 0);
1740
1741 record_alignment (now_seg, align);
1742
1743 sprintf (sym_name, "$$lit_\002%x", pool->id);
1744
1745 symbol_locate (pool->symbol, sym_name, now_seg,
1746 (valueT) frag_now_fix (), frag_now);
1747 symbol_table_insert (pool->symbol);
1748
1749 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1750 {
1751 expressionS * exp = & pool->literals[entry].exp;
1752
1753 if (exp->X_op == O_big)
1754 {
1755 /* PR 16688: Restore the global bignum value. */
1756 gas_assert (pool->literals[entry].bignum != NULL);
1757 memcpy (generic_bignum, pool->literals[entry].bignum,
1758 CHARS_PER_LITTLENUM * exp->X_add_number);
1759 }
1760
1761 /* First output the expression in the instruction to the pool. */
1762 emit_expr (exp, size); /* .word|.xword */
1763
1764 if (exp->X_op == O_big)
1765 {
1766 free (pool->literals[entry].bignum);
1767 pool->literals[entry].bignum = NULL;
1768 }
1769 }
a06ea964
NC
1770
1771 /* Mark the pool as empty. */
1772 pool->next_free_entry = 0;
1773 pool->symbol = NULL;
1774 }
1775}
1776
1777#ifdef OBJ_ELF
1778/* Forward declarations for functions below, in the MD interface
1779 section. */
1780static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1781static struct reloc_table_entry * find_reloc_table_entry (char **);
1782
1783/* Directives: Data. */
1784/* N.B. the support for relocation suffix in this directive needs to be
1785 implemented properly. */
1786
1787static void
1788s_aarch64_elf_cons (int nbytes)
1789{
1790 expressionS exp;
1791
1792#ifdef md_flush_pending_output
1793 md_flush_pending_output ();
1794#endif
1795
1796 if (is_it_end_of_statement ())
1797 {
1798 demand_empty_rest_of_line ();
1799 return;
1800 }
1801
1802#ifdef md_cons_align
1803 md_cons_align (nbytes);
1804#endif
1805
1806 mapping_state (MAP_DATA);
1807 do
1808 {
1809 struct reloc_table_entry *reloc;
1810
1811 expression (&exp);
1812
1813 if (exp.X_op != O_symbol)
1814 emit_expr (&exp, (unsigned int) nbytes);
1815 else
1816 {
1817 skip_past_char (&input_line_pointer, '#');
1818 if (skip_past_char (&input_line_pointer, ':'))
1819 {
1820 reloc = find_reloc_table_entry (&input_line_pointer);
1821 if (reloc == NULL)
1822 as_bad (_("unrecognized relocation suffix"));
1823 else
1824 as_bad (_("unimplemented relocation suffix"));
1825 ignore_rest_of_line ();
1826 return;
1827 }
1828 else
1829 emit_expr (&exp, (unsigned int) nbytes);
1830 }
1831 }
1832 while (*input_line_pointer++ == ',');
1833
1834 /* Put terminator back into stream. */
1835 input_line_pointer--;
1836 demand_empty_rest_of_line ();
1837}
1838
1839#endif /* OBJ_ELF */
1840
1841/* Output a 32-bit word, but mark as an instruction. */
1842
1843static void
1844s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1845{
1846 expressionS exp;
1847
1848#ifdef md_flush_pending_output
1849 md_flush_pending_output ();
1850#endif
1851
1852 if (is_it_end_of_statement ())
1853 {
1854 demand_empty_rest_of_line ();
1855 return;
1856 }
1857
a97902de 1858 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1859 MAP_DATA symbol pending. So we only align the address during
1860 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1861 For other sections, this is not guaranteed. */
c1baaddf 1862 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1863 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1864 frag_align_code (2, 0);
c1baaddf 1865
a06ea964
NC
1866#ifdef OBJ_ELF
1867 mapping_state (MAP_INSN);
1868#endif
1869
1870 do
1871 {
1872 expression (&exp);
1873 if (exp.X_op != O_constant)
1874 {
1875 as_bad (_("constant expression required"));
1876 ignore_rest_of_line ();
1877 return;
1878 }
1879
1880 if (target_big_endian)
1881 {
1882 unsigned int val = exp.X_add_number;
1883 exp.X_add_number = SWAP_32 (val);
1884 }
1885 emit_expr (&exp, 4);
1886 }
1887 while (*input_line_pointer++ == ',');
1888
1889 /* Put terminator back into stream. */
1890 input_line_pointer--;
1891 demand_empty_rest_of_line ();
1892}
1893
1894#ifdef OBJ_ELF
1895/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1896
1897static void
1898s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1899{
1900 expressionS exp;
1901
1902 /* Since we're just labelling the code, there's no need to define a
1903 mapping symbol. */
1904 expression (&exp);
1905 /* Make sure there is enough room in this frag for the following
1906 blr. This trick only works if the blr follows immediately after
1907 the .tlsdesc directive. */
1908 frag_grow (4);
1909 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1910 BFD_RELOC_AARCH64_TLSDESC_CALL);
1911
1912 demand_empty_rest_of_line ();
1913}
1914#endif /* OBJ_ELF */
1915
1916static void s_aarch64_arch (int);
1917static void s_aarch64_cpu (int);
ae527cd8 1918static void s_aarch64_arch_extension (int);
a06ea964
NC
1919
1920/* This table describes all the machine specific pseudo-ops the assembler
1921 has to support. The fields are:
1922 pseudo-op name without dot
1923 function to call to execute this pseudo-op
1924 Integer arg to pass to the function. */
1925
1926const pseudo_typeS md_pseudo_table[] = {
1927 /* Never called because '.req' does not start a line. */
1928 {"req", s_req, 0},
1929 {"unreq", s_unreq, 0},
1930 {"bss", s_bss, 0},
1931 {"even", s_even, 0},
1932 {"ltorg", s_ltorg, 0},
1933 {"pool", s_ltorg, 0},
1934 {"cpu", s_aarch64_cpu, 0},
1935 {"arch", s_aarch64_arch, 0},
ae527cd8 1936 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
1937 {"inst", s_aarch64_inst, 0},
1938#ifdef OBJ_ELF
1939 {"tlsdesccall", s_tlsdesccall, 0},
1940 {"word", s_aarch64_elf_cons, 4},
1941 {"long", s_aarch64_elf_cons, 4},
1942 {"xword", s_aarch64_elf_cons, 8},
1943 {"dword", s_aarch64_elf_cons, 8},
1944#endif
1945 {0, 0, 0}
1946};
1947\f
1948
1949/* Check whether STR points to a register name followed by a comma or the
1950 end of line; REG_TYPE indicates which register types are checked
1951 against. Return TRUE if STR is such a register name; otherwise return
1952 FALSE. The function does not intend to produce any diagnostics, but since
1953 the register parser aarch64_reg_parse, which is called by this function,
1954 does produce diagnostics, we call clear_error to clear any diagnostics
1955 that may be generated by aarch64_reg_parse.
1956 Also, the function returns FALSE directly if there is any user error
1957 present at the function entry. This prevents the existing diagnostics
1958 state from being spoiled.
1959 The function currently serves parse_constant_immediate and
1960 parse_big_immediate only. */
1961static bfd_boolean
1962reg_name_p (char *str, aarch64_reg_type reg_type)
1963{
1964 int reg;
1965
1966 /* Prevent the diagnostics state from being spoiled. */
1967 if (error_p ())
1968 return FALSE;
1969
1970 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
1971
1972 /* Clear the parsing error that may be set by the reg parser. */
1973 clear_error ();
1974
1975 if (reg == PARSE_FAIL)
1976 return FALSE;
1977
1978 skip_whitespace (str);
1979 if (*str == ',' || is_end_of_line[(unsigned int) *str])
1980 return TRUE;
1981
1982 return FALSE;
1983}
1984
1985/* Parser functions used exclusively in instruction operands. */
1986
1987/* Parse an immediate expression which may not be constant.
1988
1989 To prevent the expression parser from pushing a register name
1990 into the symbol table as an undefined symbol, firstly a check is
1991 done to find out whether STR is a valid register name followed
1992 by a comma or the end of line. Return FALSE if STR is such a
1993 string. */
1994
1995static bfd_boolean
1996parse_immediate_expression (char **str, expressionS *exp)
1997{
1998 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
1999 {
2000 set_recoverable_error (_("immediate operand required"));
2001 return FALSE;
2002 }
2003
2004 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2005
2006 if (exp->X_op == O_absent)
2007 {
2008 set_fatal_syntax_error (_("missing immediate expression"));
2009 return FALSE;
2010 }
2011
2012 return TRUE;
2013}
2014
2015/* Constant immediate-value read function for use in insn parsing.
2016 STR points to the beginning of the immediate (with the optional
2017 leading #); *VAL receives the value.
2018
2019 Return TRUE on success; otherwise return FALSE. */
2020
2021static bfd_boolean
2022parse_constant_immediate (char **str, int64_t * val)
2023{
2024 expressionS exp;
2025
2026 if (! parse_immediate_expression (str, &exp))
2027 return FALSE;
2028
2029 if (exp.X_op != O_constant)
2030 {
2031 set_syntax_error (_("constant expression required"));
2032 return FALSE;
2033 }
2034
2035 *val = exp.X_add_number;
2036 return TRUE;
2037}
2038
2039static uint32_t
2040encode_imm_float_bits (uint32_t imm)
2041{
2042 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2043 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2044}
2045
62b0d0d5
YZ
2046/* Return TRUE if the single-precision floating-point value encoded in IMM
2047 can be expressed in the AArch64 8-bit signed floating-point format with
2048 3-bit exponent and normalized 4 bits of precision; in other words, the
2049 floating-point value must be expressable as
2050 (+/-) n / 16 * power (2, r)
2051 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2052
a06ea964
NC
2053static bfd_boolean
2054aarch64_imm_float_p (uint32_t imm)
2055{
62b0d0d5
YZ
2056 /* If a single-precision floating-point value has the following bit
2057 pattern, it can be expressed in the AArch64 8-bit floating-point
2058 format:
2059
2060 3 32222222 2221111111111
a06ea964 2061 1 09876543 21098765432109876543210
62b0d0d5
YZ
2062 n Eeeeeexx xxxx0000000000000000000
2063
2064 where n, e and each x are either 0 or 1 independently, with
2065 E == ~ e. */
a06ea964 2066
62b0d0d5
YZ
2067 uint32_t pattern;
2068
2069 /* Prepare the pattern for 'Eeeeee'. */
2070 if (((imm >> 30) & 0x1) == 0)
2071 pattern = 0x3e000000;
a06ea964 2072 else
62b0d0d5
YZ
2073 pattern = 0x40000000;
2074
2075 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2076 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2077}
2078
62b0d0d5
YZ
2079/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2080
2081 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2082 8-bit signed floating-point format with 3-bit exponent and normalized 4
2083 bits of precision (i.e. can be used in an FMOV instruction); return the
2084 equivalent single-precision encoding in *FPWORD.
2085
2086 Otherwise return FALSE. */
2087
a06ea964 2088static bfd_boolean
62b0d0d5
YZ
2089aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2090{
2091 /* If a double-precision floating-point value has the following bit
2092 pattern, it can be expressed in the AArch64 8-bit floating-point
2093 format:
2094
2095 6 66655555555 554444444...21111111111
2096 3 21098765432 109876543...098765432109876543210
2097 n Eeeeeeeeexx xxxx00000...000000000000000000000
2098
2099 where n, e and each x are either 0 or 1 independently, with
2100 E == ~ e. */
2101
2102 uint32_t pattern;
2103 uint32_t high32 = imm >> 32;
2104
2105 /* Lower 32 bits need to be 0s. */
2106 if ((imm & 0xffffffff) != 0)
2107 return FALSE;
2108
2109 /* Prepare the pattern for 'Eeeeeeeee'. */
2110 if (((high32 >> 30) & 0x1) == 0)
2111 pattern = 0x3fc00000;
2112 else
2113 pattern = 0x40000000;
2114
2115 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2116 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2117 {
2118 /* Convert to the single-precision encoding.
2119 i.e. convert
2120 n Eeeeeeeeexx xxxx00000...000000000000000000000
2121 to
2122 n Eeeeeexx xxxx0000000000000000000. */
2123 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2124 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2125 return TRUE;
2126 }
2127 else
2128 return FALSE;
2129}
2130
2131/* Parse a floating-point immediate. Return TRUE on success and return the
2132 value in *IMMED in the format of IEEE754 single-precision encoding.
2133 *CCP points to the start of the string; DP_P is TRUE when the immediate
2134 is expected to be in double-precision (N.B. this only matters when
2135 hexadecimal representation is involved).
2136
2137 N.B. 0.0 is accepted by this function. */
2138
2139static bfd_boolean
2140parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2141{
2142 char *str = *ccp;
2143 char *fpnum;
2144 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2145 int found_fpchar = 0;
62b0d0d5
YZ
2146 int64_t val = 0;
2147 unsigned fpword = 0;
2148 bfd_boolean hex_p = FALSE;
a06ea964
NC
2149
2150 skip_past_char (&str, '#');
2151
a06ea964
NC
2152 fpnum = str;
2153 skip_whitespace (fpnum);
2154
2155 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2156 {
2157 /* Support the hexadecimal representation of the IEEE754 encoding.
2158 Double-precision is expected when DP_P is TRUE, otherwise the
2159 representation should be in single-precision. */
2160 if (! parse_constant_immediate (&str, &val))
2161 goto invalid_fp;
2162
2163 if (dp_p)
2164 {
2165 if (! aarch64_double_precision_fmovable (val, &fpword))
2166 goto invalid_fp;
2167 }
2168 else if ((uint64_t) val > 0xffffffff)
2169 goto invalid_fp;
2170 else
2171 fpword = val;
2172
2173 hex_p = TRUE;
2174 }
a06ea964
NC
2175 else
2176 {
62b0d0d5
YZ
2177 /* We must not accidentally parse an integer as a floating-point number.
2178 Make sure that the value we parse is not an integer by checking for
2179 special characters '.' or 'e'. */
a06ea964
NC
2180 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2181 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2182 {
2183 found_fpchar = 1;
2184 break;
2185 }
2186
2187 if (!found_fpchar)
2188 return FALSE;
2189 }
2190
62b0d0d5 2191 if (! hex_p)
a06ea964 2192 {
a06ea964
NC
2193 int i;
2194
62b0d0d5
YZ
2195 if ((str = atof_ieee (str, 's', words)) == NULL)
2196 goto invalid_fp;
2197
a06ea964
NC
2198 /* Our FP word must be 32 bits (single-precision FP). */
2199 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2200 {
2201 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2202 fpword |= words[i];
2203 }
62b0d0d5 2204 }
a06ea964 2205
62b0d0d5
YZ
2206 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2207 {
2208 *immed = fpword;
a06ea964 2209 *ccp = str;
a06ea964
NC
2210 return TRUE;
2211 }
2212
2213invalid_fp:
2214 set_fatal_syntax_error (_("invalid floating-point constant"));
2215 return FALSE;
2216}
2217
2218/* Less-generic immediate-value read function with the possibility of loading
2219 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2220 instructions.
2221
2222 To prevent the expression parser from pushing a register name into the
2223 symbol table as an undefined symbol, a check is firstly done to find
2224 out whether STR is a valid register name followed by a comma or the end
2225 of line. Return FALSE if STR is such a register. */
2226
2227static bfd_boolean
2228parse_big_immediate (char **str, int64_t *imm)
2229{
2230 char *ptr = *str;
2231
2232 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2233 {
2234 set_syntax_error (_("immediate operand required"));
2235 return FALSE;
2236 }
2237
2238 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2239
2240 if (inst.reloc.exp.X_op == O_constant)
2241 *imm = inst.reloc.exp.X_add_number;
2242
2243 *str = ptr;
2244
2245 return TRUE;
2246}
2247
2248/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2249 if NEED_LIBOPCODES is non-zero, the fixup will need
2250 assistance from the libopcodes. */
2251
2252static inline void
2253aarch64_set_gas_internal_fixup (struct reloc *reloc,
2254 const aarch64_opnd_info *operand,
2255 int need_libopcodes_p)
2256{
2257 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2258 reloc->opnd = operand->type;
2259 if (need_libopcodes_p)
2260 reloc->need_libopcodes_p = 1;
2261};
2262
2263/* Return TRUE if the instruction needs to be fixed up later internally by
2264 the GAS; otherwise return FALSE. */
2265
2266static inline bfd_boolean
2267aarch64_gas_internal_fixup_p (void)
2268{
2269 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2270}
2271
2272/* Assign the immediate value to the relavant field in *OPERAND if
2273 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2274 needs an internal fixup in a later stage.
2275 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2276 IMM.VALUE that may get assigned with the constant. */
2277static inline void
2278assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2279 aarch64_opnd_info *operand,
2280 int addr_off_p,
2281 int need_libopcodes_p,
2282 int skip_p)
2283{
2284 if (reloc->exp.X_op == O_constant)
2285 {
2286 if (addr_off_p)
2287 operand->addr.offset.imm = reloc->exp.X_add_number;
2288 else
2289 operand->imm.value = reloc->exp.X_add_number;
2290 reloc->type = BFD_RELOC_UNUSED;
2291 }
2292 else
2293 {
2294 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2295 /* Tell libopcodes to ignore this operand or not. This is helpful
2296 when one of the operands needs to be fixed up later but we need
2297 libopcodes to check the other operands. */
2298 operand->skip = skip_p;
2299 }
2300}
2301
2302/* Relocation modifiers. Each entry in the table contains the textual
2303 name for the relocation which may be placed before a symbol used as
2304 a load/store offset, or add immediate. It must be surrounded by a
2305 leading and trailing colon, for example:
2306
2307 ldr x0, [x1, #:rello:varsym]
2308 add x0, x1, #:rello:varsym */
2309
2310struct reloc_table_entry
2311{
2312 const char *name;
2313 int pc_rel;
6f4a313b 2314 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2315 bfd_reloc_code_real_type adrp_type;
2316 bfd_reloc_code_real_type movw_type;
2317 bfd_reloc_code_real_type add_type;
2318 bfd_reloc_code_real_type ldst_type;
74ad790c 2319 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2320};
2321
2322static struct reloc_table_entry reloc_table[] = {
2323 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2324 {"lo12", 0,
6f4a313b 2325 0, /* adr_type */
a06ea964
NC
2326 0,
2327 0,
2328 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2329 BFD_RELOC_AARCH64_LDST_LO12,
2330 0},
a06ea964
NC
2331
2332 /* Higher 21 bits of pc-relative page offset: ADRP */
2333 {"pg_hi21", 1,
6f4a313b 2334 0, /* adr_type */
a06ea964
NC
2335 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2336 0,
2337 0,
74ad790c 2338 0,
a06ea964
NC
2339 0},
2340
2341 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2342 {"pg_hi21_nc", 1,
6f4a313b 2343 0, /* adr_type */
a06ea964
NC
2344 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2345 0,
2346 0,
74ad790c 2347 0,
a06ea964
NC
2348 0},
2349
2350 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2351 {"abs_g0", 0,
6f4a313b 2352 0, /* adr_type */
a06ea964
NC
2353 0,
2354 BFD_RELOC_AARCH64_MOVW_G0,
2355 0,
74ad790c 2356 0,
a06ea964
NC
2357 0},
2358
2359 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2360 {"abs_g0_s", 0,
6f4a313b 2361 0, /* adr_type */
a06ea964
NC
2362 0,
2363 BFD_RELOC_AARCH64_MOVW_G0_S,
2364 0,
74ad790c 2365 0,
a06ea964
NC
2366 0},
2367
2368 /* Less significant bits 0-15 of address/value: MOVK, no check */
2369 {"abs_g0_nc", 0,
6f4a313b 2370 0, /* adr_type */
a06ea964
NC
2371 0,
2372 BFD_RELOC_AARCH64_MOVW_G0_NC,
2373 0,
74ad790c 2374 0,
a06ea964
NC
2375 0},
2376
2377 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2378 {"abs_g1", 0,
6f4a313b 2379 0, /* adr_type */
a06ea964
NC
2380 0,
2381 BFD_RELOC_AARCH64_MOVW_G1,
2382 0,
74ad790c 2383 0,
a06ea964
NC
2384 0},
2385
2386 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2387 {"abs_g1_s", 0,
6f4a313b 2388 0, /* adr_type */
a06ea964
NC
2389 0,
2390 BFD_RELOC_AARCH64_MOVW_G1_S,
2391 0,
74ad790c 2392 0,
a06ea964
NC
2393 0},
2394
2395 /* Less significant bits 16-31 of address/value: MOVK, no check */
2396 {"abs_g1_nc", 0,
6f4a313b 2397 0, /* adr_type */
a06ea964
NC
2398 0,
2399 BFD_RELOC_AARCH64_MOVW_G1_NC,
2400 0,
74ad790c 2401 0,
a06ea964
NC
2402 0},
2403
2404 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2405 {"abs_g2", 0,
6f4a313b 2406 0, /* adr_type */
a06ea964
NC
2407 0,
2408 BFD_RELOC_AARCH64_MOVW_G2,
2409 0,
74ad790c 2410 0,
a06ea964
NC
2411 0},
2412
2413 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2414 {"abs_g2_s", 0,
6f4a313b 2415 0, /* adr_type */
a06ea964
NC
2416 0,
2417 BFD_RELOC_AARCH64_MOVW_G2_S,
2418 0,
74ad790c 2419 0,
a06ea964
NC
2420 0},
2421
2422 /* Less significant bits 32-47 of address/value: MOVK, no check */
2423 {"abs_g2_nc", 0,
6f4a313b 2424 0, /* adr_type */
a06ea964
NC
2425 0,
2426 BFD_RELOC_AARCH64_MOVW_G2_NC,
2427 0,
74ad790c 2428 0,
a06ea964
NC
2429 0},
2430
2431 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2432 {"abs_g3", 0,
6f4a313b 2433 0, /* adr_type */
a06ea964
NC
2434 0,
2435 BFD_RELOC_AARCH64_MOVW_G3,
2436 0,
74ad790c 2437 0,
a06ea964 2438 0},
4aa2c5e2 2439
a06ea964
NC
2440 /* Get to the page containing GOT entry for a symbol. */
2441 {"got", 1,
6f4a313b 2442 0, /* adr_type */
a06ea964
NC
2443 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2444 0,
2445 0,
74ad790c 2446 0,
4aa2c5e2
MS
2447 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2448
a06ea964
NC
2449 /* 12 bit offset into the page containing GOT entry for that symbol. */
2450 {"got_lo12", 0,
6f4a313b 2451 0, /* adr_type */
a06ea964
NC
2452 0,
2453 0,
2454 0,
74ad790c
MS
2455 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2456 0},
a06ea964
NC
2457
2458 /* Get to the page containing GOT TLS entry for a symbol */
2459 {"tlsgd", 0,
3c12b054 2460 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2461 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2462 0,
2463 0,
74ad790c 2464 0,
a06ea964
NC
2465 0},
2466
2467 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2468 {"tlsgd_lo12", 0,
6f4a313b 2469 0, /* adr_type */
a06ea964
NC
2470 0,
2471 0,
2472 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2473 0,
a06ea964
NC
2474 0},
2475
2476 /* Get to the page containing GOT TLS entry for a symbol */
2477 {"tlsdesc", 0,
389b8029 2478 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2479 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2480 0,
2481 0,
74ad790c 2482 0,
1ada945d 2483 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2484
2485 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2486 {"tlsdesc_lo12", 0,
6f4a313b 2487 0, /* adr_type */
a06ea964
NC
2488 0,
2489 0,
2490 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2491 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2492 0},
a06ea964
NC
2493
2494 /* Get to the page containing GOT TLS entry for a symbol */
2495 {"gottprel", 0,
6f4a313b 2496 0, /* adr_type */
a06ea964
NC
2497 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2498 0,
2499 0,
74ad790c 2500 0,
043bf05a 2501 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2502
2503 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2504 {"gottprel_lo12", 0,
6f4a313b 2505 0, /* adr_type */
a06ea964
NC
2506 0,
2507 0,
2508 0,
74ad790c
MS
2509 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2510 0},
a06ea964
NC
2511
2512 /* Get tp offset for a symbol. */
2513 {"tprel", 0,
6f4a313b 2514 0, /* adr_type */
a06ea964
NC
2515 0,
2516 0,
2517 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2518 0,
a06ea964
NC
2519 0},
2520
2521 /* Get tp offset for a symbol. */
2522 {"tprel_lo12", 0,
6f4a313b 2523 0, /* adr_type */
a06ea964
NC
2524 0,
2525 0,
2526 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2527 0,
a06ea964
NC
2528 0},
2529
2530 /* Get tp offset for a symbol. */
2531 {"tprel_hi12", 0,
6f4a313b 2532 0, /* adr_type */
a06ea964
NC
2533 0,
2534 0,
2535 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2536 0,
a06ea964
NC
2537 0},
2538
2539 /* Get tp offset for a symbol. */
2540 {"tprel_lo12_nc", 0,
6f4a313b 2541 0, /* adr_type */
a06ea964
NC
2542 0,
2543 0,
2544 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2545 0,
a06ea964
NC
2546 0},
2547
2548 /* Most significant bits 32-47 of address/value: MOVZ. */
2549 {"tprel_g2", 0,
6f4a313b 2550 0, /* adr_type */
a06ea964
NC
2551 0,
2552 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2553 0,
74ad790c 2554 0,
a06ea964
NC
2555 0},
2556
2557 /* Most significant bits 16-31 of address/value: MOVZ. */
2558 {"tprel_g1", 0,
6f4a313b 2559 0, /* adr_type */
a06ea964
NC
2560 0,
2561 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2562 0,
74ad790c 2563 0,
a06ea964
NC
2564 0},
2565
2566 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2567 {"tprel_g1_nc", 0,
6f4a313b 2568 0, /* adr_type */
a06ea964
NC
2569 0,
2570 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2571 0,
74ad790c 2572 0,
a06ea964
NC
2573 0},
2574
2575 /* Most significant bits 0-15 of address/value: MOVZ. */
2576 {"tprel_g0", 0,
6f4a313b 2577 0, /* adr_type */
a06ea964
NC
2578 0,
2579 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2580 0,
74ad790c 2581 0,
a06ea964
NC
2582 0},
2583
2584 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2585 {"tprel_g0_nc", 0,
6f4a313b 2586 0, /* adr_type */
a06ea964
NC
2587 0,
2588 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2589 0,
74ad790c 2590 0,
a06ea964 2591 0},
a921b5bd
JW
2592
2593 /* 15bit offset from got entry to base address of GOT table. */
2594 {"gotpage_lo15", 0,
2595 0,
2596 0,
2597 0,
2598 0,
2599 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2600 0},
3d715ce4
JW
2601
2602 /* 14bit offset from got entry to base address of GOT table. */
2603 {"gotpage_lo14", 0,
2604 0,
2605 0,
2606 0,
2607 0,
2608 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2609 0},
a06ea964
NC
2610};
2611
2612/* Given the address of a pointer pointing to the textual name of a
2613 relocation as may appear in assembler source, attempt to find its
2614 details in reloc_table. The pointer will be updated to the character
2615 after the trailing colon. On failure, NULL will be returned;
2616 otherwise return the reloc_table_entry. */
2617
2618static struct reloc_table_entry *
2619find_reloc_table_entry (char **str)
2620{
2621 unsigned int i;
2622 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2623 {
2624 int length = strlen (reloc_table[i].name);
2625
2626 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2627 && (*str)[length] == ':')
2628 {
2629 *str += (length + 1);
2630 return &reloc_table[i];
2631 }
2632 }
2633
2634 return NULL;
2635}
2636
2637/* Mode argument to parse_shift and parser_shifter_operand. */
2638enum parse_shift_mode
2639{
2640 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2641 "#imm{,lsl #n}" */
2642 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2643 "#imm" */
2644 SHIFTED_LSL, /* bare "lsl #n" */
2645 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2646 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2647};
2648
2649/* Parse a <shift> operator on an AArch64 data processing instruction.
2650 Return TRUE on success; otherwise return FALSE. */
2651static bfd_boolean
2652parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2653{
2654 const struct aarch64_name_value_pair *shift_op;
2655 enum aarch64_modifier_kind kind;
2656 expressionS exp;
2657 int exp_has_prefix;
2658 char *s = *str;
2659 char *p = s;
2660
2661 for (p = *str; ISALPHA (*p); p++)
2662 ;
2663
2664 if (p == *str)
2665 {
2666 set_syntax_error (_("shift expression expected"));
2667 return FALSE;
2668 }
2669
2670 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2671
2672 if (shift_op == NULL)
2673 {
2674 set_syntax_error (_("shift operator expected"));
2675 return FALSE;
2676 }
2677
2678 kind = aarch64_get_operand_modifier (shift_op);
2679
2680 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2681 {
2682 set_syntax_error (_("invalid use of 'MSL'"));
2683 return FALSE;
2684 }
2685
2686 switch (mode)
2687 {
2688 case SHIFTED_LOGIC_IMM:
2689 if (aarch64_extend_operator_p (kind) == TRUE)
2690 {
2691 set_syntax_error (_("extending shift is not permitted"));
2692 return FALSE;
2693 }
2694 break;
2695
2696 case SHIFTED_ARITH_IMM:
2697 if (kind == AARCH64_MOD_ROR)
2698 {
2699 set_syntax_error (_("'ROR' shift is not permitted"));
2700 return FALSE;
2701 }
2702 break;
2703
2704 case SHIFTED_LSL:
2705 if (kind != AARCH64_MOD_LSL)
2706 {
2707 set_syntax_error (_("only 'LSL' shift is permitted"));
2708 return FALSE;
2709 }
2710 break;
2711
2712 case SHIFTED_REG_OFFSET:
2713 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2714 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2715 {
2716 set_fatal_syntax_error
2717 (_("invalid shift for the register offset addressing mode"));
2718 return FALSE;
2719 }
2720 break;
2721
2722 case SHIFTED_LSL_MSL:
2723 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2724 {
2725 set_syntax_error (_("invalid shift operator"));
2726 return FALSE;
2727 }
2728 break;
2729
2730 default:
2731 abort ();
2732 }
2733
2734 /* Whitespace can appear here if the next thing is a bare digit. */
2735 skip_whitespace (p);
2736
2737 /* Parse shift amount. */
2738 exp_has_prefix = 0;
2739 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2740 exp.X_op = O_absent;
2741 else
2742 {
2743 if (is_immediate_prefix (*p))
2744 {
2745 p++;
2746 exp_has_prefix = 1;
2747 }
2748 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2749 }
2750 if (exp.X_op == O_absent)
2751 {
2752 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2753 {
2754 set_syntax_error (_("missing shift amount"));
2755 return FALSE;
2756 }
2757 operand->shifter.amount = 0;
2758 }
2759 else if (exp.X_op != O_constant)
2760 {
2761 set_syntax_error (_("constant shift amount required"));
2762 return FALSE;
2763 }
2764 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2765 {
2766 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2767 return FALSE;
2768 }
2769 else
2770 {
2771 operand->shifter.amount = exp.X_add_number;
2772 operand->shifter.amount_present = 1;
2773 }
2774
2775 operand->shifter.operator_present = 1;
2776 operand->shifter.kind = kind;
2777
2778 *str = p;
2779 return TRUE;
2780}
2781
2782/* Parse a <shifter_operand> for a data processing instruction:
2783
2784 #<immediate>
2785 #<immediate>, LSL #imm
2786
2787 Validation of immediate operands is deferred to md_apply_fix.
2788
2789 Return TRUE on success; otherwise return FALSE. */
2790
2791static bfd_boolean
2792parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
2793 enum parse_shift_mode mode)
2794{
2795 char *p;
2796
2797 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
2798 return FALSE;
2799
2800 p = *str;
2801
2802 /* Accept an immediate expression. */
2803 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
2804 return FALSE;
2805
2806 /* Accept optional LSL for arithmetic immediate values. */
2807 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
2808 if (! parse_shift (&p, operand, SHIFTED_LSL))
2809 return FALSE;
2810
2811 /* Not accept any shifter for logical immediate values. */
2812 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
2813 && parse_shift (&p, operand, mode))
2814 {
2815 set_syntax_error (_("unexpected shift operator"));
2816 return FALSE;
2817 }
2818
2819 *str = p;
2820 return TRUE;
2821}
2822
2823/* Parse a <shifter_operand> for a data processing instruction:
2824
2825 <Rm>
2826 <Rm>, <shift>
2827 #<immediate>
2828 #<immediate>, LSL #imm
2829
2830 where <shift> is handled by parse_shift above, and the last two
2831 cases are handled by the function above.
2832
2833 Validation of immediate operands is deferred to md_apply_fix.
2834
2835 Return TRUE on success; otherwise return FALSE. */
2836
2837static bfd_boolean
2838parse_shifter_operand (char **str, aarch64_opnd_info *operand,
2839 enum parse_shift_mode mode)
2840{
2841 int reg;
2842 int isreg32, isregzero;
2843 enum aarch64_operand_class opd_class
2844 = aarch64_get_operand_class (operand->type);
2845
2846 if ((reg =
2847 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
2848 {
2849 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
2850 {
2851 set_syntax_error (_("unexpected register in the immediate operand"));
2852 return FALSE;
2853 }
2854
2855 if (!isregzero && reg == REG_SP)
2856 {
2857 set_syntax_error (BAD_SP);
2858 return FALSE;
2859 }
2860
2861 operand->reg.regno = reg;
2862 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2863
2864 /* Accept optional shift operation on register. */
2865 if (! skip_past_comma (str))
2866 return TRUE;
2867
2868 if (! parse_shift (str, operand, mode))
2869 return FALSE;
2870
2871 return TRUE;
2872 }
2873 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
2874 {
2875 set_syntax_error
2876 (_("integer register expected in the extended/shifted operand "
2877 "register"));
2878 return FALSE;
2879 }
2880
2881 /* We have a shifted immediate variable. */
2882 return parse_shifter_operand_imm (str, operand, mode);
2883}
2884
2885/* Return TRUE on success; return FALSE otherwise. */
2886
2887static bfd_boolean
2888parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
2889 enum parse_shift_mode mode)
2890{
2891 char *p = *str;
2892
2893 /* Determine if we have the sequence of characters #: or just :
2894 coming next. If we do, then we check for a :rello: relocation
2895 modifier. If we don't, punt the whole lot to
2896 parse_shifter_operand. */
2897
2898 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
2899 {
2900 struct reloc_table_entry *entry;
2901
2902 if (p[0] == '#')
2903 p += 2;
2904 else
2905 p++;
2906 *str = p;
2907
2908 /* Try to parse a relocation. Anything else is an error. */
2909 if (!(entry = find_reloc_table_entry (str)))
2910 {
2911 set_syntax_error (_("unknown relocation modifier"));
2912 return FALSE;
2913 }
2914
2915 if (entry->add_type == 0)
2916 {
2917 set_syntax_error
2918 (_("this relocation modifier is not allowed on this instruction"));
2919 return FALSE;
2920 }
2921
2922 /* Save str before we decompose it. */
2923 p = *str;
2924
2925 /* Next, we parse the expression. */
2926 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
2927 return FALSE;
2928
2929 /* Record the relocation type (use the ADD variant here). */
2930 inst.reloc.type = entry->add_type;
2931 inst.reloc.pc_rel = entry->pc_rel;
2932
2933 /* If str is empty, we've reached the end, stop here. */
2934 if (**str == '\0')
2935 return TRUE;
2936
55d9b4c1 2937 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
2938 recover the variable name and continue parsing for the shifter. */
2939 *str = p;
2940 return parse_shifter_operand_imm (str, operand, mode);
2941 }
2942
2943 return parse_shifter_operand (str, operand, mode);
2944}
2945
2946/* Parse all forms of an address expression. Information is written
2947 to *OPERAND and/or inst.reloc.
2948
2949 The A64 instruction set has the following addressing modes:
2950
2951 Offset
2952 [base] // in SIMD ld/st structure
2953 [base{,#0}] // in ld/st exclusive
2954 [base{,#imm}]
2955 [base,Xm{,LSL #imm}]
2956 [base,Xm,SXTX {#imm}]
2957 [base,Wm,(S|U)XTW {#imm}]
2958 Pre-indexed
2959 [base,#imm]!
2960 Post-indexed
2961 [base],#imm
2962 [base],Xm // in SIMD ld/st structure
2963 PC-relative (literal)
2964 label
2965 =immediate
2966
2967 (As a convenience, the notation "=immediate" is permitted in conjunction
2968 with the pc-relative literal load instructions to automatically place an
2969 immediate value or symbolic address in a nearby literal pool and generate
2970 a hidden label which references it.)
2971
2972 Upon a successful parsing, the address structure in *OPERAND will be
2973 filled in the following way:
2974
2975 .base_regno = <base>
2976 .offset.is_reg // 1 if the offset is a register
2977 .offset.imm = <imm>
2978 .offset.regno = <Rm>
2979
2980 For different addressing modes defined in the A64 ISA:
2981
2982 Offset
2983 .pcrel=0; .preind=1; .postind=0; .writeback=0
2984 Pre-indexed
2985 .pcrel=0; .preind=1; .postind=0; .writeback=1
2986 Post-indexed
2987 .pcrel=0; .preind=0; .postind=1; .writeback=1
2988 PC-relative (literal)
2989 .pcrel=1; .preind=1; .postind=0; .writeback=0
2990
2991 The shift/extension information, if any, will be stored in .shifter.
2992
2993 It is the caller's responsibility to check for addressing modes not
2994 supported by the instruction, and to set inst.reloc.type. */
2995
2996static bfd_boolean
2997parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
2998 int accept_reg_post_index)
2999{
3000 char *p = *str;
3001 int reg;
3002 int isreg32, isregzero;
3003 expressionS *exp = &inst.reloc.exp;
3004
3005 if (! skip_past_char (&p, '['))
3006 {
3007 /* =immediate or label. */
3008 operand->addr.pcrel = 1;
3009 operand->addr.preind = 1;
3010
f41aef5f
RE
3011 /* #:<reloc_op>:<symbol> */
3012 skip_past_char (&p, '#');
3013 if (reloc && skip_past_char (&p, ':'))
3014 {
6f4a313b 3015 bfd_reloc_code_real_type ty;
f41aef5f
RE
3016 struct reloc_table_entry *entry;
3017
3018 /* Try to parse a relocation modifier. Anything else is
3019 an error. */
3020 entry = find_reloc_table_entry (&p);
3021 if (! entry)
3022 {
3023 set_syntax_error (_("unknown relocation modifier"));
3024 return FALSE;
3025 }
3026
6f4a313b
MS
3027 switch (operand->type)
3028 {
3029 case AARCH64_OPND_ADDR_PCREL21:
3030 /* adr */
3031 ty = entry->adr_type;
3032 break;
3033
3034 default:
74ad790c 3035 ty = entry->ld_literal_type;
6f4a313b
MS
3036 break;
3037 }
3038
3039 if (ty == 0)
f41aef5f
RE
3040 {
3041 set_syntax_error
3042 (_("this relocation modifier is not allowed on this "
3043 "instruction"));
3044 return FALSE;
3045 }
3046
3047 /* #:<reloc_op>: */
3048 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3049 {
3050 set_syntax_error (_("invalid relocation expression"));
3051 return FALSE;
3052 }
a06ea964 3053
f41aef5f 3054 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3055 /* Record the relocation type. */
3056 inst.reloc.type = ty;
f41aef5f
RE
3057 inst.reloc.pc_rel = entry->pc_rel;
3058 }
3059 else
a06ea964 3060 {
f41aef5f
RE
3061
3062 if (skip_past_char (&p, '='))
3063 /* =immediate; need to generate the literal in the literal pool. */
3064 inst.gen_lit_pool = 1;
3065
3066 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3067 {
3068 set_syntax_error (_("invalid address"));
3069 return FALSE;
3070 }
a06ea964
NC
3071 }
3072
3073 *str = p;
3074 return TRUE;
3075 }
3076
3077 /* [ */
3078
3079 /* Accept SP and reject ZR */
3080 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3081 if (reg == PARSE_FAIL || isreg32)
3082 {
3083 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3084 return FALSE;
3085 }
3086 operand->addr.base_regno = reg;
3087
3088 /* [Xn */
3089 if (skip_past_comma (&p))
3090 {
3091 /* [Xn, */
3092 operand->addr.preind = 1;
3093
3094 /* Reject SP and accept ZR */
3095 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3096 if (reg != PARSE_FAIL)
3097 {
3098 /* [Xn,Rm */
3099 operand->addr.offset.regno = reg;
3100 operand->addr.offset.is_reg = 1;
3101 /* Shifted index. */
3102 if (skip_past_comma (&p))
3103 {
3104 /* [Xn,Rm, */
3105 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3106 /* Use the diagnostics set in parse_shift, so not set new
3107 error message here. */
3108 return FALSE;
3109 }
3110 /* We only accept:
3111 [base,Xm{,LSL #imm}]
3112 [base,Xm,SXTX {#imm}]
3113 [base,Wm,(S|U)XTW {#imm}] */
3114 if (operand->shifter.kind == AARCH64_MOD_NONE
3115 || operand->shifter.kind == AARCH64_MOD_LSL
3116 || operand->shifter.kind == AARCH64_MOD_SXTX)
3117 {
3118 if (isreg32)
3119 {
3120 set_syntax_error (_("invalid use of 32-bit register offset"));
3121 return FALSE;
3122 }
3123 }
3124 else if (!isreg32)
3125 {
3126 set_syntax_error (_("invalid use of 64-bit register offset"));
3127 return FALSE;
3128 }
3129 }
3130 else
3131 {
3132 /* [Xn,#:<reloc_op>:<symbol> */
3133 skip_past_char (&p, '#');
3134 if (reloc && skip_past_char (&p, ':'))
3135 {
3136 struct reloc_table_entry *entry;
3137
3138 /* Try to parse a relocation modifier. Anything else is
3139 an error. */
3140 if (!(entry = find_reloc_table_entry (&p)))
3141 {
3142 set_syntax_error (_("unknown relocation modifier"));
3143 return FALSE;
3144 }
3145
3146 if (entry->ldst_type == 0)
3147 {
3148 set_syntax_error
3149 (_("this relocation modifier is not allowed on this "
3150 "instruction"));
3151 return FALSE;
3152 }
3153
3154 /* [Xn,#:<reloc_op>: */
3155 /* We now have the group relocation table entry corresponding to
3156 the name in the assembler source. Next, we parse the
3157 expression. */
3158 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3159 {
3160 set_syntax_error (_("invalid relocation expression"));
3161 return FALSE;
3162 }
3163
3164 /* [Xn,#:<reloc_op>:<expr> */
3165 /* Record the load/store relocation type. */
3166 inst.reloc.type = entry->ldst_type;
3167 inst.reloc.pc_rel = entry->pc_rel;
3168 }
3169 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3170 {
3171 set_syntax_error (_("invalid expression in the address"));
3172 return FALSE;
3173 }
3174 /* [Xn,<expr> */
3175 }
3176 }
3177
3178 if (! skip_past_char (&p, ']'))
3179 {
3180 set_syntax_error (_("']' expected"));
3181 return FALSE;
3182 }
3183
3184 if (skip_past_char (&p, '!'))
3185 {
3186 if (operand->addr.preind && operand->addr.offset.is_reg)
3187 {
3188 set_syntax_error (_("register offset not allowed in pre-indexed "
3189 "addressing mode"));
3190 return FALSE;
3191 }
3192 /* [Xn]! */
3193 operand->addr.writeback = 1;
3194 }
3195 else if (skip_past_comma (&p))
3196 {
3197 /* [Xn], */
3198 operand->addr.postind = 1;
3199 operand->addr.writeback = 1;
3200
3201 if (operand->addr.preind)
3202 {
3203 set_syntax_error (_("cannot combine pre- and post-indexing"));
3204 return FALSE;
3205 }
3206
3207 if (accept_reg_post_index
3208 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3209 &isregzero)) != PARSE_FAIL)
3210 {
3211 /* [Xn],Xm */
3212 if (isreg32)
3213 {
3214 set_syntax_error (_("invalid 32-bit register offset"));
3215 return FALSE;
3216 }
3217 operand->addr.offset.regno = reg;
3218 operand->addr.offset.is_reg = 1;
3219 }
3220 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3221 {
3222 /* [Xn],#expr */
3223 set_syntax_error (_("invalid expression in the address"));
3224 return FALSE;
3225 }
3226 }
3227
3228 /* If at this point neither .preind nor .postind is set, we have a
3229 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3230 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3231 {
3232 if (operand->addr.writeback)
3233 {
3234 /* Reject [Rn]! */
3235 set_syntax_error (_("missing offset in the pre-indexed address"));
3236 return FALSE;
3237 }
3238 operand->addr.preind = 1;
3239 inst.reloc.exp.X_op = O_constant;
3240 inst.reloc.exp.X_add_number = 0;
3241 }
3242
3243 *str = p;
3244 return TRUE;
3245}
3246
3247/* Return TRUE on success; otherwise return FALSE. */
3248static bfd_boolean
3249parse_address (char **str, aarch64_opnd_info *operand,
3250 int accept_reg_post_index)
3251{
3252 return parse_address_main (str, operand, 0, accept_reg_post_index);
3253}
3254
3255/* Return TRUE on success; otherwise return FALSE. */
3256static bfd_boolean
3257parse_address_reloc (char **str, aarch64_opnd_info *operand)
3258{
3259 return parse_address_main (str, operand, 1, 0);
3260}
3261
3262/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3263 Return TRUE on success; otherwise return FALSE. */
3264static bfd_boolean
3265parse_half (char **str, int *internal_fixup_p)
3266{
3267 char *p, *saved;
3268 int dummy;
3269
3270 p = *str;
3271 skip_past_char (&p, '#');
3272
3273 gas_assert (internal_fixup_p);
3274 *internal_fixup_p = 0;
3275
3276 if (*p == ':')
3277 {
3278 struct reloc_table_entry *entry;
3279
3280 /* Try to parse a relocation. Anything else is an error. */
3281 ++p;
3282 if (!(entry = find_reloc_table_entry (&p)))
3283 {
3284 set_syntax_error (_("unknown relocation modifier"));
3285 return FALSE;
3286 }
3287
3288 if (entry->movw_type == 0)
3289 {
3290 set_syntax_error
3291 (_("this relocation modifier is not allowed on this instruction"));
3292 return FALSE;
3293 }
3294
3295 inst.reloc.type = entry->movw_type;
3296 }
3297 else
3298 *internal_fixup_p = 1;
3299
3300 /* Avoid parsing a register as a general symbol. */
3301 saved = p;
3302 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3303 return FALSE;
3304 p = saved;
3305
3306 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3307 return FALSE;
3308
3309 *str = p;
3310 return TRUE;
3311}
3312
3313/* Parse an operand for an ADRP instruction:
3314 ADRP <Xd>, <label>
3315 Return TRUE on success; otherwise return FALSE. */
3316
3317static bfd_boolean
3318parse_adrp (char **str)
3319{
3320 char *p;
3321
3322 p = *str;
3323 if (*p == ':')
3324 {
3325 struct reloc_table_entry *entry;
3326
3327 /* Try to parse a relocation. Anything else is an error. */
3328 ++p;
3329 if (!(entry = find_reloc_table_entry (&p)))
3330 {
3331 set_syntax_error (_("unknown relocation modifier"));
3332 return FALSE;
3333 }
3334
3335 if (entry->adrp_type == 0)
3336 {
3337 set_syntax_error
3338 (_("this relocation modifier is not allowed on this instruction"));
3339 return FALSE;
3340 }
3341
3342 inst.reloc.type = entry->adrp_type;
3343 }
3344 else
3345 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3346
3347 inst.reloc.pc_rel = 1;
3348
3349 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3350 return FALSE;
3351
3352 *str = p;
3353 return TRUE;
3354}
3355
3356/* Miscellaneous. */
3357
3358/* Parse an option for a preload instruction. Returns the encoding for the
3359 option, or PARSE_FAIL. */
3360
3361static int
3362parse_pldop (char **str)
3363{
3364 char *p, *q;
3365 const struct aarch64_name_value_pair *o;
3366
3367 p = q = *str;
3368 while (ISALNUM (*q))
3369 q++;
3370
3371 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3372 if (!o)
3373 return PARSE_FAIL;
3374
3375 *str = q;
3376 return o->value;
3377}
3378
3379/* Parse an option for a barrier instruction. Returns the encoding for the
3380 option, or PARSE_FAIL. */
3381
3382static int
3383parse_barrier (char **str)
3384{
3385 char *p, *q;
3386 const asm_barrier_opt *o;
3387
3388 p = q = *str;
3389 while (ISALPHA (*q))
3390 q++;
3391
3392 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3393 if (!o)
3394 return PARSE_FAIL;
3395
3396 *str = q;
3397 return o->value;
3398}
3399
3400/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3401 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3402
3403 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3404 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3405
3406 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3407 field, otherwise as a system register.
3408*/
a06ea964
NC
3409
3410static int
72ca8fad
MW
3411parse_sys_reg (char **str, struct hash_control *sys_regs,
3412 int imple_defined_p, int pstatefield_p)
a06ea964
NC
3413{
3414 char *p, *q;
3415 char buf[32];
49eec193 3416 const aarch64_sys_reg *o;
a06ea964
NC
3417 int value;
3418
3419 p = buf;
3420 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3421 if (p < buf + 31)
3422 *p++ = TOLOWER (*q);
3423 *p = '\0';
3424 /* Assert that BUF be large enough. */
3425 gas_assert (p - buf == q - *str);
3426
3427 o = hash_find (sys_regs, buf);
3428 if (!o)
3429 {
3430 if (!imple_defined_p)
3431 return PARSE_FAIL;
3432 else
3433 {
df7b4545 3434 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3435 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3436
3437 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3438 != 5)
a06ea964 3439 return PARSE_FAIL;
df7b4545 3440 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3441 return PARSE_FAIL;
3442 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3443 }
3444 }
3445 else
49eec193 3446 {
72ca8fad
MW
3447 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3448 as_bad (_("selected processor does not support PSTATE field "
3449 "name '%s'"), buf);
3450 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3451 as_bad (_("selected processor does not support system register "
3452 "name '%s'"), buf);
9a73e520 3453 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3454 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3455 "removed in a future release"), buf);
49eec193
YZ
3456 value = o->value;
3457 }
a06ea964
NC
3458
3459 *str = q;
3460 return value;
3461}
3462
3463/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3464 for the option, or NULL. */
3465
3466static const aarch64_sys_ins_reg *
3467parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3468{
3469 char *p, *q;
3470 char buf[32];
3471 const aarch64_sys_ins_reg *o;
3472
3473 p = buf;
3474 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3475 if (p < buf + 31)
3476 *p++ = TOLOWER (*q);
3477 *p = '\0';
3478
3479 o = hash_find (sys_ins_regs, buf);
3480 if (!o)
3481 return NULL;
3482
3483 *str = q;
3484 return o;
3485}
3486\f
3487#define po_char_or_fail(chr) do { \
3488 if (! skip_past_char (&str, chr)) \
3489 goto failure; \
3490} while (0)
3491
3492#define po_reg_or_fail(regtype) do { \
3493 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3494 if (val == PARSE_FAIL) \
3495 { \
3496 set_default_error (); \
3497 goto failure; \
3498 } \
3499 } while (0)
3500
3501#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3502 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3503 &isreg32, &isregzero); \
3504 if (val == PARSE_FAIL) \
3505 { \
3506 set_default_error (); \
3507 goto failure; \
3508 } \
3509 info->reg.regno = val; \
3510 if (isreg32) \
3511 info->qualifier = AARCH64_OPND_QLF_W; \
3512 else \
3513 info->qualifier = AARCH64_OPND_QLF_X; \
3514 } while (0)
3515
3516#define po_imm_nc_or_fail() do { \
3517 if (! parse_constant_immediate (&str, &val)) \
3518 goto failure; \
3519 } while (0)
3520
3521#define po_imm_or_fail(min, max) do { \
3522 if (! parse_constant_immediate (&str, &val)) \
3523 goto failure; \
3524 if (val < min || val > max) \
3525 { \
3526 set_fatal_syntax_error (_("immediate value out of range "\
3527#min " to "#max)); \
3528 goto failure; \
3529 } \
3530 } while (0)
3531
3532#define po_misc_or_fail(expr) do { \
3533 if (!expr) \
3534 goto failure; \
3535 } while (0)
3536\f
3537/* encode the 12-bit imm field of Add/sub immediate */
3538static inline uint32_t
3539encode_addsub_imm (uint32_t imm)
3540{
3541 return imm << 10;
3542}
3543
3544/* encode the shift amount field of Add/sub immediate */
3545static inline uint32_t
3546encode_addsub_imm_shift_amount (uint32_t cnt)
3547{
3548 return cnt << 22;
3549}
3550
3551
3552/* encode the imm field of Adr instruction */
3553static inline uint32_t
3554encode_adr_imm (uint32_t imm)
3555{
3556 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3557 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3558}
3559
3560/* encode the immediate field of Move wide immediate */
3561static inline uint32_t
3562encode_movw_imm (uint32_t imm)
3563{
3564 return imm << 5;
3565}
3566
3567/* encode the 26-bit offset of unconditional branch */
3568static inline uint32_t
3569encode_branch_ofs_26 (uint32_t ofs)
3570{
3571 return ofs & ((1 << 26) - 1);
3572}
3573
3574/* encode the 19-bit offset of conditional branch and compare & branch */
3575static inline uint32_t
3576encode_cond_branch_ofs_19 (uint32_t ofs)
3577{
3578 return (ofs & ((1 << 19) - 1)) << 5;
3579}
3580
3581/* encode the 19-bit offset of ld literal */
3582static inline uint32_t
3583encode_ld_lit_ofs_19 (uint32_t ofs)
3584{
3585 return (ofs & ((1 << 19) - 1)) << 5;
3586}
3587
3588/* Encode the 14-bit offset of test & branch. */
3589static inline uint32_t
3590encode_tst_branch_ofs_14 (uint32_t ofs)
3591{
3592 return (ofs & ((1 << 14) - 1)) << 5;
3593}
3594
3595/* Encode the 16-bit imm field of svc/hvc/smc. */
3596static inline uint32_t
3597encode_svc_imm (uint32_t imm)
3598{
3599 return imm << 5;
3600}
3601
3602/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3603static inline uint32_t
3604reencode_addsub_switch_add_sub (uint32_t opcode)
3605{
3606 return opcode ^ (1 << 30);
3607}
3608
3609static inline uint32_t
3610reencode_movzn_to_movz (uint32_t opcode)
3611{
3612 return opcode | (1 << 30);
3613}
3614
3615static inline uint32_t
3616reencode_movzn_to_movn (uint32_t opcode)
3617{
3618 return opcode & ~(1 << 30);
3619}
3620
3621/* Overall per-instruction processing. */
3622
3623/* We need to be able to fix up arbitrary expressions in some statements.
3624 This is so that we can handle symbols that are an arbitrary distance from
3625 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3626 which returns part of an address in a form which will be valid for
3627 a data instruction. We do this by pushing the expression into a symbol
3628 in the expr_section, and creating a fix for that. */
3629
3630static fixS *
3631fix_new_aarch64 (fragS * frag,
3632 int where,
3633 short int size, expressionS * exp, int pc_rel, int reloc)
3634{
3635 fixS *new_fix;
3636
3637 switch (exp->X_op)
3638 {
3639 case O_constant:
3640 case O_symbol:
3641 case O_add:
3642 case O_subtract:
3643 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3644 break;
3645
3646 default:
3647 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3648 pc_rel, reloc);
3649 break;
3650 }
3651 return new_fix;
3652}
3653\f
3654/* Diagnostics on operands errors. */
3655
a52e6fd3
YZ
3656/* By default, output verbose error message.
3657 Disable the verbose error message by -mno-verbose-error. */
3658static int verbose_error_p = 1;
a06ea964
NC
3659
3660#ifdef DEBUG_AARCH64
3661/* N.B. this is only for the purpose of debugging. */
3662const char* operand_mismatch_kind_names[] =
3663{
3664 "AARCH64_OPDE_NIL",
3665 "AARCH64_OPDE_RECOVERABLE",
3666 "AARCH64_OPDE_SYNTAX_ERROR",
3667 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3668 "AARCH64_OPDE_INVALID_VARIANT",
3669 "AARCH64_OPDE_OUT_OF_RANGE",
3670 "AARCH64_OPDE_UNALIGNED",
3671 "AARCH64_OPDE_REG_LIST",
3672 "AARCH64_OPDE_OTHER_ERROR",
3673};
3674#endif /* DEBUG_AARCH64 */
3675
3676/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3677
3678 When multiple errors of different kinds are found in the same assembly
3679 line, only the error of the highest severity will be picked up for
3680 issuing the diagnostics. */
3681
3682static inline bfd_boolean
3683operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3684 enum aarch64_operand_error_kind rhs)
3685{
3686 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3687 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3688 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3689 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3690 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3691 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3692 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3693 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3694 return lhs > rhs;
3695}
3696
3697/* Helper routine to get the mnemonic name from the assembly instruction
3698 line; should only be called for the diagnosis purpose, as there is
3699 string copy operation involved, which may affect the runtime
3700 performance if used in elsewhere. */
3701
3702static const char*
3703get_mnemonic_name (const char *str)
3704{
3705 static char mnemonic[32];
3706 char *ptr;
3707
3708 /* Get the first 15 bytes and assume that the full name is included. */
3709 strncpy (mnemonic, str, 31);
3710 mnemonic[31] = '\0';
3711
3712 /* Scan up to the end of the mnemonic, which must end in white space,
3713 '.', or end of string. */
3714 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3715 ;
3716
3717 *ptr = '\0';
3718
3719 /* Append '...' to the truncated long name. */
3720 if (ptr - mnemonic == 31)
3721 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3722
3723 return mnemonic;
3724}
3725
3726static void
3727reset_aarch64_instruction (aarch64_instruction *instruction)
3728{
3729 memset (instruction, '\0', sizeof (aarch64_instruction));
3730 instruction->reloc.type = BFD_RELOC_UNUSED;
3731}
3732
3733/* Data strutures storing one user error in the assembly code related to
3734 operands. */
3735
3736struct operand_error_record
3737{
3738 const aarch64_opcode *opcode;
3739 aarch64_operand_error detail;
3740 struct operand_error_record *next;
3741};
3742
3743typedef struct operand_error_record operand_error_record;
3744
3745struct operand_errors
3746{
3747 operand_error_record *head;
3748 operand_error_record *tail;
3749};
3750
3751typedef struct operand_errors operand_errors;
3752
3753/* Top-level data structure reporting user errors for the current line of
3754 the assembly code.
3755 The way md_assemble works is that all opcodes sharing the same mnemonic
3756 name are iterated to find a match to the assembly line. In this data
3757 structure, each of the such opcodes will have one operand_error_record
3758 allocated and inserted. In other words, excessive errors related with
3759 a single opcode are disregarded. */
3760operand_errors operand_error_report;
3761
3762/* Free record nodes. */
3763static operand_error_record *free_opnd_error_record_nodes = NULL;
3764
3765/* Initialize the data structure that stores the operand mismatch
3766 information on assembling one line of the assembly code. */
3767static void
3768init_operand_error_report (void)
3769{
3770 if (operand_error_report.head != NULL)
3771 {
3772 gas_assert (operand_error_report.tail != NULL);
3773 operand_error_report.tail->next = free_opnd_error_record_nodes;
3774 free_opnd_error_record_nodes = operand_error_report.head;
3775 operand_error_report.head = NULL;
3776 operand_error_report.tail = NULL;
3777 return;
3778 }
3779 gas_assert (operand_error_report.tail == NULL);
3780}
3781
3782/* Return TRUE if some operand error has been recorded during the
3783 parsing of the current assembly line using the opcode *OPCODE;
3784 otherwise return FALSE. */
3785static inline bfd_boolean
3786opcode_has_operand_error_p (const aarch64_opcode *opcode)
3787{
3788 operand_error_record *record = operand_error_report.head;
3789 return record && record->opcode == opcode;
3790}
3791
3792/* Add the error record *NEW_RECORD to operand_error_report. The record's
3793 OPCODE field is initialized with OPCODE.
3794 N.B. only one record for each opcode, i.e. the maximum of one error is
3795 recorded for each instruction template. */
3796
3797static void
3798add_operand_error_record (const operand_error_record* new_record)
3799{
3800 const aarch64_opcode *opcode = new_record->opcode;
3801 operand_error_record* record = operand_error_report.head;
3802
3803 /* The record may have been created for this opcode. If not, we need
3804 to prepare one. */
3805 if (! opcode_has_operand_error_p (opcode))
3806 {
3807 /* Get one empty record. */
3808 if (free_opnd_error_record_nodes == NULL)
3809 {
3810 record = xmalloc (sizeof (operand_error_record));
3811 if (record == NULL)
3812 abort ();
3813 }
3814 else
3815 {
3816 record = free_opnd_error_record_nodes;
3817 free_opnd_error_record_nodes = record->next;
3818 }
3819 record->opcode = opcode;
3820 /* Insert at the head. */
3821 record->next = operand_error_report.head;
3822 operand_error_report.head = record;
3823 if (operand_error_report.tail == NULL)
3824 operand_error_report.tail = record;
3825 }
3826 else if (record->detail.kind != AARCH64_OPDE_NIL
3827 && record->detail.index <= new_record->detail.index
3828 && operand_error_higher_severity_p (record->detail.kind,
3829 new_record->detail.kind))
3830 {
3831 /* In the case of multiple errors found on operands related with a
3832 single opcode, only record the error of the leftmost operand and
3833 only if the error is of higher severity. */
3834 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
3835 " the existing error %s on operand %d",
3836 operand_mismatch_kind_names[new_record->detail.kind],
3837 new_record->detail.index,
3838 operand_mismatch_kind_names[record->detail.kind],
3839 record->detail.index);
3840 return;
3841 }
3842
3843 record->detail = new_record->detail;
3844}
3845
3846static inline void
3847record_operand_error_info (const aarch64_opcode *opcode,
3848 aarch64_operand_error *error_info)
3849{
3850 operand_error_record record;
3851 record.opcode = opcode;
3852 record.detail = *error_info;
3853 add_operand_error_record (&record);
3854}
3855
3856/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
3857 error message *ERROR, for operand IDX (count from 0). */
3858
3859static void
3860record_operand_error (const aarch64_opcode *opcode, int idx,
3861 enum aarch64_operand_error_kind kind,
3862 const char* error)
3863{
3864 aarch64_operand_error info;
3865 memset(&info, 0, sizeof (info));
3866 info.index = idx;
3867 info.kind = kind;
3868 info.error = error;
3869 record_operand_error_info (opcode, &info);
3870}
3871
3872static void
3873record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
3874 enum aarch64_operand_error_kind kind,
3875 const char* error, const int *extra_data)
3876{
3877 aarch64_operand_error info;
3878 info.index = idx;
3879 info.kind = kind;
3880 info.error = error;
3881 info.data[0] = extra_data[0];
3882 info.data[1] = extra_data[1];
3883 info.data[2] = extra_data[2];
3884 record_operand_error_info (opcode, &info);
3885}
3886
3887static void
3888record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
3889 const char* error, int lower_bound,
3890 int upper_bound)
3891{
3892 int data[3] = {lower_bound, upper_bound, 0};
3893 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
3894 error, data);
3895}
3896
3897/* Remove the operand error record for *OPCODE. */
3898static void ATTRIBUTE_UNUSED
3899remove_operand_error_record (const aarch64_opcode *opcode)
3900{
3901 if (opcode_has_operand_error_p (opcode))
3902 {
3903 operand_error_record* record = operand_error_report.head;
3904 gas_assert (record != NULL && operand_error_report.tail != NULL);
3905 operand_error_report.head = record->next;
3906 record->next = free_opnd_error_record_nodes;
3907 free_opnd_error_record_nodes = record;
3908 if (operand_error_report.head == NULL)
3909 {
3910 gas_assert (operand_error_report.tail == record);
3911 operand_error_report.tail = NULL;
3912 }
3913 }
3914}
3915
3916/* Given the instruction in *INSTR, return the index of the best matched
3917 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
3918
3919 Return -1 if there is no qualifier sequence; return the first match
3920 if there is multiple matches found. */
3921
3922static int
3923find_best_match (const aarch64_inst *instr,
3924 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
3925{
3926 int i, num_opnds, max_num_matched, idx;
3927
3928 num_opnds = aarch64_num_of_operands (instr->opcode);
3929 if (num_opnds == 0)
3930 {
3931 DEBUG_TRACE ("no operand");
3932 return -1;
3933 }
3934
3935 max_num_matched = 0;
3936 idx = -1;
3937
3938 /* For each pattern. */
3939 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
3940 {
3941 int j, num_matched;
3942 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
3943
3944 /* Most opcodes has much fewer patterns in the list. */
3945 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
3946 {
3947 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
3948 if (i != 0 && idx == -1)
3949 /* If nothing has been matched, return the 1st sequence. */
3950 idx = 0;
3951 break;
3952 }
3953
3954 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
3955 if (*qualifiers == instr->operands[j].qualifier)
3956 ++num_matched;
3957
3958 if (num_matched > max_num_matched)
3959 {
3960 max_num_matched = num_matched;
3961 idx = i;
3962 }
3963 }
3964
3965 DEBUG_TRACE ("return with %d", idx);
3966 return idx;
3967}
3968
3969/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
3970 corresponding operands in *INSTR. */
3971
3972static inline void
3973assign_qualifier_sequence (aarch64_inst *instr,
3974 const aarch64_opnd_qualifier_t *qualifiers)
3975{
3976 int i = 0;
3977 int num_opnds = aarch64_num_of_operands (instr->opcode);
3978 gas_assert (num_opnds);
3979 for (i = 0; i < num_opnds; ++i, ++qualifiers)
3980 instr->operands[i].qualifier = *qualifiers;
3981}
3982
3983/* Print operands for the diagnosis purpose. */
3984
3985static void
3986print_operands (char *buf, const aarch64_opcode *opcode,
3987 const aarch64_opnd_info *opnds)
3988{
3989 int i;
3990
3991 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
3992 {
3993 const size_t size = 128;
3994 char str[size];
3995
3996 /* We regard the opcode operand info more, however we also look into
3997 the inst->operands to support the disassembling of the optional
3998 operand.
3999 The two operand code should be the same in all cases, apart from
4000 when the operand can be optional. */
4001 if (opcode->operands[i] == AARCH64_OPND_NIL
4002 || opnds[i].type == AARCH64_OPND_NIL)
4003 break;
4004
4005 /* Generate the operand string in STR. */
4006 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
4007
4008 /* Delimiter. */
4009 if (str[0] != '\0')
4010 strcat (buf, i == 0 ? " " : ",");
4011
4012 /* Append the operand string. */
4013 strcat (buf, str);
4014 }
4015}
4016
4017/* Send to stderr a string as information. */
4018
4019static void
4020output_info (const char *format, ...)
4021{
4022 char *file;
4023 unsigned int line;
4024 va_list args;
4025
4026 as_where (&file, &line);
4027 if (file)
4028 {
4029 if (line != 0)
4030 fprintf (stderr, "%s:%u: ", file, line);
4031 else
4032 fprintf (stderr, "%s: ", file);
4033 }
4034 fprintf (stderr, _("Info: "));
4035 va_start (args, format);
4036 vfprintf (stderr, format, args);
4037 va_end (args);
4038 (void) putc ('\n', stderr);
4039}
4040
4041/* Output one operand error record. */
4042
4043static void
4044output_operand_error_record (const operand_error_record *record, char *str)
4045{
28f013d5
JB
4046 const aarch64_operand_error *detail = &record->detail;
4047 int idx = detail->index;
a06ea964 4048 const aarch64_opcode *opcode = record->opcode;
28f013d5 4049 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4050 : AARCH64_OPND_NIL);
a06ea964
NC
4051
4052 switch (detail->kind)
4053 {
4054 case AARCH64_OPDE_NIL:
4055 gas_assert (0);
4056 break;
4057
4058 case AARCH64_OPDE_SYNTAX_ERROR:
4059 case AARCH64_OPDE_RECOVERABLE:
4060 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4061 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4062 /* Use the prepared error message if there is, otherwise use the
4063 operand description string to describe the error. */
4064 if (detail->error != NULL)
4065 {
28f013d5 4066 if (idx < 0)
a06ea964
NC
4067 as_bad (_("%s -- `%s'"), detail->error, str);
4068 else
4069 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4070 detail->error, idx + 1, str);
a06ea964
NC
4071 }
4072 else
28f013d5
JB
4073 {
4074 gas_assert (idx >= 0);
4075 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 4076 aarch64_get_operand_desc (opd_code), str);
28f013d5 4077 }
a06ea964
NC
4078 break;
4079
4080 case AARCH64_OPDE_INVALID_VARIANT:
4081 as_bad (_("operand mismatch -- `%s'"), str);
4082 if (verbose_error_p)
4083 {
4084 /* We will try to correct the erroneous instruction and also provide
4085 more information e.g. all other valid variants.
4086
4087 The string representation of the corrected instruction and other
4088 valid variants are generated by
4089
4090 1) obtaining the intermediate representation of the erroneous
4091 instruction;
4092 2) manipulating the IR, e.g. replacing the operand qualifier;
4093 3) printing out the instruction by calling the printer functions
4094 shared with the disassembler.
4095
4096 The limitation of this method is that the exact input assembly
4097 line cannot be accurately reproduced in some cases, for example an
4098 optional operand present in the actual assembly line will be
4099 omitted in the output; likewise for the optional syntax rules,
4100 e.g. the # before the immediate. Another limitation is that the
4101 assembly symbols and relocation operations in the assembly line
4102 currently cannot be printed out in the error report. Last but not
4103 least, when there is other error(s) co-exist with this error, the
4104 'corrected' instruction may be still incorrect, e.g. given
4105 'ldnp h0,h1,[x0,#6]!'
4106 this diagnosis will provide the version:
4107 'ldnp s0,s1,[x0,#6]!'
4108 which is still not right. */
4109 size_t len = strlen (get_mnemonic_name (str));
4110 int i, qlf_idx;
4111 bfd_boolean result;
4112 const size_t size = 2048;
4113 char buf[size];
4114 aarch64_inst *inst_base = &inst.base;
4115 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4116
4117 /* Init inst. */
4118 reset_aarch64_instruction (&inst);
4119 inst_base->opcode = opcode;
4120
4121 /* Reset the error report so that there is no side effect on the
4122 following operand parsing. */
4123 init_operand_error_report ();
4124
4125 /* Fill inst. */
4126 result = parse_operands (str + len, opcode)
4127 && programmer_friendly_fixup (&inst);
4128 gas_assert (result);
4129 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4130 NULL, NULL);
4131 gas_assert (!result);
4132
4133 /* Find the most matched qualifier sequence. */
4134 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4135 gas_assert (qlf_idx > -1);
4136
4137 /* Assign the qualifiers. */
4138 assign_qualifier_sequence (inst_base,
4139 opcode->qualifiers_list[qlf_idx]);
4140
4141 /* Print the hint. */
4142 output_info (_(" did you mean this?"));
4143 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4144 print_operands (buf, opcode, inst_base->operands);
4145 output_info (_(" %s"), buf);
4146
4147 /* Print out other variant(s) if there is any. */
4148 if (qlf_idx != 0 ||
4149 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4150 output_info (_(" other valid variant(s):"));
4151
4152 /* For each pattern. */
4153 qualifiers_list = opcode->qualifiers_list;
4154 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4155 {
4156 /* Most opcodes has much fewer patterns in the list.
4157 First NIL qualifier indicates the end in the list. */
4158 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4159 break;
4160
4161 if (i != qlf_idx)
4162 {
4163 /* Mnemonics name. */
4164 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4165
4166 /* Assign the qualifiers. */
4167 assign_qualifier_sequence (inst_base, *qualifiers_list);
4168
4169 /* Print instruction. */
4170 print_operands (buf, opcode, inst_base->operands);
4171
4172 output_info (_(" %s"), buf);
4173 }
4174 }
4175 }
4176 break;
4177
4178 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4179 if (detail->data[0] != detail->data[1])
4180 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4181 detail->error ? detail->error : _("immediate value"),
28f013d5 4182 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4183 else
4184 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4185 detail->error ? detail->error : _("immediate value"),
28f013d5 4186 detail->data[0], idx + 1, str);
a06ea964
NC
4187 break;
4188
4189 case AARCH64_OPDE_REG_LIST:
4190 if (detail->data[0] == 1)
4191 as_bad (_("invalid number of registers in the list; "
4192 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4193 idx + 1, str);
a06ea964
NC
4194 else
4195 as_bad (_("invalid number of registers in the list; "
4196 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4197 detail->data[0], idx + 1, str);
a06ea964
NC
4198 break;
4199
4200 case AARCH64_OPDE_UNALIGNED:
4201 as_bad (_("immediate value should be a multiple of "
4202 "%d at operand %d -- `%s'"),
28f013d5 4203 detail->data[0], idx + 1, str);
a06ea964
NC
4204 break;
4205
4206 default:
4207 gas_assert (0);
4208 break;
4209 }
4210}
4211
4212/* Process and output the error message about the operand mismatching.
4213
4214 When this function is called, the operand error information had
4215 been collected for an assembly line and there will be multiple
4216 errors in the case of mulitple instruction templates; output the
4217 error message that most closely describes the problem. */
4218
4219static void
4220output_operand_error_report (char *str)
4221{
4222 int largest_error_pos;
4223 const char *msg = NULL;
4224 enum aarch64_operand_error_kind kind;
4225 operand_error_record *curr;
4226 operand_error_record *head = operand_error_report.head;
4227 operand_error_record *record = NULL;
4228
4229 /* No error to report. */
4230 if (head == NULL)
4231 return;
4232
4233 gas_assert (head != NULL && operand_error_report.tail != NULL);
4234
4235 /* Only one error. */
4236 if (head == operand_error_report.tail)
4237 {
4238 DEBUG_TRACE ("single opcode entry with error kind: %s",
4239 operand_mismatch_kind_names[head->detail.kind]);
4240 output_operand_error_record (head, str);
4241 return;
4242 }
4243
4244 /* Find the error kind of the highest severity. */
4245 DEBUG_TRACE ("multiple opcode entres with error kind");
4246 kind = AARCH64_OPDE_NIL;
4247 for (curr = head; curr != NULL; curr = curr->next)
4248 {
4249 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4250 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4251 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4252 kind = curr->detail.kind;
4253 }
4254 gas_assert (kind != AARCH64_OPDE_NIL);
4255
4256 /* Pick up one of errors of KIND to report. */
4257 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4258 for (curr = head; curr != NULL; curr = curr->next)
4259 {
4260 if (curr->detail.kind != kind)
4261 continue;
4262 /* If there are multiple errors, pick up the one with the highest
4263 mismatching operand index. In the case of multiple errors with
4264 the equally highest operand index, pick up the first one or the
4265 first one with non-NULL error message. */
4266 if (curr->detail.index > largest_error_pos
4267 || (curr->detail.index == largest_error_pos && msg == NULL
4268 && curr->detail.error != NULL))
4269 {
4270 largest_error_pos = curr->detail.index;
4271 record = curr;
4272 msg = record->detail.error;
4273 }
4274 }
4275
4276 gas_assert (largest_error_pos != -2 && record != NULL);
4277 DEBUG_TRACE ("Pick up error kind %s to report",
4278 operand_mismatch_kind_names[record->detail.kind]);
4279
4280 /* Output. */
4281 output_operand_error_record (record, str);
4282}
4283\f
4284/* Write an AARCH64 instruction to buf - always little-endian. */
4285static void
4286put_aarch64_insn (char *buf, uint32_t insn)
4287{
4288 unsigned char *where = (unsigned char *) buf;
4289 where[0] = insn;
4290 where[1] = insn >> 8;
4291 where[2] = insn >> 16;
4292 where[3] = insn >> 24;
4293}
4294
4295static uint32_t
4296get_aarch64_insn (char *buf)
4297{
4298 unsigned char *where = (unsigned char *) buf;
4299 uint32_t result;
4300 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4301 return result;
4302}
4303
4304static void
4305output_inst (struct aarch64_inst *new_inst)
4306{
4307 char *to = NULL;
4308
4309 to = frag_more (INSN_SIZE);
4310
4311 frag_now->tc_frag_data.recorded = 1;
4312
4313 put_aarch64_insn (to, inst.base.value);
4314
4315 if (inst.reloc.type != BFD_RELOC_UNUSED)
4316 {
4317 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4318 INSN_SIZE, &inst.reloc.exp,
4319 inst.reloc.pc_rel,
4320 inst.reloc.type);
4321 DEBUG_TRACE ("Prepared relocation fix up");
4322 /* Don't check the addend value against the instruction size,
4323 that's the job of our code in md_apply_fix(). */
4324 fixp->fx_no_overflow = 1;
4325 if (new_inst != NULL)
4326 fixp->tc_fix_data.inst = new_inst;
4327 if (aarch64_gas_internal_fixup_p ())
4328 {
4329 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4330 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4331 fixp->fx_addnumber = inst.reloc.flags;
4332 }
4333 }
4334
4335 dwarf2_emit_insn (INSN_SIZE);
4336}
4337
4338/* Link together opcodes of the same name. */
4339
4340struct templates
4341{
4342 aarch64_opcode *opcode;
4343 struct templates *next;
4344};
4345
4346typedef struct templates templates;
4347
4348static templates *
4349lookup_mnemonic (const char *start, int len)
4350{
4351 templates *templ = NULL;
4352
4353 templ = hash_find_n (aarch64_ops_hsh, start, len);
4354 return templ;
4355}
4356
4357/* Subroutine of md_assemble, responsible for looking up the primary
4358 opcode from the mnemonic the user wrote. STR points to the
4359 beginning of the mnemonic. */
4360
4361static templates *
4362opcode_lookup (char **str)
4363{
4364 char *end, *base;
4365 const aarch64_cond *cond;
4366 char condname[16];
4367 int len;
4368
4369 /* Scan up to the end of the mnemonic, which must end in white space,
4370 '.', or end of string. */
4371 for (base = end = *str; is_part_of_name(*end); end++)
4372 if (*end == '.')
4373 break;
4374
4375 if (end == base)
4376 return 0;
4377
4378 inst.cond = COND_ALWAYS;
4379
4380 /* Handle a possible condition. */
4381 if (end[0] == '.')
4382 {
4383 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4384 if (cond)
4385 {
4386 inst.cond = cond->value;
4387 *str = end + 3;
4388 }
4389 else
4390 {
4391 *str = end;
4392 return 0;
4393 }
4394 }
4395 else
4396 *str = end;
4397
4398 len = end - base;
4399
4400 if (inst.cond == COND_ALWAYS)
4401 {
4402 /* Look for unaffixed mnemonic. */
4403 return lookup_mnemonic (base, len);
4404 }
4405 else if (len <= 13)
4406 {
4407 /* append ".c" to mnemonic if conditional */
4408 memcpy (condname, base, len);
4409 memcpy (condname + len, ".c", 2);
4410 base = condname;
4411 len += 2;
4412 return lookup_mnemonic (base, len);
4413 }
4414
4415 return NULL;
4416}
4417
4418/* Internal helper routine converting a vector neon_type_el structure
4419 *VECTYPE to a corresponding operand qualifier. */
4420
4421static inline aarch64_opnd_qualifier_t
4422vectype_to_qualifier (const struct neon_type_el *vectype)
4423{
4424 /* Element size in bytes indexed by neon_el_type. */
4425 const unsigned char ele_size[5]
4426 = {1, 2, 4, 8, 16};
4427
4428 if (!vectype->defined || vectype->type == NT_invtype)
4429 goto vectype_conversion_fail;
4430
4431 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4432
4433 if (vectype->defined & NTA_HASINDEX)
4434 /* Vector element register. */
4435 return AARCH64_OPND_QLF_S_B + vectype->type;
4436 else
4437 {
4438 /* Vector register. */
4439 int reg_size = ele_size[vectype->type] * vectype->width;
4440 unsigned offset;
4441 if (reg_size != 16 && reg_size != 8)
4442 goto vectype_conversion_fail;
4443 /* The conversion is calculated based on the relation of the order of
4444 qualifiers to the vector element size and vector register size. */
4445 offset = (vectype->type == NT_q)
4446 ? 8 : (vectype->type << 1) + (reg_size >> 4);
4447 gas_assert (offset <= 8);
4448 return AARCH64_OPND_QLF_V_8B + offset;
4449 }
4450
4451vectype_conversion_fail:
4452 first_error (_("bad vector arrangement type"));
4453 return AARCH64_OPND_QLF_NIL;
4454}
4455
4456/* Process an optional operand that is found omitted from the assembly line.
4457 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4458 instruction's opcode entry while IDX is the index of this omitted operand.
4459 */
4460
4461static void
4462process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4463 int idx, aarch64_opnd_info *operand)
4464{
4465 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4466 gas_assert (optional_operand_p (opcode, idx));
4467 gas_assert (!operand->present);
4468
4469 switch (type)
4470 {
4471 case AARCH64_OPND_Rd:
4472 case AARCH64_OPND_Rn:
4473 case AARCH64_OPND_Rm:
4474 case AARCH64_OPND_Rt:
4475 case AARCH64_OPND_Rt2:
4476 case AARCH64_OPND_Rs:
4477 case AARCH64_OPND_Ra:
4478 case AARCH64_OPND_Rt_SYS:
4479 case AARCH64_OPND_Rd_SP:
4480 case AARCH64_OPND_Rn_SP:
4481 case AARCH64_OPND_Fd:
4482 case AARCH64_OPND_Fn:
4483 case AARCH64_OPND_Fm:
4484 case AARCH64_OPND_Fa:
4485 case AARCH64_OPND_Ft:
4486 case AARCH64_OPND_Ft2:
4487 case AARCH64_OPND_Sd:
4488 case AARCH64_OPND_Sn:
4489 case AARCH64_OPND_Sm:
4490 case AARCH64_OPND_Vd:
4491 case AARCH64_OPND_Vn:
4492 case AARCH64_OPND_Vm:
4493 case AARCH64_OPND_VdD1:
4494 case AARCH64_OPND_VnD1:
4495 operand->reg.regno = default_value;
4496 break;
4497
4498 case AARCH64_OPND_Ed:
4499 case AARCH64_OPND_En:
4500 case AARCH64_OPND_Em:
4501 operand->reglane.regno = default_value;
4502 break;
4503
4504 case AARCH64_OPND_IDX:
4505 case AARCH64_OPND_BIT_NUM:
4506 case AARCH64_OPND_IMMR:
4507 case AARCH64_OPND_IMMS:
4508 case AARCH64_OPND_SHLL_IMM:
4509 case AARCH64_OPND_IMM_VLSL:
4510 case AARCH64_OPND_IMM_VLSR:
4511 case AARCH64_OPND_CCMP_IMM:
4512 case AARCH64_OPND_FBITS:
4513 case AARCH64_OPND_UIMM4:
4514 case AARCH64_OPND_UIMM3_OP1:
4515 case AARCH64_OPND_UIMM3_OP2:
4516 case AARCH64_OPND_IMM:
4517 case AARCH64_OPND_WIDTH:
4518 case AARCH64_OPND_UIMM7:
4519 case AARCH64_OPND_NZCV:
4520 operand->imm.value = default_value;
4521 break;
4522
4523 case AARCH64_OPND_EXCEPTION:
4524 inst.reloc.type = BFD_RELOC_UNUSED;
4525 break;
4526
4527 case AARCH64_OPND_BARRIER_ISB:
4528 operand->barrier = aarch64_barrier_options + default_value;
4529
4530 default:
4531 break;
4532 }
4533}
4534
4535/* Process the relocation type for move wide instructions.
4536 Return TRUE on success; otherwise return FALSE. */
4537
4538static bfd_boolean
4539process_movw_reloc_info (void)
4540{
4541 int is32;
4542 unsigned shift;
4543
4544 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4545
4546 if (inst.base.opcode->op == OP_MOVK)
4547 switch (inst.reloc.type)
4548 {
4549 case BFD_RELOC_AARCH64_MOVW_G0_S:
4550 case BFD_RELOC_AARCH64_MOVW_G1_S:
4551 case BFD_RELOC_AARCH64_MOVW_G2_S:
4552 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 4553 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
4554 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4555 set_syntax_error
4556 (_("the specified relocation type is not allowed for MOVK"));
4557 return FALSE;
4558 default:
4559 break;
4560 }
4561
4562 switch (inst.reloc.type)
4563 {
4564 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 4565 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 4566 case BFD_RELOC_AARCH64_MOVW_G0_S:
a06ea964
NC
4567 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4568 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4569 shift = 0;
4570 break;
4571 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 4572 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 4573 case BFD_RELOC_AARCH64_MOVW_G1_S:
a06ea964
NC
4574 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4575 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4576 shift = 16;
4577 break;
4578 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 4579 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 4580 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
4581 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4582 if (is32)
4583 {
4584 set_fatal_syntax_error
4585 (_("the specified relocation type is not allowed for 32-bit "
4586 "register"));
4587 return FALSE;
4588 }
4589 shift = 32;
4590 break;
4591 case BFD_RELOC_AARCH64_MOVW_G3:
4592 if (is32)
4593 {
4594 set_fatal_syntax_error
4595 (_("the specified relocation type is not allowed for 32-bit "
4596 "register"));
4597 return FALSE;
4598 }
4599 shift = 48;
4600 break;
4601 default:
4602 /* More cases should be added when more MOVW-related relocation types
4603 are supported in GAS. */
4604 gas_assert (aarch64_gas_internal_fixup_p ());
4605 /* The shift amount should have already been set by the parser. */
4606 return TRUE;
4607 }
4608 inst.base.operands[1].shifter.amount = shift;
4609 return TRUE;
4610}
4611
4612/* A primitive log caculator. */
4613
4614static inline unsigned int
4615get_logsz (unsigned int size)
4616{
4617 const unsigned char ls[16] =
4618 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4619 if (size > 16)
4620 {
4621 gas_assert (0);
4622 return -1;
4623 }
4624 gas_assert (ls[size - 1] != (unsigned char)-1);
4625 return ls[size - 1];
4626}
4627
4628/* Determine and return the real reloc type code for an instruction
4629 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4630
4631static inline bfd_reloc_code_real_type
4632ldst_lo12_determine_real_reloc_type (void)
4633{
4634 int logsz;
4635 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4636 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4637
4638 const bfd_reloc_code_real_type reloc_ldst_lo12[5] = {
4639 BFD_RELOC_AARCH64_LDST8_LO12, BFD_RELOC_AARCH64_LDST16_LO12,
4640 BFD_RELOC_AARCH64_LDST32_LO12, BFD_RELOC_AARCH64_LDST64_LO12,
4641 BFD_RELOC_AARCH64_LDST128_LO12
4642 };
4643
4644 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12);
4645 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4646
4647 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4648 opd1_qlf =
4649 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4650 1, opd0_qlf, 0);
4651 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4652
4653 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4654 gas_assert (logsz >= 0 && logsz <= 4);
4655
4656 return reloc_ldst_lo12[logsz];
4657}
4658
4659/* Check whether a register list REGINFO is valid. The registers must be
4660 numbered in increasing order (modulo 32), in increments of one or two.
4661
4662 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4663 increments of two.
4664
4665 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4666
4667static bfd_boolean
4668reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4669{
4670 uint32_t i, nb_regs, prev_regno, incr;
4671
4672 nb_regs = 1 + (reginfo & 0x3);
4673 reginfo >>= 2;
4674 prev_regno = reginfo & 0x1f;
4675 incr = accept_alternate ? 2 : 1;
4676
4677 for (i = 1; i < nb_regs; ++i)
4678 {
4679 uint32_t curr_regno;
4680 reginfo >>= 5;
4681 curr_regno = reginfo & 0x1f;
4682 if (curr_regno != ((prev_regno + incr) & 0x1f))
4683 return FALSE;
4684 prev_regno = curr_regno;
4685 }
4686
4687 return TRUE;
4688}
4689
4690/* Generic instruction operand parser. This does no encoding and no
4691 semantic validation; it merely squirrels values away in the inst
4692 structure. Returns TRUE or FALSE depending on whether the
4693 specified grammar matched. */
4694
4695static bfd_boolean
4696parse_operands (char *str, const aarch64_opcode *opcode)
4697{
4698 int i;
4699 char *backtrack_pos = 0;
4700 const enum aarch64_opnd *operands = opcode->operands;
4701
4702 clear_error ();
4703 skip_whitespace (str);
4704
4705 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
4706 {
4707 int64_t val;
4708 int isreg32, isregzero;
4709 int comma_skipped_p = 0;
4710 aarch64_reg_type rtype;
4711 struct neon_type_el vectype;
4712 aarch64_opnd_info *info = &inst.base.operands[i];
4713
4714 DEBUG_TRACE ("parse operand %d", i);
4715
4716 /* Assign the operand code. */
4717 info->type = operands[i];
4718
4719 if (optional_operand_p (opcode, i))
4720 {
4721 /* Remember where we are in case we need to backtrack. */
4722 gas_assert (!backtrack_pos);
4723 backtrack_pos = str;
4724 }
4725
4726 /* Expect comma between operands; the backtrack mechanizm will take
4727 care of cases of omitted optional operand. */
4728 if (i > 0 && ! skip_past_char (&str, ','))
4729 {
4730 set_syntax_error (_("comma expected between operands"));
4731 goto failure;
4732 }
4733 else
4734 comma_skipped_p = 1;
4735
4736 switch (operands[i])
4737 {
4738 case AARCH64_OPND_Rd:
4739 case AARCH64_OPND_Rn:
4740 case AARCH64_OPND_Rm:
4741 case AARCH64_OPND_Rt:
4742 case AARCH64_OPND_Rt2:
4743 case AARCH64_OPND_Rs:
4744 case AARCH64_OPND_Ra:
4745 case AARCH64_OPND_Rt_SYS:
ee804238 4746 case AARCH64_OPND_PAIRREG:
a06ea964
NC
4747 po_int_reg_or_fail (1, 0);
4748 break;
4749
4750 case AARCH64_OPND_Rd_SP:
4751 case AARCH64_OPND_Rn_SP:
4752 po_int_reg_or_fail (0, 1);
4753 break;
4754
4755 case AARCH64_OPND_Rm_EXT:
4756 case AARCH64_OPND_Rm_SFT:
4757 po_misc_or_fail (parse_shifter_operand
4758 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
4759 ? SHIFTED_ARITH_IMM
4760 : SHIFTED_LOGIC_IMM)));
4761 if (!info->shifter.operator_present)
4762 {
4763 /* Default to LSL if not present. Libopcodes prefers shifter
4764 kind to be explicit. */
4765 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4766 info->shifter.kind = AARCH64_MOD_LSL;
4767 /* For Rm_EXT, libopcodes will carry out further check on whether
4768 or not stack pointer is used in the instruction (Recall that
4769 "the extend operator is not optional unless at least one of
4770 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
4771 }
4772 break;
4773
4774 case AARCH64_OPND_Fd:
4775 case AARCH64_OPND_Fn:
4776 case AARCH64_OPND_Fm:
4777 case AARCH64_OPND_Fa:
4778 case AARCH64_OPND_Ft:
4779 case AARCH64_OPND_Ft2:
4780 case AARCH64_OPND_Sd:
4781 case AARCH64_OPND_Sn:
4782 case AARCH64_OPND_Sm:
4783 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
4784 if (val == PARSE_FAIL)
4785 {
4786 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
4787 goto failure;
4788 }
4789 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
4790
4791 info->reg.regno = val;
4792 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
4793 break;
4794
4795 case AARCH64_OPND_Vd:
4796 case AARCH64_OPND_Vn:
4797 case AARCH64_OPND_Vm:
4798 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4799 if (val == PARSE_FAIL)
4800 {
4801 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4802 goto failure;
4803 }
4804 if (vectype.defined & NTA_HASINDEX)
4805 goto failure;
4806
4807 info->reg.regno = val;
4808 info->qualifier = vectype_to_qualifier (&vectype);
4809 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4810 goto failure;
4811 break;
4812
4813 case AARCH64_OPND_VdD1:
4814 case AARCH64_OPND_VnD1:
4815 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4816 if (val == PARSE_FAIL)
4817 {
4818 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4819 goto failure;
4820 }
4821 if (vectype.type != NT_d || vectype.index != 1)
4822 {
4823 set_fatal_syntax_error
4824 (_("the top half of a 128-bit FP/SIMD register is expected"));
4825 goto failure;
4826 }
4827 info->reg.regno = val;
4828 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
4829 here; it is correct for the purpose of encoding/decoding since
4830 only the register number is explicitly encoded in the related
4831 instructions, although this appears a bit hacky. */
4832 info->qualifier = AARCH64_OPND_QLF_S_D;
4833 break;
4834
4835 case AARCH64_OPND_Ed:
4836 case AARCH64_OPND_En:
4837 case AARCH64_OPND_Em:
4838 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4839 if (val == PARSE_FAIL)
4840 {
4841 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4842 goto failure;
4843 }
4844 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
4845 goto failure;
4846
4847 info->reglane.regno = val;
4848 info->reglane.index = vectype.index;
4849 info->qualifier = vectype_to_qualifier (&vectype);
4850 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4851 goto failure;
4852 break;
4853
4854 case AARCH64_OPND_LVn:
4855 case AARCH64_OPND_LVt:
4856 case AARCH64_OPND_LVt_AL:
4857 case AARCH64_OPND_LEt:
4858 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
4859 goto failure;
4860 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
4861 {
4862 set_fatal_syntax_error (_("invalid register list"));
4863 goto failure;
4864 }
4865 info->reglist.first_regno = (val >> 2) & 0x1f;
4866 info->reglist.num_regs = (val & 0x3) + 1;
4867 if (operands[i] == AARCH64_OPND_LEt)
4868 {
4869 if (!(vectype.defined & NTA_HASINDEX))
4870 goto failure;
4871 info->reglist.has_index = 1;
4872 info->reglist.index = vectype.index;
4873 }
4874 else if (!(vectype.defined & NTA_HASTYPE))
4875 goto failure;
4876 info->qualifier = vectype_to_qualifier (&vectype);
4877 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4878 goto failure;
4879 break;
4880
4881 case AARCH64_OPND_Cn:
4882 case AARCH64_OPND_Cm:
4883 po_reg_or_fail (REG_TYPE_CN);
4884 if (val > 15)
4885 {
4886 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
4887 goto failure;
4888 }
4889 inst.base.operands[i].reg.regno = val;
4890 break;
4891
4892 case AARCH64_OPND_SHLL_IMM:
4893 case AARCH64_OPND_IMM_VLSR:
4894 po_imm_or_fail (1, 64);
4895 info->imm.value = val;
4896 break;
4897
4898 case AARCH64_OPND_CCMP_IMM:
4899 case AARCH64_OPND_FBITS:
4900 case AARCH64_OPND_UIMM4:
4901 case AARCH64_OPND_UIMM3_OP1:
4902 case AARCH64_OPND_UIMM3_OP2:
4903 case AARCH64_OPND_IMM_VLSL:
4904 case AARCH64_OPND_IMM:
4905 case AARCH64_OPND_WIDTH:
4906 po_imm_nc_or_fail ();
4907 info->imm.value = val;
4908 break;
4909
4910 case AARCH64_OPND_UIMM7:
4911 po_imm_or_fail (0, 127);
4912 info->imm.value = val;
4913 break;
4914
4915 case AARCH64_OPND_IDX:
4916 case AARCH64_OPND_BIT_NUM:
4917 case AARCH64_OPND_IMMR:
4918 case AARCH64_OPND_IMMS:
4919 po_imm_or_fail (0, 63);
4920 info->imm.value = val;
4921 break;
4922
4923 case AARCH64_OPND_IMM0:
4924 po_imm_nc_or_fail ();
4925 if (val != 0)
4926 {
4927 set_fatal_syntax_error (_("immediate zero expected"));
4928 goto failure;
4929 }
4930 info->imm.value = 0;
4931 break;
4932
4933 case AARCH64_OPND_FPIMM0:
4934 {
4935 int qfloat;
4936 bfd_boolean res1 = FALSE, res2 = FALSE;
4937 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
4938 it is probably not worth the effort to support it. */
62b0d0d5 4939 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
4940 && !(res2 = parse_constant_immediate (&str, &val)))
4941 goto failure;
4942 if ((res1 && qfloat == 0) || (res2 && val == 0))
4943 {
4944 info->imm.value = 0;
4945 info->imm.is_fp = 1;
4946 break;
4947 }
4948 set_fatal_syntax_error (_("immediate zero expected"));
4949 goto failure;
4950 }
4951
4952 case AARCH64_OPND_IMM_MOV:
4953 {
4954 char *saved = str;
8db49cc2
WN
4955 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
4956 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
4957 goto failure;
4958 str = saved;
4959 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
4960 GE_OPT_PREFIX, 1));
4961 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
4962 later. fix_mov_imm_insn will try to determine a machine
4963 instruction (MOVZ, MOVN or ORR) for it and will issue an error
4964 message if the immediate cannot be moved by a single
4965 instruction. */
4966 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4967 inst.base.operands[i].skip = 1;
4968 }
4969 break;
4970
4971 case AARCH64_OPND_SIMD_IMM:
4972 case AARCH64_OPND_SIMD_IMM_SFT:
4973 if (! parse_big_immediate (&str, &val))
4974 goto failure;
4975 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4976 /* addr_off_p */ 0,
4977 /* need_libopcodes_p */ 1,
4978 /* skip_p */ 1);
4979 /* Parse shift.
4980 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
4981 shift, we don't check it here; we leave the checking to
4982 the libopcodes (operand_general_constraint_met_p). By
4983 doing this, we achieve better diagnostics. */
4984 if (skip_past_comma (&str)
4985 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
4986 goto failure;
4987 if (!info->shifter.operator_present
4988 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
4989 {
4990 /* Default to LSL if not present. Libopcodes prefers shifter
4991 kind to be explicit. */
4992 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4993 info->shifter.kind = AARCH64_MOD_LSL;
4994 }
4995 break;
4996
4997 case AARCH64_OPND_FPIMM:
4998 case AARCH64_OPND_SIMD_FPIMM:
4999 {
5000 int qfloat;
62b0d0d5
YZ
5001 bfd_boolean dp_p
5002 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
5003 == 8);
5004 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
5005 goto failure;
5006 if (qfloat == 0)
5007 {
5008 set_fatal_syntax_error (_("invalid floating-point constant"));
5009 goto failure;
5010 }
5011 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5012 inst.base.operands[i].imm.is_fp = 1;
5013 }
5014 break;
5015
5016 case AARCH64_OPND_LIMM:
5017 po_misc_or_fail (parse_shifter_operand (&str, info,
5018 SHIFTED_LOGIC_IMM));
5019 if (info->shifter.operator_present)
5020 {
5021 set_fatal_syntax_error
5022 (_("shift not allowed for bitmask immediate"));
5023 goto failure;
5024 }
5025 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5026 /* addr_off_p */ 0,
5027 /* need_libopcodes_p */ 1,
5028 /* skip_p */ 1);
5029 break;
5030
5031 case AARCH64_OPND_AIMM:
5032 if (opcode->op == OP_ADD)
5033 /* ADD may have relocation types. */
5034 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5035 SHIFTED_ARITH_IMM));
5036 else
5037 po_misc_or_fail (parse_shifter_operand (&str, info,
5038 SHIFTED_ARITH_IMM));
5039 switch (inst.reloc.type)
5040 {
5041 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5042 info->shifter.amount = 12;
5043 break;
5044 case BFD_RELOC_UNUSED:
5045 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5046 if (info->shifter.kind != AARCH64_MOD_NONE)
5047 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5048 inst.reloc.pc_rel = 0;
5049 break;
5050 default:
5051 break;
5052 }
5053 info->imm.value = 0;
5054 if (!info->shifter.operator_present)
5055 {
5056 /* Default to LSL if not present. Libopcodes prefers shifter
5057 kind to be explicit. */
5058 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5059 info->shifter.kind = AARCH64_MOD_LSL;
5060 }
5061 break;
5062
5063 case AARCH64_OPND_HALF:
5064 {
5065 /* #<imm16> or relocation. */
5066 int internal_fixup_p;
5067 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5068 if (internal_fixup_p)
5069 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5070 skip_whitespace (str);
5071 if (skip_past_comma (&str))
5072 {
5073 /* {, LSL #<shift>} */
5074 if (! aarch64_gas_internal_fixup_p ())
5075 {
5076 set_fatal_syntax_error (_("can't mix relocation modifier "
5077 "with explicit shift"));
5078 goto failure;
5079 }
5080 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5081 }
5082 else
5083 inst.base.operands[i].shifter.amount = 0;
5084 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5085 inst.base.operands[i].imm.value = 0;
5086 if (! process_movw_reloc_info ())
5087 goto failure;
5088 }
5089 break;
5090
5091 case AARCH64_OPND_EXCEPTION:
5092 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5093 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5094 /* addr_off_p */ 0,
5095 /* need_libopcodes_p */ 0,
5096 /* skip_p */ 1);
5097 break;
5098
5099 case AARCH64_OPND_NZCV:
5100 {
5101 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5102 if (nzcv != NULL)
5103 {
5104 str += 4;
5105 info->imm.value = nzcv->value;
5106 break;
5107 }
5108 po_imm_or_fail (0, 15);
5109 info->imm.value = val;
5110 }
5111 break;
5112
5113 case AARCH64_OPND_COND:
68a64283 5114 case AARCH64_OPND_COND1:
a06ea964
NC
5115 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5116 str += 2;
5117 if (info->cond == NULL)
5118 {
5119 set_syntax_error (_("invalid condition"));
5120 goto failure;
5121 }
68a64283
YZ
5122 else if (operands[i] == AARCH64_OPND_COND1
5123 && (info->cond->value & 0xe) == 0xe)
5124 {
5125 /* Not allow AL or NV. */
5126 set_default_error ();
5127 goto failure;
5128 }
a06ea964
NC
5129 break;
5130
5131 case AARCH64_OPND_ADDR_ADRP:
5132 po_misc_or_fail (parse_adrp (&str));
5133 /* Clear the value as operand needs to be relocated. */
5134 info->imm.value = 0;
5135 break;
5136
5137 case AARCH64_OPND_ADDR_PCREL14:
5138 case AARCH64_OPND_ADDR_PCREL19:
5139 case AARCH64_OPND_ADDR_PCREL21:
5140 case AARCH64_OPND_ADDR_PCREL26:
5141 po_misc_or_fail (parse_address_reloc (&str, info));
5142 if (!info->addr.pcrel)
5143 {
5144 set_syntax_error (_("invalid pc-relative address"));
5145 goto failure;
5146 }
5147 if (inst.gen_lit_pool
5148 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5149 {
5150 /* Only permit "=value" in the literal load instructions.
5151 The literal will be generated by programmer_friendly_fixup. */
5152 set_syntax_error (_("invalid use of \"=immediate\""));
5153 goto failure;
5154 }
5155 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5156 {
5157 set_syntax_error (_("unrecognized relocation suffix"));
5158 goto failure;
5159 }
5160 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5161 {
5162 info->imm.value = inst.reloc.exp.X_add_number;
5163 inst.reloc.type = BFD_RELOC_UNUSED;
5164 }
5165 else
5166 {
5167 info->imm.value = 0;
f41aef5f
RE
5168 if (inst.reloc.type == BFD_RELOC_UNUSED)
5169 switch (opcode->iclass)
5170 {
5171 case compbranch:
5172 case condbranch:
5173 /* e.g. CBZ or B.COND */
5174 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5175 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5176 break;
5177 case testbranch:
5178 /* e.g. TBZ */
5179 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5180 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5181 break;
5182 case branch_imm:
5183 /* e.g. B or BL */
5184 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5185 inst.reloc.type =
5186 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5187 : BFD_RELOC_AARCH64_JUMP26;
5188 break;
5189 case loadlit:
5190 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5191 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5192 break;
5193 case pcreladdr:
5194 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5195 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5196 break;
5197 default:
5198 gas_assert (0);
5199 abort ();
5200 }
a06ea964
NC
5201 inst.reloc.pc_rel = 1;
5202 }
5203 break;
5204
5205 case AARCH64_OPND_ADDR_SIMPLE:
5206 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5207 /* [<Xn|SP>{, #<simm>}] */
5208 po_char_or_fail ('[');
5209 po_reg_or_fail (REG_TYPE_R64_SP);
5210 /* Accept optional ", #0". */
5211 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5212 && skip_past_char (&str, ','))
5213 {
5214 skip_past_char (&str, '#');
5215 if (! skip_past_char (&str, '0'))
5216 {
5217 set_fatal_syntax_error
5218 (_("the optional immediate offset can only be 0"));
5219 goto failure;
5220 }
5221 }
5222 po_char_or_fail (']');
5223 info->addr.base_regno = val;
5224 break;
5225
5226 case AARCH64_OPND_ADDR_REGOFF:
5227 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5228 po_misc_or_fail (parse_address (&str, info, 0));
5229 if (info->addr.pcrel || !info->addr.offset.is_reg
5230 || !info->addr.preind || info->addr.postind
5231 || info->addr.writeback)
5232 {
5233 set_syntax_error (_("invalid addressing mode"));
5234 goto failure;
5235 }
5236 if (!info->shifter.operator_present)
5237 {
5238 /* Default to LSL if not present. Libopcodes prefers shifter
5239 kind to be explicit. */
5240 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5241 info->shifter.kind = AARCH64_MOD_LSL;
5242 }
5243 /* Qualifier to be deduced by libopcodes. */
5244 break;
5245
5246 case AARCH64_OPND_ADDR_SIMM7:
5247 po_misc_or_fail (parse_address (&str, info, 0));
5248 if (info->addr.pcrel || info->addr.offset.is_reg
5249 || (!info->addr.preind && !info->addr.postind))
5250 {
5251 set_syntax_error (_("invalid addressing mode"));
5252 goto failure;
5253 }
5254 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5255 /* addr_off_p */ 1,
5256 /* need_libopcodes_p */ 1,
5257 /* skip_p */ 0);
5258 break;
5259
5260 case AARCH64_OPND_ADDR_SIMM9:
5261 case AARCH64_OPND_ADDR_SIMM9_2:
5262 po_misc_or_fail (parse_address_reloc (&str, info));
5263 if (info->addr.pcrel || info->addr.offset.is_reg
5264 || (!info->addr.preind && !info->addr.postind)
5265 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5266 && info->addr.writeback))
5267 {
5268 set_syntax_error (_("invalid addressing mode"));
5269 goto failure;
5270 }
5271 if (inst.reloc.type != BFD_RELOC_UNUSED)
5272 {
5273 set_syntax_error (_("relocation not allowed"));
5274 goto failure;
5275 }
5276 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5277 /* addr_off_p */ 1,
5278 /* need_libopcodes_p */ 1,
5279 /* skip_p */ 0);
5280 break;
5281
5282 case AARCH64_OPND_ADDR_UIMM12:
5283 po_misc_or_fail (parse_address_reloc (&str, info));
5284 if (info->addr.pcrel || info->addr.offset.is_reg
5285 || !info->addr.preind || info->addr.writeback)
5286 {
5287 set_syntax_error (_("invalid addressing mode"));
5288 goto failure;
5289 }
5290 if (inst.reloc.type == BFD_RELOC_UNUSED)
5291 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5292 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12)
5293 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5294 /* Leave qualifier to be determined by libopcodes. */
5295 break;
5296
5297 case AARCH64_OPND_SIMD_ADDR_POST:
5298 /* [<Xn|SP>], <Xm|#<amount>> */
5299 po_misc_or_fail (parse_address (&str, info, 1));
5300 if (!info->addr.postind || !info->addr.writeback)
5301 {
5302 set_syntax_error (_("invalid addressing mode"));
5303 goto failure;
5304 }
5305 if (!info->addr.offset.is_reg)
5306 {
5307 if (inst.reloc.exp.X_op == O_constant)
5308 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5309 else
5310 {
5311 set_fatal_syntax_error
5312 (_("writeback value should be an immediate constant"));
5313 goto failure;
5314 }
5315 }
5316 /* No qualifier. */
5317 break;
5318
5319 case AARCH64_OPND_SYSREG:
72ca8fad 5320 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
a203d9b7 5321 == PARSE_FAIL)
a06ea964 5322 {
a203d9b7
YZ
5323 set_syntax_error (_("unknown or missing system register name"));
5324 goto failure;
a06ea964 5325 }
a203d9b7 5326 inst.base.operands[i].sysreg = val;
a06ea964
NC
5327 break;
5328
5329 case AARCH64_OPND_PSTATEFIELD:
72ca8fad 5330 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
a3251895 5331 == PARSE_FAIL)
a06ea964
NC
5332 {
5333 set_syntax_error (_("unknown or missing PSTATE field name"));
5334 goto failure;
5335 }
5336 inst.base.operands[i].pstatefield = val;
5337 break;
5338
5339 case AARCH64_OPND_SYSREG_IC:
5340 inst.base.operands[i].sysins_op =
5341 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5342 goto sys_reg_ins;
5343 case AARCH64_OPND_SYSREG_DC:
5344 inst.base.operands[i].sysins_op =
5345 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5346 goto sys_reg_ins;
5347 case AARCH64_OPND_SYSREG_AT:
5348 inst.base.operands[i].sysins_op =
5349 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5350 goto sys_reg_ins;
5351 case AARCH64_OPND_SYSREG_TLBI:
5352 inst.base.operands[i].sysins_op =
5353 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5354sys_reg_ins:
5355 if (inst.base.operands[i].sysins_op == NULL)
5356 {
5357 set_fatal_syntax_error ( _("unknown or missing operation name"));
5358 goto failure;
5359 }
5360 break;
5361
5362 case AARCH64_OPND_BARRIER:
5363 case AARCH64_OPND_BARRIER_ISB:
5364 val = parse_barrier (&str);
5365 if (val != PARSE_FAIL
5366 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5367 {
5368 /* ISB only accepts options name 'sy'. */
5369 set_syntax_error
5370 (_("the specified option is not accepted in ISB"));
5371 /* Turn off backtrack as this optional operand is present. */
5372 backtrack_pos = 0;
5373 goto failure;
5374 }
5375 /* This is an extension to accept a 0..15 immediate. */
5376 if (val == PARSE_FAIL)
5377 po_imm_or_fail (0, 15);
5378 info->barrier = aarch64_barrier_options + val;
5379 break;
5380
5381 case AARCH64_OPND_PRFOP:
5382 val = parse_pldop (&str);
5383 /* This is an extension to accept a 0..31 immediate. */
5384 if (val == PARSE_FAIL)
5385 po_imm_or_fail (0, 31);
5386 inst.base.operands[i].prfop = aarch64_prfops + val;
5387 break;
5388
5389 default:
5390 as_fatal (_("unhandled operand code %d"), operands[i]);
5391 }
5392
5393 /* If we get here, this operand was successfully parsed. */
5394 inst.base.operands[i].present = 1;
5395 continue;
5396
5397failure:
5398 /* The parse routine should already have set the error, but in case
5399 not, set a default one here. */
5400 if (! error_p ())
5401 set_default_error ();
5402
5403 if (! backtrack_pos)
5404 goto parse_operands_return;
5405
f4c51f60
JW
5406 {
5407 /* We reach here because this operand is marked as optional, and
5408 either no operand was supplied or the operand was supplied but it
5409 was syntactically incorrect. In the latter case we report an
5410 error. In the former case we perform a few more checks before
5411 dropping through to the code to insert the default operand. */
5412
5413 char *tmp = backtrack_pos;
5414 char endchar = END_OF_INSN;
5415
5416 if (i != (aarch64_num_of_operands (opcode) - 1))
5417 endchar = ',';
5418 skip_past_char (&tmp, ',');
5419
5420 if (*tmp != endchar)
5421 /* The user has supplied an operand in the wrong format. */
5422 goto parse_operands_return;
5423
5424 /* Make sure there is not a comma before the optional operand.
5425 For example the fifth operand of 'sys' is optional:
5426
5427 sys #0,c0,c0,#0, <--- wrong
5428 sys #0,c0,c0,#0 <--- correct. */
5429 if (comma_skipped_p && i && endchar == END_OF_INSN)
5430 {
5431 set_fatal_syntax_error
5432 (_("unexpected comma before the omitted optional operand"));
5433 goto parse_operands_return;
5434 }
5435 }
5436
a06ea964
NC
5437 /* Reaching here means we are dealing with an optional operand that is
5438 omitted from the assembly line. */
5439 gas_assert (optional_operand_p (opcode, i));
5440 info->present = 0;
5441 process_omitted_operand (operands[i], opcode, i, info);
5442
5443 /* Try again, skipping the optional operand at backtrack_pos. */
5444 str = backtrack_pos;
5445 backtrack_pos = 0;
5446
a06ea964
NC
5447 /* Clear any error record after the omitted optional operand has been
5448 successfully handled. */
5449 clear_error ();
5450 }
5451
5452 /* Check if we have parsed all the operands. */
5453 if (*str != '\0' && ! error_p ())
5454 {
5455 /* Set I to the index of the last present operand; this is
5456 for the purpose of diagnostics. */
5457 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5458 ;
5459 set_fatal_syntax_error
5460 (_("unexpected characters following instruction"));
5461 }
5462
5463parse_operands_return:
5464
5465 if (error_p ())
5466 {
5467 DEBUG_TRACE ("parsing FAIL: %s - %s",
5468 operand_mismatch_kind_names[get_error_kind ()],
5469 get_error_message ());
5470 /* Record the operand error properly; this is useful when there
5471 are multiple instruction templates for a mnemonic name, so that
5472 later on, we can select the error that most closely describes
5473 the problem. */
5474 record_operand_error (opcode, i, get_error_kind (),
5475 get_error_message ());
5476 return FALSE;
5477 }
5478 else
5479 {
5480 DEBUG_TRACE ("parsing SUCCESS");
5481 return TRUE;
5482 }
5483}
5484
5485/* It does some fix-up to provide some programmer friendly feature while
5486 keeping the libopcodes happy, i.e. libopcodes only accepts
5487 the preferred architectural syntax.
5488 Return FALSE if there is any failure; otherwise return TRUE. */
5489
5490static bfd_boolean
5491programmer_friendly_fixup (aarch64_instruction *instr)
5492{
5493 aarch64_inst *base = &instr->base;
5494 const aarch64_opcode *opcode = base->opcode;
5495 enum aarch64_op op = opcode->op;
5496 aarch64_opnd_info *operands = base->operands;
5497
5498 DEBUG_TRACE ("enter");
5499
5500 switch (opcode->iclass)
5501 {
5502 case testbranch:
5503 /* TBNZ Xn|Wn, #uimm6, label
5504 Test and Branch Not Zero: conditionally jumps to label if bit number
5505 uimm6 in register Xn is not zero. The bit number implies the width of
5506 the register, which may be written and should be disassembled as Wn if
5507 uimm is less than 32. */
5508 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5509 {
5510 if (operands[1].imm.value >= 32)
5511 {
5512 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5513 0, 31);
5514 return FALSE;
5515 }
5516 operands[0].qualifier = AARCH64_OPND_QLF_X;
5517 }
5518 break;
5519 case loadlit:
5520 /* LDR Wt, label | =value
5521 As a convenience assemblers will typically permit the notation
5522 "=value" in conjunction with the pc-relative literal load instructions
5523 to automatically place an immediate value or symbolic address in a
5524 nearby literal pool and generate a hidden label which references it.
5525 ISREG has been set to 0 in the case of =value. */
5526 if (instr->gen_lit_pool
5527 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5528 {
5529 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5530 if (op == OP_LDRSW_LIT)
5531 size = 4;
5532 if (instr->reloc.exp.X_op != O_constant
67a32447 5533 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5534 && instr->reloc.exp.X_op != O_symbol)
5535 {
5536 record_operand_error (opcode, 1,
5537 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5538 _("constant expression expected"));
5539 return FALSE;
5540 }
5541 if (! add_to_lit_pool (&instr->reloc.exp, size))
5542 {
5543 record_operand_error (opcode, 1,
5544 AARCH64_OPDE_OTHER_ERROR,
5545 _("literal pool insertion failed"));
5546 return FALSE;
5547 }
5548 }
5549 break;
a06ea964
NC
5550 case log_shift:
5551 case bitfield:
5552 /* UXT[BHW] Wd, Wn
5553 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5554 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5555 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5556 A programmer-friendly assembler should accept a destination Xd in
5557 place of Wd, however that is not the preferred form for disassembly.
5558 */
5559 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5560 && operands[1].qualifier == AARCH64_OPND_QLF_W
5561 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5562 operands[0].qualifier = AARCH64_OPND_QLF_W;
5563 break;
5564
5565 case addsub_ext:
5566 {
5567 /* In the 64-bit form, the final register operand is written as Wm
5568 for all but the (possibly omitted) UXTX/LSL and SXTX
5569 operators.
5570 As a programmer-friendly assembler, we accept e.g.
5571 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5572 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5573 int idx = aarch64_operand_index (opcode->operands,
5574 AARCH64_OPND_Rm_EXT);
5575 gas_assert (idx == 1 || idx == 2);
5576 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5577 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5578 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5579 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5580 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5581 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5582 }
5583 break;
5584
5585 default:
5586 break;
5587 }
5588
5589 DEBUG_TRACE ("exit with SUCCESS");
5590 return TRUE;
5591}
5592
5c47e525 5593/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
5594
5595static void
5596warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5597{
5598 aarch64_inst *base = &instr->base;
5599 const aarch64_opcode *opcode = base->opcode;
5600 const aarch64_opnd_info *opnds = base->operands;
5601 switch (opcode->iclass)
5602 {
5603 case ldst_pos:
5604 case ldst_imm9:
5605 case ldst_unscaled:
5606 case ldst_unpriv:
5c47e525
RE
5607 /* Loading/storing the base register is unpredictable if writeback. */
5608 if ((aarch64_get_operand_class (opnds[0].type)
5609 == AARCH64_OPND_CLASS_INT_REG)
5610 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 5611 && opnds[1].addr.base_regno != REG_SP
54a28c4c 5612 && opnds[1].addr.writeback)
5c47e525 5613 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
5614 break;
5615 case ldstpair_off:
5616 case ldstnapair_offs:
5617 case ldstpair_indexed:
5c47e525
RE
5618 /* Loading/storing the base register is unpredictable if writeback. */
5619 if ((aarch64_get_operand_class (opnds[0].type)
5620 == AARCH64_OPND_CLASS_INT_REG)
5621 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5622 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 5623 && opnds[2].addr.base_regno != REG_SP
54a28c4c 5624 && opnds[2].addr.writeback)
5c47e525
RE
5625 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5626 /* Load operations must load different registers. */
54a28c4c
JW
5627 if ((opcode->opcode & (1 << 22))
5628 && opnds[0].reg.regno == opnds[1].reg.regno)
5629 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5630 break;
5631 default:
5632 break;
5633 }
5634}
5635
a06ea964
NC
5636/* A wrapper function to interface with libopcodes on encoding and
5637 record the error message if there is any.
5638
5639 Return TRUE on success; otherwise return FALSE. */
5640
5641static bfd_boolean
5642do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5643 aarch64_insn *code)
5644{
5645 aarch64_operand_error error_info;
5646 error_info.kind = AARCH64_OPDE_NIL;
5647 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5648 return TRUE;
5649 else
5650 {
5651 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5652 record_operand_error_info (opcode, &error_info);
5653 return FALSE;
5654 }
5655}
5656
5657#ifdef DEBUG_AARCH64
5658static inline void
5659dump_opcode_operands (const aarch64_opcode *opcode)
5660{
5661 int i = 0;
5662 while (opcode->operands[i] != AARCH64_OPND_NIL)
5663 {
5664 aarch64_verbose ("\t\t opnd%d: %s", i,
5665 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5666 ? aarch64_get_operand_name (opcode->operands[i])
5667 : aarch64_get_operand_desc (opcode->operands[i]));
5668 ++i;
5669 }
5670}
5671#endif /* DEBUG_AARCH64 */
5672
5673/* This is the guts of the machine-dependent assembler. STR points to a
5674 machine dependent instruction. This function is supposed to emit
5675 the frags/bytes it assembles to. */
5676
5677void
5678md_assemble (char *str)
5679{
5680 char *p = str;
5681 templates *template;
5682 aarch64_opcode *opcode;
5683 aarch64_inst *inst_base;
5684 unsigned saved_cond;
5685
5686 /* Align the previous label if needed. */
5687 if (last_label_seen != NULL)
5688 {
5689 symbol_set_frag (last_label_seen, frag_now);
5690 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
5691 S_SET_SEGMENT (last_label_seen, now_seg);
5692 }
5693
5694 inst.reloc.type = BFD_RELOC_UNUSED;
5695
5696 DEBUG_TRACE ("\n\n");
5697 DEBUG_TRACE ("==============================");
5698 DEBUG_TRACE ("Enter md_assemble with %s", str);
5699
5700 template = opcode_lookup (&p);
5701 if (!template)
5702 {
5703 /* It wasn't an instruction, but it might be a register alias of
5704 the form alias .req reg directive. */
5705 if (!create_register_alias (str, p))
5706 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
5707 str);
5708 return;
5709 }
5710
5711 skip_whitespace (p);
5712 if (*p == ',')
5713 {
5714 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
5715 get_mnemonic_name (str), str);
5716 return;
5717 }
5718
5719 init_operand_error_report ();
5720
eb9d6cc9
RL
5721 /* Sections are assumed to start aligned. In executable section, there is no
5722 MAP_DATA symbol pending. So we only align the address during
5723 MAP_DATA --> MAP_INSN transition.
5724 For other sections, this is not guaranteed. */
5725 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
5726 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
5727 frag_align_code (2, 0);
5728
a06ea964
NC
5729 saved_cond = inst.cond;
5730 reset_aarch64_instruction (&inst);
5731 inst.cond = saved_cond;
5732
5733 /* Iterate through all opcode entries with the same mnemonic name. */
5734 do
5735 {
5736 opcode = template->opcode;
5737
5738 DEBUG_TRACE ("opcode %s found", opcode->name);
5739#ifdef DEBUG_AARCH64
5740 if (debug_dump)
5741 dump_opcode_operands (opcode);
5742#endif /* DEBUG_AARCH64 */
5743
a06ea964
NC
5744 mapping_state (MAP_INSN);
5745
5746 inst_base = &inst.base;
5747 inst_base->opcode = opcode;
5748
5749 /* Truly conditionally executed instructions, e.g. b.cond. */
5750 if (opcode->flags & F_COND)
5751 {
5752 gas_assert (inst.cond != COND_ALWAYS);
5753 inst_base->cond = get_cond_from_value (inst.cond);
5754 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
5755 }
5756 else if (inst.cond != COND_ALWAYS)
5757 {
5758 /* It shouldn't arrive here, where the assembly looks like a
5759 conditional instruction but the found opcode is unconditional. */
5760 gas_assert (0);
5761 continue;
5762 }
5763
5764 if (parse_operands (p, opcode)
5765 && programmer_friendly_fixup (&inst)
5766 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
5767 {
3f06bfce
YZ
5768 /* Check that this instruction is supported for this CPU. */
5769 if (!opcode->avariant
5770 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
5771 {
5772 as_bad (_("selected processor does not support `%s'"), str);
5773 return;
5774 }
5775
54a28c4c
JW
5776 warn_unpredictable_ldst (&inst, str);
5777
a06ea964
NC
5778 if (inst.reloc.type == BFD_RELOC_UNUSED
5779 || !inst.reloc.need_libopcodes_p)
5780 output_inst (NULL);
5781 else
5782 {
5783 /* If there is relocation generated for the instruction,
5784 store the instruction information for the future fix-up. */
5785 struct aarch64_inst *copy;
5786 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
5787 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
5788 abort ();
5789 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
5790 output_inst (copy);
5791 }
5792 return;
5793 }
5794
5795 template = template->next;
5796 if (template != NULL)
5797 {
5798 reset_aarch64_instruction (&inst);
5799 inst.cond = saved_cond;
5800 }
5801 }
5802 while (template != NULL);
5803
5804 /* Issue the error messages if any. */
5805 output_operand_error_report (str);
5806}
5807
5808/* Various frobbings of labels and their addresses. */
5809
5810void
5811aarch64_start_line_hook (void)
5812{
5813 last_label_seen = NULL;
5814}
5815
5816void
5817aarch64_frob_label (symbolS * sym)
5818{
5819 last_label_seen = sym;
5820
5821 dwarf2_emit_label (sym);
5822}
5823
5824int
5825aarch64_data_in_code (void)
5826{
5827 if (!strncmp (input_line_pointer + 1, "data:", 5))
5828 {
5829 *input_line_pointer = '/';
5830 input_line_pointer += 5;
5831 *input_line_pointer = 0;
5832 return 1;
5833 }
5834
5835 return 0;
5836}
5837
5838char *
5839aarch64_canonicalize_symbol_name (char *name)
5840{
5841 int len;
5842
5843 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
5844 *(name + len - 5) = 0;
5845
5846 return name;
5847}
5848\f
5849/* Table of all register names defined by default. The user can
5850 define additional names with .req. Note that all register names
5851 should appear in both upper and lowercase variants. Some registers
5852 also have mixed-case names. */
5853
5854#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
5855#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5856#define REGSET31(p,t) \
5857 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
5858 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
5859 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
5860 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
5861 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
5862 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
5863 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
5864 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
5865#define REGSET(p,t) \
5866 REGSET31(p,t), REGNUM(p,31,t)
5867
5868/* These go into aarch64_reg_hsh hash-table. */
5869static const reg_entry reg_names[] = {
5870 /* Integer registers. */
5871 REGSET31 (x, R_64), REGSET31 (X, R_64),
5872 REGSET31 (w, R_32), REGSET31 (W, R_32),
5873
5874 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
5875 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
5876
5877 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
5878 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
5879
5880 /* Coprocessor register numbers. */
5881 REGSET (c, CN), REGSET (C, CN),
5882
5883 /* Floating-point single precision registers. */
5884 REGSET (s, FP_S), REGSET (S, FP_S),
5885
5886 /* Floating-point double precision registers. */
5887 REGSET (d, FP_D), REGSET (D, FP_D),
5888
5889 /* Floating-point half precision registers. */
5890 REGSET (h, FP_H), REGSET (H, FP_H),
5891
5892 /* Floating-point byte precision registers. */
5893 REGSET (b, FP_B), REGSET (B, FP_B),
5894
5895 /* Floating-point quad precision registers. */
5896 REGSET (q, FP_Q), REGSET (Q, FP_Q),
5897
5898 /* FP/SIMD registers. */
5899 REGSET (v, VN), REGSET (V, VN),
5900};
5901
5902#undef REGDEF
5903#undef REGNUM
5904#undef REGSET
5905
5906#define N 1
5907#define n 0
5908#define Z 1
5909#define z 0
5910#define C 1
5911#define c 0
5912#define V 1
5913#define v 0
5914#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
5915static const asm_nzcv nzcv_names[] = {
5916 {"nzcv", B (n, z, c, v)},
5917 {"nzcV", B (n, z, c, V)},
5918 {"nzCv", B (n, z, C, v)},
5919 {"nzCV", B (n, z, C, V)},
5920 {"nZcv", B (n, Z, c, v)},
5921 {"nZcV", B (n, Z, c, V)},
5922 {"nZCv", B (n, Z, C, v)},
5923 {"nZCV", B (n, Z, C, V)},
5924 {"Nzcv", B (N, z, c, v)},
5925 {"NzcV", B (N, z, c, V)},
5926 {"NzCv", B (N, z, C, v)},
5927 {"NzCV", B (N, z, C, V)},
5928 {"NZcv", B (N, Z, c, v)},
5929 {"NZcV", B (N, Z, c, V)},
5930 {"NZCv", B (N, Z, C, v)},
5931 {"NZCV", B (N, Z, C, V)}
5932};
5933
5934#undef N
5935#undef n
5936#undef Z
5937#undef z
5938#undef C
5939#undef c
5940#undef V
5941#undef v
5942#undef B
5943\f
5944/* MD interface: bits in the object file. */
5945
5946/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
5947 for use in the a.out file, and stores them in the array pointed to by buf.
5948 This knows about the endian-ness of the target machine and does
5949 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
5950 2 (short) and 4 (long) Floating numbers are put out as a series of
5951 LITTLENUMS (shorts, here at least). */
5952
5953void
5954md_number_to_chars (char *buf, valueT val, int n)
5955{
5956 if (target_big_endian)
5957 number_to_chars_bigendian (buf, val, n);
5958 else
5959 number_to_chars_littleendian (buf, val, n);
5960}
5961
5962/* MD interface: Sections. */
5963
5964/* Estimate the size of a frag before relaxing. Assume everything fits in
5965 4 bytes. */
5966
5967int
5968md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
5969{
5970 fragp->fr_var = 4;
5971 return 4;
5972}
5973
5974/* Round up a section size to the appropriate boundary. */
5975
5976valueT
5977md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5978{
5979 return size;
5980}
5981
5982/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
5983 of an rs_align_code fragment.
5984
5985 Here we fill the frag with the appropriate info for padding the
5986 output stream. The resulting frag will consist of a fixed (fr_fix)
5987 and of a repeating (fr_var) part.
5988
5989 The fixed content is always emitted before the repeating content and
5990 these two parts are used as follows in constructing the output:
5991 - the fixed part will be used to align to a valid instruction word
5992 boundary, in case that we start at a misaligned address; as no
5993 executable instruction can live at the misaligned location, we
5994 simply fill with zeros;
5995 - the variable part will be used to cover the remaining padding and
5996 we fill using the AArch64 NOP instruction.
5997
5998 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
5999 enough storage space for up to 3 bytes for padding the back to a valid
6000 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
6001
6002void
6003aarch64_handle_align (fragS * fragP)
6004{
6005 /* NOP = d503201f */
6006 /* AArch64 instructions are always little-endian. */
6007 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6008
6009 int bytes, fix, noop_size;
6010 char *p;
a06ea964
NC
6011
6012 if (fragP->fr_type != rs_align_code)
6013 return;
6014
6015 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6016 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
6017
6018#ifdef OBJ_ELF
6019 gas_assert (fragP->tc_frag_data.recorded);
6020#endif
6021
a06ea964 6022 noop_size = sizeof (aarch64_noop);
a06ea964 6023
f803aa8e
DPT
6024 fix = bytes & (noop_size - 1);
6025 if (fix)
a06ea964 6026 {
a06ea964
NC
6027#ifdef OBJ_ELF
6028 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6029#endif
6030 memset (p, 0, fix);
6031 p += fix;
f803aa8e 6032 fragP->fr_fix += fix;
a06ea964
NC
6033 }
6034
f803aa8e
DPT
6035 if (noop_size)
6036 memcpy (p, aarch64_noop, noop_size);
6037 fragP->fr_var = noop_size;
a06ea964
NC
6038}
6039
6040/* Perform target specific initialisation of a frag.
6041 Note - despite the name this initialisation is not done when the frag
6042 is created, but only when its type is assigned. A frag can be created
6043 and used a long time before its type is set, so beware of assuming that
6044 this initialisationis performed first. */
6045
6046#ifndef OBJ_ELF
6047void
6048aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6049 int max_chars ATTRIBUTE_UNUSED)
6050{
6051}
6052
6053#else /* OBJ_ELF is defined. */
6054void
6055aarch64_init_frag (fragS * fragP, int max_chars)
6056{
6057 /* Record a mapping symbol for alignment frags. We will delete this
6058 later if the alignment ends up empty. */
6059 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
6060 fragP->tc_frag_data.recorded = 1;
6061
6062 switch (fragP->fr_type)
a06ea964 6063 {
c7ad08e6
RL
6064 case rs_align:
6065 case rs_align_test:
6066 case rs_fill:
6067 mapping_state_2 (MAP_DATA, max_chars);
6068 break;
6069 case rs_align_code:
6070 mapping_state_2 (MAP_INSN, max_chars);
6071 break;
6072 default:
6073 break;
a06ea964
NC
6074 }
6075}
6076\f
6077/* Initialize the DWARF-2 unwind information for this procedure. */
6078
6079void
6080tc_aarch64_frame_initial_instructions (void)
6081{
6082 cfi_add_CFA_def_cfa (REG_SP, 0);
6083}
6084#endif /* OBJ_ELF */
6085
6086/* Convert REGNAME to a DWARF-2 register number. */
6087
6088int
6089tc_aarch64_regname_to_dw2regnum (char *regname)
6090{
6091 const reg_entry *reg = parse_reg (&regname);
6092 if (reg == NULL)
6093 return -1;
6094
6095 switch (reg->type)
6096 {
6097 case REG_TYPE_SP_32:
6098 case REG_TYPE_SP_64:
6099 case REG_TYPE_R_32:
6100 case REG_TYPE_R_64:
a2cac51c
RH
6101 return reg->number;
6102
a06ea964
NC
6103 case REG_TYPE_FP_B:
6104 case REG_TYPE_FP_H:
6105 case REG_TYPE_FP_S:
6106 case REG_TYPE_FP_D:
6107 case REG_TYPE_FP_Q:
a2cac51c
RH
6108 return reg->number + 64;
6109
a06ea964
NC
6110 default:
6111 break;
6112 }
6113 return -1;
6114}
6115
cec5225b
YZ
6116/* Implement DWARF2_ADDR_SIZE. */
6117
6118int
6119aarch64_dwarf2_addr_size (void)
6120{
6121#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6122 if (ilp32_p)
6123 return 4;
6124#endif
6125 return bfd_arch_bits_per_address (stdoutput) / 8;
6126}
6127
a06ea964
NC
6128/* MD interface: Symbol and relocation handling. */
6129
6130/* Return the address within the segment that a PC-relative fixup is
6131 relative to. For AArch64 PC-relative fixups applied to instructions
6132 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6133
6134long
6135md_pcrel_from_section (fixS * fixP, segT seg)
6136{
6137 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6138
6139 /* If this is pc-relative and we are going to emit a relocation
6140 then we just want to put out any pipeline compensation that the linker
6141 will need. Otherwise we want to use the calculated base. */
6142 if (fixP->fx_pcrel
6143 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6144 || aarch64_force_relocation (fixP)))
6145 base = 0;
6146
6147 /* AArch64 should be consistent for all pc-relative relocations. */
6148 return base + AARCH64_PCREL_OFFSET;
6149}
6150
6151/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6152 Otherwise we have no need to default values of symbols. */
6153
6154symbolS *
6155md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6156{
6157#ifdef OBJ_ELF
6158 if (name[0] == '_' && name[1] == 'G'
6159 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6160 {
6161 if (!GOT_symbol)
6162 {
6163 if (symbol_find (name))
6164 as_bad (_("GOT already in the symbol table"));
6165
6166 GOT_symbol = symbol_new (name, undefined_section,
6167 (valueT) 0, &zero_address_frag);
6168 }
6169
6170 return GOT_symbol;
6171 }
6172#endif
6173
6174 return 0;
6175}
6176
6177/* Return non-zero if the indicated VALUE has overflowed the maximum
6178 range expressible by a unsigned number with the indicated number of
6179 BITS. */
6180
6181static bfd_boolean
6182unsigned_overflow (valueT value, unsigned bits)
6183{
6184 valueT lim;
6185 if (bits >= sizeof (valueT) * 8)
6186 return FALSE;
6187 lim = (valueT) 1 << bits;
6188 return (value >= lim);
6189}
6190
6191
6192/* Return non-zero if the indicated VALUE has overflowed the maximum
6193 range expressible by an signed number with the indicated number of
6194 BITS. */
6195
6196static bfd_boolean
6197signed_overflow (offsetT value, unsigned bits)
6198{
6199 offsetT lim;
6200 if (bits >= sizeof (offsetT) * 8)
6201 return FALSE;
6202 lim = (offsetT) 1 << (bits - 1);
6203 return (value < -lim || value >= lim);
6204}
6205
6206/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6207 unsigned immediate offset load/store instruction, try to encode it as
6208 an unscaled, 9-bit, signed immediate offset load/store instruction.
6209 Return TRUE if it is successful; otherwise return FALSE.
6210
6211 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6212 in response to the standard LDR/STR mnemonics when the immediate offset is
6213 unambiguous, i.e. when it is negative or unaligned. */
6214
6215static bfd_boolean
6216try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6217{
6218 int idx;
6219 enum aarch64_op new_op;
6220 const aarch64_opcode *new_opcode;
6221
6222 gas_assert (instr->opcode->iclass == ldst_pos);
6223
6224 switch (instr->opcode->op)
6225 {
6226 case OP_LDRB_POS:new_op = OP_LDURB; break;
6227 case OP_STRB_POS: new_op = OP_STURB; break;
6228 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6229 case OP_LDRH_POS: new_op = OP_LDURH; break;
6230 case OP_STRH_POS: new_op = OP_STURH; break;
6231 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6232 case OP_LDR_POS: new_op = OP_LDUR; break;
6233 case OP_STR_POS: new_op = OP_STUR; break;
6234 case OP_LDRF_POS: new_op = OP_LDURV; break;
6235 case OP_STRF_POS: new_op = OP_STURV; break;
6236 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6237 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6238 default: new_op = OP_NIL; break;
6239 }
6240
6241 if (new_op == OP_NIL)
6242 return FALSE;
6243
6244 new_opcode = aarch64_get_opcode (new_op);
6245 gas_assert (new_opcode != NULL);
6246
6247 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6248 instr->opcode->op, new_opcode->op);
6249
6250 aarch64_replace_opcode (instr, new_opcode);
6251
6252 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6253 qualifier matching may fail because the out-of-date qualifier will
6254 prevent the operand being updated with a new and correct qualifier. */
6255 idx = aarch64_operand_index (instr->opcode->operands,
6256 AARCH64_OPND_ADDR_SIMM9);
6257 gas_assert (idx == 1);
6258 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6259
6260 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6261
6262 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6263 return FALSE;
6264
6265 return TRUE;
6266}
6267
6268/* Called by fix_insn to fix a MOV immediate alias instruction.
6269
6270 Operand for a generic move immediate instruction, which is an alias
6271 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6272 a 32-bit/64-bit immediate value into general register. An assembler error
6273 shall result if the immediate cannot be created by a single one of these
6274 instructions. If there is a choice, then to ensure reversability an
6275 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6276
6277static void
6278fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6279{
6280 const aarch64_opcode *opcode;
6281
6282 /* Need to check if the destination is SP/ZR. The check has to be done
6283 before any aarch64_replace_opcode. */
6284 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6285 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6286
6287 instr->operands[1].imm.value = value;
6288 instr->operands[1].skip = 0;
6289
6290 if (try_mov_wide_p)
6291 {
6292 /* Try the MOVZ alias. */
6293 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6294 aarch64_replace_opcode (instr, opcode);
6295 if (aarch64_opcode_encode (instr->opcode, instr,
6296 &instr->value, NULL, NULL))
6297 {
6298 put_aarch64_insn (buf, instr->value);
6299 return;
6300 }
6301 /* Try the MOVK alias. */
6302 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6303 aarch64_replace_opcode (instr, opcode);
6304 if (aarch64_opcode_encode (instr->opcode, instr,
6305 &instr->value, NULL, NULL))
6306 {
6307 put_aarch64_insn (buf, instr->value);
6308 return;
6309 }
6310 }
6311
6312 if (try_mov_bitmask_p)
6313 {
6314 /* Try the ORR alias. */
6315 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6316 aarch64_replace_opcode (instr, opcode);
6317 if (aarch64_opcode_encode (instr->opcode, instr,
6318 &instr->value, NULL, NULL))
6319 {
6320 put_aarch64_insn (buf, instr->value);
6321 return;
6322 }
6323 }
6324
6325 as_bad_where (fixP->fx_file, fixP->fx_line,
6326 _("immediate cannot be moved by a single instruction"));
6327}
6328
6329/* An instruction operand which is immediate related may have symbol used
6330 in the assembly, e.g.
6331
6332 mov w0, u32
6333 .set u32, 0x00ffff00
6334
6335 At the time when the assembly instruction is parsed, a referenced symbol,
6336 like 'u32' in the above example may not have been seen; a fixS is created
6337 in such a case and is handled here after symbols have been resolved.
6338 Instruction is fixed up with VALUE using the information in *FIXP plus
6339 extra information in FLAGS.
6340
6341 This function is called by md_apply_fix to fix up instructions that need
6342 a fix-up described above but does not involve any linker-time relocation. */
6343
6344static void
6345fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6346{
6347 int idx;
6348 uint32_t insn;
6349 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6350 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6351 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6352
6353 if (new_inst)
6354 {
6355 /* Now the instruction is about to be fixed-up, so the operand that
6356 was previously marked as 'ignored' needs to be unmarked in order
6357 to get the encoding done properly. */
6358 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6359 new_inst->operands[idx].skip = 0;
6360 }
6361
6362 gas_assert (opnd != AARCH64_OPND_NIL);
6363
6364 switch (opnd)
6365 {
6366 case AARCH64_OPND_EXCEPTION:
6367 if (unsigned_overflow (value, 16))
6368 as_bad_where (fixP->fx_file, fixP->fx_line,
6369 _("immediate out of range"));
6370 insn = get_aarch64_insn (buf);
6371 insn |= encode_svc_imm (value);
6372 put_aarch64_insn (buf, insn);
6373 break;
6374
6375 case AARCH64_OPND_AIMM:
6376 /* ADD or SUB with immediate.
6377 NOTE this assumes we come here with a add/sub shifted reg encoding
6378 3 322|2222|2 2 2 21111 111111
6379 1 098|7654|3 2 1 09876 543210 98765 43210
6380 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6381 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6382 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6383 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6384 ->
6385 3 322|2222|2 2 221111111111
6386 1 098|7654|3 2 109876543210 98765 43210
6387 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6388 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6389 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6390 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6391 Fields sf Rn Rd are already set. */
6392 insn = get_aarch64_insn (buf);
6393 if (value < 0)
6394 {
6395 /* Add <-> sub. */
6396 insn = reencode_addsub_switch_add_sub (insn);
6397 value = -value;
6398 }
6399
6400 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6401 && unsigned_overflow (value, 12))
6402 {
6403 /* Try to shift the value by 12 to make it fit. */
6404 if (((value >> 12) << 12) == value
6405 && ! unsigned_overflow (value, 12 + 12))
6406 {
6407 value >>= 12;
6408 insn |= encode_addsub_imm_shift_amount (1);
6409 }
6410 }
6411
6412 if (unsigned_overflow (value, 12))
6413 as_bad_where (fixP->fx_file, fixP->fx_line,
6414 _("immediate out of range"));
6415
6416 insn |= encode_addsub_imm (value);
6417
6418 put_aarch64_insn (buf, insn);
6419 break;
6420
6421 case AARCH64_OPND_SIMD_IMM:
6422 case AARCH64_OPND_SIMD_IMM_SFT:
6423 case AARCH64_OPND_LIMM:
6424 /* Bit mask immediate. */
6425 gas_assert (new_inst != NULL);
6426 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6427 new_inst->operands[idx].imm.value = value;
6428 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6429 &new_inst->value, NULL, NULL))
6430 put_aarch64_insn (buf, new_inst->value);
6431 else
6432 as_bad_where (fixP->fx_file, fixP->fx_line,
6433 _("invalid immediate"));
6434 break;
6435
6436 case AARCH64_OPND_HALF:
6437 /* 16-bit unsigned immediate. */
6438 if (unsigned_overflow (value, 16))
6439 as_bad_where (fixP->fx_file, fixP->fx_line,
6440 _("immediate out of range"));
6441 insn = get_aarch64_insn (buf);
6442 insn |= encode_movw_imm (value & 0xffff);
6443 put_aarch64_insn (buf, insn);
6444 break;
6445
6446 case AARCH64_OPND_IMM_MOV:
6447 /* Operand for a generic move immediate instruction, which is
6448 an alias instruction that generates a single MOVZ, MOVN or ORR
6449 instruction to loads a 32-bit/64-bit immediate value into general
6450 register. An assembler error shall result if the immediate cannot be
6451 created by a single one of these instructions. If there is a choice,
6452 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6453 and MOVZ or MOVN to ORR. */
6454 gas_assert (new_inst != NULL);
6455 fix_mov_imm_insn (fixP, buf, new_inst, value);
6456 break;
6457
6458 case AARCH64_OPND_ADDR_SIMM7:
6459 case AARCH64_OPND_ADDR_SIMM9:
6460 case AARCH64_OPND_ADDR_SIMM9_2:
6461 case AARCH64_OPND_ADDR_UIMM12:
6462 /* Immediate offset in an address. */
6463 insn = get_aarch64_insn (buf);
6464
6465 gas_assert (new_inst != NULL && new_inst->value == insn);
6466 gas_assert (new_inst->opcode->operands[1] == opnd
6467 || new_inst->opcode->operands[2] == opnd);
6468
6469 /* Get the index of the address operand. */
6470 if (new_inst->opcode->operands[1] == opnd)
6471 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6472 idx = 1;
6473 else
6474 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6475 idx = 2;
6476
6477 /* Update the resolved offset value. */
6478 new_inst->operands[idx].addr.offset.imm = value;
6479
6480 /* Encode/fix-up. */
6481 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6482 &new_inst->value, NULL, NULL))
6483 {
6484 put_aarch64_insn (buf, new_inst->value);
6485 break;
6486 }
6487 else if (new_inst->opcode->iclass == ldst_pos
6488 && try_to_encode_as_unscaled_ldst (new_inst))
6489 {
6490 put_aarch64_insn (buf, new_inst->value);
6491 break;
6492 }
6493
6494 as_bad_where (fixP->fx_file, fixP->fx_line,
6495 _("immediate offset out of range"));
6496 break;
6497
6498 default:
6499 gas_assert (0);
6500 as_fatal (_("unhandled operand code %d"), opnd);
6501 }
6502}
6503
6504/* Apply a fixup (fixP) to segment data, once it has been determined
6505 by our caller that we have all the info we need to fix it up.
6506
6507 Parameter valP is the pointer to the value of the bits. */
6508
6509void
6510md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6511{
6512 offsetT value = *valP;
6513 uint32_t insn;
6514 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6515 int scale;
6516 unsigned flags = fixP->fx_addnumber;
6517
6518 DEBUG_TRACE ("\n\n");
6519 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6520 DEBUG_TRACE ("Enter md_apply_fix");
6521
6522 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6523
6524 /* Note whether this will delete the relocation. */
6525
6526 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6527 fixP->fx_done = 1;
6528
6529 /* Process the relocations. */
6530 switch (fixP->fx_r_type)
6531 {
6532 case BFD_RELOC_NONE:
6533 /* This will need to go in the object file. */
6534 fixP->fx_done = 0;
6535 break;
6536
6537 case BFD_RELOC_8:
6538 case BFD_RELOC_8_PCREL:
6539 if (fixP->fx_done || !seg->use_rela_p)
6540 md_number_to_chars (buf, value, 1);
6541 break;
6542
6543 case BFD_RELOC_16:
6544 case BFD_RELOC_16_PCREL:
6545 if (fixP->fx_done || !seg->use_rela_p)
6546 md_number_to_chars (buf, value, 2);
6547 break;
6548
6549 case BFD_RELOC_32:
6550 case BFD_RELOC_32_PCREL:
6551 if (fixP->fx_done || !seg->use_rela_p)
6552 md_number_to_chars (buf, value, 4);
6553 break;
6554
6555 case BFD_RELOC_64:
6556 case BFD_RELOC_64_PCREL:
6557 if (fixP->fx_done || !seg->use_rela_p)
6558 md_number_to_chars (buf, value, 8);
6559 break;
6560
6561 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6562 /* We claim that these fixups have been processed here, even if
6563 in fact we generate an error because we do not have a reloc
6564 for them, so tc_gen_reloc() will reject them. */
6565 fixP->fx_done = 1;
6566 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6567 {
6568 as_bad_where (fixP->fx_file, fixP->fx_line,
6569 _("undefined symbol %s used as an immediate value"),
6570 S_GET_NAME (fixP->fx_addsy));
6571 goto apply_fix_return;
6572 }
6573 fix_insn (fixP, flags, value);
6574 break;
6575
6576 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6577 if (fixP->fx_done || !seg->use_rela_p)
6578 {
89d2a2a3
MS
6579 if (value & 3)
6580 as_bad_where (fixP->fx_file, fixP->fx_line,
6581 _("pc-relative load offset not word aligned"));
6582 if (signed_overflow (value, 21))
6583 as_bad_where (fixP->fx_file, fixP->fx_line,
6584 _("pc-relative load offset out of range"));
a06ea964
NC
6585 insn = get_aarch64_insn (buf);
6586 insn |= encode_ld_lit_ofs_19 (value >> 2);
6587 put_aarch64_insn (buf, insn);
6588 }
6589 break;
6590
6591 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6592 if (fixP->fx_done || !seg->use_rela_p)
6593 {
89d2a2a3
MS
6594 if (signed_overflow (value, 21))
6595 as_bad_where (fixP->fx_file, fixP->fx_line,
6596 _("pc-relative address offset out of range"));
a06ea964
NC
6597 insn = get_aarch64_insn (buf);
6598 insn |= encode_adr_imm (value);
6599 put_aarch64_insn (buf, insn);
6600 }
6601 break;
6602
6603 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6604 if (fixP->fx_done || !seg->use_rela_p)
6605 {
89d2a2a3
MS
6606 if (value & 3)
6607 as_bad_where (fixP->fx_file, fixP->fx_line,
6608 _("conditional branch target not word aligned"));
6609 if (signed_overflow (value, 21))
6610 as_bad_where (fixP->fx_file, fixP->fx_line,
6611 _("conditional branch out of range"));
a06ea964
NC
6612 insn = get_aarch64_insn (buf);
6613 insn |= encode_cond_branch_ofs_19 (value >> 2);
6614 put_aarch64_insn (buf, insn);
6615 }
6616 break;
6617
6618 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6619 if (fixP->fx_done || !seg->use_rela_p)
6620 {
89d2a2a3
MS
6621 if (value & 3)
6622 as_bad_where (fixP->fx_file, fixP->fx_line,
6623 _("conditional branch target not word aligned"));
6624 if (signed_overflow (value, 16))
6625 as_bad_where (fixP->fx_file, fixP->fx_line,
6626 _("conditional branch out of range"));
a06ea964
NC
6627 insn = get_aarch64_insn (buf);
6628 insn |= encode_tst_branch_ofs_14 (value >> 2);
6629 put_aarch64_insn (buf, insn);
6630 }
6631 break;
6632
a06ea964 6633 case BFD_RELOC_AARCH64_CALL26:
f09c556a 6634 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
6635 if (fixP->fx_done || !seg->use_rela_p)
6636 {
89d2a2a3
MS
6637 if (value & 3)
6638 as_bad_where (fixP->fx_file, fixP->fx_line,
6639 _("branch target not word aligned"));
6640 if (signed_overflow (value, 28))
6641 as_bad_where (fixP->fx_file, fixP->fx_line,
6642 _("branch out of range"));
a06ea964
NC
6643 insn = get_aarch64_insn (buf);
6644 insn |= encode_branch_ofs_26 (value >> 2);
6645 put_aarch64_insn (buf, insn);
6646 }
6647 break;
6648
6649 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 6650 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 6651 case BFD_RELOC_AARCH64_MOVW_G0_S:
a06ea964
NC
6652 scale = 0;
6653 goto movw_common;
6654 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 6655 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 6656 case BFD_RELOC_AARCH64_MOVW_G1_S:
a06ea964
NC
6657 scale = 16;
6658 goto movw_common;
6659 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 6660 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 6661 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
6662 scale = 32;
6663 goto movw_common;
6664 case BFD_RELOC_AARCH64_MOVW_G3:
6665 scale = 48;
6666 movw_common:
6667 if (fixP->fx_done || !seg->use_rela_p)
6668 {
6669 insn = get_aarch64_insn (buf);
6670
6671 if (!fixP->fx_done)
6672 {
6673 /* REL signed addend must fit in 16 bits */
6674 if (signed_overflow (value, 16))
6675 as_bad_where (fixP->fx_file, fixP->fx_line,
6676 _("offset out of range"));
6677 }
6678 else
6679 {
6680 /* Check for overflow and scale. */
6681 switch (fixP->fx_r_type)
6682 {
6683 case BFD_RELOC_AARCH64_MOVW_G0:
6684 case BFD_RELOC_AARCH64_MOVW_G1:
6685 case BFD_RELOC_AARCH64_MOVW_G2:
6686 case BFD_RELOC_AARCH64_MOVW_G3:
6687 if (unsigned_overflow (value, scale + 16))
6688 as_bad_where (fixP->fx_file, fixP->fx_line,
6689 _("unsigned value out of range"));
6690 break;
6691 case BFD_RELOC_AARCH64_MOVW_G0_S:
6692 case BFD_RELOC_AARCH64_MOVW_G1_S:
6693 case BFD_RELOC_AARCH64_MOVW_G2_S:
6694 /* NOTE: We can only come here with movz or movn. */
6695 if (signed_overflow (value, scale + 16))
6696 as_bad_where (fixP->fx_file, fixP->fx_line,
6697 _("signed value out of range"));
6698 if (value < 0)
6699 {
6700 /* Force use of MOVN. */
6701 value = ~value;
6702 insn = reencode_movzn_to_movn (insn);
6703 }
6704 else
6705 {
6706 /* Force use of MOVZ. */
6707 insn = reencode_movzn_to_movz (insn);
6708 }
6709 break;
6710 default:
6711 /* Unchecked relocations. */
6712 break;
6713 }
6714 value >>= scale;
6715 }
6716
6717 /* Insert value into MOVN/MOVZ/MOVK instruction. */
6718 insn |= encode_movw_imm (value & 0xffff);
6719
6720 put_aarch64_insn (buf, insn);
6721 }
6722 break;
6723
a6bb11b2
YZ
6724 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6725 fixP->fx_r_type = (ilp32_p
6726 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
6727 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6728 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6729 /* Should always be exported to object file, see
6730 aarch64_force_relocation(). */
6731 gas_assert (!fixP->fx_done);
6732 gas_assert (seg->use_rela_p);
6733 break;
6734
6735 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6736 fixP->fx_r_type = (ilp32_p
6737 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
6738 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
6739 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6740 /* Should always be exported to object file, see
6741 aarch64_force_relocation(). */
6742 gas_assert (!fixP->fx_done);
6743 gas_assert (seg->use_rela_p);
6744 break;
6745
2c0a3565
MS
6746 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6747 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6748 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
6749 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6750 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6751 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 6752 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6753 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6754 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 6755 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6756 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6757 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6758 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
a06ea964 6759 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6760 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6761 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6762 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6763 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6764 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6765 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6766 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6767 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6768 /* Should always be exported to object file, see
6769 aarch64_force_relocation(). */
6770 gas_assert (!fixP->fx_done);
6771 gas_assert (seg->use_rela_p);
6772 break;
6773
a6bb11b2
YZ
6774 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6775 /* Should always be exported to object file, see
6776 aarch64_force_relocation(). */
6777 fixP->fx_r_type = (ilp32_p
6778 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
6779 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
6780 gas_assert (!fixP->fx_done);
6781 gas_assert (seg->use_rela_p);
6782 break;
6783
a06ea964 6784 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
6785 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6786 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6787 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6788 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6789 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 6790 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
a921b5bd 6791 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
6792 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6793 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
6794 case BFD_RELOC_AARCH64_LDST16_LO12:
6795 case BFD_RELOC_AARCH64_LDST32_LO12:
6796 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 6797 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
6798 /* Should always be exported to object file, see
6799 aarch64_force_relocation(). */
6800 gas_assert (!fixP->fx_done);
6801 gas_assert (seg->use_rela_p);
6802 break;
6803
6804 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 6805 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 6806 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
6807 break;
6808
b97e87cc
NC
6809 case BFD_RELOC_UNUSED:
6810 /* An error will already have been reported. */
6811 break;
6812
a06ea964
NC
6813 default:
6814 as_bad_where (fixP->fx_file, fixP->fx_line,
6815 _("unexpected %s fixup"),
6816 bfd_get_reloc_code_name (fixP->fx_r_type));
6817 break;
6818 }
6819
6820apply_fix_return:
6821 /* Free the allocated the struct aarch64_inst.
6822 N.B. currently there are very limited number of fix-up types actually use
6823 this field, so the impact on the performance should be minimal . */
6824 if (fixP->tc_fix_data.inst != NULL)
6825 free (fixP->tc_fix_data.inst);
6826
6827 return;
6828}
6829
6830/* Translate internal representation of relocation info to BFD target
6831 format. */
6832
6833arelent *
6834tc_gen_reloc (asection * section, fixS * fixp)
6835{
6836 arelent *reloc;
6837 bfd_reloc_code_real_type code;
6838
6839 reloc = xmalloc (sizeof (arelent));
6840
6841 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
6842 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6843 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6844
6845 if (fixp->fx_pcrel)
6846 {
6847 if (section->use_rela_p)
6848 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
6849 else
6850 fixp->fx_offset = reloc->address;
6851 }
6852 reloc->addend = fixp->fx_offset;
6853
6854 code = fixp->fx_r_type;
6855 switch (code)
6856 {
6857 case BFD_RELOC_16:
6858 if (fixp->fx_pcrel)
6859 code = BFD_RELOC_16_PCREL;
6860 break;
6861
6862 case BFD_RELOC_32:
6863 if (fixp->fx_pcrel)
6864 code = BFD_RELOC_32_PCREL;
6865 break;
6866
6867 case BFD_RELOC_64:
6868 if (fixp->fx_pcrel)
6869 code = BFD_RELOC_64_PCREL;
6870 break;
6871
6872 default:
6873 break;
6874 }
6875
6876 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6877 if (reloc->howto == NULL)
6878 {
6879 as_bad_where (fixp->fx_file, fixp->fx_line,
6880 _
6881 ("cannot represent %s relocation in this object file format"),
6882 bfd_get_reloc_code_name (code));
6883 return NULL;
6884 }
6885
6886 return reloc;
6887}
6888
6889/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6890
6891void
6892cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
6893{
6894 bfd_reloc_code_real_type type;
6895 int pcrel = 0;
6896
6897 /* Pick a reloc.
6898 FIXME: @@ Should look at CPU word size. */
6899 switch (size)
6900 {
6901 case 1:
6902 type = BFD_RELOC_8;
6903 break;
6904 case 2:
6905 type = BFD_RELOC_16;
6906 break;
6907 case 4:
6908 type = BFD_RELOC_32;
6909 break;
6910 case 8:
6911 type = BFD_RELOC_64;
6912 break;
6913 default:
6914 as_bad (_("cannot do %u-byte relocation"), size);
6915 type = BFD_RELOC_UNUSED;
6916 break;
6917 }
6918
6919 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
6920}
6921
6922int
6923aarch64_force_relocation (struct fix *fixp)
6924{
6925 switch (fixp->fx_r_type)
6926 {
6927 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6928 /* Perform these "immediate" internal relocations
6929 even if the symbol is extern or weak. */
6930 return 0;
6931
a6bb11b2 6932 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
6933 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6934 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
6935 /* Pseudo relocs that need to be fixed up according to
6936 ilp32_p. */
6937 return 0;
6938
2c0a3565
MS
6939 case BFD_RELOC_AARCH64_ADD_LO12:
6940 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6941 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6942 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6943 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6944 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 6945 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
a921b5bd 6946 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
6947 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6948 case BFD_RELOC_AARCH64_LDST128_LO12:
6949 case BFD_RELOC_AARCH64_LDST16_LO12:
6950 case BFD_RELOC_AARCH64_LDST32_LO12:
6951 case BFD_RELOC_AARCH64_LDST64_LO12:
6952 case BFD_RELOC_AARCH64_LDST8_LO12:
6953 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6954 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6955 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
6956 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6957 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6958 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 6959 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6960 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6961 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 6962 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6963 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6964 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6965 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
a06ea964 6966 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6967 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6968 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6969 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6970 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6971 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6972 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6973 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6974 /* Always leave these relocations for the linker. */
6975 return 1;
6976
6977 default:
6978 break;
6979 }
6980
6981 return generic_force_reloc (fixp);
6982}
6983
6984#ifdef OBJ_ELF
6985
6986const char *
6987elf64_aarch64_target_format (void)
6988{
6989 if (target_big_endian)
cec5225b 6990 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 6991 else
cec5225b 6992 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
6993}
6994
6995void
6996aarch64elf_frob_symbol (symbolS * symp, int *puntp)
6997{
6998 elf_frob_symbol (symp, puntp);
6999}
7000#endif
7001
7002/* MD interface: Finalization. */
7003
7004/* A good place to do this, although this was probably not intended
7005 for this kind of use. We need to dump the literal pool before
7006 references are made to a null symbol pointer. */
7007
7008void
7009aarch64_cleanup (void)
7010{
7011 literal_pool *pool;
7012
7013 for (pool = list_of_pools; pool; pool = pool->next)
7014 {
7015 /* Put it at the end of the relevant section. */
7016 subseg_set (pool->section, pool->sub_section);
7017 s_ltorg (0);
7018 }
7019}
7020
7021#ifdef OBJ_ELF
7022/* Remove any excess mapping symbols generated for alignment frags in
7023 SEC. We may have created a mapping symbol before a zero byte
7024 alignment; remove it if there's a mapping symbol after the
7025 alignment. */
7026static void
7027check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7028 void *dummy ATTRIBUTE_UNUSED)
7029{
7030 segment_info_type *seginfo = seg_info (sec);
7031 fragS *fragp;
7032
7033 if (seginfo == NULL || seginfo->frchainP == NULL)
7034 return;
7035
7036 for (fragp = seginfo->frchainP->frch_root;
7037 fragp != NULL; fragp = fragp->fr_next)
7038 {
7039 symbolS *sym = fragp->tc_frag_data.last_map;
7040 fragS *next = fragp->fr_next;
7041
7042 /* Variable-sized frags have been converted to fixed size by
7043 this point. But if this was variable-sized to start with,
7044 there will be a fixed-size frag after it. So don't handle
7045 next == NULL. */
7046 if (sym == NULL || next == NULL)
7047 continue;
7048
7049 if (S_GET_VALUE (sym) < next->fr_address)
7050 /* Not at the end of this frag. */
7051 continue;
7052 know (S_GET_VALUE (sym) == next->fr_address);
7053
7054 do
7055 {
7056 if (next->tc_frag_data.first_map != NULL)
7057 {
7058 /* Next frag starts with a mapping symbol. Discard this
7059 one. */
7060 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7061 break;
7062 }
7063
7064 if (next->fr_next == NULL)
7065 {
7066 /* This mapping symbol is at the end of the section. Discard
7067 it. */
7068 know (next->fr_fix == 0 && next->fr_var == 0);
7069 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7070 break;
7071 }
7072
7073 /* As long as we have empty frags without any mapping symbols,
7074 keep looking. */
7075 /* If the next frag is non-empty and does not start with a
7076 mapping symbol, then this mapping symbol is required. */
7077 if (next->fr_address != next->fr_next->fr_address)
7078 break;
7079
7080 next = next->fr_next;
7081 }
7082 while (next != NULL);
7083 }
7084}
7085#endif
7086
7087/* Adjust the symbol table. */
7088
7089void
7090aarch64_adjust_symtab (void)
7091{
7092#ifdef OBJ_ELF
7093 /* Remove any overlapping mapping symbols generated by alignment frags. */
7094 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7095 /* Now do generic ELF adjustments. */
7096 elf_adjust_symtab ();
7097#endif
7098}
7099
7100static void
7101checked_hash_insert (struct hash_control *table, const char *key, void *value)
7102{
7103 const char *hash_err;
7104
7105 hash_err = hash_insert (table, key, value);
7106 if (hash_err)
7107 printf ("Internal Error: Can't hash %s\n", key);
7108}
7109
7110static void
7111fill_instruction_hash_table (void)
7112{
7113 aarch64_opcode *opcode = aarch64_opcode_table;
7114
7115 while (opcode->name != NULL)
7116 {
7117 templates *templ, *new_templ;
7118 templ = hash_find (aarch64_ops_hsh, opcode->name);
7119
7120 new_templ = (templates *) xmalloc (sizeof (templates));
7121 new_templ->opcode = opcode;
7122 new_templ->next = NULL;
7123
7124 if (!templ)
7125 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7126 else
7127 {
7128 new_templ->next = templ->next;
7129 templ->next = new_templ;
7130 }
7131 ++opcode;
7132 }
7133}
7134
7135static inline void
7136convert_to_upper (char *dst, const char *src, size_t num)
7137{
7138 unsigned int i;
7139 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7140 *dst = TOUPPER (*src);
7141 *dst = '\0';
7142}
7143
7144/* Assume STR point to a lower-case string, allocate, convert and return
7145 the corresponding upper-case string. */
7146static inline const char*
7147get_upper_str (const char *str)
7148{
7149 char *ret;
7150 size_t len = strlen (str);
7151 if ((ret = xmalloc (len + 1)) == NULL)
7152 abort ();
7153 convert_to_upper (ret, str, len);
7154 return ret;
7155}
7156
7157/* MD interface: Initialization. */
7158
7159void
7160md_begin (void)
7161{
7162 unsigned mach;
7163 unsigned int i;
7164
7165 if ((aarch64_ops_hsh = hash_new ()) == NULL
7166 || (aarch64_cond_hsh = hash_new ()) == NULL
7167 || (aarch64_shift_hsh = hash_new ()) == NULL
7168 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7169 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7170 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7171 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7172 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7173 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7174 || (aarch64_reg_hsh = hash_new ()) == NULL
7175 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7176 || (aarch64_nzcv_hsh = hash_new ()) == NULL
7177 || (aarch64_pldop_hsh = hash_new ()) == NULL)
7178 as_fatal (_("virtual memory exhausted"));
7179
7180 fill_instruction_hash_table ();
7181
7182 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7183 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7184 (void *) (aarch64_sys_regs + i));
7185
7186 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7187 checked_hash_insert (aarch64_pstatefield_hsh,
7188 aarch64_pstatefields[i].name,
7189 (void *) (aarch64_pstatefields + i));
7190
7191 for (i = 0; aarch64_sys_regs_ic[i].template != NULL; i++)
7192 checked_hash_insert (aarch64_sys_regs_ic_hsh,
7193 aarch64_sys_regs_ic[i].template,
7194 (void *) (aarch64_sys_regs_ic + i));
7195
7196 for (i = 0; aarch64_sys_regs_dc[i].template != NULL; i++)
7197 checked_hash_insert (aarch64_sys_regs_dc_hsh,
7198 aarch64_sys_regs_dc[i].template,
7199 (void *) (aarch64_sys_regs_dc + i));
7200
7201 for (i = 0; aarch64_sys_regs_at[i].template != NULL; i++)
7202 checked_hash_insert (aarch64_sys_regs_at_hsh,
7203 aarch64_sys_regs_at[i].template,
7204 (void *) (aarch64_sys_regs_at + i));
7205
7206 for (i = 0; aarch64_sys_regs_tlbi[i].template != NULL; i++)
7207 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
7208 aarch64_sys_regs_tlbi[i].template,
7209 (void *) (aarch64_sys_regs_tlbi + i));
7210
7211 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7212 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7213 (void *) (reg_names + i));
7214
7215 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7216 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7217 (void *) (nzcv_names + i));
7218
7219 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7220 {
7221 const char *name = aarch64_operand_modifiers[i].name;
7222 checked_hash_insert (aarch64_shift_hsh, name,
7223 (void *) (aarch64_operand_modifiers + i));
7224 /* Also hash the name in the upper case. */
7225 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7226 (void *) (aarch64_operand_modifiers + i));
7227 }
7228
7229 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7230 {
7231 unsigned int j;
7232 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7233 the same condition code. */
7234 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7235 {
7236 const char *name = aarch64_conds[i].names[j];
7237 if (name == NULL)
7238 break;
7239 checked_hash_insert (aarch64_cond_hsh, name,
7240 (void *) (aarch64_conds + i));
7241 /* Also hash the name in the upper case. */
7242 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7243 (void *) (aarch64_conds + i));
7244 }
7245 }
7246
7247 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7248 {
7249 const char *name = aarch64_barrier_options[i].name;
7250 /* Skip xx00 - the unallocated values of option. */
7251 if ((i & 0x3) == 0)
7252 continue;
7253 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7254 (void *) (aarch64_barrier_options + i));
7255 /* Also hash the name in the upper case. */
7256 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7257 (void *) (aarch64_barrier_options + i));
7258 }
7259
7260 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7261 {
7262 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7263 /* Skip the unallocated hint encodings. */
7264 if (name == NULL)
a06ea964
NC
7265 continue;
7266 checked_hash_insert (aarch64_pldop_hsh, name,
7267 (void *) (aarch64_prfops + i));
7268 /* Also hash the name in the upper case. */
7269 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7270 (void *) (aarch64_prfops + i));
7271 }
7272
7273 /* Set the cpu variant based on the command-line options. */
7274 if (!mcpu_cpu_opt)
7275 mcpu_cpu_opt = march_cpu_opt;
7276
7277 if (!mcpu_cpu_opt)
7278 mcpu_cpu_opt = &cpu_default;
7279
7280 cpu_variant = *mcpu_cpu_opt;
7281
7282 /* Record the CPU type. */
cec5225b 7283 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7284
7285 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7286}
7287
7288/* Command line processing. */
7289
7290const char *md_shortopts = "m:";
7291
7292#ifdef AARCH64_BI_ENDIAN
7293#define OPTION_EB (OPTION_MD_BASE + 0)
7294#define OPTION_EL (OPTION_MD_BASE + 1)
7295#else
7296#if TARGET_BYTES_BIG_ENDIAN
7297#define OPTION_EB (OPTION_MD_BASE + 0)
7298#else
7299#define OPTION_EL (OPTION_MD_BASE + 1)
7300#endif
7301#endif
7302
7303struct option md_longopts[] = {
7304#ifdef OPTION_EB
7305 {"EB", no_argument, NULL, OPTION_EB},
7306#endif
7307#ifdef OPTION_EL
7308 {"EL", no_argument, NULL, OPTION_EL},
7309#endif
7310 {NULL, no_argument, NULL, 0}
7311};
7312
7313size_t md_longopts_size = sizeof (md_longopts);
7314
7315struct aarch64_option_table
7316{
7317 char *option; /* Option name to match. */
7318 char *help; /* Help information. */
7319 int *var; /* Variable to change. */
7320 int value; /* What to change it to. */
7321 char *deprecated; /* If non-null, print this message. */
7322};
7323
7324static struct aarch64_option_table aarch64_opts[] = {
7325 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7326 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7327 NULL},
7328#ifdef DEBUG_AARCH64
7329 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7330#endif /* DEBUG_AARCH64 */
7331 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7332 NULL},
a52e6fd3
YZ
7333 {"mno-verbose-error", N_("do not output verbose error messages"),
7334 &verbose_error_p, 0, NULL},
a06ea964
NC
7335 {NULL, NULL, NULL, 0, NULL}
7336};
7337
7338struct aarch64_cpu_option_table
7339{
7340 char *name;
7341 const aarch64_feature_set value;
7342 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7343 case. */
7344 const char *canonical_name;
7345};
7346
7347/* This list should, at a minimum, contain all the cpu names
7348 recognized by GCC. */
7349static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7350 {"all", AARCH64_ANY, NULL},
aa31c464
JW
7351 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7352 AARCH64_FEATURE_CRC), "Cortex-A53"},
7353 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7354 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
7355 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7356 AARCH64_FEATURE_CRC), "Cortex-A72"},
2412d878
EM
7357 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7358 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7359 "Samsung Exynos M1"},
faade851
JW
7360 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7361 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7362 "Cavium ThunderX"},
070cb956
PT
7363 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7364 in earlier releases and is superseded by 'xgene1' in all
7365 tools. */
9877c63c 7366 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 7367 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
7368 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7369 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
7370 {"generic", AARCH64_ARCH_V8, NULL},
7371
a06ea964
NC
7372 {NULL, AARCH64_ARCH_NONE, NULL}
7373};
7374
7375struct aarch64_arch_option_table
7376{
7377 char *name;
7378 const aarch64_feature_set value;
7379};
7380
7381/* This list should, at a minimum, contain all the architecture names
7382 recognized by GCC. */
7383static const struct aarch64_arch_option_table aarch64_archs[] = {
7384 {"all", AARCH64_ANY},
5a1ad39d 7385 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 7386 {"armv8.1-a", AARCH64_ARCH_V8_1},
a06ea964
NC
7387 {NULL, AARCH64_ARCH_NONE}
7388};
7389
7390/* ISA extensions. */
7391struct aarch64_option_cpu_value_table
7392{
7393 char *name;
7394 const aarch64_feature_set value;
7395};
7396
7397static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7398 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7399 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7400 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7401 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964 7402 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
72ca8fad 7403 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0)},
290806fd 7404 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0)},
9e1f0fa7
MW
7405 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_SIMD
7406 | AARCH64_FEATURE_RDMA, 0)},
a06ea964
NC
7407 {NULL, AARCH64_ARCH_NONE}
7408};
7409
7410struct aarch64_long_option_table
7411{
7412 char *option; /* Substring to match. */
7413 char *help; /* Help information. */
7414 int (*func) (char *subopt); /* Function to decode sub-option. */
7415 char *deprecated; /* If non-null, print this message. */
7416};
7417
7418static int
ae527cd8
JB
7419aarch64_parse_features (char *str, const aarch64_feature_set **opt_p,
7420 bfd_boolean ext_only)
a06ea964
NC
7421{
7422 /* We insist on extensions being added before being removed. We achieve
7423 this by using the ADDING_VALUE variable to indicate whether we are
7424 adding an extension (1) or removing it (0) and only allowing it to
7425 change in the order -1 -> 1 -> 0. */
7426 int adding_value = -1;
7427 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7428
7429 /* Copy the feature set, so that we can modify it. */
7430 *ext_set = **opt_p;
7431 *opt_p = ext_set;
7432
7433 while (str != NULL && *str != 0)
7434 {
7435 const struct aarch64_option_cpu_value_table *opt;
ae527cd8 7436 char *ext = NULL;
a06ea964
NC
7437 int optlen;
7438
ae527cd8 7439 if (!ext_only)
a06ea964 7440 {
ae527cd8
JB
7441 if (*str != '+')
7442 {
7443 as_bad (_("invalid architectural extension"));
7444 return 0;
7445 }
a06ea964 7446
ae527cd8
JB
7447 ext = strchr (++str, '+');
7448 }
a06ea964
NC
7449
7450 if (ext != NULL)
7451 optlen = ext - str;
7452 else
7453 optlen = strlen (str);
7454
7455 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7456 {
7457 if (adding_value != 0)
7458 adding_value = 0;
7459 optlen -= 2;
7460 str += 2;
7461 }
7462 else if (optlen > 0)
7463 {
7464 if (adding_value == -1)
7465 adding_value = 1;
7466 else if (adding_value != 1)
7467 {
7468 as_bad (_("must specify extensions to add before specifying "
7469 "those to remove"));
7470 return FALSE;
7471 }
7472 }
7473
7474 if (optlen == 0)
7475 {
7476 as_bad (_("missing architectural extension"));
7477 return 0;
7478 }
7479
7480 gas_assert (adding_value != -1);
7481
7482 for (opt = aarch64_features; opt->name != NULL; opt++)
7483 if (strncmp (opt->name, str, optlen) == 0)
7484 {
7485 /* Add or remove the extension. */
7486 if (adding_value)
7487 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7488 else
7489 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7490 break;
7491 }
7492
7493 if (opt->name == NULL)
7494 {
7495 as_bad (_("unknown architectural extension `%s'"), str);
7496 return 0;
7497 }
7498
7499 str = ext;
7500 };
7501
7502 return 1;
7503}
7504
7505static int
7506aarch64_parse_cpu (char *str)
7507{
7508 const struct aarch64_cpu_option_table *opt;
7509 char *ext = strchr (str, '+');
7510 size_t optlen;
7511
7512 if (ext != NULL)
7513 optlen = ext - str;
7514 else
7515 optlen = strlen (str);
7516
7517 if (optlen == 0)
7518 {
7519 as_bad (_("missing cpu name `%s'"), str);
7520 return 0;
7521 }
7522
7523 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7524 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7525 {
7526 mcpu_cpu_opt = &opt->value;
7527 if (ext != NULL)
ae527cd8 7528 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
7529
7530 return 1;
7531 }
7532
7533 as_bad (_("unknown cpu `%s'"), str);
7534 return 0;
7535}
7536
7537static int
7538aarch64_parse_arch (char *str)
7539{
7540 const struct aarch64_arch_option_table *opt;
7541 char *ext = strchr (str, '+');
7542 size_t optlen;
7543
7544 if (ext != NULL)
7545 optlen = ext - str;
7546 else
7547 optlen = strlen (str);
7548
7549 if (optlen == 0)
7550 {
7551 as_bad (_("missing architecture name `%s'"), str);
7552 return 0;
7553 }
7554
7555 for (opt = aarch64_archs; opt->name != NULL; opt++)
7556 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7557 {
7558 march_cpu_opt = &opt->value;
7559 if (ext != NULL)
ae527cd8 7560 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
7561
7562 return 1;
7563 }
7564
7565 as_bad (_("unknown architecture `%s'\n"), str);
7566 return 0;
7567}
7568
69091a2c
YZ
7569/* ABIs. */
7570struct aarch64_option_abi_value_table
7571{
7572 char *name;
7573 enum aarch64_abi_type value;
7574};
7575
7576static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7577 {"ilp32", AARCH64_ABI_ILP32},
7578 {"lp64", AARCH64_ABI_LP64},
7579 {NULL, 0}
7580};
7581
7582static int
7583aarch64_parse_abi (char *str)
7584{
7585 const struct aarch64_option_abi_value_table *opt;
7586 size_t optlen = strlen (str);
7587
7588 if (optlen == 0)
7589 {
7590 as_bad (_("missing abi name `%s'"), str);
7591 return 0;
7592 }
7593
7594 for (opt = aarch64_abis; opt->name != NULL; opt++)
7595 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7596 {
7597 aarch64_abi = opt->value;
7598 return 1;
7599 }
7600
7601 as_bad (_("unknown abi `%s'\n"), str);
7602 return 0;
7603}
7604
a06ea964 7605static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
7606#ifdef OBJ_ELF
7607 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
7608 aarch64_parse_abi, NULL},
7609#endif /* OBJ_ELF */
a06ea964
NC
7610 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
7611 aarch64_parse_cpu, NULL},
7612 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
7613 aarch64_parse_arch, NULL},
7614 {NULL, NULL, 0, NULL}
7615};
7616
7617int
7618md_parse_option (int c, char *arg)
7619{
7620 struct aarch64_option_table *opt;
7621 struct aarch64_long_option_table *lopt;
7622
7623 switch (c)
7624 {
7625#ifdef OPTION_EB
7626 case OPTION_EB:
7627 target_big_endian = 1;
7628 break;
7629#endif
7630
7631#ifdef OPTION_EL
7632 case OPTION_EL:
7633 target_big_endian = 0;
7634 break;
7635#endif
7636
7637 case 'a':
7638 /* Listing option. Just ignore these, we don't support additional
7639 ones. */
7640 return 0;
7641
7642 default:
7643 for (opt = aarch64_opts; opt->option != NULL; opt++)
7644 {
7645 if (c == opt->option[0]
7646 && ((arg == NULL && opt->option[1] == 0)
7647 || streq (arg, opt->option + 1)))
7648 {
7649 /* If the option is deprecated, tell the user. */
7650 if (opt->deprecated != NULL)
7651 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
7652 arg ? arg : "", _(opt->deprecated));
7653
7654 if (opt->var != NULL)
7655 *opt->var = opt->value;
7656
7657 return 1;
7658 }
7659 }
7660
7661 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7662 {
7663 /* These options are expected to have an argument. */
7664 if (c == lopt->option[0]
7665 && arg != NULL
7666 && strncmp (arg, lopt->option + 1,
7667 strlen (lopt->option + 1)) == 0)
7668 {
7669 /* If the option is deprecated, tell the user. */
7670 if (lopt->deprecated != NULL)
7671 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
7672 _(lopt->deprecated));
7673
7674 /* Call the sup-option parser. */
7675 return lopt->func (arg + strlen (lopt->option) - 1);
7676 }
7677 }
7678
7679 return 0;
7680 }
7681
7682 return 1;
7683}
7684
7685void
7686md_show_usage (FILE * fp)
7687{
7688 struct aarch64_option_table *opt;
7689 struct aarch64_long_option_table *lopt;
7690
7691 fprintf (fp, _(" AArch64-specific assembler options:\n"));
7692
7693 for (opt = aarch64_opts; opt->option != NULL; opt++)
7694 if (opt->help != NULL)
7695 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
7696
7697 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7698 if (lopt->help != NULL)
7699 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
7700
7701#ifdef OPTION_EB
7702 fprintf (fp, _("\
7703 -EB assemble code for a big-endian cpu\n"));
7704#endif
7705
7706#ifdef OPTION_EL
7707 fprintf (fp, _("\
7708 -EL assemble code for a little-endian cpu\n"));
7709#endif
7710}
7711
7712/* Parse a .cpu directive. */
7713
7714static void
7715s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
7716{
7717 const struct aarch64_cpu_option_table *opt;
7718 char saved_char;
7719 char *name;
7720 char *ext;
7721 size_t optlen;
7722
7723 name = input_line_pointer;
7724 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7725 input_line_pointer++;
7726 saved_char = *input_line_pointer;
7727 *input_line_pointer = 0;
7728
7729 ext = strchr (name, '+');
7730
7731 if (ext != NULL)
7732 optlen = ext - name;
7733 else
7734 optlen = strlen (name);
7735
7736 /* Skip the first "all" entry. */
7737 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
7738 if (strlen (opt->name) == optlen
7739 && strncmp (name, opt->name, optlen) == 0)
7740 {
7741 mcpu_cpu_opt = &opt->value;
7742 if (ext != NULL)
ae527cd8 7743 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7744 return;
7745
7746 cpu_variant = *mcpu_cpu_opt;
7747
7748 *input_line_pointer = saved_char;
7749 demand_empty_rest_of_line ();
7750 return;
7751 }
7752 as_bad (_("unknown cpu `%s'"), name);
7753 *input_line_pointer = saved_char;
7754 ignore_rest_of_line ();
7755}
7756
7757
7758/* Parse a .arch directive. */
7759
7760static void
7761s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
7762{
7763 const struct aarch64_arch_option_table *opt;
7764 char saved_char;
7765 char *name;
7766 char *ext;
7767 size_t optlen;
7768
7769 name = input_line_pointer;
7770 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7771 input_line_pointer++;
7772 saved_char = *input_line_pointer;
7773 *input_line_pointer = 0;
7774
7775 ext = strchr (name, '+');
7776
7777 if (ext != NULL)
7778 optlen = ext - name;
7779 else
7780 optlen = strlen (name);
7781
7782 /* Skip the first "all" entry. */
7783 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
7784 if (strlen (opt->name) == optlen
7785 && strncmp (name, opt->name, optlen) == 0)
7786 {
7787 mcpu_cpu_opt = &opt->value;
7788 if (ext != NULL)
ae527cd8 7789 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7790 return;
7791
7792 cpu_variant = *mcpu_cpu_opt;
7793
7794 *input_line_pointer = saved_char;
7795 demand_empty_rest_of_line ();
7796 return;
7797 }
7798
7799 as_bad (_("unknown architecture `%s'\n"), name);
7800 *input_line_pointer = saved_char;
7801 ignore_rest_of_line ();
7802}
7803
ae527cd8
JB
7804/* Parse a .arch_extension directive. */
7805
7806static void
7807s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
7808{
7809 char saved_char;
7810 char *ext = input_line_pointer;;
7811
7812 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7813 input_line_pointer++;
7814 saved_char = *input_line_pointer;
7815 *input_line_pointer = 0;
7816
7817 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
7818 return;
7819
7820 cpu_variant = *mcpu_cpu_opt;
7821
7822 *input_line_pointer = saved_char;
7823 demand_empty_rest_of_line ();
7824}
7825
a06ea964
NC
7826/* Copy symbol information. */
7827
7828void
7829aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
7830{
7831 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
7832}