]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
x86: Drop SwapSources
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
fd67aa11 2 Copyright (C) 1989-2024 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
c7defc53 33#include "scfi.h"
b52c4ee4
IB
34#include "gen-sframe.h"
35#include "sframe.h"
d2b2c203 36#include "elf/x86-64.h"
40fb9820 37#include "opcodes/i386-init.h"
5c139202 38#include "opcodes/i386-mnem.h"
41fd2579 39#include <limits.h>
41fd2579 40
c3332e24 41#ifndef INFER_ADDR_PREFIX
eecb386c 42#define INFER_ADDR_PREFIX 1
c3332e24
AM
43#endif
44
29b0f896
AM
45#ifndef DEFAULT_ARCH
46#define DEFAULT_ARCH "i386"
246fcdee 47#endif
252b5132 48
edde18a5
AM
49#ifndef INLINE
50#if __GNUC__ >= 2
51#define INLINE __inline__
52#else
53#define INLINE
54#endif
55#endif
56
6305a203
L
57/* Prefixes will be emitted in the order defined below.
58 WAIT_PREFIX must be the first prefix since FWAIT is really is an
59 instruction, and so must come before any prefixes.
60 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 61 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
62#define WAIT_PREFIX 0
63#define SEG_PREFIX 1
64#define ADDR_PREFIX 2
65#define DATA_PREFIX 3
c32fa91d 66#define REP_PREFIX 4
42164a71 67#define HLE_PREFIX REP_PREFIX
7e8b059b 68#define BND_PREFIX REP_PREFIX
c32fa91d 69#define LOCK_PREFIX 5
4e9ac44a
L
70#define REX_PREFIX 6 /* must come last. */
71#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
72
73/* we define the syntax here (modulo base,index,scale syntax) */
74#define REGISTER_PREFIX '%'
75#define IMMEDIATE_PREFIX '$'
76#define ABSOLUTE_PREFIX '*'
77
78/* these are the instruction mnemonic suffixes in AT&T syntax or
79 memory operand size in Intel syntax. */
80#define WORD_MNEM_SUFFIX 'w'
81#define BYTE_MNEM_SUFFIX 'b'
82#define SHORT_MNEM_SUFFIX 's'
83#define LONG_MNEM_SUFFIX 'l'
84#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
85
86#define END_OF_INSN '\0'
87
05909f23
JB
88#define OPERAND_TYPE_NONE { .bitfield = { .class = ClassNone } }
89
79dec6b7
JB
90/* This matches the C -> StaticRounding alias in the opcode table. */
91#define commutative staticrounding
92
6305a203
L
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
6ceeed25
JB
132 unsigned int len:8; /* arch string length */
133 bool skip:1; /* show_arch should skip this. */
6305a203 134 enum processor_type type; /* arch type */
4fc85f37 135 enum { vsz_none, vsz_set, vsz_reset } vsz; /* vector size control */
ae89daec
JB
136 i386_cpu_flags enable; /* cpu feature enable flags */
137 i386_cpu_flags disable; /* cpu feature disable flags */
6305a203
L
138}
139arch_entry;
140
78f12dd3 141static void update_code_flag (int, int);
edd67638 142static void s_insn (int);
1e7dd4a0 143static void s_noopt (int);
e3bb37b5
L
144static void set_code_flag (int);
145static void set_16bit_gcc_code_flag (int);
146static void set_intel_syntax (int);
1efbbeb4 147static void set_intel_mnemonic (int);
db51cc60 148static void set_allow_index_reg (int);
7bab8ab5 149static void set_check (int);
e3bb37b5 150static void set_cpu_arch (int);
6482c264 151#ifdef TE_PE
e3bb37b5 152static void pe_directive_secrel (int);
145667f8 153static void pe_directive_secidx (int);
6482c264 154#endif
e3bb37b5
L
155static void signed_cons (int);
156static char *output_invalid (int c);
ee86248c
JB
157static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
158 const char *);
159static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
160 const char *);
a7619375 161static int i386_att_operand (char *);
e3bb37b5 162static int i386_intel_operand (char *, int);
ee86248c
JB
163static int i386_intel_simplify (expressionS *);
164static int i386_intel_parse_name (const char *, expressionS *);
4f081312 165static const reg_entry *parse_register (const char *, char **);
edd67638 166static const char *parse_insn (const char *, char *, bool);
e3bb37b5
L
167static char *parse_operands (char *, const char *);
168static void swap_operands (void);
783c187b 169static void swap_2_operands (unsigned int, unsigned int);
ed719294 170static enum i386_flag_code i386_addressing_mode (void);
e3bb37b5 171static void optimize_imm (void);
0de704b9 172static bool optimize_disp (const insn_template *t);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
5e042380 182static const reg_entry *build_modrm_byte (void);
b5482fe5 183static void output_insn (const struct last_insn *);
e3bb37b5
L
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
d4064aad 186#ifdef OBJ_AOUT
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
191
192/* GNU_PROPERTY_X86_ISA_1_USED. */
193static unsigned int x86_isa_1_used;
194/* GNU_PROPERTY_X86_FEATURE_2_USED. */
195static unsigned int x86_feature_2_used;
196/* Generate x86 used ISA and feature properties. */
197static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 198#endif
252b5132 199
a847613f 200static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 201
8a6fb3f9
JB
202/* parse_register() returns this when a register alias cannot be used. */
203static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
204 { Dw2Inval, Dw2Inval } };
205
34684862 206static const reg_entry *reg_eax;
5e042380
JB
207static const reg_entry *reg_ds;
208static const reg_entry *reg_es;
209static const reg_entry *reg_ss;
6288d05f 210static const reg_entry *reg_st0;
6225c532
JB
211static const reg_entry *reg_k0;
212
c0f3af97
L
213/* VEX prefix. */
214typedef struct
215{
43234a1e
L
216 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
217 unsigned char bytes[4];
c0f3af97
L
218 unsigned int length;
219 /* Destination or source register specifier. */
220 const reg_entry *register_specifier;
221} vex_prefix;
222
252b5132 223/* 'md_assemble ()' gathers together information and puts it into a
47926f60 224 i386_insn. */
252b5132 225
520dc8e8
AM
226union i386_op
227 {
228 expressionS *disps;
229 expressionS *imms;
230 const reg_entry *regs;
231 };
232
a65babc9
L
233enum i386_error
234 {
b4d65f2d 235 no_error, /* Must be first. */
86e026a4 236 operand_size_mismatch,
a65babc9
L
237 operand_type_mismatch,
238 register_type_mismatch,
239 number_of_operands_mismatch,
240 invalid_instruction_suffix,
241 bad_imm4,
a65babc9
L
242 unsupported_with_intel_mnemonic,
243 unsupported_syntax,
80d61d8d 244 unsupported_EGPR_for_addressing,
dd74a603 245 unsupported_nf,
6c30d220 246 unsupported,
9db83a32
JB
247 unsupported_on_arch,
248 unsupported_64bit,
54294d73
JB
249 no_vex_encoding,
250 no_evex_encoding,
260cd341 251 invalid_sib_address,
6c30d220 252 invalid_vsib_address,
7bab8ab5 253 invalid_vector_register_set,
260cd341 254 invalid_tmm_register_set,
0cc78721 255 invalid_dest_and_src_register_set,
08a98d4c 256 invalid_dest_register_set,
80d61d8d 257 invalid_pseudo_prefix,
43234a1e
L
258 unsupported_vector_index_register,
259 unsupported_broadcast,
43234a1e
L
260 broadcast_needed,
261 unsupported_masking,
262 mask_not_on_destination,
263 no_default_mask,
264 unsupported_rc_sae,
54294d73 265 unsupported_vector_size,
08a98d4c 266 unsupported_rsp_register,
58bceb18 267 internal_error,
a65babc9
L
268 };
269
252b5132
RH
270struct _i386_insn
271 {
47926f60 272 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 273 insn_template tm;
252b5132 274
7d5e4556
L
275 /* SUFFIX holds the instruction size suffix for byte, word, dword
276 or qword, if given. */
252b5132
RH
277 char suffix;
278
9a182d04
JB
279 /* OPCODE_LENGTH holds the number of base opcode bytes. */
280 unsigned char opcode_length;
281
47926f60 282 /* OPERANDS gives the number of given operands. */
252b5132
RH
283 unsigned int operands;
284
285 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
286 of given register, displacement, memory operands and immediate
47926f60 287 operands. */
252b5132
RH
288 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
289
290 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 291 use OP[i] for the corresponding operand. */
40fb9820 292 i386_operand_type types[MAX_OPERANDS];
252b5132 293
520dc8e8
AM
294 /* Displacement expression, immediate expression, or register for each
295 operand. */
296 union i386_op op[MAX_OPERANDS];
252b5132 297
3e73aa7c
JH
298 /* Flags for operands. */
299 unsigned int flags[MAX_OPERANDS];
300#define Operand_PCrel 1
c48dadc9 301#define Operand_Mem 2
c032bc4f 302#define Operand_Signed 4 /* .insn only */
3e73aa7c 303
252b5132 304 /* Relocation type for operand */
f86103b7 305 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 306
252b5132
RH
307 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
308 the base index byte below. */
309 const reg_entry *base_reg;
310 const reg_entry *index_reg;
311 unsigned int log2_scale_factor;
312
313 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 314 explicit segment overrides are given. */
5e042380 315 const reg_entry *seg[2];
252b5132
RH
316
317 /* PREFIX holds all the given prefix opcodes (usually null).
318 PREFIXES is the number of prefix opcodes. */
319 unsigned int prefixes;
320 unsigned char prefix[MAX_PREFIXES];
321
d0c2e3ec
JB
322 /* .insn allows for reserved opcode spaces. */
323 unsigned char insn_opcode_space;
324
c032bc4f
JB
325 /* .insn also allows (requires) specifying immediate size. */
326 unsigned char imm_bits[MAX_OPERANDS];
327
50128d0c 328 /* Register is in low 3 bits of opcode. */
5b7c81bd 329 bool short_form;
50128d0c 330
6f2f06be 331 /* The operand to a branch insn indicates an absolute branch. */
5b7c81bd 332 bool jumpabsolute;
6f2f06be 333
a4d3acd2
JB
334 /* The operand to a branch insn indicates a far branch. */
335 bool far_branch;
336
9373f275
L
337 /* There is a memory operand of (%dx) which should be only used
338 with input/output instructions. */
339 bool input_output_operand;
340
921eafea
L
341 /* Extended states. */
342 enum
343 {
344 /* Use MMX state. */
345 xstate_mmx = 1 << 0,
346 /* Use XMM state. */
347 xstate_xmm = 1 << 1,
348 /* Use YMM state. */
349 xstate_ymm = 1 << 2 | xstate_xmm,
350 /* Use ZMM state. */
351 xstate_zmm = 1 << 3 | xstate_ymm,
352 /* Use TMM state. */
32930e4e
L
353 xstate_tmm = 1 << 4,
354 /* Use MASK state. */
355 xstate_mask = 1 << 5
921eafea 356 } xstate;
260cd341 357
e379e5f3 358 /* Has GOTPC or TLS relocation. */
5b7c81bd 359 bool has_gotpc_tls_reloc;
e379e5f3 360
252b5132 361 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 362 addressing modes of this insn are encoded. */
252b5132 363 modrm_byte rm;
3e73aa7c 364 rex_byte rex;
43234a1e 365 rex_byte vrex;
80d61d8d 366 rex_byte rex2;
252b5132 367 sib_byte sib;
c0f3af97 368 vex_prefix vex;
b6169b20 369
6225c532
JB
370 /* Masking attributes.
371
372 The struct describes masking, applied to OPERAND in the instruction.
373 REG is a pointer to the corresponding mask register. ZEROING tells
374 whether merging or zeroing mask is used. */
375 struct Mask_Operation
376 {
377 const reg_entry *reg;
378 unsigned int zeroing;
379 /* The operand where this operation is associated. */
380 unsigned int operand;
381 } mask;
43234a1e
L
382
383 /* Rounding control and SAE attributes. */
ca5312a2
JB
384 struct RC_Operation
385 {
386 enum rc_type
387 {
388 rc_none = -1,
389 rne,
390 rd,
391 ru,
392 rz,
393 saeonly
394 } type;
7063667e
JB
395 /* In Intel syntax the operand modifier form is supposed to be used, but
396 we continue to accept the immediate forms as well. */
397 bool modifier;
ca5312a2 398 } rounding;
43234a1e 399
5273a3cd
JB
400 /* Broadcasting attributes.
401
402 The struct describes broadcasting, applied to OPERAND. TYPE is
403 expresses the broadcast factor. */
404 struct Broadcast_Operation
405 {
0cc78721 406 /* Type of broadcast: {1to2}, {1to4}, {1to8}, {1to16} or {1to32}. */
5273a3cd
JB
407 unsigned int type;
408
409 /* Index of broadcasted operand. */
410 unsigned int operand;
411
412 /* Number of bytes to broadcast. */
413 unsigned int bytes;
414 } broadcast;
43234a1e
L
415
416 /* Compressed disp8*N attribute. */
417 unsigned int memshift;
418
86fa6981
L
419 /* Prefer load or store in encoding. */
420 enum
421 {
422 dir_encoding_default = 0,
423 dir_encoding_load,
64c49ab3
JB
424 dir_encoding_store,
425 dir_encoding_swap
86fa6981 426 } dir_encoding;
891edac4 427
41eb8e88 428 /* Prefer 8bit, 16bit, 32bit displacement in encoding. */
a501d77e
L
429 enum
430 {
431 disp_encoding_default = 0,
432 disp_encoding_8bit,
41eb8e88 433 disp_encoding_16bit,
a501d77e
L
434 disp_encoding_32bit
435 } disp_encoding;
f8a5c266 436
6b6b6807 437 /* Prefer the REX byte in encoding. */
5b7c81bd 438 bool rex_encoding;
6b6b6807 439
80d61d8d
CL
440 /* Prefer the REX2 prefix in encoding. */
441 bool rex2_encoding;
442
dd74a603
CL
443 /* No CSPAZO flags update. */
444 bool has_nf;
445
b6f8c7c4 446 /* Disable instruction size optimization. */
5b7c81bd 447 bool no_optimize;
b6f8c7c4 448
e346d50a 449 /* How to encode instructions. */
86fa6981
L
450 enum
451 {
e346d50a
JB
452 encoding_default = 0,
453 encoding_vex,
454 encoding_vex3,
eb3f3841 455 encoding_egpr, /* REX2 or EVEX. */
e346d50a
JB
456 encoding_evex,
457 encoding_evex512,
458 encoding_error
459 } encoding;
86fa6981 460
d5de92cf
L
461 /* REP prefix. */
462 const char *rep_prefix;
463
165de32a
L
464 /* HLE prefix. */
465 const char *hle_prefix;
42164a71 466
7e8b059b
L
467 /* Have BND prefix. */
468 const char *bnd_prefix;
469
04ef582a
L
470 /* Have NOTRACK prefix. */
471 const char *notrack_prefix;
472
891edac4 473 /* Error message. */
a65babc9 474 enum i386_error error;
252b5132
RH
475 };
476
477typedef struct _i386_insn i386_insn;
478
43234a1e
L
479/* Link RC type with corresponding string, that'll be looked for in
480 asm. */
481struct RC_name
482{
483 enum rc_type type;
484 const char *name;
485 unsigned int len;
486};
487
488static const struct RC_name RC_NamesTable[] =
489{
490 { rne, STRING_COMMA_LEN ("rn-sae") },
491 { rd, STRING_COMMA_LEN ("rd-sae") },
492 { ru, STRING_COMMA_LEN ("ru-sae") },
493 { rz, STRING_COMMA_LEN ("rz-sae") },
494 { saeonly, STRING_COMMA_LEN ("sae") },
495};
496
3bfea8ba
L
497/* To be indexed by segment register number. */
498static const unsigned char i386_seg_prefixes[] = {
499 ES_PREFIX_OPCODE,
500 CS_PREFIX_OPCODE,
501 SS_PREFIX_OPCODE,
502 DS_PREFIX_OPCODE,
503 FS_PREFIX_OPCODE,
504 GS_PREFIX_OPCODE
505};
506
252b5132
RH
507/* List of chars besides those in app.c:symbol_chars that can start an
508 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 509const char extra_symbol_chars[] = "*%-([{}"
252b5132 510#ifdef LEX_AT
32137342
NC
511 "@"
512#endif
513#ifdef LEX_QM
514 "?"
252b5132 515#endif
32137342 516 ;
252b5132 517
b3983e5f
JB
518#if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
519 && !defined (TE_GNU) \
520 && !defined (TE_LINUX) \
d85e70a3 521 && !defined (TE_Haiku) \
b3983e5f
JB
522 && !defined (TE_FreeBSD) \
523 && !defined (TE_DragonFly) \
524 && !defined (TE_NetBSD))
252b5132 525/* This array holds the chars that always start a comment. If the
b3b91714
AM
526 pre-processor is disabled, these aren't very useful. The option
527 --divide will remove '/' from this list. */
528const char *i386_comment_chars = "#/";
529#define SVR4_COMMENT_CHARS 1
252b5132 530#define PREFIX_SEPARATOR '\\'
252b5132 531
b3b91714
AM
532#else
533const char *i386_comment_chars = "#";
534#define PREFIX_SEPARATOR '/'
535#endif
536
252b5132
RH
537/* This array holds the chars that only start a comment at the beginning of
538 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
539 .line and .file directives will appear in the pre-processed output.
540 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 541 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
542 #NO_APP at the beginning of its output.
543 Also note that comments started like this one will always work if
252b5132 544 '/' isn't otherwise defined. */
b3b91714 545const char line_comment_chars[] = "#/";
252b5132 546
63a0b638 547const char line_separator_chars[] = ";";
252b5132 548
ce8a8b2f
AM
549/* Chars that can be used to separate mant from exp in floating point
550 nums. */
252b5132
RH
551const char EXP_CHARS[] = "eE";
552
ce8a8b2f
AM
553/* Chars that mean this number is a floating point constant
554 As in 0f12.456
555 or 0d1.2345e12. */
de133cf9 556const char FLT_CHARS[] = "fFdDxXhHbB";
252b5132 557
ce8a8b2f 558/* Tables for lexical analysis. */
252b5132
RH
559static char mnemonic_chars[256];
560static char register_chars[256];
561static char operand_chars[256];
252b5132 562
ce8a8b2f 563/* Lexical macros. */
252b5132
RH
564#define is_operand_char(x) (operand_chars[(unsigned char) x])
565#define is_register_char(x) (register_chars[(unsigned char) x])
566#define is_space_char(x) ((x) == ' ')
252b5132 567
d2b1a14d
JB
568/* All non-digit non-letter characters that may occur in an operand and
569 which aren't already in extra_symbol_chars[]. */
570static const char operand_special_chars[] = "$+,)._~/<>|&^!=:@]";
252b5132
RH
571
572/* md_assemble() always leaves the strings it's passed unaltered. To
573 effect this we maintain a stack of saved characters that we've smashed
574 with '\0's (indicating end of strings for various sub-fields of the
47926f60 575 assembler instruction). */
252b5132 576static char save_stack[32];
ce8a8b2f 577static char *save_stack_p;
252b5132
RH
578#define END_STRING_AND_SAVE(s) \
579 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
580#define RESTORE_END_STRING(s) \
581 do { *(s) = *--save_stack_p; } while (0)
582
47926f60 583/* The instruction we're assembling. */
252b5132
RH
584static i386_insn i;
585
586/* Possible templates for current insn. */
d3b01414 587static templates current_templates;
252b5132 588
31b2323c
L
589/* Per instruction expressionS buffers: max displacements & immediates. */
590static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
591static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 592
47926f60 593/* Current operand we are working on. */
ee86248c 594static int this_operand = -1;
252b5132 595
d0c2e3ec
JB
596/* Are we processing a .insn directive? */
597#define dot_insn() (i.tm.mnem_off == MN__insn)
598
ed719294
JB
599enum i386_flag_code i386_flag_code;
600#define flag_code i386_flag_code /* Permit to continue using original name. */
4fa24527 601static unsigned int object_64bit;
862be3fb 602static unsigned int disallow_64bit_reloc;
3e73aa7c 603static int use_rela_relocations = 0;
e379e5f3
L
604/* __tls_get_addr/___tls_get_addr symbol for TLS. */
605static const char *tls_get_addr;
3e73aa7c 606
071c5d81 607#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7af8ed2d 608
351f65ca
L
609/* The ELF ABI to use. */
610enum x86_elf_abi
611{
612 I386_ABI,
7f56bc95
L
613 X86_64_ABI,
614 X86_64_X32_ABI
351f65ca
L
615};
616
617static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 618#endif
351f65ca 619
167ad85b
TG
620#if defined (TE_PE) || defined (TE_PEP)
621/* Use big object file format. */
622static int use_big_obj = 0;
623#endif
624
8dcea932
L
625#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
626/* 1 if generating code for a shared library. */
627static int shared = 0;
b52c4ee4
IB
628
629unsigned int x86_sframe_cfa_sp_reg;
3e3e792a 630/* The other CFA base register for SFrame stack trace info. */
b52c4ee4
IB
631unsigned int x86_sframe_cfa_fp_reg;
632unsigned int x86_sframe_cfa_ra_reg;
633
8dcea932
L
634#endif
635
47926f60
KH
636/* 1 for intel syntax,
637 0 if att syntax. */
638static int intel_syntax = 0;
252b5132 639
4b5aaf5f
L
640static enum x86_64_isa
641{
642 amd64 = 1, /* AMD64 ISA. */
643 intel64 /* Intel64 ISA. */
644} isa64;
e89c5eaa 645
1efbbeb4
L
646/* 1 for intel mnemonic,
647 0 if att mnemonic. */
648static int intel_mnemonic = !SYSV386_COMPAT;
649
a60de03c
JB
650/* 1 if pseudo registers are permitted. */
651static int allow_pseudo_reg = 0;
652
47926f60
KH
653/* 1 if register prefix % not required. */
654static int allow_naked_reg = 0;
252b5132 655
33eaf5de 656/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
657 instructions supporting it, even if this prefix wasn't specified
658 explicitly. */
659static int add_bnd_prefix = 0;
660
ba104c83 661/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
662static int allow_index_reg = 0;
663
d022bddd
IT
664/* 1 if the assembler should ignore LOCK prefix, even if it was
665 specified explicitly. */
666static int omit_lock_prefix = 0;
667
e4e00185
AS
668/* 1 if the assembler should encode lfence, mfence, and sfence as
669 "lock addl $0, (%{re}sp)". */
670static int avoid_fence = 0;
671
ae531041
L
672/* 1 if lfence should be inserted after every load. */
673static int lfence_after_load = 0;
674
675/* Non-zero if lfence should be inserted before indirect branch. */
676static enum lfence_before_indirect_branch_kind
677 {
678 lfence_branch_none = 0,
679 lfence_branch_register,
680 lfence_branch_memory,
681 lfence_branch_all
682 }
683lfence_before_indirect_branch;
684
685/* Non-zero if lfence should be inserted before ret. */
686static enum lfence_before_ret_kind
687 {
688 lfence_before_ret_none = 0,
689 lfence_before_ret_not,
a09f656b 690 lfence_before_ret_or,
691 lfence_before_ret_shl
ae531041
L
692 }
693lfence_before_ret;
694
0cb4071e
L
695/* 1 if the assembler should generate relax relocations. */
696
697static int generate_relax_relocations
698 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
699
7bab8ab5 700static enum check_kind
daf50ae7 701 {
7bab8ab5
JB
702 check_none = 0,
703 check_warning,
704 check_error
daf50ae7 705 }
7bab8ab5 706sse_check, operand_check = check_warning;
daf50ae7 707
e379e5f3
L
708/* Non-zero if branches should be aligned within power of 2 boundary. */
709static int align_branch_power = 0;
710
711/* Types of branches to align. */
712enum align_branch_kind
713 {
714 align_branch_none = 0,
715 align_branch_jcc = 1,
716 align_branch_fused = 2,
717 align_branch_jmp = 3,
718 align_branch_call = 4,
719 align_branch_indirect = 5,
720 align_branch_ret = 6
721 };
722
723/* Type bits of branches to align. */
724enum align_branch_bit
725 {
726 align_branch_jcc_bit = 1 << align_branch_jcc,
727 align_branch_fused_bit = 1 << align_branch_fused,
728 align_branch_jmp_bit = 1 << align_branch_jmp,
729 align_branch_call_bit = 1 << align_branch_call,
730 align_branch_indirect_bit = 1 << align_branch_indirect,
731 align_branch_ret_bit = 1 << align_branch_ret
732 };
733
734static unsigned int align_branch = (align_branch_jcc_bit
735 | align_branch_fused_bit
736 | align_branch_jmp_bit);
737
79d72f45
HL
738/* Types of condition jump used by macro-fusion. */
739enum mf_jcc_kind
740 {
741 mf_jcc_jo = 0, /* base opcode 0x70 */
742 mf_jcc_jc, /* base opcode 0x72 */
743 mf_jcc_je, /* base opcode 0x74 */
744 mf_jcc_jna, /* base opcode 0x76 */
745 mf_jcc_js, /* base opcode 0x78 */
746 mf_jcc_jp, /* base opcode 0x7a */
747 mf_jcc_jl, /* base opcode 0x7c */
748 mf_jcc_jle, /* base opcode 0x7e */
749 };
750
751/* Types of compare flag-modifying insntructions used by macro-fusion. */
752enum mf_cmp_kind
753 {
754 mf_cmp_test_and, /* test/cmp */
755 mf_cmp_alu_cmp, /* add/sub/cmp */
756 mf_cmp_incdec /* inc/dec */
757 };
758
e379e5f3
L
759/* The maximum padding size for fused jcc. CMP like instruction can
760 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
761 prefixes. */
762#define MAX_FUSED_JCC_PADDING_SIZE 20
763
764/* The maximum number of prefixes added for an instruction. */
765static unsigned int align_branch_prefix_size = 5;
766
b6f8c7c4
L
767/* Optimization:
768 1. Clear the REX_W bit with register operand if possible.
769 2. Above plus use 128bit vector instruction to clear the full vector
770 register.
771 */
772static int optimize = 0;
773
774/* Optimization:
775 1. Clear the REX_W bit with register operand if possible.
776 2. Above plus use 128bit vector instruction to clear the full vector
777 register.
778 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
779 "testb $imm7,%r8".
780 */
781static int optimize_for_space = 0;
782
2ca3ace5
L
783/* Register prefix used for error message. */
784static const char *register_prefix = "%";
785
47926f60
KH
786/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
787 leave, push, and pop instructions so that gcc has the same stack
788 frame as in 32 bit mode. */
789static char stackop_size = '\0';
eecb386c 790
12b55ccc
L
791/* Non-zero to optimize code alignment. */
792int optimize_align_code = 1;
793
47926f60
KH
794/* Non-zero to quieten some warnings. */
795static int quiet_warnings = 0;
a38cf1db 796
d59a54c2
JB
797/* Guard to avoid repeated warnings about non-16-bit code on 16-bit CPUs. */
798static bool pre_386_16bit_warned;
799
47926f60
KH
800/* CPU name. */
801static const char *cpu_arch_name = NULL;
6305a203 802static char *cpu_sub_arch_name = NULL;
a38cf1db 803
47926f60 804/* CPU feature flags. */
cd75cd85 805i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
40fb9820 806
3e624fa4
JB
807/* ISA extensions available in 64-bit mode only. */
808static const i386_cpu_flags cpu_64_flags = CPU_ANY_64_FLAGS;
809
ccc9c027
L
810/* If we have selected a cpu we are generating instructions for. */
811static int cpu_arch_tune_set = 0;
812
9103f4f4 813/* Cpu we are generating instructions for. */
fbf3f584 814enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4 815
ccc9c027 816/* CPU instruction set architecture used. */
fbf3f584 817enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 818
9103f4f4 819/* CPU feature flags of instruction set architecture used. */
fbf3f584 820i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 821
fddf5b5b
AM
822/* If set, conditional jumps are not automatically promoted to handle
823 larger than a byte offset. */
f68697e8 824static bool no_cond_jump_promotion = false;
fddf5b5b 825
5cc00775
JB
826/* This will be set from an expression parser hook if there's any
827 applicable operator involved in an expression. */
828static enum {
829 expr_operator_none,
830 expr_operator_present,
831 expr_large_value,
832} expr_mode;
833
c0f3af97
L
834/* Encode SSE instructions with VEX prefix. */
835static unsigned int sse2avx;
836
c8480b58
L
837/* Encode aligned vector move as unaligned vector move. */
838static unsigned int use_unaligned_vector_move;
839
4fc85f37 840/* Maximum permitted vector size. */
fa88a361
HJ
841#define VSZ128 0
842#define VSZ256 1
843#define VSZ512 2
4fc85f37
JB
844#define VSZ_DEFAULT VSZ512
845static unsigned int vector_size = VSZ_DEFAULT;
846
539f890d
L
847/* Encode scalar AVX instructions with specific vector length. */
848static enum
849 {
850 vex128 = 0,
851 vex256
852 } avxscalar;
853
03751133
L
854/* Encode VEX WIG instructions with specific vex.w. */
855static enum
856 {
857 vexw0 = 0,
858 vexw1
859 } vexwig;
860
43234a1e
L
861/* Encode scalar EVEX LIG instructions with specific vector length. */
862static enum
863 {
864 evexl128 = 0,
865 evexl256,
866 evexl512
867 } evexlig;
868
869/* Encode EVEX WIG instructions with specific evex.w. */
870static enum
871 {
872 evexw0 = 0,
873 evexw1
874 } evexwig;
875
d3d3c6db
IT
876/* Value to encode in EVEX RC bits, for SAE-only instructions. */
877static enum rc_type evexrcig = rne;
878
29b0f896 879/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 880static symbolS *GOT_symbol;
29b0f896 881
a4447b93
RH
882/* The dwarf2 return column, adjusted for 32 or 64 bit. */
883unsigned int x86_dwarf2_return_column;
884
885/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
886int x86_cie_data_alignment;
887
252b5132 888/* Interface to relax_segment.
fddf5b5b
AM
889 There are 3 major relax states for 386 jump insns because the
890 different types of jumps add different sizes to frags when we're
e379e5f3
L
891 figuring out what sort of jump to choose to reach a given label.
892
893 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
894 branches which are handled by md_estimate_size_before_relax() and
895 i386_generic_table_relax_frag(). */
252b5132 896
47926f60 897/* Types. */
93c2a809
AM
898#define UNCOND_JUMP 0
899#define COND_JUMP 1
900#define COND_JUMP86 2
e379e5f3
L
901#define BRANCH_PADDING 3
902#define BRANCH_PREFIX 4
903#define FUSED_JCC_PADDING 5
fddf5b5b 904
47926f60 905/* Sizes. */
252b5132
RH
906#define CODE16 1
907#define SMALL 0
29b0f896 908#define SMALL16 (SMALL | CODE16)
252b5132 909#define BIG 2
29b0f896 910#define BIG16 (BIG | CODE16)
252b5132
RH
911
912#ifndef INLINE
913#ifdef __GNUC__
914#define INLINE __inline__
915#else
916#define INLINE
917#endif
918#endif
919
fddf5b5b
AM
920#define ENCODE_RELAX_STATE(type, size) \
921 ((relax_substateT) (((type) << 2) | (size)))
922#define TYPE_FROM_RELAX_STATE(s) \
923 ((s) >> 2)
924#define DISP_SIZE_FROM_RELAX_STATE(s) \
925 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
926
927/* This table is used by relax_frag to promote short jumps to long
928 ones where necessary. SMALL (short) jumps may be promoted to BIG
929 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
930 don't allow a short jump in a 32 bit code segment to be promoted to
931 a 16 bit offset jump because it's slower (requires data size
932 prefix), and doesn't work, unless the destination is in the bottom
933 64k of the code segment (The top 16 bits of eip are zeroed). */
934
935const relax_typeS md_relax_table[] =
936{
24eab124
AM
937 /* The fields are:
938 1) most positive reach of this state,
939 2) most negative reach of this state,
93c2a809 940 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 941 4) which index into the table to try if we can't fit into this one. */
252b5132 942
fddf5b5b 943 /* UNCOND_JUMP states. */
93c2a809
AM
944 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
945 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
946 /* dword jmp adds 4 bytes to frag:
947 0 extra opcode bytes, 4 displacement bytes. */
252b5132 948 {0, 0, 4, 0},
93c2a809
AM
949 /* word jmp adds 2 byte2 to frag:
950 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
951 {0, 0, 2, 0},
952
93c2a809
AM
953 /* COND_JUMP states. */
954 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
955 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
956 /* dword conditionals adds 5 bytes to frag:
957 1 extra opcode byte, 4 displacement bytes. */
958 {0, 0, 5, 0},
fddf5b5b 959 /* word conditionals add 3 bytes to frag:
93c2a809
AM
960 1 extra opcode byte, 2 displacement bytes. */
961 {0, 0, 3, 0},
962
963 /* COND_JUMP86 states. */
964 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
965 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
966 /* dword conditionals adds 5 bytes to frag:
967 1 extra opcode byte, 4 displacement bytes. */
968 {0, 0, 5, 0},
969 /* word conditionals add 4 bytes to frag:
970 1 displacement byte and a 3 byte long branch insn. */
971 {0, 0, 4, 0}
252b5132
RH
972};
973
6ceeed25 974#define ARCH(n, t, f, s) \
4fc85f37 975 { STRING_COMMA_LEN (#n), s, PROCESSOR_ ## t, vsz_none, CPU_ ## f ## _FLAGS, \
ae89daec
JB
976 CPU_NONE_FLAGS }
977#define SUBARCH(n, e, d, s) \
4fc85f37 978 { STRING_COMMA_LEN (#n), s, PROCESSOR_NONE, vsz_none, CPU_ ## e ## _FLAGS, \
ae89daec 979 CPU_ ## d ## _FLAGS }
4fc85f37
JB
980#define VECARCH(n, e, d, v) \
981 { STRING_COMMA_LEN (#n), false, PROCESSOR_NONE, vsz_ ## v, \
982 CPU_ ## e ## _FLAGS, CPU_ ## d ## _FLAGS }
6ceeed25 983
9103f4f4
L
984static const arch_entry cpu_arch[] =
985{
3ce2ebcf
JB
986 /* Do not replace the first two entries - i386_target_format() and
987 set_cpu_arch() rely on them being there in this order. */
6ceeed25
JB
988 ARCH (generic32, GENERIC32, GENERIC32, false),
989 ARCH (generic64, GENERIC64, GENERIC64, false),
990 ARCH (i8086, UNKNOWN, NONE, false),
4d97c5c8
JB
991 ARCH (i186, UNKNOWN, 186, false),
992 ARCH (i286, UNKNOWN, 286, false),
993 ARCH (i386, I386, 386, false),
994 ARCH (i486, I486, 486, false),
995 ARCH (i586, PENTIUM, 586, false),
4d97c5c8 996 ARCH (pentium, PENTIUM, 586, false),
c8be4b6f 997 ARCH (i686, I686, 686, false),
6ceeed25
JB
998 ARCH (pentiumpro, PENTIUMPRO, PENTIUMPRO, false),
999 ARCH (pentiumii, PENTIUMPRO, P2, false),
1000 ARCH (pentiumiii, PENTIUMPRO, P3, false),
1001 ARCH (pentium4, PENTIUM4, P4, false),
1002 ARCH (prescott, NOCONA, CORE, false),
1003 ARCH (nocona, NOCONA, NOCONA, false),
1004 ARCH (yonah, CORE, CORE, true),
1005 ARCH (core, CORE, CORE, false),
1006 ARCH (merom, CORE2, CORE2, true),
1007 ARCH (core2, CORE2, CORE2, false),
1008 ARCH (corei7, COREI7, COREI7, false),
1009 ARCH (iamcu, IAMCU, IAMCU, false),
1010 ARCH (k6, K6, K6, false),
1011 ARCH (k6_2, K6, K6_2, false),
1012 ARCH (athlon, ATHLON, ATHLON, false),
1013 ARCH (sledgehammer, K8, K8, true),
1014 ARCH (opteron, K8, K8, false),
1015 ARCH (k8, K8, K8, false),
1016 ARCH (amdfam10, AMDFAM10, AMDFAM10, false),
1017 ARCH (bdver1, BD, BDVER1, false),
1018 ARCH (bdver2, BD, BDVER2, false),
1019 ARCH (bdver3, BD, BDVER3, false),
1020 ARCH (bdver4, BD, BDVER4, false),
1021 ARCH (znver1, ZNVER, ZNVER1, false),
1022 ARCH (znver2, ZNVER, ZNVER2, false),
1023 ARCH (znver3, ZNVER, ZNVER3, false),
b0e8fa7f 1024 ARCH (znver4, ZNVER, ZNVER4, false),
b143c979 1025 ARCH (znver5, ZNVER, ZNVER5, false),
6ceeed25
JB
1026 ARCH (btver1, BT, BTVER1, false),
1027 ARCH (btver2, BT, BTVER2, false),
1028
4d97c5c8
JB
1029 SUBARCH (8087, 8087, ANY_8087, false),
1030 SUBARCH (87, NONE, ANY_8087, false), /* Disable only! */
ae89daec
JB
1031 SUBARCH (287, 287, ANY_287, false),
1032 SUBARCH (387, 387, ANY_387, false),
1033 SUBARCH (687, 687, ANY_687, false),
4d97c5c8 1034 SUBARCH (cmov, CMOV, CMOV, false),
88bd2203 1035 SUBARCH (fxsr, FXSR, ANY_FXSR, false),
ae89daec
JB
1036 SUBARCH (mmx, MMX, ANY_MMX, false),
1037 SUBARCH (sse, SSE, ANY_SSE, false),
1038 SUBARCH (sse2, SSE2, ANY_SSE2, false),
1039 SUBARCH (sse3, SSE3, ANY_SSE3, false),
1040 SUBARCH (sse4a, SSE4A, ANY_SSE4A, false),
1041 SUBARCH (ssse3, SSSE3, ANY_SSSE3, false),
1042 SUBARCH (sse4.1, SSE4_1, ANY_SSE4_1, false),
1043 SUBARCH (sse4.2, SSE4_2, ANY_SSE4_2, false),
1044 SUBARCH (sse4, SSE4_2, ANY_SSE4_1, false),
4fc85f37
JB
1045 VECARCH (avx, AVX, ANY_AVX, reset),
1046 VECARCH (avx2, AVX2, ANY_AVX2, reset),
1047 VECARCH (avx512f, AVX512F, ANY_AVX512F, reset),
1048 VECARCH (avx512cd, AVX512CD, ANY_AVX512CD, reset),
1049 VECARCH (avx512er, AVX512ER, ANY_AVX512ER, reset),
1050 VECARCH (avx512pf, AVX512PF, ANY_AVX512PF, reset),
1051 VECARCH (avx512dq, AVX512DQ, ANY_AVX512DQ, reset),
1052 VECARCH (avx512bw, AVX512BW, ANY_AVX512BW, reset),
1053 VECARCH (avx512vl, AVX512VL, ANY_AVX512VL, reset),
cafa5ef7 1054 SUBARCH (monitor, MONITOR, MONITOR, false),
25626f79
JB
1055 SUBARCH (vmx, VMX, ANY_VMX, false),
1056 SUBARCH (vmfunc, VMFUNC, ANY_VMFUNC, false),
ae89daec 1057 SUBARCH (smx, SMX, SMX, false),
5091b9ee
JB
1058 SUBARCH (xsave, XSAVE, ANY_XSAVE, false),
1059 SUBARCH (xsaveopt, XSAVEOPT, ANY_XSAVEOPT, false),
1060 SUBARCH (xsavec, XSAVEC, ANY_XSAVEC, false),
1061 SUBARCH (xsaves, XSAVES, ANY_XSAVES, false),
1062 SUBARCH (aes, AES, ANY_AES, false),
d54678eb
JB
1063 SUBARCH (pclmul, PCLMULQDQ, ANY_PCLMULQDQ, false),
1064 SUBARCH (clmul, PCLMULQDQ, ANY_PCLMULQDQ, true),
ae89daec
JB
1065 SUBARCH (fsgsbase, FSGSBASE, FSGSBASE, false),
1066 SUBARCH (rdrnd, RDRND, RDRND, false),
5091b9ee 1067 SUBARCH (f16c, F16C, ANY_F16C, false),
ae89daec 1068 SUBARCH (bmi2, BMI2, BMI2, false),
5091b9ee
JB
1069 SUBARCH (fma, FMA, ANY_FMA, false),
1070 SUBARCH (fma4, FMA4, ANY_FMA4, false),
1071 SUBARCH (xop, XOP, ANY_XOP, false),
1072 SUBARCH (lwp, LWP, ANY_LWP, false),
ae89daec
JB
1073 SUBARCH (movbe, MOVBE, MOVBE, false),
1074 SUBARCH (cx16, CX16, CX16, false),
c3bb24f5 1075 SUBARCH (lahf_sahf, LAHF_SAHF, LAHF_SAHF, false),
25626f79 1076 SUBARCH (ept, EPT, ANY_EPT, false),
ae89daec
JB
1077 SUBARCH (lzcnt, LZCNT, LZCNT, false),
1078 SUBARCH (popcnt, POPCNT, POPCNT, false),
1079 SUBARCH (hle, HLE, HLE, false),
760ab3d0
JB
1080 SUBARCH (rtm, RTM, ANY_RTM, false),
1081 SUBARCH (tsx, TSX, TSX, false),
ae89daec
JB
1082 SUBARCH (invpcid, INVPCID, INVPCID, false),
1083 SUBARCH (clflush, CLFLUSH, CLFLUSH, false),
1084 SUBARCH (nop, NOP, NOP, false),
1085 SUBARCH (syscall, SYSCALL, SYSCALL, false),
1086 SUBARCH (rdtscp, RDTSCP, RDTSCP, false),
5091b9ee
JB
1087 SUBARCH (3dnow, 3DNOW, ANY_3DNOW, false),
1088 SUBARCH (3dnowa, 3DNOWA, ANY_3DNOWA, false),
ae89daec 1089 SUBARCH (padlock, PADLOCK, PADLOCK, false),
0919e770
JB
1090 SUBARCH (pacifica, SVME, ANY_SVME, true),
1091 SUBARCH (svme, SVME, ANY_SVME, false),
ae89daec
JB
1092 SUBARCH (abm, ABM, ABM, false),
1093 SUBARCH (bmi, BMI, BMI, false),
1094 SUBARCH (tbm, TBM, TBM, false),
1095 SUBARCH (adx, ADX, ADX, false),
1096 SUBARCH (rdseed, RDSEED, RDSEED, false),
1097 SUBARCH (prfchw, PRFCHW, PRFCHW, false),
1098 SUBARCH (smap, SMAP, SMAP, false),
5091b9ee
JB
1099 SUBARCH (mpx, MPX, ANY_MPX, false),
1100 SUBARCH (sha, SHA, ANY_SHA, false),
ae89daec
JB
1101 SUBARCH (clflushopt, CLFLUSHOPT, CLFLUSHOPT, false),
1102 SUBARCH (prefetchwt1, PREFETCHWT1, PREFETCHWT1, false),
1103 SUBARCH (se1, SE1, SE1, false),
1104 SUBARCH (clwb, CLWB, CLWB, false),
4fc85f37
JB
1105 VECARCH (avx512ifma, AVX512IFMA, ANY_AVX512IFMA, reset),
1106 VECARCH (avx512vbmi, AVX512VBMI, ANY_AVX512VBMI, reset),
1107 VECARCH (avx512_4fmaps, AVX512_4FMAPS, ANY_AVX512_4FMAPS, reset),
1108 VECARCH (avx512_4vnniw, AVX512_4VNNIW, ANY_AVX512_4VNNIW, reset),
1109 VECARCH (avx512_vpopcntdq, AVX512_VPOPCNTDQ, ANY_AVX512_VPOPCNTDQ, reset),
1110 VECARCH (avx512_vbmi2, AVX512_VBMI2, ANY_AVX512_VBMI2, reset),
1111 VECARCH (avx512_vnni, AVX512_VNNI, ANY_AVX512_VNNI, reset),
1112 VECARCH (avx512_bitalg, AVX512_BITALG, ANY_AVX512_BITALG, reset),
1113 VECARCH (avx_vnni, AVX_VNNI, ANY_AVX_VNNI, reset),
ae89daec
JB
1114 SUBARCH (clzero, CLZERO, CLZERO, false),
1115 SUBARCH (mwaitx, MWAITX, MWAITX, false),
5091b9ee 1116 SUBARCH (ospke, OSPKE, ANY_OSPKE, false),
ae89daec
JB
1117 SUBARCH (rdpid, RDPID, RDPID, false),
1118 SUBARCH (ptwrite, PTWRITE, PTWRITE, false),
4d97c5c8
JB
1119 SUBARCH (ibt, IBT, IBT, false),
1120 SUBARCH (shstk, SHSTK, SHSTK, false),
88bd2203 1121 SUBARCH (gfni, GFNI, ANY_GFNI, false),
4fc85f37
JB
1122 VECARCH (vaes, VAES, ANY_VAES, reset),
1123 VECARCH (vpclmulqdq, VPCLMULQDQ, ANY_VPCLMULQDQ, reset),
ae89daec
JB
1124 SUBARCH (wbnoinvd, WBNOINVD, WBNOINVD, false),
1125 SUBARCH (pconfig, PCONFIG, PCONFIG, false),
1126 SUBARCH (waitpkg, WAITPKG, WAITPKG, false),
1127 SUBARCH (cldemote, CLDEMOTE, CLDEMOTE, false),
1128 SUBARCH (amx_int8, AMX_INT8, ANY_AMX_INT8, false),
1129 SUBARCH (amx_bf16, AMX_BF16, ANY_AMX_BF16, false),
5091b9ee 1130 SUBARCH (amx_fp16, AMX_FP16, ANY_AMX_FP16, false),
d100d8c1 1131 SUBARCH (amx_complex, AMX_COMPLEX, ANY_AMX_COMPLEX, false),
ae89daec 1132 SUBARCH (amx_tile, AMX_TILE, ANY_AMX_TILE, false),
4d97c5c8
JB
1133 SUBARCH (movdiri, MOVDIRI, MOVDIRI, false),
1134 SUBARCH (movdir64b, MOVDIR64B, MOVDIR64B, false),
4fc85f37
JB
1135 VECARCH (avx512_bf16, AVX512_BF16, ANY_AVX512_BF16, reset),
1136 VECARCH (avx512_vp2intersect, AVX512_VP2INTERSECT,
1137 ANY_AVX512_VP2INTERSECT, reset),
4d97c5c8
JB
1138 SUBARCH (tdx, TDX, TDX, false),
1139 SUBARCH (enqcmd, ENQCMD, ENQCMD, false),
1140 SUBARCH (serialize, SERIALIZE, SERIALIZE, false),
ae89daec
JB
1141 SUBARCH (rdpru, RDPRU, RDPRU, false),
1142 SUBARCH (mcommit, MCOMMIT, MCOMMIT, false),
0919e770 1143 SUBARCH (sev_es, SEV_ES, ANY_SEV_ES, false),
760ab3d0 1144 SUBARCH (tsxldtrk, TSXLDTRK, ANY_TSXLDTRK, false),
88bd2203
JB
1145 SUBARCH (kl, KL, ANY_KL, false),
1146 SUBARCH (widekl, WIDEKL, ANY_WIDEKL, false),
4d97c5c8
JB
1147 SUBARCH (uintr, UINTR, UINTR, false),
1148 SUBARCH (hreset, HRESET, HRESET, false),
4fc85f37 1149 VECARCH (avx512_fp16, AVX512_FP16, ANY_AVX512_FP16, reset),
ef07be45 1150 SUBARCH (prefetchi, PREFETCHI, PREFETCHI, false),
4fc85f37
JB
1151 VECARCH (avx_ifma, AVX_IFMA, ANY_AVX_IFMA, reset),
1152 VECARCH (avx_vnni_int8, AVX_VNNI_INT8, ANY_AVX_VNNI_INT8, reset),
4d97c5c8
JB
1153 SUBARCH (cmpccxadd, CMPCCXADD, CMPCCXADD, false),
1154 SUBARCH (wrmsrns, WRMSRNS, WRMSRNS, false),
1155 SUBARCH (msrlist, MSRLIST, MSRLIST, false),
4fc85f37 1156 VECARCH (avx_ne_convert, AVX_NE_CONVERT, ANY_AVX_NE_CONVERT, reset),
4d97c5c8 1157 SUBARCH (rao_int, RAO_INT, RAO_INT, false),
0919e770 1158 SUBARCH (rmpquery, RMPQUERY, ANY_RMPQUERY, false),
c88ed92f
ZJ
1159 SUBARCH (fred, FRED, ANY_FRED, false),
1160 SUBARCH (lkgs, LKGS, ANY_LKGS, false),
4fc85f37
JB
1161 VECARCH (avx_vnni_int16, AVX_VNNI_INT16, ANY_AVX_VNNI_INT16, reset),
1162 VECARCH (sha512, SHA512, ANY_SHA512, reset),
1163 VECARCH (sm3, SM3, ANY_SM3, reset),
1164 VECARCH (sm4, SM4, ANY_SM4, reset),
b5c37946 1165 SUBARCH (pbndkb, PBNDKB, PBNDKB, false),
4fc85f37 1166 VECARCH (avx10.1, AVX10_1, ANY_AVX512F, set),
8170af78 1167 SUBARCH (user_msr, USER_MSR, USER_MSR, false),
80d61d8d 1168 SUBARCH (apx_f, APX_F, APX_F, false),
293f5f65
L
1169};
1170
6ceeed25
JB
1171#undef SUBARCH
1172#undef ARCH
1173
704209c0 1174#ifdef I386COFF
a6c24e68
NC
1175/* Like s_lcomm_internal in gas/read.c but the alignment string
1176 is allowed to be optional. */
1177
1178static symbolS *
1179pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1180{
1181 addressT align = 0;
1182
1183 SKIP_WHITESPACE ();
1184
7ab9ffdd 1185 if (needs_align
a6c24e68
NC
1186 && *input_line_pointer == ',')
1187 {
1188 align = parse_align (needs_align - 1);
7ab9ffdd 1189
a6c24e68
NC
1190 if (align == (addressT) -1)
1191 return NULL;
1192 }
1193 else
1194 {
1195 if (size >= 8)
1196 align = 3;
1197 else if (size >= 4)
1198 align = 2;
1199 else if (size >= 2)
1200 align = 1;
1201 else
1202 align = 0;
1203 }
1204
1205 bss_alloc (symbolP, size, align);
1206 return symbolP;
1207}
1208
704209c0 1209static void
a6c24e68
NC
1210pe_lcomm (int needs_align)
1211{
1212 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1213}
704209c0 1214#endif
a6c24e68 1215
29b0f896
AM
1216const pseudo_typeS md_pseudo_table[] =
1217{
1218#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1219 {"align", s_align_bytes, 0},
1220#else
1221 {"align", s_align_ptwo, 0},
1222#endif
1223 {"arch", set_cpu_arch, 0},
d4064aad 1224#ifdef OBJ_AOUT
29b0f896 1225 {"bss", s_bss, 0},
d4064aad
JB
1226#endif
1227#ifdef I386COFF
a6c24e68 1228 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1229#endif
1230 {"ffloat", float_cons, 'f'},
1231 {"dfloat", float_cons, 'd'},
1232 {"tfloat", float_cons, 'x'},
7d19d096 1233 {"hfloat", float_cons, 'h'},
de133cf9 1234 {"bfloat16", float_cons, 'b'},
29b0f896 1235 {"value", cons, 2},
d182319b 1236 {"slong", signed_cons, 4},
edd67638 1237 {"insn", s_insn, 0},
1e7dd4a0 1238 {"noopt", s_noopt, 0},
29b0f896
AM
1239 {"optim", s_ignore, 0},
1240 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1241 {"code16", set_code_flag, CODE_16BIT},
1242 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1243#ifdef BFD64
29b0f896 1244 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1245#endif
29b0f896
AM
1246 {"intel_syntax", set_intel_syntax, 1},
1247 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1248 {"intel_mnemonic", set_intel_mnemonic, 1},
1249 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1250 {"allow_index_reg", set_allow_index_reg, 1},
1251 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1252 {"sse_check", set_check, 0},
1253 {"operand_check", set_check, 1},
3b22753a
L
1254#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1255 {"largecomm", handle_large_common, 0},
07a53e5c 1256#else
68d20676 1257 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1258 {"loc", dwarf2_directive_loc, 0},
1259 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1260#endif
6482c264
NC
1261#ifdef TE_PE
1262 {"secrel32", pe_directive_secrel, 0},
145667f8 1263 {"secidx", pe_directive_secidx, 0},
6482c264 1264#endif
29b0f896
AM
1265 {0, 0, 0}
1266};
1267
1268/* For interface with expression (). */
1269extern char *input_line_pointer;
1270
1271/* Hash table for instruction mnemonic lookup. */
629310ab 1272static htab_t op_hash;
29b0f896
AM
1273
1274/* Hash table for register lookup. */
629310ab 1275static htab_t reg_hash;
29b0f896 1276\f
ce8a8b2f
AM
1277 /* Various efficient no-op patterns for aligning code labels.
1278 Note: Don't try to assemble the instructions in the comments.
1279 0L and 0w are not legal. */
62a02d25
L
1280static const unsigned char f32_1[] =
1281 {0x90}; /* nop */
1282static const unsigned char f32_2[] =
1283 {0x66,0x90}; /* xchg %ax,%ax */
1284static const unsigned char f32_3[] =
1285 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
ad9f3230
JB
1286#define f32_4 (f32_5 + 1) /* leal 0(%esi,%eiz),%esi */
1287static const unsigned char f32_5[] =
1288 {0x2e,0x8d,0x74,0x26,0x00}; /* leal %cs:0(%esi,%eiz),%esi */
62a02d25
L
1289static const unsigned char f32_6[] =
1290 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
ad9f3230
JB
1291#define f32_7 (f32_8 + 1) /* leal 0L(%esi,%eiz),%esi */
1292static const unsigned char f32_8[] =
1293 {0x2e,0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal %cs:0L(%esi,%eiz),%esi */
d164359d
JB
1294static const unsigned char f64_3[] =
1295 {0x48,0x89,0xf6}; /* mov %rsi,%rsi */
1296static const unsigned char f64_4[] =
1297 {0x48,0x8d,0x76,0x00}; /* lea 0(%rsi),%rsi */
1298#define f64_5 (f64_6 + 1) /* lea 0(%rsi,%riz),%rsi */
1299static const unsigned char f64_6[] =
1300 {0x2e,0x48,0x8d,0x74,0x26,0x00}; /* lea %cs:0(%rsi,%riz),%rsi */
1301static const unsigned char f64_7[] =
1302 {0x48,0x8d,0xb6,0x00,0x00,0x00,0x00}; /* lea 0L(%rsi),%rsi */
1303#define f64_8 (f64_9 + 1) /* lea 0L(%rsi,%riz),%rsi */
1304static const unsigned char f64_9[] =
1305 {0x2e,0x48,0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* lea %cs:0L(%rsi,%riz),%rsi */
5e0729b6 1306#define f16_2 (f64_3 + 1) /* mov %si,%si */
62a02d25 1307static const unsigned char f16_3[] =
3ae729d5 1308 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
ad9f3230
JB
1309#define f16_4 (f16_5 + 1) /* lea 0W(%si),%si */
1310static const unsigned char f16_5[] =
1311 {0x2e,0x8d,0xb4,0x00,0x00}; /* lea %cs:0W(%si),%si */
3ae729d5
L
1312static const unsigned char jump_disp8[] =
1313 {0xeb}; /* jmp disp8 */
1314static const unsigned char jump32_disp32[] =
1315 {0xe9}; /* jmp disp32 */
1316static const unsigned char jump16_disp32[] =
1317 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1318/* 32-bit NOPs patterns. */
1319static const unsigned char *const f32_patt[] = {
ad9f3230 1320 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8
62a02d25 1321};
d164359d
JB
1322/* 64-bit NOPs patterns. */
1323static const unsigned char *const f64_patt[] = {
1324 f32_1, f32_2, f64_3, f64_4, f64_5, f64_6, f64_7, f64_8, f64_9
1325};
62a02d25
L
1326/* 16-bit NOPs patterns. */
1327static const unsigned char *const f16_patt[] = {
ad9f3230 1328 f32_1, f16_2, f16_3, f16_4, f16_5
62a02d25
L
1329};
1330/* nopl (%[re]ax) */
1331static const unsigned char alt_3[] =
1332 {0x0f,0x1f,0x00};
1333/* nopl 0(%[re]ax) */
1334static const unsigned char alt_4[] =
1335 {0x0f,0x1f,0x40,0x00};
1336/* nopl 0(%[re]ax,%[re]ax,1) */
ae7067fb 1337#define alt_5 (alt_6 + 1)
62a02d25
L
1338/* nopw 0(%[re]ax,%[re]ax,1) */
1339static const unsigned char alt_6[] =
1340 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1341/* nopl 0L(%[re]ax) */
1342static const unsigned char alt_7[] =
1343 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1344/* nopl 0L(%[re]ax,%[re]ax,1) */
ae7067fb 1345#define alt_8 (alt_9 + 1)
62a02d25
L
1346/* nopw 0L(%[re]ax,%[re]ax,1) */
1347static const unsigned char alt_9[] =
1348 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1349/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
ae7067fb 1350#define alt_10 (alt_11 + 1)
3ae729d5
L
1351/* data16 nopw %cs:0L(%eax,%eax,1) */
1352static const unsigned char alt_11[] =
1353 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1354/* 32-bit and 64-bit NOPs patterns. */
1355static const unsigned char *const alt_patt[] = {
1356 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1357 alt_9, alt_10, alt_11
62a02d25 1358};
bf649e72
L
1359#define alt64_9 (alt64_15 + 6) /* nopq 0L(%rax,%rax,1) */
1360#define alt64_10 (alt64_15 + 5) /* cs nopq 0L(%rax,%rax,1) */
1361/* data16 cs nopq 0L(%rax,%rax,1) */
1362#define alt64_11 (alt64_15 + 4)
1363/* data16 data16 cs nopq 0L(%rax,%rax,1) */
1364#define alt64_12 (alt64_15 + 3)
1365/* data16 data16 data16 cs nopq 0L(%rax,%rax,1) */
1366#define alt64_13 (alt64_15 + 2)
1367/* data16 data16 data16 data16 cs nopq 0L(%rax,%rax,1) */
1368#define alt64_14 (alt64_15 + 1)
1369/* data16 data16 data16 data16 data16 cs nopq 0L(%rax,%rax,1) */
1370static const unsigned char alt64_15[] =
1371 {0x66,0x66,0x66,0x66,0x66,0x2e,0x48,
1372 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1373/* Long 64-bit NOPs patterns. */
1374static const unsigned char *const alt64_patt[] = {
1375 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1376 alt64_9, alt64_10, alt64_11,alt64_12, alt64_13, alt64_14, alt64_15
1377};
62a02d25
L
1378
1379/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1380 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1381
1382static void
1383i386_output_nops (char *where, const unsigned char *const *patt,
1384 int count, int max_single_nop_size)
1385
1386{
3ae729d5
L
1387 /* Place the longer NOP first. */
1388 int last;
1389 int offset;
3076e594
NC
1390 const unsigned char *nops;
1391
1392 if (max_single_nop_size < 1)
1393 {
1394 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1395 max_single_nop_size);
1396 return;
1397 }
1398
1399 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1400 last = count % max_single_nop_size;
1401
1402 count -= last;
1403 for (offset = 0; offset < count; offset += max_single_nop_size)
1404 memcpy (where + offset, nops, max_single_nop_size);
1405
1406 if (last)
1407 {
1408 nops = patt[last - 1];
ad9f3230 1409 memcpy (where + offset, nops, last);
3ae729d5 1410 }
62a02d25
L
1411}
1412
3ae729d5
L
1413static INLINE int
1414fits_in_imm7 (offsetT num)
1415{
1416 return (num & 0x7f) == num;
1417}
1418
1419static INLINE int
1420fits_in_imm31 (offsetT num)
1421{
1422 return (num & 0x7fffffff) == num;
1423}
62a02d25
L
1424
1425/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1426 single NOP instruction LIMIT. */
1427
1428void
3ae729d5 1429i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1430{
3ae729d5 1431 const unsigned char *const *patt = NULL;
62a02d25 1432 int max_single_nop_size;
3ae729d5
L
1433 /* Maximum number of NOPs before switching to jump over NOPs. */
1434 int max_number_of_nops;
62a02d25 1435
3ae729d5 1436 switch (fragP->fr_type)
62a02d25 1437 {
3ae729d5
L
1438 case rs_fill_nop:
1439 case rs_align_code:
1440 break;
e379e5f3
L
1441 case rs_machine_dependent:
1442 /* Allow NOP padding for jumps and calls. */
1443 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1444 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1445 break;
1446 /* Fall through. */
3ae729d5 1447 default:
62a02d25
L
1448 return;
1449 }
1450
ccc9c027
L
1451 /* We need to decide which NOP sequence to use for 32bit and
1452 64bit. When -mtune= is used:
4eed87de 1453
c8be4b6f 1454 1. For PROCESSOR_I?86, PROCESSOR_PENTIUM, PROCESSOR_IAMCU, and
76bc74dc 1455 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1456 2. For the rest, alt_patt will be used.
1457
1458 When -mtune= isn't used, alt_patt will be used if
d164359d 1459 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt/f64_patt will
76bc74dc 1460 be used.
ccc9c027
L
1461
1462 When -march= or .arch is used, we can't use anything beyond
1463 cpu_arch_isa_flags. */
1464
d12c7ab8 1465 if (fragP->tc_frag_data.code == CODE_16BIT)
ccc9c027 1466 {
3ae729d5
L
1467 patt = f16_patt;
1468 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1469 /* Limit number of NOPs to 2 in 16-bit mode. */
1470 max_number_of_nops = 2;
252b5132 1471 }
33fef721 1472 else
ccc9c027 1473 {
d164359d 1474 patt = fragP->tc_frag_data.code == CODE_64BIT ? f64_patt : f32_patt;
fbf3f584 1475 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027 1476 {
cd75cd85
JB
1477 /* PROCESSOR_UNKNOWN means that all ISAs may be used, unless
1478 explicitly disabled. */
d12c7ab8 1479 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1480 {
1481 case PROCESSOR_UNKNOWN:
1482 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423 1483 optimize with nops. */
9f314ead 1484 if (fragP->tc_frag_data.isanop)
80b8656c 1485 patt = alt_patt;
ccc9c027 1486 break;
c8be4b6f 1487
ef05d495 1488 case PROCESSOR_CORE:
76bc74dc 1489 case PROCESSOR_CORE2:
bd5295b2 1490 case PROCESSOR_COREI7:
bf649e72
L
1491 if (fragP->tc_frag_data.cpunop)
1492 {
1493 if (fragP->tc_frag_data.code == CODE_64BIT)
1494 patt = alt64_patt;
1495 else
1496 patt = alt_patt;
1497 }
1498 break;
1499
1500 case PROCESSOR_PENTIUMPRO:
1501 case PROCESSOR_PENTIUM4:
1502 case PROCESSOR_NOCONA:
76bc74dc 1503 case PROCESSOR_GENERIC64:
ccc9c027
L
1504 case PROCESSOR_K6:
1505 case PROCESSOR_ATHLON:
1506 case PROCESSOR_K8:
4eed87de 1507 case PROCESSOR_AMDFAM10:
8aedb9fe 1508 case PROCESSOR_BD:
029f3522 1509 case PROCESSOR_ZNVER:
7b458c12 1510 case PROCESSOR_BT:
cd75cd85
JB
1511 if (fragP->tc_frag_data.cpunop)
1512 patt = alt_patt;
ccc9c027 1513 break;
cd75cd85 1514
76bc74dc 1515 case PROCESSOR_I386:
ccc9c027
L
1516 case PROCESSOR_I486:
1517 case PROCESSOR_PENTIUM:
c8be4b6f 1518 case PROCESSOR_I686:
81486035 1519 case PROCESSOR_IAMCU:
ccc9c027 1520 case PROCESSOR_GENERIC32:
ccc9c027 1521 break;
c368d2a8
JB
1522 case PROCESSOR_NONE:
1523 abort ();
4eed87de 1524 }
ccc9c027
L
1525 }
1526 else
1527 {
fbf3f584 1528 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1529 {
1530 case PROCESSOR_UNKNOWN:
e6a14101 1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
cd75cd85 1536 default:
ccc9c027 1537 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423 1538 with nops. */
9f314ead 1539 if (fragP->tc_frag_data.isanop)
80b8656c 1540 patt = alt_patt;
ccc9c027 1541 break;
cd75cd85 1542
c368d2a8
JB
1543 case PROCESSOR_NONE:
1544 abort ();
4eed87de 1545 }
ccc9c027
L
1546 }
1547
bf649e72 1548 if (patt != alt_patt && patt != alt64_patt)
76bc74dc 1549 {
d164359d
JB
1550 max_single_nop_size = patt == f32_patt ? ARRAY_SIZE (f32_patt)
1551 : ARRAY_SIZE (f64_patt);
3ae729d5
L
1552 /* Limit number of NOPs to 2 for older processors. */
1553 max_number_of_nops = 2;
76bc74dc
L
1554 }
1555 else
1556 {
bf649e72
L
1557 max_single_nop_size = patt == alt_patt
1558 ? ARRAY_SIZE (alt_patt)
1559 : ARRAY_SIZE (alt64_patt);
3ae729d5
L
1560 /* Limit number of NOPs to 7 for newer processors. */
1561 max_number_of_nops = 7;
1562 }
1563 }
1564
1565 if (limit == 0)
1566 limit = max_single_nop_size;
1567
1568 if (fragP->fr_type == rs_fill_nop)
1569 {
1570 /* Output NOPs for .nop directive. */
1571 if (limit > max_single_nop_size)
1572 {
1573 as_bad_where (fragP->fr_file, fragP->fr_line,
1574 _("invalid single nop size: %d "
1575 "(expect within [0, %d])"),
1576 limit, max_single_nop_size);
1577 return;
1578 }
1579 }
e379e5f3 1580 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1581 fragP->fr_var = count;
1582
0aa5d0c9
JB
1583 /* Emit a plain NOP first when the last thing we saw may not have been
1584 a proper instruction (e.g. a stand-alone prefix or .byte). */
1585 if (!fragP->tc_frag_data.last_insn_normal)
1586 {
1587 *where++ = 0x90;
1588 --count;
1589 }
1590
3ae729d5
L
1591 if ((count / max_single_nop_size) > max_number_of_nops)
1592 {
1593 /* Generate jump over NOPs. */
1594 offsetT disp = count - 2;
1595 if (fits_in_imm7 (disp))
1596 {
1597 /* Use "jmp disp8" if possible. */
1598 count = disp;
1599 where[0] = jump_disp8[0];
1600 where[1] = count;
1601 where += 2;
1602 }
1603 else
1604 {
1605 unsigned int size_of_jump;
1606
1607 if (flag_code == CODE_16BIT)
1608 {
1609 where[0] = jump16_disp32[0];
1610 where[1] = jump16_disp32[1];
1611 size_of_jump = 2;
1612 }
1613 else
1614 {
1615 where[0] = jump32_disp32[0];
1616 size_of_jump = 1;
1617 }
1618
1619 count -= size_of_jump + 4;
1620 if (!fits_in_imm31 (count))
1621 {
1622 as_bad_where (fragP->fr_file, fragP->fr_line,
1623 _("jump over nop padding out of range"));
1624 return;
1625 }
1626
1627 md_number_to_chars (where + size_of_jump, count, 4);
1628 where += size_of_jump + 4;
76bc74dc 1629 }
ccc9c027 1630 }
3ae729d5
L
1631
1632 /* Generate multiple NOPs. */
1633 i386_output_nops (where, patt, count, limit);
252b5132
RH
1634}
1635
c6fb90c8 1636static INLINE int
0dfbf9d7 1637operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1638{
0dfbf9d7 1639 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1640 {
1641 case 3:
0dfbf9d7 1642 if (x->array[2])
c6fb90c8 1643 return 0;
1a0670f3 1644 /* Fall through. */
c6fb90c8 1645 case 2:
0dfbf9d7 1646 if (x->array[1])
c6fb90c8 1647 return 0;
1a0670f3 1648 /* Fall through. */
c6fb90c8 1649 case 1:
0dfbf9d7 1650 return !x->array[0];
c6fb90c8
L
1651 default:
1652 abort ();
1653 }
40fb9820
L
1654}
1655
c6fb90c8 1656static INLINE void
0dfbf9d7 1657operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1658{
0dfbf9d7 1659 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1660 {
1661 case 3:
0dfbf9d7 1662 x->array[2] = v;
1a0670f3 1663 /* Fall through. */
c6fb90c8 1664 case 2:
0dfbf9d7 1665 x->array[1] = v;
1a0670f3 1666 /* Fall through. */
c6fb90c8 1667 case 1:
0dfbf9d7 1668 x->array[0] = v;
1a0670f3 1669 /* Fall through. */
c6fb90c8
L
1670 break;
1671 default:
1672 abort ();
1673 }
bab6aec1
JB
1674
1675 x->bitfield.class = ClassNone;
75e5731b 1676 x->bitfield.instance = InstanceNone;
c6fb90c8 1677}
40fb9820 1678
c6fb90c8 1679static INLINE int
0dfbf9d7
L
1680operand_type_equal (const union i386_operand_type *x,
1681 const union i386_operand_type *y)
c6fb90c8 1682{
0dfbf9d7 1683 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1684 {
1685 case 3:
0dfbf9d7 1686 if (x->array[2] != y->array[2])
c6fb90c8 1687 return 0;
1a0670f3 1688 /* Fall through. */
c6fb90c8 1689 case 2:
0dfbf9d7 1690 if (x->array[1] != y->array[1])
c6fb90c8 1691 return 0;
1a0670f3 1692 /* Fall through. */
c6fb90c8 1693 case 1:
0dfbf9d7 1694 return x->array[0] == y->array[0];
c6fb90c8
L
1695 break;
1696 default:
1697 abort ();
1698 }
1699}
40fb9820 1700
734dfd1c 1701static INLINE bool
a5e91879 1702_is_cpu (const i386_cpu_attr *a, enum i386_cpu cpu)
734dfd1c
JB
1703{
1704 switch (cpu)
1705 {
a5e91879
JB
1706 case Cpu287: return a->bitfield.cpu287;
1707 case Cpu387: return a->bitfield.cpu387;
1708 case Cpu3dnow: return a->bitfield.cpu3dnow;
1709 case Cpu3dnowA: return a->bitfield.cpu3dnowa;
1710 case CpuAVX: return a->bitfield.cpuavx;
1711 case CpuHLE: return a->bitfield.cpuhle;
1712 case CpuAVX512F: return a->bitfield.cpuavx512f;
1713 case CpuAVX512VL: return a->bitfield.cpuavx512vl;
80d61d8d 1714 case CpuAPX_F: return a->bitfield.cpuapx_f;
a5e91879
JB
1715 case Cpu64: return a->bitfield.cpu64;
1716 case CpuNo64: return a->bitfield.cpuno64;
734dfd1c
JB
1717 default:
1718 gas_assert (cpu < CpuAttrEnums);
1719 }
a5e91879
JB
1720 return a->bitfield.isa == cpu + 1u;
1721}
1722
1723static INLINE bool
1724is_cpu (const insn_template *t, enum i386_cpu cpu)
1725{
1726 return _is_cpu(&t->cpu, cpu);
1727}
1728
1729static INLINE bool
1730maybe_cpu (const insn_template *t, enum i386_cpu cpu)
1731{
1732 return _is_cpu(&t->cpu_any, cpu);
734dfd1c
JB
1733}
1734
1735static i386_cpu_flags cpu_flags_from_attr (i386_cpu_attr a)
1736{
1737 const unsigned int bps = sizeof (a.array[0]) * CHAR_BIT;
1738 i386_cpu_flags f = { .array[0] = 0 };
1739
a12915cc 1740 switch (ARRAY_SIZE (a.array))
734dfd1c
JB
1741 {
1742 case 1:
1743 f.array[CpuAttrEnums / bps]
a12915cc
JB
1744#ifndef WORDS_BIGENDIAN
1745 |= (a.array[0] >> CpuIsaBits) << (CpuAttrEnums % bps);
1746#else
1747 |= (a.array[0] << CpuIsaBits) >> (CpuAttrEnums % bps);
1748#endif
1749 if (CpuMax / bps > CpuAttrEnums / bps)
734dfd1c 1750 f.array[CpuAttrEnums / bps + 1]
a12915cc 1751#ifndef WORDS_BIGENDIAN
734dfd1c 1752 = (a.array[0] >> CpuIsaBits) >> (bps - CpuAttrEnums % bps);
a12915cc
JB
1753#else
1754 = (a.array[0] << CpuIsaBits) << (bps - CpuAttrEnums % bps);
1755#endif
734dfd1c 1756 break;
a12915cc 1757
734dfd1c
JB
1758 default:
1759 abort ();
1760 }
1761
1762 if (a.bitfield.isa)
a12915cc 1763#ifndef WORDS_BIGENDIAN
734dfd1c 1764 f.array[(a.bitfield.isa - 1) / bps] |= 1u << ((a.bitfield.isa - 1) % bps);
a12915cc
JB
1765#else
1766 f.array[(a.bitfield.isa - 1) / bps] |= 1u << (~(a.bitfield.isa - 1) % bps);
1767#endif
734dfd1c
JB
1768
1769 return f;
1770}
1771
0dfbf9d7
L
1772static INLINE int
1773cpu_flags_all_zero (const union i386_cpu_flags *x)
1774{
1775 switch (ARRAY_SIZE(x->array))
1776 {
75f8266a
KL
1777 case 5:
1778 if (x->array[4])
1779 return 0;
1780 /* Fall through. */
53467f57
IT
1781 case 4:
1782 if (x->array[3])
1783 return 0;
1784 /* Fall through. */
0dfbf9d7
L
1785 case 3:
1786 if (x->array[2])
1787 return 0;
1a0670f3 1788 /* Fall through. */
0dfbf9d7
L
1789 case 2:
1790 if (x->array[1])
1791 return 0;
1a0670f3 1792 /* Fall through. */
0dfbf9d7
L
1793 case 1:
1794 return !x->array[0];
1795 default:
1796 abort ();
1797 }
1798}
1799
0dfbf9d7
L
1800static INLINE int
1801cpu_flags_equal (const union i386_cpu_flags *x,
1802 const union i386_cpu_flags *y)
1803{
1804 switch (ARRAY_SIZE(x->array))
1805 {
75f8266a
KL
1806 case 5:
1807 if (x->array[4] != y->array[4])
1808 return 0;
1809 /* Fall through. */
53467f57
IT
1810 case 4:
1811 if (x->array[3] != y->array[3])
1812 return 0;
1813 /* Fall through. */
0dfbf9d7
L
1814 case 3:
1815 if (x->array[2] != y->array[2])
1816 return 0;
1a0670f3 1817 /* Fall through. */
0dfbf9d7
L
1818 case 2:
1819 if (x->array[1] != y->array[1])
1820 return 0;
1a0670f3 1821 /* Fall through. */
0dfbf9d7
L
1822 case 1:
1823 return x->array[0] == y->array[0];
1824 break;
1825 default:
1826 abort ();
1827 }
1828}
c6fb90c8
L
1829
1830static INLINE int
c0260ac6 1831cpu_flags_check_cpu64 (const insn_template *t)
c6fb90c8 1832{
c0260ac6
JB
1833 return flag_code == CODE_64BIT
1834 ? !t->cpu.bitfield.cpuno64
1835 : !t->cpu.bitfield.cpu64;
40fb9820
L
1836}
1837
c6fb90c8
L
1838static INLINE i386_cpu_flags
1839cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1840{
c6fb90c8
L
1841 switch (ARRAY_SIZE (x.array))
1842 {
75f8266a
KL
1843 case 5:
1844 x.array [4] &= y.array [4];
1845 /* Fall through. */
53467f57
IT
1846 case 4:
1847 x.array [3] &= y.array [3];
1848 /* Fall through. */
c6fb90c8
L
1849 case 3:
1850 x.array [2] &= y.array [2];
1a0670f3 1851 /* Fall through. */
c6fb90c8
L
1852 case 2:
1853 x.array [1] &= y.array [1];
1a0670f3 1854 /* Fall through. */
c6fb90c8
L
1855 case 1:
1856 x.array [0] &= y.array [0];
1857 break;
1858 default:
1859 abort ();
1860 }
1861 return x;
1862}
40fb9820 1863
c6fb90c8
L
1864static INLINE i386_cpu_flags
1865cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1866{
c6fb90c8 1867 switch (ARRAY_SIZE (x.array))
40fb9820 1868 {
75f8266a
KL
1869 case 5:
1870 x.array [4] |= y.array [4];
1871 /* Fall through. */
53467f57
IT
1872 case 4:
1873 x.array [3] |= y.array [3];
1874 /* Fall through. */
c6fb90c8
L
1875 case 3:
1876 x.array [2] |= y.array [2];
1a0670f3 1877 /* Fall through. */
c6fb90c8
L
1878 case 2:
1879 x.array [1] |= y.array [1];
1a0670f3 1880 /* Fall through. */
c6fb90c8
L
1881 case 1:
1882 x.array [0] |= y.array [0];
40fb9820
L
1883 break;
1884 default:
1885 abort ();
1886 }
40fb9820
L
1887 return x;
1888}
1889
309d3373
JB
1890static INLINE i386_cpu_flags
1891cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1892{
1893 switch (ARRAY_SIZE (x.array))
1894 {
75f8266a
KL
1895 case 5:
1896 x.array [4] &= ~y.array [4];
1897 /* Fall through. */
53467f57
IT
1898 case 4:
1899 x.array [3] &= ~y.array [3];
1900 /* Fall through. */
309d3373
JB
1901 case 3:
1902 x.array [2] &= ~y.array [2];
1a0670f3 1903 /* Fall through. */
309d3373
JB
1904 case 2:
1905 x.array [1] &= ~y.array [1];
1a0670f3 1906 /* Fall through. */
309d3373
JB
1907 case 1:
1908 x.array [0] &= ~y.array [0];
1909 break;
1910 default:
1911 abort ();
1912 }
1913 return x;
1914}
1915
6c0946d0
JB
1916static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1917
6177c84d 1918static INLINE bool need_evex_encoding (const insn_template *t)
a6f3add0 1919{
e346d50a
JB
1920 return i.encoding == encoding_evex
1921 || i.encoding == encoding_evex512
eb3f3841 1922 || (t->opcode_modifier.vex && i.encoding == encoding_egpr)
a6f3add0
JB
1923 || i.mask.reg;
1924}
1925
c0f3af97
L
1926#define CPU_FLAGS_ARCH_MATCH 0x1
1927#define CPU_FLAGS_64BIT_MATCH 0x2
1928
c0f3af97 1929#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1930 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1931
1932/* Return CPU flags match bits. */
3629bb00 1933
40fb9820 1934static int
d3ce72d0 1935cpu_flags_match (const insn_template *t)
40fb9820 1936{
a5e91879
JB
1937 i386_cpu_flags cpu, active, all = cpu_flags_from_attr (t->cpu);
1938 i386_cpu_flags any = cpu_flags_from_attr (t->cpu_any);
c0260ac6 1939 int match = cpu_flags_check_cpu64 (t) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820 1940
a5e91879
JB
1941 all.bitfield.cpu64 = 0;
1942 all.bitfield.cpuno64 = 0;
1943 gas_assert (!any.bitfield.cpu64);
1944 gas_assert (!any.bitfield.cpuno64);
40fb9820 1945
a5e91879 1946 if (cpu_flags_all_zero (&all) && cpu_flags_all_zero (&any))
c0f3af97
L
1947 {
1948 /* This instruction is available on all archs. */
a5e91879 1949 return match | CPU_FLAGS_ARCH_MATCH;
c0f3af97 1950 }
3e624fa4 1951
a5e91879 1952 /* This instruction is available only on some archs. */
3629bb00 1953
a5e91879
JB
1954 /* Dual VEX/EVEX templates may need stripping of one of the flags. */
1955 if (t->opcode_modifier.vex && t->opcode_modifier.evex)
1956 {
1957 /* Dual AVX/AVX512 templates need to retain AVX512* only if we already
1958 know that EVEX encoding will be needed. */
1959 if ((any.bitfield.cpuavx || any.bitfield.cpuavx2 || any.bitfield.cpufma)
1960 && (any.bitfield.cpuavx512f || any.bitfield.cpuavx512vl))
a6f3add0 1961 {
6177c84d 1962 if (need_evex_encoding (t))
a6f3add0 1963 {
a5e91879
JB
1964 any.bitfield.cpuavx = 0;
1965 any.bitfield.cpuavx2 = 0;
1966 any.bitfield.cpufma = 0;
1967 }
6177c84d 1968 /* need_evex_encoding(t) isn't reliable before operands were
a5e91879
JB
1969 parsed. */
1970 else if (i.operands)
1971 {
1972 any.bitfield.cpuavx512f = 0;
1973 any.bitfield.cpuavx512vl = 0;
a6f3add0
JB
1974 }
1975 }
7c3df3c6
JB
1976
1977 /* Dual non-APX/APX templates need massaging from what APX_F() in the
1978 opcode table has produced. While the direct transformation of the
1979 incoming cpuid&(cpuid|APX_F) would be to cpuid&(cpuid) / cpuid&(APX_F)
1980 respectively, it's cheaper to move to just cpuid / cpuid&APX_F
1981 instead. */
1982 if (any.bitfield.cpuapx_f
1983 && (any.bitfield.cpubmi || any.bitfield.cpubmi2
1984 || any.bitfield.cpuavx512f || any.bitfield.cpuavx512bw
1985 || any.bitfield.cpuavx512dq || any.bitfield.cpuamx_tile
5190fa38 1986 || any.bitfield.cpucmpccxadd || any.bitfield.cpuuser_msr))
7c3df3c6
JB
1987 {
1988 /* These checks (verifying that APX_F() was properly used in the
1989 opcode table entry) make sure there's no need for an "else" to
1990 the "if()" below. */
1991 gas_assert (!cpu_flags_all_zero (&all));
1992 cpu = cpu_flags_and (all, any);
1993 gas_assert (cpu_flags_equal (&cpu, &all));
1994
1995 if (need_evex_encoding (t))
1996 all = any;
1997
1998 memset (&any, 0, sizeof (any));
1999 }
a5e91879 2000 }
a6f3add0 2001
a5e91879
JB
2002 if (flag_code != CODE_64BIT)
2003 active = cpu_flags_and_not (cpu_arch_flags, cpu_64_flags);
2004 else
2005 active = cpu_arch_flags;
2006 cpu = cpu_flags_and (all, active);
2007 if (cpu_flags_equal (&cpu, &all))
2008 {
22c36940
JB
2009 /* AVX and AVX2 present at the same time express an operand size
2010 dependency - strip AVX2 for the purposes here. The operand size
2011 dependent check occurs in check_vecOperands(). */
a5e91879
JB
2012 if (any.bitfield.cpuavx && any.bitfield.cpuavx2)
2013 any.bitfield.cpuavx2 = 0;
22c36940 2014
a5e91879
JB
2015 cpu = cpu_flags_and (any, active);
2016 if (cpu_flags_all_zero (&any) || !cpu_flags_all_zero (&cpu))
b58829cd 2017 match |= CPU_FLAGS_ARCH_MATCH;
3629bb00 2018 }
c0f3af97 2019 return match;
40fb9820
L
2020}
2021
c6fb90c8
L
2022static INLINE i386_operand_type
2023operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 2024{
bab6aec1
JB
2025 if (x.bitfield.class != y.bitfield.class)
2026 x.bitfield.class = ClassNone;
75e5731b
JB
2027 if (x.bitfield.instance != y.bitfield.instance)
2028 x.bitfield.instance = InstanceNone;
bab6aec1 2029
c6fb90c8
L
2030 switch (ARRAY_SIZE (x.array))
2031 {
2032 case 3:
2033 x.array [2] &= y.array [2];
1a0670f3 2034 /* Fall through. */
c6fb90c8
L
2035 case 2:
2036 x.array [1] &= y.array [1];
1a0670f3 2037 /* Fall through. */
c6fb90c8
L
2038 case 1:
2039 x.array [0] &= y.array [0];
2040 break;
2041 default:
2042 abort ();
2043 }
2044 return x;
40fb9820
L
2045}
2046
73053c1f
JB
2047static INLINE i386_operand_type
2048operand_type_and_not (i386_operand_type x, i386_operand_type y)
2049{
bab6aec1 2050 gas_assert (y.bitfield.class == ClassNone);
75e5731b 2051 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 2052
73053c1f
JB
2053 switch (ARRAY_SIZE (x.array))
2054 {
2055 case 3:
2056 x.array [2] &= ~y.array [2];
2057 /* Fall through. */
2058 case 2:
2059 x.array [1] &= ~y.array [1];
2060 /* Fall through. */
2061 case 1:
2062 x.array [0] &= ~y.array [0];
2063 break;
2064 default:
2065 abort ();
2066 }
2067 return x;
2068}
2069
c6fb90c8
L
2070static INLINE i386_operand_type
2071operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 2072{
bab6aec1
JB
2073 gas_assert (x.bitfield.class == ClassNone ||
2074 y.bitfield.class == ClassNone ||
2075 x.bitfield.class == y.bitfield.class);
75e5731b
JB
2076 gas_assert (x.bitfield.instance == InstanceNone ||
2077 y.bitfield.instance == InstanceNone ||
2078 x.bitfield.instance == y.bitfield.instance);
bab6aec1 2079
c6fb90c8 2080 switch (ARRAY_SIZE (x.array))
40fb9820 2081 {
c6fb90c8
L
2082 case 3:
2083 x.array [2] |= y.array [2];
1a0670f3 2084 /* Fall through. */
c6fb90c8
L
2085 case 2:
2086 x.array [1] |= y.array [1];
1a0670f3 2087 /* Fall through. */
c6fb90c8
L
2088 case 1:
2089 x.array [0] |= y.array [0];
40fb9820
L
2090 break;
2091 default:
2092 abort ();
2093 }
c6fb90c8
L
2094 return x;
2095}
40fb9820 2096
c6fb90c8
L
2097static INLINE i386_operand_type
2098operand_type_xor (i386_operand_type x, i386_operand_type y)
2099{
bab6aec1 2100 gas_assert (y.bitfield.class == ClassNone);
75e5731b 2101 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 2102
c6fb90c8
L
2103 switch (ARRAY_SIZE (x.array))
2104 {
2105 case 3:
2106 x.array [2] ^= y.array [2];
1a0670f3 2107 /* Fall through. */
c6fb90c8
L
2108 case 2:
2109 x.array [1] ^= y.array [1];
1a0670f3 2110 /* Fall through. */
c6fb90c8
L
2111 case 1:
2112 x.array [0] ^= y.array [0];
2113 break;
2114 default:
2115 abort ();
2116 }
40fb9820
L
2117 return x;
2118}
2119
05909f23
JB
2120static const i386_operand_type anydisp = {
2121 .bitfield = { .disp8 = 1, .disp16 = 1, .disp32 = 1, .disp64 = 1 }
2122};
40fb9820
L
2123
2124enum operand_type
2125{
2126 reg,
40fb9820
L
2127 imm,
2128 disp,
2129 anymem
2130};
2131
c6fb90c8 2132static INLINE int
40fb9820
L
2133operand_type_check (i386_operand_type t, enum operand_type c)
2134{
2135 switch (c)
2136 {
2137 case reg:
bab6aec1 2138 return t.bitfield.class == Reg;
40fb9820 2139
40fb9820
L
2140 case imm:
2141 return (t.bitfield.imm8
2142 || t.bitfield.imm8s
2143 || t.bitfield.imm16
2144 || t.bitfield.imm32
2145 || t.bitfield.imm32s
2146 || t.bitfield.imm64);
2147
2148 case disp:
2149 return (t.bitfield.disp8
2150 || t.bitfield.disp16
2151 || t.bitfield.disp32
40fb9820
L
2152 || t.bitfield.disp64);
2153
2154 case anymem:
2155 return (t.bitfield.disp8
2156 || t.bitfield.disp16
2157 || t.bitfield.disp32
40fb9820
L
2158 || t.bitfield.disp64
2159 || t.bitfield.baseindex);
2160
2161 default:
2162 abort ();
2163 }
2cfe26b6
AM
2164
2165 return 0;
40fb9820
L
2166}
2167
7a54636a
L
2168/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2169 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2170
2171static INLINE int
7a54636a
L
2172match_operand_size (const insn_template *t, unsigned int wanted,
2173 unsigned int given)
5c07affc 2174{
3ac21baa
JB
2175 return !((i.types[given].bitfield.byte
2176 && !t->operand_types[wanted].bitfield.byte)
2177 || (i.types[given].bitfield.word
2178 && !t->operand_types[wanted].bitfield.word)
2179 || (i.types[given].bitfield.dword
2180 && !t->operand_types[wanted].bitfield.dword)
2181 || (i.types[given].bitfield.qword
9db83a32
JB
2182 && (!t->operand_types[wanted].bitfield.qword
2183 /* Don't allow 64-bit (memory) operands outside of 64-bit
2184 mode, when they're used where a 64-bit GPR could also
2185 be used. Checking is needed for Intel Syntax only. */
2186 || (intel_syntax
2187 && flag_code != CODE_64BIT
2188 && (t->operand_types[wanted].bitfield.class == Reg
2189 || t->operand_types[wanted].bitfield.class == Accum
2190 || t->opcode_modifier.isstring))))
3ac21baa
JB
2191 || (i.types[given].bitfield.tbyte
2192 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2193}
2194
dd40ce22
L
2195/* Return 1 if there is no conflict in SIMD register between operand
2196 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2197
2198static INLINE int
dd40ce22
L
2199match_simd_size (const insn_template *t, unsigned int wanted,
2200 unsigned int given)
1b54b8d7 2201{
3ac21baa
JB
2202 return !((i.types[given].bitfield.xmmword
2203 && !t->operand_types[wanted].bitfield.xmmword)
2204 || (i.types[given].bitfield.ymmword
2205 && !t->operand_types[wanted].bitfield.ymmword)
2206 || (i.types[given].bitfield.zmmword
260cd341
LC
2207 && !t->operand_types[wanted].bitfield.zmmword)
2208 || (i.types[given].bitfield.tmmword
2209 && !t->operand_types[wanted].bitfield.tmmword));
1b54b8d7
JB
2210}
2211
7a54636a
L
2212/* Return 1 if there is no conflict in any size between operand GIVEN
2213 and opeand WANTED for instruction template T. */
5c07affc
L
2214
2215static INLINE int
dd40ce22
L
2216match_mem_size (const insn_template *t, unsigned int wanted,
2217 unsigned int given)
5c07affc 2218{
7a54636a 2219 return (match_operand_size (t, wanted, given)
3ac21baa 2220 && !((i.types[given].bitfield.unspecified
5273a3cd 2221 && !i.broadcast.type
a5748e0d 2222 && !i.broadcast.bytes
3ac21baa
JB
2223 && !t->operand_types[wanted].bitfield.unspecified)
2224 || (i.types[given].bitfield.fword
2225 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2226 /* For scalar opcode templates to allow register and memory
2227 operands at the same time, some special casing is needed
d6793fa1
JB
2228 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2229 down-conversion vpmov*. */
3528c362 2230 || ((t->operand_types[wanted].bitfield.class == RegSIMD
bc49bfd8
JB
2231 && t->operand_types[wanted].bitfield.byte
2232 + t->operand_types[wanted].bitfield.word
2233 + t->operand_types[wanted].bitfield.dword
2234 + t->operand_types[wanted].bitfield.qword
2235 > !!t->opcode_modifier.broadcast)
3ac21baa
JB
2236 ? (i.types[given].bitfield.xmmword
2237 || i.types[given].bitfield.ymmword
2238 || i.types[given].bitfield.zmmword)
2239 : !match_simd_size(t, wanted, given))));
5c07affc
L
2240}
2241
3ac21baa
JB
2242/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2243 operands for instruction template T, and it has MATCH_REVERSE set if there
2244 is no size conflict on any operands for the template with operands reversed
2245 (and the template allows for reversing in the first place). */
5c07affc 2246
3ac21baa
JB
2247#define MATCH_STRAIGHT 1
2248#define MATCH_REVERSE 2
2249
2250static INLINE unsigned int
d3ce72d0 2251operand_size_match (const insn_template *t)
5c07affc 2252{
3ac21baa 2253 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2254
0cfa3eb3 2255 /* Don't check non-absolute jump instructions. */
5c07affc 2256 if (t->opcode_modifier.jump
0cfa3eb3 2257 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2258 return match;
2259
2260 /* Check memory and accumulator operand size. */
2261 for (j = 0; j < i.operands; j++)
2262 {
3528c362
JB
2263 if (i.types[j].bitfield.class != Reg
2264 && i.types[j].bitfield.class != RegSIMD
255571cd 2265 && t->opcode_modifier.operandconstraint == ANY_SIZE)
5c07affc
L
2266 continue;
2267
bab6aec1 2268 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2269 && !match_operand_size (t, j, j))
5c07affc
L
2270 {
2271 match = 0;
2272 break;
2273 }
2274
3528c362 2275 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2276 && !match_simd_size (t, j, j))
1b54b8d7
JB
2277 {
2278 match = 0;
2279 break;
2280 }
2281
75e5731b 2282 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2283 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2284 {
2285 match = 0;
2286 break;
2287 }
2288
c48dadc9 2289 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2290 {
2291 match = 0;
2292 break;
2293 }
2294 }
2295
3ac21baa 2296 if (!t->opcode_modifier.d)
7b94647a 2297 return match;
5c07affc
L
2298
2299 /* Check reverse. */
aa180741 2300 gas_assert (i.operands >= 2);
5c07affc 2301
f5eb1d70 2302 for (j = 0; j < i.operands; j++)
5c07affc 2303 {
f5eb1d70
JB
2304 unsigned int given = i.operands - j - 1;
2305
aa180741 2306 /* For FMA4 and XOP insns VEX.W controls just the first two
3083f376 2307 register operands. And APX_F insns just swap the two source operands,
2308 with the 3rd one being the destination. */
2309 if (is_cpu (t, CpuFMA4) || is_cpu (t, CpuXOP)
2310 || is_cpu (t, CpuAPX_F))
8bd915b7
JB
2311 given = j < 2 ? 1 - j : j;
2312
bab6aec1 2313 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2314 && !match_operand_size (t, j, given))
7b94647a 2315 return match;
5c07affc 2316
3528c362 2317 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2318 && !match_simd_size (t, j, given))
7b94647a 2319 return match;
dbbc8b7e 2320
75e5731b 2321 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2322 && (!match_operand_size (t, j, given)
2323 || !match_simd_size (t, j, given)))
7b94647a 2324 return match;
dbbc8b7e 2325
f5eb1d70 2326 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
7b94647a 2327 return match;
5c07affc
L
2328 }
2329
3ac21baa 2330 return match | MATCH_REVERSE;
5c07affc
L
2331}
2332
c6fb90c8 2333static INLINE int
40fb9820
L
2334operand_type_match (i386_operand_type overlap,
2335 i386_operand_type given)
2336{
2337 i386_operand_type temp = overlap;
2338
7d5e4556 2339 temp.bitfield.unspecified = 0;
5c07affc
L
2340 temp.bitfield.byte = 0;
2341 temp.bitfield.word = 0;
2342 temp.bitfield.dword = 0;
2343 temp.bitfield.fword = 0;
2344 temp.bitfield.qword = 0;
2345 temp.bitfield.tbyte = 0;
2346 temp.bitfield.xmmword = 0;
c0f3af97 2347 temp.bitfield.ymmword = 0;
43234a1e 2348 temp.bitfield.zmmword = 0;
260cd341 2349 temp.bitfield.tmmword = 0;
0dfbf9d7 2350 if (operand_type_all_zero (&temp))
891edac4 2351 goto mismatch;
40fb9820 2352
6f2f06be 2353 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2354 return 1;
2355
dc1e8a47 2356 mismatch:
a65babc9 2357 i.error = operand_type_mismatch;
891edac4 2358 return 0;
40fb9820
L
2359}
2360
7d5e4556 2361/* If given types g0 and g1 are registers they must be of the same type
10c17abd 2362 unless the expected operand type register overlap is null.
8ee52bcf 2363 Intel syntax sized memory operands are also checked here. */
40fb9820 2364
c6fb90c8 2365static INLINE int
dc821c5f 2366operand_type_register_match (i386_operand_type g0,
40fb9820 2367 i386_operand_type t0,
40fb9820
L
2368 i386_operand_type g1,
2369 i386_operand_type t1)
2370{
bab6aec1 2371 if (g0.bitfield.class != Reg
3528c362 2372 && g0.bitfield.class != RegSIMD
8ee52bcf
JB
2373 && (g0.bitfield.unspecified
2374 || !operand_type_check (g0, anymem)))
40fb9820
L
2375 return 1;
2376
bab6aec1 2377 if (g1.bitfield.class != Reg
3528c362 2378 && g1.bitfield.class != RegSIMD
8ee52bcf
JB
2379 && (g1.bitfield.unspecified
2380 || !operand_type_check (g1, anymem)))
40fb9820
L
2381 return 1;
2382
dc821c5f
JB
2383 if (g0.bitfield.byte == g1.bitfield.byte
2384 && g0.bitfield.word == g1.bitfield.word
2385 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2386 && g0.bitfield.qword == g1.bitfield.qword
2387 && g0.bitfield.xmmword == g1.bitfield.xmmword
2388 && g0.bitfield.ymmword == g1.bitfield.ymmword
2389 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2390 return 1;
2391
c4d09633
JB
2392 /* If expectations overlap in no more than a single size, all is fine. */
2393 g0 = operand_type_and (t0, t1);
2394 if (g0.bitfield.byte
2395 + g0.bitfield.word
2396 + g0.bitfield.dword
2397 + g0.bitfield.qword
2398 + g0.bitfield.xmmword
2399 + g0.bitfield.ymmword
2400 + g0.bitfield.zmmword <= 1)
891edac4
L
2401 return 1;
2402
a65babc9 2403 i.error = register_type_mismatch;
891edac4
L
2404
2405 return 0;
40fb9820
L
2406}
2407
4c692bc7
JB
2408static INLINE unsigned int
2409register_number (const reg_entry *r)
2410{
2411 unsigned int nr = r->reg_num;
2412
2413 if (r->reg_flags & RegRex)
2414 nr += 8;
2415
80d61d8d 2416 if (r->reg_flags & (RegVRex | RegRex2))
200cbe0f
L
2417 nr += 16;
2418
4c692bc7
JB
2419 return nr;
2420}
2421
252b5132 2422static INLINE unsigned int
40fb9820 2423mode_from_disp_size (i386_operand_type t)
252b5132 2424{
b5014f7a 2425 if (t.bitfield.disp8)
40fb9820
L
2426 return 1;
2427 else if (t.bitfield.disp16
a775efc8 2428 || t.bitfield.disp32)
40fb9820
L
2429 return 2;
2430 else
2431 return 0;
252b5132
RH
2432}
2433
2434static INLINE int
65879393 2435fits_in_signed_byte (addressT num)
252b5132 2436{
65879393 2437 return num + 0x80 <= 0xff;
47926f60 2438}
252b5132
RH
2439
2440static INLINE int
65879393 2441fits_in_unsigned_byte (addressT num)
252b5132 2442{
65879393 2443 return num <= 0xff;
47926f60 2444}
252b5132
RH
2445
2446static INLINE int
65879393 2447fits_in_unsigned_word (addressT num)
252b5132 2448{
65879393 2449 return num <= 0xffff;
47926f60 2450}
252b5132
RH
2451
2452static INLINE int
65879393 2453fits_in_signed_word (addressT num)
252b5132 2454{
65879393 2455 return num + 0x8000 <= 0xffff;
47926f60 2456}
2a962e6d 2457
3e73aa7c 2458static INLINE int
65879393 2459fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2460{
2461#ifndef BFD64
2462 return 1;
2463#else
65879393 2464 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2465#endif
2466} /* fits_in_signed_long() */
2a962e6d 2467
3e73aa7c 2468static INLINE int
65879393 2469fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2470{
2471#ifndef BFD64
2472 return 1;
2473#else
65879393 2474 return num <= 0xffffffff;
3e73aa7c
JH
2475#endif
2476} /* fits_in_unsigned_long() */
252b5132 2477
a442cac5
JB
2478static INLINE valueT extend_to_32bit_address (addressT num)
2479{
2480#ifdef BFD64
2481 if (fits_in_unsigned_long(num))
2482 return (num ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2483
2484 if (!fits_in_signed_long (num))
2485 return num & 0xffffffff;
2486#endif
2487
2488 return num;
2489}
2490
43234a1e 2491static INLINE int
b5014f7a 2492fits_in_disp8 (offsetT num)
43234a1e
L
2493{
2494 int shift = i.memshift;
2495 unsigned int mask;
2496
2497 if (shift == -1)
2498 abort ();
2499
2500 mask = (1 << shift) - 1;
2501
2502 /* Return 0 if NUM isn't properly aligned. */
2503 if ((num & mask))
2504 return 0;
2505
2506 /* Check if NUM will fit in 8bit after shift. */
2507 return fits_in_signed_byte (num >> shift);
2508}
2509
a683cc34
SP
2510static INLINE int
2511fits_in_imm4 (offsetT num)
2512{
0ff3b7d0 2513 /* Despite the name, check for imm3 if we're dealing with EVEX. */
eb3f3841
JB
2514 return (num & (i.encoding != encoding_evex
2515 && i.encoding != encoding_egpr ? 0xf : 7)) == num;
a683cc34
SP
2516}
2517
40fb9820 2518static i386_operand_type
e3bb37b5 2519smallest_imm_type (offsetT num)
252b5132 2520{
40fb9820 2521 i386_operand_type t;
7ab9ffdd 2522
0dfbf9d7 2523 operand_type_set (&t, 0);
40fb9820
L
2524 t.bitfield.imm64 = 1;
2525
2526 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2527 {
2528 /* This code is disabled on the 486 because all the Imm1 forms
2529 in the opcode table are slower on the i486. They're the
2530 versions with the implicitly specified single-position
2531 displacement, which has another syntax if you really want to
2532 use that form. */
40fb9820
L
2533 t.bitfield.imm1 = 1;
2534 t.bitfield.imm8 = 1;
2535 t.bitfield.imm8s = 1;
2536 t.bitfield.imm16 = 1;
2537 t.bitfield.imm32 = 1;
2538 t.bitfield.imm32s = 1;
2539 }
2540 else if (fits_in_signed_byte (num))
2541 {
c34d1cc9
JB
2542 if (fits_in_unsigned_byte (num))
2543 t.bitfield.imm8 = 1;
40fb9820
L
2544 t.bitfield.imm8s = 1;
2545 t.bitfield.imm16 = 1;
8170af78
HL
2546 if (flag_code != CODE_64BIT || fits_in_unsigned_long (num))
2547 t.bitfield.imm32 = 1;
40fb9820
L
2548 t.bitfield.imm32s = 1;
2549 }
2550 else if (fits_in_unsigned_byte (num))
2551 {
2552 t.bitfield.imm8 = 1;
2553 t.bitfield.imm16 = 1;
2554 t.bitfield.imm32 = 1;
2555 t.bitfield.imm32s = 1;
2556 }
2557 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2558 {
2559 t.bitfield.imm16 = 1;
8170af78
HL
2560 if (flag_code != CODE_64BIT || fits_in_unsigned_long (num))
2561 t.bitfield.imm32 = 1;
40fb9820
L
2562 t.bitfield.imm32s = 1;
2563 }
2564 else if (fits_in_signed_long (num))
2565 {
8170af78
HL
2566 if (flag_code != CODE_64BIT || fits_in_unsigned_long (num))
2567 t.bitfield.imm32 = 1;
40fb9820
L
2568 t.bitfield.imm32s = 1;
2569 }
2570 else if (fits_in_unsigned_long (num))
2571 t.bitfield.imm32 = 1;
2572
2573 return t;
47926f60 2574}
252b5132 2575
847f7ad4 2576static offsetT
e3bb37b5 2577offset_in_range (offsetT val, int size)
847f7ad4 2578{
508866be 2579 addressT mask;
ba2adb93 2580
847f7ad4
AM
2581 switch (size)
2582 {
508866be
L
2583 case 1: mask = ((addressT) 1 << 8) - 1; break;
2584 case 2: mask = ((addressT) 1 << 16) - 1; break;
3e73aa7c 2585#ifdef BFD64
64965897 2586 case 4: mask = ((addressT) 1 << 32) - 1; break;
3e73aa7c 2587#endif
64965897 2588 case sizeof (val): return val;
47926f60 2589 default: abort ();
847f7ad4
AM
2590 }
2591
4fe51f7d 2592 if ((val & ~mask) != 0 && (-val & ~mask) != 0)
f493c217
AM
2593 as_warn (_("0x%" PRIx64 " shortened to 0x%" PRIx64),
2594 (uint64_t) val, (uint64_t) (val & mask));
847f7ad4 2595
847f7ad4
AM
2596 return val & mask;
2597}
2598
76d3f746
JB
2599static INLINE const char *insn_name (const insn_template *t)
2600{
5c139202 2601 return &i386_mnemonics[t->mnem_off];
76d3f746
JB
2602}
2603
c32fa91d
L
2604enum PREFIX_GROUP
2605{
2606 PREFIX_EXIST = 0,
2607 PREFIX_LOCK,
2608 PREFIX_REP,
04ef582a 2609 PREFIX_DS,
c32fa91d
L
2610 PREFIX_OTHER
2611};
2612
2613/* Returns
2614 a. PREFIX_EXIST if attempting to add a prefix where one from the
2615 same class already exists.
2616 b. PREFIX_LOCK if lock prefix is added.
2617 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2618 d. PREFIX_DS if ds prefix is added.
2619 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2620 */
2621
2622static enum PREFIX_GROUP
e3bb37b5 2623add_prefix (unsigned int prefix)
252b5132 2624{
c32fa91d 2625 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2626 unsigned int q;
252b5132 2627
29b0f896
AM
2628 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2629 && flag_code == CODE_64BIT)
b1905489 2630 {
161a04f6 2631 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2632 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2633 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2634 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2635 ret = PREFIX_EXIST;
b1905489
JB
2636 q = REX_PREFIX;
2637 }
3e73aa7c 2638 else
b1905489
JB
2639 {
2640 switch (prefix)
2641 {
2642 default:
2643 abort ();
2644
b1905489 2645 case DS_PREFIX_OPCODE:
04ef582a
L
2646 ret = PREFIX_DS;
2647 /* Fall through. */
2648 case CS_PREFIX_OPCODE:
b1905489
JB
2649 case ES_PREFIX_OPCODE:
2650 case FS_PREFIX_OPCODE:
2651 case GS_PREFIX_OPCODE:
2652 case SS_PREFIX_OPCODE:
2653 q = SEG_PREFIX;
2654 break;
2655
2656 case REPNE_PREFIX_OPCODE:
2657 case REPE_PREFIX_OPCODE:
c32fa91d
L
2658 q = REP_PREFIX;
2659 ret = PREFIX_REP;
2660 break;
2661
b1905489 2662 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2663 q = LOCK_PREFIX;
2664 ret = PREFIX_LOCK;
b1905489
JB
2665 break;
2666
2667 case FWAIT_OPCODE:
2668 q = WAIT_PREFIX;
2669 break;
2670
2671 case ADDR_PREFIX_OPCODE:
2672 q = ADDR_PREFIX;
2673 break;
2674
2675 case DATA_PREFIX_OPCODE:
2676 q = DATA_PREFIX;
2677 break;
2678 }
2679 if (i.prefix[q] != 0)
c32fa91d 2680 ret = PREFIX_EXIST;
b1905489 2681 }
252b5132 2682
b1905489 2683 if (ret)
252b5132 2684 {
b1905489
JB
2685 if (!i.prefix[q])
2686 ++i.prefixes;
2687 i.prefix[q] |= prefix;
252b5132 2688 }
b1905489
JB
2689 else
2690 as_bad (_("same type of prefix used twice"));
252b5132 2691
252b5132
RH
2692 return ret;
2693}
2694
2695static void
78f12dd3 2696update_code_flag (int value, int check)
eecb386c 2697{
b44fef84
JB
2698 PRINTF_LIKE ((*as_error)) = check ? as_fatal : as_bad;
2699
da5f9eb4 2700 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpu64 )
b44fef84
JB
2701 {
2702 as_error (_("64bit mode not supported on `%s'."),
2703 cpu_arch_name ? cpu_arch_name : default_arch);
2704 return;
2705 }
2706
2707 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2708 {
2709 as_error (_("32bit mode not supported on `%s'."),
2710 cpu_arch_name ? cpu_arch_name : default_arch);
2711 return;
2712 }
78f12dd3 2713
1e9cc1c2 2714 flag_code = (enum flag_code) value;
b44fef84 2715
eecb386c
AM
2716 stackop_size = '\0';
2717}
2718
78f12dd3
L
2719static void
2720set_code_flag (int value)
2721{
2722 update_code_flag (value, 0);
2723}
2724
eecb386c 2725static void
e3bb37b5 2726set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2727{
1e9cc1c2 2728 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2729 if (flag_code != CODE_16BIT)
2730 abort ();
9306ca4a 2731 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2732}
2733
213f15cf
JB
2734static void
2735_set_intel_syntax (int syntax_flag)
2736{
2737 intel_syntax = syntax_flag;
2738
2739 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2740
2741 register_prefix = allow_naked_reg ? "" : "%";
2742}
2743
252b5132 2744static void
e3bb37b5 2745set_intel_syntax (int syntax_flag)
252b5132
RH
2746{
2747 /* Find out if register prefixing is specified. */
2748 int ask_naked_reg = 0;
2749
2750 SKIP_WHITESPACE ();
29b0f896 2751 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2752 {
d02603dc
NC
2753 char *string;
2754 int e = get_symbol_name (&string);
252b5132 2755
47926f60 2756 if (strcmp (string, "prefix") == 0)
252b5132 2757 ask_naked_reg = 1;
47926f60 2758 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2759 ask_naked_reg = -1;
2760 else
d0b47220 2761 as_bad (_("bad argument to syntax directive."));
d02603dc 2762 (void) restore_line_pointer (e);
252b5132
RH
2763 }
2764 demand_empty_rest_of_line ();
c3332e24 2765
252b5132 2766 if (ask_naked_reg == 0)
213f15cf 2767 allow_naked_reg = (syntax_flag
f86103b7 2768 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2769 else
2770 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2771
213f15cf 2772 _set_intel_syntax (syntax_flag);
252b5132
RH
2773}
2774
1efbbeb4
L
2775static void
2776set_intel_mnemonic (int mnemonic_flag)
2777{
e1d4d893 2778 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2779}
2780
db51cc60
L
2781static void
2782set_allow_index_reg (int flag)
2783{
2784 allow_index_reg = flag;
2785}
2786
cb19c032 2787static void
7bab8ab5 2788set_check (int what)
cb19c032 2789{
7bab8ab5
JB
2790 enum check_kind *kind;
2791 const char *str;
2792
2793 if (what)
2794 {
2795 kind = &operand_check;
2796 str = "operand";
2797 }
2798 else
2799 {
2800 kind = &sse_check;
2801 str = "sse";
2802 }
2803
cb19c032
L
2804 SKIP_WHITESPACE ();
2805
2806 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2807 {
d02603dc
NC
2808 char *string;
2809 int e = get_symbol_name (&string);
cb19c032
L
2810
2811 if (strcmp (string, "none") == 0)
7bab8ab5 2812 *kind = check_none;
cb19c032 2813 else if (strcmp (string, "warning") == 0)
7bab8ab5 2814 *kind = check_warning;
cb19c032 2815 else if (strcmp (string, "error") == 0)
7bab8ab5 2816 *kind = check_error;
cb19c032 2817 else
7bab8ab5 2818 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2819 (void) restore_line_pointer (e);
cb19c032
L
2820 }
2821 else
7bab8ab5 2822 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2823
2824 demand_empty_rest_of_line ();
2825}
2826
8a9036a4
L
2827static void
2828check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2829 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2830{
2831#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2832 static const char *arch;
2833
c085ab00 2834 /* Intel MCU is only supported on ELF. */
8a9036a4
L
2835 if (!IS_ELF)
2836 return;
2837
2838 if (!arch)
2839 {
2840 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2841 use default_arch. */
2842 arch = cpu_arch_name;
2843 if (!arch)
2844 arch = default_arch;
2845 }
2846
81486035 2847 /* If we are targeting Intel MCU, we must enable it. */
648d04db
JB
2848 if ((get_elf_backend_data (stdoutput)->elf_machine_code == EM_IAMCU)
2849 == new_flag.bitfield.cpuiamcu)
81486035
L
2850 return;
2851
8a9036a4
L
2852 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2853#endif
2854}
2855
8180707f 2856static void
bd483d21 2857extend_cpu_sub_arch_name (const char *pfx, const char *name)
8180707f
JB
2858{
2859 if (cpu_sub_arch_name)
2860 cpu_sub_arch_name = reconcat (cpu_sub_arch_name, cpu_sub_arch_name,
bd483d21 2861 pfx, name, (const char *) NULL);
8180707f 2862 else
bd483d21
JB
2863 cpu_sub_arch_name = concat (pfx, name, (const char *) NULL);
2864}
2865
2866static void isa_enable (unsigned int idx)
2867{
2868 i386_cpu_flags flags = cpu_flags_or (cpu_arch_flags, cpu_arch[idx].enable);
2869
2870 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2871 {
2872 extend_cpu_sub_arch_name (".", cpu_arch[idx].name);
2873 cpu_arch_flags = flags;
2874 }
2875
2876 cpu_arch_isa_flags = cpu_flags_or (cpu_arch_isa_flags, cpu_arch[idx].enable);
2877}
2878
2879static void isa_disable (unsigned int idx)
2880{
2881 i386_cpu_flags flags
2882 = cpu_flags_and_not (cpu_arch_flags, cpu_arch[idx].disable);
2883
2884 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2885 {
2886 extend_cpu_sub_arch_name (".no", cpu_arch[idx].name);
2887 cpu_arch_flags = flags;
2888 }
2889
2890 cpu_arch_isa_flags
2891 = cpu_flags_and_not (cpu_arch_isa_flags, cpu_arch[idx].disable);
8180707f
JB
2892}
2893
e413e4e9 2894static void
e3bb37b5 2895set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2896{
f68697e8
JB
2897 typedef struct arch_stack_entry
2898 {
2899 const struct arch_stack_entry *prev;
2900 const char *name;
2901 char *sub_name;
2902 i386_cpu_flags flags;
2903 i386_cpu_flags isa_flags;
2904 enum processor_type isa;
2905 enum flag_code flag_code;
4fc85f37 2906 unsigned int vector_size;
f68697e8
JB
2907 char stackop_size;
2908 bool no_cond_jump_promotion;
2909 } arch_stack_entry;
2910 static const arch_stack_entry *arch_stack_top;
dfab07b9
JB
2911 char *s;
2912 int e;
2913 const char *string;
2914 unsigned int j = 0;
f68697e8 2915
47926f60 2916 SKIP_WHITESPACE ();
e413e4e9 2917
dfab07b9
JB
2918 if (is_end_of_line[(unsigned char) *input_line_pointer])
2919 {
2920 as_bad (_("missing cpu architecture"));
2921 input_line_pointer++;
2922 return;
2923 }
2924
2925 e = get_symbol_name (&s);
2926 string = s;
2927
2928 if (strcmp (string, "push") == 0)
e413e4e9 2929 {
dfab07b9 2930 arch_stack_entry *top = XNEW (arch_stack_entry);
e413e4e9 2931
dfab07b9
JB
2932 top->name = cpu_arch_name;
2933 if (cpu_sub_arch_name)
2934 top->sub_name = xstrdup (cpu_sub_arch_name);
2935 else
2936 top->sub_name = NULL;
2937 top->flags = cpu_arch_flags;
2938 top->isa = cpu_arch_isa;
2939 top->isa_flags = cpu_arch_isa_flags;
2940 top->flag_code = flag_code;
4fc85f37 2941 top->vector_size = vector_size;
dfab07b9
JB
2942 top->stackop_size = stackop_size;
2943 top->no_cond_jump_promotion = no_cond_jump_promotion;
2944
2945 top->prev = arch_stack_top;
2946 arch_stack_top = top;
2947
2948 (void) restore_line_pointer (e);
2949 demand_empty_rest_of_line ();
2950 return;
2951 }
2952
2953 if (strcmp (string, "pop") == 0)
2954 {
2955 const arch_stack_entry *top = arch_stack_top;
2956
2957 if (!top)
2958 as_bad (_(".arch stack is empty"));
2959 else if (top->flag_code != flag_code
2960 || top->stackop_size != stackop_size)
2961 {
2962 static const unsigned int bits[] = {
2963 [CODE_16BIT] = 16,
2964 [CODE_32BIT] = 32,
2965 [CODE_64BIT] = 64,
2966 };
2967
2968 as_bad (_("this `.arch pop' requires `.code%u%s' to be in effect"),
2969 bits[top->flag_code],
2970 top->stackop_size == LONG_MNEM_SUFFIX ? "gcc" : "");
2971 }
2972 else
3ce2ebcf 2973 {
dfab07b9
JB
2974 arch_stack_top = top->prev;
2975
2976 cpu_arch_name = top->name;
2977 free (cpu_sub_arch_name);
2978 cpu_sub_arch_name = top->sub_name;
2979 cpu_arch_flags = top->flags;
2980 cpu_arch_isa = top->isa;
2981 cpu_arch_isa_flags = top->isa_flags;
4fc85f37 2982 vector_size = top->vector_size;
dfab07b9
JB
2983 no_cond_jump_promotion = top->no_cond_jump_promotion;
2984
2985 XDELETE (top);
2986 }
2987
2988 (void) restore_line_pointer (e);
2989 demand_empty_rest_of_line ();
2990 return;
2991 }
2992
2993 if (strcmp (string, "default") == 0)
2994 {
2995 if (strcmp (default_arch, "iamcu") == 0)
2996 string = default_arch;
2997 else
2998 {
2999 static const i386_cpu_flags cpu_unknown_flags = CPU_UNKNOWN_FLAGS;
3000
3001 cpu_arch_name = NULL;
3002 free (cpu_sub_arch_name);
3003 cpu_sub_arch_name = NULL;
3004 cpu_arch_flags = cpu_unknown_flags;
dfab07b9
JB
3005 cpu_arch_isa = PROCESSOR_UNKNOWN;
3006 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].enable;
3007 if (!cpu_arch_tune_set)
fb263707 3008 cpu_arch_tune = PROCESSOR_UNKNOWN;
dfab07b9 3009
4fc85f37
JB
3010 vector_size = VSZ_DEFAULT;
3011
dfab07b9
JB
3012 j = ARRAY_SIZE (cpu_arch) + 1;
3013 }
3014 }
3015
3016 for (; j < ARRAY_SIZE (cpu_arch); j++)
3017 {
3018 if (strcmp (string + (*string == '.'), cpu_arch[j].name) == 0
3019 && (*string == '.') == (cpu_arch[j].type == PROCESSOR_NONE))
3020 {
3021 if (*string != '.')
3022 {
3023 check_cpu_arch_compatible (string, cpu_arch[j].enable);
3ce2ebcf 3024
da5f9eb4 3025 if (flag_code == CODE_64BIT && !cpu_arch[j].enable.bitfield.cpu64 )
1d07cfb4
JB
3026 {
3027 as_bad (_("64bit mode not supported on `%s'."),
3028 cpu_arch[j].name);
3029 (void) restore_line_pointer (e);
3030 ignore_rest_of_line ();
3031 return;
3032 }
3033
3034 if (flag_code == CODE_32BIT && !cpu_arch[j].enable.bitfield.cpui386)
3035 {
3036 as_bad (_("32bit mode not supported on `%s'."),
3037 cpu_arch[j].name);
3038 (void) restore_line_pointer (e);
3039 ignore_rest_of_line ();
3040 return;
3041 }
3042
dfab07b9 3043 cpu_arch_name = cpu_arch[j].name;
3ce2ebcf
JB
3044 free (cpu_sub_arch_name);
3045 cpu_sub_arch_name = NULL;
dfab07b9 3046 cpu_arch_flags = cpu_arch[j].enable;
dfab07b9
JB
3047 cpu_arch_isa = cpu_arch[j].type;
3048 cpu_arch_isa_flags = cpu_arch[j].enable;
3ce2ebcf 3049 if (!cpu_arch_tune_set)
fb263707 3050 cpu_arch_tune = cpu_arch_isa;
4fc85f37
JB
3051
3052 vector_size = VSZ_DEFAULT;
3053
dfab07b9
JB
3054 pre_386_16bit_warned = false;
3055 break;
3ce2ebcf 3056 }
f68697e8 3057
dfab07b9
JB
3058 if (cpu_flags_all_zero (&cpu_arch[j].enable))
3059 continue;
f68697e8 3060
bd483d21 3061 isa_enable (j);
f68697e8
JB
3062
3063 (void) restore_line_pointer (e);
4fc85f37
JB
3064
3065 switch (cpu_arch[j].vsz)
3066 {
3067 default:
3068 break;
3069
3070 case vsz_set:
3071#ifdef SVR4_COMMENT_CHARS
3072 if (*input_line_pointer == ':' || *input_line_pointer == '/')
3073#else
3074 if (*input_line_pointer == '/')
3075#endif
3076 {
3077 ++input_line_pointer;
3078 switch (get_absolute_expression ())
3079 {
3080 case 512: vector_size = VSZ512; break;
3081 case 256: vector_size = VSZ256; break;
3082 case 128: vector_size = VSZ128; break;
3083 default:
3084 as_bad (_("Unrecognized vector size specifier"));
3085 ignore_rest_of_line ();
3086 return;
3087 }
3088 break;
3089 }
3090 /* Fall through. */
3091 case vsz_reset:
3092 vector_size = VSZ_DEFAULT;
3093 break;
3094 }
3095
f68697e8
JB
3096 demand_empty_rest_of_line ();
3097 return;
3098 }
dfab07b9 3099 }
3ce2ebcf 3100
dfab07b9
JB
3101 if (startswith (string, ".no") && j >= ARRAY_SIZE (cpu_arch))
3102 {
3103 /* Disable an ISA extension. */
3104 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
3105 if (cpu_arch[j].type == PROCESSOR_NONE
3106 && strcmp (string + 3, cpu_arch[j].name) == 0)
3107 {
bd483d21 3108 isa_disable (j);
e413e4e9 3109
4fc85f37
JB
3110 if (cpu_arch[j].vsz == vsz_set)
3111 vector_size = VSZ_DEFAULT;
3112
dfab07b9
JB
3113 (void) restore_line_pointer (e);
3114 demand_empty_rest_of_line ();
3115 return;
3116 }
e413e4e9 3117 }
dfab07b9
JB
3118
3119 if (j == ARRAY_SIZE (cpu_arch))
3120 as_bad (_("no such architecture: `%s'"), string);
3121
3122 *input_line_pointer = e;
e413e4e9 3123
fddf5b5b
AM
3124 no_cond_jump_promotion = 0;
3125 if (*input_line_pointer == ','
29b0f896 3126 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 3127 {
d02603dc 3128 ++input_line_pointer;
dfab07b9
JB
3129 e = get_symbol_name (&s);
3130 string = s;
fddf5b5b
AM
3131
3132 if (strcmp (string, "nojumps") == 0)
3133 no_cond_jump_promotion = 1;
3134 else if (strcmp (string, "jumps") == 0)
3135 ;
3136 else
3137 as_bad (_("no such architecture modifier: `%s'"), string);
3138
d02603dc 3139 (void) restore_line_pointer (e);
fddf5b5b
AM
3140 }
3141
e413e4e9
AM
3142 demand_empty_rest_of_line ();
3143}
3144
8a9036a4
L
3145enum bfd_architecture
3146i386_arch (void)
3147{
c085ab00 3148 if (cpu_arch_isa == PROCESSOR_IAMCU)
81486035 3149 {
ed049bd6 3150 if (!IS_ELF || flag_code == CODE_64BIT)
81486035
L
3151 as_fatal (_("Intel MCU is 32bit ELF only"));
3152 return bfd_arch_iamcu;
3153 }
8a9036a4
L
3154 else
3155 return bfd_arch_i386;
3156}
3157
b9d79e03 3158unsigned long
7016a5d5 3159i386_mach (void)
b9d79e03 3160{
d34049e8 3161 if (startswith (default_arch, "x86_64"))
8a9036a4 3162 {
c085ab00 3163 if (default_arch[6] == '\0')
8a9036a4 3164 return bfd_mach_x86_64;
351f65ca
L
3165 else
3166 return bfd_mach_x64_32;
8a9036a4 3167 }
5197d474
L
3168 else if (!strcmp (default_arch, "i386")
3169 || !strcmp (default_arch, "iamcu"))
81486035
L
3170 {
3171 if (cpu_arch_isa == PROCESSOR_IAMCU)
3172 {
ed049bd6 3173 if (!IS_ELF)
81486035
L
3174 as_fatal (_("Intel MCU is 32bit ELF only"));
3175 return bfd_mach_i386_iamcu;
3176 }
3177 else
3178 return bfd_mach_i386_i386;
3179 }
b9d79e03 3180 else
2b5d6a91 3181 as_fatal (_("unknown architecture"));
b9d79e03 3182}
b9d79e03 3183\f
99f0fb12
JB
3184#include "opcodes/i386-tbl.h"
3185
d3b01414
JB
3186static void
3187op_lookup (const char *mnemonic)
3188{
3189 i386_op_off_t *pos = str_hash_find (op_hash, mnemonic);
3190
3191 if (pos != NULL)
3192 {
3193 current_templates.start = &i386_optab[pos[0]];
3194 current_templates.end = &i386_optab[pos[1]];
3195 }
3196 else
3197 current_templates.end = current_templates.start = NULL;
3198}
3199
252b5132 3200void
7016a5d5 3201md_begin (void)
252b5132 3202{
86fa6981
L
3203 /* Support pseudo prefixes like {disp32}. */
3204 lex_type ['{'] = LEX_BEGIN_NAME;
3205
47926f60 3206 /* Initialize op_hash hash table. */
629310ab 3207 op_hash = str_htab_create ();
252b5132
RH
3208
3209 {
d3b01414
JB
3210 const i386_op_off_t *cur = i386_op_sets;
3211 const i386_op_off_t *end = cur + ARRAY_SIZE (i386_op_sets) - 1;
3212
3213 for (; cur < end; ++cur)
3214 if (str_hash_insert (op_hash, insn_name (&i386_optab[*cur]), cur, 0))
3215 as_fatal (_("duplicate %s"), insn_name (&i386_optab[*cur]));
252b5132
RH
3216 }
3217
47926f60 3218 /* Initialize reg_hash hash table. */
629310ab 3219 reg_hash = str_htab_create ();
252b5132 3220 {
29b0f896 3221 const reg_entry *regtab;
c3fe08fa 3222 unsigned int regtab_size = i386_regtab_size;
252b5132 3223
c3fe08fa 3224 for (regtab = i386_regtab; regtab_size--; regtab++)
6225c532 3225 {
6288d05f
JB
3226 switch (regtab->reg_type.bitfield.class)
3227 {
3228 case Reg:
34684862
JB
3229 if (regtab->reg_type.bitfield.dword)
3230 {
3231 if (regtab->reg_type.bitfield.instance == Accum)
3232 reg_eax = regtab;
3233 }
3234 else if (regtab->reg_type.bitfield.tbyte)
6288d05f
JB
3235 {
3236 /* There's no point inserting st(<N>) in the hash table, as
3237 parentheses aren't included in register_chars[] anyway. */
3238 if (regtab->reg_type.bitfield.instance != Accum)
3239 continue;
3240 reg_st0 = regtab;
3241 }
3242 break;
3243
5e042380
JB
3244 case SReg:
3245 switch (regtab->reg_num)
3246 {
3247 case 0: reg_es = regtab; break;
3248 case 2: reg_ss = regtab; break;
3249 case 3: reg_ds = regtab; break;
3250 }
3251 break;
3252
6288d05f
JB
3253 case RegMask:
3254 if (!regtab->reg_num)
3255 reg_k0 = regtab;
3256 break;
3257 }
3258
6225c532
JB
3259 if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL)
3260 as_fatal (_("duplicate %s"), regtab->reg_name);
6225c532 3261 }
252b5132
RH
3262 }
3263
47926f60 3264 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3265 {
29b0f896 3266 int c;
d2b1a14d 3267 const char *p;
252b5132
RH
3268
3269 for (c = 0; c < 256; c++)
3270 {
014fbcda 3271 if (ISDIGIT (c) || ISLOWER (c))
252b5132
RH
3272 {
3273 mnemonic_chars[c] = c;
3274 register_chars[c] = c;
3275 operand_chars[c] = c;
3276 }
3882b010 3277 else if (ISUPPER (c))
252b5132 3278 {
3882b010 3279 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3280 register_chars[c] = mnemonic_chars[c];
3281 operand_chars[c] = c;
3282 }
b3983e5f
JB
3283#ifdef SVR4_COMMENT_CHARS
3284 else if (c == '\\' && strchr (i386_comment_chars, '/'))
3285 operand_chars[c] = c;
3286#endif
252b5132 3287
4795cd4a
JB
3288 if (c >= 128)
3289 operand_chars[c] = c;
252b5132
RH
3290 }
3291
c0f3af97 3292 mnemonic_chars['_'] = '_';
791fe849 3293 mnemonic_chars['-'] = '-';
0003779b 3294 mnemonic_chars['.'] = '.';
252b5132 3295
d2b1a14d
JB
3296 for (p = extra_symbol_chars; *p != '\0'; p++)
3297 operand_chars[(unsigned char) *p] = *p;
252b5132
RH
3298 for (p = operand_special_chars; *p != '\0'; p++)
3299 operand_chars[(unsigned char) *p] = *p;
3300 }
3301
fabb73d1 3302 if (object_64bit)
a4447b93 3303 {
ca19b261
KT
3304#if defined (OBJ_COFF) && defined (TE_PE)
3305 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3306 ? 32 : 16);
3307#else
a4447b93 3308 x86_dwarf2_return_column = 16;
ca19b261 3309#endif
61ff971f 3310 x86_cie_data_alignment = -8;
b52c4ee4 3311#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
788b11d9
JB
3312 x86_sframe_cfa_sp_reg = REG_SP;
3313 x86_sframe_cfa_fp_reg = REG_FP;
b52c4ee4 3314#endif
a4447b93
RH
3315 }
3316 else
3317 {
3318 x86_dwarf2_return_column = 8;
3319 x86_cie_data_alignment = -4;
3320 }
e379e5f3
L
3321
3322 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3323 can be turned into BRANCH_PREFIX frag. */
3324 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3325 abort ();
252b5132
RH
3326}
3327
3328void
e3bb37b5 3329i386_print_statistics (FILE *file)
252b5132 3330{
629310ab
ML
3331 htab_print_statistics (file, "i386 opcode", op_hash);
3332 htab_print_statistics (file, "i386 register", reg_hash);
252b5132 3333}
654d6f31
AM
3334
3335void
3336i386_md_end (void)
3337{
3338 htab_delete (op_hash);
3339 htab_delete (reg_hash);
3340}
252b5132 3341\f
252b5132
RH
3342#ifdef DEBUG386
3343
ce8a8b2f 3344/* Debugging routines for md_assemble. */
d3ce72d0 3345static void pte (insn_template *);
40fb9820 3346static void pt (i386_operand_type);
e3bb37b5
L
3347static void pe (expressionS *);
3348static void ps (symbolS *);
252b5132
RH
3349
3350static void
2c703856 3351pi (const char *line, i386_insn *x)
252b5132 3352{
09137c09 3353 unsigned int j;
252b5132
RH
3354
3355 fprintf (stdout, "%s: template ", line);
3356 pte (&x->tm);
09f131f2
JH
3357 fprintf (stdout, " address: base %s index %s scale %x\n",
3358 x->base_reg ? x->base_reg->reg_name : "none",
3359 x->index_reg ? x->index_reg->reg_name : "none",
3360 x->log2_scale_factor);
3361 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3362 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3363 fprintf (stdout, " sib: base %x index %x scale %x\n",
3364 x->sib.base, x->sib.index, x->sib.scale);
3365 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3366 (x->rex & REX_W) != 0,
3367 (x->rex & REX_R) != 0,
3368 (x->rex & REX_X) != 0,
3369 (x->rex & REX_B) != 0);
09137c09 3370 for (j = 0; j < x->operands; j++)
252b5132 3371 {
09137c09
SP
3372 fprintf (stdout, " #%d: ", j + 1);
3373 pt (x->types[j]);
252b5132 3374 fprintf (stdout, "\n");
bab6aec1 3375 if (x->types[j].bitfield.class == Reg
3528c362
JB
3376 || x->types[j].bitfield.class == RegMMX
3377 || x->types[j].bitfield.class == RegSIMD
dd6b8a0b 3378 || x->types[j].bitfield.class == RegMask
00cee14f 3379 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3380 || x->types[j].bitfield.class == RegCR
3381 || x->types[j].bitfield.class == RegDR
dd6b8a0b
JB
3382 || x->types[j].bitfield.class == RegTR
3383 || x->types[j].bitfield.class == RegBND)
09137c09
SP
3384 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3385 if (operand_type_check (x->types[j], imm))
3386 pe (x->op[j].imms);
3387 if (operand_type_check (x->types[j], disp))
3388 pe (x->op[j].disps);
252b5132
RH
3389 }
3390}
3391
3392static void
d3ce72d0 3393pte (insn_template *t)
252b5132 3394{
b933fa4b 3395 static const unsigned char opc_pfx[] = { 0, 0x66, 0xf3, 0xf2 };
441f6aca 3396 static const char *const opc_spc[] = {
0cc78721 3397 NULL, "0f", "0f38", "0f3a", NULL, "evexmap5", "evexmap6", NULL,
441f6aca
JB
3398 "XOP08", "XOP09", "XOP0A",
3399 };
09137c09 3400 unsigned int j;
441f6aca 3401
252b5132 3402 fprintf (stdout, " %d operands ", t->operands);
441f6aca
JB
3403 if (opc_pfx[t->opcode_modifier.opcodeprefix])
3404 fprintf (stdout, "pfx %x ", opc_pfx[t->opcode_modifier.opcodeprefix]);
ddb62495
JB
3405 if (opc_spc[t->opcode_space])
3406 fprintf (stdout, "space %s ", opc_spc[t->opcode_space]);
47926f60 3407 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3408 if (t->extension_opcode != None)
3409 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3410 if (t->opcode_modifier.d)
252b5132 3411 fprintf (stdout, "D");
40fb9820 3412 if (t->opcode_modifier.w)
252b5132
RH
3413 fprintf (stdout, "W");
3414 fprintf (stdout, "\n");
09137c09 3415 for (j = 0; j < t->operands; j++)
252b5132 3416 {
09137c09
SP
3417 fprintf (stdout, " #%d type ", j + 1);
3418 pt (t->operand_types[j]);
252b5132
RH
3419 fprintf (stdout, "\n");
3420 }
3421}
3422
3423static void
e3bb37b5 3424pe (expressionS *e)
252b5132 3425{
24eab124 3426 fprintf (stdout, " operation %d\n", e->X_op);
b8281767
AM
3427 fprintf (stdout, " add_number %" PRId64 " (%" PRIx64 ")\n",
3428 (int64_t) e->X_add_number, (uint64_t) (valueT) e->X_add_number);
252b5132
RH
3429 if (e->X_add_symbol)
3430 {
3431 fprintf (stdout, " add_symbol ");
3432 ps (e->X_add_symbol);
3433 fprintf (stdout, "\n");
3434 }
3435 if (e->X_op_symbol)
3436 {
3437 fprintf (stdout, " op_symbol ");
3438 ps (e->X_op_symbol);
3439 fprintf (stdout, "\n");
3440 }
3441}
3442
3443static void
e3bb37b5 3444ps (symbolS *s)
252b5132
RH
3445{
3446 fprintf (stdout, "%s type %s%s",
3447 S_GET_NAME (s),
3448 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3449 segment_name (S_GET_SEGMENT (s)));
3450}
3451
7b81dfbb 3452static struct type_name
252b5132 3453 {
40fb9820
L
3454 i386_operand_type mask;
3455 const char *name;
252b5132 3456 }
7b81dfbb 3457const type_names[] =
252b5132 3458{
05909f23
JB
3459 { { .bitfield = { .class = Reg, .byte = 1 } }, "r8" },
3460 { { .bitfield = { .class = Reg, .word = 1 } }, "r16" },
3461 { { .bitfield = { .class = Reg, .dword = 1 } }, "r32" },
3462 { { .bitfield = { .class = Reg, .qword = 1 } }, "r64" },
3463 { { .bitfield = { .instance = Accum, .byte = 1 } }, "acc8" },
3464 { { .bitfield = { .instance = Accum, .word = 1 } }, "acc16" },
3465 { { .bitfield = { .instance = Accum, .dword = 1 } }, "acc32" },
3466 { { .bitfield = { .instance = Accum, .qword = 1 } }, "acc64" },
3467 { { .bitfield = { .imm8 = 1 } }, "i8" },
3468 { { .bitfield = { .imm8s = 1 } }, "i8s" },
3469 { { .bitfield = { .imm16 = 1 } }, "i16" },
3470 { { .bitfield = { .imm32 = 1 } }, "i32" },
3471 { { .bitfield = { .imm32s = 1 } }, "i32s" },
3472 { { .bitfield = { .imm64 = 1 } }, "i64" },
3473 { { .bitfield = { .imm1 = 1 } }, "i1" },
3474 { { .bitfield = { .baseindex = 1 } }, "BaseIndex" },
3475 { { .bitfield = { .disp8 = 1 } }, "d8" },
3476 { { .bitfield = { .disp16 = 1 } }, "d16" },
3477 { { .bitfield = { .disp32 = 1 } }, "d32" },
3478 { { .bitfield = { .disp64 = 1 } }, "d64" },
3479 { { .bitfield = { .instance = RegD, .word = 1 } }, "InOutPortReg" },
3480 { { .bitfield = { .instance = RegC, .byte = 1 } }, "ShiftCount" },
3481 { { .bitfield = { .class = RegCR } }, "control reg" },
3482 { { .bitfield = { .class = RegTR } }, "test reg" },
3483 { { .bitfield = { .class = RegDR } }, "debug reg" },
3484 { { .bitfield = { .class = Reg, .tbyte = 1 } }, "FReg" },
3485 { { .bitfield = { .instance = Accum, .tbyte = 1 } }, "FAcc" },
3486 { { .bitfield = { .class = SReg } }, "SReg" },
3487 { { .bitfield = { .class = RegMMX } }, "rMMX" },
3488 { { .bitfield = { .class = RegSIMD, .xmmword = 1 } }, "rXMM" },
3489 { { .bitfield = { .class = RegSIMD, .ymmword = 1 } }, "rYMM" },
3490 { { .bitfield = { .class = RegSIMD, .zmmword = 1 } }, "rZMM" },
3491 { { .bitfield = { .class = RegSIMD, .tmmword = 1 } }, "rTMM" },
3492 { { .bitfield = { .class = RegMask } }, "Mask reg" },
252b5132
RH
3493};
3494
3495static void
40fb9820 3496pt (i386_operand_type t)
252b5132 3497{
40fb9820 3498 unsigned int j;
c6fb90c8 3499 i386_operand_type a;
252b5132 3500
40fb9820 3501 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3502 {
3503 a = operand_type_and (t, type_names[j].mask);
2c703856 3504 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3505 fprintf (stdout, "%s, ", type_names[j].name);
3506 }
252b5132
RH
3507 fflush (stdout);
3508}
3509
3510#endif /* DEBUG386 */
3511\f
252b5132 3512static bfd_reloc_code_real_type
3956db08 3513reloc (unsigned int size,
64e74474
AM
3514 int pcrel,
3515 int sign,
3516 bfd_reloc_code_real_type other)
252b5132 3517{
47926f60 3518 if (other != NO_RELOC)
3956db08 3519 {
91d6fa6a 3520 reloc_howto_type *rel;
3956db08
JB
3521
3522 if (size == 8)
3523 switch (other)
3524 {
64e74474
AM
3525 case BFD_RELOC_X86_64_GOT32:
3526 return BFD_RELOC_X86_64_GOT64;
3527 break;
553d1284
L
3528 case BFD_RELOC_X86_64_GOTPLT64:
3529 return BFD_RELOC_X86_64_GOTPLT64;
3530 break;
64e74474
AM
3531 case BFD_RELOC_X86_64_PLTOFF64:
3532 return BFD_RELOC_X86_64_PLTOFF64;
3533 break;
3534 case BFD_RELOC_X86_64_GOTPC32:
3535 other = BFD_RELOC_X86_64_GOTPC64;
3536 break;
3537 case BFD_RELOC_X86_64_GOTPCREL:
3538 other = BFD_RELOC_X86_64_GOTPCREL64;
3539 break;
3540 case BFD_RELOC_X86_64_TPOFF32:
3541 other = BFD_RELOC_X86_64_TPOFF64;
3542 break;
3543 case BFD_RELOC_X86_64_DTPOFF32:
3544 other = BFD_RELOC_X86_64_DTPOFF64;
3545 break;
3546 default:
3547 break;
3956db08 3548 }
e05278af 3549
8ce3d284 3550#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3551 if (other == BFD_RELOC_SIZE32)
3552 {
3553 if (size == 8)
1ab668bf 3554 other = BFD_RELOC_SIZE64;
8fd4256d 3555 if (pcrel)
1ab668bf
AM
3556 {
3557 as_bad (_("there are no pc-relative size relocations"));
3558 return NO_RELOC;
3559 }
8fd4256d 3560 }
8ce3d284 3561#endif
8fd4256d 3562
e05278af 3563 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3564 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3565 sign = -1;
3566
91d6fa6a
NC
3567 rel = bfd_reloc_type_lookup (stdoutput, other);
3568 if (!rel)
3956db08 3569 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3570 else if (size != bfd_get_reloc_size (rel))
3956db08 3571 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3572 bfd_get_reloc_size (rel),
3956db08 3573 size);
91d6fa6a 3574 else if (pcrel && !rel->pc_relative)
3956db08 3575 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3576 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3577 && !sign)
91d6fa6a 3578 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3579 && sign > 0))
3956db08
JB
3580 as_bad (_("relocated field and relocation type differ in signedness"));
3581 else
3582 return other;
3583 return NO_RELOC;
3584 }
252b5132
RH
3585
3586 if (pcrel)
3587 {
3e73aa7c 3588 if (!sign)
3956db08 3589 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3590 switch (size)
3591 {
3592 case 1: return BFD_RELOC_8_PCREL;
3593 case 2: return BFD_RELOC_16_PCREL;
d258b828 3594 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3595 case 8: return BFD_RELOC_64_PCREL;
252b5132 3596 }
3956db08 3597 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3598 }
3599 else
3600 {
3956db08 3601 if (sign > 0)
e5cb08ac 3602 switch (size)
3e73aa7c
JH
3603 {
3604 case 4: return BFD_RELOC_X86_64_32S;
3605 }
3606 else
3607 switch (size)
3608 {
3609 case 1: return BFD_RELOC_8;
3610 case 2: return BFD_RELOC_16;
3611 case 4: return BFD_RELOC_32;
3612 case 8: return BFD_RELOC_64;
3613 }
3956db08
JB
3614 as_bad (_("cannot do %s %u byte relocation"),
3615 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3616 }
3617
0cc9e1d3 3618 return NO_RELOC;
252b5132
RH
3619}
3620
071c5d81 3621#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
47926f60
KH
3622/* Here we decide which fixups can be adjusted to make them relative to
3623 the beginning of the section instead of the symbol. Basically we need
3624 to make sure that the dynamic relocations are done correctly, so in
3625 some cases we force the original symbol to be used. */
3626
252b5132 3627int
071c5d81 3628tc_i386_fix_adjustable (fixS *fixP)
252b5132 3629{
718ddfc0 3630 if (!IS_ELF)
31312f95
AM
3631 return 1;
3632
a161fe53
AM
3633 /* Don't adjust pc-relative references to merge sections in 64-bit
3634 mode. */
3635 if (use_rela_relocations
3636 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3637 && fixP->fx_pcrel)
252b5132 3638 return 0;
31312f95 3639
8d01d9a9
AJ
3640 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3641 and changed later by validate_fix. */
3642 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3643 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3644 return 0;
3645
8fd4256d
L
3646 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3647 for size relocations. */
3648 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3649 || fixP->fx_r_type == BFD_RELOC_SIZE64
3650 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132 3651 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3652 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3653 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3654 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3655 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3656 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3657 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3658 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3659 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3660 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3661 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3662 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c 3663 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3664 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3665 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3666 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3d5a60de 3667 || fixP->fx_r_type == BFD_RELOC_X86_64_CODE_4_GOTPCRELX
bffbf940
JJ
3668 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3669 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3670 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3671 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940 3672 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
a533c8df 3673 || fixP->fx_r_type == BFD_RELOC_X86_64_CODE_4_GOTTPOFF
5bc71c2a 3674 || fixP->fx_r_type == BFD_RELOC_X86_64_CODE_6_GOTTPOFF
bffbf940 3675 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3676 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3677 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7 3678 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
a533c8df 3679 || fixP->fx_r_type == BFD_RELOC_X86_64_CODE_4_GOTPC32_TLSDESC
67a4f2b7 3680 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3681 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3682 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3683 return 0;
3684 return 1;
3685}
071c5d81 3686#endif
252b5132 3687
a9aabc23
JB
3688static INLINE bool
3689want_disp32 (const insn_template *t)
3690{
3691 return flag_code != CODE_64BIT
3692 || i.prefix[ADDR_PREFIX]
7fc69528 3693 || (t->mnem_off == MN_lea
fe134c65
JB
3694 && (!i.types[1].bitfield.qword
3695 || t->opcode_modifier.size == SIZE32));
a9aabc23
JB
3696}
3697
b4cac588 3698static int
e3bb37b5 3699intel_float_operand (const char *mnemonic)
252b5132 3700{
9306ca4a
JB
3701 /* Note that the value returned is meaningful only for opcodes with (memory)
3702 operands, hence the code here is free to improperly handle opcodes that
3703 have no operands (for better performance and smaller code). */
3704
3705 if (mnemonic[0] != 'f')
3706 return 0; /* non-math */
3707
3708 switch (mnemonic[1])
3709 {
3710 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3711 the fs segment override prefix not currently handled because no
3712 call path can make opcodes without operands get here */
3713 case 'i':
3714 return 2 /* integer op */;
3715 case 'l':
3716 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3717 return 3; /* fldcw/fldenv */
3718 break;
3719 case 'n':
3720 if (mnemonic[2] != 'o' /* fnop */)
3721 return 3; /* non-waiting control op */
3722 break;
3723 case 'r':
3724 if (mnemonic[2] == 's')
3725 return 3; /* frstor/frstpm */
3726 break;
3727 case 's':
3728 if (mnemonic[2] == 'a')
3729 return 3; /* fsave */
3730 if (mnemonic[2] == 't')
3731 {
3732 switch (mnemonic[3])
3733 {
3734 case 'c': /* fstcw */
3735 case 'd': /* fstdw */
3736 case 'e': /* fstenv */
3737 case 's': /* fsts[gw] */
3738 return 3;
3739 }
3740 }
3741 break;
3742 case 'x':
3743 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3744 return 0; /* fxsave/fxrstor are not really math ops */
3745 break;
3746 }
252b5132 3747
9306ca4a 3748 return 1;
252b5132
RH
3749}
3750
9a182d04
JB
3751static INLINE void
3752install_template (const insn_template *t)
3753{
3754 unsigned int l;
3755
3756 i.tm = *t;
3757
a6f3add0
JB
3758 /* Dual VEX/EVEX templates need stripping one of the possible variants. */
3759 if (t->opcode_modifier.vex && t->opcode_modifier.evex)
6177c84d 3760 {
a5e91879
JB
3761 if ((maybe_cpu (t, CpuAVX) || maybe_cpu (t, CpuAVX2)
3762 || maybe_cpu (t, CpuFMA))
3763 && (maybe_cpu (t, CpuAVX512F) || maybe_cpu (t, CpuAVX512VL)))
a6f3add0 3764 {
6177c84d 3765 if (need_evex_encoding (t))
a6f3add0
JB
3766 {
3767 i.tm.opcode_modifier.vex = 0;
a5e91879
JB
3768 i.tm.cpu.bitfield.cpuavx512f = i.tm.cpu_any.bitfield.cpuavx512f;
3769 i.tm.cpu.bitfield.cpuavx512vl = i.tm.cpu_any.bitfield.cpuavx512vl;
a6f3add0
JB
3770 }
3771 else
3772 {
3773 i.tm.opcode_modifier.evex = 0;
a5e91879
JB
3774 if (i.tm.cpu_any.bitfield.cpuavx)
3775 i.tm.cpu.bitfield.cpuavx = 1;
3776 else if (!i.tm.cpu.bitfield.isa)
3777 i.tm.cpu.bitfield.isa = i.tm.cpu_any.bitfield.isa;
3778 else
3779 gas_assert (i.tm.cpu.bitfield.isa == i.tm.cpu_any.bitfield.isa);
a6f3add0
JB
3780 }
3781 }
6177c84d
CL
3782
3783 if ((maybe_cpu (t, CpuCMPCCXADD) || maybe_cpu (t, CpuAMX_TILE)
3784 || maybe_cpu (t, CpuAVX512F) || maybe_cpu (t, CpuAVX512DQ)
3785 || maybe_cpu (t, CpuAVX512BW) || maybe_cpu (t, CpuBMI)
5190fa38 3786 || maybe_cpu (t, CpuBMI2) || maybe_cpu (t, CpuUSER_MSR))
6177c84d
CL
3787 && maybe_cpu (t, CpuAPX_F))
3788 {
3789 if (need_evex_encoding (t))
3790 i.tm.opcode_modifier.vex = 0;
3791 else
3792 i.tm.opcode_modifier.evex = 0;
3793 }
3794 }
a6f3add0 3795
9a182d04
JB
3796 /* Note that for pseudo prefixes this produces a length of 1. But for them
3797 the length isn't interesting at all. */
3798 for (l = 1; l < 4; ++l)
3799 if (!(t->base_opcode >> (8 * l)))
3800 break;
3801
3802 i.opcode_length = l;
3803}
3804
c0f3af97
L
3805/* Build the VEX prefix. */
3806
3807static void
d3ce72d0 3808build_vex_prefix (const insn_template *t)
c0f3af97
L
3809{
3810 unsigned int register_specifier;
c0f3af97 3811 unsigned int vector_length;
03751133 3812 unsigned int w;
c0f3af97
L
3813
3814 /* Check register specifier. */
3815 if (i.vex.register_specifier)
43234a1e
L
3816 {
3817 register_specifier =
3818 ~register_number (i.vex.register_specifier) & 0xf;
3819 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3820 }
c0f3af97
L
3821 else
3822 register_specifier = 0xf;
3823
79f0fa25
L
3824 /* Use 2-byte VEX prefix by swapping destination and source operand
3825 if there are more than 1 register operand. */
3826 if (i.reg_operands > 1
e346d50a 3827 && i.encoding != encoding_vex3
86fa6981 3828 && i.dir_encoding == dir_encoding_default
fa99fab2 3829 && i.operands == i.reg_operands
dbbc8b7e 3830 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
ddb62495 3831 && i.tm.opcode_space == SPACE_0F
dbbc8b7e 3832 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3833 && i.rex == REX_B)
3834 {
67748abf 3835 unsigned int xchg;
fa99fab2 3836
67748abf 3837 swap_2_operands (0, i.operands - 1);
fa99fab2 3838
9c2799c2 3839 gas_assert (i.rm.mode == 3);
fa99fab2
L
3840
3841 i.rex = REX_R;
3842 xchg = i.rm.regmem;
3843 i.rm.regmem = i.rm.reg;
3844 i.rm.reg = xchg;
3845
dbbc8b7e
JB
3846 if (i.tm.opcode_modifier.d)
3847 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
2c735193 3848 ? Opcode_ExtD : Opcode_SIMD_IntD;
dbbc8b7e 3849 else /* Use the next insn. */
9a182d04 3850 install_template (&t[1]);
fa99fab2
L
3851 }
3852
79dec6b7
JB
3853 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3854 are no memory operands and at least 3 register ones. */
3855 if (i.reg_operands >= 3
e346d50a 3856 && i.encoding != encoding_vex3
79dec6b7
JB
3857 && i.reg_operands == i.operands - i.imm_operands
3858 && i.tm.opcode_modifier.vex
3859 && i.tm.opcode_modifier.commutative
7440781b
JB
3860 /* .commutative aliases .staticrounding; disambiguate. */
3861 && !i.tm.opcode_modifier.sae
33740f21
JB
3862 && (i.tm.opcode_modifier.sse2avx
3863 || (optimize > 1 && !i.no_optimize))
79dec6b7
JB
3864 && i.rex == REX_B
3865 && i.vex.register_specifier
3866 && !(i.vex.register_specifier->reg_flags & RegRex))
3867 {
3868 unsigned int xchg = i.operands - i.reg_operands;
79dec6b7 3869
ddb62495 3870 gas_assert (i.tm.opcode_space == SPACE_0F);
79dec6b7
JB
3871 gas_assert (!i.tm.opcode_modifier.sae);
3872 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3873 &i.types[i.operands - 3]));
3874 gas_assert (i.rm.mode == 3);
3875
67748abf 3876 swap_2_operands (xchg, xchg + 1);
79dec6b7
JB
3877
3878 i.rex = 0;
3879 xchg = i.rm.regmem | 8;
3880 i.rm.regmem = ~register_specifier & 0xf;
3881 gas_assert (!(i.rm.regmem & 8));
3882 i.vex.register_specifier += xchg - i.rm.regmem;
3883 register_specifier = ~xchg & 0xf;
3884 }
3885
539f890d
L
3886 if (i.tm.opcode_modifier.vex == VEXScalar)
3887 vector_length = avxscalar;
10c17abd
JB
3888 else if (i.tm.opcode_modifier.vex == VEX256)
3889 vector_length = 1;
d0c2e3ec
JB
3890 else if (dot_insn () && i.tm.opcode_modifier.vex == VEX128)
3891 vector_length = 0;
539f890d 3892 else
10c17abd 3893 {
56522fc5 3894 unsigned int op;
10c17abd 3895
c7213af9
L
3896 /* Determine vector length from the last multi-length vector
3897 operand. */
10c17abd 3898 vector_length = 0;
56522fc5 3899 for (op = t->operands; op--;)
10c17abd
JB
3900 if (t->operand_types[op].bitfield.xmmword
3901 && t->operand_types[op].bitfield.ymmword
3902 && i.types[op].bitfield.ymmword)
3903 {
3904 vector_length = 1;
3905 break;
3906 }
3907 }
c0f3af97 3908
03751133
L
3909 /* Check the REX.W bit and VEXW. */
3910 if (i.tm.opcode_modifier.vexw == VEXWIG)
3911 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
ebe82bfd 3912 else if (i.tm.opcode_modifier.vexw && !(i.rex & REX_W))
03751133
L
3913 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3914 else
931d03b7 3915 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3916
c0f3af97 3917 /* Use 2-byte VEX prefix if possible. */
03751133 3918 if (w == 0
e346d50a 3919 && i.encoding != encoding_vex3
ddb62495 3920 && i.tm.opcode_space == SPACE_0F
c0f3af97
L
3921 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3922 {
3923 /* 2-byte VEX prefix. */
3924 unsigned int r;
3925
3926 i.vex.length = 2;
3927 i.vex.bytes[0] = 0xc5;
3928
3929 /* Check the REX.R bit. */
3930 r = (i.rex & REX_R) ? 0 : 1;
3931 i.vex.bytes[1] = (r << 7
3932 | register_specifier << 3
3933 | vector_length << 2
35648716 3934 | i.tm.opcode_modifier.opcodeprefix);
c0f3af97
L
3935 }
3936 else
3937 {
3938 /* 3-byte VEX prefix. */
f88c9eb0 3939 i.vex.length = 3;
f88c9eb0 3940
ddb62495 3941 switch (i.tm.opcode_space)
5dd85c99 3942 {
441f6aca
JB
3943 case SPACE_0F:
3944 case SPACE_0F38:
3945 case SPACE_0F3A:
8170af78 3946 case SPACE_VEXMAP7:
80de6e00 3947 i.vex.bytes[0] = 0xc4;
7f399153 3948 break;
441f6aca
JB
3949 case SPACE_XOP08:
3950 case SPACE_XOP09:
3951 case SPACE_XOP0A:
f88c9eb0 3952 i.vex.bytes[0] = 0x8f;
7f399153
L
3953 break;
3954 default:
3955 abort ();
f88c9eb0 3956 }
c0f3af97 3957
c0f3af97
L
3958 /* The high 3 bits of the second VEX byte are 1's compliment
3959 of RXB bits from REX. */
d0c2e3ec
JB
3960 i.vex.bytes[1] = ((~i.rex & 7) << 5)
3961 | (!dot_insn () ? i.tm.opcode_space
3962 : i.insn_opcode_space);
c0f3af97 3963
c0f3af97
L
3964 i.vex.bytes[2] = (w << 7
3965 | register_specifier << 3
3966 | vector_length << 2
35648716 3967 | i.tm.opcode_modifier.opcodeprefix);
c0f3af97
L
3968 }
3969}
3970
5b7c81bd 3971static INLINE bool
7a8655d2
JB
3972is_any_vex_encoding (const insn_template *t)
3973{
706ce984 3974 return t->opcode_modifier.vex || t->opcode_modifier.evex;
7a8655d2
JB
3975}
3976
6177c84d
CL
3977/* We can use this function only when the current encoding is evex. */
3978static INLINE bool
3979is_apx_evex_encoding (void)
3980{
dd74a603 3981 return i.rex2 || i.tm.opcode_space == SPACE_EVEXMAP4 || i.has_nf
6177c84d
CL
3982 || (i.vex.register_specifier
3983 && (i.vex.register_specifier->reg_flags & RegRex2));
3984}
3985
80d61d8d
CL
3986static INLINE bool
3987is_apx_rex2_encoding (void)
3988{
ac32c879 3989 return i.rex2 || i.rex2_encoding
3037cefe 3990 || i.tm.opcode_modifier.rex2;
80d61d8d
CL
3991}
3992
a5748e0d
JB
3993static unsigned int
3994get_broadcast_bytes (const insn_template *t, bool diag)
3995{
3996 unsigned int op, bytes;
3997 const i386_operand_type *types;
3998
3999 if (i.broadcast.type)
9b345ce8 4000 return (1 << (t->opcode_modifier.broadcast - 1)) * i.broadcast.type;
a5748e0d
JB
4001
4002 gas_assert (intel_syntax);
4003
4004 for (op = 0; op < t->operands; ++op)
4005 if (t->operand_types[op].bitfield.baseindex)
4006 break;
4007
4008 gas_assert (op < t->operands);
4009
706ce984 4010 if (t->opcode_modifier.evex != EVEXDYN)
a5748e0d
JB
4011 switch (i.broadcast.bytes)
4012 {
4013 case 1:
4014 if (t->operand_types[op].bitfield.word)
4015 return 2;
4016 /* Fall through. */
4017 case 2:
4018 if (t->operand_types[op].bitfield.dword)
4019 return 4;
4020 /* Fall through. */
4021 case 4:
4022 if (t->operand_types[op].bitfield.qword)
4023 return 8;
4024 /* Fall through. */
4025 case 8:
4026 if (t->operand_types[op].bitfield.xmmword)
4027 return 16;
4028 if (t->operand_types[op].bitfield.ymmword)
4029 return 32;
4030 if (t->operand_types[op].bitfield.zmmword)
4031 return 64;
4032 /* Fall through. */
4033 default:
4034 abort ();
4035 }
4036
4037 gas_assert (op + 1 < t->operands);
4038
4039 if (t->operand_types[op + 1].bitfield.xmmword
4040 + t->operand_types[op + 1].bitfield.ymmword
4041 + t->operand_types[op + 1].bitfield.zmmword > 1)
4042 {
4043 types = &i.types[op + 1];
4044 diag = false;
4045 }
4046 else /* Ambiguous - guess with a preference to non-AVX512VL forms. */
4047 types = &t->operand_types[op];
4048
4049 if (types->bitfield.zmmword)
4050 bytes = 64;
4051 else if (types->bitfield.ymmword)
4052 bytes = 32;
4053 else
4054 bytes = 16;
4055
4056 if (diag)
4057 as_warn (_("ambiguous broadcast for `%s', using %u-bit form"),
76d3f746 4058 insn_name (t), bytes * 8);
a5748e0d
JB
4059
4060 return bytes;
4061}
4062
43234a1e
L
4063/* Build the EVEX prefix. */
4064
4065static void
4066build_evex_prefix (void)
4067{
35648716 4068 unsigned int register_specifier, w;
43234a1e
L
4069 rex_byte vrex_used = 0;
4070
4071 /* Check register specifier. */
4072 if (i.vex.register_specifier)
4073 {
4074 gas_assert ((i.vrex & REX_X) == 0);
4075
4076 register_specifier = i.vex.register_specifier->reg_num;
4077 if ((i.vex.register_specifier->reg_flags & RegRex))
4078 register_specifier += 8;
4079 /* The upper 16 registers are encoded in the fourth byte of the
4080 EVEX prefix. */
4081 if (!(i.vex.register_specifier->reg_flags & RegVRex))
4082 i.vex.bytes[3] = 0x8;
4083 register_specifier = ~register_specifier & 0xf;
4084 }
4085 else
4086 {
4087 register_specifier = 0xf;
4088
4089 /* Encode upper 16 vector index register in the fourth byte of
4090 the EVEX prefix. */
4091 if (!(i.vrex & REX_X))
4092 i.vex.bytes[3] = 0x8;
4093 else
4094 vrex_used |= REX_X;
4095 }
4096
43234a1e
L
4097 /* 4 byte EVEX prefix. */
4098 i.vex.length = 4;
4099 i.vex.bytes[0] = 0x62;
4100
43234a1e
L
4101 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
4102 bits from REX. */
ddb62495 4103 gas_assert (i.tm.opcode_space >= SPACE_0F);
5190fa38 4104 gas_assert (i.tm.opcode_space <= SPACE_VEXMAP7);
d0c2e3ec
JB
4105 i.vex.bytes[1] = ((~i.rex & 7) << 5)
4106 | (!dot_insn () ? i.tm.opcode_space
4107 : i.insn_opcode_space);
43234a1e
L
4108
4109 /* The fifth bit of the second EVEX byte is 1's compliment of the
4110 REX_R bit in VREX. */
4111 if (!(i.vrex & REX_R))
4112 i.vex.bytes[1] |= 0x10;
4113 else
4114 vrex_used |= REX_R;
4115
4116 if ((i.reg_operands + i.imm_operands) == i.operands)
4117 {
4118 /* When all operands are registers, the REX_X bit in REX is not
4119 used. We reuse it to encode the upper 16 registers, which is
4120 indicated by the REX_B bit in VREX. The REX_X bit is encoded
4121 as 1's compliment. */
4122 if ((i.vrex & REX_B))
4123 {
4124 vrex_used |= REX_B;
4125 i.vex.bytes[1] &= ~0x40;
4126 }
4127 }
4128
4129 /* EVEX instructions shouldn't need the REX prefix. */
4130 i.vrex &= ~vrex_used;
4131 gas_assert (i.vrex == 0);
4132
6865c043
L
4133 /* Check the REX.W bit and VEXW. */
4134 if (i.tm.opcode_modifier.vexw == VEXWIG)
4135 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
24187fb9 4136 else if (i.tm.opcode_modifier.vexw && !(i.rex & REX_W))
6865c043
L
4137 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
4138 else
931d03b7 4139 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e 4140
43234a1e 4141 /* The third byte of the EVEX prefix. */
35648716
JB
4142 i.vex.bytes[2] = ((w << 7)
4143 | (register_specifier << 3)
4144 | 4 /* Encode the U bit. */
4145 | i.tm.opcode_modifier.opcodeprefix);
43234a1e
L
4146
4147 /* The fourth byte of the EVEX prefix. */
4148 /* The zeroing-masking bit. */
6225c532 4149 if (i.mask.reg && i.mask.zeroing)
43234a1e
L
4150 i.vex.bytes[3] |= 0x80;
4151
4152 /* Don't always set the broadcast bit if there is no RC. */
ca5312a2 4153 if (i.rounding.type == rc_none)
43234a1e
L
4154 {
4155 /* Encode the vector length. */
4156 unsigned int vec_length;
4157
706ce984 4158 if (i.tm.opcode_modifier.evex == EVEXDYN)
e771e7c9 4159 {
56522fc5 4160 unsigned int op;
e771e7c9 4161
c7213af9
L
4162 /* Determine vector length from the last multi-length vector
4163 operand. */
56522fc5 4164 for (op = i.operands; op--;)
e771e7c9
JB
4165 if (i.tm.operand_types[op].bitfield.xmmword
4166 + i.tm.operand_types[op].bitfield.ymmword
4167 + i.tm.operand_types[op].bitfield.zmmword > 1)
4168 {
4169 if (i.types[op].bitfield.zmmword)
c7213af9
L
4170 {
4171 i.tm.opcode_modifier.evex = EVEX512;
4172 break;
4173 }
e771e7c9 4174 else if (i.types[op].bitfield.ymmword)
c7213af9
L
4175 {
4176 i.tm.opcode_modifier.evex = EVEX256;
4177 break;
4178 }
e771e7c9 4179 else if (i.types[op].bitfield.xmmword)
c7213af9
L
4180 {
4181 i.tm.opcode_modifier.evex = EVEX128;
4182 break;
4183 }
9b345ce8
JB
4184 else if ((i.broadcast.type || i.broadcast.bytes)
4185 && op == i.broadcast.operand)
625cbd7a 4186 {
a5748e0d 4187 switch (get_broadcast_bytes (&i.tm, true))
625cbd7a
JB
4188 {
4189 case 64:
4190 i.tm.opcode_modifier.evex = EVEX512;
4191 break;
4192 case 32:
4193 i.tm.opcode_modifier.evex = EVEX256;
4194 break;
4195 case 16:
4196 i.tm.opcode_modifier.evex = EVEX128;
4197 break;
4198 default:
c7213af9 4199 abort ();
625cbd7a 4200 }
c7213af9 4201 break;
625cbd7a 4202 }
e771e7c9 4203 }
c7213af9 4204
56522fc5 4205 if (op >= MAX_OPERANDS)
c7213af9 4206 abort ();
e771e7c9
JB
4207 }
4208
43234a1e
L
4209 switch (i.tm.opcode_modifier.evex)
4210 {
4211 case EVEXLIG: /* LL' is ignored */
4212 vec_length = evexlig << 5;
4213 break;
4214 case EVEX128:
4215 vec_length = 0 << 5;
4216 break;
4217 case EVEX256:
4218 vec_length = 1 << 5;
4219 break;
4220 case EVEX512:
4221 vec_length = 2 << 5;
4222 break;
d0c2e3ec
JB
4223 case EVEX_L3:
4224 if (dot_insn ())
4225 {
4226 vec_length = 3 << 5;
4227 break;
4228 }
4229 /* Fall through. */
43234a1e
L
4230 default:
4231 abort ();
4232 break;
4233 }
4234 i.vex.bytes[3] |= vec_length;
4235 /* Encode the broadcast bit. */
9b345ce8 4236 if (i.broadcast.type || i.broadcast.bytes)
43234a1e
L
4237 i.vex.bytes[3] |= 0x10;
4238 }
ca5312a2
JB
4239 else if (i.rounding.type != saeonly)
4240 i.vex.bytes[3] |= 0x10 | (i.rounding.type << 5);
43234a1e 4241 else
ca5312a2 4242 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e 4243
6225c532
JB
4244 if (i.mask.reg)
4245 i.vex.bytes[3] |= i.mask.reg->reg_num;
43234a1e
L
4246}
4247
80d61d8d
CL
4248/* Build (2 bytes) rex2 prefix.
4249 | D5h |
4250 | m | R4 X4 B4 | W R X B |
4251
4252 Rex2 reuses i.vex as they both encode i.tm.opcode_space in their prefixes.
4253 */
4254static void
4255build_rex2_prefix (void)
4256{
4257 i.vex.length = 2;
4258 i.vex.bytes[0] = 0xd5;
4259 /* For the W R X B bits, the variables of rex prefix will be reused. */
4260 i.vex.bytes[1] = ((i.tm.opcode_space << 7)
4261 | (i.rex2 << 4) | i.rex);
4262}
4263
6177c84d
CL
4264/* Build the EVEX prefix (4-byte) for evex insn
4265 | 62h |
4266 | `R`X`B`R' | B'mmm |
4267 | W | v`v`v`v | `x' | pp |
4268 | z| L'L | b | `v | aaa |
4269*/
4270static void
4271build_apx_evex_prefix (void)
4272{
4273 build_evex_prefix ();
4274 if (i.rex2 & REX_R)
4275 i.vex.bytes[1] &= ~0x10;
4276 if (i.rex2 & REX_B)
4277 i.vex.bytes[1] |= 0x08;
4278 if (i.rex2 & REX_X)
b5247082
CL
4279 {
4280 gas_assert (i.rm.mode != 3);
4281 i.vex.bytes[2] &= ~0x04;
4282 }
6177c84d
CL
4283 if (i.vex.register_specifier
4284 && i.vex.register_specifier->reg_flags & RegRex2)
4285 i.vex.bytes[3] &= ~0x08;
3083f376 4286
4287 /* Encode the NDD bit of the instruction promoted from the legacy
4288 space. */
4289 if (i.vex.register_specifier && i.tm.opcode_space == SPACE_EVEXMAP4)
4290 i.vex.bytes[3] |= 0x10;
dd74a603
CL
4291
4292 /* Encode the NF bit. */
4293 if (i.has_nf)
4294 i.vex.bytes[3] |= 0x04;
6177c84d
CL
4295}
4296
ce705688
JB
4297static void establish_rex (void)
4298{
4299 /* Note that legacy encodings have at most 2 non-immediate operands. */
4300 unsigned int first = i.imm_operands;
4301 unsigned int last = i.operands > first ? i.operands - first - 1 : first;
4302
4303 /* Respect a user-specified REX prefix. */
4304 i.rex |= i.prefix[REX_PREFIX] & REX_OPCODE;
4305
4306 /* For 8 bit registers we need an empty rex prefix. Also if the
4307 instruction already has a prefix, we need to convert old
4308 registers to new ones. */
4309
4310 if ((i.types[first].bitfield.class == Reg && i.types[first].bitfield.byte
80d61d8d
CL
4311 && ((i.op[first].regs->reg_flags & RegRex64) != 0 || i.rex != 0
4312 || i.rex2 != 0))
ce705688 4313 || (i.types[last].bitfield.class == Reg && i.types[last].bitfield.byte
80d61d8d
CL
4314 && ((i.op[last].regs->reg_flags & RegRex64) != 0 || i.rex != 0
4315 || i.rex2 != 0)))
ce705688
JB
4316 {
4317 unsigned int x;
4318
80d61d8d
CL
4319 if (!is_apx_rex2_encoding () && !is_any_vex_encoding(&i.tm))
4320 i.rex |= REX_OPCODE;
ce705688
JB
4321 for (x = first; x <= last; x++)
4322 {
4323 /* Look for 8 bit operand that uses old registers. */
4324 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4325 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4326 {
4327 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4328 /* In case it is "hi" register, give up. */
4329 if (i.op[x].regs->reg_num > 3)
4330 as_bad (_("can't encode register '%s%s' in an "
80d61d8d 4331 "instruction requiring REX/REX2 prefix"),
ce705688
JB
4332 register_prefix, i.op[x].regs->reg_name);
4333
4334 /* Otherwise it is equivalent to the extended register.
4335 Since the encoding doesn't change this is merely
4336 cosmetic cleanup for debug output. */
4337 i.op[x].regs += 8;
4338 }
4339 }
4340 }
4341
192781a3 4342 if (i.rex == 0 && i.rex2 == 0 && (i.rex_encoding || i.rex2_encoding))
ce705688
JB
4343 {
4344 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4345 that uses legacy register. If it is "hi" register, don't add
80d61d8d 4346 rex and rex2 prefix. */
ce705688
JB
4347 unsigned int x;
4348
4349 for (x = first; x <= last; x++)
4350 if (i.types[x].bitfield.class == Reg
4351 && i.types[x].bitfield.byte
4352 && (i.op[x].regs->reg_flags & RegRex64) == 0
4353 && i.op[x].regs->reg_num > 3)
4354 {
4355 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4356 i.rex_encoding = false;
80d61d8d 4357 i.rex2_encoding = false;
ce705688
JB
4358 break;
4359 }
4360
4361 if (i.rex_encoding)
4362 i.rex = REX_OPCODE;
4363 }
4364
192781a3
CL
4365 if (is_apx_rex2_encoding ())
4366 {
4367 build_rex2_prefix ();
4368 /* The individual REX.RXBW bits got consumed. */
4369 i.rex &= REX_OPCODE;
4370 }
4371 else if (i.rex != 0)
4372 add_prefix (REX_OPCODE | i.rex);
ce705688
JB
4373}
4374
65da13b5
L
4375static void
4376process_immext (void)
4377{
4378 expressionS *exp;
4379
c0f3af97 4380 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
4381 which is coded in the same place as an 8-bit immediate field
4382 would be. Here we fake an 8-bit immediate operand from the
4383 opcode suffix stored in tm.extension_opcode.
4384
c1e679ec 4385 AVX instructions also use this encoding, for some of
c0f3af97 4386 3 argument instructions. */
65da13b5 4387
43234a1e 4388 gas_assert (i.imm_operands <= 1
7ab9ffdd 4389 && (i.operands <= 2
7a8655d2 4390 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 4391 && i.operands <= 4)));
65da13b5
L
4392
4393 exp = &im_expressions[i.imm_operands++];
4394 i.op[i.operands].imms = exp;
be1643ff 4395 i.types[i.operands].bitfield.imm8 = 1;
65da13b5
L
4396 i.operands++;
4397 exp->X_op = O_constant;
4398 exp->X_add_number = i.tm.extension_opcode;
4399 i.tm.extension_opcode = None;
4400}
4401
42164a71
L
4402
4403static int
4404check_hle (void)
4405{
742732c7 4406 switch (i.tm.opcode_modifier.prefixok)
42164a71
L
4407 {
4408 default:
4409 abort ();
742732c7
JB
4410 case PrefixLock:
4411 case PrefixNone:
4412 case PrefixNoTrack:
4413 case PrefixRep:
165de32a 4414 as_bad (_("invalid instruction `%s' after `%s'"),
76d3f746 4415 insn_name (&i.tm), i.hle_prefix);
42164a71 4416 return 0;
742732c7 4417 case PrefixHLELock:
42164a71
L
4418 if (i.prefix[LOCK_PREFIX])
4419 return 1;
165de32a 4420 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 4421 return 0;
742732c7 4422 case PrefixHLEAny:
42164a71 4423 return 1;
742732c7 4424 case PrefixHLERelease:
42164a71
L
4425 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4426 {
4427 as_bad (_("instruction `%s' after `xacquire' not allowed"),
76d3f746 4428 insn_name (&i.tm));
42164a71
L
4429 return 0;
4430 }
8dc0818e 4431 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
4432 {
4433 as_bad (_("memory destination needed for instruction `%s'"
76d3f746 4434 " after `xrelease'"), insn_name (&i.tm));
42164a71
L
4435 return 0;
4436 }
4437 return 1;
4438 }
4439}
4440
c8480b58
L
4441/* Encode aligned vector move as unaligned vector move. */
4442
4443static void
4444encode_with_unaligned_vector_move (void)
4445{
4446 switch (i.tm.base_opcode)
4447 {
b3a9fe6f
L
4448 case 0x28: /* Load instructions. */
4449 case 0x29: /* Store instructions. */
c8480b58 4450 /* movaps/movapd/vmovaps/vmovapd. */
ddb62495 4451 if (i.tm.opcode_space == SPACE_0F
c8480b58 4452 && i.tm.opcode_modifier.opcodeprefix <= PREFIX_0X66)
b3a9fe6f 4453 i.tm.base_opcode = 0x10 | (i.tm.base_opcode & 1);
c8480b58 4454 break;
b3a9fe6f
L
4455 case 0x6f: /* Load instructions. */
4456 case 0x7f: /* Store instructions. */
c8480b58 4457 /* movdqa/vmovdqa/vmovdqa64/vmovdqa32. */
ddb62495 4458 if (i.tm.opcode_space == SPACE_0F
c8480b58
L
4459 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0X66)
4460 i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF3;
4461 break;
4462 default:
4463 break;
4464 }
4465}
4466
b6f8c7c4
L
4467/* Try the shortest encoding by shortening operand size. */
4468
4469static void
4470optimize_encoding (void)
4471{
a0a1771e 4472 unsigned int j;
b6f8c7c4 4473
7fc69528 4474 if (i.tm.mnem_off == MN_lea)
fe134c65
JB
4475 {
4476 /* Optimize: -O:
4477 lea symbol, %rN -> mov $symbol, %rN
4478 lea (%rM), %rN -> mov %rM, %rN
4479 lea (,%rM,1), %rN -> mov %rM, %rN
4480
4481 and in 32-bit mode for 16-bit addressing
4482
4483 lea (%rM), %rN -> movzx %rM, %rN
4484
4485 and in 64-bit mode zap 32-bit addressing in favor of using a
4486 32-bit (or less) destination.
4487 */
4488 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4489 {
4490 if (!i.op[1].regs->reg_type.bitfield.word)
4491 i.tm.opcode_modifier.size = SIZE32;
4492 i.prefix[ADDR_PREFIX] = 0;
4493 }
4494
4495 if (!i.index_reg && !i.base_reg)
4496 {
4497 /* Handle:
4498 lea symbol, %rN -> mov $symbol, %rN
4499 */
4500 if (flag_code == CODE_64BIT)
4501 {
4502 /* Don't transform a relocation to a 16-bit one. */
4503 if (i.op[0].disps
4504 && i.op[0].disps->X_op != O_constant
4505 && i.op[1].regs->reg_type.bitfield.word)
4506 return;
4507
4508 if (!i.op[1].regs->reg_type.bitfield.qword
4509 || i.tm.opcode_modifier.size == SIZE32)
4510 {
4511 i.tm.base_opcode = 0xb8;
4512 i.tm.opcode_modifier.modrm = 0;
4513 if (!i.op[1].regs->reg_type.bitfield.word)
4514 i.types[0].bitfield.imm32 = 1;
4515 else
4516 {
4517 i.tm.opcode_modifier.size = SIZE16;
4518 i.types[0].bitfield.imm16 = 1;
4519 }
4520 }
4521 else
4522 {
4523 /* Subject to further optimization below. */
4524 i.tm.base_opcode = 0xc7;
4525 i.tm.extension_opcode = 0;
4526 i.types[0].bitfield.imm32s = 1;
4527 i.types[0].bitfield.baseindex = 0;
4528 }
4529 }
4530 /* Outside of 64-bit mode address and operand sizes have to match if
4531 a relocation is involved, as otherwise we wouldn't (currently) or
4532 even couldn't express the relocation correctly. */
4533 else if (i.op[0].disps
4534 && i.op[0].disps->X_op != O_constant
4535 && ((!i.prefix[ADDR_PREFIX])
4536 != (flag_code == CODE_32BIT
4537 ? i.op[1].regs->reg_type.bitfield.dword
4538 : i.op[1].regs->reg_type.bitfield.word)))
4539 return;
7772f168
JB
4540 /* In 16-bit mode converting LEA with 16-bit addressing and a 32-bit
4541 destination is going to grow encoding size. */
4542 else if (flag_code == CODE_16BIT
4543 && (optimize <= 1 || optimize_for_space)
4544 && !i.prefix[ADDR_PREFIX]
4545 && i.op[1].regs->reg_type.bitfield.dword)
4546 return;
fe134c65
JB
4547 else
4548 {
4549 i.tm.base_opcode = 0xb8;
4550 i.tm.opcode_modifier.modrm = 0;
4551 if (i.op[1].regs->reg_type.bitfield.dword)
4552 i.types[0].bitfield.imm32 = 1;
4553 else
4554 i.types[0].bitfield.imm16 = 1;
4555
4556 if (i.op[0].disps
4557 && i.op[0].disps->X_op == O_constant
4558 && i.op[1].regs->reg_type.bitfield.dword
60cfa10c
L
4559 /* NB: Add () to !i.prefix[ADDR_PREFIX] to silence
4560 GCC 5. */
4561 && (!i.prefix[ADDR_PREFIX]) != (flag_code == CODE_32BIT))
fe134c65
JB
4562 i.op[0].disps->X_add_number &= 0xffff;
4563 }
4564
4565 i.tm.operand_types[0] = i.types[0];
4566 i.imm_operands = 1;
4567 if (!i.op[0].imms)
4568 {
4569 i.op[0].imms = &im_expressions[0];
4570 i.op[0].imms->X_op = O_absent;
4571 }
4572 }
4573 else if (i.op[0].disps
4574 && (i.op[0].disps->X_op != O_constant
4575 || i.op[0].disps->X_add_number))
4576 return;
4577 else
4578 {
4579 /* Handle:
4580 lea (%rM), %rN -> mov %rM, %rN
4581 lea (,%rM,1), %rN -> mov %rM, %rN
4582 lea (%rM), %rN -> movzx %rM, %rN
4583 */
4584 const reg_entry *addr_reg;
4585
4586 if (!i.index_reg && i.base_reg->reg_num != RegIP)
4587 addr_reg = i.base_reg;
4588 else if (!i.base_reg
4589 && i.index_reg->reg_num != RegIZ
4590 && !i.log2_scale_factor)
4591 addr_reg = i.index_reg;
4592 else
4593 return;
4594
4595 if (addr_reg->reg_type.bitfield.word
4596 && i.op[1].regs->reg_type.bitfield.dword)
4597 {
4598 if (flag_code != CODE_32BIT)
4599 return;
ddb62495 4600 i.tm.opcode_space = SPACE_0F;
fe134c65
JB
4601 i.tm.base_opcode = 0xb7;
4602 }
4603 else
4604 i.tm.base_opcode = 0x8b;
4605
4606 if (addr_reg->reg_type.bitfield.dword
4607 && i.op[1].regs->reg_type.bitfield.qword)
4608 i.tm.opcode_modifier.size = SIZE32;
4609
4610 i.op[0].regs = addr_reg;
4611 i.reg_operands = 2;
4612 }
4613
4614 i.mem_operands = 0;
4615 i.disp_operands = 0;
4616 i.prefix[ADDR_PREFIX] = 0;
4617 i.prefix[SEG_PREFIX] = 0;
4618 i.seg[0] = NULL;
4619 }
4620
b6f8c7c4 4621 if (optimize_for_space
7fc69528 4622 && i.tm.mnem_off == MN_test
b6f8c7c4
L
4623 && i.reg_operands == 1
4624 && i.imm_operands == 1
4625 && !i.types[1].bitfield.byte
4626 && i.op[0].imms->X_op == O_constant
7fc69528 4627 && fits_in_imm7 (i.op[0].imms->X_add_number))
b6f8c7c4
L
4628 {
4629 /* Optimize: -Os:
4630 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4631 */
4632 unsigned int base_regnum = i.op[1].regs->reg_num;
4633 if (flag_code == CODE_64BIT || base_regnum < 4)
4634 {
4635 i.types[1].bitfield.byte = 1;
4636 /* Ignore the suffix. */
4637 i.suffix = 0;
80d61d8d
CL
4638 /* Convert to byte registers. 8-bit registers are special,
4639 RegRex64 and non-RegRex64 each have 8 registers. */
7697afb6 4640 if (i.types[1].bitfield.word)
80d61d8d 4641 /* 32 (or 40) 8-bit registers. */
7697afb6 4642 j = 32;
80d61d8d
CL
4643 else if (i.types[1].bitfield.dword)
4644 /* 32 (or 40) 8-bit registers + 32 16-bit registers. */
4645 j = 64;
7697afb6 4646 else
80d61d8d
CL
4647 /* 32 (or 40) 8-bit registers + 32 16-bit registers
4648 + 32 32-bit registers. */
4649 j = 96;
4650
4651 /* In 64-bit mode, the following byte registers cannot be accessed
4652 if using the Rex and Rex2 prefix: AH, BH, CH, DH */
4653 if (!(i.op[1].regs->reg_flags & (RegRex | RegRex2)) && base_regnum < 4)
7697afb6
JB
4654 j += 8;
4655 i.op[1].regs -= j;
b6f8c7c4
L
4656 }
4657 }
4658 else if (flag_code == CODE_64BIT
ddb62495 4659 && i.tm.opcode_space == SPACE_BASE
d3d50934
L
4660 && ((i.types[1].bitfield.qword
4661 && i.reg_operands == 1
b6f8c7c4
L
4662 && i.imm_operands == 1
4663 && i.op[0].imms->X_op == O_constant
507916b8 4664 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4665 && i.tm.extension_opcode == None
4666 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4667 || (fits_in_imm31 (i.op[0].imms->X_add_number)
7fc69528 4668 && (i.tm.base_opcode == 0x24
b6f8c7c4
L
4669 || (i.tm.base_opcode == 0x80
4670 && i.tm.extension_opcode == 0x4)
7fc69528
JB
4671 || i.tm.mnem_off == MN_test
4672 || ((i.tm.base_opcode | 1) == 0xc7
b8364fa7
JB
4673 && i.tm.extension_opcode == 0x0)))
4674 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4675 && i.tm.base_opcode == 0x83
4676 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4677 || (i.types[0].bitfield.qword
4678 && ((i.reg_operands == 2
4679 && i.op[0].regs == i.op[1].regs
7fc69528
JB
4680 && (i.tm.mnem_off == MN_xor
4681 || i.tm.mnem_off == MN_sub))
4682 || i.tm.mnem_off == MN_clr))))
b6f8c7c4
L
4683 {
4684 /* Optimize: -O:
4685 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4686 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4687 testq $imm31, %r64 -> testl $imm31, %r32
4688 xorq %r64, %r64 -> xorl %r32, %r32
4689 subq %r64, %r64 -> subl %r32, %r32
4690 movq $imm31, %r64 -> movl $imm31, %r32
4691 movq $imm32, %r64 -> movl $imm32, %r32
4692 */
04784e33
JB
4693 i.tm.opcode_modifier.size = SIZE32;
4694 if (i.imm_operands)
4695 {
4696 i.types[0].bitfield.imm32 = 1;
4697 i.types[0].bitfield.imm32s = 0;
4698 i.types[0].bitfield.imm64 = 0;
4699 }
4700 else
4701 {
4702 i.types[0].bitfield.dword = 1;
4703 i.types[0].bitfield.qword = 0;
4704 }
4705 i.types[1].bitfield.dword = 1;
4706 i.types[1].bitfield.qword = 0;
7fc69528 4707 if (i.tm.mnem_off == MN_mov || i.tm.mnem_off == MN_lea)
b6f8c7c4
L
4708 {
4709 /* Handle
4710 movq $imm31, %r64 -> movl $imm31, %r32
4711 movq $imm32, %r64 -> movl $imm32, %r32
4712 */
4713 i.tm.operand_types[0].bitfield.imm32 = 1;
4714 i.tm.operand_types[0].bitfield.imm32s = 0;
4715 i.tm.operand_types[0].bitfield.imm64 = 0;
507916b8 4716 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4717 {
4718 /* Handle
4719 movq $imm31, %r64 -> movl $imm31, %r32
4720 */
507916b8 4721 i.tm.base_opcode = 0xb8;
b6f8c7c4 4722 i.tm.extension_opcode = None;
507916b8 4723 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4724 i.tm.opcode_modifier.modrm = 0;
4725 }
4726 }
4727 }
c73a37b2
JB
4728 else if (i.reg_operands == 3
4729 && i.op[0].regs == i.op[1].regs
4730 && i.encoding != encoding_evex
4731 && (i.tm.mnem_off == MN_xor
4732 || i.tm.mnem_off == MN_sub))
4733 {
4734 /* Optimize: -O:
4735 xorb %rNb, %rNb, %rMb -> xorl %rMd, %rMd
4736 xorw %rNw, %rNw, %rMw -> xorl %rMd, %rMd
4737 xorl %rNd, %rNd, %rMd -> xorl %rMd, %rMd
4738 xorq %rN, %rN, %rM -> xorl %rMd, %rMd
4739 subb %rNb, %rNb, %rMb -> subl %rMd, %rMd
4740 subw %rNw, %rNw, %rMw -> subl %rMd, %rMd
4741 subl %rNd, %rNd, %rMd -> subl %rMd, %rMd
4742 subq %rN, %rN, %rM -> subl %rMd, %rMd
4743 */
4744 i.tm.opcode_space = SPACE_BASE;
4745 i.tm.opcode_modifier.evex = 0;
4746 i.tm.opcode_modifier.size = SIZE32;
4747 i.types[0].bitfield.byte = 0;
4748 i.types[0].bitfield.word = 0;
4749 i.types[0].bitfield.dword = 1;
4750 i.types[0].bitfield.qword = 0;
4751 i.op[0].regs = i.op[2].regs;
4752 i.types[1] = i.types[0];
4753 i.op[1].regs = i.op[2].regs;
4754 i.reg_operands = 2;
4755 }
5641ec01
JB
4756 else if (optimize > 1
4757 && !optimize_for_space
4758 && i.reg_operands == 2
4759 && i.op[0].regs == i.op[1].regs
7fc69528 4760 && (i.tm.mnem_off == MN_and || i.tm.mnem_off == MN_or)
5641ec01
JB
4761 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4762 {
4763 /* Optimize: -O2:
4764 andb %rN, %rN -> testb %rN, %rN
4765 andw %rN, %rN -> testw %rN, %rN
4766 andq %rN, %rN -> testq %rN, %rN
4767 orb %rN, %rN -> testb %rN, %rN
4768 orw %rN, %rN -> testw %rN, %rN
4769 orq %rN, %rN -> testq %rN, %rN
4770
4771 and outside of 64-bit mode
4772
4773 andl %rN, %rN -> testl %rN, %rN
4774 orl %rN, %rN -> testl %rN, %rN
4775 */
4776 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4777 }
ad2f4436
JB
4778 else if (i.tm.base_opcode == 0xba
4779 && i.tm.opcode_space == SPACE_0F
4780 && i.reg_operands == 1
4781 && i.op[0].imms->X_op == O_constant
4782 && i.op[0].imms->X_add_number >= 0)
4783 {
4784 /* Optimize: -O:
4785 btw $n, %rN -> btl $n, %rN (outside of 16-bit mode, n < 16)
4786 btq $n, %rN -> btl $n, %rN (in 64-bit mode, n < 32, N < 8)
4787 btl $n, %rN -> btw $n, %rN (in 16-bit mode, n < 16)
4788
4789 With <BT> one of bts, btr, and bts also:
4790 <BT>w $n, %rN -> btl $n, %rN (in 32-bit mode, n < 16)
4791 <BT>l $n, %rN -> btw $n, %rN (in 16-bit mode, n < 16)
4792 */
4793 switch (flag_code)
4794 {
4795 case CODE_64BIT:
4796 if (i.tm.extension_opcode != 4)
4797 break;
4798 if (i.types[1].bitfield.qword
4799 && i.op[0].imms->X_add_number < 32
4800 && !(i.op[1].regs->reg_flags & RegRex))
4801 i.tm.opcode_modifier.size = SIZE32;
4802 /* Fall through. */
4803 case CODE_32BIT:
4804 if (i.types[1].bitfield.word
4805 && i.op[0].imms->X_add_number < 16)
4806 i.tm.opcode_modifier.size = SIZE32;
4807 break;
4808 case CODE_16BIT:
4809 if (i.op[0].imms->X_add_number < 16)
4810 i.tm.opcode_modifier.size = SIZE16;
4811 break;
4812 }
4813 }
99112332 4814 else if (i.reg_operands == 3
b6f8c7c4
L
4815 && i.op[0].regs == i.op[1].regs
4816 && !i.types[2].bitfield.xmmword
4817 && (i.tm.opcode_modifier.vex
6225c532 4818 || ((!i.mask.reg || i.mask.zeroing)
706ce984 4819 && i.tm.opcode_modifier.evex
e346d50a 4820 && (i.encoding != encoding_evex
dd22218c 4821 || cpu_arch_isa_flags.bitfield.cpuavx512vl
734dfd1c 4822 || is_cpu (&i.tm, CpuAVX512VL)
7091c612 4823 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4824 && i.types[2].bitfield.ymmword))))
ddb62495 4825 && i.tm.opcode_space == SPACE_0F
5844ccaa
JB
4826 && ((i.tm.base_opcode | 2) == 0x57
4827 || i.tm.base_opcode == 0xdf
4828 || i.tm.base_opcode == 0xef
4829 || (i.tm.base_opcode | 3) == 0xfb
4830 || i.tm.base_opcode == 0x42
4831 || i.tm.base_opcode == 0x47))
b6f8c7c4 4832 {
99112332 4833 /* Optimize: -O1:
8305403a
L
4834 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4835 vpsubq and vpsubw:
b6f8c7c4
L
4836 EVEX VOP %zmmM, %zmmM, %zmmN
4837 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4838 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4839 EVEX VOP %ymmM, %ymmM, %ymmN
4840 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4841 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4842 VEX VOP %ymmM, %ymmM, %ymmN
4843 -> VEX VOP %xmmM, %xmmM, %xmmN
4844 VOP, one of vpandn and vpxor:
4845 VEX VOP %ymmM, %ymmM, %ymmN
4846 -> VEX VOP %xmmM, %xmmM, %xmmN
4847 VOP, one of vpandnd and vpandnq:
4848 EVEX VOP %zmmM, %zmmM, %zmmN
4849 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4850 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4851 EVEX VOP %ymmM, %ymmM, %ymmN
4852 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4853 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4854 VOP, one of vpxord and vpxorq:
4855 EVEX VOP %zmmM, %zmmM, %zmmN
4856 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4857 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4858 EVEX VOP %ymmM, %ymmM, %ymmN
4859 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4860 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4861 VOP, one of kxord and kxorq:
4862 VEX VOP %kM, %kM, %kN
4863 -> VEX kxorw %kM, %kM, %kN
4864 VOP, one of kandnd and kandnq:
4865 VEX VOP %kM, %kM, %kN
4866 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4867 */
706ce984 4868 if (i.tm.opcode_modifier.evex)
b6f8c7c4 4869 {
e346d50a 4870 if (i.encoding != encoding_evex)
b6f8c7c4
L
4871 {
4872 i.tm.opcode_modifier.vex = VEX128;
4873 i.tm.opcode_modifier.vexw = VEXW0;
4874 i.tm.opcode_modifier.evex = 0;
e346d50a 4875 i.encoding = encoding_vex;
a6f3add0 4876 i.mask.reg = NULL;
b6f8c7c4 4877 }
7b1d7ca1 4878 else if (optimize > 1)
dd22218c
L
4879 i.tm.opcode_modifier.evex = EVEX128;
4880 else
4881 return;
b6f8c7c4 4882 }
f74a6307 4883 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86 4884 {
35648716 4885 i.tm.opcode_modifier.opcodeprefix = PREFIX_NONE;
1424ad86
JB
4886 i.tm.opcode_modifier.vexw = VEXW0;
4887 }
b6f8c7c4
L
4888 else
4889 i.tm.opcode_modifier.vex = VEX128;
4890
4891 if (i.tm.opcode_modifier.vex)
4892 for (j = 0; j < 3; j++)
4893 {
4894 i.types[j].bitfield.xmmword = 1;
4895 i.types[j].bitfield.ymmword = 0;
4896 }
4897 }
e346d50a 4898 else if (i.encoding != encoding_evex
eb3f3841 4899 && i.encoding != encoding_egpr
97ed31ae 4900 && !i.types[0].bitfield.zmmword
392a5972 4901 && !i.types[1].bitfield.zmmword
6225c532 4902 && !i.mask.reg
9b345ce8 4903 && !i.broadcast.type
a5748e0d 4904 && !i.broadcast.bytes
706ce984 4905 && i.tm.opcode_modifier.evex
35648716
JB
4906 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x6f
4907 || (i.tm.base_opcode & ~4) == 0xdb
4908 || (i.tm.base_opcode & ~4) == 0xeb)
97ed31ae
L
4909 && i.tm.extension_opcode == None)
4910 {
4911 /* Optimize: -O1:
4912 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4913 vmovdqu32 and vmovdqu64:
4914 EVEX VOP %xmmM, %xmmN
4915 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4916 EVEX VOP %ymmM, %ymmN
4917 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4918 EVEX VOP %xmmM, mem
4919 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4920 EVEX VOP %ymmM, mem
4921 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4922 EVEX VOP mem, %xmmN
4923 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4924 EVEX VOP mem, %ymmN
4925 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4926 VOP, one of vpand, vpandn, vpor, vpxor:
4927 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4928 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4929 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4930 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4931 EVEX VOP{d,q} mem, %xmmM, %xmmN
4932 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4933 EVEX VOP{d,q} mem, %ymmM, %ymmN
4934 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4935 */
a0a1771e 4936 for (j = 0; j < i.operands; j++)
392a5972
L
4937 if (operand_type_check (i.types[j], disp)
4938 && i.op[j].disps->X_op == O_constant)
4939 {
4940 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4941 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4942 bytes, we choose EVEX Disp8 over VEX Disp32. */
4943 int evex_disp8, vex_disp8;
4944 unsigned int memshift = i.memshift;
4945 offsetT n = i.op[j].disps->X_add_number;
4946
4947 evex_disp8 = fits_in_disp8 (n);
4948 i.memshift = 0;
4949 vex_disp8 = fits_in_disp8 (n);
4950 if (evex_disp8 != vex_disp8)
4951 {
4952 i.memshift = memshift;
4953 return;
4954 }
4955
4956 i.types[j].bitfield.disp8 = vex_disp8;
4957 break;
4958 }
35648716
JB
4959 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x6f
4960 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2)
4961 i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF3;
97ed31ae
L
4962 i.tm.opcode_modifier.vex
4963 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4964 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7 4965 /* VPAND, VPOR, and VPXOR are commutative. */
35648716 4966 if (i.reg_operands == 3 && i.tm.base_opcode != 0xdf)
79dec6b7 4967 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4968 i.tm.opcode_modifier.evex = 0;
4969 i.tm.opcode_modifier.masking = 0;
a0a1771e 4970 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4971 i.tm.opcode_modifier.disp8memshift = 0;
4972 i.memshift = 0;
a0a1771e
JB
4973 if (j < i.operands)
4974 i.types[j].bitfield.disp8
4975 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4976 }
b5c37946
SJ
4977 else if (optimize_for_space
4978 && i.tm.base_opcode == 0x29
4979 && i.tm.opcode_space == SPACE_0F38
4980 && i.operands == i.reg_operands
4981 && i.op[0].regs == i.op[1].regs
4982 && (!i.tm.opcode_modifier.vex
4983 || !(i.op[0].regs->reg_flags & RegRex))
706ce984 4984 && !i.tm.opcode_modifier.evex)
b5c37946
SJ
4985 {
4986 /* Optimize: -Os:
4987 pcmpeqq %xmmN, %xmmN -> pcmpeqd %xmmN, %xmmN
4988 vpcmpeqq %xmmN, %xmmN, %xmmM -> vpcmpeqd %xmmN, %xmmN, %xmmM (N < 8)
4989 vpcmpeqq %ymmN, %ymmN, %ymmM -> vpcmpeqd %ymmN, %ymmN, %ymmM (N < 8)
4990 */
4991 i.tm.opcode_space = SPACE_0F;
4992 i.tm.base_opcode = 0x76;
4993 }
4994 else if (((i.tm.base_opcode >= 0x64
4995 && i.tm.base_opcode <= 0x66
4996 && i.tm.opcode_space == SPACE_0F)
4997 || (i.tm.base_opcode == 0x37
4998 && i.tm.opcode_space == SPACE_0F38))
4999 && i.operands == i.reg_operands
5000 && i.op[0].regs == i.op[1].regs
706ce984 5001 && !i.tm.opcode_modifier.evex)
b5c37946
SJ
5002 {
5003 /* Optimize: -O:
5004 pcmpgt[bwd] %mmN, %mmN -> pxor %mmN, %mmN
5005 pcmpgt[bwdq] %xmmN, %xmmN -> pxor %xmmN, %xmmN
5006 vpcmpgt[bwdq] %xmmN, %xmmN, %xmmM -> vpxor %xmmN, %xmmN, %xmmM (N < 8)
5007 vpcmpgt[bwdq] %xmmN, %xmmN, %xmmM -> vpxor %xmm0, %xmm0, %xmmM (N > 7)
5008 vpcmpgt[bwdq] %ymmN, %ymmN, %ymmM -> vpxor %ymmN, %ymmN, %ymmM (N < 8)
5009 vpcmpgt[bwdq] %ymmN, %ymmN, %ymmM -> vpxor %ymm0, %ymm0, %ymmM (N > 7)
5010 */
5011 i.tm.opcode_space = SPACE_0F;
5012 i.tm.base_opcode = 0xef;
5013 if (i.tm.opcode_modifier.vex && (i.op[0].regs->reg_flags & RegRex))
5014 {
5015 if (i.operands == 2)
5016 {
5017 gas_assert (i.tm.opcode_modifier.sse2avx);
5018
5019 i.operands = 3;
5020 i.reg_operands = 3;
5021 i.tm.operands = 3;
5022
5023 i.op[2].regs = i.op[0].regs;
5024 i.types[2] = i.types[0];
5025 i.flags[2] = i.flags[0];
5026 i.tm.operand_types[2] = i.tm.operand_types[0];
5027
5028 i.tm.opcode_modifier.sse2avx = 0;
5029 }
5030 i.op[0].regs -= i.op[0].regs->reg_num + 8;
5031 i.op[1].regs = i.op[0].regs;
5032 }
5033 }
5034 else if (optimize_for_space
5035 && i.tm.base_opcode == 0x59
5036 && i.tm.opcode_space == SPACE_0F38
5037 && i.operands == i.reg_operands
5038 && i.tm.opcode_modifier.vex
5039 && !(i.op[0].regs->reg_flags & RegRex)
5040 && i.op[0].regs->reg_type.bitfield.xmmword
e346d50a 5041 && i.encoding != encoding_vex3)
b5c37946
SJ
5042 {
5043 /* Optimize: -Os:
5044 vpbroadcastq %xmmN, %xmmM -> vpunpcklqdq %xmmN, %xmmN, %xmmM (N < 8)
5045 */
5046 i.tm.opcode_space = SPACE_0F;
5047 i.tm.base_opcode = 0x6c;
f2a3a881 5048 i.tm.opcode_modifier.vexvvvv = VexVVVV_SRC1;
b5c37946
SJ
5049
5050 ++i.operands;
5051 ++i.reg_operands;
5052 ++i.tm.operands;
5053
5054 i.op[2].regs = i.op[0].regs;
5055 i.types[2] = i.types[0];
5056 i.flags[2] = i.flags[0];
5057 i.tm.operand_types[2] = i.tm.operand_types[0];
5058
5059 swap_2_operands (1, 2);
5060 }
b6f8c7c4
L
5061}
5062
1e7dd4a0
JB
5063static void
5064s_noopt (int dummy ATTRIBUTE_UNUSED)
5065{
5066 if (!is_it_end_of_statement ())
5067 as_warn (_("`.noopt' arguments ignored"));
5068
5069 optimize = 0;
5070 optimize_for_space = 0;
5071
5072 ignore_rest_of_line ();
5073}
5074
ae531041
L
5075/* Return non-zero for load instruction. */
5076
5077static int
5078load_insn_p (void)
5079{
5080 unsigned int dest;
5081 int any_vex_p = is_any_vex_encoding (&i.tm);
5082 unsigned int base_opcode = i.tm.base_opcode | 1;
5083
5084 if (!any_vex_p)
5085 {
ef07be45
CL
5086 /* Anysize insns: lea, invlpg, clflush, prefetch*, bndmk, bndcl, bndcu,
5087 bndcn, bndstx, bndldx, clflushopt, clwb, cldemote. */
255571cd 5088 if (i.tm.opcode_modifier.operandconstraint == ANY_SIZE)
ae531041
L
5089 return 0;
5090
389d00a5 5091 /* pop. */
6d86a545 5092 if (i.tm.mnem_off == MN_pop)
389d00a5
JB
5093 return 1;
5094 }
5095
ddb62495 5096 if (i.tm.opcode_space == SPACE_BASE)
389d00a5
JB
5097 {
5098 /* popf, popa. */
5099 if (i.tm.base_opcode == 0x9d
a09f656b 5100 || i.tm.base_opcode == 0x61)
ae531041
L
5101 return 1;
5102
5103 /* movs, cmps, lods, scas. */
5104 if ((i.tm.base_opcode | 0xb) == 0xaf)
5105 return 1;
5106
a09f656b 5107 /* outs, xlatb. */
5108 if (base_opcode == 0x6f
5109 || i.tm.base_opcode == 0xd7)
ae531041 5110 return 1;
a09f656b 5111 /* NB: For AMD-specific insns with implicit memory operands,
5112 they're intentionally not covered. */
ae531041
L
5113 }
5114
5115 /* No memory operand. */
5116 if (!i.mem_operands)
5117 return 0;
5118
5119 if (any_vex_p)
5120 {
7fc69528 5121 if (i.tm.mnem_off == MN_vldmxcsr)
ae531041
L
5122 return 1;
5123 }
ddb62495 5124 else if (i.tm.opcode_space == SPACE_BASE)
ae531041
L
5125 {
5126 /* test, not, neg, mul, imul, div, idiv. */
aa4c197d 5127 if (base_opcode == 0xf7 && i.tm.extension_opcode != 1)
ae531041
L
5128 return 1;
5129
5130 /* inc, dec. */
5131 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
5132 return 1;
5133
5134 /* add, or, adc, sbb, and, sub, xor, cmp. */
5135 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
5136 return 1;
5137
ae531041 5138 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
aa4c197d 5139 if ((base_opcode == 0xc1 || (base_opcode | 2) == 0xd3)
ae531041
L
5140 && i.tm.extension_opcode != 6)
5141 return 1;
5142
ae531041 5143 /* Check for x87 instructions. */
aa4c197d 5144 if ((base_opcode | 6) == 0xdf)
ae531041
L
5145 {
5146 /* Skip fst, fstp, fstenv, fstcw. */
5147 if (i.tm.base_opcode == 0xd9
5148 && (i.tm.extension_opcode == 2
5149 || i.tm.extension_opcode == 3
5150 || i.tm.extension_opcode == 6
5151 || i.tm.extension_opcode == 7))
5152 return 0;
5153
5154 /* Skip fisttp, fist, fistp, fstp. */
5155 if (i.tm.base_opcode == 0xdb
5156 && (i.tm.extension_opcode == 1
5157 || i.tm.extension_opcode == 2
5158 || i.tm.extension_opcode == 3
5159 || i.tm.extension_opcode == 7))
5160 return 0;
5161
5162 /* Skip fisttp, fst, fstp, fsave, fstsw. */
5163 if (i.tm.base_opcode == 0xdd
5164 && (i.tm.extension_opcode == 1
5165 || i.tm.extension_opcode == 2
5166 || i.tm.extension_opcode == 3
5167 || i.tm.extension_opcode == 6
5168 || i.tm.extension_opcode == 7))
5169 return 0;
5170
5171 /* Skip fisttp, fist, fistp, fbstp, fistp. */
5172 if (i.tm.base_opcode == 0xdf
5173 && (i.tm.extension_opcode == 1
5174 || i.tm.extension_opcode == 2
5175 || i.tm.extension_opcode == 3
5176 || i.tm.extension_opcode == 6
5177 || i.tm.extension_opcode == 7))
5178 return 0;
5179
5180 return 1;
5181 }
5182 }
ddb62495 5183 else if (i.tm.opcode_space == SPACE_0F)
389d00a5
JB
5184 {
5185 /* bt, bts, btr, btc. */
5186 if (i.tm.base_opcode == 0xba
aa4c197d 5187 && (i.tm.extension_opcode | 3) == 7)
389d00a5
JB
5188 return 1;
5189
5190 /* cmpxchg8b, cmpxchg16b, xrstors, vmptrld. */
5191 if (i.tm.base_opcode == 0xc7
5192 && i.tm.opcode_modifier.opcodeprefix == PREFIX_NONE
5193 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3
5194 || i.tm.extension_opcode == 6))
5195 return 1;
5196
5197 /* fxrstor, ldmxcsr, xrstor. */
5198 if (i.tm.base_opcode == 0xae
5199 && (i.tm.extension_opcode == 1
5200 || i.tm.extension_opcode == 2
5201 || i.tm.extension_opcode == 5))
5202 return 1;
5203
5204 /* lgdt, lidt, lmsw. */
5205 if (i.tm.base_opcode == 0x01
5206 && (i.tm.extension_opcode == 2
5207 || i.tm.extension_opcode == 3
5208 || i.tm.extension_opcode == 6))
5209 return 1;
5210 }
ae531041
L
5211
5212 dest = i.operands - 1;
5213
5214 /* Check fake imm8 operand and 3 source operands. */
5215 if ((i.tm.opcode_modifier.immext
aa180741 5216 || i.reg_operands + i.mem_operands == 4)
ae531041
L
5217 && i.types[dest].bitfield.imm8)
5218 dest--;
5219
389d00a5 5220 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg. */
ddb62495 5221 if (i.tm.opcode_space == SPACE_BASE
aa4c197d 5222 && ((base_opcode | 0x38) == 0x39
389d00a5
JB
5223 || (base_opcode | 2) == 0x87))
5224 return 1;
5225
7fc69528 5226 if (i.tm.mnem_off == MN_xadd)
ae531041
L
5227 return 1;
5228
5229 /* Check for load instruction. */
5230 return (i.types[dest].bitfield.class != ClassNone
5231 || i.types[dest].bitfield.instance == Accum);
5232}
5233
5234/* Output lfence, 0xfaee8, after instruction. */
5235
5236static void
5237insert_lfence_after (void)
5238{
5239 if (lfence_after_load && load_insn_p ())
5240 {
a09f656b 5241 /* There are also two REP string instructions that require
5242 special treatment. Specifically, the compare string (CMPS)
5243 and scan string (SCAS) instructions set EFLAGS in a manner
5244 that depends on the data being compared/scanned. When used
5245 with a REP prefix, the number of iterations may therefore
5246 vary depending on this data. If the data is a program secret
5247 chosen by the adversary using an LVI method,
5248 then this data-dependent behavior may leak some aspect
5249 of the secret. */
aa4c197d 5250 if (((i.tm.base_opcode | 0x9) == 0xaf)
a09f656b 5251 && i.prefix[REP_PREFIX])
5252 {
5253 as_warn (_("`%s` changes flags which would affect control flow behavior"),
76d3f746 5254 insn_name (&i.tm));
a09f656b 5255 }
ae531041
L
5256 char *p = frag_more (3);
5257 *p++ = 0xf;
5258 *p++ = 0xae;
5259 *p = 0xe8;
5260 }
5261}
5262
5263/* Output lfence, 0xfaee8, before instruction. */
5264
5265static void
b5482fe5 5266insert_lfence_before (const struct last_insn *last_insn)
ae531041
L
5267{
5268 char *p;
5269
ddb62495 5270 if (i.tm.opcode_space != SPACE_BASE)
ae531041
L
5271 return;
5272
5273 if (i.tm.base_opcode == 0xff
5274 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
5275 {
5276 /* Insert lfence before indirect branch if needed. */
5277
5278 if (lfence_before_indirect_branch == lfence_branch_none)
5279 return;
5280
5281 if (i.operands != 1)
5282 abort ();
5283
5284 if (i.reg_operands == 1)
5285 {
5286 /* Indirect branch via register. Don't insert lfence with
5287 -mlfence-after-load=yes. */
5288 if (lfence_after_load
5289 || lfence_before_indirect_branch == lfence_branch_memory)
5290 return;
5291 }
5292 else if (i.mem_operands == 1
5293 && lfence_before_indirect_branch != lfence_branch_register)
5294 {
5295 as_warn (_("indirect `%s` with memory operand should be avoided"),
76d3f746 5296 insn_name (&i.tm));
ae531041
L
5297 return;
5298 }
5299 else
5300 return;
5301
b5482fe5 5302 if (last_insn->kind != last_insn_other)
ae531041 5303 {
b5482fe5 5304 as_warn_where (last_insn->file, last_insn->line,
ae531041 5305 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
b5482fe5 5306 last_insn->name, insn_name (&i.tm));
ae531041
L
5307 return;
5308 }
5309
5310 p = frag_more (3);
5311 *p++ = 0xf;
5312 *p++ = 0xae;
5313 *p = 0xe8;
5314 return;
5315 }
5316
503648e4 5317 /* Output or/not/shl and lfence before near ret. */
ae531041 5318 if (lfence_before_ret != lfence_before_ret_none
aa4c197d 5319 && (i.tm.base_opcode | 1) == 0xc3)
ae531041 5320 {
b5482fe5 5321 if (last_insn->kind != last_insn_other)
ae531041 5322 {
b5482fe5 5323 as_warn_where (last_insn->file, last_insn->line,
ae531041 5324 _("`%s` skips -mlfence-before-ret on `%s`"),
b5482fe5 5325 last_insn->name, insn_name (&i.tm));
ae531041
L
5326 return;
5327 }
a09f656b 5328
a09f656b 5329 /* Near ret ingore operand size override under CPU64. */
503648e4 5330 char prefix = flag_code == CODE_64BIT
5331 ? 0x48
5332 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
a09f656b 5333
5334 if (lfence_before_ret == lfence_before_ret_not)
5335 {
5336 /* not: 0xf71424, may add prefix
5337 for operand size override or 64-bit code. */
5338 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
5339 if (prefix)
5340 *p++ = prefix;
ae531041
L
5341 *p++ = 0xf7;
5342 *p++ = 0x14;
5343 *p++ = 0x24;
a09f656b 5344 if (prefix)
5345 *p++ = prefix;
ae531041
L
5346 *p++ = 0xf7;
5347 *p++ = 0x14;
5348 *p++ = 0x24;
5349 }
a09f656b 5350 else
5351 {
5352 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
5353 if (prefix)
5354 *p++ = prefix;
5355 if (lfence_before_ret == lfence_before_ret_or)
5356 {
5357 /* or: 0x830c2400, may add prefix
5358 for operand size override or 64-bit code. */
5359 *p++ = 0x83;
5360 *p++ = 0x0c;
5361 }
5362 else
5363 {
5364 /* shl: 0xc1242400, may add prefix
5365 for operand size override or 64-bit code. */
5366 *p++ = 0xc1;
5367 *p++ = 0x24;
5368 }
5369
5370 *p++ = 0x24;
5371 *p++ = 0x0;
5372 }
5373
ae531041
L
5374 *p++ = 0xf;
5375 *p++ = 0xae;
5376 *p = 0xe8;
5377 }
5378}
5379
edd67638
JB
5380/* Shared helper for md_assemble() and s_insn(). */
5381static void init_globals (void)
5382{
5383 unsigned int j;
5384
5385 memset (&i, '\0', sizeof (i));
5386 i.rounding.type = rc_none;
5387 for (j = 0; j < MAX_OPERANDS; j++)
5388 i.reloc[j] = NO_RELOC;
5389 memset (disp_expressions, '\0', sizeof (disp_expressions));
5390 memset (im_expressions, '\0', sizeof (im_expressions));
5391 save_stack_p = save_stack;
5392}
5393
04784e33
JB
5394/* Helper for md_assemble() to decide whether to prepare for a possible 2nd
5395 parsing pass. Instead of introducing a rarely use new insn attribute this
5396 utilizes a common pattern between affected templates. It is deemed
5397 acceptable that this will lead to unnecessary pass 2 preparations in a
5398 limited set of cases. */
5399static INLINE bool may_need_pass2 (const insn_template *t)
5400{
5401 return t->opcode_modifier.sse2avx
5402 /* Note that all SSE2AVX templates have at least one operand. */
a28fedbc 5403 ? t->operand_types[t->operands - 1].bitfield.class == RegSIMD
ddb62495 5404 : (t->opcode_space == SPACE_0F
a28fedbc 5405 && (t->base_opcode | 1) == 0xbf)
ddb62495 5406 || (t->opcode_space == SPACE_BASE
a28fedbc 5407 && t->base_opcode == 0x63);
04784e33
JB
5408}
5409
c7defc53
IB
5410#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5411
5412/* DWARF register number for EFLAGS. Used for pushf/popf insns. */
5413#define GINSN_DW2_REGNUM_EFLAGS 49
5414/* DWARF register number for RSI. Used as dummy value when RegIP/RegIZ. */
5415#define GINSN_DW2_REGNUM_RSI_DUMMY 4
5416
5417/* Identify the callee-saved registers in System V AMD64 ABI. */
5418
5419bool
5420x86_scfi_callee_saved_p (unsigned int dw2reg_num)
5421{
5422 if (dw2reg_num == 3 /* rbx. */
5423 || dw2reg_num == REG_FP /* rbp. */
5424 || dw2reg_num == REG_SP /* rsp. */
5425 || (dw2reg_num >= 12 && dw2reg_num <= 15) /* r12 - r15. */)
5426 return true;
5427
5428 return false;
5429}
5430
5431/* Check whether an instruction prefix which affects operation size
5432 accompanies. For insns in the legacy space, setting REX.W takes precedence
5433 over the operand-size prefix (66H) when both are used.
5434
5435 The current users of this API are in the handlers for PUSH, POP or other
5436 instructions which affect the stack pointer implicitly: the operation size
5437 (16, 32, or 64 bits) determines the amount by which the stack pointer is
5438 incremented / decremented (2, 4 or 8). */
5439
5440static bool
5441ginsn_opsize_prefix_p (void)
5442{
5443 return (!(i.prefix[REX_PREFIX] & REX_W) && i.prefix[DATA_PREFIX]);
5444}
5445
5446/* Get the DWARF register number for the given register entry.
5447 For specific byte/word/dword register accesses like al, cl, ah, ch, r8d,
5448 r20w etc., we need to identify the DWARF register number for the
5449 corresponding 8-byte GPR.
5450
5451 This function is a hack - it relies on relative ordering of reg entries in
5452 the i386_regtab. FIXME - it will be good to allow a more direct way to get
5453 this information. */
5454
5455static unsigned int
5456ginsn_dw2_regnum (const reg_entry *ireg)
5457{
c7defc53 5458 const reg_entry *temp = ireg;
066673f6 5459 unsigned int dwarf_reg = Dw2Inval, idx = 0;
c7defc53
IB
5460
5461 /* ginsn creation is available for AMD64 abi only ATM. Other flag_code
5462 are not expected. */
5463 gas_assert (ireg && flag_code == CODE_64BIT);
5464
5465 /* Watch out for RegIP, RegIZ. These are expected to appear only with
5466 base/index addressing modes. Although creating inaccurate data
5467 dependencies, using a dummy value (lets say volatile register rsi) will
5468 not hurt SCFI. TBD_GINSN_GEN_NOT_SCFI. */
5469 if (ireg->reg_num == RegIP || ireg->reg_num == RegIZ)
5470 return GINSN_DW2_REGNUM_RSI_DUMMY;
5471
fabb73d1 5472 dwarf_reg = ireg->dw2_regnum[object_64bit];
c7defc53
IB
5473
5474 if (dwarf_reg == Dw2Inval)
5475 {
5476 if (ireg <= &i386_regtab[3])
5477 /* For al, cl, dl, bl, bump over to axl, cxl, dxl, bxl respectively by
5478 adding 8. */
5479 temp = ireg + 8;
5480 else if (ireg <= &i386_regtab[7])
5481 /* For ah, ch, dh, bh, bump over to axl, cxl, dxl, bxl respectively by
5482 adding 4. */
5483 temp = ireg + 4;
5484 else
5485 {
5486 /* The code relies on the relative ordering of the reg entries in
5487 i386_regtab. There are 32 register entries between axl-r31b,
5488 ax-r31w etc. The assertions here ensures the code does not
5489 recurse indefinitely. */
5490 gas_assert ((temp - &i386_regtab[0]) >= 0);
5491 idx = temp - &i386_regtab[0];
5492 gas_assert (idx + 32 < i386_regtab_size - 1);
5493
5494 temp = temp + 32;
5495 }
5496
5497 dwarf_reg = ginsn_dw2_regnum (temp);
5498 }
5499
5500 /* Sanity check - failure may indicate state corruption, bad ginsn or
5501 perhaps the i386-reg table and the current function got out of sync. */
066673f6 5502 gas_assert (dwarf_reg < Dw2Inval);
c7defc53 5503
066673f6 5504 return dwarf_reg;
c7defc53
IB
5505}
5506
5507static ginsnS *
5508x86_ginsn_addsub_reg_mem (const symbolS *insn_end_sym)
5509{
5510 unsigned int dw2_regnum;
5511 unsigned int src1_dw2_regnum;
5512 ginsnS *ginsn = NULL;
5513 ginsnS * (*ginsn_func) (const symbolS *, bool,
5514 enum ginsn_src_type, unsigned int, offsetT,
5515 enum ginsn_src_type, unsigned int, offsetT,
5516 enum ginsn_dst_type, unsigned int, offsetT);
5517 uint16_t opcode = i.tm.base_opcode;
5518
5519 gas_assert (i.tm.opcode_space == SPACE_BASE
5520 && (opcode == 0x1 || opcode == 0x29));
5521 ginsn_func = (opcode == 0x1) ? ginsn_new_add : ginsn_new_sub;
5522
5523 /* op %reg, symbol or even other cases where destination involves indirect
5524 access are unnecessary for SCFI correctness. TBD_GINSN_GEN_NOT_SCFI. */
5525 if (i.mem_operands)
5526 return ginsn;
5527
f8c50ae2
IB
5528 /* Skip detection of 8/16/32-bit op size; 'add/sub reg, reg/mem' ops always
5529 make the dest reg untraceable for SCFI. */
5530
c7defc53
IB
5531 /* op reg, reg/mem. */
5532 src1_dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
5533 /* Of interest only when second opnd is not memory. */
5534 if (i.reg_operands == 2)
5535 {
5536 dw2_regnum = ginsn_dw2_regnum (i.op[1].regs);
5537 ginsn = ginsn_func (insn_end_sym, true,
5538 GINSN_SRC_REG, src1_dw2_regnum, 0,
5539 GINSN_SRC_REG, dw2_regnum, 0,
5540 GINSN_DST_REG, dw2_regnum, 0);
5541 ginsn_set_where (ginsn);
5542 }
5543
5544 return ginsn;
5545}
5546
5547static ginsnS *
5548x86_ginsn_addsub_mem_reg (const symbolS *insn_end_sym)
5549{
5550 unsigned int dw2_regnum;
5551 unsigned int src1_dw2_regnum;
5552 const reg_entry *mem_reg;
5553 int32_t gdisp = 0;
5554 ginsnS *ginsn = NULL;
5555 ginsnS * (*ginsn_func) (const symbolS *, bool,
5556 enum ginsn_src_type, unsigned int, offsetT,
5557 enum ginsn_src_type, unsigned int, offsetT,
5558 enum ginsn_dst_type, unsigned int, offsetT);
5559 uint16_t opcode = i.tm.base_opcode;
5560
5561 gas_assert (i.tm.opcode_space == SPACE_BASE
5562 && (opcode == 0x3 || opcode == 0x2b));
5563 ginsn_func = (opcode == 0x3) ? ginsn_new_add : ginsn_new_sub;
5564
5565 /* op symbol, %reg. */
5566 if (i.mem_operands && !i.base_reg && !i.index_reg)
5567 return ginsn;
5568
f8c50ae2
IB
5569 /* Skip detection of 8/16/32-bit op size; 'add/sub reg/mem, reg' ops always
5570 make the dest reg untraceable for SCFI. */
5571
c7defc53
IB
5572 /* op reg/mem, %reg. */
5573 dw2_regnum = ginsn_dw2_regnum (i.op[1].regs);
5574
5575 if (i.reg_operands == 2)
5576 {
5577 src1_dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
5578 ginsn = ginsn_func (insn_end_sym, true,
5579 GINSN_SRC_REG, src1_dw2_regnum, 0,
5580 GINSN_SRC_REG, dw2_regnum, 0,
5581 GINSN_DST_REG, dw2_regnum, 0);
5582 ginsn_set_where (ginsn);
5583 }
5584 else if (i.mem_operands)
5585 {
5586 mem_reg = (i.base_reg) ? i.base_reg : i.index_reg;
5587 src1_dw2_regnum = ginsn_dw2_regnum (mem_reg);
5588 if (i.disp_operands == 1)
5589 gdisp = i.op[0].disps->X_add_number;
5590 ginsn = ginsn_func (insn_end_sym, true,
5591 GINSN_SRC_INDIRECT, src1_dw2_regnum, gdisp,
5592 GINSN_SRC_REG, dw2_regnum, 0,
5593 GINSN_DST_REG, dw2_regnum, 0);
5594 ginsn_set_where (ginsn);
5595 }
5596
5597 return ginsn;
5598}
5599
5600static ginsnS *
5601x86_ginsn_alu_imm (const symbolS *insn_end_sym)
5602{
5603 offsetT src_imm;
5604 unsigned int dw2_regnum;
5605 ginsnS *ginsn = NULL;
5606 enum ginsn_src_type src_type = GINSN_SRC_REG;
5607 enum ginsn_dst_type dst_type = GINSN_DST_REG;
5608
5609 ginsnS * (*ginsn_func) (const symbolS *, bool,
5610 enum ginsn_src_type, unsigned int, offsetT,
5611 enum ginsn_src_type, unsigned int, offsetT,
5612 enum ginsn_dst_type, unsigned int, offsetT);
5613
5614 /* FIXME - create ginsn where dest is REG_SP / REG_FP only ? */
5615 /* Map for insn.tm.extension_opcode
5616 000 ADD 100 AND
5617 001 OR 101 SUB
5618 010 ADC 110 XOR
5619 011 SBB 111 CMP */
5620
5621 /* add/sub/and imm, %reg only at this time for SCFI.
5622 Although all three ('and', 'or' , 'xor') make the destination reg
5623 untraceable, 'and' op is handled but not 'or' / 'xor' because we will look
5624 into supporting the DRAP pattern at some point. Other opcodes ('adc',
5625 'sbb' and 'cmp') are not generated here either. The ginsn representation
5626 does not have support for the latter three opcodes; GINSN_TYPE_OTHER may
5627 be added for these after x86_ginsn_unhandled () invocation if the
5628 destination register is REG_SP or REG_FP. */
5629 if (i.tm.extension_opcode == 5)
5630 ginsn_func = ginsn_new_sub;
5631 else if (i.tm.extension_opcode == 4)
5632 ginsn_func = ginsn_new_and;
5633 else if (i.tm.extension_opcode == 0)
5634 ginsn_func = ginsn_new_add;
5635 else
5636 return ginsn;
5637
5638 /* TBD_GINSN_REPRESENTATION_LIMIT: There is no representation for when a
5639 symbol is used as an operand, like so:
5640 addq $simd_cmp_op+8, %rdx
5641 Skip generating any ginsn for this. */
5642 if (i.imm_operands == 1
5643 && i.op[0].imms->X_op != O_constant)
5644 return ginsn;
5645
5646 /* addq $1, symbol
5647 addq $1, -16(%rbp)
5648 These are not of interest for SCFI. Also, TBD_GINSN_GEN_NOT_SCFI. */
5649 if (i.mem_operands == 1)
5650 return ginsn;
5651
f8c50ae2
IB
5652 /* 8/16/32-bit op size makes the destination reg untraceable for SCFI.
5653 Deal with this via the x86_ginsn_unhandled () code path. */
5654 if (i.suffix != QWORD_MNEM_SUFFIX)
5655 return ginsn;
5656
c7defc53
IB
5657 gas_assert (i.imm_operands == 1);
5658 src_imm = i.op[0].imms->X_add_number;
5659 /* The second operand may be a register or indirect access. For SCFI, only
5660 the case when the second opnd is a register is interesting. Revisit this
5661 if generating ginsns for a different gen mode TBD_GINSN_GEN_NOT_SCFI. */
5662 if (i.reg_operands == 1)
5663 {
5664 dw2_regnum = ginsn_dw2_regnum (i.op[1].regs);
5665 /* For ginsn, keep the imm as second src operand. */
5666 ginsn = ginsn_func (insn_end_sym, true,
5667 src_type, dw2_regnum, 0,
5668 GINSN_SRC_IMM, 0, src_imm,
5669 dst_type, dw2_regnum, 0);
5670
5671 ginsn_set_where (ginsn);
5672 }
5673
5674 return ginsn;
5675}
5676
5677/* Create ginsn(s) for MOV operations.
5678
5679 The generated ginsns corresponding to mov with indirect access to memory
5680 (src or dest) suffer with loss of information: when both index and base
5681 registers are at play, only base register gets conveyed in ginsn. Note
5682 this TBD_GINSN_GEN_NOT_SCFI. */
5683
5684static ginsnS *
5685x86_ginsn_move (const symbolS *insn_end_sym)
5686{
5687 ginsnS *ginsn = NULL;
5688 unsigned int dst_reg;
5689 unsigned int src_reg;
5690 offsetT src_disp = 0;
5691 offsetT dst_disp = 0;
5692 const reg_entry *dst = NULL;
5693 const reg_entry *src = NULL;
5694 uint16_t opcode = i.tm.base_opcode;
5695 enum ginsn_src_type src_type = GINSN_SRC_REG;
5696 enum ginsn_dst_type dst_type = GINSN_DST_REG;
5697
5698 /* mov %reg, symbol or mov symbol, %reg.
5699 Not of interest for SCFI. Also, TBD_GINSN_GEN_NOT_SCFI. */
5700 if (i.mem_operands == 1 && !i.base_reg && !i.index_reg)
5701 return ginsn;
5702
f8c50ae2
IB
5703 /* 8/16/32-bit op size makes the destination reg untraceable for SCFI.
5704 Handle mov reg, reg only. mov to or from a memory operand will make
5705 dest reg, when present, untraceable, irrespective of the op size. */
5706 if (i.reg_operands == 2 && i.suffix != QWORD_MNEM_SUFFIX)
5707 return ginsn;
5708
c7defc53
IB
5709 gas_assert (i.tm.opcode_space == SPACE_BASE);
5710 if (opcode == 0x8b || opcode == 0x8a)
5711 {
5712 /* mov disp(%reg), %reg. */
5713 if (i.mem_operands)
5714 {
5715 src = (i.base_reg) ? i.base_reg : i.index_reg;
5716 if (i.disp_operands == 1)
5717 src_disp = i.op[0].disps->X_add_number;
5718 src_type = GINSN_SRC_INDIRECT;
5719 }
5720 else
5721 src = i.op[0].regs;
5722
5723 dst = i.op[1].regs;
5724 }
5725 else if (opcode == 0x89 || opcode == 0x88)
5726 {
5727 /* mov %reg, disp(%reg). */
5728 src = i.op[0].regs;
5729 if (i.mem_operands)
5730 {
5731 dst = (i.base_reg) ? i.base_reg : i.index_reg;
5732 if (i.disp_operands == 1)
5733 dst_disp = i.op[1].disps->X_add_number;
5734 dst_type = GINSN_DST_INDIRECT;
5735 }
5736 else
5737 dst = i.op[1].regs;
5738 }
5739
5740 src_reg = ginsn_dw2_regnum (src);
5741 dst_reg = ginsn_dw2_regnum (dst);
5742
5743 ginsn = ginsn_new_mov (insn_end_sym, true,
5744 src_type, src_reg, src_disp,
5745 dst_type, dst_reg, dst_disp);
5746 ginsn_set_where (ginsn);
5747
5748 return ginsn;
5749}
5750
5751/* Generate appropriate ginsn for lea.
09812f08
IB
5752
5753 Unhandled sub-cases (marked with TBD_GINSN_GEN_NOT_SCFI) also suffer with
5754 some loss of information in the final ginsn chosen eventually (type
5755 GINSN_TYPE_OTHER). But this is fine for now for GINSN_GEN_SCFI generation
c7defc53
IB
5756 mode. */
5757
5758static ginsnS *
5759x86_ginsn_lea (const symbolS *insn_end_sym)
5760{
5761 offsetT src_disp = 0;
5762 ginsnS *ginsn = NULL;
09812f08
IB
5763 unsigned int src1_reg;
5764 const reg_entry *src1;
c7defc53
IB
5765 offsetT index_scale;
5766 unsigned int dst_reg;
09812f08 5767 bool index_regiz_p;
c7defc53 5768
03fa0c63 5769 if ((!i.base_reg) != (!i.index_reg || i.index_reg->reg_num == RegIZ))
c7defc53 5770 {
09812f08
IB
5771 /* lea disp(%base), %dst or lea disp(,%index,imm), %dst.
5772 Either index_reg or base_reg exists, but not both. Further, as per
5773 above, the case when just %index exists but is equal to RegIZ is
5774 excluded. If not excluded, a GINSN_TYPE_MOV of %rsi
5775 (GINSN_DW2_REGNUM_RSI_DUMMY) to %dst will be generated by this block.
5776 Such a mov ginsn is imprecise; so, exclude now and generate
5777 GINSN_TYPE_OTHER instead later via the x86_ginsn_unhandled ().
5778 Excluding other cases is required due to
5779 TBD_GINSN_REPRESENTATION_LIMIT. */
c7defc53 5780
c7defc53 5781 index_scale = i.log2_scale_factor;
09812f08
IB
5782 index_regiz_p = i.index_reg && i.index_reg->reg_num == RegIZ;
5783 src1 = i.base_reg ? i.base_reg : i.index_reg;
5784 src1_reg = ginsn_dw2_regnum (src1);
c7defc53 5785 dst_reg = ginsn_dw2_regnum (i.op[1].regs);
09812f08
IB
5786 /* It makes sense to represent a scale factor of 1 precisely here
5787 (i.e., not using GINSN_TYPE_OTHER, but rather similar to the
5788 base-without-index case). A non-zero scale factor is still OK if
5789 the index reg is zero reg.
5790 However, skip from here the case when disp has a symbol instead.
5791 TBD_GINSN_REPRESENTATION_LIMIT. */
5792 if ((!index_scale || index_regiz_p)
5793 && (!i.disp_operands || i.op[0].disps->X_op == O_constant))
5794 {
5795 if (i.disp_operands)
5796 src_disp = i.op[0].disps->X_add_number;
c7defc53 5797
09812f08
IB
5798 if (src_disp)
5799 /* Generate an ADD ginsn. */
5800 ginsn = ginsn_new_add (insn_end_sym, true,
5801 GINSN_SRC_REG, src1_reg, 0,
5802 GINSN_SRC_IMM, 0, src_disp,
5803 GINSN_DST_REG, dst_reg, 0);
5804 else
5805 /* Generate a MOV ginsn. */
5806 ginsn = ginsn_new_mov (insn_end_sym, true,
5807 GINSN_SRC_REG, src1_reg, 0,
5808 GINSN_DST_REG, dst_reg, 0);
5809
5810 ginsn_set_where (ginsn);
5811 }
5812 }
5813 /* Skip handling other cases here,
5814 - when (i.index_reg && i.base_reg) is true,
5815 e.g., lea disp(%base,%index,imm), %dst
5816 We do not have a ginsn representation for multiply.
5817 - or, when (!i.index_reg && !i.base_reg) is true,
5818 e.g., lea symbol, %dst
5819 Not a frequent pattern. If %dst is a register of interest, the user is
5820 likely to use a MOV op anyway.
5821 Deal with these via the x86_ginsn_unhandled () code path to generate
5822 GINSN_TYPE_OTHER when necessary. TBD_GINSN_GEN_NOT_SCFI. */
c7defc53
IB
5823
5824 return ginsn;
5825}
5826
5827static ginsnS *
5828x86_ginsn_jump (const symbolS *insn_end_sym, bool cond_p)
5829{
5830 ginsnS *ginsn = NULL;
5831 const symbolS *src_symbol;
5832 ginsnS * (*ginsn_func) (const symbolS *sym, bool real_p,
5833 enum ginsn_src_type src_type, unsigned int src_reg,
5834 const symbolS *src_ginsn_sym);
5835
5836 gas_assert (i.disp_operands == 1);
5837
5838 ginsn_func = cond_p ? ginsn_new_jump_cond : ginsn_new_jump;
5839 if (i.op[0].disps->X_op == O_symbol && !i.op[0].disps->X_add_number)
5840 {
5841 src_symbol = i.op[0].disps->X_add_symbol;
5842 ginsn = ginsn_func (insn_end_sym, true,
5843 GINSN_SRC_SYMBOL, 0, src_symbol);
5844
5845 ginsn_set_where (ginsn);
5846 }
5847 else
5848 {
5849 /* A non-zero addend in jump/JCC target makes control-flow tracking
5850 difficult. Skip SCFI for now. */
5851 as_bad (_("SCFI: `%s' insn with non-zero addend to sym not supported"),
5852 cond_p ? "JCC" : "jmp");
5853 return ginsn;
5854 }
5855
5856 return ginsn;
5857}
5858
5859static ginsnS *
5860x86_ginsn_enter (const symbolS *insn_end_sym)
5861{
5862 ginsnS *ginsn = NULL;
5863 ginsnS *ginsn_next = NULL;
5864 ginsnS *ginsn_last = NULL;
5865 /* In 64-bit mode, the default stack update size is 8 bytes. */
5866 int stack_opnd_size = 8;
5867
5868 gas_assert (i.imm_operands == 2);
5869
5870 /* For non-zero size operands, bail out as untraceable for SCFI. */
5871 if (i.op[0].imms->X_op != O_constant || i.op[0].imms->X_add_symbol != 0
5872 || i.op[1].imms->X_op != O_constant || i.op[1].imms->X_add_symbol != 0)
5873 {
5874 as_bad ("SCFI: enter insn with non-zero operand not supported");
5875 return ginsn;
5876 }
5877
5878 /* Check if this is a 16-bit op. */
5879 if (ginsn_opsize_prefix_p ())
5880 stack_opnd_size = 2;
5881
5882 /* If the nesting level is 0, the processor pushes the frame pointer from
5883 the BP/EBP/RBP register onto the stack, copies the current stack
5884 pointer from the SP/ESP/RSP register into the BP/EBP/RBP register, and
5885 loads the SP/ESP/RSP register with the current stack-pointer value
5886 minus the value in the size operand. */
5887 ginsn = ginsn_new_sub (insn_end_sym, false,
5888 GINSN_SRC_REG, REG_SP, 0,
5889 GINSN_SRC_IMM, 0, stack_opnd_size,
5890 GINSN_DST_REG, REG_SP, 0);
5891 ginsn_set_where (ginsn);
5892 ginsn_next = ginsn_new_store (insn_end_sym, false,
5893 GINSN_SRC_REG, REG_FP,
5894 GINSN_DST_INDIRECT, REG_SP, 0);
5895 ginsn_set_where (ginsn_next);
5896 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
5897 ginsn_last = ginsn_new_mov (insn_end_sym, false,
5898 GINSN_SRC_REG, REG_SP, 0,
5899 GINSN_DST_REG, REG_FP, 0);
5900 ginsn_set_where (ginsn_last);
5901 gas_assert (!ginsn_link_next (ginsn_next, ginsn_last));
5902
5903 return ginsn;
5904}
5905
5906static ginsnS *
5907x86_ginsn_leave (const symbolS *insn_end_sym)
5908{
5909 ginsnS *ginsn = NULL;
5910 ginsnS *ginsn_next = NULL;
5911 ginsnS *ginsn_last = NULL;
5912 /* In 64-bit mode, the default stack update size is 8 bytes. */
5913 int stack_opnd_size = 8;
5914
5915 /* Check if this is a 16-bit op. */
5916 if (ginsn_opsize_prefix_p ())
5917 stack_opnd_size = 2;
5918
5919 /* The 'leave' instruction copies the contents of the RBP register
5920 into the RSP register to release all stack space allocated to the
5921 procedure. */
5922 ginsn = ginsn_new_mov (insn_end_sym, false,
5923 GINSN_SRC_REG, REG_FP, 0,
5924 GINSN_DST_REG, REG_SP, 0);
5925 ginsn_set_where (ginsn);
5926 /* Then it restores the old value of the RBP register from the stack. */
5927 ginsn_next = ginsn_new_load (insn_end_sym, false,
5928 GINSN_SRC_INDIRECT, REG_SP, 0,
5929 GINSN_DST_REG, REG_FP);
5930 ginsn_set_where (ginsn_next);
5931 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
5932 ginsn_last = ginsn_new_add (insn_end_sym, false,
5933 GINSN_SRC_REG, REG_SP, 0,
5934 GINSN_SRC_IMM, 0, stack_opnd_size,
5935 GINSN_DST_REG, REG_SP, 0);
5936 ginsn_set_where (ginsn_next);
5937 gas_assert (!ginsn_link_next (ginsn_next, ginsn_last));
5938
5939 return ginsn;
5940}
5941
5942/* Check if an instruction is whitelisted.
5943
5944 Some instructions may appear with REG_SP or REG_FP as destination, because
5945 which they are deemed 'interesting' for SCFI. Whitelist them here if they
5946 do not affect SCFI correctness. */
5947
5948static bool
5949x86_ginsn_safe_to_skip_p (void)
5950{
5951 bool skip_p = false;
5952 uint16_t opcode = i.tm.base_opcode;
5953
5954 switch (opcode)
5955 {
5956 case 0x80:
5957 case 0x81:
5958 case 0x83:
5959 if (i.tm.opcode_space != SPACE_BASE)
5960 break;
5961 /* cmp imm, reg/rem. */
5962 if (i.tm.extension_opcode == 7)
5963 skip_p = true;
5964 break;
5965
5966 case 0x38:
5967 case 0x39:
5968 case 0x3a:
5969 case 0x3b:
5970 if (i.tm.opcode_space != SPACE_BASE)
5971 break;
5972 /* cmp imm/reg/mem, reg/rem. */
5973 skip_p = true;
5974 break;
5975
5976 case 0xf6:
5977 case 0xf7:
5978 case 0x84:
5979 case 0x85:
5980 /* test imm/reg/mem, reg/mem. */
5981 if (i.tm.opcode_space != SPACE_BASE)
5982 break;
5983 skip_p = true;
5984 break;
5985
5986 default:
5987 break;
5988 }
5989
5990 return skip_p;
5991}
5992
5993#define X86_GINSN_UNHANDLED_NONE 0
5994#define X86_GINSN_UNHANDLED_DEST_REG 1
5995#define X86_GINSN_UNHANDLED_CFG 2
5996#define X86_GINSN_UNHANDLED_STACKOP 3
5997#define X86_GINSN_UNHANDLED_UNEXPECTED 4
5998
5999/* Check the input insn for its impact on the correctness of the synthesized
6000 CFI. Returns an error code to the caller. */
6001
6002static int
6003x86_ginsn_unhandled (void)
6004{
6005 int err = X86_GINSN_UNHANDLED_NONE;
6006 const reg_entry *reg_op;
6007 unsigned int dw2_regnum;
6008
6009 /* Keep an eye out for instructions affecting control flow. */
6010 if (i.tm.opcode_modifier.jump)
6011 err = X86_GINSN_UNHANDLED_CFG;
6012 /* Also, for any instructions involving an implicit update to the stack
6013 pointer. */
6014 else if (i.tm.opcode_modifier.operandconstraint == IMPLICIT_STACK_OP)
6015 err = X86_GINSN_UNHANDLED_STACKOP;
6016 /* Finally, also check if the missed instructions are affecting REG_SP or
6017 REG_FP. The destination operand is the last at all stages of assembly
6018 (due to following AT&T syntax layout in the internal representation). In
6019 case of Intel syntax input, this still remains true as swap_operands ()
6020 is done by now.
6021 PS: These checks do not involve index / base reg, as indirect memory
6022 accesses via REG_SP or REG_FP do not affect SCFI correctness.
6023 (Also note these instructions are candidates for other ginsn generation
6024 modes in future. TBD_GINSN_GEN_NOT_SCFI.) */
6025 else if (i.operands && i.reg_operands
6026 && !(i.flags[i.operands - 1] & Operand_Mem))
6027 {
6028 reg_op = i.op[i.operands - 1].regs;
6029 if (reg_op)
6030 {
6031 dw2_regnum = ginsn_dw2_regnum (reg_op);
6032 if (dw2_regnum == REG_SP || dw2_regnum == REG_FP)
6033 err = X86_GINSN_UNHANDLED_DEST_REG;
6034 }
6035 else
6036 /* Something unexpected. Indicate to caller. */
6037 err = X86_GINSN_UNHANDLED_UNEXPECTED;
6038 }
6039
6040 return err;
6041}
6042
6043/* Generate one or more generic GAS instructions, a.k.a, ginsns for the current
6044 machine instruction.
6045
6046 Returns the head of linked list of ginsn(s) added, if success; Returns NULL
6047 if failure.
6048
6049 The input ginsn_gen_mode GMODE determines the set of minimal necessary
6050 ginsns necessary for correctness of any passes applicable for that mode.
6051 For supporting the GINSN_GEN_SCFI generation mode, following is the list of
6052 machine instructions that must be translated into the corresponding ginsns
6053 to ensure correctness of SCFI:
6054 - All instructions affecting the two registers that could potentially
6055 be used as the base register for CFA tracking. For SCFI, the base
6056 register for CFA tracking is limited to REG_SP and REG_FP only for
6057 now.
6058 - All change of flow instructions: conditional and unconditional branches,
6059 call and return from functions.
6060 - All instructions that can potentially be a register save / restore
6061 operation.
6062 - All instructions that perform stack manipulation implicitly: the CALL,
6063 RET, PUSH, POP, ENTER, and LEAVE instructions.
6064
6065 The function currently supports GINSN_GEN_SCFI ginsn generation mode only.
6066 To support other generation modes will require work on this target-specific
6067 process of creation of ginsns:
6068 - Some of such places are tagged with TBD_GINSN_GEN_NOT_SCFI to serve as
6069 possible starting points.
6070 - Also note that ginsn representation may need enhancements. Specifically,
6071 note some TBD_GINSN_INFO_LOSS and TBD_GINSN_REPRESENTATION_LIMIT markers.
6072 */
6073
6074static ginsnS *
6075x86_ginsn_new (const symbolS *insn_end_sym, enum ginsn_gen_mode gmode)
6076{
6077 int err = 0;
6078 uint16_t opcode;
6079 unsigned int dw2_regnum;
6080 const reg_entry *mem_reg;
6081 ginsnS *ginsn = NULL;
6082 ginsnS *ginsn_next = NULL;
6083 /* In 64-bit mode, the default stack update size is 8 bytes. */
6084 int stack_opnd_size = 8;
6085
6086 /* Currently supports generation of selected ginsns, sufficient for
6087 the use-case of SCFI only. */
6088 if (gmode != GINSN_GEN_SCFI)
6089 return ginsn;
6090
6091 opcode = i.tm.base_opcode;
6092
6093 /* Until it is clear how to handle APX NDD and other new opcodes, disallow
6094 them from SCFI. */
6095 if (is_apx_rex2_encoding ()
6096 || (i.tm.opcode_modifier.evex && is_apx_evex_encoding ()))
6097 {
6098 as_bad (_("SCFI: unsupported APX op %#x may cause incorrect CFI"),
6099 opcode);
6100 return ginsn;
6101 }
6102
6103 switch (opcode)
6104 {
f8c50ae2
IB
6105
6106 /* Add opcodes 0x0/0x2 and sub opcodes 0x28/0x2a (with opcode_space
6107 SPACE_BASE) are 8-bit ops. While they are relevant for SCFI
6108 correctness, skip handling them here and use the x86_ginsn_unhandled
6109 code path to generate GINSN_TYPE_OTHER when necessary. */
6110
c7defc53
IB
6111 case 0x1: /* add reg, reg/mem. */
6112 case 0x29: /* sub reg, reg/mem. */
6113 if (i.tm.opcode_space != SPACE_BASE)
6114 break;
6115 ginsn = x86_ginsn_addsub_reg_mem (insn_end_sym);
6116 break;
6117
6118 case 0x3: /* add reg/mem, reg. */
6119 case 0x2b: /* sub reg/mem, reg. */
6120 if (i.tm.opcode_space != SPACE_BASE)
6121 break;
6122 ginsn = x86_ginsn_addsub_mem_reg (insn_end_sym);
6123 break;
6124
6125 case 0xa0: /* push fs. */
6126 case 0xa8: /* push gs. */
6127 /* push fs / push gs have opcode_space == SPACE_0F. */
6128 if (i.tm.opcode_space != SPACE_0F)
6129 break;
6130 dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
6131 /* Check if operation size is 16-bit. */
6132 if (ginsn_opsize_prefix_p ())
6133 stack_opnd_size = 2;
6134 ginsn = ginsn_new_sub (insn_end_sym, false,
6135 GINSN_SRC_REG, REG_SP, 0,
6136 GINSN_SRC_IMM, 0, stack_opnd_size,
6137 GINSN_DST_REG, REG_SP, 0);
6138 ginsn_set_where (ginsn);
6139 ginsn_next = ginsn_new_store (insn_end_sym, false,
6140 GINSN_SRC_REG, dw2_regnum,
6141 GINSN_DST_INDIRECT, REG_SP, 0);
6142 ginsn_set_where (ginsn_next);
6143 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
6144 break;
6145
6146 case 0xa1: /* pop fs. */
6147 case 0xa9: /* pop gs. */
6148 /* pop fs / pop gs have opcode_space == SPACE_0F. */
6149 if (i.tm.opcode_space != SPACE_0F)
6150 break;
6151 dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
6152 /* Check if operation size is 16-bit. */
6153 if (ginsn_opsize_prefix_p ())
6154 stack_opnd_size = 2;
6155 ginsn = ginsn_new_load (insn_end_sym, false,
6156 GINSN_SRC_INDIRECT, REG_SP, 0,
6157 GINSN_DST_REG, dw2_regnum);
6158 ginsn_set_where (ginsn);
6159 ginsn_next = ginsn_new_add (insn_end_sym, false,
6160 GINSN_SRC_REG, REG_SP, 0,
6161 GINSN_SRC_IMM, 0, stack_opnd_size,
6162 GINSN_DST_REG, REG_SP, 0);
6163 ginsn_set_where (ginsn_next);
6164 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
6165 break;
6166
6167 case 0x50 ... 0x57:
6168 if (i.tm.opcode_space != SPACE_BASE)
6169 break;
6170 /* push reg. */
6171 dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
6172 /* Check if operation size is 16-bit. */
6173 if (ginsn_opsize_prefix_p ())
6174 stack_opnd_size = 2;
6175 ginsn = ginsn_new_sub (insn_end_sym, false,
6176 GINSN_SRC_REG, REG_SP, 0,
6177 GINSN_SRC_IMM, 0, stack_opnd_size,
6178 GINSN_DST_REG, REG_SP, 0);
6179 ginsn_set_where (ginsn);
6180 ginsn_next = ginsn_new_store (insn_end_sym, false,
6181 GINSN_SRC_REG, dw2_regnum,
6182 GINSN_DST_INDIRECT, REG_SP, 0);
6183 ginsn_set_where (ginsn_next);
6184 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
6185 break;
6186
6187 case 0x58 ... 0x5f:
6188 if (i.tm.opcode_space != SPACE_BASE)
6189 break;
6190 /* pop reg. */
6191 dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
6192 ginsn = ginsn_new_load (insn_end_sym, false,
6193 GINSN_SRC_INDIRECT, REG_SP, 0,
6194 GINSN_DST_REG, dw2_regnum);
6195 ginsn_set_where (ginsn);
6196 /* Check if operation size is 16-bit. */
6197 if (ginsn_opsize_prefix_p ())
6198 stack_opnd_size = 2;
6199 ginsn_next = ginsn_new_add (insn_end_sym, false,
6200 GINSN_SRC_REG, REG_SP, 0,
6201 GINSN_SRC_IMM, 0, stack_opnd_size,
6202 GINSN_DST_REG, REG_SP, 0);
6203 ginsn_set_where (ginsn_next);
6204 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
6205 break;
6206
6207 case 0x6a: /* push imm8. */
6208 case 0x68: /* push imm16/imm32. */
6209 if (i.tm.opcode_space != SPACE_BASE)
6210 break;
6211 /* Check if operation size is 16-bit. */
6212 if (ginsn_opsize_prefix_p ())
6213 stack_opnd_size = 2;
6214 /* Skip getting the value of imm from machine instruction
6215 because this is not important for SCFI. */
6216 ginsn = ginsn_new_sub (insn_end_sym, false,
6217 GINSN_SRC_REG, REG_SP, 0,
6218 GINSN_SRC_IMM, 0, stack_opnd_size,
6219 GINSN_DST_REG, REG_SP, 0);
6220 ginsn_set_where (ginsn);
6221 ginsn_next = ginsn_new_store (insn_end_sym, false,
6222 GINSN_SRC_IMM, 0,
6223 GINSN_DST_INDIRECT, REG_SP, 0);
6224 ginsn_set_where (ginsn_next);
6225 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
6226 break;
6227
6228 /* PS: Opcodes 0x80 ... 0x8f with opcode_space SPACE_0F are present
6229 only after relaxation. They do not need to be handled for ginsn
6230 creation. */
6231 case 0x70 ... 0x7f:
6232 if (i.tm.opcode_space != SPACE_BASE)
6233 break;
6234 ginsn = x86_ginsn_jump (insn_end_sym, true);
6235 break;
6236
6237 case 0x80:
6238 case 0x81:
6239 case 0x83:
6240 if (i.tm.opcode_space != SPACE_BASE)
6241 break;
6242 ginsn = x86_ginsn_alu_imm (insn_end_sym);
6243 break;
6244
6245 case 0x8a: /* mov r/m8, r8. */
6246 case 0x8b: /* mov r/m(16/32/64), r(16/32/64). */
6247 case 0x88: /* mov r8, r/m8. */
6248 case 0x89: /* mov r(16/32/64), r/m(16/32/64). */
6249 if (i.tm.opcode_space != SPACE_BASE)
6250 break;
6251 ginsn = x86_ginsn_move (insn_end_sym);
6252 break;
6253
6254 case 0x8d:
6255 if (i.tm.opcode_space != SPACE_BASE)
6256 break;
09812f08 6257 /* lea disp(%base,%index,imm), %dst. */
c7defc53
IB
6258 ginsn = x86_ginsn_lea (insn_end_sym);
6259 break;
6260
6261 case 0x8f:
6262 if (i.tm.opcode_space != SPACE_BASE)
6263 break;
6264 /* pop to reg/mem. */
6265 if (i.mem_operands)
6266 {
6267 mem_reg = (i.base_reg) ? i.base_reg : i.index_reg;
6268 /* Use dummy register if no base or index. Unlike other opcodes,
6269 ginsns must be generated as this affect stack pointer. */
6270 dw2_regnum = (mem_reg
6271 ? ginsn_dw2_regnum (mem_reg)
6272 : GINSN_DW2_REGNUM_RSI_DUMMY);
6273 }
6274 else
6275 dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
6276 ginsn = ginsn_new_load (insn_end_sym, false,
6277 GINSN_SRC_INDIRECT, REG_SP, 0,
6278 GINSN_DST_INDIRECT, dw2_regnum);
6279 ginsn_set_where (ginsn);
6280 /* Check if operation size is 16-bit. */
6281 if (ginsn_opsize_prefix_p ())
6282 stack_opnd_size = 2;
6283 ginsn_next = ginsn_new_add (insn_end_sym, false,
6284 GINSN_SRC_REG, REG_SP, 0,
6285 GINSN_SRC_IMM, 0, stack_opnd_size,
6286 GINSN_DST_REG, REG_SP, 0);
6287 ginsn_set_where (ginsn_next);
6288 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
6289 break;
6290
6291 case 0x9c:
6292 if (i.tm.opcode_space != SPACE_BASE)
6293 break;
6294 /* pushf / pushfq. */
6295 /* Check if operation size is 16-bit. */
6296 if (ginsn_opsize_prefix_p ())
6297 stack_opnd_size = 2;
6298 ginsn = ginsn_new_sub (insn_end_sym, false,
6299 GINSN_SRC_REG, REG_SP, 0,
6300 GINSN_SRC_IMM, 0, stack_opnd_size,
6301 GINSN_DST_REG, REG_SP, 0);
6302 ginsn_set_where (ginsn);
6303 /* FIXME - hardcode the actual DWARF reg number value. As for SCFI
6304 correctness, although this behaves simply a placeholder value; its
6305 just clearer if the value is correct. */
6306 dw2_regnum = GINSN_DW2_REGNUM_EFLAGS;
6307 ginsn_next = ginsn_new_store (insn_end_sym, false,
6308 GINSN_SRC_REG, dw2_regnum,
6309 GINSN_DST_INDIRECT, REG_SP, 0);
6310 ginsn_set_where (ginsn_next);
6311 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
6312 break;
6313
6314 case 0x9d:
6315 if (i.tm.opcode_space != SPACE_BASE)
6316 break;
6317 /* popf / popfq. */
6318 /* Check if operation size is 16-bit. */
6319 if (ginsn_opsize_prefix_p ())
6320 stack_opnd_size = 2;
6321 /* FIXME - hardcode the actual DWARF reg number value. As for SCFI
6322 correctness, although this behaves simply a placeholder value; its
6323 just clearer if the value is correct. */
6324 dw2_regnum = GINSN_DW2_REGNUM_EFLAGS;
6325 ginsn = ginsn_new_load (insn_end_sym, false,
6326 GINSN_SRC_INDIRECT, REG_SP, 0,
6327 GINSN_DST_REG, dw2_regnum);
6328 ginsn_set_where (ginsn);
6329 ginsn_next = ginsn_new_add (insn_end_sym, false,
6330 GINSN_SRC_REG, REG_SP, 0,
6331 GINSN_SRC_IMM, 0, stack_opnd_size,
6332 GINSN_DST_REG, REG_SP, 0);
6333 ginsn_set_where (ginsn_next);
6334 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
6335 break;
6336
6337 case 0xff:
6338 if (i.tm.opcode_space != SPACE_BASE)
6339 break;
6340 /* push from reg/mem. */
6341 if (i.tm.extension_opcode == 6)
6342 {
6343 /* Check if operation size is 16-bit. */
6344 if (ginsn_opsize_prefix_p ())
6345 stack_opnd_size = 2;
6346 ginsn = ginsn_new_sub (insn_end_sym, false,
6347 GINSN_SRC_REG, REG_SP, 0,
6348 GINSN_SRC_IMM, 0, stack_opnd_size,
6349 GINSN_DST_REG, REG_SP, 0);
6350 ginsn_set_where (ginsn);
6351 if (i.mem_operands)
6352 {
6353 mem_reg = (i.base_reg) ? i.base_reg : i.index_reg;
6354 /* Use dummy register if no base or index. Unlike other opcodes,
6355 ginsns must be generated as this affect stack pointer. */
6356 dw2_regnum = (mem_reg
6357 ? ginsn_dw2_regnum (mem_reg)
6358 : GINSN_DW2_REGNUM_RSI_DUMMY);
6359 }
6360 else
6361 dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
6362 ginsn_next = ginsn_new_store (insn_end_sym, false,
6363 GINSN_SRC_INDIRECT, dw2_regnum,
6364 GINSN_DST_INDIRECT, REG_SP, 0);
6365 ginsn_set_where (ginsn_next);
6366 gas_assert (!ginsn_link_next (ginsn, ginsn_next));
6367 }
6368 else if (i.tm.extension_opcode == 4)
6369 {
6370 /* jmp r/m. E.g., notrack jmp *%rax. */
6371 if (i.reg_operands)
6372 {
6373 dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
6374 ginsn = ginsn_new_jump (insn_end_sym, true,
6375 GINSN_SRC_REG, dw2_regnum, NULL);
6376 ginsn_set_where (ginsn);
6377 }
6378 else if (i.mem_operands && i.index_reg)
6379 {
6380 /* jmp *0x0(,%rax,8). */
6381 dw2_regnum = ginsn_dw2_regnum (i.index_reg);
6382 ginsn = ginsn_new_jump (insn_end_sym, true,
6383 GINSN_SRC_REG, dw2_regnum, NULL);
6384 ginsn_set_where (ginsn);
6385 }
6386 else if (i.mem_operands && i.base_reg)
6387 {
6388 dw2_regnum = ginsn_dw2_regnum (i.base_reg);
6389 ginsn = ginsn_new_jump (insn_end_sym, true,
6390 GINSN_SRC_REG, dw2_regnum, NULL);
6391 ginsn_set_where (ginsn);
6392 }
6393 }
6394 else if (i.tm.extension_opcode == 2)
6395 {
6396 /* 0xFF /2 (call). */
6397 if (i.reg_operands)
6398 {
6399 dw2_regnum = ginsn_dw2_regnum (i.op[0].regs);
6400 ginsn = ginsn_new_call (insn_end_sym, true,
6401 GINSN_SRC_REG, dw2_regnum, NULL);
6402 ginsn_set_where (ginsn);
6403 }
6404 else if (i.mem_operands && i.base_reg)
6405 {
6406 dw2_regnum = ginsn_dw2_regnum (i.base_reg);
6407 ginsn = ginsn_new_call (insn_end_sym, true,
6408 GINSN_SRC_REG, dw2_regnum, NULL);
6409 ginsn_set_where (ginsn);
6410 }
6411 }
6412 break;
6413
6414 case 0xc2: /* ret imm16. */
6415 case 0xc3: /* ret. */
6416 if (i.tm.opcode_space != SPACE_BASE)
6417 break;
6418 /* Near ret. */
6419 ginsn = ginsn_new_return (insn_end_sym, true);
6420 ginsn_set_where (ginsn);
6421 break;
6422
6423 case 0xc8:
6424 if (i.tm.opcode_space != SPACE_BASE)
6425 break;
6426 /* enter. */
6427 ginsn = x86_ginsn_enter (insn_end_sym);
6428 break;
6429
6430 case 0xc9:
6431 if (i.tm.opcode_space != SPACE_BASE)
6432 break;
6433 /* leave. */
6434 ginsn = x86_ginsn_leave (insn_end_sym);
6435 break;
6436
6437 case 0xe0 ... 0xe2: /* loop / loope / loopne. */
6438 case 0xe3: /* jecxz / jrcxz. */
6439 if (i.tm.opcode_space != SPACE_BASE)
6440 break;
6441 ginsn = x86_ginsn_jump (insn_end_sym, true);
6442 ginsn_set_where (ginsn);
6443 break;
6444
6445 case 0xe8:
6446 if (i.tm.opcode_space != SPACE_BASE)
6447 break;
6448 /* PS: SCFI machinery does not care about which func is being
6449 called. OK to skip that info. */
6450 ginsn = ginsn_new_call (insn_end_sym, true,
6451 GINSN_SRC_SYMBOL, 0, NULL);
6452 ginsn_set_where (ginsn);
6453 break;
6454
6455 /* PS: opcode 0xe9 appears only after relaxation. Skip here. */
6456 case 0xeb:
6457 /* If opcode_space != SPACE_BASE, this is not a jmp insn. Skip it
6458 for GINSN_GEN_SCFI. */
6459 if (i.tm.opcode_space != SPACE_BASE)
6460 break;
6461 /* Unconditional jmp. */
6462 ginsn = x86_ginsn_jump (insn_end_sym, false);
6463 ginsn_set_where (ginsn);
6464 break;
6465
6466 default:
6467 /* TBD_GINSN_GEN_NOT_SCFI: Skip all other opcodes uninteresting for
6468 GINSN_GEN_SCFI mode. */
6469 break;
6470 }
6471
6472 if (!ginsn && !x86_ginsn_safe_to_skip_p ())
6473 {
6474 /* For all unhandled insns that are not whitelisted, check that they do
6475 not impact SCFI correctness. */
6476 err = x86_ginsn_unhandled ();
6477 switch (err)
6478 {
6479 case X86_GINSN_UNHANDLED_NONE:
6480 break;
6481 case X86_GINSN_UNHANDLED_DEST_REG:
6482 /* Not all writes to REG_FP are harmful in context of SCFI. Simply
6483 generate a GINSN_TYPE_OTHER with destination set to the
6484 appropriate register. The SCFI machinery will bail out if this
6485 ginsn affects SCFI correctness. */
6486 dw2_regnum = ginsn_dw2_regnum (i.op[i.operands - 1].regs);
6487 ginsn = ginsn_new_other (insn_end_sym, true,
6488 GINSN_SRC_IMM, 0,
6489 GINSN_SRC_IMM, 0,
6490 GINSN_DST_REG, dw2_regnum);
6491 ginsn_set_where (ginsn);
6492 break;
6493 case X86_GINSN_UNHANDLED_CFG:
6494 case X86_GINSN_UNHANDLED_STACKOP:
6495 as_bad (_("SCFI: unhandled op %#x may cause incorrect CFI"), opcode);
6496 break;
6497 case X86_GINSN_UNHANDLED_UNEXPECTED:
6498 as_bad (_("SCFI: unexpected op %#x may cause incorrect CFI"),
6499 opcode);
6500 break;
6501 default:
6502 abort ();
6503 break;
6504 }
6505 }
6506
6507 return ginsn;
6508}
6509
6510#endif
6511
252b5132
RH
6512/* This is the guts of the machine-dependent assembler. LINE points to a
6513 machine dependent instruction. This function is supposed to emit
6514 the frags/bytes it assembles to. */
6515
6516void
65da13b5 6517md_assemble (char *line)
252b5132 6518{
40fb9820 6519 unsigned int j;
9db83a32 6520 char mnemonic[MAX_MNEM_SIZE], mnem_suffix = 0, *copy = NULL;
2d4c39a8 6521 char *xstrdup_copy = NULL;
04784e33
JB
6522 const char *end, *pass1_mnem = NULL;
6523 enum i386_error pass1_err = 0;
d3ce72d0 6524 const insn_template *t;
b5482fe5
JB
6525 struct last_insn *last_insn
6526 = &seg_info(now_seg)->tc_segment_info_data.last_insn;
252b5132 6527
47926f60 6528 /* Initialize globals. */
d3b01414 6529 current_templates.end = current_templates.start = NULL;
04784e33 6530 retry:
edd67638 6531 init_globals ();
252b5132 6532
175ce60f
JB
6533 /* Suppress optimization when the last thing we saw may not have been
6534 a proper instruction (e.g. a stand-alone prefix or .byte). */
6535 if (last_insn->kind != last_insn_other)
6536 i.no_optimize = true;
6537
252b5132
RH
6538 /* First parse an instruction mnemonic & call i386_operand for the operands.
6539 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 6540 start of a (possibly prefixed) mnemonic. */
252b5132 6541
edd67638 6542 end = parse_insn (line, mnemonic, false);
5317ad2c 6543 if (end == NULL)
04784e33
JB
6544 {
6545 if (pass1_mnem != NULL)
6546 goto match_error;
9db83a32
JB
6547 if (i.error != no_error)
6548 {
d3b01414
JB
6549 gas_assert (current_templates.start != NULL);
6550 if (may_need_pass2 (current_templates.start) && !i.suffix)
9db83a32
JB
6551 goto no_match;
6552 /* No point in trying a 2nd pass - it'll only find the same suffix
6553 again. */
6554 mnem_suffix = i.suffix;
6555 goto match_error;
6556 }
04784e33
JB
6557 return;
6558 }
d3b01414 6559 t = current_templates.start;
2d4c39a8
L
6560 /* NB: LINE may be change to be the same as XSTRDUP_COPY. */
6561 if (xstrdup_copy != line && may_need_pass2 (t))
04784e33
JB
6562 {
6563 /* Make a copy of the full line in case we need to retry. */
2d4c39a8
L
6564 xstrdup_copy = xstrdup (line);
6565 copy = xstrdup_copy;
04784e33 6566 }
5317ad2c 6567 line += end - line;
83b16ac6 6568 mnem_suffix = i.suffix;
252b5132 6569
29b0f896 6570 line = parse_operands (line, mnemonic);
ee86248c 6571 this_operand = -1;
29b0f896 6572 if (line == NULL)
04784e33 6573 {
2d4c39a8 6574 free (xstrdup_copy);
04784e33
JB
6575 return;
6576 }
252b5132 6577
29b0f896
AM
6578 /* Now we've parsed the mnemonic into a set of templates, and have the
6579 operands at hand. */
6580
b630c145 6581 /* All Intel opcodes have reversed operands except for "bound", "enter",
c0e54661 6582 "invlpg*", "monitor*", "mwait*", "tpause", "umwait", "pvalidate",
b0e8fa7f
TJ
6583 "rmpadjust", "rmpupdate", and "rmpquery". We also don't reverse
6584 intersegment "jmp" and "call" instructions with 2 immediate operands so
6585 that the immediate segment precedes the offset consistently in Intel and
6586 AT&T modes. */
4d456e3d
L
6587 if (intel_syntax
6588 && i.operands > 1
6d86a545
JB
6589 && (t->mnem_off != MN_bound)
6590 && !startswith (mnemonic, "invlpg")
d34049e8
ML
6591 && !startswith (mnemonic, "monitor")
6592 && !startswith (mnemonic, "mwait")
6d86a545 6593 && (t->mnem_off != MN_pvalidate)
d34049e8 6594 && !startswith (mnemonic, "rmp")
6d86a545
JB
6595 && (t->mnem_off != MN_tpause)
6596 && (t->mnem_off != MN_umwait)
47c0279b
JB
6597 && !(i.operands == 2
6598 && operand_type_check (i.types[0], imm)
40fb9820 6599 && operand_type_check (i.types[1], imm)))
29b0f896
AM
6600 swap_operands ();
6601
e7d74879
JB
6602 /* The order of the immediates should be reversed for 2-immediates EXTRQ
6603 and INSERTQ instructions. Also UWRMSR wants its immediate to be in the
6604 "canonical" place (first), despite it appearing last (in AT&T syntax, or
6605 because of the swapping above) in the incoming set of operands. */
6606 if ((i.imm_operands == 2
6607 && (t->mnem_off == MN_extrq || t->mnem_off == MN_insertq))
6608 || (t->mnem_off == MN_uwrmsr && i.imm_operands
6609 && i.operands > i.imm_operands))
ec56d5c0
JB
6610 swap_2_operands (0, 1);
6611
29b0f896 6612 if (i.imm_operands)
8170af78
HL
6613 {
6614 /* For USER_MSR instructions, imm32 stands for the name of an model specific
6615 register (MSR). That's an unsigned quantity, whereas all other insns with
6616 32-bit immediate and 64-bit operand size use sign-extended
6617 immediates (imm32s). Therefore these insns are special-cased, bypassing
6618 the normal handling of immediates here. */
d3b01414 6619 if (is_cpu(current_templates.start, CpuUSER_MSR))
8170af78
HL
6620 {
6621 for (j = 0; j < i.operands; j++)
6622 {
6623 if (operand_type_check(i.types[j], imm))
6624 i.types[j] = smallest_imm_type (i.op[j].imms->X_add_number);
6625 }
6626 }
6627 else
6628 optimize_imm ();
6629 }
29b0f896 6630
0de704b9
JB
6631 if (i.disp_operands && !optimize_disp (t))
6632 return;
29b0f896
AM
6633
6634 /* Next, we find a template that matches the given insn,
6635 making sure the overlap of the given operands types is consistent
6636 with the template operand types. */
252b5132 6637
83b16ac6 6638 if (!(t = match_template (mnem_suffix)))
04784e33
JB
6639 {
6640 const char *err_msg;
6641
6642 if (copy && !mnem_suffix)
6643 {
6644 line = copy;
6645 copy = NULL;
9db83a32 6646 no_match:
04784e33 6647 pass1_err = i.error;
d3b01414 6648 pass1_mnem = insn_name (current_templates.start);
04784e33
JB
6649 goto retry;
6650 }
9db83a32
JB
6651
6652 /* If a non-/only-64bit template (group) was found in pass 1, and if
6653 _some_ template (group) was found in pass 2, squash pass 1's
6654 error. */
6655 if (pass1_err == unsupported_64bit)
6656 pass1_mnem = NULL;
6657
04784e33 6658 match_error:
2d4c39a8 6659 free (xstrdup_copy);
9db83a32 6660
04784e33
JB
6661 switch (pass1_mnem ? pass1_err : i.error)
6662 {
6663 default:
6664 abort ();
6665 case operand_size_mismatch:
6666 err_msg = _("operand size mismatch");
6667 break;
6668 case operand_type_mismatch:
6669 err_msg = _("operand type mismatch");
6670 break;
6671 case register_type_mismatch:
6672 err_msg = _("register type mismatch");
6673 break;
6674 case number_of_operands_mismatch:
6675 err_msg = _("number of operands mismatch");
6676 break;
6677 case invalid_instruction_suffix:
6678 err_msg = _("invalid instruction suffix");
6679 break;
6680 case bad_imm4:
6681 err_msg = _("constant doesn't fit in 4 bits");
6682 break;
6683 case unsupported_with_intel_mnemonic:
6684 err_msg = _("unsupported with Intel mnemonic");
6685 break;
6686 case unsupported_syntax:
6687 err_msg = _("unsupported syntax");
6688 break;
80d61d8d
CL
6689 case unsupported_EGPR_for_addressing:
6690 err_msg = _("extended GPR cannot be used as base/index");
6691 break;
dd74a603
CL
6692 case unsupported_nf:
6693 err_msg = _("{nf} unsupported");
6694 break;
04784e33
JB
6695 case unsupported:
6696 as_bad (_("unsupported instruction `%s'"),
d3b01414 6697 pass1_mnem ? pass1_mnem : insn_name (current_templates.start));
04784e33 6698 return;
9db83a32
JB
6699 case unsupported_on_arch:
6700 as_bad (_("`%s' is not supported on `%s%s'"),
d3b01414 6701 pass1_mnem ? pass1_mnem : insn_name (current_templates.start),
9db83a32
JB
6702 cpu_arch_name ? cpu_arch_name : default_arch,
6703 cpu_sub_arch_name ? cpu_sub_arch_name : "");
6704 return;
6705 case unsupported_64bit:
6706 if (ISLOWER (mnem_suffix))
e8b4b7b2
NC
6707 {
6708 if (flag_code == CODE_64BIT)
6709 as_bad (_("`%s%c' is not supported in 64-bit mode"),
d3b01414 6710 pass1_mnem ? pass1_mnem : insn_name (current_templates.start),
e8b4b7b2
NC
6711 mnem_suffix);
6712 else
6713 as_bad (_("`%s%c' is only supported in 64-bit mode"),
d3b01414 6714 pass1_mnem ? pass1_mnem : insn_name (current_templates.start),
e8b4b7b2
NC
6715 mnem_suffix);
6716 }
9db83a32 6717 else
e8b4b7b2
NC
6718 {
6719 if (flag_code == CODE_64BIT)
6720 as_bad (_("`%s' is not supported in 64-bit mode"),
d3b01414 6721 pass1_mnem ? pass1_mnem : insn_name (current_templates.start));
e8b4b7b2
NC
6722 else
6723 as_bad (_("`%s' is only supported in 64-bit mode"),
d3b01414 6724 pass1_mnem ? pass1_mnem : insn_name (current_templates.start));
e8b4b7b2 6725 }
9db83a32 6726 return;
54294d73
JB
6727 case no_vex_encoding:
6728 err_msg = _("no VEX/XOP encoding");
6729 break;
6730 case no_evex_encoding:
6731 err_msg = _("no EVEX encoding");
6732 break;
04784e33
JB
6733 case invalid_sib_address:
6734 err_msg = _("invalid SIB address");
6735 break;
6736 case invalid_vsib_address:
6737 err_msg = _("invalid VSIB address");
6738 break;
6739 case invalid_vector_register_set:
6740 err_msg = _("mask, index, and destination registers must be distinct");
6741 break;
6742 case invalid_tmm_register_set:
6743 err_msg = _("all tmm registers must be distinct");
6744 break;
6745 case invalid_dest_and_src_register_set:
6746 err_msg = _("destination and source registers must be distinct");
6747 break;
08a98d4c
MZ
6748 case invalid_dest_register_set:
6749 err_msg = _("two dest registers must be distinct");
6750 break;
80d61d8d
CL
6751 case invalid_pseudo_prefix:
6752 err_msg = _("rex2 pseudo prefix cannot be used");
6753 break;
04784e33
JB
6754 case unsupported_vector_index_register:
6755 err_msg = _("unsupported vector index register");
6756 break;
6757 case unsupported_broadcast:
6758 err_msg = _("unsupported broadcast");
6759 break;
6760 case broadcast_needed:
6761 err_msg = _("broadcast is needed for operand of such type");
6762 break;
6763 case unsupported_masking:
6764 err_msg = _("unsupported masking");
6765 break;
6766 case mask_not_on_destination:
6767 err_msg = _("mask not on destination operand");
6768 break;
6769 case no_default_mask:
6770 err_msg = _("default mask isn't allowed");
6771 break;
6772 case unsupported_rc_sae:
6773 err_msg = _("unsupported static rounding/sae");
6774 break;
54294d73
JB
6775 case unsupported_vector_size:
6776 as_bad (_("vector size above %u required for `%s'"), 128u << vector_size,
d3b01414 6777 pass1_mnem ? pass1_mnem : insn_name (current_templates.start));
54294d73 6778 return;
08a98d4c
MZ
6779 case unsupported_rsp_register:
6780 err_msg = _("'rsp' register cannot be used");
6781 break;
58bceb18
JB
6782 case internal_error:
6783 err_msg = _("internal error");
6784 break;
04784e33
JB
6785 }
6786 as_bad (_("%s for `%s'"), err_msg,
d3b01414 6787 pass1_mnem ? pass1_mnem : insn_name (current_templates.start));
04784e33
JB
6788 return;
6789 }
6790
2d4c39a8 6791 free (xstrdup_copy);
252b5132 6792
7bab8ab5 6793 if (sse_check != check_none
ffb86450
JB
6794 /* The opcode space check isn't strictly needed; it's there only to
6795 bypass the logic below when easily possible. */
ddb62495
JB
6796 && t->opcode_space >= SPACE_0F
6797 && t->opcode_space <= SPACE_0F3A
734dfd1c 6798 && !is_cpu (&i.tm, CpuSSE4a)
ffb86450 6799 && !is_any_vex_encoding (t))
daf50ae7 6800 {
06360a5c
JB
6801 /* Some KL and all WideKL insns have only implicit %xmm operands. */
6802 bool simd = is_cpu (t, CpuKL) || is_cpu (t, CpuWideKL);
ffb86450
JB
6803
6804 for (j = 0; j < t->operands; ++j)
6805 {
6806 if (t->operand_types[j].bitfield.class == RegMMX)
6807 break;
6808 if (t->operand_types[j].bitfield.class == RegSIMD)
6809 simd = true;
6810 }
6811
6812 if (j >= t->operands && simd)
6813 (sse_check == check_warning
6814 ? as_warn
76d3f746 6815 : as_bad) (_("SSE instruction `%s' is used"), insn_name (&i.tm));
daf50ae7
L
6816 }
6817
40fb9820 6818 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
6819 if (!add_prefix (FWAIT_OPCODE))
6820 return;
252b5132 6821
d5de92cf 6822 /* Check if REP prefix is OK. */
742732c7 6823 if (i.rep_prefix && i.tm.opcode_modifier.prefixok != PrefixRep)
d5de92cf
L
6824 {
6825 as_bad (_("invalid instruction `%s' after `%s'"),
76d3f746 6826 insn_name (&i.tm), i.rep_prefix);
d5de92cf
L
6827 return;
6828 }
6829
c1ba0266
L
6830 /* Check for lock without a lockable instruction. Destination operand
6831 must be memory unless it is xchg (0x86). */
9a4a4499
JB
6832 if (i.prefix[LOCK_PREFIX])
6833 {
6834 if (i.tm.opcode_modifier.prefixok < PrefixLock
c1ba0266
L
6835 || i.mem_operands == 0
6836 || (i.tm.base_opcode != 0x86
9a4a4499
JB
6837 && !(i.flags[i.operands - 1] & Operand_Mem)))
6838 {
6839 as_bad (_("expecting lockable instruction after `lock'"));
6840 return;
6841 }
6842
6843 /* Zap the redundant prefix from XCHG when optimizing. */
6844 if (i.tm.base_opcode == 0x86 && optimize && !i.no_optimize)
6845 i.prefix[LOCK_PREFIX] = 0;
c32fa91d
L
6846 }
6847
e3669c7f
JB
6848 if (is_any_vex_encoding (&i.tm)
6849 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
6850 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX)
7a8655d2 6851 {
e3669c7f
JB
6852 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
6853 if (i.prefix[DATA_PREFIX])
6854 {
76d3f746 6855 as_bad (_("data size prefix invalid with `%s'"), insn_name (&i.tm));
e3669c7f
JB
6856 return;
6857 }
6858
6859 /* Don't allow e.g. KMOV in TLS code sequences. */
6860 for (j = i.imm_operands; j < i.operands; ++j)
6861 switch (i.reloc[j])
6862 {
5bc71c2a
L
6863 case BFD_RELOC_X86_64_GOTTPOFF:
6864 if (i.tm.mnem_off == MN_add
6865 && i.tm.opcode_space == SPACE_EVEXMAP4
6866 && i.mem_operands == 1
6867 && i.base_reg
6868 && i.base_reg->reg_num == RegIP
6869 && i.tm.operand_types[0].bitfield.class == Reg
6870 && i.tm.operand_types[2].bitfield.class == Reg)
6871 /* Allow APX: add %reg1, foo@gottpoff(%rip), %reg2. */
6872 break;
6873 /* Fall through. */
e3669c7f
JB
6874 case BFD_RELOC_386_TLS_GOTIE:
6875 case BFD_RELOC_386_TLS_LE_32:
e3669c7f 6876 case BFD_RELOC_X86_64_TLSLD:
76d3f746 6877 as_bad (_("TLS relocation cannot be used with `%s'"), insn_name (&i.tm));
e3669c7f
JB
6878 return;
6879 default:
6880 break;
6881 }
7a8655d2
JB
6882 }
6883
42164a71 6884 /* Check if HLE prefix is OK. */
165de32a 6885 if (i.hle_prefix && !check_hle ())
42164a71
L
6886 return;
6887
7e8b059b
L
6888 /* Check BND prefix. */
6889 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
6890 as_bad (_("expecting valid branch instruction after `bnd'"));
6891
04ef582a 6892 /* Check NOTRACK prefix. */
742732c7 6893 if (i.notrack_prefix && i.tm.opcode_modifier.prefixok != PrefixNoTrack)
9fef80d6 6894 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 6895
734dfd1c 6896 if (is_cpu (&i.tm, CpuMPX))
327e8c42
JB
6897 {
6898 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
6899 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
6900 else if (flag_code != CODE_16BIT
6901 ? i.prefix[ADDR_PREFIX]
6902 : i.mem_operands && !i.prefix[ADDR_PREFIX])
6903 as_bad (_("16-bit address isn't allowed in MPX instructions"));
6904 }
7e8b059b
L
6905
6906 /* Insert BND prefix. */
76d3a78a
JB
6907 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
6908 {
6909 if (!i.prefix[BND_PREFIX])
6910 add_prefix (BND_PREFIX_OPCODE);
6911 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
6912 {
6913 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
6914 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
6915 }
6916 }
7e8b059b 6917
29b0f896 6918 /* Check string instruction segment overrides. */
51c8edf6 6919 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 6920 {
51c8edf6 6921 gas_assert (i.mem_operands);
29b0f896 6922 if (!check_string ())
5dd0794d 6923 return;
fc0763e6 6924 i.disp_operands = 0;
29b0f896 6925 }
5dd0794d 6926
9373f275
L
6927 /* The memory operand of (%dx) should be only used with input/output
6928 instructions (base opcodes: 0x6c, 0x6e, 0xec, 0xee). */
6929 if (i.input_output_operand
6930 && ((i.tm.base_opcode | 0x82) != 0xee
ddb62495 6931 || i.tm.opcode_space != SPACE_BASE))
9373f275
L
6932 {
6933 as_bad (_("input/output port address isn't allowed with `%s'"),
76d3f746 6934 insn_name (&i.tm));
9373f275
L
6935 return;
6936 }
6937
b6f8c7c4
L
6938 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
6939 optimize_encoding ();
6940
eb3f3841
JB
6941 /* Past optimization there's no need to distinguish encoding_evex,
6942 encoding_evex512, and encoding_egpr anymore. */
e346d50a
JB
6943 if (i.encoding == encoding_evex512)
6944 i.encoding = encoding_evex;
eb3f3841
JB
6945 else if (i.encoding == encoding_egpr)
6946 i.encoding = is_any_vex_encoding (&i.tm) ? encoding_evex
6947 : encoding_default;
a6f3add0 6948
c8480b58
L
6949 if (use_unaligned_vector_move)
6950 encode_with_unaligned_vector_move ();
6951
29b0f896
AM
6952 if (!process_suffix ())
6953 return;
e413e4e9 6954
ef07be45 6955 /* Check if IP-relative addressing requirements can be satisfied. */
734dfd1c 6956 if (is_cpu (&i.tm, CpuPREFETCHI)
ef07be45 6957 && !(i.base_reg && i.base_reg->reg_num == RegIP))
76d3f746 6958 as_warn (_("'%s' only supports RIP-relative address"), insn_name (&i.tm));
ef07be45 6959
921eafea 6960 /* Update operand types and check extended states. */
bc0844ae 6961 for (j = 0; j < i.operands; j++)
921eafea
L
6962 {
6963 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3d70986f 6964 switch (i.tm.operand_types[j].bitfield.class)
921eafea
L
6965 {
6966 default:
6967 break;
6968 case RegMMX:
6969 i.xstate |= xstate_mmx;
6970 break;
6971 case RegMask:
32930e4e 6972 i.xstate |= xstate_mask;
921eafea
L
6973 break;
6974 case RegSIMD:
3d70986f 6975 if (i.tm.operand_types[j].bitfield.tmmword)
921eafea 6976 i.xstate |= xstate_tmm;
4fc85f37 6977 else if (i.tm.operand_types[j].bitfield.zmmword
a6f3add0 6978 && !i.tm.opcode_modifier.vex
4fc85f37 6979 && vector_size >= VSZ512)
921eafea 6980 i.xstate |= xstate_zmm;
4fc85f37
JB
6981 else if (i.tm.operand_types[j].bitfield.ymmword
6982 && vector_size >= VSZ256)
921eafea 6983 i.xstate |= xstate_ymm;
3d70986f 6984 else if (i.tm.operand_types[j].bitfield.xmmword)
921eafea
L
6985 i.xstate |= xstate_xmm;
6986 break;
6987 }
6988 }
bc0844ae 6989
29b0f896
AM
6990 /* Make still unresolved immediate matches conform to size of immediate
6991 given in i.suffix. */
6992 if (!finalize_imm ())
6993 return;
252b5132 6994
40fb9820 6995 if (i.types[0].bitfield.imm1)
29b0f896 6996 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 6997
29b0f896
AM
6998 /* For insns with operands there are more diddles to do to the opcode. */
6999 if (i.operands)
7000 {
7001 if (!process_operands ())
7002 return;
7003 }
255571cd 7004 else if (!quiet_warnings && i.tm.opcode_modifier.operandconstraint == UGH)
29b0f896
AM
7005 {
7006 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
76d3f746 7007 as_warn (_("translating to `%sp'"), insn_name (&i.tm));
29b0f896 7008 }
252b5132 7009
7a8655d2 7010 if (is_any_vex_encoding (&i.tm))
9e5e5283 7011 {
c1dc7af5 7012 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 7013 {
c1dc7af5 7014 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
76d3f746 7015 insn_name (&i.tm));
9e5e5283
L
7016 return;
7017 }
c0f3af97 7018
0b9404fd
JB
7019 /* Check for explicit REX prefix. */
7020 if (i.prefix[REX_PREFIX] || i.rex_encoding)
7021 {
76d3f746 7022 as_bad (_("REX prefix invalid with `%s'"), insn_name (&i.tm));
0b9404fd
JB
7023 return;
7024 }
7025
80d61d8d
CL
7026 /* Check for explicit REX2 prefix. */
7027 if (i.rex2_encoding)
7028 {
7029 as_bad (_("{rex2} prefix invalid with `%s'"), insn_name (&i.tm));
7030 return;
7031 }
7032
6177c84d
CL
7033 if (is_apx_evex_encoding ())
7034 build_apx_evex_prefix ();
7035 else if (i.tm.opcode_modifier.vex)
9e5e5283
L
7036 build_vex_prefix (t);
7037 else
7038 build_evex_prefix ();
0b9404fd
JB
7039
7040 /* The individual REX.RXBW bits got consumed. */
7041 i.rex &= REX_OPCODE;
6177c84d
CL
7042
7043 /* The rex2 bits got consumed. */
7044 i.rex2 = 0;
9e5e5283 7045 }
43234a1e 7046
7fc69528
JB
7047 /* Handle conversion of 'int $3' --> special int3 insn. */
7048 if (i.tm.mnem_off == MN_int
a6461c02 7049 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
7050 {
7051 i.tm.base_opcode = INT3_OPCODE;
7052 i.imm_operands = 0;
7053 }
252b5132 7054
0cfa3eb3
JB
7055 if ((i.tm.opcode_modifier.jump == JUMP
7056 || i.tm.opcode_modifier.jump == JUMP_BYTE
7057 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
7058 && i.op[0].disps->X_op == O_constant)
7059 {
7060 /* Convert "jmp constant" (and "call constant") to a jump (call) to
7061 the absolute address given by the constant. Since ix86 jumps and
7062 calls are pc relative, we need to generate a reloc. */
7063 i.op[0].disps->X_add_symbol = &abs_symbol;
7064 i.op[0].disps->X_op = O_symbol;
7065 }
252b5132 7066
ce705688 7067 establish_rex ();
29b0f896 7068
b5482fe5 7069 insert_lfence_before (last_insn);
ae531041 7070
29b0f896 7071 /* We are ready to output the insn. */
b5482fe5 7072 output_insn (last_insn);
e379e5f3 7073
c7defc53
IB
7074#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7075 /* PS: SCFI is enabled only for System V AMD64 ABI. The ABI check has been
7076 performed in i386_target_format. */
7077 if (IS_ELF && flag_synth_cfi)
7078 {
7079 ginsnS *ginsn;
7080 ginsn = x86_ginsn_new (symbol_temp_new_now (), frch_ginsn_gen_mode ());
7081 frch_ginsn_data_append (ginsn);
7082 }
7083#endif
7084
ae531041
L
7085 insert_lfence_after ();
7086
e379e5f3
L
7087 if (i.tm.opcode_modifier.isprefix)
7088 {
b5482fe5
JB
7089 last_insn->kind = last_insn_prefix;
7090 last_insn->name = insn_name (&i.tm);
7091 last_insn->file = as_where (&last_insn->line);
e379e5f3
L
7092 }
7093 else
b5482fe5 7094 last_insn->kind = last_insn_other;
29b0f896
AM
7095}
7096
9db83a32
JB
7097/* The Q suffix is generally valid only in 64-bit mode, with very few
7098 exceptions: fild, fistp, fisttp, and cmpxchg8b. Note that for fild
7099 and fisttp only one of their two templates is matched below: That's
7100 sufficient since other relevant attributes are the same between both
7101 respective templates. */
7102static INLINE bool q_suffix_allowed(const insn_template *t)
7103{
7104 return flag_code == CODE_64BIT
ddb62495 7105 || (t->opcode_space == SPACE_BASE
9db83a32
JB
7106 && t->base_opcode == 0xdf
7107 && (t->extension_opcode & 1)) /* fild / fistp / fisttp */
7fc69528 7108 || t->mnem_off == MN_cmpxchg8b;
9db83a32
JB
7109}
7110
5317ad2c 7111static const char *
edd67638 7112parse_insn (const char *line, char *mnemonic, bool prefix_only)
29b0f896 7113{
5317ad2c 7114 const char *l = line, *token_start = l;
29b0f896 7115 char *mnem_p;
d3b01414 7116 bool pass1 = !current_templates.start;
5c6af06e 7117 int supported;
d3ce72d0 7118 const insn_template *t;
b6169b20 7119 char *dot_p = NULL;
29b0f896 7120
29b0f896
AM
7121 while (1)
7122 {
7123 mnem_p = mnemonic;
778415f5
JB
7124 /* Pseudo-prefixes start with an opening figure brace. */
7125 if ((*mnem_p = *l) == '{')
7126 {
7127 ++mnem_p;
7128 ++l;
7129 }
29b0f896
AM
7130 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
7131 {
b6169b20
L
7132 if (*mnem_p == '.')
7133 dot_p = mnem_p;
29b0f896
AM
7134 mnem_p++;
7135 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 7136 {
778415f5 7137 too_long:
29b0f896
AM
7138 as_bad (_("no such instruction: `%s'"), token_start);
7139 return NULL;
7140 }
7141 l++;
7142 }
778415f5
JB
7143 /* Pseudo-prefixes end with a closing figure brace. */
7144 if (*mnemonic == '{' && *l == '}')
7145 {
7146 *mnem_p++ = *l++;
7147 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
7148 goto too_long;
7149 *mnem_p = '\0';
7150
7151 /* Point l at the closing brace if there's no other separator. */
7152 if (*l != END_OF_INSN && !is_space_char (*l)
7153 && *l != PREFIX_SEPARATOR)
7154 --l;
7155 }
7156 else if (!is_space_char (*l)
7157 && *l != END_OF_INSN
7158 && (intel_syntax
7159 || (*l != PREFIX_SEPARATOR && *l != ',')))
29b0f896 7160 {
edd67638
JB
7161 if (prefix_only)
7162 break;
29b0f896
AM
7163 as_bad (_("invalid character %s in mnemonic"),
7164 output_invalid (*l));
7165 return NULL;
7166 }
7167 if (token_start == l)
7168 {
e44823cf 7169 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
7170 as_bad (_("expecting prefix; got nothing"));
7171 else
7172 as_bad (_("expecting mnemonic; got nothing"));
7173 return NULL;
7174 }
45288df1 7175
29b0f896 7176 /* Look up instruction (or prefix) via hash table. */
d3b01414 7177 op_lookup (mnemonic);
47926f60 7178
29b0f896
AM
7179 if (*l != END_OF_INSN
7180 && (!is_space_char (*l) || l[1] != END_OF_INSN)
d3b01414
JB
7181 && current_templates.start
7182 && current_templates.start->opcode_modifier.isprefix)
29b0f896 7183 {
d3b01414 7184 supported = cpu_flags_match (current_templates.start);
3086ed9a 7185 if (!(supported & CPU_FLAGS_64BIT_MATCH))
2dd88dca
JB
7186 {
7187 as_bad ((flag_code != CODE_64BIT
7188 ? _("`%s' is only supported in 64-bit mode")
7189 : _("`%s' is not supported in 64-bit mode")),
d3b01414 7190 insn_name (current_templates.start));
2dd88dca
JB
7191 return NULL;
7192 }
3086ed9a
JB
7193 if (supported != CPU_FLAGS_PERFECT_MATCH)
7194 {
7195 as_bad (_("`%s' is not supported on `%s%s'"),
d3b01414 7196 insn_name (current_templates.start),
3086ed9a
JB
7197 cpu_arch_name ? cpu_arch_name : default_arch,
7198 cpu_sub_arch_name ? cpu_sub_arch_name : "");
7199 return NULL;
7200 }
29b0f896
AM
7201 /* If we are in 16-bit mode, do not allow addr16 or data16.
7202 Similarly, in 32-bit mode, do not allow addr32 or data32. */
d3b01414
JB
7203 if ((current_templates.start->opcode_modifier.size == SIZE16
7204 || current_templates.start->opcode_modifier.size == SIZE32)
29b0f896 7205 && flag_code != CODE_64BIT
d3b01414 7206 && ((current_templates.start->opcode_modifier.size == SIZE32)
29b0f896
AM
7207 ^ (flag_code == CODE_16BIT)))
7208 {
7209 as_bad (_("redundant %s prefix"),
d3b01414 7210 insn_name (current_templates.start));
29b0f896 7211 return NULL;
45288df1 7212 }
31184569 7213
d3b01414 7214 if (current_templates.start->base_opcode == PSEUDO_PREFIX)
29b0f896 7215 {
86fa6981 7216 /* Handle pseudo prefixes. */
d3b01414 7217 switch (current_templates.start->extension_opcode)
86fa6981 7218 {
41eb8e88 7219 case Prefix_Disp8:
86fa6981
L
7220 /* {disp8} */
7221 i.disp_encoding = disp_encoding_8bit;
7222 break;
41eb8e88
L
7223 case Prefix_Disp16:
7224 /* {disp16} */
7225 i.disp_encoding = disp_encoding_16bit;
7226 break;
7227 case Prefix_Disp32:
86fa6981
L
7228 /* {disp32} */
7229 i.disp_encoding = disp_encoding_32bit;
7230 break;
41eb8e88 7231 case Prefix_Load:
86fa6981
L
7232 /* {load} */
7233 i.dir_encoding = dir_encoding_load;
7234 break;
41eb8e88 7235 case Prefix_Store:
86fa6981
L
7236 /* {store} */
7237 i.dir_encoding = dir_encoding_store;
7238 break;
41eb8e88 7239 case Prefix_VEX:
42e04b36 7240 /* {vex} */
e346d50a 7241 i.encoding = encoding_vex;
86fa6981 7242 break;
41eb8e88 7243 case Prefix_VEX3:
86fa6981 7244 /* {vex3} */
e346d50a 7245 i.encoding = encoding_vex3;
86fa6981 7246 break;
41eb8e88 7247 case Prefix_EVEX:
86fa6981 7248 /* {evex} */
e346d50a 7249 i.encoding = encoding_evex;
86fa6981 7250 break;
41eb8e88 7251 case Prefix_REX:
6b6b6807 7252 /* {rex} */
5b7c81bd 7253 i.rex_encoding = true;
6b6b6807 7254 break;
80d61d8d
CL
7255 case Prefix_REX2:
7256 /* {rex2} */
7257 i.rex2_encoding = true;
7258 break;
dd74a603
CL
7259 case Prefix_NF:
7260 /* {nf} */
7261 i.has_nf = true;
7262 if (i.encoding == encoding_default)
7263 i.encoding = encoding_evex;
7264 break;
41eb8e88 7265 case Prefix_NoOptimize:
b6f8c7c4 7266 /* {nooptimize} */
5b7c81bd 7267 i.no_optimize = true;
b6f8c7c4 7268 break;
86fa6981
L
7269 default:
7270 abort ();
7271 }
dd74a603
CL
7272 if (i.has_nf && i.encoding != encoding_evex)
7273 {
7274 as_bad (_("{nf} cannot be combined with {vex}/{vex3}"));
7275 return NULL;
7276 }
86fa6981
L
7277 }
7278 else
7279 {
7280 /* Add prefix, checking for repeated prefixes. */
d3b01414 7281 switch (add_prefix (current_templates.start->base_opcode))
86fa6981 7282 {
4e9ac44a
L
7283 case PREFIX_EXIST:
7284 return NULL;
7285 case PREFIX_DS:
d3b01414
JB
7286 if (is_cpu (current_templates.start, CpuIBT))
7287 i.notrack_prefix = insn_name (current_templates.start);
4e9ac44a
L
7288 break;
7289 case PREFIX_REP:
d3b01414
JB
7290 if (is_cpu (current_templates.start, CpuHLE))
7291 i.hle_prefix = insn_name (current_templates.start);
7292 else if (is_cpu (current_templates.start, CpuMPX))
7293 i.bnd_prefix = insn_name (current_templates.start);
4e9ac44a 7294 else
d3b01414 7295 i.rep_prefix = insn_name (current_templates.start);
4e9ac44a
L
7296 break;
7297 default:
7298 break;
86fa6981 7299 }
29b0f896
AM
7300 }
7301 /* Skip past PREFIX_SEPARATOR and reset token_start. */
7302 token_start = ++l;
7303 }
7304 else
7305 break;
7306 }
45288df1 7307
edd67638
JB
7308 if (prefix_only)
7309 return token_start;
7310
d3b01414 7311 if (!current_templates.start)
b6169b20 7312 {
07d5e953
JB
7313 /* Deprecated functionality (new code should use pseudo-prefixes instead):
7314 Check if we should swap operand or force 32bit displacement in
f8a5c266 7315 encoding. */
30a55f88 7316 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
97f31cb4
JB
7317 {
7318 if (i.dir_encoding == dir_encoding_default)
7319 i.dir_encoding = dir_encoding_swap;
7320 else
7321 as_warn (_("ignoring `.s' suffix due to earlier `{%s}'"),
7322 i.dir_encoding == dir_encoding_load ? "load" : "store");
7323 }
8d63c93e 7324 else if (mnem_p - 3 == dot_p
a501d77e
L
7325 && dot_p[1] == 'd'
7326 && dot_p[2] == '8')
97f31cb4
JB
7327 {
7328 if (i.disp_encoding == disp_encoding_default)
7329 i.disp_encoding = disp_encoding_8bit;
7330 else if (i.disp_encoding != disp_encoding_8bit)
7331 as_warn (_("ignoring `.d8' suffix due to earlier `{disp<N>}'"));
7332 }
8d63c93e 7333 else if (mnem_p - 4 == dot_p
f8a5c266
L
7334 && dot_p[1] == 'd'
7335 && dot_p[2] == '3'
7336 && dot_p[3] == '2')
97f31cb4
JB
7337 {
7338 if (i.disp_encoding == disp_encoding_default)
7339 i.disp_encoding = disp_encoding_32bit;
7340 else if (i.disp_encoding != disp_encoding_32bit)
7341 as_warn (_("ignoring `.d32' suffix due to earlier `{disp<N>}'"));
7342 }
30a55f88
L
7343 else
7344 goto check_suffix;
7345 mnem_p = dot_p;
7346 *dot_p = '\0';
d3b01414 7347 op_lookup (mnemonic);
b6169b20
L
7348 }
7349
d3b01414 7350 if (!current_templates.start || !pass1)
29b0f896 7351 {
d3b01414 7352 current_templates.start = NULL;
04784e33 7353
dc1e8a47 7354 check_suffix:
1c529385 7355 if (mnem_p > mnemonic)
29b0f896 7356 {
1c529385
LH
7357 /* See if we can get a match by trimming off a suffix. */
7358 switch (mnem_p[-1])
29b0f896 7359 {
1c529385
LH
7360 case WORD_MNEM_SUFFIX:
7361 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
7362 i.suffix = SHORT_MNEM_SUFFIX;
7363 else
1c529385
LH
7364 /* Fall through. */
7365 case BYTE_MNEM_SUFFIX:
7366 case QWORD_MNEM_SUFFIX:
7367 i.suffix = mnem_p[-1];
29b0f896 7368 mnem_p[-1] = '\0';
d3b01414 7369 op_lookup (mnemonic);
1c529385
LH
7370 break;
7371 case SHORT_MNEM_SUFFIX:
7372 case LONG_MNEM_SUFFIX:
7373 if (!intel_syntax)
7374 {
7375 i.suffix = mnem_p[-1];
7376 mnem_p[-1] = '\0';
d3b01414 7377 op_lookup (mnemonic);
1c529385
LH
7378 }
7379 break;
7380
7381 /* Intel Syntax. */
7382 case 'd':
7383 if (intel_syntax)
7384 {
7385 if (intel_float_operand (mnemonic) == 1)
7386 i.suffix = SHORT_MNEM_SUFFIX;
7387 else
7388 i.suffix = LONG_MNEM_SUFFIX;
7389 mnem_p[-1] = '\0';
d3b01414 7390 op_lookup (mnemonic);
1c529385 7391 }
04784e33
JB
7392 /* For compatibility reasons accept MOVSD and CMPSD without
7393 operands even in AT&T mode. */
7394 else if (*l == END_OF_INSN
7395 || (is_space_char (*l) && l[1] == END_OF_INSN))
7396 {
7397 mnem_p[-1] = '\0';
d3b01414
JB
7398 op_lookup (mnemonic);
7399 if (current_templates.start != NULL
04784e33 7400 /* MOVS or CMPS */
d3b01414
JB
7401 && (current_templates.start->base_opcode | 2) == 0xa6
7402 && current_templates.start->opcode_space
04784e33
JB
7403 == SPACE_BASE
7404 && mnem_p[-2] == 's')
7405 {
7406 as_warn (_("found `%sd'; assuming `%sl' was meant"),
7407 mnemonic, mnemonic);
7408 i.suffix = LONG_MNEM_SUFFIX;
7409 }
7410 else
7411 {
d3b01414 7412 current_templates.start = NULL;
04784e33
JB
7413 mnem_p[-1] = 'd';
7414 }
7415 }
1c529385 7416 break;
29b0f896 7417 }
29b0f896 7418 }
1c529385 7419
d3b01414 7420 if (!current_templates.start)
29b0f896 7421 {
04784e33
JB
7422 if (pass1)
7423 as_bad (_("no such instruction: `%s'"), token_start);
29b0f896
AM
7424 return NULL;
7425 }
7426 }
252b5132 7427
d3b01414
JB
7428 if (current_templates.start->opcode_modifier.jump == JUMP
7429 || current_templates.start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
7430 {
7431 /* Check for a branch hint. We allow ",pt" and ",pn" for
7432 predict taken and predict not taken respectively.
7433 I'm not sure that branch hints actually do anything on loop
7434 and jcxz insns (JumpByte) for current Pentium4 chips. They
7435 may work in the future and it doesn't hurt to accept them
7436 now. */
7437 if (l[0] == ',' && l[1] == 'p')
7438 {
7439 if (l[2] == 't')
7440 {
7441 if (!add_prefix (DS_PREFIX_OPCODE))
7442 return NULL;
7443 l += 3;
7444 }
7445 else if (l[2] == 'n')
7446 {
7447 if (!add_prefix (CS_PREFIX_OPCODE))
7448 return NULL;
7449 l += 3;
7450 }
7451 }
7452 }
7453 /* Any other comma loses. */
7454 if (*l == ',')
7455 {
7456 as_bad (_("invalid character %s in mnemonic"),
7457 output_invalid (*l));
7458 return NULL;
7459 }
252b5132 7460
29b0f896 7461 /* Check if instruction is supported on specified architecture. */
5c6af06e 7462 supported = 0;
d3b01414 7463 for (t = current_templates.start; t < current_templates.end; ++t)
5c6af06e 7464 {
c0f3af97 7465 supported |= cpu_flags_match (t);
9db83a32
JB
7466
7467 if (i.suffix == QWORD_MNEM_SUFFIX && !q_suffix_allowed (t))
7468 supported &= ~CPU_FLAGS_64BIT_MATCH;
7469
c0f3af97 7470 if (supported == CPU_FLAGS_PERFECT_MATCH)
d59a54c2 7471 return l;
29b0f896 7472 }
3629bb00 7473
9db83a32
JB
7474 if (pass1)
7475 {
7476 if (supported & CPU_FLAGS_64BIT_MATCH)
7477 i.error = unsupported_on_arch;
7478 else
7479 i.error = unsupported_64bit;
7480 }
252b5132 7481
548d0ee6 7482 return NULL;
29b0f896 7483}
252b5132 7484
29b0f896 7485static char *
e3bb37b5 7486parse_operands (char *l, const char *mnemonic)
29b0f896
AM
7487{
7488 char *token_start;
3138f287 7489
29b0f896
AM
7490 /* 1 if operand is pending after ','. */
7491 unsigned int expecting_operand = 0;
252b5132 7492
29b0f896
AM
7493 while (*l != END_OF_INSN)
7494 {
e68c3d59
JB
7495 /* Non-zero if operand parens not balanced. */
7496 unsigned int paren_not_balanced = 0;
7497 /* True if inside double quotes. */
7498 bool in_quotes = false;
7499
29b0f896
AM
7500 /* Skip optional white space before operand. */
7501 if (is_space_char (*l))
7502 ++l;
d02603dc 7503 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
7504 {
7505 as_bad (_("invalid character %s before operand %d"),
7506 output_invalid (*l),
7507 i.operands + 1);
7508 return NULL;
7509 }
d02603dc 7510 token_start = l; /* After white space. */
e68c3d59 7511 while (in_quotes || paren_not_balanced || *l != ',')
29b0f896
AM
7512 {
7513 if (*l == END_OF_INSN)
7514 {
e68c3d59
JB
7515 if (in_quotes)
7516 {
7517 as_bad (_("unbalanced double quotes in operand %d."),
7518 i.operands + 1);
7519 return NULL;
7520 }
29b0f896
AM
7521 if (paren_not_balanced)
7522 {
98ff9f1c
JB
7523 know (!intel_syntax);
7524 as_bad (_("unbalanced parenthesis in operand %d."),
7525 i.operands + 1);
29b0f896
AM
7526 return NULL;
7527 }
7528 else
7529 break; /* we are done */
7530 }
e68c3d59
JB
7531 else if (*l == '\\' && l[1] == '"')
7532 ++l;
7533 else if (*l == '"')
7534 in_quotes = !in_quotes;
7535 else if (!in_quotes && !is_operand_char (*l) && !is_space_char (*l))
29b0f896
AM
7536 {
7537 as_bad (_("invalid character %s in operand %d"),
7538 output_invalid (*l),
7539 i.operands + 1);
7540 return NULL;
7541 }
e68c3d59 7542 if (!intel_syntax && !in_quotes)
29b0f896
AM
7543 {
7544 if (*l == '(')
7545 ++paren_not_balanced;
7546 if (*l == ')')
7547 --paren_not_balanced;
7548 }
29b0f896
AM
7549 l++;
7550 }
7551 if (l != token_start)
7552 { /* Yes, we've read in another operand. */
7553 unsigned int operand_ok;
7554 this_operand = i.operands++;
7555 if (i.operands > MAX_OPERANDS)
7556 {
7557 as_bad (_("spurious operands; (%d operands/instruction max)"),
7558 MAX_OPERANDS);
7559 return NULL;
7560 }
9d46ce34 7561 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
7562 /* Now parse operand adding info to 'i' as we go along. */
7563 END_STRING_AND_SAVE (l);
7564
1286ab78
L
7565 if (i.mem_operands > 1)
7566 {
7567 as_bad (_("too many memory references for `%s'"),
7568 mnemonic);
7569 return 0;
7570 }
7571
29b0f896
AM
7572 if (intel_syntax)
7573 operand_ok =
7574 i386_intel_operand (token_start,
7575 intel_float_operand (mnemonic));
7576 else
a7619375 7577 operand_ok = i386_att_operand (token_start);
29b0f896
AM
7578
7579 RESTORE_END_STRING (l);
7580 if (!operand_ok)
7581 return NULL;
7582 }
7583 else
7584 {
7585 if (expecting_operand)
7586 {
7587 expecting_operand_after_comma:
7588 as_bad (_("expecting operand after ','; got nothing"));
7589 return NULL;
7590 }
7591 if (*l == ',')
7592 {
7593 as_bad (_("expecting operand before ','; got nothing"));
7594 return NULL;
7595 }
7596 }
7f3f1ea2 7597
29b0f896
AM
7598 /* Now *l must be either ',' or END_OF_INSN. */
7599 if (*l == ',')
7600 {
7601 if (*++l == END_OF_INSN)
7602 {
7603 /* Just skip it, if it's \n complain. */
7604 goto expecting_operand_after_comma;
7605 }
7606 expecting_operand = 1;
7607 }
7608 }
7609 return l;
7610}
7f3f1ea2 7611
050dfa73 7612static void
783c187b 7613swap_2_operands (unsigned int xchg1, unsigned int xchg2)
050dfa73
MM
7614{
7615 union i386_op temp_op;
40fb9820 7616 i386_operand_type temp_type;
c48dadc9 7617 unsigned int temp_flags;
050dfa73 7618 enum bfd_reloc_code_real temp_reloc;
4eed87de 7619
050dfa73
MM
7620 temp_type = i.types[xchg2];
7621 i.types[xchg2] = i.types[xchg1];
7622 i.types[xchg1] = temp_type;
c48dadc9
JB
7623
7624 temp_flags = i.flags[xchg2];
7625 i.flags[xchg2] = i.flags[xchg1];
7626 i.flags[xchg1] = temp_flags;
7627
050dfa73
MM
7628 temp_op = i.op[xchg2];
7629 i.op[xchg2] = i.op[xchg1];
7630 i.op[xchg1] = temp_op;
c48dadc9 7631
050dfa73
MM
7632 temp_reloc = i.reloc[xchg2];
7633 i.reloc[xchg2] = i.reloc[xchg1];
7634 i.reloc[xchg1] = temp_reloc;
43234a1e 7635
c032bc4f
JB
7636 temp_flags = i.imm_bits[xchg2];
7637 i.imm_bits[xchg2] = i.imm_bits[xchg1];
7638 i.imm_bits[xchg1] = temp_flags;
7639
6225c532 7640 if (i.mask.reg)
43234a1e 7641 {
6225c532
JB
7642 if (i.mask.operand == xchg1)
7643 i.mask.operand = xchg2;
7644 else if (i.mask.operand == xchg2)
7645 i.mask.operand = xchg1;
43234a1e 7646 }
a5748e0d 7647 if (i.broadcast.type || i.broadcast.bytes)
43234a1e 7648 {
5273a3cd
JB
7649 if (i.broadcast.operand == xchg1)
7650 i.broadcast.operand = xchg2;
7651 else if (i.broadcast.operand == xchg2)
7652 i.broadcast.operand = xchg1;
43234a1e 7653 }
050dfa73
MM
7654}
7655
29b0f896 7656static void
e3bb37b5 7657swap_operands (void)
29b0f896 7658{
b7c61d9a 7659 switch (i.operands)
050dfa73 7660 {
c0f3af97 7661 case 5:
b7c61d9a 7662 case 4:
4d456e3d 7663 swap_2_operands (1, i.operands - 2);
1a0670f3 7664 /* Fall through. */
b7c61d9a
L
7665 case 3:
7666 case 2:
4d456e3d 7667 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
7668 break;
7669 default:
7670 abort ();
29b0f896 7671 }
29b0f896
AM
7672
7673 if (i.mem_operands == 2)
7674 {
5e042380 7675 const reg_entry *temp_seg;
29b0f896
AM
7676 temp_seg = i.seg[0];
7677 i.seg[0] = i.seg[1];
7678 i.seg[1] = temp_seg;
7679 }
7680}
252b5132 7681
29b0f896
AM
7682/* Try to ensure constant immediates are represented in the smallest
7683 opcode possible. */
7684static void
e3bb37b5 7685optimize_imm (void)
29b0f896
AM
7686{
7687 char guess_suffix = 0;
7688 int op;
252b5132 7689
29b0f896
AM
7690 if (i.suffix)
7691 guess_suffix = i.suffix;
7692 else if (i.reg_operands)
7693 {
7694 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
7695 We can't do this properly yet, i.e. excluding special register
7696 instances, but the following works for instructions with
7697 immediates. In any case, we can't set i.suffix yet. */
29b0f896 7698 for (op = i.operands; --op >= 0;)
bab6aec1
JB
7699 if (i.types[op].bitfield.class != Reg)
7700 continue;
7701 else if (i.types[op].bitfield.byte)
7ab9ffdd 7702 {
40fb9820
L
7703 guess_suffix = BYTE_MNEM_SUFFIX;
7704 break;
7705 }
bab6aec1 7706 else if (i.types[op].bitfield.word)
252b5132 7707 {
40fb9820
L
7708 guess_suffix = WORD_MNEM_SUFFIX;
7709 break;
7710 }
bab6aec1 7711 else if (i.types[op].bitfield.dword)
40fb9820
L
7712 {
7713 guess_suffix = LONG_MNEM_SUFFIX;
7714 break;
7715 }
bab6aec1 7716 else if (i.types[op].bitfield.qword)
40fb9820
L
7717 {
7718 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 7719 break;
252b5132 7720 }
29b0f896 7721 }
f79d55e1
JB
7722 else if ((flag_code == CODE_16BIT)
7723 ^ (i.prefix[DATA_PREFIX] != 0 && !(i.prefix[REX_PREFIX] & REX_W)))
29b0f896 7724 guess_suffix = WORD_MNEM_SUFFIX;
fb1c1058
JB
7725 else if (flag_code != CODE_64BIT
7726 || (!(i.prefix[REX_PREFIX] & REX_W)
7727 /* A more generic (but also more involved) way of dealing
7728 with the special case(s) would be to go look for
7729 DefaultSize attributes on any of the templates. */
d3b01414 7730 && current_templates.start->mnem_off != MN_push))
5cc00775 7731 guess_suffix = LONG_MNEM_SUFFIX;
29b0f896
AM
7732
7733 for (op = i.operands; --op >= 0;)
40fb9820 7734 if (operand_type_check (i.types[op], imm))
29b0f896
AM
7735 {
7736 switch (i.op[op].imms->X_op)
252b5132 7737 {
29b0f896
AM
7738 case O_constant:
7739 /* If a suffix is given, this operand may be shortened. */
7740 switch (guess_suffix)
252b5132 7741 {
29b0f896 7742 case LONG_MNEM_SUFFIX:
40fb9820
L
7743 i.types[op].bitfield.imm32 = 1;
7744 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
7745 break;
7746 case WORD_MNEM_SUFFIX:
40fb9820
L
7747 i.types[op].bitfield.imm16 = 1;
7748 i.types[op].bitfield.imm32 = 1;
7749 i.types[op].bitfield.imm32s = 1;
7750 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
7751 break;
7752 case BYTE_MNEM_SUFFIX:
40fb9820
L
7753 i.types[op].bitfield.imm8 = 1;
7754 i.types[op].bitfield.imm8s = 1;
7755 i.types[op].bitfield.imm16 = 1;
7756 i.types[op].bitfield.imm32 = 1;
7757 i.types[op].bitfield.imm32s = 1;
7758 i.types[op].bitfield.imm64 = 1;
29b0f896 7759 break;
252b5132 7760 }
252b5132 7761
29b0f896
AM
7762 /* If this operand is at most 16 bits, convert it
7763 to a signed 16 bit number before trying to see
7764 whether it will fit in an even smaller size.
7765 This allows a 16-bit operand such as $0xffe0 to
7766 be recognised as within Imm8S range. */
40fb9820 7767 if ((i.types[op].bitfield.imm16)
7e96fb68 7768 && fits_in_unsigned_word (i.op[op].imms->X_add_number))
252b5132 7769 {
87ed972d
JB
7770 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
7771 ^ 0x8000) - 0x8000);
29b0f896 7772 }
a28def75
L
7773#ifdef BFD64
7774 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 7775 if ((i.types[op].bitfield.imm32)
7e96fb68 7776 && fits_in_unsigned_long (i.op[op].imms->X_add_number))
29b0f896
AM
7777 {
7778 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
7779 ^ ((offsetT) 1 << 31))
7780 - ((offsetT) 1 << 31));
7781 }
a28def75 7782#endif
40fb9820 7783 i.types[op]
c6fb90c8
L
7784 = operand_type_or (i.types[op],
7785 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 7786
29b0f896
AM
7787 /* We must avoid matching of Imm32 templates when 64bit
7788 only immediate is available. */
7789 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 7790 i.types[op].bitfield.imm32 = 0;
29b0f896 7791 break;
252b5132 7792
29b0f896
AM
7793 case O_absent:
7794 case O_register:
7795 abort ();
7796
7797 /* Symbols and expressions. */
7798 default:
9cd96992
JB
7799 /* Convert symbolic operand to proper sizes for matching, but don't
7800 prevent matching a set of insns that only supports sizes other
7801 than those matching the insn suffix. */
7802 {
40fb9820 7803 i386_operand_type mask, allowed;
d3b01414 7804 const insn_template *t = current_templates.start;
9cd96992 7805
0dfbf9d7 7806 operand_type_set (&mask, 0);
9cd96992
JB
7807 switch (guess_suffix)
7808 {
7809 case QWORD_MNEM_SUFFIX:
40fb9820
L
7810 mask.bitfield.imm64 = 1;
7811 mask.bitfield.imm32s = 1;
9cd96992
JB
7812 break;
7813 case LONG_MNEM_SUFFIX:
40fb9820 7814 mask.bitfield.imm32 = 1;
9cd96992
JB
7815 break;
7816 case WORD_MNEM_SUFFIX:
40fb9820 7817 mask.bitfield.imm16 = 1;
9cd96992
JB
7818 break;
7819 case BYTE_MNEM_SUFFIX:
40fb9820 7820 mask.bitfield.imm8 = 1;
9cd96992
JB
7821 break;
7822 default:
9cd96992
JB
7823 break;
7824 }
8f0212ac
JB
7825
7826 allowed = operand_type_and (t->operand_types[op], mask);
d3b01414 7827 while (++t < current_templates.end)
8f0212ac
JB
7828 {
7829 allowed = operand_type_or (allowed, t->operand_types[op]);
7830 allowed = operand_type_and (allowed, mask);
7831 }
7832
0dfbf9d7 7833 if (!operand_type_all_zero (&allowed))
c6fb90c8 7834 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 7835 }
29b0f896 7836 break;
252b5132 7837 }
29b0f896
AM
7838 }
7839}
47926f60 7840
29b0f896 7841/* Try to use the smallest displacement type too. */
0de704b9
JB
7842static bool
7843optimize_disp (const insn_template *t)
29b0f896 7844{
0de704b9 7845 unsigned int op;
3e73aa7c 7846
0de704b9
JB
7847 if (!want_disp32 (t)
7848 && (!t->opcode_modifier.jump
7849 || i.jumpabsolute || i.types[0].bitfield.baseindex))
7850 {
7851 for (op = 0; op < i.operands; ++op)
7852 {
7853 const expressionS *exp = i.op[op].disps;
7854
7855 if (!operand_type_check (i.types[op], disp))
7856 continue;
7857
7858 if (exp->X_op != O_constant)
7859 continue;
7860
7861 /* Since displacement is signed extended to 64bit, don't allow
7862 disp32 if it is out of range. */
7863 if (fits_in_signed_long (exp->X_add_number))
7864 continue;
7865
7866 i.types[op].bitfield.disp32 = 0;
7867 if (i.types[op].bitfield.baseindex)
7868 {
7869 as_bad (_("0x%" PRIx64 " out of range of signed 32bit displacement"),
7870 (uint64_t) exp->X_add_number);
7871 return false;
7872 }
7873 }
7874 }
7875
7876 /* Don't optimize displacement for movabs since it only takes 64bit
7877 displacement. */
7878 if (i.disp_encoding > disp_encoding_8bit
7879 || (flag_code == CODE_64BIT && t->mnem_off == MN_movabs))
7880 return true;
7881
7882 for (op = i.operands; op-- > 0;)
40fb9820 7883 if (operand_type_check (i.types[op], disp))
252b5132 7884 {
b300c311 7885 if (i.op[op].disps->X_op == O_constant)
252b5132 7886 {
91d6fa6a 7887 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 7888
91d6fa6a 7889 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 7890 {
2f2be86b
JB
7891 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7892 i.op[op].disps = NULL;
b300c311 7893 i.disp_operands--;
f185acdd
JB
7894 continue;
7895 }
7896
7897 if (i.types[op].bitfield.disp16
cd613c1f 7898 && fits_in_unsigned_word (op_disp))
f185acdd
JB
7899 {
7900 /* If this operand is at most 16 bits, convert
7901 to a signed 16 bit number and don't use 64bit
7902 displacement. */
7903 op_disp = ((op_disp ^ 0x8000) - 0x8000);
7904 i.types[op].bitfield.disp64 = 0;
b300c311 7905 }
f185acdd 7906
28a167a4 7907#ifdef BFD64
a50187b2 7908 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
a775efc8
JB
7909 if ((flag_code != CODE_64BIT
7910 ? i.types[op].bitfield.disp32
0de704b9
JB
7911 : want_disp32 (t)
7912 && (!t->opcode_modifier.jump
a775efc8 7913 || i.jumpabsolute || i.types[op].bitfield.baseindex))
a50187b2 7914 && fits_in_unsigned_long (op_disp))
b300c311 7915 {
a50187b2
JB
7916 /* If this operand is at most 32 bits, convert
7917 to a signed 32 bit number and don't use 64bit
7918 displacement. */
7919 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
7920 i.types[op].bitfield.disp64 = 0;
7921 i.types[op].bitfield.disp32 = 1;
7922 }
28a167a4 7923
a50187b2
JB
7924 if (flag_code == CODE_64BIT && fits_in_signed_long (op_disp))
7925 {
7926 i.types[op].bitfield.disp64 = 0;
a775efc8 7927 i.types[op].bitfield.disp32 = 1;
b300c311 7928 }
28a167a4 7929#endif
40fb9820 7930 if ((i.types[op].bitfield.disp32
40fb9820 7931 || i.types[op].bitfield.disp16)
b5014f7a 7932 && fits_in_disp8 (op_disp))
40fb9820 7933 i.types[op].bitfield.disp8 = 1;
77c59789
JB
7934
7935 i.op[op].disps->X_add_number = op_disp;
252b5132 7936 }
67a4f2b7
AO
7937 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7938 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
7939 {
7940 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
7941 i.op[op].disps, 0, i.reloc[op]);
2f2be86b 7942 i.types[op] = operand_type_and_not (i.types[op], anydisp);
67a4f2b7
AO
7943 }
7944 else
b300c311 7945 /* We only support 64bit displacement on constants. */
40fb9820 7946 i.types[op].bitfield.disp64 = 0;
252b5132 7947 }
0de704b9
JB
7948
7949 return true;
29b0f896
AM
7950}
7951
4a1b91ea
L
7952/* Return 1 if there is a match in broadcast bytes between operand
7953 GIVEN and instruction template T. */
7954
7955static INLINE int
7956match_broadcast_size (const insn_template *t, unsigned int given)
7957{
7958 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
7959 && i.types[given].bitfield.byte)
7960 || (t->opcode_modifier.broadcast == WORD_BROADCAST
7961 && i.types[given].bitfield.word)
7962 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
7963 && i.types[given].bitfield.dword)
7964 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
7965 && i.types[given].bitfield.qword));
7966}
7967
6c30d220
L
7968/* Check if operands are valid for the instruction. */
7969
7970static int
7971check_VecOperands (const insn_template *t)
7972{
43234a1e 7973 unsigned int op;
e2195274 7974 i386_cpu_flags cpu;
e2195274
JB
7975
7976 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
7977 any one operand are implicity requiring AVX512VL support if the actual
7978 operand size is YMMword or XMMword. Since this function runs after
a61cb9db
L
7979 template matching, there's no need to check for YMMword/XMMword in
7980 the template. */
734dfd1c 7981 cpu = cpu_flags_and (cpu_flags_from_attr (t->cpu), avx512);
e2195274 7982 if (!cpu_flags_all_zero (&cpu)
734dfd1c 7983 && !is_cpu (t, CpuAVX512VL)
a6f3add0 7984 && !cpu_arch_flags.bitfield.cpuavx512vl
6177c84d 7985 && (!t->opcode_modifier.vex || need_evex_encoding (t)))
e2195274
JB
7986 {
7987 for (op = 0; op < t->operands; ++op)
7988 {
7989 if (t->operand_types[op].bitfield.zmmword
7990 && (i.types[op].bitfield.ymmword
7991 || i.types[op].bitfield.xmmword))
7992 {
54294d73 7993 i.error = operand_size_mismatch;
e2195274
JB
7994 return 1;
7995 }
7996 }
7997 }
43234a1e 7998
22c36940
JB
7999 /* Somewhat similarly, templates specifying both AVX and AVX2 are
8000 requiring AVX2 support if the actual operand size is YMMword. */
a5e91879 8001 if (maybe_cpu (t, CpuAVX) && maybe_cpu (t, CpuAVX2)
22c36940
JB
8002 && !cpu_arch_flags.bitfield.cpuavx2)
8003 {
8004 for (op = 0; op < t->operands; ++op)
8005 {
8006 if (t->operand_types[op].bitfield.xmmword
8007 && i.types[op].bitfield.ymmword)
8008 {
54294d73 8009 i.error = operand_size_mismatch;
22c36940
JB
8010 return 1;
8011 }
8012 }
8013 }
8014
6c30d220 8015 /* Without VSIB byte, we can't have a vector register for index. */
63112cd6 8016 if (!t->opcode_modifier.sib
6c30d220 8017 && i.index_reg
1b54b8d7
JB
8018 && (i.index_reg->reg_type.bitfield.xmmword
8019 || i.index_reg->reg_type.bitfield.ymmword
8020 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
8021 {
8022 i.error = unsupported_vector_index_register;
8023 return 1;
8024 }
8025
ad8ecc81 8026 /* Check if default mask is allowed. */
255571cd 8027 if (t->opcode_modifier.operandconstraint == NO_DEFAULT_MASK
6225c532 8028 && (!i.mask.reg || i.mask.reg->reg_num == 0))
ad8ecc81
MZ
8029 {
8030 i.error = no_default_mask;
8031 return 1;
8032 }
8033
7bab8ab5
JB
8034 /* For VSIB byte, we need a vector register for index, and all vector
8035 registers must be distinct. */
260cd341 8036 if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
7bab8ab5
JB
8037 {
8038 if (!i.index_reg
63112cd6 8039 || !((t->opcode_modifier.sib == VECSIB128
1b54b8d7 8040 && i.index_reg->reg_type.bitfield.xmmword)
63112cd6 8041 || (t->opcode_modifier.sib == VECSIB256
1b54b8d7 8042 && i.index_reg->reg_type.bitfield.ymmword)
63112cd6 8043 || (t->opcode_modifier.sib == VECSIB512
1b54b8d7 8044 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
8045 {
8046 i.error = invalid_vsib_address;
8047 return 1;
8048 }
8049
6225c532
JB
8050 gas_assert (i.reg_operands == 2 || i.mask.reg);
8051 if (i.reg_operands == 2 && !i.mask.reg)
43234a1e 8052 {
3528c362 8053 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
8054 gas_assert (i.types[0].bitfield.xmmword
8055 || i.types[0].bitfield.ymmword);
3528c362 8056 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
8057 gas_assert (i.types[2].bitfield.xmmword
8058 || i.types[2].bitfield.ymmword);
43234a1e
L
8059 if (operand_check == check_none)
8060 return 0;
8061 if (register_number (i.op[0].regs)
8062 != register_number (i.index_reg)
8063 && register_number (i.op[2].regs)
8064 != register_number (i.index_reg)
8065 && register_number (i.op[0].regs)
8066 != register_number (i.op[2].regs))
8067 return 0;
8068 if (operand_check == check_error)
8069 {
8070 i.error = invalid_vector_register_set;
8071 return 1;
8072 }
8073 as_warn (_("mask, index, and destination registers should be distinct"));
8074 }
6225c532 8075 else if (i.reg_operands == 1 && i.mask.reg)
8444f82a 8076 {
3528c362 8077 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
8078 && (i.types[1].bitfield.xmmword
8079 || i.types[1].bitfield.ymmword
8080 || i.types[1].bitfield.zmmword)
8444f82a
MZ
8081 && (register_number (i.op[1].regs)
8082 == register_number (i.index_reg)))
8083 {
8084 if (operand_check == check_error)
8085 {
8086 i.error = invalid_vector_register_set;
8087 return 1;
8088 }
8089 if (operand_check != check_none)
8090 as_warn (_("index and destination registers should be distinct"));
8091 }
8092 }
43234a1e 8093 }
7bab8ab5 8094
fc141319
L
8095 /* For AMX instructions with 3 TMM register operands, all operands
8096 must be distinct. */
8097 if (i.reg_operands == 3
8098 && t->operand_types[0].bitfield.tmmword
8099 && (i.op[0].regs == i.op[1].regs
8100 || i.op[0].regs == i.op[2].regs
8101 || i.op[1].regs == i.op[2].regs))
8102 {
8103 i.error = invalid_tmm_register_set;
8104 return 1;
260cd341
LC
8105 }
8106
0cc78721
CL
8107 /* For some special instructions require that destination must be distinct
8108 from source registers. */
255571cd 8109 if (t->opcode_modifier.operandconstraint == DISTINCT_DEST)
0cc78721
CL
8110 {
8111 unsigned int dest_reg = i.operands - 1;
8112
8113 know (i.operands >= 3);
8114
8115 /* #UD if dest_reg == src1_reg or dest_reg == src2_reg. */
8116 if (i.op[dest_reg - 1].regs == i.op[dest_reg].regs
8117 || (i.reg_operands > 2
8118 && i.op[dest_reg - 2].regs == i.op[dest_reg].regs))
8119 {
8120 i.error = invalid_dest_and_src_register_set;
8121 return 1;
8122 }
8123 }
8124
43234a1e
L
8125 /* Check if broadcast is supported by the instruction and is applied
8126 to the memory operand. */
a5748e0d 8127 if (i.broadcast.type || i.broadcast.bytes)
43234a1e 8128 {
8e6e0792 8129 i386_operand_type type, overlap;
43234a1e
L
8130
8131 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 8132 and its broadcast bytes match the memory operand. */
5273a3cd 8133 op = i.broadcast.operand;
8e6e0792 8134 if (!t->opcode_modifier.broadcast
c48dadc9 8135 || !(i.flags[op] & Operand_Mem)
c39e5b26 8136 || (!i.types[op].bitfield.unspecified
4a1b91ea 8137 && !match_broadcast_size (t, op)))
43234a1e
L
8138 {
8139 bad_broadcast:
8140 i.error = unsupported_broadcast;
8141 return 1;
8142 }
8e6e0792
JB
8143
8144 operand_type_set (&type, 0);
a5748e0d 8145 switch (get_broadcast_bytes (t, false))
8e6e0792 8146 {
4a1b91ea
L
8147 case 2:
8148 type.bitfield.word = 1;
8149 break;
8150 case 4:
8151 type.bitfield.dword = 1;
8152 break;
8e6e0792
JB
8153 case 8:
8154 type.bitfield.qword = 1;
8155 break;
8156 case 16:
8157 type.bitfield.xmmword = 1;
8158 break;
8159 case 32:
4fc85f37
JB
8160 if (vector_size < VSZ256)
8161 goto bad_broadcast;
8e6e0792
JB
8162 type.bitfield.ymmword = 1;
8163 break;
8164 case 64:
4fc85f37
JB
8165 if (vector_size < VSZ512)
8166 goto bad_broadcast;
8e6e0792
JB
8167 type.bitfield.zmmword = 1;
8168 break;
8169 default:
8170 goto bad_broadcast;
8171 }
8172
8173 overlap = operand_type_and (type, t->operand_types[op]);
bc49bfd8
JB
8174 if (t->operand_types[op].bitfield.class == RegSIMD
8175 && t->operand_types[op].bitfield.byte
8176 + t->operand_types[op].bitfield.word
8177 + t->operand_types[op].bitfield.dword
8178 + t->operand_types[op].bitfield.qword > 1)
8179 {
8180 overlap.bitfield.xmmword = 0;
8181 overlap.bitfield.ymmword = 0;
8182 overlap.bitfield.zmmword = 0;
8183 }
8e6e0792
JB
8184 if (operand_type_all_zero (&overlap))
8185 goto bad_broadcast;
8186
9c19e9ec 8187 if (t->opcode_modifier.checkoperandsize)
8e6e0792
JB
8188 {
8189 unsigned int j;
8190
e2195274 8191 type.bitfield.baseindex = 1;
8e6e0792
JB
8192 for (j = 0; j < i.operands; ++j)
8193 {
8194 if (j != op
8195 && !operand_type_register_match(i.types[j],
8196 t->operand_types[j],
8197 type,
8198 t->operand_types[op]))
8199 goto bad_broadcast;
8200 }
8201 }
43234a1e
L
8202 }
8203 /* If broadcast is supported in this instruction, we need to check if
8204 operand of one-element size isn't specified without broadcast. */
8205 else if (t->opcode_modifier.broadcast && i.mem_operands)
8206 {
8207 /* Find memory operand. */
8208 for (op = 0; op < i.operands; op++)
8dc0818e 8209 if (i.flags[op] & Operand_Mem)
43234a1e
L
8210 break;
8211 gas_assert (op < i.operands);
8212 /* Check size of the memory operand. */
4a1b91ea 8213 if (match_broadcast_size (t, op))
43234a1e
L
8214 {
8215 i.error = broadcast_needed;
8216 return 1;
8217 }
8218 }
c39e5b26
JB
8219 else
8220 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
8221
8222 /* Check if requested masking is supported. */
6225c532 8223 if (i.mask.reg)
43234a1e 8224 {
b1c79256 8225 if (!t->opcode_modifier.masking)
ae2387fe 8226 {
b1c79256
JB
8227 i.error = unsupported_masking;
8228 return 1;
8229 }
8230
8231 /* Common rules for masking:
8232 - mask register destinations permit only zeroing-masking, without
8233 that actually being expressed by a {z} operand suffix or EVEX.z,
8234 - memory destinations allow only merging-masking,
8235 - scatter/gather insns (i.e. ones using vSIB) only allow merging-
8236 masking. */
8237 if (i.mask.zeroing
8238 && (t->operand_types[t->operands - 1].bitfield.class == RegMask
8239 || (i.flags[t->operands - 1] & Operand_Mem)
8240 || t->opcode_modifier.sib))
8241 {
8242 i.error = unsupported_masking;
8243 return 1;
ae2387fe 8244 }
43234a1e
L
8245 }
8246
8247 /* Check if masking is applied to dest operand. */
6225c532 8248 if (i.mask.reg && (i.mask.operand != i.operands - 1))
43234a1e
L
8249 {
8250 i.error = mask_not_on_destination;
8251 return 1;
8252 }
8253
43234a1e 8254 /* Check RC/SAE. */
ca5312a2 8255 if (i.rounding.type != rc_none)
43234a1e 8256 {
a80195f1 8257 if (!t->opcode_modifier.sae
cf665fee
JB
8258 || ((i.rounding.type != saeonly) != t->opcode_modifier.staticrounding)
8259 || i.mem_operands)
43234a1e
L
8260 {
8261 i.error = unsupported_rc_sae;
8262 return 1;
8263 }
cf665fee
JB
8264
8265 /* Non-EVEX.LIG forms need to have a ZMM register as at least one
8266 operand. */
8267 if (t->opcode_modifier.evex != EVEXLIG)
7bab8ab5 8268 {
cf665fee
JB
8269 for (op = 0; op < t->operands; ++op)
8270 if (i.types[op].bitfield.zmmword)
8271 break;
8272 if (op >= t->operands)
8273 {
8274 i.error = operand_size_mismatch;
8275 return 1;
8276 }
7bab8ab5 8277 }
6c30d220
L
8278 }
8279
da4977e0 8280 /* Check the special Imm4 cases; must be the first operand. */
eea43579 8281 if ((is_cpu (t, CpuXOP) && t->operands == 5)
ec6b11e7
JB
8282 || (t->opcode_space == SPACE_0F3A
8283 && (t->base_opcode | 3) == 0x0b
24187fb9
JB
8284 && (is_cpu (t, CpuAPX_F)
8285 || (t->opcode_modifier.sse2avx && t->opcode_modifier.evex
8286 && (!t->opcode_modifier.vex
8287 || (i.encoding != encoding_default
8288 && i.encoding != encoding_vex
8289 && i.encoding != encoding_vex3))))))
da4977e0
JB
8290 {
8291 if (i.op[0].imms->X_op != O_constant
8292 || !fits_in_imm4 (i.op[0].imms->X_add_number))
8293 {
8294 i.error = bad_imm4;
8295 return 1;
8296 }
8297
8298 /* Turn off Imm<N> so that update_imm won't complain. */
eea43579
JB
8299 if (t->operands == 5)
8300 operand_type_set (&i.types[0], 0);
da4977e0
JB
8301 }
8302
43234a1e 8303 /* Check vector Disp8 operand. */
b5014f7a 8304 if (t->opcode_modifier.disp8memshift
a6f3add0 8305 && (!t->opcode_modifier.vex
6177c84d 8306 || need_evex_encoding (t))
1a42a9fe 8307 && i.disp_encoding <= disp_encoding_8bit)
43234a1e 8308 {
9b345ce8 8309 if (i.broadcast.type || i.broadcast.bytes)
4a1b91ea 8310 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 8311 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 8312 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
8313 else
8314 {
125ff819 8315 const i386_operand_type *type = NULL, *fallback = NULL;
7091c612
JB
8316
8317 i.memshift = 0;
8318 for (op = 0; op < i.operands; op++)
8dc0818e 8319 if (i.flags[op] & Operand_Mem)
7091c612 8320 {
4174bfff
JB
8321 if (t->opcode_modifier.evex == EVEXLIG)
8322 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
8323 else if (t->operand_types[op].bitfield.xmmword
8324 + t->operand_types[op].bitfield.ymmword
8325 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
8326 type = &t->operand_types[op];
8327 else if (!i.types[op].bitfield.unspecified)
8328 type = &i.types[op];
125ff819
JB
8329 else /* Ambiguities get resolved elsewhere. */
8330 fallback = &t->operand_types[op];
7091c612 8331 }
3528c362 8332 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 8333 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
8334 {
8335 if (i.types[op].bitfield.zmmword)
8336 i.memshift = 6;
8337 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
8338 i.memshift = 5;
8339 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
8340 i.memshift = 4;
8341 }
8342
125ff819
JB
8343 if (!type && !i.memshift)
8344 type = fallback;
7091c612
JB
8345 if (type)
8346 {
8347 if (type->bitfield.zmmword)
8348 i.memshift = 6;
8349 else if (type->bitfield.ymmword)
8350 i.memshift = 5;
8351 else if (type->bitfield.xmmword)
8352 i.memshift = 4;
8353 }
8354
8355 /* For the check in fits_in_disp8(). */
8356 if (i.memshift == 0)
8357 i.memshift = -1;
8358 }
43234a1e
L
8359
8360 for (op = 0; op < i.operands; op++)
8361 if (operand_type_check (i.types[op], disp)
8362 && i.op[op].disps->X_op == O_constant)
8363 {
b5014f7a 8364 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 8365 {
b5014f7a
JB
8366 i.types[op].bitfield.disp8 = 1;
8367 return 0;
43234a1e 8368 }
b5014f7a 8369 i.types[op].bitfield.disp8 = 0;
43234a1e
L
8370 }
8371 }
b5014f7a
JB
8372
8373 i.memshift = 0;
43234a1e 8374
6c30d220
L
8375 return 0;
8376}
8377
da4977e0 8378/* Check if encoding requirements are met by the instruction. */
a683cc34
SP
8379
8380static int
da4977e0 8381VEX_check_encoding (const insn_template *t)
a683cc34 8382{
e346d50a 8383 if (i.encoding == encoding_error)
da4977e0
JB
8384 {
8385 i.error = unsupported;
8386 return 1;
8387 }
8388
4fc85f37
JB
8389 /* Vector size restrictions. */
8390 if ((vector_size < VSZ512
fa88a361 8391 && t->opcode_modifier.evex == EVEX512)
4fc85f37
JB
8392 || (vector_size < VSZ256
8393 && (t->opcode_modifier.evex == EVEX256
fa88a361 8394 || t->opcode_modifier.vex == VEX256)))
4fc85f37 8395 {
54294d73 8396 i.error = unsupported_vector_size;
4fc85f37
JB
8397 return 1;
8398 }
8399
eb3f3841 8400 switch (i.encoding)
43234a1e 8401 {
eb3f3841
JB
8402 case encoding_default:
8403 break;
8404
8405 case encoding_vex:
8406 case encoding_vex3:
8407 /* This instruction must be encoded with VEX prefix. */
8408 if (!t->opcode_modifier.vex)
8409 {
8410 i.error = no_vex_encoding;
8411 return 1;
8412 }
8413 break;
8414
8415 case encoding_evex:
8416 case encoding_evex512:
86fa6981 8417 /* This instruction must be encoded with EVEX prefix. */
706ce984 8418 if (!t->opcode_modifier.evex)
86fa6981 8419 {
54294d73 8420 i.error = no_evex_encoding;
86fa6981
L
8421 return 1;
8422 }
eb3f3841 8423 break;
43234a1e 8424
eb3f3841
JB
8425 case encoding_egpr:
8426 /* This instruction must be encoded with REX2 or EVEX prefix. */
8427 if (t->opcode_modifier.vex && !t->opcode_modifier.evex)
86fa6981 8428 {
eb3f3841 8429 i.error = no_evex_encoding;
86fa6981
L
8430 return 1;
8431 }
eb3f3841
JB
8432 break;
8433
8434 default:
8435 abort ();
86fa6981 8436 }
a683cc34 8437
a683cc34
SP
8438 return 0;
8439}
8440
80d61d8d
CL
8441/* Check if Egprs operands are valid for the instruction. */
8442
8443static bool
8444check_EgprOperands (const insn_template *t)
8445{
8446 if (!t->opcode_modifier.noegpr)
192781a3 8447 return false;
80d61d8d
CL
8448
8449 for (unsigned int op = 0; op < i.operands; op++)
8450 {
8451 if (i.types[op].bitfield.class != Reg)
8452 continue;
8453
8454 if (i.op[op].regs->reg_flags & RegRex2)
8455 {
8456 i.error = register_type_mismatch;
192781a3 8457 return true;
80d61d8d
CL
8458 }
8459 }
8460
8461 if ((i.index_reg && (i.index_reg->reg_flags & RegRex2))
8462 || (i.base_reg && (i.base_reg->reg_flags & RegRex2)))
8463 {
8464 i.error = unsupported_EGPR_for_addressing;
192781a3 8465 return true;
80d61d8d
CL
8466 }
8467
8468 /* Check if pseudo prefix {rex2} is valid. */
ebe82bfd 8469 if (i.rex2_encoding && !t->opcode_modifier.sse2avx)
80d61d8d
CL
8470 {
8471 i.error = invalid_pseudo_prefix;
192781a3 8472 return true;
80d61d8d
CL
8473 }
8474
192781a3 8475 return false;
80d61d8d
CL
8476}
8477
08a98d4c
MZ
8478/* Check if APX operands are valid for the instruction. */
8479static bool
8480check_APX_operands (const insn_template *t)
8481{
8482 /* Push2* and Pop2* cannot use RSP and Pop2* cannot pop two same registers.
8483 */
8484 switch (t->mnem_off)
8485 {
8486 case MN_pop2:
8487 case MN_pop2p:
8488 if (register_number (i.op[0].regs) == register_number (i.op[1].regs))
8489 {
8490 i.error = invalid_dest_register_set;
8491 return 1;
8492 }
8493 /* fall through */
8494 case MN_push2:
8495 case MN_push2p:
8496 if (register_number (i.op[0].regs) == 4
8497 || register_number (i.op[1].regs) == 4)
8498 {
8499 i.error = unsupported_rsp_register;
8500 return 1;
8501 }
8502 break;
8503 }
8504 return 0;
8505}
8506
6967f19d
HL
8507/* Check if the instruction use the REX registers or REX prefix. */
8508static bool
8509check_Rex_required (void)
8510{
8511 for (unsigned int op = 0; op < i.operands; op++)
8512 {
8513 if (i.types[op].bitfield.class != Reg)
8514 continue;
8515
8516 if (i.op[op].regs->reg_flags & (RegRex | RegRex64))
8517 return true;
8518 }
8519
8520 if ((i.index_reg && (i.index_reg->reg_flags & (RegRex | RegRex64)))
8521 || (i.base_reg && (i.base_reg->reg_flags & (RegRex | RegRex64))))
8522 return true;
8523
8524 /* Check pseudo prefix {rex} are valid. */
8525 return i.rex_encoding;
8526}
8527
8528/* Optimize APX NDD insns to legacy insns. */
8529static unsigned int
8530can_convert_NDD_to_legacy (const insn_template *t)
8531{
8532 unsigned int match_dest_op = ~0;
8533
dd74a603 8534 if (!i.has_nf && i.reg_operands >= 2)
6967f19d
HL
8535 {
8536 unsigned int dest = i.operands - 1;
8537 unsigned int src1 = i.operands - 2;
8538 unsigned int src2 = (i.operands > 3) ? i.operands - 3 : 0;
8539
8540 if (i.types[src1].bitfield.class == Reg
8541 && i.op[src1].regs == i.op[dest].regs)
8542 match_dest_op = src1;
8543 /* If the first operand is the same as the third operand,
8544 these instructions need to support the ability to commutative
8545 the first two operands and still not change the semantics in order
8546 to be optimized. */
8547 else if (optimize > 1
8548 && t->opcode_modifier.commutative
8549 && i.types[src2].bitfield.class == Reg
8550 && i.op[src2].regs == i.op[dest].regs)
8551 match_dest_op = src2;
8552 }
8553 return match_dest_op;
8554}
8555
7b94647a
JB
8556/* Helper function for the progress() macro in match_template(). */
8557static INLINE enum i386_error progress (enum i386_error new,
8558 enum i386_error last,
8559 unsigned int line, unsigned int *line_p)
8560{
8561 if (line <= *line_p)
8562 return last;
8563 *line_p = line;
8564 return new;
8565}
8566
d3ce72d0 8567static const insn_template *
83b16ac6 8568match_template (char mnem_suffix)
29b0f896
AM
8569{
8570 /* Points to template once we've found it. */
d3ce72d0 8571 const insn_template *t;
40fb9820 8572 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 8573 i386_operand_type overlap4;
29b0f896 8574 unsigned int found_reverse_match;
40fb9820 8575 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 8576 int addr_prefix_disp;
7b94647a
JB
8577 unsigned int j, size_match, check_register, errline = __LINE__;
8578 enum i386_error specific_error = number_of_operands_mismatch;
8579#define progress(err) progress (err, specific_error, __LINE__, &errline)
29b0f896 8580
c0f3af97
L
8581#if MAX_OPERANDS != 5
8582# error "MAX_OPERANDS must be 5."
f48ff2ae
L
8583#endif
8584
29b0f896 8585 found_reverse_match = 0;
539e75ad 8586 addr_prefix_disp = -1;
40fb9820 8587
d3b01414 8588 for (t = current_templates.start; t < current_templates.end; t++)
29b0f896 8589 {
539e75ad 8590 addr_prefix_disp = -1;
dbbc8b7e 8591 found_reverse_match = 0;
539e75ad 8592
7b94647a 8593 /* Must have right number of operands. */
29b0f896
AM
8594 if (i.operands != t->operands)
8595 continue;
8596
b58829cd
JB
8597 /* Skip SSE2AVX templates when inapplicable. */
8598 if (t->opcode_modifier.sse2avx
8599 && (!sse2avx || i.prefix[DATA_PREFIX]))
8600 {
8601 /* Another non-SSE2AVX template has to follow. */
8602 gas_assert (t + 1 < current_templates.end);
8603 continue;
8604 }
8605
50aecf8c 8606 /* Check processor support. */
7b94647a 8607 specific_error = progress (unsupported);
45a4bb20 8608 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
8609 continue;
8610
e1d4d893 8611 /* Check AT&T mnemonic. */
7b94647a 8612 specific_error = progress (unsupported_with_intel_mnemonic);
35266cb1
JB
8613 if (!intel_syntax && intel_mnemonic
8614 && t->opcode_modifier.dialect == ATT_MNEMONIC)
1efbbeb4
L
8615 continue;
8616
4b5aaf5f 8617 /* Check AT&T/Intel syntax. */
7b94647a 8618 specific_error = progress (unsupported_syntax);
7d3182d6 8619 if (intel_syntax
35266cb1
JB
8620 ? t->opcode_modifier.dialect >= ATT_SYNTAX
8621 : t->opcode_modifier.dialect == INTEL_SYNTAX)
1efbbeb4
L
8622 continue;
8623
dd74a603
CL
8624 /* Check NF support. */
8625 specific_error = progress (unsupported_nf);
8626 if (i.has_nf && !t->opcode_modifier.nf)
8627 continue;
8628
4b5aaf5f
L
8629 /* Check Intel64/AMD64 ISA. */
8630 switch (isa64)
8631 {
8632 default:
8633 /* Default: Don't accept Intel64. */
8634 if (t->opcode_modifier.isa64 == INTEL64)
8635 continue;
8636 break;
8637 case amd64:
8638 /* -mamd64: Don't accept Intel64 and Intel64 only. */
8639 if (t->opcode_modifier.isa64 >= INTEL64)
8640 continue;
8641 break;
8642 case intel64:
8643 /* -mintel64: Don't accept AMD64. */
5990e377 8644 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
4b5aaf5f
L
8645 continue;
8646 break;
8647 }
8648
dc2be329 8649 /* Check the suffix. */
7b94647a 8650 specific_error = progress (invalid_instruction_suffix);
7505bb03
JB
8651 if ((t->opcode_modifier.no_bsuf && mnem_suffix == BYTE_MNEM_SUFFIX)
8652 || (t->opcode_modifier.no_wsuf && mnem_suffix == WORD_MNEM_SUFFIX)
8653 || (t->opcode_modifier.no_lsuf && mnem_suffix == LONG_MNEM_SUFFIX)
8654 || (t->opcode_modifier.no_ssuf && mnem_suffix == SHORT_MNEM_SUFFIX)
8655 || (t->opcode_modifier.no_qsuf && mnem_suffix == QWORD_MNEM_SUFFIX))
83b16ac6 8656 continue;
29b0f896 8657
7b94647a 8658 specific_error = progress (operand_size_mismatch);
3ac21baa
JB
8659 size_match = operand_size_match (t);
8660 if (!size_match)
7d5e4556 8661 continue;
539e75ad 8662
6f2f06be
JB
8663 /* This is intentionally not
8664
0cfa3eb3 8665 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
8666
8667 as the case of a missing * on the operand is accepted (perhaps with
8668 a warning, issued further down). */
7b94647a 8669 specific_error = progress (operand_type_mismatch);
0cfa3eb3 8670 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
7b94647a 8671 continue;
6f2f06be 8672
a4d3acd2
JB
8673 /* In Intel syntax, normally we can check for memory operand size when
8674 there is no mnemonic suffix. But jmp and call have 2 different
8675 encodings with Dword memory operand size. Skip the "near" one
8676 (permitting a register operand) when "far" was requested. */
8677 if (i.far_branch
8678 && t->opcode_modifier.jump == JUMP_ABSOLUTE
8679 && t->operand_types[0].bitfield.class == Reg)
8680 continue;
8681
5c07affc
L
8682 for (j = 0; j < MAX_OPERANDS; j++)
8683 operand_types[j] = t->operand_types[j];
8684
9db83a32 8685 /* In general, don't allow 32-bit operands on pre-386. */
7b94647a
JB
8686 specific_error = progress (mnem_suffix ? invalid_instruction_suffix
8687 : operand_size_mismatch);
4873e243 8688 j = i.imm_operands + (t->operands > i.imm_operands + 1);
9db83a32
JB
8689 if (i.suffix == LONG_MNEM_SUFFIX
8690 && !cpu_arch_flags.bitfield.cpui386
45aa61fe 8691 && (intel_syntax
3cd7f3e3 8692 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
76d3f746
JB
8693 && !intel_float_operand (insn_name (t)))
8694 : intel_float_operand (insn_name (t)) != 2)
4873e243
JB
8695 && (t->operands == i.imm_operands
8696 || (operand_types[i.imm_operands].bitfield.class != RegMMX
8697 && operand_types[i.imm_operands].bitfield.class != RegSIMD
8698 && operand_types[i.imm_operands].bitfield.class != RegMask)
8699 || (operand_types[j].bitfield.class != RegMMX
8700 && operand_types[j].bitfield.class != RegSIMD
8701 && operand_types[j].bitfield.class != RegMask))
63112cd6 8702 && !t->opcode_modifier.sib)
192dc9c6
JB
8703 continue;
8704
29b0f896 8705 /* Do not verify operands when there are none. */
e365e234 8706 if (!t->operands)
da4977e0
JB
8707 {
8708 if (VEX_check_encoding (t))
8709 {
7b94647a 8710 specific_error = progress (i.error);
da4977e0
JB
8711 continue;
8712 }
8713
80d61d8d
CL
8714 /* Check if pseudo prefix {rex2} is valid. */
8715 if (t->opcode_modifier.noegpr && i.rex2_encoding)
8716 {
8717 specific_error = progress (invalid_pseudo_prefix);
8718 continue;
8719 }
8720
da4977e0
JB
8721 /* We've found a match; break out of loop. */
8722 break;
8723 }
252b5132 8724
48bcea9f
JB
8725 if (!t->opcode_modifier.jump
8726 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
8727 {
8728 /* There should be only one Disp operand. */
8729 for (j = 0; j < MAX_OPERANDS; j++)
8730 if (operand_type_check (operand_types[j], disp))
539e75ad 8731 break;
48bcea9f
JB
8732 if (j < MAX_OPERANDS)
8733 {
5b7c81bd 8734 bool override = (i.prefix[ADDR_PREFIX] != 0);
48bcea9f
JB
8735
8736 addr_prefix_disp = j;
8737
a775efc8
JB
8738 /* Address size prefix will turn Disp64 operand into Disp32 and
8739 Disp32/Disp16 one into Disp16/Disp32 respectively. */
48bcea9f 8740 switch (flag_code)
40fb9820 8741 {
48bcea9f
JB
8742 case CODE_16BIT:
8743 override = !override;
8744 /* Fall through. */
8745 case CODE_32BIT:
8746 if (operand_types[j].bitfield.disp32
8747 && operand_types[j].bitfield.disp16)
40fb9820 8748 {
48bcea9f
JB
8749 operand_types[j].bitfield.disp16 = override;
8750 operand_types[j].bitfield.disp32 = !override;
40fb9820 8751 }
a775efc8 8752 gas_assert (!operand_types[j].bitfield.disp64);
48bcea9f
JB
8753 break;
8754
8755 case CODE_64BIT:
a775efc8 8756 if (operand_types[j].bitfield.disp64)
40fb9820 8757 {
a775efc8 8758 gas_assert (!operand_types[j].bitfield.disp32);
48bcea9f 8759 operand_types[j].bitfield.disp32 = override;
a775efc8 8760 operand_types[j].bitfield.disp64 = !override;
40fb9820 8761 }
48bcea9f
JB
8762 operand_types[j].bitfield.disp16 = 0;
8763 break;
40fb9820 8764 }
539e75ad 8765 }
48bcea9f 8766 }
539e75ad 8767
56ffb741 8768 /* We check register size if needed. */
9c19e9ec 8769 if (t->opcode_modifier.checkoperandsize)
e2195274
JB
8770 {
8771 check_register = (1 << t->operands) - 1;
a5748e0d 8772 if (i.broadcast.type || i.broadcast.bytes)
5273a3cd 8773 check_register &= ~(1 << i.broadcast.operand);
e2195274
JB
8774 }
8775 else
8776 check_register = 0;
8777
c6fb90c8 8778 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
8779 switch (t->operands)
8780 {
8781 case 1:
40fb9820 8782 if (!operand_type_match (overlap0, i.types[0]))
29b0f896 8783 continue;
ae9a0a51
JB
8784
8785 /* Allow the ModR/M encoding to be requested by using the {load} or
8786 {store} pseudo prefix on an applicable insn. */
8787 if (!t->opcode_modifier.modrm
8788 && i.reg_operands == 1
8789 && ((i.dir_encoding == dir_encoding_load
8790 && t->mnem_off != MN_pop)
8791 || (i.dir_encoding == dir_encoding_store
8792 && t->mnem_off != MN_push))
8793 /* Avoid BSWAP. */
8794 && t->mnem_off != MN_bswap)
8795 continue;
29b0f896 8796 break;
ae9a0a51 8797
29b0f896 8798 case 2:
33eaf5de 8799 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
8800 only in 32bit mode and we can use opcode 0x90. In 64bit
8801 mode, we can't use 0x90 for xchg %eax, %eax since it should
8802 zero-extend %eax to %rax. */
ae9a0a51
JB
8803 if (t->base_opcode == 0x90
8804 && t->opcode_space == SPACE_BASE)
8805 {
8806 if (flag_code == CODE_64BIT
8807 && i.types[0].bitfield.instance == Accum
8808 && i.types[0].bitfield.dword
8809 && i.types[1].bitfield.instance == Accum)
8810 continue;
8811
8812 /* Allow the ModR/M encoding to be requested by using the
8813 {load} or {store} pseudo prefix. */
8814 if (i.dir_encoding == dir_encoding_load
8815 || i.dir_encoding == dir_encoding_store)
8816 continue;
8817 }
e3669c7f
JB
8818
8819 if (t->base_opcode == MOV_AX_DISP32
ddb62495 8820 && t->opcode_space == SPACE_BASE
69196391 8821 && t->mnem_off != MN_movabs)
e3669c7f
JB
8822 {
8823 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
8824 if (i.reloc[0] == BFD_RELOC_386_GOT32)
8825 continue;
8826
8827 /* xrelease mov %eax, <disp> is another special case. It must not
8828 match the accumulator-only encoding of mov. */
8829 if (i.hle_prefix)
8830 continue;
ae9a0a51
JB
8831
8832 /* Allow the ModR/M encoding to be requested by using a suitable
8833 {load} or {store} pseudo prefix. */
8834 if (i.dir_encoding == (i.types[0].bitfield.instance == Accum
8835 ? dir_encoding_store
8836 : dir_encoding_load)
8837 && !i.types[0].bitfield.disp64
8838 && !i.types[1].bitfield.disp64)
8839 continue;
8840 }
8841
8842 /* Allow the ModR/M encoding to be requested by using the {load} or
8843 {store} pseudo prefix on an applicable insn. */
8844 if (!t->opcode_modifier.modrm
8845 && i.reg_operands == 1
8846 && i.imm_operands == 1
8847 && (i.dir_encoding == dir_encoding_load
8848 || i.dir_encoding == dir_encoding_store)
8849 && t->opcode_space == SPACE_BASE)
8850 {
8851 if (t->base_opcode == 0xb0 /* mov $imm, %reg */
8852 && i.dir_encoding == dir_encoding_store)
8853 continue;
8854
8855 if ((t->base_opcode | 0x38) == 0x3c /* <alu> $imm, %acc */
8856 && (t->base_opcode != 0x3c /* cmp $imm, %acc */
8857 || i.dir_encoding == dir_encoding_load))
8858 continue;
8859
8860 if (t->base_opcode == 0xa8 /* test $imm, %acc */
8861 && i.dir_encoding == dir_encoding_load)
8862 continue;
e3669c7f 8863 }
f5eb1d70
JB
8864 /* Fall through. */
8865
8866 case 3:
3ac21baa
JB
8867 if (!(size_match & MATCH_STRAIGHT))
8868 goto check_reverse;
64c49ab3
JB
8869 /* Reverse direction of operands if swapping is possible in the first
8870 place (operands need to be symmetric) and
8871 - the load form is requested, and the template is a store form,
8872 - the store form is requested, and the template is a load form,
8873 - the non-default (swapped) form is requested. */
8874 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
3083f376 8875
8876 j = i.operands - 1 - (t->opcode_space == SPACE_EVEXMAP4
8877 && t->opcode_modifier.vexvvvv);
8878
f5eb1d70 8879 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
8880 && !operand_type_all_zero (&overlap1))
8881 switch (i.dir_encoding)
8882 {
8883 case dir_encoding_load:
3083f376 8884 if (operand_type_check (operand_types[j], anymem)
dfd69174 8885 || t->opcode_modifier.regmem)
64c49ab3
JB
8886 goto check_reverse;
8887 break;
8888
8889 case dir_encoding_store:
3083f376 8890 if (!operand_type_check (operand_types[j], anymem)
dfd69174 8891 && !t->opcode_modifier.regmem)
64c49ab3
JB
8892 goto check_reverse;
8893 break;
8894
8895 case dir_encoding_swap:
8896 goto check_reverse;
8897
8898 case dir_encoding_default:
8899 break;
8900 }
3083f376 8901
86fa6981 8902 /* If we want store form, we skip the current load. */
64c49ab3
JB
8903 if ((i.dir_encoding == dir_encoding_store
8904 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
8905 && i.mem_operands == 0
8906 && t->opcode_modifier.load)
fa99fab2 8907 continue;
1a0670f3 8908 /* Fall through. */
f48ff2ae 8909 case 4:
c0f3af97 8910 case 5:
c6fb90c8 8911 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
8912 if (!operand_type_match (overlap0, i.types[0])
8913 || !operand_type_match (overlap1, i.types[1])
e2195274 8914 || ((check_register & 3) == 3
dc821c5f 8915 && !operand_type_register_match (i.types[0],
40fb9820 8916 operand_types[0],
dc821c5f 8917 i.types[1],
40fb9820 8918 operand_types[1])))
29b0f896 8919 {
7b94647a
JB
8920 specific_error = progress (i.error);
8921
29b0f896 8922 /* Check if other direction is valid ... */
38e314eb 8923 if (!t->opcode_modifier.d)
29b0f896
AM
8924 continue;
8925
dc1e8a47 8926 check_reverse:
3ac21baa
JB
8927 if (!(size_match & MATCH_REVERSE))
8928 continue;
29b0f896 8929 /* Try reversing direction of operands. */
734dfd1c 8930 j = is_cpu (t, CpuFMA4)
3083f376 8931 || is_cpu (t, CpuXOP)
8932 || is_cpu (t, CpuAPX_F) ? 1 : i.operands - 1;
8bd915b7
JB
8933 overlap0 = operand_type_and (i.types[0], operand_types[j]);
8934 overlap1 = operand_type_and (i.types[j], operand_types[0]);
c975cec5 8935 overlap2 = operand_type_and (i.types[1], operand_types[1]);
3083f376 8936 gas_assert (t->operands != 3 || !check_register
8937 || is_cpu (t, CpuAPX_F));
40fb9820 8938 if (!operand_type_match (overlap0, i.types[0])
8bd915b7 8939 || !operand_type_match (overlap1, i.types[j])
c975cec5
JB
8940 || (t->operands == 3
8941 && !operand_type_match (overlap2, i.types[1]))
45664ddb 8942 || (check_register
dc821c5f 8943 && !operand_type_register_match (i.types[0],
8bd915b7
JB
8944 operand_types[j],
8945 i.types[j],
45664ddb 8946 operand_types[0])))
29b0f896
AM
8947 {
8948 /* Does not match either direction. */
7b94647a 8949 specific_error = progress (i.error);
29b0f896
AM
8950 continue;
8951 }
ac9226cf 8952 /* found_reverse_match holds which variant of D
29b0f896 8953 we've found. */
38e314eb
JB
8954 if (!t->opcode_modifier.d)
8955 found_reverse_match = 0;
8956 else if (operand_types[0].bitfield.tbyte)
ac9226cf 8957 {
4943d587
JB
8958 if (t->opcode_modifier.operandconstraint != UGH)
8959 found_reverse_match = Opcode_FloatD;
bd782808
JB
8960 else
8961 found_reverse_match = ~0;
ac9226cf 8962 /* FSUB{,R} and FDIV{,R} may need a 2nd bit flipped. */
bd782808 8963 if ((t->extension_opcode & 4)
ac9226cf
JB
8964 && (intel_syntax || intel_mnemonic))
8965 found_reverse_match |= Opcode_FloatR;
8966 }
734dfd1c 8967 else if (is_cpu (t, CpuFMA4) || is_cpu (t, CpuXOP))
8bd915b7
JB
8968 {
8969 found_reverse_match = Opcode_VexW;
8970 goto check_operands_345;
8971 }
dd74a603
CL
8972 else if (t->opcode_space == SPACE_EVEXMAP4
8973 && t->opcode_modifier.w)
3083f376 8974 {
8975 found_reverse_match = Opcode_D;
8976 goto check_operands_345;
8977 }
ddb62495
JB
8978 else if (t->opcode_space != SPACE_BASE
8979 && (t->opcode_space != SPACE_0F
2c735193
JB
8980 /* MOV to/from CR/DR/TR, as an exception, follow
8981 the base opcode space encoding model. */
8982 || (t->base_opcode | 7) != 0x27))
dbbc8b7e 8983 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
2c735193 8984 ? Opcode_ExtD : Opcode_SIMD_IntD;
a33ef3c2 8985 else if (!t->opcode_modifier.commutative)
38e314eb 8986 found_reverse_match = Opcode_D;
a33ef3c2
JB
8987 else
8988 found_reverse_match = ~0;
29b0f896 8989 }
f48ff2ae 8990 else
29b0f896 8991 {
f48ff2ae 8992 /* Found a forward 2 operand match here. */
8bd915b7 8993 check_operands_345:
d1cbb4db
L
8994 switch (t->operands)
8995 {
c0f3af97 8996 case 5:
3d0738af 8997 overlap4 = operand_type_and (i.types[4], operand_types[4]);
c0f3af97 8998 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 8999 || !operand_type_register_match (i.types[3],
c0f3af97 9000 operand_types[3],
c0f3af97
L
9001 i.types[4],
9002 operand_types[4]))
7b94647a
JB
9003 {
9004 specific_error = progress (i.error);
9005 continue;
9006 }
1a0670f3 9007 /* Fall through. */
f48ff2ae 9008 case 4:
3d0738af 9009 overlap3 = operand_type_and (i.types[3], operand_types[3]);
40fb9820 9010 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
9011 || ((check_register & 0xa) == 0xa
9012 && !operand_type_register_match (i.types[1],
f7768225
JB
9013 operand_types[1],
9014 i.types[3],
e2195274
JB
9015 operand_types[3]))
9016 || ((check_register & 0xc) == 0xc
9017 && !operand_type_register_match (i.types[2],
9018 operand_types[2],
9019 i.types[3],
9020 operand_types[3])))
7b94647a
JB
9021 {
9022 specific_error = progress (i.error);
9023 continue;
9024 }
1a0670f3 9025 /* Fall through. */
f48ff2ae 9026 case 3:
3d0738af 9027 overlap2 = operand_type_and (i.types[2], operand_types[2]);
40fb9820 9028 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
9029 || ((check_register & 5) == 5
9030 && !operand_type_register_match (i.types[0],
23e42951
JB
9031 operand_types[0],
9032 i.types[2],
e2195274
JB
9033 operand_types[2]))
9034 || ((check_register & 6) == 6
9035 && !operand_type_register_match (i.types[1],
9036 operand_types[1],
9037 i.types[2],
9038 operand_types[2])))
7b94647a
JB
9039 {
9040 specific_error = progress (i.error);
9041 continue;
9042 }
f48ff2ae
L
9043 break;
9044 }
29b0f896 9045 }
f48ff2ae 9046 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
9047 slip through to break. */
9048 }
c0f3af97 9049
9bb4d860
L
9050 /* Check if VEX/EVEX encoding requirements can be satisfied. */
9051 if (VEX_check_encoding (t))
da4977e0 9052 {
7b94647a 9053 specific_error = progress (i.error);
da4977e0
JB
9054 continue;
9055 }
9056
80d61d8d
CL
9057 /* Check if EGPR operands(r16-r31) are valid. */
9058 if (check_EgprOperands (t))
9059 {
9060 specific_error = progress (i.error);
9061 continue;
9062 }
9063
9bb4d860
L
9064 /* Check if vector operands are valid. */
9065 if (check_VecOperands (t))
5614d22c 9066 {
7b94647a 9067 specific_error = progress (i.error);
5614d22c
JB
9068 continue;
9069 }
a683cc34 9070
08a98d4c
MZ
9071 /* Check if APX operands are valid. */
9072 if (check_APX_operands (t))
9073 {
9074 specific_error = progress (i.error);
9075 continue;
9076 }
9077
58bceb18 9078 /* Check whether to use the shorter VEX encoding for certain insns where
39bb3ade
JB
9079 the EVEX encoding comes first in the table. This requires the respective
9080 AVX-* feature to be explicitly enabled.
9081
9082 Most of the respective insns have just a single EVEX and a single VEX
9083 template. The one that's presently different is generated using the
9084 Vxy / Exy constructs: There are 3 suffix-less EVEX forms, the latter
9085 two of which may fall back to their two corresponding VEX forms. */
9086 j = t->mnem_off != MN_vcvtneps2bf16 ? 1 : 2;
d3b01414 9087 if ((t == current_templates.start || j > 1)
58bceb18
JB
9088 && t->opcode_modifier.disp8memshift
9089 && !t->opcode_modifier.vex
6177c84d 9090 && !need_evex_encoding (t)
d3b01414 9091 && t + j < current_templates.end
39bb3ade 9092 && t[j].opcode_modifier.vex)
58bceb18
JB
9093 {
9094 i386_cpu_flags cpu;
9095 unsigned int memshift = i.memshift;
9096
9097 i.memshift = 0;
39bb3ade
JB
9098 cpu = cpu_flags_and (cpu_flags_from_attr (t[j].cpu),
9099 cpu_arch_isa_flags);
58bceb18
JB
9100 if (!cpu_flags_all_zero (&cpu)
9101 && (!i.types[0].bitfield.disp8
9102 || !operand_type_check (i.types[0], disp)
9103 || i.op[0].disps->X_op != O_constant
9104 || fits_in_disp8 (i.op[0].disps->X_add_number)))
9105 {
9106 specific_error = progress (internal_error);
39bb3ade 9107 t += j - 1;
58bceb18
JB
9108 continue;
9109 }
9110 i.memshift = memshift;
9111 }
9112
6967f19d
HL
9113 /* If we can optimize a NDD insn to legacy insn, like
9114 add %r16, %r8, %r8 -> add %r16, %r8,
9115 add %r8, %r16, %r8 -> add %r16, %r8, then rematch template.
9116 Note that the semantics have not been changed. */
9117 if (optimize
9118 && !i.no_optimize
e346d50a 9119 && i.encoding != encoding_evex
0ebcbb1b
JB
9120 && ((t + 1 < current_templates.end
9121 && !t[1].opcode_modifier.evex
9122 && t[1].opcode_space <= SPACE_0F38
9123 && t->opcode_modifier.vexvvvv == VexVVVV_DST)
9124 || t->mnem_off == MN_movbe)
6967f19d
HL
9125 && (i.types[i.operands - 1].bitfield.dword
9126 || i.types[i.operands - 1].bitfield.qword))
9127 {
9128 unsigned int match_dest_op = can_convert_NDD_to_legacy (t);
9129
9130 if (match_dest_op != (unsigned int) ~0)
9131 {
9132 size_match = true;
9133 /* We ensure that the next template has the same input
9134 operands as the original matching template by the first
9135 opernd (ATT). To avoid someone support new NDD insns and
9136 put it in the wrong position. */
9137 overlap0 = operand_type_and (i.types[0],
9138 t[1].operand_types[0]);
9139 if (t->opcode_modifier.d)
9140 overlap1 = operand_type_and (i.types[0],
9141 t[1].operand_types[1]);
9142 if (!operand_type_match (overlap0, i.types[0])
9143 && (!t->opcode_modifier.d
9144 || !operand_type_match (overlap1, i.types[0])))
9145 size_match = false;
9146
9147 if (size_match
9148 && (t[1].opcode_space <= SPACE_0F
9149 /* Some non-legacy-map0/1 insns can be shorter when
9150 legacy-encoded and when no REX prefix is required. */
9151 || (!check_EgprOperands (t + 1)
9152 && !check_Rex_required ()
9153 && !i.op[i.operands - 1].regs->reg_type.bitfield.qword)))
9154 {
9155 if (i.operands > 2 && match_dest_op == i.operands - 3)
9156 swap_2_operands (match_dest_op, i.operands - 2);
9157
9158 --i.operands;
9159 --i.reg_operands;
9160
0ebcbb1b
JB
9161 if (t->mnem_off == MN_movbe)
9162 {
9163 gas_assert (t[1].mnem_off == MN_bswap);
9164 ++current_templates.end;
9165 }
9166
6967f19d
HL
9167 specific_error = progress (internal_error);
9168 continue;
9169 }
9170
9171 }
9172 }
9173
29b0f896
AM
9174 /* We've found a match; break out of loop. */
9175 break;
9176 }
9177
7b94647a
JB
9178#undef progress
9179
d3b01414 9180 if (t == current_templates.end)
29b0f896
AM
9181 {
9182 /* We found no match. */
04784e33 9183 i.error = specific_error;
fa99fab2 9184 return NULL;
29b0f896 9185 }
252b5132 9186
29b0f896
AM
9187 if (!quiet_warnings)
9188 {
9189 if (!intel_syntax
0cfa3eb3 9190 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
76d3f746 9191 as_warn (_("indirect %s without `*'"), insn_name (t));
29b0f896 9192
40fb9820 9193 if (t->opcode_modifier.isprefix
3cd7f3e3 9194 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
9195 {
9196 /* Warn them that a data or address size prefix doesn't
9197 affect assembly of the next line of code. */
76d3f746 9198 as_warn (_("stand-alone `%s' prefix"), insn_name (t));
29b0f896
AM
9199 }
9200 }
9201
9202 /* Copy the template we found. */
9a182d04 9203 install_template (t);
539e75ad
L
9204
9205 if (addr_prefix_disp != -1)
9206 i.tm.operand_types[addr_prefix_disp]
9207 = operand_types[addr_prefix_disp];
9208
09de03fc
JB
9209 /* APX insns acting on byte operands are WIG, yet that can't be expressed
9210 in the templates (they're also covering word/dword/qword operands). */
9211 if (t->opcode_space == SPACE_EVEXMAP4 && !t->opcode_modifier.vexw &&
9212 i.types[i.operands - 1].bitfield.byte)
9213 {
9214 gas_assert (t->opcode_modifier.w);
9215 i.tm.opcode_modifier.vexw = VEXWIG;
9216 }
9217
8bd915b7 9218 switch (found_reverse_match)
29b0f896 9219 {
8bd915b7
JB
9220 case 0:
9221 break;
9222
bd782808
JB
9223 case Opcode_FloatR:
9224 case Opcode_FloatR | Opcode_FloatD:
9225 i.tm.extension_opcode ^= Opcode_FloatR >> 3;
9226 found_reverse_match &= Opcode_FloatD;
9227
9228 /* Fall through. */
8bd915b7 9229 default:
dfd69174
JB
9230 /* If we found a reverse match we must alter the opcode direction
9231 bit and clear/flip the regmem modifier one. found_reverse_match
9232 holds bits to change (different for int & float insns). */
29b0f896
AM
9233
9234 i.tm.base_opcode ^= found_reverse_match;
9235
3083f376 9236 if (i.tm.opcode_space == SPACE_EVEXMAP4)
9237 goto swap_first_2;
9238
dfd69174
JB
9239 /* Certain SIMD insns have their load forms specified in the opcode
9240 table, and hence we need to _set_ RegMem instead of clearing it.
9241 We need to avoid setting the bit though on insns like KMOVW. */
9242 i.tm.opcode_modifier.regmem
9243 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
9244 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
9245 && !i.tm.opcode_modifier.regmem;
a33ef3c2
JB
9246
9247 /* Fall through. */
9248 case ~0:
9249 i.tm.operand_types[0] = operand_types[i.operands - 1];
9250 i.tm.operand_types[i.operands - 1] = operand_types[0];
8bd915b7
JB
9251 break;
9252
9253 case Opcode_VexW:
9254 /* Only the first two register operands need reversing, alongside
9255 flipping VEX.W. */
9256 i.tm.opcode_modifier.vexw ^= VEXW0 ^ VEXW1;
9257
3083f376 9258 swap_first_2:
8bd915b7
JB
9259 j = i.tm.operand_types[0].bitfield.imm8;
9260 i.tm.operand_types[j] = operand_types[j + 1];
9261 i.tm.operand_types[j + 1] = operand_types[j];
9262 break;
29b0f896
AM
9263 }
9264
fa99fab2 9265 return t;
29b0f896
AM
9266}
9267
9268static int
e3bb37b5 9269check_string (void)
29b0f896 9270{
51c8edf6
JB
9271 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
9272 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 9273
5e042380 9274 if (i.seg[op] != NULL && i.seg[op] != reg_es)
29b0f896 9275 {
51c8edf6 9276 as_bad (_("`%s' operand %u must use `%ses' segment"),
76d3f746 9277 insn_name (&i.tm),
51c8edf6
JB
9278 intel_syntax ? i.tm.operands - es_op : es_op + 1,
9279 register_prefix);
9280 return 0;
29b0f896 9281 }
51c8edf6
JB
9282
9283 /* There's only ever one segment override allowed per instruction.
9284 This instruction possibly has a legal segment override on the
9285 second operand, so copy the segment to where non-string
9286 instructions store it, allowing common code. */
9287 i.seg[op] = i.seg[1];
9288
29b0f896
AM
9289 return 1;
9290}
9291
9292static int
543613e9 9293process_suffix (void)
29b0f896 9294{
7fc69528 9295 bool is_movx = false;
8b65b895 9296
29b0f896
AM
9297 /* If matched instruction specifies an explicit instruction mnemonic
9298 suffix, use it. */
673fe0f0 9299 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 9300 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 9301 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 9302 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 9303 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 9304 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0 9305 else if (i.reg_operands
c8f8eebc 9306 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
255571cd 9307 && i.tm.opcode_modifier.operandconstraint != ADDR_PREFIX_OP_REG)
29b0f896 9308 {
65fca059 9309 unsigned int numop = i.operands;
389d00a5
JB
9310
9311 /* MOVSX/MOVZX */
ddb62495 9312 is_movx = (i.tm.opcode_space == SPACE_0F
389d00a5 9313 && (i.tm.base_opcode | 8) == 0xbe)
ddb62495 9314 || (i.tm.opcode_space == SPACE_BASE
389d00a5 9315 && i.tm.base_opcode == 0x63
734dfd1c 9316 && is_cpu (&i.tm, Cpu64));
389d00a5 9317
65fca059
JB
9318 /* movsx/movzx want only their source operand considered here, for the
9319 ambiguity checking below. The suffix will be replaced afterwards
9320 to represent the destination (register). */
389d00a5 9321 if (is_movx && (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63))
65fca059
JB
9322 --i.operands;
9323
643bb870 9324 /* crc32 needs REX.W set regardless of suffix / source operand size. */
7fc69528 9325 if (i.tm.mnem_off == MN_crc32 && i.tm.operand_types[1].bitfield.qword)
643bb870
JB
9326 i.rex |= REX_W;
9327
29b0f896 9328 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 9329 based on GPR operands. */
29b0f896
AM
9330 if (!i.suffix)
9331 {
9332 /* We take i.suffix from the last register operand specified,
9333 Destination register type is more significant than source
381d071f
L
9334 register type. crc32 in SSE4.2 prefers source register
9335 type. */
7fc69528 9336 unsigned int op = i.tm.mnem_off == MN_crc32 ? 1 : i.operands;
20592a94 9337
1a035124
JB
9338 while (op--)
9339 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
9340 || i.tm.operand_types[op].bitfield.instance == Accum)
9341 {
9342 if (i.types[op].bitfield.class != Reg)
9343 continue;
9344 if (i.types[op].bitfield.byte)
9345 i.suffix = BYTE_MNEM_SUFFIX;
9346 else if (i.types[op].bitfield.word)
9347 i.suffix = WORD_MNEM_SUFFIX;
9348 else if (i.types[op].bitfield.dword)
9349 i.suffix = LONG_MNEM_SUFFIX;
9350 else if (i.types[op].bitfield.qword)
9351 i.suffix = QWORD_MNEM_SUFFIX;
9352 else
9353 continue;
9354 break;
9355 }
65fca059
JB
9356
9357 /* As an exception, movsx/movzx silently default to a byte source
9358 in AT&T mode. */
389d00a5 9359 if (is_movx && i.tm.opcode_modifier.w && !i.suffix && !intel_syntax)
65fca059 9360 i.suffix = BYTE_MNEM_SUFFIX;
29b0f896
AM
9361 }
9362 else if (i.suffix == BYTE_MNEM_SUFFIX)
9363 {
1cb0ab18 9364 if (!check_byte_reg ())
29b0f896
AM
9365 return 0;
9366 }
9367 else if (i.suffix == LONG_MNEM_SUFFIX)
9368 {
1cb0ab18 9369 if (!check_long_reg ())
29b0f896
AM
9370 return 0;
9371 }
9372 else if (i.suffix == QWORD_MNEM_SUFFIX)
9373 {
1cb0ab18 9374 if (!check_qword_reg ())
29b0f896
AM
9375 return 0;
9376 }
9377 else if (i.suffix == WORD_MNEM_SUFFIX)
9378 {
1cb0ab18 9379 if (!check_word_reg ())
29b0f896
AM
9380 return 0;
9381 }
3cd7f3e3
L
9382 else if (intel_syntax
9383 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
9384 /* Do nothing if the instruction is going to ignore the prefix. */
9385 ;
9386 else
9387 abort ();
65fca059
JB
9388
9389 /* Undo the movsx/movzx change done above. */
9390 i.operands = numop;
29b0f896 9391 }
3cd7f3e3
L
9392 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
9393 && !i.suffix)
29b0f896 9394 {
13e600d0
JB
9395 i.suffix = stackop_size;
9396 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
9397 {
9398 /* stackop_size is set to LONG_MNEM_SUFFIX for the
9399 .code16gcc directive to support 16-bit mode with
9400 32-bit address. For IRET without a suffix, generate
9401 16-bit IRET (opcode 0xcf) to return from an interrupt
9402 handler. */
13e600d0
JB
9403 if (i.tm.base_opcode == 0xcf)
9404 {
9405 i.suffix = WORD_MNEM_SUFFIX;
9406 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
9407 }
9408 /* Warn about changed behavior for segment register push/pop. */
9409 else if ((i.tm.base_opcode | 1) == 0x07)
9410 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
76d3f746 9411 insn_name (&i.tm));
06f74c5c 9412 }
29b0f896 9413 }
c006a730 9414 else if (!i.suffix
0cfa3eb3
JB
9415 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
9416 || i.tm.opcode_modifier.jump == JUMP_BYTE
9417 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
ddb62495 9418 || (i.tm.opcode_space == SPACE_0F
389d00a5 9419 && i.tm.base_opcode == 0x01 /* [ls][gi]dt */
64e74474 9420 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
9421 {
9422 switch (flag_code)
9423 {
9424 case CODE_64BIT:
40fb9820 9425 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a 9426 {
828c2a25
JB
9427 if (i.tm.opcode_modifier.jump == JUMP_BYTE
9428 || i.tm.opcode_modifier.no_lsuf)
9429 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a
JB
9430 break;
9431 }
1a0670f3 9432 /* Fall through. */
9306ca4a 9433 case CODE_32BIT:
40fb9820 9434 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
9435 i.suffix = LONG_MNEM_SUFFIX;
9436 break;
9437 case CODE_16BIT:
40fb9820 9438 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
9439 i.suffix = WORD_MNEM_SUFFIX;
9440 break;
9441 }
9442 }
252b5132 9443
c006a730 9444 if (!i.suffix
3cd7f3e3 9445 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8
JB
9446 /* Also cover lret/retf/iret in 64-bit mode. */
9447 || (flag_code == CODE_64BIT
9448 && !i.tm.opcode_modifier.no_lsuf
9449 && !i.tm.opcode_modifier.no_qsuf))
3cd7f3e3 9450 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
8bbb3ad8
JB
9451 /* Explicit sizing prefixes are assumed to disambiguate insns. */
9452 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
62b3f548
JB
9453 /* Accept FLDENV et al without suffix. */
9454 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
29b0f896 9455 {
6c0946d0 9456 unsigned int suffixes, evex = 0;
c006a730
JB
9457
9458 suffixes = !i.tm.opcode_modifier.no_bsuf;
9459 if (!i.tm.opcode_modifier.no_wsuf)
9460 suffixes |= 1 << 1;
9461 if (!i.tm.opcode_modifier.no_lsuf)
9462 suffixes |= 1 << 2;
c006a730
JB
9463 if (!i.tm.opcode_modifier.no_ssuf)
9464 suffixes |= 1 << 4;
9465 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
9466 suffixes |= 1 << 5;
9467
6c0946d0
JB
9468 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
9469 also suitable for AT&T syntax mode, it was requested that this be
9470 restricted to just Intel syntax. */
a5748e0d
JB
9471 if (intel_syntax && is_any_vex_encoding (&i.tm)
9472 && !i.broadcast.type && !i.broadcast.bytes)
6c0946d0 9473 {
b9915cbc 9474 unsigned int op;
6c0946d0 9475
b9915cbc 9476 for (op = 0; op < i.tm.operands; ++op)
6c0946d0 9477 {
4fc85f37
JB
9478 if (vector_size < VSZ512)
9479 {
9480 i.tm.operand_types[op].bitfield.zmmword = 0;
9481 if (vector_size < VSZ256)
9482 {
9483 i.tm.operand_types[op].bitfield.ymmword = 0;
9484 if (i.tm.operand_types[op].bitfield.xmmword
706ce984 9485 && i.tm.opcode_modifier.evex == EVEXDYN)
4fc85f37
JB
9486 i.tm.opcode_modifier.evex = EVEX128;
9487 }
9488 else if (i.tm.operand_types[op].bitfield.ymmword
9489 && !i.tm.operand_types[op].bitfield.xmmword
706ce984 9490 && i.tm.opcode_modifier.evex == EVEXDYN)
4fc85f37
JB
9491 i.tm.opcode_modifier.evex = EVEX256;
9492 }
706ce984 9493 else if (i.tm.opcode_modifier.evex
4fc85f37 9494 && !cpu_arch_flags.bitfield.cpuavx512vl)
6c0946d0 9495 {
b9915cbc
JB
9496 if (i.tm.operand_types[op].bitfield.ymmword)
9497 i.tm.operand_types[op].bitfield.xmmword = 0;
9498 if (i.tm.operand_types[op].bitfield.zmmword)
9499 i.tm.operand_types[op].bitfield.ymmword = 0;
706ce984 9500 if (i.tm.opcode_modifier.evex == EVEXDYN)
b9915cbc
JB
9501 i.tm.opcode_modifier.evex = EVEX512;
9502 }
6c0946d0 9503
b9915cbc
JB
9504 if (i.tm.operand_types[op].bitfield.xmmword
9505 + i.tm.operand_types[op].bitfield.ymmword
9506 + i.tm.operand_types[op].bitfield.zmmword < 2)
9507 continue;
6c0946d0 9508
b9915cbc
JB
9509 /* Any properly sized operand disambiguates the insn. */
9510 if (i.types[op].bitfield.xmmword
9511 || i.types[op].bitfield.ymmword
9512 || i.types[op].bitfield.zmmword)
9513 {
9514 suffixes &= ~(7 << 6);
9515 evex = 0;
9516 break;
9517 }
6c0946d0 9518
b9915cbc
JB
9519 if ((i.flags[op] & Operand_Mem)
9520 && i.tm.operand_types[op].bitfield.unspecified)
9521 {
9522 if (i.tm.operand_types[op].bitfield.xmmword)
9523 suffixes |= 1 << 6;
9524 if (i.tm.operand_types[op].bitfield.ymmword)
9525 suffixes |= 1 << 7;
9526 if (i.tm.operand_types[op].bitfield.zmmword)
9527 suffixes |= 1 << 8;
706ce984 9528 if (i.tm.opcode_modifier.evex)
b9915cbc 9529 evex = EVEX512;
6c0946d0
JB
9530 }
9531 }
9532 }
9533
9534 /* Are multiple suffixes / operand sizes allowed? */
c006a730 9535 if (suffixes & (suffixes - 1))
9306ca4a 9536 {
873494c8 9537 if (intel_syntax
3cd7f3e3 9538 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8 9539 || operand_check == check_error))
9306ca4a 9540 {
76d3f746 9541 as_bad (_("ambiguous operand size for `%s'"), insn_name (&i.tm));
9306ca4a
JB
9542 return 0;
9543 }
c006a730 9544 if (operand_check == check_error)
9306ca4a 9545 {
c006a730 9546 as_bad (_("no instruction mnemonic suffix given and "
76d3f746 9547 "no register operands; can't size `%s'"), insn_name (&i.tm));
9306ca4a
JB
9548 return 0;
9549 }
c006a730 9550 if (operand_check == check_warning)
873494c8
JB
9551 as_warn (_("%s; using default for `%s'"),
9552 intel_syntax
9553 ? _("ambiguous operand size")
9554 : _("no instruction mnemonic suffix given and "
9555 "no register operands"),
76d3f746 9556 insn_name (&i.tm));
c006a730
JB
9557
9558 if (i.tm.opcode_modifier.floatmf)
9559 i.suffix = SHORT_MNEM_SUFFIX;
389d00a5 9560 else if (is_movx)
65fca059 9561 /* handled below */;
6c0946d0
JB
9562 else if (evex)
9563 i.tm.opcode_modifier.evex = evex;
c006a730
JB
9564 else if (flag_code == CODE_16BIT)
9565 i.suffix = WORD_MNEM_SUFFIX;
1a035124 9566 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 9567 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
9568 else
9569 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 9570 }
29b0f896 9571 }
252b5132 9572
389d00a5 9573 if (is_movx)
65fca059
JB
9574 {
9575 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
9576 In AT&T syntax, if there is no suffix (warned about above), the default
9577 will be byte extension. */
9578 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
9579 i.tm.base_opcode |= 1;
9580
9581 /* For further processing, the suffix should represent the destination
9582 (register). This is already the case when one was used with
9583 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
9584 no suffix to begin with. */
9585 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
9586 {
9587 if (i.types[1].bitfield.word)
9588 i.suffix = WORD_MNEM_SUFFIX;
9589 else if (i.types[1].bitfield.qword)
9590 i.suffix = QWORD_MNEM_SUFFIX;
9591 else
9592 i.suffix = LONG_MNEM_SUFFIX;
9593
9594 i.tm.opcode_modifier.w = 0;
9595 }
9596 }
9597
50128d0c
JB
9598 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
9599 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
9600 != (i.tm.operand_types[1].bitfield.class == Reg);
9601
d2224064
JB
9602 /* Change the opcode based on the operand size given by i.suffix. */
9603 switch (i.suffix)
29b0f896 9604 {
d2224064
JB
9605 /* Size floating point instruction. */
9606 case LONG_MNEM_SUFFIX:
9607 if (i.tm.opcode_modifier.floatmf)
9608 {
9609 i.tm.base_opcode ^= 4;
9610 break;
9611 }
9612 /* fall through */
9613 case WORD_MNEM_SUFFIX:
9614 case QWORD_MNEM_SUFFIX:
29b0f896 9615 /* It's not a byte, select word/dword operation. */
40fb9820 9616 if (i.tm.opcode_modifier.w)
29b0f896 9617 {
50128d0c 9618 if (i.short_form)
29b0f896
AM
9619 i.tm.base_opcode |= 8;
9620 else
9621 i.tm.base_opcode |= 1;
9622 }
4e3be89f
JB
9623
9624 /* Set mode64 for an operand. */
9625 if (i.suffix == QWORD_MNEM_SUFFIX)
9626 {
9627 if (flag_code == CODE_64BIT
9628 && !i.tm.opcode_modifier.norex64
9629 && !i.tm.opcode_modifier.vexw
9630 /* Special case for xchg %rax,%rax. It is NOP and doesn't
9631 need rex64. */
9632 && ! (i.operands == 2
9633 && i.tm.base_opcode == 0x90
9634 && i.tm.opcode_space == SPACE_BASE
9635 && i.types[0].bitfield.instance == Accum
9636 && i.types[1].bitfield.instance == Accum))
9637 i.rex |= REX_W;
9638
9639 break;
9640 }
9641
d2224064
JB
9642 /* fall through */
9643 case SHORT_MNEM_SUFFIX:
29b0f896
AM
9644 /* Now select between word & dword operations via the operand
9645 size prefix, except for instructions that will ignore this
9646 prefix anyway. */
4e3be89f 9647 if (i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
c8f8eebc 9648 && !i.tm.opcode_modifier.floatmf
6177c84d
CL
9649 && (!is_any_vex_encoding (&i.tm)
9650 || i.tm.opcode_space == SPACE_EVEXMAP4)
c8f8eebc
JB
9651 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
9652 || (flag_code == CODE_64BIT
9653 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
9654 {
9655 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 9656
0cfa3eb3 9657 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 9658 prefix = ADDR_PREFIX_OPCODE;
252b5132 9659
6177c84d
CL
9660 /* The DATA PREFIX of EVEX promoted from legacy APX instructions
9661 needs to be adjusted. */
9662 if (i.tm.opcode_space == SPACE_EVEXMAP4)
9663 {
9664 gas_assert (!i.tm.opcode_modifier.opcodeprefix);
9665 i.tm.opcode_modifier.opcodeprefix = PREFIX_0X66;
9666 }
9667 else if (!add_prefix (prefix))
29b0f896 9668 return 0;
24eab124 9669 }
252b5132 9670
d2224064 9671 break;
8bbb3ad8
JB
9672
9673 case 0:
f9a6a8f0 9674 /* Select word/dword/qword operation with explicit data sizing prefix
8bbb3ad8
JB
9675 when there are no suitable register operands. */
9676 if (i.tm.opcode_modifier.w
9677 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
9678 && (!i.reg_operands
9679 || (i.reg_operands == 1
9680 /* ShiftCount */
9681 && (i.tm.operand_types[0].bitfield.instance == RegC
9682 /* InOutPortReg */
9683 || i.tm.operand_types[0].bitfield.instance == RegD
9684 || i.tm.operand_types[1].bitfield.instance == RegD
7fc69528 9685 || i.tm.mnem_off == MN_crc32))))
8bbb3ad8
JB
9686 i.tm.base_opcode |= 1;
9687 break;
29b0f896 9688 }
7ecd2f8b 9689
255571cd 9690 if (i.tm.opcode_modifier.operandconstraint == ADDR_PREFIX_OP_REG)
c0a30a9f 9691 {
c8f8eebc
JB
9692 gas_assert (!i.suffix);
9693 gas_assert (i.reg_operands);
c0a30a9f 9694
c8f8eebc
JB
9695 if (i.tm.operand_types[0].bitfield.instance == Accum
9696 || i.operands == 1)
9697 {
9698 /* The address size override prefix changes the size of the
9699 first operand. */
9700 if (flag_code == CODE_64BIT
9701 && i.op[0].regs->reg_type.bitfield.word)
9702 {
9703 as_bad (_("16-bit addressing unavailable for `%s'"),
76d3f746 9704 insn_name (&i.tm));
c8f8eebc
JB
9705 return 0;
9706 }
9707
9708 if ((flag_code == CODE_32BIT
9709 ? i.op[0].regs->reg_type.bitfield.word
9710 : i.op[0].regs->reg_type.bitfield.dword)
9711 && !add_prefix (ADDR_PREFIX_OPCODE))
9712 return 0;
9713 }
c0a30a9f
L
9714 else
9715 {
c8f8eebc
JB
9716 /* Check invalid register operand when the address size override
9717 prefix changes the size of register operands. */
9718 unsigned int op;
9719 enum { need_word, need_dword, need_qword } need;
9720
27f13469 9721 /* Check the register operand for the address size prefix if
b3a3496f 9722 the memory operand has no real registers, like symbol, DISP
829f3fe1 9723 or bogus (x32-only) symbol(%rip) when symbol(%eip) is meant. */
27f13469
L
9724 if (i.mem_operands == 1
9725 && i.reg_operands == 1
9726 && i.operands == 2
27f13469 9727 && i.types[1].bitfield.class == Reg
b3a3496f
L
9728 && (flag_code == CODE_32BIT
9729 ? i.op[1].regs->reg_type.bitfield.word
9730 : i.op[1].regs->reg_type.bitfield.dword)
9731 && ((i.base_reg == NULL && i.index_reg == NULL)
829f3fe1
JB
9732#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9733 || (x86_elf_abi == X86_64_X32_ABI
9734 && i.base_reg
b3a3496f
L
9735 && i.base_reg->reg_num == RegIP
9736 && i.base_reg->reg_type.bitfield.qword))
829f3fe1
JB
9737#else
9738 || 0)
9739#endif
27f13469
L
9740 && !add_prefix (ADDR_PREFIX_OPCODE))
9741 return 0;
9742
c8f8eebc
JB
9743 if (flag_code == CODE_32BIT)
9744 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
9745 else if (i.prefix[ADDR_PREFIX])
c0a30a9f
L
9746 need = need_dword;
9747 else
9748 need = flag_code == CODE_64BIT ? need_qword : need_word;
c0a30a9f 9749
c8f8eebc
JB
9750 for (op = 0; op < i.operands; op++)
9751 {
9752 if (i.types[op].bitfield.class != Reg)
9753 continue;
9754
9755 switch (need)
9756 {
9757 case need_word:
9758 if (i.op[op].regs->reg_type.bitfield.word)
9759 continue;
9760 break;
9761 case need_dword:
9762 if (i.op[op].regs->reg_type.bitfield.dword)
9763 continue;
9764 break;
9765 case need_qword:
9766 if (i.op[op].regs->reg_type.bitfield.qword)
9767 continue;
9768 break;
9769 }
9770
9771 as_bad (_("invalid register operand size for `%s'"),
76d3f746 9772 insn_name (&i.tm));
c8f8eebc
JB
9773 return 0;
9774 }
9775 }
c0a30a9f
L
9776 }
9777
29b0f896
AM
9778 return 1;
9779}
3e73aa7c 9780
29b0f896 9781static int
543613e9 9782check_byte_reg (void)
29b0f896
AM
9783{
9784 int op;
543613e9 9785
29b0f896
AM
9786 for (op = i.operands; --op >= 0;)
9787 {
dc821c5f 9788 /* Skip non-register operands. */
bab6aec1 9789 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
9790 continue;
9791
29b0f896
AM
9792 /* If this is an eight bit register, it's OK. If it's the 16 or
9793 32 bit version of an eight bit register, we will just use the
9794 low portion, and that's OK too. */
dc821c5f 9795 if (i.types[op].bitfield.byte)
29b0f896
AM
9796 continue;
9797
5a819eb9 9798 /* I/O port address operands are OK too. */
75e5731b
JB
9799 if (i.tm.operand_types[op].bitfield.instance == RegD
9800 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
9801 continue;
9802
9706160a 9803 /* crc32 only wants its source operand checked here. */
7fc69528 9804 if (i.tm.mnem_off == MN_crc32 && op != 0)
9344ff29
L
9805 continue;
9806
29b0f896 9807 /* Any other register is bad. */
73c76375
JB
9808 as_bad (_("`%s%s' not allowed with `%s%c'"),
9809 register_prefix, i.op[op].regs->reg_name,
76d3f746 9810 insn_name (&i.tm), i.suffix);
73c76375 9811 return 0;
29b0f896
AM
9812 }
9813 return 1;
9814}
9815
9816static int
e3bb37b5 9817check_long_reg (void)
29b0f896
AM
9818{
9819 int op;
9820
9821 for (op = i.operands; --op >= 0;)
dc821c5f 9822 /* Skip non-register operands. */
bab6aec1 9823 if (i.types[op].bitfield.class != Reg)
dc821c5f 9824 continue;
29b0f896
AM
9825 /* Reject eight bit registers, except where the template requires
9826 them. (eg. movzb) */
dc821c5f 9827 else if (i.types[op].bitfield.byte
bab6aec1 9828 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 9829 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
9830 && (i.tm.operand_types[op].bitfield.word
9831 || i.tm.operand_types[op].bitfield.dword))
29b0f896 9832 {
a540244d
L
9833 as_bad (_("`%s%s' not allowed with `%s%c'"),
9834 register_prefix,
29b0f896 9835 i.op[op].regs->reg_name,
76d3f746 9836 insn_name (&i.tm),
29b0f896
AM
9837 i.suffix);
9838 return 0;
9839 }
d9a1b711
JB
9840 /* Error if the e prefix on a general reg is missing, or if the r
9841 prefix on a general reg is present. */
9842 else if ((i.types[op].bitfield.word
9843 || i.types[op].bitfield.qword)
bab6aec1 9844 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 9845 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 9846 && i.tm.operand_types[op].bitfield.dword)
29b0f896 9847 {
be4c5e58
L
9848 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
9849 register_prefix, i.op[op].regs->reg_name,
9850 i.suffix);
9851 return 0;
252b5132 9852 }
29b0f896
AM
9853 return 1;
9854}
252b5132 9855
29b0f896 9856static int
e3bb37b5 9857check_qword_reg (void)
29b0f896
AM
9858{
9859 int op;
252b5132 9860
29b0f896 9861 for (op = i.operands; --op >= 0; )
dc821c5f 9862 /* Skip non-register operands. */
bab6aec1 9863 if (i.types[op].bitfield.class != Reg)
dc821c5f 9864 continue;
29b0f896
AM
9865 /* Reject eight bit registers, except where the template requires
9866 them. (eg. movzb) */
dc821c5f 9867 else if (i.types[op].bitfield.byte
bab6aec1 9868 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 9869 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 9870 && (i.tm.operand_types[op].bitfield.word
742b55c7
JB
9871 || i.tm.operand_types[op].bitfield.dword
9872 || i.tm.operand_types[op].bitfield.qword))
29b0f896 9873 {
a540244d
L
9874 as_bad (_("`%s%s' not allowed with `%s%c'"),
9875 register_prefix,
29b0f896 9876 i.op[op].regs->reg_name,
76d3f746 9877 insn_name (&i.tm),
29b0f896
AM
9878 i.suffix);
9879 return 0;
9880 }
d9a1b711 9881 /* Error if the r prefix on a general reg is missing. */
dc821c5f
JB
9882 else if ((i.types[op].bitfield.word
9883 || i.types[op].bitfield.dword)
bab6aec1 9884 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 9885 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 9886 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
9887 {
9888 /* Prohibit these changes in the 64bit mode, since the
9889 lowering is more complicated. */
1cb0ab18
JB
9890 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
9891 register_prefix, i.op[op].regs->reg_name, i.suffix);
9892 return 0;
252b5132 9893 }
29b0f896
AM
9894 return 1;
9895}
252b5132 9896
29b0f896 9897static int
e3bb37b5 9898check_word_reg (void)
29b0f896
AM
9899{
9900 int op;
9901 for (op = i.operands; --op >= 0;)
dc821c5f 9902 /* Skip non-register operands. */
bab6aec1 9903 if (i.types[op].bitfield.class != Reg)
dc821c5f 9904 continue;
29b0f896
AM
9905 /* Reject eight bit registers, except where the template requires
9906 them. (eg. movzb) */
dc821c5f 9907 else if (i.types[op].bitfield.byte
bab6aec1 9908 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 9909 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
9910 && (i.tm.operand_types[op].bitfield.word
9911 || i.tm.operand_types[op].bitfield.dword))
29b0f896 9912 {
a540244d
L
9913 as_bad (_("`%s%s' not allowed with `%s%c'"),
9914 register_prefix,
29b0f896 9915 i.op[op].regs->reg_name,
76d3f746 9916 insn_name (&i.tm),
29b0f896
AM
9917 i.suffix);
9918 return 0;
9919 }
9706160a
JB
9920 /* Error if the e or r prefix on a general reg is present. */
9921 else if ((i.types[op].bitfield.dword
dc821c5f 9922 || i.types[op].bitfield.qword)
bab6aec1 9923 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 9924 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 9925 && i.tm.operand_types[op].bitfield.word)
252b5132 9926 {
9706160a
JB
9927 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
9928 register_prefix, i.op[op].regs->reg_name,
9929 i.suffix);
9930 return 0;
29b0f896
AM
9931 }
9932 return 1;
9933}
252b5132 9934
29b0f896 9935static int
40fb9820 9936update_imm (unsigned int j)
29b0f896 9937{
bc0844ae 9938 i386_operand_type overlap = i.types[j];
c34d1cc9
JB
9939
9940 if (i.tm.operand_types[j].bitfield.imm8
9941 && i.tm.operand_types[j].bitfield.imm8s
9942 && overlap.bitfield.imm8 && overlap.bitfield.imm8s)
9943 {
9944 /* This combination is used on 8-bit immediates where e.g. $~0 is
9945 desirable to permit. We're past operand type matching, so simply
9946 put things back in the shape they were before introducing the
9947 distinction between Imm8, Imm8S, and Imm8|Imm8S. */
9948 overlap.bitfield.imm8s = 0;
9949 }
9950
be1643ff
JB
9951 if (overlap.bitfield.imm8
9952 + overlap.bitfield.imm8s
9953 + overlap.bitfield.imm16
9954 + overlap.bitfield.imm32
9955 + overlap.bitfield.imm32s
9956 + overlap.bitfield.imm64 > 1)
29b0f896 9957 {
05909f23
JB
9958 static const i386_operand_type imm16 = { .bitfield = { .imm16 = 1 } };
9959 static const i386_operand_type imm32 = { .bitfield = { .imm32 = 1 } };
9960 static const i386_operand_type imm32s = { .bitfield = { .imm32s = 1 } };
9961 static const i386_operand_type imm16_32 = { .bitfield =
9962 { .imm16 = 1, .imm32 = 1 }
9963 };
9964 static const i386_operand_type imm16_32s = { .bitfield =
9965 { .imm16 = 1, .imm32s = 1 }
9966 };
9967 static const i386_operand_type imm16_32_32s = { .bitfield =
9968 { .imm16 = 1, .imm32 = 1, .imm32s = 1 }
9969 };
9970
29b0f896
AM
9971 if (i.suffix)
9972 {
40fb9820
L
9973 i386_operand_type temp;
9974
0dfbf9d7 9975 operand_type_set (&temp, 0);
7ab9ffdd 9976 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
9977 {
9978 temp.bitfield.imm8 = overlap.bitfield.imm8;
9979 temp.bitfield.imm8s = overlap.bitfield.imm8s;
9980 }
9981 else if (i.suffix == WORD_MNEM_SUFFIX)
9982 temp.bitfield.imm16 = overlap.bitfield.imm16;
9983 else if (i.suffix == QWORD_MNEM_SUFFIX)
9984 {
9985 temp.bitfield.imm64 = overlap.bitfield.imm64;
9986 temp.bitfield.imm32s = overlap.bitfield.imm32s;
9987 }
9988 else
9989 temp.bitfield.imm32 = overlap.bitfield.imm32;
9990 overlap = temp;
29b0f896 9991 }
0dfbf9d7
L
9992 else if (operand_type_equal (&overlap, &imm16_32_32s)
9993 || operand_type_equal (&overlap, &imm16_32)
9994 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 9995 {
f79d55e1
JB
9996 if ((flag_code == CODE_16BIT)
9997 ^ (i.prefix[DATA_PREFIX] != 0 && !(i.prefix[REX_PREFIX] & REX_W)))
65da13b5 9998 overlap = imm16;
40fb9820 9999 else
65da13b5 10000 overlap = imm32s;
29b0f896 10001 }
8bbb3ad8
JB
10002 else if (i.prefix[REX_PREFIX] & REX_W)
10003 overlap = operand_type_and (overlap, imm32s);
10004 else if (i.prefix[DATA_PREFIX])
10005 overlap = operand_type_and (overlap,
10006 flag_code != CODE_16BIT ? imm16 : imm32);
be1643ff
JB
10007 if (overlap.bitfield.imm8
10008 + overlap.bitfield.imm8s
10009 + overlap.bitfield.imm16
10010 + overlap.bitfield.imm32
10011 + overlap.bitfield.imm32s
10012 + overlap.bitfield.imm64 != 1)
29b0f896 10013 {
4eed87de
AM
10014 as_bad (_("no instruction mnemonic suffix given; "
10015 "can't determine immediate size"));
29b0f896
AM
10016 return 0;
10017 }
10018 }
40fb9820 10019 i.types[j] = overlap;
29b0f896 10020
40fb9820
L
10021 return 1;
10022}
10023
10024static int
10025finalize_imm (void)
10026{
bc0844ae 10027 unsigned int j, n;
29b0f896 10028
bc0844ae
L
10029 /* Update the first 2 immediate operands. */
10030 n = i.operands > 2 ? 2 : i.operands;
10031 if (n)
10032 {
10033 for (j = 0; j < n; j++)
10034 if (update_imm (j) == 0)
10035 return 0;
40fb9820 10036
bc0844ae
L
10037 /* The 3rd operand can't be immediate operand. */
10038 gas_assert (operand_type_check (i.types[2], imm) == 0);
10039 }
29b0f896
AM
10040
10041 return 1;
10042}
10043
0a3eba42
JB
10044static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
10045 bool do_sse2avx)
10046{
10047 if (r->reg_flags & RegRex)
10048 {
10049 if (i.rex & rex_bit)
10050 as_bad (_("same type of prefix used twice"));
10051 i.rex |= rex_bit;
10052 }
10053 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
10054 {
10055 gas_assert (i.vex.register_specifier == r);
10056 i.vex.register_specifier += 8;
10057 }
10058
10059 if (r->reg_flags & RegVRex)
10060 i.vrex |= rex_bit;
80d61d8d
CL
10061
10062 if (r->reg_flags & RegRex2)
10063 i.rex2 |= rex_bit;
10064}
10065
10066static INLINE void
10067set_rex_rex2 (const reg_entry *r, unsigned int rex_bit)
10068{
10069 if ((r->reg_flags & RegRex) != 0)
10070 i.rex |= rex_bit;
10071 if ((r->reg_flags & RegRex2) != 0)
10072 i.rex2 |= rex_bit;
0a3eba42
JB
10073}
10074
29b0f896 10075static int
e3bb37b5 10076process_operands (void)
29b0f896
AM
10077{
10078 /* Default segment register this instruction will use for memory
10079 accesses. 0 means unknown. This is only for optimizing out
10080 unnecessary segment overrides. */
5e042380 10081 const reg_entry *default_seg = NULL;
29b0f896 10082
3083f376 10083 for (unsigned int j = 0; j < i.operands; j++)
10084 if (i.types[j].bitfield.instance != InstanceNone)
10085 i.reg_operands--;
31b4cda3 10086
a5aeccd9
JB
10087 if (i.tm.opcode_modifier.sse2avx)
10088 {
10089 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
10090 need converting. */
10091 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
10092 i.prefix[REX_PREFIX] = 0;
10093 i.rex_encoding = 0;
ebe82bfd 10094 i.rex2_encoding = 0;
a5aeccd9 10095 }
c423d21a
JB
10096 /* ImmExt should be processed after SSE2AVX. */
10097 else if (i.tm.opcode_modifier.immext)
10098 process_immext ();
a5aeccd9 10099
ecb96e55
JB
10100 /* TILEZERO is unusual in that it has a single operand encoded in ModR/M.reg,
10101 not ModR/M.rm. To avoid special casing this in build_modrm_byte(), fake a
10102 new destination operand here, while converting the source one to register
10103 number 0. */
10104 if (i.tm.mnem_off == MN_tilezero)
10105 {
10106 i.op[1].regs = i.op[0].regs;
10107 i.op[0].regs -= i.op[0].regs->reg_num;
10108 i.types[1] = i.types[0];
10109 i.tm.operand_types[1] = i.tm.operand_types[0];
10110 i.flags[1] = i.flags[0];
10111 i.operands++;
10112 i.reg_operands++;
10113 i.tm.operands++;
10114 }
10115
2426c15f 10116 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 10117 {
05909f23
JB
10118 static const i386_operand_type regxmm = {
10119 .bitfield = { .class = RegSIMD, .xmmword = 1 }
10120 };
91d6fa6a
NC
10121 unsigned int dupl = i.operands;
10122 unsigned int dest = dupl - 1;
9fcfb3d7
L
10123 unsigned int j;
10124
c0f3af97 10125 /* The destination must be an xmm register. */
9c2799c2 10126 gas_assert (i.reg_operands
91d6fa6a 10127 && MAX_OPERANDS > dupl
7ab9ffdd 10128 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 10129
75e5731b 10130 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 10131 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 10132 {
95dfdd85
JB
10133 /* Keep xmm0 for instructions with VEX prefix and 3
10134 sources. */
10135 i.tm.operand_types[0].bitfield.instance = InstanceNone;
10136 i.tm.operand_types[0].bitfield.class = RegSIMD;
31b4cda3 10137 i.reg_operands++;
95dfdd85 10138 goto duplicate;
c0f3af97 10139 }
95dfdd85
JB
10140
10141 if (i.tm.opcode_modifier.operandconstraint == IMPLICIT_1ST_XMM0)
7ab9ffdd 10142 {
aa180741 10143 gas_assert ((MAX_OPERANDS - 1) > dupl);
c0f3af97
L
10144
10145 /* Add the implicit xmm0 for instructions with VEX prefix
10146 and 3 sources. */
10147 for (j = i.operands; j > 0; j--)
10148 {
10149 i.op[j] = i.op[j - 1];
10150 i.types[j] = i.types[j - 1];
10151 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 10152 i.flags[j] = i.flags[j - 1];
c0f3af97
L
10153 }
10154 i.op[0].regs
629310ab 10155 = (const reg_entry *) str_hash_find (reg_hash, "xmm0");
7ab9ffdd 10156 i.types[0] = regxmm;
c0f3af97
L
10157 i.tm.operand_types[0] = regxmm;
10158
10159 i.operands += 2;
10160 i.reg_operands += 2;
10161 i.tm.operands += 2;
10162
91d6fa6a 10163 dupl++;
c0f3af97 10164 dest++;
91d6fa6a
NC
10165 i.op[dupl] = i.op[dest];
10166 i.types[dupl] = i.types[dest];
10167 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 10168 i.flags[dupl] = i.flags[dest];
e2ec9d29 10169 }
c0f3af97
L
10170 else
10171 {
dc1e8a47 10172 duplicate:
c0f3af97
L
10173 i.operands++;
10174 i.reg_operands++;
10175 i.tm.operands++;
10176
91d6fa6a
NC
10177 i.op[dupl] = i.op[dest];
10178 i.types[dupl] = i.types[dest];
10179 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 10180 i.flags[dupl] = i.flags[dest];
c0f3af97
L
10181 }
10182
10183 if (i.tm.opcode_modifier.immext)
10184 process_immext ();
10185 }
75e5731b 10186 else if (i.tm.operand_types[0].bitfield.instance == Accum
bd782808 10187 && i.tm.opcode_modifier.modrm)
c0f3af97
L
10188 {
10189 unsigned int j;
10190
9fcfb3d7
L
10191 for (j = 1; j < i.operands; j++)
10192 {
10193 i.op[j - 1] = i.op[j];
10194 i.types[j - 1] = i.types[j];
10195
10196 /* We need to adjust fields in i.tm since they are used by
10197 build_modrm_byte. */
10198 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
10199
10200 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
10201 }
10202
31b4cda3
JB
10203 /* No adjustment to i.reg_operands: This was already done at the top
10204 of the function. */
e2ec9d29 10205 i.operands--;
e2ec9d29
L
10206 i.tm.operands--;
10207 }
255571cd 10208 else if (i.tm.opcode_modifier.operandconstraint == IMPLICIT_QUAD_GROUP)
920d2ddc 10209 {
a477a8c4
JB
10210 unsigned int regnum, first_reg_in_group, last_reg_in_group;
10211
920d2ddc 10212 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 10213 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
10214 regnum = register_number (i.op[1].regs);
10215 first_reg_in_group = regnum & ~3;
10216 last_reg_in_group = first_reg_in_group + 3;
10217 if (regnum != first_reg_in_group)
10218 as_warn (_("source register `%s%s' implicitly denotes"
10219 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
10220 register_prefix, i.op[1].regs->reg_name,
10221 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
10222 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
76d3f746 10223 insn_name (&i.tm));
a477a8c4 10224 }
255571cd 10225 else if (i.tm.opcode_modifier.operandconstraint == REG_KLUDGE)
e2ec9d29
L
10226 {
10227 /* The imul $imm, %reg instruction is converted into
10228 imul $imm, %reg, %reg, and the clr %reg instruction
10229 is converted into xor %reg, %reg. */
10230
10231 unsigned int first_reg_op;
10232
10233 if (operand_type_check (i.types[0], reg))
10234 first_reg_op = 0;
10235 else
10236 first_reg_op = 1;
10237 /* Pretend we saw the extra register operand. */
9c2799c2 10238 gas_assert (i.reg_operands == 1
7ab9ffdd 10239 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
10240 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
10241 i.types[first_reg_op + 1] = i.types[first_reg_op];
10242 i.operands++;
10243 i.reg_operands++;
29b0f896
AM
10244 }
10245
85b80b0f 10246 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
10247 {
10248 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
10249 must be put into the modrm byte). Now, we make the modrm and
10250 index base bytes based on all the info we've collected. */
29b0f896
AM
10251
10252 default_seg = build_modrm_byte ();
bd782808
JB
10253
10254 if (!quiet_warnings && i.tm.opcode_modifier.operandconstraint == UGH)
10255 {
10256 /* Warn about some common errors, but press on regardless. */
10257 if (i.operands == 2)
10258 {
10259 /* Reversed arguments on faddp or fmulp. */
10260 as_warn (_("translating to `%s %s%s,%s%s'"), insn_name (&i.tm),
10261 register_prefix, i.op[!intel_syntax].regs->reg_name,
10262 register_prefix, i.op[intel_syntax].regs->reg_name);
10263 }
10264 else if (i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
10265 {
10266 /* Extraneous `l' suffix on fp insn. */
10267 as_warn (_("translating to `%s %s%s'"), insn_name (&i.tm),
10268 register_prefix, i.op[0].regs->reg_name);
10269 }
10270 }
29b0f896 10271 }
0ff3b7d0 10272 else if (i.types[0].bitfield.class == SReg && !dot_insn ())
85b80b0f
JB
10273 {
10274 if (flag_code != CODE_64BIT
10275 ? i.tm.base_opcode == POP_SEG_SHORT
10276 && i.op[0].regs->reg_num == 1
389d00a5 10277 : (i.tm.base_opcode | 1) == (POP_SEG386_SHORT & 0xff)
85b80b0f
JB
10278 && i.op[0].regs->reg_num < 4)
10279 {
10280 as_bad (_("you can't `%s %s%s'"),
76d3f746 10281 insn_name (&i.tm), register_prefix, i.op[0].regs->reg_name);
85b80b0f
JB
10282 return 0;
10283 }
389d00a5 10284 if (i.op[0].regs->reg_num > 3
ddb62495 10285 && i.tm.opcode_space == SPACE_BASE )
85b80b0f 10286 {
389d00a5 10287 i.tm.base_opcode ^= (POP_SEG_SHORT ^ POP_SEG386_SHORT) & 0xff;
ddb62495 10288 i.tm.opcode_space = SPACE_0F;
85b80b0f
JB
10289 }
10290 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
10291 }
ddb62495 10292 else if (i.tm.opcode_space == SPACE_BASE
389d00a5 10293 && (i.tm.base_opcode & ~3) == MOV_AX_DISP32)
29b0f896 10294 {
5e042380 10295 default_seg = reg_ds;
29b0f896 10296 }
40fb9820 10297 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
10298 {
10299 /* For the string instructions that allow a segment override
10300 on one of their operands, the default segment is ds. */
5e042380 10301 default_seg = reg_ds;
29b0f896 10302 }
50128d0c 10303 else if (i.short_form)
85b80b0f 10304 {
0ff3b7d0
JB
10305 /* The register operand is in the 1st or 2nd non-immediate operand. */
10306 const reg_entry *r = i.op[i.imm_operands].regs;
85b80b0f 10307
0ff3b7d0
JB
10308 if (!dot_insn ()
10309 && r->reg_type.bitfield.instance == Accum
10310 && i.op[i.imm_operands + 1].regs)
10311 r = i.op[i.imm_operands + 1].regs;
85b80b0f 10312 /* Register goes in low 3 bits of opcode. */
4943d587 10313 i.tm.base_opcode |= r->reg_num;
0a3eba42 10314 set_rex_vrex (r, REX_B, false);
0ff3b7d0
JB
10315
10316 if (dot_insn () && i.reg_operands == 2)
10317 {
10318 gas_assert (is_any_vex_encoding (&i.tm)
e346d50a 10319 || i.encoding != encoding_default);
0ff3b7d0
JB
10320 i.vex.register_specifier = i.op[i.operands - 1].regs;
10321 }
10322 }
10323 else if (i.reg_operands == 1
10324 && !i.flags[i.operands - 1]
10325 && i.tm.operand_types[i.operands - 1].bitfield.instance
10326 == InstanceNone)
10327 {
10328 gas_assert (is_any_vex_encoding (&i.tm)
e346d50a 10329 || i.encoding != encoding_default);
0ff3b7d0 10330 i.vex.register_specifier = i.op[i.operands - 1].regs;
85b80b0f 10331 }
29b0f896 10332
514a8bb0 10333 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7fc69528 10334 && i.tm.mnem_off == MN_lea)
92334ad2
JB
10335 {
10336 if (!quiet_warnings)
76d3f746 10337 as_warn (_("segment override on `%s' is ineffectual"), insn_name (&i.tm));
739d7649 10338 if (optimize && !i.no_optimize)
92334ad2
JB
10339 {
10340 i.seg[0] = NULL;
10341 i.prefix[SEG_PREFIX] = 0;
10342 }
10343 }
52271982
AM
10344
10345 /* If a segment was explicitly specified, and the specified segment
b6773884
JB
10346 is neither the default nor the one already recorded from a prefix,
10347 use an opcode prefix to select it. If we never figured out what
10348 the default segment is, then default_seg will be zero at this
10349 point, and the specified segment prefix will always be used. */
10350 if (i.seg[0]
10351 && i.seg[0] != default_seg
5e042380 10352 && i386_seg_prefixes[i.seg[0]->reg_num] != i.prefix[SEG_PREFIX])
29b0f896 10353 {
5e042380 10354 if (!add_prefix (i386_seg_prefixes[i.seg[0]->reg_num]))
29b0f896
AM
10355 return 0;
10356 }
10357 return 1;
10358}
10359
5e042380 10360static const reg_entry *
e3bb37b5 10361build_modrm_byte (void)
29b0f896 10362{
5e042380 10363 const reg_entry *default_seg = NULL;
ecb96e55
JB
10364 unsigned int source = i.imm_operands - i.tm.opcode_modifier.immext
10365 /* Compensate for kludge in md_assemble(). */
10366 + i.tm.operand_types[0].bitfield.imm1;
10367 unsigned int dest = i.operands - 1 - i.tm.opcode_modifier.immext;
f2a3a881 10368 unsigned int v, op, reg_slot;
ecb96e55
JB
10369
10370 /* Accumulator (in particular %st), shift count (%cl), and alike need
10371 to be skipped just like immediate operands do. */
10372 if (i.tm.operand_types[source].bitfield.instance)
10373 ++source;
10374 while (i.tm.operand_types[dest].bitfield.instance)
10375 --dest;
10376
10377 for (op = source; op < i.operands; ++op)
10378 if (i.tm.operand_types[op].bitfield.baseindex)
10379 break;
c0f3af97 10380
ecb96e55 10381 if (i.reg_operands + i.mem_operands + (i.tm.extension_opcode != None) == 4)
c0f3af97 10382 {
4c2c6516 10383 expressionS *exp;
c0f3af97 10384
a683cc34 10385 /* There are 2 kinds of instructions:
bed3d976 10386 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 10387 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 10388 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 10389 ZMM register.
bed3d976 10390 2. 4 operands: 4 register operands or 3 register operands
0ff3b7d0
JB
10391 plus 1 memory operand, with VexXDS.
10392 3. Other equivalent combinations when coming from s_insn(). */
eea96d3f 10393 gas_assert (i.tm.opcode_modifier.vexvvvv
0ff3b7d0
JB
10394 && i.tm.opcode_modifier.vexw);
10395 gas_assert (dot_insn ()
10396 || i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 10397
ecb96e55
JB
10398 /* Of the first two non-immediate operands the one with the template
10399 not allowing for a memory one is encoded in the immediate operand. */
10400 if (source == op)
10401 reg_slot = source + 1;
48db9223 10402 else
ecb96e55 10403 reg_slot = source++;
48db9223 10404
0ff3b7d0
JB
10405 if (!dot_insn ())
10406 {
10407 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
10408 gas_assert (!(i.op[reg_slot].regs->reg_flags & RegVRex));
10409 }
10410 else
10411 gas_assert (i.tm.operand_types[reg_slot].bitfield.class != ClassNone);
10412
a683cc34 10413 if (i.imm_operands == 0)
bed3d976
JB
10414 {
10415 /* When there is no immediate operand, generate an 8bit
10416 immediate operand to encode the first operand. */
10417 exp = &im_expressions[i.imm_operands++];
10418 i.op[i.operands].imms = exp;
be1643ff 10419 i.types[i.operands].bitfield.imm8 = 1;
bed3d976
JB
10420 i.operands++;
10421
bed3d976 10422 exp->X_op = O_constant;
43234a1e 10423 }
922d8de8 10424 else
bed3d976 10425 {
9d3bf266
JB
10426 gas_assert (i.imm_operands == 1);
10427 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
10428 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 10429
9d3bf266
JB
10430 /* Turn on Imm8 again so that output_imm will generate it. */
10431 i.types[0].bitfield.imm8 = 1;
bed3d976 10432
0ff3b7d0 10433 exp = i.op[0].imms;
bed3d976 10434 }
0ff3b7d0 10435 exp->X_add_number |= register_number (i.op[reg_slot].regs)
706ce984 10436 << (3 + !(i.tm.opcode_modifier.evex
e346d50a 10437 || i.encoding == encoding_evex));
c0f3af97 10438 }
f12dc422 10439
f2a3a881 10440 switch (i.tm.opcode_modifier.vexvvvv)
3083f376 10441 {
0820c9f5
CL
10442 /* VEX.vvvv encodes the last source register operand. */
10443 case VexVVVV_SRC2:
10444 if (source != op)
10445 {
10446 v = source++;
10447 break;
10448 }
10449 /* For vprot*, vpshl*, and vpsha*, XOP.W controls the swapping of src1
10450 and src2, and it requires fall through when the operands are swapped.
10451 */
10452 /* Fall through. */
f2a3a881
CL
10453 /* VEX.vvvv encodes the first source register operand. */
10454 case VexVVVV_SRC1:
10455 v = dest - 1;
10456 break;
10457 /* VEX.vvvv encodes the destination register operand. */
10458 case VexVVVV_DST:
10459 v = dest--;
10460 break;
10461 default:
10462 v = ~0;
10463 break;
10464 }
10465
ecb96e55
JB
10466 if (i.tm.extension_opcode != None)
10467 {
10468 if (dest != source)
10469 v = dest;
10470 dest = ~0;
10471 }
10472 gas_assert (source < dest);
29b0f896 10473
ecb96e55
JB
10474 if (v < MAX_OPERANDS)
10475 {
10476 gas_assert (i.tm.opcode_modifier.vexvvvv);
10477 i.vex.register_specifier = i.op[v].regs;
29b0f896 10478 }
c0f3af97 10479
ecb96e55
JB
10480 if (op < i.operands)
10481 {
29b0f896
AM
10482 if (i.mem_operands)
10483 {
10484 unsigned int fake_zero_displacement = 0;
4eed87de 10485
ecb96e55 10486 gas_assert (i.flags[op] & Operand_Mem);
29b0f896 10487
63112cd6 10488 if (i.tm.opcode_modifier.sib)
6c30d220 10489 {
260cd341
LC
10490 /* The index register of VSIB shouldn't be RegIZ. */
10491 if (i.tm.opcode_modifier.sib != SIBMEM
10492 && i.index_reg->reg_num == RegIZ)
6c30d220
L
10493 abort ();
10494
10495 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
10496 if (!i.base_reg)
10497 {
10498 i.sib.base = NO_BASE_REGISTER;
10499 i.sib.scale = i.log2_scale_factor;
2f2be86b 10500 i.types[op] = operand_type_and_not (i.types[op], anydisp);
a775efc8 10501 i.types[op].bitfield.disp32 = 1;
6c30d220 10502 }
260cd341
LC
10503
10504 /* Since the mandatory SIB always has index register, so
10505 the code logic remains unchanged. The non-mandatory SIB
10506 without index register is allowed and will be handled
10507 later. */
10508 if (i.index_reg)
10509 {
10510 if (i.index_reg->reg_num == RegIZ)
10511 i.sib.index = NO_INDEX_REGISTER;
10512 else
10513 i.sib.index = i.index_reg->reg_num;
5b7c81bd 10514 set_rex_vrex (i.index_reg, REX_X, false);
260cd341 10515 }
6c30d220
L
10516 }
10517
5e042380 10518 default_seg = reg_ds;
29b0f896
AM
10519
10520 if (i.base_reg == 0)
10521 {
10522 i.rm.mode = 0;
10523 if (!i.disp_operands)
9bb129e8 10524 fake_zero_displacement = 1;
29b0f896
AM
10525 if (i.index_reg == 0)
10526 {
260cd341
LC
10527 /* Both check for VSIB and mandatory non-vector SIB. */
10528 gas_assert (!i.tm.opcode_modifier.sib
10529 || i.tm.opcode_modifier.sib == SIBMEM);
29b0f896 10530 /* Operand is just <disp> */
2f2be86b 10531 i.types[op] = operand_type_and_not (i.types[op], anydisp);
20f0a1fc 10532 if (flag_code == CODE_64BIT)
29b0f896
AM
10533 {
10534 /* 64bit mode overwrites the 32bit absolute
10535 addressing by RIP relative addressing and
10536 absolute addressing is encoded by one of the
10537 redundant SIB forms. */
10538 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
10539 i.sib.base = NO_BASE_REGISTER;
10540 i.sib.index = NO_INDEX_REGISTER;
a775efc8 10541 i.types[op].bitfield.disp32 = 1;
20f0a1fc 10542 }
fc225355
L
10543 else if ((flag_code == CODE_16BIT)
10544 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
10545 {
10546 i.rm.regmem = NO_BASE_REGISTER_16;
2f2be86b 10547 i.types[op].bitfield.disp16 = 1;
20f0a1fc
NC
10548 }
10549 else
10550 {
10551 i.rm.regmem = NO_BASE_REGISTER;
2f2be86b 10552 i.types[op].bitfield.disp32 = 1;
29b0f896
AM
10553 }
10554 }
63112cd6 10555 else if (!i.tm.opcode_modifier.sib)
29b0f896 10556 {
6c30d220 10557 /* !i.base_reg && i.index_reg */
e968fc9b 10558 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
10559 i.sib.index = NO_INDEX_REGISTER;
10560 else
10561 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
10562 i.sib.base = NO_BASE_REGISTER;
10563 i.sib.scale = i.log2_scale_factor;
10564 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2f2be86b 10565 i.types[op] = operand_type_and_not (i.types[op], anydisp);
a775efc8 10566 i.types[op].bitfield.disp32 = 1;
80d61d8d 10567 set_rex_rex2 (i.index_reg, REX_X);
29b0f896
AM
10568 }
10569 }
10570 /* RIP addressing for 64bit mode. */
e968fc9b 10571 else if (i.base_reg->reg_num == RegIP)
29b0f896 10572 {
63112cd6 10573 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896 10574 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
10575 i.types[op].bitfield.disp8 = 0;
10576 i.types[op].bitfield.disp16 = 0;
a775efc8 10577 i.types[op].bitfield.disp32 = 1;
40fb9820 10578 i.types[op].bitfield.disp64 = 0;
71903a11 10579 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
10580 if (! i.disp_operands)
10581 fake_zero_displacement = 1;
29b0f896 10582 }
dc821c5f 10583 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 10584 {
63112cd6 10585 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896
AM
10586 switch (i.base_reg->reg_num)
10587 {
10588 case 3: /* (%bx) */
10589 if (i.index_reg == 0)
10590 i.rm.regmem = 7;
10591 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
10592 i.rm.regmem = i.index_reg->reg_num - 6;
10593 break;
10594 case 5: /* (%bp) */
5e042380 10595 default_seg = reg_ss;
29b0f896
AM
10596 if (i.index_reg == 0)
10597 {
10598 i.rm.regmem = 6;
40fb9820 10599 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
10600 {
10601 /* fake (%bp) into 0(%bp) */
41eb8e88 10602 if (i.disp_encoding == disp_encoding_16bit)
1a02d6b0
L
10603 i.types[op].bitfield.disp16 = 1;
10604 else
10605 i.types[op].bitfield.disp8 = 1;
252b5132 10606 fake_zero_displacement = 1;
29b0f896
AM
10607 }
10608 }
10609 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
10610 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
10611 break;
10612 default: /* (%si) -> 4 or (%di) -> 5 */
10613 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
10614 }
41eb8e88
L
10615 if (!fake_zero_displacement
10616 && !i.disp_operands
10617 && i.disp_encoding)
10618 {
10619 fake_zero_displacement = 1;
10620 if (i.disp_encoding == disp_encoding_8bit)
10621 i.types[op].bitfield.disp8 = 1;
10622 else
10623 i.types[op].bitfield.disp16 = 1;
10624 }
29b0f896
AM
10625 i.rm.mode = mode_from_disp_size (i.types[op]);
10626 }
10627 else /* i.base_reg and 32/64 bit mode */
10628 {
a9aabc23 10629 if (operand_type_check (i.types[op], disp))
40fb9820 10630 {
73053c1f
JB
10631 i.types[op].bitfield.disp16 = 0;
10632 i.types[op].bitfield.disp64 = 0;
a775efc8 10633 i.types[op].bitfield.disp32 = 1;
40fb9820 10634 }
20f0a1fc 10635
63112cd6 10636 if (!i.tm.opcode_modifier.sib)
6c30d220 10637 i.rm.regmem = i.base_reg->reg_num;
80d61d8d 10638 set_rex_rex2 (i.base_reg, REX_B);
29b0f896
AM
10639 i.sib.base = i.base_reg->reg_num;
10640 /* x86-64 ignores REX prefix bit here to avoid decoder
10641 complications. */
848930b2
JB
10642 if (!(i.base_reg->reg_flags & RegRex)
10643 && (i.base_reg->reg_num == EBP_REG_NUM
10644 || i.base_reg->reg_num == ESP_REG_NUM))
5e042380 10645 default_seg = reg_ss;
848930b2 10646 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 10647 {
848930b2 10648 fake_zero_displacement = 1;
1a02d6b0
L
10649 if (i.disp_encoding == disp_encoding_32bit)
10650 i.types[op].bitfield.disp32 = 1;
10651 else
10652 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
10653 }
10654 i.sib.scale = i.log2_scale_factor;
10655 if (i.index_reg == 0)
10656 {
260cd341
LC
10657 /* Only check for VSIB. */
10658 gas_assert (i.tm.opcode_modifier.sib != VECSIB128
10659 && i.tm.opcode_modifier.sib != VECSIB256
10660 && i.tm.opcode_modifier.sib != VECSIB512);
10661
29b0f896
AM
10662 /* <disp>(%esp) becomes two byte modrm with no index
10663 register. We've already stored the code for esp
10664 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
10665 Any base register besides %esp will not use the
10666 extra modrm byte. */
10667 i.sib.index = NO_INDEX_REGISTER;
29b0f896 10668 }
63112cd6 10669 else if (!i.tm.opcode_modifier.sib)
29b0f896 10670 {
e968fc9b 10671 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
10672 i.sib.index = NO_INDEX_REGISTER;
10673 else
10674 i.sib.index = i.index_reg->reg_num;
29b0f896 10675 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
80d61d8d 10676 set_rex_rex2 (i.index_reg, REX_X);
29b0f896 10677 }
67a4f2b7
AO
10678
10679 if (i.disp_operands
10680 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
10681 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
10682 i.rm.mode = 0;
10683 else
a501d77e
L
10684 {
10685 if (!fake_zero_displacement
10686 && !i.disp_operands
10687 && i.disp_encoding)
10688 {
10689 fake_zero_displacement = 1;
10690 if (i.disp_encoding == disp_encoding_8bit)
10691 i.types[op].bitfield.disp8 = 1;
10692 else
10693 i.types[op].bitfield.disp32 = 1;
10694 }
10695 i.rm.mode = mode_from_disp_size (i.types[op]);
10696 }
29b0f896 10697 }
252b5132 10698
29b0f896
AM
10699 if (fake_zero_displacement)
10700 {
10701 /* Fakes a zero displacement assuming that i.types[op]
10702 holds the correct displacement size. */
10703 expressionS *exp;
10704
9c2799c2 10705 gas_assert (i.op[op].disps == 0);
29b0f896
AM
10706 exp = &disp_expressions[i.disp_operands++];
10707 i.op[op].disps = exp;
10708 exp->X_op = O_constant;
10709 exp->X_add_number = 0;
10710 exp->X_add_symbol = (symbolS *) 0;
10711 exp->X_op_symbol = (symbolS *) 0;
10712 }
10713 }
ecb96e55
JB
10714 else
10715 {
10716 i.rm.mode = 3;
10717 i.rm.regmem = i.op[op].regs->reg_num;
10718 set_rex_vrex (i.op[op].regs, REX_B, false);
10719 }
252b5132 10720
ecb96e55
JB
10721 if (op == dest)
10722 dest = ~0;
10723 if (op == source)
10724 source = ~0;
10725 }
10726 else
10727 {
10728 i.rm.mode = 3;
10729 if (!i.tm.opcode_modifier.regmem)
f88c9eb0 10730 {
ecb96e55
JB
10731 gas_assert (source < MAX_OPERANDS);
10732 i.rm.regmem = i.op[source].regs->reg_num;
10733 set_rex_vrex (i.op[source].regs, REX_B,
10734 dest >= MAX_OPERANDS && i.tm.opcode_modifier.sse2avx);
10735 source = ~0;
f88c9eb0 10736 }
ecb96e55 10737 else
29b0f896 10738 {
ecb96e55
JB
10739 gas_assert (dest < MAX_OPERANDS);
10740 i.rm.regmem = i.op[dest].regs->reg_num;
10741 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
10742 dest = ~0;
29b0f896 10743 }
ecb96e55 10744 }
252b5132 10745
ecb96e55
JB
10746 /* Fill in i.rm.reg field with extension opcode (if any) or the
10747 appropriate register. */
10748 if (i.tm.extension_opcode != None)
10749 i.rm.reg = i.tm.extension_opcode;
10750 else if (!i.tm.opcode_modifier.regmem && dest < MAX_OPERANDS)
10751 {
10752 i.rm.reg = i.op[dest].regs->reg_num;
10753 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
10754 }
10755 else
10756 {
10757 gas_assert (source < MAX_OPERANDS);
10758 i.rm.reg = i.op[source].regs->reg_num;
10759 set_rex_vrex (i.op[source].regs, REX_R, false);
29b0f896 10760 }
ecb96e55
JB
10761
10762 if (flag_code != CODE_64BIT && (i.rex & REX_R))
10763 {
10764 gas_assert (i.types[!i.tm.opcode_modifier.regmem].bitfield.class == RegCR);
10765 i.rex &= ~REX_R;
10766 add_prefix (LOCK_PREFIX_OPCODE);
10767 }
10768
29b0f896
AM
10769 return default_seg;
10770}
252b5132 10771
48ef937e
JB
10772static INLINE void
10773frag_opcode_byte (unsigned char byte)
10774{
10775 if (now_seg != absolute_section)
10776 FRAG_APPEND_1_CHAR (byte);
10777 else
10778 ++abs_section_offset;
10779}
10780
376cd056
JB
10781static unsigned int
10782flip_code16 (unsigned int code16)
10783{
10784 gas_assert (i.tm.operands == 1);
10785
10786 return !(i.prefix[REX_PREFIX] & REX_W)
10787 && (code16 ? i.tm.operand_types[0].bitfield.disp32
376cd056
JB
10788 : i.tm.operand_types[0].bitfield.disp16)
10789 ? CODE16 : 0;
10790}
10791
29b0f896 10792static void
e3bb37b5 10793output_branch (void)
29b0f896
AM
10794{
10795 char *p;
f8a5c266 10796 int size;
29b0f896
AM
10797 int code16;
10798 int prefix;
10799 relax_substateT subtype;
10800 symbolS *sym;
10801 offsetT off;
10802
48ef937e
JB
10803 if (now_seg == absolute_section)
10804 {
10805 as_bad (_("relaxable branches not supported in absolute section"));
10806 return;
10807 }
10808
f8a5c266 10809 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
1a42a9fe 10810 size = i.disp_encoding > disp_encoding_8bit ? BIG : SMALL;
29b0f896
AM
10811
10812 prefix = 0;
10813 if (i.prefix[DATA_PREFIX] != 0)
252b5132 10814 {
29b0f896
AM
10815 prefix = 1;
10816 i.prefixes -= 1;
376cd056 10817 code16 ^= flip_code16(code16);
252b5132 10818 }
29b0f896
AM
10819 /* Pentium4 branch hints. */
10820 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
10821 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 10822 {
29b0f896
AM
10823 prefix++;
10824 i.prefixes--;
10825 }
10826 if (i.prefix[REX_PREFIX] != 0)
10827 {
10828 prefix++;
10829 i.prefixes--;
2f66722d
AM
10830 }
10831
7e8b059b
L
10832 /* BND prefixed jump. */
10833 if (i.prefix[BND_PREFIX] != 0)
10834 {
6cb0a70e
JB
10835 prefix++;
10836 i.prefixes--;
7e8b059b
L
10837 }
10838
f2810fe0 10839 if (i.prefixes != 0)
76d3f746 10840 as_warn (_("skipping prefixes on `%s'"), insn_name (&i.tm));
29b0f896
AM
10841
10842 /* It's always a symbol; End frag & setup for relax.
10843 Make sure there is enough room in this frag for the largest
10844 instruction we may generate in md_convert_frag. This is 2
10845 bytes for the opcode and room for the prefix and largest
10846 displacement. */
10847 frag_grow (prefix + 2 + 4);
10848 /* Prefix and 1 opcode byte go in fr_fix. */
10849 p = frag_more (prefix + 1);
10850 if (i.prefix[DATA_PREFIX] != 0)
10851 *p++ = DATA_PREFIX_OPCODE;
10852 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
10853 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
10854 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
10855 if (i.prefix[BND_PREFIX] != 0)
10856 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
10857 if (i.prefix[REX_PREFIX] != 0)
10858 *p++ = i.prefix[REX_PREFIX];
10859 *p = i.tm.base_opcode;
10860
10861 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 10862 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 10863 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 10864 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 10865 else
f8a5c266 10866 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 10867 subtype |= code16;
3e73aa7c 10868
29b0f896
AM
10869 sym = i.op[0].disps->X_add_symbol;
10870 off = i.op[0].disps->X_add_number;
3e73aa7c 10871
29b0f896
AM
10872 if (i.op[0].disps->X_op != O_constant
10873 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 10874 {
29b0f896
AM
10875 /* Handle complex expressions. */
10876 sym = make_expr_symbol (i.op[0].disps);
10877 off = 0;
10878 }
3e73aa7c 10879
29b0f896
AM
10880 /* 1 possible extra opcode + 4 byte displacement go in var part.
10881 Pass reloc in fr_var. */
d258b828 10882 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 10883}
3e73aa7c 10884
bd7ab16b
L
10885#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10886/* Return TRUE iff PLT32 relocation should be used for branching to
10887 symbol S. */
10888
5b7c81bd 10889static bool
bd7ab16b
L
10890need_plt32_p (symbolS *s)
10891{
10892 /* PLT32 relocation is ELF only. */
10893 if (!IS_ELF)
5b7c81bd 10894 return false;
bd7ab16b 10895
a5def729
RO
10896#ifdef TE_SOLARIS
10897 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
10898 krtld support it. */
5b7c81bd 10899 return false;
a5def729
RO
10900#endif
10901
bd7ab16b
L
10902 /* Since there is no need to prepare for PLT branch on x86-64, we
10903 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
10904 be used as a marker for 32-bit PC-relative branches. */
10905 if (!object_64bit)
5b7c81bd 10906 return false;
bd7ab16b 10907
44365e88 10908 if (s == NULL)
5b7c81bd 10909 return false;
44365e88 10910
bd7ab16b
L
10911 /* Weak or undefined symbol need PLT32 relocation. */
10912 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
5b7c81bd 10913 return true;
bd7ab16b
L
10914
10915 /* Non-global symbol doesn't need PLT32 relocation. */
10916 if (! S_IS_EXTERNAL (s))
5b7c81bd 10917 return false;
bd7ab16b
L
10918
10919 /* Other global symbols need PLT32 relocation. NB: Symbol with
10920 non-default visibilities are treated as normal global symbol
10921 so that PLT32 relocation can be used as a marker for 32-bit
10922 PC-relative branches. It is useful for linker relaxation. */
5b7c81bd 10923 return true;
bd7ab16b
L
10924}
10925#endif
10926
29b0f896 10927static void
e3bb37b5 10928output_jump (void)
29b0f896
AM
10929{
10930 char *p;
10931 int size;
3e02c1cc 10932 fixS *fixP;
bd7ab16b 10933 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 10934
0cfa3eb3 10935 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
10936 {
10937 /* This is a loop or jecxz type instruction. */
10938 size = 1;
10939 if (i.prefix[ADDR_PREFIX] != 0)
10940 {
48ef937e 10941 frag_opcode_byte (ADDR_PREFIX_OPCODE);
29b0f896
AM
10942 i.prefixes -= 1;
10943 }
10944 /* Pentium4 branch hints. */
10945 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
10946 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
10947 {
48ef937e 10948 frag_opcode_byte (i.prefix[SEG_PREFIX]);
29b0f896 10949 i.prefixes--;
3e73aa7c
JH
10950 }
10951 }
29b0f896
AM
10952 else
10953 {
10954 int code16;
3e73aa7c 10955
29b0f896
AM
10956 code16 = 0;
10957 if (flag_code == CODE_16BIT)
10958 code16 = CODE16;
3e73aa7c 10959
29b0f896
AM
10960 if (i.prefix[DATA_PREFIX] != 0)
10961 {
48ef937e 10962 frag_opcode_byte (DATA_PREFIX_OPCODE);
29b0f896 10963 i.prefixes -= 1;
376cd056 10964 code16 ^= flip_code16(code16);
29b0f896 10965 }
252b5132 10966
29b0f896
AM
10967 size = 4;
10968 if (code16)
10969 size = 2;
10970 }
9fcc94b6 10971
6cb0a70e
JB
10972 /* BND prefixed jump. */
10973 if (i.prefix[BND_PREFIX] != 0)
29b0f896 10974 {
48ef937e 10975 frag_opcode_byte (i.prefix[BND_PREFIX]);
29b0f896
AM
10976 i.prefixes -= 1;
10977 }
252b5132 10978
6cb0a70e 10979 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 10980 {
48ef937e 10981 frag_opcode_byte (i.prefix[REX_PREFIX]);
7e8b059b
L
10982 i.prefixes -= 1;
10983 }
10984
f2810fe0 10985 if (i.prefixes != 0)
76d3f746 10986 as_warn (_("skipping prefixes on `%s'"), insn_name (&i.tm));
e0890092 10987
48ef937e
JB
10988 if (now_seg == absolute_section)
10989 {
9a182d04 10990 abs_section_offset += i.opcode_length + size;
48ef937e
JB
10991 return;
10992 }
10993
9a182d04
JB
10994 p = frag_more (i.opcode_length + size);
10995 switch (i.opcode_length)
42164a71
L
10996 {
10997 case 2:
10998 *p++ = i.tm.base_opcode >> 8;
1a0670f3 10999 /* Fall through. */
42164a71
L
11000 case 1:
11001 *p++ = i.tm.base_opcode;
11002 break;
11003 default:
11004 abort ();
11005 }
e0890092 11006
bd7ab16b 11007#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1ef3994a
JB
11008 if (flag_code == CODE_64BIT && size == 4
11009 && jump_reloc == NO_RELOC && i.op[0].disps->X_add_number == 0
bd7ab16b
L
11010 && need_plt32_p (i.op[0].disps->X_add_symbol))
11011 jump_reloc = BFD_RELOC_X86_64_PLT32;
11012#endif
11013
11014 jump_reloc = reloc (size, 1, 1, jump_reloc);
11015
3e02c1cc 11016 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 11017 i.op[0].disps, 1, jump_reloc);
3e02c1cc 11018
eb19308f
JB
11019 /* All jumps handled here are signed, but don't unconditionally use a
11020 signed limit check for 32 and 16 bit jumps as we want to allow wrap
11021 around at 4G (outside of 64-bit mode) and 64k (except for XBEGIN)
11022 respectively. */
11023 switch (size)
11024 {
11025 case 1:
11026 fixP->fx_signed = 1;
11027 break;
11028
11029 case 2:
7fc69528 11030 if (i.tm.mnem_off == MN_xbegin)
eb19308f
JB
11031 fixP->fx_signed = 1;
11032 break;
11033
11034 case 4:
11035 if (flag_code == CODE_64BIT)
11036 fixP->fx_signed = 1;
11037 break;
11038 }
29b0f896 11039}
e0890092 11040
29b0f896 11041static void
e3bb37b5 11042output_interseg_jump (void)
29b0f896
AM
11043{
11044 char *p;
11045 int size;
11046 int prefix;
11047 int code16;
252b5132 11048
29b0f896
AM
11049 code16 = 0;
11050 if (flag_code == CODE_16BIT)
11051 code16 = CODE16;
a217f122 11052
29b0f896
AM
11053 prefix = 0;
11054 if (i.prefix[DATA_PREFIX] != 0)
11055 {
11056 prefix = 1;
11057 i.prefixes -= 1;
11058 code16 ^= CODE16;
11059 }
6cb0a70e
JB
11060
11061 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 11062
29b0f896
AM
11063 size = 4;
11064 if (code16)
11065 size = 2;
252b5132 11066
f2810fe0 11067 if (i.prefixes != 0)
76d3f746 11068 as_warn (_("skipping prefixes on `%s'"), insn_name (&i.tm));
252b5132 11069
48ef937e
JB
11070 if (now_seg == absolute_section)
11071 {
11072 abs_section_offset += prefix + 1 + 2 + size;
11073 return;
11074 }
11075
29b0f896
AM
11076 /* 1 opcode; 2 segment; offset */
11077 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 11078
29b0f896
AM
11079 if (i.prefix[DATA_PREFIX] != 0)
11080 *p++ = DATA_PREFIX_OPCODE;
252b5132 11081
29b0f896
AM
11082 if (i.prefix[REX_PREFIX] != 0)
11083 *p++ = i.prefix[REX_PREFIX];
252b5132 11084
29b0f896
AM
11085 *p++ = i.tm.base_opcode;
11086 if (i.op[1].imms->X_op == O_constant)
11087 {
11088 offsetT n = i.op[1].imms->X_add_number;
252b5132 11089
29b0f896
AM
11090 if (size == 2
11091 && !fits_in_unsigned_word (n)
11092 && !fits_in_signed_word (n))
11093 {
11094 as_bad (_("16-bit jump out of range"));
11095 return;
11096 }
11097 md_number_to_chars (p, n, size);
11098 }
11099 else
11100 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 11101 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6d96a594
C
11102
11103 p += size;
11104 if (i.op[0].imms->X_op == O_constant)
11105 md_number_to_chars (p, (valueT) i.op[0].imms->X_add_number, 2);
11106 else
11107 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
11108 i.op[0].imms, 0, reloc (2, 0, 0, i.reloc[0]));
29b0f896 11109}
a217f122 11110
b4a3a7b4
L
11111#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11112void
11113x86_cleanup (void)
11114{
11115 char *p;
11116 asection *seg = now_seg;
11117 subsegT subseg = now_subseg;
11118 asection *sec;
11119 unsigned int alignment, align_size_1;
11120 unsigned int isa_1_descsz, feature_2_descsz, descsz;
11121 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
11122 unsigned int padding;
11123
1273b2f8 11124 if (!IS_ELF || !x86_used_note)
b4a3a7b4
L
11125 return;
11126
b4a3a7b4
L
11127 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
11128
11129 /* The .note.gnu.property section layout:
11130
11131 Field Length Contents
11132 ---- ---- ----
11133 n_namsz 4 4
11134 n_descsz 4 The note descriptor size
11135 n_type 4 NT_GNU_PROPERTY_TYPE_0
11136 n_name 4 "GNU"
11137 n_desc n_descsz The program property array
11138 .... .... ....
11139 */
11140
11141 /* Create the .note.gnu.property section. */
11142 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 11143 bfd_set_section_flags (sec,
b4a3a7b4
L
11144 (SEC_ALLOC
11145 | SEC_LOAD
11146 | SEC_DATA
11147 | SEC_HAS_CONTENTS
11148 | SEC_READONLY));
11149
11150 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
11151 {
11152 align_size_1 = 7;
11153 alignment = 3;
11154 }
11155 else
11156 {
11157 align_size_1 = 3;
11158 alignment = 2;
11159 }
11160
fd361982 11161 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
11162 elf_section_type (sec) = SHT_NOTE;
11163
1273b2f8
L
11164 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
11165 + 4-byte data */
11166 isa_1_descsz_raw = 4 + 4 + 4;
11167 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
11168 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
b4a3a7b4
L
11169
11170 feature_2_descsz_raw = isa_1_descsz;
11171 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
1273b2f8 11172 + 4-byte data */
b4a3a7b4
L
11173 feature_2_descsz_raw += 4 + 4 + 4;
11174 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
11175 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
11176 & ~align_size_1);
11177
11178 descsz = feature_2_descsz;
11179 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
11180 p = frag_more (4 + 4 + 4 + 4 + descsz);
11181
11182 /* Write n_namsz. */
11183 md_number_to_chars (p, (valueT) 4, 4);
11184
11185 /* Write n_descsz. */
11186 md_number_to_chars (p + 4, (valueT) descsz, 4);
11187
11188 /* Write n_type. */
11189 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
11190
11191 /* Write n_name. */
11192 memcpy (p + 4 * 3, "GNU", 4);
11193
1273b2f8
L
11194 /* Write 4-byte type. */
11195 md_number_to_chars (p + 4 * 4,
11196 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
b4a3a7b4 11197
1273b2f8
L
11198 /* Write 4-byte data size. */
11199 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
b4a3a7b4 11200
1273b2f8
L
11201 /* Write 4-byte data. */
11202 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
b4a3a7b4 11203
1273b2f8
L
11204 /* Zero out paddings. */
11205 padding = isa_1_descsz - isa_1_descsz_raw;
11206 if (padding)
11207 memset (p + 4 * 7, 0, padding);
b4a3a7b4
L
11208
11209 /* Write 4-byte type. */
11210 md_number_to_chars (p + isa_1_descsz + 4 * 4,
11211 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
11212
11213 /* Write 4-byte data size. */
11214 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
11215
11216 /* Write 4-byte data. */
11217 md_number_to_chars (p + isa_1_descsz + 4 * 6,
11218 (valueT) x86_feature_2_used, 4);
11219
11220 /* Zero out paddings. */
11221 padding = feature_2_descsz - feature_2_descsz_raw;
11222 if (padding)
11223 memset (p + isa_1_descsz + 4 * 7, 0, padding);
11224
11225 /* We probably can't restore the current segment, for there likely
11226 isn't one yet... */
11227 if (seg && subseg)
11228 subseg_set (seg, subseg);
11229}
b52c4ee4
IB
11230
11231bool
11232x86_support_sframe_p (void)
11233{
3e3e792a 11234 /* At this time, SFrame stack trace is supported for AMD64 ABI only. */
b52c4ee4
IB
11235 return (x86_elf_abi == X86_64_ABI);
11236}
11237
11238bool
11239x86_sframe_ra_tracking_p (void)
11240{
11241 /* In AMD64, return address is always stored on the stack at a fixed offset
11242 from the CFA (provided via x86_sframe_cfa_ra_offset ()).
11243 Do not track explicitly via an SFrame Frame Row Entry. */
11244 return false;
11245}
11246
11247offsetT
11248x86_sframe_cfa_ra_offset (void)
11249{
11250 gas_assert (x86_elf_abi == X86_64_ABI);
11251 return (offsetT) -8;
11252}
11253
11254unsigned char
11255x86_sframe_get_abi_arch (void)
11256{
11257 unsigned char sframe_abi_arch = 0;
11258
11259 if (x86_support_sframe_p ())
11260 {
11261 gas_assert (!target_big_endian);
11262 sframe_abi_arch = SFRAME_ABI_AMD64_ENDIAN_LITTLE;
11263 }
11264
11265 return sframe_abi_arch;
11266}
11267
b4a3a7b4
L
11268#endif
11269
9c33702b
JB
11270static unsigned int
11271encoding_length (const fragS *start_frag, offsetT start_off,
11272 const char *frag_now_ptr)
11273{
11274 unsigned int len = 0;
11275
11276 if (start_frag != frag_now)
11277 {
11278 const fragS *fr = start_frag;
11279
11280 do {
11281 len += fr->fr_fix;
11282 fr = fr->fr_next;
11283 } while (fr && fr != frag_now);
11284 }
11285
11286 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
11287}
11288
e379e5f3 11289/* Return 1 for test, and, cmp, add, sub, inc and dec which may
79d72f45
HL
11290 be macro-fused with conditional jumps.
11291 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
11292 or is one of the following format:
11293
11294 cmp m, imm
11295 add m, imm
11296 sub m, imm
11297 test m, imm
11298 and m, imm
11299 inc m
11300 dec m
11301
11302 it is unfusible. */
e379e5f3
L
11303
11304static int
79d72f45 11305maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
11306{
11307 /* No RIP address. */
11308 if (i.base_reg && i.base_reg->reg_num == RegIP)
11309 return 0;
11310
389d00a5 11311 /* No opcodes outside of base encoding space. */
ddb62495 11312 if (i.tm.opcode_space != SPACE_BASE)
e379e5f3
L
11313 return 0;
11314
79d72f45
HL
11315 /* add, sub without add/sub m, imm. */
11316 if (i.tm.base_opcode <= 5
e379e5f3
L
11317 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
11318 || ((i.tm.base_opcode | 3) == 0x83
79d72f45 11319 && (i.tm.extension_opcode == 0x5
e379e5f3 11320 || i.tm.extension_opcode == 0x0)))
79d72f45
HL
11321 {
11322 *mf_cmp_p = mf_cmp_alu_cmp;
11323 return !(i.mem_operands && i.imm_operands);
11324 }
e379e5f3 11325
79d72f45
HL
11326 /* and without and m, imm. */
11327 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
11328 || ((i.tm.base_opcode | 3) == 0x83
11329 && i.tm.extension_opcode == 0x4))
11330 {
11331 *mf_cmp_p = mf_cmp_test_and;
11332 return !(i.mem_operands && i.imm_operands);
11333 }
11334
11335 /* test without test m imm. */
e379e5f3
L
11336 if ((i.tm.base_opcode | 1) == 0x85
11337 || (i.tm.base_opcode | 1) == 0xa9
11338 || ((i.tm.base_opcode | 1) == 0xf7
79d72f45
HL
11339 && i.tm.extension_opcode == 0))
11340 {
11341 *mf_cmp_p = mf_cmp_test_and;
11342 return !(i.mem_operands && i.imm_operands);
11343 }
11344
11345 /* cmp without cmp m, imm. */
11346 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
e379e5f3
L
11347 || ((i.tm.base_opcode | 3) == 0x83
11348 && (i.tm.extension_opcode == 0x7)))
79d72f45
HL
11349 {
11350 *mf_cmp_p = mf_cmp_alu_cmp;
11351 return !(i.mem_operands && i.imm_operands);
11352 }
e379e5f3 11353
79d72f45 11354 /* inc, dec without inc/dec m. */
734dfd1c 11355 if ((is_cpu (&i.tm, CpuNo64)
e379e5f3
L
11356 && (i.tm.base_opcode | 0xf) == 0x4f)
11357 || ((i.tm.base_opcode | 1) == 0xff
11358 && i.tm.extension_opcode <= 0x1))
79d72f45
HL
11359 {
11360 *mf_cmp_p = mf_cmp_incdec;
11361 return !i.mem_operands;
11362 }
e379e5f3
L
11363
11364 return 0;
11365}
11366
11367/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
11368
11369static int
b5482fe5
JB
11370add_fused_jcc_padding_frag_p (enum mf_cmp_kind *mf_cmp_p,
11371 const struct last_insn *last_insn)
e379e5f3
L
11372{
11373 /* NB: Don't work with COND_JUMP86 without i386. */
11374 if (!align_branch_power
11375 || now_seg == absolute_section
11376 || !cpu_arch_flags.bitfield.cpui386
11377 || !(align_branch & align_branch_fused_bit))
11378 return 0;
11379
79d72f45 11380 if (maybe_fused_with_jcc_p (mf_cmp_p))
e379e5f3 11381 {
b5482fe5 11382 if (last_insn->kind == last_insn_other)
e379e5f3
L
11383 return 1;
11384 if (flag_debug)
b5482fe5 11385 as_warn_where (last_insn->file, last_insn->line,
e379e5f3 11386 _("`%s` skips -malign-branch-boundary on `%s`"),
b5482fe5 11387 last_insn->name, insn_name (&i.tm));
e379e5f3
L
11388 }
11389
11390 return 0;
11391}
11392
11393/* Return 1 if a BRANCH_PREFIX frag should be generated. */
11394
11395static int
b5482fe5 11396add_branch_prefix_frag_p (const struct last_insn *last_insn)
e379e5f3
L
11397{
11398 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
11399 to PadLock instructions since they include prefixes in opcode. */
11400 if (!align_branch_power
11401 || !align_branch_prefix_size
11402 || now_seg == absolute_section
734dfd1c 11403 || is_cpu (&i.tm, CpuPadLock)
e379e5f3
L
11404 || !cpu_arch_flags.bitfield.cpui386)
11405 return 0;
11406
11407 /* Don't add prefix if it is a prefix or there is no operand in case
11408 that segment prefix is special. */
11409 if (!i.operands || i.tm.opcode_modifier.isprefix)
11410 return 0;
11411
b5482fe5 11412 if (last_insn->kind == last_insn_other)
e379e5f3
L
11413 return 1;
11414
11415 if (flag_debug)
b5482fe5 11416 as_warn_where (last_insn->file, last_insn->line,
e379e5f3 11417 _("`%s` skips -malign-branch-boundary on `%s`"),
b5482fe5 11418 last_insn->name, insn_name (&i.tm));
e379e5f3
L
11419
11420 return 0;
11421}
11422
11423/* Return 1 if a BRANCH_PADDING frag should be generated. */
11424
11425static int
79d72f45 11426add_branch_padding_frag_p (enum align_branch_kind *branch_p,
b5482fe5
JB
11427 enum mf_jcc_kind *mf_jcc_p,
11428 const struct last_insn *last_insn)
e379e5f3
L
11429{
11430 int add_padding;
11431
11432 /* NB: Don't work with COND_JUMP86 without i386. */
11433 if (!align_branch_power
11434 || now_seg == absolute_section
389d00a5 11435 || !cpu_arch_flags.bitfield.cpui386
ddb62495 11436 || i.tm.opcode_space != SPACE_BASE)
e379e5f3
L
11437 return 0;
11438
11439 add_padding = 0;
11440
11441 /* Check for jcc and direct jmp. */
11442 if (i.tm.opcode_modifier.jump == JUMP)
11443 {
11444 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
11445 {
11446 *branch_p = align_branch_jmp;
11447 add_padding = align_branch & align_branch_jmp_bit;
11448 }
11449 else
11450 {
79d72f45
HL
11451 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
11452 igore the lowest bit. */
11453 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
e379e5f3
L
11454 *branch_p = align_branch_jcc;
11455 if ((align_branch & align_branch_jcc_bit))
11456 add_padding = 1;
11457 }
11458 }
e379e5f3
L
11459 else if ((i.tm.base_opcode | 1) == 0xc3)
11460 {
11461 /* Near ret. */
11462 *branch_p = align_branch_ret;
11463 if ((align_branch & align_branch_ret_bit))
11464 add_padding = 1;
11465 }
11466 else
11467 {
11468 /* Check for indirect jmp, direct and indirect calls. */
11469 if (i.tm.base_opcode == 0xe8)
11470 {
11471 /* Direct call. */
11472 *branch_p = align_branch_call;
11473 if ((align_branch & align_branch_call_bit))
11474 add_padding = 1;
11475 }
11476 else if (i.tm.base_opcode == 0xff
11477 && (i.tm.extension_opcode == 2
11478 || i.tm.extension_opcode == 4))
11479 {
11480 /* Indirect call and jmp. */
11481 *branch_p = align_branch_indirect;
11482 if ((align_branch & align_branch_indirect_bit))
11483 add_padding = 1;
11484 }
11485
11486 if (add_padding
11487 && i.disp_operands
11488 && tls_get_addr
11489 && (i.op[0].disps->X_op == O_symbol
11490 || (i.op[0].disps->X_op == O_subtract
11491 && i.op[0].disps->X_op_symbol == GOT_symbol)))
11492 {
11493 symbolS *s = i.op[0].disps->X_add_symbol;
11494 /* No padding to call to global or undefined tls_get_addr. */
11495 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
11496 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
11497 return 0;
11498 }
11499 }
11500
11501 if (add_padding
b5482fe5 11502 && last_insn->kind != last_insn_other)
e379e5f3
L
11503 {
11504 if (flag_debug)
b5482fe5 11505 as_warn_where (last_insn->file, last_insn->line,
e379e5f3 11506 _("`%s` skips -malign-branch-boundary on `%s`"),
b5482fe5 11507 last_insn->name, insn_name (&i.tm));
e379e5f3
L
11508 return 0;
11509 }
11510
11511 return add_padding;
11512}
11513
29b0f896 11514static void
b5482fe5 11515output_insn (const struct last_insn *last_insn)
29b0f896 11516{
2bbd9c25
JJ
11517 fragS *insn_start_frag;
11518 offsetT insn_start_off;
e379e5f3
L
11519 fragS *fragP = NULL;
11520 enum align_branch_kind branch = align_branch_none;
79d72f45
HL
11521 /* The initializer is arbitrary just to avoid uninitialized error.
11522 it's actually either assigned in add_branch_padding_frag_p
11523 or never be used. */
11524 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
2bbd9c25 11525
b4a3a7b4 11526#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
48ef937e 11527 if (IS_ELF && x86_used_note && now_seg != absolute_section)
b4a3a7b4 11528 {
32930e4e 11529 if ((i.xstate & xstate_tmm) == xstate_tmm
734dfd1c 11530 || is_cpu (&i.tm, CpuAMX_TILE))
32930e4e
L
11531 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
11532
734dfd1c
JB
11533 if (is_cpu (&i.tm, Cpu8087)
11534 || is_cpu (&i.tm, Cpu287)
11535 || is_cpu (&i.tm, Cpu387)
11536 || is_cpu (&i.tm, Cpu687)
11537 || is_cpu (&i.tm, CpuFISTTP))
b4a3a7b4 11538 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
014d61ea 11539
921eafea 11540 if ((i.xstate & xstate_mmx)
7fc69528
JB
11541 || i.tm.mnem_off == MN_emms
11542 || i.tm.mnem_off == MN_femms)
b4a3a7b4 11543 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
014d61ea 11544
32930e4e
L
11545 if (i.index_reg)
11546 {
11547 if (i.index_reg->reg_type.bitfield.zmmword)
11548 i.xstate |= xstate_zmm;
11549 else if (i.index_reg->reg_type.bitfield.ymmword)
11550 i.xstate |= xstate_ymm;
11551 else if (i.index_reg->reg_type.bitfield.xmmword)
11552 i.xstate |= xstate_xmm;
11553 }
014d61ea
JB
11554
11555 /* vzeroall / vzeroupper */
734dfd1c 11556 if (i.tm.base_opcode == 0x77 && is_cpu (&i.tm, CpuAVX))
014d61ea
JB
11557 i.xstate |= xstate_ymm;
11558
c4694f17 11559 if ((i.xstate & xstate_xmm)
389d00a5
JB
11560 /* ldmxcsr / stmxcsr / vldmxcsr / vstmxcsr */
11561 || (i.tm.base_opcode == 0xae
734dfd1c
JB
11562 && (is_cpu (&i.tm, CpuSSE)
11563 || is_cpu (&i.tm, CpuAVX)))
11564 || is_cpu (&i.tm, CpuWideKL)
11565 || is_cpu (&i.tm, CpuKL))
b4a3a7b4 11566 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
014d61ea 11567
921eafea 11568 if ((i.xstate & xstate_ymm) == xstate_ymm)
b4a3a7b4 11569 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
921eafea 11570 if ((i.xstate & xstate_zmm) == xstate_zmm)
b4a3a7b4 11571 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
6225c532 11572 if (i.mask.reg || (i.xstate & xstate_mask) == xstate_mask)
32930e4e 11573 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MASK;
734dfd1c 11574 if (is_cpu (&i.tm, CpuFXSR))
b4a3a7b4 11575 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
734dfd1c 11576 if (is_cpu (&i.tm, CpuXsave))
b4a3a7b4 11577 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
734dfd1c 11578 if (is_cpu (&i.tm, CpuXsaveopt))
b4a3a7b4 11579 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
734dfd1c 11580 if (is_cpu (&i.tm, CpuXSAVEC))
b4a3a7b4 11581 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
b0ab0693
L
11582
11583 if (x86_feature_2_used
734dfd1c
JB
11584 || is_cpu (&i.tm, CpuCMOV)
11585 || is_cpu (&i.tm, CpuSYSCALL)
7fc69528 11586 || i.tm.mnem_off == MN_cmpxchg8b)
b0ab0693 11587 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_BASELINE;
734dfd1c
JB
11588 if (is_cpu (&i.tm, CpuSSE3)
11589 || is_cpu (&i.tm, CpuSSSE3)
11590 || is_cpu (&i.tm, CpuSSE4_1)
11591 || is_cpu (&i.tm, CpuSSE4_2)
11592 || is_cpu (&i.tm, CpuCX16)
11593 || is_cpu (&i.tm, CpuPOPCNT)
b0ab0693
L
11594 /* LAHF-SAHF insns in 64-bit mode. */
11595 || (flag_code == CODE_64BIT
35648716 11596 && (i.tm.base_opcode | 1) == 0x9f
ddb62495 11597 && i.tm.opcode_space == SPACE_BASE))
b0ab0693 11598 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V2;
734dfd1c
JB
11599 if (is_cpu (&i.tm, CpuAVX)
11600 || is_cpu (&i.tm, CpuAVX2)
a9860005
JB
11601 /* Any VEX encoded insns execpt for AVX512F, AVX512BW, AVX512DQ,
11602 XOP, FMA4, LPW, TBM, and AMX. */
b0ab0693 11603 || (i.tm.opcode_modifier.vex
734dfd1c
JB
11604 && !is_cpu (&i.tm, CpuAVX512F)
11605 && !is_cpu (&i.tm, CpuAVX512BW)
11606 && !is_cpu (&i.tm, CpuAVX512DQ)
11607 && !is_cpu (&i.tm, CpuXOP)
11608 && !is_cpu (&i.tm, CpuFMA4)
11609 && !is_cpu (&i.tm, CpuLWP)
11610 && !is_cpu (&i.tm, CpuTBM)
b0ab0693 11611 && !(x86_feature_2_used & GNU_PROPERTY_X86_FEATURE_2_TMM))
734dfd1c
JB
11612 || is_cpu (&i.tm, CpuF16C)
11613 || is_cpu (&i.tm, CpuFMA)
11614 || is_cpu (&i.tm, CpuLZCNT)
11615 || is_cpu (&i.tm, CpuMovbe)
11616 || is_cpu (&i.tm, CpuXSAVES)
b0ab0693
L
11617 || (x86_feature_2_used
11618 & (GNU_PROPERTY_X86_FEATURE_2_XSAVE
11619 | GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
11620 | GNU_PROPERTY_X86_FEATURE_2_XSAVEC)) != 0)
11621 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V3;
734dfd1c
JB
11622 if (is_cpu (&i.tm, CpuAVX512F)
11623 || is_cpu (&i.tm, CpuAVX512BW)
11624 || is_cpu (&i.tm, CpuAVX512DQ)
11625 || is_cpu (&i.tm, CpuAVX512VL)
a9860005
JB
11626 /* Any EVEX encoded insns except for AVX512ER, AVX512PF,
11627 AVX512-4FMAPS, and AVX512-4VNNIW. */
b0ab0693 11628 || (i.tm.opcode_modifier.evex
734dfd1c
JB
11629 && !is_cpu (&i.tm, CpuAVX512ER)
11630 && !is_cpu (&i.tm, CpuAVX512PF)
11631 && !is_cpu (&i.tm, CpuAVX512_4FMAPS)
11632 && !is_cpu (&i.tm, CpuAVX512_4VNNIW)))
b0ab0693 11633 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V4;
b4a3a7b4
L
11634 }
11635#endif
11636
29b0f896
AM
11637 /* Tie dwarf2 debug info to the address at the start of the insn.
11638 We can't do this after the insn has been output as the current
11639 frag may have been closed off. eg. by frag_var. */
11640 dwarf2_emit_insn (0);
11641
2bbd9c25
JJ
11642 insn_start_frag = frag_now;
11643 insn_start_off = frag_now_fix ();
11644
b5482fe5 11645 if (add_branch_padding_frag_p (&branch, &mf_jcc, last_insn))
e379e5f3
L
11646 {
11647 char *p;
11648 /* Branch can be 8 bytes. Leave some room for prefixes. */
11649 unsigned int max_branch_padding_size = 14;
11650
11651 /* Align section to boundary. */
11652 record_alignment (now_seg, align_branch_power);
11653
11654 /* Make room for padding. */
11655 frag_grow (max_branch_padding_size);
11656
11657 /* Start of the padding. */
11658 p = frag_more (0);
11659
11660 fragP = frag_now;
11661
11662 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
11663 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
11664 NULL, 0, p);
11665
79d72f45 11666 fragP->tc_frag_data.mf_type = mf_jcc;
e379e5f3
L
11667 fragP->tc_frag_data.branch_type = branch;
11668 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
11669 }
11670
d59a54c2
JB
11671 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT)
11672 && !pre_386_16bit_warned)
11673 {
11674 as_warn (_("use .code16 to ensure correct addressing mode"));
11675 pre_386_16bit_warned = true;
11676 }
11677
29b0f896 11678 /* Output jumps. */
0cfa3eb3 11679 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 11680 output_branch ();
0cfa3eb3
JB
11681 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
11682 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 11683 output_jump ();
0cfa3eb3 11684 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
11685 output_interseg_jump ();
11686 else
11687 {
11688 /* Output normal instructions here. */
11689 char *p;
11690 unsigned char *q;
47465058 11691 unsigned int j;
79d72f45 11692 enum mf_cmp_kind mf_cmp;
4dffcebc 11693
e4e00185 11694 if (avoid_fence
389d00a5
JB
11695 && (i.tm.base_opcode == 0xaee8
11696 || i.tm.base_opcode == 0xaef0
11697 || i.tm.base_opcode == 0xaef8))
48ef937e
JB
11698 {
11699 /* Encode lfence, mfence, and sfence as
11700 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
47f4115a 11701 if (flag_code == CODE_16BIT)
76d3f746 11702 as_bad (_("Cannot convert `%s' in 16-bit mode"), insn_name (&i.tm));
47f4115a
JB
11703 else if (omit_lock_prefix)
11704 as_bad (_("Cannot convert `%s' with `-momit-lock-prefix=yes' in effect"),
76d3f746 11705 insn_name (&i.tm));
47f4115a 11706 else if (now_seg != absolute_section)
48ef937e
JB
11707 {
11708 offsetT val = 0x240483f0ULL;
11709
11710 p = frag_more (5);
11711 md_number_to_chars (p, val, 5);
11712 }
11713 else
11714 abs_section_offset += 5;
11715 return;
11716 }
e4e00185 11717
d022bddd
IT
11718 /* Some processors fail on LOCK prefix. This options makes
11719 assembler ignore LOCK prefix and serves as a workaround. */
11720 if (omit_lock_prefix)
11721 {
35648716
JB
11722 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE
11723 && i.tm.opcode_modifier.isprefix)
d022bddd
IT
11724 return;
11725 i.prefix[LOCK_PREFIX] = 0;
11726 }
11727
e379e5f3
L
11728 if (branch)
11729 /* Skip if this is a branch. */
11730 ;
b5482fe5 11731 else if (add_fused_jcc_padding_frag_p (&mf_cmp, last_insn))
e379e5f3
L
11732 {
11733 /* Make room for padding. */
11734 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
11735 p = frag_more (0);
11736
11737 fragP = frag_now;
11738
11739 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
11740 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
11741 NULL, 0, p);
11742
79d72f45 11743 fragP->tc_frag_data.mf_type = mf_cmp;
e379e5f3
L
11744 fragP->tc_frag_data.branch_type = align_branch_fused;
11745 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
11746 }
b5482fe5 11747 else if (add_branch_prefix_frag_p (last_insn))
e379e5f3
L
11748 {
11749 unsigned int max_prefix_size = align_branch_prefix_size;
11750
11751 /* Make room for padding. */
11752 frag_grow (max_prefix_size);
11753 p = frag_more (0);
11754
11755 fragP = frag_now;
11756
11757 frag_var (rs_machine_dependent, max_prefix_size, 0,
11758 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
11759 NULL, 0, p);
11760
11761 fragP->tc_frag_data.max_bytes = max_prefix_size;
11762 }
11763
43234a1e
L
11764 /* Since the VEX/EVEX prefix contains the implicit prefix, we
11765 don't need the explicit prefix. */
cf665fee 11766 if (!is_any_vex_encoding (&i.tm))
bc4bd9ab 11767 {
7b47a312 11768 switch (i.tm.opcode_modifier.opcodeprefix)
bc4bd9ab 11769 {
7b47a312
L
11770 case PREFIX_0X66:
11771 add_prefix (0x66);
11772 break;
11773 case PREFIX_0XF2:
11774 add_prefix (0xf2);
11775 break;
11776 case PREFIX_0XF3:
734dfd1c 11777 if (!is_cpu (&i.tm, CpuPadLock)
8b65b895
L
11778 || (i.prefix[REP_PREFIX] != 0xf3))
11779 add_prefix (0xf3);
c0f3af97 11780 break;
7b47a312 11781 case PREFIX_NONE:
9a182d04 11782 switch (i.opcode_length)
c0f3af97 11783 {
7b47a312 11784 case 2:
7b47a312 11785 break;
9a182d04 11786 case 1:
7b47a312 11787 /* Check for pseudo prefixes. */
9a182d04
JB
11788 if (!i.tm.opcode_modifier.isprefix || i.tm.base_opcode)
11789 break;
7b47a312
L
11790 as_bad_where (insn_start_frag->fr_file,
11791 insn_start_frag->fr_line,
11792 _("pseudo prefix without instruction"));
11793 return;
11794 default:
11795 abort ();
4dffcebc 11796 }
c0f3af97 11797 break;
c0f3af97
L
11798 default:
11799 abort ();
bc4bd9ab 11800 }
c0f3af97 11801
6d19a37a 11802#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
11803 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
11804 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
11805 perform IE->LE optimization. A dummy REX_OPCODE prefix
11806 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
11807 relocation for GDesc -> IE/LE optimization. */
cf61b747 11808 if (x86_elf_abi == X86_64_X32_ABI
a533c8df 11809 && !is_apx_rex2_encoding ()
cf61b747 11810 && i.operands == 2
14470f07
L
11811 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
11812 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
11813 && i.prefix[REX_PREFIX] == 0)
11814 add_prefix (REX_OPCODE);
6d19a37a 11815#endif
cf61b747 11816
c0f3af97
L
11817 /* The prefix bytes. */
11818 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
11819 if (*q)
48ef937e 11820 frag_opcode_byte (*q);
80d61d8d
CL
11821
11822 if (is_apx_rex2_encoding ())
11823 {
11824 frag_opcode_byte (i.vex.bytes[0]);
11825 frag_opcode_byte (i.vex.bytes[1]);
11826 }
0f10071e 11827 }
ae5c1c7b 11828 else
c0f3af97
L
11829 {
11830 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
11831 if (*q)
11832 switch (j)
11833 {
c0f3af97
L
11834 case SEG_PREFIX:
11835 case ADDR_PREFIX:
48ef937e 11836 frag_opcode_byte (*q);
c0f3af97
L
11837 break;
11838 default:
11839 /* There should be no other prefixes for instructions
11840 with VEX prefix. */
11841 abort ();
11842 }
11843
43234a1e
L
11844 /* For EVEX instructions i.vrex should become 0 after
11845 build_evex_prefix. For VEX instructions upper 16 registers
11846 aren't available, so VREX should be 0. */
11847 if (i.vrex)
11848 abort ();
c0f3af97 11849 /* Now the VEX prefix. */
48ef937e
JB
11850 if (now_seg != absolute_section)
11851 {
11852 p = frag_more (i.vex.length);
11853 for (j = 0; j < i.vex.length; j++)
11854 p[j] = i.vex.bytes[j];
11855 }
11856 else
11857 abs_section_offset += i.vex.length;
c0f3af97 11858 }
252b5132 11859
29b0f896 11860 /* Now the opcode; be careful about word order here! */
389d00a5
JB
11861 j = i.opcode_length;
11862 if (!i.vex.length)
ddb62495 11863 switch (i.tm.opcode_space)
389d00a5
JB
11864 {
11865 case SPACE_BASE:
11866 break;
11867 case SPACE_0F:
11868 ++j;
11869 break;
11870 case SPACE_0F38:
11871 case SPACE_0F3A:
11872 j += 2;
11873 break;
11874 default:
11875 abort ();
11876 }
11877
48ef937e 11878 if (now_seg == absolute_section)
389d00a5
JB
11879 abs_section_offset += j;
11880 else if (j == 1)
29b0f896
AM
11881 {
11882 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
11883 }
11884 else
11885 {
389d00a5
JB
11886 p = frag_more (j);
11887 if (!i.vex.length
ddb62495 11888 && i.tm.opcode_space != SPACE_BASE)
389d00a5
JB
11889 {
11890 *p++ = 0x0f;
ddb62495
JB
11891 if (i.tm.opcode_space != SPACE_0F)
11892 *p++ = i.tm.opcode_space == SPACE_0F38
389d00a5
JB
11893 ? 0x38 : 0x3a;
11894 }
11895
9a182d04 11896 switch (i.opcode_length)
331d2d0d 11897 {
4dffcebc 11898 case 2:
389d00a5
JB
11899 /* Put out high byte first: can't use md_number_to_chars! */
11900 *p++ = (i.tm.base_opcode >> 8) & 0xff;
11901 /* Fall through. */
11902 case 1:
11903 *p = i.tm.base_opcode & 0xff;
4dffcebc
L
11904 break;
11905 default:
11906 abort ();
11907 break;
331d2d0d 11908 }
0f10071e 11909
29b0f896 11910 }
3e73aa7c 11911
29b0f896 11912 /* Now the modrm byte and sib byte (if present). */
40fb9820 11913 if (i.tm.opcode_modifier.modrm)
29b0f896 11914 {
48ef937e
JB
11915 frag_opcode_byte ((i.rm.regmem << 0)
11916 | (i.rm.reg << 3)
11917 | (i.rm.mode << 6));
29b0f896
AM
11918 /* If i.rm.regmem == ESP (4)
11919 && i.rm.mode != (Register mode)
11920 && not 16 bit
11921 ==> need second modrm byte. */
11922 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
11923 && i.rm.mode != 3
dc821c5f 11924 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
48ef937e
JB
11925 frag_opcode_byte ((i.sib.base << 0)
11926 | (i.sib.index << 3)
11927 | (i.sib.scale << 6));
29b0f896 11928 }
3e73aa7c 11929
29b0f896 11930 if (i.disp_operands)
2bbd9c25 11931 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 11932
29b0f896 11933 if (i.imm_operands)
2bbd9c25 11934 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
11935
11936 /*
11937 * frag_now_fix () returning plain abs_section_offset when we're in the
11938 * absolute section, and abs_section_offset not getting updated as data
11939 * gets added to the frag breaks the logic below.
11940 */
11941 if (now_seg != absolute_section)
11942 {
11943 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
11944 if (j > 15)
0afc614c
L
11945 {
11946 if (dot_insn ())
11947 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
11948 j);
11949 else
11950 as_bad (_("instruction length of %u bytes exceeds the limit of 15"),
11951 j);
11952 }
e379e5f3
L
11953 else if (fragP)
11954 {
11955 /* NB: Don't add prefix with GOTPC relocation since
11956 output_disp() above depends on the fixed encoding
11957 length. Can't add prefix with TLS relocation since
11958 it breaks TLS linker optimization. */
11959 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
11960 /* Prefix count on the current instruction. */
11961 unsigned int count = i.vex.length;
11962 unsigned int k;
11963 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
11964 /* REX byte is encoded in VEX/EVEX prefix. */
11965 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
11966 count++;
11967
11968 /* Count prefixes for extended opcode maps. */
11969 if (!i.vex.length)
ddb62495 11970 switch (i.tm.opcode_space)
e379e5f3 11971 {
389d00a5 11972 case SPACE_BASE:
e379e5f3 11973 break;
389d00a5
JB
11974 case SPACE_0F:
11975 count++;
e379e5f3 11976 break;
389d00a5
JB
11977 case SPACE_0F38:
11978 case SPACE_0F3A:
11979 count += 2;
e379e5f3
L
11980 break;
11981 default:
11982 abort ();
11983 }
11984
11985 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11986 == BRANCH_PREFIX)
11987 {
11988 /* Set the maximum prefix size in BRANCH_PREFIX
11989 frag. */
11990 if (fragP->tc_frag_data.max_bytes > max)
11991 fragP->tc_frag_data.max_bytes = max;
11992 if (fragP->tc_frag_data.max_bytes > count)
11993 fragP->tc_frag_data.max_bytes -= count;
11994 else
11995 fragP->tc_frag_data.max_bytes = 0;
11996 }
11997 else
11998 {
11999 /* Remember the maximum prefix size in FUSED_JCC_PADDING
12000 frag. */
12001 unsigned int max_prefix_size;
12002 if (align_branch_prefix_size > max)
12003 max_prefix_size = max;
12004 else
12005 max_prefix_size = align_branch_prefix_size;
12006 if (max_prefix_size > count)
12007 fragP->tc_frag_data.max_prefix_length
12008 = max_prefix_size - count;
12009 }
12010
12011 /* Use existing segment prefix if possible. Use CS
12012 segment prefix in 64-bit mode. In 32-bit mode, use SS
12013 segment prefix with ESP/EBP base register and use DS
12014 segment prefix without ESP/EBP base register. */
12015 if (i.prefix[SEG_PREFIX])
12016 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
12017 else if (flag_code == CODE_64BIT)
12018 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
12019 else if (i.base_reg
12020 && (i.base_reg->reg_num == 4
12021 || i.base_reg->reg_num == 5))
12022 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
12023 else
12024 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
12025 }
9c33702b 12026 }
29b0f896 12027 }
252b5132 12028
e379e5f3
L
12029 /* NB: Don't work with COND_JUMP86 without i386. */
12030 if (align_branch_power
12031 && now_seg != absolute_section
12032 && cpu_arch_flags.bitfield.cpui386)
12033 {
12034 /* Terminate each frag so that we can add prefix and check for
12035 fused jcc. */
12036 frag_wane (frag_now);
12037 frag_new (0);
12038 }
12039
29b0f896
AM
12040#ifdef DEBUG386
12041 if (flag_debug)
12042 {
7b81dfbb 12043 pi ("" /*line*/, &i);
29b0f896
AM
12044 }
12045#endif /* DEBUG386 */
12046}
252b5132 12047
e205caa7
L
12048/* Return the size of the displacement operand N. */
12049
12050static int
12051disp_size (unsigned int n)
12052{
12053 int size = 4;
43234a1e 12054
b5014f7a 12055 if (i.types[n].bitfield.disp64)
40fb9820
L
12056 size = 8;
12057 else if (i.types[n].bitfield.disp8)
12058 size = 1;
12059 else if (i.types[n].bitfield.disp16)
12060 size = 2;
e205caa7
L
12061 return size;
12062}
12063
12064/* Return the size of the immediate operand N. */
12065
12066static int
12067imm_size (unsigned int n)
12068{
12069 int size = 4;
40fb9820
L
12070 if (i.types[n].bitfield.imm64)
12071 size = 8;
12072 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
12073 size = 1;
12074 else if (i.types[n].bitfield.imm16)
12075 size = 2;
e205caa7
L
12076 return size;
12077}
12078
29b0f896 12079static void
64e74474 12080output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
12081{
12082 char *p;
12083 unsigned int n;
252b5132 12084
29b0f896
AM
12085 for (n = 0; n < i.operands; n++)
12086 {
b5014f7a 12087 if (operand_type_check (i.types[n], disp))
29b0f896 12088 {
48ef937e
JB
12089 int size = disp_size (n);
12090
12091 if (now_seg == absolute_section)
12092 abs_section_offset += size;
12093 else if (i.op[n].disps->X_op == O_constant)
29b0f896 12094 {
43234a1e 12095 offsetT val = i.op[n].disps->X_add_number;
252b5132 12096
629cfaf1
JB
12097 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
12098 size);
29b0f896
AM
12099 p = frag_more (size);
12100 md_number_to_chars (p, val, size);
12101 }
12102 else
12103 {
f86103b7 12104 enum bfd_reloc_code_real reloc_type;
a775efc8
JB
12105 bool pcrel = (i.flags[n] & Operand_PCrel) != 0;
12106 bool sign = (flag_code == CODE_64BIT && size == 4
12107 && (!want_disp32 (&i.tm)
12108 || (i.tm.opcode_modifier.jump && !i.jumpabsolute
12109 && !i.types[n].bitfield.baseindex)))
12110 || pcrel;
02a86693 12111 fixS *fixP;
29b0f896 12112
e205caa7 12113 /* We can't have 8 bit displacement here. */
9c2799c2 12114 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 12115
29b0f896
AM
12116 /* The PC relative address is computed relative
12117 to the instruction boundary, so in case immediate
12118 fields follows, we need to adjust the value. */
12119 if (pcrel && i.imm_operands)
12120 {
29b0f896 12121 unsigned int n1;
e205caa7 12122 int sz = 0;
252b5132 12123
29b0f896 12124 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 12125 if (operand_type_check (i.types[n1], imm))
252b5132 12126 {
e205caa7 12127 /* Only one immediate is allowed for PC
e3bf0aad
JB
12128 relative address, except with .insn. */
12129 gas_assert (sz == 0 || dot_insn ());
12130 sz += imm_size (n1);
252b5132 12131 }
e3bf0aad 12132 /* We should find at least one immediate. */
9c2799c2 12133 gas_assert (sz != 0);
e3bf0aad 12134 i.op[n].disps->X_add_number -= sz;
29b0f896 12135 }
520dc8e8 12136
29b0f896 12137 p = frag_more (size);
d258b828 12138 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 12139 if (GOT_symbol
2bbd9c25 12140 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 12141 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
12142 || reloc_type == BFD_RELOC_X86_64_32S
12143 || (reloc_type == BFD_RELOC_64
12144 && object_64bit))
d6ab8113
JB
12145 && (i.op[n].disps->X_op == O_symbol
12146 || (i.op[n].disps->X_op == O_add
12147 && ((symbol_get_value_expression
12148 (i.op[n].disps->X_op_symbol)->X_op)
12149 == O_subtract))))
12150 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 12151 {
4fa24527 12152 if (!object_64bit)
7b81dfbb
AJ
12153 {
12154 reloc_type = BFD_RELOC_386_GOTPC;
5b7c81bd 12155 i.has_gotpc_tls_reloc = true;
98da05bf 12156 i.op[n].disps->X_add_number +=
d583596c 12157 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
12158 }
12159 else if (reloc_type == BFD_RELOC_64)
12160 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 12161 else
7b81dfbb
AJ
12162 /* Don't do the adjustment for x86-64, as there
12163 the pcrel addressing is relative to the _next_
12164 insn, and that is taken care of in other code. */
d6ab8113 12165 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 12166 }
e379e5f3
L
12167 else if (align_branch_power)
12168 {
12169 switch (reloc_type)
12170 {
12171 case BFD_RELOC_386_TLS_GD:
12172 case BFD_RELOC_386_TLS_LDM:
12173 case BFD_RELOC_386_TLS_IE:
12174 case BFD_RELOC_386_TLS_IE_32:
12175 case BFD_RELOC_386_TLS_GOTIE:
12176 case BFD_RELOC_386_TLS_GOTDESC:
12177 case BFD_RELOC_386_TLS_DESC_CALL:
12178 case BFD_RELOC_X86_64_TLSGD:
12179 case BFD_RELOC_X86_64_TLSLD:
12180 case BFD_RELOC_X86_64_GOTTPOFF:
a533c8df 12181 case BFD_RELOC_X86_64_CODE_4_GOTTPOFF:
5bc71c2a 12182 case BFD_RELOC_X86_64_CODE_6_GOTTPOFF:
e379e5f3 12183 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
a533c8df 12184 case BFD_RELOC_X86_64_CODE_4_GOTPC32_TLSDESC:
e379e5f3 12185 case BFD_RELOC_X86_64_TLSDESC_CALL:
5b7c81bd 12186 i.has_gotpc_tls_reloc = true;
e379e5f3
L
12187 default:
12188 break;
12189 }
12190 }
02a86693
L
12191 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
12192 size, i.op[n].disps, pcrel,
12193 reloc_type);
eb19308f
JB
12194
12195 if (flag_code == CODE_64BIT && size == 4 && pcrel
12196 && !i.prefix[ADDR_PREFIX])
12197 fixP->fx_signed = 1;
12198
5bc71c2a
L
12199 if (reloc_type == BFD_RELOC_X86_64_GOTTPOFF
12200 && i.tm.opcode_space == SPACE_EVEXMAP4)
12201 {
12202 /* Only "add %reg1, foo@gottpoff(%rip), %reg2" is
12203 allowed in md_assemble. Set fx_tcbit2 for EVEX
12204 prefix. */
12205 fixP->fx_tcbit2 = 1;
12206 continue;
12207 }
12208
12209 if (i.base_reg && i.base_reg->reg_num == RegIP)
12210 {
12211 if (reloc_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
12212 {
12213 /* Set fx_tcbit for REX2 prefix. */
12214 if (is_apx_rex2_encoding ())
12215 fixP->fx_tcbit = 1;
12216 continue;
12217 }
12218 }
12219 /* In 64-bit, i386_validate_fix updates only (%rip)
12220 relocations. */
12221 else if (object_64bit)
12222 continue;
3d5a60de 12223
02a86693
L
12224 /* Check for "call/jmp *mem", "mov mem, %reg",
12225 "test %reg, mem" and "binop mem, %reg" where binop
12226 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
12227 instructions without data prefix. Always generate
12228 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
12229 if (i.prefix[DATA_PREFIX] == 0
0cb4071e
L
12230 && (i.rm.mode == 2
12231 || (i.rm.mode == 0 && i.rm.regmem == 5))
ddb62495 12232 && i.tm.opcode_space == SPACE_BASE
02a86693
L
12233 && ((i.operands == 1
12234 && i.tm.base_opcode == 0xff
12235 && (i.rm.reg == 2 || i.rm.reg == 4))
12236 || (i.operands == 2
12237 && (i.tm.base_opcode == 0x8b
12238 || i.tm.base_opcode == 0x85
2ae4c703 12239 || (i.tm.base_opcode & ~0x38) == 0x03))))
02a86693
L
12240 {
12241 if (object_64bit)
12242 {
5bc71c2a
L
12243 if (reloc_type == BFD_RELOC_X86_64_GOTTPOFF)
12244 {
12245 /* Set fx_tcbit for REX2 prefix. */
12246 if (is_apx_rex2_encoding ())
12247 fixP->fx_tcbit = 1;
12248 }
820a7755 12249 else if (generate_relax_relocations)
5bc71c2a
L
12250 {
12251 /* Set fx_tcbit3 for REX2 prefix. */
12252 if (is_apx_rex2_encoding ())
12253 fixP->fx_tcbit3 = 1;
12254 else if (i.rex)
12255 fixP->fx_tcbit2 = 1;
12256 else
12257 fixP->fx_tcbit = 1;
12258 }
02a86693 12259 }
820a7755
JB
12260 else if (generate_relax_relocations
12261 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
12262 fixP->fx_tcbit2 = 1;
12263 }
29b0f896
AM
12264 }
12265 }
12266 }
12267}
252b5132 12268
29b0f896 12269static void
64e74474 12270output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
12271{
12272 char *p;
12273 unsigned int n;
252b5132 12274
29b0f896
AM
12275 for (n = 0; n < i.operands; n++)
12276 {
40fb9820 12277 if (operand_type_check (i.types[n], imm))
29b0f896 12278 {
48ef937e
JB
12279 int size = imm_size (n);
12280
12281 if (now_seg == absolute_section)
12282 abs_section_offset += size;
12283 else if (i.op[n].imms->X_op == O_constant)
29b0f896 12284 {
29b0f896 12285 offsetT val;
b4cac588 12286
29b0f896
AM
12287 val = offset_in_range (i.op[n].imms->X_add_number,
12288 size);
12289 p = frag_more (size);
12290 md_number_to_chars (p, val, size);
12291 }
12292 else
12293 {
12294 /* Not absolute_section.
12295 Need a 32-bit fixup (don't support 8bit
12296 non-absolute imms). Try to support other
12297 sizes ... */
f86103b7 12298 enum bfd_reloc_code_real reloc_type;
e205caa7 12299 int sign;
29b0f896 12300
40fb9820 12301 if (i.types[n].bitfield.imm32s
a7d61044 12302 && (i.suffix == QWORD_MNEM_SUFFIX
c032bc4f 12303 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)
f79d55e1 12304 || (i.prefix[REX_PREFIX] & REX_W)
c032bc4f 12305 || dot_insn ()))
29b0f896 12306 sign = 1;
e205caa7
L
12307 else
12308 sign = 0;
520dc8e8 12309
29b0f896 12310 p = frag_more (size);
d258b828 12311 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 12312
2bbd9c25
JJ
12313 /* This is tough to explain. We end up with this one if we
12314 * have operands that look like
12315 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
12316 * obtain the absolute address of the GOT, and it is strongly
12317 * preferable from a performance point of view to avoid using
12318 * a runtime relocation for this. The actual sequence of
12319 * instructions often look something like:
12320 *
12321 * call .L66
12322 * .L66:
12323 * popl %ebx
12324 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
12325 *
12326 * The call and pop essentially return the absolute address
12327 * of the label .L66 and store it in %ebx. The linker itself
12328 * will ultimately change the first operand of the addl so
12329 * that %ebx points to the GOT, but to keep things simple, the
12330 * .o file must have this operand set so that it generates not
12331 * the absolute address of .L66, but the absolute address of
12332 * itself. This allows the linker itself simply treat a GOTPC
12333 * relocation as asking for a pcrel offset to the GOT to be
12334 * added in, and the addend of the relocation is stored in the
12335 * operand field for the instruction itself.
12336 *
12337 * Our job here is to fix the operand so that it would add
12338 * the correct offset so that %ebx would point to itself. The
12339 * thing that is tricky is that .-.L66 will point to the
12340 * beginning of the instruction, so we need to further modify
12341 * the operand so that it will point to itself. There are
12342 * other cases where you have something like:
12343 *
12344 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
12345 *
12346 * and here no correction would be required. Internally in
12347 * the assembler we treat operands of this form as not being
12348 * pcrel since the '.' is explicitly mentioned, and I wonder
12349 * whether it would simplify matters to do it this way. Who
12350 * knows. In earlier versions of the PIC patches, the
12351 * pcrel_adjust field was used to store the correction, but
12352 * since the expression is not pcrel, I felt it would be
12353 * confusing to do it this way. */
12354
d6ab8113 12355 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
12356 || reloc_type == BFD_RELOC_X86_64_32S
12357 || reloc_type == BFD_RELOC_64)
29b0f896
AM
12358 && GOT_symbol
12359 && GOT_symbol == i.op[n].imms->X_add_symbol
12360 && (i.op[n].imms->X_op == O_symbol
12361 || (i.op[n].imms->X_op == O_add
12362 && ((symbol_get_value_expression
12363 (i.op[n].imms->X_op_symbol)->X_op)
12364 == O_subtract))))
12365 {
4fa24527 12366 if (!object_64bit)
d6ab8113 12367 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 12368 else if (size == 4)
d6ab8113 12369 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
12370 else if (size == 8)
12371 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5b7c81bd 12372 i.has_gotpc_tls_reloc = true;
d583596c
JB
12373 i.op[n].imms->X_add_number +=
12374 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 12375 }
29b0f896
AM
12376 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
12377 i.op[n].imms, 0, reloc_type);
12378 }
12379 }
12380 }
252b5132
RH
12381}
12382\f
d182319b
JB
12383/* x86_cons_fix_new is called via the expression parsing code when a
12384 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
12385static int cons_sign = -1;
12386
12387void
e3bb37b5 12388x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 12389 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 12390{
d258b828 12391 r = reloc (len, 0, cons_sign, r);
d182319b
JB
12392
12393#ifdef TE_PE
12394 if (exp->X_op == O_secrel)
12395 {
12396 exp->X_op = O_symbol;
12397 r = BFD_RELOC_32_SECREL;
12398 }
145667f8
MH
12399 else if (exp->X_op == O_secidx)
12400 r = BFD_RELOC_16_SECIDX;
d182319b
JB
12401#endif
12402
12403 fix_new_exp (frag, off, len, exp, 0, r);
12404}
12405
357d1bd8
L
12406/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
12407 purpose of the `.dc.a' internal pseudo-op. */
12408
12409int
12410x86_address_bytes (void)
12411{
12412 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
12413 return 4;
12414 return stdoutput->arch_info->bits_per_address / 8;
12415}
12416
deea4973
JB
12417#if (!(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
12418 || defined (LEX_AT)) && !defined (TE_PE)
d258b828 12419# define lex_got(reloc, adjust, types) NULL
718ddfc0 12420#else
f3c180ae
AM
12421/* Parse operands of the form
12422 <symbol>@GOTOFF+<nnn>
12423 and similar .plt or .got references.
12424
12425 If we find one, set up the correct relocation in RELOC and copy the
12426 input string, minus the `@GOTOFF' into a malloc'd buffer for
12427 parsing by the calling routine. Return this buffer, and if ADJUST
12428 is non-null set it to the length of the string we removed from the
12429 input line. Otherwise return NULL. */
12430static char *
91d6fa6a 12431lex_got (enum bfd_reloc_code_real *rel,
64e74474 12432 int *adjust,
d258b828 12433 i386_operand_type *types)
f3c180ae 12434{
7b81dfbb
AJ
12435 /* Some of the relocations depend on the size of what field is to
12436 be relocated. But in our callers i386_immediate and i386_displacement
12437 we don't yet know the operand size (this will be set by insn
12438 matching). Hence we record the word32 relocation here,
12439 and adjust the reloc according to the real size in reloc(). */
145667f8
MH
12440 static const struct
12441 {
f3c180ae 12442 const char *str;
cff8d58a 12443 int len;
4fa24527 12444 const enum bfd_reloc_code_real rel[2];
40fb9820 12445 const i386_operand_type types64;
5b7c81bd 12446 bool need_GOT_symbol;
145667f8
MH
12447 }
12448 gotrel[] =
12449 {
05909f23
JB
12450
12451#define OPERAND_TYPE_IMM32_32S_DISP32 { .bitfield = \
12452 { .imm32 = 1, .imm32s = 1, .disp32 = 1 } }
12453#define OPERAND_TYPE_IMM32_32S_64_DISP32 { .bitfield = \
12454 { .imm32 = 1, .imm32s = 1, .imm64 = 1, .disp32 = 1 } }
12455#define OPERAND_TYPE_IMM32_32S_64_DISP32_64 { .bitfield = \
12456 { .imm32 = 1, .imm32s = 1, .imm64 = 1, .disp32 = 1, .disp64 = 1 } }
12457#define OPERAND_TYPE_IMM64_DISP64 { .bitfield = \
12458 { .imm64 = 1, .disp64 = 1 } }
12459
deea4973 12460#ifndef TE_PE
8ce3d284 12461#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12462 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
12463 BFD_RELOC_SIZE32 },
05909f23 12464 { .bitfield = { .imm32 = 1, .imm64 = 1 } }, false },
8ce3d284 12465#endif
cff8d58a
L
12466 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
12467 BFD_RELOC_X86_64_PLTOFF64 },
05909f23 12468 { .bitfield = { .imm64 = 1 } }, true },
cff8d58a
L
12469 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
12470 BFD_RELOC_X86_64_PLT32 },
a775efc8 12471 OPERAND_TYPE_IMM32_32S_DISP32, false },
cff8d58a
L
12472 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
12473 BFD_RELOC_X86_64_GOTPLT64 },
5b7c81bd 12474 OPERAND_TYPE_IMM64_DISP64, true },
cff8d58a
L
12475 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
12476 BFD_RELOC_X86_64_GOTOFF64 },
5b7c81bd 12477 OPERAND_TYPE_IMM64_DISP64, true },
cff8d58a
L
12478 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
12479 BFD_RELOC_X86_64_GOTPCREL },
a775efc8 12480 OPERAND_TYPE_IMM32_32S_DISP32, true },
cff8d58a
L
12481 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
12482 BFD_RELOC_X86_64_TLSGD },
a775efc8 12483 OPERAND_TYPE_IMM32_32S_DISP32, true },
cff8d58a
L
12484 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
12485 _dummy_first_bfd_reloc_code_real },
5b7c81bd 12486 OPERAND_TYPE_NONE, true },
cff8d58a
L
12487 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
12488 BFD_RELOC_X86_64_TLSLD },
a775efc8 12489 OPERAND_TYPE_IMM32_32S_DISP32, true },
cff8d58a
L
12490 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
12491 BFD_RELOC_X86_64_GOTTPOFF },
a775efc8 12492 OPERAND_TYPE_IMM32_32S_DISP32, true },
cff8d58a
L
12493 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
12494 BFD_RELOC_X86_64_TPOFF32 },
a775efc8 12495 OPERAND_TYPE_IMM32_32S_64_DISP32_64, true },
cff8d58a
L
12496 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
12497 _dummy_first_bfd_reloc_code_real },
5b7c81bd 12498 OPERAND_TYPE_NONE, true },
cff8d58a
L
12499 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
12500 BFD_RELOC_X86_64_DTPOFF32 },
a775efc8 12501 OPERAND_TYPE_IMM32_32S_64_DISP32_64, true },
cff8d58a
L
12502 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
12503 _dummy_first_bfd_reloc_code_real },
5b7c81bd 12504 OPERAND_TYPE_NONE, true },
cff8d58a
L
12505 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
12506 _dummy_first_bfd_reloc_code_real },
5b7c81bd 12507 OPERAND_TYPE_NONE, true },
cff8d58a
L
12508 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
12509 BFD_RELOC_X86_64_GOT32 },
a775efc8 12510 OPERAND_TYPE_IMM32_32S_64_DISP32, true },
cff8d58a
L
12511 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
12512 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
a775efc8 12513 OPERAND_TYPE_IMM32_32S_DISP32, true },
cff8d58a
L
12514 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
12515 BFD_RELOC_X86_64_TLSDESC_CALL },
a775efc8 12516 OPERAND_TYPE_IMM32_32S_DISP32, true },
deea4973
JB
12517#else /* TE_PE */
12518 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
12519 BFD_RELOC_32_SECREL },
a775efc8 12520 OPERAND_TYPE_IMM32_32S_64_DISP32_64, false },
deea4973 12521#endif
05909f23
JB
12522
12523#undef OPERAND_TYPE_IMM32_32S_DISP32
12524#undef OPERAND_TYPE_IMM32_32S_64_DISP32
12525#undef OPERAND_TYPE_IMM32_32S_64_DISP32_64
12526#undef OPERAND_TYPE_IMM64_DISP64
12527
f3c180ae
AM
12528 };
12529 char *cp;
12530 unsigned int j;
12531
deea4973 12532#if defined (OBJ_MAYBE_ELF) && !defined (TE_PE)
718ddfc0
JB
12533 if (!IS_ELF)
12534 return NULL;
d382c579 12535#endif
718ddfc0 12536
f3c180ae 12537 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 12538 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
12539 return NULL;
12540
47465058 12541 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 12542 {
cff8d58a 12543 int len = gotrel[j].len;
28f81592 12544 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 12545 {
4fa24527 12546 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 12547 {
28f81592
AM
12548 int first, second;
12549 char *tmpbuf, *past_reloc;
f3c180ae 12550
91d6fa6a 12551 *rel = gotrel[j].rel[object_64bit];
f3c180ae 12552
3956db08
JB
12553 if (types)
12554 {
12555 if (flag_code != CODE_64BIT)
40fb9820
L
12556 {
12557 types->bitfield.imm32 = 1;
12558 types->bitfield.disp32 = 1;
12559 }
3956db08
JB
12560 else
12561 *types = gotrel[j].types64;
12562 }
12563
844bf810 12564 if (gotrel[j].need_GOT_symbol && GOT_symbol == NULL)
f3c180ae
AM
12565 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
12566
28f81592 12567 /* The length of the first part of our input line. */
f3c180ae 12568 first = cp - input_line_pointer;
28f81592
AM
12569
12570 /* The second part goes from after the reloc token until
67c11a9b 12571 (and including) an end_of_line char or comma. */
28f81592 12572 past_reloc = cp + 1 + len;
67c11a9b
AM
12573 cp = past_reloc;
12574 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
12575 ++cp;
12576 second = cp + 1 - past_reloc;
28f81592
AM
12577
12578 /* Allocate and copy string. The trailing NUL shouldn't
12579 be necessary, but be safe. */
add39d23 12580 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 12581 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
12582 if (second != 0 && *past_reloc != ' ')
12583 /* Replace the relocation token with ' ', so that
12584 errors like foo@GOTOFF1 will be detected. */
12585 tmpbuf[first++] = ' ';
af89796a
L
12586 else
12587 /* Increment length by 1 if the relocation token is
12588 removed. */
12589 len++;
12590 if (adjust)
12591 *adjust = len;
0787a12d
AM
12592 memcpy (tmpbuf + first, past_reloc, second);
12593 tmpbuf[first + second] = '\0';
f3c180ae
AM
12594 return tmpbuf;
12595 }
12596
4fa24527
JB
12597 as_bad (_("@%s reloc is not supported with %d-bit output format"),
12598 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
12599 return NULL;
12600 }
12601 }
12602
12603 /* Might be a symbol version string. Don't as_bad here. */
12604 return NULL;
12605}
4e4f7c87 12606#endif
f3c180ae 12607
62ebcb5c 12608bfd_reloc_code_real_type
e3bb37b5 12609x86_cons (expressionS *exp, int size)
f3c180ae 12610{
62ebcb5c
AM
12611 bfd_reloc_code_real_type got_reloc = NO_RELOC;
12612
6b50f5f4
JB
12613 intel_syntax = -intel_syntax;
12614 exp->X_md = 0;
5cc00775 12615 expr_mode = expr_operator_none;
6b50f5f4 12616
2748c1b1
L
12617#if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
12618 && !defined (LEX_AT)) \
12619 || defined (TE_PE)
4fa24527 12620 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
12621 {
12622 /* Handle @GOTOFF and the like in an expression. */
12623 char *save;
12624 char *gotfree_input_line;
4a57f2cf 12625 int adjust = 0;
f3c180ae
AM
12626
12627 save = input_line_pointer;
d258b828 12628 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
12629 if (gotfree_input_line)
12630 input_line_pointer = gotfree_input_line;
12631
12632 expression (exp);
12633
12634 if (gotfree_input_line)
12635 {
12636 /* expression () has merrily parsed up to the end of line,
12637 or a comma - in the wrong buffer. Transfer how far
12638 input_line_pointer has moved to the right buffer. */
12639 input_line_pointer = (save
12640 + (input_line_pointer - gotfree_input_line)
12641 + adjust);
12642 free (gotfree_input_line);
3992d3b7
AM
12643 if (exp->X_op == O_constant
12644 || exp->X_op == O_absent
12645 || exp->X_op == O_illegal
0398aac5 12646 || exp->X_op == O_register
3992d3b7
AM
12647 || exp->X_op == O_big)
12648 {
12649 char c = *input_line_pointer;
12650 *input_line_pointer = 0;
12651 as_bad (_("missing or invalid expression `%s'"), save);
12652 *input_line_pointer = c;
12653 }
b9519cfe
L
12654 else if ((got_reloc == BFD_RELOC_386_PLT32
12655 || got_reloc == BFD_RELOC_X86_64_PLT32)
12656 && exp->X_op != O_symbol)
12657 {
12658 char c = *input_line_pointer;
12659 *input_line_pointer = 0;
12660 as_bad (_("invalid PLT expression `%s'"), save);
12661 *input_line_pointer = c;
12662 }
f3c180ae
AM
12663 }
12664 }
12665 else
6b50f5f4 12666#endif
f3c180ae 12667 expression (exp);
ee86248c
JB
12668
12669 intel_syntax = -intel_syntax;
12670
12671 if (intel_syntax)
12672 i386_intel_simplify (exp);
62ebcb5c 12673
a442cac5 12674 /* If not 64bit, massage value, to account for wraparound when !BFD64. */
5cc00775
JB
12675 if (size <= 4 && expr_mode == expr_operator_present
12676 && exp->X_op == O_constant && !object_64bit)
a442cac5
JB
12677 exp->X_add_number = extend_to_32bit_address (exp->X_add_number);
12678
62ebcb5c 12679 return got_reloc;
f3c180ae 12680}
f3c180ae 12681
9f32dd5b
L
12682static void
12683signed_cons (int size)
6482c264 12684{
a442cac5 12685 if (object_64bit)
d182319b
JB
12686 cons_sign = 1;
12687 cons (size);
12688 cons_sign = -1;
6482c264
NC
12689}
12690
edd67638
JB
12691static void
12692s_insn (int dummy ATTRIBUTE_UNUSED)
12693{
393fbe8d 12694 char mnemonic[MAX_MNEM_SIZE], *line = input_line_pointer, *ptr;
edd67638
JB
12695 char *saved_ilp = find_end_of_line (line, false), saved_char;
12696 const char *end;
12697 unsigned int j;
12698 valueT val;
12699 bool vex = false, xop = false, evex = false;
b5482fe5 12700 struct last_insn *last_insn;
edd67638
JB
12701
12702 init_globals ();
12703
12704 saved_char = *saved_ilp;
12705 *saved_ilp = 0;
12706
12707 end = parse_insn (line, mnemonic, true);
12708 if (end == NULL)
12709 {
12710 bad:
12711 *saved_ilp = saved_char;
12712 ignore_rest_of_line ();
d0c2e3ec 12713 i.tm.mnem_off = 0;
edd67638
JB
12714 return;
12715 }
12716 line += end - line;
12717
d3b01414
JB
12718 current_templates.start = &i.tm;
12719 current_templates.end = &i.tm + 1;
edd67638 12720 i.tm.mnem_off = MN__insn;
393fbe8d 12721 i.tm.extension_opcode = None;
edd67638
JB
12722
12723 if (startswith (line, "VEX")
12724 && (line[3] == '.' || is_space_char (line[3])))
12725 {
12726 vex = true;
12727 line += 3;
12728 }
12729 else if (startswith (line, "XOP") && ISDIGIT (line[3]))
12730 {
12731 char *e;
12732 unsigned long n = strtoul (line + 3, &e, 16);
12733
12734 if (e == line + 5 && n >= 0x08 && n <= 0x1f
12735 && (*e == '.' || is_space_char (*e)))
12736 {
12737 xop = true;
d0c2e3ec
JB
12738 /* Arrange for build_vex_prefix() to emit 0x8f. */
12739 i.tm.opcode_space = SPACE_XOP08;
12740 i.insn_opcode_space = n;
edd67638
JB
12741 line = e;
12742 }
12743 }
12744 else if (startswith (line, "EVEX")
12745 && (line[4] == '.' || is_space_char (line[4])))
12746 {
12747 evex = true;
12748 line += 4;
12749 }
12750
12751 if (vex || xop
e346d50a 12752 ? i.encoding == encoding_evex
edd67638 12753 : evex
e346d50a
JB
12754 ? i.encoding == encoding_vex
12755 || i.encoding == encoding_vex3
12756 : i.encoding != encoding_default)
edd67638
JB
12757 {
12758 as_bad (_("pseudo-prefix conflicts with encoding specifier"));
12759 goto bad;
12760 }
12761
e346d50a
JB
12762 if (line > end && i.encoding == encoding_default)
12763 i.encoding = evex ? encoding_evex : encoding_vex;
0ff3b7d0 12764
e346d50a 12765 if (i.encoding != encoding_default)
1adecddd
JB
12766 {
12767 /* Only address size and segment override prefixes are permitted with
12768 VEX/XOP/EVEX encodings. */
12769 const unsigned char *p = i.prefix;
12770
12771 for (j = 0; j < ARRAY_SIZE (i.prefix); ++j, ++p)
12772 {
12773 if (!*p)
12774 continue;
12775
12776 switch (j)
12777 {
12778 case SEG_PREFIX:
12779 case ADDR_PREFIX:
12780 break;
12781 default:
12782 as_bad (_("illegal prefix used with VEX/XOP/EVEX"));
12783 goto bad;
12784 }
12785 }
12786 }
12787
edd67638
JB
12788 if (line > end && *line == '.')
12789 {
d0c2e3ec
JB
12790 /* Length specifier (VEX.L, XOP.L, EVEX.L'L). */
12791 switch (line[1])
12792 {
12793 case 'L':
12794 switch (line[2])
12795 {
12796 case '0':
12797 if (evex)
12798 i.tm.opcode_modifier.evex = EVEX128;
12799 else
12800 i.tm.opcode_modifier.vex = VEX128;
12801 break;
12802
12803 case '1':
12804 if (evex)
12805 i.tm.opcode_modifier.evex = EVEX256;
12806 else
12807 i.tm.opcode_modifier.vex = VEX256;
12808 break;
12809
12810 case '2':
12811 if (evex)
12812 i.tm.opcode_modifier.evex = EVEX512;
12813 break;
12814
12815 case '3':
12816 if (evex)
12817 i.tm.opcode_modifier.evex = EVEX_L3;
12818 break;
12819
12820 case 'I':
12821 if (line[3] == 'G')
12822 {
12823 if (evex)
12824 i.tm.opcode_modifier.evex = EVEXLIG;
12825 else
12826 i.tm.opcode_modifier.vex = VEXScalar; /* LIG */
12827 ++line;
12828 }
12829 break;
12830 }
12831
12832 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
12833 line += 3;
12834 break;
12835
12836 case '1':
12837 if (line[2] == '2' && line[3] == '8')
12838 {
12839 if (evex)
12840 i.tm.opcode_modifier.evex = EVEX128;
12841 else
12842 i.tm.opcode_modifier.vex = VEX128;
12843 line += 4;
12844 }
12845 break;
12846
12847 case '2':
12848 if (line[2] == '5' && line[3] == '6')
12849 {
12850 if (evex)
12851 i.tm.opcode_modifier.evex = EVEX256;
12852 else
12853 i.tm.opcode_modifier.vex = VEX256;
12854 line += 4;
12855 }
12856 break;
12857
12858 case '5':
12859 if (evex && line[2] == '1' && line[3] == '2')
12860 {
12861 i.tm.opcode_modifier.evex = EVEX512;
12862 line += 4;
12863 }
12864 break;
12865 }
12866 }
12867
12868 if (line > end && *line == '.')
12869 {
12870 /* embedded prefix (VEX.pp, XOP.pp, EVEX.pp). */
12871 switch (line[1])
12872 {
12873 case 'N':
12874 if (line[2] == 'P')
12875 line += 3;
12876 break;
12877
12878 case '6':
12879 if (line[2] == '6')
12880 {
12881 i.tm.opcode_modifier.opcodeprefix = PREFIX_0X66;
12882 line += 3;
12883 }
12884 break;
12885
12886 case 'F': case 'f':
12887 if (line[2] == '3')
12888 {
12889 i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF3;
12890 line += 3;
12891 }
12892 else if (line[2] == '2')
12893 {
12894 i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF2;
12895 line += 3;
12896 }
12897 break;
12898 }
12899 }
12900
12901 if (line > end && !xop && *line == '.')
12902 {
12903 /* Encoding space (VEX.mmmmm, EVEX.mmmm). */
12904 switch (line[1])
12905 {
12906 case '0':
12907 if (TOUPPER (line[2]) != 'F')
12908 break;
12909 if (line[3] == '.' || is_space_char (line[3]))
12910 {
12911 i.insn_opcode_space = SPACE_0F;
12912 line += 3;
12913 }
12914 else if (line[3] == '3'
12915 && (line[4] == '8' || TOUPPER (line[4]) == 'A')
12916 && (line[5] == '.' || is_space_char (line[5])))
12917 {
12918 i.insn_opcode_space = line[4] == '8' ? SPACE_0F38 : SPACE_0F3A;
12919 line += 5;
12920 }
12921 break;
12922
12923 case 'M':
12924 if (ISDIGIT (line[2]) && line[2] != '0')
12925 {
12926 char *e;
12927 unsigned long n = strtoul (line + 2, &e, 10);
12928
12929 if (n <= (evex ? 15 : 31)
12930 && (*e == '.' || is_space_char (*e)))
12931 {
12932 i.insn_opcode_space = n;
12933 line = e;
12934 }
12935 }
12936 break;
12937 }
12938 }
12939
12940 if (line > end && *line == '.' && line[1] == 'W')
12941 {
12942 /* VEX.W, XOP.W, EVEX.W */
12943 switch (line[2])
12944 {
12945 case '0':
12946 i.tm.opcode_modifier.vexw = VEXW0;
12947 break;
12948
12949 case '1':
12950 i.tm.opcode_modifier.vexw = VEXW1;
12951 break;
12952
12953 case 'I':
12954 if (line[3] == 'G')
12955 {
12956 i.tm.opcode_modifier.vexw = VEXWIG;
12957 ++line;
12958 }
12959 break;
12960 }
12961
12962 if (i.tm.opcode_modifier.vexw)
12963 line += 3;
12964 }
12965
12966 if (line > end && *line && !is_space_char (*line))
12967 {
12968 /* Improve diagnostic a little. */
12969 if (*line == '.' && line[1] && !is_space_char (line[1]))
12970 ++line;
12971 goto done;
edd67638
JB
12972 }
12973
393fbe8d
JB
12974 /* Before processing the opcode expression, find trailing "+r" or
12975 "/<digit>" specifiers. */
12976 for (ptr = line; ; ++ptr)
12977 {
12978 unsigned long n;
12979 char *e;
12980
12981 ptr = strpbrk (ptr, "+/,");
12982 if (ptr == NULL || *ptr == ',')
12983 break;
12984
12985 if (*ptr == '+' && ptr[1] == 'r'
12986 && (ptr[2] == ',' || (is_space_char (ptr[2]) && ptr[3] == ',')))
12987 {
12988 *ptr = ' ';
12989 ptr[1] = ' ';
12990 i.short_form = true;
12991 break;
12992 }
12993
12994 if (*ptr == '/' && ISDIGIT (ptr[1])
12995 && (n = strtoul (ptr + 1, &e, 8)) < 8
12996 && e == ptr + 2
12997 && (ptr[2] == ',' || (is_space_char (ptr[2]) && ptr[3] == ',')))
12998 {
12999 *ptr = ' ';
13000 ptr[1] = ' ';
13001 i.tm.extension_opcode = n;
13002 i.tm.opcode_modifier.modrm = 1;
13003 break;
13004 }
13005 }
13006
edd67638
JB
13007 input_line_pointer = line;
13008 val = get_absolute_expression ();
13009 line = input_line_pointer;
13010
393fbe8d
JB
13011 if (i.short_form && (val & 7))
13012 as_warn ("`+r' assumes low three opcode bits to be clear");
13013
edd67638
JB
13014 for (j = 1; j < sizeof(val); ++j)
13015 if (!(val >> (j * 8)))
13016 break;
13017
13018 /* Trim off a prefix if present. */
13019 if (j > 1 && !vex && !xop && !evex)
13020 {
13021 uint8_t byte = val >> ((j - 1) * 8);
13022
13023 switch (byte)
13024 {
13025 case DATA_PREFIX_OPCODE:
13026 case REPE_PREFIX_OPCODE:
13027 case REPNE_PREFIX_OPCODE:
13028 if (!add_prefix (byte))
13029 goto bad;
13030 val &= ((uint64_t)1 << (--j * 8)) - 1;
13031 break;
13032 }
13033 }
13034
6804f42c
JB
13035 /* Parse operands, if any, before evaluating encoding space. */
13036 if (*line == ',')
13037 {
13038 i.memshift = -1;
13039
13040 ptr = parse_operands (line + 1, &i386_mnemonics[MN__insn]);
13041 this_operand = -1;
13042 if (!ptr)
13043 goto bad;
13044 line = ptr;
13045
13046 if (!i.operands)
13047 {
13048 as_bad (_("expecting operand after ','; got nothing"));
13049 goto done;
13050 }
13051
13052 if (i.mem_operands > 1)
13053 {
13054 as_bad (_("too many memory references for `%s'"),
13055 &i386_mnemonics[MN__insn]);
13056 goto done;
13057 }
13058
13059 /* No need to distinguish encoding_evex and encoding_evex512. */
13060 if (i.encoding == encoding_evex512)
13061 i.encoding = encoding_evex;
13062 }
13063
edd67638 13064 /* Trim off encoding space. */
d0c2e3ec 13065 if (j > 1 && !i.insn_opcode_space && (val >> ((j - 1) * 8)) == 0x0f)
edd67638
JB
13066 {
13067 uint8_t byte = val >> ((--j - 1) * 8);
13068
d0c2e3ec 13069 i.insn_opcode_space = SPACE_0F;
6804f42c
JB
13070 switch (byte & -(j > 1 && !i.rex2_encoding
13071 && (i.encoding != encoding_egpr || evex)))
edd67638
JB
13072 {
13073 case 0x38:
d0c2e3ec 13074 i.insn_opcode_space = SPACE_0F38;
edd67638
JB
13075 --j;
13076 break;
13077 case 0x3a:
d0c2e3ec 13078 i.insn_opcode_space = SPACE_0F3A;
edd67638
JB
13079 --j;
13080 break;
13081 }
d0c2e3ec 13082 i.tm.opcode_space = i.insn_opcode_space;
edd67638
JB
13083 val &= ((uint64_t)1 << (j * 8)) - 1;
13084 }
d0c2e3ec
JB
13085 if (!i.tm.opcode_space && (vex || evex))
13086 /* Arrange for build_vex_prefix() to properly emit 0xC4/0xC5.
13087 Also avoid hitting abort() there or in build_evex_prefix(). */
13088 i.tm.opcode_space = i.insn_opcode_space == SPACE_0F ? SPACE_0F
13089 : SPACE_0F38;
edd67638
JB
13090
13091 if (j > 2)
13092 {
13093 as_bad (_("opcode residual (%#"PRIx64") too wide"), (uint64_t) val);
6804f42c 13094 goto done;
edd67638
JB
13095 }
13096 i.opcode_length = j;
0ff3b7d0
JB
13097
13098 /* Handle operands, if any. */
6804f42c 13099 if (i.operands)
0ff3b7d0
JB
13100 {
13101 i386_operand_type combined;
f7377a91 13102 expressionS *disp_exp = NULL;
0ff3b7d0
JB
13103 bool changed;
13104
eb3f3841
JB
13105 if (i.encoding == encoding_egpr)
13106 {
13107 if (vex || xop)
13108 {
13109 as_bad (_("eGPR use conflicts with encoding specifier"));
13110 goto done;
13111 }
13112 if (evex)
13113 i.encoding = encoding_evex;
13114 else
13115 i.encoding = encoding_default;
13116 }
13117
0ff3b7d0
JB
13118 /* Are we to emit ModR/M encoding? */
13119 if (!i.short_form
13120 && (i.mem_operands
e346d50a 13121 || i.reg_operands > (i.encoding != encoding_default)
0ff3b7d0
JB
13122 || i.tm.extension_opcode != None))
13123 i.tm.opcode_modifier.modrm = 1;
13124
13125 if (!i.tm.opcode_modifier.modrm
13126 && (i.reg_operands
e346d50a 13127 > i.short_form + 0U + (i.encoding != encoding_default)
0ff3b7d0
JB
13128 || i.mem_operands))
13129 {
13130 as_bad (_("too many register/memory operands"));
13131 goto done;
13132 }
13133
13134 /* Enforce certain constraints on operands. */
13135 switch (i.reg_operands + i.mem_operands
13136 + (i.tm.extension_opcode != None))
13137 {
13138 case 0:
13139 if (i.short_form)
13140 {
13141 as_bad (_("too few register/memory operands"));
13142 goto done;
13143 }
13144 /* Fall through. */
13145 case 1:
13146 if (i.tm.opcode_modifier.modrm)
13147 {
13148 as_bad (_("too few register/memory operands"));
13149 goto done;
13150 }
13151 break;
13152
13153 case 2:
13154 break;
13155
13156 case 4:
13157 if (i.imm_operands
13158 && (i.op[0].imms->X_op != O_constant
13159 || !fits_in_imm4 (i.op[0].imms->X_add_number)))
13160 {
13161 as_bad (_("constant doesn't fit in %d bits"), evex ? 3 : 4);
13162 goto done;
13163 }
13164 /* Fall through. */
13165 case 3:
e346d50a 13166 if (i.encoding != encoding_default)
0ff3b7d0 13167 {
f2a3a881 13168 i.tm.opcode_modifier.vexvvvv = VexVVVV_SRC1;
0ff3b7d0
JB
13169 break;
13170 }
13171 /* Fall through. */
13172 default:
13173 as_bad (_("too many register/memory operands"));
13174 goto done;
13175 }
13176
13177 /* Bring operands into canonical order (imm, mem, reg). */
13178 do
13179 {
13180 changed = false;
13181
13182 for (j = 1; j < i.operands; ++j)
13183 {
13184 if ((!operand_type_check (i.types[j - 1], imm)
13185 && operand_type_check (i.types[j], imm))
13186 || (i.types[j - 1].bitfield.class != ClassNone
13187 && i.types[j].bitfield.class == ClassNone))
13188 {
13189 swap_2_operands (j - 1, j);
13190 changed = true;
13191 }
13192 }
13193 }
13194 while (changed);
13195
13196 /* For Intel syntax swap the order of register operands. */
13197 if (intel_syntax)
13198 switch (i.reg_operands)
13199 {
13200 case 0:
13201 case 1:
13202 break;
13203
13204 case 4:
13205 swap_2_operands (i.imm_operands + i.mem_operands + 1, i.operands - 2);
13206 /* Fall through. */
13207 case 3:
13208 case 2:
13209 swap_2_operands (i.imm_operands + i.mem_operands, i.operands - 1);
13210 break;
13211
13212 default:
13213 abort ();
13214 }
13215
13216 /* Enforce constraints when using VSIB. */
13217 if (i.index_reg
13218 && (i.index_reg->reg_type.bitfield.xmmword
13219 || i.index_reg->reg_type.bitfield.ymmword
13220 || i.index_reg->reg_type.bitfield.zmmword))
13221 {
e346d50a 13222 if (i.encoding == encoding_default)
0ff3b7d0
JB
13223 {
13224 as_bad (_("VSIB unavailable with legacy encoding"));
13225 goto done;
13226 }
13227
e346d50a 13228 if (i.encoding == encoding_evex
0ff3b7d0
JB
13229 && i.reg_operands > 1)
13230 {
13231 /* We could allow two register operands, encoding the 2nd one in
13232 an 8-bit immediate like for 4-register-operand insns, but that
13233 would require ugly fiddling with process_operands() and/or
13234 build_modrm_byte(). */
13235 as_bad (_("too many register operands with VSIB"));
13236 goto done;
13237 }
13238
13239 i.tm.opcode_modifier.sib = 1;
13240 }
13241
13242 /* Establish operand size encoding. */
13243 operand_type_set (&combined, 0);
f7377a91 13244
0ff3b7d0
JB
13245 for (j = i.imm_operands; j < i.operands; ++j)
13246 {
3e4a511b 13247 /* Look for 8-bit operands that use old registers. */
e346d50a 13248 if (i.encoding != encoding_default
3e4a511b
JB
13249 && flag_code == CODE_64BIT
13250 && i.types[j].bitfield.class == Reg
13251 && i.types[j].bitfield.byte
13252 && !(i.op[j].regs->reg_flags & RegRex64)
13253 && i.op[j].regs->reg_num > 3)
13254 as_bad (_("can't encode register '%s%s' with VEX/XOP/EVEX"),
13255 register_prefix, i.op[j].regs->reg_name);
13256
0ff3b7d0
JB
13257 i.types[j].bitfield.instance = InstanceNone;
13258
13259 if (operand_type_check (i.types[j], disp))
f7377a91
JB
13260 {
13261 i.types[j].bitfield.baseindex = 1;
13262 disp_exp = i.op[j].disps;
13263 }
13264
13265 if (evex && i.types[j].bitfield.baseindex)
13266 {
13267 unsigned int n = i.memshift;
13268
13269 if (i.types[j].bitfield.byte)
13270 n = 0;
13271 else if (i.types[j].bitfield.word)
13272 n = 1;
13273 else if (i.types[j].bitfield.dword)
13274 n = 2;
13275 else if (i.types[j].bitfield.qword)
13276 n = 3;
13277 else if (i.types[j].bitfield.xmmword)
13278 n = 4;
13279 else if (i.types[j].bitfield.ymmword)
13280 n = 5;
13281 else if (i.types[j].bitfield.zmmword)
13282 n = 6;
13283
13284 if (i.memshift < 32 && n != i.memshift)
13285 as_warn ("conflicting memory operand size specifiers");
13286 i.memshift = n;
13287 }
0ff3b7d0
JB
13288
13289 if ((i.broadcast.type || i.broadcast.bytes)
13290 && j == i.broadcast.operand)
13291 continue;
13292
13293 combined = operand_type_or (combined, i.types[j]);
13294 combined.bitfield.class = ClassNone;
13295 }
13296
f7377a91
JB
13297 switch ((i.broadcast.type ? i.broadcast.type : 1)
13298 << (i.memshift < 32 ? i.memshift : 0))
13299 {
13300 case 64: combined.bitfield.zmmword = 1; break;
13301 case 32: combined.bitfield.ymmword = 1; break;
13302 case 16: combined.bitfield.xmmword = 1; break;
13303 case 8: combined.bitfield.qword = 1; break;
13304 case 4: combined.bitfield.dword = 1; break;
13305 }
13306
e346d50a 13307 if (i.encoding == encoding_default)
0ff3b7d0
JB
13308 {
13309 if (flag_code == CODE_64BIT && combined.bitfield.qword)
13310 i.rex |= REX_W;
13311 else if ((flag_code == CODE_16BIT ? combined.bitfield.dword
13312 : combined.bitfield.word)
13313 && !add_prefix (DATA_PREFIX_OPCODE))
13314 goto done;
13315 }
13316 else if (!i.tm.opcode_modifier.vexw)
13317 {
13318 if (flag_code == CODE_64BIT)
13319 {
13320 if (combined.bitfield.qword)
13321 i.tm.opcode_modifier.vexw = VEXW1;
13322 else if (combined.bitfield.dword)
13323 i.tm.opcode_modifier.vexw = VEXW0;
13324 }
13325
13326 if (!i.tm.opcode_modifier.vexw)
13327 i.tm.opcode_modifier.vexw = VEXWIG;
13328 }
13329
13330 if (vex || xop)
13331 {
13332 if (!i.tm.opcode_modifier.vex)
13333 {
13334 if (combined.bitfield.ymmword)
13335 i.tm.opcode_modifier.vex = VEX256;
13336 else if (combined.bitfield.xmmword)
13337 i.tm.opcode_modifier.vex = VEX128;
13338 }
13339 }
13340 else if (evex)
13341 {
13342 if (!i.tm.opcode_modifier.evex)
13343 {
13344 /* Do _not_ consider AVX512VL here. */
13345 if (i.rounding.type != rc_none || combined.bitfield.zmmword)
13346 i.tm.opcode_modifier.evex = EVEX512;
13347 else if (combined.bitfield.ymmword)
13348 i.tm.opcode_modifier.evex = EVEX256;
13349 else if (combined.bitfield.xmmword)
13350 i.tm.opcode_modifier.evex = EVEX128;
13351 }
f7377a91
JB
13352
13353 if (i.memshift >= 32)
13354 {
13355 unsigned int n = 0;
13356
13357 switch (i.tm.opcode_modifier.evex)
13358 {
13359 case EVEX512: n = 64; break;
13360 case EVEX256: n = 32; break;
13361 case EVEX128: n = 16; break;
13362 }
13363
13364 if (i.broadcast.type)
13365 n /= i.broadcast.type;
13366
13367 if (n > 0)
13368 for (i.memshift = 0; !(n & 1); n >>= 1)
13369 ++i.memshift;
13370 else if (disp_exp != NULL && disp_exp->X_op == O_constant
13371 && disp_exp->X_add_number != 0
13372 && i.disp_encoding != disp_encoding_32bit)
13373 {
13374 if (!quiet_warnings)
13375 as_warn ("cannot determine memory operand size");
13376 i.disp_encoding = disp_encoding_32bit;
13377 }
13378 }
0ff3b7d0
JB
13379 }
13380
f7377a91
JB
13381 if (i.memshift >= 32)
13382 i.memshift = 0;
13383 else if (!evex)
e346d50a 13384 i.encoding = encoding_error;
f7377a91 13385
0ff3b7d0
JB
13386 if (i.disp_operands && !optimize_disp (&i.tm))
13387 goto done;
13388
c032bc4f
JB
13389 /* Establish size for immediate operands. */
13390 for (j = 0; j < i.imm_operands; ++j)
13391 {
13392 expressionS *expP = i.op[j].imms;
13393
13394 gas_assert (operand_type_check (i.types[j], imm));
13395 operand_type_set (&i.types[j], 0);
13396
13397 if (i.imm_bits[j] > 32)
13398 i.types[j].bitfield.imm64 = 1;
13399 else if (i.imm_bits[j] > 16)
13400 {
13401 if (flag_code == CODE_64BIT && (i.flags[j] & Operand_Signed))
13402 i.types[j].bitfield.imm32s = 1;
13403 else
13404 i.types[j].bitfield.imm32 = 1;
13405 }
13406 else if (i.imm_bits[j] > 8)
13407 i.types[j].bitfield.imm16 = 1;
13408 else if (i.imm_bits[j] > 0)
13409 {
13410 if (i.flags[j] & Operand_Signed)
13411 i.types[j].bitfield.imm8s = 1;
13412 else
13413 i.types[j].bitfield.imm8 = 1;
13414 }
13415 else if (expP->X_op == O_constant)
13416 {
13417 i.types[j] = smallest_imm_type (expP->X_add_number);
13418 i.types[j].bitfield.imm1 = 0;
13419 /* Oddly enough imm_size() checks imm64 first, so the bit needs
13420 zapping since smallest_imm_type() sets it unconditionally. */
13421 if (flag_code != CODE_64BIT)
13422 {
13423 i.types[j].bitfield.imm64 = 0;
13424 i.types[j].bitfield.imm32s = 0;
13425 i.types[j].bitfield.imm32 = 1;
13426 }
13427 else if (i.types[j].bitfield.imm32 || i.types[j].bitfield.imm32s)
13428 i.types[j].bitfield.imm64 = 0;
13429 }
13430 else
13431 /* Non-constant expressions are sized heuristically. */
13432 switch (flag_code)
13433 {
13434 case CODE_64BIT: i.types[j].bitfield.imm32s = 1; break;
13435 case CODE_32BIT: i.types[j].bitfield.imm32 = 1; break;
13436 case CODE_16BIT: i.types[j].bitfield.imm16 = 1; break;
13437 }
13438 }
13439
0ff3b7d0
JB
13440 for (j = 0; j < i.operands; ++j)
13441 i.tm.operand_types[j] = i.types[j];
13442
13443 process_operands ();
13444 }
13445
13446 /* Don't set opcode until after processing operands, to avoid any
13447 potential special casing there. */
13448 i.tm.base_opcode |= val;
13449
e346d50a
JB
13450 if (i.encoding == encoding_error
13451 || (i.encoding != encoding_evex
0ff3b7d0
JB
13452 ? i.broadcast.type || i.broadcast.bytes
13453 || i.rounding.type != rc_none
13454 || i.mask.reg
f586e340
JB
13455 : (i.mem_operands && i.rounding.type != rc_none)
13456 || ((i.broadcast.type || i.broadcast.bytes)
13457 && !(i.flags[i.broadcast.operand] & Operand_Mem))))
0ff3b7d0
JB
13458 {
13459 as_bad (_("conflicting .insn operands"));
13460 goto done;
13461 }
edd67638 13462
d0c2e3ec
JB
13463 if (vex || xop)
13464 {
13465 if (!i.tm.opcode_modifier.vex)
13466 i.tm.opcode_modifier.vex = VEXScalar; /* LIG */
13467
13468 build_vex_prefix (NULL);
13469 i.rex &= REX_OPCODE;
13470 }
13471 else if (evex)
13472 {
13473 if (!i.tm.opcode_modifier.evex)
13474 i.tm.opcode_modifier.evex = EVEXLIG;
13475
13476 build_evex_prefix ();
13477 i.rex &= REX_OPCODE;
13478 }
ce705688
JB
13479 else
13480 establish_rex ();
d0c2e3ec 13481
b5482fe5
JB
13482 last_insn = &seg_info(now_seg)->tc_segment_info_data.last_insn;
13483 output_insn (last_insn);
13484 last_insn->kind = last_insn_directive;
13485 last_insn->name = ".insn directive";
13486 last_insn->file = as_where (&last_insn->line);
edd67638 13487
c7defc53
IB
13488#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13489 /* PS: SCFI is enabled only for System V AMD64 ABI. The ABI check has been
13490 performed in i386_target_format. */
13491 if (IS_ELF && flag_synth_cfi)
13492 as_bad (_("SCFI: hand-crafting instructions not supported"));
13493#endif
13494
d0c2e3ec 13495 done:
edd67638
JB
13496 *saved_ilp = saved_char;
13497 input_line_pointer = line;
13498
13499 demand_empty_rest_of_line ();
d0c2e3ec
JB
13500
13501 /* Make sure dot_insn() won't yield "true" anymore. */
13502 i.tm.mnem_off = 0;
edd67638
JB
13503}
13504
d182319b 13505#ifdef TE_PE
6482c264 13506static void
7016a5d5 13507pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
13508{
13509 expressionS exp;
13510
13511 do
13512 {
13513 expression (&exp);
13514 if (exp.X_op == O_symbol)
13515 exp.X_op = O_secrel;
13516
13517 emit_expr (&exp, 4);
13518 }
13519 while (*input_line_pointer++ == ',');
13520
13521 input_line_pointer--;
13522 demand_empty_rest_of_line ();
13523}
145667f8
MH
13524
13525static void
13526pe_directive_secidx (int dummy ATTRIBUTE_UNUSED)
13527{
13528 expressionS exp;
13529
13530 do
13531 {
13532 expression (&exp);
13533 if (exp.X_op == O_symbol)
13534 exp.X_op = O_secidx;
13535
13536 emit_expr (&exp, 2);
13537 }
13538 while (*input_line_pointer++ == ',');
13539
13540 input_line_pointer--;
13541 demand_empty_rest_of_line ();
13542}
6482c264
NC
13543#endif
13544
7063667e
JB
13545/* Handle Rounding Control / SAE specifiers. */
13546
13547static char *
13548RC_SAE_specifier (const char *pstr)
13549{
13550 unsigned int j;
13551
13552 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
13553 {
13554 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
13555 {
13556 if (i.rounding.type != rc_none)
13557 {
13558 as_bad (_("duplicated `{%s}'"), RC_NamesTable[j].name);
13559 return NULL;
13560 }
13561
eb3f3841
JB
13562 switch (i.encoding)
13563 {
13564 case encoding_default:
13565 case encoding_egpr:
13566 i.encoding = encoding_evex512;
13567 break;
13568 case encoding_evex:
13569 case encoding_evex512:
13570 break;
13571 default:
13572 return NULL;
13573 }
a6f3add0 13574
7063667e
JB
13575 i.rounding.type = RC_NamesTable[j].type;
13576
13577 return (char *)(pstr + RC_NamesTable[j].len);
13578 }
13579 }
13580
13581 return NULL;
13582}
13583
43234a1e
L
13584/* Handle Vector operations. */
13585
13586static char *
f70c6814 13587check_VecOperations (char *op_string)
43234a1e
L
13588{
13589 const reg_entry *mask;
13590 const char *saved;
13591 char *end_op;
13592
f70c6814 13593 while (*op_string)
43234a1e
L
13594 {
13595 saved = op_string;
13596 if (*op_string == '{')
13597 {
13598 op_string++;
13599
13600 /* Check broadcasts. */
d34049e8 13601 if (startswith (op_string, "1to"))
43234a1e 13602 {
5273a3cd 13603 unsigned int bcst_type;
43234a1e 13604
5273a3cd 13605 if (i.broadcast.type)
43234a1e
L
13606 goto duplicated_vec_op;
13607
13608 op_string += 3;
13609 if (*op_string == '8')
8e6e0792 13610 bcst_type = 8;
b28d1bda 13611 else if (*op_string == '4')
8e6e0792 13612 bcst_type = 4;
b28d1bda 13613 else if (*op_string == '2')
8e6e0792 13614 bcst_type = 2;
43234a1e
L
13615 else if (*op_string == '1'
13616 && *(op_string+1) == '6')
13617 {
8e6e0792 13618 bcst_type = 16;
43234a1e
L
13619 op_string++;
13620 }
0cc78721
CL
13621 else if (*op_string == '3'
13622 && *(op_string+1) == '2')
13623 {
13624 bcst_type = 32;
13625 op_string++;
13626 }
43234a1e
L
13627 else
13628 {
13629 as_bad (_("Unsupported broadcast: `%s'"), saved);
13630 return NULL;
13631 }
13632 op_string++;
13633
eb3f3841
JB
13634 switch (i.encoding)
13635 {
13636 case encoding_default:
13637 case encoding_egpr:
13638 i.encoding = encoding_evex;
13639 break;
13640 case encoding_evex:
13641 case encoding_evex512:
13642 break;
13643 default:
13644 goto unknown_vec_op;
13645 }
a6f3add0 13646
5273a3cd
JB
13647 i.broadcast.type = bcst_type;
13648 i.broadcast.operand = this_operand;
f7377a91
JB
13649
13650 /* For .insn a data size specifier may be appended. */
13651 if (dot_insn () && *op_string == ':')
13652 goto dot_insn_modifier;
13653 }
13654 /* Check .insn special cases. */
13655 else if (dot_insn () && *op_string == ':')
13656 {
13657 dot_insn_modifier:
c032bc4f 13658 switch (op_string[1])
f7377a91
JB
13659 {
13660 unsigned long n;
13661
c032bc4f 13662 case 'd':
f7377a91
JB
13663 if (i.memshift < 32)
13664 goto duplicated_vec_op;
13665
13666 n = strtoul (op_string + 2, &end_op, 0);
13667 if (n)
13668 for (i.memshift = 0; !(n & 1); n >>= 1)
13669 ++i.memshift;
13670 if (i.memshift < 32 && n == 1)
13671 op_string = end_op;
c032bc4f
JB
13672 break;
13673
13674 case 's': case 'u':
13675 /* This isn't really a "vector" operation, but a sign/size
13676 specifier for immediate operands of .insn. Note that AT&T
13677 syntax handles the same in i386_immediate(). */
13678 if (!intel_syntax)
13679 break;
13680
13681 if (i.imm_bits[this_operand])
13682 goto duplicated_vec_op;
13683
13684 n = strtoul (op_string + 2, &end_op, 0);
13685 if (n && n <= (flag_code == CODE_64BIT ? 64 : 32))
13686 {
13687 i.imm_bits[this_operand] = n;
13688 if (op_string[1] == 's')
13689 i.flags[this_operand] |= Operand_Signed;
13690 op_string = end_op;
13691 }
13692 break;
f7377a91 13693 }
43234a1e
L
13694 }
13695 /* Check masking operation. */
13696 else if ((mask = parse_register (op_string, &end_op)) != NULL)
13697 {
8a6fb3f9
JB
13698 if (mask == &bad_reg)
13699 return NULL;
13700
43234a1e 13701 /* k0 can't be used for write mask. */
f74a6307 13702 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 13703 {
6d2cd6b2
JB
13704 as_bad (_("`%s%s' can't be used for write mask"),
13705 register_prefix, mask->reg_name);
43234a1e
L
13706 return NULL;
13707 }
13708
6225c532 13709 if (!i.mask.reg)
43234a1e 13710 {
6225c532
JB
13711 i.mask.reg = mask;
13712 i.mask.operand = this_operand;
43234a1e 13713 }
6225c532
JB
13714 else if (i.mask.reg->reg_num)
13715 goto duplicated_vec_op;
43234a1e
L
13716 else
13717 {
6225c532 13718 i.mask.reg = mask;
43234a1e
L
13719
13720 /* Only "{z}" is allowed here. No need to check
13721 zeroing mask explicitly. */
6225c532 13722 if (i.mask.operand != (unsigned int) this_operand)
43234a1e
L
13723 {
13724 as_bad (_("invalid write mask `%s'"), saved);
13725 return NULL;
13726 }
13727 }
13728
13729 op_string = end_op;
13730 }
13731 /* Check zeroing-flag for masking operation. */
13732 else if (*op_string == 'z')
13733 {
6225c532 13734 if (!i.mask.reg)
43234a1e 13735 {
6225c532
JB
13736 i.mask.reg = reg_k0;
13737 i.mask.zeroing = 1;
13738 i.mask.operand = this_operand;
43234a1e
L
13739 }
13740 else
13741 {
6225c532 13742 if (i.mask.zeroing)
43234a1e
L
13743 {
13744 duplicated_vec_op:
13745 as_bad (_("duplicated `%s'"), saved);
13746 return NULL;
13747 }
13748
6225c532 13749 i.mask.zeroing = 1;
43234a1e
L
13750
13751 /* Only "{%k}" is allowed here. No need to check mask
13752 register explicitly. */
6225c532 13753 if (i.mask.operand != (unsigned int) this_operand)
43234a1e
L
13754 {
13755 as_bad (_("invalid zeroing-masking `%s'"),
13756 saved);
13757 return NULL;
13758 }
13759 }
13760
13761 op_string++;
13762 }
7063667e
JB
13763 else if (intel_syntax
13764 && (op_string = RC_SAE_specifier (op_string)) != NULL)
13765 i.rounding.modifier = true;
43234a1e
L
13766 else
13767 goto unknown_vec_op;
13768
13769 if (*op_string != '}')
13770 {
13771 as_bad (_("missing `}' in `%s'"), saved);
13772 return NULL;
13773 }
13774 op_string++;
0ba3a731
L
13775
13776 /* Strip whitespace since the addition of pseudo prefixes
13777 changed how the scrubber treats '{'. */
13778 if (is_space_char (*op_string))
13779 ++op_string;
13780
43234a1e
L
13781 continue;
13782 }
13783 unknown_vec_op:
13784 /* We don't know this one. */
13785 as_bad (_("unknown vector operation: `%s'"), saved);
13786 return NULL;
13787 }
13788
6225c532 13789 if (i.mask.reg && i.mask.zeroing && !i.mask.reg->reg_num)
6d2cd6b2
JB
13790 {
13791 as_bad (_("zeroing-masking only allowed with write mask"));
13792 return NULL;
13793 }
13794
43234a1e
L
13795 return op_string;
13796}
13797
252b5132 13798static int
70e41ade 13799i386_immediate (char *imm_start)
252b5132
RH
13800{
13801 char *save_input_line_pointer;
f3c180ae 13802 char *gotfree_input_line;
252b5132 13803 segT exp_seg = 0;
47926f60 13804 expressionS *exp;
40fb9820
L
13805 i386_operand_type types;
13806
0dfbf9d7 13807 operand_type_set (&types, ~0);
252b5132
RH
13808
13809 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
13810 {
31b2323c
L
13811 as_bad (_("at most %d immediate operands are allowed"),
13812 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
13813 return 0;
13814 }
13815
13816 exp = &im_expressions[i.imm_operands++];
520dc8e8 13817 i.op[this_operand].imms = exp;
252b5132
RH
13818
13819 if (is_space_char (*imm_start))
13820 ++imm_start;
13821
13822 save_input_line_pointer = input_line_pointer;
13823 input_line_pointer = imm_start;
13824
d258b828 13825 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
13826 if (gotfree_input_line)
13827 input_line_pointer = gotfree_input_line;
252b5132 13828
5cc00775 13829 expr_mode = expr_operator_none;
252b5132
RH
13830 exp_seg = expression (exp);
13831
c032bc4f
JB
13832 /* For .insn immediates there may be a size specifier. */
13833 if (dot_insn () && *input_line_pointer == '{' && input_line_pointer[1] == ':'
13834 && (input_line_pointer[2] == 's' || input_line_pointer[2] == 'u'))
13835 {
13836 char *e;
13837 unsigned long n = strtoul (input_line_pointer + 3, &e, 0);
13838
13839 if (*e == '}' && n && n <= (flag_code == CODE_64BIT ? 64 : 32))
13840 {
13841 i.imm_bits[this_operand] = n;
13842 if (input_line_pointer[2] == 's')
13843 i.flags[this_operand] |= Operand_Signed;
13844 input_line_pointer = e + 1;
13845 }
13846 }
13847
83183c0c 13848 SKIP_WHITESPACE ();
252b5132 13849 if (*input_line_pointer)
f3c180ae 13850 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
13851
13852 input_line_pointer = save_input_line_pointer;
f3c180ae 13853 if (gotfree_input_line)
ee86248c
JB
13854 {
13855 free (gotfree_input_line);
13856
9aac24b1 13857 if (exp->X_op == O_constant)
ee86248c
JB
13858 exp->X_op = O_illegal;
13859 }
13860
9aac24b1
JB
13861 if (exp_seg == reg_section)
13862 {
13863 as_bad (_("illegal immediate register operand %s"), imm_start);
13864 return 0;
13865 }
13866
ee86248c
JB
13867 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
13868}
252b5132 13869
ee86248c
JB
13870static int
13871i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
13872 i386_operand_type types, const char *imm_start)
13873{
13874 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 13875 {
313c53d1
L
13876 if (imm_start)
13877 as_bad (_("missing or invalid immediate expression `%s'"),
13878 imm_start);
3992d3b7 13879 return 0;
252b5132 13880 }
3e73aa7c 13881 else if (exp->X_op == O_constant)
252b5132 13882 {
47926f60 13883 /* Size it properly later. */
40fb9820 13884 i.types[this_operand].bitfield.imm64 = 1;
a442cac5
JB
13885
13886 /* If not 64bit, sign/zero extend val, to account for wraparound
13887 when !BFD64. */
5cc00775
JB
13888 if (expr_mode == expr_operator_present
13889 && flag_code != CODE_64BIT && !object_64bit)
a442cac5 13890 exp->X_add_number = extend_to_32bit_address (exp->X_add_number);
252b5132 13891 }
4c63da97 13892#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 13893 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 13894 && exp_seg != absolute_section
47926f60 13895 && exp_seg != text_section
24eab124
AM
13896 && exp_seg != data_section
13897 && exp_seg != bss_section
13898 && exp_seg != undefined_section
f86103b7 13899 && !bfd_is_com_section (exp_seg))
252b5132 13900 {
d0b47220 13901 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
13902 return 0;
13903 }
13904#endif
13905 else
13906 {
13907 /* This is an address. The size of the address will be
24eab124 13908 determined later, depending on destination register,
3e73aa7c 13909 suffix, or the default for the section. */
40fb9820
L
13910 i.types[this_operand].bitfield.imm8 = 1;
13911 i.types[this_operand].bitfield.imm16 = 1;
13912 i.types[this_operand].bitfield.imm32 = 1;
13913 i.types[this_operand].bitfield.imm32s = 1;
13914 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
13915 i.types[this_operand] = operand_type_and (i.types[this_operand],
13916 types);
252b5132
RH
13917 }
13918
13919 return 1;
13920}
13921
551c1ca1 13922static char *
e3bb37b5 13923i386_scale (char *scale)
252b5132 13924{
551c1ca1
AM
13925 offsetT val;
13926 char *save = input_line_pointer;
252b5132 13927
551c1ca1
AM
13928 input_line_pointer = scale;
13929 val = get_absolute_expression ();
13930
13931 switch (val)
252b5132 13932 {
551c1ca1 13933 case 1:
252b5132
RH
13934 i.log2_scale_factor = 0;
13935 break;
551c1ca1 13936 case 2:
252b5132
RH
13937 i.log2_scale_factor = 1;
13938 break;
551c1ca1 13939 case 4:
252b5132
RH
13940 i.log2_scale_factor = 2;
13941 break;
551c1ca1 13942 case 8:
252b5132
RH
13943 i.log2_scale_factor = 3;
13944 break;
13945 default:
a724f0f4
JB
13946 {
13947 char sep = *input_line_pointer;
13948
13949 *input_line_pointer = '\0';
13950 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
13951 scale);
13952 *input_line_pointer = sep;
13953 input_line_pointer = save;
13954 return NULL;
13955 }
252b5132 13956 }
29b0f896 13957 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
13958 {
13959 as_warn (_("scale factor of %d without an index register"),
24eab124 13960 1 << i.log2_scale_factor);
252b5132 13961 i.log2_scale_factor = 0;
252b5132 13962 }
551c1ca1
AM
13963 scale = input_line_pointer;
13964 input_line_pointer = save;
13965 return scale;
252b5132
RH
13966}
13967
252b5132 13968static int
e3bb37b5 13969i386_displacement (char *disp_start, char *disp_end)
252b5132 13970{
29b0f896 13971 expressionS *exp;
252b5132
RH
13972 segT exp_seg = 0;
13973 char *save_input_line_pointer;
f3c180ae 13974 char *gotfree_input_line;
40fb9820
L
13975 int override;
13976 i386_operand_type bigdisp, types = anydisp;
3992d3b7 13977 int ret;
252b5132 13978
31b2323c
L
13979 if (i.disp_operands == MAX_MEMORY_OPERANDS)
13980 {
13981 as_bad (_("at most %d displacement operands are allowed"),
13982 MAX_MEMORY_OPERANDS);
13983 return 0;
13984 }
13985
0dfbf9d7 13986 operand_type_set (&bigdisp, 0);
6f2f06be 13987 if (i.jumpabsolute
48bcea9f 13988 || i.types[this_operand].bitfield.baseindex
d3b01414
JB
13989 || (current_templates.start->opcode_modifier.jump != JUMP
13990 && current_templates.start->opcode_modifier.jump != JUMP_DWORD))
e05278af 13991 {
48bcea9f 13992 i386_addressing_mode ();
e05278af 13993 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
13994 if (flag_code == CODE_64BIT)
13995 {
a775efc8 13996 bigdisp.bitfield.disp32 = 1;
40fb9820 13997 if (!override)
a775efc8 13998 bigdisp.bitfield.disp64 = 1;
40fb9820
L
13999 }
14000 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 14001 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
14002 else
14003 bigdisp.bitfield.disp32 = 1;
e05278af
JB
14004 }
14005 else
14006 {
376cd056
JB
14007 /* For PC-relative branches, the width of the displacement may be
14008 dependent upon data size, but is never dependent upon address size.
14009 Also make sure to not unintentionally match against a non-PC-relative
14010 branch template. */
d3b01414 14011 const insn_template *t = current_templates.start;
5b7c81bd 14012 bool has_intel64 = false;
376cd056 14013
d3b01414 14014 while (++t < current_templates.end)
376cd056
JB
14015 {
14016 if (t->opcode_modifier.jump
d3b01414 14017 != current_templates.start->opcode_modifier.jump)
376cd056 14018 break;
4b5aaf5f 14019 if ((t->opcode_modifier.isa64 >= INTEL64))
5b7c81bd 14020 has_intel64 = true;
376cd056 14021 }
d3b01414 14022 current_templates.end = t;
376cd056 14023
e05278af 14024 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
14025 if (flag_code == CODE_64BIT)
14026 {
376cd056
JB
14027 if ((override || i.suffix == WORD_MNEM_SUFFIX)
14028 && (!intel64 || !has_intel64))
40fb9820
L
14029 bigdisp.bitfield.disp16 = 1;
14030 else
a775efc8 14031 bigdisp.bitfield.disp32 = 1;
40fb9820
L
14032 }
14033 else
e05278af
JB
14034 {
14035 if (!override)
14036 override = (i.suffix == (flag_code != CODE_16BIT
14037 ? WORD_MNEM_SUFFIX
14038 : LONG_MNEM_SUFFIX));
40fb9820
L
14039 bigdisp.bitfield.disp32 = 1;
14040 if ((flag_code == CODE_16BIT) ^ override)
14041 {
14042 bigdisp.bitfield.disp32 = 0;
14043 bigdisp.bitfield.disp16 = 1;
14044 }
e05278af 14045 }
e05278af 14046 }
c6fb90c8
L
14047 i.types[this_operand] = operand_type_or (i.types[this_operand],
14048 bigdisp);
252b5132
RH
14049
14050 exp = &disp_expressions[i.disp_operands];
520dc8e8 14051 i.op[this_operand].disps = exp;
252b5132
RH
14052 i.disp_operands++;
14053 save_input_line_pointer = input_line_pointer;
14054 input_line_pointer = disp_start;
14055 END_STRING_AND_SAVE (disp_end);
14056
14057#ifndef GCC_ASM_O_HACK
14058#define GCC_ASM_O_HACK 0
14059#endif
14060#if GCC_ASM_O_HACK
14061 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 14062 if (i.types[this_operand].bitfield.baseIndex
24eab124 14063 && displacement_string_end[-1] == '+')
252b5132
RH
14064 {
14065 /* This hack is to avoid a warning when using the "o"
24eab124
AM
14066 constraint within gcc asm statements.
14067 For instance:
14068
14069 #define _set_tssldt_desc(n,addr,limit,type) \
14070 __asm__ __volatile__ ( \
14071 "movw %w2,%0\n\t" \
14072 "movw %w1,2+%0\n\t" \
14073 "rorl $16,%1\n\t" \
14074 "movb %b1,4+%0\n\t" \
14075 "movb %4,5+%0\n\t" \
14076 "movb $0,6+%0\n\t" \
14077 "movb %h1,7+%0\n\t" \
14078 "rorl $16,%1" \
14079 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
14080
14081 This works great except that the output assembler ends
14082 up looking a bit weird if it turns out that there is
14083 no offset. You end up producing code that looks like:
14084
14085 #APP
14086 movw $235,(%eax)
14087 movw %dx,2+(%eax)
14088 rorl $16,%edx
14089 movb %dl,4+(%eax)
14090 movb $137,5+(%eax)
14091 movb $0,6+(%eax)
14092 movb %dh,7+(%eax)
14093 rorl $16,%edx
14094 #NO_APP
14095
47926f60 14096 So here we provide the missing zero. */
24eab124
AM
14097
14098 *displacement_string_end = '0';
252b5132
RH
14099 }
14100#endif
d258b828 14101 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
14102 if (gotfree_input_line)
14103 input_line_pointer = gotfree_input_line;
252b5132 14104
5cc00775 14105 expr_mode = expr_operator_none;
24eab124 14106 exp_seg = expression (exp);
252b5132 14107
636c26b0
AM
14108 SKIP_WHITESPACE ();
14109 if (*input_line_pointer)
14110 as_bad (_("junk `%s' after expression"), input_line_pointer);
14111#if GCC_ASM_O_HACK
14112 RESTORE_END_STRING (disp_end + 1);
14113#endif
636c26b0 14114 input_line_pointer = save_input_line_pointer;
636c26b0 14115 if (gotfree_input_line)
ee86248c
JB
14116 {
14117 free (gotfree_input_line);
14118
14119 if (exp->X_op == O_constant || exp->X_op == O_register)
14120 exp->X_op = O_illegal;
14121 }
14122
14123 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
14124
14125 RESTORE_END_STRING (disp_end);
14126
14127 return ret;
14128}
14129
14130static int
14131i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
14132 i386_operand_type types, const char *disp_start)
14133{
ee86248c 14134 int ret = 1;
636c26b0 14135
24eab124
AM
14136 /* We do this to make sure that the section symbol is in
14137 the symbol table. We will ultimately change the relocation
47926f60 14138 to be relative to the beginning of the section. */
1ae12ab7 14139 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
14140 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
14141 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 14142 {
636c26b0 14143 if (exp->X_op != O_symbol)
3992d3b7 14144 goto inv_disp;
636c26b0 14145
e5cb08ac 14146 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
14147 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
14148 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 14149 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
14150 exp->X_op = O_subtract;
14151 exp->X_op_symbol = GOT_symbol;
1ae12ab7 14152 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 14153 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
14154 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
14155 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 14156 else
29b0f896 14157 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 14158 }
252b5132 14159
3992d3b7
AM
14160 else if (exp->X_op == O_absent
14161 || exp->X_op == O_illegal
ee86248c 14162 || exp->X_op == O_big)
2daf4fd8 14163 {
3992d3b7
AM
14164 inv_disp:
14165 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 14166 disp_start);
3992d3b7 14167 ret = 0;
2daf4fd8
AM
14168 }
14169
a50187b2
JB
14170 else if (exp->X_op == O_constant)
14171 {
14172 /* Sizing gets taken care of by optimize_disp().
14173
14174 If not 64bit, sign/zero extend val, to account for wraparound
14175 when !BFD64. */
5cc00775
JB
14176 if (expr_mode == expr_operator_present
14177 && flag_code != CODE_64BIT && !object_64bit)
a50187b2
JB
14178 exp->X_add_number = extend_to_32bit_address (exp->X_add_number);
14179 }
14180
4c63da97 14181#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
a50187b2 14182 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
3992d3b7
AM
14183 && exp_seg != absolute_section
14184 && exp_seg != text_section
14185 && exp_seg != data_section
14186 && exp_seg != bss_section
14187 && exp_seg != undefined_section
14188 && !bfd_is_com_section (exp_seg))
24eab124 14189 {
d0b47220 14190 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 14191 ret = 0;
24eab124 14192 }
252b5132 14193#endif
3956db08 14194
d3b01414 14195 else if (current_templates.start->opcode_modifier.jump == JUMP_BYTE)
48bcea9f
JB
14196 i.types[this_operand].bitfield.disp8 = 1;
14197
40fb9820 14198 /* Check if this is a displacement only operand. */
02b83698
JB
14199 if (!i.types[this_operand].bitfield.baseindex)
14200 i.types[this_operand] =
14201 operand_type_or (operand_type_and_not (i.types[this_operand], anydisp),
14202 operand_type_and (i.types[this_operand], types));
3956db08 14203
3992d3b7 14204 return ret;
252b5132
RH
14205}
14206
2abc2bec
JB
14207/* Return the active addressing mode, taking address override and
14208 registers forming the address into consideration. Update the
14209 address override prefix if necessary. */
47926f60 14210
2abc2bec
JB
14211static enum flag_code
14212i386_addressing_mode (void)
252b5132 14213{
be05d201
L
14214 enum flag_code addr_mode;
14215
14216 if (i.prefix[ADDR_PREFIX])
14217 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
a23b33b3 14218 else if (flag_code == CODE_16BIT
d3b01414 14219 && is_cpu (current_templates.start, CpuMPX)
a23b33b3
JB
14220 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
14221 from md_assemble() by "is not a valid base/index expression"
14222 when there is a base and/or index. */
14223 && !i.types[this_operand].bitfield.baseindex)
14224 {
14225 /* MPX insn memory operands with neither base nor index must be forced
14226 to use 32-bit addressing in 16-bit mode. */
14227 addr_mode = CODE_32BIT;
14228 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
14229 ++i.prefixes;
14230 gas_assert (!i.types[this_operand].bitfield.disp16);
14231 gas_assert (!i.types[this_operand].bitfield.disp32);
14232 }
be05d201
L
14233 else
14234 {
14235 addr_mode = flag_code;
14236
24eab124 14237#if INFER_ADDR_PREFIX
be05d201
L
14238 if (i.mem_operands == 0)
14239 {
14240 /* Infer address prefix from the first memory operand. */
14241 const reg_entry *addr_reg = i.base_reg;
14242
14243 if (addr_reg == NULL)
14244 addr_reg = i.index_reg;
eecb386c 14245
be05d201
L
14246 if (addr_reg)
14247 {
e968fc9b 14248 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
14249 addr_mode = CODE_32BIT;
14250 else if (flag_code != CODE_64BIT
dc821c5f 14251 && addr_reg->reg_type.bitfield.word)
be05d201
L
14252 addr_mode = CODE_16BIT;
14253
14254 if (addr_mode != flag_code)
14255 {
14256 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
14257 i.prefixes += 1;
14258 /* Change the size of any displacement too. At most one
14259 of Disp16 or Disp32 is set.
14260 FIXME. There doesn't seem to be any real need for
14261 separate Disp16 and Disp32 flags. The same goes for
14262 Imm16 and Imm32. Removing them would probably clean
14263 up the code quite a lot. */
14264 if (flag_code != CODE_64BIT
14265 && (i.types[this_operand].bitfield.disp16
14266 || i.types[this_operand].bitfield.disp32))
05909f23
JB
14267 {
14268 static const i386_operand_type disp16_32 = {
14269 .bitfield = { .disp16 = 1, .disp32 = 1 }
14270 };
14271
14272 i.types[this_operand]
14273 = operand_type_xor (i.types[this_operand], disp16_32);
14274 }
be05d201
L
14275 }
14276 }
14277 }
24eab124 14278#endif
be05d201
L
14279 }
14280
2abc2bec
JB
14281 return addr_mode;
14282}
14283
14284/* Make sure the memory operand we've been dealt is valid.
14285 Return 1 on success, 0 on a failure. */
14286
14287static int
14288i386_index_check (const char *operand_string)
14289{
14290 const char *kind = "base/index";
14291 enum flag_code addr_mode = i386_addressing_mode ();
d3b01414 14292 const insn_template *t = current_templates.end - 1;
2abc2bec 14293
77a19f0e 14294 if (t->opcode_modifier.isstring)
fc0763e6
JB
14295 {
14296 /* Memory operands of string insns are special in that they only allow
14297 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201 14298 const reg_entry *expected_reg;
069a1561 14299 static const char di_si[][2][4] =
be05d201
L
14300 {
14301 { "esi", "edi" },
14302 { "si", "di" },
14303 { "rsi", "rdi" }
14304 };
069a1561 14305 static const char bx[][4] = { "ebx", "bx", "rbx" };
fc0763e6
JB
14306
14307 kind = "string address";
14308
a152332d 14309 if (t->opcode_modifier.prefixok == PrefixRep)
fc0763e6 14310 {
77a19f0e 14311 int es_op = t->opcode_modifier.isstring - IS_STRING_ES_OP0;
51c8edf6 14312 int op = 0;
fc0763e6 14313
77a19f0e 14314 if (!t->operand_types[0].bitfield.baseindex
fc0763e6 14315 || ((!i.mem_operands != !intel_syntax)
77a19f0e 14316 && t->operand_types[1].bitfield.baseindex))
51c8edf6 14317 op = 1;
fe0e921f
AM
14318 expected_reg
14319 = (const reg_entry *) str_hash_find (reg_hash,
14320 di_si[addr_mode][op == es_op]);
fc0763e6
JB
14321 }
14322 else
fe0e921f
AM
14323 expected_reg
14324 = (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]);
fc0763e6 14325
be05d201
L
14326 if (i.base_reg != expected_reg
14327 || i.index_reg
fc0763e6 14328 || operand_type_check (i.types[this_operand], disp))
fc0763e6 14329 {
be05d201
L
14330 /* The second memory operand must have the same size as
14331 the first one. */
14332 if (i.mem_operands
14333 && i.base_reg
14334 && !((addr_mode == CODE_64BIT
dc821c5f 14335 && i.base_reg->reg_type.bitfield.qword)
be05d201 14336 || (addr_mode == CODE_32BIT
dc821c5f
JB
14337 ? i.base_reg->reg_type.bitfield.dword
14338 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
14339 goto bad_address;
14340
fc0763e6
JB
14341 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
14342 operand_string,
14343 intel_syntax ? '[' : '(',
14344 register_prefix,
be05d201 14345 expected_reg->reg_name,
fc0763e6 14346 intel_syntax ? ']' : ')');
be05d201 14347 return 1;
fc0763e6 14348 }
be05d201
L
14349 else
14350 return 1;
14351
dc1e8a47 14352 bad_address:
be05d201
L
14353 as_bad (_("`%s' is not a valid %s expression"),
14354 operand_string, kind);
14355 return 0;
3e73aa7c
JH
14356 }
14357 else
14358 {
d3b01414 14359 t = current_templates.start;
77a19f0e 14360
be05d201
L
14361 if (addr_mode != CODE_16BIT)
14362 {
14363 /* 32-bit/64-bit checks. */
41eb8e88
L
14364 if (i.disp_encoding == disp_encoding_16bit)
14365 {
14366 bad_disp:
14367 as_bad (_("invalid `%s' prefix"),
14368 addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}");
14369 return 0;
14370 }
14371
be05d201 14372 if ((i.base_reg
e968fc9b
JB
14373 && ((addr_mode == CODE_64BIT
14374 ? !i.base_reg->reg_type.bitfield.qword
14375 : !i.base_reg->reg_type.bitfield.dword)
14376 || (i.index_reg && i.base_reg->reg_num == RegIP)
14377 || i.base_reg->reg_num == RegIZ))
be05d201 14378 || (i.index_reg
1b54b8d7
JB
14379 && !i.index_reg->reg_type.bitfield.xmmword
14380 && !i.index_reg->reg_type.bitfield.ymmword
14381 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 14382 && ((addr_mode == CODE_64BIT
e968fc9b
JB
14383 ? !i.index_reg->reg_type.bitfield.qword
14384 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
14385 || !i.index_reg->reg_type.bitfield.baseindex)))
14386 goto bad_address;
8178be5b 14387
260cd341 14388 /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
7fc69528
JB
14389 if (t->mnem_off == MN_bndmk
14390 || t->mnem_off == MN_bndldx
14391 || t->mnem_off == MN_bndstx
a152332d 14392 || t->opcode_modifier.sib == SIBMEM)
8178be5b
JB
14393 {
14394 /* They cannot use RIP-relative addressing. */
e968fc9b 14395 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
14396 {
14397 as_bad (_("`%s' cannot be used here"), operand_string);
14398 return 0;
14399 }
14400
14401 /* bndldx and bndstx ignore their scale factor. */
7fc69528 14402 if ((t->mnem_off == MN_bndldx || t->mnem_off == MN_bndstx)
8178be5b
JB
14403 && i.log2_scale_factor)
14404 as_warn (_("register scaling is being ignored here"));
14405 }
be05d201
L
14406 }
14407 else
3e73aa7c 14408 {
be05d201 14409 /* 16-bit checks. */
41eb8e88
L
14410 if (i.disp_encoding == disp_encoding_32bit)
14411 goto bad_disp;
14412
3e73aa7c 14413 if ((i.base_reg
dc821c5f 14414 && (!i.base_reg->reg_type.bitfield.word
40fb9820 14415 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 14416 || (i.index_reg
dc821c5f 14417 && (!i.index_reg->reg_type.bitfield.word
40fb9820 14418 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
14419 || !(i.base_reg
14420 && i.base_reg->reg_num < 6
14421 && i.index_reg->reg_num >= 6
14422 && i.log2_scale_factor == 0))))
be05d201 14423 goto bad_address;
3e73aa7c
JH
14424 }
14425 }
be05d201 14426 return 1;
24eab124 14427}
252b5132 14428
43234a1e
L
14429/* Handle vector immediates. */
14430
14431static int
14432RC_SAE_immediate (const char *imm_start)
14433{
43234a1e 14434 const char *pstr = imm_start;
43234a1e
L
14435
14436 if (*pstr != '{')
14437 return 0;
14438
7063667e
JB
14439 pstr = RC_SAE_specifier (pstr + 1);
14440 if (pstr == NULL)
43234a1e
L
14441 return 0;
14442
14443 if (*pstr++ != '}')
14444 {
14445 as_bad (_("Missing '}': '%s'"), imm_start);
14446 return 0;
14447 }
14448 /* RC/SAE immediate string should contain nothing more. */;
14449 if (*pstr != 0)
14450 {
14451 as_bad (_("Junk after '}': '%s'"), imm_start);
14452 return 0;
14453 }
14454
cf665fee
JB
14455 /* Internally this doesn't count as an operand. */
14456 --i.operands;
43234a1e 14457
43234a1e
L
14458 return 1;
14459}
14460
9d299bea
JB
14461static INLINE bool starts_memory_operand (char c)
14462{
014fbcda 14463 return ISDIGIT (c)
4795cd4a 14464 || is_name_beginner (c)
014fbcda 14465 || strchr ("([\"+-!~", c);
9d299bea
JB
14466}
14467
fc0763e6 14468/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 14469 on error. */
252b5132 14470
252b5132 14471static int
a7619375 14472i386_att_operand (char *operand_string)
252b5132 14473{
af6bdddf
AM
14474 const reg_entry *r;
14475 char *end_op;
24eab124 14476 char *op_string = operand_string;
252b5132 14477
24eab124 14478 if (is_space_char (*op_string))
252b5132
RH
14479 ++op_string;
14480
24eab124 14481 /* We check for an absolute prefix (differentiating,
47926f60 14482 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
ccb05c9c 14483 if (*op_string == ABSOLUTE_PREFIX
d3b01414 14484 && current_templates.start->opcode_modifier.jump)
24eab124
AM
14485 {
14486 ++op_string;
14487 if (is_space_char (*op_string))
14488 ++op_string;
5b7c81bd 14489 i.jumpabsolute = true;
24eab124 14490 }
252b5132 14491
47926f60 14492 /* Check if operand is a register. */
4d1bb795 14493 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 14494 {
40fb9820
L
14495 i386_operand_type temp;
14496
8a6fb3f9
JB
14497 if (r == &bad_reg)
14498 return 0;
14499
24eab124
AM
14500 /* Check for a segment override by searching for ':' after a
14501 segment register. */
14502 op_string = end_op;
14503 if (is_space_char (*op_string))
14504 ++op_string;
00cee14f 14505 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124 14506 {
5e042380 14507 i.seg[i.mem_operands] = r;
252b5132 14508
24eab124 14509 /* Skip the ':' and whitespace. */
252b5132
RH
14510 ++op_string;
14511 if (is_space_char (*op_string))
24eab124 14512 ++op_string;
252b5132 14513
47926f60 14514 /* Handle case of %es:*foo. */
ccb05c9c 14515 if (!i.jumpabsolute && *op_string == ABSOLUTE_PREFIX
d3b01414 14516 && current_templates.start->opcode_modifier.jump)
24eab124
AM
14517 {
14518 ++op_string;
14519 if (is_space_char (*op_string))
14520 ++op_string;
5b7c81bd 14521 i.jumpabsolute = true;
24eab124 14522 }
c8d541e2 14523
9d299bea 14524 if (!starts_memory_operand (*op_string))
c8d541e2
JB
14525 {
14526 as_bad (_("bad memory operand `%s'"), op_string);
14527 return 0;
14528 }
24eab124
AM
14529 goto do_memory_reference;
14530 }
43234a1e
L
14531
14532 /* Handle vector operations. */
14533 if (*op_string == '{')
14534 {
f70c6814 14535 op_string = check_VecOperations (op_string);
43234a1e
L
14536 if (op_string == NULL)
14537 return 0;
14538 }
14539
24eab124
AM
14540 if (*op_string)
14541 {
d0b47220 14542 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
14543 return 0;
14544 }
0ff3b7d0
JB
14545
14546 /* Reject pseudo registers for .insn. */
14547 if (dot_insn () && r->reg_type.bitfield.class == ClassNone)
14548 {
14549 as_bad (_("`%s%s' cannot be used here"),
14550 register_prefix, r->reg_name);
14551 return 0;
14552 }
14553
40fb9820
L
14554 temp = r->reg_type;
14555 temp.bitfield.baseindex = 0;
c6fb90c8
L
14556 i.types[this_operand] = operand_type_or (i.types[this_operand],
14557 temp);
7d5e4556 14558 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 14559 i.op[this_operand].regs = r;
24eab124 14560 i.reg_operands++;
cf665fee
JB
14561
14562 /* A GPR may follow an RC or SAE immediate only if a (vector) register
14563 operand was also present earlier on. */
14564 if (i.rounding.type != rc_none && temp.bitfield.class == Reg
14565 && i.reg_operands == 1)
14566 {
14567 unsigned int j;
14568
14569 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); ++j)
14570 if (i.rounding.type == RC_NamesTable[j].type)
14571 break;
14572 as_bad (_("`%s': misplaced `{%s}'"),
d3b01414 14573 insn_name (current_templates.start), RC_NamesTable[j].name);
cf665fee
JB
14574 return 0;
14575 }
24eab124 14576 }
af6bdddf
AM
14577 else if (*op_string == REGISTER_PREFIX)
14578 {
14579 as_bad (_("bad register name `%s'"), op_string);
14580 return 0;
14581 }
24eab124 14582 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 14583 {
24eab124 14584 ++op_string;
6f2f06be 14585 if (i.jumpabsolute)
24eab124 14586 {
d0b47220 14587 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
14588 return 0;
14589 }
14590 if (!i386_immediate (op_string))
14591 return 0;
cf665fee
JB
14592 if (i.rounding.type != rc_none)
14593 {
14594 as_bad (_("`%s': RC/SAE operand must follow immediate operands"),
d3b01414 14595 insn_name (current_templates.start));
cf665fee
JB
14596 return 0;
14597 }
24eab124 14598 }
43234a1e
L
14599 else if (RC_SAE_immediate (operand_string))
14600 {
cf665fee
JB
14601 /* If it is a RC or SAE immediate, do the necessary placement check:
14602 Only another immediate or a GPR may precede it. */
14603 if (i.mem_operands || i.reg_operands + i.imm_operands > 1
14604 || (i.reg_operands == 1
14605 && i.op[0].regs->reg_type.bitfield.class != Reg))
14606 {
14607 as_bad (_("`%s': misplaced `%s'"),
d3b01414 14608 insn_name (current_templates.start), operand_string);
cf665fee
JB
14609 return 0;
14610 }
43234a1e 14611 }
9d299bea 14612 else if (starts_memory_operand (*op_string))
24eab124 14613 {
47926f60 14614 /* This is a memory reference of some sort. */
af6bdddf 14615 char *base_string;
252b5132 14616
47926f60 14617 /* Start and end of displacement string expression (if found). */
eecb386c
AM
14618 char *displacement_string_start;
14619 char *displacement_string_end;
252b5132 14620
24eab124 14621 do_memory_reference:
24eab124
AM
14622 /* Check for base index form. We detect the base index form by
14623 looking for an ')' at the end of the operand, searching
14624 for the '(' matching it, and finding a REGISTER_PREFIX or ','
14625 after the '('. */
af6bdddf 14626 base_string = op_string + strlen (op_string);
c3332e24 14627
43234a1e 14628 /* Handle vector operations. */
6b5ba0d4
JB
14629 --base_string;
14630 if (is_space_char (*base_string))
14631 --base_string;
14632
14633 if (*base_string == '}')
43234a1e 14634 {
6b5ba0d4
JB
14635 char *vop_start = NULL;
14636
14637 while (base_string-- > op_string)
14638 {
14639 if (*base_string == '"')
14640 break;
14641 if (*base_string != '{')
14642 continue;
14643
14644 vop_start = base_string;
14645
14646 --base_string;
14647 if (is_space_char (*base_string))
14648 --base_string;
14649
14650 if (*base_string != '}')
14651 break;
14652
14653 vop_start = NULL;
14654 }
14655
14656 if (!vop_start)
14657 {
14658 as_bad (_("unbalanced figure braces"));
14659 return 0;
14660 }
14661
f70c6814 14662 if (check_VecOperations (vop_start) == NULL)
43234a1e 14663 return 0;
43234a1e
L
14664 }
14665
47926f60 14666 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
14667 displacement_string_start = op_string;
14668 displacement_string_end = base_string + 1;
252b5132 14669
24eab124
AM
14670 if (*base_string == ')')
14671 {
af6bdddf 14672 char *temp_string;
e87fb6a6
JB
14673 unsigned int parens_not_balanced = 0;
14674 bool in_quotes = false;
e68c3d59 14675
24eab124 14676 /* We've already checked that the number of left & right ()'s are
e87fb6a6
JB
14677 equal, and that there's a matching set of double quotes. */
14678 end_op = base_string;
14679 for (temp_string = op_string; temp_string < end_op; temp_string++)
24eab124 14680 {
e87fb6a6
JB
14681 if (*temp_string == '\\' && temp_string[1] == '"')
14682 ++temp_string;
14683 else if (*temp_string == '"')
14684 in_quotes = !in_quotes;
14685 else if (!in_quotes)
14686 {
14687 if (*temp_string == '(' && !parens_not_balanced++)
14688 base_string = temp_string;
14689 if (*temp_string == ')')
14690 --parens_not_balanced;
14691 }
24eab124 14692 }
c3332e24 14693
af6bdddf 14694 temp_string = base_string;
c3332e24 14695
24eab124 14696 /* Skip past '(' and whitespace. */
4f081312 14697 gas_assert (*base_string == '(');
e87fb6a6 14698 ++base_string;
252b5132 14699 if (is_space_char (*base_string))
24eab124 14700 ++base_string;
252b5132 14701
af6bdddf 14702 if (*base_string == ','
4eed87de
AM
14703 || ((i.base_reg = parse_register (base_string, &end_op))
14704 != NULL))
252b5132 14705 {
af6bdddf 14706 displacement_string_end = temp_string;
252b5132 14707
40fb9820 14708 i.types[this_operand].bitfield.baseindex = 1;
252b5132 14709
af6bdddf 14710 if (i.base_reg)
24eab124 14711 {
8a6fb3f9
JB
14712 if (i.base_reg == &bad_reg)
14713 return 0;
24eab124
AM
14714 base_string = end_op;
14715 if (is_space_char (*base_string))
14716 ++base_string;
af6bdddf
AM
14717 }
14718
14719 /* There may be an index reg or scale factor here. */
14720 if (*base_string == ',')
14721 {
14722 ++base_string;
14723 if (is_space_char (*base_string))
14724 ++base_string;
14725
4eed87de
AM
14726 if ((i.index_reg = parse_register (base_string, &end_op))
14727 != NULL)
24eab124 14728 {
8a6fb3f9
JB
14729 if (i.index_reg == &bad_reg)
14730 return 0;
af6bdddf 14731 base_string = end_op;
24eab124
AM
14732 if (is_space_char (*base_string))
14733 ++base_string;
af6bdddf
AM
14734 if (*base_string == ',')
14735 {
14736 ++base_string;
14737 if (is_space_char (*base_string))
14738 ++base_string;
14739 }
e5cb08ac 14740 else if (*base_string != ')')
af6bdddf 14741 {
4eed87de
AM
14742 as_bad (_("expecting `,' or `)' "
14743 "after index register in `%s'"),
af6bdddf
AM
14744 operand_string);
14745 return 0;
14746 }
24eab124 14747 }
af6bdddf 14748 else if (*base_string == REGISTER_PREFIX)
24eab124 14749 {
f76bf5e0
L
14750 end_op = strchr (base_string, ',');
14751 if (end_op)
14752 *end_op = '\0';
af6bdddf 14753 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
14754 return 0;
14755 }
252b5132 14756
47926f60 14757 /* Check for scale factor. */
551c1ca1 14758 if (*base_string != ')')
af6bdddf 14759 {
551c1ca1
AM
14760 char *end_scale = i386_scale (base_string);
14761
14762 if (!end_scale)
af6bdddf 14763 return 0;
24eab124 14764
551c1ca1 14765 base_string = end_scale;
af6bdddf
AM
14766 if (is_space_char (*base_string))
14767 ++base_string;
14768 if (*base_string != ')')
14769 {
4eed87de
AM
14770 as_bad (_("expecting `)' "
14771 "after scale factor in `%s'"),
af6bdddf
AM
14772 operand_string);
14773 return 0;
14774 }
14775 }
14776 else if (!i.index_reg)
24eab124 14777 {
4eed87de
AM
14778 as_bad (_("expecting index register or scale factor "
14779 "after `,'; got '%c'"),
af6bdddf 14780 *base_string);
24eab124
AM
14781 return 0;
14782 }
14783 }
af6bdddf 14784 else if (*base_string != ')')
24eab124 14785 {
4eed87de
AM
14786 as_bad (_("expecting `,' or `)' "
14787 "after base register in `%s'"),
af6bdddf 14788 operand_string);
24eab124
AM
14789 return 0;
14790 }
c3332e24 14791 }
af6bdddf 14792 else if (*base_string == REGISTER_PREFIX)
c3332e24 14793 {
f76bf5e0
L
14794 end_op = strchr (base_string, ',');
14795 if (end_op)
14796 *end_op = '\0';
af6bdddf 14797 as_bad (_("bad register name `%s'"), base_string);
24eab124 14798 return 0;
c3332e24 14799 }
24eab124
AM
14800 }
14801
14802 /* If there's an expression beginning the operand, parse it,
14803 assuming displacement_string_start and
14804 displacement_string_end are meaningful. */
14805 if (displacement_string_start != displacement_string_end)
14806 {
14807 if (!i386_displacement (displacement_string_start,
14808 displacement_string_end))
14809 return 0;
14810 }
14811
14812 /* Special case for (%dx) while doing input/output op. */
14813 if (i.base_reg
75e5731b
JB
14814 && i.base_reg->reg_type.bitfield.instance == RegD
14815 && i.base_reg->reg_type.bitfield.word
24eab124
AM
14816 && i.index_reg == 0
14817 && i.log2_scale_factor == 0
14818 && i.seg[i.mem_operands] == 0
40fb9820 14819 && !operand_type_check (i.types[this_operand], disp))
24eab124 14820 {
2fb5be8d 14821 i.types[this_operand] = i.base_reg->reg_type;
f0a4cb15
CL
14822 i.op[this_operand].regs = i.base_reg;
14823 i.base_reg = NULL;
9373f275 14824 i.input_output_operand = true;
24eab124
AM
14825 return 1;
14826 }
14827
eecb386c
AM
14828 if (i386_index_check (operand_string) == 0)
14829 return 0;
c48dadc9 14830 i.flags[this_operand] |= Operand_Mem;
24eab124
AM
14831 i.mem_operands++;
14832 }
14833 else
ce8a8b2f
AM
14834 {
14835 /* It's not a memory operand; argh! */
24eab124
AM
14836 as_bad (_("invalid char %s beginning operand %d `%s'"),
14837 output_invalid (*op_string),
14838 this_operand + 1,
14839 op_string);
14840 return 0;
14841 }
47926f60 14842 return 1; /* Normal return. */
252b5132
RH
14843}
14844\f
fa94de6b
RM
14845/* Calculate the maximum variable size (i.e., excluding fr_fix)
14846 that an rs_machine_dependent frag may reach. */
14847
14848unsigned int
14849i386_frag_max_var (fragS *frag)
14850{
14851 /* The only relaxable frags are for jumps.
14852 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
14853 gas_assert (frag->fr_type == rs_machine_dependent);
14854 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
14855}
14856
b084df0b
L
14857#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14858static int
8dcea932 14859elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
14860{
14861 /* STT_GNU_IFUNC symbol must go through PLT. */
14862 if ((symbol_get_bfdsym (fr_symbol)->flags
14863 & BSF_GNU_INDIRECT_FUNCTION) != 0)
14864 return 0;
14865
14866 if (!S_IS_EXTERNAL (fr_symbol))
14867 /* Symbol may be weak or local. */
14868 return !S_IS_WEAK (fr_symbol);
14869
8dcea932
L
14870 /* Global symbols with non-default visibility can't be preempted. */
14871 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
14872 return 1;
14873
14874 if (fr_var != NO_RELOC)
14875 switch ((enum bfd_reloc_code_real) fr_var)
14876 {
14877 case BFD_RELOC_386_PLT32:
14878 case BFD_RELOC_X86_64_PLT32:
33eaf5de 14879 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
14880 return 0;
14881 default:
14882 abort ();
14883 }
14884
b084df0b
L
14885 /* Global symbols with default visibility in a shared library may be
14886 preempted by another definition. */
8dcea932 14887 return !shared;
b084df0b
L
14888}
14889#endif
14890
79d72f45
HL
14891/* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
14892 Note also work for Skylake and Cascadelake.
14893---------------------------------------------------------------------
14894| JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
14895| ------ | ----------- | ------- | -------- |
14896| Jo | N | N | Y |
14897| Jno | N | N | Y |
14898| Jc/Jb | Y | N | Y |
14899| Jae/Jnb | Y | N | Y |
14900| Je/Jz | Y | Y | Y |
14901| Jne/Jnz | Y | Y | Y |
14902| Jna/Jbe | Y | N | Y |
14903| Ja/Jnbe | Y | N | Y |
14904| Js | N | N | Y |
14905| Jns | N | N | Y |
14906| Jp/Jpe | N | N | Y |
14907| Jnp/Jpo | N | N | Y |
14908| Jl/Jnge | Y | Y | Y |
14909| Jge/Jnl | Y | Y | Y |
14910| Jle/Jng | Y | Y | Y |
14911| Jg/Jnle | Y | Y | Y |
14912--------------------------------------------------------------------- */
14913static int
14914i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
14915{
14916 if (mf_cmp == mf_cmp_alu_cmp)
14917 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
14918 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
14919 if (mf_cmp == mf_cmp_incdec)
14920 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
14921 || mf_jcc == mf_jcc_jle);
14922 if (mf_cmp == mf_cmp_test_and)
14923 return 1;
14924 return 0;
14925}
14926
e379e5f3
L
14927/* Return the next non-empty frag. */
14928
14929static fragS *
14930i386_next_non_empty_frag (fragS *fragP)
14931{
14932 /* There may be a frag with a ".fill 0" when there is no room in
14933 the current frag for frag_grow in output_insn. */
14934 for (fragP = fragP->fr_next;
14935 (fragP != NULL
14936 && fragP->fr_type == rs_fill
14937 && fragP->fr_fix == 0);
14938 fragP = fragP->fr_next)
14939 ;
14940 return fragP;
14941}
14942
14943/* Return the next jcc frag after BRANCH_PADDING. */
14944
14945static fragS *
79d72f45 14946i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
e379e5f3 14947{
79d72f45
HL
14948 fragS *branch_fragP;
14949 if (!pad_fragP)
e379e5f3
L
14950 return NULL;
14951
79d72f45
HL
14952 if (pad_fragP->fr_type == rs_machine_dependent
14953 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
e379e5f3
L
14954 == BRANCH_PADDING))
14955 {
79d72f45
HL
14956 branch_fragP = i386_next_non_empty_frag (pad_fragP);
14957 if (branch_fragP->fr_type != rs_machine_dependent)
e379e5f3 14958 return NULL;
79d72f45
HL
14959 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
14960 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
14961 pad_fragP->tc_frag_data.mf_type))
14962 return branch_fragP;
e379e5f3
L
14963 }
14964
14965 return NULL;
14966}
14967
14968/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
14969
14970static void
14971i386_classify_machine_dependent_frag (fragS *fragP)
14972{
14973 fragS *cmp_fragP;
14974 fragS *pad_fragP;
14975 fragS *branch_fragP;
14976 fragS *next_fragP;
14977 unsigned int max_prefix_length;
14978
14979 if (fragP->tc_frag_data.classified)
14980 return;
14981
14982 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
14983 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
14984 for (next_fragP = fragP;
14985 next_fragP != NULL;
14986 next_fragP = next_fragP->fr_next)
14987 {
14988 next_fragP->tc_frag_data.classified = 1;
14989 if (next_fragP->fr_type == rs_machine_dependent)
14990 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
14991 {
14992 case BRANCH_PADDING:
14993 /* The BRANCH_PADDING frag must be followed by a branch
14994 frag. */
14995 branch_fragP = i386_next_non_empty_frag (next_fragP);
14996 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
14997 break;
14998 case FUSED_JCC_PADDING:
14999 /* Check if this is a fused jcc:
15000 FUSED_JCC_PADDING
15001 CMP like instruction
15002 BRANCH_PADDING
15003 COND_JUMP
15004 */
15005 cmp_fragP = i386_next_non_empty_frag (next_fragP);
15006 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
79d72f45 15007 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
e379e5f3
L
15008 if (branch_fragP)
15009 {
15010 /* The BRANCH_PADDING frag is merged with the
15011 FUSED_JCC_PADDING frag. */
15012 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
15013 /* CMP like instruction size. */
15014 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
15015 frag_wane (pad_fragP);
15016 /* Skip to branch_fragP. */
15017 next_fragP = branch_fragP;
15018 }
15019 else if (next_fragP->tc_frag_data.max_prefix_length)
15020 {
15021 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
15022 a fused jcc. */
15023 next_fragP->fr_subtype
15024 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
15025 next_fragP->tc_frag_data.max_bytes
15026 = next_fragP->tc_frag_data.max_prefix_length;
15027 /* This will be updated in the BRANCH_PREFIX scan. */
15028 next_fragP->tc_frag_data.max_prefix_length = 0;
15029 }
15030 else
15031 frag_wane (next_fragP);
15032 break;
15033 }
15034 }
15035
15036 /* Stop if there is no BRANCH_PREFIX. */
15037 if (!align_branch_prefix_size)
15038 return;
15039
15040 /* Scan for BRANCH_PREFIX. */
15041 for (; fragP != NULL; fragP = fragP->fr_next)
15042 {
15043 if (fragP->fr_type != rs_machine_dependent
15044 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
15045 != BRANCH_PREFIX))
15046 continue;
15047
15048 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
15049 COND_JUMP_PREFIX. */
15050 max_prefix_length = 0;
15051 for (next_fragP = fragP;
15052 next_fragP != NULL;
15053 next_fragP = next_fragP->fr_next)
15054 {
15055 if (next_fragP->fr_type == rs_fill)
15056 /* Skip rs_fill frags. */
15057 continue;
15058 else if (next_fragP->fr_type != rs_machine_dependent)
15059 /* Stop for all other frags. */
15060 break;
15061
15062 /* rs_machine_dependent frags. */
15063 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
15064 == BRANCH_PREFIX)
15065 {
15066 /* Count BRANCH_PREFIX frags. */
15067 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
15068 {
15069 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
15070 frag_wane (next_fragP);
15071 }
15072 else
15073 max_prefix_length
15074 += next_fragP->tc_frag_data.max_bytes;
15075 }
15076 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
15077 == BRANCH_PADDING)
15078 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
15079 == FUSED_JCC_PADDING))
15080 {
15081 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
15082 fragP->tc_frag_data.u.padding_fragP = next_fragP;
15083 break;
15084 }
15085 else
15086 /* Stop for other rs_machine_dependent frags. */
15087 break;
15088 }
15089
15090 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
15091
15092 /* Skip to the next frag. */
15093 fragP = next_fragP;
15094 }
15095}
15096
15097/* Compute padding size for
15098
15099 FUSED_JCC_PADDING
15100 CMP like instruction
15101 BRANCH_PADDING
15102 COND_JUMP/UNCOND_JUMP
15103
15104 or
15105
15106 BRANCH_PADDING
15107 COND_JUMP/UNCOND_JUMP
15108 */
15109
15110static int
15111i386_branch_padding_size (fragS *fragP, offsetT address)
15112{
15113 unsigned int offset, size, padding_size;
15114 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
15115
15116 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
15117 if (!address)
15118 address = fragP->fr_address;
15119 address += fragP->fr_fix;
15120
15121 /* CMP like instrunction size. */
15122 size = fragP->tc_frag_data.cmp_size;
15123
15124 /* The base size of the branch frag. */
15125 size += branch_fragP->fr_fix;
15126
15127 /* Add opcode and displacement bytes for the rs_machine_dependent
15128 branch frag. */
15129 if (branch_fragP->fr_type == rs_machine_dependent)
15130 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
15131
15132 /* Check if branch is within boundary and doesn't end at the last
15133 byte. */
15134 offset = address & ((1U << align_branch_power) - 1);
15135 if ((offset + size) >= (1U << align_branch_power))
15136 /* Padding needed to avoid crossing boundary. */
15137 padding_size = (1U << align_branch_power) - offset;
15138 else
15139 /* No padding needed. */
15140 padding_size = 0;
15141
15142 /* The return value may be saved in tc_frag_data.length which is
15143 unsigned byte. */
15144 if (!fits_in_unsigned_byte (padding_size))
15145 abort ();
15146
15147 return padding_size;
15148}
15149
15150/* i386_generic_table_relax_frag()
15151
15152 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
15153 grow/shrink padding to align branch frags. Hand others to
15154 relax_frag(). */
15155
15156long
15157i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
15158{
15159 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
15160 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
15161 {
15162 long padding_size = i386_branch_padding_size (fragP, 0);
15163 long grow = padding_size - fragP->tc_frag_data.length;
15164
15165 /* When the BRANCH_PREFIX frag is used, the computed address
15166 must match the actual address and there should be no padding. */
15167 if (fragP->tc_frag_data.padding_address
15168 && (fragP->tc_frag_data.padding_address != fragP->fr_address
15169 || padding_size))
15170 abort ();
15171
15172 /* Update the padding size. */
15173 if (grow)
15174 fragP->tc_frag_data.length = padding_size;
15175
15176 return grow;
15177 }
15178 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
15179 {
15180 fragS *padding_fragP, *next_fragP;
15181 long padding_size, left_size, last_size;
15182
15183 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
15184 if (!padding_fragP)
15185 /* Use the padding set by the leading BRANCH_PREFIX frag. */
15186 return (fragP->tc_frag_data.length
15187 - fragP->tc_frag_data.last_length);
15188
15189 /* Compute the relative address of the padding frag in the very
15190 first time where the BRANCH_PREFIX frag sizes are zero. */
15191 if (!fragP->tc_frag_data.padding_address)
15192 fragP->tc_frag_data.padding_address
15193 = padding_fragP->fr_address - (fragP->fr_address - stretch);
15194
15195 /* First update the last length from the previous interation. */
15196 left_size = fragP->tc_frag_data.prefix_length;
15197 for (next_fragP = fragP;
15198 next_fragP != padding_fragP;
15199 next_fragP = next_fragP->fr_next)
15200 if (next_fragP->fr_type == rs_machine_dependent
15201 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
15202 == BRANCH_PREFIX))
15203 {
15204 if (left_size)
15205 {
15206 int max = next_fragP->tc_frag_data.max_bytes;
15207 if (max)
15208 {
15209 int size;
15210 if (max > left_size)
15211 size = left_size;
15212 else
15213 size = max;
15214 left_size -= size;
15215 next_fragP->tc_frag_data.last_length = size;
15216 }
15217 }
15218 else
15219 next_fragP->tc_frag_data.last_length = 0;
15220 }
15221
15222 /* Check the padding size for the padding frag. */
15223 padding_size = i386_branch_padding_size
15224 (padding_fragP, (fragP->fr_address
15225 + fragP->tc_frag_data.padding_address));
15226
15227 last_size = fragP->tc_frag_data.prefix_length;
15228 /* Check if there is change from the last interation. */
15229 if (padding_size == last_size)
15230 {
15231 /* Update the expected address of the padding frag. */
15232 padding_fragP->tc_frag_data.padding_address
15233 = (fragP->fr_address + padding_size
15234 + fragP->tc_frag_data.padding_address);
15235 return 0;
15236 }
15237
15238 if (padding_size > fragP->tc_frag_data.max_prefix_length)
15239 {
15240 /* No padding if there is no sufficient room. Clear the
15241 expected address of the padding frag. */
15242 padding_fragP->tc_frag_data.padding_address = 0;
15243 padding_size = 0;
15244 }
15245 else
15246 /* Store the expected address of the padding frag. */
15247 padding_fragP->tc_frag_data.padding_address
15248 = (fragP->fr_address + padding_size
15249 + fragP->tc_frag_data.padding_address);
15250
15251 fragP->tc_frag_data.prefix_length = padding_size;
15252
15253 /* Update the length for the current interation. */
15254 left_size = padding_size;
15255 for (next_fragP = fragP;
15256 next_fragP != padding_fragP;
15257 next_fragP = next_fragP->fr_next)
15258 if (next_fragP->fr_type == rs_machine_dependent
15259 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
15260 == BRANCH_PREFIX))
15261 {
15262 if (left_size)
15263 {
15264 int max = next_fragP->tc_frag_data.max_bytes;
15265 if (max)
15266 {
15267 int size;
15268 if (max > left_size)
15269 size = left_size;
15270 else
15271 size = max;
15272 left_size -= size;
15273 next_fragP->tc_frag_data.length = size;
15274 }
15275 }
15276 else
15277 next_fragP->tc_frag_data.length = 0;
15278 }
15279
15280 return (fragP->tc_frag_data.length
15281 - fragP->tc_frag_data.last_length);
15282 }
15283 return relax_frag (segment, fragP, stretch);
15284}
15285
ee7fcc42
AM
15286/* md_estimate_size_before_relax()
15287
15288 Called just before relax() for rs_machine_dependent frags. The x86
15289 assembler uses these frags to handle variable size jump
15290 instructions.
15291
15292 Any symbol that is now undefined will not become defined.
15293 Return the correct fr_subtype in the frag.
15294 Return the initial "guess for variable size of frag" to caller.
15295 The guess is actually the growth beyond the fixed part. Whatever
15296 we do to grow the fixed or variable part contributes to our
15297 returned value. */
15298
252b5132 15299int
7016a5d5 15300md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 15301{
e379e5f3
L
15302 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
15303 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
15304 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
15305 {
15306 i386_classify_machine_dependent_frag (fragP);
15307 return fragP->tc_frag_data.length;
15308 }
15309
252b5132 15310 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
15311 check for un-relaxable symbols. On an ELF system, we can't relax
15312 an externally visible symbol, because it may be overridden by a
15313 shared library. */
15314 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 15315#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 15316 || (IS_ELF
8dcea932
L
15317 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
15318 fragP->fr_var))
fbeb56a4
DK
15319#endif
15320#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 15321 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 15322 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
15323#endif
15324 )
252b5132 15325 {
b98ef147
AM
15326 /* Symbol is undefined in this segment, or we need to keep a
15327 reloc so that weak symbols can be overridden. */
15328 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 15329 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
15330 unsigned char *opcode;
15331 int old_fr_fix;
eb19308f 15332 fixS *fixP = NULL;
f6af82bd 15333
ee7fcc42 15334 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 15335 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 15336 else if (size == 2)
f6af82bd 15337 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b 15338#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
ed719294
JB
15339 else if (fragP->tc_frag_data.code == CODE_64BIT
15340 && fragP->fr_offset == 0
1ef3994a 15341 && need_plt32_p (fragP->fr_symbol))
bd7ab16b
L
15342 reloc_type = BFD_RELOC_X86_64_PLT32;
15343#endif
f6af82bd
AM
15344 else
15345 reloc_type = BFD_RELOC_32_PCREL;
252b5132 15346
ee7fcc42
AM
15347 old_fr_fix = fragP->fr_fix;
15348 opcode = (unsigned char *) fragP->fr_opcode;
15349
fddf5b5b 15350 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 15351 {
fddf5b5b
AM
15352 case UNCOND_JUMP:
15353 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 15354 opcode[0] = 0xe9;
252b5132 15355 fragP->fr_fix += size;
eb19308f
JB
15356 fixP = fix_new (fragP, old_fr_fix, size,
15357 fragP->fr_symbol,
15358 fragP->fr_offset, 1,
15359 reloc_type);
252b5132
RH
15360 break;
15361
fddf5b5b 15362 case COND_JUMP86:
412167cb
AM
15363 if (size == 2
15364 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
15365 {
15366 /* Negate the condition, and branch past an
15367 unconditional jump. */
15368 opcode[0] ^= 1;
15369 opcode[1] = 3;
15370 /* Insert an unconditional jump. */
15371 opcode[2] = 0xe9;
15372 /* We added two extra opcode bytes, and have a two byte
15373 offset. */
15374 fragP->fr_fix += 2 + 2;
062cd5e7
AS
15375 fix_new (fragP, old_fr_fix + 2, 2,
15376 fragP->fr_symbol,
15377 fragP->fr_offset, 1,
15378 reloc_type);
fddf5b5b
AM
15379 break;
15380 }
15381 /* Fall through. */
15382
15383 case COND_JUMP:
412167cb
AM
15384 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
15385 {
15386 fragP->fr_fix += 1;
3e02c1cc
AM
15387 fixP = fix_new (fragP, old_fr_fix, 1,
15388 fragP->fr_symbol,
15389 fragP->fr_offset, 1,
15390 BFD_RELOC_8_PCREL);
15391 fixP->fx_signed = 1;
412167cb
AM
15392 break;
15393 }
93c2a809 15394
24eab124 15395 /* This changes the byte-displacement jump 0x7N
fddf5b5b 15396 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 15397 opcode[1] = opcode[0] + 0x10;
f6af82bd 15398 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
15399 /* We've added an opcode byte. */
15400 fragP->fr_fix += 1 + size;
eb19308f
JB
15401 fixP = fix_new (fragP, old_fr_fix + 1, size,
15402 fragP->fr_symbol,
15403 fragP->fr_offset, 1,
15404 reloc_type);
252b5132 15405 break;
fddf5b5b
AM
15406
15407 default:
15408 BAD_CASE (fragP->fr_subtype);
15409 break;
252b5132 15410 }
eb19308f
JB
15411
15412 /* All jumps handled here are signed, but don't unconditionally use a
15413 signed limit check for 32 and 16 bit jumps as we want to allow wrap
15414 around at 4G (outside of 64-bit mode) and 64k. */
15415 if (size == 4 && flag_code == CODE_64BIT)
15416 fixP->fx_signed = 1;
15417
252b5132 15418 frag_wane (fragP);
ee7fcc42 15419 return fragP->fr_fix - old_fr_fix;
252b5132 15420 }
93c2a809 15421
93c2a809
AM
15422 /* Guess size depending on current relax state. Initially the relax
15423 state will correspond to a short jump and we return 1, because
15424 the variable part of the frag (the branch offset) is one byte
15425 long. However, we can relax a section more than once and in that
15426 case we must either set fr_subtype back to the unrelaxed state,
15427 or return the value for the appropriate branch. */
15428 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
15429}
15430
47926f60
KH
15431/* Called after relax() is finished.
15432
15433 In: Address of frag.
15434 fr_type == rs_machine_dependent.
15435 fr_subtype is what the address relaxed to.
15436
15437 Out: Any fixSs and constants are set up.
15438 Caller will turn frag into a ".space 0". */
15439
252b5132 15440void
7016a5d5
TG
15441md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
15442 fragS *fragP)
252b5132 15443{
29b0f896 15444 unsigned char *opcode;
252b5132 15445 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
15446 offsetT target_address;
15447 offsetT opcode_address;
252b5132 15448 unsigned int extension = 0;
847f7ad4 15449 offsetT displacement_from_opcode_start;
252b5132 15450
e379e5f3
L
15451 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
15452 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
15453 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
15454 {
15455 /* Generate nop padding. */
15456 unsigned int size = fragP->tc_frag_data.length;
15457 if (size)
15458 {
15459 if (size > fragP->tc_frag_data.max_bytes)
15460 abort ();
15461
15462 if (flag_debug)
15463 {
15464 const char *msg;
15465 const char *branch = "branch";
15466 const char *prefix = "";
15467 fragS *padding_fragP;
15468 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
15469 == BRANCH_PREFIX)
15470 {
15471 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
15472 switch (fragP->tc_frag_data.default_prefix)
15473 {
15474 default:
15475 abort ();
15476 break;
15477 case CS_PREFIX_OPCODE:
15478 prefix = " cs";
15479 break;
15480 case DS_PREFIX_OPCODE:
15481 prefix = " ds";
15482 break;
15483 case ES_PREFIX_OPCODE:
15484 prefix = " es";
15485 break;
15486 case FS_PREFIX_OPCODE:
15487 prefix = " fs";
15488 break;
15489 case GS_PREFIX_OPCODE:
15490 prefix = " gs";
15491 break;
15492 case SS_PREFIX_OPCODE:
15493 prefix = " ss";
15494 break;
15495 }
15496 if (padding_fragP)
15497 msg = _("%s:%u: add %d%s at 0x%llx to align "
15498 "%s within %d-byte boundary\n");
15499 else
15500 msg = _("%s:%u: add additional %d%s at 0x%llx to "
15501 "align %s within %d-byte boundary\n");
15502 }
15503 else
15504 {
15505 padding_fragP = fragP;
15506 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
15507 "%s within %d-byte boundary\n");
15508 }
15509
15510 if (padding_fragP)
15511 switch (padding_fragP->tc_frag_data.branch_type)
15512 {
15513 case align_branch_jcc:
15514 branch = "jcc";
15515 break;
15516 case align_branch_fused:
15517 branch = "fused jcc";
15518 break;
15519 case align_branch_jmp:
15520 branch = "jmp";
15521 break;
15522 case align_branch_call:
15523 branch = "call";
15524 break;
15525 case align_branch_indirect:
15526 branch = "indiret branch";
15527 break;
15528 case align_branch_ret:
15529 branch = "ret";
15530 break;
15531 default:
15532 break;
15533 }
15534
15535 fprintf (stdout, msg,
15536 fragP->fr_file, fragP->fr_line, size, prefix,
15537 (long long) fragP->fr_address, branch,
15538 1 << align_branch_power);
15539 }
15540 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
15541 memset (fragP->fr_opcode,
15542 fragP->tc_frag_data.default_prefix, size);
15543 else
15544 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
15545 size, 0);
15546 fragP->fr_fix += size;
15547 }
15548 return;
15549 }
15550
252b5132
RH
15551 opcode = (unsigned char *) fragP->fr_opcode;
15552
47926f60 15553 /* Address we want to reach in file space. */
252b5132 15554 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 15555
47926f60 15556 /* Address opcode resides at in file space. */
252b5132
RH
15557 opcode_address = fragP->fr_address + fragP->fr_fix;
15558
47926f60 15559 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
15560 displacement_from_opcode_start = target_address - opcode_address;
15561
fddf5b5b 15562 if ((fragP->fr_subtype & BIG) == 0)
252b5132 15563 {
47926f60
KH
15564 /* Don't have to change opcode. */
15565 extension = 1; /* 1 opcode + 1 displacement */
252b5132 15566 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
15567 }
15568 else
15569 {
15570 if (no_cond_jump_promotion
15571 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
15572 as_warn_where (fragP->fr_file, fragP->fr_line,
15573 _("long jump required"));
252b5132 15574
fddf5b5b
AM
15575 switch (fragP->fr_subtype)
15576 {
15577 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
15578 extension = 4; /* 1 opcode + 4 displacement */
15579 opcode[0] = 0xe9;
15580 where_to_put_displacement = &opcode[1];
15581 break;
252b5132 15582
fddf5b5b
AM
15583 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
15584 extension = 2; /* 1 opcode + 2 displacement */
15585 opcode[0] = 0xe9;
15586 where_to_put_displacement = &opcode[1];
15587 break;
252b5132 15588
fddf5b5b
AM
15589 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
15590 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
15591 extension = 5; /* 2 opcode + 4 displacement */
15592 opcode[1] = opcode[0] + 0x10;
15593 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
15594 where_to_put_displacement = &opcode[2];
15595 break;
252b5132 15596
fddf5b5b
AM
15597 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
15598 extension = 3; /* 2 opcode + 2 displacement */
15599 opcode[1] = opcode[0] + 0x10;
15600 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
15601 where_to_put_displacement = &opcode[2];
15602 break;
252b5132 15603
fddf5b5b
AM
15604 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
15605 extension = 4;
15606 opcode[0] ^= 1;
15607 opcode[1] = 3;
15608 opcode[2] = 0xe9;
15609 where_to_put_displacement = &opcode[3];
15610 break;
15611
15612 default:
15613 BAD_CASE (fragP->fr_subtype);
15614 break;
15615 }
252b5132 15616 }
fddf5b5b 15617
7b81dfbb
AJ
15618 /* If size if less then four we are sure that the operand fits,
15619 but if it's 4, then it could be that the displacement is larger
15620 then -/+ 2GB. */
15621 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
15622 && object_64bit
15623 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
15624 + ((addressT) 1 << 31))
15625 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
15626 {
15627 as_bad_where (fragP->fr_file, fragP->fr_line,
15628 _("jump target out of range"));
15629 /* Make us emit 0. */
15630 displacement_from_opcode_start = extension;
15631 }
47926f60 15632 /* Now put displacement after opcode. */
252b5132
RH
15633 md_number_to_chars ((char *) where_to_put_displacement,
15634 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 15635 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
15636 fragP->fr_fix += extension;
15637}
15638\f
7016a5d5 15639/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
15640 by our caller that we have all the info we need to fix it up.
15641
7016a5d5
TG
15642 Parameter valP is the pointer to the value of the bits.
15643
252b5132
RH
15644 On the 386, immediates, displacements, and data pointers are all in
15645 the same (little-endian) format, so we don't need to care about which
15646 we are handling. */
15647
94f592af 15648void
7016a5d5 15649md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15650{
94f592af 15651 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 15652 valueT value = *valP;
252b5132 15653
f86103b7 15654#if !defined (TE_Mach)
93382f6d
AM
15655 if (fixP->fx_pcrel)
15656 {
15657 switch (fixP->fx_r_type)
15658 {
5865bb77
ILT
15659 default:
15660 break;
15661
d6ab8113
JB
15662 case BFD_RELOC_64:
15663 fixP->fx_r_type = BFD_RELOC_64_PCREL;
15664 break;
93382f6d 15665 case BFD_RELOC_32:
ae8887b5 15666 case BFD_RELOC_X86_64_32S:
93382f6d
AM
15667 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15668 break;
15669 case BFD_RELOC_16:
15670 fixP->fx_r_type = BFD_RELOC_16_PCREL;
15671 break;
15672 case BFD_RELOC_8:
15673 fixP->fx_r_type = BFD_RELOC_8_PCREL;
15674 break;
15675 }
15676 }
252b5132 15677
a161fe53 15678 if (fixP->fx_addsy != NULL
31312f95 15679 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 15680 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 15681 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 15682 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 15683 && !use_rela_relocations)
252b5132 15684 {
31312f95
AM
15685 /* This is a hack. There should be a better way to handle this.
15686 This covers for the fact that bfd_install_relocation will
15687 subtract the current location (for partial_inplace, PC relative
15688 relocations); see more below. */
252b5132 15689#ifndef OBJ_AOUT
718ddfc0 15690 if (IS_ELF
252b5132
RH
15691#ifdef TE_PE
15692 || OUTPUT_FLAVOR == bfd_target_coff_flavour
15693#endif
15694 )
15695 value += fixP->fx_where + fixP->fx_frag->fr_address;
15696#endif
15697#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 15698 if (IS_ELF)
252b5132 15699 {
6539b54b 15700 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 15701
6539b54b 15702 if ((sym_seg == seg
2f66722d 15703 || (symbol_section_p (fixP->fx_addsy)
6539b54b 15704 && sym_seg != absolute_section))
af65af87 15705 && !generic_force_reloc (fixP))
2f66722d
AM
15706 {
15707 /* Yes, we add the values in twice. This is because
6539b54b
AM
15708 bfd_install_relocation subtracts them out again. I think
15709 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
15710 it. FIXME. */
15711 value += fixP->fx_where + fixP->fx_frag->fr_address;
15712 }
252b5132
RH
15713 }
15714#endif
15715#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
15716 /* For some reason, the PE format does not store a
15717 section address offset for a PC relative symbol. */
15718 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 15719 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
15720 value += md_pcrel_from (fixP);
15721#endif
15722 }
fbeb56a4 15723#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
15724 if (fixP->fx_addsy != NULL
15725 && S_IS_WEAK (fixP->fx_addsy)
15726 /* PR 16858: Do not modify weak function references. */
15727 && ! fixP->fx_pcrel)
fbeb56a4 15728 {
296a8689
NC
15729#if !defined (TE_PEP)
15730 /* For x86 PE weak function symbols are neither PC-relative
15731 nor do they set S_IS_FUNCTION. So the only reliable way
15732 to detect them is to check the flags of their containing
15733 section. */
15734 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
15735 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
15736 ;
15737 else
15738#endif
fbeb56a4
DK
15739 value -= S_GET_VALUE (fixP->fx_addsy);
15740 }
15741#endif
252b5132
RH
15742
15743 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 15744 and we must not disappoint it. */
252b5132 15745#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 15746 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
15747 switch (fixP->fx_r_type)
15748 {
15749 case BFD_RELOC_386_PLT32:
3e73aa7c 15750 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
15751 /* Make the jump instruction point to the address of the operand.
15752 At runtime we merely add the offset to the actual PLT entry.
15753 NB: Subtract the offset size only for jump instructions. */
15754 if (fixP->fx_pcrel)
15755 value = -4;
47926f60 15756 break;
31312f95 15757
13ae64f3
JJ
15758 case BFD_RELOC_386_TLS_GD:
15759 case BFD_RELOC_386_TLS_LDM:
13ae64f3 15760 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
15761 case BFD_RELOC_386_TLS_IE:
15762 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 15763 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
15764 case BFD_RELOC_X86_64_TLSGD:
15765 case BFD_RELOC_X86_64_TLSLD:
15766 case BFD_RELOC_X86_64_GOTTPOFF:
a533c8df 15767 case BFD_RELOC_X86_64_CODE_4_GOTTPOFF:
5bc71c2a 15768 case BFD_RELOC_X86_64_CODE_6_GOTTPOFF:
67a4f2b7 15769 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
a533c8df 15770 case BFD_RELOC_X86_64_CODE_4_GOTPC32_TLSDESC:
00f7efb6
JJ
15771 value = 0; /* Fully resolved at runtime. No addend. */
15772 /* Fallthrough */
15773 case BFD_RELOC_386_TLS_LE:
15774 case BFD_RELOC_386_TLS_LDO_32:
15775 case BFD_RELOC_386_TLS_LE_32:
15776 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 15777 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 15778 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 15779 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
15780 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15781 break;
15782
67a4f2b7
AO
15783 case BFD_RELOC_386_TLS_DESC_CALL:
15784 case BFD_RELOC_X86_64_TLSDESC_CALL:
15785 value = 0; /* Fully resolved at runtime. No addend. */
15786 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15787 fixP->fx_done = 0;
15788 return;
15789
47926f60
KH
15790 case BFD_RELOC_VTABLE_INHERIT:
15791 case BFD_RELOC_VTABLE_ENTRY:
15792 fixP->fx_done = 0;
94f592af 15793 return;
47926f60
KH
15794
15795 default:
15796 break;
15797 }
15798#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
a442cac5
JB
15799
15800 /* If not 64bit, massage value, to account for wraparound when !BFD64. */
15801 if (!object_64bit)
15802 value = extend_to_32bit_address (value);
15803
c6682705 15804 *valP = value;
f86103b7 15805#endif /* !defined (TE_Mach) */
3e73aa7c 15806
3e73aa7c 15807 /* Are we finished with this relocation now? */
c6682705 15808 if (fixP->fx_addsy == NULL)
b8188555
JB
15809 {
15810 fixP->fx_done = 1;
15811 switch (fixP->fx_r_type)
15812 {
15813 case BFD_RELOC_X86_64_32S:
15814 fixP->fx_signed = 1;
15815 break;
15816
15817 default:
15818 break;
15819 }
15820 }
fbeb56a4
DK
15821#if defined (OBJ_COFF) && defined (TE_PE)
15822 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
15823 {
15824 fixP->fx_done = 0;
15825 /* Remember value for tc_gen_reloc. */
15826 fixP->fx_addnumber = value;
15827 /* Clear out the frag for now. */
15828 value = 0;
15829 }
15830#endif
3e73aa7c
JH
15831 else if (use_rela_relocations)
15832 {
46fb6d5a
JB
15833 if (!disallow_64bit_reloc || fixP->fx_r_type == NO_RELOC)
15834 fixP->fx_no_overflow = 1;
062cd5e7
AS
15835 /* Remember value for tc_gen_reloc. */
15836 fixP->fx_addnumber = value;
3e73aa7c
JH
15837 value = 0;
15838 }
f86103b7 15839
94f592af 15840 md_number_to_chars (p, value, fixP->fx_size);
252b5132 15841}
252b5132 15842\f
6d4af3c2 15843const char *
499ac353 15844md_atof (int type, char *litP, int *sizeP)
252b5132 15845{
499ac353
NC
15846 /* This outputs the LITTLENUMs in REVERSE order;
15847 in accord with the bigendian 386. */
5b7c81bd 15848 return ieee_md_atof (type, litP, sizeP, false);
252b5132
RH
15849}
15850\f
2d545b82 15851static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 15852
252b5132 15853static char *
e3bb37b5 15854output_invalid (int c)
252b5132 15855{
3882b010 15856 if (ISPRINT (c))
f9f21a03
L
15857 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
15858 "'%c'", c);
252b5132 15859 else
f9f21a03 15860 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 15861 "(0x%x)", (unsigned char) c);
252b5132
RH
15862 return output_invalid_buf;
15863}
15864
8a6fb3f9
JB
15865/* Verify that @r can be used in the current context. */
15866
5b7c81bd 15867static bool check_register (const reg_entry *r)
8a6fb3f9
JB
15868{
15869 if (allow_pseudo_reg)
5b7c81bd 15870 return true;
8a6fb3f9
JB
15871
15872 if (operand_type_all_zero (&r->reg_type))
5b7c81bd 15873 return false;
8a6fb3f9
JB
15874
15875 if ((r->reg_type.bitfield.dword
15876 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
15877 || r->reg_type.bitfield.class == RegCR
22e00a3f 15878 || r->reg_type.bitfield.class == RegDR)
8a6fb3f9 15879 && !cpu_arch_flags.bitfield.cpui386)
5b7c81bd 15880 return false;
8a6fb3f9 15881
22e00a3f
JB
15882 if (r->reg_type.bitfield.class == RegTR
15883 && (flag_code == CODE_64BIT
15884 || !cpu_arch_flags.bitfield.cpui386
15885 || cpu_arch_isa_flags.bitfield.cpui586
15886 || cpu_arch_isa_flags.bitfield.cpui686))
5b7c81bd 15887 return false;
22e00a3f 15888
8a6fb3f9 15889 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
5b7c81bd 15890 return false;
8a6fb3f9
JB
15891
15892 if (!cpu_arch_flags.bitfield.cpuavx512f)
15893 {
15894 if (r->reg_type.bitfield.zmmword
15895 || r->reg_type.bitfield.class == RegMask)
5b7c81bd 15896 return false;
8a6fb3f9
JB
15897
15898 if (!cpu_arch_flags.bitfield.cpuavx)
15899 {
15900 if (r->reg_type.bitfield.ymmword)
5b7c81bd 15901 return false;
8a6fb3f9
JB
15902
15903 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
5b7c81bd 15904 return false;
8a6fb3f9
JB
15905 }
15906 }
15907
a6f3add0
JB
15908 if (r->reg_type.bitfield.zmmword)
15909 {
15910 if (vector_size < VSZ512)
15911 return false;
15912
eb3f3841
JB
15913 switch (i.encoding)
15914 {
15915 case encoding_default:
15916 case encoding_egpr:
15917 i.encoding = encoding_evex512;
15918 break;
15919 case encoding_evex:
15920 case encoding_evex512:
15921 break;
15922 default:
15923 i.encoding = encoding_error;
15924 break;
15925 }
a6f3add0 15926 }
4fc85f37
JB
15927
15928 if (vector_size < VSZ256 && r->reg_type.bitfield.ymmword)
15929 return false;
15930
260cd341
LC
15931 if (r->reg_type.bitfield.tmmword
15932 && (!cpu_arch_flags.bitfield.cpuamx_tile
15933 || flag_code != CODE_64BIT))
5b7c81bd 15934 return false;
260cd341 15935
8a6fb3f9 15936 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
5b7c81bd 15937 return false;
8a6fb3f9
JB
15938
15939 /* Don't allow fake index register unless allow_index_reg isn't 0. */
15940 if (!allow_index_reg && r->reg_num == RegIZ)
5b7c81bd 15941 return false;
8a6fb3f9
JB
15942
15943 /* Upper 16 vector registers are only available with VREX in 64bit
15944 mode, and require EVEX encoding. */
15945 if (r->reg_flags & RegVRex)
15946 {
15947 if (!cpu_arch_flags.bitfield.cpuavx512f
15948 || flag_code != CODE_64BIT)
5b7c81bd 15949 return false;
8a6fb3f9 15950
eb3f3841
JB
15951 switch (i.encoding)
15952 {
15953 case encoding_default:
15954 case encoding_egpr:
15955 case encoding_evex512:
15956 i.encoding = encoding_evex;
15957 break;
15958 case encoding_evex:
15959 break;
15960 default:
15961 i.encoding = encoding_error;
15962 break;
15963 }
8a6fb3f9
JB
15964 }
15965
80d61d8d
CL
15966 if (r->reg_flags & RegRex2)
15967 {
15968 if (!cpu_arch_flags.bitfield.cpuapx_f
15969 || flag_code != CODE_64BIT)
15970 return false;
6177c84d 15971
eb3f3841
JB
15972 switch (i.encoding)
15973 {
15974 case encoding_default:
15975 i.encoding = encoding_egpr;
15976 break;
15977 case encoding_egpr:
15978 case encoding_evex:
15979 case encoding_evex512:
15980 break;
15981 default:
15982 i.encoding = encoding_error;
15983 break;
15984 }
80d61d8d
CL
15985 }
15986
8a6fb3f9 15987 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
da5f9eb4 15988 && (!cpu_arch_flags.bitfield.cpu64
0ff3b7d0
JB
15989 || r->reg_type.bitfield.class != RegCR
15990 || dot_insn ())
8a6fb3f9 15991 && flag_code != CODE_64BIT)
5b7c81bd 15992 return false;
8a6fb3f9
JB
15993
15994 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
15995 && !intel_syntax)
5b7c81bd 15996 return false;
8a6fb3f9 15997
5b7c81bd 15998 return true;
8a6fb3f9
JB
15999}
16000
af6bdddf 16001/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
16002
16003static const reg_entry *
74e05e01 16004parse_real_register (const char *reg_string, char **end_op)
252b5132 16005{
74e05e01 16006 const char *s = reg_string;
af6bdddf 16007 char *p;
252b5132
RH
16008 char reg_name_given[MAX_REG_NAME_SIZE + 1];
16009 const reg_entry *r;
16010
16011 /* Skip possible REGISTER_PREFIX and possible whitespace. */
16012 if (*s == REGISTER_PREFIX)
16013 ++s;
16014
16015 if (is_space_char (*s))
16016 ++s;
16017
16018 p = reg_name_given;
af6bdddf 16019 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
16020 {
16021 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
16022 return (const reg_entry *) NULL;
16023 s++;
252b5132
RH
16024 }
16025
4795cd4a 16026 if (is_part_of_name (*s))
6588847e
DN
16027 return (const reg_entry *) NULL;
16028
74e05e01 16029 *end_op = (char *) s;
252b5132 16030
629310ab 16031 r = (const reg_entry *) str_hash_find (reg_hash, reg_name_given);
252b5132 16032
5f47d35b 16033 /* Handle floating point regs, allowing spaces in the (i) part. */
6288d05f 16034 if (r == reg_st0)
5f47d35b 16035 {
0e0eea78
JB
16036 if (!cpu_arch_flags.bitfield.cpu8087
16037 && !cpu_arch_flags.bitfield.cpu287
af32b722
JB
16038 && !cpu_arch_flags.bitfield.cpu387
16039 && !allow_pseudo_reg)
0e0eea78
JB
16040 return (const reg_entry *) NULL;
16041
5f47d35b
AM
16042 if (is_space_char (*s))
16043 ++s;
16044 if (*s == '(')
16045 {
af6bdddf 16046 ++s;
5f47d35b
AM
16047 if (is_space_char (*s))
16048 ++s;
16049 if (*s >= '0' && *s <= '7')
16050 {
db557034 16051 int fpr = *s - '0';
af6bdddf 16052 ++s;
5f47d35b
AM
16053 if (is_space_char (*s))
16054 ++s;
16055 if (*s == ')')
16056 {
74e05e01 16057 *end_op = (char *) s + 1;
6288d05f 16058 know (r[fpr].reg_num == fpr);
db557034 16059 return r + fpr;
5f47d35b 16060 }
5f47d35b 16061 }
47926f60 16062 /* We have "%st(" then garbage. */
5f47d35b
AM
16063 return (const reg_entry *) NULL;
16064 }
16065 }
16066
8a6fb3f9 16067 return r && check_register (r) ? r : NULL;
252b5132 16068}
4d1bb795
JB
16069
16070/* REG_STRING starts *before* REGISTER_PREFIX. */
16071
16072static const reg_entry *
4f081312 16073parse_register (const char *reg_string, char **end_op)
4d1bb795
JB
16074{
16075 const reg_entry *r;
16076
16077 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
16078 r = parse_real_register (reg_string, end_op);
16079 else
16080 r = NULL;
16081 if (!r)
16082 {
16083 char *save = input_line_pointer;
4f081312 16084 char *buf = xstrdup (reg_string), *name;
4d1bb795
JB
16085 symbolS *symbolP;
16086
4f081312
JB
16087 input_line_pointer = buf;
16088 get_symbol_name (&name);
16089 symbolP = symbol_find (name);
d50c498a 16090 while (symbolP && symbol_equated_p (symbolP))
64d23078
JB
16091 {
16092 const expressionS *e = symbol_get_value_expression(symbolP);
16093
d50c498a 16094 if (e->X_add_number)
64d23078
JB
16095 break;
16096 symbolP = e->X_add_symbol;
16097 }
4d1bb795
JB
16098 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
16099 {
16100 const expressionS *e = symbol_get_value_expression (symbolP);
16101
0ccade1a
JB
16102 if (e->X_op == O_register)
16103 {
16104 know (e->X_add_number >= 0
16105 && (valueT) e->X_add_number < i386_regtab_size);
16106 r = i386_regtab + e->X_add_number;
4f081312 16107 *end_op = (char *) reg_string + (input_line_pointer - buf);
0ccade1a
JB
16108 }
16109 if (r && !check_register (r))
8a6fb3f9 16110 {
3b55a1d0
JB
16111 as_bad (_("register '%s%s' cannot be used here"),
16112 register_prefix, r->reg_name);
16113 r = &bad_reg;
8a6fb3f9 16114 }
4d1bb795 16115 }
4d1bb795 16116 input_line_pointer = save;
4f081312 16117 free (buf);
4d1bb795
JB
16118 }
16119 return r;
16120}
16121
16122int
16123i386_parse_name (char *name, expressionS *e, char *nextcharP)
16124{
4faaa10f 16125 const reg_entry *r = NULL;
4d1bb795
JB
16126 char *end = input_line_pointer;
16127
6acf9130
JB
16128 /* We only know the terminating character here. It being double quote could
16129 be the closing one of a quoted symbol name, or an opening one from a
16130 following string (or another quoted symbol name). Since the latter can't
16131 be valid syntax for anything, bailing in either case is good enough. */
16132 if (*nextcharP == '"')
16133 return 0;
16134
4d1bb795 16135 *end = *nextcharP;
4faaa10f
JB
16136 if (*name == REGISTER_PREFIX || allow_naked_reg)
16137 r = parse_real_register (name, &input_line_pointer);
4d1bb795
JB
16138 if (r && end <= input_line_pointer)
16139 {
16140 *nextcharP = *input_line_pointer;
16141 *input_line_pointer = 0;
f847749a
JB
16142 e->X_op = O_register;
16143 e->X_add_number = r - i386_regtab;
4d1bb795
JB
16144 return 1;
16145 }
16146 input_line_pointer = end;
16147 *end = 0;
ee86248c 16148 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
16149}
16150
16151void
16152md_operand (expressionS *e)
16153{
ee86248c
JB
16154 char *end;
16155 const reg_entry *r;
4d1bb795 16156
ee86248c
JB
16157 switch (*input_line_pointer)
16158 {
16159 case REGISTER_PREFIX:
16160 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
16161 if (r)
16162 {
16163 e->X_op = O_register;
16164 e->X_add_number = r - i386_regtab;
16165 input_line_pointer = end;
16166 }
ee86248c
JB
16167 break;
16168
16169 case '[':
9c2799c2 16170 gas_assert (intel_syntax);
ee86248c
JB
16171 end = input_line_pointer++;
16172 expression (e);
16173 if (*input_line_pointer == ']')
16174 {
16175 ++input_line_pointer;
16176 e->X_op_symbol = make_expr_symbol (e);
16177 e->X_add_symbol = NULL;
16178 e->X_add_number = 0;
16179 e->X_op = O_index;
16180 }
16181 else
16182 {
16183 e->X_op = O_absent;
16184 input_line_pointer = end;
16185 }
16186 break;
4d1bb795
JB
16187 }
16188}
16189
5cc00775
JB
16190#ifdef BFD64
16191/* To maintain consistency with !BFD64 builds of gas record, whether any
16192 (binary) operator was involved in an expression. As expressions are
16193 evaluated in only 32 bits when !BFD64, we use this to decide whether to
16194 truncate results. */
16195bool i386_record_operator (operatorT op,
16196 const expressionS *left,
16197 const expressionS *right)
16198{
16199 if (op == O_absent)
16200 return false;
16201
16202 if (!left)
16203 {
16204 /* Since the expression parser applies unary operators fine to bignum
16205 operands, we don't need to be concerned of respective operands not
16206 fitting in 32 bits. */
16207 if (right->X_op == O_constant && right->X_unsigned
16208 && !fits_in_unsigned_long (right->X_add_number))
16209 return false;
16210 }
16211 /* This isn't entirely right: The pattern can also result when constant
16212 expressions are folded (e.g. 0xffffffff + 1). */
16213 else if ((left->X_op == O_constant && left->X_unsigned
16214 && !fits_in_unsigned_long (left->X_add_number))
16215 || (right->X_op == O_constant && right->X_unsigned
16216 && !fits_in_unsigned_long (right->X_add_number)))
16217 expr_mode = expr_large_value;
16218
16219 if (expr_mode != expr_large_value)
16220 expr_mode = expr_operator_present;
16221
16222 return false;
16223}
16224#endif
252b5132 16225\f
4cc782b5 16226#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 16227const char *md_shortopts = "kVQ:sqnO::";
252b5132 16228#else
b6f8c7c4 16229const char *md_shortopts = "qnO::";
252b5132 16230#endif
6e0b89ee 16231
3e73aa7c 16232#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
16233#define OPTION_64 (OPTION_MD_BASE + 1)
16234#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
16235#define OPTION_MARCH (OPTION_MD_BASE + 3)
16236#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
16237#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
16238#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
16239#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
16240#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 16241#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 16242#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 16243#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
16244#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
16245#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
16246#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 16247#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
16248#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
16249#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 16250#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 16251#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 16252#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 16253#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
16254#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
16255#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 16256#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 16257#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 16258#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
16259#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
16260#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
16261#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 16262#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
ae531041
L
16263#define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
16264#define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
16265#define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
c8480b58 16266#define OPTION_MUSE_UNALIGNED_VECTOR_MOVE (OPTION_MD_BASE + 34)
b3b91714 16267
99ad8390
NC
16268struct option md_longopts[] =
16269{
3e73aa7c 16270 {"32", no_argument, NULL, OPTION_32},
321098a5 16271#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 16272 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 16273 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
16274#endif
16275#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 16276 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 16277 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 16278 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 16279#endif
b3b91714 16280 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
16281 {"march", required_argument, NULL, OPTION_MARCH},
16282 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
16283 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
16284 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
16285 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
16286 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 16287 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
c8480b58 16288 {"muse-unaligned-vector-move", no_argument, NULL, OPTION_MUSE_UNALIGNED_VECTOR_MOVE},
daf50ae7 16289 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 16290 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 16291 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 16292 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 16293 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
16294 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
16295 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
16296# if defined (TE_PE) || defined (TE_PEP)
16297 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
16298#endif
d1982f93 16299 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 16300 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 16301 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 16302 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
16303 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
16304 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
16305 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 16306 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
ae531041
L
16307 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
16308 {"mlfence-before-indirect-branch", required_argument, NULL,
16309 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
16310 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
5db04b09
L
16311 {"mamd64", no_argument, NULL, OPTION_MAMD64},
16312 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
16313 {NULL, no_argument, NULL, 0}
16314};
16315size_t md_longopts_size = sizeof (md_longopts);
16316
16317int
17b9d67d 16318md_parse_option (int c, const char *arg)
252b5132 16319{
91d6fa6a 16320 unsigned int j;
e379e5f3 16321 char *arch, *next, *saved, *type;
9103f4f4 16322
252b5132
RH
16323 switch (c)
16324 {
12b55ccc
L
16325 case 'n':
16326 optimize_align_code = 0;
16327 break;
16328
a38cf1db
AM
16329 case 'q':
16330 quiet_warnings = 1;
252b5132
RH
16331 break;
16332
16333#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
16334 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
16335 should be emitted or not. FIXME: Not implemented. */
16336 case 'Q':
d4693039
JB
16337 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
16338 return 0;
252b5132
RH
16339 break;
16340
16341 /* -V: SVR4 argument to print version ID. */
16342 case 'V':
16343 print_version_id ();
16344 break;
16345
a38cf1db
AM
16346 /* -k: Ignore for FreeBSD compatibility. */
16347 case 'k':
252b5132 16348 break;
4cc782b5
ILT
16349
16350 case 's':
16351 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 16352 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 16353 break;
8dcea932
L
16354
16355 case OPTION_MSHARED:
16356 shared = 1;
16357 break;
b4a3a7b4
L
16358
16359 case OPTION_X86_USED_NOTE:
16360 if (strcasecmp (arg, "yes") == 0)
16361 x86_used_note = 1;
16362 else if (strcasecmp (arg, "no") == 0)
16363 x86_used_note = 0;
16364 else
16365 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
16366 break;
16367
16368
99ad8390 16369#endif
321098a5 16370#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 16371 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
16372 case OPTION_64:
16373 {
16374 const char **list, **l;
16375
3e73aa7c
JH
16376 list = bfd_target_list ();
16377 for (l = list; *l != NULL; l++)
08dedd66 16378 if (startswith (*l, "elf64-x86-64")
99ad8390
NC
16379 || strcmp (*l, "coff-x86-64") == 0
16380 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
16381 || strcmp (*l, "pei-x86-64") == 0
16382 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
16383 {
16384 default_arch = "x86_64";
16385 break;
16386 }
3e73aa7c 16387 if (*l == NULL)
2b5d6a91 16388 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
16389 free (list);
16390 }
16391 break;
16392#endif
252b5132 16393
351f65ca 16394#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 16395 case OPTION_X32:
351f65ca
L
16396 if (IS_ELF)
16397 {
16398 const char **list, **l;
16399
16400 list = bfd_target_list ();
16401 for (l = list; *l != NULL; l++)
08dedd66 16402 if (startswith (*l, "elf32-x86-64"))
351f65ca
L
16403 {
16404 default_arch = "x86_64:32";
16405 break;
16406 }
16407 if (*l == NULL)
2b5d6a91 16408 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
16409 free (list);
16410 }
16411 else
16412 as_fatal (_("32bit x86_64 is only supported for ELF"));
16413 break;
16414#endif
16415
6e0b89ee 16416 case OPTION_32:
590a0fed
JB
16417 {
16418 const char **list, **l;
16419
16420 list = bfd_target_list ();
16421 for (l = list; *l != NULL; l++)
16422 if (strstr (*l, "-i386")
16423 || strstr (*l, "-go32"))
16424 {
16425 default_arch = "i386";
16426 break;
16427 }
16428 if (*l == NULL)
16429 as_fatal (_("no compiled in support for ix86"));
16430 free (list);
16431 }
6e0b89ee
AM
16432 break;
16433
b3b91714
AM
16434 case OPTION_DIVIDE:
16435#ifdef SVR4_COMMENT_CHARS
16436 {
16437 char *n, *t;
16438 const char *s;
16439
add39d23 16440 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
16441 t = n;
16442 for (s = i386_comment_chars; *s != '\0'; s++)
16443 if (*s != '/')
16444 *t++ = *s;
16445 *t = '\0';
16446 i386_comment_chars = n;
16447 }
16448#endif
16449 break;
16450
9103f4f4 16451 case OPTION_MARCH:
293f5f65
L
16452 saved = xstrdup (arg);
16453 arch = saved;
16454 /* Allow -march=+nosse. */
16455 if (*arch == '+')
16456 arch++;
6305a203 16457 do
9103f4f4 16458 {
4fc85f37
JB
16459 char *vsz;
16460
6305a203 16461 if (*arch == '.')
2b5d6a91 16462 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
16463 next = strchr (arch, '+');
16464 if (next)
16465 *next++ = '\0';
4fc85f37
JB
16466 vsz = strchr (arch, '/');
16467 if (vsz)
16468 *vsz++ = '\0';
91d6fa6a 16469 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 16470 {
4fc85f37
JB
16471 if (vsz && cpu_arch[j].vsz != vsz_set)
16472 continue;
16473
ae89daec
JB
16474 if (arch == saved && cpu_arch[j].type != PROCESSOR_NONE
16475 && strcmp (arch, cpu_arch[j].name) == 0)
ccc9c027 16476 {
6305a203 16477 /* Processor. */
ae89daec 16478 if (! cpu_arch[j].enable.bitfield.cpui386)
1ded5609
JB
16479 continue;
16480
91d6fa6a 16481 cpu_arch_name = cpu_arch[j].name;
d92c7521 16482 free (cpu_sub_arch_name);
6305a203 16483 cpu_sub_arch_name = NULL;
ae89daec 16484 cpu_arch_flags = cpu_arch[j].enable;
91d6fa6a 16485 cpu_arch_isa = cpu_arch[j].type;
ae89daec 16486 cpu_arch_isa_flags = cpu_arch[j].enable;
6305a203 16487 if (!cpu_arch_tune_set)
fb263707 16488 cpu_arch_tune = cpu_arch_isa;
4fc85f37 16489 vector_size = VSZ_DEFAULT;
6305a203
L
16490 break;
16491 }
ae89daec
JB
16492 else if (cpu_arch[j].type == PROCESSOR_NONE
16493 && strcmp (arch, cpu_arch[j].name) == 0
16494 && !cpu_flags_all_zero (&cpu_arch[j].enable))
6305a203 16495 {
33eaf5de 16496 /* ISA extension. */
bd483d21 16497 isa_enable (j);
4fc85f37
JB
16498
16499 switch (cpu_arch[j].vsz)
16500 {
16501 default:
16502 break;
16503
16504 case vsz_set:
16505 if (vsz)
16506 {
16507 char *end;
16508 unsigned long val = strtoul (vsz, &end, 0);
16509
16510 if (*end)
16511 val = 0;
16512 switch (val)
16513 {
16514 case 512: vector_size = VSZ512; break;
16515 case 256: vector_size = VSZ256; break;
16516 case 128: vector_size = VSZ128; break;
16517 default:
16518 as_warn (_("Unrecognized vector size specifier ignored"));
16519 break;
16520 }
16521 break;
16522 }
16523 /* Fall through. */
16524 case vsz_reset:
16525 vector_size = VSZ_DEFAULT;
16526 break;
16527 }
16528
6305a203 16529 break;
ccc9c027 16530 }
9103f4f4 16531 }
6305a203 16532
ae89daec 16533 if (j >= ARRAY_SIZE (cpu_arch) && startswith (arch, "no"))
293f5f65 16534 {
33eaf5de 16535 /* Disable an ISA extension. */
ae89daec
JB
16536 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
16537 if (cpu_arch[j].type == PROCESSOR_NONE
16538 && strcmp (arch + 2, cpu_arch[j].name) == 0)
293f5f65 16539 {
bd483d21 16540 isa_disable (j);
4fc85f37
JB
16541 if (cpu_arch[j].vsz == vsz_set)
16542 vector_size = VSZ_DEFAULT;
293f5f65
L
16543 break;
16544 }
293f5f65
L
16545 }
16546
91d6fa6a 16547 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 16548 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
16549
16550 arch = next;
9103f4f4 16551 }
293f5f65
L
16552 while (next != NULL);
16553 free (saved);
9103f4f4
L
16554 break;
16555
16556 case OPTION_MTUNE:
16557 if (*arg == '.')
2b5d6a91 16558 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 16559 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 16560 {
ae89daec
JB
16561 if (cpu_arch[j].type != PROCESSOR_NONE
16562 && strcmp (arg, cpu_arch[j].name) == 0)
9103f4f4 16563 {
ccc9c027 16564 cpu_arch_tune_set = 1;
91d6fa6a 16565 cpu_arch_tune = cpu_arch [j].type;
9103f4f4
L
16566 break;
16567 }
16568 }
91d6fa6a 16569 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 16570 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
16571 break;
16572
1efbbeb4
L
16573 case OPTION_MMNEMONIC:
16574 if (strcasecmp (arg, "att") == 0)
16575 intel_mnemonic = 0;
16576 else if (strcasecmp (arg, "intel") == 0)
16577 intel_mnemonic = 1;
16578 else
2b5d6a91 16579 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
16580 break;
16581
16582 case OPTION_MSYNTAX:
16583 if (strcasecmp (arg, "att") == 0)
213f15cf 16584 _set_intel_syntax (0);
1efbbeb4 16585 else if (strcasecmp (arg, "intel") == 0)
213f15cf 16586 _set_intel_syntax (1);
1efbbeb4 16587 else
2b5d6a91 16588 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
16589 break;
16590
16591 case OPTION_MINDEX_REG:
16592 allow_index_reg = 1;
16593 break;
16594
16595 case OPTION_MNAKED_REG:
16596 allow_naked_reg = 1;
213f15cf 16597 register_prefix = "";
1efbbeb4
L
16598 break;
16599
c0f3af97
L
16600 case OPTION_MSSE2AVX:
16601 sse2avx = 1;
16602 break;
16603
c8480b58
L
16604 case OPTION_MUSE_UNALIGNED_VECTOR_MOVE:
16605 use_unaligned_vector_move = 1;
16606 break;
16607
daf50ae7
L
16608 case OPTION_MSSE_CHECK:
16609 if (strcasecmp (arg, "error") == 0)
7bab8ab5 16610 sse_check = check_error;
daf50ae7 16611 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 16612 sse_check = check_warning;
daf50ae7 16613 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 16614 sse_check = check_none;
daf50ae7 16615 else
2b5d6a91 16616 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
16617 break;
16618
7bab8ab5
JB
16619 case OPTION_MOPERAND_CHECK:
16620 if (strcasecmp (arg, "error") == 0)
16621 operand_check = check_error;
16622 else if (strcasecmp (arg, "warning") == 0)
16623 operand_check = check_warning;
16624 else if (strcasecmp (arg, "none") == 0)
16625 operand_check = check_none;
16626 else
16627 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
16628 break;
16629
539f890d
L
16630 case OPTION_MAVXSCALAR:
16631 if (strcasecmp (arg, "128") == 0)
16632 avxscalar = vex128;
16633 else if (strcasecmp (arg, "256") == 0)
16634 avxscalar = vex256;
16635 else
2b5d6a91 16636 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
16637 break;
16638
03751133
L
16639 case OPTION_MVEXWIG:
16640 if (strcmp (arg, "0") == 0)
40c9c8de 16641 vexwig = vexw0;
03751133 16642 else if (strcmp (arg, "1") == 0)
40c9c8de 16643 vexwig = vexw1;
03751133
L
16644 else
16645 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
16646 break;
16647
7e8b059b
L
16648 case OPTION_MADD_BND_PREFIX:
16649 add_bnd_prefix = 1;
16650 break;
16651
43234a1e
L
16652 case OPTION_MEVEXLIG:
16653 if (strcmp (arg, "128") == 0)
16654 evexlig = evexl128;
16655 else if (strcmp (arg, "256") == 0)
16656 evexlig = evexl256;
16657 else if (strcmp (arg, "512") == 0)
16658 evexlig = evexl512;
16659 else
16660 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
16661 break;
16662
d3d3c6db
IT
16663 case OPTION_MEVEXRCIG:
16664 if (strcmp (arg, "rne") == 0)
16665 evexrcig = rne;
16666 else if (strcmp (arg, "rd") == 0)
16667 evexrcig = rd;
16668 else if (strcmp (arg, "ru") == 0)
16669 evexrcig = ru;
16670 else if (strcmp (arg, "rz") == 0)
16671 evexrcig = rz;
16672 else
16673 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
16674 break;
16675
43234a1e
L
16676 case OPTION_MEVEXWIG:
16677 if (strcmp (arg, "0") == 0)
16678 evexwig = evexw0;
16679 else if (strcmp (arg, "1") == 0)
16680 evexwig = evexw1;
16681 else
16682 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
16683 break;
16684
167ad85b
TG
16685# if defined (TE_PE) || defined (TE_PEP)
16686 case OPTION_MBIG_OBJ:
16687 use_big_obj = 1;
16688 break;
16689#endif
16690
d1982f93 16691 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
16692 if (strcasecmp (arg, "yes") == 0)
16693 omit_lock_prefix = 1;
16694 else if (strcasecmp (arg, "no") == 0)
16695 omit_lock_prefix = 0;
16696 else
16697 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
16698 break;
16699
e4e00185
AS
16700 case OPTION_MFENCE_AS_LOCK_ADD:
16701 if (strcasecmp (arg, "yes") == 0)
16702 avoid_fence = 1;
16703 else if (strcasecmp (arg, "no") == 0)
16704 avoid_fence = 0;
16705 else
16706 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
16707 break;
16708
ae531041
L
16709 case OPTION_MLFENCE_AFTER_LOAD:
16710 if (strcasecmp (arg, "yes") == 0)
16711 lfence_after_load = 1;
16712 else if (strcasecmp (arg, "no") == 0)
16713 lfence_after_load = 0;
16714 else
16715 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
16716 break;
16717
16718 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
16719 if (strcasecmp (arg, "all") == 0)
a09f656b 16720 {
16721 lfence_before_indirect_branch = lfence_branch_all;
16722 if (lfence_before_ret == lfence_before_ret_none)
16723 lfence_before_ret = lfence_before_ret_shl;
16724 }
ae531041
L
16725 else if (strcasecmp (arg, "memory") == 0)
16726 lfence_before_indirect_branch = lfence_branch_memory;
16727 else if (strcasecmp (arg, "register") == 0)
16728 lfence_before_indirect_branch = lfence_branch_register;
16729 else if (strcasecmp (arg, "none") == 0)
16730 lfence_before_indirect_branch = lfence_branch_none;
16731 else
16732 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
16733 arg);
16734 break;
16735
16736 case OPTION_MLFENCE_BEFORE_RET:
16737 if (strcasecmp (arg, "or") == 0)
16738 lfence_before_ret = lfence_before_ret_or;
16739 else if (strcasecmp (arg, "not") == 0)
16740 lfence_before_ret = lfence_before_ret_not;
a09f656b 16741 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
16742 lfence_before_ret = lfence_before_ret_shl;
ae531041
L
16743 else if (strcasecmp (arg, "none") == 0)
16744 lfence_before_ret = lfence_before_ret_none;
16745 else
16746 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
16747 arg);
16748 break;
16749
0cb4071e
L
16750 case OPTION_MRELAX_RELOCATIONS:
16751 if (strcasecmp (arg, "yes") == 0)
16752 generate_relax_relocations = 1;
16753 else if (strcasecmp (arg, "no") == 0)
16754 generate_relax_relocations = 0;
16755 else
16756 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
16757 break;
16758
e379e5f3
L
16759 case OPTION_MALIGN_BRANCH_BOUNDARY:
16760 {
16761 char *end;
16762 long int align = strtoul (arg, &end, 0);
16763 if (*end == '\0')
16764 {
16765 if (align == 0)
16766 {
16767 align_branch_power = 0;
16768 break;
16769 }
16770 else if (align >= 16)
16771 {
16772 int align_power;
16773 for (align_power = 0;
16774 (align & 1) == 0;
16775 align >>= 1, align_power++)
16776 continue;
16777 /* Limit alignment power to 31. */
16778 if (align == 1 && align_power < 32)
16779 {
16780 align_branch_power = align_power;
16781 break;
16782 }
16783 }
16784 }
16785 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
16786 }
16787 break;
16788
16789 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
16790 {
16791 char *end;
16792 int align = strtoul (arg, &end, 0);
16793 /* Some processors only support 5 prefixes. */
16794 if (*end == '\0' && align >= 0 && align < 6)
16795 {
16796 align_branch_prefix_size = align;
16797 break;
16798 }
16799 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
16800 arg);
16801 }
16802 break;
16803
16804 case OPTION_MALIGN_BRANCH:
16805 align_branch = 0;
16806 saved = xstrdup (arg);
16807 type = saved;
16808 do
16809 {
16810 next = strchr (type, '+');
16811 if (next)
16812 *next++ = '\0';
16813 if (strcasecmp (type, "jcc") == 0)
16814 align_branch |= align_branch_jcc_bit;
16815 else if (strcasecmp (type, "fused") == 0)
16816 align_branch |= align_branch_fused_bit;
16817 else if (strcasecmp (type, "jmp") == 0)
16818 align_branch |= align_branch_jmp_bit;
16819 else if (strcasecmp (type, "call") == 0)
16820 align_branch |= align_branch_call_bit;
16821 else if (strcasecmp (type, "ret") == 0)
16822 align_branch |= align_branch_ret_bit;
16823 else if (strcasecmp (type, "indirect") == 0)
16824 align_branch |= align_branch_indirect_bit;
16825 else
16826 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
16827 type = next;
16828 }
16829 while (next != NULL);
16830 free (saved);
16831 break;
16832
76cf450b
L
16833 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
16834 align_branch_power = 5;
16835 align_branch_prefix_size = 5;
16836 align_branch = (align_branch_jcc_bit
16837 | align_branch_fused_bit
16838 | align_branch_jmp_bit);
16839 break;
16840
5db04b09 16841 case OPTION_MAMD64:
4b5aaf5f 16842 isa64 = amd64;
5db04b09
L
16843 break;
16844
16845 case OPTION_MINTEL64:
4b5aaf5f 16846 isa64 = intel64;
5db04b09
L
16847 break;
16848
b6f8c7c4
L
16849 case 'O':
16850 if (arg == NULL)
16851 {
16852 optimize = 1;
16853 /* Turn off -Os. */
16854 optimize_for_space = 0;
16855 }
16856 else if (*arg == 's')
16857 {
16858 optimize_for_space = 1;
16859 /* Turn on all encoding optimizations. */
41fd2579 16860 optimize = INT_MAX;
b6f8c7c4
L
16861 }
16862 else
16863 {
16864 optimize = atoi (arg);
16865 /* Turn off -Os. */
16866 optimize_for_space = 0;
16867 }
16868 break;
16869
252b5132
RH
16870 default:
16871 return 0;
16872 }
16873 return 1;
16874}
16875
8a2c8fef
L
16876#define MESSAGE_TEMPLATE \
16877" "
16878
293f5f65
L
16879static char *
16880output_message (FILE *stream, char *p, char *message, char *start,
16881 int *left_p, const char *name, int len)
16882{
16883 int size = sizeof (MESSAGE_TEMPLATE);
16884 int left = *left_p;
16885
16886 /* Reserve 2 spaces for ", " or ",\0" */
16887 left -= len + 2;
16888
16889 /* Check if there is any room. */
16890 if (left >= 0)
16891 {
16892 if (p != start)
16893 {
16894 *p++ = ',';
16895 *p++ = ' ';
16896 }
16897 p = mempcpy (p, name, len);
16898 }
16899 else
16900 {
16901 /* Output the current message now and start a new one. */
16902 *p++ = ',';
16903 *p = '\0';
16904 fprintf (stream, "%s\n", message);
16905 p = start;
16906 left = size - (start - message) - len - 2;
16907
16908 gas_assert (left >= 0);
16909
16910 p = mempcpy (p, name, len);
16911 }
16912
16913 *left_p = left;
16914 return p;
16915}
16916
8a2c8fef 16917static void
1ded5609 16918show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
16919{
16920 static char message[] = MESSAGE_TEMPLATE;
16921 char *start = message + 27;
16922 char *p;
16923 int size = sizeof (MESSAGE_TEMPLATE);
16924 int left;
16925 const char *name;
16926 int len;
16927 unsigned int j;
16928
16929 p = start;
16930 left = size - (start - message);
3ce2ebcf
JB
16931
16932 if (!ext && check)
16933 {
16934 p = output_message (stream, p, message, start, &left,
16935 STRING_COMMA_LEN ("default"));
f68697e8
JB
16936 p = output_message (stream, p, message, start, &left,
16937 STRING_COMMA_LEN ("push"));
16938 p = output_message (stream, p, message, start, &left,
16939 STRING_COMMA_LEN ("pop"));
3ce2ebcf
JB
16940 }
16941
8a2c8fef
L
16942 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
16943 {
16944 /* Should it be skipped? */
16945 if (cpu_arch [j].skip)
16946 continue;
16947
16948 name = cpu_arch [j].name;
16949 len = cpu_arch [j].len;
ae89daec 16950 if (cpu_arch[j].type == PROCESSOR_NONE)
8a2c8fef
L
16951 {
16952 /* It is an extension. Skip if we aren't asked to show it. */
ae89daec 16953 if (!ext || cpu_flags_all_zero (&cpu_arch[j].enable))
8a2c8fef
L
16954 continue;
16955 }
16956 else if (ext)
16957 {
16958 /* It is an processor. Skip if we show only extension. */
16959 continue;
16960 }
ae89daec 16961 else if (check && ! cpu_arch[j].enable.bitfield.cpui386)
1ded5609
JB
16962 {
16963 /* It is an impossible processor - skip. */
16964 continue;
16965 }
8a2c8fef 16966
293f5f65 16967 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
16968 }
16969
293f5f65
L
16970 /* Display disabled extensions. */
16971 if (ext)
ae89daec 16972 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
293f5f65 16973 {
ae89daec
JB
16974 char *str;
16975
16976 if (cpu_arch[j].type != PROCESSOR_NONE
16977 || !cpu_flags_all_zero (&cpu_arch[j].enable))
16978 continue;
16979 str = xasprintf ("no%s", cpu_arch[j].name);
16980 p = output_message (stream, p, message, start, &left, str,
16981 strlen (str));
16982 free (str);
293f5f65
L
16983 }
16984
8a2c8fef
L
16985 *p = '\0';
16986 fprintf (stream, "%s\n", message);
16987}
16988
252b5132 16989void
8a2c8fef 16990md_show_usage (FILE *stream)
252b5132 16991{
4cc782b5
ILT
16992#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
16993 fprintf (stream, _("\
d4693039 16994 -Qy, -Qn ignored\n\
a38cf1db 16995 -V print assembler version number\n\
b3b91714
AM
16996 -k ignored\n"));
16997#endif
16998 fprintf (stream, _("\
7ebd68d1
NC
16999 -n do not optimize code alignment\n\
17000 -O{012s} attempt some code optimizations\n\
b3b91714
AM
17001 -q quieten some warnings\n"));
17002#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
17003 fprintf (stream, _("\
a38cf1db 17004 -s ignored\n"));
b3b91714 17005#endif
b00af7c8
JB
17006#ifdef BFD64
17007# if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
17008 fprintf (stream, _("\
17009 --32/--64/--x32 generate 32bit/64bit/x32 object\n"));
17010# elif defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O)
751d281c 17011 fprintf (stream, _("\
b00af7c8
JB
17012 --32/--64 generate 32bit/64bit object\n"));
17013# endif
751d281c 17014#endif
b3b91714
AM
17015#ifdef SVR4_COMMENT_CHARS
17016 fprintf (stream, _("\
17017 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
17018#else
17019 fprintf (stream, _("\
b3b91714 17020 --divide ignored\n"));
4cc782b5 17021#endif
9103f4f4 17022 fprintf (stream, _("\
6305a203 17023 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 17024 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 17025 show_arch (stream, 0, 1);
8a2c8fef 17026 fprintf (stream, _("\
ae89daec 17027 EXTENSION is combination of (possibly \"no\"-prefixed):\n"));
1ded5609 17028 show_arch (stream, 1, 0);
6305a203 17029 fprintf (stream, _("\
8a2c8fef 17030 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 17031 show_arch (stream, 0, 0);
ba104c83 17032 fprintf (stream, _("\
c0f3af97
L
17033 -msse2avx encode SSE instructions with VEX prefix\n"));
17034 fprintf (stream, _("\
c8480b58
L
17035 -muse-unaligned-vector-move\n\
17036 encode aligned vector move as unaligned vector move\n"));
17037 fprintf (stream, _("\
7a6a03c4 17038 -msse-check=[none|error|warning] (default: none)\n\
daf50ae7
L
17039 check SSE instructions\n"));
17040 fprintf (stream, _("\
7c5c05ef 17041 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
17042 check operand combinations for validity\n"));
17043 fprintf (stream, _("\
7c5c05ef
L
17044 -mavxscalar=[128|256] (default: 128)\n\
17045 encode scalar AVX instructions with specific vector\n\
539f890d
L
17046 length\n"));
17047 fprintf (stream, _("\
03751133
L
17048 -mvexwig=[0|1] (default: 0)\n\
17049 encode VEX instructions with specific VEX.W value\n\
17050 for VEX.W bit ignored instructions\n"));
17051 fprintf (stream, _("\
7c5c05ef
L
17052 -mevexlig=[128|256|512] (default: 128)\n\
17053 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
17054 length\n"));
17055 fprintf (stream, _("\
7c5c05ef
L
17056 -mevexwig=[0|1] (default: 0)\n\
17057 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
17058 for EVEX.W bit ignored instructions\n"));
17059 fprintf (stream, _("\
7c5c05ef 17060 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
17061 encode EVEX instructions with specific EVEX.RC value\n\
17062 for SAE-only ignored instructions\n"));
17063 fprintf (stream, _("\
7c5c05ef
L
17064 -mmnemonic=[att|intel] "));
17065 if (SYSV386_COMPAT)
17066 fprintf (stream, _("(default: att)\n"));
17067 else
17068 fprintf (stream, _("(default: intel)\n"));
17069 fprintf (stream, _("\
7d3182d6 17070 use AT&T/Intel mnemonic (AT&T syntax only)\n"));
ba104c83 17071 fprintf (stream, _("\
7c5c05ef
L
17072 -msyntax=[att|intel] (default: att)\n\
17073 use AT&T/Intel syntax\n"));
ba104c83
L
17074 fprintf (stream, _("\
17075 -mindex-reg support pseudo index registers\n"));
17076 fprintf (stream, _("\
17077 -mnaked-reg don't require `%%' prefix for registers\n"));
17078 fprintf (stream, _("\
7e8b059b 17079 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 17080#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
17081 fprintf (stream, _("\
17082 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
17083 fprintf (stream, _("\
17084 -mx86-used-note=[no|yes] "));
17085 if (DEFAULT_X86_USED_NOTE)
17086 fprintf (stream, _("(default: yes)\n"));
17087 else
17088 fprintf (stream, _("(default: no)\n"));
17089 fprintf (stream, _("\
17090 generate x86 used ISA and feature properties\n"));
17091#endif
17092#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
17093 fprintf (stream, _("\
17094 -mbig-obj generate big object files\n"));
17095#endif
d022bddd 17096 fprintf (stream, _("\
7c5c05ef 17097 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 17098 strip all lock prefixes\n"));
5db04b09 17099 fprintf (stream, _("\
7c5c05ef 17100 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
17101 encode lfence, mfence and sfence as\n\
17102 lock addl $0x0, (%%{re}sp)\n"));
17103 fprintf (stream, _("\
7c5c05ef
L
17104 -mrelax-relocations=[no|yes] "));
17105 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
17106 fprintf (stream, _("(default: yes)\n"));
17107 else
17108 fprintf (stream, _("(default: no)\n"));
17109 fprintf (stream, _("\
0cb4071e
L
17110 generate relax relocations\n"));
17111 fprintf (stream, _("\
e379e5f3
L
17112 -malign-branch-boundary=NUM (default: 0)\n\
17113 align branches within NUM byte boundary\n"));
17114 fprintf (stream, _("\
17115 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
17116 TYPE is combination of jcc, fused, jmp, call, ret,\n\
17117 indirect\n\
17118 specify types of branches to align\n"));
17119 fprintf (stream, _("\
17120 -malign-branch-prefix-size=NUM (default: 5)\n\
17121 align branches with NUM prefixes per instruction\n"));
17122 fprintf (stream, _("\
76cf450b
L
17123 -mbranches-within-32B-boundaries\n\
17124 align branches within 32 byte boundary\n"));
17125 fprintf (stream, _("\
ae531041
L
17126 -mlfence-after-load=[no|yes] (default: no)\n\
17127 generate lfence after load\n"));
17128 fprintf (stream, _("\
17129 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
17130 generate lfence before indirect near branch\n"));
17131 fprintf (stream, _("\
a09f656b 17132 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
ae531041
L
17133 generate lfence before ret\n"));
17134 fprintf (stream, _("\
7c5c05ef 17135 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
17136 fprintf (stream, _("\
17137 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
17138}
17139
3e73aa7c 17140#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 17141 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 17142 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
17143
17144/* Pick the target format to use. */
17145
47926f60 17146const char *
e3bb37b5 17147i386_target_format (void)
252b5132 17148{
d34049e8 17149 if (startswith (default_arch, "x86_64"))
351f65ca
L
17150 {
17151 update_code_flag (CODE_64BIT, 1);
071c5d81 17152#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
351f65ca 17153 if (default_arch[6] == '\0')
7f56bc95 17154 x86_elf_abi = X86_64_ABI;
351f65ca 17155 else
7f56bc95 17156 x86_elf_abi = X86_64_X32_ABI;
071c5d81 17157#endif
351f65ca 17158 }
3e73aa7c 17159 else if (!strcmp (default_arch, "i386"))
78f12dd3 17160 update_code_flag (CODE_32BIT, 1);
5197d474
L
17161 else if (!strcmp (default_arch, "iamcu"))
17162 {
17163 update_code_flag (CODE_32BIT, 1);
17164 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
17165 {
17166 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
17167 cpu_arch_name = "iamcu";
d92c7521 17168 free (cpu_sub_arch_name);
5197d474
L
17169 cpu_sub_arch_name = NULL;
17170 cpu_arch_flags = iamcu_flags;
17171 cpu_arch_isa = PROCESSOR_IAMCU;
17172 cpu_arch_isa_flags = iamcu_flags;
17173 if (!cpu_arch_tune_set)
fb263707 17174 cpu_arch_tune = PROCESSOR_IAMCU;
5197d474 17175 }
8d471ec1 17176 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
17177 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
17178 cpu_arch_name);
17179 }
3e73aa7c 17180 else
2b5d6a91 17181 as_fatal (_("unknown architecture"));
89507696 17182
c7defc53
IB
17183#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
17184 if (IS_ELF && flag_synth_cfi && x86_elf_abi != X86_64_ABI)
17185 as_fatal (_("SCFI is not supported for this ABI"));
17186#endif
17187
89507696 17188 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
ae89daec 17189 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].enable;
89507696 17190
252b5132
RH
17191 switch (OUTPUT_FLAVOR)
17192 {
9384f2ff 17193#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 17194 case bfd_target_aout_flavour:
47926f60 17195 return AOUT_TARGET_FORMAT;
4c63da97 17196#endif
9384f2ff
AM
17197#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
17198# if defined (TE_PE) || defined (TE_PEP)
17199 case bfd_target_coff_flavour:
167ad85b 17200 if (flag_code == CODE_64BIT)
eb19308f
JB
17201 {
17202 object_64bit = 1;
17203 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
17204 }
17205 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
9384f2ff 17206# elif defined (TE_GO32)
0561d57c
JK
17207 case bfd_target_coff_flavour:
17208 return "coff-go32";
9384f2ff 17209# else
252b5132
RH
17210 case bfd_target_coff_flavour:
17211 return "coff-i386";
9384f2ff 17212# endif
4c63da97 17213#endif
3e73aa7c 17214#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 17215 case bfd_target_elf_flavour:
3e73aa7c 17216 {
351f65ca
L
17217 const char *format;
17218
17219 switch (x86_elf_abi)
4fa24527 17220 {
351f65ca
L
17221 default:
17222 format = ELF_TARGET_FORMAT;
e379e5f3
L
17223#ifndef TE_SOLARIS
17224 tls_get_addr = "___tls_get_addr";
17225#endif
351f65ca 17226 break;
7f56bc95 17227 case X86_64_ABI:
351f65ca 17228 use_rela_relocations = 1;
4fa24527 17229 object_64bit = 1;
e379e5f3
L
17230#ifndef TE_SOLARIS
17231 tls_get_addr = "__tls_get_addr";
17232#endif
351f65ca
L
17233 format = ELF_TARGET_FORMAT64;
17234 break;
7f56bc95 17235 case X86_64_X32_ABI:
4fa24527 17236 use_rela_relocations = 1;
351f65ca 17237 object_64bit = 1;
e379e5f3
L
17238#ifndef TE_SOLARIS
17239 tls_get_addr = "__tls_get_addr";
17240#endif
862be3fb 17241 disallow_64bit_reloc = 1;
351f65ca
L
17242 format = ELF_TARGET_FORMAT32;
17243 break;
4fa24527 17244 }
c085ab00 17245 if (cpu_arch_isa == PROCESSOR_IAMCU)
81486035
L
17246 {
17247 if (x86_elf_abi != I386_ABI)
17248 as_fatal (_("Intel MCU is 32bit only"));
17249 return ELF_TARGET_IAMCU_FORMAT;
17250 }
8a9036a4 17251 else
351f65ca 17252 return format;
3e73aa7c 17253 }
e57f8c65
TG
17254#endif
17255#if defined (OBJ_MACH_O)
17256 case bfd_target_mach_o_flavour:
d382c579
TG
17257 if (flag_code == CODE_64BIT)
17258 {
17259 use_rela_relocations = 1;
17260 object_64bit = 1;
17261 return "mach-o-x86-64";
17262 }
17263 else
17264 return "mach-o-i386";
4c63da97 17265#endif
252b5132
RH
17266 default:
17267 abort ();
17268 return NULL;
17269 }
17270}
17271
47926f60 17272#endif /* OBJ_MAYBE_ more than one */
252b5132 17273\f
252b5132 17274symbolS *
7016a5d5 17275md_undefined_symbol (char *name)
252b5132 17276{
18dc2407
ILT
17277 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
17278 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
17279 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
17280 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
17281 {
17282 if (!GOT_symbol)
17283 {
17284 if (symbol_find (name))
17285 as_bad (_("GOT already in symbol table"));
17286 GOT_symbol = symbol_new (name, undefined_section,
e01e1cee 17287 &zero_address_frag, 0);
24eab124
AM
17288 };
17289 return GOT_symbol;
17290 }
252b5132
RH
17291 return 0;
17292}
17293
071c5d81 17294#if defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT)
252b5132 17295/* Round up a section size to the appropriate boundary. */
47926f60 17296
252b5132 17297valueT
071c5d81 17298md_section_align (segT segment, valueT size)
252b5132 17299{
4c63da97
AM
17300 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
17301 {
17302 /* For a.out, force the section size to be aligned. If we don't do
17303 this, BFD will align it for us, but it will not write out the
17304 final bytes of the section. This may be a bug in BFD, but it is
17305 easier to fix it here since that is how the other a.out targets
17306 work. */
17307 int align;
17308
fd361982 17309 align = bfd_section_alignment (segment);
8d3842cd 17310 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 17311 }
252b5132
RH
17312
17313 return size;
17314}
071c5d81 17315#endif
252b5132
RH
17316
17317/* On the i386, PC-relative offsets are relative to the start of the
17318 next instruction. That is, the address of the offset, plus its
17319 size, since the offset is always the last part of the insn. */
17320
17321long
e3bb37b5 17322md_pcrel_from (fixS *fixP)
252b5132
RH
17323{
17324 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
17325}
17326
d4064aad 17327#ifdef OBJ_AOUT
252b5132
RH
17328
17329static void
e3bb37b5 17330s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 17331{
29b0f896 17332 int temp;
252b5132
RH
17333
17334 temp = get_absolute_expression ();
17335 subseg_set (bss_section, (subsegT) temp);
17336 demand_empty_rest_of_line ();
17337}
17338
17339#endif
17340
e379e5f3
L
17341/* Remember constant directive. */
17342
17343void
17344i386_cons_align (int ignore ATTRIBUTE_UNUSED)
17345{
b5482fe5
JB
17346 struct last_insn *last_insn
17347 = &seg_info(now_seg)->tc_segment_info_data.last_insn;
17348
ce69d081 17349 if (bfd_section_flags (now_seg) & SEC_CODE)
e379e5f3 17350 {
b5482fe5
JB
17351 last_insn->kind = last_insn_directive;
17352 last_insn->name = "constant directive";
17353 last_insn->file = as_where (&last_insn->line);
e379e5f3
L
17354 }
17355}
17356
3abbafc2 17357int
e3bb37b5 17358i386_validate_fix (fixS *fixp)
252b5132 17359{
e52a16f2
JB
17360 if (fixp->fx_addsy && S_GET_SEGMENT(fixp->fx_addsy) == reg_section)
17361 {
17362 reloc_howto_type *howto;
17363
17364 howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
17365 as_bad_where (fixp->fx_file, fixp->fx_line,
17366 _("invalid %s relocation against register"),
17367 howto ? howto->name : "<unknown>");
17368 return 0;
17369 }
17370
3abbafc2
JB
17371#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
17372 if (fixp->fx_r_type == BFD_RELOC_SIZE32
17373 || fixp->fx_r_type == BFD_RELOC_SIZE64)
17374 return IS_ELF && fixp->fx_addsy
17375 && (!S_IS_DEFINED (fixp->fx_addsy)
17376 || S_IS_EXTERNAL (fixp->fx_addsy));
a533c8df 17377
5bc71c2a
L
17378 /* BFD_RELOC_X86_64_GOTTPOFF:
17379 1. fx_tcbit -> BFD_RELOC_X86_64_CODE_4_GOTTPOFF
17380 2. fx_tcbit2 -> BFD_RELOC_X86_64_CODE_6_GOTTPOFF
17381 BFD_RELOC_X86_64_GOTPC32_TLSDESC:
17382 1. fx_tcbit -> BFD_RELOC_X86_64_CODE_4_GOTPC32_TLSDESC
17383 BFD_RELOC_32_PCREL:
17384 1. fx_tcbit -> BFD_RELOC_X86_64_GOTPCRELX
17385 2. fx_tcbit2 -> BFD_RELOC_X86_64_REX_GOTPCRELX
17386 3. fx_tcbit3 -> BFD_RELOC_X86_64_CODE_4_GOTPCRELX
17387 4. else -> BFD_RELOC_X86_64_GOTPCREL
17388 */
17389 if (fixp->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF)
a533c8df 17390 {
5bc71c2a 17391 if (fixp->fx_tcbit)
a533c8df 17392 fixp->fx_r_type = BFD_RELOC_X86_64_CODE_4_GOTTPOFF;
5bc71c2a
L
17393 else if (fixp->fx_tcbit2)
17394 fixp->fx_r_type = BFD_RELOC_X86_64_CODE_6_GOTTPOFF;
a533c8df 17395 }
5bc71c2a
L
17396 else if (fixp->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
17397 && fixp->fx_tcbit)
17398 fixp->fx_r_type = BFD_RELOC_X86_64_CODE_4_GOTPC32_TLSDESC;
3abbafc2
JB
17399#endif
17400
02a86693 17401 if (fixp->fx_subsy)
252b5132 17402 {
02a86693 17403 if (fixp->fx_subsy == GOT_symbol)
23df1078 17404 {
02a86693
L
17405 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17406 {
17407 if (!object_64bit)
17408 abort ();
17409#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5bc71c2a
L
17410 if (fixp->fx_tcbit)
17411 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCRELX;
17412 else if (fixp->fx_tcbit2)
17413 fixp->fx_r_type = BFD_RELOC_X86_64_REX_GOTPCRELX;
17414 else if (fixp->fx_tcbit3)
17415 fixp->fx_r_type = BFD_RELOC_X86_64_CODE_4_GOTPCRELX;
02a86693
L
17416 else
17417#endif
17418 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
17419 }
d6ab8113 17420 else
02a86693
L
17421 {
17422 if (!object_64bit)
17423 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
17424 else
17425 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
17426 }
17427 fixp->fx_subsy = 0;
23df1078 17428 }
252b5132 17429 }
02a86693 17430#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2585b7a5 17431 else
02a86693 17432 {
2585b7a5
L
17433 /* NB: Commit 292676c1 resolved PLT32 reloc aganst local symbol
17434 to section. Since PLT32 relocation must be against symbols,
17435 turn such PLT32 relocation into PC32 relocation. */
17436 if (fixp->fx_addsy
17437 && (fixp->fx_r_type == BFD_RELOC_386_PLT32
17438 || fixp->fx_r_type == BFD_RELOC_X86_64_PLT32)
17439 && symbol_section_p (fixp->fx_addsy))
17440 fixp->fx_r_type = BFD_RELOC_32_PCREL;
17441 if (!object_64bit)
17442 {
17443 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
17444 && fixp->fx_tcbit2)
17445 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
17446 }
02a86693
L
17447 }
17448#endif
3abbafc2
JB
17449
17450 return 1;
252b5132
RH
17451}
17452
252b5132 17453arelent *
7016a5d5 17454tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17455{
17456 arelent *rel;
17457 bfd_reloc_code_real_type code;
17458
17459 switch (fixp->fx_r_type)
17460 {
8ce3d284 17461#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3abbafc2
JB
17462 symbolS *sym;
17463
8fd4256d
L
17464 case BFD_RELOC_SIZE32:
17465 case BFD_RELOC_SIZE64:
3abbafc2
JB
17466 if (fixp->fx_addsy
17467 && !bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_addsy))
17468 && (!fixp->fx_subsy
17469 || bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_subsy))))
17470 sym = fixp->fx_addsy;
17471 else if (fixp->fx_subsy
17472 && !bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_subsy))
17473 && (!fixp->fx_addsy
17474 || bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_addsy))))
17475 sym = fixp->fx_subsy;
17476 else
17477 sym = NULL;
17478 if (IS_ELF && sym && S_IS_DEFINED (sym) && !S_IS_EXTERNAL (sym))
8fd4256d
L
17479 {
17480 /* Resolve size relocation against local symbol to size of
17481 the symbol plus addend. */
3abbafc2 17482 valueT value = S_GET_SIZE (sym);
44f87162 17483
3abbafc2
JB
17484 if (symbol_get_bfdsym (sym)->flags & BSF_SECTION_SYM)
17485 value = bfd_section_size (S_GET_SEGMENT (sym));
17486 if (sym == fixp->fx_subsy)
17487 {
17488 value = -value;
17489 if (fixp->fx_addsy)
17490 value += S_GET_VALUE (fixp->fx_addsy);
17491 }
17492 else if (fixp->fx_subsy)
17493 value -= S_GET_VALUE (fixp->fx_subsy);
44f87162 17494 value += fixp->fx_offset;
8fd4256d 17495 if (fixp->fx_r_type == BFD_RELOC_SIZE32
d965814f 17496 && object_64bit
8fd4256d
L
17497 && !fits_in_unsigned_long (value))
17498 as_bad_where (fixp->fx_file, fixp->fx_line,
17499 _("symbol size computation overflow"));
17500 fixp->fx_addsy = NULL;
17501 fixp->fx_subsy = NULL;
17502 md_apply_fix (fixp, (valueT *) &value, NULL);
17503 return NULL;
17504 }
3abbafc2
JB
17505 if (!fixp->fx_addsy || fixp->fx_subsy)
17506 {
17507 as_bad_where (fixp->fx_file, fixp->fx_line,
17508 "unsupported expression involving @size");
17509 return NULL;
17510 }
8ce3d284 17511#endif
1a0670f3 17512 /* Fall through. */
8fd4256d 17513
3e73aa7c
JH
17514 case BFD_RELOC_X86_64_PLT32:
17515 case BFD_RELOC_X86_64_GOT32:
17516 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
17517 case BFD_RELOC_X86_64_GOTPCRELX:
17518 case BFD_RELOC_X86_64_REX_GOTPCRELX:
3d5a60de 17519 case BFD_RELOC_X86_64_CODE_4_GOTPCRELX:
252b5132
RH
17520 case BFD_RELOC_386_PLT32:
17521 case BFD_RELOC_386_GOT32:
02a86693 17522 case BFD_RELOC_386_GOT32X:
252b5132
RH
17523 case BFD_RELOC_386_GOTOFF:
17524 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
17525 case BFD_RELOC_386_TLS_GD:
17526 case BFD_RELOC_386_TLS_LDM:
17527 case BFD_RELOC_386_TLS_LDO_32:
17528 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
17529 case BFD_RELOC_386_TLS_IE:
17530 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
17531 case BFD_RELOC_386_TLS_LE_32:
17532 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
17533 case BFD_RELOC_386_TLS_GOTDESC:
17534 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
17535 case BFD_RELOC_X86_64_TLSGD:
17536 case BFD_RELOC_X86_64_TLSLD:
17537 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 17538 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940 17539 case BFD_RELOC_X86_64_GOTTPOFF:
a533c8df 17540 case BFD_RELOC_X86_64_CODE_4_GOTTPOFF:
5bc71c2a 17541 case BFD_RELOC_X86_64_CODE_6_GOTTPOFF:
bffbf940 17542 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
17543 case BFD_RELOC_X86_64_TPOFF64:
17544 case BFD_RELOC_X86_64_GOTOFF64:
17545 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
17546 case BFD_RELOC_X86_64_GOT64:
17547 case BFD_RELOC_X86_64_GOTPCREL64:
17548 case BFD_RELOC_X86_64_GOTPC64:
17549 case BFD_RELOC_X86_64_GOTPLT64:
17550 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7 17551 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
a533c8df 17552 case BFD_RELOC_X86_64_CODE_4_GOTPC32_TLSDESC:
67a4f2b7 17553 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
17554 case BFD_RELOC_RVA:
17555 case BFD_RELOC_VTABLE_ENTRY:
17556 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
17557#ifdef TE_PE
17558 case BFD_RELOC_32_SECREL:
145667f8 17559 case BFD_RELOC_16_SECIDX:
6482c264 17560#endif
252b5132
RH
17561 code = fixp->fx_r_type;
17562 break;
dbbaec26
L
17563 case BFD_RELOC_X86_64_32S:
17564 if (!fixp->fx_pcrel)
17565 {
17566 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
17567 code = fixp->fx_r_type;
17568 break;
17569 }
1a0670f3 17570 /* Fall through. */
252b5132 17571 default:
93382f6d 17572 if (fixp->fx_pcrel)
252b5132 17573 {
93382f6d
AM
17574 switch (fixp->fx_size)
17575 {
17576 default:
b091f402
AM
17577 as_bad_where (fixp->fx_file, fixp->fx_line,
17578 _("can not do %d byte pc-relative relocation"),
17579 fixp->fx_size);
93382f6d
AM
17580 code = BFD_RELOC_32_PCREL;
17581 break;
17582 case 1: code = BFD_RELOC_8_PCREL; break;
17583 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 17584 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
17585#ifdef BFD64
17586 case 8: code = BFD_RELOC_64_PCREL; break;
17587#endif
93382f6d
AM
17588 }
17589 }
17590 else
17591 {
17592 switch (fixp->fx_size)
17593 {
17594 default:
b091f402
AM
17595 as_bad_where (fixp->fx_file, fixp->fx_line,
17596 _("can not do %d byte relocation"),
17597 fixp->fx_size);
93382f6d
AM
17598 code = BFD_RELOC_32;
17599 break;
17600 case 1: code = BFD_RELOC_8; break;
17601 case 2: code = BFD_RELOC_16; break;
17602 case 4: code = BFD_RELOC_32; break;
937149dd 17603#ifdef BFD64
3e73aa7c 17604 case 8: code = BFD_RELOC_64; break;
937149dd 17605#endif
93382f6d 17606 }
252b5132
RH
17607 }
17608 break;
17609 }
252b5132 17610
d182319b
JB
17611 if ((code == BFD_RELOC_32
17612 || code == BFD_RELOC_32_PCREL
17613 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
17614 && GOT_symbol
17615 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 17616 {
4fa24527 17617 if (!object_64bit)
d6ab8113
JB
17618 code = BFD_RELOC_386_GOTPC;
17619 else
17620 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 17621 }
7b81dfbb
AJ
17622 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
17623 && GOT_symbol
17624 && fixp->fx_addsy == GOT_symbol)
17625 {
17626 code = BFD_RELOC_X86_64_GOTPC64;
17627 }
252b5132 17628
add39d23
TS
17629 rel = XNEW (arelent);
17630 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 17631 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17632
17633 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 17634
3e73aa7c
JH
17635 if (!use_rela_relocations)
17636 {
17637 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
17638 vtable entry to be used in the relocation's section offset. */
17639 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17640 rel->address = fixp->fx_offset;
fbeb56a4
DK
17641#if defined (OBJ_COFF) && defined (TE_PE)
17642 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
17643 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
17644 else
17645#endif
c6682705 17646 rel->addend = 0;
3e73aa7c
JH
17647 }
17648 /* Use the rela in 64bit mode. */
252b5132 17649 else
3e73aa7c 17650 {
862be3fb
L
17651 if (disallow_64bit_reloc)
17652 switch (code)
17653 {
862be3fb
L
17654 case BFD_RELOC_X86_64_DTPOFF64:
17655 case BFD_RELOC_X86_64_TPOFF64:
17656 case BFD_RELOC_64_PCREL:
17657 case BFD_RELOC_X86_64_GOTOFF64:
17658 case BFD_RELOC_X86_64_GOT64:
17659 case BFD_RELOC_X86_64_GOTPCREL64:
17660 case BFD_RELOC_X86_64_GOTPC64:
17661 case BFD_RELOC_X86_64_GOTPLT64:
17662 case BFD_RELOC_X86_64_PLTOFF64:
17663 as_bad_where (fixp->fx_file, fixp->fx_line,
17664 _("cannot represent relocation type %s in x32 mode"),
17665 bfd_get_reloc_code_name (code));
17666 break;
17667 default:
17668 break;
17669 }
17670
062cd5e7
AS
17671 if (!fixp->fx_pcrel)
17672 rel->addend = fixp->fx_offset;
17673 else
17674 switch (code)
17675 {
17676 case BFD_RELOC_X86_64_PLT32:
17677 case BFD_RELOC_X86_64_GOT32:
17678 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
17679 case BFD_RELOC_X86_64_GOTPCRELX:
17680 case BFD_RELOC_X86_64_REX_GOTPCRELX:
3d5a60de 17681 case BFD_RELOC_X86_64_CODE_4_GOTPCRELX:
bffbf940
JJ
17682 case BFD_RELOC_X86_64_TLSGD:
17683 case BFD_RELOC_X86_64_TLSLD:
17684 case BFD_RELOC_X86_64_GOTTPOFF:
a533c8df 17685 case BFD_RELOC_X86_64_CODE_4_GOTTPOFF:
5bc71c2a 17686 case BFD_RELOC_X86_64_CODE_6_GOTTPOFF:
67a4f2b7 17687 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
a533c8df 17688 case BFD_RELOC_X86_64_CODE_4_GOTPC32_TLSDESC:
67a4f2b7 17689 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
17690 rel->addend = fixp->fx_offset - fixp->fx_size;
17691 break;
17692 default:
17693 rel->addend = (section->vma
17694 - fixp->fx_size
17695 + fixp->fx_addnumber
17696 + md_pcrel_from (fixp));
17697 break;
17698 }
3e73aa7c
JH
17699 }
17700
252b5132
RH
17701 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
17702 if (rel->howto == NULL)
17703 {
17704 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 17705 _("cannot represent relocation type %s"),
252b5132
RH
17706 bfd_get_reloc_code_name (code));
17707 /* Set howto to a garbage value so that we can keep going. */
17708 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 17709 gas_assert (rel->howto != NULL);
252b5132
RH
17710 }
17711
17712 return rel;
17713}
17714
ee86248c 17715#include "tc-i386-intel.c"
54cfded0 17716
a60de03c
JB
17717void
17718tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 17719{
a60de03c
JB
17720 int saved_naked_reg;
17721 char saved_register_dot;
54cfded0 17722
a60de03c
JB
17723 saved_naked_reg = allow_naked_reg;
17724 allow_naked_reg = 1;
17725 saved_register_dot = register_chars['.'];
17726 register_chars['.'] = '.';
17727 allow_pseudo_reg = 1;
17728 expression_and_evaluate (exp);
17729 allow_pseudo_reg = 0;
17730 register_chars['.'] = saved_register_dot;
17731 allow_naked_reg = saved_naked_reg;
17732
e96d56a1 17733 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 17734 {
066673f6 17735 exp->X_op = O_illegal;
a60de03c
JB
17736 if ((addressT) exp->X_add_number < i386_regtab_size)
17737 {
a60de03c 17738 exp->X_add_number = i386_regtab[exp->X_add_number]
fabb73d1 17739 .dw2_regnum[object_64bit];
066673f6
JB
17740 if (exp->X_add_number != Dw2Inval)
17741 exp->X_op = O_constant;
a60de03c 17742 }
54cfded0 17743 }
54cfded0
AM
17744}
17745
17746void
17747tc_x86_frame_initial_instructions (void)
17748{
fabb73d1 17749 cfi_add_CFA_def_cfa (object_64bit ? REG_SP : 4, -x86_cie_data_alignment);
61ff971f 17750 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 17751}
d2b2c203 17752
d7921315
L
17753int
17754x86_dwarf2_addr_size (void)
17755{
17756#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
17757 if (x86_elf_abi == X86_64_X32_ABI)
17758 return 4;
17759#endif
17760 return bfd_arch_bits_per_address (stdoutput) / 8;
17761}
17762
071c5d81
JB
17763#ifdef TE_PE
17764void
17765tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
17766{
17767 expressionS exp;
17768
17769 exp.X_op = O_secrel;
17770 exp.X_add_symbol = symbol;
17771 exp.X_add_number = 0;
17772 emit_expr (&exp, size);
17773}
17774#endif
17775
17776#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
d2b2c203
DJ
17777int
17778i386_elf_section_type (const char *str, size_t len)
17779{
17780 if (flag_code == CODE_64BIT
17781 && len == sizeof ("unwind") - 1
d34049e8 17782 && startswith (str, "unwind"))
d2b2c203
DJ
17783 return SHT_X86_64_UNWIND;
17784
17785 return -1;
17786}
bb41ade5 17787
da374e94
JB
17788void
17789i386_elf_section_change_hook (void)
17790{
17791 struct i386_segment_info *info = &seg_info(now_seg)->tc_segment_info_data;
17792 struct i386_segment_info *curr, *prev;
17793
17794 if (info->subseg == now_subseg)
17795 return;
17796
17797 /* Find the (or make a) list entry to save state into. */
17798 for (prev = info; (curr = prev->next) != NULL; prev = curr)
17799 if (curr->subseg == info->subseg)
17800 break;
17801 if (!curr)
17802 {
fddee222 17803 curr = notes_alloc (sizeof (*curr));
da374e94
JB
17804 curr->subseg = info->subseg;
17805 curr->next = NULL;
17806 prev->next = curr;
17807 }
17808 curr->last_insn = info->last_insn;
17809
17810 /* Find the list entry to load state from. */
17811 for (curr = info->next; curr; curr = curr->next)
17812 if (curr->subseg == now_subseg)
17813 break;
17814 if (curr)
17815 info->last_insn = curr->last_insn;
17816 else
17817 memset (&info->last_insn, 0, sizeof (info->last_insn));
17818 info->subseg = now_subseg;
17819}
17820
ad5fec3b
EB
17821#ifdef TE_SOLARIS
17822void
17823i386_solaris_fix_up_eh_frame (segT sec)
17824{
17825 if (flag_code == CODE_64BIT)
17826 elf_section_type (sec) = SHT_X86_64_UNWIND;
17827}
17828#endif
17829
3b22753a
L
17830/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
17831
01e1a5bc 17832bfd_vma
6d4af3c2 17833x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
17834{
17835 if (flag_code == CODE_64BIT)
17836 {
17837 if (letter == 'l')
17838 return SHF_X86_64_LARGE;
17839
8f3bae45 17840 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 17841 }
3b22753a 17842 else
8f3bae45 17843 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
17844 return -1;
17845}
17846
3b22753a
L
17847static void
17848handle_large_common (int small ATTRIBUTE_UNUSED)
17849{
17850 if (flag_code != CODE_64BIT)
17851 {
17852 s_comm_internal (0, elf_common_parse);
17853 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
17854 }
17855 else
17856 {
17857 static segT lbss_section;
17858 asection *saved_com_section_ptr = elf_com_section_ptr;
17859 asection *saved_bss_section = bss_section;
17860
17861 if (lbss_section == NULL)
17862 {
17863 flagword applicable;
17864 segT seg = now_seg;
17865 subsegT subseg = now_subseg;
17866
17867 /* The .lbss section is for local .largecomm symbols. */
17868 lbss_section = subseg_new (".lbss", 0);
17869 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 17870 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
17871 seg_info (lbss_section)->bss = 1;
17872
17873 subseg_set (seg, subseg);
17874 }
17875
17876 elf_com_section_ptr = &_bfd_elf_large_com_section;
17877 bss_section = lbss_section;
17878
17879 s_comm_internal (0, elf_common_parse);
17880
17881 elf_com_section_ptr = saved_com_section_ptr;
17882 bss_section = saved_bss_section;
17883 }
17884}
17885#endif /* OBJ_ELF || OBJ_MAYBE_ELF */