]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
* dep-in.sed: Remove libintl.h.
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
ae6063d4 3 2000, 2001, 2002, 2003
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
252b5132 28
252b5132 29#include "as.h"
3882b010 30#include "safe-ctype.h"
252b5132 31#include "subsegs.h"
316e2c05 32#include "dwarf2dbg.h"
54cfded0 33#include "dw2gencfi.h"
252b5132
RH
34#include "opcode/i386.h"
35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
252b5132
RH
44#ifndef SCALE1_WHEN_NO_INDEX
45/* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49#define SCALE1_WHEN_NO_INDEX 1
50#endif
51
29b0f896
AM
52#ifdef BFD_ASSEMBLER
53#define RELOC_ENUM enum bfd_reloc_code_real
54#else
55#define RELOC_ENUM int
246fcdee 56#endif
29b0f896
AM
57
58#ifndef DEFAULT_ARCH
59#define DEFAULT_ARCH "i386"
246fcdee 60#endif
252b5132 61
edde18a5
AM
62#ifndef INLINE
63#if __GNUC__ >= 2
64#define INLINE __inline__
65#else
66#define INLINE
67#endif
68#endif
69
29b0f896
AM
70static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
71static INLINE int fits_in_signed_byte PARAMS ((offsetT));
72static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
73static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
74static INLINE int fits_in_signed_word PARAMS ((offsetT));
75static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
76static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
77static int smallest_imm_type PARAMS ((offsetT));
78static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 79static int add_prefix PARAMS ((unsigned int));
3e73aa7c 80static void set_code_flag PARAMS ((int));
47926f60 81static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 82static void set_intel_syntax PARAMS ((int));
e413e4e9 83static void set_cpu_arch PARAMS ((int));
29b0f896
AM
84static char *output_invalid PARAMS ((int c));
85static int i386_operand PARAMS ((char *operand_string));
86static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89static char *parse_insn PARAMS ((char *, char *));
90static char *parse_operands PARAMS ((char *, const char *));
91static void swap_operands PARAMS ((void));
92static void optimize_imm PARAMS ((void));
93static void optimize_disp PARAMS ((void));
94static int match_template PARAMS ((void));
95static int check_string PARAMS ((void));
96static int process_suffix PARAMS ((void));
97static int check_byte_reg PARAMS ((void));
98static int check_long_reg PARAMS ((void));
99static int check_qword_reg PARAMS ((void));
100static int check_word_reg PARAMS ((void));
101static int finalize_imm PARAMS ((void));
102static int process_operands PARAMS ((void));
103static const seg_entry *build_modrm_byte PARAMS ((void));
104static void output_insn PARAMS ((void));
105static void output_branch PARAMS ((void));
106static void output_jump PARAMS ((void));
107static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
108static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
29b0f896
AM
112#ifndef I386COFF
113static void s_bss PARAMS ((int));
252b5132
RH
114#endif
115
a847613f 116static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 117
252b5132 118/* 'md_assemble ()' gathers together information and puts it into a
47926f60 119 i386_insn. */
252b5132 120
520dc8e8
AM
121union i386_op
122 {
123 expressionS *disps;
124 expressionS *imms;
125 const reg_entry *regs;
126 };
127
252b5132
RH
128struct _i386_insn
129 {
47926f60 130 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
131 template tm;
132
133 /* SUFFIX holds the instruction mnemonic suffix if given.
134 (e.g. 'l' for 'movl') */
135 char suffix;
136
47926f60 137 /* OPERANDS gives the number of given operands. */
252b5132
RH
138 unsigned int operands;
139
140 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
141 of given register, displacement, memory operands and immediate
47926f60 142 operands. */
252b5132
RH
143 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
144
145 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 146 use OP[i] for the corresponding operand. */
252b5132
RH
147 unsigned int types[MAX_OPERANDS];
148
520dc8e8
AM
149 /* Displacement expression, immediate expression, or register for each
150 operand. */
151 union i386_op op[MAX_OPERANDS];
252b5132 152
3e73aa7c
JH
153 /* Flags for operands. */
154 unsigned int flags[MAX_OPERANDS];
155#define Operand_PCrel 1
156
252b5132 157 /* Relocation type for operand */
f3c180ae 158 RELOC_ENUM reloc[MAX_OPERANDS];
252b5132 159
252b5132
RH
160 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
161 the base index byte below. */
162 const reg_entry *base_reg;
163 const reg_entry *index_reg;
164 unsigned int log2_scale_factor;
165
166 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 167 explicit segment overrides are given. */
ce8a8b2f 168 const seg_entry *seg[2];
252b5132
RH
169
170 /* PREFIX holds all the given prefix opcodes (usually null).
171 PREFIXES is the number of prefix opcodes. */
172 unsigned int prefixes;
173 unsigned char prefix[MAX_PREFIXES];
174
175 /* RM and SIB are the modrm byte and the sib byte where the
176 addressing modes of this insn are encoded. */
177
178 modrm_byte rm;
3e73aa7c 179 rex_byte rex;
252b5132
RH
180 sib_byte sib;
181 };
182
183typedef struct _i386_insn i386_insn;
184
185/* List of chars besides those in app.c:symbol_chars that can start an
186 operand. Used to prevent the scrubber eating vital white-space. */
187#ifdef LEX_AT
200dbde8 188const char extra_symbol_chars[] = "*%-(@[";
252b5132 189#else
200dbde8 190const char extra_symbol_chars[] = "*%-([";
252b5132
RH
191#endif
192
29b0f896
AM
193#if (defined (TE_I386AIX) \
194 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
195 && !defined (TE_LINUX) \
196 && !defined (TE_FreeBSD) \
197 && !defined (TE_NetBSD)))
252b5132 198/* This array holds the chars that always start a comment. If the
ce8a8b2f 199 pre-processor is disabled, these aren't very useful. */
252b5132
RH
200const char comment_chars[] = "#/";
201#define PREFIX_SEPARATOR '\\'
252b5132
RH
202
203/* This array holds the chars that only start a comment at the beginning of
204 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
205 .line and .file directives will appear in the pre-processed output.
206 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 207 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
208 #NO_APP at the beginning of its output.
209 Also note that comments started like this one will always work if
252b5132 210 '/' isn't otherwise defined. */
0d9f6d04 211const char line_comment_chars[] = "#";
29b0f896 212
252b5132 213#else
29b0f896
AM
214/* Putting '/' here makes it impossible to use the divide operator.
215 However, we need it for compatibility with SVR4 systems. */
216const char comment_chars[] = "#";
217#define PREFIX_SEPARATOR '/'
218
0d9f6d04 219const char line_comment_chars[] = "/#";
252b5132
RH
220#endif
221
63a0b638 222const char line_separator_chars[] = ";";
252b5132 223
ce8a8b2f
AM
224/* Chars that can be used to separate mant from exp in floating point
225 nums. */
252b5132
RH
226const char EXP_CHARS[] = "eE";
227
ce8a8b2f
AM
228/* Chars that mean this number is a floating point constant
229 As in 0f12.456
230 or 0d1.2345e12. */
252b5132
RH
231const char FLT_CHARS[] = "fFdDxX";
232
ce8a8b2f 233/* Tables for lexical analysis. */
252b5132
RH
234static char mnemonic_chars[256];
235static char register_chars[256];
236static char operand_chars[256];
237static char identifier_chars[256];
238static char digit_chars[256];
239
ce8a8b2f 240/* Lexical macros. */
252b5132
RH
241#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
242#define is_operand_char(x) (operand_chars[(unsigned char) x])
243#define is_register_char(x) (register_chars[(unsigned char) x])
244#define is_space_char(x) ((x) == ' ')
245#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
246#define is_digit_char(x) (digit_chars[(unsigned char) x])
247
ce8a8b2f 248/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
249static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
250
251/* md_assemble() always leaves the strings it's passed unaltered. To
252 effect this we maintain a stack of saved characters that we've smashed
253 with '\0's (indicating end of strings for various sub-fields of the
47926f60 254 assembler instruction). */
252b5132 255static char save_stack[32];
ce8a8b2f 256static char *save_stack_p;
252b5132
RH
257#define END_STRING_AND_SAVE(s) \
258 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
259#define RESTORE_END_STRING(s) \
260 do { *(s) = *--save_stack_p; } while (0)
261
47926f60 262/* The instruction we're assembling. */
252b5132
RH
263static i386_insn i;
264
265/* Possible templates for current insn. */
266static const templates *current_templates;
267
47926f60 268/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
269static expressionS disp_expressions[2], im_expressions[2];
270
47926f60
KH
271/* Current operand we are working on. */
272static int this_operand;
252b5132 273
3e73aa7c
JH
274/* We support four different modes. FLAG_CODE variable is used to distinguish
275 these. */
276
277enum flag_code {
278 CODE_32BIT,
279 CODE_16BIT,
280 CODE_64BIT };
f3c180ae 281#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
282
283static enum flag_code flag_code;
284static int use_rela_relocations = 0;
285
286/* The names used to print error messages. */
b77a7acd 287static const char *flag_code_names[] =
3e73aa7c
JH
288 {
289 "32",
290 "16",
291 "64"
292 };
252b5132 293
47926f60
KH
294/* 1 for intel syntax,
295 0 if att syntax. */
296static int intel_syntax = 0;
252b5132 297
47926f60
KH
298/* 1 if register prefix % not required. */
299static int allow_naked_reg = 0;
252b5132 300
47926f60
KH
301/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
302 leave, push, and pop instructions so that gcc has the same stack
303 frame as in 32 bit mode. */
304static char stackop_size = '\0';
eecb386c 305
12b55ccc
L
306/* Non-zero to optimize code alignment. */
307int optimize_align_code = 1;
308
47926f60
KH
309/* Non-zero to quieten some warnings. */
310static int quiet_warnings = 0;
a38cf1db 311
47926f60
KH
312/* CPU name. */
313static const char *cpu_arch_name = NULL;
a38cf1db 314
47926f60 315/* CPU feature flags. */
29b0f896 316static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 317
fddf5b5b
AM
318/* If set, conditional jumps are not automatically promoted to handle
319 larger than a byte offset. */
320static unsigned int no_cond_jump_promotion = 0;
321
29b0f896
AM
322/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
323symbolS *GOT_symbol;
324
a4447b93
RH
325/* The dwarf2 return column, adjusted for 32 or 64 bit. */
326unsigned int x86_dwarf2_return_column;
327
328/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
329int x86_cie_data_alignment;
330
252b5132 331/* Interface to relax_segment.
fddf5b5b
AM
332 There are 3 major relax states for 386 jump insns because the
333 different types of jumps add different sizes to frags when we're
334 figuring out what sort of jump to choose to reach a given label. */
252b5132 335
47926f60 336/* Types. */
93c2a809
AM
337#define UNCOND_JUMP 0
338#define COND_JUMP 1
339#define COND_JUMP86 2
fddf5b5b 340
47926f60 341/* Sizes. */
252b5132
RH
342#define CODE16 1
343#define SMALL 0
29b0f896 344#define SMALL16 (SMALL | CODE16)
252b5132 345#define BIG 2
29b0f896 346#define BIG16 (BIG | CODE16)
252b5132
RH
347
348#ifndef INLINE
349#ifdef __GNUC__
350#define INLINE __inline__
351#else
352#define INLINE
353#endif
354#endif
355
fddf5b5b
AM
356#define ENCODE_RELAX_STATE(type, size) \
357 ((relax_substateT) (((type) << 2) | (size)))
358#define TYPE_FROM_RELAX_STATE(s) \
359 ((s) >> 2)
360#define DISP_SIZE_FROM_RELAX_STATE(s) \
361 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
362
363/* This table is used by relax_frag to promote short jumps to long
364 ones where necessary. SMALL (short) jumps may be promoted to BIG
365 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
366 don't allow a short jump in a 32 bit code segment to be promoted to
367 a 16 bit offset jump because it's slower (requires data size
368 prefix), and doesn't work, unless the destination is in the bottom
369 64k of the code segment (The top 16 bits of eip are zeroed). */
370
371const relax_typeS md_relax_table[] =
372{
24eab124
AM
373 /* The fields are:
374 1) most positive reach of this state,
375 2) most negative reach of this state,
93c2a809 376 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 377 4) which index into the table to try if we can't fit into this one. */
252b5132 378
fddf5b5b 379 /* UNCOND_JUMP states. */
93c2a809
AM
380 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
382 /* dword jmp adds 4 bytes to frag:
383 0 extra opcode bytes, 4 displacement bytes. */
252b5132 384 {0, 0, 4, 0},
93c2a809
AM
385 /* word jmp adds 2 byte2 to frag:
386 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
387 {0, 0, 2, 0},
388
93c2a809
AM
389 /* COND_JUMP states. */
390 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
392 /* dword conditionals adds 5 bytes to frag:
393 1 extra opcode byte, 4 displacement bytes. */
394 {0, 0, 5, 0},
fddf5b5b 395 /* word conditionals add 3 bytes to frag:
93c2a809
AM
396 1 extra opcode byte, 2 displacement bytes. */
397 {0, 0, 3, 0},
398
399 /* COND_JUMP86 states. */
400 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
402 /* dword conditionals adds 5 bytes to frag:
403 1 extra opcode byte, 4 displacement bytes. */
404 {0, 0, 5, 0},
405 /* word conditionals add 4 bytes to frag:
406 1 displacement byte and a 3 byte long branch insn. */
407 {0, 0, 4, 0}
252b5132
RH
408};
409
e413e4e9
AM
410static const arch_entry cpu_arch[] = {
411 {"i8086", Cpu086 },
412 {"i186", Cpu086|Cpu186 },
413 {"i286", Cpu086|Cpu186|Cpu286 },
414 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
415 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
416 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
417 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
418 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
419 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 420 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
421 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
422 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 423 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
424 {NULL, 0 }
425};
426
29b0f896
AM
427const pseudo_typeS md_pseudo_table[] =
428{
429#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
430 {"align", s_align_bytes, 0},
431#else
432 {"align", s_align_ptwo, 0},
433#endif
434 {"arch", set_cpu_arch, 0},
435#ifndef I386COFF
436 {"bss", s_bss, 0},
437#endif
438 {"ffloat", float_cons, 'f'},
439 {"dfloat", float_cons, 'd'},
440 {"tfloat", float_cons, 'x'},
441 {"value", cons, 2},
442 {"noopt", s_ignore, 0},
443 {"optim", s_ignore, 0},
444 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
445 {"code16", set_code_flag, CODE_16BIT},
446 {"code32", set_code_flag, CODE_32BIT},
447 {"code64", set_code_flag, CODE_64BIT},
448 {"intel_syntax", set_intel_syntax, 1},
449 {"att_syntax", set_intel_syntax, 0},
c6682705 450 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896
AM
451 {"loc", dwarf2_directive_loc, 0},
452 {0, 0, 0}
453};
454
455/* For interface with expression (). */
456extern char *input_line_pointer;
457
458/* Hash table for instruction mnemonic lookup. */
459static struct hash_control *op_hash;
460
461/* Hash table for register lookup. */
462static struct hash_control *reg_hash;
463\f
252b5132
RH
464void
465i386_align_code (fragP, count)
466 fragS *fragP;
467 int count;
468{
ce8a8b2f
AM
469 /* Various efficient no-op patterns for aligning code labels.
470 Note: Don't try to assemble the instructions in the comments.
471 0L and 0w are not legal. */
252b5132
RH
472 static const char f32_1[] =
473 {0x90}; /* nop */
474 static const char f32_2[] =
475 {0x89,0xf6}; /* movl %esi,%esi */
476 static const char f32_3[] =
477 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
478 static const char f32_4[] =
479 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
480 static const char f32_5[] =
481 {0x90, /* nop */
482 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
483 static const char f32_6[] =
484 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
485 static const char f32_7[] =
486 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
487 static const char f32_8[] =
488 {0x90, /* nop */
489 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
490 static const char f32_9[] =
491 {0x89,0xf6, /* movl %esi,%esi */
492 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
493 static const char f32_10[] =
494 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
495 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
496 static const char f32_11[] =
497 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_12[] =
500 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
501 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
502 static const char f32_13[] =
503 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_14[] =
506 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
507 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
508 static const char f32_15[] =
509 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
510 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
511 static const char f16_3[] =
512 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
513 static const char f16_4[] =
514 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
515 static const char f16_5[] =
516 {0x90, /* nop */
517 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
518 static const char f16_6[] =
519 {0x89,0xf6, /* mov %si,%si */
520 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
521 static const char f16_7[] =
522 {0x8d,0x74,0x00, /* lea 0(%si),%si */
523 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
524 static const char f16_8[] =
525 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char *const f32_patt[] = {
528 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
529 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
530 };
531 static const char *const f16_patt[] = {
c3332e24 532 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
533 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
534 };
535
33fef721
JH
536 if (count <= 0 || count > 15)
537 return;
3e73aa7c 538
33fef721
JH
539 /* The recommended way to pad 64bit code is to use NOPs preceded by
540 maximally four 0x66 prefixes. Balance the size of nops. */
541 if (flag_code == CODE_64BIT)
252b5132 542 {
33fef721
JH
543 int i;
544 int nnops = (count + 3) / 4;
545 int len = count / nnops;
546 int remains = count - nnops * len;
547 int pos = 0;
548
549 for (i = 0; i < remains; i++)
252b5132 550 {
33fef721
JH
551 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
552 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
553 pos += len + 1;
554 }
555 for (; i < nnops; i++)
556 {
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
558 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
559 pos += len;
252b5132 560 }
252b5132 561 }
33fef721
JH
562 else
563 if (flag_code == CODE_16BIT)
564 {
565 memcpy (fragP->fr_literal + fragP->fr_fix,
566 f16_patt[count - 1], count);
567 if (count > 8)
568 /* Adjust jump offset. */
569 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
570 }
571 else
572 memcpy (fragP->fr_literal + fragP->fr_fix,
573 f32_patt[count - 1], count);
574 fragP->fr_var = count;
252b5132
RH
575}
576
252b5132
RH
577static INLINE unsigned int
578mode_from_disp_size (t)
579 unsigned int t;
580{
3e73aa7c 581 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
582}
583
584static INLINE int
585fits_in_signed_byte (num)
847f7ad4 586 offsetT num;
252b5132
RH
587{
588 return (num >= -128) && (num <= 127);
47926f60 589}
252b5132
RH
590
591static INLINE int
592fits_in_unsigned_byte (num)
847f7ad4 593 offsetT num;
252b5132
RH
594{
595 return (num & 0xff) == num;
47926f60 596}
252b5132
RH
597
598static INLINE int
599fits_in_unsigned_word (num)
847f7ad4 600 offsetT num;
252b5132
RH
601{
602 return (num & 0xffff) == num;
47926f60 603}
252b5132
RH
604
605static INLINE int
606fits_in_signed_word (num)
847f7ad4 607 offsetT num;
252b5132
RH
608{
609 return (-32768 <= num) && (num <= 32767);
47926f60 610}
3e73aa7c
JH
611static INLINE int
612fits_in_signed_long (num)
613 offsetT num ATTRIBUTE_UNUSED;
614{
615#ifndef BFD64
616 return 1;
617#else
618 return (!(((offsetT) -1 << 31) & num)
619 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
620#endif
621} /* fits_in_signed_long() */
622static INLINE int
623fits_in_unsigned_long (num)
624 offsetT num ATTRIBUTE_UNUSED;
625{
626#ifndef BFD64
627 return 1;
628#else
629 return (num & (((offsetT) 2 << 31) - 1)) == num;
630#endif
631} /* fits_in_unsigned_long() */
252b5132
RH
632
633static int
634smallest_imm_type (num)
847f7ad4 635 offsetT num;
252b5132 636{
a847613f 637 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
638 {
639 /* This code is disabled on the 486 because all the Imm1 forms
640 in the opcode table are slower on the i486. They're the
641 versions with the implicitly specified single-position
642 displacement, which has another syntax if you really want to
643 use that form. */
644 if (num == 1)
3e73aa7c 645 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 646 }
252b5132 647 return (fits_in_signed_byte (num)
3e73aa7c 648 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 649 : fits_in_unsigned_byte (num)
3e73aa7c 650 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 651 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
652 ? (Imm16 | Imm32 | Imm32S | Imm64)
653 : fits_in_signed_long (num)
654 ? (Imm32 | Imm32S | Imm64)
655 : fits_in_unsigned_long (num)
656 ? (Imm32 | Imm64)
657 : Imm64);
47926f60 658}
252b5132 659
847f7ad4
AM
660static offsetT
661offset_in_range (val, size)
662 offsetT val;
663 int size;
664{
508866be 665 addressT mask;
ba2adb93 666
847f7ad4
AM
667 switch (size)
668 {
508866be
L
669 case 1: mask = ((addressT) 1 << 8) - 1; break;
670 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 671 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
672#ifdef BFD64
673 case 8: mask = ((addressT) 2 << 63) - 1; break;
674#endif
47926f60 675 default: abort ();
847f7ad4
AM
676 }
677
ba2adb93 678 /* If BFD64, sign extend val. */
3e73aa7c
JH
679 if (!use_rela_relocations)
680 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
681 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 682
47926f60 683 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
684 {
685 char buf1[40], buf2[40];
686
687 sprint_value (buf1, val);
688 sprint_value (buf2, val & mask);
689 as_warn (_("%s shortened to %s"), buf1, buf2);
690 }
691 return val & mask;
692}
693
252b5132
RH
694/* Returns 0 if attempting to add a prefix where one from the same
695 class already exists, 1 if non rep/repne added, 2 if rep/repne
696 added. */
697static int
698add_prefix (prefix)
699 unsigned int prefix;
700{
701 int ret = 1;
702 int q;
703
29b0f896
AM
704 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
705 && flag_code == CODE_64BIT)
3e73aa7c
JH
706 q = REX_PREFIX;
707 else
708 switch (prefix)
709 {
710 default:
711 abort ();
712
713 case CS_PREFIX_OPCODE:
714 case DS_PREFIX_OPCODE:
715 case ES_PREFIX_OPCODE:
716 case FS_PREFIX_OPCODE:
717 case GS_PREFIX_OPCODE:
718 case SS_PREFIX_OPCODE:
719 q = SEG_PREFIX;
720 break;
252b5132 721
3e73aa7c
JH
722 case REPNE_PREFIX_OPCODE:
723 case REPE_PREFIX_OPCODE:
724 ret = 2;
725 /* fall thru */
726 case LOCK_PREFIX_OPCODE:
727 q = LOCKREP_PREFIX;
728 break;
252b5132 729
3e73aa7c
JH
730 case FWAIT_OPCODE:
731 q = WAIT_PREFIX;
732 break;
252b5132 733
3e73aa7c
JH
734 case ADDR_PREFIX_OPCODE:
735 q = ADDR_PREFIX;
736 break;
252b5132 737
3e73aa7c
JH
738 case DATA_PREFIX_OPCODE:
739 q = DATA_PREFIX;
740 break;
741 }
252b5132 742
29b0f896 743 if (i.prefix[q] != 0)
252b5132
RH
744 {
745 as_bad (_("same type of prefix used twice"));
746 return 0;
747 }
748
749 i.prefixes += 1;
750 i.prefix[q] = prefix;
751 return ret;
752}
753
754static void
3e73aa7c 755set_code_flag (value)
e5cb08ac 756 int value;
eecb386c 757{
3e73aa7c
JH
758 flag_code = value;
759 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
760 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
761 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
762 {
763 as_bad (_("64bit mode not supported on this CPU."));
764 }
765 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
766 {
767 as_bad (_("32bit mode not supported on this CPU."));
768 }
eecb386c
AM
769 stackop_size = '\0';
770}
771
772static void
3e73aa7c
JH
773set_16bit_gcc_code_flag (new_code_flag)
774 int new_code_flag;
252b5132 775{
3e73aa7c
JH
776 flag_code = new_code_flag;
777 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
778 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
779 stackop_size = 'l';
252b5132
RH
780}
781
782static void
783set_intel_syntax (syntax_flag)
eecb386c 784 int syntax_flag;
252b5132
RH
785{
786 /* Find out if register prefixing is specified. */
787 int ask_naked_reg = 0;
788
789 SKIP_WHITESPACE ();
29b0f896 790 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
791 {
792 char *string = input_line_pointer;
793 int e = get_symbol_end ();
794
47926f60 795 if (strcmp (string, "prefix") == 0)
252b5132 796 ask_naked_reg = 1;
47926f60 797 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
798 ask_naked_reg = -1;
799 else
d0b47220 800 as_bad (_("bad argument to syntax directive."));
252b5132
RH
801 *input_line_pointer = e;
802 }
803 demand_empty_rest_of_line ();
c3332e24 804
252b5132
RH
805 intel_syntax = syntax_flag;
806
807 if (ask_naked_reg == 0)
808 {
809#ifdef BFD_ASSEMBLER
810 allow_naked_reg = (intel_syntax
24eab124 811 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 812#else
47926f60
KH
813 /* Conservative default. */
814 allow_naked_reg = 0;
252b5132
RH
815#endif
816 }
817 else
818 allow_naked_reg = (ask_naked_reg < 0);
819}
820
e413e4e9
AM
821static void
822set_cpu_arch (dummy)
47926f60 823 int dummy ATTRIBUTE_UNUSED;
e413e4e9 824{
47926f60 825 SKIP_WHITESPACE ();
e413e4e9 826
29b0f896 827 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
828 {
829 char *string = input_line_pointer;
830 int e = get_symbol_end ();
831 int i;
832
833 for (i = 0; cpu_arch[i].name; i++)
834 {
835 if (strcmp (string, cpu_arch[i].name) == 0)
836 {
837 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
838 cpu_arch_flags = (cpu_arch[i].flags
839 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
840 break;
841 }
842 }
843 if (!cpu_arch[i].name)
844 as_bad (_("no such architecture: `%s'"), string);
845
846 *input_line_pointer = e;
847 }
848 else
849 as_bad (_("missing cpu architecture"));
850
fddf5b5b
AM
851 no_cond_jump_promotion = 0;
852 if (*input_line_pointer == ','
29b0f896 853 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
854 {
855 char *string = ++input_line_pointer;
856 int e = get_symbol_end ();
857
858 if (strcmp (string, "nojumps") == 0)
859 no_cond_jump_promotion = 1;
860 else if (strcmp (string, "jumps") == 0)
861 ;
862 else
863 as_bad (_("no such architecture modifier: `%s'"), string);
864
865 *input_line_pointer = e;
866 }
867
e413e4e9
AM
868 demand_empty_rest_of_line ();
869}
870
b9d79e03
JH
871#ifdef BFD_ASSEMBLER
872unsigned long
873i386_mach ()
874{
875 if (!strcmp (default_arch, "x86_64"))
876 return bfd_mach_x86_64;
877 else if (!strcmp (default_arch, "i386"))
878 return bfd_mach_i386_i386;
879 else
880 as_fatal (_("Unknown architecture"));
881}
882#endif
883\f
252b5132
RH
884void
885md_begin ()
886{
887 const char *hash_err;
888
47926f60 889 /* Initialize op_hash hash table. */
252b5132
RH
890 op_hash = hash_new ();
891
892 {
29b0f896
AM
893 const template *optab;
894 templates *core_optab;
252b5132 895
47926f60
KH
896 /* Setup for loop. */
897 optab = i386_optab;
252b5132
RH
898 core_optab = (templates *) xmalloc (sizeof (templates));
899 core_optab->start = optab;
900
901 while (1)
902 {
903 ++optab;
904 if (optab->name == NULL
905 || strcmp (optab->name, (optab - 1)->name) != 0)
906 {
907 /* different name --> ship out current template list;
47926f60 908 add to hash table; & begin anew. */
252b5132
RH
909 core_optab->end = optab;
910 hash_err = hash_insert (op_hash,
911 (optab - 1)->name,
912 (PTR) core_optab);
913 if (hash_err)
914 {
252b5132
RH
915 as_fatal (_("Internal Error: Can't hash %s: %s"),
916 (optab - 1)->name,
917 hash_err);
918 }
919 if (optab->name == NULL)
920 break;
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923 }
924 }
925 }
926
47926f60 927 /* Initialize reg_hash hash table. */
252b5132
RH
928 reg_hash = hash_new ();
929 {
29b0f896 930 const reg_entry *regtab;
252b5132
RH
931
932 for (regtab = i386_regtab;
933 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
934 regtab++)
935 {
936 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
937 if (hash_err)
3e73aa7c
JH
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 regtab->reg_name,
940 hash_err);
252b5132
RH
941 }
942 }
943
47926f60 944 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 945 {
29b0f896
AM
946 int c;
947 char *p;
252b5132
RH
948
949 for (c = 0; c < 256; c++)
950 {
3882b010 951 if (ISDIGIT (c))
252b5132
RH
952 {
953 digit_chars[c] = c;
954 mnemonic_chars[c] = c;
955 register_chars[c] = c;
956 operand_chars[c] = c;
957 }
3882b010 958 else if (ISLOWER (c))
252b5132
RH
959 {
960 mnemonic_chars[c] = c;
961 register_chars[c] = c;
962 operand_chars[c] = c;
963 }
3882b010 964 else if (ISUPPER (c))
252b5132 965 {
3882b010 966 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
967 register_chars[c] = mnemonic_chars[c];
968 operand_chars[c] = c;
969 }
970
3882b010 971 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
972 identifier_chars[c] = c;
973 else if (c >= 128)
974 {
975 identifier_chars[c] = c;
976 operand_chars[c] = c;
977 }
978 }
979
980#ifdef LEX_AT
981 identifier_chars['@'] = '@';
982#endif
252b5132
RH
983 digit_chars['-'] = '-';
984 identifier_chars['_'] = '_';
985 identifier_chars['.'] = '.';
986
987 for (p = operand_special_chars; *p != '\0'; p++)
988 operand_chars[(unsigned char) *p] = *p;
989 }
990
991#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
992 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
993 {
994 record_alignment (text_section, 2);
995 record_alignment (data_section, 2);
996 record_alignment (bss_section, 2);
997 }
998#endif
a4447b93
RH
999
1000 if (flag_code == CODE_64BIT)
1001 {
1002 x86_dwarf2_return_column = 16;
1003 x86_cie_data_alignment = -8;
1004 }
1005 else
1006 {
1007 x86_dwarf2_return_column = 8;
1008 x86_cie_data_alignment = -4;
1009 }
252b5132
RH
1010}
1011
1012void
1013i386_print_statistics (file)
1014 FILE *file;
1015{
1016 hash_print_statistics (file, "i386 opcode", op_hash);
1017 hash_print_statistics (file, "i386 register", reg_hash);
1018}
1019\f
252b5132
RH
1020#ifdef DEBUG386
1021
ce8a8b2f 1022/* Debugging routines for md_assemble. */
252b5132
RH
1023static void pi PARAMS ((char *, i386_insn *));
1024static void pte PARAMS ((template *));
1025static void pt PARAMS ((unsigned int));
1026static void pe PARAMS ((expressionS *));
1027static void ps PARAMS ((symbolS *));
1028
1029static void
1030pi (line, x)
1031 char *line;
1032 i386_insn *x;
1033{
09f131f2 1034 unsigned int i;
252b5132
RH
1035
1036 fprintf (stdout, "%s: template ", line);
1037 pte (&x->tm);
09f131f2
JH
1038 fprintf (stdout, " address: base %s index %s scale %x\n",
1039 x->base_reg ? x->base_reg->reg_name : "none",
1040 x->index_reg ? x->index_reg->reg_name : "none",
1041 x->log2_scale_factor);
1042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1043 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1044 fprintf (stdout, " sib: base %x index %x scale %x\n",
1045 x->sib.base, x->sib.index, x->sib.scale);
1046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1047 (x->rex & REX_MODE64) != 0,
1048 (x->rex & REX_EXTX) != 0,
1049 (x->rex & REX_EXTY) != 0,
1050 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1051 for (i = 0; i < x->operands; i++)
1052 {
1053 fprintf (stdout, " #%d: ", i + 1);
1054 pt (x->types[i]);
1055 fprintf (stdout, "\n");
1056 if (x->types[i]
3f4438ab 1057 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1058 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1059 if (x->types[i] & Imm)
520dc8e8 1060 pe (x->op[i].imms);
252b5132 1061 if (x->types[i] & Disp)
520dc8e8 1062 pe (x->op[i].disps);
252b5132
RH
1063 }
1064}
1065
1066static void
1067pte (t)
1068 template *t;
1069{
09f131f2 1070 unsigned int i;
252b5132 1071 fprintf (stdout, " %d operands ", t->operands);
47926f60 1072 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1073 if (t->extension_opcode != None)
1074 fprintf (stdout, "ext %x ", t->extension_opcode);
1075 if (t->opcode_modifier & D)
1076 fprintf (stdout, "D");
1077 if (t->opcode_modifier & W)
1078 fprintf (stdout, "W");
1079 fprintf (stdout, "\n");
1080 for (i = 0; i < t->operands; i++)
1081 {
1082 fprintf (stdout, " #%d type ", i + 1);
1083 pt (t->operand_types[i]);
1084 fprintf (stdout, "\n");
1085 }
1086}
1087
1088static void
1089pe (e)
1090 expressionS *e;
1091{
24eab124 1092 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1093 fprintf (stdout, " add_number %ld (%lx)\n",
1094 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1095 if (e->X_add_symbol)
1096 {
1097 fprintf (stdout, " add_symbol ");
1098 ps (e->X_add_symbol);
1099 fprintf (stdout, "\n");
1100 }
1101 if (e->X_op_symbol)
1102 {
1103 fprintf (stdout, " op_symbol ");
1104 ps (e->X_op_symbol);
1105 fprintf (stdout, "\n");
1106 }
1107}
1108
1109static void
1110ps (s)
1111 symbolS *s;
1112{
1113 fprintf (stdout, "%s type %s%s",
1114 S_GET_NAME (s),
1115 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1116 segment_name (S_GET_SEGMENT (s)));
1117}
1118
1119struct type_name
1120 {
1121 unsigned int mask;
1122 char *tname;
1123 }
1124
29b0f896 1125static const type_names[] =
252b5132
RH
1126{
1127 { Reg8, "r8" },
1128 { Reg16, "r16" },
1129 { Reg32, "r32" },
09f131f2 1130 { Reg64, "r64" },
252b5132
RH
1131 { Imm8, "i8" },
1132 { Imm8S, "i8s" },
1133 { Imm16, "i16" },
1134 { Imm32, "i32" },
09f131f2
JH
1135 { Imm32S, "i32s" },
1136 { Imm64, "i64" },
252b5132
RH
1137 { Imm1, "i1" },
1138 { BaseIndex, "BaseIndex" },
1139 { Disp8, "d8" },
1140 { Disp16, "d16" },
1141 { Disp32, "d32" },
09f131f2
JH
1142 { Disp32S, "d32s" },
1143 { Disp64, "d64" },
252b5132
RH
1144 { InOutPortReg, "InOutPortReg" },
1145 { ShiftCount, "ShiftCount" },
1146 { Control, "control reg" },
1147 { Test, "test reg" },
1148 { Debug, "debug reg" },
1149 { FloatReg, "FReg" },
1150 { FloatAcc, "FAcc" },
1151 { SReg2, "SReg2" },
1152 { SReg3, "SReg3" },
1153 { Acc, "Acc" },
1154 { JumpAbsolute, "Jump Absolute" },
1155 { RegMMX, "rMMX" },
3f4438ab 1156 { RegXMM, "rXMM" },
252b5132
RH
1157 { EsSeg, "es" },
1158 { 0, "" }
1159};
1160
1161static void
1162pt (t)
1163 unsigned int t;
1164{
29b0f896 1165 const struct type_name *ty;
252b5132 1166
09f131f2
JH
1167 for (ty = type_names; ty->mask; ty++)
1168 if (t & ty->mask)
1169 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1170 fflush (stdout);
1171}
1172
1173#endif /* DEBUG386 */
1174\f
252b5132 1175#ifdef BFD_ASSEMBLER
29b0f896
AM
1176static bfd_reloc_code_real_type reloc
1177 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1178
1179static bfd_reloc_code_real_type
3e73aa7c 1180reloc (size, pcrel, sign, other)
252b5132
RH
1181 int size;
1182 int pcrel;
3e73aa7c 1183 int sign;
252b5132
RH
1184 bfd_reloc_code_real_type other;
1185{
47926f60
KH
1186 if (other != NO_RELOC)
1187 return other;
252b5132
RH
1188
1189 if (pcrel)
1190 {
3e73aa7c 1191 if (!sign)
e5cb08ac 1192 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1193 switch (size)
1194 {
1195 case 1: return BFD_RELOC_8_PCREL;
1196 case 2: return BFD_RELOC_16_PCREL;
1197 case 4: return BFD_RELOC_32_PCREL;
1198 }
d0b47220 1199 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1200 }
1201 else
1202 {
3e73aa7c 1203 if (sign)
e5cb08ac 1204 switch (size)
3e73aa7c
JH
1205 {
1206 case 4: return BFD_RELOC_X86_64_32S;
1207 }
1208 else
1209 switch (size)
1210 {
1211 case 1: return BFD_RELOC_8;
1212 case 2: return BFD_RELOC_16;
1213 case 4: return BFD_RELOC_32;
1214 case 8: return BFD_RELOC_64;
1215 }
1216 as_bad (_("can not do %s %d byte relocation"),
1217 sign ? "signed" : "unsigned", size);
252b5132
RH
1218 }
1219
bfb32b52 1220 abort ();
252b5132
RH
1221 return BFD_RELOC_NONE;
1222}
1223
47926f60
KH
1224/* Here we decide which fixups can be adjusted to make them relative to
1225 the beginning of the section instead of the symbol. Basically we need
1226 to make sure that the dynamic relocations are done correctly, so in
1227 some cases we force the original symbol to be used. */
1228
252b5132 1229int
c0c949c7 1230tc_i386_fix_adjustable (fixP)
31312f95 1231 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1232{
6d249963 1233#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1234 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1235 return 1;
1236
a161fe53
AM
1237 /* Don't adjust pc-relative references to merge sections in 64-bit
1238 mode. */
1239 if (use_rela_relocations
1240 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1241 && fixP->fx_pcrel)
252b5132 1242 return 0;
31312f95 1243
ce8a8b2f 1244 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1245 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1246 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1247 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1248 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1249 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1250 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1251 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1252 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1253 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1254 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1256 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1257 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1258 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1259 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1260 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1261 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1262 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1263 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1264 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1265 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1266 return 0;
31312f95 1267#endif
252b5132
RH
1268 return 1;
1269}
1270#else
ec56dfb4 1271#define reloc(SIZE,PCREL,SIGN,OTHER) 0
c6682705 1272#define BFD_RELOC_8 0
ec56dfb4
L
1273#define BFD_RELOC_16 0
1274#define BFD_RELOC_32 0
c6682705 1275#define BFD_RELOC_8_PCREL 0
ec56dfb4
L
1276#define BFD_RELOC_16_PCREL 0
1277#define BFD_RELOC_32_PCREL 0
1278#define BFD_RELOC_386_PLT32 0
1279#define BFD_RELOC_386_GOT32 0
1280#define BFD_RELOC_386_GOTOFF 0
13ae64f3
JJ
1281#define BFD_RELOC_386_TLS_GD 0
1282#define BFD_RELOC_386_TLS_LDM 0
1283#define BFD_RELOC_386_TLS_LDO_32 0
1284#define BFD_RELOC_386_TLS_IE_32 0
37e55690
JJ
1285#define BFD_RELOC_386_TLS_IE 0
1286#define BFD_RELOC_386_TLS_GOTIE 0
13ae64f3
JJ
1287#define BFD_RELOC_386_TLS_LE_32 0
1288#define BFD_RELOC_386_TLS_LE 0
ec56dfb4
L
1289#define BFD_RELOC_X86_64_PLT32 0
1290#define BFD_RELOC_X86_64_GOT32 0
1291#define BFD_RELOC_X86_64_GOTPCREL 0
bffbf940
JJ
1292#define BFD_RELOC_X86_64_TLSGD 0
1293#define BFD_RELOC_X86_64_TLSLD 0
1294#define BFD_RELOC_X86_64_DTPOFF32 0
1295#define BFD_RELOC_X86_64_GOTTPOFF 0
1296#define BFD_RELOC_X86_64_TPOFF32 0
252b5132
RH
1297#endif
1298
29b0f896 1299static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1300
1301static int
252b5132 1302intel_float_operand (mnemonic)
29b0f896 1303 const char *mnemonic;
252b5132 1304{
47926f60 1305 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1306 return 2;
252b5132
RH
1307
1308 if (mnemonic[0] == 'f')
1309 return 1;
1310
1311 return 0;
1312}
1313
1314/* This is the guts of the machine-dependent assembler. LINE points to a
1315 machine dependent instruction. This function is supposed to emit
1316 the frags/bytes it assembles to. */
1317
1318void
1319md_assemble (line)
1320 char *line;
1321{
252b5132 1322 int j;
252b5132
RH
1323 char mnemonic[MAX_MNEM_SIZE];
1324
47926f60 1325 /* Initialize globals. */
252b5132
RH
1326 memset (&i, '\0', sizeof (i));
1327 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1328 i.reloc[j] = NO_RELOC;
252b5132
RH
1329 memset (disp_expressions, '\0', sizeof (disp_expressions));
1330 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1331 save_stack_p = save_stack;
252b5132
RH
1332
1333 /* First parse an instruction mnemonic & call i386_operand for the operands.
1334 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1335 start of a (possibly prefixed) mnemonic. */
252b5132 1336
29b0f896
AM
1337 line = parse_insn (line, mnemonic);
1338 if (line == NULL)
1339 return;
252b5132 1340
29b0f896
AM
1341 line = parse_operands (line, mnemonic);
1342 if (line == NULL)
1343 return;
252b5132 1344
29b0f896
AM
1345 /* Now we've parsed the mnemonic into a set of templates, and have the
1346 operands at hand. */
1347
1348 /* All intel opcodes have reversed operands except for "bound" and
1349 "enter". We also don't reverse intersegment "jmp" and "call"
1350 instructions with 2 immediate operands so that the immediate segment
1351 precedes the offset, as it does when in AT&T mode. "enter" and the
1352 intersegment "jmp" and "call" instructions are the only ones that
1353 have two immediate operands. */
1354 if (intel_syntax && i.operands > 1
1355 && (strcmp (mnemonic, "bound") != 0)
1356 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1357 swap_operands ();
1358
1359 if (i.imm_operands)
1360 optimize_imm ();
1361
1362 if (i.disp_operands)
1363 optimize_disp ();
1364
1365 /* Next, we find a template that matches the given insn,
1366 making sure the overlap of the given operands types is consistent
1367 with the template operand types. */
252b5132 1368
29b0f896
AM
1369 if (!match_template ())
1370 return;
252b5132 1371
cd61ebfe
AM
1372 if (intel_syntax)
1373 {
1374 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1375 if (SYSV386_COMPAT
1376 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1377 i.tm.base_opcode ^= FloatR;
1378
1379 /* Zap movzx and movsx suffix. The suffix may have been set from
1380 "word ptr" or "byte ptr" on the source operand, but we'll use
1381 the suffix later to choose the destination register. */
1382 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1383 i.suffix = 0;
1384 }
24eab124 1385
29b0f896
AM
1386 if (i.tm.opcode_modifier & FWait)
1387 if (!add_prefix (FWAIT_OPCODE))
1388 return;
252b5132 1389
29b0f896
AM
1390 /* Check string instruction segment overrides. */
1391 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1392 {
1393 if (!check_string ())
5dd0794d 1394 return;
29b0f896 1395 }
5dd0794d 1396
29b0f896
AM
1397 if (!process_suffix ())
1398 return;
e413e4e9 1399
29b0f896
AM
1400 /* Make still unresolved immediate matches conform to size of immediate
1401 given in i.suffix. */
1402 if (!finalize_imm ())
1403 return;
252b5132 1404
29b0f896
AM
1405 if (i.types[0] & Imm1)
1406 i.imm_operands = 0; /* kludge for shift insns. */
1407 if (i.types[0] & ImplicitRegister)
1408 i.reg_operands--;
1409 if (i.types[1] & ImplicitRegister)
1410 i.reg_operands--;
1411 if (i.types[2] & ImplicitRegister)
1412 i.reg_operands--;
252b5132 1413
29b0f896
AM
1414 if (i.tm.opcode_modifier & ImmExt)
1415 {
02fc3089
L
1416 expressionS *exp;
1417
ca164297
L
1418 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1419 {
a4622f40 1420 /* These Intel Precott New Instructions have the fixed
ca164297
L
1421 operands with an opcode suffix which is coded in the same
1422 place as an 8-bit immediate field would be. Here we check
1423 those operands and remove them afterwards. */
1424 unsigned int x;
1425
a4622f40 1426 for (x = 0; x < i.operands; x++)
ca164297
L
1427 if (i.op[x].regs->reg_num != x)
1428 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1429 i.op[x].regs->reg_name, x + 1, i.tm.name);
1430 i.operands = 0;
1431 }
1432
29b0f896
AM
1433 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1434 opcode suffix which is coded in the same place as an 8-bit
1435 immediate field would be. Here we fake an 8-bit immediate
1436 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1437
29b0f896 1438 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1439
29b0f896
AM
1440 exp = &im_expressions[i.imm_operands++];
1441 i.op[i.operands].imms = exp;
1442 i.types[i.operands++] = Imm8;
1443 exp->X_op = O_constant;
1444 exp->X_add_number = i.tm.extension_opcode;
1445 i.tm.extension_opcode = None;
1446 }
252b5132 1447
29b0f896
AM
1448 /* For insns with operands there are more diddles to do to the opcode. */
1449 if (i.operands)
1450 {
1451 if (!process_operands ())
1452 return;
1453 }
1454 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1455 {
1456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1457 as_warn (_("translating to `%sp'"), i.tm.name);
1458 }
252b5132 1459
29b0f896
AM
1460 /* Handle conversion of 'int $3' --> special int3 insn. */
1461 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1462 {
1463 i.tm.base_opcode = INT3_OPCODE;
1464 i.imm_operands = 0;
1465 }
252b5132 1466
29b0f896
AM
1467 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1468 && i.op[0].disps->X_op == O_constant)
1469 {
1470 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1471 the absolute address given by the constant. Since ix86 jumps and
1472 calls are pc relative, we need to generate a reloc. */
1473 i.op[0].disps->X_add_symbol = &abs_symbol;
1474 i.op[0].disps->X_op = O_symbol;
1475 }
252b5132 1476
29b0f896
AM
1477 if ((i.tm.opcode_modifier & Rex64) != 0)
1478 i.rex |= REX_MODE64;
252b5132 1479
29b0f896
AM
1480 /* For 8 bit registers we need an empty rex prefix. Also if the
1481 instruction already has a prefix, we need to convert old
1482 registers to new ones. */
773f551c 1483
29b0f896
AM
1484 if (((i.types[0] & Reg8) != 0
1485 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1486 || ((i.types[1] & Reg8) != 0
1487 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1488 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1489 && i.rex != 0))
1490 {
1491 int x;
726c5dcd 1492
29b0f896
AM
1493 i.rex |= REX_OPCODE;
1494 for (x = 0; x < 2; x++)
1495 {
1496 /* Look for 8 bit operand that uses old registers. */
1497 if ((i.types[x] & Reg8) != 0
1498 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1499 {
29b0f896
AM
1500 /* In case it is "hi" register, give up. */
1501 if (i.op[x].regs->reg_num > 3)
1502 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1503 i.op[x].regs->reg_name);
773f551c 1504
29b0f896
AM
1505 /* Otherwise it is equivalent to the extended register.
1506 Since the encoding doesn't change this is merely
1507 cosmetic cleanup for debug output. */
1508
1509 i.op[x].regs = i.op[x].regs + 8;
773f551c 1510 }
29b0f896
AM
1511 }
1512 }
773f551c 1513
29b0f896
AM
1514 if (i.rex != 0)
1515 add_prefix (REX_OPCODE | i.rex);
1516
1517 /* We are ready to output the insn. */
1518 output_insn ();
1519}
1520
1521static char *
1522parse_insn (line, mnemonic)
1523 char *line;
1524 char *mnemonic;
1525{
1526 char *l = line;
1527 char *token_start = l;
1528 char *mnem_p;
1529
1530 /* Non-zero if we found a prefix only acceptable with string insns. */
1531 const char *expecting_string_instruction = NULL;
45288df1 1532
29b0f896
AM
1533 while (1)
1534 {
1535 mnem_p = mnemonic;
1536 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1537 {
1538 mnem_p++;
1539 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1540 {
29b0f896
AM
1541 as_bad (_("no such instruction: `%s'"), token_start);
1542 return NULL;
1543 }
1544 l++;
1545 }
1546 if (!is_space_char (*l)
1547 && *l != END_OF_INSN
1548 && *l != PREFIX_SEPARATOR
1549 && *l != ',')
1550 {
1551 as_bad (_("invalid character %s in mnemonic"),
1552 output_invalid (*l));
1553 return NULL;
1554 }
1555 if (token_start == l)
1556 {
1557 if (*l == PREFIX_SEPARATOR)
1558 as_bad (_("expecting prefix; got nothing"));
1559 else
1560 as_bad (_("expecting mnemonic; got nothing"));
1561 return NULL;
1562 }
45288df1 1563
29b0f896
AM
1564 /* Look up instruction (or prefix) via hash table. */
1565 current_templates = hash_find (op_hash, mnemonic);
47926f60 1566
29b0f896
AM
1567 if (*l != END_OF_INSN
1568 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1569 && current_templates
1570 && (current_templates->start->opcode_modifier & IsPrefix))
1571 {
1572 /* If we are in 16-bit mode, do not allow addr16 or data16.
1573 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1574 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1575 && flag_code != CODE_64BIT
1576 && (((current_templates->start->opcode_modifier & Size32) != 0)
1577 ^ (flag_code == CODE_16BIT)))
1578 {
1579 as_bad (_("redundant %s prefix"),
1580 current_templates->start->name);
1581 return NULL;
45288df1 1582 }
29b0f896
AM
1583 /* Add prefix, checking for repeated prefixes. */
1584 switch (add_prefix (current_templates->start->base_opcode))
1585 {
1586 case 0:
1587 return NULL;
1588 case 2:
1589 expecting_string_instruction = current_templates->start->name;
1590 break;
1591 }
1592 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1593 token_start = ++l;
1594 }
1595 else
1596 break;
1597 }
45288df1 1598
29b0f896
AM
1599 if (!current_templates)
1600 {
1601 /* See if we can get a match by trimming off a suffix. */
1602 switch (mnem_p[-1])
1603 {
1604 case WORD_MNEM_SUFFIX:
1605 case BYTE_MNEM_SUFFIX:
1606 case QWORD_MNEM_SUFFIX:
1607 i.suffix = mnem_p[-1];
1608 mnem_p[-1] = '\0';
1609 current_templates = hash_find (op_hash, mnemonic);
1610 break;
1611 case SHORT_MNEM_SUFFIX:
1612 case LONG_MNEM_SUFFIX:
1613 if (!intel_syntax)
1614 {
1615 i.suffix = mnem_p[-1];
1616 mnem_p[-1] = '\0';
1617 current_templates = hash_find (op_hash, mnemonic);
1618 }
1619 break;
252b5132 1620
29b0f896
AM
1621 /* Intel Syntax. */
1622 case 'd':
1623 if (intel_syntax)
1624 {
1625 if (intel_float_operand (mnemonic))
1626 i.suffix = SHORT_MNEM_SUFFIX;
1627 else
1628 i.suffix = LONG_MNEM_SUFFIX;
1629 mnem_p[-1] = '\0';
1630 current_templates = hash_find (op_hash, mnemonic);
1631 }
1632 break;
1633 }
1634 if (!current_templates)
1635 {
1636 as_bad (_("no such instruction: `%s'"), token_start);
1637 return NULL;
1638 }
1639 }
252b5132 1640
29b0f896
AM
1641 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1642 {
1643 /* Check for a branch hint. We allow ",pt" and ",pn" for
1644 predict taken and predict not taken respectively.
1645 I'm not sure that branch hints actually do anything on loop
1646 and jcxz insns (JumpByte) for current Pentium4 chips. They
1647 may work in the future and it doesn't hurt to accept them
1648 now. */
1649 if (l[0] == ',' && l[1] == 'p')
1650 {
1651 if (l[2] == 't')
1652 {
1653 if (!add_prefix (DS_PREFIX_OPCODE))
1654 return NULL;
1655 l += 3;
1656 }
1657 else if (l[2] == 'n')
1658 {
1659 if (!add_prefix (CS_PREFIX_OPCODE))
1660 return NULL;
1661 l += 3;
1662 }
1663 }
1664 }
1665 /* Any other comma loses. */
1666 if (*l == ',')
1667 {
1668 as_bad (_("invalid character %s in mnemonic"),
1669 output_invalid (*l));
1670 return NULL;
1671 }
252b5132 1672
29b0f896
AM
1673 /* Check if instruction is supported on specified architecture. */
1674 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1675 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1676 {
1677 as_warn (_("`%s' is not supported on `%s'"),
1678 current_templates->start->name, cpu_arch_name);
1679 }
1680 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1681 {
1682 as_warn (_("use .code16 to ensure correct addressing mode"));
1683 }
252b5132 1684
29b0f896
AM
1685 /* Check for rep/repne without a string instruction. */
1686 if (expecting_string_instruction
1687 && !(current_templates->start->opcode_modifier & IsString))
1688 {
1689 as_bad (_("expecting string instruction after `%s'"),
1690 expecting_string_instruction);
1691 return NULL;
1692 }
252b5132 1693
29b0f896
AM
1694 return l;
1695}
252b5132 1696
29b0f896
AM
1697static char *
1698parse_operands (l, mnemonic)
1699 char *l;
1700 const char *mnemonic;
1701{
1702 char *token_start;
3138f287 1703
29b0f896
AM
1704 /* 1 if operand is pending after ','. */
1705 unsigned int expecting_operand = 0;
252b5132 1706
29b0f896
AM
1707 /* Non-zero if operand parens not balanced. */
1708 unsigned int paren_not_balanced;
1709
1710 while (*l != END_OF_INSN)
1711 {
1712 /* Skip optional white space before operand. */
1713 if (is_space_char (*l))
1714 ++l;
1715 if (!is_operand_char (*l) && *l != END_OF_INSN)
1716 {
1717 as_bad (_("invalid character %s before operand %d"),
1718 output_invalid (*l),
1719 i.operands + 1);
1720 return NULL;
1721 }
1722 token_start = l; /* after white space */
1723 paren_not_balanced = 0;
1724 while (paren_not_balanced || *l != ',')
1725 {
1726 if (*l == END_OF_INSN)
1727 {
1728 if (paren_not_balanced)
1729 {
1730 if (!intel_syntax)
1731 as_bad (_("unbalanced parenthesis in operand %d."),
1732 i.operands + 1);
1733 else
1734 as_bad (_("unbalanced brackets in operand %d."),
1735 i.operands + 1);
1736 return NULL;
1737 }
1738 else
1739 break; /* we are done */
1740 }
1741 else if (!is_operand_char (*l) && !is_space_char (*l))
1742 {
1743 as_bad (_("invalid character %s in operand %d"),
1744 output_invalid (*l),
1745 i.operands + 1);
1746 return NULL;
1747 }
1748 if (!intel_syntax)
1749 {
1750 if (*l == '(')
1751 ++paren_not_balanced;
1752 if (*l == ')')
1753 --paren_not_balanced;
1754 }
1755 else
1756 {
1757 if (*l == '[')
1758 ++paren_not_balanced;
1759 if (*l == ']')
1760 --paren_not_balanced;
1761 }
1762 l++;
1763 }
1764 if (l != token_start)
1765 { /* Yes, we've read in another operand. */
1766 unsigned int operand_ok;
1767 this_operand = i.operands++;
1768 if (i.operands > MAX_OPERANDS)
1769 {
1770 as_bad (_("spurious operands; (%d operands/instruction max)"),
1771 MAX_OPERANDS);
1772 return NULL;
1773 }
1774 /* Now parse operand adding info to 'i' as we go along. */
1775 END_STRING_AND_SAVE (l);
1776
1777 if (intel_syntax)
1778 operand_ok =
1779 i386_intel_operand (token_start,
1780 intel_float_operand (mnemonic));
1781 else
1782 operand_ok = i386_operand (token_start);
1783
1784 RESTORE_END_STRING (l);
1785 if (!operand_ok)
1786 return NULL;
1787 }
1788 else
1789 {
1790 if (expecting_operand)
1791 {
1792 expecting_operand_after_comma:
1793 as_bad (_("expecting operand after ','; got nothing"));
1794 return NULL;
1795 }
1796 if (*l == ',')
1797 {
1798 as_bad (_("expecting operand before ','; got nothing"));
1799 return NULL;
1800 }
1801 }
7f3f1ea2 1802
29b0f896
AM
1803 /* Now *l must be either ',' or END_OF_INSN. */
1804 if (*l == ',')
1805 {
1806 if (*++l == END_OF_INSN)
1807 {
1808 /* Just skip it, if it's \n complain. */
1809 goto expecting_operand_after_comma;
1810 }
1811 expecting_operand = 1;
1812 }
1813 }
1814 return l;
1815}
7f3f1ea2 1816
29b0f896
AM
1817static void
1818swap_operands ()
1819{
1820 union i386_op temp_op;
1821 unsigned int temp_type;
1822 RELOC_ENUM temp_reloc;
1823 int xchg1 = 0;
1824 int xchg2 = 0;
252b5132 1825
29b0f896
AM
1826 if (i.operands == 2)
1827 {
1828 xchg1 = 0;
1829 xchg2 = 1;
1830 }
1831 else if (i.operands == 3)
1832 {
1833 xchg1 = 0;
1834 xchg2 = 2;
1835 }
1836 temp_type = i.types[xchg2];
1837 i.types[xchg2] = i.types[xchg1];
1838 i.types[xchg1] = temp_type;
1839 temp_op = i.op[xchg2];
1840 i.op[xchg2] = i.op[xchg1];
1841 i.op[xchg1] = temp_op;
1842 temp_reloc = i.reloc[xchg2];
1843 i.reloc[xchg2] = i.reloc[xchg1];
1844 i.reloc[xchg1] = temp_reloc;
1845
1846 if (i.mem_operands == 2)
1847 {
1848 const seg_entry *temp_seg;
1849 temp_seg = i.seg[0];
1850 i.seg[0] = i.seg[1];
1851 i.seg[1] = temp_seg;
1852 }
1853}
252b5132 1854
29b0f896
AM
1855/* Try to ensure constant immediates are represented in the smallest
1856 opcode possible. */
1857static void
1858optimize_imm ()
1859{
1860 char guess_suffix = 0;
1861 int op;
252b5132 1862
29b0f896
AM
1863 if (i.suffix)
1864 guess_suffix = i.suffix;
1865 else if (i.reg_operands)
1866 {
1867 /* Figure out a suffix from the last register operand specified.
1868 We can't do this properly yet, ie. excluding InOutPortReg,
1869 but the following works for instructions with immediates.
1870 In any case, we can't set i.suffix yet. */
1871 for (op = i.operands; --op >= 0;)
1872 if (i.types[op] & Reg)
252b5132 1873 {
29b0f896
AM
1874 if (i.types[op] & Reg8)
1875 guess_suffix = BYTE_MNEM_SUFFIX;
1876 else if (i.types[op] & Reg16)
1877 guess_suffix = WORD_MNEM_SUFFIX;
1878 else if (i.types[op] & Reg32)
1879 guess_suffix = LONG_MNEM_SUFFIX;
1880 else if (i.types[op] & Reg64)
1881 guess_suffix = QWORD_MNEM_SUFFIX;
1882 break;
252b5132 1883 }
29b0f896
AM
1884 }
1885 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1886 guess_suffix = WORD_MNEM_SUFFIX;
1887
1888 for (op = i.operands; --op >= 0;)
1889 if (i.types[op] & Imm)
1890 {
1891 switch (i.op[op].imms->X_op)
252b5132 1892 {
29b0f896
AM
1893 case O_constant:
1894 /* If a suffix is given, this operand may be shortened. */
1895 switch (guess_suffix)
252b5132 1896 {
29b0f896
AM
1897 case LONG_MNEM_SUFFIX:
1898 i.types[op] |= Imm32 | Imm64;
1899 break;
1900 case WORD_MNEM_SUFFIX:
1901 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1902 break;
1903 case BYTE_MNEM_SUFFIX:
1904 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1905 break;
252b5132 1906 }
252b5132 1907
29b0f896
AM
1908 /* If this operand is at most 16 bits, convert it
1909 to a signed 16 bit number before trying to see
1910 whether it will fit in an even smaller size.
1911 This allows a 16-bit operand such as $0xffe0 to
1912 be recognised as within Imm8S range. */
1913 if ((i.types[op] & Imm16)
1914 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1915 {
29b0f896
AM
1916 i.op[op].imms->X_add_number =
1917 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1918 }
1919 if ((i.types[op] & Imm32)
1920 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1921 == 0))
1922 {
1923 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1924 ^ ((offsetT) 1 << 31))
1925 - ((offsetT) 1 << 31));
1926 }
1927 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 1928
29b0f896
AM
1929 /* We must avoid matching of Imm32 templates when 64bit
1930 only immediate is available. */
1931 if (guess_suffix == QWORD_MNEM_SUFFIX)
1932 i.types[op] &= ~Imm32;
1933 break;
252b5132 1934
29b0f896
AM
1935 case O_absent:
1936 case O_register:
1937 abort ();
1938
1939 /* Symbols and expressions. */
1940 default:
1941 /* Convert symbolic operand to proper sizes for matching. */
1942 switch (guess_suffix)
1943 {
1944 case QWORD_MNEM_SUFFIX:
1945 i.types[op] = Imm64 | Imm32S;
1946 break;
1947 case LONG_MNEM_SUFFIX:
1948 i.types[op] = Imm32 | Imm64;
1949 break;
1950 case WORD_MNEM_SUFFIX:
1951 i.types[op] = Imm16 | Imm32 | Imm64;
1952 break;
1953 break;
1954 case BYTE_MNEM_SUFFIX:
1955 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1956 break;
1957 break;
252b5132 1958 }
29b0f896 1959 break;
252b5132 1960 }
29b0f896
AM
1961 }
1962}
47926f60 1963
29b0f896
AM
1964/* Try to use the smallest displacement type too. */
1965static void
1966optimize_disp ()
1967{
1968 int op;
3e73aa7c 1969
29b0f896
AM
1970 for (op = i.operands; --op >= 0;)
1971 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 1972 {
29b0f896
AM
1973 offsetT disp = i.op[op].disps->X_add_number;
1974
1975 if (i.types[op] & Disp16)
252b5132 1976 {
29b0f896
AM
1977 /* We know this operand is at most 16 bits, so
1978 convert to a signed 16 bit number before trying
1979 to see whether it will fit in an even smaller
1980 size. */
1981
1982 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 1983 }
29b0f896 1984 else if (i.types[op] & Disp32)
252b5132 1985 {
29b0f896
AM
1986 /* We know this operand is at most 32 bits, so convert to a
1987 signed 32 bit number before trying to see whether it will
1988 fit in an even smaller size. */
1989 disp &= (((offsetT) 2 << 31) - 1);
1990 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 1991 }
29b0f896 1992 if (flag_code == CODE_64BIT)
252b5132 1993 {
29b0f896
AM
1994 if (fits_in_signed_long (disp))
1995 i.types[op] |= Disp32S;
1996 if (fits_in_unsigned_long (disp))
1997 i.types[op] |= Disp32;
252b5132 1998 }
29b0f896
AM
1999 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2000 && fits_in_signed_byte (disp))
2001 i.types[op] |= Disp8;
252b5132 2002 }
29b0f896
AM
2003}
2004
2005static int
2006match_template ()
2007{
2008 /* Points to template once we've found it. */
2009 const template *t;
2010 unsigned int overlap0, overlap1, overlap2;
2011 unsigned int found_reverse_match;
2012 int suffix_check;
2013
2014#define MATCH(overlap, given, template) \
2015 ((overlap & ~JumpAbsolute) \
2016 && (((given) & (BaseIndex | JumpAbsolute)) \
2017 == ((overlap) & (BaseIndex | JumpAbsolute))))
2018
2019 /* If given types r0 and r1 are registers they must be of the same type
2020 unless the expected operand type register overlap is null.
2021 Note that Acc in a template matches every size of reg. */
2022#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2023 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2024 || ((g0) & Reg) == ((g1) & Reg) \
2025 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2026
2027 overlap0 = 0;
2028 overlap1 = 0;
2029 overlap2 = 0;
2030 found_reverse_match = 0;
2031 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2032 ? No_bSuf
2033 : (i.suffix == WORD_MNEM_SUFFIX
2034 ? No_wSuf
2035 : (i.suffix == SHORT_MNEM_SUFFIX
2036 ? No_sSuf
2037 : (i.suffix == LONG_MNEM_SUFFIX
2038 ? No_lSuf
2039 : (i.suffix == QWORD_MNEM_SUFFIX
2040 ? No_qSuf
2041 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2042 ? No_xSuf : 0))))));
2043
2044 for (t = current_templates->start;
2045 t < current_templates->end;
2046 t++)
2047 {
2048 /* Must have right number of operands. */
2049 if (i.operands != t->operands)
2050 continue;
2051
2052 /* Check the suffix, except for some instructions in intel mode. */
2053 if ((t->opcode_modifier & suffix_check)
2054 && !(intel_syntax
2055 && (t->opcode_modifier & IgnoreSize))
2056 && !(intel_syntax
2057 && t->base_opcode == 0xd9
2058 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2059 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2060 continue;
2061
2062 /* Do not verify operands when there are none. */
2063 else if (!t->operands)
2064 {
2065 if (t->cpu_flags & ~cpu_arch_flags)
2066 continue;
2067 /* We've found a match; break out of loop. */
2068 break;
2069 }
252b5132 2070
29b0f896
AM
2071 overlap0 = i.types[0] & t->operand_types[0];
2072 switch (t->operands)
2073 {
2074 case 1:
2075 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2076 continue;
2077 break;
2078 case 2:
2079 case 3:
2080 overlap1 = i.types[1] & t->operand_types[1];
2081 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2082 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2083 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2084 t->operand_types[0],
2085 overlap1, i.types[1],
2086 t->operand_types[1]))
2087 {
2088 /* Check if other direction is valid ... */
2089 if ((t->opcode_modifier & (D | FloatD)) == 0)
2090 continue;
2091
2092 /* Try reversing direction of operands. */
2093 overlap0 = i.types[0] & t->operand_types[1];
2094 overlap1 = i.types[1] & t->operand_types[0];
2095 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2096 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2097 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2098 t->operand_types[1],
2099 overlap1, i.types[1],
2100 t->operand_types[0]))
2101 {
2102 /* Does not match either direction. */
2103 continue;
2104 }
2105 /* found_reverse_match holds which of D or FloatDR
2106 we've found. */
2107 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2108 }
2109 /* Found a forward 2 operand match here. */
2110 else if (t->operands == 3)
2111 {
2112 /* Here we make use of the fact that there are no
2113 reverse match 3 operand instructions, and all 3
2114 operand instructions only need to be checked for
2115 register consistency between operands 2 and 3. */
2116 overlap2 = i.types[2] & t->operand_types[2];
2117 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2118 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2119 t->operand_types[1],
2120 overlap2, i.types[2],
2121 t->operand_types[2]))
2122
2123 continue;
2124 }
2125 /* Found either forward/reverse 2 or 3 operand match here:
2126 slip through to break. */
2127 }
2128 if (t->cpu_flags & ~cpu_arch_flags)
2129 {
2130 found_reverse_match = 0;
2131 continue;
2132 }
2133 /* We've found a match; break out of loop. */
2134 break;
2135 }
2136
2137 if (t == current_templates->end)
2138 {
2139 /* We found no match. */
2140 as_bad (_("suffix or operands invalid for `%s'"),
2141 current_templates->start->name);
2142 return 0;
2143 }
252b5132 2144
29b0f896
AM
2145 if (!quiet_warnings)
2146 {
2147 if (!intel_syntax
2148 && ((i.types[0] & JumpAbsolute)
2149 != (t->operand_types[0] & JumpAbsolute)))
2150 {
2151 as_warn (_("indirect %s without `*'"), t->name);
2152 }
2153
2154 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2155 == (IsPrefix | IgnoreSize))
2156 {
2157 /* Warn them that a data or address size prefix doesn't
2158 affect assembly of the next line of code. */
2159 as_warn (_("stand-alone `%s' prefix"), t->name);
2160 }
2161 }
2162
2163 /* Copy the template we found. */
2164 i.tm = *t;
2165 if (found_reverse_match)
2166 {
2167 /* If we found a reverse match we must alter the opcode
2168 direction bit. found_reverse_match holds bits to change
2169 (different for int & float insns). */
2170
2171 i.tm.base_opcode ^= found_reverse_match;
2172
2173 i.tm.operand_types[0] = t->operand_types[1];
2174 i.tm.operand_types[1] = t->operand_types[0];
2175 }
2176
2177 return 1;
2178}
2179
2180static int
2181check_string ()
2182{
2183 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2184 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2185 {
2186 if (i.seg[0] != NULL && i.seg[0] != &es)
2187 {
2188 as_bad (_("`%s' operand %d must use `%%es' segment"),
2189 i.tm.name,
2190 mem_op + 1);
2191 return 0;
2192 }
2193 /* There's only ever one segment override allowed per instruction.
2194 This instruction possibly has a legal segment override on the
2195 second operand, so copy the segment to where non-string
2196 instructions store it, allowing common code. */
2197 i.seg[0] = i.seg[1];
2198 }
2199 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2200 {
2201 if (i.seg[1] != NULL && i.seg[1] != &es)
2202 {
2203 as_bad (_("`%s' operand %d must use `%%es' segment"),
2204 i.tm.name,
2205 mem_op + 2);
2206 return 0;
2207 }
2208 }
2209 return 1;
2210}
2211
2212static int
2213process_suffix ()
2214{
2215 /* If matched instruction specifies an explicit instruction mnemonic
2216 suffix, use it. */
2217 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2218 {
2219 if (i.tm.opcode_modifier & Size16)
2220 i.suffix = WORD_MNEM_SUFFIX;
2221 else if (i.tm.opcode_modifier & Size64)
2222 i.suffix = QWORD_MNEM_SUFFIX;
2223 else
2224 i.suffix = LONG_MNEM_SUFFIX;
2225 }
2226 else if (i.reg_operands)
2227 {
2228 /* If there's no instruction mnemonic suffix we try to invent one
2229 based on register operands. */
2230 if (!i.suffix)
2231 {
2232 /* We take i.suffix from the last register operand specified,
2233 Destination register type is more significant than source
2234 register type. */
2235 int op;
2236 for (op = i.operands; --op >= 0;)
2237 if ((i.types[op] & Reg)
2238 && !(i.tm.operand_types[op] & InOutPortReg))
2239 {
2240 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2241 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2242 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2243 LONG_MNEM_SUFFIX);
2244 break;
2245 }
2246 }
2247 else if (i.suffix == BYTE_MNEM_SUFFIX)
2248 {
2249 if (!check_byte_reg ())
2250 return 0;
2251 }
2252 else if (i.suffix == LONG_MNEM_SUFFIX)
2253 {
2254 if (!check_long_reg ())
2255 return 0;
2256 }
2257 else if (i.suffix == QWORD_MNEM_SUFFIX)
2258 {
2259 if (!check_qword_reg ())
2260 return 0;
2261 }
2262 else if (i.suffix == WORD_MNEM_SUFFIX)
2263 {
2264 if (!check_word_reg ())
2265 return 0;
2266 }
2267 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2268 /* Do nothing if the instruction is going to ignore the prefix. */
2269 ;
2270 else
2271 abort ();
2272 }
2273 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2274 {
2275 i.suffix = stackop_size;
2276 }
252b5132 2277
29b0f896
AM
2278 /* Change the opcode based on the operand size given by i.suffix;
2279 We need not change things for byte insns. */
252b5132 2280
29b0f896
AM
2281 if (!i.suffix && (i.tm.opcode_modifier & W))
2282 {
2283 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2284 return 0;
2285 }
252b5132 2286
29b0f896
AM
2287 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2288 {
2289 /* It's not a byte, select word/dword operation. */
2290 if (i.tm.opcode_modifier & W)
2291 {
2292 if (i.tm.opcode_modifier & ShortForm)
2293 i.tm.base_opcode |= 8;
2294 else
2295 i.tm.base_opcode |= 1;
2296 }
0f3f3d8b 2297
29b0f896
AM
2298 /* Now select between word & dword operations via the operand
2299 size prefix, except for instructions that will ignore this
2300 prefix anyway. */
2301 if (i.suffix != QWORD_MNEM_SUFFIX
9146926a
AM
2302 && !(i.tm.opcode_modifier & IgnoreSize)
2303 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2304 || (flag_code == CODE_64BIT
2305 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2306 {
2307 unsigned int prefix = DATA_PREFIX_OPCODE;
29b0f896
AM
2308 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2309 prefix = ADDR_PREFIX_OPCODE;
252b5132 2310
29b0f896
AM
2311 if (!add_prefix (prefix))
2312 return 0;
24eab124 2313 }
252b5132 2314
29b0f896
AM
2315 /* Set mode64 for an operand. */
2316 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2317 && flag_code == CODE_64BIT
29b0f896 2318 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2319 i.rex |= REX_MODE64;
3e73aa7c 2320
29b0f896
AM
2321 /* Size floating point instruction. */
2322 if (i.suffix == LONG_MNEM_SUFFIX)
2323 {
2324 if (i.tm.opcode_modifier & FloatMF)
2325 i.tm.base_opcode ^= 4;
2326 }
2327 }
7ecd2f8b 2328
29b0f896
AM
2329 return 1;
2330}
3e73aa7c 2331
29b0f896
AM
2332static int
2333check_byte_reg ()
2334{
2335 int op;
2336 for (op = i.operands; --op >= 0;)
2337 {
2338 /* If this is an eight bit register, it's OK. If it's the 16 or
2339 32 bit version of an eight bit register, we will just use the
2340 low portion, and that's OK too. */
2341 if (i.types[op] & Reg8)
2342 continue;
2343
2344 /* movzx and movsx should not generate this warning. */
2345 if (intel_syntax
2346 && (i.tm.base_opcode == 0xfb7
2347 || i.tm.base_opcode == 0xfb6
2348 || i.tm.base_opcode == 0x63
2349 || i.tm.base_opcode == 0xfbe
2350 || i.tm.base_opcode == 0xfbf))
2351 continue;
2352
2353 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2354#if 0
2355 /* Check that the template allows eight bit regs. This
2356 kills insns such as `orb $1,%edx', which maybe should be
2357 allowed. */
2358 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2359#endif
2360 )
2361 {
2362 /* Prohibit these changes in the 64bit mode, since the
2363 lowering is more complicated. */
2364 if (flag_code == CODE_64BIT
2365 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2366 {
0f3f3d8b 2367 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2368 i.op[op].regs->reg_name,
2369 i.suffix);
2370 return 0;
2371 }
2372#if REGISTER_WARNINGS
2373 if (!quiet_warnings
2374 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2375 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2376 (i.op[op].regs + (i.types[op] & Reg16
2377 ? REGNAM_AL - REGNAM_AX
2378 : REGNAM_AL - REGNAM_EAX))->reg_name,
2379 i.op[op].regs->reg_name,
2380 i.suffix);
2381#endif
2382 continue;
2383 }
2384 /* Any other register is bad. */
2385 if (i.types[op] & (Reg | RegMMX | RegXMM
2386 | SReg2 | SReg3
2387 | Control | Debug | Test
2388 | FloatReg | FloatAcc))
2389 {
2390 as_bad (_("`%%%s' not allowed with `%s%c'"),
2391 i.op[op].regs->reg_name,
2392 i.tm.name,
2393 i.suffix);
2394 return 0;
2395 }
2396 }
2397 return 1;
2398}
2399
2400static int
2401check_long_reg ()
2402{
2403 int op;
2404
2405 for (op = i.operands; --op >= 0;)
2406 /* Reject eight bit registers, except where the template requires
2407 them. (eg. movzb) */
2408 if ((i.types[op] & Reg8) != 0
2409 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2410 {
2411 as_bad (_("`%%%s' not allowed with `%s%c'"),
2412 i.op[op].regs->reg_name,
2413 i.tm.name,
2414 i.suffix);
2415 return 0;
2416 }
2417 /* Warn if the e prefix on a general reg is missing. */
2418 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2419 && (i.types[op] & Reg16) != 0
2420 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2421 {
2422 /* Prohibit these changes in the 64bit mode, since the
2423 lowering is more complicated. */
2424 if (flag_code == CODE_64BIT)
252b5132 2425 {
0f3f3d8b 2426 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2427 i.op[op].regs->reg_name,
2428 i.suffix);
2429 return 0;
252b5132 2430 }
29b0f896
AM
2431#if REGISTER_WARNINGS
2432 else
2433 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2434 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2435 i.op[op].regs->reg_name,
2436 i.suffix);
2437#endif
252b5132 2438 }
29b0f896
AM
2439 /* Warn if the r prefix on a general reg is missing. */
2440 else if ((i.types[op] & Reg64) != 0
2441 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2442 {
0f3f3d8b 2443 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2444 i.op[op].regs->reg_name,
2445 i.suffix);
2446 return 0;
2447 }
2448 return 1;
2449}
252b5132 2450
29b0f896
AM
2451static int
2452check_qword_reg ()
2453{
2454 int op;
252b5132 2455
29b0f896
AM
2456 for (op = i.operands; --op >= 0; )
2457 /* Reject eight bit registers, except where the template requires
2458 them. (eg. movzb) */
2459 if ((i.types[op] & Reg8) != 0
2460 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2461 {
2462 as_bad (_("`%%%s' not allowed with `%s%c'"),
2463 i.op[op].regs->reg_name,
2464 i.tm.name,
2465 i.suffix);
2466 return 0;
2467 }
2468 /* Warn if the e prefix on a general reg is missing. */
2469 else if (((i.types[op] & Reg16) != 0
2470 || (i.types[op] & Reg32) != 0)
2471 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2472 {
2473 /* Prohibit these changes in the 64bit mode, since the
2474 lowering is more complicated. */
0f3f3d8b 2475 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2476 i.op[op].regs->reg_name,
2477 i.suffix);
2478 return 0;
252b5132 2479 }
29b0f896
AM
2480 return 1;
2481}
252b5132 2482
29b0f896
AM
2483static int
2484check_word_reg ()
2485{
2486 int op;
2487 for (op = i.operands; --op >= 0;)
2488 /* Reject eight bit registers, except where the template requires
2489 them. (eg. movzb) */
2490 if ((i.types[op] & Reg8) != 0
2491 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2492 {
2493 as_bad (_("`%%%s' not allowed with `%s%c'"),
2494 i.op[op].regs->reg_name,
2495 i.tm.name,
2496 i.suffix);
2497 return 0;
2498 }
2499 /* Warn if the e prefix on a general reg is present. */
2500 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2501 && (i.types[op] & Reg32) != 0
2502 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2503 {
29b0f896
AM
2504 /* Prohibit these changes in the 64bit mode, since the
2505 lowering is more complicated. */
2506 if (flag_code == CODE_64BIT)
252b5132 2507 {
0f3f3d8b 2508 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2509 i.op[op].regs->reg_name,
2510 i.suffix);
2511 return 0;
252b5132 2512 }
29b0f896
AM
2513 else
2514#if REGISTER_WARNINGS
2515 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2516 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2517 i.op[op].regs->reg_name,
2518 i.suffix);
2519#endif
2520 }
2521 return 1;
2522}
252b5132 2523
29b0f896
AM
2524static int
2525finalize_imm ()
2526{
2527 unsigned int overlap0, overlap1, overlap2;
2528
2529 overlap0 = i.types[0] & i.tm.operand_types[0];
2530 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2531 && overlap0 != Imm8 && overlap0 != Imm8S
2532 && overlap0 != Imm16 && overlap0 != Imm32S
2533 && overlap0 != Imm32 && overlap0 != Imm64)
2534 {
2535 if (i.suffix)
2536 {
2537 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2538 ? Imm8 | Imm8S
2539 : (i.suffix == WORD_MNEM_SUFFIX
2540 ? Imm16
2541 : (i.suffix == QWORD_MNEM_SUFFIX
2542 ? Imm64 | Imm32S
2543 : Imm32)));
2544 }
2545 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2546 || overlap0 == (Imm16 | Imm32)
2547 || overlap0 == (Imm16 | Imm32S))
2548 {
2549 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2550 ? Imm16 : Imm32S);
2551 }
2552 if (overlap0 != Imm8 && overlap0 != Imm8S
2553 && overlap0 != Imm16 && overlap0 != Imm32S
2554 && overlap0 != Imm32 && overlap0 != Imm64)
2555 {
2556 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2557 return 0;
2558 }
2559 }
2560 i.types[0] = overlap0;
2561
2562 overlap1 = i.types[1] & i.tm.operand_types[1];
2563 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2564 && overlap1 != Imm8 && overlap1 != Imm8S
2565 && overlap1 != Imm16 && overlap1 != Imm32S
2566 && overlap1 != Imm32 && overlap1 != Imm64)
2567 {
2568 if (i.suffix)
2569 {
2570 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2571 ? Imm8 | Imm8S
2572 : (i.suffix == WORD_MNEM_SUFFIX
2573 ? Imm16
2574 : (i.suffix == QWORD_MNEM_SUFFIX
2575 ? Imm64 | Imm32S
2576 : Imm32)));
2577 }
2578 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2579 || overlap1 == (Imm16 | Imm32)
2580 || overlap1 == (Imm16 | Imm32S))
2581 {
2582 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2583 ? Imm16 : Imm32S);
2584 }
2585 if (overlap1 != Imm8 && overlap1 != Imm8S
2586 && overlap1 != Imm16 && overlap1 != Imm32S
2587 && overlap1 != Imm32 && overlap1 != Imm64)
2588 {
2589 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2590 return 0;
2591 }
2592 }
2593 i.types[1] = overlap1;
2594
2595 overlap2 = i.types[2] & i.tm.operand_types[2];
2596 assert ((overlap2 & Imm) == 0);
2597 i.types[2] = overlap2;
2598
2599 return 1;
2600}
2601
2602static int
2603process_operands ()
2604{
2605 /* Default segment register this instruction will use for memory
2606 accesses. 0 means unknown. This is only for optimizing out
2607 unnecessary segment overrides. */
2608 const seg_entry *default_seg = 0;
2609
2610 /* The imul $imm, %reg instruction is converted into
2611 imul $imm, %reg, %reg, and the clr %reg instruction
2612 is converted into xor %reg, %reg. */
2613 if (i.tm.opcode_modifier & regKludge)
2614 {
2615 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2616 /* Pretend we saw the extra register operand. */
2617 assert (i.op[first_reg_op + 1].regs == 0);
2618 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2619 i.types[first_reg_op + 1] = i.types[first_reg_op];
2620 i.reg_operands = 2;
2621 }
2622
2623 if (i.tm.opcode_modifier & ShortForm)
2624 {
2625 /* The register or float register operand is in operand 0 or 1. */
2626 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2627 /* Register goes in low 3 bits of opcode. */
2628 i.tm.base_opcode |= i.op[op].regs->reg_num;
2629 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2630 i.rex |= REX_EXTZ;
2631 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2632 {
2633 /* Warn about some common errors, but press on regardless.
2634 The first case can be generated by gcc (<= 2.8.1). */
2635 if (i.operands == 2)
2636 {
2637 /* Reversed arguments on faddp, fsubp, etc. */
2638 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2639 i.op[1].regs->reg_name,
2640 i.op[0].regs->reg_name);
2641 }
2642 else
2643 {
2644 /* Extraneous `l' suffix on fp insn. */
2645 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2646 i.op[0].regs->reg_name);
2647 }
2648 }
2649 }
2650 else if (i.tm.opcode_modifier & Modrm)
2651 {
2652 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2653 must be put into the modrm byte). Now, we make the modrm and
2654 index base bytes based on all the info we've collected. */
29b0f896
AM
2655
2656 default_seg = build_modrm_byte ();
2657 }
2658 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2659 {
2660 if (i.tm.base_opcode == POP_SEG_SHORT
2661 && i.op[0].regs->reg_num == 1)
2662 {
2663 as_bad (_("you can't `pop %%cs'"));
2664 return 0;
2665 }
2666 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2667 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2668 i.rex |= REX_EXTZ;
2669 }
2670 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2671 {
2672 default_seg = &ds;
2673 }
2674 else if ((i.tm.opcode_modifier & IsString) != 0)
2675 {
2676 /* For the string instructions that allow a segment override
2677 on one of their operands, the default segment is ds. */
2678 default_seg = &ds;
2679 }
2680
52271982
AM
2681 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2682 as_warn (_("segment override on `lea' is ineffectual"));
2683
2684 /* If a segment was explicitly specified, and the specified segment
2685 is not the default, use an opcode prefix to select it. If we
2686 never figured out what the default segment is, then default_seg
2687 will be zero at this point, and the specified segment prefix will
2688 always be used. */
29b0f896
AM
2689 if ((i.seg[0]) && (i.seg[0] != default_seg))
2690 {
2691 if (!add_prefix (i.seg[0]->seg_prefix))
2692 return 0;
2693 }
2694 return 1;
2695}
2696
2697static const seg_entry *
2698build_modrm_byte ()
2699{
2700 const seg_entry *default_seg = 0;
2701
2702 /* i.reg_operands MUST be the number of real register operands;
2703 implicit registers do not count. */
2704 if (i.reg_operands == 2)
2705 {
2706 unsigned int source, dest;
2707 source = ((i.types[0]
2708 & (Reg | RegMMX | RegXMM
2709 | SReg2 | SReg3
2710 | Control | Debug | Test))
2711 ? 0 : 1);
2712 dest = source + 1;
2713
2714 i.rm.mode = 3;
2715 /* One of the register operands will be encoded in the i.tm.reg
2716 field, the other in the combined i.tm.mode and i.tm.regmem
2717 fields. If no form of this instruction supports a memory
2718 destination operand, then we assume the source operand may
2719 sometimes be a memory operand and so we need to store the
2720 destination in the i.rm.reg field. */
2721 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2722 {
2723 i.rm.reg = i.op[dest].regs->reg_num;
2724 i.rm.regmem = i.op[source].regs->reg_num;
2725 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2726 i.rex |= REX_EXTX;
2727 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2728 i.rex |= REX_EXTZ;
2729 }
2730 else
2731 {
2732 i.rm.reg = i.op[source].regs->reg_num;
2733 i.rm.regmem = i.op[dest].regs->reg_num;
2734 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2735 i.rex |= REX_EXTZ;
2736 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2737 i.rex |= REX_EXTX;
2738 }
2739 }
2740 else
2741 { /* If it's not 2 reg operands... */
2742 if (i.mem_operands)
2743 {
2744 unsigned int fake_zero_displacement = 0;
2745 unsigned int op = ((i.types[0] & AnyMem)
2746 ? 0
2747 : (i.types[1] & AnyMem) ? 1 : 2);
2748
2749 default_seg = &ds;
2750
2751 if (i.base_reg == 0)
2752 {
2753 i.rm.mode = 0;
2754 if (!i.disp_operands)
2755 fake_zero_displacement = 1;
2756 if (i.index_reg == 0)
2757 {
2758 /* Operand is just <disp> */
2759 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2760 && (flag_code != CODE_64BIT))
2761 {
2762 i.rm.regmem = NO_BASE_REGISTER_16;
2763 i.types[op] &= ~Disp;
2764 i.types[op] |= Disp16;
2765 }
2766 else if (flag_code != CODE_64BIT
2767 || (i.prefix[ADDR_PREFIX] != 0))
2768 {
2769 i.rm.regmem = NO_BASE_REGISTER;
2770 i.types[op] &= ~Disp;
2771 i.types[op] |= Disp32;
2772 }
2773 else
2774 {
2775 /* 64bit mode overwrites the 32bit absolute
2776 addressing by RIP relative addressing and
2777 absolute addressing is encoded by one of the
2778 redundant SIB forms. */
2779 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2780 i.sib.base = NO_BASE_REGISTER;
2781 i.sib.index = NO_INDEX_REGISTER;
2782 i.types[op] &= ~Disp;
2783 i.types[op] |= Disp32S;
2784 }
2785 }
2786 else /* !i.base_reg && i.index_reg */
2787 {
2788 i.sib.index = i.index_reg->reg_num;
2789 i.sib.base = NO_BASE_REGISTER;
2790 i.sib.scale = i.log2_scale_factor;
2791 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2792 i.types[op] &= ~Disp;
2793 if (flag_code != CODE_64BIT)
2794 i.types[op] |= Disp32; /* Must be 32 bit */
2795 else
2796 i.types[op] |= Disp32S;
2797 if ((i.index_reg->reg_flags & RegRex) != 0)
2798 i.rex |= REX_EXTY;
2799 }
2800 }
2801 /* RIP addressing for 64bit mode. */
2802 else if (i.base_reg->reg_type == BaseIndex)
2803 {
2804 i.rm.regmem = NO_BASE_REGISTER;
2805 i.types[op] &= ~Disp;
2806 i.types[op] |= Disp32S;
2807 i.flags[op] = Operand_PCrel;
2808 }
2809 else if (i.base_reg->reg_type & Reg16)
2810 {
2811 switch (i.base_reg->reg_num)
2812 {
2813 case 3: /* (%bx) */
2814 if (i.index_reg == 0)
2815 i.rm.regmem = 7;
2816 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2817 i.rm.regmem = i.index_reg->reg_num - 6;
2818 break;
2819 case 5: /* (%bp) */
2820 default_seg = &ss;
2821 if (i.index_reg == 0)
2822 {
2823 i.rm.regmem = 6;
2824 if ((i.types[op] & Disp) == 0)
2825 {
2826 /* fake (%bp) into 0(%bp) */
2827 i.types[op] |= Disp8;
252b5132 2828 fake_zero_displacement = 1;
29b0f896
AM
2829 }
2830 }
2831 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2832 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2833 break;
2834 default: /* (%si) -> 4 or (%di) -> 5 */
2835 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2836 }
2837 i.rm.mode = mode_from_disp_size (i.types[op]);
2838 }
2839 else /* i.base_reg and 32/64 bit mode */
2840 {
2841 if (flag_code == CODE_64BIT
2842 && (i.types[op] & Disp))
2843 {
2844 if (i.types[op] & Disp8)
2845 i.types[op] = Disp8 | Disp32S;
2846 else
2847 i.types[op] = Disp32S;
2848 }
2849 i.rm.regmem = i.base_reg->reg_num;
2850 if ((i.base_reg->reg_flags & RegRex) != 0)
2851 i.rex |= REX_EXTZ;
2852 i.sib.base = i.base_reg->reg_num;
2853 /* x86-64 ignores REX prefix bit here to avoid decoder
2854 complications. */
2855 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2856 {
2857 default_seg = &ss;
2858 if (i.disp_operands == 0)
2859 {
2860 fake_zero_displacement = 1;
2861 i.types[op] |= Disp8;
2862 }
2863 }
2864 else if (i.base_reg->reg_num == ESP_REG_NUM)
2865 {
2866 default_seg = &ss;
2867 }
2868 i.sib.scale = i.log2_scale_factor;
2869 if (i.index_reg == 0)
2870 {
2871 /* <disp>(%esp) becomes two byte modrm with no index
2872 register. We've already stored the code for esp
2873 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2874 Any base register besides %esp will not use the
2875 extra modrm byte. */
2876 i.sib.index = NO_INDEX_REGISTER;
2877#if !SCALE1_WHEN_NO_INDEX
2878 /* Another case where we force the second modrm byte. */
2879 if (i.log2_scale_factor)
2880 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 2881#endif
29b0f896
AM
2882 }
2883 else
2884 {
2885 i.sib.index = i.index_reg->reg_num;
2886 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2887 if ((i.index_reg->reg_flags & RegRex) != 0)
2888 i.rex |= REX_EXTY;
2889 }
2890 i.rm.mode = mode_from_disp_size (i.types[op]);
2891 }
252b5132 2892
29b0f896
AM
2893 if (fake_zero_displacement)
2894 {
2895 /* Fakes a zero displacement assuming that i.types[op]
2896 holds the correct displacement size. */
2897 expressionS *exp;
2898
2899 assert (i.op[op].disps == 0);
2900 exp = &disp_expressions[i.disp_operands++];
2901 i.op[op].disps = exp;
2902 exp->X_op = O_constant;
2903 exp->X_add_number = 0;
2904 exp->X_add_symbol = (symbolS *) 0;
2905 exp->X_op_symbol = (symbolS *) 0;
2906 }
2907 }
252b5132 2908
29b0f896
AM
2909 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2910 (if any) based on i.tm.extension_opcode. Again, we must be
2911 careful to make sure that segment/control/debug/test/MMX
2912 registers are coded into the i.rm.reg field. */
2913 if (i.reg_operands)
2914 {
2915 unsigned int op =
2916 ((i.types[0]
2917 & (Reg | RegMMX | RegXMM
2918 | SReg2 | SReg3
2919 | Control | Debug | Test))
2920 ? 0
2921 : ((i.types[1]
2922 & (Reg | RegMMX | RegXMM
2923 | SReg2 | SReg3
2924 | Control | Debug | Test))
2925 ? 1
2926 : 2));
2927 /* If there is an extension opcode to put here, the register
2928 number must be put into the regmem field. */
2929 if (i.tm.extension_opcode != None)
2930 {
2931 i.rm.regmem = i.op[op].regs->reg_num;
2932 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2933 i.rex |= REX_EXTZ;
2934 }
2935 else
2936 {
2937 i.rm.reg = i.op[op].regs->reg_num;
2938 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2939 i.rex |= REX_EXTX;
2940 }
252b5132 2941
29b0f896
AM
2942 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2943 must set it to 3 to indicate this is a register operand
2944 in the regmem field. */
2945 if (!i.mem_operands)
2946 i.rm.mode = 3;
2947 }
252b5132 2948
29b0f896
AM
2949 /* Fill in i.rm.reg field with extension opcode (if any). */
2950 if (i.tm.extension_opcode != None)
2951 i.rm.reg = i.tm.extension_opcode;
2952 }
2953 return default_seg;
2954}
252b5132 2955
29b0f896
AM
2956static void
2957output_branch ()
2958{
2959 char *p;
2960 int code16;
2961 int prefix;
2962 relax_substateT subtype;
2963 symbolS *sym;
2964 offsetT off;
2965
2966 code16 = 0;
2967 if (flag_code == CODE_16BIT)
2968 code16 = CODE16;
2969
2970 prefix = 0;
2971 if (i.prefix[DATA_PREFIX] != 0)
252b5132 2972 {
29b0f896
AM
2973 prefix = 1;
2974 i.prefixes -= 1;
2975 code16 ^= CODE16;
252b5132 2976 }
29b0f896
AM
2977 /* Pentium4 branch hints. */
2978 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2979 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 2980 {
29b0f896
AM
2981 prefix++;
2982 i.prefixes--;
2983 }
2984 if (i.prefix[REX_PREFIX] != 0)
2985 {
2986 prefix++;
2987 i.prefixes--;
2f66722d
AM
2988 }
2989
29b0f896
AM
2990 if (i.prefixes != 0 && !intel_syntax)
2991 as_warn (_("skipping prefixes on this instruction"));
2992
2993 /* It's always a symbol; End frag & setup for relax.
2994 Make sure there is enough room in this frag for the largest
2995 instruction we may generate in md_convert_frag. This is 2
2996 bytes for the opcode and room for the prefix and largest
2997 displacement. */
2998 frag_grow (prefix + 2 + 4);
2999 /* Prefix and 1 opcode byte go in fr_fix. */
3000 p = frag_more (prefix + 1);
3001 if (i.prefix[DATA_PREFIX] != 0)
3002 *p++ = DATA_PREFIX_OPCODE;
3003 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3004 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3005 *p++ = i.prefix[SEG_PREFIX];
3006 if (i.prefix[REX_PREFIX] != 0)
3007 *p++ = i.prefix[REX_PREFIX];
3008 *p = i.tm.base_opcode;
3009
3010 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3011 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3012 else if ((cpu_arch_flags & Cpu386) != 0)
3013 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3014 else
3015 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3016 subtype |= code16;
3e73aa7c 3017
29b0f896
AM
3018 sym = i.op[0].disps->X_add_symbol;
3019 off = i.op[0].disps->X_add_number;
3e73aa7c 3020
29b0f896
AM
3021 if (i.op[0].disps->X_op != O_constant
3022 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3023 {
29b0f896
AM
3024 /* Handle complex expressions. */
3025 sym = make_expr_symbol (i.op[0].disps);
3026 off = 0;
3027 }
3e73aa7c 3028
29b0f896
AM
3029 /* 1 possible extra opcode + 4 byte displacement go in var part.
3030 Pass reloc in fr_var. */
3031 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3032}
3e73aa7c 3033
29b0f896
AM
3034static void
3035output_jump ()
3036{
3037 char *p;
3038 int size;
3e02c1cc 3039 fixS *fixP;
29b0f896
AM
3040
3041 if (i.tm.opcode_modifier & JumpByte)
3042 {
3043 /* This is a loop or jecxz type instruction. */
3044 size = 1;
3045 if (i.prefix[ADDR_PREFIX] != 0)
3046 {
3047 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3048 i.prefixes -= 1;
3049 }
3050 /* Pentium4 branch hints. */
3051 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3052 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3053 {
3054 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3055 i.prefixes--;
3e73aa7c
JH
3056 }
3057 }
29b0f896
AM
3058 else
3059 {
3060 int code16;
3e73aa7c 3061
29b0f896
AM
3062 code16 = 0;
3063 if (flag_code == CODE_16BIT)
3064 code16 = CODE16;
3e73aa7c 3065
29b0f896
AM
3066 if (i.prefix[DATA_PREFIX] != 0)
3067 {
3068 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3069 i.prefixes -= 1;
3070 code16 ^= CODE16;
3071 }
252b5132 3072
29b0f896
AM
3073 size = 4;
3074 if (code16)
3075 size = 2;
3076 }
9fcc94b6 3077
29b0f896
AM
3078 if (i.prefix[REX_PREFIX] != 0)
3079 {
3080 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3081 i.prefixes -= 1;
3082 }
252b5132 3083
29b0f896
AM
3084 if (i.prefixes != 0 && !intel_syntax)
3085 as_warn (_("skipping prefixes on this instruction"));
e0890092 3086
29b0f896
AM
3087 p = frag_more (1 + size);
3088 *p++ = i.tm.base_opcode;
e0890092 3089
3e02c1cc
AM
3090 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3091 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3092
3093 /* All jumps handled here are signed, but don't use a signed limit
3094 check for 32 and 16 bit jumps as we want to allow wrap around at
3095 4G and 64k respectively. */
3096 if (size == 1)
3097 fixP->fx_signed = 1;
29b0f896 3098}
e0890092 3099
29b0f896
AM
3100static void
3101output_interseg_jump ()
3102{
3103 char *p;
3104 int size;
3105 int prefix;
3106 int code16;
252b5132 3107
29b0f896
AM
3108 code16 = 0;
3109 if (flag_code == CODE_16BIT)
3110 code16 = CODE16;
a217f122 3111
29b0f896
AM
3112 prefix = 0;
3113 if (i.prefix[DATA_PREFIX] != 0)
3114 {
3115 prefix = 1;
3116 i.prefixes -= 1;
3117 code16 ^= CODE16;
3118 }
3119 if (i.prefix[REX_PREFIX] != 0)
3120 {
3121 prefix++;
3122 i.prefixes -= 1;
3123 }
252b5132 3124
29b0f896
AM
3125 size = 4;
3126 if (code16)
3127 size = 2;
252b5132 3128
29b0f896
AM
3129 if (i.prefixes != 0 && !intel_syntax)
3130 as_warn (_("skipping prefixes on this instruction"));
252b5132 3131
29b0f896
AM
3132 /* 1 opcode; 2 segment; offset */
3133 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3134
29b0f896
AM
3135 if (i.prefix[DATA_PREFIX] != 0)
3136 *p++ = DATA_PREFIX_OPCODE;
252b5132 3137
29b0f896
AM
3138 if (i.prefix[REX_PREFIX] != 0)
3139 *p++ = i.prefix[REX_PREFIX];
252b5132 3140
29b0f896
AM
3141 *p++ = i.tm.base_opcode;
3142 if (i.op[1].imms->X_op == O_constant)
3143 {
3144 offsetT n = i.op[1].imms->X_add_number;
252b5132 3145
29b0f896
AM
3146 if (size == 2
3147 && !fits_in_unsigned_word (n)
3148 && !fits_in_signed_word (n))
3149 {
3150 as_bad (_("16-bit jump out of range"));
3151 return;
3152 }
3153 md_number_to_chars (p, n, size);
3154 }
3155 else
3156 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3157 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3158 if (i.op[0].imms->X_op != O_constant)
3159 as_bad (_("can't handle non absolute segment in `%s'"),
3160 i.tm.name);
3161 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3162}
a217f122 3163
2bbd9c25 3164
29b0f896
AM
3165static void
3166output_insn ()
3167{
2bbd9c25
JJ
3168 fragS *insn_start_frag;
3169 offsetT insn_start_off;
3170
29b0f896
AM
3171 /* Tie dwarf2 debug info to the address at the start of the insn.
3172 We can't do this after the insn has been output as the current
3173 frag may have been closed off. eg. by frag_var. */
3174 dwarf2_emit_insn (0);
3175
2bbd9c25
JJ
3176 insn_start_frag = frag_now;
3177 insn_start_off = frag_now_fix ();
3178
29b0f896
AM
3179 /* Output jumps. */
3180 if (i.tm.opcode_modifier & Jump)
3181 output_branch ();
3182 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3183 output_jump ();
3184 else if (i.tm.opcode_modifier & JumpInterSegment)
3185 output_interseg_jump ();
3186 else
3187 {
3188 /* Output normal instructions here. */
3189 char *p;
3190 unsigned char *q;
252b5132 3191
29b0f896
AM
3192 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3193 byte for the SSE instructions to specify a prefix they require. */
3194 if (i.tm.base_opcode & 0xff0000)
3195 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
252b5132 3196
29b0f896
AM
3197 /* The prefix bytes. */
3198 for (q = i.prefix;
3199 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3200 q++)
3201 {
3202 if (*q)
3203 {
3204 p = frag_more (1);
3205 md_number_to_chars (p, (valueT) *q, 1);
3206 }
3207 }
252b5132 3208
29b0f896
AM
3209 /* Now the opcode; be careful about word order here! */
3210 if (fits_in_unsigned_byte (i.tm.base_opcode))
3211 {
3212 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3213 }
3214 else
3215 {
3216 p = frag_more (2);
3217 /* Put out high byte first: can't use md_number_to_chars! */
3218 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3219 *p = i.tm.base_opcode & 0xff;
3220 }
3e73aa7c 3221
29b0f896
AM
3222 /* Now the modrm byte and sib byte (if present). */
3223 if (i.tm.opcode_modifier & Modrm)
3224 {
3225 p = frag_more (1);
3226 md_number_to_chars (p,
3227 (valueT) (i.rm.regmem << 0
3228 | i.rm.reg << 3
3229 | i.rm.mode << 6),
3230 1);
3231 /* If i.rm.regmem == ESP (4)
3232 && i.rm.mode != (Register mode)
3233 && not 16 bit
3234 ==> need second modrm byte. */
3235 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3236 && i.rm.mode != 3
3237 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3238 {
3239 p = frag_more (1);
3240 md_number_to_chars (p,
3241 (valueT) (i.sib.base << 0
3242 | i.sib.index << 3
3243 | i.sib.scale << 6),
3244 1);
3245 }
3246 }
3e73aa7c 3247
29b0f896 3248 if (i.disp_operands)
2bbd9c25 3249 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3250
29b0f896 3251 if (i.imm_operands)
2bbd9c25 3252 output_imm (insn_start_frag, insn_start_off);
29b0f896 3253 }
252b5132 3254
29b0f896
AM
3255#ifdef DEBUG386
3256 if (flag_debug)
3257 {
3258 pi (line, &i);
3259 }
3260#endif /* DEBUG386 */
3261}
252b5132 3262
29b0f896 3263static void
2bbd9c25
JJ
3264output_disp (insn_start_frag, insn_start_off)
3265 fragS *insn_start_frag;
3266 offsetT insn_start_off;
29b0f896
AM
3267{
3268 char *p;
3269 unsigned int n;
252b5132 3270
29b0f896
AM
3271 for (n = 0; n < i.operands; n++)
3272 {
3273 if (i.types[n] & Disp)
3274 {
3275 if (i.op[n].disps->X_op == O_constant)
3276 {
3277 int size;
3278 offsetT val;
252b5132 3279
29b0f896
AM
3280 size = 4;
3281 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3282 {
3283 size = 2;
3284 if (i.types[n] & Disp8)
3285 size = 1;
3286 if (i.types[n] & Disp64)
3287 size = 8;
3288 }
3289 val = offset_in_range (i.op[n].disps->X_add_number,
3290 size);
3291 p = frag_more (size);
3292 md_number_to_chars (p, val, size);
3293 }
3294 else
3295 {
2bbd9c25 3296 RELOC_ENUM reloc_type;
29b0f896
AM
3297 int size = 4;
3298 int sign = 0;
3299 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3300
3301 /* The PC relative address is computed relative
3302 to the instruction boundary, so in case immediate
3303 fields follows, we need to adjust the value. */
3304 if (pcrel && i.imm_operands)
3305 {
3306 int imm_size = 4;
3307 unsigned int n1;
252b5132 3308
29b0f896
AM
3309 for (n1 = 0; n1 < i.operands; n1++)
3310 if (i.types[n1] & Imm)
252b5132 3311 {
29b0f896 3312 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3313 {
29b0f896
AM
3314 imm_size = 2;
3315 if (i.types[n1] & (Imm8 | Imm8S))
3316 imm_size = 1;
3317 if (i.types[n1] & Imm64)
3318 imm_size = 8;
252b5132 3319 }
29b0f896 3320 break;
252b5132 3321 }
29b0f896
AM
3322 /* We should find the immediate. */
3323 if (n1 == i.operands)
3324 abort ();
3325 i.op[n].disps->X_add_number -= imm_size;
3326 }
520dc8e8 3327
29b0f896
AM
3328 if (i.types[n] & Disp32S)
3329 sign = 1;
3e73aa7c 3330
29b0f896
AM
3331 if (i.types[n] & (Disp16 | Disp64))
3332 {
3333 size = 2;
3334 if (i.types[n] & Disp64)
3335 size = 8;
3336 }
520dc8e8 3337
29b0f896 3338 p = frag_more (size);
2bbd9c25
JJ
3339 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3340#ifdef BFD_ASSEMBLER
3341 if (reloc_type == BFD_RELOC_32
3342 && GOT_symbol
3343 && GOT_symbol == i.op[n].disps->X_add_symbol
3344 && (i.op[n].disps->X_op == O_symbol
3345 || (i.op[n].disps->X_op == O_add
3346 && ((symbol_get_value_expression
3347 (i.op[n].disps->X_op_symbol)->X_op)
3348 == O_subtract))))
3349 {
3350 offsetT add;
3351
3352 if (insn_start_frag == frag_now)
3353 add = (p - frag_now->fr_literal) - insn_start_off;
3354 else
3355 {
3356 fragS *fr;
3357
3358 add = insn_start_frag->fr_fix - insn_start_off;
3359 for (fr = insn_start_frag->fr_next;
3360 fr && fr != frag_now; fr = fr->fr_next)
3361 add += fr->fr_fix;
3362 add += p - frag_now->fr_literal;
3363 }
3364
3365 /* We don't support dynamic linking on x86-64 yet. */
3366 if (flag_code == CODE_64BIT)
3367 abort ();
3368 reloc_type = BFD_RELOC_386_GOTPC;
3369 i.op[n].disps->X_add_number += add;
3370 }
3371#endif
062cd5e7 3372 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3373 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3374 }
3375 }
3376 }
3377}
252b5132 3378
29b0f896 3379static void
2bbd9c25
JJ
3380output_imm (insn_start_frag, insn_start_off)
3381 fragS *insn_start_frag;
3382 offsetT insn_start_off;
29b0f896
AM
3383{
3384 char *p;
3385 unsigned int n;
252b5132 3386
29b0f896
AM
3387 for (n = 0; n < i.operands; n++)
3388 {
3389 if (i.types[n] & Imm)
3390 {
3391 if (i.op[n].imms->X_op == O_constant)
3392 {
3393 int size;
3394 offsetT val;
b4cac588 3395
29b0f896
AM
3396 size = 4;
3397 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3398 {
3399 size = 2;
3400 if (i.types[n] & (Imm8 | Imm8S))
3401 size = 1;
3402 else if (i.types[n] & Imm64)
3403 size = 8;
3404 }
3405 val = offset_in_range (i.op[n].imms->X_add_number,
3406 size);
3407 p = frag_more (size);
3408 md_number_to_chars (p, val, size);
3409 }
3410 else
3411 {
3412 /* Not absolute_section.
3413 Need a 32-bit fixup (don't support 8bit
3414 non-absolute imms). Try to support other
3415 sizes ... */
3416 RELOC_ENUM reloc_type;
3417 int size = 4;
3418 int sign = 0;
3419
3420 if ((i.types[n] & (Imm32S))
3421 && i.suffix == QWORD_MNEM_SUFFIX)
3422 sign = 1;
3423 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3424 {
3425 size = 2;
3426 if (i.types[n] & (Imm8 | Imm8S))
3427 size = 1;
3428 if (i.types[n] & Imm64)
3429 size = 8;
3430 }
520dc8e8 3431
29b0f896
AM
3432 p = frag_more (size);
3433 reloc_type = reloc (size, 0, sign, i.reloc[n]);
252b5132 3434#ifdef BFD_ASSEMBLER
2bbd9c25
JJ
3435 /* This is tough to explain. We end up with this one if we
3436 * have operands that look like
3437 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3438 * obtain the absolute address of the GOT, and it is strongly
3439 * preferable from a performance point of view to avoid using
3440 * a runtime relocation for this. The actual sequence of
3441 * instructions often look something like:
3442 *
3443 * call .L66
3444 * .L66:
3445 * popl %ebx
3446 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3447 *
3448 * The call and pop essentially return the absolute address
3449 * of the label .L66 and store it in %ebx. The linker itself
3450 * will ultimately change the first operand of the addl so
3451 * that %ebx points to the GOT, but to keep things simple, the
3452 * .o file must have this operand set so that it generates not
3453 * the absolute address of .L66, but the absolute address of
3454 * itself. This allows the linker itself simply treat a GOTPC
3455 * relocation as asking for a pcrel offset to the GOT to be
3456 * added in, and the addend of the relocation is stored in the
3457 * operand field for the instruction itself.
3458 *
3459 * Our job here is to fix the operand so that it would add
3460 * the correct offset so that %ebx would point to itself. The
3461 * thing that is tricky is that .-.L66 will point to the
3462 * beginning of the instruction, so we need to further modify
3463 * the operand so that it will point to itself. There are
3464 * other cases where you have something like:
3465 *
3466 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3467 *
3468 * and here no correction would be required. Internally in
3469 * the assembler we treat operands of this form as not being
3470 * pcrel since the '.' is explicitly mentioned, and I wonder
3471 * whether it would simplify matters to do it this way. Who
3472 * knows. In earlier versions of the PIC patches, the
3473 * pcrel_adjust field was used to store the correction, but
3474 * since the expression is not pcrel, I felt it would be
3475 * confusing to do it this way. */
3476
29b0f896
AM
3477 if (reloc_type == BFD_RELOC_32
3478 && GOT_symbol
3479 && GOT_symbol == i.op[n].imms->X_add_symbol
3480 && (i.op[n].imms->X_op == O_symbol
3481 || (i.op[n].imms->X_op == O_add
3482 && ((symbol_get_value_expression
3483 (i.op[n].imms->X_op_symbol)->X_op)
3484 == O_subtract))))
3485 {
2bbd9c25
JJ
3486 offsetT add;
3487
3488 if (insn_start_frag == frag_now)
3489 add = (p - frag_now->fr_literal) - insn_start_off;
3490 else
3491 {
3492 fragS *fr;
3493
3494 add = insn_start_frag->fr_fix - insn_start_off;
3495 for (fr = insn_start_frag->fr_next;
3496 fr && fr != frag_now; fr = fr->fr_next)
3497 add += fr->fr_fix;
3498 add += p - frag_now->fr_literal;
3499 }
3500
29b0f896
AM
3501 /* We don't support dynamic linking on x86-64 yet. */
3502 if (flag_code == CODE_64BIT)
3503 abort ();
3504 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3505 i.op[n].imms->X_add_number += add;
29b0f896 3506 }
252b5132 3507#endif
29b0f896
AM
3508 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3509 i.op[n].imms, 0, reloc_type);
3510 }
3511 }
3512 }
252b5132
RH
3513}
3514\f
f3c180ae
AM
3515#ifndef LEX_AT
3516static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3517
3518/* Parse operands of the form
3519 <symbol>@GOTOFF+<nnn>
3520 and similar .plt or .got references.
3521
3522 If we find one, set up the correct relocation in RELOC and copy the
3523 input string, minus the `@GOTOFF' into a malloc'd buffer for
3524 parsing by the calling routine. Return this buffer, and if ADJUST
3525 is non-null set it to the length of the string we removed from the
3526 input line. Otherwise return NULL. */
3527static char *
3528lex_got (reloc, adjust)
3529 RELOC_ENUM *reloc;
3530 int *adjust;
3531{
3532 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3533 static const struct {
3534 const char *str;
3535 const RELOC_ENUM rel[NUM_FLAG_CODE];
3536 } gotrel[] = {
13ae64f3
JJ
3537 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3538 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3539 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3540 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3541 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3542 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3543 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3544 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3545 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3546 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3547 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3548 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3549 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3550 };
3551 char *cp;
3552 unsigned int j;
3553
3554 for (cp = input_line_pointer; *cp != '@'; cp++)
3555 if (is_end_of_line[(unsigned char) *cp])
3556 return NULL;
3557
3558 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3559 {
3560 int len;
3561
3562 len = strlen (gotrel[j].str);
28f81592 3563 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3564 {
3565 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3566 {
28f81592
AM
3567 int first, second;
3568 char *tmpbuf, *past_reloc;
f3c180ae
AM
3569
3570 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3571 if (adjust)
3572 *adjust = len;
f3c180ae
AM
3573
3574 if (GOT_symbol == NULL)
3575 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3576
3577 /* Replace the relocation token with ' ', so that
3578 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3579
3580 /* The length of the first part of our input line. */
f3c180ae 3581 first = cp - input_line_pointer;
28f81592
AM
3582
3583 /* The second part goes from after the reloc token until
3584 (and including) an end_of_line char. Don't use strlen
3585 here as the end_of_line char may not be a NUL. */
3586 past_reloc = cp + 1 + len;
3587 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3588 ;
3589 second = cp - past_reloc;
3590
3591 /* Allocate and copy string. The trailing NUL shouldn't
3592 be necessary, but be safe. */
3593 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3594 memcpy (tmpbuf, input_line_pointer, first);
3595 tmpbuf[first] = ' ';
28f81592
AM
3596 memcpy (tmpbuf + first + 1, past_reloc, second);
3597 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3598 return tmpbuf;
3599 }
3600
3601 as_bad (_("@%s reloc is not supported in %s bit mode"),
3602 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3603 return NULL;
3604 }
3605 }
3606
3607 /* Might be a symbol version string. Don't as_bad here. */
3608 return NULL;
3609}
3610
3611/* x86_cons_fix_new is called via the expression parsing code when a
3612 reloc is needed. We use this hook to get the correct .got reloc. */
3613static RELOC_ENUM got_reloc = NO_RELOC;
3614
3615void
3616x86_cons_fix_new (frag, off, len, exp)
3617 fragS *frag;
3618 unsigned int off;
3619 unsigned int len;
3620 expressionS *exp;
3621{
3622 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3623 got_reloc = NO_RELOC;
3624 fix_new_exp (frag, off, len, exp, 0, r);
3625}
3626
3627void
3628x86_cons (exp, size)
3629 expressionS *exp;
3630 int size;
3631{
3632 if (size == 4)
3633 {
3634 /* Handle @GOTOFF and the like in an expression. */
3635 char *save;
3636 char *gotfree_input_line;
3637 int adjust;
3638
3639 save = input_line_pointer;
3640 gotfree_input_line = lex_got (&got_reloc, &adjust);
3641 if (gotfree_input_line)
3642 input_line_pointer = gotfree_input_line;
3643
3644 expression (exp);
3645
3646 if (gotfree_input_line)
3647 {
3648 /* expression () has merrily parsed up to the end of line,
3649 or a comma - in the wrong buffer. Transfer how far
3650 input_line_pointer has moved to the right buffer. */
3651 input_line_pointer = (save
3652 + (input_line_pointer - gotfree_input_line)
3653 + adjust);
3654 free (gotfree_input_line);
3655 }
3656 }
3657 else
3658 expression (exp);
3659}
3660#endif
3661
252b5132
RH
3662static int i386_immediate PARAMS ((char *));
3663
3664static int
3665i386_immediate (imm_start)
3666 char *imm_start;
3667{
3668 char *save_input_line_pointer;
f3c180ae
AM
3669#ifndef LEX_AT
3670 char *gotfree_input_line;
3671#endif
252b5132 3672 segT exp_seg = 0;
47926f60 3673 expressionS *exp;
252b5132
RH
3674
3675 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3676 {
d0b47220 3677 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3678 return 0;
3679 }
3680
3681 exp = &im_expressions[i.imm_operands++];
520dc8e8 3682 i.op[this_operand].imms = exp;
252b5132
RH
3683
3684 if (is_space_char (*imm_start))
3685 ++imm_start;
3686
3687 save_input_line_pointer = input_line_pointer;
3688 input_line_pointer = imm_start;
3689
3690#ifndef LEX_AT
f3c180ae
AM
3691 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3692 if (gotfree_input_line)
3693 input_line_pointer = gotfree_input_line;
252b5132
RH
3694#endif
3695
3696 exp_seg = expression (exp);
3697
83183c0c 3698 SKIP_WHITESPACE ();
252b5132 3699 if (*input_line_pointer)
f3c180ae 3700 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3701
3702 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3703#ifndef LEX_AT
3704 if (gotfree_input_line)
3705 free (gotfree_input_line);
3706#endif
252b5132 3707
2daf4fd8 3708 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3709 {
47926f60 3710 /* Missing or bad expr becomes absolute 0. */
d0b47220 3711 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3712 imm_start);
252b5132
RH
3713 exp->X_op = O_constant;
3714 exp->X_add_number = 0;
3715 exp->X_add_symbol = (symbolS *) 0;
3716 exp->X_op_symbol = (symbolS *) 0;
252b5132 3717 }
3e73aa7c 3718 else if (exp->X_op == O_constant)
252b5132 3719 {
47926f60 3720 /* Size it properly later. */
3e73aa7c
JH
3721 i.types[this_operand] |= Imm64;
3722 /* If BFD64, sign extend val. */
3723 if (!use_rela_relocations)
3724 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3725 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3726 }
4c63da97 3727#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3728 else if (1
4c63da97 3729#ifdef BFD_ASSEMBLER
47926f60 3730 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3731#endif
31312f95 3732 && exp_seg != absolute_section
47926f60 3733 && exp_seg != text_section
24eab124
AM
3734 && exp_seg != data_section
3735 && exp_seg != bss_section
3736 && exp_seg != undefined_section
252b5132 3737#ifdef BFD_ASSEMBLER
24eab124 3738 && !bfd_is_com_section (exp_seg)
252b5132 3739#endif
24eab124 3740 )
252b5132 3741 {
4c63da97 3742#ifdef BFD_ASSEMBLER
d0b47220 3743 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3744#else
d0b47220 3745 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3746#endif
252b5132
RH
3747 return 0;
3748 }
3749#endif
3750 else
3751 {
3752 /* This is an address. The size of the address will be
24eab124 3753 determined later, depending on destination register,
3e73aa7c
JH
3754 suffix, or the default for the section. */
3755 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3756 }
3757
3758 return 1;
3759}
3760
551c1ca1 3761static char *i386_scale PARAMS ((char *));
252b5132 3762
551c1ca1 3763static char *
252b5132
RH
3764i386_scale (scale)
3765 char *scale;
3766{
551c1ca1
AM
3767 offsetT val;
3768 char *save = input_line_pointer;
252b5132 3769
551c1ca1
AM
3770 input_line_pointer = scale;
3771 val = get_absolute_expression ();
3772
3773 switch (val)
252b5132 3774 {
551c1ca1
AM
3775 case 0:
3776 case 1:
252b5132
RH
3777 i.log2_scale_factor = 0;
3778 break;
551c1ca1 3779 case 2:
252b5132
RH
3780 i.log2_scale_factor = 1;
3781 break;
551c1ca1 3782 case 4:
252b5132
RH
3783 i.log2_scale_factor = 2;
3784 break;
551c1ca1 3785 case 8:
252b5132
RH
3786 i.log2_scale_factor = 3;
3787 break;
3788 default:
252b5132 3789 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3790 scale);
551c1ca1
AM
3791 input_line_pointer = save;
3792 return NULL;
252b5132 3793 }
29b0f896 3794 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3795 {
3796 as_warn (_("scale factor of %d without an index register"),
24eab124 3797 1 << i.log2_scale_factor);
252b5132
RH
3798#if SCALE1_WHEN_NO_INDEX
3799 i.log2_scale_factor = 0;
3800#endif
3801 }
551c1ca1
AM
3802 scale = input_line_pointer;
3803 input_line_pointer = save;
3804 return scale;
252b5132
RH
3805}
3806
3807static int i386_displacement PARAMS ((char *, char *));
3808
3809static int
3810i386_displacement (disp_start, disp_end)
3811 char *disp_start;
3812 char *disp_end;
3813{
29b0f896 3814 expressionS *exp;
252b5132
RH
3815 segT exp_seg = 0;
3816 char *save_input_line_pointer;
f3c180ae
AM
3817#ifndef LEX_AT
3818 char *gotfree_input_line;
3819#endif
252b5132
RH
3820 int bigdisp = Disp32;
3821
3e73aa7c 3822 if (flag_code == CODE_64BIT)
7ecd2f8b 3823 {
29b0f896
AM
3824 if (i.prefix[ADDR_PREFIX] == 0)
3825 bigdisp = Disp64;
7ecd2f8b
JH
3826 }
3827 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3828 bigdisp = Disp16;
252b5132
RH
3829 i.types[this_operand] |= bigdisp;
3830
3831 exp = &disp_expressions[i.disp_operands];
520dc8e8 3832 i.op[this_operand].disps = exp;
252b5132
RH
3833 i.disp_operands++;
3834 save_input_line_pointer = input_line_pointer;
3835 input_line_pointer = disp_start;
3836 END_STRING_AND_SAVE (disp_end);
3837
3838#ifndef GCC_ASM_O_HACK
3839#define GCC_ASM_O_HACK 0
3840#endif
3841#if GCC_ASM_O_HACK
3842 END_STRING_AND_SAVE (disp_end + 1);
3843 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3844 && displacement_string_end[-1] == '+')
252b5132
RH
3845 {
3846 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3847 constraint within gcc asm statements.
3848 For instance:
3849
3850 #define _set_tssldt_desc(n,addr,limit,type) \
3851 __asm__ __volatile__ ( \
3852 "movw %w2,%0\n\t" \
3853 "movw %w1,2+%0\n\t" \
3854 "rorl $16,%1\n\t" \
3855 "movb %b1,4+%0\n\t" \
3856 "movb %4,5+%0\n\t" \
3857 "movb $0,6+%0\n\t" \
3858 "movb %h1,7+%0\n\t" \
3859 "rorl $16,%1" \
3860 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3861
3862 This works great except that the output assembler ends
3863 up looking a bit weird if it turns out that there is
3864 no offset. You end up producing code that looks like:
3865
3866 #APP
3867 movw $235,(%eax)
3868 movw %dx,2+(%eax)
3869 rorl $16,%edx
3870 movb %dl,4+(%eax)
3871 movb $137,5+(%eax)
3872 movb $0,6+(%eax)
3873 movb %dh,7+(%eax)
3874 rorl $16,%edx
3875 #NO_APP
3876
47926f60 3877 So here we provide the missing zero. */
24eab124
AM
3878
3879 *displacement_string_end = '0';
252b5132
RH
3880 }
3881#endif
3882#ifndef LEX_AT
f3c180ae
AM
3883 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3884 if (gotfree_input_line)
3885 input_line_pointer = gotfree_input_line;
252b5132
RH
3886#endif
3887
24eab124 3888 exp_seg = expression (exp);
252b5132 3889
636c26b0
AM
3890 SKIP_WHITESPACE ();
3891 if (*input_line_pointer)
3892 as_bad (_("junk `%s' after expression"), input_line_pointer);
3893#if GCC_ASM_O_HACK
3894 RESTORE_END_STRING (disp_end + 1);
3895#endif
3896 RESTORE_END_STRING (disp_end);
3897 input_line_pointer = save_input_line_pointer;
3898#ifndef LEX_AT
3899 if (gotfree_input_line)
3900 free (gotfree_input_line);
3901#endif
3902
252b5132 3903#ifdef BFD_ASSEMBLER
24eab124
AM
3904 /* We do this to make sure that the section symbol is in
3905 the symbol table. We will ultimately change the relocation
47926f60 3906 to be relative to the beginning of the section. */
1ae12ab7
AM
3907 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3908 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3909 {
636c26b0
AM
3910 if (exp->X_op != O_symbol)
3911 {
3912 as_bad (_("bad expression used with @%s"),
3913 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3914 ? "GOTPCREL"
3915 : "GOTOFF"));
3916 return 0;
3917 }
3918
e5cb08ac 3919 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3920 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3921 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
3922 exp->X_op = O_subtract;
3923 exp->X_op_symbol = GOT_symbol;
1ae12ab7 3924 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 3925 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3926 else
29b0f896 3927 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3928 }
252b5132
RH
3929#endif
3930
2daf4fd8
AM
3931 if (exp->X_op == O_absent || exp->X_op == O_big)
3932 {
47926f60 3933 /* Missing or bad expr becomes absolute 0. */
d0b47220 3934 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3935 disp_start);
3936 exp->X_op = O_constant;
3937 exp->X_add_number = 0;
3938 exp->X_add_symbol = (symbolS *) 0;
3939 exp->X_op_symbol = (symbolS *) 0;
3940 }
3941
4c63da97 3942#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3943 if (exp->X_op != O_constant
4c63da97 3944#ifdef BFD_ASSEMBLER
45288df1 3945 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3946#endif
31312f95 3947 && exp_seg != absolute_section
45288df1
AM
3948 && exp_seg != text_section
3949 && exp_seg != data_section
3950 && exp_seg != bss_section
31312f95
AM
3951 && exp_seg != undefined_section
3952#ifdef BFD_ASSEMBLER
3953 && !bfd_is_com_section (exp_seg)
3954#endif
3955 )
24eab124 3956 {
4c63da97 3957#ifdef BFD_ASSEMBLER
d0b47220 3958 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3959#else
d0b47220 3960 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3961#endif
24eab124
AM
3962 return 0;
3963 }
252b5132 3964#endif
3e73aa7c
JH
3965 else if (flag_code == CODE_64BIT)
3966 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3967 return 1;
3968}
3969
e5cb08ac 3970static int i386_index_check PARAMS ((const char *));
252b5132 3971
eecb386c 3972/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3973 Return 1 on success, 0 on a failure. */
3974
252b5132 3975static int
eecb386c
AM
3976i386_index_check (operand_string)
3977 const char *operand_string;
252b5132 3978{
3e73aa7c 3979 int ok;
24eab124 3980#if INFER_ADDR_PREFIX
eecb386c
AM
3981 int fudged = 0;
3982
24eab124
AM
3983 tryprefix:
3984#endif
3e73aa7c
JH
3985 ok = 1;
3986 if (flag_code == CODE_64BIT)
3987 {
7ecd2f8b
JH
3988 if (i.prefix[ADDR_PREFIX] == 0)
3989 {
3990 /* 64bit checks. */
3991 if ((i.base_reg
3992 && ((i.base_reg->reg_type & Reg64) == 0)
3993 && (i.base_reg->reg_type != BaseIndex
3994 || i.index_reg))
3995 || (i.index_reg
29b0f896
AM
3996 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
3997 != (Reg64 | BaseIndex))))
7ecd2f8b
JH
3998 ok = 0;
3999 }
4000 else
4001 {
4002 /* 32bit checks. */
4003 if ((i.base_reg
4004 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4005 || (i.index_reg
29b0f896
AM
4006 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4007 != (Reg32 | BaseIndex))))
7ecd2f8b
JH
4008 ok = 0;
4009 }
3e73aa7c
JH
4010 }
4011 else
4012 {
4013 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4014 {
4015 /* 16bit checks. */
4016 if ((i.base_reg
29b0f896
AM
4017 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4018 != (Reg16 | BaseIndex)))
3e73aa7c 4019 || (i.index_reg
29b0f896
AM
4020 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4021 != (Reg16 | BaseIndex))
4022 || !(i.base_reg
4023 && i.base_reg->reg_num < 6
4024 && i.index_reg->reg_num >= 6
4025 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4026 ok = 0;
4027 }
4028 else
e5cb08ac 4029 {
3e73aa7c
JH
4030 /* 32bit checks. */
4031 if ((i.base_reg
4032 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4033 || (i.index_reg
29b0f896
AM
4034 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4035 != (Reg32 | BaseIndex))))
e5cb08ac 4036 ok = 0;
3e73aa7c
JH
4037 }
4038 }
4039 if (!ok)
24eab124
AM
4040 {
4041#if INFER_ADDR_PREFIX
3e73aa7c
JH
4042 if (flag_code != CODE_64BIT
4043 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
4044 {
4045 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4046 i.prefixes += 1;
b23bac36
AM
4047 /* Change the size of any displacement too. At most one of
4048 Disp16 or Disp32 is set.
4049 FIXME. There doesn't seem to be any real need for separate
4050 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4051 Removing them would probably clean up the code quite a lot. */
29b0f896
AM
4052 if (i.types[this_operand] & (Disp16 | Disp32))
4053 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4054 fudged = 1;
24eab124
AM
4055 goto tryprefix;
4056 }
eecb386c
AM
4057 if (fudged)
4058 as_bad (_("`%s' is not a valid base/index expression"),
4059 operand_string);
4060 else
c388dee8 4061#endif
eecb386c
AM
4062 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4063 operand_string,
3e73aa7c 4064 flag_code_names[flag_code]);
eecb386c 4065 return 0;
24eab124
AM
4066 }
4067 return 1;
4068}
252b5132 4069
252b5132 4070/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4071 on error. */
252b5132 4072
252b5132
RH
4073static int
4074i386_operand (operand_string)
4075 char *operand_string;
4076{
af6bdddf
AM
4077 const reg_entry *r;
4078 char *end_op;
24eab124 4079 char *op_string = operand_string;
252b5132 4080
24eab124 4081 if (is_space_char (*op_string))
252b5132
RH
4082 ++op_string;
4083
24eab124 4084 /* We check for an absolute prefix (differentiating,
47926f60 4085 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4086 if (*op_string == ABSOLUTE_PREFIX)
4087 {
4088 ++op_string;
4089 if (is_space_char (*op_string))
4090 ++op_string;
4091 i.types[this_operand] |= JumpAbsolute;
4092 }
252b5132 4093
47926f60 4094 /* Check if operand is a register. */
af6bdddf
AM
4095 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4096 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4097 {
24eab124
AM
4098 /* Check for a segment override by searching for ':' after a
4099 segment register. */
4100 op_string = end_op;
4101 if (is_space_char (*op_string))
4102 ++op_string;
4103 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4104 {
4105 switch (r->reg_num)
4106 {
4107 case 0:
4108 i.seg[i.mem_operands] = &es;
4109 break;
4110 case 1:
4111 i.seg[i.mem_operands] = &cs;
4112 break;
4113 case 2:
4114 i.seg[i.mem_operands] = &ss;
4115 break;
4116 case 3:
4117 i.seg[i.mem_operands] = &ds;
4118 break;
4119 case 4:
4120 i.seg[i.mem_operands] = &fs;
4121 break;
4122 case 5:
4123 i.seg[i.mem_operands] = &gs;
4124 break;
4125 }
252b5132 4126
24eab124 4127 /* Skip the ':' and whitespace. */
252b5132
RH
4128 ++op_string;
4129 if (is_space_char (*op_string))
24eab124 4130 ++op_string;
252b5132 4131
24eab124
AM
4132 if (!is_digit_char (*op_string)
4133 && !is_identifier_char (*op_string)
4134 && *op_string != '('
4135 && *op_string != ABSOLUTE_PREFIX)
4136 {
4137 as_bad (_("bad memory operand `%s'"), op_string);
4138 return 0;
4139 }
47926f60 4140 /* Handle case of %es:*foo. */
24eab124
AM
4141 if (*op_string == ABSOLUTE_PREFIX)
4142 {
4143 ++op_string;
4144 if (is_space_char (*op_string))
4145 ++op_string;
4146 i.types[this_operand] |= JumpAbsolute;
4147 }
4148 goto do_memory_reference;
4149 }
4150 if (*op_string)
4151 {
d0b47220 4152 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4153 return 0;
4154 }
4155 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4156 i.op[this_operand].regs = r;
24eab124
AM
4157 i.reg_operands++;
4158 }
af6bdddf
AM
4159 else if (*op_string == REGISTER_PREFIX)
4160 {
4161 as_bad (_("bad register name `%s'"), op_string);
4162 return 0;
4163 }
24eab124 4164 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4165 {
24eab124
AM
4166 ++op_string;
4167 if (i.types[this_operand] & JumpAbsolute)
4168 {
d0b47220 4169 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4170 return 0;
4171 }
4172 if (!i386_immediate (op_string))
4173 return 0;
4174 }
4175 else if (is_digit_char (*op_string)
4176 || is_identifier_char (*op_string)
e5cb08ac 4177 || *op_string == '(')
24eab124 4178 {
47926f60 4179 /* This is a memory reference of some sort. */
af6bdddf 4180 char *base_string;
252b5132 4181
47926f60 4182 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4183 char *displacement_string_start;
4184 char *displacement_string_end;
252b5132 4185
24eab124 4186 do_memory_reference:
24eab124
AM
4187 if ((i.mem_operands == 1
4188 && (current_templates->start->opcode_modifier & IsString) == 0)
4189 || i.mem_operands == 2)
4190 {
4191 as_bad (_("too many memory references for `%s'"),
4192 current_templates->start->name);
4193 return 0;
4194 }
252b5132 4195
24eab124
AM
4196 /* Check for base index form. We detect the base index form by
4197 looking for an ')' at the end of the operand, searching
4198 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4199 after the '('. */
af6bdddf 4200 base_string = op_string + strlen (op_string);
c3332e24 4201
af6bdddf
AM
4202 --base_string;
4203 if (is_space_char (*base_string))
4204 --base_string;
252b5132 4205
47926f60 4206 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4207 displacement_string_start = op_string;
4208 displacement_string_end = base_string + 1;
252b5132 4209
24eab124
AM
4210 if (*base_string == ')')
4211 {
af6bdddf 4212 char *temp_string;
24eab124
AM
4213 unsigned int parens_balanced = 1;
4214 /* We've already checked that the number of left & right ()'s are
47926f60 4215 equal, so this loop will not be infinite. */
24eab124
AM
4216 do
4217 {
4218 base_string--;
4219 if (*base_string == ')')
4220 parens_balanced++;
4221 if (*base_string == '(')
4222 parens_balanced--;
4223 }
4224 while (parens_balanced);
c3332e24 4225
af6bdddf 4226 temp_string = base_string;
c3332e24 4227
24eab124 4228 /* Skip past '(' and whitespace. */
252b5132
RH
4229 ++base_string;
4230 if (is_space_char (*base_string))
24eab124 4231 ++base_string;
252b5132 4232
af6bdddf
AM
4233 if (*base_string == ','
4234 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4235 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4236 {
af6bdddf 4237 displacement_string_end = temp_string;
252b5132 4238
af6bdddf 4239 i.types[this_operand] |= BaseIndex;
252b5132 4240
af6bdddf 4241 if (i.base_reg)
24eab124 4242 {
24eab124
AM
4243 base_string = end_op;
4244 if (is_space_char (*base_string))
4245 ++base_string;
af6bdddf
AM
4246 }
4247
4248 /* There may be an index reg or scale factor here. */
4249 if (*base_string == ',')
4250 {
4251 ++base_string;
4252 if (is_space_char (*base_string))
4253 ++base_string;
4254
4255 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4256 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4257 {
af6bdddf 4258 base_string = end_op;
24eab124
AM
4259 if (is_space_char (*base_string))
4260 ++base_string;
af6bdddf
AM
4261 if (*base_string == ',')
4262 {
4263 ++base_string;
4264 if (is_space_char (*base_string))
4265 ++base_string;
4266 }
e5cb08ac 4267 else if (*base_string != ')')
af6bdddf
AM
4268 {
4269 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4270 operand_string);
4271 return 0;
4272 }
24eab124 4273 }
af6bdddf 4274 else if (*base_string == REGISTER_PREFIX)
24eab124 4275 {
af6bdddf 4276 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4277 return 0;
4278 }
252b5132 4279
47926f60 4280 /* Check for scale factor. */
551c1ca1 4281 if (*base_string != ')')
af6bdddf 4282 {
551c1ca1
AM
4283 char *end_scale = i386_scale (base_string);
4284
4285 if (!end_scale)
af6bdddf 4286 return 0;
24eab124 4287
551c1ca1 4288 base_string = end_scale;
af6bdddf
AM
4289 if (is_space_char (*base_string))
4290 ++base_string;
4291 if (*base_string != ')')
4292 {
4293 as_bad (_("expecting `)' after scale factor in `%s'"),
4294 operand_string);
4295 return 0;
4296 }
4297 }
4298 else if (!i.index_reg)
24eab124 4299 {
af6bdddf
AM
4300 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4301 *base_string);
24eab124
AM
4302 return 0;
4303 }
4304 }
af6bdddf 4305 else if (*base_string != ')')
24eab124 4306 {
af6bdddf
AM
4307 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4308 operand_string);
24eab124
AM
4309 return 0;
4310 }
c3332e24 4311 }
af6bdddf 4312 else if (*base_string == REGISTER_PREFIX)
c3332e24 4313 {
af6bdddf 4314 as_bad (_("bad register name `%s'"), base_string);
24eab124 4315 return 0;
c3332e24 4316 }
24eab124
AM
4317 }
4318
4319 /* If there's an expression beginning the operand, parse it,
4320 assuming displacement_string_start and
4321 displacement_string_end are meaningful. */
4322 if (displacement_string_start != displacement_string_end)
4323 {
4324 if (!i386_displacement (displacement_string_start,
4325 displacement_string_end))
4326 return 0;
4327 }
4328
4329 /* Special case for (%dx) while doing input/output op. */
4330 if (i.base_reg
4331 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4332 && i.index_reg == 0
4333 && i.log2_scale_factor == 0
4334 && i.seg[i.mem_operands] == 0
4335 && (i.types[this_operand] & Disp) == 0)
4336 {
4337 i.types[this_operand] = InOutPortReg;
4338 return 1;
4339 }
4340
eecb386c
AM
4341 if (i386_index_check (operand_string) == 0)
4342 return 0;
24eab124
AM
4343 i.mem_operands++;
4344 }
4345 else
ce8a8b2f
AM
4346 {
4347 /* It's not a memory operand; argh! */
24eab124
AM
4348 as_bad (_("invalid char %s beginning operand %d `%s'"),
4349 output_invalid (*op_string),
4350 this_operand + 1,
4351 op_string);
4352 return 0;
4353 }
47926f60 4354 return 1; /* Normal return. */
252b5132
RH
4355}
4356\f
ee7fcc42
AM
4357/* md_estimate_size_before_relax()
4358
4359 Called just before relax() for rs_machine_dependent frags. The x86
4360 assembler uses these frags to handle variable size jump
4361 instructions.
4362
4363 Any symbol that is now undefined will not become defined.
4364 Return the correct fr_subtype in the frag.
4365 Return the initial "guess for variable size of frag" to caller.
4366 The guess is actually the growth beyond the fixed part. Whatever
4367 we do to grow the fixed or variable part contributes to our
4368 returned value. */
4369
252b5132
RH
4370int
4371md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4372 fragS *fragP;
4373 segT segment;
252b5132 4374{
252b5132 4375 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4376 check for un-relaxable symbols. On an ELF system, we can't relax
4377 an externally visible symbol, because it may be overridden by a
4378 shared library. */
4379 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4380#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4381 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4382 && (S_IS_EXTERNAL (fragP->fr_symbol)
4383 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4384#endif
4385 )
252b5132 4386 {
b98ef147
AM
4387 /* Symbol is undefined in this segment, or we need to keep a
4388 reloc so that weak symbols can be overridden. */
4389 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f3c180ae 4390 RELOC_ENUM reloc_type;
ee7fcc42
AM
4391 unsigned char *opcode;
4392 int old_fr_fix;
f6af82bd 4393
ee7fcc42
AM
4394 if (fragP->fr_var != NO_RELOC)
4395 reloc_type = fragP->fr_var;
b98ef147 4396 else if (size == 2)
f6af82bd
AM
4397 reloc_type = BFD_RELOC_16_PCREL;
4398 else
4399 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4400
ee7fcc42
AM
4401 old_fr_fix = fragP->fr_fix;
4402 opcode = (unsigned char *) fragP->fr_opcode;
4403
fddf5b5b 4404 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4405 {
fddf5b5b
AM
4406 case UNCOND_JUMP:
4407 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4408 opcode[0] = 0xe9;
252b5132 4409 fragP->fr_fix += size;
062cd5e7
AS
4410 fix_new (fragP, old_fr_fix, size,
4411 fragP->fr_symbol,
4412 fragP->fr_offset, 1,
4413 reloc_type);
252b5132
RH
4414 break;
4415
fddf5b5b 4416 case COND_JUMP86:
412167cb
AM
4417 if (size == 2
4418 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4419 {
4420 /* Negate the condition, and branch past an
4421 unconditional jump. */
4422 opcode[0] ^= 1;
4423 opcode[1] = 3;
4424 /* Insert an unconditional jump. */
4425 opcode[2] = 0xe9;
4426 /* We added two extra opcode bytes, and have a two byte
4427 offset. */
4428 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4429 fix_new (fragP, old_fr_fix + 2, 2,
4430 fragP->fr_symbol,
4431 fragP->fr_offset, 1,
4432 reloc_type);
fddf5b5b
AM
4433 break;
4434 }
4435 /* Fall through. */
4436
4437 case COND_JUMP:
412167cb
AM
4438 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4439 {
3e02c1cc
AM
4440 fixS *fixP;
4441
412167cb 4442 fragP->fr_fix += 1;
3e02c1cc
AM
4443 fixP = fix_new (fragP, old_fr_fix, 1,
4444 fragP->fr_symbol,
4445 fragP->fr_offset, 1,
4446 BFD_RELOC_8_PCREL);
4447 fixP->fx_signed = 1;
412167cb
AM
4448 break;
4449 }
93c2a809 4450
24eab124 4451 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4452 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4453 opcode[1] = opcode[0] + 0x10;
f6af82bd 4454 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4455 /* We've added an opcode byte. */
4456 fragP->fr_fix += 1 + size;
062cd5e7
AS
4457 fix_new (fragP, old_fr_fix + 1, size,
4458 fragP->fr_symbol,
4459 fragP->fr_offset, 1,
4460 reloc_type);
252b5132 4461 break;
fddf5b5b
AM
4462
4463 default:
4464 BAD_CASE (fragP->fr_subtype);
4465 break;
252b5132
RH
4466 }
4467 frag_wane (fragP);
ee7fcc42 4468 return fragP->fr_fix - old_fr_fix;
252b5132 4469 }
93c2a809 4470
93c2a809
AM
4471 /* Guess size depending on current relax state. Initially the relax
4472 state will correspond to a short jump and we return 1, because
4473 the variable part of the frag (the branch offset) is one byte
4474 long. However, we can relax a section more than once and in that
4475 case we must either set fr_subtype back to the unrelaxed state,
4476 or return the value for the appropriate branch. */
4477 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4478}
4479
47926f60
KH
4480/* Called after relax() is finished.
4481
4482 In: Address of frag.
4483 fr_type == rs_machine_dependent.
4484 fr_subtype is what the address relaxed to.
4485
4486 Out: Any fixSs and constants are set up.
4487 Caller will turn frag into a ".space 0". */
4488
252b5132
RH
4489#ifndef BFD_ASSEMBLER
4490void
4491md_convert_frag (headers, sec, fragP)
a04b544b
ILT
4492 object_headers *headers ATTRIBUTE_UNUSED;
4493 segT sec ATTRIBUTE_UNUSED;
29b0f896 4494 fragS *fragP;
252b5132
RH
4495#else
4496void
4497md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4498 bfd *abfd ATTRIBUTE_UNUSED;
4499 segT sec ATTRIBUTE_UNUSED;
29b0f896 4500 fragS *fragP;
252b5132
RH
4501#endif
4502{
29b0f896 4503 unsigned char *opcode;
252b5132 4504 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4505 offsetT target_address;
4506 offsetT opcode_address;
252b5132 4507 unsigned int extension = 0;
847f7ad4 4508 offsetT displacement_from_opcode_start;
252b5132
RH
4509
4510 opcode = (unsigned char *) fragP->fr_opcode;
4511
47926f60 4512 /* Address we want to reach in file space. */
252b5132 4513 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4514
47926f60 4515 /* Address opcode resides at in file space. */
252b5132
RH
4516 opcode_address = fragP->fr_address + fragP->fr_fix;
4517
47926f60 4518 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4519 displacement_from_opcode_start = target_address - opcode_address;
4520
fddf5b5b 4521 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4522 {
47926f60
KH
4523 /* Don't have to change opcode. */
4524 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4525 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4526 }
4527 else
4528 {
4529 if (no_cond_jump_promotion
4530 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4531 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4532
fddf5b5b
AM
4533 switch (fragP->fr_subtype)
4534 {
4535 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4536 extension = 4; /* 1 opcode + 4 displacement */
4537 opcode[0] = 0xe9;
4538 where_to_put_displacement = &opcode[1];
4539 break;
252b5132 4540
fddf5b5b
AM
4541 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4542 extension = 2; /* 1 opcode + 2 displacement */
4543 opcode[0] = 0xe9;
4544 where_to_put_displacement = &opcode[1];
4545 break;
252b5132 4546
fddf5b5b
AM
4547 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4548 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4549 extension = 5; /* 2 opcode + 4 displacement */
4550 opcode[1] = opcode[0] + 0x10;
4551 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4552 where_to_put_displacement = &opcode[2];
4553 break;
252b5132 4554
fddf5b5b
AM
4555 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4556 extension = 3; /* 2 opcode + 2 displacement */
4557 opcode[1] = opcode[0] + 0x10;
4558 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4559 where_to_put_displacement = &opcode[2];
4560 break;
252b5132 4561
fddf5b5b
AM
4562 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4563 extension = 4;
4564 opcode[0] ^= 1;
4565 opcode[1] = 3;
4566 opcode[2] = 0xe9;
4567 where_to_put_displacement = &opcode[3];
4568 break;
4569
4570 default:
4571 BAD_CASE (fragP->fr_subtype);
4572 break;
4573 }
252b5132 4574 }
fddf5b5b 4575
47926f60 4576 /* Now put displacement after opcode. */
252b5132
RH
4577 md_number_to_chars ((char *) where_to_put_displacement,
4578 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4579 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4580 fragP->fr_fix += extension;
4581}
4582\f
47926f60
KH
4583/* Size of byte displacement jmp. */
4584int md_short_jump_size = 2;
4585
4586/* Size of dword displacement jmp. */
4587int md_long_jump_size = 5;
252b5132 4588
47926f60
KH
4589/* Size of relocation record. */
4590const int md_reloc_size = 8;
252b5132
RH
4591
4592void
4593md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4594 char *ptr;
4595 addressT from_addr, to_addr;
ab9da554
ILT
4596 fragS *frag ATTRIBUTE_UNUSED;
4597 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4598{
847f7ad4 4599 offsetT offset;
252b5132
RH
4600
4601 offset = to_addr - (from_addr + 2);
47926f60
KH
4602 /* Opcode for byte-disp jump. */
4603 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4604 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4605}
4606
4607void
4608md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4609 char *ptr;
4610 addressT from_addr, to_addr;
a38cf1db
AM
4611 fragS *frag ATTRIBUTE_UNUSED;
4612 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4613{
847f7ad4 4614 offsetT offset;
252b5132 4615
a38cf1db
AM
4616 offset = to_addr - (from_addr + 5);
4617 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4618 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4619}
4620\f
4621/* Apply a fixup (fixS) to segment data, once it has been determined
4622 by our caller that we have all the info we need to fix it up.
4623
4624 On the 386, immediates, displacements, and data pointers are all in
4625 the same (little-endian) format, so we don't need to care about which
4626 we are handling. */
4627
94f592af
NC
4628void
4629md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4630 /* The fix we're to put in. */
4631 fixS *fixP;
47926f60 4632 /* Pointer to the value of the bits. */
c6682705 4633 valueT *valP;
47926f60
KH
4634 /* Segment fix is from. */
4635 segT seg ATTRIBUTE_UNUSED;
252b5132 4636{
94f592af 4637 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4638 valueT value = *valP;
252b5132 4639
e1b283bb 4640#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4641 if (fixP->fx_pcrel)
4642 {
4643 switch (fixP->fx_r_type)
4644 {
5865bb77
ILT
4645 default:
4646 break;
4647
93382f6d
AM
4648 case BFD_RELOC_32:
4649 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4650 break;
4651 case BFD_RELOC_16:
4652 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4653 break;
4654 case BFD_RELOC_8:
4655 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4656 break;
4657 }
4658 }
252b5132 4659
a161fe53 4660 if (fixP->fx_addsy != NULL
31312f95
AM
4661 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4662 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4663 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4664 && !use_rela_relocations)
252b5132 4665 {
31312f95
AM
4666 /* This is a hack. There should be a better way to handle this.
4667 This covers for the fact that bfd_install_relocation will
4668 subtract the current location (for partial_inplace, PC relative
4669 relocations); see more below. */
252b5132
RH
4670#ifndef OBJ_AOUT
4671 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4672#ifdef TE_PE
4673 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4674#endif
4675 )
4676 value += fixP->fx_where + fixP->fx_frag->fr_address;
4677#endif
4678#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4679 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4680 {
6539b54b 4681 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4682
6539b54b 4683 if ((sym_seg == seg
2f66722d 4684 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4685 && sym_seg != absolute_section))
ae6063d4 4686 && !generic_force_reloc (fixP))
2f66722d
AM
4687 {
4688 /* Yes, we add the values in twice. This is because
6539b54b
AM
4689 bfd_install_relocation subtracts them out again. I think
4690 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4691 it. FIXME. */
4692 value += fixP->fx_where + fixP->fx_frag->fr_address;
4693 }
252b5132
RH
4694 }
4695#endif
4696#if defined (OBJ_COFF) && defined (TE_PE)
4697 /* For some reason, the PE format does not store a section
24eab124 4698 address offset for a PC relative symbol. */
252b5132
RH
4699 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4700 value += md_pcrel_from (fixP);
4701#endif
4702 }
4703
4704 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4705 and we must not dissappoint it. */
252b5132
RH
4706#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4707 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4708 && fixP->fx_addsy)
47926f60
KH
4709 switch (fixP->fx_r_type)
4710 {
4711 case BFD_RELOC_386_PLT32:
3e73aa7c 4712 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4713 /* Make the jump instruction point to the address of the operand. At
4714 runtime we merely add the offset to the actual PLT entry. */
4715 value = -4;
4716 break;
31312f95 4717
13ae64f3
JJ
4718 case BFD_RELOC_386_TLS_GD:
4719 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4720 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4721 case BFD_RELOC_386_TLS_IE:
4722 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4723 case BFD_RELOC_X86_64_TLSGD:
4724 case BFD_RELOC_X86_64_TLSLD:
4725 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4726 value = 0; /* Fully resolved at runtime. No addend. */
4727 /* Fallthrough */
4728 case BFD_RELOC_386_TLS_LE:
4729 case BFD_RELOC_386_TLS_LDO_32:
4730 case BFD_RELOC_386_TLS_LE_32:
4731 case BFD_RELOC_X86_64_DTPOFF32:
4732 case BFD_RELOC_X86_64_TPOFF32:
4733 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4734 break;
4735
4736 case BFD_RELOC_386_GOT32:
4737 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4738 value = 0; /* Fully resolved at runtime. No addend. */
4739 break;
47926f60
KH
4740
4741 case BFD_RELOC_VTABLE_INHERIT:
4742 case BFD_RELOC_VTABLE_ENTRY:
4743 fixP->fx_done = 0;
94f592af 4744 return;
47926f60
KH
4745
4746 default:
4747 break;
4748 }
4749#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4750 *valP = value;
47926f60 4751#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c 4752
3e73aa7c 4753 /* Are we finished with this relocation now? */
c6682705 4754 if (fixP->fx_addsy == NULL)
3e73aa7c 4755 fixP->fx_done = 1;
94f592af 4756#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4757 else if (use_rela_relocations)
4758 {
4759 fixP->fx_no_overflow = 1;
062cd5e7
AS
4760 /* Remember value for tc_gen_reloc. */
4761 fixP->fx_addnumber = value;
3e73aa7c
JH
4762 value = 0;
4763 }
3e73aa7c 4764#endif
94f592af 4765 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4766}
252b5132 4767\f
252b5132
RH
4768#define MAX_LITTLENUMS 6
4769
47926f60
KH
4770/* Turn the string pointed to by litP into a floating point constant
4771 of type TYPE, and emit the appropriate bytes. The number of
4772 LITTLENUMS emitted is stored in *SIZEP. An error message is
4773 returned, or NULL on OK. */
4774
252b5132
RH
4775char *
4776md_atof (type, litP, sizeP)
2ab9b79e 4777 int type;
252b5132
RH
4778 char *litP;
4779 int *sizeP;
4780{
4781 int prec;
4782 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4783 LITTLENUM_TYPE *wordP;
4784 char *t;
4785
4786 switch (type)
4787 {
4788 case 'f':
4789 case 'F':
4790 prec = 2;
4791 break;
4792
4793 case 'd':
4794 case 'D':
4795 prec = 4;
4796 break;
4797
4798 case 'x':
4799 case 'X':
4800 prec = 5;
4801 break;
4802
4803 default:
4804 *sizeP = 0;
4805 return _("Bad call to md_atof ()");
4806 }
4807 t = atof_ieee (input_line_pointer, type, words);
4808 if (t)
4809 input_line_pointer = t;
4810
4811 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4812 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4813 the bigendian 386. */
4814 for (wordP = words + prec - 1; prec--;)
4815 {
4816 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4817 litP += sizeof (LITTLENUM_TYPE);
4818 }
4819 return 0;
4820}
4821\f
4822char output_invalid_buf[8];
4823
252b5132
RH
4824static char *
4825output_invalid (c)
4826 int c;
4827{
3882b010 4828 if (ISPRINT (c))
252b5132
RH
4829 sprintf (output_invalid_buf, "'%c'", c);
4830 else
4831 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4832 return output_invalid_buf;
4833}
4834
af6bdddf 4835/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4836
4837static const reg_entry *
4838parse_register (reg_string, end_op)
4839 char *reg_string;
4840 char **end_op;
4841{
af6bdddf
AM
4842 char *s = reg_string;
4843 char *p;
252b5132
RH
4844 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4845 const reg_entry *r;
4846
4847 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4848 if (*s == REGISTER_PREFIX)
4849 ++s;
4850
4851 if (is_space_char (*s))
4852 ++s;
4853
4854 p = reg_name_given;
af6bdddf 4855 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4856 {
4857 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4858 return (const reg_entry *) NULL;
4859 s++;
252b5132
RH
4860 }
4861
6588847e
DN
4862 /* For naked regs, make sure that we are not dealing with an identifier.
4863 This prevents confusing an identifier like `eax_var' with register
4864 `eax'. */
4865 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4866 return (const reg_entry *) NULL;
4867
af6bdddf 4868 *end_op = s;
252b5132
RH
4869
4870 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4871
5f47d35b 4872 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4873 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4874 {
5f47d35b
AM
4875 if (is_space_char (*s))
4876 ++s;
4877 if (*s == '(')
4878 {
af6bdddf 4879 ++s;
5f47d35b
AM
4880 if (is_space_char (*s))
4881 ++s;
4882 if (*s >= '0' && *s <= '7')
4883 {
4884 r = &i386_float_regtab[*s - '0'];
af6bdddf 4885 ++s;
5f47d35b
AM
4886 if (is_space_char (*s))
4887 ++s;
4888 if (*s == ')')
4889 {
4890 *end_op = s + 1;
4891 return r;
4892 }
5f47d35b 4893 }
47926f60 4894 /* We have "%st(" then garbage. */
5f47d35b
AM
4895 return (const reg_entry *) NULL;
4896 }
4897 }
4898
1ae00879 4899 if (r != NULL
29b0f896 4900 && (r->reg_flags & (RegRex64 | RegRex)) != 0
1ae00879
AM
4901 && flag_code != CODE_64BIT)
4902 {
4903 return (const reg_entry *) NULL;
4904 }
4905
252b5132
RH
4906 return r;
4907}
4908\f
4cc782b5 4909#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 4910const char *md_shortopts = "kVQ:sqn";
252b5132 4911#else
12b55ccc 4912const char *md_shortopts = "qn";
252b5132 4913#endif
6e0b89ee 4914
252b5132 4915struct option md_longopts[] = {
3e73aa7c
JH
4916#define OPTION_32 (OPTION_MD_BASE + 0)
4917 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4918#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4919#define OPTION_64 (OPTION_MD_BASE + 1)
4920 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4921#endif
252b5132
RH
4922 {NULL, no_argument, NULL, 0}
4923};
4924size_t md_longopts_size = sizeof (md_longopts);
4925
4926int
4927md_parse_option (c, arg)
4928 int c;
ab9da554 4929 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4930{
4931 switch (c)
4932 {
12b55ccc
L
4933 case 'n':
4934 optimize_align_code = 0;
4935 break;
4936
a38cf1db
AM
4937 case 'q':
4938 quiet_warnings = 1;
252b5132
RH
4939 break;
4940
4941#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4942 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4943 should be emitted or not. FIXME: Not implemented. */
4944 case 'Q':
252b5132
RH
4945 break;
4946
4947 /* -V: SVR4 argument to print version ID. */
4948 case 'V':
4949 print_version_id ();
4950 break;
4951
a38cf1db
AM
4952 /* -k: Ignore for FreeBSD compatibility. */
4953 case 'k':
252b5132 4954 break;
4cc782b5
ILT
4955
4956 case 's':
4957 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 4958 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 4959 break;
6e0b89ee 4960
3e73aa7c
JH
4961 case OPTION_64:
4962 {
4963 const char **list, **l;
4964
3e73aa7c
JH
4965 list = bfd_target_list ();
4966 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4967 if (strcmp (*l, "elf64-x86-64") == 0)
4968 {
4969 default_arch = "x86_64";
4970 break;
4971 }
3e73aa7c 4972 if (*l == NULL)
6e0b89ee 4973 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4974 free (list);
4975 }
4976 break;
4977#endif
252b5132 4978
6e0b89ee
AM
4979 case OPTION_32:
4980 default_arch = "i386";
4981 break;
4982
252b5132
RH
4983 default:
4984 return 0;
4985 }
4986 return 1;
4987}
4988
4989void
4990md_show_usage (stream)
4991 FILE *stream;
4992{
4cc782b5
ILT
4993#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4994 fprintf (stream, _("\
a38cf1db
AM
4995 -Q ignored\n\
4996 -V print assembler version number\n\
4997 -k ignored\n\
12b55ccc 4998 -n Do not optimize code alignment\n\
a38cf1db
AM
4999 -q quieten some warnings\n\
5000 -s ignored\n"));
5001#else
5002 fprintf (stream, _("\
12b55ccc 5003 -n Do not optimize code alignment\n\
a38cf1db 5004 -q quieten some warnings\n"));
4cc782b5 5005#endif
252b5132
RH
5006}
5007
5008#ifdef BFD_ASSEMBLER
3e73aa7c
JH
5009#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5010 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5011
5012/* Pick the target format to use. */
5013
47926f60 5014const char *
252b5132
RH
5015i386_target_format ()
5016{
3e73aa7c
JH
5017 if (!strcmp (default_arch, "x86_64"))
5018 set_code_flag (CODE_64BIT);
5019 else if (!strcmp (default_arch, "i386"))
5020 set_code_flag (CODE_32BIT);
5021 else
5022 as_fatal (_("Unknown architecture"));
252b5132
RH
5023 switch (OUTPUT_FLAVOR)
5024 {
4c63da97
AM
5025#ifdef OBJ_MAYBE_AOUT
5026 case bfd_target_aout_flavour:
47926f60 5027 return AOUT_TARGET_FORMAT;
4c63da97
AM
5028#endif
5029#ifdef OBJ_MAYBE_COFF
252b5132
RH
5030 case bfd_target_coff_flavour:
5031 return "coff-i386";
4c63da97 5032#endif
3e73aa7c 5033#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5034 case bfd_target_elf_flavour:
3e73aa7c 5035 {
e5cb08ac
KH
5036 if (flag_code == CODE_64BIT)
5037 use_rela_relocations = 1;
4ada7262 5038 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5039 }
4c63da97 5040#endif
252b5132
RH
5041 default:
5042 abort ();
5043 return NULL;
5044 }
5045}
5046
47926f60 5047#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5048
5049#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5050void i386_elf_emit_arch_note ()
5051{
5052 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5053 && cpu_arch_name != NULL)
5054 {
5055 char *p;
5056 asection *seg = now_seg;
5057 subsegT subseg = now_subseg;
5058 Elf_Internal_Note i_note;
5059 Elf_External_Note e_note;
5060 asection *note_secp;
5061 int len;
5062
5063 /* Create the .note section. */
5064 note_secp = subseg_new (".note", 0);
5065 bfd_set_section_flags (stdoutput,
5066 note_secp,
5067 SEC_HAS_CONTENTS | SEC_READONLY);
5068
5069 /* Process the arch string. */
5070 len = strlen (cpu_arch_name);
5071
5072 i_note.namesz = len + 1;
5073 i_note.descsz = 0;
5074 i_note.type = NT_ARCH;
5075 p = frag_more (sizeof (e_note.namesz));
5076 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5077 p = frag_more (sizeof (e_note.descsz));
5078 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5079 p = frag_more (sizeof (e_note.type));
5080 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5081 p = frag_more (len + 1);
5082 strcpy (p, cpu_arch_name);
5083
5084 frag_align (2, 0, 0);
5085
5086 subseg_set (seg, subseg);
5087 }
5088}
5089#endif
47926f60 5090#endif /* BFD_ASSEMBLER */
252b5132 5091\f
252b5132
RH
5092symbolS *
5093md_undefined_symbol (name)
5094 char *name;
5095{
18dc2407
ILT
5096 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5097 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5098 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5099 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5100 {
5101 if (!GOT_symbol)
5102 {
5103 if (symbol_find (name))
5104 as_bad (_("GOT already in symbol table"));
5105 GOT_symbol = symbol_new (name, undefined_section,
5106 (valueT) 0, &zero_address_frag);
5107 };
5108 return GOT_symbol;
5109 }
252b5132
RH
5110 return 0;
5111}
5112
5113/* Round up a section size to the appropriate boundary. */
47926f60 5114
252b5132
RH
5115valueT
5116md_section_align (segment, size)
ab9da554 5117 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5118 valueT size;
5119{
252b5132 5120#ifdef BFD_ASSEMBLER
4c63da97
AM
5121#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5122 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5123 {
5124 /* For a.out, force the section size to be aligned. If we don't do
5125 this, BFD will align it for us, but it will not write out the
5126 final bytes of the section. This may be a bug in BFD, but it is
5127 easier to fix it here since that is how the other a.out targets
5128 work. */
5129 int align;
5130
5131 align = bfd_get_section_alignment (stdoutput, segment);
5132 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5133 }
252b5132
RH
5134#endif
5135#endif
5136
5137 return size;
5138}
5139
5140/* On the i386, PC-relative offsets are relative to the start of the
5141 next instruction. That is, the address of the offset, plus its
5142 size, since the offset is always the last part of the insn. */
5143
5144long
5145md_pcrel_from (fixP)
5146 fixS *fixP;
5147{
5148 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5149}
5150
5151#ifndef I386COFF
5152
5153static void
5154s_bss (ignore)
ab9da554 5155 int ignore ATTRIBUTE_UNUSED;
252b5132 5156{
29b0f896 5157 int temp;
252b5132
RH
5158
5159 temp = get_absolute_expression ();
5160 subseg_set (bss_section, (subsegT) temp);
5161 demand_empty_rest_of_line ();
5162}
5163
5164#endif
5165
252b5132
RH
5166#ifdef BFD_ASSEMBLER
5167
5168void
5169i386_validate_fix (fixp)
5170 fixS *fixp;
5171{
5172 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5173 {
3e73aa7c 5174 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5175 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5176 {
5177 if (flag_code != CODE_64BIT)
5178 abort ();
5179 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5180 }
5181 else
5182 {
5183 if (flag_code == CODE_64BIT)
5184 abort ();
5185 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5186 }
252b5132
RH
5187 fixp->fx_subsy = 0;
5188 }
5189}
5190
252b5132
RH
5191arelent *
5192tc_gen_reloc (section, fixp)
ab9da554 5193 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5194 fixS *fixp;
5195{
5196 arelent *rel;
5197 bfd_reloc_code_real_type code;
5198
5199 switch (fixp->fx_r_type)
5200 {
3e73aa7c
JH
5201 case BFD_RELOC_X86_64_PLT32:
5202 case BFD_RELOC_X86_64_GOT32:
5203 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5204 case BFD_RELOC_386_PLT32:
5205 case BFD_RELOC_386_GOT32:
5206 case BFD_RELOC_386_GOTOFF:
5207 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5208 case BFD_RELOC_386_TLS_GD:
5209 case BFD_RELOC_386_TLS_LDM:
5210 case BFD_RELOC_386_TLS_LDO_32:
5211 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5212 case BFD_RELOC_386_TLS_IE:
5213 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5214 case BFD_RELOC_386_TLS_LE_32:
5215 case BFD_RELOC_386_TLS_LE:
3e73aa7c 5216 case BFD_RELOC_X86_64_32S:
bffbf940
JJ
5217 case BFD_RELOC_X86_64_TLSGD:
5218 case BFD_RELOC_X86_64_TLSLD:
5219 case BFD_RELOC_X86_64_DTPOFF32:
5220 case BFD_RELOC_X86_64_GOTTPOFF:
5221 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5222 case BFD_RELOC_RVA:
5223 case BFD_RELOC_VTABLE_ENTRY:
5224 case BFD_RELOC_VTABLE_INHERIT:
5225 code = fixp->fx_r_type;
5226 break;
5227 default:
93382f6d 5228 if (fixp->fx_pcrel)
252b5132 5229 {
93382f6d
AM
5230 switch (fixp->fx_size)
5231 {
5232 default:
b091f402
AM
5233 as_bad_where (fixp->fx_file, fixp->fx_line,
5234 _("can not do %d byte pc-relative relocation"),
5235 fixp->fx_size);
93382f6d
AM
5236 code = BFD_RELOC_32_PCREL;
5237 break;
5238 case 1: code = BFD_RELOC_8_PCREL; break;
5239 case 2: code = BFD_RELOC_16_PCREL; break;
5240 case 4: code = BFD_RELOC_32_PCREL; break;
5241 }
5242 }
5243 else
5244 {
5245 switch (fixp->fx_size)
5246 {
5247 default:
b091f402
AM
5248 as_bad_where (fixp->fx_file, fixp->fx_line,
5249 _("can not do %d byte relocation"),
5250 fixp->fx_size);
93382f6d
AM
5251 code = BFD_RELOC_32;
5252 break;
5253 case 1: code = BFD_RELOC_8; break;
5254 case 2: code = BFD_RELOC_16; break;
5255 case 4: code = BFD_RELOC_32; break;
937149dd 5256#ifdef BFD64
3e73aa7c 5257 case 8: code = BFD_RELOC_64; break;
937149dd 5258#endif
93382f6d 5259 }
252b5132
RH
5260 }
5261 break;
5262 }
252b5132
RH
5263
5264 if (code == BFD_RELOC_32
5265 && GOT_symbol
5266 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5267 {
5268 /* We don't support GOTPC on 64bit targets. */
5269 if (flag_code == CODE_64BIT)
bfb32b52 5270 abort ();
3e73aa7c
JH
5271 code = BFD_RELOC_386_GOTPC;
5272 }
252b5132
RH
5273
5274 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5275 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5276 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5277
5278 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
5279 if (!use_rela_relocations)
5280 {
5281 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5282 vtable entry to be used in the relocation's section offset. */
5283 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5284 rel->address = fixp->fx_offset;
252b5132 5285
c6682705 5286 rel->addend = 0;
3e73aa7c
JH
5287 }
5288 /* Use the rela in 64bit mode. */
252b5132 5289 else
3e73aa7c 5290 {
062cd5e7
AS
5291 if (!fixp->fx_pcrel)
5292 rel->addend = fixp->fx_offset;
5293 else
5294 switch (code)
5295 {
5296 case BFD_RELOC_X86_64_PLT32:
5297 case BFD_RELOC_X86_64_GOT32:
5298 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5299 case BFD_RELOC_X86_64_TLSGD:
5300 case BFD_RELOC_X86_64_TLSLD:
5301 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5302 rel->addend = fixp->fx_offset - fixp->fx_size;
5303 break;
5304 default:
5305 rel->addend = (section->vma
5306 - fixp->fx_size
5307 + fixp->fx_addnumber
5308 + md_pcrel_from (fixp));
5309 break;
5310 }
3e73aa7c
JH
5311 }
5312
252b5132
RH
5313 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5314 if (rel->howto == NULL)
5315 {
5316 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5317 _("cannot represent relocation type %s"),
252b5132
RH
5318 bfd_get_reloc_code_name (code));
5319 /* Set howto to a garbage value so that we can keep going. */
5320 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5321 assert (rel->howto != NULL);
5322 }
5323
5324 return rel;
5325}
5326
29b0f896 5327#else /* !BFD_ASSEMBLER */
252b5132
RH
5328
5329#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5330void
5331tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
5332 char *where;
5333 fixS *fixP;
5334 relax_addressT segment_address_in_file;
5335{
47926f60
KH
5336 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5337 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 5338
47926f60 5339 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
5340 long r_symbolnum;
5341
5342 know (fixP->fx_addsy != NULL);
5343
5344 md_number_to_chars (where,
5345 (valueT) (fixP->fx_frag->fr_address
5346 + fixP->fx_where - segment_address_in_file),
5347 4);
5348
5349 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
5350 ? S_GET_TYPE (fixP->fx_addsy)
5351 : fixP->fx_addsy->sy_number);
5352
5353 where[6] = (r_symbolnum >> 16) & 0x0ff;
5354 where[5] = (r_symbolnum >> 8) & 0x0ff;
5355 where[4] = r_symbolnum & 0x0ff;
5356 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
5357 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
5358 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
5359}
5360
47926f60 5361#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
5362
5363#if defined (I386COFF)
5364
5365short
5366tc_coff_fix2rtype (fixP)
5367 fixS *fixP;
5368{
5369 if (fixP->fx_r_type == R_IMAGEBASE)
5370 return R_IMAGEBASE;
5371
5372 return (fixP->fx_pcrel ?
5373 (fixP->fx_size == 1 ? R_PCRBYTE :
5374 fixP->fx_size == 2 ? R_PCRWORD :
5375 R_PCRLONG) :
5376 (fixP->fx_size == 1 ? R_RELBYTE :
5377 fixP->fx_size == 2 ? R_RELWORD :
5378 R_DIR32));
5379}
5380
5381int
5382tc_coff_sizemachdep (frag)
5383 fragS *frag;
5384{
5385 if (frag->fr_next)
5386 return (frag->fr_next->fr_address - frag->fr_address);
5387 else
5388 return 0;
5389}
5390
47926f60 5391#endif /* I386COFF */
252b5132 5392
29b0f896 5393#endif /* !BFD_ASSEMBLER */
64a0c779
DN
5394\f
5395/* Parse operands using Intel syntax. This implements a recursive descent
5396 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5397 Programmer's Guide.
5398
5399 FIXME: We do not recognize the full operand grammar defined in the MASM
5400 documentation. In particular, all the structure/union and
5401 high-level macro operands are missing.
5402
5403 Uppercase words are terminals, lower case words are non-terminals.
5404 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5405 bars '|' denote choices. Most grammar productions are implemented in
5406 functions called 'intel_<production>'.
5407
5408 Initial production is 'expr'.
5409
64a0c779
DN
5410 addOp + | -
5411
5412 alpha [a-zA-Z]
5413
5414 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5415
5416 constant digits [[ radixOverride ]]
5417
5418 dataType BYTE | WORD | DWORD | QWORD | XWORD
5419
5420 digits decdigit
b77a7acd
AJ
5421 | digits decdigit
5422 | digits hexdigit
64a0c779
DN
5423
5424 decdigit [0-9]
5425
5426 e05 e05 addOp e06
b77a7acd 5427 | e06
64a0c779
DN
5428
5429 e06 e06 mulOp e09
b77a7acd 5430 | e09
64a0c779
DN
5431
5432 e09 OFFSET e10
5433 | e09 PTR e10
5434 | e09 : e10
5435 | e10
5436
5437 e10 e10 [ expr ]
b77a7acd 5438 | e11
64a0c779
DN
5439
5440 e11 ( expr )
b77a7acd 5441 | [ expr ]
64a0c779
DN
5442 | constant
5443 | dataType
5444 | id
5445 | $
5446 | register
5447
5448 => expr SHORT e05
b77a7acd 5449 | e05
64a0c779
DN
5450
5451 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5452 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5453
5454 hexdigit a | b | c | d | e | f
b77a7acd 5455 | A | B | C | D | E | F
64a0c779
DN
5456
5457 id alpha
b77a7acd 5458 | id alpha
64a0c779
DN
5459 | id decdigit
5460
5461 mulOp * | / | MOD
5462
5463 quote " | '
5464
5465 register specialRegister
b77a7acd 5466 | gpRegister
64a0c779
DN
5467 | byteRegister
5468
5469 segmentRegister CS | DS | ES | FS | GS | SS
5470
5471 specialRegister CR0 | CR2 | CR3
b77a7acd 5472 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5473 | TR3 | TR4 | TR5 | TR6 | TR7
5474
64a0c779
DN
5475 We simplify the grammar in obvious places (e.g., register parsing is
5476 done by calling parse_register) and eliminate immediate left recursion
5477 to implement a recursive-descent parser.
5478
5479 expr SHORT e05
b77a7acd 5480 | e05
64a0c779
DN
5481
5482 e05 e06 e05'
5483
5484 e05' addOp e06 e05'
b77a7acd 5485 | Empty
64a0c779
DN
5486
5487 e06 e09 e06'
5488
5489 e06' mulOp e09 e06'
b77a7acd 5490 | Empty
64a0c779
DN
5491
5492 e09 OFFSET e10 e09'
b77a7acd 5493 | e10 e09'
64a0c779
DN
5494
5495 e09' PTR e10 e09'
b77a7acd 5496 | : e10 e09'
64a0c779
DN
5497 | Empty
5498
5499 e10 e11 e10'
5500
5501 e10' [ expr ] e10'
b77a7acd 5502 | Empty
64a0c779
DN
5503
5504 e11 ( expr )
b77a7acd 5505 | [ expr ]
64a0c779
DN
5506 | BYTE
5507 | WORD
5508 | DWORD
5509 | QWORD
5510 | XWORD
5511 | .
5512 | $
5513 | register
5514 | id
5515 | constant */
5516
5517/* Parsing structure for the intel syntax parser. Used to implement the
5518 semantic actions for the operand grammar. */
5519struct intel_parser_s
5520 {
5521 char *op_string; /* The string being parsed. */
5522 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5523 int op_modifier; /* Operand modifier. */
64a0c779
DN
5524 int is_mem; /* 1 if operand is memory reference. */
5525 const reg_entry *reg; /* Last register reference found. */
5526 char *disp; /* Displacement string being built. */
5527 };
5528
5529static struct intel_parser_s intel_parser;
5530
5531/* Token structure for parsing intel syntax. */
5532struct intel_token
5533 {
5534 int code; /* Token code. */
5535 const reg_entry *reg; /* Register entry for register tokens. */
5536 char *str; /* String representation. */
5537 };
5538
5539static struct intel_token cur_token, prev_token;
5540
50705ef4
AM
5541/* Token codes for the intel parser. Since T_SHORT is already used
5542 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5543#define T_NIL -1
5544#define T_CONST 1
5545#define T_REG 2
5546#define T_BYTE 3
5547#define T_WORD 4
5548#define T_DWORD 5
5549#define T_QWORD 6
5550#define T_XWORD 7
50705ef4 5551#undef T_SHORT
64a0c779
DN
5552#define T_SHORT 8
5553#define T_OFFSET 9
5554#define T_PTR 10
5555#define T_ID 11
5556
5557/* Prototypes for intel parser functions. */
5558static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5559static void intel_get_token PARAMS ((void));
5560static void intel_putback_token PARAMS ((void));
5561static int intel_expr PARAMS ((void));
5562static int intel_e05 PARAMS ((void));
5563static int intel_e05_1 PARAMS ((void));
5564static int intel_e06 PARAMS ((void));
5565static int intel_e06_1 PARAMS ((void));
5566static int intel_e09 PARAMS ((void));
5567static int intel_e09_1 PARAMS ((void));
5568static int intel_e10 PARAMS ((void));
5569static int intel_e10_1 PARAMS ((void));
5570static int intel_e11 PARAMS ((void));
64a0c779 5571
64a0c779
DN
5572static int
5573i386_intel_operand (operand_string, got_a_float)
5574 char *operand_string;
5575 int got_a_float;
5576{
5577 int ret;
5578 char *p;
5579
5580 /* Initialize token holders. */
5581 cur_token.code = prev_token.code = T_NIL;
5582 cur_token.reg = prev_token.reg = NULL;
5583 cur_token.str = prev_token.str = NULL;
5584
5585 /* Initialize parser structure. */
e5cb08ac 5586 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5587 if (p == NULL)
5588 abort ();
5589 strcpy (intel_parser.op_string, operand_string);
5590 intel_parser.got_a_float = got_a_float;
5591 intel_parser.op_modifier = -1;
5592 intel_parser.is_mem = 0;
5593 intel_parser.reg = NULL;
e5cb08ac 5594 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5595 if (intel_parser.disp == NULL)
5596 abort ();
5597 intel_parser.disp[0] = '\0';
5598
5599 /* Read the first token and start the parser. */
5600 intel_get_token ();
5601 ret = intel_expr ();
5602
5603 if (ret)
5604 {
5605 /* If we found a memory reference, hand it over to i386_displacement
5606 to fill in the rest of the operand fields. */
5607 if (intel_parser.is_mem)
5608 {
5609 if ((i.mem_operands == 1
5610 && (current_templates->start->opcode_modifier & IsString) == 0)
5611 || i.mem_operands == 2)
5612 {
5613 as_bad (_("too many memory references for '%s'"),
5614 current_templates->start->name);
5615 ret = 0;
5616 }
5617 else
5618 {
5619 char *s = intel_parser.disp;
5620 i.mem_operands++;
5621
5622 /* Add the displacement expression. */
5623 if (*s != '\0')
a4622f40
AM
5624 ret = i386_displacement (s, s + strlen (s));
5625 if (ret)
5626 ret = i386_index_check (operand_string);
64a0c779
DN
5627 }
5628 }
5629
5630 /* Constant and OFFSET expressions are handled by i386_immediate. */
5631 else if (intel_parser.op_modifier == OFFSET_FLAT
5632 || intel_parser.reg == NULL)
5633 ret = i386_immediate (intel_parser.disp);
5634 }
5635
5636 free (p);
5637 free (intel_parser.disp);
5638
5639 return ret;
5640}
5641
64a0c779 5642/* expr SHORT e05
b77a7acd 5643 | e05 */
64a0c779
DN
5644static int
5645intel_expr ()
5646{
5647 /* expr SHORT e05 */
5648 if (cur_token.code == T_SHORT)
5649 {
5650 intel_parser.op_modifier = SHORT;
5651 intel_match_token (T_SHORT);
5652
5653 return (intel_e05 ());
5654 }
5655
5656 /* expr e05 */
5657 else
5658 return intel_e05 ();
5659}
5660
64a0c779
DN
5661/* e05 e06 e05'
5662
4a1805b1 5663 e05' addOp e06 e05'
64a0c779
DN
5664 | Empty */
5665static int
5666intel_e05 ()
5667{
5668 return (intel_e06 () && intel_e05_1 ());
5669}
5670
5671static int
5672intel_e05_1 ()
5673{
5674 /* e05' addOp e06 e05' */
5675 if (cur_token.code == '+' || cur_token.code == '-')
5676 {
5677 strcat (intel_parser.disp, cur_token.str);
5678 intel_match_token (cur_token.code);
5679
5680 return (intel_e06 () && intel_e05_1 ());
5681 }
5682
5683 /* e05' Empty */
5684 else
5685 return 1;
4a1805b1 5686}
64a0c779
DN
5687
5688/* e06 e09 e06'
5689
5690 e06' mulOp e09 e06'
b77a7acd 5691 | Empty */
64a0c779
DN
5692static int
5693intel_e06 ()
5694{
5695 return (intel_e09 () && intel_e06_1 ());
5696}
5697
5698static int
5699intel_e06_1 ()
5700{
5701 /* e06' mulOp e09 e06' */
5702 if (cur_token.code == '*' || cur_token.code == '/')
5703 {
5704 strcat (intel_parser.disp, cur_token.str);
5705 intel_match_token (cur_token.code);
5706
5707 return (intel_e09 () && intel_e06_1 ());
5708 }
4a1805b1 5709
64a0c779 5710 /* e06' Empty */
4a1805b1 5711 else
64a0c779
DN
5712 return 1;
5713}
5714
64a0c779 5715/* e09 OFFSET e10 e09'
b77a7acd 5716 | e10 e09'
64a0c779
DN
5717
5718 e09' PTR e10 e09'
b77a7acd 5719 | : e10 e09'
64a0c779
DN
5720 | Empty */
5721static int
5722intel_e09 ()
5723{
5724 /* e09 OFFSET e10 e09' */
5725 if (cur_token.code == T_OFFSET)
5726 {
5727 intel_parser.is_mem = 0;
5728 intel_parser.op_modifier = OFFSET_FLAT;
5729 intel_match_token (T_OFFSET);
5730
5731 return (intel_e10 () && intel_e09_1 ());
5732 }
5733
5734 /* e09 e10 e09' */
5735 else
5736 return (intel_e10 () && intel_e09_1 ());
5737}
5738
5739static int
5740intel_e09_1 ()
5741{
5742 /* e09' PTR e10 e09' */
5743 if (cur_token.code == T_PTR)
5744 {
5745 if (prev_token.code == T_BYTE)
5746 i.suffix = BYTE_MNEM_SUFFIX;
5747
5748 else if (prev_token.code == T_WORD)
5749 {
5750 if (intel_parser.got_a_float == 2) /* "fi..." */
5751 i.suffix = SHORT_MNEM_SUFFIX;
5752 else
5753 i.suffix = WORD_MNEM_SUFFIX;
5754 }
5755
5756 else if (prev_token.code == T_DWORD)
5757 {
5758 if (intel_parser.got_a_float == 1) /* "f..." */
5759 i.suffix = SHORT_MNEM_SUFFIX;
5760 else
5761 i.suffix = LONG_MNEM_SUFFIX;
5762 }
5763
5764 else if (prev_token.code == T_QWORD)
f16b83df
JH
5765 {
5766 if (intel_parser.got_a_float == 1) /* "f..." */
5767 i.suffix = LONG_MNEM_SUFFIX;
5768 else
3e73aa7c 5769 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5770 }
64a0c779
DN
5771
5772 else if (prev_token.code == T_XWORD)
5773 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5774
5775 else
5776 {
5777 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5778 return 0;
5779 }
5780
5781 intel_match_token (T_PTR);
5782
5783 return (intel_e10 () && intel_e09_1 ());
5784 }
5785
5786 /* e09 : e10 e09' */
5787 else if (cur_token.code == ':')
5788 {
21d6c4af
DN
5789 /* Mark as a memory operand only if it's not already known to be an
5790 offset expression. */
5791 if (intel_parser.op_modifier != OFFSET_FLAT)
5792 intel_parser.is_mem = 1;
64a0c779
DN
5793
5794 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5795 }
5796
5797 /* e09' Empty */
5798 else
5799 return 1;
5800}
5801
5802/* e10 e11 e10'
5803
5804 e10' [ expr ] e10'
b77a7acd 5805 | Empty */
64a0c779
DN
5806static int
5807intel_e10 ()
5808{
5809 return (intel_e11 () && intel_e10_1 ());
5810}
5811
5812static int
5813intel_e10_1 ()
5814{
5815 /* e10' [ expr ] e10' */
5816 if (cur_token.code == '[')
5817 {
5818 intel_match_token ('[');
21d6c4af
DN
5819
5820 /* Mark as a memory operand only if it's not already known to be an
5821 offset expression. If it's an offset expression, we need to keep
5822 the brace in. */
5823 if (intel_parser.op_modifier != OFFSET_FLAT)
5824 intel_parser.is_mem = 1;
5825 else
5826 strcat (intel_parser.disp, "[");
4a1805b1 5827
64a0c779 5828 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5829 if (*intel_parser.disp != '\0'
5830 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5831 strcat (intel_parser.disp, "+");
5832
21d6c4af
DN
5833 if (intel_expr () && intel_match_token (']'))
5834 {
5835 /* Preserve brackets when the operand is an offset expression. */
5836 if (intel_parser.op_modifier == OFFSET_FLAT)
5837 strcat (intel_parser.disp, "]");
5838
5839 return intel_e10_1 ();
5840 }
5841 else
5842 return 0;
64a0c779
DN
5843 }
5844
5845 /* e10' Empty */
5846 else
5847 return 1;
5848}
5849
64a0c779 5850/* e11 ( expr )
b77a7acd 5851 | [ expr ]
64a0c779
DN
5852 | BYTE
5853 | WORD
5854 | DWORD
5855 | QWORD
5856 | XWORD
4a1805b1 5857 | $
64a0c779
DN
5858 | .
5859 | register
5860 | id
5861 | constant */
5862static int
5863intel_e11 ()
5864{
5865 /* e11 ( expr ) */
5866 if (cur_token.code == '(')
5867 {
5868 intel_match_token ('(');
5869 strcat (intel_parser.disp, "(");
5870
5871 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5872 {
5873 strcat (intel_parser.disp, ")");
5874 return 1;
5875 }
64a0c779
DN
5876 else
5877 return 0;
5878 }
5879
5880 /* e11 [ expr ] */
5881 else if (cur_token.code == '[')
5882 {
5883 intel_match_token ('[');
21d6c4af
DN
5884
5885 /* Mark as a memory operand only if it's not already known to be an
5886 offset expression. If it's an offset expression, we need to keep
5887 the brace in. */
5888 if (intel_parser.op_modifier != OFFSET_FLAT)
5889 intel_parser.is_mem = 1;
5890 else
5891 strcat (intel_parser.disp, "[");
4a1805b1 5892
64a0c779
DN
5893 /* Operands for jump/call inside brackets denote absolute addresses. */
5894 if (current_templates->start->opcode_modifier & Jump
5895 || current_templates->start->opcode_modifier & JumpDword
5896 || current_templates->start->opcode_modifier & JumpByte
5897 || current_templates->start->opcode_modifier & JumpInterSegment)
5898 i.types[this_operand] |= JumpAbsolute;
5899
5900 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5901 if (*intel_parser.disp != '\0'
5902 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5903 strcat (intel_parser.disp, "+");
5904
21d6c4af
DN
5905 if (intel_expr () && intel_match_token (']'))
5906 {
5907 /* Preserve brackets when the operand is an offset expression. */
5908 if (intel_parser.op_modifier == OFFSET_FLAT)
5909 strcat (intel_parser.disp, "]");
5910
5911 return 1;
5912 }
5913 else
5914 return 0;
64a0c779
DN
5915 }
5916
4a1805b1 5917 /* e11 BYTE
64a0c779
DN
5918 | WORD
5919 | DWORD
5920 | QWORD
5921 | XWORD */
5922 else if (cur_token.code == T_BYTE
5923 || cur_token.code == T_WORD
5924 || cur_token.code == T_DWORD
5925 || cur_token.code == T_QWORD
5926 || cur_token.code == T_XWORD)
5927 {
5928 intel_match_token (cur_token.code);
5929
5930 return 1;
5931 }
5932
5933 /* e11 $
5934 | . */
5935 else if (cur_token.code == '$' || cur_token.code == '.')
5936 {
5937 strcat (intel_parser.disp, cur_token.str);
5938 intel_match_token (cur_token.code);
21d6c4af
DN
5939
5940 /* Mark as a memory operand only if it's not already known to be an
5941 offset expression. */
5942 if (intel_parser.op_modifier != OFFSET_FLAT)
5943 intel_parser.is_mem = 1;
64a0c779
DN
5944
5945 return 1;
5946 }
5947
5948 /* e11 register */
5949 else if (cur_token.code == T_REG)
5950 {
5951 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5952
5953 intel_match_token (T_REG);
5954
5955 /* Check for segment change. */
5956 if (cur_token.code == ':')
5957 {
5958 if (reg->reg_type & (SReg2 | SReg3))
5959 {
5960 switch (reg->reg_num)
5961 {
5962 case 0:
5963 i.seg[i.mem_operands] = &es;
5964 break;
5965 case 1:
5966 i.seg[i.mem_operands] = &cs;
5967 break;
5968 case 2:
5969 i.seg[i.mem_operands] = &ss;
5970 break;
5971 case 3:
5972 i.seg[i.mem_operands] = &ds;
5973 break;
5974 case 4:
5975 i.seg[i.mem_operands] = &fs;
5976 break;
5977 case 5:
5978 i.seg[i.mem_operands] = &gs;
5979 break;
5980 }
5981 }
5982 else
5983 {
5984 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5985 return 0;
5986 }
5987 }
5988
5989 /* Not a segment register. Check for register scaling. */
5990 else if (cur_token.code == '*')
5991 {
5992 if (!intel_parser.is_mem)
5993 {
5994 as_bad (_("Register scaling only allowed in memory operands."));
5995 return 0;
5996 }
5997
4a1805b1 5998 /* What follows must be a valid scale. */
64a0c779
DN
5999 if (intel_match_token ('*')
6000 && strchr ("01248", *cur_token.str))
6001 {
6002 i.index_reg = reg;
6003 i.types[this_operand] |= BaseIndex;
6004
6005 /* Set the scale after setting the register (otherwise,
6006 i386_scale will complain) */
6007 i386_scale (cur_token.str);
6008 intel_match_token (T_CONST);
6009 }
6010 else
6011 {
6012 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6013 cur_token.str);
6014 return 0;
6015 }
6016 }
6017
6018 /* No scaling. If this is a memory operand, the register is either a
6019 base register (first occurrence) or an index register (second
6020 occurrence). */
6021 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6022 {
6023 if (i.base_reg && i.index_reg)
6024 {
6025 as_bad (_("Too many register references in memory operand.\n"));
6026 return 0;
6027 }
6028
6029 if (i.base_reg == NULL)
6030 i.base_reg = reg;
6031 else
6032 i.index_reg = reg;
6033
6034 i.types[this_operand] |= BaseIndex;
6035 }
6036
6037 /* Offset modifier. Add the register to the displacement string to be
6038 parsed as an immediate expression after we're done. */
6039 else if (intel_parser.op_modifier == OFFSET_FLAT)
6040 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 6041
64a0c779
DN
6042 /* It's neither base nor index nor offset. */
6043 else
6044 {
6045 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6046 i.op[this_operand].regs = reg;
6047 i.reg_operands++;
6048 }
6049
6050 /* Since registers are not part of the displacement string (except
6051 when we're parsing offset operands), we may need to remove any
6052 preceding '+' from the displacement string. */
6053 if (*intel_parser.disp != '\0'
6054 && intel_parser.op_modifier != OFFSET_FLAT)
6055 {
6056 char *s = intel_parser.disp;
6057 s += strlen (s) - 1;
6058 if (*s == '+')
6059 *s = '\0';
6060 }
6061
6062 return 1;
6063 }
4a1805b1 6064
64a0c779
DN
6065 /* e11 id */
6066 else if (cur_token.code == T_ID)
6067 {
6068 /* Add the identifier to the displacement string. */
6069 strcat (intel_parser.disp, cur_token.str);
6070 intel_match_token (T_ID);
6071
6072 /* The identifier represents a memory reference only if it's not
6073 preceded by an offset modifier. */
21d6c4af 6074 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
6075 intel_parser.is_mem = 1;
6076
6077 return 1;
6078 }
6079
6080 /* e11 constant */
6081 else if (cur_token.code == T_CONST
e5cb08ac 6082 || cur_token.code == '-'
64a0c779
DN
6083 || cur_token.code == '+')
6084 {
6085 char *save_str;
6086
6087 /* Allow constants that start with `+' or `-'. */
6088 if (cur_token.code == '-' || cur_token.code == '+')
6089 {
6090 strcat (intel_parser.disp, cur_token.str);
6091 intel_match_token (cur_token.code);
6092 if (cur_token.code != T_CONST)
6093 {
6094 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6095 cur_token.str);
6096 return 0;
6097 }
6098 }
6099
e5cb08ac 6100 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 6101 if (save_str == NULL)
bc805888 6102 abort ();
64a0c779
DN
6103 strcpy (save_str, cur_token.str);
6104
6105 /* Get the next token to check for register scaling. */
6106 intel_match_token (cur_token.code);
6107
6108 /* Check if this constant is a scaling factor for an index register. */
6109 if (cur_token.code == '*')
6110 {
6111 if (intel_match_token ('*') && cur_token.code == T_REG)
6112 {
6113 if (!intel_parser.is_mem)
6114 {
6115 as_bad (_("Register scaling only allowed in memory operands."));
6116 return 0;
6117 }
6118
4a1805b1 6119 /* The constant is followed by `* reg', so it must be
64a0c779
DN
6120 a valid scale. */
6121 if (strchr ("01248", *save_str))
6122 {
6123 i.index_reg = cur_token.reg;
6124 i.types[this_operand] |= BaseIndex;
6125
6126 /* Set the scale after setting the register (otherwise,
6127 i386_scale will complain) */
6128 i386_scale (save_str);
6129 intel_match_token (T_REG);
6130
6131 /* Since registers are not part of the displacement
6132 string, we may need to remove any preceding '+' from
6133 the displacement string. */
6134 if (*intel_parser.disp != '\0')
6135 {
6136 char *s = intel_parser.disp;
6137 s += strlen (s) - 1;
6138 if (*s == '+')
6139 *s = '\0';
6140 }
6141
6142 free (save_str);
6143
6144 return 1;
6145 }
6146 else
6147 return 0;
6148 }
6149
6150 /* The constant was not used for register scaling. Since we have
6151 already consumed the token following `*' we now need to put it
6152 back in the stream. */
6153 else
6154 intel_putback_token ();
6155 }
6156
6157 /* Add the constant to the displacement string. */
6158 strcat (intel_parser.disp, save_str);
6159 free (save_str);
6160
6161 return 1;
6162 }
6163
64a0c779
DN
6164 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6165 return 0;
6166}
6167
64a0c779
DN
6168/* Match the given token against cur_token. If they match, read the next
6169 token from the operand string. */
6170static int
6171intel_match_token (code)
e5cb08ac 6172 int code;
64a0c779
DN
6173{
6174 if (cur_token.code == code)
6175 {
6176 intel_get_token ();
6177 return 1;
6178 }
6179 else
6180 {
6181 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6182 return 0;
6183 }
6184}
6185
64a0c779
DN
6186/* Read a new token from intel_parser.op_string and store it in cur_token. */
6187static void
6188intel_get_token ()
6189{
6190 char *end_op;
6191 const reg_entry *reg;
6192 struct intel_token new_token;
6193
6194 new_token.code = T_NIL;
6195 new_token.reg = NULL;
6196 new_token.str = NULL;
6197
4a1805b1 6198 /* Free the memory allocated to the previous token and move
64a0c779
DN
6199 cur_token to prev_token. */
6200 if (prev_token.str)
6201 free (prev_token.str);
6202
6203 prev_token = cur_token;
6204
6205 /* Skip whitespace. */
6206 while (is_space_char (*intel_parser.op_string))
6207 intel_parser.op_string++;
6208
6209 /* Return an empty token if we find nothing else on the line. */
6210 if (*intel_parser.op_string == '\0')
6211 {
6212 cur_token = new_token;
6213 return;
6214 }
6215
6216 /* The new token cannot be larger than the remainder of the operand
6217 string. */
e5cb08ac 6218 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 6219 if (new_token.str == NULL)
bc805888 6220 abort ();
64a0c779
DN
6221 new_token.str[0] = '\0';
6222
6223 if (strchr ("0123456789", *intel_parser.op_string))
6224 {
6225 char *p = new_token.str;
6226 char *q = intel_parser.op_string;
6227 new_token.code = T_CONST;
6228
6229 /* Allow any kind of identifier char to encompass floating point and
6230 hexadecimal numbers. */
6231 while (is_identifier_char (*q))
6232 *p++ = *q++;
6233 *p = '\0';
6234
6235 /* Recognize special symbol names [0-9][bf]. */
6236 if (strlen (intel_parser.op_string) == 2
4a1805b1 6237 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6238 || intel_parser.op_string[1] == 'f'))
6239 new_token.code = T_ID;
6240 }
6241
6242 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6243 {
6244 new_token.code = *intel_parser.op_string;
6245 new_token.str[0] = *intel_parser.op_string;
6246 new_token.str[1] = '\0';
6247 }
6248
6249 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6250 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6251 {
6252 new_token.code = T_REG;
6253 new_token.reg = reg;
6254
6255 if (*intel_parser.op_string == REGISTER_PREFIX)
6256 {
6257 new_token.str[0] = REGISTER_PREFIX;
6258 new_token.str[1] = '\0';
6259 }
6260
6261 strcat (new_token.str, reg->reg_name);
6262 }
6263
6264 else if (is_identifier_char (*intel_parser.op_string))
6265 {
6266 char *p = new_token.str;
6267 char *q = intel_parser.op_string;
6268
6269 /* A '.' or '$' followed by an identifier char is an identifier.
6270 Otherwise, it's operator '.' followed by an expression. */
6271 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6272 {
6273 new_token.code = *q;
6274 new_token.str[0] = *q;
6275 new_token.str[1] = '\0';
6276 }
6277 else
6278 {
6279 while (is_identifier_char (*q) || *q == '@')
6280 *p++ = *q++;
6281 *p = '\0';
6282
6283 if (strcasecmp (new_token.str, "BYTE") == 0)
6284 new_token.code = T_BYTE;
6285
6286 else if (strcasecmp (new_token.str, "WORD") == 0)
6287 new_token.code = T_WORD;
6288
6289 else if (strcasecmp (new_token.str, "DWORD") == 0)
6290 new_token.code = T_DWORD;
6291
6292 else if (strcasecmp (new_token.str, "QWORD") == 0)
6293 new_token.code = T_QWORD;
6294
6295 else if (strcasecmp (new_token.str, "XWORD") == 0)
6296 new_token.code = T_XWORD;
6297
6298 else if (strcasecmp (new_token.str, "PTR") == 0)
6299 new_token.code = T_PTR;
6300
6301 else if (strcasecmp (new_token.str, "SHORT") == 0)
6302 new_token.code = T_SHORT;
6303
6304 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6305 {
6306 new_token.code = T_OFFSET;
6307
6308 /* ??? This is not mentioned in the MASM grammar but gcc
6309 makes use of it with -mintel-syntax. OFFSET may be
6310 followed by FLAT: */
6311 if (strncasecmp (q, " FLAT:", 6) == 0)
6312 strcat (new_token.str, " FLAT:");
6313 }
6314
6315 /* ??? This is not mentioned in the MASM grammar. */
6316 else if (strcasecmp (new_token.str, "FLAT") == 0)
6317 new_token.code = T_OFFSET;
6318
6319 else
6320 new_token.code = T_ID;
6321 }
6322 }
6323
6324 else
6325 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6326
6327 intel_parser.op_string += strlen (new_token.str);
6328 cur_token = new_token;
6329}
6330
64a0c779
DN
6331/* Put cur_token back into the token stream and make cur_token point to
6332 prev_token. */
6333static void
6334intel_putback_token ()
6335{
6336 intel_parser.op_string -= strlen (cur_token.str);
6337 free (cur_token.str);
6338 cur_token = prev_token;
4a1805b1 6339
64a0c779
DN
6340 /* Forget prev_token. */
6341 prev_token.code = T_NIL;
6342 prev_token.reg = NULL;
6343 prev_token.str = NULL;
6344}
54cfded0 6345
a4447b93 6346int
54cfded0
AM
6347tc_x86_regname_to_dw2regnum (const char *regname)
6348{
6349 unsigned int regnum;
6350 unsigned int regnames_count;
6351 char *regnames_32[] =
6352 {
a4447b93
RH
6353 "eax", "ecx", "edx", "ebx",
6354 "esp", "ebp", "esi", "edi",
54cfded0
AM
6355 "eip"
6356 };
6357 char *regnames_64[] =
6358 {
6359 "rax", "rbx", "rcx", "rdx",
6360 "rdi", "rsi", "rbp", "rsp",
6361 "r8", "r9", "r10", "r11",
6362 "r12", "r13", "r14", "r15",
6363 "rip"
6364 };
6365 char **regnames;
6366
6367 if (flag_code == CODE_64BIT)
6368 {
6369 regnames = regnames_64;
0cea6190 6370 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
6371 }
6372 else
6373 {
6374 regnames = regnames_32;
0cea6190 6375 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
6376 }
6377
6378 for (regnum = 0; regnum < regnames_count; regnum++)
6379 if (strcmp (regname, regnames[regnum]) == 0)
6380 return regnum;
6381
54cfded0
AM
6382 return -1;
6383}
6384
6385void
6386tc_x86_frame_initial_instructions (void)
6387{
a4447b93
RH
6388 static unsigned int sp_regno;
6389
6390 if (!sp_regno)
6391 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6392 ? "rsp" : "esp");
6393
6394 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6395 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6396}