]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
Add AMD znver3 processor support
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
c3332e24 47#ifndef INFER_ADDR_PREFIX
eecb386c 48#define INFER_ADDR_PREFIX 1
c3332e24
AM
49#endif
50
29b0f896
AM
51#ifndef DEFAULT_ARCH
52#define DEFAULT_ARCH "i386"
246fcdee 53#endif
252b5132 54
edde18a5
AM
55#ifndef INLINE
56#if __GNUC__ >= 2
57#define INLINE __inline__
58#else
59#define INLINE
60#endif
61#endif
62
6305a203
L
63/* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
68#define WAIT_PREFIX 0
69#define SEG_PREFIX 1
70#define ADDR_PREFIX 2
71#define DATA_PREFIX 3
c32fa91d 72#define REP_PREFIX 4
42164a71 73#define HLE_PREFIX REP_PREFIX
7e8b059b 74#define BND_PREFIX REP_PREFIX
c32fa91d 75#define LOCK_PREFIX 5
4e9ac44a
L
76#define REX_PREFIX 6 /* must come last. */
77#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
78
79/* we define the syntax here (modulo base,index,scale syntax) */
80#define REGISTER_PREFIX '%'
81#define IMMEDIATE_PREFIX '$'
82#define ABSOLUTE_PREFIX '*'
83
84/* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86#define WORD_MNEM_SUFFIX 'w'
87#define BYTE_MNEM_SUFFIX 'b'
88#define SHORT_MNEM_SUFFIX 's'
89#define LONG_MNEM_SUFFIX 'l'
90#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
91/* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93#define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95#define END_OF_INSN '\0'
96
79dec6b7
JB
97/* This matches the C -> StaticRounding alias in the opcode table. */
98#define commutative staticrounding
99
6305a203
L
100/*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107typedef struct
108{
d3ce72d0
NC
109 const insn_template *start;
110 const insn_template *end;
6305a203
L
111}
112templates;
113
114/* 386 operand encoding bytes: see 386 book for details of this. */
115typedef struct
116{
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120}
121modrm_byte;
122
123/* x86-64 extension prefix. */
124typedef int rex_byte;
125
6305a203
L
126/* 386 opcode byte to code indirect addressing. */
127typedef struct
128{
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132}
133sib_byte;
134
6305a203
L
135/* x86 arch names, types and features */
136typedef struct
137{
138 const char *name; /* arch name */
8a2c8fef 139 unsigned int len; /* arch string length */
6305a203
L
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 142 unsigned int skip; /* show_arch should skip this. */
6305a203
L
143}
144arch_entry;
145
293f5f65
L
146/* Used to turn off indicated flags. */
147typedef struct
148{
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152}
153noarch_entry;
154
78f12dd3 155static void update_code_flag (int, int);
e3bb37b5
L
156static void set_code_flag (int);
157static void set_16bit_gcc_code_flag (int);
158static void set_intel_syntax (int);
1efbbeb4 159static void set_intel_mnemonic (int);
db51cc60 160static void set_allow_index_reg (int);
7bab8ab5 161static void set_check (int);
e3bb37b5 162static void set_cpu_arch (int);
6482c264 163#ifdef TE_PE
e3bb37b5 164static void pe_directive_secrel (int);
6482c264 165#endif
e3bb37b5
L
166static void signed_cons (int);
167static char *output_invalid (int c);
ee86248c
JB
168static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
a7619375 172static int i386_att_operand (char *);
e3bb37b5 173static int i386_intel_operand (char *, int);
ee86248c
JB
174static int i386_intel_simplify (expressionS *);
175static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
176static const reg_entry *parse_register (char *, char **);
177static char *parse_insn (char *, char *);
178static char *parse_operands (char *, const char *);
179static void swap_operands (void);
4d456e3d 180static void swap_2_operands (int, int);
48bcea9f 181static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
8a6fb3f9
JB
213/* parse_register() returns this when a register alias cannot be used. */
214static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
215 { Dw2Inval, Dw2Inval } };
216
43234a1e
L
217/* This struct describes rounding control and SAE in the instruction. */
218struct RC_Operation
219{
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229};
230
231static struct RC_Operation rc_op;
232
233/* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236struct Mask_Operation
237{
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242};
243
244static struct Mask_Operation mask_op;
245
246/* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248struct Broadcast_Operation
249{
8e6e0792 250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
4a1b91ea
L
255
256 /* Number of bytes to broadcast. */
257 int bytes;
43234a1e
L
258};
259
260static struct Broadcast_Operation broadcast_op;
261
c0f3af97
L
262/* VEX prefix. */
263typedef struct
264{
43234a1e
L
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
c0f3af97
L
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270} vex_prefix;
271
252b5132 272/* 'md_assemble ()' gathers together information and puts it into a
47926f60 273 i386_insn. */
252b5132 274
520dc8e8
AM
275union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
a65babc9
L
282enum i386_error
283 {
86e026a4 284 operand_size_mismatch,
a65babc9
L
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
a65babc9
L
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
6c30d220 292 unsupported,
260cd341 293 invalid_sib_address,
6c30d220 294 invalid_vsib_address,
7bab8ab5 295 invalid_vector_register_set,
260cd341 296 invalid_tmm_register_set,
43234a1e
L
297 unsupported_vector_index_register,
298 unsupported_broadcast,
43234a1e
L
299 broadcast_needed,
300 unsupported_masking,
301 mask_not_on_destination,
302 no_default_mask,
303 unsupported_rc_sae,
304 rc_sae_operand_not_last_imm,
305 invalid_register_operand,
a65babc9
L
306 };
307
252b5132
RH
308struct _i386_insn
309 {
47926f60 310 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 311 insn_template tm;
252b5132 312
7d5e4556
L
313 /* SUFFIX holds the instruction size suffix for byte, word, dword
314 or qword, if given. */
252b5132
RH
315 char suffix;
316
47926f60 317 /* OPERANDS gives the number of given operands. */
252b5132
RH
318 unsigned int operands;
319
320 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
321 of given register, displacement, memory operands and immediate
47926f60 322 operands. */
252b5132
RH
323 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
324
325 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 326 use OP[i] for the corresponding operand. */
40fb9820 327 i386_operand_type types[MAX_OPERANDS];
252b5132 328
520dc8e8
AM
329 /* Displacement expression, immediate expression, or register for each
330 operand. */
331 union i386_op op[MAX_OPERANDS];
252b5132 332
3e73aa7c
JH
333 /* Flags for operands. */
334 unsigned int flags[MAX_OPERANDS];
335#define Operand_PCrel 1
c48dadc9 336#define Operand_Mem 2
3e73aa7c 337
252b5132 338 /* Relocation type for operand */
f86103b7 339 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 340
252b5132
RH
341 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
342 the base index byte below. */
343 const reg_entry *base_reg;
344 const reg_entry *index_reg;
345 unsigned int log2_scale_factor;
346
347 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 348 explicit segment overrides are given. */
ce8a8b2f 349 const seg_entry *seg[2];
252b5132 350
8325cc63
JB
351 /* Copied first memory operand string, for re-checking. */
352 char *memop1_string;
353
252b5132
RH
354 /* PREFIX holds all the given prefix opcodes (usually null).
355 PREFIXES is the number of prefix opcodes. */
356 unsigned int prefixes;
357 unsigned char prefix[MAX_PREFIXES];
358
50128d0c
JB
359 /* Register is in low 3 bits of opcode. */
360 bfd_boolean short_form;
361
6f2f06be
JB
362 /* The operand to a branch insn indicates an absolute branch. */
363 bfd_boolean jumpabsolute;
364
921eafea
L
365 /* Extended states. */
366 enum
367 {
368 /* Use MMX state. */
369 xstate_mmx = 1 << 0,
370 /* Use XMM state. */
371 xstate_xmm = 1 << 1,
372 /* Use YMM state. */
373 xstate_ymm = 1 << 2 | xstate_xmm,
374 /* Use ZMM state. */
375 xstate_zmm = 1 << 3 | xstate_ymm,
376 /* Use TMM state. */
32930e4e
L
377 xstate_tmm = 1 << 4,
378 /* Use MASK state. */
379 xstate_mask = 1 << 5
921eafea 380 } xstate;
260cd341 381
e379e5f3
L
382 /* Has GOTPC or TLS relocation. */
383 bfd_boolean has_gotpc_tls_reloc;
384
252b5132 385 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 386 addressing modes of this insn are encoded. */
252b5132 387 modrm_byte rm;
3e73aa7c 388 rex_byte rex;
43234a1e 389 rex_byte vrex;
252b5132 390 sib_byte sib;
c0f3af97 391 vex_prefix vex;
b6169b20 392
43234a1e
L
393 /* Masking attributes. */
394 struct Mask_Operation *mask;
395
396 /* Rounding control and SAE attributes. */
397 struct RC_Operation *rounding;
398
399 /* Broadcasting attributes. */
400 struct Broadcast_Operation *broadcast;
401
402 /* Compressed disp8*N attribute. */
403 unsigned int memshift;
404
86fa6981
L
405 /* Prefer load or store in encoding. */
406 enum
407 {
408 dir_encoding_default = 0,
409 dir_encoding_load,
64c49ab3
JB
410 dir_encoding_store,
411 dir_encoding_swap
86fa6981 412 } dir_encoding;
891edac4 413
41eb8e88 414 /* Prefer 8bit, 16bit, 32bit displacement in encoding. */
a501d77e
L
415 enum
416 {
417 disp_encoding_default = 0,
418 disp_encoding_8bit,
41eb8e88 419 disp_encoding_16bit,
a501d77e
L
420 disp_encoding_32bit
421 } disp_encoding;
f8a5c266 422
6b6b6807
L
423 /* Prefer the REX byte in encoding. */
424 bfd_boolean rex_encoding;
425
b6f8c7c4
L
426 /* Disable instruction size optimization. */
427 bfd_boolean no_optimize;
428
86fa6981
L
429 /* How to encode vector instructions. */
430 enum
431 {
432 vex_encoding_default = 0,
42e04b36 433 vex_encoding_vex,
86fa6981 434 vex_encoding_vex3,
da4977e0
JB
435 vex_encoding_evex,
436 vex_encoding_error
86fa6981
L
437 } vec_encoding;
438
d5de92cf
L
439 /* REP prefix. */
440 const char *rep_prefix;
441
165de32a
L
442 /* HLE prefix. */
443 const char *hle_prefix;
42164a71 444
7e8b059b
L
445 /* Have BND prefix. */
446 const char *bnd_prefix;
447
04ef582a
L
448 /* Have NOTRACK prefix. */
449 const char *notrack_prefix;
450
891edac4 451 /* Error message. */
a65babc9 452 enum i386_error error;
252b5132
RH
453 };
454
455typedef struct _i386_insn i386_insn;
456
43234a1e
L
457/* Link RC type with corresponding string, that'll be looked for in
458 asm. */
459struct RC_name
460{
461 enum rc_type type;
462 const char *name;
463 unsigned int len;
464};
465
466static const struct RC_name RC_NamesTable[] =
467{
468 { rne, STRING_COMMA_LEN ("rn-sae") },
469 { rd, STRING_COMMA_LEN ("rd-sae") },
470 { ru, STRING_COMMA_LEN ("ru-sae") },
471 { rz, STRING_COMMA_LEN ("rz-sae") },
472 { saeonly, STRING_COMMA_LEN ("sae") },
473};
474
252b5132
RH
475/* List of chars besides those in app.c:symbol_chars that can start an
476 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 477const char extra_symbol_chars[] = "*%-([{}"
252b5132 478#ifdef LEX_AT
32137342
NC
479 "@"
480#endif
481#ifdef LEX_QM
482 "?"
252b5132 483#endif
32137342 484 ;
252b5132 485
b3983e5f
JB
486#if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
487 && !defined (TE_GNU) \
488 && !defined (TE_LINUX) \
489 && !defined (TE_FreeBSD) \
490 && !defined (TE_DragonFly) \
491 && !defined (TE_NetBSD))
252b5132 492/* This array holds the chars that always start a comment. If the
b3b91714
AM
493 pre-processor is disabled, these aren't very useful. The option
494 --divide will remove '/' from this list. */
495const char *i386_comment_chars = "#/";
496#define SVR4_COMMENT_CHARS 1
252b5132 497#define PREFIX_SEPARATOR '\\'
252b5132 498
b3b91714
AM
499#else
500const char *i386_comment_chars = "#";
501#define PREFIX_SEPARATOR '/'
502#endif
503
252b5132
RH
504/* This array holds the chars that only start a comment at the beginning of
505 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
506 .line and .file directives will appear in the pre-processed output.
507 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 508 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
509 #NO_APP at the beginning of its output.
510 Also note that comments started like this one will always work if
252b5132 511 '/' isn't otherwise defined. */
b3b91714 512const char line_comment_chars[] = "#/";
252b5132 513
63a0b638 514const char line_separator_chars[] = ";";
252b5132 515
ce8a8b2f
AM
516/* Chars that can be used to separate mant from exp in floating point
517 nums. */
252b5132
RH
518const char EXP_CHARS[] = "eE";
519
ce8a8b2f
AM
520/* Chars that mean this number is a floating point constant
521 As in 0f12.456
522 or 0d1.2345e12. */
252b5132
RH
523const char FLT_CHARS[] = "fFdDxX";
524
ce8a8b2f 525/* Tables for lexical analysis. */
252b5132
RH
526static char mnemonic_chars[256];
527static char register_chars[256];
528static char operand_chars[256];
529static char identifier_chars[256];
530static char digit_chars[256];
531
ce8a8b2f 532/* Lexical macros. */
252b5132
RH
533#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
534#define is_operand_char(x) (operand_chars[(unsigned char) x])
535#define is_register_char(x) (register_chars[(unsigned char) x])
536#define is_space_char(x) ((x) == ' ')
537#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
538#define is_digit_char(x) (digit_chars[(unsigned char) x])
539
0234cb7c 540/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
541static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
542
543/* md_assemble() always leaves the strings it's passed unaltered. To
544 effect this we maintain a stack of saved characters that we've smashed
545 with '\0's (indicating end of strings for various sub-fields of the
47926f60 546 assembler instruction). */
252b5132 547static char save_stack[32];
ce8a8b2f 548static char *save_stack_p;
252b5132
RH
549#define END_STRING_AND_SAVE(s) \
550 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
551#define RESTORE_END_STRING(s) \
552 do { *(s) = *--save_stack_p; } while (0)
553
47926f60 554/* The instruction we're assembling. */
252b5132
RH
555static i386_insn i;
556
557/* Possible templates for current insn. */
558static const templates *current_templates;
559
31b2323c
L
560/* Per instruction expressionS buffers: max displacements & immediates. */
561static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
562static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 563
47926f60 564/* Current operand we are working on. */
ee86248c 565static int this_operand = -1;
252b5132 566
3e73aa7c
JH
567/* We support four different modes. FLAG_CODE variable is used to distinguish
568 these. */
569
570enum flag_code {
571 CODE_32BIT,
572 CODE_16BIT,
573 CODE_64BIT };
574
575static enum flag_code flag_code;
4fa24527 576static unsigned int object_64bit;
862be3fb 577static unsigned int disallow_64bit_reloc;
3e73aa7c 578static int use_rela_relocations = 0;
e379e5f3
L
579/* __tls_get_addr/___tls_get_addr symbol for TLS. */
580static const char *tls_get_addr;
3e73aa7c 581
7af8ed2d
NC
582#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
583 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
584 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
585
351f65ca
L
586/* The ELF ABI to use. */
587enum x86_elf_abi
588{
589 I386_ABI,
7f56bc95
L
590 X86_64_ABI,
591 X86_64_X32_ABI
351f65ca
L
592};
593
594static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 595#endif
351f65ca 596
167ad85b
TG
597#if defined (TE_PE) || defined (TE_PEP)
598/* Use big object file format. */
599static int use_big_obj = 0;
600#endif
601
8dcea932
L
602#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
603/* 1 if generating code for a shared library. */
604static int shared = 0;
605#endif
606
47926f60
KH
607/* 1 for intel syntax,
608 0 if att syntax. */
609static int intel_syntax = 0;
252b5132 610
4b5aaf5f
L
611static enum x86_64_isa
612{
613 amd64 = 1, /* AMD64 ISA. */
614 intel64 /* Intel64 ISA. */
615} isa64;
e89c5eaa 616
1efbbeb4
L
617/* 1 for intel mnemonic,
618 0 if att mnemonic. */
619static int intel_mnemonic = !SYSV386_COMPAT;
620
a60de03c
JB
621/* 1 if pseudo registers are permitted. */
622static int allow_pseudo_reg = 0;
623
47926f60
KH
624/* 1 if register prefix % not required. */
625static int allow_naked_reg = 0;
252b5132 626
33eaf5de 627/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
628 instructions supporting it, even if this prefix wasn't specified
629 explicitly. */
630static int add_bnd_prefix = 0;
631
ba104c83 632/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
633static int allow_index_reg = 0;
634
d022bddd
IT
635/* 1 if the assembler should ignore LOCK prefix, even if it was
636 specified explicitly. */
637static int omit_lock_prefix = 0;
638
e4e00185
AS
639/* 1 if the assembler should encode lfence, mfence, and sfence as
640 "lock addl $0, (%{re}sp)". */
641static int avoid_fence = 0;
642
ae531041
L
643/* 1 if lfence should be inserted after every load. */
644static int lfence_after_load = 0;
645
646/* Non-zero if lfence should be inserted before indirect branch. */
647static enum lfence_before_indirect_branch_kind
648 {
649 lfence_branch_none = 0,
650 lfence_branch_register,
651 lfence_branch_memory,
652 lfence_branch_all
653 }
654lfence_before_indirect_branch;
655
656/* Non-zero if lfence should be inserted before ret. */
657static enum lfence_before_ret_kind
658 {
659 lfence_before_ret_none = 0,
660 lfence_before_ret_not,
a09f656b 661 lfence_before_ret_or,
662 lfence_before_ret_shl
ae531041
L
663 }
664lfence_before_ret;
665
666/* Types of previous instruction is .byte or prefix. */
e379e5f3
L
667static struct
668 {
669 segT seg;
670 const char *file;
671 const char *name;
672 unsigned int line;
673 enum last_insn_kind
674 {
675 last_insn_other = 0,
676 last_insn_directive,
677 last_insn_prefix
678 } kind;
679 } last_insn;
680
0cb4071e
L
681/* 1 if the assembler should generate relax relocations. */
682
683static int generate_relax_relocations
684 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
685
7bab8ab5 686static enum check_kind
daf50ae7 687 {
7bab8ab5
JB
688 check_none = 0,
689 check_warning,
690 check_error
daf50ae7 691 }
7bab8ab5 692sse_check, operand_check = check_warning;
daf50ae7 693
e379e5f3
L
694/* Non-zero if branches should be aligned within power of 2 boundary. */
695static int align_branch_power = 0;
696
697/* Types of branches to align. */
698enum align_branch_kind
699 {
700 align_branch_none = 0,
701 align_branch_jcc = 1,
702 align_branch_fused = 2,
703 align_branch_jmp = 3,
704 align_branch_call = 4,
705 align_branch_indirect = 5,
706 align_branch_ret = 6
707 };
708
709/* Type bits of branches to align. */
710enum align_branch_bit
711 {
712 align_branch_jcc_bit = 1 << align_branch_jcc,
713 align_branch_fused_bit = 1 << align_branch_fused,
714 align_branch_jmp_bit = 1 << align_branch_jmp,
715 align_branch_call_bit = 1 << align_branch_call,
716 align_branch_indirect_bit = 1 << align_branch_indirect,
717 align_branch_ret_bit = 1 << align_branch_ret
718 };
719
720static unsigned int align_branch = (align_branch_jcc_bit
721 | align_branch_fused_bit
722 | align_branch_jmp_bit);
723
79d72f45
HL
724/* Types of condition jump used by macro-fusion. */
725enum mf_jcc_kind
726 {
727 mf_jcc_jo = 0, /* base opcode 0x70 */
728 mf_jcc_jc, /* base opcode 0x72 */
729 mf_jcc_je, /* base opcode 0x74 */
730 mf_jcc_jna, /* base opcode 0x76 */
731 mf_jcc_js, /* base opcode 0x78 */
732 mf_jcc_jp, /* base opcode 0x7a */
733 mf_jcc_jl, /* base opcode 0x7c */
734 mf_jcc_jle, /* base opcode 0x7e */
735 };
736
737/* Types of compare flag-modifying insntructions used by macro-fusion. */
738enum mf_cmp_kind
739 {
740 mf_cmp_test_and, /* test/cmp */
741 mf_cmp_alu_cmp, /* add/sub/cmp */
742 mf_cmp_incdec /* inc/dec */
743 };
744
e379e5f3
L
745/* The maximum padding size for fused jcc. CMP like instruction can
746 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
747 prefixes. */
748#define MAX_FUSED_JCC_PADDING_SIZE 20
749
750/* The maximum number of prefixes added for an instruction. */
751static unsigned int align_branch_prefix_size = 5;
752
b6f8c7c4
L
753/* Optimization:
754 1. Clear the REX_W bit with register operand if possible.
755 2. Above plus use 128bit vector instruction to clear the full vector
756 register.
757 */
758static int optimize = 0;
759
760/* Optimization:
761 1. Clear the REX_W bit with register operand if possible.
762 2. Above plus use 128bit vector instruction to clear the full vector
763 register.
764 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
765 "testb $imm7,%r8".
766 */
767static int optimize_for_space = 0;
768
2ca3ace5
L
769/* Register prefix used for error message. */
770static const char *register_prefix = "%";
771
47926f60
KH
772/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
773 leave, push, and pop instructions so that gcc has the same stack
774 frame as in 32 bit mode. */
775static char stackop_size = '\0';
eecb386c 776
12b55ccc
L
777/* Non-zero to optimize code alignment. */
778int optimize_align_code = 1;
779
47926f60
KH
780/* Non-zero to quieten some warnings. */
781static int quiet_warnings = 0;
a38cf1db 782
47926f60
KH
783/* CPU name. */
784static const char *cpu_arch_name = NULL;
6305a203 785static char *cpu_sub_arch_name = NULL;
a38cf1db 786
47926f60 787/* CPU feature flags. */
40fb9820
L
788static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
789
ccc9c027
L
790/* If we have selected a cpu we are generating instructions for. */
791static int cpu_arch_tune_set = 0;
792
9103f4f4 793/* Cpu we are generating instructions for. */
fbf3f584 794enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
795
796/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 797static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 798
ccc9c027 799/* CPU instruction set architecture used. */
fbf3f584 800enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 801
9103f4f4 802/* CPU feature flags of instruction set architecture used. */
fbf3f584 803i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 804
fddf5b5b
AM
805/* If set, conditional jumps are not automatically promoted to handle
806 larger than a byte offset. */
807static unsigned int no_cond_jump_promotion = 0;
808
c0f3af97
L
809/* Encode SSE instructions with VEX prefix. */
810static unsigned int sse2avx;
811
539f890d
L
812/* Encode scalar AVX instructions with specific vector length. */
813static enum
814 {
815 vex128 = 0,
816 vex256
817 } avxscalar;
818
03751133
L
819/* Encode VEX WIG instructions with specific vex.w. */
820static enum
821 {
822 vexw0 = 0,
823 vexw1
824 } vexwig;
825
43234a1e
L
826/* Encode scalar EVEX LIG instructions with specific vector length. */
827static enum
828 {
829 evexl128 = 0,
830 evexl256,
831 evexl512
832 } evexlig;
833
834/* Encode EVEX WIG instructions with specific evex.w. */
835static enum
836 {
837 evexw0 = 0,
838 evexw1
839 } evexwig;
840
d3d3c6db
IT
841/* Value to encode in EVEX RC bits, for SAE-only instructions. */
842static enum rc_type evexrcig = rne;
843
29b0f896 844/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 845static symbolS *GOT_symbol;
29b0f896 846
a4447b93
RH
847/* The dwarf2 return column, adjusted for 32 or 64 bit. */
848unsigned int x86_dwarf2_return_column;
849
850/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
851int x86_cie_data_alignment;
852
252b5132 853/* Interface to relax_segment.
fddf5b5b
AM
854 There are 3 major relax states for 386 jump insns because the
855 different types of jumps add different sizes to frags when we're
e379e5f3
L
856 figuring out what sort of jump to choose to reach a given label.
857
858 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
859 branches which are handled by md_estimate_size_before_relax() and
860 i386_generic_table_relax_frag(). */
252b5132 861
47926f60 862/* Types. */
93c2a809
AM
863#define UNCOND_JUMP 0
864#define COND_JUMP 1
865#define COND_JUMP86 2
e379e5f3
L
866#define BRANCH_PADDING 3
867#define BRANCH_PREFIX 4
868#define FUSED_JCC_PADDING 5
fddf5b5b 869
47926f60 870/* Sizes. */
252b5132
RH
871#define CODE16 1
872#define SMALL 0
29b0f896 873#define SMALL16 (SMALL | CODE16)
252b5132 874#define BIG 2
29b0f896 875#define BIG16 (BIG | CODE16)
252b5132
RH
876
877#ifndef INLINE
878#ifdef __GNUC__
879#define INLINE __inline__
880#else
881#define INLINE
882#endif
883#endif
884
fddf5b5b
AM
885#define ENCODE_RELAX_STATE(type, size) \
886 ((relax_substateT) (((type) << 2) | (size)))
887#define TYPE_FROM_RELAX_STATE(s) \
888 ((s) >> 2)
889#define DISP_SIZE_FROM_RELAX_STATE(s) \
890 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
891
892/* This table is used by relax_frag to promote short jumps to long
893 ones where necessary. SMALL (short) jumps may be promoted to BIG
894 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
895 don't allow a short jump in a 32 bit code segment to be promoted to
896 a 16 bit offset jump because it's slower (requires data size
897 prefix), and doesn't work, unless the destination is in the bottom
898 64k of the code segment (The top 16 bits of eip are zeroed). */
899
900const relax_typeS md_relax_table[] =
901{
24eab124
AM
902 /* The fields are:
903 1) most positive reach of this state,
904 2) most negative reach of this state,
93c2a809 905 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 906 4) which index into the table to try if we can't fit into this one. */
252b5132 907
fddf5b5b 908 /* UNCOND_JUMP states. */
93c2a809
AM
909 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
910 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
911 /* dword jmp adds 4 bytes to frag:
912 0 extra opcode bytes, 4 displacement bytes. */
252b5132 913 {0, 0, 4, 0},
93c2a809
AM
914 /* word jmp adds 2 byte2 to frag:
915 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
916 {0, 0, 2, 0},
917
93c2a809
AM
918 /* COND_JUMP states. */
919 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
920 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
921 /* dword conditionals adds 5 bytes to frag:
922 1 extra opcode byte, 4 displacement bytes. */
923 {0, 0, 5, 0},
fddf5b5b 924 /* word conditionals add 3 bytes to frag:
93c2a809
AM
925 1 extra opcode byte, 2 displacement bytes. */
926 {0, 0, 3, 0},
927
928 /* COND_JUMP86 states. */
929 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
930 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
931 /* dword conditionals adds 5 bytes to frag:
932 1 extra opcode byte, 4 displacement bytes. */
933 {0, 0, 5, 0},
934 /* word conditionals add 4 bytes to frag:
935 1 displacement byte and a 3 byte long branch insn. */
936 {0, 0, 4, 0}
252b5132
RH
937};
938
9103f4f4
L
939static const arch_entry cpu_arch[] =
940{
89507696
JB
941 /* Do not replace the first two entries - i386_target_format()
942 relies on them being there in this order. */
8a2c8fef 943 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 944 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 946 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_NONE_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_I186_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_I286_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 954 CPU_I386_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 956 CPU_I486_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 958 CPU_I586_FLAGS, 0 },
8a2c8fef 959 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 960 CPU_I686_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 962 CPU_I586_FLAGS, 0 },
8a2c8fef 963 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 964 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 965 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 966 CPU_P2_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 968 CPU_P3_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 970 CPU_P4_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 972 CPU_CORE_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 974 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 976 CPU_CORE_FLAGS, 1 },
8a2c8fef 977 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 978 CPU_CORE_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 980 CPU_CORE2_FLAGS, 1 },
8a2c8fef 981 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 982 CPU_CORE2_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 984 CPU_COREI7_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 986 CPU_L1OM_FLAGS, 0 },
7a9068fe 987 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 988 CPU_K1OM_FLAGS, 0 },
81486035 989 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 990 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 992 CPU_K6_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 994 CPU_K6_2_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 996 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 997 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 998 CPU_K8_FLAGS, 1 },
8a2c8fef 999 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 1000 CPU_K8_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 1002 CPU_K8_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 1004 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 1005 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 1006 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 1007 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 1008 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 1009 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 1010 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 1011 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 1012 CPU_BDVER4_FLAGS, 0 },
029f3522 1013 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 1014 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
1015 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1016 CPU_ZNVER2_FLAGS, 0 },
646cc3e0
GG
1017 { STRING_COMMA_LEN ("znver3"), PROCESSOR_ZNVER,
1018 CPU_ZNVER3_FLAGS, 0 },
7b458c12 1019 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 1020 CPU_BTVER1_FLAGS, 0 },
7b458c12 1021 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 1022 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 1023 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_8087_FLAGS, 0 },
8a2c8fef 1025 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_287_FLAGS, 0 },
8a2c8fef 1027 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_387_FLAGS, 0 },
1848e567
L
1029 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1030 CPU_687_FLAGS, 0 },
d871f3f4
L
1031 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1032 CPU_CMOV_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1034 CPU_FXSR_FLAGS, 0 },
8a2c8fef 1035 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_MMX_FLAGS, 0 },
8a2c8fef 1037 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_SSE_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_SSE2_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_SSE3_FLAGS, 0 },
af5c13b0
L
1043 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1044 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1045 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 1047 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 1049 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1053 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_AVX_FLAGS, 0 },
6c30d220 1055 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_AVX2_FLAGS, 0 },
43234a1e 1057 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_AVX512F_FLAGS, 0 },
43234a1e 1059 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1061 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1063 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1065 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1067 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1069 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_VMX_FLAGS, 0 },
8729a6f6 1073 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_SMX_FLAGS, 0 },
8a2c8fef 1077 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1079 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1080 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1081 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1083 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1085 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_AES_FLAGS, 0 },
8a2c8fef 1087 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1089 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1091 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1093 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1095 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_F16C_FLAGS, 0 },
6c30d220 1097 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1099 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_FMA_FLAGS, 0 },
8a2c8fef 1101 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1103 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_XOP_FLAGS, 0 },
8a2c8fef 1105 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_LWP_FLAGS, 0 },
8a2c8fef 1107 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_MOVBE_FLAGS, 0 },
60aa667e 1109 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_CX16_FLAGS, 0 },
8a2c8fef 1111 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1112 CPU_EPT_FLAGS, 0 },
6c30d220 1113 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1114 CPU_LZCNT_FLAGS, 0 },
272a84b1
L
1115 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1116 CPU_POPCNT_FLAGS, 0 },
42164a71 1117 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1118 CPU_HLE_FLAGS, 0 },
42164a71 1119 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1120 CPU_RTM_FLAGS, 0 },
6c30d220 1121 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1122 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1123 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_CLFLUSH_FLAGS, 0 },
22109423 1125 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_NOP_FLAGS, 0 },
8a2c8fef 1127 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1129 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1131 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1132 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1133 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1134 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1135 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1136 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1137 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1138 CPU_SVME_FLAGS, 1 },
8a2c8fef 1139 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1140 CPU_SVME_FLAGS, 0 },
8a2c8fef 1141 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1142 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1143 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1144 CPU_ABM_FLAGS, 0 },
87973e9f 1145 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1146 CPU_BMI_FLAGS, 0 },
2a2a0f38 1147 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1148 CPU_TBM_FLAGS, 0 },
e2e1fcde 1149 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1150 CPU_ADX_FLAGS, 0 },
e2e1fcde 1151 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1152 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1153 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1154 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1155 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1156 CPU_SMAP_FLAGS, 0 },
7e8b059b 1157 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1158 CPU_MPX_FLAGS, 0 },
a0046408 1159 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1160 CPU_SHA_FLAGS, 0 },
963f3586 1161 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1162 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1163 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1164 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1165 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1166 CPU_SE1_FLAGS, 0 },
c5e7287a 1167 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1168 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1169 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1170 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1171 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1172 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1173 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1174 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1175 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1176 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1177 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1178 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1179 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1180 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1181 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1183 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_BITALG_FLAGS, 0 },
58bf9b6a
L
1185 { STRING_COMMA_LEN (".avx_vnni"), PROCESSOR_UNKNOWN,
1186 CPU_AVX_VNNI_FLAGS, 0 },
029f3522 1187 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1188 CPU_CLZERO_FLAGS, 0 },
9916071f 1189 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1190 CPU_MWAITX_FLAGS, 0 },
8eab4136 1191 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1192 CPU_OSPKE_FLAGS, 0 },
8bc52696 1193 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1194 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1195 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1196 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1197 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1198 CPU_IBT_FLAGS, 0 },
1199 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1200 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1201 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1202 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1203 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1204 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1205 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1206 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1207 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1208 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1209 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1210 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1211 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1212 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1213 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1214 CPU_CLDEMOTE_FLAGS, 0 },
260cd341
LC
1215 { STRING_COMMA_LEN (".amx_int8"), PROCESSOR_UNKNOWN,
1216 CPU_AMX_INT8_FLAGS, 0 },
1217 { STRING_COMMA_LEN (".amx_bf16"), PROCESSOR_UNKNOWN,
1218 CPU_AMX_BF16_FLAGS, 0 },
1219 { STRING_COMMA_LEN (".amx_tile"), PROCESSOR_UNKNOWN,
1220 CPU_AMX_TILE_FLAGS, 0 },
c0a30a9f
L
1221 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1222 CPU_MOVDIRI_FLAGS, 0 },
1223 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1224 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1225 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1226 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1227 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1228 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
81d54bb7
CL
1229 { STRING_COMMA_LEN (".tdx"), PROCESSOR_UNKNOWN,
1230 CPU_TDX_FLAGS, 0 },
dd455cf5
L
1231 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1232 CPU_ENQCMD_FLAGS, 0 },
4b27d27c
L
1233 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1234 CPU_SERIALIZE_FLAGS, 0 },
142861df
JB
1235 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1236 CPU_RDPRU_FLAGS, 0 },
1237 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1238 CPU_MCOMMIT_FLAGS, 0 },
a847e322
JB
1239 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1240 CPU_SEV_ES_FLAGS, 0 },
bb651e8b
CL
1241 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1242 CPU_TSXLDTRK_FLAGS, 0 },
c4694f17
TG
1243 { STRING_COMMA_LEN (".kl"), PROCESSOR_UNKNOWN,
1244 CPU_KL_FLAGS, 0 },
1245 { STRING_COMMA_LEN (".widekl"), PROCESSOR_UNKNOWN,
1246 CPU_WIDEKL_FLAGS, 0 },
f64c42a9
LC
1247 { STRING_COMMA_LEN (".uintr"), PROCESSOR_UNKNOWN,
1248 CPU_UINTR_FLAGS, 0 },
c1fa250a
LC
1249 { STRING_COMMA_LEN (".hreset"), PROCESSOR_UNKNOWN,
1250 CPU_HRESET_FLAGS, 0 },
293f5f65
L
1251};
1252
1253static const noarch_entry cpu_noarch[] =
1254{
1255 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1256 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1257 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1258 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1259 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1260 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1261 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1262 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1263 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1264 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
af5c13b0 1265 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1848e567
L
1266 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1267 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1268 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
af5c13b0 1269 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1270 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1271 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1272 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1273 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1274 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1275 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1276 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1277 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1278 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1279 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1280 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1281 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1282 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1283 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1284 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1285 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1286 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
58bf9b6a 1287 { STRING_COMMA_LEN ("noavx_vnni"), CPU_ANY_AVX_VNNI_FLAGS },
d777820b
IT
1288 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1289 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
260cd341
LC
1290 { STRING_COMMA_LEN ("noamx_int8"), CPU_ANY_AMX_INT8_FLAGS },
1291 { STRING_COMMA_LEN ("noamx_bf16"), CPU_ANY_AMX_BF16_FLAGS },
1292 { STRING_COMMA_LEN ("noamx_tile"), CPU_ANY_AMX_TILE_FLAGS },
c0a30a9f
L
1293 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1294 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1295 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
708a2fff
CL
1296 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1297 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
81d54bb7 1298 { STRING_COMMA_LEN ("notdx"), CPU_ANY_TDX_FLAGS },
dd455cf5 1299 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
4b27d27c 1300 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
bb651e8b 1301 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
c4694f17
TG
1302 { STRING_COMMA_LEN ("nokl"), CPU_ANY_KL_FLAGS },
1303 { STRING_COMMA_LEN ("nowidekl"), CPU_ANY_WIDEKL_FLAGS },
f64c42a9 1304 { STRING_COMMA_LEN ("nouintr"), CPU_ANY_UINTR_FLAGS },
c1fa250a 1305 { STRING_COMMA_LEN ("nohreset"), CPU_ANY_HRESET_FLAGS },
e413e4e9
AM
1306};
1307
704209c0 1308#ifdef I386COFF
a6c24e68
NC
1309/* Like s_lcomm_internal in gas/read.c but the alignment string
1310 is allowed to be optional. */
1311
1312static symbolS *
1313pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1314{
1315 addressT align = 0;
1316
1317 SKIP_WHITESPACE ();
1318
7ab9ffdd 1319 if (needs_align
a6c24e68
NC
1320 && *input_line_pointer == ',')
1321 {
1322 align = parse_align (needs_align - 1);
7ab9ffdd 1323
a6c24e68
NC
1324 if (align == (addressT) -1)
1325 return NULL;
1326 }
1327 else
1328 {
1329 if (size >= 8)
1330 align = 3;
1331 else if (size >= 4)
1332 align = 2;
1333 else if (size >= 2)
1334 align = 1;
1335 else
1336 align = 0;
1337 }
1338
1339 bss_alloc (symbolP, size, align);
1340 return symbolP;
1341}
1342
704209c0 1343static void
a6c24e68
NC
1344pe_lcomm (int needs_align)
1345{
1346 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1347}
704209c0 1348#endif
a6c24e68 1349
29b0f896
AM
1350const pseudo_typeS md_pseudo_table[] =
1351{
1352#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1353 {"align", s_align_bytes, 0},
1354#else
1355 {"align", s_align_ptwo, 0},
1356#endif
1357 {"arch", set_cpu_arch, 0},
1358#ifndef I386COFF
1359 {"bss", s_bss, 0},
a6c24e68
NC
1360#else
1361 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1362#endif
1363 {"ffloat", float_cons, 'f'},
1364 {"dfloat", float_cons, 'd'},
1365 {"tfloat", float_cons, 'x'},
1366 {"value", cons, 2},
d182319b 1367 {"slong", signed_cons, 4},
29b0f896
AM
1368 {"noopt", s_ignore, 0},
1369 {"optim", s_ignore, 0},
1370 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1371 {"code16", set_code_flag, CODE_16BIT},
1372 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1373#ifdef BFD64
29b0f896 1374 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1375#endif
29b0f896
AM
1376 {"intel_syntax", set_intel_syntax, 1},
1377 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1378 {"intel_mnemonic", set_intel_mnemonic, 1},
1379 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1380 {"allow_index_reg", set_allow_index_reg, 1},
1381 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1382 {"sse_check", set_check, 0},
1383 {"operand_check", set_check, 1},
3b22753a
L
1384#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1385 {"largecomm", handle_large_common, 0},
07a53e5c 1386#else
68d20676 1387 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1388 {"loc", dwarf2_directive_loc, 0},
1389 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1390#endif
6482c264
NC
1391#ifdef TE_PE
1392 {"secrel32", pe_directive_secrel, 0},
1393#endif
29b0f896
AM
1394 {0, 0, 0}
1395};
1396
1397/* For interface with expression (). */
1398extern char *input_line_pointer;
1399
1400/* Hash table for instruction mnemonic lookup. */
629310ab 1401static htab_t op_hash;
29b0f896
AM
1402
1403/* Hash table for register lookup. */
629310ab 1404static htab_t reg_hash;
29b0f896 1405\f
ce8a8b2f
AM
1406 /* Various efficient no-op patterns for aligning code labels.
1407 Note: Don't try to assemble the instructions in the comments.
1408 0L and 0w are not legal. */
62a02d25
L
1409static const unsigned char f32_1[] =
1410 {0x90}; /* nop */
1411static const unsigned char f32_2[] =
1412 {0x66,0x90}; /* xchg %ax,%ax */
1413static const unsigned char f32_3[] =
1414 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1415static const unsigned char f32_4[] =
1416 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1417static const unsigned char f32_6[] =
1418 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1419static const unsigned char f32_7[] =
1420 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1421static const unsigned char f16_3[] =
3ae729d5 1422 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1423static const unsigned char f16_4[] =
3ae729d5
L
1424 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1425static const unsigned char jump_disp8[] =
1426 {0xeb}; /* jmp disp8 */
1427static const unsigned char jump32_disp32[] =
1428 {0xe9}; /* jmp disp32 */
1429static const unsigned char jump16_disp32[] =
1430 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1431/* 32-bit NOPs patterns. */
1432static const unsigned char *const f32_patt[] = {
3ae729d5 1433 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1434};
1435/* 16-bit NOPs patterns. */
1436static const unsigned char *const f16_patt[] = {
3ae729d5 1437 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1438};
1439/* nopl (%[re]ax) */
1440static const unsigned char alt_3[] =
1441 {0x0f,0x1f,0x00};
1442/* nopl 0(%[re]ax) */
1443static const unsigned char alt_4[] =
1444 {0x0f,0x1f,0x40,0x00};
1445/* nopl 0(%[re]ax,%[re]ax,1) */
1446static const unsigned char alt_5[] =
1447 {0x0f,0x1f,0x44,0x00,0x00};
1448/* nopw 0(%[re]ax,%[re]ax,1) */
1449static const unsigned char alt_6[] =
1450 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1451/* nopl 0L(%[re]ax) */
1452static const unsigned char alt_7[] =
1453 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1454/* nopl 0L(%[re]ax,%[re]ax,1) */
1455static const unsigned char alt_8[] =
1456 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1457/* nopw 0L(%[re]ax,%[re]ax,1) */
1458static const unsigned char alt_9[] =
1459 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1460/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1461static const unsigned char alt_10[] =
1462 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1463/* data16 nopw %cs:0L(%eax,%eax,1) */
1464static const unsigned char alt_11[] =
1465 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1466/* 32-bit and 64-bit NOPs patterns. */
1467static const unsigned char *const alt_patt[] = {
1468 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1469 alt_9, alt_10, alt_11
62a02d25
L
1470};
1471
1472/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1473 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1474
1475static void
1476i386_output_nops (char *where, const unsigned char *const *patt,
1477 int count, int max_single_nop_size)
1478
1479{
3ae729d5
L
1480 /* Place the longer NOP first. */
1481 int last;
1482 int offset;
3076e594
NC
1483 const unsigned char *nops;
1484
1485 if (max_single_nop_size < 1)
1486 {
1487 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1488 max_single_nop_size);
1489 return;
1490 }
1491
1492 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1493
1494 /* Use the smaller one if the requsted one isn't available. */
1495 if (nops == NULL)
62a02d25 1496 {
3ae729d5
L
1497 max_single_nop_size--;
1498 nops = patt[max_single_nop_size - 1];
62a02d25
L
1499 }
1500
3ae729d5
L
1501 last = count % max_single_nop_size;
1502
1503 count -= last;
1504 for (offset = 0; offset < count; offset += max_single_nop_size)
1505 memcpy (where + offset, nops, max_single_nop_size);
1506
1507 if (last)
1508 {
1509 nops = patt[last - 1];
1510 if (nops == NULL)
1511 {
1512 /* Use the smaller one plus one-byte NOP if the needed one
1513 isn't available. */
1514 last--;
1515 nops = patt[last - 1];
1516 memcpy (where + offset, nops, last);
1517 where[offset + last] = *patt[0];
1518 }
1519 else
1520 memcpy (where + offset, nops, last);
1521 }
62a02d25
L
1522}
1523
3ae729d5
L
1524static INLINE int
1525fits_in_imm7 (offsetT num)
1526{
1527 return (num & 0x7f) == num;
1528}
1529
1530static INLINE int
1531fits_in_imm31 (offsetT num)
1532{
1533 return (num & 0x7fffffff) == num;
1534}
62a02d25
L
1535
1536/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1537 single NOP instruction LIMIT. */
1538
1539void
3ae729d5 1540i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1541{
3ae729d5 1542 const unsigned char *const *patt = NULL;
62a02d25 1543 int max_single_nop_size;
3ae729d5
L
1544 /* Maximum number of NOPs before switching to jump over NOPs. */
1545 int max_number_of_nops;
62a02d25 1546
3ae729d5 1547 switch (fragP->fr_type)
62a02d25 1548 {
3ae729d5
L
1549 case rs_fill_nop:
1550 case rs_align_code:
1551 break;
e379e5f3
L
1552 case rs_machine_dependent:
1553 /* Allow NOP padding for jumps and calls. */
1554 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1555 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1556 break;
1557 /* Fall through. */
3ae729d5 1558 default:
62a02d25
L
1559 return;
1560 }
1561
ccc9c027
L
1562 /* We need to decide which NOP sequence to use for 32bit and
1563 64bit. When -mtune= is used:
4eed87de 1564
76bc74dc
L
1565 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1566 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1567 2. For the rest, alt_patt will be used.
1568
1569 When -mtune= isn't used, alt_patt will be used if
22109423 1570 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1571 be used.
ccc9c027
L
1572
1573 When -march= or .arch is used, we can't use anything beyond
1574 cpu_arch_isa_flags. */
1575
1576 if (flag_code == CODE_16BIT)
1577 {
3ae729d5
L
1578 patt = f16_patt;
1579 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1580 /* Limit number of NOPs to 2 in 16-bit mode. */
1581 max_number_of_nops = 2;
252b5132 1582 }
33fef721 1583 else
ccc9c027 1584 {
fbf3f584 1585 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1586 {
1587 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1588 switch (cpu_arch_tune)
1589 {
1590 case PROCESSOR_UNKNOWN:
1591 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1592 optimize with nops. */
1593 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1594 patt = alt_patt;
ccc9c027
L
1595 else
1596 patt = f32_patt;
1597 break;
ccc9c027
L
1598 case PROCESSOR_PENTIUM4:
1599 case PROCESSOR_NOCONA:
ef05d495 1600 case PROCESSOR_CORE:
76bc74dc 1601 case PROCESSOR_CORE2:
bd5295b2 1602 case PROCESSOR_COREI7:
3632d14b 1603 case PROCESSOR_L1OM:
7a9068fe 1604 case PROCESSOR_K1OM:
76bc74dc 1605 case PROCESSOR_GENERIC64:
ccc9c027
L
1606 case PROCESSOR_K6:
1607 case PROCESSOR_ATHLON:
1608 case PROCESSOR_K8:
4eed87de 1609 case PROCESSOR_AMDFAM10:
8aedb9fe 1610 case PROCESSOR_BD:
029f3522 1611 case PROCESSOR_ZNVER:
7b458c12 1612 case PROCESSOR_BT:
80b8656c 1613 patt = alt_patt;
ccc9c027 1614 break;
76bc74dc 1615 case PROCESSOR_I386:
ccc9c027
L
1616 case PROCESSOR_I486:
1617 case PROCESSOR_PENTIUM:
2dde1948 1618 case PROCESSOR_PENTIUMPRO:
81486035 1619 case PROCESSOR_IAMCU:
ccc9c027
L
1620 case PROCESSOR_GENERIC32:
1621 patt = f32_patt;
1622 break;
4eed87de 1623 }
ccc9c027
L
1624 }
1625 else
1626 {
fbf3f584 1627 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1628 {
1629 case PROCESSOR_UNKNOWN:
e6a14101 1630 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1631 PROCESSOR_UNKNOWN. */
1632 abort ();
1633 break;
1634
76bc74dc 1635 case PROCESSOR_I386:
ccc9c027
L
1636 case PROCESSOR_I486:
1637 case PROCESSOR_PENTIUM:
81486035 1638 case PROCESSOR_IAMCU:
ccc9c027
L
1639 case PROCESSOR_K6:
1640 case PROCESSOR_ATHLON:
1641 case PROCESSOR_K8:
4eed87de 1642 case PROCESSOR_AMDFAM10:
8aedb9fe 1643 case PROCESSOR_BD:
029f3522 1644 case PROCESSOR_ZNVER:
7b458c12 1645 case PROCESSOR_BT:
ccc9c027
L
1646 case PROCESSOR_GENERIC32:
1647 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1648 with nops. */
1649 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1650 patt = alt_patt;
ccc9c027
L
1651 else
1652 patt = f32_patt;
1653 break;
76bc74dc
L
1654 case PROCESSOR_PENTIUMPRO:
1655 case PROCESSOR_PENTIUM4:
1656 case PROCESSOR_NOCONA:
1657 case PROCESSOR_CORE:
ef05d495 1658 case PROCESSOR_CORE2:
bd5295b2 1659 case PROCESSOR_COREI7:
3632d14b 1660 case PROCESSOR_L1OM:
7a9068fe 1661 case PROCESSOR_K1OM:
22109423 1662 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1663 patt = alt_patt;
ccc9c027
L
1664 else
1665 patt = f32_patt;
1666 break;
1667 case PROCESSOR_GENERIC64:
80b8656c 1668 patt = alt_patt;
ccc9c027 1669 break;
4eed87de 1670 }
ccc9c027
L
1671 }
1672
76bc74dc
L
1673 if (patt == f32_patt)
1674 {
3ae729d5
L
1675 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1676 /* Limit number of NOPs to 2 for older processors. */
1677 max_number_of_nops = 2;
76bc74dc
L
1678 }
1679 else
1680 {
3ae729d5
L
1681 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1682 /* Limit number of NOPs to 7 for newer processors. */
1683 max_number_of_nops = 7;
1684 }
1685 }
1686
1687 if (limit == 0)
1688 limit = max_single_nop_size;
1689
1690 if (fragP->fr_type == rs_fill_nop)
1691 {
1692 /* Output NOPs for .nop directive. */
1693 if (limit > max_single_nop_size)
1694 {
1695 as_bad_where (fragP->fr_file, fragP->fr_line,
1696 _("invalid single nop size: %d "
1697 "(expect within [0, %d])"),
1698 limit, max_single_nop_size);
1699 return;
1700 }
1701 }
e379e5f3 1702 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1703 fragP->fr_var = count;
1704
1705 if ((count / max_single_nop_size) > max_number_of_nops)
1706 {
1707 /* Generate jump over NOPs. */
1708 offsetT disp = count - 2;
1709 if (fits_in_imm7 (disp))
1710 {
1711 /* Use "jmp disp8" if possible. */
1712 count = disp;
1713 where[0] = jump_disp8[0];
1714 where[1] = count;
1715 where += 2;
1716 }
1717 else
1718 {
1719 unsigned int size_of_jump;
1720
1721 if (flag_code == CODE_16BIT)
1722 {
1723 where[0] = jump16_disp32[0];
1724 where[1] = jump16_disp32[1];
1725 size_of_jump = 2;
1726 }
1727 else
1728 {
1729 where[0] = jump32_disp32[0];
1730 size_of_jump = 1;
1731 }
1732
1733 count -= size_of_jump + 4;
1734 if (!fits_in_imm31 (count))
1735 {
1736 as_bad_where (fragP->fr_file, fragP->fr_line,
1737 _("jump over nop padding out of range"));
1738 return;
1739 }
1740
1741 md_number_to_chars (where + size_of_jump, count, 4);
1742 where += size_of_jump + 4;
76bc74dc 1743 }
ccc9c027 1744 }
3ae729d5
L
1745
1746 /* Generate multiple NOPs. */
1747 i386_output_nops (where, patt, count, limit);
252b5132
RH
1748}
1749
c6fb90c8 1750static INLINE int
0dfbf9d7 1751operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1752{
0dfbf9d7 1753 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1754 {
1755 case 3:
0dfbf9d7 1756 if (x->array[2])
c6fb90c8 1757 return 0;
1a0670f3 1758 /* Fall through. */
c6fb90c8 1759 case 2:
0dfbf9d7 1760 if (x->array[1])
c6fb90c8 1761 return 0;
1a0670f3 1762 /* Fall through. */
c6fb90c8 1763 case 1:
0dfbf9d7 1764 return !x->array[0];
c6fb90c8
L
1765 default:
1766 abort ();
1767 }
40fb9820
L
1768}
1769
c6fb90c8 1770static INLINE void
0dfbf9d7 1771operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1772{
0dfbf9d7 1773 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1774 {
1775 case 3:
0dfbf9d7 1776 x->array[2] = v;
1a0670f3 1777 /* Fall through. */
c6fb90c8 1778 case 2:
0dfbf9d7 1779 x->array[1] = v;
1a0670f3 1780 /* Fall through. */
c6fb90c8 1781 case 1:
0dfbf9d7 1782 x->array[0] = v;
1a0670f3 1783 /* Fall through. */
c6fb90c8
L
1784 break;
1785 default:
1786 abort ();
1787 }
bab6aec1
JB
1788
1789 x->bitfield.class = ClassNone;
75e5731b 1790 x->bitfield.instance = InstanceNone;
c6fb90c8 1791}
40fb9820 1792
c6fb90c8 1793static INLINE int
0dfbf9d7
L
1794operand_type_equal (const union i386_operand_type *x,
1795 const union i386_operand_type *y)
c6fb90c8 1796{
0dfbf9d7 1797 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1798 {
1799 case 3:
0dfbf9d7 1800 if (x->array[2] != y->array[2])
c6fb90c8 1801 return 0;
1a0670f3 1802 /* Fall through. */
c6fb90c8 1803 case 2:
0dfbf9d7 1804 if (x->array[1] != y->array[1])
c6fb90c8 1805 return 0;
1a0670f3 1806 /* Fall through. */
c6fb90c8 1807 case 1:
0dfbf9d7 1808 return x->array[0] == y->array[0];
c6fb90c8
L
1809 break;
1810 default:
1811 abort ();
1812 }
1813}
40fb9820 1814
0dfbf9d7
L
1815static INLINE int
1816cpu_flags_all_zero (const union i386_cpu_flags *x)
1817{
1818 switch (ARRAY_SIZE(x->array))
1819 {
53467f57
IT
1820 case 4:
1821 if (x->array[3])
1822 return 0;
1823 /* Fall through. */
0dfbf9d7
L
1824 case 3:
1825 if (x->array[2])
1826 return 0;
1a0670f3 1827 /* Fall through. */
0dfbf9d7
L
1828 case 2:
1829 if (x->array[1])
1830 return 0;
1a0670f3 1831 /* Fall through. */
0dfbf9d7
L
1832 case 1:
1833 return !x->array[0];
1834 default:
1835 abort ();
1836 }
1837}
1838
0dfbf9d7
L
1839static INLINE int
1840cpu_flags_equal (const union i386_cpu_flags *x,
1841 const union i386_cpu_flags *y)
1842{
1843 switch (ARRAY_SIZE(x->array))
1844 {
53467f57
IT
1845 case 4:
1846 if (x->array[3] != y->array[3])
1847 return 0;
1848 /* Fall through. */
0dfbf9d7
L
1849 case 3:
1850 if (x->array[2] != y->array[2])
1851 return 0;
1a0670f3 1852 /* Fall through. */
0dfbf9d7
L
1853 case 2:
1854 if (x->array[1] != y->array[1])
1855 return 0;
1a0670f3 1856 /* Fall through. */
0dfbf9d7
L
1857 case 1:
1858 return x->array[0] == y->array[0];
1859 break;
1860 default:
1861 abort ();
1862 }
1863}
c6fb90c8
L
1864
1865static INLINE int
1866cpu_flags_check_cpu64 (i386_cpu_flags f)
1867{
1868 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1869 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1870}
1871
c6fb90c8
L
1872static INLINE i386_cpu_flags
1873cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1874{
c6fb90c8
L
1875 switch (ARRAY_SIZE (x.array))
1876 {
53467f57
IT
1877 case 4:
1878 x.array [3] &= y.array [3];
1879 /* Fall through. */
c6fb90c8
L
1880 case 3:
1881 x.array [2] &= y.array [2];
1a0670f3 1882 /* Fall through. */
c6fb90c8
L
1883 case 2:
1884 x.array [1] &= y.array [1];
1a0670f3 1885 /* Fall through. */
c6fb90c8
L
1886 case 1:
1887 x.array [0] &= y.array [0];
1888 break;
1889 default:
1890 abort ();
1891 }
1892 return x;
1893}
40fb9820 1894
c6fb90c8
L
1895static INLINE i386_cpu_flags
1896cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1897{
c6fb90c8 1898 switch (ARRAY_SIZE (x.array))
40fb9820 1899 {
53467f57
IT
1900 case 4:
1901 x.array [3] |= y.array [3];
1902 /* Fall through. */
c6fb90c8
L
1903 case 3:
1904 x.array [2] |= y.array [2];
1a0670f3 1905 /* Fall through. */
c6fb90c8
L
1906 case 2:
1907 x.array [1] |= y.array [1];
1a0670f3 1908 /* Fall through. */
c6fb90c8
L
1909 case 1:
1910 x.array [0] |= y.array [0];
40fb9820
L
1911 break;
1912 default:
1913 abort ();
1914 }
40fb9820
L
1915 return x;
1916}
1917
309d3373
JB
1918static INLINE i386_cpu_flags
1919cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1920{
1921 switch (ARRAY_SIZE (x.array))
1922 {
53467f57
IT
1923 case 4:
1924 x.array [3] &= ~y.array [3];
1925 /* Fall through. */
309d3373
JB
1926 case 3:
1927 x.array [2] &= ~y.array [2];
1a0670f3 1928 /* Fall through. */
309d3373
JB
1929 case 2:
1930 x.array [1] &= ~y.array [1];
1a0670f3 1931 /* Fall through. */
309d3373
JB
1932 case 1:
1933 x.array [0] &= ~y.array [0];
1934 break;
1935 default:
1936 abort ();
1937 }
1938 return x;
1939}
1940
6c0946d0
JB
1941static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1942
c0f3af97
L
1943#define CPU_FLAGS_ARCH_MATCH 0x1
1944#define CPU_FLAGS_64BIT_MATCH 0x2
1945
c0f3af97 1946#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1947 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1948
1949/* Return CPU flags match bits. */
3629bb00 1950
40fb9820 1951static int
d3ce72d0 1952cpu_flags_match (const insn_template *t)
40fb9820 1953{
c0f3af97
L
1954 i386_cpu_flags x = t->cpu_flags;
1955 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1956
1957 x.bitfield.cpu64 = 0;
1958 x.bitfield.cpuno64 = 0;
1959
0dfbf9d7 1960 if (cpu_flags_all_zero (&x))
c0f3af97
L
1961 {
1962 /* This instruction is available on all archs. */
db12e14e 1963 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1964 }
3629bb00
L
1965 else
1966 {
c0f3af97 1967 /* This instruction is available only on some archs. */
3629bb00
L
1968 i386_cpu_flags cpu = cpu_arch_flags;
1969
ab592e75
JB
1970 /* AVX512VL is no standalone feature - match it and then strip it. */
1971 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1972 return match;
1973 x.bitfield.cpuavx512vl = 0;
1974
3629bb00 1975 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1976 if (!cpu_flags_all_zero (&cpu))
1977 {
57392598 1978 if (x.bitfield.cpuavx)
a5ff0eb2 1979 {
929f69fa 1980 /* We need to check a few extra flags with AVX. */
b9d49817 1981 if (cpu.bitfield.cpuavx
40d231b4
JB
1982 && (!t->opcode_modifier.sse2avx
1983 || (sse2avx && !i.prefix[DATA_PREFIX]))
b9d49817 1984 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1985 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1986 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1987 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1988 }
929f69fa
JB
1989 else if (x.bitfield.cpuavx512f)
1990 {
1991 /* We need to check a few extra flags with AVX512F. */
1992 if (cpu.bitfield.cpuavx512f
1993 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1994 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1995 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1996 match |= CPU_FLAGS_ARCH_MATCH;
1997 }
a5ff0eb2 1998 else
db12e14e 1999 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 2000 }
3629bb00 2001 }
c0f3af97 2002 return match;
40fb9820
L
2003}
2004
c6fb90c8
L
2005static INLINE i386_operand_type
2006operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 2007{
bab6aec1
JB
2008 if (x.bitfield.class != y.bitfield.class)
2009 x.bitfield.class = ClassNone;
75e5731b
JB
2010 if (x.bitfield.instance != y.bitfield.instance)
2011 x.bitfield.instance = InstanceNone;
bab6aec1 2012
c6fb90c8
L
2013 switch (ARRAY_SIZE (x.array))
2014 {
2015 case 3:
2016 x.array [2] &= y.array [2];
1a0670f3 2017 /* Fall through. */
c6fb90c8
L
2018 case 2:
2019 x.array [1] &= y.array [1];
1a0670f3 2020 /* Fall through. */
c6fb90c8
L
2021 case 1:
2022 x.array [0] &= y.array [0];
2023 break;
2024 default:
2025 abort ();
2026 }
2027 return x;
40fb9820
L
2028}
2029
73053c1f
JB
2030static INLINE i386_operand_type
2031operand_type_and_not (i386_operand_type x, i386_operand_type y)
2032{
bab6aec1 2033 gas_assert (y.bitfield.class == ClassNone);
75e5731b 2034 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 2035
73053c1f
JB
2036 switch (ARRAY_SIZE (x.array))
2037 {
2038 case 3:
2039 x.array [2] &= ~y.array [2];
2040 /* Fall through. */
2041 case 2:
2042 x.array [1] &= ~y.array [1];
2043 /* Fall through. */
2044 case 1:
2045 x.array [0] &= ~y.array [0];
2046 break;
2047 default:
2048 abort ();
2049 }
2050 return x;
2051}
2052
c6fb90c8
L
2053static INLINE i386_operand_type
2054operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 2055{
bab6aec1
JB
2056 gas_assert (x.bitfield.class == ClassNone ||
2057 y.bitfield.class == ClassNone ||
2058 x.bitfield.class == y.bitfield.class);
75e5731b
JB
2059 gas_assert (x.bitfield.instance == InstanceNone ||
2060 y.bitfield.instance == InstanceNone ||
2061 x.bitfield.instance == y.bitfield.instance);
bab6aec1 2062
c6fb90c8 2063 switch (ARRAY_SIZE (x.array))
40fb9820 2064 {
c6fb90c8
L
2065 case 3:
2066 x.array [2] |= y.array [2];
1a0670f3 2067 /* Fall through. */
c6fb90c8
L
2068 case 2:
2069 x.array [1] |= y.array [1];
1a0670f3 2070 /* Fall through. */
c6fb90c8
L
2071 case 1:
2072 x.array [0] |= y.array [0];
40fb9820
L
2073 break;
2074 default:
2075 abort ();
2076 }
c6fb90c8
L
2077 return x;
2078}
40fb9820 2079
c6fb90c8
L
2080static INLINE i386_operand_type
2081operand_type_xor (i386_operand_type x, i386_operand_type y)
2082{
bab6aec1 2083 gas_assert (y.bitfield.class == ClassNone);
75e5731b 2084 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 2085
c6fb90c8
L
2086 switch (ARRAY_SIZE (x.array))
2087 {
2088 case 3:
2089 x.array [2] ^= y.array [2];
1a0670f3 2090 /* Fall through. */
c6fb90c8
L
2091 case 2:
2092 x.array [1] ^= y.array [1];
1a0670f3 2093 /* Fall through. */
c6fb90c8
L
2094 case 1:
2095 x.array [0] ^= y.array [0];
2096 break;
2097 default:
2098 abort ();
2099 }
40fb9820
L
2100 return x;
2101}
2102
40fb9820
L
2103static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2104static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2105static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2106static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2107static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2108static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2109static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2110static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2111static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2112static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2113static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2114static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2115static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2116static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2117static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2118static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2119static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2120
2121enum operand_type
2122{
2123 reg,
40fb9820
L
2124 imm,
2125 disp,
2126 anymem
2127};
2128
c6fb90c8 2129static INLINE int
40fb9820
L
2130operand_type_check (i386_operand_type t, enum operand_type c)
2131{
2132 switch (c)
2133 {
2134 case reg:
bab6aec1 2135 return t.bitfield.class == Reg;
40fb9820 2136
40fb9820
L
2137 case imm:
2138 return (t.bitfield.imm8
2139 || t.bitfield.imm8s
2140 || t.bitfield.imm16
2141 || t.bitfield.imm32
2142 || t.bitfield.imm32s
2143 || t.bitfield.imm64);
2144
2145 case disp:
2146 return (t.bitfield.disp8
2147 || t.bitfield.disp16
2148 || t.bitfield.disp32
2149 || t.bitfield.disp32s
2150 || t.bitfield.disp64);
2151
2152 case anymem:
2153 return (t.bitfield.disp8
2154 || t.bitfield.disp16
2155 || t.bitfield.disp32
2156 || t.bitfield.disp32s
2157 || t.bitfield.disp64
2158 || t.bitfield.baseindex);
2159
2160 default:
2161 abort ();
2162 }
2cfe26b6
AM
2163
2164 return 0;
40fb9820
L
2165}
2166
7a54636a
L
2167/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2168 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2169
2170static INLINE int
7a54636a
L
2171match_operand_size (const insn_template *t, unsigned int wanted,
2172 unsigned int given)
5c07affc 2173{
3ac21baa
JB
2174 return !((i.types[given].bitfield.byte
2175 && !t->operand_types[wanted].bitfield.byte)
2176 || (i.types[given].bitfield.word
2177 && !t->operand_types[wanted].bitfield.word)
2178 || (i.types[given].bitfield.dword
2179 && !t->operand_types[wanted].bitfield.dword)
2180 || (i.types[given].bitfield.qword
2181 && !t->operand_types[wanted].bitfield.qword)
2182 || (i.types[given].bitfield.tbyte
2183 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2184}
2185
dd40ce22
L
2186/* Return 1 if there is no conflict in SIMD register between operand
2187 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2188
2189static INLINE int
dd40ce22
L
2190match_simd_size (const insn_template *t, unsigned int wanted,
2191 unsigned int given)
1b54b8d7 2192{
3ac21baa
JB
2193 return !((i.types[given].bitfield.xmmword
2194 && !t->operand_types[wanted].bitfield.xmmword)
2195 || (i.types[given].bitfield.ymmword
2196 && !t->operand_types[wanted].bitfield.ymmword)
2197 || (i.types[given].bitfield.zmmword
260cd341
LC
2198 && !t->operand_types[wanted].bitfield.zmmword)
2199 || (i.types[given].bitfield.tmmword
2200 && !t->operand_types[wanted].bitfield.tmmword));
1b54b8d7
JB
2201}
2202
7a54636a
L
2203/* Return 1 if there is no conflict in any size between operand GIVEN
2204 and opeand WANTED for instruction template T. */
5c07affc
L
2205
2206static INLINE int
dd40ce22
L
2207match_mem_size (const insn_template *t, unsigned int wanted,
2208 unsigned int given)
5c07affc 2209{
7a54636a 2210 return (match_operand_size (t, wanted, given)
3ac21baa 2211 && !((i.types[given].bitfield.unspecified
af508cb9 2212 && !i.broadcast
3ac21baa
JB
2213 && !t->operand_types[wanted].bitfield.unspecified)
2214 || (i.types[given].bitfield.fword
2215 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2216 /* For scalar opcode templates to allow register and memory
2217 operands at the same time, some special casing is needed
d6793fa1
JB
2218 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2219 down-conversion vpmov*. */
3528c362 2220 || ((t->operand_types[wanted].bitfield.class == RegSIMD
bc49bfd8
JB
2221 && t->operand_types[wanted].bitfield.byte
2222 + t->operand_types[wanted].bitfield.word
2223 + t->operand_types[wanted].bitfield.dword
2224 + t->operand_types[wanted].bitfield.qword
2225 > !!t->opcode_modifier.broadcast)
3ac21baa
JB
2226 ? (i.types[given].bitfield.xmmword
2227 || i.types[given].bitfield.ymmword
2228 || i.types[given].bitfield.zmmword)
2229 : !match_simd_size(t, wanted, given))));
5c07affc
L
2230}
2231
3ac21baa
JB
2232/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2233 operands for instruction template T, and it has MATCH_REVERSE set if there
2234 is no size conflict on any operands for the template with operands reversed
2235 (and the template allows for reversing in the first place). */
5c07affc 2236
3ac21baa
JB
2237#define MATCH_STRAIGHT 1
2238#define MATCH_REVERSE 2
2239
2240static INLINE unsigned int
d3ce72d0 2241operand_size_match (const insn_template *t)
5c07affc 2242{
3ac21baa 2243 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2244
0cfa3eb3 2245 /* Don't check non-absolute jump instructions. */
5c07affc 2246 if (t->opcode_modifier.jump
0cfa3eb3 2247 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2248 return match;
2249
2250 /* Check memory and accumulator operand size. */
2251 for (j = 0; j < i.operands; j++)
2252 {
3528c362
JB
2253 if (i.types[j].bitfield.class != Reg
2254 && i.types[j].bitfield.class != RegSIMD
601e8564 2255 && t->opcode_modifier.anysize)
5c07affc
L
2256 continue;
2257
bab6aec1 2258 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2259 && !match_operand_size (t, j, j))
5c07affc
L
2260 {
2261 match = 0;
2262 break;
2263 }
2264
3528c362 2265 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2266 && !match_simd_size (t, j, j))
1b54b8d7
JB
2267 {
2268 match = 0;
2269 break;
2270 }
2271
75e5731b 2272 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2273 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2274 {
2275 match = 0;
2276 break;
2277 }
2278
c48dadc9 2279 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2280 {
2281 match = 0;
2282 break;
2283 }
2284 }
2285
3ac21baa 2286 if (!t->opcode_modifier.d)
891edac4 2287 {
dc1e8a47 2288 mismatch:
3ac21baa
JB
2289 if (!match)
2290 i.error = operand_size_mismatch;
2291 return match;
891edac4 2292 }
5c07affc
L
2293
2294 /* Check reverse. */
f5eb1d70 2295 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2296
f5eb1d70 2297 for (j = 0; j < i.operands; j++)
5c07affc 2298 {
f5eb1d70
JB
2299 unsigned int given = i.operands - j - 1;
2300
bab6aec1 2301 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2302 && !match_operand_size (t, j, given))
891edac4 2303 goto mismatch;
5c07affc 2304
3528c362 2305 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2306 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2307 goto mismatch;
2308
75e5731b 2309 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2310 && (!match_operand_size (t, j, given)
2311 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2312 goto mismatch;
2313
f5eb1d70 2314 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2315 goto mismatch;
5c07affc
L
2316 }
2317
3ac21baa 2318 return match | MATCH_REVERSE;
5c07affc
L
2319}
2320
c6fb90c8 2321static INLINE int
40fb9820
L
2322operand_type_match (i386_operand_type overlap,
2323 i386_operand_type given)
2324{
2325 i386_operand_type temp = overlap;
2326
7d5e4556 2327 temp.bitfield.unspecified = 0;
5c07affc
L
2328 temp.bitfield.byte = 0;
2329 temp.bitfield.word = 0;
2330 temp.bitfield.dword = 0;
2331 temp.bitfield.fword = 0;
2332 temp.bitfield.qword = 0;
2333 temp.bitfield.tbyte = 0;
2334 temp.bitfield.xmmword = 0;
c0f3af97 2335 temp.bitfield.ymmword = 0;
43234a1e 2336 temp.bitfield.zmmword = 0;
260cd341 2337 temp.bitfield.tmmword = 0;
0dfbf9d7 2338 if (operand_type_all_zero (&temp))
891edac4 2339 goto mismatch;
40fb9820 2340
6f2f06be 2341 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2342 return 1;
2343
dc1e8a47 2344 mismatch:
a65babc9 2345 i.error = operand_type_mismatch;
891edac4 2346 return 0;
40fb9820
L
2347}
2348
7d5e4556 2349/* If given types g0 and g1 are registers they must be of the same type
10c17abd 2350 unless the expected operand type register overlap is null.
5de4d9ef 2351 Some Intel syntax memory operand size checking also happens here. */
40fb9820 2352
c6fb90c8 2353static INLINE int
dc821c5f 2354operand_type_register_match (i386_operand_type g0,
40fb9820 2355 i386_operand_type t0,
40fb9820
L
2356 i386_operand_type g1,
2357 i386_operand_type t1)
2358{
bab6aec1 2359 if (g0.bitfield.class != Reg
3528c362 2360 && g0.bitfield.class != RegSIMD
10c17abd
JB
2361 && (!operand_type_check (g0, anymem)
2362 || g0.bitfield.unspecified
5de4d9ef
JB
2363 || (t0.bitfield.class != Reg
2364 && t0.bitfield.class != RegSIMD)))
40fb9820
L
2365 return 1;
2366
bab6aec1 2367 if (g1.bitfield.class != Reg
3528c362 2368 && g1.bitfield.class != RegSIMD
10c17abd
JB
2369 && (!operand_type_check (g1, anymem)
2370 || g1.bitfield.unspecified
5de4d9ef
JB
2371 || (t1.bitfield.class != Reg
2372 && t1.bitfield.class != RegSIMD)))
40fb9820
L
2373 return 1;
2374
dc821c5f
JB
2375 if (g0.bitfield.byte == g1.bitfield.byte
2376 && g0.bitfield.word == g1.bitfield.word
2377 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2378 && g0.bitfield.qword == g1.bitfield.qword
2379 && g0.bitfield.xmmword == g1.bitfield.xmmword
2380 && g0.bitfield.ymmword == g1.bitfield.ymmword
2381 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2382 return 1;
2383
dc821c5f
JB
2384 if (!(t0.bitfield.byte & t1.bitfield.byte)
2385 && !(t0.bitfield.word & t1.bitfield.word)
2386 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2387 && !(t0.bitfield.qword & t1.bitfield.qword)
2388 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2389 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2390 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2391 return 1;
2392
a65babc9 2393 i.error = register_type_mismatch;
891edac4
L
2394
2395 return 0;
40fb9820
L
2396}
2397
4c692bc7
JB
2398static INLINE unsigned int
2399register_number (const reg_entry *r)
2400{
2401 unsigned int nr = r->reg_num;
2402
2403 if (r->reg_flags & RegRex)
2404 nr += 8;
2405
200cbe0f
L
2406 if (r->reg_flags & RegVRex)
2407 nr += 16;
2408
4c692bc7
JB
2409 return nr;
2410}
2411
252b5132 2412static INLINE unsigned int
40fb9820 2413mode_from_disp_size (i386_operand_type t)
252b5132 2414{
b5014f7a 2415 if (t.bitfield.disp8)
40fb9820
L
2416 return 1;
2417 else if (t.bitfield.disp16
2418 || t.bitfield.disp32
2419 || t.bitfield.disp32s)
2420 return 2;
2421 else
2422 return 0;
252b5132
RH
2423}
2424
2425static INLINE int
65879393 2426fits_in_signed_byte (addressT num)
252b5132 2427{
65879393 2428 return num + 0x80 <= 0xff;
47926f60 2429}
252b5132
RH
2430
2431static INLINE int
65879393 2432fits_in_unsigned_byte (addressT num)
252b5132 2433{
65879393 2434 return num <= 0xff;
47926f60 2435}
252b5132
RH
2436
2437static INLINE int
65879393 2438fits_in_unsigned_word (addressT num)
252b5132 2439{
65879393 2440 return num <= 0xffff;
47926f60 2441}
252b5132
RH
2442
2443static INLINE int
65879393 2444fits_in_signed_word (addressT num)
252b5132 2445{
65879393 2446 return num + 0x8000 <= 0xffff;
47926f60 2447}
2a962e6d 2448
3e73aa7c 2449static INLINE int
65879393 2450fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2451{
2452#ifndef BFD64
2453 return 1;
2454#else
65879393 2455 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2456#endif
2457} /* fits_in_signed_long() */
2a962e6d 2458
3e73aa7c 2459static INLINE int
65879393 2460fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2461{
2462#ifndef BFD64
2463 return 1;
2464#else
65879393 2465 return num <= 0xffffffff;
3e73aa7c
JH
2466#endif
2467} /* fits_in_unsigned_long() */
252b5132 2468
43234a1e 2469static INLINE int
b5014f7a 2470fits_in_disp8 (offsetT num)
43234a1e
L
2471{
2472 int shift = i.memshift;
2473 unsigned int mask;
2474
2475 if (shift == -1)
2476 abort ();
2477
2478 mask = (1 << shift) - 1;
2479
2480 /* Return 0 if NUM isn't properly aligned. */
2481 if ((num & mask))
2482 return 0;
2483
2484 /* Check if NUM will fit in 8bit after shift. */
2485 return fits_in_signed_byte (num >> shift);
2486}
2487
a683cc34
SP
2488static INLINE int
2489fits_in_imm4 (offsetT num)
2490{
2491 return (num & 0xf) == num;
2492}
2493
40fb9820 2494static i386_operand_type
e3bb37b5 2495smallest_imm_type (offsetT num)
252b5132 2496{
40fb9820 2497 i386_operand_type t;
7ab9ffdd 2498
0dfbf9d7 2499 operand_type_set (&t, 0);
40fb9820
L
2500 t.bitfield.imm64 = 1;
2501
2502 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2503 {
2504 /* This code is disabled on the 486 because all the Imm1 forms
2505 in the opcode table are slower on the i486. They're the
2506 versions with the implicitly specified single-position
2507 displacement, which has another syntax if you really want to
2508 use that form. */
40fb9820
L
2509 t.bitfield.imm1 = 1;
2510 t.bitfield.imm8 = 1;
2511 t.bitfield.imm8s = 1;
2512 t.bitfield.imm16 = 1;
2513 t.bitfield.imm32 = 1;
2514 t.bitfield.imm32s = 1;
2515 }
2516 else if (fits_in_signed_byte (num))
2517 {
2518 t.bitfield.imm8 = 1;
2519 t.bitfield.imm8s = 1;
2520 t.bitfield.imm16 = 1;
2521 t.bitfield.imm32 = 1;
2522 t.bitfield.imm32s = 1;
2523 }
2524 else if (fits_in_unsigned_byte (num))
2525 {
2526 t.bitfield.imm8 = 1;
2527 t.bitfield.imm16 = 1;
2528 t.bitfield.imm32 = 1;
2529 t.bitfield.imm32s = 1;
2530 }
2531 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2532 {
2533 t.bitfield.imm16 = 1;
2534 t.bitfield.imm32 = 1;
2535 t.bitfield.imm32s = 1;
2536 }
2537 else if (fits_in_signed_long (num))
2538 {
2539 t.bitfield.imm32 = 1;
2540 t.bitfield.imm32s = 1;
2541 }
2542 else if (fits_in_unsigned_long (num))
2543 t.bitfield.imm32 = 1;
2544
2545 return t;
47926f60 2546}
252b5132 2547
847f7ad4 2548static offsetT
e3bb37b5 2549offset_in_range (offsetT val, int size)
847f7ad4 2550{
508866be 2551 addressT mask;
ba2adb93 2552
847f7ad4
AM
2553 switch (size)
2554 {
508866be
L
2555 case 1: mask = ((addressT) 1 << 8) - 1; break;
2556 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2557 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2558#ifdef BFD64
2559 case 8: mask = ((addressT) 2 << 63) - 1; break;
2560#endif
47926f60 2561 default: abort ();
847f7ad4
AM
2562 }
2563
47926f60 2564 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2565 {
2566 char buf1[40], buf2[40];
2567
2568 sprint_value (buf1, val);
2569 sprint_value (buf2, val & mask);
2570 as_warn (_("%s shortened to %s"), buf1, buf2);
2571 }
2572 return val & mask;
2573}
2574
c32fa91d
L
2575enum PREFIX_GROUP
2576{
2577 PREFIX_EXIST = 0,
2578 PREFIX_LOCK,
2579 PREFIX_REP,
04ef582a 2580 PREFIX_DS,
c32fa91d
L
2581 PREFIX_OTHER
2582};
2583
2584/* Returns
2585 a. PREFIX_EXIST if attempting to add a prefix where one from the
2586 same class already exists.
2587 b. PREFIX_LOCK if lock prefix is added.
2588 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2589 d. PREFIX_DS if ds prefix is added.
2590 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2591 */
2592
2593static enum PREFIX_GROUP
e3bb37b5 2594add_prefix (unsigned int prefix)
252b5132 2595{
c32fa91d 2596 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2597 unsigned int q;
252b5132 2598
29b0f896
AM
2599 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2600 && flag_code == CODE_64BIT)
b1905489 2601 {
161a04f6 2602 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2603 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2604 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2605 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2606 ret = PREFIX_EXIST;
b1905489
JB
2607 q = REX_PREFIX;
2608 }
3e73aa7c 2609 else
b1905489
JB
2610 {
2611 switch (prefix)
2612 {
2613 default:
2614 abort ();
2615
b1905489 2616 case DS_PREFIX_OPCODE:
04ef582a
L
2617 ret = PREFIX_DS;
2618 /* Fall through. */
2619 case CS_PREFIX_OPCODE:
b1905489
JB
2620 case ES_PREFIX_OPCODE:
2621 case FS_PREFIX_OPCODE:
2622 case GS_PREFIX_OPCODE:
2623 case SS_PREFIX_OPCODE:
2624 q = SEG_PREFIX;
2625 break;
2626
2627 case REPNE_PREFIX_OPCODE:
2628 case REPE_PREFIX_OPCODE:
c32fa91d
L
2629 q = REP_PREFIX;
2630 ret = PREFIX_REP;
2631 break;
2632
b1905489 2633 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2634 q = LOCK_PREFIX;
2635 ret = PREFIX_LOCK;
b1905489
JB
2636 break;
2637
2638 case FWAIT_OPCODE:
2639 q = WAIT_PREFIX;
2640 break;
2641
2642 case ADDR_PREFIX_OPCODE:
2643 q = ADDR_PREFIX;
2644 break;
2645
2646 case DATA_PREFIX_OPCODE:
2647 q = DATA_PREFIX;
2648 break;
2649 }
2650 if (i.prefix[q] != 0)
c32fa91d 2651 ret = PREFIX_EXIST;
b1905489 2652 }
252b5132 2653
b1905489 2654 if (ret)
252b5132 2655 {
b1905489
JB
2656 if (!i.prefix[q])
2657 ++i.prefixes;
2658 i.prefix[q] |= prefix;
252b5132 2659 }
b1905489
JB
2660 else
2661 as_bad (_("same type of prefix used twice"));
252b5132 2662
252b5132
RH
2663 return ret;
2664}
2665
2666static void
78f12dd3 2667update_code_flag (int value, int check)
eecb386c 2668{
78f12dd3
L
2669 PRINTF_LIKE ((*as_error));
2670
1e9cc1c2 2671 flag_code = (enum flag_code) value;
40fb9820
L
2672 if (flag_code == CODE_64BIT)
2673 {
2674 cpu_arch_flags.bitfield.cpu64 = 1;
2675 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2676 }
2677 else
2678 {
2679 cpu_arch_flags.bitfield.cpu64 = 0;
2680 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2681 }
2682 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2683 {
78f12dd3
L
2684 if (check)
2685 as_error = as_fatal;
2686 else
2687 as_error = as_bad;
2688 (*as_error) (_("64bit mode not supported on `%s'."),
2689 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2690 }
40fb9820 2691 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2692 {
78f12dd3
L
2693 if (check)
2694 as_error = as_fatal;
2695 else
2696 as_error = as_bad;
2697 (*as_error) (_("32bit mode not supported on `%s'."),
2698 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2699 }
eecb386c
AM
2700 stackop_size = '\0';
2701}
2702
78f12dd3
L
2703static void
2704set_code_flag (int value)
2705{
2706 update_code_flag (value, 0);
2707}
2708
eecb386c 2709static void
e3bb37b5 2710set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2711{
1e9cc1c2 2712 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2713 if (flag_code != CODE_16BIT)
2714 abort ();
2715 cpu_arch_flags.bitfield.cpu64 = 0;
2716 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2717 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2718}
2719
2720static void
e3bb37b5 2721set_intel_syntax (int syntax_flag)
252b5132
RH
2722{
2723 /* Find out if register prefixing is specified. */
2724 int ask_naked_reg = 0;
2725
2726 SKIP_WHITESPACE ();
29b0f896 2727 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2728 {
d02603dc
NC
2729 char *string;
2730 int e = get_symbol_name (&string);
252b5132 2731
47926f60 2732 if (strcmp (string, "prefix") == 0)
252b5132 2733 ask_naked_reg = 1;
47926f60 2734 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2735 ask_naked_reg = -1;
2736 else
d0b47220 2737 as_bad (_("bad argument to syntax directive."));
d02603dc 2738 (void) restore_line_pointer (e);
252b5132
RH
2739 }
2740 demand_empty_rest_of_line ();
c3332e24 2741
252b5132
RH
2742 intel_syntax = syntax_flag;
2743
2744 if (ask_naked_reg == 0)
f86103b7
AM
2745 allow_naked_reg = (intel_syntax
2746 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2747 else
2748 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2749
ee86248c 2750 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2751
e4a3b5a4 2752 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2753 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2754 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2755}
2756
1efbbeb4
L
2757static void
2758set_intel_mnemonic (int mnemonic_flag)
2759{
e1d4d893 2760 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2761}
2762
db51cc60
L
2763static void
2764set_allow_index_reg (int flag)
2765{
2766 allow_index_reg = flag;
2767}
2768
cb19c032 2769static void
7bab8ab5 2770set_check (int what)
cb19c032 2771{
7bab8ab5
JB
2772 enum check_kind *kind;
2773 const char *str;
2774
2775 if (what)
2776 {
2777 kind = &operand_check;
2778 str = "operand";
2779 }
2780 else
2781 {
2782 kind = &sse_check;
2783 str = "sse";
2784 }
2785
cb19c032
L
2786 SKIP_WHITESPACE ();
2787
2788 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2789 {
d02603dc
NC
2790 char *string;
2791 int e = get_symbol_name (&string);
cb19c032
L
2792
2793 if (strcmp (string, "none") == 0)
7bab8ab5 2794 *kind = check_none;
cb19c032 2795 else if (strcmp (string, "warning") == 0)
7bab8ab5 2796 *kind = check_warning;
cb19c032 2797 else if (strcmp (string, "error") == 0)
7bab8ab5 2798 *kind = check_error;
cb19c032 2799 else
7bab8ab5 2800 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2801 (void) restore_line_pointer (e);
cb19c032
L
2802 }
2803 else
7bab8ab5 2804 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2805
2806 demand_empty_rest_of_line ();
2807}
2808
8a9036a4
L
2809static void
2810check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2811 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2812{
2813#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2814 static const char *arch;
2815
2816 /* Intel LIOM is only supported on ELF. */
2817 if (!IS_ELF)
2818 return;
2819
2820 if (!arch)
2821 {
2822 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2823 use default_arch. */
2824 arch = cpu_arch_name;
2825 if (!arch)
2826 arch = default_arch;
2827 }
2828
81486035
L
2829 /* If we are targeting Intel MCU, we must enable it. */
2830 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2831 || new_flag.bitfield.cpuiamcu)
2832 return;
2833
3632d14b 2834 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2835 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2836 || new_flag.bitfield.cpul1om)
8a9036a4 2837 return;
76ba9986 2838
7a9068fe
L
2839 /* If we are targeting Intel K1OM, we must enable it. */
2840 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2841 || new_flag.bitfield.cpuk1om)
2842 return;
2843
8a9036a4
L
2844 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2845#endif
2846}
2847
e413e4e9 2848static void
e3bb37b5 2849set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2850{
47926f60 2851 SKIP_WHITESPACE ();
e413e4e9 2852
29b0f896 2853 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2854 {
d02603dc
NC
2855 char *string;
2856 int e = get_symbol_name (&string);
91d6fa6a 2857 unsigned int j;
40fb9820 2858 i386_cpu_flags flags;
e413e4e9 2859
91d6fa6a 2860 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2861 {
91d6fa6a 2862 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2863 {
91d6fa6a 2864 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2865
5c6af06e
JB
2866 if (*string != '.')
2867 {
91d6fa6a 2868 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2869 cpu_sub_arch_name = NULL;
91d6fa6a 2870 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2871 if (flag_code == CODE_64BIT)
2872 {
2873 cpu_arch_flags.bitfield.cpu64 = 1;
2874 cpu_arch_flags.bitfield.cpuno64 = 0;
2875 }
2876 else
2877 {
2878 cpu_arch_flags.bitfield.cpu64 = 0;
2879 cpu_arch_flags.bitfield.cpuno64 = 1;
2880 }
91d6fa6a
NC
2881 cpu_arch_isa = cpu_arch[j].type;
2882 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2883 if (!cpu_arch_tune_set)
2884 {
2885 cpu_arch_tune = cpu_arch_isa;
2886 cpu_arch_tune_flags = cpu_arch_isa_flags;
2887 }
5c6af06e
JB
2888 break;
2889 }
40fb9820 2890
293f5f65
L
2891 flags = cpu_flags_or (cpu_arch_flags,
2892 cpu_arch[j].flags);
81486035 2893
5b64d091 2894 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2895 {
6305a203
L
2896 if (cpu_sub_arch_name)
2897 {
2898 char *name = cpu_sub_arch_name;
2899 cpu_sub_arch_name = concat (name,
91d6fa6a 2900 cpu_arch[j].name,
1bf57e9f 2901 (const char *) NULL);
6305a203
L
2902 free (name);
2903 }
2904 else
91d6fa6a 2905 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2906 cpu_arch_flags = flags;
a586129e 2907 cpu_arch_isa_flags = flags;
5c6af06e 2908 }
0089dace
L
2909 else
2910 cpu_arch_isa_flags
2911 = cpu_flags_or (cpu_arch_isa_flags,
2912 cpu_arch[j].flags);
d02603dc 2913 (void) restore_line_pointer (e);
5c6af06e
JB
2914 demand_empty_rest_of_line ();
2915 return;
e413e4e9
AM
2916 }
2917 }
293f5f65
L
2918
2919 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2920 {
33eaf5de 2921 /* Disable an ISA extension. */
293f5f65
L
2922 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2923 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2924 {
2925 flags = cpu_flags_and_not (cpu_arch_flags,
2926 cpu_noarch[j].flags);
2927 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2928 {
2929 if (cpu_sub_arch_name)
2930 {
2931 char *name = cpu_sub_arch_name;
2932 cpu_sub_arch_name = concat (name, string,
2933 (const char *) NULL);
2934 free (name);
2935 }
2936 else
2937 cpu_sub_arch_name = xstrdup (string);
2938 cpu_arch_flags = flags;
2939 cpu_arch_isa_flags = flags;
2940 }
2941 (void) restore_line_pointer (e);
2942 demand_empty_rest_of_line ();
2943 return;
2944 }
2945
2946 j = ARRAY_SIZE (cpu_arch);
2947 }
2948
91d6fa6a 2949 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2950 as_bad (_("no such architecture: `%s'"), string);
2951
2952 *input_line_pointer = e;
2953 }
2954 else
2955 as_bad (_("missing cpu architecture"));
2956
fddf5b5b
AM
2957 no_cond_jump_promotion = 0;
2958 if (*input_line_pointer == ','
29b0f896 2959 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2960 {
d02603dc
NC
2961 char *string;
2962 char e;
2963
2964 ++input_line_pointer;
2965 e = get_symbol_name (&string);
fddf5b5b
AM
2966
2967 if (strcmp (string, "nojumps") == 0)
2968 no_cond_jump_promotion = 1;
2969 else if (strcmp (string, "jumps") == 0)
2970 ;
2971 else
2972 as_bad (_("no such architecture modifier: `%s'"), string);
2973
d02603dc 2974 (void) restore_line_pointer (e);
fddf5b5b
AM
2975 }
2976
e413e4e9
AM
2977 demand_empty_rest_of_line ();
2978}
2979
8a9036a4
L
2980enum bfd_architecture
2981i386_arch (void)
2982{
3632d14b 2983 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2984 {
2985 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2986 || flag_code != CODE_64BIT)
2987 as_fatal (_("Intel L1OM is 64bit ELF only"));
2988 return bfd_arch_l1om;
2989 }
7a9068fe
L
2990 else if (cpu_arch_isa == PROCESSOR_K1OM)
2991 {
2992 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2993 || flag_code != CODE_64BIT)
2994 as_fatal (_("Intel K1OM is 64bit ELF only"));
2995 return bfd_arch_k1om;
2996 }
81486035
L
2997 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2998 {
2999 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3000 || flag_code == CODE_64BIT)
3001 as_fatal (_("Intel MCU is 32bit ELF only"));
3002 return bfd_arch_iamcu;
3003 }
8a9036a4
L
3004 else
3005 return bfd_arch_i386;
3006}
3007
b9d79e03 3008unsigned long
7016a5d5 3009i386_mach (void)
b9d79e03 3010{
351f65ca 3011 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 3012 {
3632d14b 3013 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 3014 {
351f65ca
L
3015 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3016 || default_arch[6] != '\0')
8a9036a4
L
3017 as_fatal (_("Intel L1OM is 64bit ELF only"));
3018 return bfd_mach_l1om;
3019 }
7a9068fe
L
3020 else if (cpu_arch_isa == PROCESSOR_K1OM)
3021 {
3022 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3023 || default_arch[6] != '\0')
3024 as_fatal (_("Intel K1OM is 64bit ELF only"));
3025 return bfd_mach_k1om;
3026 }
351f65ca 3027 else if (default_arch[6] == '\0')
8a9036a4 3028 return bfd_mach_x86_64;
351f65ca
L
3029 else
3030 return bfd_mach_x64_32;
8a9036a4 3031 }
5197d474
L
3032 else if (!strcmp (default_arch, "i386")
3033 || !strcmp (default_arch, "iamcu"))
81486035
L
3034 {
3035 if (cpu_arch_isa == PROCESSOR_IAMCU)
3036 {
3037 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3038 as_fatal (_("Intel MCU is 32bit ELF only"));
3039 return bfd_mach_i386_iamcu;
3040 }
3041 else
3042 return bfd_mach_i386_i386;
3043 }
b9d79e03 3044 else
2b5d6a91 3045 as_fatal (_("unknown architecture"));
b9d79e03 3046}
b9d79e03 3047\f
252b5132 3048void
7016a5d5 3049md_begin (void)
252b5132 3050{
86fa6981
L
3051 /* Support pseudo prefixes like {disp32}. */
3052 lex_type ['{'] = LEX_BEGIN_NAME;
3053
47926f60 3054 /* Initialize op_hash hash table. */
629310ab 3055 op_hash = str_htab_create ();
252b5132
RH
3056
3057 {
d3ce72d0 3058 const insn_template *optab;
29b0f896 3059 templates *core_optab;
252b5132 3060
47926f60
KH
3061 /* Setup for loop. */
3062 optab = i386_optab;
add39d23 3063 core_optab = XNEW (templates);
252b5132
RH
3064 core_optab->start = optab;
3065
3066 while (1)
3067 {
3068 ++optab;
3069 if (optab->name == NULL
3070 || strcmp (optab->name, (optab - 1)->name) != 0)
3071 {
3072 /* different name --> ship out current template list;
47926f60 3073 add to hash table; & begin anew. */
252b5132 3074 core_optab->end = optab;
fe0e921f
AM
3075 if (str_hash_insert (op_hash, (optab - 1)->name, core_optab, 0))
3076 as_fatal (_("duplicate %s"), (optab - 1)->name);
3077
252b5132
RH
3078 if (optab->name == NULL)
3079 break;
add39d23 3080 core_optab = XNEW (templates);
252b5132
RH
3081 core_optab->start = optab;
3082 }
3083 }
3084 }
3085
47926f60 3086 /* Initialize reg_hash hash table. */
629310ab 3087 reg_hash = str_htab_create ();
252b5132 3088 {
29b0f896 3089 const reg_entry *regtab;
c3fe08fa 3090 unsigned int regtab_size = i386_regtab_size;
252b5132 3091
c3fe08fa 3092 for (regtab = i386_regtab; regtab_size--; regtab++)
fe0e921f
AM
3093 if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL)
3094 as_fatal (_("duplicate %s"), regtab->reg_name);
252b5132
RH
3095 }
3096
47926f60 3097 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3098 {
29b0f896
AM
3099 int c;
3100 char *p;
252b5132
RH
3101
3102 for (c = 0; c < 256; c++)
3103 {
3882b010 3104 if (ISDIGIT (c))
252b5132
RH
3105 {
3106 digit_chars[c] = c;
3107 mnemonic_chars[c] = c;
3108 register_chars[c] = c;
3109 operand_chars[c] = c;
3110 }
3882b010 3111 else if (ISLOWER (c))
252b5132
RH
3112 {
3113 mnemonic_chars[c] = c;
3114 register_chars[c] = c;
3115 operand_chars[c] = c;
3116 }
3882b010 3117 else if (ISUPPER (c))
252b5132 3118 {
3882b010 3119 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3120 register_chars[c] = mnemonic_chars[c];
3121 operand_chars[c] = c;
3122 }
43234a1e 3123 else if (c == '{' || c == '}')
86fa6981
L
3124 {
3125 mnemonic_chars[c] = c;
3126 operand_chars[c] = c;
3127 }
b3983e5f
JB
3128#ifdef SVR4_COMMENT_CHARS
3129 else if (c == '\\' && strchr (i386_comment_chars, '/'))
3130 operand_chars[c] = c;
3131#endif
252b5132 3132
3882b010 3133 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3134 identifier_chars[c] = c;
3135 else if (c >= 128)
3136 {
3137 identifier_chars[c] = c;
3138 operand_chars[c] = c;
3139 }
3140 }
3141
3142#ifdef LEX_AT
3143 identifier_chars['@'] = '@';
32137342
NC
3144#endif
3145#ifdef LEX_QM
3146 identifier_chars['?'] = '?';
3147 operand_chars['?'] = '?';
252b5132 3148#endif
252b5132 3149 digit_chars['-'] = '-';
c0f3af97 3150 mnemonic_chars['_'] = '_';
791fe849 3151 mnemonic_chars['-'] = '-';
0003779b 3152 mnemonic_chars['.'] = '.';
252b5132
RH
3153 identifier_chars['_'] = '_';
3154 identifier_chars['.'] = '.';
3155
3156 for (p = operand_special_chars; *p != '\0'; p++)
3157 operand_chars[(unsigned char) *p] = *p;
3158 }
3159
a4447b93
RH
3160 if (flag_code == CODE_64BIT)
3161 {
ca19b261
KT
3162#if defined (OBJ_COFF) && defined (TE_PE)
3163 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3164 ? 32 : 16);
3165#else
a4447b93 3166 x86_dwarf2_return_column = 16;
ca19b261 3167#endif
61ff971f 3168 x86_cie_data_alignment = -8;
a4447b93
RH
3169 }
3170 else
3171 {
3172 x86_dwarf2_return_column = 8;
3173 x86_cie_data_alignment = -4;
3174 }
e379e5f3
L
3175
3176 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3177 can be turned into BRANCH_PREFIX frag. */
3178 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3179 abort ();
252b5132
RH
3180}
3181
3182void
e3bb37b5 3183i386_print_statistics (FILE *file)
252b5132 3184{
629310ab
ML
3185 htab_print_statistics (file, "i386 opcode", op_hash);
3186 htab_print_statistics (file, "i386 register", reg_hash);
252b5132
RH
3187}
3188\f
252b5132
RH
3189#ifdef DEBUG386
3190
ce8a8b2f 3191/* Debugging routines for md_assemble. */
d3ce72d0 3192static void pte (insn_template *);
40fb9820 3193static void pt (i386_operand_type);
e3bb37b5
L
3194static void pe (expressionS *);
3195static void ps (symbolS *);
252b5132
RH
3196
3197static void
2c703856 3198pi (const char *line, i386_insn *x)
252b5132 3199{
09137c09 3200 unsigned int j;
252b5132
RH
3201
3202 fprintf (stdout, "%s: template ", line);
3203 pte (&x->tm);
09f131f2
JH
3204 fprintf (stdout, " address: base %s index %s scale %x\n",
3205 x->base_reg ? x->base_reg->reg_name : "none",
3206 x->index_reg ? x->index_reg->reg_name : "none",
3207 x->log2_scale_factor);
3208 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3209 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3210 fprintf (stdout, " sib: base %x index %x scale %x\n",
3211 x->sib.base, x->sib.index, x->sib.scale);
3212 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3213 (x->rex & REX_W) != 0,
3214 (x->rex & REX_R) != 0,
3215 (x->rex & REX_X) != 0,
3216 (x->rex & REX_B) != 0);
09137c09 3217 for (j = 0; j < x->operands; j++)
252b5132 3218 {
09137c09
SP
3219 fprintf (stdout, " #%d: ", j + 1);
3220 pt (x->types[j]);
252b5132 3221 fprintf (stdout, "\n");
bab6aec1 3222 if (x->types[j].bitfield.class == Reg
3528c362
JB
3223 || x->types[j].bitfield.class == RegMMX
3224 || x->types[j].bitfield.class == RegSIMD
dd6b8a0b 3225 || x->types[j].bitfield.class == RegMask
00cee14f 3226 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3227 || x->types[j].bitfield.class == RegCR
3228 || x->types[j].bitfield.class == RegDR
dd6b8a0b
JB
3229 || x->types[j].bitfield.class == RegTR
3230 || x->types[j].bitfield.class == RegBND)
09137c09
SP
3231 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3232 if (operand_type_check (x->types[j], imm))
3233 pe (x->op[j].imms);
3234 if (operand_type_check (x->types[j], disp))
3235 pe (x->op[j].disps);
252b5132
RH
3236 }
3237}
3238
3239static void
d3ce72d0 3240pte (insn_template *t)
252b5132 3241{
09137c09 3242 unsigned int j;
252b5132 3243 fprintf (stdout, " %d operands ", t->operands);
47926f60 3244 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3245 if (t->extension_opcode != None)
3246 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3247 if (t->opcode_modifier.d)
252b5132 3248 fprintf (stdout, "D");
40fb9820 3249 if (t->opcode_modifier.w)
252b5132
RH
3250 fprintf (stdout, "W");
3251 fprintf (stdout, "\n");
09137c09 3252 for (j = 0; j < t->operands; j++)
252b5132 3253 {
09137c09
SP
3254 fprintf (stdout, " #%d type ", j + 1);
3255 pt (t->operand_types[j]);
252b5132
RH
3256 fprintf (stdout, "\n");
3257 }
3258}
3259
3260static void
e3bb37b5 3261pe (expressionS *e)
252b5132 3262{
24eab124 3263 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3264 fprintf (stdout, " add_number %ld (%lx)\n",
3265 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3266 if (e->X_add_symbol)
3267 {
3268 fprintf (stdout, " add_symbol ");
3269 ps (e->X_add_symbol);
3270 fprintf (stdout, "\n");
3271 }
3272 if (e->X_op_symbol)
3273 {
3274 fprintf (stdout, " op_symbol ");
3275 ps (e->X_op_symbol);
3276 fprintf (stdout, "\n");
3277 }
3278}
3279
3280static void
e3bb37b5 3281ps (symbolS *s)
252b5132
RH
3282{
3283 fprintf (stdout, "%s type %s%s",
3284 S_GET_NAME (s),
3285 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3286 segment_name (S_GET_SEGMENT (s)));
3287}
3288
7b81dfbb 3289static struct type_name
252b5132 3290 {
40fb9820
L
3291 i386_operand_type mask;
3292 const char *name;
252b5132 3293 }
7b81dfbb 3294const type_names[] =
252b5132 3295{
40fb9820
L
3296 { OPERAND_TYPE_REG8, "r8" },
3297 { OPERAND_TYPE_REG16, "r16" },
3298 { OPERAND_TYPE_REG32, "r32" },
3299 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3300 { OPERAND_TYPE_ACC8, "acc8" },
3301 { OPERAND_TYPE_ACC16, "acc16" },
3302 { OPERAND_TYPE_ACC32, "acc32" },
3303 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3304 { OPERAND_TYPE_IMM8, "i8" },
3305 { OPERAND_TYPE_IMM8, "i8s" },
3306 { OPERAND_TYPE_IMM16, "i16" },
3307 { OPERAND_TYPE_IMM32, "i32" },
3308 { OPERAND_TYPE_IMM32S, "i32s" },
3309 { OPERAND_TYPE_IMM64, "i64" },
3310 { OPERAND_TYPE_IMM1, "i1" },
3311 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3312 { OPERAND_TYPE_DISP8, "d8" },
3313 { OPERAND_TYPE_DISP16, "d16" },
3314 { OPERAND_TYPE_DISP32, "d32" },
3315 { OPERAND_TYPE_DISP32S, "d32s" },
3316 { OPERAND_TYPE_DISP64, "d64" },
3317 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3318 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3319 { OPERAND_TYPE_CONTROL, "control reg" },
3320 { OPERAND_TYPE_TEST, "test reg" },
3321 { OPERAND_TYPE_DEBUG, "debug reg" },
3322 { OPERAND_TYPE_FLOATREG, "FReg" },
3323 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3324 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3325 { OPERAND_TYPE_REGMMX, "rMMX" },
3326 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3327 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e 3328 { OPERAND_TYPE_REGZMM, "rZMM" },
260cd341 3329 { OPERAND_TYPE_REGTMM, "rTMM" },
43234a1e 3330 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3331};
3332
3333static void
40fb9820 3334pt (i386_operand_type t)
252b5132 3335{
40fb9820 3336 unsigned int j;
c6fb90c8 3337 i386_operand_type a;
252b5132 3338
40fb9820 3339 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3340 {
3341 a = operand_type_and (t, type_names[j].mask);
2c703856 3342 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3343 fprintf (stdout, "%s, ", type_names[j].name);
3344 }
252b5132
RH
3345 fflush (stdout);
3346}
3347
3348#endif /* DEBUG386 */
3349\f
252b5132 3350static bfd_reloc_code_real_type
3956db08 3351reloc (unsigned int size,
64e74474
AM
3352 int pcrel,
3353 int sign,
3354 bfd_reloc_code_real_type other)
252b5132 3355{
47926f60 3356 if (other != NO_RELOC)
3956db08 3357 {
91d6fa6a 3358 reloc_howto_type *rel;
3956db08
JB
3359
3360 if (size == 8)
3361 switch (other)
3362 {
64e74474
AM
3363 case BFD_RELOC_X86_64_GOT32:
3364 return BFD_RELOC_X86_64_GOT64;
3365 break;
553d1284
L
3366 case BFD_RELOC_X86_64_GOTPLT64:
3367 return BFD_RELOC_X86_64_GOTPLT64;
3368 break;
64e74474
AM
3369 case BFD_RELOC_X86_64_PLTOFF64:
3370 return BFD_RELOC_X86_64_PLTOFF64;
3371 break;
3372 case BFD_RELOC_X86_64_GOTPC32:
3373 other = BFD_RELOC_X86_64_GOTPC64;
3374 break;
3375 case BFD_RELOC_X86_64_GOTPCREL:
3376 other = BFD_RELOC_X86_64_GOTPCREL64;
3377 break;
3378 case BFD_RELOC_X86_64_TPOFF32:
3379 other = BFD_RELOC_X86_64_TPOFF64;
3380 break;
3381 case BFD_RELOC_X86_64_DTPOFF32:
3382 other = BFD_RELOC_X86_64_DTPOFF64;
3383 break;
3384 default:
3385 break;
3956db08 3386 }
e05278af 3387
8ce3d284 3388#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3389 if (other == BFD_RELOC_SIZE32)
3390 {
3391 if (size == 8)
1ab668bf 3392 other = BFD_RELOC_SIZE64;
8fd4256d 3393 if (pcrel)
1ab668bf
AM
3394 {
3395 as_bad (_("there are no pc-relative size relocations"));
3396 return NO_RELOC;
3397 }
8fd4256d 3398 }
8ce3d284 3399#endif
8fd4256d 3400
e05278af 3401 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3402 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3403 sign = -1;
3404
91d6fa6a
NC
3405 rel = bfd_reloc_type_lookup (stdoutput, other);
3406 if (!rel)
3956db08 3407 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3408 else if (size != bfd_get_reloc_size (rel))
3956db08 3409 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3410 bfd_get_reloc_size (rel),
3956db08 3411 size);
91d6fa6a 3412 else if (pcrel && !rel->pc_relative)
3956db08 3413 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3414 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3415 && !sign)
91d6fa6a 3416 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3417 && sign > 0))
3956db08
JB
3418 as_bad (_("relocated field and relocation type differ in signedness"));
3419 else
3420 return other;
3421 return NO_RELOC;
3422 }
252b5132
RH
3423
3424 if (pcrel)
3425 {
3e73aa7c 3426 if (!sign)
3956db08 3427 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3428 switch (size)
3429 {
3430 case 1: return BFD_RELOC_8_PCREL;
3431 case 2: return BFD_RELOC_16_PCREL;
d258b828 3432 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3433 case 8: return BFD_RELOC_64_PCREL;
252b5132 3434 }
3956db08 3435 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3436 }
3437 else
3438 {
3956db08 3439 if (sign > 0)
e5cb08ac 3440 switch (size)
3e73aa7c
JH
3441 {
3442 case 4: return BFD_RELOC_X86_64_32S;
3443 }
3444 else
3445 switch (size)
3446 {
3447 case 1: return BFD_RELOC_8;
3448 case 2: return BFD_RELOC_16;
3449 case 4: return BFD_RELOC_32;
3450 case 8: return BFD_RELOC_64;
3451 }
3956db08
JB
3452 as_bad (_("cannot do %s %u byte relocation"),
3453 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3454 }
3455
0cc9e1d3 3456 return NO_RELOC;
252b5132
RH
3457}
3458
47926f60
KH
3459/* Here we decide which fixups can be adjusted to make them relative to
3460 the beginning of the section instead of the symbol. Basically we need
3461 to make sure that the dynamic relocations are done correctly, so in
3462 some cases we force the original symbol to be used. */
3463
252b5132 3464int
e3bb37b5 3465tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3466{
6d249963 3467#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3468 if (!IS_ELF)
31312f95
AM
3469 return 1;
3470
a161fe53
AM
3471 /* Don't adjust pc-relative references to merge sections in 64-bit
3472 mode. */
3473 if (use_rela_relocations
3474 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3475 && fixP->fx_pcrel)
252b5132 3476 return 0;
31312f95 3477
8d01d9a9
AJ
3478 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3479 and changed later by validate_fix. */
3480 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3481 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3482 return 0;
3483
8fd4256d
L
3484 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3485 for size relocations. */
3486 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3487 || fixP->fx_r_type == BFD_RELOC_SIZE64
3488 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132 3489 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3490 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3491 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3492 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3493 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3494 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3495 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3496 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3497 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3498 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3499 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3500 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c 3501 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3502 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3503 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3504 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3505 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3506 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3507 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3508 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3509 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3510 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3511 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3512 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3513 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3514 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3515 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3516 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3517 return 0;
31312f95 3518#endif
252b5132
RH
3519 return 1;
3520}
252b5132 3521
b4cac588 3522static int
e3bb37b5 3523intel_float_operand (const char *mnemonic)
252b5132 3524{
9306ca4a
JB
3525 /* Note that the value returned is meaningful only for opcodes with (memory)
3526 operands, hence the code here is free to improperly handle opcodes that
3527 have no operands (for better performance and smaller code). */
3528
3529 if (mnemonic[0] != 'f')
3530 return 0; /* non-math */
3531
3532 switch (mnemonic[1])
3533 {
3534 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3535 the fs segment override prefix not currently handled because no
3536 call path can make opcodes without operands get here */
3537 case 'i':
3538 return 2 /* integer op */;
3539 case 'l':
3540 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3541 return 3; /* fldcw/fldenv */
3542 break;
3543 case 'n':
3544 if (mnemonic[2] != 'o' /* fnop */)
3545 return 3; /* non-waiting control op */
3546 break;
3547 case 'r':
3548 if (mnemonic[2] == 's')
3549 return 3; /* frstor/frstpm */
3550 break;
3551 case 's':
3552 if (mnemonic[2] == 'a')
3553 return 3; /* fsave */
3554 if (mnemonic[2] == 't')
3555 {
3556 switch (mnemonic[3])
3557 {
3558 case 'c': /* fstcw */
3559 case 'd': /* fstdw */
3560 case 'e': /* fstenv */
3561 case 's': /* fsts[gw] */
3562 return 3;
3563 }
3564 }
3565 break;
3566 case 'x':
3567 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3568 return 0; /* fxsave/fxrstor are not really math ops */
3569 break;
3570 }
252b5132 3571
9306ca4a 3572 return 1;
252b5132
RH
3573}
3574
c0f3af97
L
3575/* Build the VEX prefix. */
3576
3577static void
d3ce72d0 3578build_vex_prefix (const insn_template *t)
c0f3af97
L
3579{
3580 unsigned int register_specifier;
3581 unsigned int implied_prefix;
3582 unsigned int vector_length;
03751133 3583 unsigned int w;
c0f3af97
L
3584
3585 /* Check register specifier. */
3586 if (i.vex.register_specifier)
43234a1e
L
3587 {
3588 register_specifier =
3589 ~register_number (i.vex.register_specifier) & 0xf;
3590 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3591 }
c0f3af97
L
3592 else
3593 register_specifier = 0xf;
3594
79f0fa25
L
3595 /* Use 2-byte VEX prefix by swapping destination and source operand
3596 if there are more than 1 register operand. */
3597 if (i.reg_operands > 1
3598 && i.vec_encoding != vex_encoding_vex3
86fa6981 3599 && i.dir_encoding == dir_encoding_default
fa99fab2 3600 && i.operands == i.reg_operands
dbbc8b7e 3601 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7b47a312 3602 && i.tm.opcode_modifier.opcodeprefix == VEX0F
dbbc8b7e 3603 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3604 && i.rex == REX_B)
3605 {
3606 unsigned int xchg = i.operands - 1;
3607 union i386_op temp_op;
3608 i386_operand_type temp_type;
3609
3610 temp_type = i.types[xchg];
3611 i.types[xchg] = i.types[0];
3612 i.types[0] = temp_type;
3613 temp_op = i.op[xchg];
3614 i.op[xchg] = i.op[0];
3615 i.op[0] = temp_op;
3616
9c2799c2 3617 gas_assert (i.rm.mode == 3);
fa99fab2
L
3618
3619 i.rex = REX_R;
3620 xchg = i.rm.regmem;
3621 i.rm.regmem = i.rm.reg;
3622 i.rm.reg = xchg;
3623
dbbc8b7e
JB
3624 if (i.tm.opcode_modifier.d)
3625 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3626 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3627 else /* Use the next insn. */
3628 i.tm = t[1];
fa99fab2
L
3629 }
3630
79dec6b7
JB
3631 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3632 are no memory operands and at least 3 register ones. */
3633 if (i.reg_operands >= 3
3634 && i.vec_encoding != vex_encoding_vex3
3635 && i.reg_operands == i.operands - i.imm_operands
3636 && i.tm.opcode_modifier.vex
3637 && i.tm.opcode_modifier.commutative
3638 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3639 && i.rex == REX_B
3640 && i.vex.register_specifier
3641 && !(i.vex.register_specifier->reg_flags & RegRex))
3642 {
3643 unsigned int xchg = i.operands - i.reg_operands;
3644 union i386_op temp_op;
3645 i386_operand_type temp_type;
3646
7b47a312 3647 gas_assert (i.tm.opcode_modifier.opcodeprefix == VEX0F);
79dec6b7
JB
3648 gas_assert (!i.tm.opcode_modifier.sae);
3649 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3650 &i.types[i.operands - 3]));
3651 gas_assert (i.rm.mode == 3);
3652
3653 temp_type = i.types[xchg];
3654 i.types[xchg] = i.types[xchg + 1];
3655 i.types[xchg + 1] = temp_type;
3656 temp_op = i.op[xchg];
3657 i.op[xchg] = i.op[xchg + 1];
3658 i.op[xchg + 1] = temp_op;
3659
3660 i.rex = 0;
3661 xchg = i.rm.regmem | 8;
3662 i.rm.regmem = ~register_specifier & 0xf;
3663 gas_assert (!(i.rm.regmem & 8));
3664 i.vex.register_specifier += xchg - i.rm.regmem;
3665 register_specifier = ~xchg & 0xf;
3666 }
3667
539f890d
L
3668 if (i.tm.opcode_modifier.vex == VEXScalar)
3669 vector_length = avxscalar;
10c17abd
JB
3670 else if (i.tm.opcode_modifier.vex == VEX256)
3671 vector_length = 1;
539f890d 3672 else
10c17abd 3673 {
56522fc5 3674 unsigned int op;
10c17abd 3675
c7213af9
L
3676 /* Determine vector length from the last multi-length vector
3677 operand. */
10c17abd 3678 vector_length = 0;
56522fc5 3679 for (op = t->operands; op--;)
10c17abd
JB
3680 if (t->operand_types[op].bitfield.xmmword
3681 && t->operand_types[op].bitfield.ymmword
3682 && i.types[op].bitfield.ymmword)
3683 {
3684 vector_length = 1;
3685 break;
3686 }
3687 }
c0f3af97 3688
8c190ce0 3689 switch ((i.tm.base_opcode >> (i.tm.opcode_length << 3)) & 0xff)
c0f3af97
L
3690 {
3691 case 0:
3692 implied_prefix = 0;
3693 break;
3694 case DATA_PREFIX_OPCODE:
3695 implied_prefix = 1;
3696 break;
3697 case REPE_PREFIX_OPCODE:
3698 implied_prefix = 2;
3699 break;
3700 case REPNE_PREFIX_OPCODE:
3701 implied_prefix = 3;
3702 break;
3703 default:
3704 abort ();
3705 }
3706
03751133
L
3707 /* Check the REX.W bit and VEXW. */
3708 if (i.tm.opcode_modifier.vexw == VEXWIG)
3709 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3710 else if (i.tm.opcode_modifier.vexw)
3711 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3712 else
931d03b7 3713 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3714
c0f3af97 3715 /* Use 2-byte VEX prefix if possible. */
03751133
L
3716 if (w == 0
3717 && i.vec_encoding != vex_encoding_vex3
7b47a312 3718 && i.tm.opcode_modifier.opcodeprefix == VEX0F
c0f3af97
L
3719 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3720 {
3721 /* 2-byte VEX prefix. */
3722 unsigned int r;
3723
3724 i.vex.length = 2;
3725 i.vex.bytes[0] = 0xc5;
3726
3727 /* Check the REX.R bit. */
3728 r = (i.rex & REX_R) ? 0 : 1;
3729 i.vex.bytes[1] = (r << 7
3730 | register_specifier << 3
3731 | vector_length << 2
3732 | implied_prefix);
3733 }
3734 else
3735 {
3736 /* 3-byte VEX prefix. */
03751133 3737 unsigned int m;
c0f3af97 3738
f88c9eb0 3739 i.vex.length = 3;
f88c9eb0 3740
7b47a312 3741 switch (i.tm.opcode_modifier.opcodeprefix)
5dd85c99 3742 {
7f399153
L
3743 case VEX0F:
3744 m = 0x1;
80de6e00 3745 i.vex.bytes[0] = 0xc4;
7f399153
L
3746 break;
3747 case VEX0F38:
3748 m = 0x2;
80de6e00 3749 i.vex.bytes[0] = 0xc4;
7f399153
L
3750 break;
3751 case VEX0F3A:
3752 m = 0x3;
80de6e00 3753 i.vex.bytes[0] = 0xc4;
7f399153
L
3754 break;
3755 case XOP08:
5dd85c99
SP
3756 m = 0x8;
3757 i.vex.bytes[0] = 0x8f;
7f399153
L
3758 break;
3759 case XOP09:
f88c9eb0
SP
3760 m = 0x9;
3761 i.vex.bytes[0] = 0x8f;
7f399153
L
3762 break;
3763 case XOP0A:
f88c9eb0
SP
3764 m = 0xa;
3765 i.vex.bytes[0] = 0x8f;
7f399153
L
3766 break;
3767 default:
3768 abort ();
f88c9eb0 3769 }
c0f3af97 3770
c0f3af97
L
3771 /* The high 3 bits of the second VEX byte are 1's compliment
3772 of RXB bits from REX. */
3773 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3774
c0f3af97
L
3775 i.vex.bytes[2] = (w << 7
3776 | register_specifier << 3
3777 | vector_length << 2
3778 | implied_prefix);
3779 }
3780}
3781
e771e7c9
JB
3782static INLINE bfd_boolean
3783is_evex_encoding (const insn_template *t)
3784{
7091c612 3785 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3786 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3787 || t->opcode_modifier.sae;
e771e7c9
JB
3788}
3789
7a8655d2
JB
3790static INLINE bfd_boolean
3791is_any_vex_encoding (const insn_template *t)
3792{
7b47a312 3793 return t->opcode_modifier.vex || is_evex_encoding (t);
7a8655d2
JB
3794}
3795
43234a1e
L
3796/* Build the EVEX prefix. */
3797
3798static void
3799build_evex_prefix (void)
3800{
3801 unsigned int register_specifier;
3802 unsigned int implied_prefix;
3803 unsigned int m, w;
3804 rex_byte vrex_used = 0;
3805
3806 /* Check register specifier. */
3807 if (i.vex.register_specifier)
3808 {
3809 gas_assert ((i.vrex & REX_X) == 0);
3810
3811 register_specifier = i.vex.register_specifier->reg_num;
3812 if ((i.vex.register_specifier->reg_flags & RegRex))
3813 register_specifier += 8;
3814 /* The upper 16 registers are encoded in the fourth byte of the
3815 EVEX prefix. */
3816 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3817 i.vex.bytes[3] = 0x8;
3818 register_specifier = ~register_specifier & 0xf;
3819 }
3820 else
3821 {
3822 register_specifier = 0xf;
3823
3824 /* Encode upper 16 vector index register in the fourth byte of
3825 the EVEX prefix. */
3826 if (!(i.vrex & REX_X))
3827 i.vex.bytes[3] = 0x8;
3828 else
3829 vrex_used |= REX_X;
3830 }
3831
3832 switch ((i.tm.base_opcode >> 8) & 0xff)
3833 {
3834 case 0:
3835 implied_prefix = 0;
3836 break;
3837 case DATA_PREFIX_OPCODE:
3838 implied_prefix = 1;
3839 break;
3840 case REPE_PREFIX_OPCODE:
3841 implied_prefix = 2;
3842 break;
3843 case REPNE_PREFIX_OPCODE:
3844 implied_prefix = 3;
3845 break;
3846 default:
3847 abort ();
3848 }
3849
3850 /* 4 byte EVEX prefix. */
3851 i.vex.length = 4;
3852 i.vex.bytes[0] = 0x62;
3853
3854 /* mmmm bits. */
7b47a312 3855 switch (i.tm.opcode_modifier.opcodeprefix)
43234a1e
L
3856 {
3857 case VEX0F:
3858 m = 1;
3859 break;
3860 case VEX0F38:
3861 m = 2;
3862 break;
3863 case VEX0F3A:
3864 m = 3;
3865 break;
3866 default:
3867 abort ();
3868 break;
3869 }
3870
3871 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3872 bits from REX. */
3873 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3874
3875 /* The fifth bit of the second EVEX byte is 1's compliment of the
3876 REX_R bit in VREX. */
3877 if (!(i.vrex & REX_R))
3878 i.vex.bytes[1] |= 0x10;
3879 else
3880 vrex_used |= REX_R;
3881
3882 if ((i.reg_operands + i.imm_operands) == i.operands)
3883 {
3884 /* When all operands are registers, the REX_X bit in REX is not
3885 used. We reuse it to encode the upper 16 registers, which is
3886 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3887 as 1's compliment. */
3888 if ((i.vrex & REX_B))
3889 {
3890 vrex_used |= REX_B;
3891 i.vex.bytes[1] &= ~0x40;
3892 }
3893 }
3894
3895 /* EVEX instructions shouldn't need the REX prefix. */
3896 i.vrex &= ~vrex_used;
3897 gas_assert (i.vrex == 0);
3898
6865c043
L
3899 /* Check the REX.W bit and VEXW. */
3900 if (i.tm.opcode_modifier.vexw == VEXWIG)
3901 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3902 else if (i.tm.opcode_modifier.vexw)
3903 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3904 else
931d03b7 3905 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3906
3907 /* Encode the U bit. */
3908 implied_prefix |= 0x4;
3909
3910 /* The third byte of the EVEX prefix. */
3911 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3912
3913 /* The fourth byte of the EVEX prefix. */
3914 /* The zeroing-masking bit. */
3915 if (i.mask && i.mask->zeroing)
3916 i.vex.bytes[3] |= 0x80;
3917
3918 /* Don't always set the broadcast bit if there is no RC. */
3919 if (!i.rounding)
3920 {
3921 /* Encode the vector length. */
3922 unsigned int vec_length;
3923
e771e7c9
JB
3924 if (!i.tm.opcode_modifier.evex
3925 || i.tm.opcode_modifier.evex == EVEXDYN)
3926 {
56522fc5 3927 unsigned int op;
e771e7c9 3928
c7213af9
L
3929 /* Determine vector length from the last multi-length vector
3930 operand. */
56522fc5 3931 for (op = i.operands; op--;)
e771e7c9
JB
3932 if (i.tm.operand_types[op].bitfield.xmmword
3933 + i.tm.operand_types[op].bitfield.ymmword
3934 + i.tm.operand_types[op].bitfield.zmmword > 1)
3935 {
3936 if (i.types[op].bitfield.zmmword)
c7213af9
L
3937 {
3938 i.tm.opcode_modifier.evex = EVEX512;
3939 break;
3940 }
e771e7c9 3941 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3942 {
3943 i.tm.opcode_modifier.evex = EVEX256;
3944 break;
3945 }
e771e7c9 3946 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3947 {
3948 i.tm.opcode_modifier.evex = EVEX128;
3949 break;
3950 }
625cbd7a
JB
3951 else if (i.broadcast && (int) op == i.broadcast->operand)
3952 {
4a1b91ea 3953 switch (i.broadcast->bytes)
625cbd7a
JB
3954 {
3955 case 64:
3956 i.tm.opcode_modifier.evex = EVEX512;
3957 break;
3958 case 32:
3959 i.tm.opcode_modifier.evex = EVEX256;
3960 break;
3961 case 16:
3962 i.tm.opcode_modifier.evex = EVEX128;
3963 break;
3964 default:
c7213af9 3965 abort ();
625cbd7a 3966 }
c7213af9 3967 break;
625cbd7a 3968 }
e771e7c9 3969 }
c7213af9 3970
56522fc5 3971 if (op >= MAX_OPERANDS)
c7213af9 3972 abort ();
e771e7c9
JB
3973 }
3974
43234a1e
L
3975 switch (i.tm.opcode_modifier.evex)
3976 {
3977 case EVEXLIG: /* LL' is ignored */
3978 vec_length = evexlig << 5;
3979 break;
3980 case EVEX128:
3981 vec_length = 0 << 5;
3982 break;
3983 case EVEX256:
3984 vec_length = 1 << 5;
3985 break;
3986 case EVEX512:
3987 vec_length = 2 << 5;
3988 break;
3989 default:
3990 abort ();
3991 break;
3992 }
3993 i.vex.bytes[3] |= vec_length;
3994 /* Encode the broadcast bit. */
3995 if (i.broadcast)
3996 i.vex.bytes[3] |= 0x10;
3997 }
3998 else
3999 {
4000 if (i.rounding->type != saeonly)
4001 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
4002 else
d3d3c6db 4003 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
4004 }
4005
4006 if (i.mask && i.mask->mask)
4007 i.vex.bytes[3] |= i.mask->mask->reg_num;
4008}
4009
65da13b5
L
4010static void
4011process_immext (void)
4012{
4013 expressionS *exp;
4014
c0f3af97 4015 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
4016 which is coded in the same place as an 8-bit immediate field
4017 would be. Here we fake an 8-bit immediate operand from the
4018 opcode suffix stored in tm.extension_opcode.
4019
c1e679ec 4020 AVX instructions also use this encoding, for some of
c0f3af97 4021 3 argument instructions. */
65da13b5 4022
43234a1e 4023 gas_assert (i.imm_operands <= 1
7ab9ffdd 4024 && (i.operands <= 2
7a8655d2 4025 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 4026 && i.operands <= 4)));
65da13b5
L
4027
4028 exp = &im_expressions[i.imm_operands++];
4029 i.op[i.operands].imms = exp;
4030 i.types[i.operands] = imm8;
4031 i.operands++;
4032 exp->X_op = O_constant;
4033 exp->X_add_number = i.tm.extension_opcode;
4034 i.tm.extension_opcode = None;
4035}
4036
42164a71
L
4037
4038static int
4039check_hle (void)
4040{
4041 switch (i.tm.opcode_modifier.hleprefixok)
4042 {
4043 default:
4044 abort ();
82c2def5 4045 case HLEPrefixNone:
165de32a
L
4046 as_bad (_("invalid instruction `%s' after `%s'"),
4047 i.tm.name, i.hle_prefix);
42164a71 4048 return 0;
82c2def5 4049 case HLEPrefixLock:
42164a71
L
4050 if (i.prefix[LOCK_PREFIX])
4051 return 1;
165de32a 4052 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 4053 return 0;
82c2def5 4054 case HLEPrefixAny:
42164a71 4055 return 1;
82c2def5 4056 case HLEPrefixRelease:
42164a71
L
4057 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4058 {
4059 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4060 i.tm.name);
4061 return 0;
4062 }
8dc0818e 4063 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
4064 {
4065 as_bad (_("memory destination needed for instruction `%s'"
4066 " after `xrelease'"), i.tm.name);
4067 return 0;
4068 }
4069 return 1;
4070 }
4071}
4072
b6f8c7c4
L
4073/* Try the shortest encoding by shortening operand size. */
4074
4075static void
4076optimize_encoding (void)
4077{
a0a1771e 4078 unsigned int j;
b6f8c7c4
L
4079
4080 if (optimize_for_space
72aea328 4081 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
4082 && i.reg_operands == 1
4083 && i.imm_operands == 1
4084 && !i.types[1].bitfield.byte
4085 && i.op[0].imms->X_op == O_constant
4086 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 4087 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4088 || (i.tm.base_opcode == 0xf6
4089 && i.tm.extension_opcode == 0x0)))
4090 {
4091 /* Optimize: -Os:
4092 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4093 */
4094 unsigned int base_regnum = i.op[1].regs->reg_num;
4095 if (flag_code == CODE_64BIT || base_regnum < 4)
4096 {
4097 i.types[1].bitfield.byte = 1;
4098 /* Ignore the suffix. */
4099 i.suffix = 0;
7697afb6
JB
4100 /* Convert to byte registers. */
4101 if (i.types[1].bitfield.word)
4102 j = 16;
4103 else if (i.types[1].bitfield.dword)
4104 j = 32;
4105 else
4106 j = 48;
4107 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4108 j += 8;
4109 i.op[1].regs -= j;
b6f8c7c4
L
4110 }
4111 }
4112 else if (flag_code == CODE_64BIT
72aea328 4113 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4114 && ((i.types[1].bitfield.qword
4115 && i.reg_operands == 1
b6f8c7c4
L
4116 && i.imm_operands == 1
4117 && i.op[0].imms->X_op == O_constant
507916b8 4118 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4119 && i.tm.extension_opcode == None
4120 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4121 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4122 && ((i.tm.base_opcode == 0x24
4123 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4124 || (i.tm.base_opcode == 0x80
4125 && i.tm.extension_opcode == 0x4)
4126 || ((i.tm.base_opcode == 0xf6
507916b8 4127 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4128 && i.tm.extension_opcode == 0x0)))
4129 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4130 && i.tm.base_opcode == 0x83
4131 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4132 || (i.types[0].bitfield.qword
4133 && ((i.reg_operands == 2
4134 && i.op[0].regs == i.op[1].regs
72aea328
JB
4135 && (i.tm.base_opcode == 0x30
4136 || i.tm.base_opcode == 0x28))
d3d50934
L
4137 || (i.reg_operands == 1
4138 && i.operands == 1
72aea328 4139 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4140 {
4141 /* Optimize: -O:
4142 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4143 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4144 testq $imm31, %r64 -> testl $imm31, %r32
4145 xorq %r64, %r64 -> xorl %r32, %r32
4146 subq %r64, %r64 -> subl %r32, %r32
4147 movq $imm31, %r64 -> movl $imm31, %r32
4148 movq $imm32, %r64 -> movl $imm32, %r32
4149 */
4150 i.tm.opcode_modifier.norex64 = 1;
507916b8 4151 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4152 {
4153 /* Handle
4154 movq $imm31, %r64 -> movl $imm31, %r32
4155 movq $imm32, %r64 -> movl $imm32, %r32
4156 */
4157 i.tm.operand_types[0].bitfield.imm32 = 1;
4158 i.tm.operand_types[0].bitfield.imm32s = 0;
4159 i.tm.operand_types[0].bitfield.imm64 = 0;
4160 i.types[0].bitfield.imm32 = 1;
4161 i.types[0].bitfield.imm32s = 0;
4162 i.types[0].bitfield.imm64 = 0;
4163 i.types[1].bitfield.dword = 1;
4164 i.types[1].bitfield.qword = 0;
507916b8 4165 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4166 {
4167 /* Handle
4168 movq $imm31, %r64 -> movl $imm31, %r32
4169 */
507916b8 4170 i.tm.base_opcode = 0xb8;
b6f8c7c4 4171 i.tm.extension_opcode = None;
507916b8 4172 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4173 i.tm.opcode_modifier.modrm = 0;
4174 }
4175 }
4176 }
5641ec01
JB
4177 else if (optimize > 1
4178 && !optimize_for_space
72aea328 4179 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4180 && i.reg_operands == 2
4181 && i.op[0].regs == i.op[1].regs
4182 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4183 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4184 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4185 {
4186 /* Optimize: -O2:
4187 andb %rN, %rN -> testb %rN, %rN
4188 andw %rN, %rN -> testw %rN, %rN
4189 andq %rN, %rN -> testq %rN, %rN
4190 orb %rN, %rN -> testb %rN, %rN
4191 orw %rN, %rN -> testw %rN, %rN
4192 orq %rN, %rN -> testq %rN, %rN
4193
4194 and outside of 64-bit mode
4195
4196 andl %rN, %rN -> testl %rN, %rN
4197 orl %rN, %rN -> testl %rN, %rN
4198 */
4199 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4200 }
99112332 4201 else if (i.reg_operands == 3
b6f8c7c4
L
4202 && i.op[0].regs == i.op[1].regs
4203 && !i.types[2].bitfield.xmmword
4204 && (i.tm.opcode_modifier.vex
7a69eac3 4205 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4206 && !i.rounding
e771e7c9 4207 && is_evex_encoding (&i.tm)
80c34c38 4208 && (i.vec_encoding != vex_encoding_evex
dd22218c 4209 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4210 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4211 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4212 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4213 && ((i.tm.base_opcode == 0x55
4214 || i.tm.base_opcode == 0x6655
4215 || i.tm.base_opcode == 0x66df
4216 || i.tm.base_opcode == 0x57
4217 || i.tm.base_opcode == 0x6657
8305403a
L
4218 || i.tm.base_opcode == 0x66ef
4219 || i.tm.base_opcode == 0x66f8
4220 || i.tm.base_opcode == 0x66f9
4221 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4222 || i.tm.base_opcode == 0x66fb
4223 || i.tm.base_opcode == 0x42
4224 || i.tm.base_opcode == 0x6642
4225 || i.tm.base_opcode == 0x47
4226 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4227 && i.tm.extension_opcode == None))
4228 {
99112332 4229 /* Optimize: -O1:
8305403a
L
4230 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4231 vpsubq and vpsubw:
b6f8c7c4
L
4232 EVEX VOP %zmmM, %zmmM, %zmmN
4233 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4234 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4235 EVEX VOP %ymmM, %ymmM, %ymmN
4236 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4237 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4238 VEX VOP %ymmM, %ymmM, %ymmN
4239 -> VEX VOP %xmmM, %xmmM, %xmmN
4240 VOP, one of vpandn and vpxor:
4241 VEX VOP %ymmM, %ymmM, %ymmN
4242 -> VEX VOP %xmmM, %xmmM, %xmmN
4243 VOP, one of vpandnd and vpandnq:
4244 EVEX VOP %zmmM, %zmmM, %zmmN
4245 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4246 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4247 EVEX VOP %ymmM, %ymmM, %ymmN
4248 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4249 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4250 VOP, one of vpxord and vpxorq:
4251 EVEX VOP %zmmM, %zmmM, %zmmN
4252 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4253 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4254 EVEX VOP %ymmM, %ymmM, %ymmN
4255 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4256 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4257 VOP, one of kxord and kxorq:
4258 VEX VOP %kM, %kM, %kN
4259 -> VEX kxorw %kM, %kM, %kN
4260 VOP, one of kandnd and kandnq:
4261 VEX VOP %kM, %kM, %kN
4262 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4263 */
e771e7c9 4264 if (is_evex_encoding (&i.tm))
b6f8c7c4 4265 {
7b1d7ca1 4266 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4267 {
4268 i.tm.opcode_modifier.vex = VEX128;
4269 i.tm.opcode_modifier.vexw = VEXW0;
4270 i.tm.opcode_modifier.evex = 0;
4271 }
7b1d7ca1 4272 else if (optimize > 1)
dd22218c
L
4273 i.tm.opcode_modifier.evex = EVEX128;
4274 else
4275 return;
b6f8c7c4 4276 }
f74a6307 4277 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4278 {
4279 i.tm.base_opcode &= 0xff;
4280 i.tm.opcode_modifier.vexw = VEXW0;
4281 }
b6f8c7c4
L
4282 else
4283 i.tm.opcode_modifier.vex = VEX128;
4284
4285 if (i.tm.opcode_modifier.vex)
4286 for (j = 0; j < 3; j++)
4287 {
4288 i.types[j].bitfield.xmmword = 1;
4289 i.types[j].bitfield.ymmword = 0;
4290 }
4291 }
392a5972 4292 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4293 && !i.types[0].bitfield.zmmword
392a5972 4294 && !i.types[1].bitfield.zmmword
97ed31ae 4295 && !i.mask
a0a1771e 4296 && !i.broadcast
97ed31ae 4297 && is_evex_encoding (&i.tm)
392a5972
L
4298 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4299 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4300 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4301 || (i.tm.base_opcode & ~4) == 0x66db
4302 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4303 && i.tm.extension_opcode == None)
4304 {
4305 /* Optimize: -O1:
4306 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4307 vmovdqu32 and vmovdqu64:
4308 EVEX VOP %xmmM, %xmmN
4309 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4310 EVEX VOP %ymmM, %ymmN
4311 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4312 EVEX VOP %xmmM, mem
4313 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4314 EVEX VOP %ymmM, mem
4315 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4316 EVEX VOP mem, %xmmN
4317 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4318 EVEX VOP mem, %ymmN
4319 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4320 VOP, one of vpand, vpandn, vpor, vpxor:
4321 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4322 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4323 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4324 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4325 EVEX VOP{d,q} mem, %xmmM, %xmmN
4326 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4327 EVEX VOP{d,q} mem, %ymmM, %ymmN
4328 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4329 */
a0a1771e 4330 for (j = 0; j < i.operands; j++)
392a5972
L
4331 if (operand_type_check (i.types[j], disp)
4332 && i.op[j].disps->X_op == O_constant)
4333 {
4334 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4335 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4336 bytes, we choose EVEX Disp8 over VEX Disp32. */
4337 int evex_disp8, vex_disp8;
4338 unsigned int memshift = i.memshift;
4339 offsetT n = i.op[j].disps->X_add_number;
4340
4341 evex_disp8 = fits_in_disp8 (n);
4342 i.memshift = 0;
4343 vex_disp8 = fits_in_disp8 (n);
4344 if (evex_disp8 != vex_disp8)
4345 {
4346 i.memshift = memshift;
4347 return;
4348 }
4349
4350 i.types[j].bitfield.disp8 = vex_disp8;
4351 break;
4352 }
4353 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4354 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4355 i.tm.opcode_modifier.vex
4356 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4357 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4358 /* VPAND, VPOR, and VPXOR are commutative. */
4359 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4360 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4361 i.tm.opcode_modifier.evex = 0;
4362 i.tm.opcode_modifier.masking = 0;
a0a1771e 4363 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4364 i.tm.opcode_modifier.disp8memshift = 0;
4365 i.memshift = 0;
a0a1771e
JB
4366 if (j < i.operands)
4367 i.types[j].bitfield.disp8
4368 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4369 }
b6f8c7c4
L
4370}
4371
ae531041
L
4372/* Return non-zero for load instruction. */
4373
4374static int
4375load_insn_p (void)
4376{
4377 unsigned int dest;
4378 int any_vex_p = is_any_vex_encoding (&i.tm);
4379 unsigned int base_opcode = i.tm.base_opcode | 1;
4380
4381 if (!any_vex_p)
4382 {
a09f656b 4383 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4384 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4385 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4386 if (i.tm.opcode_modifier.anysize)
ae531041
L
4387 return 0;
4388
a09f656b 4389 /* pop, popf, popa. */
4390 if (strcmp (i.tm.name, "pop") == 0
4391 || i.tm.base_opcode == 0x9d
4392 || i.tm.base_opcode == 0x61)
ae531041
L
4393 return 1;
4394
4395 /* movs, cmps, lods, scas. */
4396 if ((i.tm.base_opcode | 0xb) == 0xaf)
4397 return 1;
4398
a09f656b 4399 /* outs, xlatb. */
4400 if (base_opcode == 0x6f
4401 || i.tm.base_opcode == 0xd7)
ae531041 4402 return 1;
a09f656b 4403 /* NB: For AMD-specific insns with implicit memory operands,
4404 they're intentionally not covered. */
ae531041
L
4405 }
4406
4407 /* No memory operand. */
4408 if (!i.mem_operands)
4409 return 0;
4410
4411 if (any_vex_p)
4412 {
4413 /* vldmxcsr. */
4414 if (i.tm.base_opcode == 0xae
4415 && i.tm.opcode_modifier.vex
7b47a312 4416 && i.tm.opcode_modifier.opcodeprefix == VEX0F
ae531041
L
4417 && i.tm.extension_opcode == 2)
4418 return 1;
4419 }
4420 else
4421 {
4422 /* test, not, neg, mul, imul, div, idiv. */
4423 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4424 && i.tm.extension_opcode != 1)
4425 return 1;
4426
4427 /* inc, dec. */
4428 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4429 return 1;
4430
4431 /* add, or, adc, sbb, and, sub, xor, cmp. */
4432 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4433 return 1;
4434
4435 /* bt, bts, btr, btc. */
4436 if (i.tm.base_opcode == 0xfba
4437 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4438 return 1;
4439
4440 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4441 if ((base_opcode == 0xc1
4442 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4443 && i.tm.extension_opcode != 6)
4444 return 1;
4445
4446 /* cmpxchg8b, cmpxchg16b, xrstors. */
4447 if (i.tm.base_opcode == 0xfc7
8b65b895 4448 && i.tm.opcode_modifier.opcodeprefix == 0
ae531041
L
4449 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3))
4450 return 1;
4451
4452 /* fxrstor, ldmxcsr, xrstor. */
4453 if (i.tm.base_opcode == 0xfae
4454 && (i.tm.extension_opcode == 1
4455 || i.tm.extension_opcode == 2
4456 || i.tm.extension_opcode == 5))
4457 return 1;
4458
4459 /* lgdt, lidt, lmsw. */
4460 if (i.tm.base_opcode == 0xf01
4461 && (i.tm.extension_opcode == 2
4462 || i.tm.extension_opcode == 3
4463 || i.tm.extension_opcode == 6))
4464 return 1;
4465
4466 /* vmptrld */
4467 if (i.tm.base_opcode == 0xfc7
8b65b895 4468 && i.tm.opcode_modifier.opcodeprefix == 0
ae531041
L
4469 && i.tm.extension_opcode == 6)
4470 return 1;
4471
4472 /* Check for x87 instructions. */
4473 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4474 {
4475 /* Skip fst, fstp, fstenv, fstcw. */
4476 if (i.tm.base_opcode == 0xd9
4477 && (i.tm.extension_opcode == 2
4478 || i.tm.extension_opcode == 3
4479 || i.tm.extension_opcode == 6
4480 || i.tm.extension_opcode == 7))
4481 return 0;
4482
4483 /* Skip fisttp, fist, fistp, fstp. */
4484 if (i.tm.base_opcode == 0xdb
4485 && (i.tm.extension_opcode == 1
4486 || i.tm.extension_opcode == 2
4487 || i.tm.extension_opcode == 3
4488 || i.tm.extension_opcode == 7))
4489 return 0;
4490
4491 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4492 if (i.tm.base_opcode == 0xdd
4493 && (i.tm.extension_opcode == 1
4494 || i.tm.extension_opcode == 2
4495 || i.tm.extension_opcode == 3
4496 || i.tm.extension_opcode == 6
4497 || i.tm.extension_opcode == 7))
4498 return 0;
4499
4500 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4501 if (i.tm.base_opcode == 0xdf
4502 && (i.tm.extension_opcode == 1
4503 || i.tm.extension_opcode == 2
4504 || i.tm.extension_opcode == 3
4505 || i.tm.extension_opcode == 6
4506 || i.tm.extension_opcode == 7))
4507 return 0;
4508
4509 return 1;
4510 }
4511 }
4512
4513 dest = i.operands - 1;
4514
4515 /* Check fake imm8 operand and 3 source operands. */
4516 if ((i.tm.opcode_modifier.immext
4517 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4518 && i.types[dest].bitfield.imm8)
4519 dest--;
4520
4521 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4522 if (!any_vex_p
4523 && (base_opcode == 0x1
4524 || base_opcode == 0x9
4525 || base_opcode == 0x11
4526 || base_opcode == 0x19
4527 || base_opcode == 0x21
4528 || base_opcode == 0x29
4529 || base_opcode == 0x31
4530 || base_opcode == 0x39
4531 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4532 || base_opcode == 0xfc1))
4533 return 1;
4534
4535 /* Check for load instruction. */
4536 return (i.types[dest].bitfield.class != ClassNone
4537 || i.types[dest].bitfield.instance == Accum);
4538}
4539
4540/* Output lfence, 0xfaee8, after instruction. */
4541
4542static void
4543insert_lfence_after (void)
4544{
4545 if (lfence_after_load && load_insn_p ())
4546 {
a09f656b 4547 /* There are also two REP string instructions that require
4548 special treatment. Specifically, the compare string (CMPS)
4549 and scan string (SCAS) instructions set EFLAGS in a manner
4550 that depends on the data being compared/scanned. When used
4551 with a REP prefix, the number of iterations may therefore
4552 vary depending on this data. If the data is a program secret
4553 chosen by the adversary using an LVI method,
4554 then this data-dependent behavior may leak some aspect
4555 of the secret. */
4556 if (((i.tm.base_opcode | 0x1) == 0xa7
4557 || (i.tm.base_opcode | 0x1) == 0xaf)
4558 && i.prefix[REP_PREFIX])
4559 {
4560 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4561 i.tm.name);
4562 }
ae531041
L
4563 char *p = frag_more (3);
4564 *p++ = 0xf;
4565 *p++ = 0xae;
4566 *p = 0xe8;
4567 }
4568}
4569
4570/* Output lfence, 0xfaee8, before instruction. */
4571
4572static void
4573insert_lfence_before (void)
4574{
4575 char *p;
4576
4577 if (is_any_vex_encoding (&i.tm))
4578 return;
4579
4580 if (i.tm.base_opcode == 0xff
4581 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4582 {
4583 /* Insert lfence before indirect branch if needed. */
4584
4585 if (lfence_before_indirect_branch == lfence_branch_none)
4586 return;
4587
4588 if (i.operands != 1)
4589 abort ();
4590
4591 if (i.reg_operands == 1)
4592 {
4593 /* Indirect branch via register. Don't insert lfence with
4594 -mlfence-after-load=yes. */
4595 if (lfence_after_load
4596 || lfence_before_indirect_branch == lfence_branch_memory)
4597 return;
4598 }
4599 else if (i.mem_operands == 1
4600 && lfence_before_indirect_branch != lfence_branch_register)
4601 {
4602 as_warn (_("indirect `%s` with memory operand should be avoided"),
4603 i.tm.name);
4604 return;
4605 }
4606 else
4607 return;
4608
4609 if (last_insn.kind != last_insn_other
4610 && last_insn.seg == now_seg)
4611 {
4612 as_warn_where (last_insn.file, last_insn.line,
4613 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4614 last_insn.name, i.tm.name);
4615 return;
4616 }
4617
4618 p = frag_more (3);
4619 *p++ = 0xf;
4620 *p++ = 0xae;
4621 *p = 0xe8;
4622 return;
4623 }
4624
503648e4 4625 /* Output or/not/shl and lfence before near ret. */
ae531041
L
4626 if (lfence_before_ret != lfence_before_ret_none
4627 && (i.tm.base_opcode == 0xc2
503648e4 4628 || i.tm.base_opcode == 0xc3))
ae531041
L
4629 {
4630 if (last_insn.kind != last_insn_other
4631 && last_insn.seg == now_seg)
4632 {
4633 as_warn_where (last_insn.file, last_insn.line,
4634 _("`%s` skips -mlfence-before-ret on `%s`"),
4635 last_insn.name, i.tm.name);
4636 return;
4637 }
a09f656b 4638
a09f656b 4639 /* Near ret ingore operand size override under CPU64. */
503648e4 4640 char prefix = flag_code == CODE_64BIT
4641 ? 0x48
4642 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
a09f656b 4643
4644 if (lfence_before_ret == lfence_before_ret_not)
4645 {
4646 /* not: 0xf71424, may add prefix
4647 for operand size override or 64-bit code. */
4648 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4649 if (prefix)
4650 *p++ = prefix;
ae531041
L
4651 *p++ = 0xf7;
4652 *p++ = 0x14;
4653 *p++ = 0x24;
a09f656b 4654 if (prefix)
4655 *p++ = prefix;
ae531041
L
4656 *p++ = 0xf7;
4657 *p++ = 0x14;
4658 *p++ = 0x24;
4659 }
a09f656b 4660 else
4661 {
4662 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4663 if (prefix)
4664 *p++ = prefix;
4665 if (lfence_before_ret == lfence_before_ret_or)
4666 {
4667 /* or: 0x830c2400, may add prefix
4668 for operand size override or 64-bit code. */
4669 *p++ = 0x83;
4670 *p++ = 0x0c;
4671 }
4672 else
4673 {
4674 /* shl: 0xc1242400, may add prefix
4675 for operand size override or 64-bit code. */
4676 *p++ = 0xc1;
4677 *p++ = 0x24;
4678 }
4679
4680 *p++ = 0x24;
4681 *p++ = 0x0;
4682 }
4683
ae531041
L
4684 *p++ = 0xf;
4685 *p++ = 0xae;
4686 *p = 0xe8;
4687 }
4688}
4689
252b5132
RH
4690/* This is the guts of the machine-dependent assembler. LINE points to a
4691 machine dependent instruction. This function is supposed to emit
4692 the frags/bytes it assembles to. */
4693
4694void
65da13b5 4695md_assemble (char *line)
252b5132 4696{
40fb9820 4697 unsigned int j;
83b16ac6 4698 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4699 const insn_template *t;
252b5132 4700
47926f60 4701 /* Initialize globals. */
252b5132
RH
4702 memset (&i, '\0', sizeof (i));
4703 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4704 i.reloc[j] = NO_RELOC;
252b5132
RH
4705 memset (disp_expressions, '\0', sizeof (disp_expressions));
4706 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4707 save_stack_p = save_stack;
252b5132
RH
4708
4709 /* First parse an instruction mnemonic & call i386_operand for the operands.
4710 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4711 start of a (possibly prefixed) mnemonic. */
252b5132 4712
29b0f896
AM
4713 line = parse_insn (line, mnemonic);
4714 if (line == NULL)
4715 return;
83b16ac6 4716 mnem_suffix = i.suffix;
252b5132 4717
29b0f896 4718 line = parse_operands (line, mnemonic);
ee86248c 4719 this_operand = -1;
8325cc63
JB
4720 xfree (i.memop1_string);
4721 i.memop1_string = NULL;
29b0f896
AM
4722 if (line == NULL)
4723 return;
252b5132 4724
29b0f896
AM
4725 /* Now we've parsed the mnemonic into a set of templates, and have the
4726 operands at hand. */
4727
b630c145
JB
4728 /* All Intel opcodes have reversed operands except for "bound", "enter",
4729 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4730 intersegment "jmp" and "call" instructions with 2 immediate operands so
4731 that the immediate segment precedes the offset, as it does when in AT&T
4732 mode. */
4d456e3d
L
4733 if (intel_syntax
4734 && i.operands > 1
29b0f896 4735 && (strcmp (mnemonic, "bound") != 0)
30123838 4736 && (strcmp (mnemonic, "invlpga") != 0)
eedb0f2c
JB
4737 && (strncmp (mnemonic, "monitor", 7) != 0)
4738 && (strncmp (mnemonic, "mwait", 5) != 0)
b630c145
JB
4739 && (strcmp (mnemonic, "tpause") != 0)
4740 && (strcmp (mnemonic, "umwait") != 0)
40fb9820
L
4741 && !(operand_type_check (i.types[0], imm)
4742 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4743 swap_operands ();
4744
ec56d5c0
JB
4745 /* The order of the immediates should be reversed
4746 for 2 immediates extrq and insertq instructions */
4747 if (i.imm_operands == 2
4748 && (strcmp (mnemonic, "extrq") == 0
4749 || strcmp (mnemonic, "insertq") == 0))
4750 swap_2_operands (0, 1);
4751
29b0f896
AM
4752 if (i.imm_operands)
4753 optimize_imm ();
4754
b300c311
L
4755 /* Don't optimize displacement for movabs since it only takes 64bit
4756 displacement. */
4757 if (i.disp_operands
a501d77e 4758 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4759 && (flag_code != CODE_64BIT
4760 || strcmp (mnemonic, "movabs") != 0))
4761 optimize_disp ();
29b0f896
AM
4762
4763 /* Next, we find a template that matches the given insn,
4764 making sure the overlap of the given operands types is consistent
4765 with the template operand types. */
252b5132 4766
83b16ac6 4767 if (!(t = match_template (mnem_suffix)))
29b0f896 4768 return;
252b5132 4769
7bab8ab5 4770 if (sse_check != check_none
81f8a913 4771 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4772 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4773 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4774 && (i.tm.cpu_flags.bitfield.cpusse
4775 || i.tm.cpu_flags.bitfield.cpusse2
4776 || i.tm.cpu_flags.bitfield.cpusse3
4777 || i.tm.cpu_flags.bitfield.cpussse3
4778 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4779 || i.tm.cpu_flags.bitfield.cpusse4_2
4780 || i.tm.cpu_flags.bitfield.cpupclmul
4781 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4782 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4783 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4784 {
7bab8ab5 4785 (sse_check == check_warning
daf50ae7
L
4786 ? as_warn
4787 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4788 }
4789
40fb9820 4790 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4791 if (!add_prefix (FWAIT_OPCODE))
4792 return;
252b5132 4793
d5de92cf
L
4794 /* Check if REP prefix is OK. */
4795 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4796 {
4797 as_bad (_("invalid instruction `%s' after `%s'"),
4798 i.tm.name, i.rep_prefix);
4799 return;
4800 }
4801
c1ba0266
L
4802 /* Check for lock without a lockable instruction. Destination operand
4803 must be memory unless it is xchg (0x86). */
c32fa91d
L
4804 if (i.prefix[LOCK_PREFIX]
4805 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4806 || i.mem_operands == 0
4807 || (i.tm.base_opcode != 0x86
8dc0818e 4808 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4809 {
4810 as_bad (_("expecting lockable instruction after `lock'"));
4811 return;
4812 }
4813
40d231b4
JB
4814 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4815 if (i.prefix[DATA_PREFIX]
4816 && (is_any_vex_encoding (&i.tm)
4817 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4818 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
7a8655d2
JB
4819 {
4820 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4821 return;
4822 }
4823
42164a71 4824 /* Check if HLE prefix is OK. */
165de32a 4825 if (i.hle_prefix && !check_hle ())
42164a71
L
4826 return;
4827
7e8b059b
L
4828 /* Check BND prefix. */
4829 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4830 as_bad (_("expecting valid branch instruction after `bnd'"));
4831
04ef582a 4832 /* Check NOTRACK prefix. */
9fef80d6
L
4833 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4834 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4835
327e8c42
JB
4836 if (i.tm.cpu_flags.bitfield.cpumpx)
4837 {
4838 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4839 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4840 else if (flag_code != CODE_16BIT
4841 ? i.prefix[ADDR_PREFIX]
4842 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4843 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4844 }
7e8b059b
L
4845
4846 /* Insert BND prefix. */
76d3a78a
JB
4847 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4848 {
4849 if (!i.prefix[BND_PREFIX])
4850 add_prefix (BND_PREFIX_OPCODE);
4851 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4852 {
4853 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4854 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4855 }
4856 }
7e8b059b 4857
29b0f896 4858 /* Check string instruction segment overrides. */
51c8edf6 4859 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4860 {
51c8edf6 4861 gas_assert (i.mem_operands);
29b0f896 4862 if (!check_string ())
5dd0794d 4863 return;
fc0763e6 4864 i.disp_operands = 0;
29b0f896 4865 }
5dd0794d 4866
b6f8c7c4
L
4867 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4868 optimize_encoding ();
4869
29b0f896
AM
4870 if (!process_suffix ())
4871 return;
e413e4e9 4872
921eafea 4873 /* Update operand types and check extended states. */
bc0844ae 4874 for (j = 0; j < i.operands; j++)
921eafea
L
4875 {
4876 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
32930e4e 4877 switch (i.types[j].bitfield.class)
921eafea
L
4878 {
4879 default:
4880 break;
4881 case RegMMX:
4882 i.xstate |= xstate_mmx;
4883 break;
4884 case RegMask:
32930e4e 4885 i.xstate |= xstate_mask;
921eafea
L
4886 break;
4887 case RegSIMD:
32930e4e 4888 if (i.types[j].bitfield.tmmword)
921eafea 4889 i.xstate |= xstate_tmm;
32930e4e 4890 else if (i.types[j].bitfield.zmmword)
921eafea 4891 i.xstate |= xstate_zmm;
32930e4e 4892 else if (i.types[j].bitfield.ymmword)
921eafea 4893 i.xstate |= xstate_ymm;
32930e4e 4894 else if (i.types[j].bitfield.xmmword)
921eafea
L
4895 i.xstate |= xstate_xmm;
4896 break;
4897 }
4898 }
bc0844ae 4899
29b0f896
AM
4900 /* Make still unresolved immediate matches conform to size of immediate
4901 given in i.suffix. */
4902 if (!finalize_imm ())
4903 return;
252b5132 4904
40fb9820 4905 if (i.types[0].bitfield.imm1)
29b0f896 4906 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4907
9afe6eb8
L
4908 /* We only need to check those implicit registers for instructions
4909 with 3 operands or less. */
4910 if (i.operands <= 3)
4911 for (j = 0; j < i.operands; j++)
75e5731b
JB
4912 if (i.types[j].bitfield.instance != InstanceNone
4913 && !i.types[j].bitfield.xmmword)
9afe6eb8 4914 i.reg_operands--;
40fb9820 4915
29b0f896
AM
4916 /* For insns with operands there are more diddles to do to the opcode. */
4917 if (i.operands)
4918 {
4919 if (!process_operands ())
4920 return;
4921 }
8c190ce0 4922 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4923 {
4924 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4925 as_warn (_("translating to `%sp'"), i.tm.name);
4926 }
252b5132 4927
7a8655d2 4928 if (is_any_vex_encoding (&i.tm))
9e5e5283 4929 {
c1dc7af5 4930 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4931 {
c1dc7af5 4932 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4933 i.tm.name);
4934 return;
4935 }
c0f3af97 4936
0b9404fd
JB
4937 /* Check for explicit REX prefix. */
4938 if (i.prefix[REX_PREFIX] || i.rex_encoding)
4939 {
4940 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
4941 return;
4942 }
4943
9e5e5283
L
4944 if (i.tm.opcode_modifier.vex)
4945 build_vex_prefix (t);
4946 else
4947 build_evex_prefix ();
0b9404fd
JB
4948
4949 /* The individual REX.RXBW bits got consumed. */
4950 i.rex &= REX_OPCODE;
9e5e5283 4951 }
43234a1e 4952
5dd85c99
SP
4953 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4954 instructions may define INT_OPCODE as well, so avoid this corner
4955 case for those instructions that use MODRM. */
4956 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4957 && !i.tm.opcode_modifier.modrm
4958 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4959 {
4960 i.tm.base_opcode = INT3_OPCODE;
4961 i.imm_operands = 0;
4962 }
252b5132 4963
0cfa3eb3
JB
4964 if ((i.tm.opcode_modifier.jump == JUMP
4965 || i.tm.opcode_modifier.jump == JUMP_BYTE
4966 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4967 && i.op[0].disps->X_op == O_constant)
4968 {
4969 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4970 the absolute address given by the constant. Since ix86 jumps and
4971 calls are pc relative, we need to generate a reloc. */
4972 i.op[0].disps->X_add_symbol = &abs_symbol;
4973 i.op[0].disps->X_op = O_symbol;
4974 }
252b5132 4975
29b0f896
AM
4976 /* For 8 bit registers we need an empty rex prefix. Also if the
4977 instruction already has a prefix, we need to convert old
4978 registers to new ones. */
773f551c 4979
bab6aec1 4980 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4981 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4982 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4983 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4984 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4985 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4986 && i.rex != 0))
4987 {
4988 int x;
726c5dcd 4989
29b0f896
AM
4990 i.rex |= REX_OPCODE;
4991 for (x = 0; x < 2; x++)
4992 {
4993 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4994 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4995 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4996 {
3f93af61 4997 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4998 /* In case it is "hi" register, give up. */
4999 if (i.op[x].regs->reg_num > 3)
a540244d 5000 as_bad (_("can't encode register '%s%s' in an "
4eed87de 5001 "instruction requiring REX prefix."),
a540244d 5002 register_prefix, i.op[x].regs->reg_name);
773f551c 5003
29b0f896
AM
5004 /* Otherwise it is equivalent to the extended register.
5005 Since the encoding doesn't change this is merely
5006 cosmetic cleanup for debug output. */
5007
5008 i.op[x].regs = i.op[x].regs + 8;
773f551c 5009 }
29b0f896
AM
5010 }
5011 }
773f551c 5012
6b6b6807
L
5013 if (i.rex == 0 && i.rex_encoding)
5014 {
5015 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 5016 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
5017 the REX_OPCODE byte. */
5018 int x;
5019 for (x = 0; x < 2; x++)
bab6aec1 5020 if (i.types[x].bitfield.class == Reg
6b6b6807
L
5021 && i.types[x].bitfield.byte
5022 && (i.op[x].regs->reg_flags & RegRex64) == 0
5023 && i.op[x].regs->reg_num > 3)
5024 {
3f93af61 5025 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
5026 i.rex_encoding = FALSE;
5027 break;
5028 }
5029
5030 if (i.rex_encoding)
5031 i.rex = REX_OPCODE;
5032 }
5033
7ab9ffdd 5034 if (i.rex != 0)
29b0f896
AM
5035 add_prefix (REX_OPCODE | i.rex);
5036
ae531041
L
5037 insert_lfence_before ();
5038
29b0f896
AM
5039 /* We are ready to output the insn. */
5040 output_insn ();
e379e5f3 5041
ae531041
L
5042 insert_lfence_after ();
5043
e379e5f3
L
5044 last_insn.seg = now_seg;
5045
5046 if (i.tm.opcode_modifier.isprefix)
5047 {
5048 last_insn.kind = last_insn_prefix;
5049 last_insn.name = i.tm.name;
5050 last_insn.file = as_where (&last_insn.line);
5051 }
5052 else
5053 last_insn.kind = last_insn_other;
29b0f896
AM
5054}
5055
5056static char *
e3bb37b5 5057parse_insn (char *line, char *mnemonic)
29b0f896
AM
5058{
5059 char *l = line;
5060 char *token_start = l;
5061 char *mnem_p;
5c6af06e 5062 int supported;
d3ce72d0 5063 const insn_template *t;
b6169b20 5064 char *dot_p = NULL;
29b0f896 5065
29b0f896
AM
5066 while (1)
5067 {
5068 mnem_p = mnemonic;
5069 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5070 {
b6169b20
L
5071 if (*mnem_p == '.')
5072 dot_p = mnem_p;
29b0f896
AM
5073 mnem_p++;
5074 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 5075 {
29b0f896
AM
5076 as_bad (_("no such instruction: `%s'"), token_start);
5077 return NULL;
5078 }
5079 l++;
5080 }
5081 if (!is_space_char (*l)
5082 && *l != END_OF_INSN
e44823cf
JB
5083 && (intel_syntax
5084 || (*l != PREFIX_SEPARATOR
5085 && *l != ',')))
29b0f896
AM
5086 {
5087 as_bad (_("invalid character %s in mnemonic"),
5088 output_invalid (*l));
5089 return NULL;
5090 }
5091 if (token_start == l)
5092 {
e44823cf 5093 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
5094 as_bad (_("expecting prefix; got nothing"));
5095 else
5096 as_bad (_("expecting mnemonic; got nothing"));
5097 return NULL;
5098 }
45288df1 5099
29b0f896 5100 /* Look up instruction (or prefix) via hash table. */
629310ab 5101 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
47926f60 5102
29b0f896
AM
5103 if (*l != END_OF_INSN
5104 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5105 && current_templates
40fb9820 5106 && current_templates->start->opcode_modifier.isprefix)
29b0f896 5107 {
c6fb90c8 5108 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
5109 {
5110 as_bad ((flag_code != CODE_64BIT
5111 ? _("`%s' is only supported in 64-bit mode")
5112 : _("`%s' is not supported in 64-bit mode")),
5113 current_templates->start->name);
5114 return NULL;
5115 }
29b0f896
AM
5116 /* If we are in 16-bit mode, do not allow addr16 or data16.
5117 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
5118 if ((current_templates->start->opcode_modifier.size == SIZE16
5119 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 5120 && flag_code != CODE_64BIT
673fe0f0 5121 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
5122 ^ (flag_code == CODE_16BIT)))
5123 {
5124 as_bad (_("redundant %s prefix"),
5125 current_templates->start->name);
5126 return NULL;
45288df1 5127 }
86fa6981 5128 if (current_templates->start->opcode_length == 0)
29b0f896 5129 {
86fa6981
L
5130 /* Handle pseudo prefixes. */
5131 switch (current_templates->start->base_opcode)
5132 {
41eb8e88 5133 case Prefix_Disp8:
86fa6981
L
5134 /* {disp8} */
5135 i.disp_encoding = disp_encoding_8bit;
5136 break;
41eb8e88
L
5137 case Prefix_Disp16:
5138 /* {disp16} */
5139 i.disp_encoding = disp_encoding_16bit;
5140 break;
5141 case Prefix_Disp32:
86fa6981
L
5142 /* {disp32} */
5143 i.disp_encoding = disp_encoding_32bit;
5144 break;
41eb8e88 5145 case Prefix_Load:
86fa6981
L
5146 /* {load} */
5147 i.dir_encoding = dir_encoding_load;
5148 break;
41eb8e88 5149 case Prefix_Store:
86fa6981
L
5150 /* {store} */
5151 i.dir_encoding = dir_encoding_store;
5152 break;
41eb8e88 5153 case Prefix_VEX:
42e04b36
L
5154 /* {vex} */
5155 i.vec_encoding = vex_encoding_vex;
86fa6981 5156 break;
41eb8e88 5157 case Prefix_VEX3:
86fa6981
L
5158 /* {vex3} */
5159 i.vec_encoding = vex_encoding_vex3;
5160 break;
41eb8e88 5161 case Prefix_EVEX:
86fa6981
L
5162 /* {evex} */
5163 i.vec_encoding = vex_encoding_evex;
5164 break;
41eb8e88 5165 case Prefix_REX:
6b6b6807
L
5166 /* {rex} */
5167 i.rex_encoding = TRUE;
5168 break;
41eb8e88 5169 case Prefix_NoOptimize:
b6f8c7c4
L
5170 /* {nooptimize} */
5171 i.no_optimize = TRUE;
5172 break;
86fa6981
L
5173 default:
5174 abort ();
5175 }
5176 }
5177 else
5178 {
5179 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 5180 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 5181 {
4e9ac44a
L
5182 case PREFIX_EXIST:
5183 return NULL;
5184 case PREFIX_DS:
d777820b 5185 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
5186 i.notrack_prefix = current_templates->start->name;
5187 break;
5188 case PREFIX_REP:
5189 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5190 i.hle_prefix = current_templates->start->name;
5191 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5192 i.bnd_prefix = current_templates->start->name;
5193 else
5194 i.rep_prefix = current_templates->start->name;
5195 break;
5196 default:
5197 break;
86fa6981 5198 }
29b0f896
AM
5199 }
5200 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5201 token_start = ++l;
5202 }
5203 else
5204 break;
5205 }
45288df1 5206
30a55f88 5207 if (!current_templates)
b6169b20 5208 {
07d5e953
JB
5209 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5210 Check if we should swap operand or force 32bit displacement in
f8a5c266 5211 encoding. */
30a55f88 5212 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 5213 i.dir_encoding = dir_encoding_swap;
8d63c93e 5214 else if (mnem_p - 3 == dot_p
a501d77e
L
5215 && dot_p[1] == 'd'
5216 && dot_p[2] == '8')
5217 i.disp_encoding = disp_encoding_8bit;
8d63c93e 5218 else if (mnem_p - 4 == dot_p
f8a5c266
L
5219 && dot_p[1] == 'd'
5220 && dot_p[2] == '3'
5221 && dot_p[3] == '2')
a501d77e 5222 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
5223 else
5224 goto check_suffix;
5225 mnem_p = dot_p;
5226 *dot_p = '\0';
629310ab 5227 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
b6169b20
L
5228 }
5229
29b0f896
AM
5230 if (!current_templates)
5231 {
dc1e8a47 5232 check_suffix:
1c529385 5233 if (mnem_p > mnemonic)
29b0f896 5234 {
1c529385
LH
5235 /* See if we can get a match by trimming off a suffix. */
5236 switch (mnem_p[-1])
29b0f896 5237 {
1c529385
LH
5238 case WORD_MNEM_SUFFIX:
5239 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
5240 i.suffix = SHORT_MNEM_SUFFIX;
5241 else
1c529385
LH
5242 /* Fall through. */
5243 case BYTE_MNEM_SUFFIX:
5244 case QWORD_MNEM_SUFFIX:
5245 i.suffix = mnem_p[-1];
29b0f896 5246 mnem_p[-1] = '\0';
fe0e921f
AM
5247 current_templates
5248 = (const templates *) str_hash_find (op_hash, mnemonic);
1c529385
LH
5249 break;
5250 case SHORT_MNEM_SUFFIX:
5251 case LONG_MNEM_SUFFIX:
5252 if (!intel_syntax)
5253 {
5254 i.suffix = mnem_p[-1];
5255 mnem_p[-1] = '\0';
fe0e921f
AM
5256 current_templates
5257 = (const templates *) str_hash_find (op_hash, mnemonic);
1c529385
LH
5258 }
5259 break;
5260
5261 /* Intel Syntax. */
5262 case 'd':
5263 if (intel_syntax)
5264 {
5265 if (intel_float_operand (mnemonic) == 1)
5266 i.suffix = SHORT_MNEM_SUFFIX;
5267 else
5268 i.suffix = LONG_MNEM_SUFFIX;
5269 mnem_p[-1] = '\0';
fe0e921f
AM
5270 current_templates
5271 = (const templates *) str_hash_find (op_hash, mnemonic);
1c529385
LH
5272 }
5273 break;
29b0f896 5274 }
29b0f896 5275 }
1c529385 5276
29b0f896
AM
5277 if (!current_templates)
5278 {
5279 as_bad (_("no such instruction: `%s'"), token_start);
5280 return NULL;
5281 }
5282 }
252b5132 5283
0cfa3eb3
JB
5284 if (current_templates->start->opcode_modifier.jump == JUMP
5285 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
5286 {
5287 /* Check for a branch hint. We allow ",pt" and ",pn" for
5288 predict taken and predict not taken respectively.
5289 I'm not sure that branch hints actually do anything on loop
5290 and jcxz insns (JumpByte) for current Pentium4 chips. They
5291 may work in the future and it doesn't hurt to accept them
5292 now. */
5293 if (l[0] == ',' && l[1] == 'p')
5294 {
5295 if (l[2] == 't')
5296 {
5297 if (!add_prefix (DS_PREFIX_OPCODE))
5298 return NULL;
5299 l += 3;
5300 }
5301 else if (l[2] == 'n')
5302 {
5303 if (!add_prefix (CS_PREFIX_OPCODE))
5304 return NULL;
5305 l += 3;
5306 }
5307 }
5308 }
5309 /* Any other comma loses. */
5310 if (*l == ',')
5311 {
5312 as_bad (_("invalid character %s in mnemonic"),
5313 output_invalid (*l));
5314 return NULL;
5315 }
252b5132 5316
29b0f896 5317 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
5318 supported = 0;
5319 for (t = current_templates->start; t < current_templates->end; ++t)
5320 {
c0f3af97
L
5321 supported |= cpu_flags_match (t);
5322 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
5323 {
5324 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5325 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 5326
548d0ee6
JB
5327 return l;
5328 }
29b0f896 5329 }
3629bb00 5330
548d0ee6
JB
5331 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5332 as_bad (flag_code == CODE_64BIT
5333 ? _("`%s' is not supported in 64-bit mode")
5334 : _("`%s' is only supported in 64-bit mode"),
5335 current_templates->start->name);
5336 else
5337 as_bad (_("`%s' is not supported on `%s%s'"),
5338 current_templates->start->name,
5339 cpu_arch_name ? cpu_arch_name : default_arch,
5340 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 5341
548d0ee6 5342 return NULL;
29b0f896 5343}
252b5132 5344
29b0f896 5345static char *
e3bb37b5 5346parse_operands (char *l, const char *mnemonic)
29b0f896
AM
5347{
5348 char *token_start;
3138f287 5349
29b0f896
AM
5350 /* 1 if operand is pending after ','. */
5351 unsigned int expecting_operand = 0;
252b5132 5352
29b0f896
AM
5353 /* Non-zero if operand parens not balanced. */
5354 unsigned int paren_not_balanced;
5355
5356 while (*l != END_OF_INSN)
5357 {
5358 /* Skip optional white space before operand. */
5359 if (is_space_char (*l))
5360 ++l;
d02603dc 5361 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
5362 {
5363 as_bad (_("invalid character %s before operand %d"),
5364 output_invalid (*l),
5365 i.operands + 1);
5366 return NULL;
5367 }
d02603dc 5368 token_start = l; /* After white space. */
29b0f896
AM
5369 paren_not_balanced = 0;
5370 while (paren_not_balanced || *l != ',')
5371 {
5372 if (*l == END_OF_INSN)
5373 {
5374 if (paren_not_balanced)
5375 {
5376 if (!intel_syntax)
5377 as_bad (_("unbalanced parenthesis in operand %d."),
5378 i.operands + 1);
5379 else
5380 as_bad (_("unbalanced brackets in operand %d."),
5381 i.operands + 1);
5382 return NULL;
5383 }
5384 else
5385 break; /* we are done */
5386 }
d02603dc 5387 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
5388 {
5389 as_bad (_("invalid character %s in operand %d"),
5390 output_invalid (*l),
5391 i.operands + 1);
5392 return NULL;
5393 }
5394 if (!intel_syntax)
5395 {
5396 if (*l == '(')
5397 ++paren_not_balanced;
5398 if (*l == ')')
5399 --paren_not_balanced;
5400 }
5401 else
5402 {
5403 if (*l == '[')
5404 ++paren_not_balanced;
5405 if (*l == ']')
5406 --paren_not_balanced;
5407 }
5408 l++;
5409 }
5410 if (l != token_start)
5411 { /* Yes, we've read in another operand. */
5412 unsigned int operand_ok;
5413 this_operand = i.operands++;
5414 if (i.operands > MAX_OPERANDS)
5415 {
5416 as_bad (_("spurious operands; (%d operands/instruction max)"),
5417 MAX_OPERANDS);
5418 return NULL;
5419 }
9d46ce34 5420 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
5421 /* Now parse operand adding info to 'i' as we go along. */
5422 END_STRING_AND_SAVE (l);
5423
1286ab78
L
5424 if (i.mem_operands > 1)
5425 {
5426 as_bad (_("too many memory references for `%s'"),
5427 mnemonic);
5428 return 0;
5429 }
5430
29b0f896
AM
5431 if (intel_syntax)
5432 operand_ok =
5433 i386_intel_operand (token_start,
5434 intel_float_operand (mnemonic));
5435 else
a7619375 5436 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5437
5438 RESTORE_END_STRING (l);
5439 if (!operand_ok)
5440 return NULL;
5441 }
5442 else
5443 {
5444 if (expecting_operand)
5445 {
5446 expecting_operand_after_comma:
5447 as_bad (_("expecting operand after ','; got nothing"));
5448 return NULL;
5449 }
5450 if (*l == ',')
5451 {
5452 as_bad (_("expecting operand before ','; got nothing"));
5453 return NULL;
5454 }
5455 }
7f3f1ea2 5456
29b0f896
AM
5457 /* Now *l must be either ',' or END_OF_INSN. */
5458 if (*l == ',')
5459 {
5460 if (*++l == END_OF_INSN)
5461 {
5462 /* Just skip it, if it's \n complain. */
5463 goto expecting_operand_after_comma;
5464 }
5465 expecting_operand = 1;
5466 }
5467 }
5468 return l;
5469}
7f3f1ea2 5470
050dfa73 5471static void
4d456e3d 5472swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5473{
5474 union i386_op temp_op;
40fb9820 5475 i386_operand_type temp_type;
c48dadc9 5476 unsigned int temp_flags;
050dfa73 5477 enum bfd_reloc_code_real temp_reloc;
4eed87de 5478
050dfa73
MM
5479 temp_type = i.types[xchg2];
5480 i.types[xchg2] = i.types[xchg1];
5481 i.types[xchg1] = temp_type;
c48dadc9
JB
5482
5483 temp_flags = i.flags[xchg2];
5484 i.flags[xchg2] = i.flags[xchg1];
5485 i.flags[xchg1] = temp_flags;
5486
050dfa73
MM
5487 temp_op = i.op[xchg2];
5488 i.op[xchg2] = i.op[xchg1];
5489 i.op[xchg1] = temp_op;
c48dadc9 5490
050dfa73
MM
5491 temp_reloc = i.reloc[xchg2];
5492 i.reloc[xchg2] = i.reloc[xchg1];
5493 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5494
5495 if (i.mask)
5496 {
5497 if (i.mask->operand == xchg1)
5498 i.mask->operand = xchg2;
5499 else if (i.mask->operand == xchg2)
5500 i.mask->operand = xchg1;
5501 }
5502 if (i.broadcast)
5503 {
5504 if (i.broadcast->operand == xchg1)
5505 i.broadcast->operand = xchg2;
5506 else if (i.broadcast->operand == xchg2)
5507 i.broadcast->operand = xchg1;
5508 }
5509 if (i.rounding)
5510 {
5511 if (i.rounding->operand == xchg1)
5512 i.rounding->operand = xchg2;
5513 else if (i.rounding->operand == xchg2)
5514 i.rounding->operand = xchg1;
5515 }
050dfa73
MM
5516}
5517
29b0f896 5518static void
e3bb37b5 5519swap_operands (void)
29b0f896 5520{
b7c61d9a 5521 switch (i.operands)
050dfa73 5522 {
c0f3af97 5523 case 5:
b7c61d9a 5524 case 4:
4d456e3d 5525 swap_2_operands (1, i.operands - 2);
1a0670f3 5526 /* Fall through. */
b7c61d9a
L
5527 case 3:
5528 case 2:
4d456e3d 5529 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5530 break;
5531 default:
5532 abort ();
29b0f896 5533 }
29b0f896
AM
5534
5535 if (i.mem_operands == 2)
5536 {
5537 const seg_entry *temp_seg;
5538 temp_seg = i.seg[0];
5539 i.seg[0] = i.seg[1];
5540 i.seg[1] = temp_seg;
5541 }
5542}
252b5132 5543
29b0f896
AM
5544/* Try to ensure constant immediates are represented in the smallest
5545 opcode possible. */
5546static void
e3bb37b5 5547optimize_imm (void)
29b0f896
AM
5548{
5549 char guess_suffix = 0;
5550 int op;
252b5132 5551
29b0f896
AM
5552 if (i.suffix)
5553 guess_suffix = i.suffix;
5554 else if (i.reg_operands)
5555 {
5556 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5557 We can't do this properly yet, i.e. excluding special register
5558 instances, but the following works for instructions with
5559 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5560 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5561 if (i.types[op].bitfield.class != Reg)
5562 continue;
5563 else if (i.types[op].bitfield.byte)
7ab9ffdd 5564 {
40fb9820
L
5565 guess_suffix = BYTE_MNEM_SUFFIX;
5566 break;
5567 }
bab6aec1 5568 else if (i.types[op].bitfield.word)
252b5132 5569 {
40fb9820
L
5570 guess_suffix = WORD_MNEM_SUFFIX;
5571 break;
5572 }
bab6aec1 5573 else if (i.types[op].bitfield.dword)
40fb9820
L
5574 {
5575 guess_suffix = LONG_MNEM_SUFFIX;
5576 break;
5577 }
bab6aec1 5578 else if (i.types[op].bitfield.qword)
40fb9820
L
5579 {
5580 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5581 break;
252b5132 5582 }
29b0f896
AM
5583 }
5584 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5585 guess_suffix = WORD_MNEM_SUFFIX;
5586
5587 for (op = i.operands; --op >= 0;)
40fb9820 5588 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5589 {
5590 switch (i.op[op].imms->X_op)
252b5132 5591 {
29b0f896
AM
5592 case O_constant:
5593 /* If a suffix is given, this operand may be shortened. */
5594 switch (guess_suffix)
252b5132 5595 {
29b0f896 5596 case LONG_MNEM_SUFFIX:
40fb9820
L
5597 i.types[op].bitfield.imm32 = 1;
5598 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5599 break;
5600 case WORD_MNEM_SUFFIX:
40fb9820
L
5601 i.types[op].bitfield.imm16 = 1;
5602 i.types[op].bitfield.imm32 = 1;
5603 i.types[op].bitfield.imm32s = 1;
5604 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5605 break;
5606 case BYTE_MNEM_SUFFIX:
40fb9820
L
5607 i.types[op].bitfield.imm8 = 1;
5608 i.types[op].bitfield.imm8s = 1;
5609 i.types[op].bitfield.imm16 = 1;
5610 i.types[op].bitfield.imm32 = 1;
5611 i.types[op].bitfield.imm32s = 1;
5612 i.types[op].bitfield.imm64 = 1;
29b0f896 5613 break;
252b5132 5614 }
252b5132 5615
29b0f896
AM
5616 /* If this operand is at most 16 bits, convert it
5617 to a signed 16 bit number before trying to see
5618 whether it will fit in an even smaller size.
5619 This allows a 16-bit operand such as $0xffe0 to
5620 be recognised as within Imm8S range. */
40fb9820 5621 if ((i.types[op].bitfield.imm16)
29b0f896 5622 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5623 {
29b0f896
AM
5624 i.op[op].imms->X_add_number =
5625 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5626 }
a28def75
L
5627#ifdef BFD64
5628 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5629 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5630 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5631 == 0))
5632 {
5633 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5634 ^ ((offsetT) 1 << 31))
5635 - ((offsetT) 1 << 31));
5636 }
a28def75 5637#endif
40fb9820 5638 i.types[op]
c6fb90c8
L
5639 = operand_type_or (i.types[op],
5640 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5641
29b0f896
AM
5642 /* We must avoid matching of Imm32 templates when 64bit
5643 only immediate is available. */
5644 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5645 i.types[op].bitfield.imm32 = 0;
29b0f896 5646 break;
252b5132 5647
29b0f896
AM
5648 case O_absent:
5649 case O_register:
5650 abort ();
5651
5652 /* Symbols and expressions. */
5653 default:
9cd96992
JB
5654 /* Convert symbolic operand to proper sizes for matching, but don't
5655 prevent matching a set of insns that only supports sizes other
5656 than those matching the insn suffix. */
5657 {
40fb9820 5658 i386_operand_type mask, allowed;
d3ce72d0 5659 const insn_template *t;
9cd96992 5660
0dfbf9d7
L
5661 operand_type_set (&mask, 0);
5662 operand_type_set (&allowed, 0);
40fb9820 5663
4eed87de
AM
5664 for (t = current_templates->start;
5665 t < current_templates->end;
5666 ++t)
bab6aec1
JB
5667 {
5668 allowed = operand_type_or (allowed, t->operand_types[op]);
5669 allowed = operand_type_and (allowed, anyimm);
5670 }
9cd96992
JB
5671 switch (guess_suffix)
5672 {
5673 case QWORD_MNEM_SUFFIX:
40fb9820
L
5674 mask.bitfield.imm64 = 1;
5675 mask.bitfield.imm32s = 1;
9cd96992
JB
5676 break;
5677 case LONG_MNEM_SUFFIX:
40fb9820 5678 mask.bitfield.imm32 = 1;
9cd96992
JB
5679 break;
5680 case WORD_MNEM_SUFFIX:
40fb9820 5681 mask.bitfield.imm16 = 1;
9cd96992
JB
5682 break;
5683 case BYTE_MNEM_SUFFIX:
40fb9820 5684 mask.bitfield.imm8 = 1;
9cd96992
JB
5685 break;
5686 default:
9cd96992
JB
5687 break;
5688 }
c6fb90c8 5689 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5690 if (!operand_type_all_zero (&allowed))
c6fb90c8 5691 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5692 }
29b0f896 5693 break;
252b5132 5694 }
29b0f896
AM
5695 }
5696}
47926f60 5697
29b0f896
AM
5698/* Try to use the smallest displacement type too. */
5699static void
e3bb37b5 5700optimize_disp (void)
29b0f896
AM
5701{
5702 int op;
3e73aa7c 5703
29b0f896 5704 for (op = i.operands; --op >= 0;)
40fb9820 5705 if (operand_type_check (i.types[op], disp))
252b5132 5706 {
b300c311 5707 if (i.op[op].disps->X_op == O_constant)
252b5132 5708 {
91d6fa6a 5709 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5710
40fb9820 5711 if (i.types[op].bitfield.disp16
91d6fa6a 5712 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5713 {
5714 /* If this operand is at most 16 bits, convert
5715 to a signed 16 bit number and don't use 64bit
5716 displacement. */
91d6fa6a 5717 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5718 i.types[op].bitfield.disp64 = 0;
b300c311 5719 }
a28def75
L
5720#ifdef BFD64
5721 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5722 if (i.types[op].bitfield.disp32
91d6fa6a 5723 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5724 {
5725 /* If this operand is at most 32 bits, convert
5726 to a signed 32 bit number and don't use 64bit
5727 displacement. */
91d6fa6a
NC
5728 op_disp &= (((offsetT) 2 << 31) - 1);
5729 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5730 i.types[op].bitfield.disp64 = 0;
b300c311 5731 }
a28def75 5732#endif
91d6fa6a 5733 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5734 {
40fb9820
L
5735 i.types[op].bitfield.disp8 = 0;
5736 i.types[op].bitfield.disp16 = 0;
5737 i.types[op].bitfield.disp32 = 0;
5738 i.types[op].bitfield.disp32s = 0;
5739 i.types[op].bitfield.disp64 = 0;
b300c311
L
5740 i.op[op].disps = 0;
5741 i.disp_operands--;
5742 }
5743 else if (flag_code == CODE_64BIT)
5744 {
91d6fa6a 5745 if (fits_in_signed_long (op_disp))
28a9d8f5 5746 {
40fb9820
L
5747 i.types[op].bitfield.disp64 = 0;
5748 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5749 }
0e1147d9 5750 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5751 && fits_in_unsigned_long (op_disp))
40fb9820 5752 i.types[op].bitfield.disp32 = 1;
b300c311 5753 }
40fb9820
L
5754 if ((i.types[op].bitfield.disp32
5755 || i.types[op].bitfield.disp32s
5756 || i.types[op].bitfield.disp16)
b5014f7a 5757 && fits_in_disp8 (op_disp))
40fb9820 5758 i.types[op].bitfield.disp8 = 1;
252b5132 5759 }
67a4f2b7
AO
5760 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5761 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5762 {
5763 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5764 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5765 i.types[op].bitfield.disp8 = 0;
5766 i.types[op].bitfield.disp16 = 0;
5767 i.types[op].bitfield.disp32 = 0;
5768 i.types[op].bitfield.disp32s = 0;
5769 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5770 }
5771 else
b300c311 5772 /* We only support 64bit displacement on constants. */
40fb9820 5773 i.types[op].bitfield.disp64 = 0;
252b5132 5774 }
29b0f896
AM
5775}
5776
4a1b91ea
L
5777/* Return 1 if there is a match in broadcast bytes between operand
5778 GIVEN and instruction template T. */
5779
5780static INLINE int
5781match_broadcast_size (const insn_template *t, unsigned int given)
5782{
5783 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5784 && i.types[given].bitfield.byte)
5785 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5786 && i.types[given].bitfield.word)
5787 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5788 && i.types[given].bitfield.dword)
5789 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5790 && i.types[given].bitfield.qword));
5791}
5792
6c30d220
L
5793/* Check if operands are valid for the instruction. */
5794
5795static int
5796check_VecOperands (const insn_template *t)
5797{
43234a1e 5798 unsigned int op;
e2195274 5799 i386_cpu_flags cpu;
e2195274
JB
5800
5801 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5802 any one operand are implicity requiring AVX512VL support if the actual
5803 operand size is YMMword or XMMword. Since this function runs after
5804 template matching, there's no need to check for YMMword/XMMword in
5805 the template. */
5806 cpu = cpu_flags_and (t->cpu_flags, avx512);
5807 if (!cpu_flags_all_zero (&cpu)
5808 && !t->cpu_flags.bitfield.cpuavx512vl
5809 && !cpu_arch_flags.bitfield.cpuavx512vl)
5810 {
5811 for (op = 0; op < t->operands; ++op)
5812 {
5813 if (t->operand_types[op].bitfield.zmmword
5814 && (i.types[op].bitfield.ymmword
5815 || i.types[op].bitfield.xmmword))
5816 {
5817 i.error = unsupported;
5818 return 1;
5819 }
5820 }
5821 }
43234a1e 5822
6c30d220 5823 /* Without VSIB byte, we can't have a vector register for index. */
63112cd6 5824 if (!t->opcode_modifier.sib
6c30d220 5825 && i.index_reg
1b54b8d7
JB
5826 && (i.index_reg->reg_type.bitfield.xmmword
5827 || i.index_reg->reg_type.bitfield.ymmword
5828 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5829 {
5830 i.error = unsupported_vector_index_register;
5831 return 1;
5832 }
5833
ad8ecc81
MZ
5834 /* Check if default mask is allowed. */
5835 if (t->opcode_modifier.nodefmask
5836 && (!i.mask || i.mask->mask->reg_num == 0))
5837 {
5838 i.error = no_default_mask;
5839 return 1;
5840 }
5841
7bab8ab5
JB
5842 /* For VSIB byte, we need a vector register for index, and all vector
5843 registers must be distinct. */
260cd341 5844 if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
7bab8ab5
JB
5845 {
5846 if (!i.index_reg
63112cd6 5847 || !((t->opcode_modifier.sib == VECSIB128
1b54b8d7 5848 && i.index_reg->reg_type.bitfield.xmmword)
63112cd6 5849 || (t->opcode_modifier.sib == VECSIB256
1b54b8d7 5850 && i.index_reg->reg_type.bitfield.ymmword)
63112cd6 5851 || (t->opcode_modifier.sib == VECSIB512
1b54b8d7 5852 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5853 {
5854 i.error = invalid_vsib_address;
5855 return 1;
5856 }
5857
43234a1e
L
5858 gas_assert (i.reg_operands == 2 || i.mask);
5859 if (i.reg_operands == 2 && !i.mask)
5860 {
3528c362 5861 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5862 gas_assert (i.types[0].bitfield.xmmword
5863 || i.types[0].bitfield.ymmword);
3528c362 5864 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5865 gas_assert (i.types[2].bitfield.xmmword
5866 || i.types[2].bitfield.ymmword);
43234a1e
L
5867 if (operand_check == check_none)
5868 return 0;
5869 if (register_number (i.op[0].regs)
5870 != register_number (i.index_reg)
5871 && register_number (i.op[2].regs)
5872 != register_number (i.index_reg)
5873 && register_number (i.op[0].regs)
5874 != register_number (i.op[2].regs))
5875 return 0;
5876 if (operand_check == check_error)
5877 {
5878 i.error = invalid_vector_register_set;
5879 return 1;
5880 }
5881 as_warn (_("mask, index, and destination registers should be distinct"));
5882 }
8444f82a
MZ
5883 else if (i.reg_operands == 1 && i.mask)
5884 {
3528c362 5885 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5886 && (i.types[1].bitfield.xmmword
5887 || i.types[1].bitfield.ymmword
5888 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5889 && (register_number (i.op[1].regs)
5890 == register_number (i.index_reg)))
5891 {
5892 if (operand_check == check_error)
5893 {
5894 i.error = invalid_vector_register_set;
5895 return 1;
5896 }
5897 if (operand_check != check_none)
5898 as_warn (_("index and destination registers should be distinct"));
5899 }
5900 }
43234a1e 5901 }
7bab8ab5 5902
260cd341
LC
5903 /* For AMX instructions with three tmmword operands, all tmmword operand must be
5904 distinct */
5905 if (t->operand_types[0].bitfield.tmmword
5906 && i.reg_operands == 3)
5907 {
5908 if (register_number (i.op[0].regs)
5909 == register_number (i.op[1].regs)
5910 || register_number (i.op[0].regs)
5911 == register_number (i.op[2].regs)
5912 || register_number (i.op[1].regs)
5913 == register_number (i.op[2].regs))
5914 {
5915 i.error = invalid_tmm_register_set;
5916 return 1;
5917 }
5918 }
5919
43234a1e
L
5920 /* Check if broadcast is supported by the instruction and is applied
5921 to the memory operand. */
5922 if (i.broadcast)
5923 {
8e6e0792 5924 i386_operand_type type, overlap;
43234a1e
L
5925
5926 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5927 and its broadcast bytes match the memory operand. */
32546502 5928 op = i.broadcast->operand;
8e6e0792 5929 if (!t->opcode_modifier.broadcast
c48dadc9 5930 || !(i.flags[op] & Operand_Mem)
c39e5b26 5931 || (!i.types[op].bitfield.unspecified
4a1b91ea 5932 && !match_broadcast_size (t, op)))
43234a1e
L
5933 {
5934 bad_broadcast:
5935 i.error = unsupported_broadcast;
5936 return 1;
5937 }
8e6e0792 5938
4a1b91ea
L
5939 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5940 * i.broadcast->type);
8e6e0792 5941 operand_type_set (&type, 0);
4a1b91ea 5942 switch (i.broadcast->bytes)
8e6e0792 5943 {
4a1b91ea
L
5944 case 2:
5945 type.bitfield.word = 1;
5946 break;
5947 case 4:
5948 type.bitfield.dword = 1;
5949 break;
8e6e0792
JB
5950 case 8:
5951 type.bitfield.qword = 1;
5952 break;
5953 case 16:
5954 type.bitfield.xmmword = 1;
5955 break;
5956 case 32:
5957 type.bitfield.ymmword = 1;
5958 break;
5959 case 64:
5960 type.bitfield.zmmword = 1;
5961 break;
5962 default:
5963 goto bad_broadcast;
5964 }
5965
5966 overlap = operand_type_and (type, t->operand_types[op]);
bc49bfd8
JB
5967 if (t->operand_types[op].bitfield.class == RegSIMD
5968 && t->operand_types[op].bitfield.byte
5969 + t->operand_types[op].bitfield.word
5970 + t->operand_types[op].bitfield.dword
5971 + t->operand_types[op].bitfield.qword > 1)
5972 {
5973 overlap.bitfield.xmmword = 0;
5974 overlap.bitfield.ymmword = 0;
5975 overlap.bitfield.zmmword = 0;
5976 }
8e6e0792
JB
5977 if (operand_type_all_zero (&overlap))
5978 goto bad_broadcast;
5979
5980 if (t->opcode_modifier.checkregsize)
5981 {
5982 unsigned int j;
5983
e2195274 5984 type.bitfield.baseindex = 1;
8e6e0792
JB
5985 for (j = 0; j < i.operands; ++j)
5986 {
5987 if (j != op
5988 && !operand_type_register_match(i.types[j],
5989 t->operand_types[j],
5990 type,
5991 t->operand_types[op]))
5992 goto bad_broadcast;
5993 }
5994 }
43234a1e
L
5995 }
5996 /* If broadcast is supported in this instruction, we need to check if
5997 operand of one-element size isn't specified without broadcast. */
5998 else if (t->opcode_modifier.broadcast && i.mem_operands)
5999 {
6000 /* Find memory operand. */
6001 for (op = 0; op < i.operands; op++)
8dc0818e 6002 if (i.flags[op] & Operand_Mem)
43234a1e
L
6003 break;
6004 gas_assert (op < i.operands);
6005 /* Check size of the memory operand. */
4a1b91ea 6006 if (match_broadcast_size (t, op))
43234a1e
L
6007 {
6008 i.error = broadcast_needed;
6009 return 1;
6010 }
6011 }
c39e5b26
JB
6012 else
6013 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
6014
6015 /* Check if requested masking is supported. */
ae2387fe 6016 if (i.mask)
43234a1e 6017 {
ae2387fe
JB
6018 switch (t->opcode_modifier.masking)
6019 {
6020 case BOTH_MASKING:
6021 break;
6022 case MERGING_MASKING:
6023 if (i.mask->zeroing)
6024 {
6025 case 0:
6026 i.error = unsupported_masking;
6027 return 1;
6028 }
6029 break;
6030 case DYNAMIC_MASKING:
6031 /* Memory destinations allow only merging masking. */
6032 if (i.mask->zeroing && i.mem_operands)
6033 {
6034 /* Find memory operand. */
6035 for (op = 0; op < i.operands; op++)
c48dadc9 6036 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
6037 break;
6038 gas_assert (op < i.operands);
6039 if (op == i.operands - 1)
6040 {
6041 i.error = unsupported_masking;
6042 return 1;
6043 }
6044 }
6045 break;
6046 default:
6047 abort ();
6048 }
43234a1e
L
6049 }
6050
6051 /* Check if masking is applied to dest operand. */
6052 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
6053 {
6054 i.error = mask_not_on_destination;
6055 return 1;
6056 }
6057
43234a1e
L
6058 /* Check RC/SAE. */
6059 if (i.rounding)
6060 {
a80195f1
JB
6061 if (!t->opcode_modifier.sae
6062 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
6063 {
6064 i.error = unsupported_rc_sae;
6065 return 1;
6066 }
6067 /* If the instruction has several immediate operands and one of
6068 them is rounding, the rounding operand should be the last
6069 immediate operand. */
6070 if (i.imm_operands > 1
6071 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 6072 {
43234a1e 6073 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
6074 return 1;
6075 }
6c30d220
L
6076 }
6077
da4977e0
JB
6078 /* Check the special Imm4 cases; must be the first operand. */
6079 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6080 {
6081 if (i.op[0].imms->X_op != O_constant
6082 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6083 {
6084 i.error = bad_imm4;
6085 return 1;
6086 }
6087
6088 /* Turn off Imm<N> so that update_imm won't complain. */
6089 operand_type_set (&i.types[0], 0);
6090 }
6091
43234a1e 6092 /* Check vector Disp8 operand. */
b5014f7a
JB
6093 if (t->opcode_modifier.disp8memshift
6094 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
6095 {
6096 if (i.broadcast)
4a1b91ea 6097 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 6098 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 6099 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
6100 else
6101 {
6102 const i386_operand_type *type = NULL;
6103
6104 i.memshift = 0;
6105 for (op = 0; op < i.operands; op++)
8dc0818e 6106 if (i.flags[op] & Operand_Mem)
7091c612 6107 {
4174bfff
JB
6108 if (t->opcode_modifier.evex == EVEXLIG)
6109 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6110 else if (t->operand_types[op].bitfield.xmmword
6111 + t->operand_types[op].bitfield.ymmword
6112 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
6113 type = &t->operand_types[op];
6114 else if (!i.types[op].bitfield.unspecified)
6115 type = &i.types[op];
6116 }
3528c362 6117 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 6118 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
6119 {
6120 if (i.types[op].bitfield.zmmword)
6121 i.memshift = 6;
6122 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6123 i.memshift = 5;
6124 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6125 i.memshift = 4;
6126 }
6127
6128 if (type)
6129 {
6130 if (type->bitfield.zmmword)
6131 i.memshift = 6;
6132 else if (type->bitfield.ymmword)
6133 i.memshift = 5;
6134 else if (type->bitfield.xmmword)
6135 i.memshift = 4;
6136 }
6137
6138 /* For the check in fits_in_disp8(). */
6139 if (i.memshift == 0)
6140 i.memshift = -1;
6141 }
43234a1e
L
6142
6143 for (op = 0; op < i.operands; op++)
6144 if (operand_type_check (i.types[op], disp)
6145 && i.op[op].disps->X_op == O_constant)
6146 {
b5014f7a 6147 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 6148 {
b5014f7a
JB
6149 i.types[op].bitfield.disp8 = 1;
6150 return 0;
43234a1e 6151 }
b5014f7a 6152 i.types[op].bitfield.disp8 = 0;
43234a1e
L
6153 }
6154 }
b5014f7a
JB
6155
6156 i.memshift = 0;
43234a1e 6157
6c30d220
L
6158 return 0;
6159}
6160
da4977e0 6161/* Check if encoding requirements are met by the instruction. */
a683cc34
SP
6162
6163static int
da4977e0 6164VEX_check_encoding (const insn_template *t)
a683cc34 6165{
da4977e0
JB
6166 if (i.vec_encoding == vex_encoding_error)
6167 {
6168 i.error = unsupported;
6169 return 1;
6170 }
6171
86fa6981 6172 if (i.vec_encoding == vex_encoding_evex)
43234a1e 6173 {
86fa6981 6174 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 6175 if (!is_evex_encoding (t))
86fa6981
L
6176 {
6177 i.error = unsupported;
6178 return 1;
6179 }
6180 return 0;
43234a1e
L
6181 }
6182
a683cc34 6183 if (!t->opcode_modifier.vex)
86fa6981
L
6184 {
6185 /* This instruction template doesn't have VEX prefix. */
6186 if (i.vec_encoding != vex_encoding_default)
6187 {
6188 i.error = unsupported;
6189 return 1;
6190 }
6191 return 0;
6192 }
a683cc34 6193
a683cc34
SP
6194 return 0;
6195}
6196
d3ce72d0 6197static const insn_template *
83b16ac6 6198match_template (char mnem_suffix)
29b0f896
AM
6199{
6200 /* Points to template once we've found it. */
d3ce72d0 6201 const insn_template *t;
40fb9820 6202 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 6203 i386_operand_type overlap4;
29b0f896 6204 unsigned int found_reverse_match;
dc2be329 6205 i386_opcode_modifier suffix_check;
40fb9820 6206 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 6207 int addr_prefix_disp;
45a4bb20 6208 unsigned int j, size_match, check_register;
5614d22c 6209 enum i386_error specific_error = 0;
29b0f896 6210
c0f3af97
L
6211#if MAX_OPERANDS != 5
6212# error "MAX_OPERANDS must be 5."
f48ff2ae
L
6213#endif
6214
29b0f896 6215 found_reverse_match = 0;
539e75ad 6216 addr_prefix_disp = -1;
40fb9820 6217
dc2be329 6218 /* Prepare for mnemonic suffix check. */
40fb9820 6219 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
6220 switch (mnem_suffix)
6221 {
6222 case BYTE_MNEM_SUFFIX:
6223 suffix_check.no_bsuf = 1;
6224 break;
6225 case WORD_MNEM_SUFFIX:
6226 suffix_check.no_wsuf = 1;
6227 break;
6228 case SHORT_MNEM_SUFFIX:
6229 suffix_check.no_ssuf = 1;
6230 break;
6231 case LONG_MNEM_SUFFIX:
6232 suffix_check.no_lsuf = 1;
6233 break;
6234 case QWORD_MNEM_SUFFIX:
6235 suffix_check.no_qsuf = 1;
6236 break;
6237 default:
6238 /* NB: In Intel syntax, normally we can check for memory operand
6239 size when there is no mnemonic suffix. But jmp and call have
6240 2 different encodings with Dword memory operand size, one with
6241 No_ldSuf and the other without. i.suffix is set to
6242 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6243 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6244 suffix_check.no_ldsuf = 1;
83b16ac6
JB
6245 }
6246
01559ecc
L
6247 /* Must have right number of operands. */
6248 i.error = number_of_operands_mismatch;
6249
45aa61fe 6250 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 6251 {
539e75ad 6252 addr_prefix_disp = -1;
dbbc8b7e 6253 found_reverse_match = 0;
539e75ad 6254
29b0f896
AM
6255 if (i.operands != t->operands)
6256 continue;
6257
50aecf8c 6258 /* Check processor support. */
a65babc9 6259 i.error = unsupported;
45a4bb20 6260 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
6261 continue;
6262
57392598
CL
6263 /* Check Pseudo Prefix. */
6264 i.error = unsupported;
6265 if (t->opcode_modifier.pseudovexprefix
6266 && !(i.vec_encoding == vex_encoding_vex
6267 || i.vec_encoding == vex_encoding_vex3))
6268 continue;
6269
e1d4d893 6270 /* Check AT&T mnemonic. */
a65babc9 6271 i.error = unsupported_with_intel_mnemonic;
e1d4d893 6272 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
6273 continue;
6274
4b5aaf5f 6275 /* Check AT&T/Intel syntax. */
a65babc9 6276 i.error = unsupported_syntax;
5c07affc 6277 if ((intel_syntax && t->opcode_modifier.attsyntax)
4b5aaf5f 6278 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
6279 continue;
6280
4b5aaf5f
L
6281 /* Check Intel64/AMD64 ISA. */
6282 switch (isa64)
6283 {
6284 default:
6285 /* Default: Don't accept Intel64. */
6286 if (t->opcode_modifier.isa64 == INTEL64)
6287 continue;
6288 break;
6289 case amd64:
6290 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6291 if (t->opcode_modifier.isa64 >= INTEL64)
6292 continue;
6293 break;
6294 case intel64:
6295 /* -mintel64: Don't accept AMD64. */
5990e377 6296 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
4b5aaf5f
L
6297 continue;
6298 break;
6299 }
6300
dc2be329 6301 /* Check the suffix. */
a65babc9 6302 i.error = invalid_instruction_suffix;
dc2be329
L
6303 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6304 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6305 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6306 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6307 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6308 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 6309 continue;
29b0f896 6310
3ac21baa
JB
6311 size_match = operand_size_match (t);
6312 if (!size_match)
7d5e4556 6313 continue;
539e75ad 6314
6f2f06be
JB
6315 /* This is intentionally not
6316
0cfa3eb3 6317 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
6318
6319 as the case of a missing * on the operand is accepted (perhaps with
6320 a warning, issued further down). */
0cfa3eb3 6321 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
6322 {
6323 i.error = operand_type_mismatch;
6324 continue;
6325 }
6326
5c07affc
L
6327 for (j = 0; j < MAX_OPERANDS; j++)
6328 operand_types[j] = t->operand_types[j];
6329
e365e234
JB
6330 /* In general, don't allow
6331 - 64-bit operands outside of 64-bit mode,
6332 - 32-bit operands on pre-386. */
4873e243 6333 j = i.imm_operands + (t->operands > i.imm_operands + 1);
e365e234
JB
6334 if (((i.suffix == QWORD_MNEM_SUFFIX
6335 && flag_code != CODE_64BIT
8b65b895
L
6336 && !(t->base_opcode == 0xfc7
6337 && i.tm.opcode_modifier.opcodeprefix == 0
6338 && t->extension_opcode == 1) /* cmpxchg8b */)
e365e234
JB
6339 || (i.suffix == LONG_MNEM_SUFFIX
6340 && !cpu_arch_flags.bitfield.cpui386))
45aa61fe 6341 && (intel_syntax
3cd7f3e3 6342 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
45aa61fe
AM
6343 && !intel_float_operand (t->name))
6344 : intel_float_operand (t->name) != 2)
4873e243
JB
6345 && (t->operands == i.imm_operands
6346 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6347 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6348 && operand_types[i.imm_operands].bitfield.class != RegMask)
6349 || (operand_types[j].bitfield.class != RegMMX
6350 && operand_types[j].bitfield.class != RegSIMD
6351 && operand_types[j].bitfield.class != RegMask))
63112cd6 6352 && !t->opcode_modifier.sib)
192dc9c6
JB
6353 continue;
6354
29b0f896 6355 /* Do not verify operands when there are none. */
e365e234 6356 if (!t->operands)
da4977e0
JB
6357 {
6358 if (VEX_check_encoding (t))
6359 {
6360 specific_error = i.error;
6361 continue;
6362 }
6363
6364 /* We've found a match; break out of loop. */
6365 break;
6366 }
252b5132 6367
48bcea9f
JB
6368 if (!t->opcode_modifier.jump
6369 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6370 {
6371 /* There should be only one Disp operand. */
6372 for (j = 0; j < MAX_OPERANDS; j++)
6373 if (operand_type_check (operand_types[j], disp))
539e75ad 6374 break;
48bcea9f
JB
6375 if (j < MAX_OPERANDS)
6376 {
6377 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6378
6379 addr_prefix_disp = j;
6380
6381 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6382 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6383 switch (flag_code)
40fb9820 6384 {
48bcea9f
JB
6385 case CODE_16BIT:
6386 override = !override;
6387 /* Fall through. */
6388 case CODE_32BIT:
6389 if (operand_types[j].bitfield.disp32
6390 && operand_types[j].bitfield.disp16)
40fb9820 6391 {
48bcea9f
JB
6392 operand_types[j].bitfield.disp16 = override;
6393 operand_types[j].bitfield.disp32 = !override;
40fb9820 6394 }
48bcea9f
JB
6395 operand_types[j].bitfield.disp32s = 0;
6396 operand_types[j].bitfield.disp64 = 0;
6397 break;
6398
6399 case CODE_64BIT:
6400 if (operand_types[j].bitfield.disp32s
6401 || operand_types[j].bitfield.disp64)
40fb9820 6402 {
48bcea9f
JB
6403 operand_types[j].bitfield.disp64 &= !override;
6404 operand_types[j].bitfield.disp32s &= !override;
6405 operand_types[j].bitfield.disp32 = override;
40fb9820 6406 }
48bcea9f
JB
6407 operand_types[j].bitfield.disp16 = 0;
6408 break;
40fb9820 6409 }
539e75ad 6410 }
48bcea9f 6411 }
539e75ad 6412
02a86693
L
6413 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6414 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6415 continue;
6416
56ffb741 6417 /* We check register size if needed. */
e2195274
JB
6418 if (t->opcode_modifier.checkregsize)
6419 {
6420 check_register = (1 << t->operands) - 1;
6421 if (i.broadcast)
6422 check_register &= ~(1 << i.broadcast->operand);
6423 }
6424 else
6425 check_register = 0;
6426
c6fb90c8 6427 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
6428 switch (t->operands)
6429 {
6430 case 1:
40fb9820 6431 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
6432 continue;
6433 break;
6434 case 2:
33eaf5de 6435 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
6436 only in 32bit mode and we can use opcode 0x90. In 64bit
6437 mode, we can't use 0x90 for xchg %eax, %eax since it should
6438 zero-extend %eax to %rax. */
6439 if (flag_code == CODE_64BIT
6440 && t->base_opcode == 0x90
75e5731b
JB
6441 && i.types[0].bitfield.instance == Accum
6442 && i.types[0].bitfield.dword
6443 && i.types[1].bitfield.instance == Accum
6444 && i.types[1].bitfield.dword)
8b38ad71 6445 continue;
1212781b
JB
6446 /* xrelease mov %eax, <disp> is another special case. It must not
6447 match the accumulator-only encoding of mov. */
6448 if (flag_code != CODE_64BIT
6449 && i.hle_prefix
6450 && t->base_opcode == 0xa0
75e5731b 6451 && i.types[0].bitfield.instance == Accum
8dc0818e 6452 && (i.flags[1] & Operand_Mem))
1212781b 6453 continue;
f5eb1d70
JB
6454 /* Fall through. */
6455
6456 case 3:
3ac21baa
JB
6457 if (!(size_match & MATCH_STRAIGHT))
6458 goto check_reverse;
64c49ab3
JB
6459 /* Reverse direction of operands if swapping is possible in the first
6460 place (operands need to be symmetric) and
6461 - the load form is requested, and the template is a store form,
6462 - the store form is requested, and the template is a load form,
6463 - the non-default (swapped) form is requested. */
6464 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 6465 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
6466 && !operand_type_all_zero (&overlap1))
6467 switch (i.dir_encoding)
6468 {
6469 case dir_encoding_load:
6470 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6471 || t->opcode_modifier.regmem)
64c49ab3
JB
6472 goto check_reverse;
6473 break;
6474
6475 case dir_encoding_store:
6476 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6477 && !t->opcode_modifier.regmem)
64c49ab3
JB
6478 goto check_reverse;
6479 break;
6480
6481 case dir_encoding_swap:
6482 goto check_reverse;
6483
6484 case dir_encoding_default:
6485 break;
6486 }
86fa6981 6487 /* If we want store form, we skip the current load. */
64c49ab3
JB
6488 if ((i.dir_encoding == dir_encoding_store
6489 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6490 && i.mem_operands == 0
6491 && t->opcode_modifier.load)
fa99fab2 6492 continue;
1a0670f3 6493 /* Fall through. */
f48ff2ae 6494 case 4:
c0f3af97 6495 case 5:
c6fb90c8 6496 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6497 if (!operand_type_match (overlap0, i.types[0])
6498 || !operand_type_match (overlap1, i.types[1])
e2195274 6499 || ((check_register & 3) == 3
dc821c5f 6500 && !operand_type_register_match (i.types[0],
40fb9820 6501 operand_types[0],
dc821c5f 6502 i.types[1],
40fb9820 6503 operand_types[1])))
29b0f896
AM
6504 {
6505 /* Check if other direction is valid ... */
38e314eb 6506 if (!t->opcode_modifier.d)
29b0f896
AM
6507 continue;
6508
dc1e8a47 6509 check_reverse:
3ac21baa
JB
6510 if (!(size_match & MATCH_REVERSE))
6511 continue;
29b0f896 6512 /* Try reversing direction of operands. */
f5eb1d70
JB
6513 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6514 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6515 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6516 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6517 || (check_register
dc821c5f 6518 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6519 operand_types[i.operands - 1],
6520 i.types[i.operands - 1],
45664ddb 6521 operand_types[0])))
29b0f896
AM
6522 {
6523 /* Does not match either direction. */
6524 continue;
6525 }
38e314eb 6526 /* found_reverse_match holds which of D or FloatR
29b0f896 6527 we've found. */
38e314eb
JB
6528 if (!t->opcode_modifier.d)
6529 found_reverse_match = 0;
6530 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6531 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6532 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6533 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6534 || operand_types[0].bitfield.class == RegMMX
6535 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6536 || is_any_vex_encoding(t))
6537 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6538 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6539 else
38e314eb 6540 found_reverse_match = Opcode_D;
40fb9820 6541 if (t->opcode_modifier.floatr)
8a2ed489 6542 found_reverse_match |= Opcode_FloatR;
29b0f896 6543 }
f48ff2ae 6544 else
29b0f896 6545 {
f48ff2ae 6546 /* Found a forward 2 operand match here. */
d1cbb4db
L
6547 switch (t->operands)
6548 {
c0f3af97
L
6549 case 5:
6550 overlap4 = operand_type_and (i.types[4],
6551 operand_types[4]);
1a0670f3 6552 /* Fall through. */
d1cbb4db 6553 case 4:
c6fb90c8
L
6554 overlap3 = operand_type_and (i.types[3],
6555 operand_types[3]);
1a0670f3 6556 /* Fall through. */
d1cbb4db 6557 case 3:
c6fb90c8
L
6558 overlap2 = operand_type_and (i.types[2],
6559 operand_types[2]);
d1cbb4db
L
6560 break;
6561 }
29b0f896 6562
f48ff2ae
L
6563 switch (t->operands)
6564 {
c0f3af97
L
6565 case 5:
6566 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6567 || !operand_type_register_match (i.types[3],
c0f3af97 6568 operand_types[3],
c0f3af97
L
6569 i.types[4],
6570 operand_types[4]))
6571 continue;
1a0670f3 6572 /* Fall through. */
f48ff2ae 6573 case 4:
40fb9820 6574 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6575 || ((check_register & 0xa) == 0xa
6576 && !operand_type_register_match (i.types[1],
f7768225
JB
6577 operand_types[1],
6578 i.types[3],
e2195274
JB
6579 operand_types[3]))
6580 || ((check_register & 0xc) == 0xc
6581 && !operand_type_register_match (i.types[2],
6582 operand_types[2],
6583 i.types[3],
6584 operand_types[3])))
f48ff2ae 6585 continue;
1a0670f3 6586 /* Fall through. */
f48ff2ae
L
6587 case 3:
6588 /* Here we make use of the fact that there are no
23e42951 6589 reverse match 3 operand instructions. */
40fb9820 6590 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6591 || ((check_register & 5) == 5
6592 && !operand_type_register_match (i.types[0],
23e42951
JB
6593 operand_types[0],
6594 i.types[2],
e2195274
JB
6595 operand_types[2]))
6596 || ((check_register & 6) == 6
6597 && !operand_type_register_match (i.types[1],
6598 operand_types[1],
6599 i.types[2],
6600 operand_types[2])))
f48ff2ae
L
6601 continue;
6602 break;
6603 }
29b0f896 6604 }
f48ff2ae 6605 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6606 slip through to break. */
6607 }
c0f3af97 6608
da4977e0
JB
6609 /* Check if vector operands are valid. */
6610 if (check_VecOperands (t))
6611 {
6612 specific_error = i.error;
6613 continue;
6614 }
6615
6616 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6617 if (VEX_check_encoding (t))
5614d22c
JB
6618 {
6619 specific_error = i.error;
6620 continue;
6621 }
a683cc34 6622
29b0f896
AM
6623 /* We've found a match; break out of loop. */
6624 break;
6625 }
6626
6627 if (t == current_templates->end)
6628 {
6629 /* We found no match. */
a65babc9 6630 const char *err_msg;
5614d22c 6631 switch (specific_error ? specific_error : i.error)
a65babc9
L
6632 {
6633 default:
6634 abort ();
86e026a4 6635 case operand_size_mismatch:
a65babc9
L
6636 err_msg = _("operand size mismatch");
6637 break;
6638 case operand_type_mismatch:
6639 err_msg = _("operand type mismatch");
6640 break;
6641 case register_type_mismatch:
6642 err_msg = _("register type mismatch");
6643 break;
6644 case number_of_operands_mismatch:
6645 err_msg = _("number of operands mismatch");
6646 break;
6647 case invalid_instruction_suffix:
6648 err_msg = _("invalid instruction suffix");
6649 break;
6650 case bad_imm4:
4a2608e3 6651 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6652 break;
a65babc9
L
6653 case unsupported_with_intel_mnemonic:
6654 err_msg = _("unsupported with Intel mnemonic");
6655 break;
6656 case unsupported_syntax:
6657 err_msg = _("unsupported syntax");
6658 break;
6659 case unsupported:
35262a23 6660 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6661 current_templates->start->name);
6662 return NULL;
260cd341
LC
6663 case invalid_sib_address:
6664 err_msg = _("invalid SIB address");
6665 break;
6c30d220
L
6666 case invalid_vsib_address:
6667 err_msg = _("invalid VSIB address");
6668 break;
7bab8ab5
JB
6669 case invalid_vector_register_set:
6670 err_msg = _("mask, index, and destination registers must be distinct");
6671 break;
260cd341
LC
6672 case invalid_tmm_register_set:
6673 err_msg = _("all tmm registers must be distinct");
6674 break;
6c30d220
L
6675 case unsupported_vector_index_register:
6676 err_msg = _("unsupported vector index register");
6677 break;
43234a1e
L
6678 case unsupported_broadcast:
6679 err_msg = _("unsupported broadcast");
6680 break;
43234a1e
L
6681 case broadcast_needed:
6682 err_msg = _("broadcast is needed for operand of such type");
6683 break;
6684 case unsupported_masking:
6685 err_msg = _("unsupported masking");
6686 break;
6687 case mask_not_on_destination:
6688 err_msg = _("mask not on destination operand");
6689 break;
6690 case no_default_mask:
6691 err_msg = _("default mask isn't allowed");
6692 break;
6693 case unsupported_rc_sae:
6694 err_msg = _("unsupported static rounding/sae");
6695 break;
6696 case rc_sae_operand_not_last_imm:
6697 if (intel_syntax)
6698 err_msg = _("RC/SAE operand must precede immediate operands");
6699 else
6700 err_msg = _("RC/SAE operand must follow immediate operands");
6701 break;
6702 case invalid_register_operand:
6703 err_msg = _("invalid register operand");
6704 break;
a65babc9
L
6705 }
6706 as_bad (_("%s for `%s'"), err_msg,
891edac4 6707 current_templates->start->name);
fa99fab2 6708 return NULL;
29b0f896 6709 }
252b5132 6710
29b0f896
AM
6711 if (!quiet_warnings)
6712 {
6713 if (!intel_syntax
0cfa3eb3 6714 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6715 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6716
40fb9820 6717 if (t->opcode_modifier.isprefix
3cd7f3e3 6718 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6719 {
6720 /* Warn them that a data or address size prefix doesn't
6721 affect assembly of the next line of code. */
6722 as_warn (_("stand-alone `%s' prefix"), t->name);
6723 }
6724 }
6725
6726 /* Copy the template we found. */
6727 i.tm = *t;
539e75ad
L
6728
6729 if (addr_prefix_disp != -1)
6730 i.tm.operand_types[addr_prefix_disp]
6731 = operand_types[addr_prefix_disp];
6732
29b0f896
AM
6733 if (found_reverse_match)
6734 {
dfd69174
JB
6735 /* If we found a reverse match we must alter the opcode direction
6736 bit and clear/flip the regmem modifier one. found_reverse_match
6737 holds bits to change (different for int & float insns). */
29b0f896
AM
6738
6739 i.tm.base_opcode ^= found_reverse_match;
6740
f5eb1d70
JB
6741 i.tm.operand_types[0] = operand_types[i.operands - 1];
6742 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6743
6744 /* Certain SIMD insns have their load forms specified in the opcode
6745 table, and hence we need to _set_ RegMem instead of clearing it.
6746 We need to avoid setting the bit though on insns like KMOVW. */
6747 i.tm.opcode_modifier.regmem
6748 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6749 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6750 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6751 }
6752
fa99fab2 6753 return t;
29b0f896
AM
6754}
6755
6756static int
e3bb37b5 6757check_string (void)
29b0f896 6758{
51c8edf6
JB
6759 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6760 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6761
51c8edf6 6762 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6763 {
51c8edf6
JB
6764 as_bad (_("`%s' operand %u must use `%ses' segment"),
6765 i.tm.name,
6766 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6767 register_prefix);
6768 return 0;
29b0f896 6769 }
51c8edf6
JB
6770
6771 /* There's only ever one segment override allowed per instruction.
6772 This instruction possibly has a legal segment override on the
6773 second operand, so copy the segment to where non-string
6774 instructions store it, allowing common code. */
6775 i.seg[op] = i.seg[1];
6776
29b0f896
AM
6777 return 1;
6778}
6779
6780static int
543613e9 6781process_suffix (void)
29b0f896 6782{
8b65b895
L
6783 bfd_boolean is_crc32 = FALSE;
6784
29b0f896
AM
6785 /* If matched instruction specifies an explicit instruction mnemonic
6786 suffix, use it. */
673fe0f0 6787 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6788 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6789 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6790 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6791 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6792 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0 6793 else if (i.reg_operands
c8f8eebc
JB
6794 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6795 && !i.tm.opcode_modifier.addrprefixopreg)
29b0f896 6796 {
65fca059 6797 unsigned int numop = i.operands;
8b65b895
L
6798 /* CRC32 */
6799 is_crc32 = (i.tm.base_opcode == 0xf38f0
6800 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2);
65fca059
JB
6801
6802 /* movsx/movzx want only their source operand considered here, for the
6803 ambiguity checking below. The suffix will be replaced afterwards
6804 to represent the destination (register). */
6805 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6806 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6807 --i.operands;
6808
643bb870 6809 /* crc32 needs REX.W set regardless of suffix / source operand size. */
8b65b895 6810 if (is_crc32 && i.tm.operand_types[1].bitfield.qword)
643bb870
JB
6811 i.rex |= REX_W;
6812
29b0f896 6813 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6814 based on GPR operands. */
29b0f896
AM
6815 if (!i.suffix)
6816 {
6817 /* We take i.suffix from the last register operand specified,
6818 Destination register type is more significant than source
381d071f
L
6819 register type. crc32 in SSE4.2 prefers source register
6820 type. */
8b65b895 6821 unsigned int op = is_crc32 ? 1 : i.operands;
20592a94 6822
1a035124
JB
6823 while (op--)
6824 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6825 || i.tm.operand_types[op].bitfield.instance == Accum)
6826 {
6827 if (i.types[op].bitfield.class != Reg)
6828 continue;
6829 if (i.types[op].bitfield.byte)
6830 i.suffix = BYTE_MNEM_SUFFIX;
6831 else if (i.types[op].bitfield.word)
6832 i.suffix = WORD_MNEM_SUFFIX;
6833 else if (i.types[op].bitfield.dword)
6834 i.suffix = LONG_MNEM_SUFFIX;
6835 else if (i.types[op].bitfield.qword)
6836 i.suffix = QWORD_MNEM_SUFFIX;
6837 else
6838 continue;
6839 break;
6840 }
65fca059
JB
6841
6842 /* As an exception, movsx/movzx silently default to a byte source
6843 in AT&T mode. */
6844 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6845 && !i.suffix && !intel_syntax)
6846 i.suffix = BYTE_MNEM_SUFFIX;
29b0f896
AM
6847 }
6848 else if (i.suffix == BYTE_MNEM_SUFFIX)
6849 {
2eb952a4 6850 if (intel_syntax
3cd7f3e3 6851 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6852 && i.tm.opcode_modifier.no_bsuf)
6853 i.suffix = 0;
6854 else if (!check_byte_reg ())
29b0f896
AM
6855 return 0;
6856 }
6857 else if (i.suffix == LONG_MNEM_SUFFIX)
6858 {
2eb952a4 6859 if (intel_syntax
3cd7f3e3 6860 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6861 && i.tm.opcode_modifier.no_lsuf
6862 && !i.tm.opcode_modifier.todword
6863 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6864 i.suffix = 0;
6865 else if (!check_long_reg ())
29b0f896
AM
6866 return 0;
6867 }
6868 else if (i.suffix == QWORD_MNEM_SUFFIX)
6869 {
955e1e6a 6870 if (intel_syntax
3cd7f3e3 6871 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6872 && i.tm.opcode_modifier.no_qsuf
6873 && !i.tm.opcode_modifier.todword
6874 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6875 i.suffix = 0;
6876 else if (!check_qword_reg ())
29b0f896
AM
6877 return 0;
6878 }
6879 else if (i.suffix == WORD_MNEM_SUFFIX)
6880 {
2eb952a4 6881 if (intel_syntax
3cd7f3e3 6882 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6883 && i.tm.opcode_modifier.no_wsuf)
6884 i.suffix = 0;
6885 else if (!check_word_reg ())
29b0f896
AM
6886 return 0;
6887 }
3cd7f3e3
L
6888 else if (intel_syntax
6889 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6890 /* Do nothing if the instruction is going to ignore the prefix. */
6891 ;
6892 else
6893 abort ();
65fca059
JB
6894
6895 /* Undo the movsx/movzx change done above. */
6896 i.operands = numop;
29b0f896 6897 }
3cd7f3e3
L
6898 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6899 && !i.suffix)
29b0f896 6900 {
13e600d0
JB
6901 i.suffix = stackop_size;
6902 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6903 {
6904 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6905 .code16gcc directive to support 16-bit mode with
6906 32-bit address. For IRET without a suffix, generate
6907 16-bit IRET (opcode 0xcf) to return from an interrupt
6908 handler. */
13e600d0
JB
6909 if (i.tm.base_opcode == 0xcf)
6910 {
6911 i.suffix = WORD_MNEM_SUFFIX;
6912 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6913 }
6914 /* Warn about changed behavior for segment register push/pop. */
6915 else if ((i.tm.base_opcode | 1) == 0x07)
6916 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6917 i.tm.name);
06f74c5c 6918 }
29b0f896 6919 }
c006a730 6920 else if (!i.suffix
0cfa3eb3
JB
6921 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6922 || i.tm.opcode_modifier.jump == JUMP_BYTE
6923 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6924 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6925 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6926 {
6927 switch (flag_code)
6928 {
6929 case CODE_64BIT:
40fb9820 6930 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a 6931 {
828c2a25
JB
6932 if (i.tm.opcode_modifier.jump == JUMP_BYTE
6933 || i.tm.opcode_modifier.no_lsuf)
6934 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a
JB
6935 break;
6936 }
1a0670f3 6937 /* Fall through. */
9306ca4a 6938 case CODE_32BIT:
40fb9820 6939 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6940 i.suffix = LONG_MNEM_SUFFIX;
6941 break;
6942 case CODE_16BIT:
40fb9820 6943 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6944 i.suffix = WORD_MNEM_SUFFIX;
6945 break;
6946 }
6947 }
252b5132 6948
c006a730 6949 if (!i.suffix
3cd7f3e3 6950 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8
JB
6951 /* Also cover lret/retf/iret in 64-bit mode. */
6952 || (flag_code == CODE_64BIT
6953 && !i.tm.opcode_modifier.no_lsuf
6954 && !i.tm.opcode_modifier.no_qsuf))
3cd7f3e3 6955 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
8bbb3ad8
JB
6956 /* Explicit sizing prefixes are assumed to disambiguate insns. */
6957 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
62b3f548
JB
6958 /* Accept FLDENV et al without suffix. */
6959 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
29b0f896 6960 {
6c0946d0 6961 unsigned int suffixes, evex = 0;
c006a730
JB
6962
6963 suffixes = !i.tm.opcode_modifier.no_bsuf;
6964 if (!i.tm.opcode_modifier.no_wsuf)
6965 suffixes |= 1 << 1;
6966 if (!i.tm.opcode_modifier.no_lsuf)
6967 suffixes |= 1 << 2;
6968 if (!i.tm.opcode_modifier.no_ldsuf)
6969 suffixes |= 1 << 3;
6970 if (!i.tm.opcode_modifier.no_ssuf)
6971 suffixes |= 1 << 4;
6972 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6973 suffixes |= 1 << 5;
6974
6c0946d0
JB
6975 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6976 also suitable for AT&T syntax mode, it was requested that this be
6977 restricted to just Intel syntax. */
b9915cbc 6978 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6c0946d0 6979 {
b9915cbc 6980 unsigned int op;
6c0946d0 6981
b9915cbc 6982 for (op = 0; op < i.tm.operands; ++op)
6c0946d0 6983 {
b9915cbc
JB
6984 if (is_evex_encoding (&i.tm)
6985 && !cpu_arch_flags.bitfield.cpuavx512vl)
6c0946d0 6986 {
b9915cbc
JB
6987 if (i.tm.operand_types[op].bitfield.ymmword)
6988 i.tm.operand_types[op].bitfield.xmmword = 0;
6989 if (i.tm.operand_types[op].bitfield.zmmword)
6990 i.tm.operand_types[op].bitfield.ymmword = 0;
6991 if (!i.tm.opcode_modifier.evex
6992 || i.tm.opcode_modifier.evex == EVEXDYN)
6993 i.tm.opcode_modifier.evex = EVEX512;
6994 }
6c0946d0 6995
b9915cbc
JB
6996 if (i.tm.operand_types[op].bitfield.xmmword
6997 + i.tm.operand_types[op].bitfield.ymmword
6998 + i.tm.operand_types[op].bitfield.zmmword < 2)
6999 continue;
6c0946d0 7000
b9915cbc
JB
7001 /* Any properly sized operand disambiguates the insn. */
7002 if (i.types[op].bitfield.xmmword
7003 || i.types[op].bitfield.ymmword
7004 || i.types[op].bitfield.zmmword)
7005 {
7006 suffixes &= ~(7 << 6);
7007 evex = 0;
7008 break;
7009 }
6c0946d0 7010
b9915cbc
JB
7011 if ((i.flags[op] & Operand_Mem)
7012 && i.tm.operand_types[op].bitfield.unspecified)
7013 {
7014 if (i.tm.operand_types[op].bitfield.xmmword)
7015 suffixes |= 1 << 6;
7016 if (i.tm.operand_types[op].bitfield.ymmword)
7017 suffixes |= 1 << 7;
7018 if (i.tm.operand_types[op].bitfield.zmmword)
7019 suffixes |= 1 << 8;
7020 if (is_evex_encoding (&i.tm))
7021 evex = EVEX512;
6c0946d0
JB
7022 }
7023 }
7024 }
7025
7026 /* Are multiple suffixes / operand sizes allowed? */
c006a730 7027 if (suffixes & (suffixes - 1))
9306ca4a 7028 {
873494c8 7029 if (intel_syntax
3cd7f3e3 7030 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8 7031 || operand_check == check_error))
9306ca4a 7032 {
c006a730 7033 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
9306ca4a
JB
7034 return 0;
7035 }
c006a730 7036 if (operand_check == check_error)
9306ca4a 7037 {
c006a730
JB
7038 as_bad (_("no instruction mnemonic suffix given and "
7039 "no register operands; can't size `%s'"), i.tm.name);
9306ca4a
JB
7040 return 0;
7041 }
c006a730 7042 if (operand_check == check_warning)
873494c8
JB
7043 as_warn (_("%s; using default for `%s'"),
7044 intel_syntax
7045 ? _("ambiguous operand size")
7046 : _("no instruction mnemonic suffix given and "
7047 "no register operands"),
7048 i.tm.name);
c006a730
JB
7049
7050 if (i.tm.opcode_modifier.floatmf)
7051 i.suffix = SHORT_MNEM_SUFFIX;
65fca059
JB
7052 else if ((i.tm.base_opcode | 8) == 0xfbe
7053 || (i.tm.base_opcode == 0x63
7054 && i.tm.cpu_flags.bitfield.cpu64))
7055 /* handled below */;
6c0946d0
JB
7056 else if (evex)
7057 i.tm.opcode_modifier.evex = evex;
c006a730
JB
7058 else if (flag_code == CODE_16BIT)
7059 i.suffix = WORD_MNEM_SUFFIX;
1a035124 7060 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 7061 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
7062 else
7063 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 7064 }
29b0f896 7065 }
252b5132 7066
65fca059
JB
7067 if ((i.tm.base_opcode | 8) == 0xfbe
7068 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
7069 {
7070 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
7071 In AT&T syntax, if there is no suffix (warned about above), the default
7072 will be byte extension. */
7073 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
7074 i.tm.base_opcode |= 1;
7075
7076 /* For further processing, the suffix should represent the destination
7077 (register). This is already the case when one was used with
7078 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
7079 no suffix to begin with. */
7080 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
7081 {
7082 if (i.types[1].bitfield.word)
7083 i.suffix = WORD_MNEM_SUFFIX;
7084 else if (i.types[1].bitfield.qword)
7085 i.suffix = QWORD_MNEM_SUFFIX;
7086 else
7087 i.suffix = LONG_MNEM_SUFFIX;
7088
7089 i.tm.opcode_modifier.w = 0;
7090 }
7091 }
7092
50128d0c
JB
7093 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7094 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7095 != (i.tm.operand_types[1].bitfield.class == Reg);
7096
d2224064
JB
7097 /* Change the opcode based on the operand size given by i.suffix. */
7098 switch (i.suffix)
29b0f896 7099 {
d2224064
JB
7100 /* Size floating point instruction. */
7101 case LONG_MNEM_SUFFIX:
7102 if (i.tm.opcode_modifier.floatmf)
7103 {
7104 i.tm.base_opcode ^= 4;
7105 break;
7106 }
7107 /* fall through */
7108 case WORD_MNEM_SUFFIX:
7109 case QWORD_MNEM_SUFFIX:
29b0f896 7110 /* It's not a byte, select word/dword operation. */
40fb9820 7111 if (i.tm.opcode_modifier.w)
29b0f896 7112 {
50128d0c 7113 if (i.short_form)
29b0f896
AM
7114 i.tm.base_opcode |= 8;
7115 else
7116 i.tm.base_opcode |= 1;
7117 }
d2224064
JB
7118 /* fall through */
7119 case SHORT_MNEM_SUFFIX:
29b0f896
AM
7120 /* Now select between word & dword operations via the operand
7121 size prefix, except for instructions that will ignore this
7122 prefix anyway. */
c8f8eebc 7123 if (i.suffix != QWORD_MNEM_SUFFIX
3cd7f3e3 7124 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
c8f8eebc
JB
7125 && !i.tm.opcode_modifier.floatmf
7126 && !is_any_vex_encoding (&i.tm)
7127 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7128 || (flag_code == CODE_64BIT
7129 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
7130 {
7131 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 7132
0cfa3eb3 7133 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 7134 prefix = ADDR_PREFIX_OPCODE;
252b5132 7135
29b0f896
AM
7136 if (!add_prefix (prefix))
7137 return 0;
24eab124 7138 }
252b5132 7139
29b0f896
AM
7140 /* Set mode64 for an operand. */
7141 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 7142 && flag_code == CODE_64BIT
d2224064 7143 && !i.tm.opcode_modifier.norex64
4ed21b58 7144 && !i.tm.opcode_modifier.vexw
46e883c5 7145 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
7146 need rex64. */
7147 && ! (i.operands == 2
7148 && i.tm.base_opcode == 0x90
7149 && i.tm.extension_opcode == None
75e5731b
JB
7150 && i.types[0].bitfield.instance == Accum
7151 && i.types[0].bitfield.qword
7152 && i.types[1].bitfield.instance == Accum
7153 && i.types[1].bitfield.qword))
d2224064 7154 i.rex |= REX_W;
3e73aa7c 7155
d2224064 7156 break;
8bbb3ad8
JB
7157
7158 case 0:
7159 /* Select word/dword/qword operation with explict data sizing prefix
7160 when there are no suitable register operands. */
7161 if (i.tm.opcode_modifier.w
7162 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
7163 && (!i.reg_operands
7164 || (i.reg_operands == 1
7165 /* ShiftCount */
7166 && (i.tm.operand_types[0].bitfield.instance == RegC
7167 /* InOutPortReg */
7168 || i.tm.operand_types[0].bitfield.instance == RegD
7169 || i.tm.operand_types[1].bitfield.instance == RegD
7170 /* CRC32 */
8b65b895 7171 || is_crc32))))
8bbb3ad8
JB
7172 i.tm.base_opcode |= 1;
7173 break;
29b0f896 7174 }
7ecd2f8b 7175
c8f8eebc 7176 if (i.tm.opcode_modifier.addrprefixopreg)
c0a30a9f 7177 {
c8f8eebc
JB
7178 gas_assert (!i.suffix);
7179 gas_assert (i.reg_operands);
c0a30a9f 7180
c8f8eebc
JB
7181 if (i.tm.operand_types[0].bitfield.instance == Accum
7182 || i.operands == 1)
7183 {
7184 /* The address size override prefix changes the size of the
7185 first operand. */
7186 if (flag_code == CODE_64BIT
7187 && i.op[0].regs->reg_type.bitfield.word)
7188 {
7189 as_bad (_("16-bit addressing unavailable for `%s'"),
7190 i.tm.name);
7191 return 0;
7192 }
7193
7194 if ((flag_code == CODE_32BIT
7195 ? i.op[0].regs->reg_type.bitfield.word
7196 : i.op[0].regs->reg_type.bitfield.dword)
7197 && !add_prefix (ADDR_PREFIX_OPCODE))
7198 return 0;
7199 }
c0a30a9f
L
7200 else
7201 {
c8f8eebc
JB
7202 /* Check invalid register operand when the address size override
7203 prefix changes the size of register operands. */
7204 unsigned int op;
7205 enum { need_word, need_dword, need_qword } need;
7206
27f13469 7207 /* Check the register operand for the address size prefix if
b3a3496f
L
7208 the memory operand has no real registers, like symbol, DISP
7209 or symbol(%rip). */
27f13469
L
7210 if (i.mem_operands == 1
7211 && i.reg_operands == 1
7212 && i.operands == 2
27f13469 7213 && i.types[1].bitfield.class == Reg
b3a3496f
L
7214 && (flag_code == CODE_32BIT
7215 ? i.op[1].regs->reg_type.bitfield.word
7216 : i.op[1].regs->reg_type.bitfield.dword)
7217 && ((i.base_reg == NULL && i.index_reg == NULL)
7218 || (i.base_reg
7219 && i.base_reg->reg_num == RegIP
7220 && i.base_reg->reg_type.bitfield.qword))
27f13469
L
7221 && !add_prefix (ADDR_PREFIX_OPCODE))
7222 return 0;
7223
c8f8eebc
JB
7224 if (flag_code == CODE_32BIT)
7225 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7226 else if (i.prefix[ADDR_PREFIX])
c0a30a9f
L
7227 need = need_dword;
7228 else
7229 need = flag_code == CODE_64BIT ? need_qword : need_word;
c0a30a9f 7230
c8f8eebc
JB
7231 for (op = 0; op < i.operands; op++)
7232 {
7233 if (i.types[op].bitfield.class != Reg)
7234 continue;
7235
7236 switch (need)
7237 {
7238 case need_word:
7239 if (i.op[op].regs->reg_type.bitfield.word)
7240 continue;
7241 break;
7242 case need_dword:
7243 if (i.op[op].regs->reg_type.bitfield.dword)
7244 continue;
7245 break;
7246 case need_qword:
7247 if (i.op[op].regs->reg_type.bitfield.qword)
7248 continue;
7249 break;
7250 }
7251
7252 as_bad (_("invalid register operand size for `%s'"),
7253 i.tm.name);
7254 return 0;
7255 }
7256 }
c0a30a9f
L
7257 }
7258
29b0f896
AM
7259 return 1;
7260}
3e73aa7c 7261
29b0f896 7262static int
543613e9 7263check_byte_reg (void)
29b0f896
AM
7264{
7265 int op;
543613e9 7266
29b0f896
AM
7267 for (op = i.operands; --op >= 0;)
7268 {
dc821c5f 7269 /* Skip non-register operands. */
bab6aec1 7270 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
7271 continue;
7272
29b0f896
AM
7273 /* If this is an eight bit register, it's OK. If it's the 16 or
7274 32 bit version of an eight bit register, we will just use the
7275 low portion, and that's OK too. */
dc821c5f 7276 if (i.types[op].bitfield.byte)
29b0f896
AM
7277 continue;
7278
5a819eb9 7279 /* I/O port address operands are OK too. */
75e5731b
JB
7280 if (i.tm.operand_types[op].bitfield.instance == RegD
7281 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
7282 continue;
7283
9706160a 7284 /* crc32 only wants its source operand checked here. */
8b65b895
L
7285 if (i.tm.base_opcode == 0xf38f0
7286 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2
7287 && op != 0)
9344ff29
L
7288 continue;
7289
29b0f896 7290 /* Any other register is bad. */
73c76375
JB
7291 as_bad (_("`%s%s' not allowed with `%s%c'"),
7292 register_prefix, i.op[op].regs->reg_name,
7293 i.tm.name, i.suffix);
7294 return 0;
29b0f896
AM
7295 }
7296 return 1;
7297}
7298
7299static int
e3bb37b5 7300check_long_reg (void)
29b0f896
AM
7301{
7302 int op;
7303
7304 for (op = i.operands; --op >= 0;)
dc821c5f 7305 /* Skip non-register operands. */
bab6aec1 7306 if (i.types[op].bitfield.class != Reg)
dc821c5f 7307 continue;
29b0f896
AM
7308 /* Reject eight bit registers, except where the template requires
7309 them. (eg. movzb) */
dc821c5f 7310 else if (i.types[op].bitfield.byte
bab6aec1 7311 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7312 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
7313 && (i.tm.operand_types[op].bitfield.word
7314 || i.tm.operand_types[op].bitfield.dword))
29b0f896 7315 {
a540244d
L
7316 as_bad (_("`%s%s' not allowed with `%s%c'"),
7317 register_prefix,
29b0f896
AM
7318 i.op[op].regs->reg_name,
7319 i.tm.name,
7320 i.suffix);
7321 return 0;
7322 }
be4c5e58
L
7323 /* Error if the e prefix on a general reg is missing. */
7324 else if (i.types[op].bitfield.word
bab6aec1 7325 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7326 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7327 && i.tm.operand_types[op].bitfield.dword)
29b0f896 7328 {
be4c5e58
L
7329 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7330 register_prefix, i.op[op].regs->reg_name,
7331 i.suffix);
7332 return 0;
252b5132 7333 }
e4630f71 7334 /* Warn if the r prefix on a general reg is present. */
dc821c5f 7335 else if (i.types[op].bitfield.qword
bab6aec1 7336 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7337 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7338 && i.tm.operand_types[op].bitfield.dword)
252b5132 7339 {
34828aad 7340 if (intel_syntax
65fca059 7341 && i.tm.opcode_modifier.toqword
3528c362 7342 && i.types[0].bitfield.class != RegSIMD)
34828aad 7343 {
ca61edf2 7344 /* Convert to QWORD. We want REX byte. */
34828aad
L
7345 i.suffix = QWORD_MNEM_SUFFIX;
7346 }
7347 else
7348 {
2b5d6a91 7349 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
7350 register_prefix, i.op[op].regs->reg_name,
7351 i.suffix);
7352 return 0;
7353 }
29b0f896
AM
7354 }
7355 return 1;
7356}
252b5132 7357
29b0f896 7358static int
e3bb37b5 7359check_qword_reg (void)
29b0f896
AM
7360{
7361 int op;
252b5132 7362
29b0f896 7363 for (op = i.operands; --op >= 0; )
dc821c5f 7364 /* Skip non-register operands. */
bab6aec1 7365 if (i.types[op].bitfield.class != Reg)
dc821c5f 7366 continue;
29b0f896
AM
7367 /* Reject eight bit registers, except where the template requires
7368 them. (eg. movzb) */
dc821c5f 7369 else if (i.types[op].bitfield.byte
bab6aec1 7370 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7371 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
7372 && (i.tm.operand_types[op].bitfield.word
7373 || i.tm.operand_types[op].bitfield.dword))
29b0f896 7374 {
a540244d
L
7375 as_bad (_("`%s%s' not allowed with `%s%c'"),
7376 register_prefix,
29b0f896
AM
7377 i.op[op].regs->reg_name,
7378 i.tm.name,
7379 i.suffix);
7380 return 0;
7381 }
e4630f71 7382 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
7383 else if ((i.types[op].bitfield.word
7384 || i.types[op].bitfield.dword)
bab6aec1 7385 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7386 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7387 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
7388 {
7389 /* Prohibit these changes in the 64bit mode, since the
7390 lowering is more complicated. */
34828aad 7391 if (intel_syntax
ca61edf2 7392 && i.tm.opcode_modifier.todword
3528c362 7393 && i.types[0].bitfield.class != RegSIMD)
34828aad 7394 {
ca61edf2 7395 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
7396 i.suffix = LONG_MNEM_SUFFIX;
7397 }
7398 else
7399 {
2b5d6a91 7400 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
7401 register_prefix, i.op[op].regs->reg_name,
7402 i.suffix);
7403 return 0;
7404 }
252b5132 7405 }
29b0f896
AM
7406 return 1;
7407}
252b5132 7408
29b0f896 7409static int
e3bb37b5 7410check_word_reg (void)
29b0f896
AM
7411{
7412 int op;
7413 for (op = i.operands; --op >= 0;)
dc821c5f 7414 /* Skip non-register operands. */
bab6aec1 7415 if (i.types[op].bitfield.class != Reg)
dc821c5f 7416 continue;
29b0f896
AM
7417 /* Reject eight bit registers, except where the template requires
7418 them. (eg. movzb) */
dc821c5f 7419 else if (i.types[op].bitfield.byte
bab6aec1 7420 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7421 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
7422 && (i.tm.operand_types[op].bitfield.word
7423 || i.tm.operand_types[op].bitfield.dword))
29b0f896 7424 {
a540244d
L
7425 as_bad (_("`%s%s' not allowed with `%s%c'"),
7426 register_prefix,
29b0f896
AM
7427 i.op[op].regs->reg_name,
7428 i.tm.name,
7429 i.suffix);
7430 return 0;
7431 }
9706160a
JB
7432 /* Error if the e or r prefix on a general reg is present. */
7433 else if ((i.types[op].bitfield.dword
dc821c5f 7434 || i.types[op].bitfield.qword)
bab6aec1 7435 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7436 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7437 && i.tm.operand_types[op].bitfield.word)
252b5132 7438 {
9706160a
JB
7439 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7440 register_prefix, i.op[op].regs->reg_name,
7441 i.suffix);
7442 return 0;
29b0f896
AM
7443 }
7444 return 1;
7445}
252b5132 7446
29b0f896 7447static int
40fb9820 7448update_imm (unsigned int j)
29b0f896 7449{
bc0844ae 7450 i386_operand_type overlap = i.types[j];
40fb9820
L
7451 if ((overlap.bitfield.imm8
7452 || overlap.bitfield.imm8s
7453 || overlap.bitfield.imm16
7454 || overlap.bitfield.imm32
7455 || overlap.bitfield.imm32s
7456 || overlap.bitfield.imm64)
0dfbf9d7
L
7457 && !operand_type_equal (&overlap, &imm8)
7458 && !operand_type_equal (&overlap, &imm8s)
7459 && !operand_type_equal (&overlap, &imm16)
7460 && !operand_type_equal (&overlap, &imm32)
7461 && !operand_type_equal (&overlap, &imm32s)
7462 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
7463 {
7464 if (i.suffix)
7465 {
40fb9820
L
7466 i386_operand_type temp;
7467
0dfbf9d7 7468 operand_type_set (&temp, 0);
7ab9ffdd 7469 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
7470 {
7471 temp.bitfield.imm8 = overlap.bitfield.imm8;
7472 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7473 }
7474 else if (i.suffix == WORD_MNEM_SUFFIX)
7475 temp.bitfield.imm16 = overlap.bitfield.imm16;
7476 else if (i.suffix == QWORD_MNEM_SUFFIX)
7477 {
7478 temp.bitfield.imm64 = overlap.bitfield.imm64;
7479 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7480 }
7481 else
7482 temp.bitfield.imm32 = overlap.bitfield.imm32;
7483 overlap = temp;
29b0f896 7484 }
0dfbf9d7
L
7485 else if (operand_type_equal (&overlap, &imm16_32_32s)
7486 || operand_type_equal (&overlap, &imm16_32)
7487 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 7488 {
40fb9820 7489 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 7490 overlap = imm16;
40fb9820 7491 else
65da13b5 7492 overlap = imm32s;
29b0f896 7493 }
8bbb3ad8
JB
7494 else if (i.prefix[REX_PREFIX] & REX_W)
7495 overlap = operand_type_and (overlap, imm32s);
7496 else if (i.prefix[DATA_PREFIX])
7497 overlap = operand_type_and (overlap,
7498 flag_code != CODE_16BIT ? imm16 : imm32);
0dfbf9d7
L
7499 if (!operand_type_equal (&overlap, &imm8)
7500 && !operand_type_equal (&overlap, &imm8s)
7501 && !operand_type_equal (&overlap, &imm16)
7502 && !operand_type_equal (&overlap, &imm32)
7503 && !operand_type_equal (&overlap, &imm32s)
7504 && !operand_type_equal (&overlap, &imm64))
29b0f896 7505 {
4eed87de
AM
7506 as_bad (_("no instruction mnemonic suffix given; "
7507 "can't determine immediate size"));
29b0f896
AM
7508 return 0;
7509 }
7510 }
40fb9820 7511 i.types[j] = overlap;
29b0f896 7512
40fb9820
L
7513 return 1;
7514}
7515
7516static int
7517finalize_imm (void)
7518{
bc0844ae 7519 unsigned int j, n;
29b0f896 7520
bc0844ae
L
7521 /* Update the first 2 immediate operands. */
7522 n = i.operands > 2 ? 2 : i.operands;
7523 if (n)
7524 {
7525 for (j = 0; j < n; j++)
7526 if (update_imm (j) == 0)
7527 return 0;
40fb9820 7528
bc0844ae
L
7529 /* The 3rd operand can't be immediate operand. */
7530 gas_assert (operand_type_check (i.types[2], imm) == 0);
7531 }
29b0f896
AM
7532
7533 return 1;
7534}
7535
7536static int
e3bb37b5 7537process_operands (void)
29b0f896
AM
7538{
7539 /* Default segment register this instruction will use for memory
7540 accesses. 0 means unknown. This is only for optimizing out
7541 unnecessary segment overrides. */
7542 const seg_entry *default_seg = 0;
7543
a5aeccd9
JB
7544 if (i.tm.opcode_modifier.sse2avx)
7545 {
7546 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7547 need converting. */
7548 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7549 i.prefix[REX_PREFIX] = 0;
7550 i.rex_encoding = 0;
7551 }
c423d21a
JB
7552 /* ImmExt should be processed after SSE2AVX. */
7553 else if (i.tm.opcode_modifier.immext)
7554 process_immext ();
a5aeccd9 7555
2426c15f 7556 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 7557 {
91d6fa6a
NC
7558 unsigned int dupl = i.operands;
7559 unsigned int dest = dupl - 1;
9fcfb3d7
L
7560 unsigned int j;
7561
c0f3af97 7562 /* The destination must be an xmm register. */
9c2799c2 7563 gas_assert (i.reg_operands
91d6fa6a 7564 && MAX_OPERANDS > dupl
7ab9ffdd 7565 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 7566
75e5731b 7567 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7568 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 7569 {
8cd7925b 7570 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
7571 {
7572 /* Keep xmm0 for instructions with VEX prefix and 3
7573 sources. */
75e5731b 7574 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 7575 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
7576 goto duplicate;
7577 }
e2ec9d29 7578 else
c0f3af97
L
7579 {
7580 /* We remove the first xmm0 and keep the number of
7581 operands unchanged, which in fact duplicates the
7582 destination. */
7583 for (j = 1; j < i.operands; j++)
7584 {
7585 i.op[j - 1] = i.op[j];
7586 i.types[j - 1] = i.types[j];
7587 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 7588 i.flags[j - 1] = i.flags[j];
c0f3af97
L
7589 }
7590 }
7591 }
7592 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 7593 {
91d6fa6a 7594 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
7595 && (i.tm.opcode_modifier.vexsources
7596 == VEX3SOURCES));
c0f3af97
L
7597
7598 /* Add the implicit xmm0 for instructions with VEX prefix
7599 and 3 sources. */
7600 for (j = i.operands; j > 0; j--)
7601 {
7602 i.op[j] = i.op[j - 1];
7603 i.types[j] = i.types[j - 1];
7604 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 7605 i.flags[j] = i.flags[j - 1];
c0f3af97
L
7606 }
7607 i.op[0].regs
629310ab 7608 = (const reg_entry *) str_hash_find (reg_hash, "xmm0");
7ab9ffdd 7609 i.types[0] = regxmm;
c0f3af97
L
7610 i.tm.operand_types[0] = regxmm;
7611
7612 i.operands += 2;
7613 i.reg_operands += 2;
7614 i.tm.operands += 2;
7615
91d6fa6a 7616 dupl++;
c0f3af97 7617 dest++;
91d6fa6a
NC
7618 i.op[dupl] = i.op[dest];
7619 i.types[dupl] = i.types[dest];
7620 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7621 i.flags[dupl] = i.flags[dest];
e2ec9d29 7622 }
c0f3af97
L
7623 else
7624 {
dc1e8a47 7625 duplicate:
c0f3af97
L
7626 i.operands++;
7627 i.reg_operands++;
7628 i.tm.operands++;
7629
91d6fa6a
NC
7630 i.op[dupl] = i.op[dest];
7631 i.types[dupl] = i.types[dest];
7632 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7633 i.flags[dupl] = i.flags[dest];
c0f3af97
L
7634 }
7635
7636 if (i.tm.opcode_modifier.immext)
7637 process_immext ();
7638 }
75e5731b 7639 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7640 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7641 {
7642 unsigned int j;
7643
9fcfb3d7
L
7644 for (j = 1; j < i.operands; j++)
7645 {
7646 i.op[j - 1] = i.op[j];
7647 i.types[j - 1] = i.types[j];
7648
7649 /* We need to adjust fields in i.tm since they are used by
7650 build_modrm_byte. */
7651 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7652
7653 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7654 }
7655
e2ec9d29
L
7656 i.operands--;
7657 i.reg_operands--;
e2ec9d29
L
7658 i.tm.operands--;
7659 }
920d2ddc
IT
7660 else if (i.tm.opcode_modifier.implicitquadgroup)
7661 {
a477a8c4
JB
7662 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7663
920d2ddc 7664 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7665 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7666 regnum = register_number (i.op[1].regs);
7667 first_reg_in_group = regnum & ~3;
7668 last_reg_in_group = first_reg_in_group + 3;
7669 if (regnum != first_reg_in_group)
7670 as_warn (_("source register `%s%s' implicitly denotes"
7671 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7672 register_prefix, i.op[1].regs->reg_name,
7673 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7674 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7675 i.tm.name);
7676 }
e2ec9d29
L
7677 else if (i.tm.opcode_modifier.regkludge)
7678 {
7679 /* The imul $imm, %reg instruction is converted into
7680 imul $imm, %reg, %reg, and the clr %reg instruction
7681 is converted into xor %reg, %reg. */
7682
7683 unsigned int first_reg_op;
7684
7685 if (operand_type_check (i.types[0], reg))
7686 first_reg_op = 0;
7687 else
7688 first_reg_op = 1;
7689 /* Pretend we saw the extra register operand. */
9c2799c2 7690 gas_assert (i.reg_operands == 1
7ab9ffdd 7691 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7692 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7693 i.types[first_reg_op + 1] = i.types[first_reg_op];
7694 i.operands++;
7695 i.reg_operands++;
29b0f896
AM
7696 }
7697
85b80b0f 7698 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7699 {
7700 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7701 must be put into the modrm byte). Now, we make the modrm and
7702 index base bytes based on all the info we've collected. */
29b0f896
AM
7703
7704 default_seg = build_modrm_byte ();
7705 }
00cee14f 7706 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7707 {
7708 if (flag_code != CODE_64BIT
7709 ? i.tm.base_opcode == POP_SEG_SHORT
7710 && i.op[0].regs->reg_num == 1
7711 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7712 && i.op[0].regs->reg_num < 4)
7713 {
7714 as_bad (_("you can't `%s %s%s'"),
7715 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7716 return 0;
7717 }
7718 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7719 {
7720 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7721 i.tm.opcode_length = 2;
7722 }
7723 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7724 }
8a2ed489 7725 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7726 {
7727 default_seg = &ds;
7728 }
40fb9820 7729 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7730 {
7731 /* For the string instructions that allow a segment override
7732 on one of their operands, the default segment is ds. */
7733 default_seg = &ds;
7734 }
50128d0c 7735 else if (i.short_form)
85b80b0f
JB
7736 {
7737 /* The register or float register operand is in operand
7738 0 or 1. */
bab6aec1 7739 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7740
7741 /* Register goes in low 3 bits of opcode. */
7742 i.tm.base_opcode |= i.op[op].regs->reg_num;
7743 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7744 i.rex |= REX_B;
7745 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7746 {
7747 /* Warn about some common errors, but press on regardless.
7748 The first case can be generated by gcc (<= 2.8.1). */
7749 if (i.operands == 2)
7750 {
7751 /* Reversed arguments on faddp, fsubp, etc. */
7752 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7753 register_prefix, i.op[!intel_syntax].regs->reg_name,
7754 register_prefix, i.op[intel_syntax].regs->reg_name);
7755 }
7756 else
7757 {
7758 /* Extraneous `l' suffix on fp insn. */
7759 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7760 register_prefix, i.op[0].regs->reg_name);
7761 }
7762 }
7763 }
29b0f896 7764
514a8bb0 7765 if ((i.seg[0] || i.prefix[SEG_PREFIX])
514a8bb0
JB
7766 && i.tm.base_opcode == 0x8d /* lea */
7767 && !is_any_vex_encoding(&i.tm))
92334ad2
JB
7768 {
7769 if (!quiet_warnings)
7770 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7771 if (optimize)
7772 {
7773 i.seg[0] = NULL;
7774 i.prefix[SEG_PREFIX] = 0;
7775 }
7776 }
52271982
AM
7777
7778 /* If a segment was explicitly specified, and the specified segment
b6773884
JB
7779 is neither the default nor the one already recorded from a prefix,
7780 use an opcode prefix to select it. If we never figured out what
7781 the default segment is, then default_seg will be zero at this
7782 point, and the specified segment prefix will always be used. */
7783 if (i.seg[0]
7784 && i.seg[0] != default_seg
7785 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
29b0f896
AM
7786 {
7787 if (!add_prefix (i.seg[0]->seg_prefix))
7788 return 0;
7789 }
7790 return 1;
7791}
7792
a5aeccd9
JB
7793static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7794 bfd_boolean do_sse2avx)
7795{
7796 if (r->reg_flags & RegRex)
7797 {
7798 if (i.rex & rex_bit)
7799 as_bad (_("same type of prefix used twice"));
7800 i.rex |= rex_bit;
7801 }
7802 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7803 {
7804 gas_assert (i.vex.register_specifier == r);
7805 i.vex.register_specifier += 8;
7806 }
7807
7808 if (r->reg_flags & RegVRex)
7809 i.vrex |= rex_bit;
7810}
7811
29b0f896 7812static const seg_entry *
e3bb37b5 7813build_modrm_byte (void)
29b0f896
AM
7814{
7815 const seg_entry *default_seg = 0;
c0f3af97 7816 unsigned int source, dest;
8cd7925b 7817 int vex_3_sources;
c0f3af97 7818
8cd7925b 7819 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7820 if (vex_3_sources)
7821 {
91d6fa6a 7822 unsigned int nds, reg_slot;
4c2c6516 7823 expressionS *exp;
c0f3af97 7824
6b8d3588 7825 dest = i.operands - 1;
c0f3af97 7826 nds = dest - 1;
922d8de8 7827
a683cc34 7828 /* There are 2 kinds of instructions:
bed3d976 7829 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7830 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7831 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7832 ZMM register.
bed3d976 7833 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7834 plus 1 memory operand, with VexXDS. */
922d8de8 7835 gas_assert ((i.reg_operands == 4
bed3d976
JB
7836 || (i.reg_operands == 3 && i.mem_operands == 1))
7837 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7838 && i.tm.opcode_modifier.vexw
3528c362 7839 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7840
48db9223
JB
7841 /* If VexW1 is set, the first non-immediate operand is the source and
7842 the second non-immediate one is encoded in the immediate operand. */
7843 if (i.tm.opcode_modifier.vexw == VEXW1)
7844 {
7845 source = i.imm_operands;
7846 reg_slot = i.imm_operands + 1;
7847 }
7848 else
7849 {
7850 source = i.imm_operands + 1;
7851 reg_slot = i.imm_operands;
7852 }
7853
a683cc34 7854 if (i.imm_operands == 0)
bed3d976
JB
7855 {
7856 /* When there is no immediate operand, generate an 8bit
7857 immediate operand to encode the first operand. */
7858 exp = &im_expressions[i.imm_operands++];
7859 i.op[i.operands].imms = exp;
7860 i.types[i.operands] = imm8;
7861 i.operands++;
7862
3528c362 7863 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7864 exp->X_op = O_constant;
7865 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7866 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7867 }
922d8de8 7868 else
bed3d976 7869 {
9d3bf266
JB
7870 gas_assert (i.imm_operands == 1);
7871 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7872 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7873
9d3bf266
JB
7874 /* Turn on Imm8 again so that output_imm will generate it. */
7875 i.types[0].bitfield.imm8 = 1;
bed3d976 7876
3528c362 7877 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7878 i.op[0].imms->X_add_number
bed3d976 7879 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7880 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7881 }
a683cc34 7882
3528c362 7883 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7884 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7885 }
7886 else
7887 source = dest = 0;
29b0f896
AM
7888
7889 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7890 implicit registers do not count. If there are 3 register
7891 operands, it must be a instruction with VexNDS. For a
7892 instruction with VexNDD, the destination register is encoded
7893 in VEX prefix. If there are 4 register operands, it must be
7894 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7895 if (i.mem_operands == 0
7896 && ((i.reg_operands == 2
2426c15f 7897 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7898 || (i.reg_operands == 3
2426c15f 7899 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7900 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7901 {
cab737b9
L
7902 switch (i.operands)
7903 {
7904 case 2:
7905 source = 0;
7906 break;
7907 case 3:
c81128dc
L
7908 /* When there are 3 operands, one of them may be immediate,
7909 which may be the first or the last operand. Otherwise,
c0f3af97
L
7910 the first operand must be shift count register (cl) or it
7911 is an instruction with VexNDS. */
9c2799c2 7912 gas_assert (i.imm_operands == 1
7ab9ffdd 7913 || (i.imm_operands == 0
2426c15f 7914 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7915 || (i.types[0].bitfield.instance == RegC
7916 && i.types[0].bitfield.byte))));
40fb9820 7917 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7918 || (i.types[0].bitfield.instance == RegC
7919 && i.types[0].bitfield.byte))
40fb9820
L
7920 source = 1;
7921 else
7922 source = 0;
cab737b9
L
7923 break;
7924 case 4:
368d64cc
L
7925 /* When there are 4 operands, the first two must be 8bit
7926 immediate operands. The source operand will be the 3rd
c0f3af97
L
7927 one.
7928
7929 For instructions with VexNDS, if the first operand
7930 an imm8, the source operand is the 2nd one. If the last
7931 operand is imm8, the source operand is the first one. */
9c2799c2 7932 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7933 && i.types[0].bitfield.imm8
7934 && i.types[1].bitfield.imm8)
2426c15f 7935 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7936 && i.imm_operands == 1
7937 && (i.types[0].bitfield.imm8
43234a1e
L
7938 || i.types[i.operands - 1].bitfield.imm8
7939 || i.rounding)));
9f2670f2
L
7940 if (i.imm_operands == 2)
7941 source = 2;
7942 else
c0f3af97
L
7943 {
7944 if (i.types[0].bitfield.imm8)
7945 source = 1;
7946 else
7947 source = 0;
7948 }
c0f3af97
L
7949 break;
7950 case 5:
e771e7c9 7951 if (is_evex_encoding (&i.tm))
43234a1e
L
7952 {
7953 /* For EVEX instructions, when there are 5 operands, the
7954 first one must be immediate operand. If the second one
7955 is immediate operand, the source operand is the 3th
7956 one. If the last one is immediate operand, the source
7957 operand is the 2nd one. */
7958 gas_assert (i.imm_operands == 2
7959 && i.tm.opcode_modifier.sae
7960 && operand_type_check (i.types[0], imm));
7961 if (operand_type_check (i.types[1], imm))
7962 source = 2;
7963 else if (operand_type_check (i.types[4], imm))
7964 source = 1;
7965 else
7966 abort ();
7967 }
cab737b9
L
7968 break;
7969 default:
7970 abort ();
7971 }
7972
c0f3af97
L
7973 if (!vex_3_sources)
7974 {
7975 dest = source + 1;
7976
43234a1e
L
7977 /* RC/SAE operand could be between DEST and SRC. That happens
7978 when one operand is GPR and the other one is XMM/YMM/ZMM
7979 register. */
7980 if (i.rounding && i.rounding->operand == (int) dest)
7981 dest++;
7982
2426c15f 7983 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7984 {
43234a1e 7985 /* For instructions with VexNDS, the register-only source
c5d0745b 7986 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7987 register. It is encoded in VEX prefix. */
f12dc422
L
7988
7989 i386_operand_type op;
7990 unsigned int vvvv;
7991
c2ecccb3
L
7992 /* Swap two source operands if needed. */
7993 if (i.tm.opcode_modifier.swapsources)
f12dc422
L
7994 {
7995 vvvv = source;
7996 source = dest;
7997 }
7998 else
7999 vvvv = dest;
8000
8001 op = i.tm.operand_types[vvvv];
c0f3af97 8002 if ((dest + 1) >= i.operands
bab6aec1 8003 || ((op.bitfield.class != Reg
dc821c5f 8004 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 8005 && op.bitfield.class != RegSIMD
43234a1e 8006 && !operand_type_equal (&op, &regmask)))
c0f3af97 8007 abort ();
f12dc422 8008 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
8009 dest++;
8010 }
8011 }
29b0f896
AM
8012
8013 i.rm.mode = 3;
dfd69174
JB
8014 /* One of the register operands will be encoded in the i.rm.reg
8015 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
8016 fields. If no form of this instruction supports a memory
8017 destination operand, then we assume the source operand may
8018 sometimes be a memory operand and so we need to store the
8019 destination in the i.rm.reg field. */
dfd69174 8020 if (!i.tm.opcode_modifier.regmem
40fb9820 8021 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
8022 {
8023 i.rm.reg = i.op[dest].regs->reg_num;
8024 i.rm.regmem = i.op[source].regs->reg_num;
a5aeccd9
JB
8025 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
8026 set_rex_vrex (i.op[source].regs, REX_B, FALSE);
29b0f896
AM
8027 }
8028 else
8029 {
8030 i.rm.reg = i.op[source].regs->reg_num;
8031 i.rm.regmem = i.op[dest].regs->reg_num;
a5aeccd9
JB
8032 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
8033 set_rex_vrex (i.op[source].regs, REX_R, FALSE);
29b0f896 8034 }
e0c7f900 8035 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 8036 {
4a5c67ed 8037 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 8038 abort ();
e0c7f900 8039 i.rex &= ~REX_R;
c4a530c5
JB
8040 add_prefix (LOCK_PREFIX_OPCODE);
8041 }
29b0f896
AM
8042 }
8043 else
8044 { /* If it's not 2 reg operands... */
c0f3af97
L
8045 unsigned int mem;
8046
29b0f896
AM
8047 if (i.mem_operands)
8048 {
8049 unsigned int fake_zero_displacement = 0;
99018f42 8050 unsigned int op;
4eed87de 8051
7ab9ffdd 8052 for (op = 0; op < i.operands; op++)
8dc0818e 8053 if (i.flags[op] & Operand_Mem)
7ab9ffdd 8054 break;
7ab9ffdd 8055 gas_assert (op < i.operands);
29b0f896 8056
63112cd6 8057 if (i.tm.opcode_modifier.sib)
6c30d220 8058 {
260cd341
LC
8059 /* The index register of VSIB shouldn't be RegIZ. */
8060 if (i.tm.opcode_modifier.sib != SIBMEM
8061 && i.index_reg->reg_num == RegIZ)
6c30d220
L
8062 abort ();
8063
8064 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8065 if (!i.base_reg)
8066 {
8067 i.sib.base = NO_BASE_REGISTER;
8068 i.sib.scale = i.log2_scale_factor;
8069 i.types[op].bitfield.disp8 = 0;
8070 i.types[op].bitfield.disp16 = 0;
8071 i.types[op].bitfield.disp64 = 0;
43083a50 8072 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
8073 {
8074 /* Must be 32 bit */
8075 i.types[op].bitfield.disp32 = 1;
8076 i.types[op].bitfield.disp32s = 0;
8077 }
8078 else
8079 {
8080 i.types[op].bitfield.disp32 = 0;
8081 i.types[op].bitfield.disp32s = 1;
8082 }
8083 }
260cd341
LC
8084
8085 /* Since the mandatory SIB always has index register, so
8086 the code logic remains unchanged. The non-mandatory SIB
8087 without index register is allowed and will be handled
8088 later. */
8089 if (i.index_reg)
8090 {
8091 if (i.index_reg->reg_num == RegIZ)
8092 i.sib.index = NO_INDEX_REGISTER;
8093 else
8094 i.sib.index = i.index_reg->reg_num;
8095 set_rex_vrex (i.index_reg, REX_X, FALSE);
8096 }
6c30d220
L
8097 }
8098
29b0f896
AM
8099 default_seg = &ds;
8100
8101 if (i.base_reg == 0)
8102 {
8103 i.rm.mode = 0;
8104 if (!i.disp_operands)
9bb129e8 8105 fake_zero_displacement = 1;
29b0f896
AM
8106 if (i.index_reg == 0)
8107 {
73053c1f
JB
8108 i386_operand_type newdisp;
8109
260cd341
LC
8110 /* Both check for VSIB and mandatory non-vector SIB. */
8111 gas_assert (!i.tm.opcode_modifier.sib
8112 || i.tm.opcode_modifier.sib == SIBMEM);
29b0f896 8113 /* Operand is just <disp> */
20f0a1fc 8114 if (flag_code == CODE_64BIT)
29b0f896
AM
8115 {
8116 /* 64bit mode overwrites the 32bit absolute
8117 addressing by RIP relative addressing and
8118 absolute addressing is encoded by one of the
8119 redundant SIB forms. */
8120 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8121 i.sib.base = NO_BASE_REGISTER;
8122 i.sib.index = NO_INDEX_REGISTER;
73053c1f 8123 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 8124 }
fc225355
L
8125 else if ((flag_code == CODE_16BIT)
8126 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
8127 {
8128 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 8129 newdisp = disp16;
20f0a1fc
NC
8130 }
8131 else
8132 {
8133 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 8134 newdisp = disp32;
29b0f896 8135 }
73053c1f
JB
8136 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8137 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 8138 }
63112cd6 8139 else if (!i.tm.opcode_modifier.sib)
29b0f896 8140 {
6c30d220 8141 /* !i.base_reg && i.index_reg */
e968fc9b 8142 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
8143 i.sib.index = NO_INDEX_REGISTER;
8144 else
8145 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
8146 i.sib.base = NO_BASE_REGISTER;
8147 i.sib.scale = i.log2_scale_factor;
8148 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
8149 i.types[op].bitfield.disp8 = 0;
8150 i.types[op].bitfield.disp16 = 0;
8151 i.types[op].bitfield.disp64 = 0;
43083a50 8152 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
8153 {
8154 /* Must be 32 bit */
8155 i.types[op].bitfield.disp32 = 1;
8156 i.types[op].bitfield.disp32s = 0;
8157 }
29b0f896 8158 else
40fb9820
L
8159 {
8160 i.types[op].bitfield.disp32 = 0;
8161 i.types[op].bitfield.disp32s = 1;
8162 }
29b0f896 8163 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 8164 i.rex |= REX_X;
29b0f896
AM
8165 }
8166 }
8167 /* RIP addressing for 64bit mode. */
e968fc9b 8168 else if (i.base_reg->reg_num == RegIP)
29b0f896 8169 {
63112cd6 8170 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896 8171 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
8172 i.types[op].bitfield.disp8 = 0;
8173 i.types[op].bitfield.disp16 = 0;
8174 i.types[op].bitfield.disp32 = 0;
8175 i.types[op].bitfield.disp32s = 1;
8176 i.types[op].bitfield.disp64 = 0;
71903a11 8177 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
8178 if (! i.disp_operands)
8179 fake_zero_displacement = 1;
29b0f896 8180 }
dc821c5f 8181 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 8182 {
63112cd6 8183 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896
AM
8184 switch (i.base_reg->reg_num)
8185 {
8186 case 3: /* (%bx) */
8187 if (i.index_reg == 0)
8188 i.rm.regmem = 7;
8189 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8190 i.rm.regmem = i.index_reg->reg_num - 6;
8191 break;
8192 case 5: /* (%bp) */
8193 default_seg = &ss;
8194 if (i.index_reg == 0)
8195 {
8196 i.rm.regmem = 6;
40fb9820 8197 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
8198 {
8199 /* fake (%bp) into 0(%bp) */
41eb8e88 8200 if (i.disp_encoding == disp_encoding_16bit)
1a02d6b0
L
8201 i.types[op].bitfield.disp16 = 1;
8202 else
8203 i.types[op].bitfield.disp8 = 1;
252b5132 8204 fake_zero_displacement = 1;
29b0f896
AM
8205 }
8206 }
8207 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8208 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8209 break;
8210 default: /* (%si) -> 4 or (%di) -> 5 */
8211 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8212 }
41eb8e88
L
8213 if (!fake_zero_displacement
8214 && !i.disp_operands
8215 && i.disp_encoding)
8216 {
8217 fake_zero_displacement = 1;
8218 if (i.disp_encoding == disp_encoding_8bit)
8219 i.types[op].bitfield.disp8 = 1;
8220 else
8221 i.types[op].bitfield.disp16 = 1;
8222 }
29b0f896
AM
8223 i.rm.mode = mode_from_disp_size (i.types[op]);
8224 }
8225 else /* i.base_reg and 32/64 bit mode */
8226 {
8227 if (flag_code == CODE_64BIT
40fb9820
L
8228 && operand_type_check (i.types[op], disp))
8229 {
73053c1f
JB
8230 i.types[op].bitfield.disp16 = 0;
8231 i.types[op].bitfield.disp64 = 0;
40fb9820 8232 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
8233 {
8234 i.types[op].bitfield.disp32 = 0;
8235 i.types[op].bitfield.disp32s = 1;
8236 }
40fb9820 8237 else
73053c1f
JB
8238 {
8239 i.types[op].bitfield.disp32 = 1;
8240 i.types[op].bitfield.disp32s = 0;
8241 }
40fb9820 8242 }
20f0a1fc 8243
63112cd6 8244 if (!i.tm.opcode_modifier.sib)
6c30d220 8245 i.rm.regmem = i.base_reg->reg_num;
29b0f896 8246 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 8247 i.rex |= REX_B;
29b0f896
AM
8248 i.sib.base = i.base_reg->reg_num;
8249 /* x86-64 ignores REX prefix bit here to avoid decoder
8250 complications. */
848930b2
JB
8251 if (!(i.base_reg->reg_flags & RegRex)
8252 && (i.base_reg->reg_num == EBP_REG_NUM
8253 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 8254 default_seg = &ss;
848930b2 8255 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 8256 {
848930b2 8257 fake_zero_displacement = 1;
1a02d6b0
L
8258 if (i.disp_encoding == disp_encoding_32bit)
8259 i.types[op].bitfield.disp32 = 1;
8260 else
8261 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
8262 }
8263 i.sib.scale = i.log2_scale_factor;
8264 if (i.index_reg == 0)
8265 {
260cd341
LC
8266 /* Only check for VSIB. */
8267 gas_assert (i.tm.opcode_modifier.sib != VECSIB128
8268 && i.tm.opcode_modifier.sib != VECSIB256
8269 && i.tm.opcode_modifier.sib != VECSIB512);
8270
29b0f896
AM
8271 /* <disp>(%esp) becomes two byte modrm with no index
8272 register. We've already stored the code for esp
8273 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8274 Any base register besides %esp will not use the
8275 extra modrm byte. */
8276 i.sib.index = NO_INDEX_REGISTER;
29b0f896 8277 }
63112cd6 8278 else if (!i.tm.opcode_modifier.sib)
29b0f896 8279 {
e968fc9b 8280 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
8281 i.sib.index = NO_INDEX_REGISTER;
8282 else
8283 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
8284 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8285 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 8286 i.rex |= REX_X;
29b0f896 8287 }
67a4f2b7
AO
8288
8289 if (i.disp_operands
8290 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8291 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8292 i.rm.mode = 0;
8293 else
a501d77e
L
8294 {
8295 if (!fake_zero_displacement
8296 && !i.disp_operands
8297 && i.disp_encoding)
8298 {
8299 fake_zero_displacement = 1;
8300 if (i.disp_encoding == disp_encoding_8bit)
8301 i.types[op].bitfield.disp8 = 1;
8302 else
8303 i.types[op].bitfield.disp32 = 1;
8304 }
8305 i.rm.mode = mode_from_disp_size (i.types[op]);
8306 }
29b0f896 8307 }
252b5132 8308
29b0f896
AM
8309 if (fake_zero_displacement)
8310 {
8311 /* Fakes a zero displacement assuming that i.types[op]
8312 holds the correct displacement size. */
8313 expressionS *exp;
8314
9c2799c2 8315 gas_assert (i.op[op].disps == 0);
29b0f896
AM
8316 exp = &disp_expressions[i.disp_operands++];
8317 i.op[op].disps = exp;
8318 exp->X_op = O_constant;
8319 exp->X_add_number = 0;
8320 exp->X_add_symbol = (symbolS *) 0;
8321 exp->X_op_symbol = (symbolS *) 0;
8322 }
c0f3af97
L
8323
8324 mem = op;
29b0f896 8325 }
c0f3af97
L
8326 else
8327 mem = ~0;
252b5132 8328
8c43a48b 8329 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
8330 {
8331 if (operand_type_check (i.types[0], imm))
8332 i.vex.register_specifier = NULL;
8333 else
8334 {
8335 /* VEX.vvvv encodes one of the sources when the first
8336 operand is not an immediate. */
1ef99a7b 8337 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
8338 i.vex.register_specifier = i.op[0].regs;
8339 else
8340 i.vex.register_specifier = i.op[1].regs;
8341 }
8342
8343 /* Destination is a XMM register encoded in the ModRM.reg
8344 and VEX.R bit. */
8345 i.rm.reg = i.op[2].regs->reg_num;
8346 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8347 i.rex |= REX_R;
8348
8349 /* ModRM.rm and VEX.B encodes the other source. */
8350 if (!i.mem_operands)
8351 {
8352 i.rm.mode = 3;
8353
1ef99a7b 8354 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
8355 i.rm.regmem = i.op[1].regs->reg_num;
8356 else
8357 i.rm.regmem = i.op[0].regs->reg_num;
8358
8359 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8360 i.rex |= REX_B;
8361 }
8362 }
2426c15f 8363 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
8364 {
8365 i.vex.register_specifier = i.op[2].regs;
8366 if (!i.mem_operands)
8367 {
8368 i.rm.mode = 3;
8369 i.rm.regmem = i.op[1].regs->reg_num;
8370 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8371 i.rex |= REX_B;
8372 }
8373 }
29b0f896
AM
8374 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8375 (if any) based on i.tm.extension_opcode. Again, we must be
8376 careful to make sure that segment/control/debug/test/MMX
8377 registers are coded into the i.rm.reg field. */
f88c9eb0 8378 else if (i.reg_operands)
29b0f896 8379 {
99018f42 8380 unsigned int op;
7ab9ffdd
L
8381 unsigned int vex_reg = ~0;
8382
8383 for (op = 0; op < i.operands; op++)
921eafea
L
8384 if (i.types[op].bitfield.class == Reg
8385 || i.types[op].bitfield.class == RegBND
8386 || i.types[op].bitfield.class == RegMask
8387 || i.types[op].bitfield.class == SReg
8388 || i.types[op].bitfield.class == RegCR
8389 || i.types[op].bitfield.class == RegDR
8390 || i.types[op].bitfield.class == RegTR
8391 || i.types[op].bitfield.class == RegSIMD
8392 || i.types[op].bitfield.class == RegMMX)
8393 break;
c0209578 8394
7ab9ffdd
L
8395 if (vex_3_sources)
8396 op = dest;
2426c15f 8397 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
8398 {
8399 /* For instructions with VexNDS, the register-only
8400 source operand is encoded in VEX prefix. */
8401 gas_assert (mem != (unsigned int) ~0);
c0f3af97 8402
7ab9ffdd 8403 if (op > mem)
c0f3af97 8404 {
7ab9ffdd
L
8405 vex_reg = op++;
8406 gas_assert (op < i.operands);
c0f3af97
L
8407 }
8408 else
c0f3af97 8409 {
f12dc422
L
8410 /* Check register-only source operand when two source
8411 operands are swapped. */
8412 if (!i.tm.operand_types[op].bitfield.baseindex
8413 && i.tm.operand_types[op + 1].bitfield.baseindex)
8414 {
8415 vex_reg = op;
8416 op += 2;
8417 gas_assert (mem == (vex_reg + 1)
8418 && op < i.operands);
8419 }
8420 else
8421 {
8422 vex_reg = op + 1;
8423 gas_assert (vex_reg < i.operands);
8424 }
c0f3af97 8425 }
7ab9ffdd 8426 }
2426c15f 8427 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 8428 {
f12dc422 8429 /* For instructions with VexNDD, the register destination
7ab9ffdd 8430 is encoded in VEX prefix. */
f12dc422
L
8431 if (i.mem_operands == 0)
8432 {
8433 /* There is no memory operand. */
8434 gas_assert ((op + 2) == i.operands);
8435 vex_reg = op + 1;
8436 }
8437 else
8d63c93e 8438 {
ed438a93
JB
8439 /* There are only 2 non-immediate operands. */
8440 gas_assert (op < i.imm_operands + 2
8441 && i.operands == i.imm_operands + 2);
8442 vex_reg = i.imm_operands + 1;
f12dc422 8443 }
7ab9ffdd
L
8444 }
8445 else
8446 gas_assert (op < i.operands);
99018f42 8447
7ab9ffdd
L
8448 if (vex_reg != (unsigned int) ~0)
8449 {
f12dc422 8450 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 8451
bab6aec1 8452 if ((type->bitfield.class != Reg
dc821c5f 8453 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 8454 && type->bitfield.class != RegSIMD
43234a1e 8455 && !operand_type_equal (type, &regmask))
7ab9ffdd 8456 abort ();
f88c9eb0 8457
7ab9ffdd
L
8458 i.vex.register_specifier = i.op[vex_reg].regs;
8459 }
8460
1b9f0c97
L
8461 /* Don't set OP operand twice. */
8462 if (vex_reg != op)
7ab9ffdd 8463 {
1b9f0c97
L
8464 /* If there is an extension opcode to put here, the
8465 register number must be put into the regmem field. */
8466 if (i.tm.extension_opcode != None)
8467 {
8468 i.rm.regmem = i.op[op].regs->reg_num;
a5aeccd9
JB
8469 set_rex_vrex (i.op[op].regs, REX_B,
8470 i.tm.opcode_modifier.sse2avx);
1b9f0c97
L
8471 }
8472 else
8473 {
8474 i.rm.reg = i.op[op].regs->reg_num;
a5aeccd9
JB
8475 set_rex_vrex (i.op[op].regs, REX_R,
8476 i.tm.opcode_modifier.sse2avx);
1b9f0c97 8477 }
7ab9ffdd 8478 }
252b5132 8479
29b0f896
AM
8480 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8481 must set it to 3 to indicate this is a register operand
8482 in the regmem field. */
8483 if (!i.mem_operands)
8484 i.rm.mode = 3;
8485 }
252b5132 8486
29b0f896 8487 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 8488 if (i.tm.extension_opcode != None)
29b0f896
AM
8489 i.rm.reg = i.tm.extension_opcode;
8490 }
8491 return default_seg;
8492}
252b5132 8493
48ef937e
JB
8494static INLINE void
8495frag_opcode_byte (unsigned char byte)
8496{
8497 if (now_seg != absolute_section)
8498 FRAG_APPEND_1_CHAR (byte);
8499 else
8500 ++abs_section_offset;
8501}
8502
376cd056
JB
8503static unsigned int
8504flip_code16 (unsigned int code16)
8505{
8506 gas_assert (i.tm.operands == 1);
8507
8508 return !(i.prefix[REX_PREFIX] & REX_W)
8509 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8510 || i.tm.operand_types[0].bitfield.disp32s
8511 : i.tm.operand_types[0].bitfield.disp16)
8512 ? CODE16 : 0;
8513}
8514
29b0f896 8515static void
e3bb37b5 8516output_branch (void)
29b0f896
AM
8517{
8518 char *p;
f8a5c266 8519 int size;
29b0f896
AM
8520 int code16;
8521 int prefix;
8522 relax_substateT subtype;
8523 symbolS *sym;
8524 offsetT off;
8525
48ef937e
JB
8526 if (now_seg == absolute_section)
8527 {
8528 as_bad (_("relaxable branches not supported in absolute section"));
8529 return;
8530 }
8531
f8a5c266 8532 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 8533 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
8534
8535 prefix = 0;
8536 if (i.prefix[DATA_PREFIX] != 0)
252b5132 8537 {
29b0f896
AM
8538 prefix = 1;
8539 i.prefixes -= 1;
376cd056 8540 code16 ^= flip_code16(code16);
252b5132 8541 }
29b0f896
AM
8542 /* Pentium4 branch hints. */
8543 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8544 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 8545 {
29b0f896
AM
8546 prefix++;
8547 i.prefixes--;
8548 }
8549 if (i.prefix[REX_PREFIX] != 0)
8550 {
8551 prefix++;
8552 i.prefixes--;
2f66722d
AM
8553 }
8554
7e8b059b
L
8555 /* BND prefixed jump. */
8556 if (i.prefix[BND_PREFIX] != 0)
8557 {
6cb0a70e
JB
8558 prefix++;
8559 i.prefixes--;
7e8b059b
L
8560 }
8561
f2810fe0
JB
8562 if (i.prefixes != 0)
8563 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
8564
8565 /* It's always a symbol; End frag & setup for relax.
8566 Make sure there is enough room in this frag for the largest
8567 instruction we may generate in md_convert_frag. This is 2
8568 bytes for the opcode and room for the prefix and largest
8569 displacement. */
8570 frag_grow (prefix + 2 + 4);
8571 /* Prefix and 1 opcode byte go in fr_fix. */
8572 p = frag_more (prefix + 1);
8573 if (i.prefix[DATA_PREFIX] != 0)
8574 *p++ = DATA_PREFIX_OPCODE;
8575 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8576 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8577 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
8578 if (i.prefix[BND_PREFIX] != 0)
8579 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
8580 if (i.prefix[REX_PREFIX] != 0)
8581 *p++ = i.prefix[REX_PREFIX];
8582 *p = i.tm.base_opcode;
8583
8584 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 8585 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 8586 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 8587 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 8588 else
f8a5c266 8589 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 8590 subtype |= code16;
3e73aa7c 8591
29b0f896
AM
8592 sym = i.op[0].disps->X_add_symbol;
8593 off = i.op[0].disps->X_add_number;
3e73aa7c 8594
29b0f896
AM
8595 if (i.op[0].disps->X_op != O_constant
8596 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 8597 {
29b0f896
AM
8598 /* Handle complex expressions. */
8599 sym = make_expr_symbol (i.op[0].disps);
8600 off = 0;
8601 }
3e73aa7c 8602
29b0f896
AM
8603 /* 1 possible extra opcode + 4 byte displacement go in var part.
8604 Pass reloc in fr_var. */
d258b828 8605 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 8606}
3e73aa7c 8607
bd7ab16b
L
8608#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8609/* Return TRUE iff PLT32 relocation should be used for branching to
8610 symbol S. */
8611
8612static bfd_boolean
8613need_plt32_p (symbolS *s)
8614{
8615 /* PLT32 relocation is ELF only. */
8616 if (!IS_ELF)
8617 return FALSE;
8618
a5def729
RO
8619#ifdef TE_SOLARIS
8620 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8621 krtld support it. */
8622 return FALSE;
8623#endif
8624
bd7ab16b
L
8625 /* Since there is no need to prepare for PLT branch on x86-64, we
8626 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8627 be used as a marker for 32-bit PC-relative branches. */
8628 if (!object_64bit)
8629 return FALSE;
8630
8631 /* Weak or undefined symbol need PLT32 relocation. */
8632 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8633 return TRUE;
8634
8635 /* Non-global symbol doesn't need PLT32 relocation. */
8636 if (! S_IS_EXTERNAL (s))
8637 return FALSE;
8638
8639 /* Other global symbols need PLT32 relocation. NB: Symbol with
8640 non-default visibilities are treated as normal global symbol
8641 so that PLT32 relocation can be used as a marker for 32-bit
8642 PC-relative branches. It is useful for linker relaxation. */
8643 return TRUE;
8644}
8645#endif
8646
29b0f896 8647static void
e3bb37b5 8648output_jump (void)
29b0f896
AM
8649{
8650 char *p;
8651 int size;
3e02c1cc 8652 fixS *fixP;
bd7ab16b 8653 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 8654
0cfa3eb3 8655 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
8656 {
8657 /* This is a loop or jecxz type instruction. */
8658 size = 1;
8659 if (i.prefix[ADDR_PREFIX] != 0)
8660 {
48ef937e 8661 frag_opcode_byte (ADDR_PREFIX_OPCODE);
29b0f896
AM
8662 i.prefixes -= 1;
8663 }
8664 /* Pentium4 branch hints. */
8665 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8666 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8667 {
48ef937e 8668 frag_opcode_byte (i.prefix[SEG_PREFIX]);
29b0f896 8669 i.prefixes--;
3e73aa7c
JH
8670 }
8671 }
29b0f896
AM
8672 else
8673 {
8674 int code16;
3e73aa7c 8675
29b0f896
AM
8676 code16 = 0;
8677 if (flag_code == CODE_16BIT)
8678 code16 = CODE16;
3e73aa7c 8679
29b0f896
AM
8680 if (i.prefix[DATA_PREFIX] != 0)
8681 {
48ef937e 8682 frag_opcode_byte (DATA_PREFIX_OPCODE);
29b0f896 8683 i.prefixes -= 1;
376cd056 8684 code16 ^= flip_code16(code16);
29b0f896 8685 }
252b5132 8686
29b0f896
AM
8687 size = 4;
8688 if (code16)
8689 size = 2;
8690 }
9fcc94b6 8691
6cb0a70e
JB
8692 /* BND prefixed jump. */
8693 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8694 {
48ef937e 8695 frag_opcode_byte (i.prefix[BND_PREFIX]);
29b0f896
AM
8696 i.prefixes -= 1;
8697 }
252b5132 8698
6cb0a70e 8699 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8700 {
48ef937e 8701 frag_opcode_byte (i.prefix[REX_PREFIX]);
7e8b059b
L
8702 i.prefixes -= 1;
8703 }
8704
f2810fe0
JB
8705 if (i.prefixes != 0)
8706 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8707
48ef937e
JB
8708 if (now_seg == absolute_section)
8709 {
8710 abs_section_offset += i.tm.opcode_length + size;
8711 return;
8712 }
8713
42164a71
L
8714 p = frag_more (i.tm.opcode_length + size);
8715 switch (i.tm.opcode_length)
8716 {
8717 case 2:
8718 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8719 /* Fall through. */
42164a71
L
8720 case 1:
8721 *p++ = i.tm.base_opcode;
8722 break;
8723 default:
8724 abort ();
8725 }
e0890092 8726
bd7ab16b
L
8727#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8728 if (size == 4
8729 && jump_reloc == NO_RELOC
8730 && need_plt32_p (i.op[0].disps->X_add_symbol))
8731 jump_reloc = BFD_RELOC_X86_64_PLT32;
8732#endif
8733
8734 jump_reloc = reloc (size, 1, 1, jump_reloc);
8735
3e02c1cc 8736 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8737 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8738
8739 /* All jumps handled here are signed, but don't use a signed limit
8740 check for 32 and 16 bit jumps as we want to allow wrap around at
8741 4G and 64k respectively. */
8742 if (size == 1)
8743 fixP->fx_signed = 1;
29b0f896 8744}
e0890092 8745
29b0f896 8746static void
e3bb37b5 8747output_interseg_jump (void)
29b0f896
AM
8748{
8749 char *p;
8750 int size;
8751 int prefix;
8752 int code16;
252b5132 8753
29b0f896
AM
8754 code16 = 0;
8755 if (flag_code == CODE_16BIT)
8756 code16 = CODE16;
a217f122 8757
29b0f896
AM
8758 prefix = 0;
8759 if (i.prefix[DATA_PREFIX] != 0)
8760 {
8761 prefix = 1;
8762 i.prefixes -= 1;
8763 code16 ^= CODE16;
8764 }
6cb0a70e
JB
8765
8766 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8767
29b0f896
AM
8768 size = 4;
8769 if (code16)
8770 size = 2;
252b5132 8771
f2810fe0
JB
8772 if (i.prefixes != 0)
8773 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8774
48ef937e
JB
8775 if (now_seg == absolute_section)
8776 {
8777 abs_section_offset += prefix + 1 + 2 + size;
8778 return;
8779 }
8780
29b0f896
AM
8781 /* 1 opcode; 2 segment; offset */
8782 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8783
29b0f896
AM
8784 if (i.prefix[DATA_PREFIX] != 0)
8785 *p++ = DATA_PREFIX_OPCODE;
252b5132 8786
29b0f896
AM
8787 if (i.prefix[REX_PREFIX] != 0)
8788 *p++ = i.prefix[REX_PREFIX];
252b5132 8789
29b0f896
AM
8790 *p++ = i.tm.base_opcode;
8791 if (i.op[1].imms->X_op == O_constant)
8792 {
8793 offsetT n = i.op[1].imms->X_add_number;
252b5132 8794
29b0f896
AM
8795 if (size == 2
8796 && !fits_in_unsigned_word (n)
8797 && !fits_in_signed_word (n))
8798 {
8799 as_bad (_("16-bit jump out of range"));
8800 return;
8801 }
8802 md_number_to_chars (p, n, size);
8803 }
8804 else
8805 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8806 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6d96a594
C
8807
8808 p += size;
8809 if (i.op[0].imms->X_op == O_constant)
8810 md_number_to_chars (p, (valueT) i.op[0].imms->X_add_number, 2);
8811 else
8812 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
8813 i.op[0].imms, 0, reloc (2, 0, 0, i.reloc[0]));
29b0f896 8814}
a217f122 8815
b4a3a7b4
L
8816#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8817void
8818x86_cleanup (void)
8819{
8820 char *p;
8821 asection *seg = now_seg;
8822 subsegT subseg = now_subseg;
8823 asection *sec;
8824 unsigned int alignment, align_size_1;
8825 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8826 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8827 unsigned int padding;
8828
8829 if (!IS_ELF || !x86_used_note)
8830 return;
8831
b4a3a7b4
L
8832 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8833
8834 /* The .note.gnu.property section layout:
8835
8836 Field Length Contents
8837 ---- ---- ----
8838 n_namsz 4 4
8839 n_descsz 4 The note descriptor size
8840 n_type 4 NT_GNU_PROPERTY_TYPE_0
8841 n_name 4 "GNU"
8842 n_desc n_descsz The program property array
8843 .... .... ....
8844 */
8845
8846 /* Create the .note.gnu.property section. */
8847 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8848 bfd_set_section_flags (sec,
b4a3a7b4
L
8849 (SEC_ALLOC
8850 | SEC_LOAD
8851 | SEC_DATA
8852 | SEC_HAS_CONTENTS
8853 | SEC_READONLY));
8854
8855 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8856 {
8857 align_size_1 = 7;
8858 alignment = 3;
8859 }
8860 else
8861 {
8862 align_size_1 = 3;
8863 alignment = 2;
8864 }
8865
fd361982 8866 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8867 elf_section_type (sec) = SHT_NOTE;
8868
8869 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8870 + 4-byte data */
8871 isa_1_descsz_raw = 4 + 4 + 4;
8872 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8873 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8874
8875 feature_2_descsz_raw = isa_1_descsz;
8876 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8877 + 4-byte data */
8878 feature_2_descsz_raw += 4 + 4 + 4;
8879 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8880 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8881 & ~align_size_1);
8882
8883 descsz = feature_2_descsz;
8884 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8885 p = frag_more (4 + 4 + 4 + 4 + descsz);
8886
8887 /* Write n_namsz. */
8888 md_number_to_chars (p, (valueT) 4, 4);
8889
8890 /* Write n_descsz. */
8891 md_number_to_chars (p + 4, (valueT) descsz, 4);
8892
8893 /* Write n_type. */
8894 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8895
8896 /* Write n_name. */
8897 memcpy (p + 4 * 3, "GNU", 4);
8898
8899 /* Write 4-byte type. */
8900 md_number_to_chars (p + 4 * 4,
8901 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8902
8903 /* Write 4-byte data size. */
8904 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8905
8906 /* Write 4-byte data. */
8907 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8908
8909 /* Zero out paddings. */
8910 padding = isa_1_descsz - isa_1_descsz_raw;
8911 if (padding)
8912 memset (p + 4 * 7, 0, padding);
8913
8914 /* Write 4-byte type. */
8915 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8916 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8917
8918 /* Write 4-byte data size. */
8919 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8920
8921 /* Write 4-byte data. */
8922 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8923 (valueT) x86_feature_2_used, 4);
8924
8925 /* Zero out paddings. */
8926 padding = feature_2_descsz - feature_2_descsz_raw;
8927 if (padding)
8928 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8929
8930 /* We probably can't restore the current segment, for there likely
8931 isn't one yet... */
8932 if (seg && subseg)
8933 subseg_set (seg, subseg);
8934}
8935#endif
8936
9c33702b
JB
8937static unsigned int
8938encoding_length (const fragS *start_frag, offsetT start_off,
8939 const char *frag_now_ptr)
8940{
8941 unsigned int len = 0;
8942
8943 if (start_frag != frag_now)
8944 {
8945 const fragS *fr = start_frag;
8946
8947 do {
8948 len += fr->fr_fix;
8949 fr = fr->fr_next;
8950 } while (fr && fr != frag_now);
8951 }
8952
8953 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8954}
8955
e379e5f3 8956/* Return 1 for test, and, cmp, add, sub, inc and dec which may
79d72f45
HL
8957 be macro-fused with conditional jumps.
8958 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8959 or is one of the following format:
8960
8961 cmp m, imm
8962 add m, imm
8963 sub m, imm
8964 test m, imm
8965 and m, imm
8966 inc m
8967 dec m
8968
8969 it is unfusible. */
e379e5f3
L
8970
8971static int
79d72f45 8972maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
8973{
8974 /* No RIP address. */
8975 if (i.base_reg && i.base_reg->reg_num == RegIP)
8976 return 0;
8977
8978 /* No VEX/EVEX encoding. */
8979 if (is_any_vex_encoding (&i.tm))
8980 return 0;
8981
79d72f45
HL
8982 /* add, sub without add/sub m, imm. */
8983 if (i.tm.base_opcode <= 5
e379e5f3
L
8984 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8985 || ((i.tm.base_opcode | 3) == 0x83
79d72f45 8986 && (i.tm.extension_opcode == 0x5
e379e5f3 8987 || i.tm.extension_opcode == 0x0)))
79d72f45
HL
8988 {
8989 *mf_cmp_p = mf_cmp_alu_cmp;
8990 return !(i.mem_operands && i.imm_operands);
8991 }
e379e5f3 8992
79d72f45
HL
8993 /* and without and m, imm. */
8994 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8995 || ((i.tm.base_opcode | 3) == 0x83
8996 && i.tm.extension_opcode == 0x4))
8997 {
8998 *mf_cmp_p = mf_cmp_test_and;
8999 return !(i.mem_operands && i.imm_operands);
9000 }
9001
9002 /* test without test m imm. */
e379e5f3
L
9003 if ((i.tm.base_opcode | 1) == 0x85
9004 || (i.tm.base_opcode | 1) == 0xa9
9005 || ((i.tm.base_opcode | 1) == 0xf7
79d72f45
HL
9006 && i.tm.extension_opcode == 0))
9007 {
9008 *mf_cmp_p = mf_cmp_test_and;
9009 return !(i.mem_operands && i.imm_operands);
9010 }
9011
9012 /* cmp without cmp m, imm. */
9013 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
e379e5f3
L
9014 || ((i.tm.base_opcode | 3) == 0x83
9015 && (i.tm.extension_opcode == 0x7)))
79d72f45
HL
9016 {
9017 *mf_cmp_p = mf_cmp_alu_cmp;
9018 return !(i.mem_operands && i.imm_operands);
9019 }
e379e5f3 9020
79d72f45 9021 /* inc, dec without inc/dec m. */
e379e5f3
L
9022 if ((i.tm.cpu_flags.bitfield.cpuno64
9023 && (i.tm.base_opcode | 0xf) == 0x4f)
9024 || ((i.tm.base_opcode | 1) == 0xff
9025 && i.tm.extension_opcode <= 0x1))
79d72f45
HL
9026 {
9027 *mf_cmp_p = mf_cmp_incdec;
9028 return !i.mem_operands;
9029 }
e379e5f3
L
9030
9031 return 0;
9032}
9033
9034/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
9035
9036static int
79d72f45 9037add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
9038{
9039 /* NB: Don't work with COND_JUMP86 without i386. */
9040 if (!align_branch_power
9041 || now_seg == absolute_section
9042 || !cpu_arch_flags.bitfield.cpui386
9043 || !(align_branch & align_branch_fused_bit))
9044 return 0;
9045
79d72f45 9046 if (maybe_fused_with_jcc_p (mf_cmp_p))
e379e5f3
L
9047 {
9048 if (last_insn.kind == last_insn_other
9049 || last_insn.seg != now_seg)
9050 return 1;
9051 if (flag_debug)
9052 as_warn_where (last_insn.file, last_insn.line,
9053 _("`%s` skips -malign-branch-boundary on `%s`"),
9054 last_insn.name, i.tm.name);
9055 }
9056
9057 return 0;
9058}
9059
9060/* Return 1 if a BRANCH_PREFIX frag should be generated. */
9061
9062static int
9063add_branch_prefix_frag_p (void)
9064{
9065 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
9066 to PadLock instructions since they include prefixes in opcode. */
9067 if (!align_branch_power
9068 || !align_branch_prefix_size
9069 || now_seg == absolute_section
9070 || i.tm.cpu_flags.bitfield.cpupadlock
9071 || !cpu_arch_flags.bitfield.cpui386)
9072 return 0;
9073
9074 /* Don't add prefix if it is a prefix or there is no operand in case
9075 that segment prefix is special. */
9076 if (!i.operands || i.tm.opcode_modifier.isprefix)
9077 return 0;
9078
9079 if (last_insn.kind == last_insn_other
9080 || last_insn.seg != now_seg)
9081 return 1;
9082
9083 if (flag_debug)
9084 as_warn_where (last_insn.file, last_insn.line,
9085 _("`%s` skips -malign-branch-boundary on `%s`"),
9086 last_insn.name, i.tm.name);
9087
9088 return 0;
9089}
9090
9091/* Return 1 if a BRANCH_PADDING frag should be generated. */
9092
9093static int
79d72f45
HL
9094add_branch_padding_frag_p (enum align_branch_kind *branch_p,
9095 enum mf_jcc_kind *mf_jcc_p)
e379e5f3
L
9096{
9097 int add_padding;
9098
9099 /* NB: Don't work with COND_JUMP86 without i386. */
9100 if (!align_branch_power
9101 || now_seg == absolute_section
9102 || !cpu_arch_flags.bitfield.cpui386)
9103 return 0;
9104
9105 add_padding = 0;
9106
9107 /* Check for jcc and direct jmp. */
9108 if (i.tm.opcode_modifier.jump == JUMP)
9109 {
9110 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
9111 {
9112 *branch_p = align_branch_jmp;
9113 add_padding = align_branch & align_branch_jmp_bit;
9114 }
9115 else
9116 {
79d72f45
HL
9117 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
9118 igore the lowest bit. */
9119 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
e379e5f3
L
9120 *branch_p = align_branch_jcc;
9121 if ((align_branch & align_branch_jcc_bit))
9122 add_padding = 1;
9123 }
9124 }
9125 else if (is_any_vex_encoding (&i.tm))
9126 return 0;
9127 else if ((i.tm.base_opcode | 1) == 0xc3)
9128 {
9129 /* Near ret. */
9130 *branch_p = align_branch_ret;
9131 if ((align_branch & align_branch_ret_bit))
9132 add_padding = 1;
9133 }
9134 else
9135 {
9136 /* Check for indirect jmp, direct and indirect calls. */
9137 if (i.tm.base_opcode == 0xe8)
9138 {
9139 /* Direct call. */
9140 *branch_p = align_branch_call;
9141 if ((align_branch & align_branch_call_bit))
9142 add_padding = 1;
9143 }
9144 else if (i.tm.base_opcode == 0xff
9145 && (i.tm.extension_opcode == 2
9146 || i.tm.extension_opcode == 4))
9147 {
9148 /* Indirect call and jmp. */
9149 *branch_p = align_branch_indirect;
9150 if ((align_branch & align_branch_indirect_bit))
9151 add_padding = 1;
9152 }
9153
9154 if (add_padding
9155 && i.disp_operands
9156 && tls_get_addr
9157 && (i.op[0].disps->X_op == O_symbol
9158 || (i.op[0].disps->X_op == O_subtract
9159 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9160 {
9161 symbolS *s = i.op[0].disps->X_add_symbol;
9162 /* No padding to call to global or undefined tls_get_addr. */
9163 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9164 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9165 return 0;
9166 }
9167 }
9168
9169 if (add_padding
9170 && last_insn.kind != last_insn_other
9171 && last_insn.seg == now_seg)
9172 {
9173 if (flag_debug)
9174 as_warn_where (last_insn.file, last_insn.line,
9175 _("`%s` skips -malign-branch-boundary on `%s`"),
9176 last_insn.name, i.tm.name);
9177 return 0;
9178 }
9179
9180 return add_padding;
9181}
9182
29b0f896 9183static void
e3bb37b5 9184output_insn (void)
29b0f896 9185{
2bbd9c25
JJ
9186 fragS *insn_start_frag;
9187 offsetT insn_start_off;
e379e5f3
L
9188 fragS *fragP = NULL;
9189 enum align_branch_kind branch = align_branch_none;
79d72f45
HL
9190 /* The initializer is arbitrary just to avoid uninitialized error.
9191 it's actually either assigned in add_branch_padding_frag_p
9192 or never be used. */
9193 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
2bbd9c25 9194
b4a3a7b4 9195#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
48ef937e 9196 if (IS_ELF && x86_used_note && now_seg != absolute_section)
b4a3a7b4 9197 {
32930e4e
L
9198 if ((i.xstate & xstate_tmm) == xstate_tmm
9199 || i.tm.cpu_flags.bitfield.cpuamx_tile)
9200 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
9201
9202 if (i.tm.cpu_flags.bitfield.cpusse3
9203 || i.tm.cpu_flags.bitfield.cpussse3
9204 || i.tm.cpu_flags.bitfield.cpusse4_1
9205 || i.tm.cpu_flags.bitfield.cpusse4_2
9206 || i.tm.cpu_flags.bitfield.cpucx16
9207 || i.tm.cpu_flags.bitfield.cpupopcnt
9208 /* LAHF-SAHF insns in 64-bit mode. */
9209 || (flag_code == CODE_64BIT
9210 && (i.tm.base_opcode | 1) == 0x9f))
9211 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V2;
9212 if (i.tm.cpu_flags.bitfield.cpuavx
9213 || i.tm.cpu_flags.bitfield.cpuavx2
9214 /* Any VEX encoded insns execpt for CpuAVX512F, CpuAVX512BW,
9215 CpuAVX512DQ, LPW, TBM and AMX. */
9216 || (i.tm.opcode_modifier.vex
9217 && !i.tm.cpu_flags.bitfield.cpuavx512f
9218 && !i.tm.cpu_flags.bitfield.cpuavx512bw
9219 && !i.tm.cpu_flags.bitfield.cpuavx512dq
9220 && !i.tm.cpu_flags.bitfield.cpulwp
9221 && !i.tm.cpu_flags.bitfield.cputbm
9222 && !(x86_feature_2_used & GNU_PROPERTY_X86_FEATURE_2_TMM))
9223 || i.tm.cpu_flags.bitfield.cpuf16c
9224 || i.tm.cpu_flags.bitfield.cpufma
9225 || i.tm.cpu_flags.bitfield.cpulzcnt
9226 || i.tm.cpu_flags.bitfield.cpumovbe
9227 || i.tm.cpu_flags.bitfield.cpuxsave
9228 || i.tm.cpu_flags.bitfield.cpuxsavec
9229 || i.tm.cpu_flags.bitfield.cpuxsaveopt
9230 || i.tm.cpu_flags.bitfield.cpuxsaves)
9231 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V3;
9232 if (i.tm.cpu_flags.bitfield.cpuavx512f
9233 || i.tm.cpu_flags.bitfield.cpuavx512bw
9234 || i.tm.cpu_flags.bitfield.cpuavx512dq
9235 || i.tm.cpu_flags.bitfield.cpuavx512vl
9236 /* Any EVEX encoded insns except for AVX512ER, AVX512PF and
9237 VNNIW. */
9238 || (i.tm.opcode_modifier.evex
9239 && !i.tm.cpu_flags.bitfield.cpuavx512er
9240 && !i.tm.cpu_flags.bitfield.cpuavx512pf
9241 && !i.tm.cpu_flags.bitfield.cpuavx512_4vnniw))
9242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V4;
b4a3a7b4
L
9243
9244 if (i.tm.cpu_flags.bitfield.cpu8087
9245 || i.tm.cpu_flags.bitfield.cpu287
9246 || i.tm.cpu_flags.bitfield.cpu387
9247 || i.tm.cpu_flags.bitfield.cpu687
9248 || i.tm.cpu_flags.bitfield.cpufisttp)
9249 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
921eafea 9250 if ((i.xstate & xstate_mmx)
319ff62c 9251 || i.tm.base_opcode == 0xf77 /* emms */
921eafea 9252 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4 9253 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
32930e4e
L
9254 if (i.index_reg)
9255 {
9256 if (i.index_reg->reg_type.bitfield.zmmword)
9257 i.xstate |= xstate_zmm;
9258 else if (i.index_reg->reg_type.bitfield.ymmword)
9259 i.xstate |= xstate_ymm;
9260 else if (i.index_reg->reg_type.bitfield.xmmword)
9261 i.xstate |= xstate_xmm;
9262 }
c4694f17
TG
9263 if ((i.xstate & xstate_xmm)
9264 || i.tm.cpu_flags.bitfield.cpuwidekl
9265 || i.tm.cpu_flags.bitfield.cpukl)
b4a3a7b4 9266 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
921eafea 9267 if ((i.xstate & xstate_ymm) == xstate_ymm)
b4a3a7b4 9268 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
921eafea 9269 if ((i.xstate & xstate_zmm) == xstate_zmm)
b4a3a7b4 9270 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
32930e4e
L
9271 if (i.mask || (i.xstate & xstate_mask) == xstate_mask)
9272 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MASK;
b4a3a7b4
L
9273 if (i.tm.cpu_flags.bitfield.cpufxsr)
9274 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9275 if (i.tm.cpu_flags.bitfield.cpuxsave)
9276 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9277 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9278 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9279 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9280 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9281 }
9282#endif
9283
29b0f896
AM
9284 /* Tie dwarf2 debug info to the address at the start of the insn.
9285 We can't do this after the insn has been output as the current
9286 frag may have been closed off. eg. by frag_var. */
9287 dwarf2_emit_insn (0);
9288
2bbd9c25
JJ
9289 insn_start_frag = frag_now;
9290 insn_start_off = frag_now_fix ();
9291
79d72f45 9292 if (add_branch_padding_frag_p (&branch, &mf_jcc))
e379e5f3
L
9293 {
9294 char *p;
9295 /* Branch can be 8 bytes. Leave some room for prefixes. */
9296 unsigned int max_branch_padding_size = 14;
9297
9298 /* Align section to boundary. */
9299 record_alignment (now_seg, align_branch_power);
9300
9301 /* Make room for padding. */
9302 frag_grow (max_branch_padding_size);
9303
9304 /* Start of the padding. */
9305 p = frag_more (0);
9306
9307 fragP = frag_now;
9308
9309 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9310 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9311 NULL, 0, p);
9312
79d72f45 9313 fragP->tc_frag_data.mf_type = mf_jcc;
e379e5f3
L
9314 fragP->tc_frag_data.branch_type = branch;
9315 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9316 }
9317
29b0f896 9318 /* Output jumps. */
0cfa3eb3 9319 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 9320 output_branch ();
0cfa3eb3
JB
9321 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9322 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 9323 output_jump ();
0cfa3eb3 9324 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
9325 output_interseg_jump ();
9326 else
9327 {
9328 /* Output normal instructions here. */
9329 char *p;
9330 unsigned char *q;
47465058 9331 unsigned int j;
79d72f45 9332 enum mf_cmp_kind mf_cmp;
4dffcebc 9333
e4e00185 9334 if (avoid_fence
c3949f43
JB
9335 && (i.tm.base_opcode == 0xfaee8
9336 || i.tm.base_opcode == 0xfaef0
9337 || i.tm.base_opcode == 0xfaef8))
48ef937e
JB
9338 {
9339 /* Encode lfence, mfence, and sfence as
9340 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9341 if (now_seg != absolute_section)
9342 {
9343 offsetT val = 0x240483f0ULL;
9344
9345 p = frag_more (5);
9346 md_number_to_chars (p, val, 5);
9347 }
9348 else
9349 abs_section_offset += 5;
9350 return;
9351 }
e4e00185 9352
d022bddd
IT
9353 /* Some processors fail on LOCK prefix. This options makes
9354 assembler ignore LOCK prefix and serves as a workaround. */
9355 if (omit_lock_prefix)
9356 {
9357 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9358 return;
9359 i.prefix[LOCK_PREFIX] = 0;
9360 }
9361
e379e5f3
L
9362 if (branch)
9363 /* Skip if this is a branch. */
9364 ;
79d72f45 9365 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
e379e5f3
L
9366 {
9367 /* Make room for padding. */
9368 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9369 p = frag_more (0);
9370
9371 fragP = frag_now;
9372
9373 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9374 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9375 NULL, 0, p);
9376
79d72f45 9377 fragP->tc_frag_data.mf_type = mf_cmp;
e379e5f3
L
9378 fragP->tc_frag_data.branch_type = align_branch_fused;
9379 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9380 }
9381 else if (add_branch_prefix_frag_p ())
9382 {
9383 unsigned int max_prefix_size = align_branch_prefix_size;
9384
9385 /* Make room for padding. */
9386 frag_grow (max_prefix_size);
9387 p = frag_more (0);
9388
9389 fragP = frag_now;
9390
9391 frag_var (rs_machine_dependent, max_prefix_size, 0,
9392 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9393 NULL, 0, p);
9394
9395 fragP->tc_frag_data.max_bytes = max_prefix_size;
9396 }
9397
43234a1e
L
9398 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9399 don't need the explicit prefix. */
9400 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 9401 {
7b47a312 9402 switch (i.tm.opcode_modifier.opcodeprefix)
bc4bd9ab 9403 {
7b47a312
L
9404 case PREFIX_0X66:
9405 add_prefix (0x66);
9406 break;
9407 case PREFIX_0XF2:
9408 add_prefix (0xf2);
9409 break;
9410 case PREFIX_0XF3:
8b65b895
L
9411 if (!i.tm.cpu_flags.bitfield.cpupadlock
9412 || (i.prefix[REP_PREFIX] != 0xf3))
9413 add_prefix (0xf3);
c0f3af97 9414 break;
7b47a312
L
9415 case PREFIX_NONE:
9416 switch (i.tm.opcode_length)
c0f3af97 9417 {
7b47a312 9418 case 3:
7b47a312 9419 case 2:
7b47a312
L
9420 case 1:
9421 break;
9422 case 0:
9423 /* Check for pseudo prefixes. */
9424 as_bad_where (insn_start_frag->fr_file,
9425 insn_start_frag->fr_line,
9426 _("pseudo prefix without instruction"));
9427 return;
9428 default:
9429 abort ();
4dffcebc 9430 }
c0f3af97 9431 break;
c0f3af97
L
9432 default:
9433 abort ();
bc4bd9ab 9434 }
c0f3af97 9435
6d19a37a 9436#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
9437 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9438 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
9439 perform IE->LE optimization. A dummy REX_OPCODE prefix
9440 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9441 relocation for GDesc -> IE/LE optimization. */
cf61b747
L
9442 if (x86_elf_abi == X86_64_X32_ABI
9443 && i.operands == 2
14470f07
L
9444 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9445 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
9446 && i.prefix[REX_PREFIX] == 0)
9447 add_prefix (REX_OPCODE);
6d19a37a 9448#endif
cf61b747 9449
c0f3af97
L
9450 /* The prefix bytes. */
9451 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9452 if (*q)
48ef937e 9453 frag_opcode_byte (*q);
0f10071e 9454 }
ae5c1c7b 9455 else
c0f3af97
L
9456 {
9457 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9458 if (*q)
9459 switch (j)
9460 {
c0f3af97
L
9461 case SEG_PREFIX:
9462 case ADDR_PREFIX:
48ef937e 9463 frag_opcode_byte (*q);
c0f3af97
L
9464 break;
9465 default:
9466 /* There should be no other prefixes for instructions
9467 with VEX prefix. */
9468 abort ();
9469 }
9470
43234a1e
L
9471 /* For EVEX instructions i.vrex should become 0 after
9472 build_evex_prefix. For VEX instructions upper 16 registers
9473 aren't available, so VREX should be 0. */
9474 if (i.vrex)
9475 abort ();
c0f3af97 9476 /* Now the VEX prefix. */
48ef937e
JB
9477 if (now_seg != absolute_section)
9478 {
9479 p = frag_more (i.vex.length);
9480 for (j = 0; j < i.vex.length; j++)
9481 p[j] = i.vex.bytes[j];
9482 }
9483 else
9484 abs_section_offset += i.vex.length;
c0f3af97 9485 }
252b5132 9486
29b0f896 9487 /* Now the opcode; be careful about word order here! */
48ef937e
JB
9488 if (now_seg == absolute_section)
9489 abs_section_offset += i.tm.opcode_length;
9490 else if (i.tm.opcode_length == 1)
29b0f896
AM
9491 {
9492 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9493 }
9494 else
9495 {
4dffcebc 9496 switch (i.tm.opcode_length)
331d2d0d 9497 {
43234a1e
L
9498 case 4:
9499 p = frag_more (4);
9500 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9501 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9502 break;
4dffcebc 9503 case 3:
331d2d0d
L
9504 p = frag_more (3);
9505 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
9506 break;
9507 case 2:
9508 p = frag_more (2);
9509 break;
9510 default:
9511 abort ();
9512 break;
331d2d0d 9513 }
0f10071e 9514
29b0f896
AM
9515 /* Put out high byte first: can't use md_number_to_chars! */
9516 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9517 *p = i.tm.base_opcode & 0xff;
9518 }
3e73aa7c 9519
29b0f896 9520 /* Now the modrm byte and sib byte (if present). */
40fb9820 9521 if (i.tm.opcode_modifier.modrm)
29b0f896 9522 {
48ef937e
JB
9523 frag_opcode_byte ((i.rm.regmem << 0)
9524 | (i.rm.reg << 3)
9525 | (i.rm.mode << 6));
29b0f896
AM
9526 /* If i.rm.regmem == ESP (4)
9527 && i.rm.mode != (Register mode)
9528 && not 16 bit
9529 ==> need second modrm byte. */
9530 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9531 && i.rm.mode != 3
dc821c5f 9532 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
48ef937e
JB
9533 frag_opcode_byte ((i.sib.base << 0)
9534 | (i.sib.index << 3)
9535 | (i.sib.scale << 6));
29b0f896 9536 }
3e73aa7c 9537
29b0f896 9538 if (i.disp_operands)
2bbd9c25 9539 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 9540
29b0f896 9541 if (i.imm_operands)
2bbd9c25 9542 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
9543
9544 /*
9545 * frag_now_fix () returning plain abs_section_offset when we're in the
9546 * absolute section, and abs_section_offset not getting updated as data
9547 * gets added to the frag breaks the logic below.
9548 */
9549 if (now_seg != absolute_section)
9550 {
9551 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9552 if (j > 15)
9553 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9554 j);
e379e5f3
L
9555 else if (fragP)
9556 {
9557 /* NB: Don't add prefix with GOTPC relocation since
9558 output_disp() above depends on the fixed encoding
9559 length. Can't add prefix with TLS relocation since
9560 it breaks TLS linker optimization. */
9561 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9562 /* Prefix count on the current instruction. */
9563 unsigned int count = i.vex.length;
9564 unsigned int k;
9565 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9566 /* REX byte is encoded in VEX/EVEX prefix. */
9567 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9568 count++;
9569
9570 /* Count prefixes for extended opcode maps. */
9571 if (!i.vex.length)
9572 switch (i.tm.opcode_length)
9573 {
9574 case 3:
9575 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9576 {
9577 count++;
9578 switch ((i.tm.base_opcode >> 8) & 0xff)
9579 {
9580 case 0x38:
9581 case 0x3a:
9582 count++;
9583 break;
9584 default:
9585 break;
9586 }
9587 }
9588 break;
9589 case 2:
9590 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9591 count++;
9592 break;
9593 case 1:
9594 break;
9595 default:
9596 abort ();
9597 }
9598
9599 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9600 == BRANCH_PREFIX)
9601 {
9602 /* Set the maximum prefix size in BRANCH_PREFIX
9603 frag. */
9604 if (fragP->tc_frag_data.max_bytes > max)
9605 fragP->tc_frag_data.max_bytes = max;
9606 if (fragP->tc_frag_data.max_bytes > count)
9607 fragP->tc_frag_data.max_bytes -= count;
9608 else
9609 fragP->tc_frag_data.max_bytes = 0;
9610 }
9611 else
9612 {
9613 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9614 frag. */
9615 unsigned int max_prefix_size;
9616 if (align_branch_prefix_size > max)
9617 max_prefix_size = max;
9618 else
9619 max_prefix_size = align_branch_prefix_size;
9620 if (max_prefix_size > count)
9621 fragP->tc_frag_data.max_prefix_length
9622 = max_prefix_size - count;
9623 }
9624
9625 /* Use existing segment prefix if possible. Use CS
9626 segment prefix in 64-bit mode. In 32-bit mode, use SS
9627 segment prefix with ESP/EBP base register and use DS
9628 segment prefix without ESP/EBP base register. */
9629 if (i.prefix[SEG_PREFIX])
9630 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9631 else if (flag_code == CODE_64BIT)
9632 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9633 else if (i.base_reg
9634 && (i.base_reg->reg_num == 4
9635 || i.base_reg->reg_num == 5))
9636 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9637 else
9638 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9639 }
9c33702b 9640 }
29b0f896 9641 }
252b5132 9642
e379e5f3
L
9643 /* NB: Don't work with COND_JUMP86 without i386. */
9644 if (align_branch_power
9645 && now_seg != absolute_section
9646 && cpu_arch_flags.bitfield.cpui386)
9647 {
9648 /* Terminate each frag so that we can add prefix and check for
9649 fused jcc. */
9650 frag_wane (frag_now);
9651 frag_new (0);
9652 }
9653
29b0f896
AM
9654#ifdef DEBUG386
9655 if (flag_debug)
9656 {
7b81dfbb 9657 pi ("" /*line*/, &i);
29b0f896
AM
9658 }
9659#endif /* DEBUG386 */
9660}
252b5132 9661
e205caa7
L
9662/* Return the size of the displacement operand N. */
9663
9664static int
9665disp_size (unsigned int n)
9666{
9667 int size = 4;
43234a1e 9668
b5014f7a 9669 if (i.types[n].bitfield.disp64)
40fb9820
L
9670 size = 8;
9671 else if (i.types[n].bitfield.disp8)
9672 size = 1;
9673 else if (i.types[n].bitfield.disp16)
9674 size = 2;
e205caa7
L
9675 return size;
9676}
9677
9678/* Return the size of the immediate operand N. */
9679
9680static int
9681imm_size (unsigned int n)
9682{
9683 int size = 4;
40fb9820
L
9684 if (i.types[n].bitfield.imm64)
9685 size = 8;
9686 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9687 size = 1;
9688 else if (i.types[n].bitfield.imm16)
9689 size = 2;
e205caa7
L
9690 return size;
9691}
9692
29b0f896 9693static void
64e74474 9694output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9695{
9696 char *p;
9697 unsigned int n;
252b5132 9698
29b0f896
AM
9699 for (n = 0; n < i.operands; n++)
9700 {
b5014f7a 9701 if (operand_type_check (i.types[n], disp))
29b0f896 9702 {
48ef937e
JB
9703 int size = disp_size (n);
9704
9705 if (now_seg == absolute_section)
9706 abs_section_offset += size;
9707 else if (i.op[n].disps->X_op == O_constant)
29b0f896 9708 {
43234a1e 9709 offsetT val = i.op[n].disps->X_add_number;
252b5132 9710
629cfaf1
JB
9711 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9712 size);
29b0f896
AM
9713 p = frag_more (size);
9714 md_number_to_chars (p, val, size);
9715 }
9716 else
9717 {
f86103b7 9718 enum bfd_reloc_code_real reloc_type;
40fb9820 9719 int sign = i.types[n].bitfield.disp32s;
29b0f896 9720 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 9721 fixS *fixP;
29b0f896 9722
e205caa7 9723 /* We can't have 8 bit displacement here. */
9c2799c2 9724 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 9725
29b0f896
AM
9726 /* The PC relative address is computed relative
9727 to the instruction boundary, so in case immediate
9728 fields follows, we need to adjust the value. */
9729 if (pcrel && i.imm_operands)
9730 {
29b0f896 9731 unsigned int n1;
e205caa7 9732 int sz = 0;
252b5132 9733
29b0f896 9734 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 9735 if (operand_type_check (i.types[n1], imm))
252b5132 9736 {
e205caa7
L
9737 /* Only one immediate is allowed for PC
9738 relative address. */
9c2799c2 9739 gas_assert (sz == 0);
e205caa7
L
9740 sz = imm_size (n1);
9741 i.op[n].disps->X_add_number -= sz;
252b5132 9742 }
29b0f896 9743 /* We should find the immediate. */
9c2799c2 9744 gas_assert (sz != 0);
29b0f896 9745 }
520dc8e8 9746
29b0f896 9747 p = frag_more (size);
d258b828 9748 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9749 if (GOT_symbol
2bbd9c25 9750 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9751 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9752 || reloc_type == BFD_RELOC_X86_64_32S
9753 || (reloc_type == BFD_RELOC_64
9754 && object_64bit))
d6ab8113
JB
9755 && (i.op[n].disps->X_op == O_symbol
9756 || (i.op[n].disps->X_op == O_add
9757 && ((symbol_get_value_expression
9758 (i.op[n].disps->X_op_symbol)->X_op)
9759 == O_subtract))))
9760 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9761 {
4fa24527 9762 if (!object_64bit)
7b81dfbb
AJ
9763 {
9764 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9765 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9766 i.op[n].imms->X_add_number +=
9767 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9768 }
9769 else if (reloc_type == BFD_RELOC_64)
9770 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9771 else
7b81dfbb
AJ
9772 /* Don't do the adjustment for x86-64, as there
9773 the pcrel addressing is relative to the _next_
9774 insn, and that is taken care of in other code. */
d6ab8113 9775 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9776 }
e379e5f3
L
9777 else if (align_branch_power)
9778 {
9779 switch (reloc_type)
9780 {
9781 case BFD_RELOC_386_TLS_GD:
9782 case BFD_RELOC_386_TLS_LDM:
9783 case BFD_RELOC_386_TLS_IE:
9784 case BFD_RELOC_386_TLS_IE_32:
9785 case BFD_RELOC_386_TLS_GOTIE:
9786 case BFD_RELOC_386_TLS_GOTDESC:
9787 case BFD_RELOC_386_TLS_DESC_CALL:
9788 case BFD_RELOC_X86_64_TLSGD:
9789 case BFD_RELOC_X86_64_TLSLD:
9790 case BFD_RELOC_X86_64_GOTTPOFF:
9791 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9792 case BFD_RELOC_X86_64_TLSDESC_CALL:
9793 i.has_gotpc_tls_reloc = TRUE;
9794 default:
9795 break;
9796 }
9797 }
02a86693
L
9798 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9799 size, i.op[n].disps, pcrel,
9800 reloc_type);
9801 /* Check for "call/jmp *mem", "mov mem, %reg",
9802 "test %reg, mem" and "binop mem, %reg" where binop
9803 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9804 instructions without data prefix. Always generate
9805 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9806 if (i.prefix[DATA_PREFIX] == 0
9807 && (generate_relax_relocations
9808 || (!object_64bit
9809 && i.rm.mode == 0
9810 && i.rm.regmem == 5))
0cb4071e
L
9811 && (i.rm.mode == 2
9812 || (i.rm.mode == 0 && i.rm.regmem == 5))
2ae4c703 9813 && !is_any_vex_encoding(&i.tm)
02a86693
L
9814 && ((i.operands == 1
9815 && i.tm.base_opcode == 0xff
9816 && (i.rm.reg == 2 || i.rm.reg == 4))
9817 || (i.operands == 2
9818 && (i.tm.base_opcode == 0x8b
9819 || i.tm.base_opcode == 0x85
2ae4c703 9820 || (i.tm.base_opcode & ~0x38) == 0x03))))
02a86693
L
9821 {
9822 if (object_64bit)
9823 {
9824 fixP->fx_tcbit = i.rex != 0;
9825 if (i.base_reg
e968fc9b 9826 && (i.base_reg->reg_num == RegIP))
02a86693
L
9827 fixP->fx_tcbit2 = 1;
9828 }
9829 else
9830 fixP->fx_tcbit2 = 1;
9831 }
29b0f896
AM
9832 }
9833 }
9834 }
9835}
252b5132 9836
29b0f896 9837static void
64e74474 9838output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9839{
9840 char *p;
9841 unsigned int n;
252b5132 9842
29b0f896
AM
9843 for (n = 0; n < i.operands; n++)
9844 {
43234a1e
L
9845 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9846 if (i.rounding && (int) n == i.rounding->operand)
9847 continue;
9848
40fb9820 9849 if (operand_type_check (i.types[n], imm))
29b0f896 9850 {
48ef937e
JB
9851 int size = imm_size (n);
9852
9853 if (now_seg == absolute_section)
9854 abs_section_offset += size;
9855 else if (i.op[n].imms->X_op == O_constant)
29b0f896 9856 {
29b0f896 9857 offsetT val;
b4cac588 9858
29b0f896
AM
9859 val = offset_in_range (i.op[n].imms->X_add_number,
9860 size);
9861 p = frag_more (size);
9862 md_number_to_chars (p, val, size);
9863 }
9864 else
9865 {
9866 /* Not absolute_section.
9867 Need a 32-bit fixup (don't support 8bit
9868 non-absolute imms). Try to support other
9869 sizes ... */
f86103b7 9870 enum bfd_reloc_code_real reloc_type;
e205caa7 9871 int sign;
29b0f896 9872
40fb9820 9873 if (i.types[n].bitfield.imm32s
a7d61044 9874 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9875 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9876 sign = 1;
e205caa7
L
9877 else
9878 sign = 0;
520dc8e8 9879
29b0f896 9880 p = frag_more (size);
d258b828 9881 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9882
2bbd9c25
JJ
9883 /* This is tough to explain. We end up with this one if we
9884 * have operands that look like
9885 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9886 * obtain the absolute address of the GOT, and it is strongly
9887 * preferable from a performance point of view to avoid using
9888 * a runtime relocation for this. The actual sequence of
9889 * instructions often look something like:
9890 *
9891 * call .L66
9892 * .L66:
9893 * popl %ebx
9894 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9895 *
9896 * The call and pop essentially return the absolute address
9897 * of the label .L66 and store it in %ebx. The linker itself
9898 * will ultimately change the first operand of the addl so
9899 * that %ebx points to the GOT, but to keep things simple, the
9900 * .o file must have this operand set so that it generates not
9901 * the absolute address of .L66, but the absolute address of
9902 * itself. This allows the linker itself simply treat a GOTPC
9903 * relocation as asking for a pcrel offset to the GOT to be
9904 * added in, and the addend of the relocation is stored in the
9905 * operand field for the instruction itself.
9906 *
9907 * Our job here is to fix the operand so that it would add
9908 * the correct offset so that %ebx would point to itself. The
9909 * thing that is tricky is that .-.L66 will point to the
9910 * beginning of the instruction, so we need to further modify
9911 * the operand so that it will point to itself. There are
9912 * other cases where you have something like:
9913 *
9914 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9915 *
9916 * and here no correction would be required. Internally in
9917 * the assembler we treat operands of this form as not being
9918 * pcrel since the '.' is explicitly mentioned, and I wonder
9919 * whether it would simplify matters to do it this way. Who
9920 * knows. In earlier versions of the PIC patches, the
9921 * pcrel_adjust field was used to store the correction, but
9922 * since the expression is not pcrel, I felt it would be
9923 * confusing to do it this way. */
9924
d6ab8113 9925 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9926 || reloc_type == BFD_RELOC_X86_64_32S
9927 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9928 && GOT_symbol
9929 && GOT_symbol == i.op[n].imms->X_add_symbol
9930 && (i.op[n].imms->X_op == O_symbol
9931 || (i.op[n].imms->X_op == O_add
9932 && ((symbol_get_value_expression
9933 (i.op[n].imms->X_op_symbol)->X_op)
9934 == O_subtract))))
9935 {
4fa24527 9936 if (!object_64bit)
d6ab8113 9937 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9938 else if (size == 4)
d6ab8113 9939 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9940 else if (size == 8)
9941 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9942 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9943 i.op[n].imms->X_add_number +=
9944 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9945 }
29b0f896
AM
9946 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9947 i.op[n].imms, 0, reloc_type);
9948 }
9949 }
9950 }
252b5132
RH
9951}
9952\f
d182319b
JB
9953/* x86_cons_fix_new is called via the expression parsing code when a
9954 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9955static int cons_sign = -1;
9956
9957void
e3bb37b5 9958x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9959 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9960{
d258b828 9961 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9962
9963#ifdef TE_PE
9964 if (exp->X_op == O_secrel)
9965 {
9966 exp->X_op = O_symbol;
9967 r = BFD_RELOC_32_SECREL;
9968 }
9969#endif
9970
9971 fix_new_exp (frag, off, len, exp, 0, r);
9972}
9973
357d1bd8
L
9974/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9975 purpose of the `.dc.a' internal pseudo-op. */
9976
9977int
9978x86_address_bytes (void)
9979{
9980 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9981 return 4;
9982 return stdoutput->arch_info->bits_per_address / 8;
9983}
9984
d382c579
TG
9985#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9986 || defined (LEX_AT)
d258b828 9987# define lex_got(reloc, adjust, types) NULL
718ddfc0 9988#else
f3c180ae
AM
9989/* Parse operands of the form
9990 <symbol>@GOTOFF+<nnn>
9991 and similar .plt or .got references.
9992
9993 If we find one, set up the correct relocation in RELOC and copy the
9994 input string, minus the `@GOTOFF' into a malloc'd buffer for
9995 parsing by the calling routine. Return this buffer, and if ADJUST
9996 is non-null set it to the length of the string we removed from the
9997 input line. Otherwise return NULL. */
9998static char *
91d6fa6a 9999lex_got (enum bfd_reloc_code_real *rel,
64e74474 10000 int *adjust,
d258b828 10001 i386_operand_type *types)
f3c180ae 10002{
7b81dfbb
AJ
10003 /* Some of the relocations depend on the size of what field is to
10004 be relocated. But in our callers i386_immediate and i386_displacement
10005 we don't yet know the operand size (this will be set by insn
10006 matching). Hence we record the word32 relocation here,
10007 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
10008 static const struct {
10009 const char *str;
cff8d58a 10010 int len;
4fa24527 10011 const enum bfd_reloc_code_real rel[2];
40fb9820 10012 const i386_operand_type types64;
f3c180ae 10013 } gotrel[] = {
8ce3d284 10014#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10015 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
10016 BFD_RELOC_SIZE32 },
10017 OPERAND_TYPE_IMM32_64 },
8ce3d284 10018#endif
cff8d58a
L
10019 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
10020 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 10021 OPERAND_TYPE_IMM64 },
cff8d58a
L
10022 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
10023 BFD_RELOC_X86_64_PLT32 },
40fb9820 10024 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
10025 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
10026 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 10027 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
10028 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
10029 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 10030 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
10031 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
10032 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 10033 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
10034 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
10035 BFD_RELOC_X86_64_TLSGD },
40fb9820 10036 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
10037 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
10038 _dummy_first_bfd_reloc_code_real },
40fb9820 10039 OPERAND_TYPE_NONE },
cff8d58a
L
10040 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
10041 BFD_RELOC_X86_64_TLSLD },
40fb9820 10042 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
10043 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
10044 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 10045 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
10046 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
10047 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 10048 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
10049 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
10050 _dummy_first_bfd_reloc_code_real },
40fb9820 10051 OPERAND_TYPE_NONE },
cff8d58a
L
10052 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
10053 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 10054 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
10055 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
10056 _dummy_first_bfd_reloc_code_real },
40fb9820 10057 OPERAND_TYPE_NONE },
cff8d58a
L
10058 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
10059 _dummy_first_bfd_reloc_code_real },
40fb9820 10060 OPERAND_TYPE_NONE },
cff8d58a
L
10061 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
10062 BFD_RELOC_X86_64_GOT32 },
40fb9820 10063 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
10064 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
10065 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 10066 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
10067 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
10068 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 10069 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
10070 };
10071 char *cp;
10072 unsigned int j;
10073
d382c579 10074#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
10075 if (!IS_ELF)
10076 return NULL;
d382c579 10077#endif
718ddfc0 10078
f3c180ae 10079 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 10080 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
10081 return NULL;
10082
47465058 10083 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 10084 {
cff8d58a 10085 int len = gotrel[j].len;
28f81592 10086 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 10087 {
4fa24527 10088 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 10089 {
28f81592
AM
10090 int first, second;
10091 char *tmpbuf, *past_reloc;
f3c180ae 10092
91d6fa6a 10093 *rel = gotrel[j].rel[object_64bit];
f3c180ae 10094
3956db08
JB
10095 if (types)
10096 {
10097 if (flag_code != CODE_64BIT)
40fb9820
L
10098 {
10099 types->bitfield.imm32 = 1;
10100 types->bitfield.disp32 = 1;
10101 }
3956db08
JB
10102 else
10103 *types = gotrel[j].types64;
10104 }
10105
8fd4256d 10106 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
10107 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
10108
28f81592 10109 /* The length of the first part of our input line. */
f3c180ae 10110 first = cp - input_line_pointer;
28f81592
AM
10111
10112 /* The second part goes from after the reloc token until
67c11a9b 10113 (and including) an end_of_line char or comma. */
28f81592 10114 past_reloc = cp + 1 + len;
67c11a9b
AM
10115 cp = past_reloc;
10116 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10117 ++cp;
10118 second = cp + 1 - past_reloc;
28f81592
AM
10119
10120 /* Allocate and copy string. The trailing NUL shouldn't
10121 be necessary, but be safe. */
add39d23 10122 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 10123 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
10124 if (second != 0 && *past_reloc != ' ')
10125 /* Replace the relocation token with ' ', so that
10126 errors like foo@GOTOFF1 will be detected. */
10127 tmpbuf[first++] = ' ';
af89796a
L
10128 else
10129 /* Increment length by 1 if the relocation token is
10130 removed. */
10131 len++;
10132 if (adjust)
10133 *adjust = len;
0787a12d
AM
10134 memcpy (tmpbuf + first, past_reloc, second);
10135 tmpbuf[first + second] = '\0';
f3c180ae
AM
10136 return tmpbuf;
10137 }
10138
4fa24527
JB
10139 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10140 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
10141 return NULL;
10142 }
10143 }
10144
10145 /* Might be a symbol version string. Don't as_bad here. */
10146 return NULL;
10147}
4e4f7c87 10148#endif
f3c180ae 10149
a988325c
NC
10150#ifdef TE_PE
10151#ifdef lex_got
10152#undef lex_got
10153#endif
10154/* Parse operands of the form
10155 <symbol>@SECREL32+<nnn>
10156
10157 If we find one, set up the correct relocation in RELOC and copy the
10158 input string, minus the `@SECREL32' into a malloc'd buffer for
10159 parsing by the calling routine. Return this buffer, and if ADJUST
10160 is non-null set it to the length of the string we removed from the
34bca508
L
10161 input line. Otherwise return NULL.
10162
a988325c
NC
10163 This function is copied from the ELF version above adjusted for PE targets. */
10164
10165static char *
10166lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
10167 int *adjust ATTRIBUTE_UNUSED,
d258b828 10168 i386_operand_type *types)
a988325c
NC
10169{
10170 static const struct
10171 {
10172 const char *str;
10173 int len;
10174 const enum bfd_reloc_code_real rel[2];
10175 const i386_operand_type types64;
10176 }
10177 gotrel[] =
10178 {
10179 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
10180 BFD_RELOC_32_SECREL },
10181 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10182 };
10183
10184 char *cp;
10185 unsigned j;
10186
10187 for (cp = input_line_pointer; *cp != '@'; cp++)
10188 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10189 return NULL;
10190
10191 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10192 {
10193 int len = gotrel[j].len;
10194
10195 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10196 {
10197 if (gotrel[j].rel[object_64bit] != 0)
10198 {
10199 int first, second;
10200 char *tmpbuf, *past_reloc;
10201
10202 *rel = gotrel[j].rel[object_64bit];
10203 if (adjust)
10204 *adjust = len;
10205
10206 if (types)
10207 {
10208 if (flag_code != CODE_64BIT)
10209 {
10210 types->bitfield.imm32 = 1;
10211 types->bitfield.disp32 = 1;
10212 }
10213 else
10214 *types = gotrel[j].types64;
10215 }
10216
10217 /* The length of the first part of our input line. */
10218 first = cp - input_line_pointer;
10219
10220 /* The second part goes from after the reloc token until
10221 (and including) an end_of_line char or comma. */
10222 past_reloc = cp + 1 + len;
10223 cp = past_reloc;
10224 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10225 ++cp;
10226 second = cp + 1 - past_reloc;
10227
10228 /* Allocate and copy string. The trailing NUL shouldn't
10229 be necessary, but be safe. */
add39d23 10230 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
10231 memcpy (tmpbuf, input_line_pointer, first);
10232 if (second != 0 && *past_reloc != ' ')
10233 /* Replace the relocation token with ' ', so that
10234 errors like foo@SECLREL321 will be detected. */
10235 tmpbuf[first++] = ' ';
10236 memcpy (tmpbuf + first, past_reloc, second);
10237 tmpbuf[first + second] = '\0';
10238 return tmpbuf;
10239 }
10240
10241 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10242 gotrel[j].str, 1 << (5 + object_64bit));
10243 return NULL;
10244 }
10245 }
10246
10247 /* Might be a symbol version string. Don't as_bad here. */
10248 return NULL;
10249}
10250
10251#endif /* TE_PE */
10252
62ebcb5c 10253bfd_reloc_code_real_type
e3bb37b5 10254x86_cons (expressionS *exp, int size)
f3c180ae 10255{
62ebcb5c
AM
10256 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10257
ee86248c
JB
10258 intel_syntax = -intel_syntax;
10259
3c7b9c2c 10260 exp->X_md = 0;
4fa24527 10261 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
10262 {
10263 /* Handle @GOTOFF and the like in an expression. */
10264 char *save;
10265 char *gotfree_input_line;
4a57f2cf 10266 int adjust = 0;
f3c180ae
AM
10267
10268 save = input_line_pointer;
d258b828 10269 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
10270 if (gotfree_input_line)
10271 input_line_pointer = gotfree_input_line;
10272
10273 expression (exp);
10274
10275 if (gotfree_input_line)
10276 {
10277 /* expression () has merrily parsed up to the end of line,
10278 or a comma - in the wrong buffer. Transfer how far
10279 input_line_pointer has moved to the right buffer. */
10280 input_line_pointer = (save
10281 + (input_line_pointer - gotfree_input_line)
10282 + adjust);
10283 free (gotfree_input_line);
3992d3b7
AM
10284 if (exp->X_op == O_constant
10285 || exp->X_op == O_absent
10286 || exp->X_op == O_illegal
0398aac5 10287 || exp->X_op == O_register
3992d3b7
AM
10288 || exp->X_op == O_big)
10289 {
10290 char c = *input_line_pointer;
10291 *input_line_pointer = 0;
10292 as_bad (_("missing or invalid expression `%s'"), save);
10293 *input_line_pointer = c;
10294 }
b9519cfe
L
10295 else if ((got_reloc == BFD_RELOC_386_PLT32
10296 || got_reloc == BFD_RELOC_X86_64_PLT32)
10297 && exp->X_op != O_symbol)
10298 {
10299 char c = *input_line_pointer;
10300 *input_line_pointer = 0;
10301 as_bad (_("invalid PLT expression `%s'"), save);
10302 *input_line_pointer = c;
10303 }
f3c180ae
AM
10304 }
10305 }
10306 else
10307 expression (exp);
ee86248c
JB
10308
10309 intel_syntax = -intel_syntax;
10310
10311 if (intel_syntax)
10312 i386_intel_simplify (exp);
62ebcb5c
AM
10313
10314 return got_reloc;
f3c180ae 10315}
f3c180ae 10316
9f32dd5b
L
10317static void
10318signed_cons (int size)
6482c264 10319{
d182319b
JB
10320 if (flag_code == CODE_64BIT)
10321 cons_sign = 1;
10322 cons (size);
10323 cons_sign = -1;
6482c264
NC
10324}
10325
d182319b 10326#ifdef TE_PE
6482c264 10327static void
7016a5d5 10328pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
10329{
10330 expressionS exp;
10331
10332 do
10333 {
10334 expression (&exp);
10335 if (exp.X_op == O_symbol)
10336 exp.X_op = O_secrel;
10337
10338 emit_expr (&exp, 4);
10339 }
10340 while (*input_line_pointer++ == ',');
10341
10342 input_line_pointer--;
10343 demand_empty_rest_of_line ();
10344}
6482c264
NC
10345#endif
10346
43234a1e
L
10347/* Handle Vector operations. */
10348
10349static char *
10350check_VecOperations (char *op_string, char *op_end)
10351{
10352 const reg_entry *mask;
10353 const char *saved;
10354 char *end_op;
10355
10356 while (*op_string
10357 && (op_end == NULL || op_string < op_end))
10358 {
10359 saved = op_string;
10360 if (*op_string == '{')
10361 {
10362 op_string++;
10363
10364 /* Check broadcasts. */
10365 if (strncmp (op_string, "1to", 3) == 0)
10366 {
10367 int bcst_type;
10368
10369 if (i.broadcast)
10370 goto duplicated_vec_op;
10371
10372 op_string += 3;
10373 if (*op_string == '8')
8e6e0792 10374 bcst_type = 8;
b28d1bda 10375 else if (*op_string == '4')
8e6e0792 10376 bcst_type = 4;
b28d1bda 10377 else if (*op_string == '2')
8e6e0792 10378 bcst_type = 2;
43234a1e
L
10379 else if (*op_string == '1'
10380 && *(op_string+1) == '6')
10381 {
8e6e0792 10382 bcst_type = 16;
43234a1e
L
10383 op_string++;
10384 }
10385 else
10386 {
10387 as_bad (_("Unsupported broadcast: `%s'"), saved);
10388 return NULL;
10389 }
10390 op_string++;
10391
10392 broadcast_op.type = bcst_type;
10393 broadcast_op.operand = this_operand;
1f75763a 10394 broadcast_op.bytes = 0;
43234a1e
L
10395 i.broadcast = &broadcast_op;
10396 }
10397 /* Check masking operation. */
10398 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10399 {
8a6fb3f9
JB
10400 if (mask == &bad_reg)
10401 return NULL;
10402
43234a1e 10403 /* k0 can't be used for write mask. */
f74a6307 10404 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 10405 {
6d2cd6b2
JB
10406 as_bad (_("`%s%s' can't be used for write mask"),
10407 register_prefix, mask->reg_name);
43234a1e
L
10408 return NULL;
10409 }
10410
10411 if (!i.mask)
10412 {
10413 mask_op.mask = mask;
10414 mask_op.zeroing = 0;
10415 mask_op.operand = this_operand;
10416 i.mask = &mask_op;
10417 }
10418 else
10419 {
10420 if (i.mask->mask)
10421 goto duplicated_vec_op;
10422
10423 i.mask->mask = mask;
10424
10425 /* Only "{z}" is allowed here. No need to check
10426 zeroing mask explicitly. */
10427 if (i.mask->operand != this_operand)
10428 {
10429 as_bad (_("invalid write mask `%s'"), saved);
10430 return NULL;
10431 }
10432 }
10433
10434 op_string = end_op;
10435 }
10436 /* Check zeroing-flag for masking operation. */
10437 else if (*op_string == 'z')
10438 {
10439 if (!i.mask)
10440 {
10441 mask_op.mask = NULL;
10442 mask_op.zeroing = 1;
10443 mask_op.operand = this_operand;
10444 i.mask = &mask_op;
10445 }
10446 else
10447 {
10448 if (i.mask->zeroing)
10449 {
10450 duplicated_vec_op:
10451 as_bad (_("duplicated `%s'"), saved);
10452 return NULL;
10453 }
10454
10455 i.mask->zeroing = 1;
10456
10457 /* Only "{%k}" is allowed here. No need to check mask
10458 register explicitly. */
10459 if (i.mask->operand != this_operand)
10460 {
10461 as_bad (_("invalid zeroing-masking `%s'"),
10462 saved);
10463 return NULL;
10464 }
10465 }
10466
10467 op_string++;
10468 }
10469 else
10470 goto unknown_vec_op;
10471
10472 if (*op_string != '}')
10473 {
10474 as_bad (_("missing `}' in `%s'"), saved);
10475 return NULL;
10476 }
10477 op_string++;
0ba3a731
L
10478
10479 /* Strip whitespace since the addition of pseudo prefixes
10480 changed how the scrubber treats '{'. */
10481 if (is_space_char (*op_string))
10482 ++op_string;
10483
43234a1e
L
10484 continue;
10485 }
10486 unknown_vec_op:
10487 /* We don't know this one. */
10488 as_bad (_("unknown vector operation: `%s'"), saved);
10489 return NULL;
10490 }
10491
6d2cd6b2
JB
10492 if (i.mask && i.mask->zeroing && !i.mask->mask)
10493 {
10494 as_bad (_("zeroing-masking only allowed with write mask"));
10495 return NULL;
10496 }
10497
43234a1e
L
10498 return op_string;
10499}
10500
252b5132 10501static int
70e41ade 10502i386_immediate (char *imm_start)
252b5132
RH
10503{
10504 char *save_input_line_pointer;
f3c180ae 10505 char *gotfree_input_line;
252b5132 10506 segT exp_seg = 0;
47926f60 10507 expressionS *exp;
40fb9820
L
10508 i386_operand_type types;
10509
0dfbf9d7 10510 operand_type_set (&types, ~0);
252b5132
RH
10511
10512 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10513 {
31b2323c
L
10514 as_bad (_("at most %d immediate operands are allowed"),
10515 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
10516 return 0;
10517 }
10518
10519 exp = &im_expressions[i.imm_operands++];
520dc8e8 10520 i.op[this_operand].imms = exp;
252b5132
RH
10521
10522 if (is_space_char (*imm_start))
10523 ++imm_start;
10524
10525 save_input_line_pointer = input_line_pointer;
10526 input_line_pointer = imm_start;
10527
d258b828 10528 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10529 if (gotfree_input_line)
10530 input_line_pointer = gotfree_input_line;
252b5132
RH
10531
10532 exp_seg = expression (exp);
10533
83183c0c 10534 SKIP_WHITESPACE ();
43234a1e
L
10535
10536 /* Handle vector operations. */
10537 if (*input_line_pointer == '{')
10538 {
10539 input_line_pointer = check_VecOperations (input_line_pointer,
10540 NULL);
10541 if (input_line_pointer == NULL)
10542 return 0;
10543 }
10544
252b5132 10545 if (*input_line_pointer)
f3c180ae 10546 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
10547
10548 input_line_pointer = save_input_line_pointer;
f3c180ae 10549 if (gotfree_input_line)
ee86248c
JB
10550 {
10551 free (gotfree_input_line);
10552
10553 if (exp->X_op == O_constant || exp->X_op == O_register)
10554 exp->X_op = O_illegal;
10555 }
10556
10557 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10558}
252b5132 10559
ee86248c
JB
10560static int
10561i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10562 i386_operand_type types, const char *imm_start)
10563{
10564 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 10565 {
313c53d1
L
10566 if (imm_start)
10567 as_bad (_("missing or invalid immediate expression `%s'"),
10568 imm_start);
3992d3b7 10569 return 0;
252b5132 10570 }
3e73aa7c 10571 else if (exp->X_op == O_constant)
252b5132 10572 {
47926f60 10573 /* Size it properly later. */
40fb9820 10574 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
10575 /* If not 64bit, sign extend val. */
10576 if (flag_code != CODE_64BIT
4eed87de
AM
10577 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10578 exp->X_add_number
10579 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 10580 }
4c63da97 10581#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 10582 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 10583 && exp_seg != absolute_section
47926f60 10584 && exp_seg != text_section
24eab124
AM
10585 && exp_seg != data_section
10586 && exp_seg != bss_section
10587 && exp_seg != undefined_section
f86103b7 10588 && !bfd_is_com_section (exp_seg))
252b5132 10589 {
d0b47220 10590 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
10591 return 0;
10592 }
10593#endif
a841bdf5 10594 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 10595 {
313c53d1
L
10596 if (imm_start)
10597 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
10598 return 0;
10599 }
252b5132
RH
10600 else
10601 {
10602 /* This is an address. The size of the address will be
24eab124 10603 determined later, depending on destination register,
3e73aa7c 10604 suffix, or the default for the section. */
40fb9820
L
10605 i.types[this_operand].bitfield.imm8 = 1;
10606 i.types[this_operand].bitfield.imm16 = 1;
10607 i.types[this_operand].bitfield.imm32 = 1;
10608 i.types[this_operand].bitfield.imm32s = 1;
10609 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
10610 i.types[this_operand] = operand_type_and (i.types[this_operand],
10611 types);
252b5132
RH
10612 }
10613
10614 return 1;
10615}
10616
551c1ca1 10617static char *
e3bb37b5 10618i386_scale (char *scale)
252b5132 10619{
551c1ca1
AM
10620 offsetT val;
10621 char *save = input_line_pointer;
252b5132 10622
551c1ca1
AM
10623 input_line_pointer = scale;
10624 val = get_absolute_expression ();
10625
10626 switch (val)
252b5132 10627 {
551c1ca1 10628 case 1:
252b5132
RH
10629 i.log2_scale_factor = 0;
10630 break;
551c1ca1 10631 case 2:
252b5132
RH
10632 i.log2_scale_factor = 1;
10633 break;
551c1ca1 10634 case 4:
252b5132
RH
10635 i.log2_scale_factor = 2;
10636 break;
551c1ca1 10637 case 8:
252b5132
RH
10638 i.log2_scale_factor = 3;
10639 break;
10640 default:
a724f0f4
JB
10641 {
10642 char sep = *input_line_pointer;
10643
10644 *input_line_pointer = '\0';
10645 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10646 scale);
10647 *input_line_pointer = sep;
10648 input_line_pointer = save;
10649 return NULL;
10650 }
252b5132 10651 }
29b0f896 10652 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
10653 {
10654 as_warn (_("scale factor of %d without an index register"),
24eab124 10655 1 << i.log2_scale_factor);
252b5132 10656 i.log2_scale_factor = 0;
252b5132 10657 }
551c1ca1
AM
10658 scale = input_line_pointer;
10659 input_line_pointer = save;
10660 return scale;
252b5132
RH
10661}
10662
252b5132 10663static int
e3bb37b5 10664i386_displacement (char *disp_start, char *disp_end)
252b5132 10665{
29b0f896 10666 expressionS *exp;
252b5132
RH
10667 segT exp_seg = 0;
10668 char *save_input_line_pointer;
f3c180ae 10669 char *gotfree_input_line;
40fb9820
L
10670 int override;
10671 i386_operand_type bigdisp, types = anydisp;
3992d3b7 10672 int ret;
252b5132 10673
31b2323c
L
10674 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10675 {
10676 as_bad (_("at most %d displacement operands are allowed"),
10677 MAX_MEMORY_OPERANDS);
10678 return 0;
10679 }
10680
0dfbf9d7 10681 operand_type_set (&bigdisp, 0);
6f2f06be 10682 if (i.jumpabsolute
48bcea9f 10683 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
10684 || (current_templates->start->opcode_modifier.jump != JUMP
10685 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 10686 {
48bcea9f 10687 i386_addressing_mode ();
e05278af 10688 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
10689 if (flag_code == CODE_64BIT)
10690 {
10691 if (!override)
10692 {
10693 bigdisp.bitfield.disp32s = 1;
10694 bigdisp.bitfield.disp64 = 1;
10695 }
48bcea9f
JB
10696 else
10697 bigdisp.bitfield.disp32 = 1;
40fb9820
L
10698 }
10699 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 10700 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
10701 else
10702 bigdisp.bitfield.disp32 = 1;
e05278af
JB
10703 }
10704 else
10705 {
376cd056
JB
10706 /* For PC-relative branches, the width of the displacement may be
10707 dependent upon data size, but is never dependent upon address size.
10708 Also make sure to not unintentionally match against a non-PC-relative
10709 branch template. */
10710 static templates aux_templates;
10711 const insn_template *t = current_templates->start;
10712 bfd_boolean has_intel64 = FALSE;
10713
10714 aux_templates.start = t;
10715 while (++t < current_templates->end)
10716 {
10717 if (t->opcode_modifier.jump
10718 != current_templates->start->opcode_modifier.jump)
10719 break;
4b5aaf5f 10720 if ((t->opcode_modifier.isa64 >= INTEL64))
376cd056
JB
10721 has_intel64 = TRUE;
10722 }
10723 if (t < current_templates->end)
10724 {
10725 aux_templates.end = t;
10726 current_templates = &aux_templates;
10727 }
10728
e05278af 10729 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
10730 if (flag_code == CODE_64BIT)
10731 {
376cd056
JB
10732 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10733 && (!intel64 || !has_intel64))
40fb9820
L
10734 bigdisp.bitfield.disp16 = 1;
10735 else
48bcea9f 10736 bigdisp.bitfield.disp32s = 1;
40fb9820
L
10737 }
10738 else
e05278af
JB
10739 {
10740 if (!override)
10741 override = (i.suffix == (flag_code != CODE_16BIT
10742 ? WORD_MNEM_SUFFIX
10743 : LONG_MNEM_SUFFIX));
40fb9820
L
10744 bigdisp.bitfield.disp32 = 1;
10745 if ((flag_code == CODE_16BIT) ^ override)
10746 {
10747 bigdisp.bitfield.disp32 = 0;
10748 bigdisp.bitfield.disp16 = 1;
10749 }
e05278af 10750 }
e05278af 10751 }
c6fb90c8
L
10752 i.types[this_operand] = operand_type_or (i.types[this_operand],
10753 bigdisp);
252b5132
RH
10754
10755 exp = &disp_expressions[i.disp_operands];
520dc8e8 10756 i.op[this_operand].disps = exp;
252b5132
RH
10757 i.disp_operands++;
10758 save_input_line_pointer = input_line_pointer;
10759 input_line_pointer = disp_start;
10760 END_STRING_AND_SAVE (disp_end);
10761
10762#ifndef GCC_ASM_O_HACK
10763#define GCC_ASM_O_HACK 0
10764#endif
10765#if GCC_ASM_O_HACK
10766 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10767 if (i.types[this_operand].bitfield.baseIndex
24eab124 10768 && displacement_string_end[-1] == '+')
252b5132
RH
10769 {
10770 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10771 constraint within gcc asm statements.
10772 For instance:
10773
10774 #define _set_tssldt_desc(n,addr,limit,type) \
10775 __asm__ __volatile__ ( \
10776 "movw %w2,%0\n\t" \
10777 "movw %w1,2+%0\n\t" \
10778 "rorl $16,%1\n\t" \
10779 "movb %b1,4+%0\n\t" \
10780 "movb %4,5+%0\n\t" \
10781 "movb $0,6+%0\n\t" \
10782 "movb %h1,7+%0\n\t" \
10783 "rorl $16,%1" \
10784 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10785
10786 This works great except that the output assembler ends
10787 up looking a bit weird if it turns out that there is
10788 no offset. You end up producing code that looks like:
10789
10790 #APP
10791 movw $235,(%eax)
10792 movw %dx,2+(%eax)
10793 rorl $16,%edx
10794 movb %dl,4+(%eax)
10795 movb $137,5+(%eax)
10796 movb $0,6+(%eax)
10797 movb %dh,7+(%eax)
10798 rorl $16,%edx
10799 #NO_APP
10800
47926f60 10801 So here we provide the missing zero. */
24eab124
AM
10802
10803 *displacement_string_end = '0';
252b5132
RH
10804 }
10805#endif
d258b828 10806 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10807 if (gotfree_input_line)
10808 input_line_pointer = gotfree_input_line;
252b5132 10809
24eab124 10810 exp_seg = expression (exp);
252b5132 10811
636c26b0
AM
10812 SKIP_WHITESPACE ();
10813 if (*input_line_pointer)
10814 as_bad (_("junk `%s' after expression"), input_line_pointer);
10815#if GCC_ASM_O_HACK
10816 RESTORE_END_STRING (disp_end + 1);
10817#endif
636c26b0 10818 input_line_pointer = save_input_line_pointer;
636c26b0 10819 if (gotfree_input_line)
ee86248c
JB
10820 {
10821 free (gotfree_input_line);
10822
10823 if (exp->X_op == O_constant || exp->X_op == O_register)
10824 exp->X_op = O_illegal;
10825 }
10826
10827 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10828
10829 RESTORE_END_STRING (disp_end);
10830
10831 return ret;
10832}
10833
10834static int
10835i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10836 i386_operand_type types, const char *disp_start)
10837{
10838 i386_operand_type bigdisp;
10839 int ret = 1;
636c26b0 10840
24eab124
AM
10841 /* We do this to make sure that the section symbol is in
10842 the symbol table. We will ultimately change the relocation
47926f60 10843 to be relative to the beginning of the section. */
1ae12ab7 10844 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10845 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10846 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10847 {
636c26b0 10848 if (exp->X_op != O_symbol)
3992d3b7 10849 goto inv_disp;
636c26b0 10850
e5cb08ac 10851 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10852 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10853 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10854 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10855 exp->X_op = O_subtract;
10856 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10857 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10858 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10859 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10860 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10861 else
29b0f896 10862 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10863 }
252b5132 10864
3992d3b7
AM
10865 else if (exp->X_op == O_absent
10866 || exp->X_op == O_illegal
ee86248c 10867 || exp->X_op == O_big)
2daf4fd8 10868 {
3992d3b7
AM
10869 inv_disp:
10870 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10871 disp_start);
3992d3b7 10872 ret = 0;
2daf4fd8
AM
10873 }
10874
0e1147d9
L
10875 else if (flag_code == CODE_64BIT
10876 && !i.prefix[ADDR_PREFIX]
10877 && exp->X_op == O_constant)
10878 {
10879 /* Since displacement is signed extended to 64bit, don't allow
10880 disp32 and turn off disp32s if they are out of range. */
10881 i.types[this_operand].bitfield.disp32 = 0;
10882 if (!fits_in_signed_long (exp->X_add_number))
10883 {
10884 i.types[this_operand].bitfield.disp32s = 0;
10885 if (i.types[this_operand].bitfield.baseindex)
10886 {
10887 as_bad (_("0x%lx out range of signed 32bit displacement"),
10888 (long) exp->X_add_number);
10889 ret = 0;
10890 }
10891 }
10892 }
10893
4c63da97 10894#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10895 else if (exp->X_op != O_constant
10896 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10897 && exp_seg != absolute_section
10898 && exp_seg != text_section
10899 && exp_seg != data_section
10900 && exp_seg != bss_section
10901 && exp_seg != undefined_section
10902 && !bfd_is_com_section (exp_seg))
24eab124 10903 {
d0b47220 10904 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10905 ret = 0;
24eab124 10906 }
252b5132 10907#endif
3956db08 10908
48bcea9f
JB
10909 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10910 /* Constants get taken care of by optimize_disp(). */
10911 && exp->X_op != O_constant)
10912 i.types[this_operand].bitfield.disp8 = 1;
10913
40fb9820
L
10914 /* Check if this is a displacement only operand. */
10915 bigdisp = i.types[this_operand];
10916 bigdisp.bitfield.disp8 = 0;
10917 bigdisp.bitfield.disp16 = 0;
10918 bigdisp.bitfield.disp32 = 0;
10919 bigdisp.bitfield.disp32s = 0;
10920 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10921 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10922 i.types[this_operand] = operand_type_and (i.types[this_operand],
10923 types);
3956db08 10924
3992d3b7 10925 return ret;
252b5132
RH
10926}
10927
2abc2bec
JB
10928/* Return the active addressing mode, taking address override and
10929 registers forming the address into consideration. Update the
10930 address override prefix if necessary. */
47926f60 10931
2abc2bec
JB
10932static enum flag_code
10933i386_addressing_mode (void)
252b5132 10934{
be05d201
L
10935 enum flag_code addr_mode;
10936
10937 if (i.prefix[ADDR_PREFIX])
10938 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
a23b33b3
JB
10939 else if (flag_code == CODE_16BIT
10940 && current_templates->start->cpu_flags.bitfield.cpumpx
10941 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10942 from md_assemble() by "is not a valid base/index expression"
10943 when there is a base and/or index. */
10944 && !i.types[this_operand].bitfield.baseindex)
10945 {
10946 /* MPX insn memory operands with neither base nor index must be forced
10947 to use 32-bit addressing in 16-bit mode. */
10948 addr_mode = CODE_32BIT;
10949 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10950 ++i.prefixes;
10951 gas_assert (!i.types[this_operand].bitfield.disp16);
10952 gas_assert (!i.types[this_operand].bitfield.disp32);
10953 }
be05d201
L
10954 else
10955 {
10956 addr_mode = flag_code;
10957
24eab124 10958#if INFER_ADDR_PREFIX
be05d201
L
10959 if (i.mem_operands == 0)
10960 {
10961 /* Infer address prefix from the first memory operand. */
10962 const reg_entry *addr_reg = i.base_reg;
10963
10964 if (addr_reg == NULL)
10965 addr_reg = i.index_reg;
eecb386c 10966
be05d201
L
10967 if (addr_reg)
10968 {
e968fc9b 10969 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10970 addr_mode = CODE_32BIT;
10971 else if (flag_code != CODE_64BIT
dc821c5f 10972 && addr_reg->reg_type.bitfield.word)
be05d201
L
10973 addr_mode = CODE_16BIT;
10974
10975 if (addr_mode != flag_code)
10976 {
10977 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10978 i.prefixes += 1;
10979 /* Change the size of any displacement too. At most one
10980 of Disp16 or Disp32 is set.
10981 FIXME. There doesn't seem to be any real need for
10982 separate Disp16 and Disp32 flags. The same goes for
10983 Imm16 and Imm32. Removing them would probably clean
10984 up the code quite a lot. */
10985 if (flag_code != CODE_64BIT
10986 && (i.types[this_operand].bitfield.disp16
10987 || i.types[this_operand].bitfield.disp32))
10988 i.types[this_operand]
10989 = operand_type_xor (i.types[this_operand], disp16_32);
10990 }
10991 }
10992 }
24eab124 10993#endif
be05d201
L
10994 }
10995
2abc2bec
JB
10996 return addr_mode;
10997}
10998
10999/* Make sure the memory operand we've been dealt is valid.
11000 Return 1 on success, 0 on a failure. */
11001
11002static int
11003i386_index_check (const char *operand_string)
11004{
11005 const char *kind = "base/index";
11006 enum flag_code addr_mode = i386_addressing_mode ();
11007
fc0763e6 11008 if (current_templates->start->opcode_modifier.isstring
c3949f43 11009 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
11010 && (current_templates->end[-1].opcode_modifier.isstring
11011 || i.mem_operands))
11012 {
11013 /* Memory operands of string insns are special in that they only allow
11014 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
11015 const reg_entry *expected_reg;
11016 static const char *di_si[][2] =
11017 {
11018 { "esi", "edi" },
11019 { "si", "di" },
11020 { "rsi", "rdi" }
11021 };
11022 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
11023
11024 kind = "string address";
11025
8325cc63 11026 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 11027 {
51c8edf6
JB
11028 int es_op = current_templates->end[-1].opcode_modifier.isstring
11029 - IS_STRING_ES_OP0;
11030 int op = 0;
fc0763e6 11031
51c8edf6 11032 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
11033 || ((!i.mem_operands != !intel_syntax)
11034 && current_templates->end[-1].operand_types[1]
11035 .bitfield.baseindex))
51c8edf6 11036 op = 1;
fe0e921f
AM
11037 expected_reg
11038 = (const reg_entry *) str_hash_find (reg_hash,
11039 di_si[addr_mode][op == es_op]);
fc0763e6
JB
11040 }
11041 else
fe0e921f
AM
11042 expected_reg
11043 = (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]);
fc0763e6 11044
be05d201
L
11045 if (i.base_reg != expected_reg
11046 || i.index_reg
fc0763e6 11047 || operand_type_check (i.types[this_operand], disp))
fc0763e6 11048 {
be05d201
L
11049 /* The second memory operand must have the same size as
11050 the first one. */
11051 if (i.mem_operands
11052 && i.base_reg
11053 && !((addr_mode == CODE_64BIT
dc821c5f 11054 && i.base_reg->reg_type.bitfield.qword)
be05d201 11055 || (addr_mode == CODE_32BIT
dc821c5f
JB
11056 ? i.base_reg->reg_type.bitfield.dword
11057 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
11058 goto bad_address;
11059
fc0763e6
JB
11060 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
11061 operand_string,
11062 intel_syntax ? '[' : '(',
11063 register_prefix,
be05d201 11064 expected_reg->reg_name,
fc0763e6 11065 intel_syntax ? ']' : ')');
be05d201 11066 return 1;
fc0763e6 11067 }
be05d201
L
11068 else
11069 return 1;
11070
dc1e8a47 11071 bad_address:
be05d201
L
11072 as_bad (_("`%s' is not a valid %s expression"),
11073 operand_string, kind);
11074 return 0;
3e73aa7c
JH
11075 }
11076 else
11077 {
be05d201
L
11078 if (addr_mode != CODE_16BIT)
11079 {
11080 /* 32-bit/64-bit checks. */
41eb8e88
L
11081 if (i.disp_encoding == disp_encoding_16bit)
11082 {
11083 bad_disp:
11084 as_bad (_("invalid `%s' prefix"),
11085 addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}");
11086 return 0;
11087 }
11088
be05d201 11089 if ((i.base_reg
e968fc9b
JB
11090 && ((addr_mode == CODE_64BIT
11091 ? !i.base_reg->reg_type.bitfield.qword
11092 : !i.base_reg->reg_type.bitfield.dword)
11093 || (i.index_reg && i.base_reg->reg_num == RegIP)
11094 || i.base_reg->reg_num == RegIZ))
be05d201 11095 || (i.index_reg
1b54b8d7
JB
11096 && !i.index_reg->reg_type.bitfield.xmmword
11097 && !i.index_reg->reg_type.bitfield.ymmword
11098 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 11099 && ((addr_mode == CODE_64BIT
e968fc9b
JB
11100 ? !i.index_reg->reg_type.bitfield.qword
11101 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
11102 || !i.index_reg->reg_type.bitfield.baseindex)))
11103 goto bad_address;
8178be5b 11104
260cd341 11105 /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
8178be5b 11106 if (current_templates->start->base_opcode == 0xf30f1b
260cd341
LC
11107 || (current_templates->start->base_opcode & ~1) == 0x0f1a
11108 || current_templates->start->opcode_modifier.sib == SIBMEM)
8178be5b
JB
11109 {
11110 /* They cannot use RIP-relative addressing. */
e968fc9b 11111 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
11112 {
11113 as_bad (_("`%s' cannot be used here"), operand_string);
11114 return 0;
11115 }
11116
11117 /* bndldx and bndstx ignore their scale factor. */
260cd341 11118 if ((current_templates->start->base_opcode & ~1) == 0x0f1a
8178be5b
JB
11119 && i.log2_scale_factor)
11120 as_warn (_("register scaling is being ignored here"));
11121 }
be05d201
L
11122 }
11123 else
3e73aa7c 11124 {
be05d201 11125 /* 16-bit checks. */
41eb8e88
L
11126 if (i.disp_encoding == disp_encoding_32bit)
11127 goto bad_disp;
11128
3e73aa7c 11129 if ((i.base_reg
dc821c5f 11130 && (!i.base_reg->reg_type.bitfield.word
40fb9820 11131 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 11132 || (i.index_reg
dc821c5f 11133 && (!i.index_reg->reg_type.bitfield.word
40fb9820 11134 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
11135 || !(i.base_reg
11136 && i.base_reg->reg_num < 6
11137 && i.index_reg->reg_num >= 6
11138 && i.log2_scale_factor == 0))))
be05d201 11139 goto bad_address;
3e73aa7c
JH
11140 }
11141 }
be05d201 11142 return 1;
24eab124 11143}
252b5132 11144
43234a1e
L
11145/* Handle vector immediates. */
11146
11147static int
11148RC_SAE_immediate (const char *imm_start)
11149{
11150 unsigned int match_found, j;
11151 const char *pstr = imm_start;
11152 expressionS *exp;
11153
11154 if (*pstr != '{')
11155 return 0;
11156
11157 pstr++;
11158 match_found = 0;
11159 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
11160 {
11161 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
11162 {
11163 if (!i.rounding)
11164 {
11165 rc_op.type = RC_NamesTable[j].type;
11166 rc_op.operand = this_operand;
11167 i.rounding = &rc_op;
11168 }
11169 else
11170 {
11171 as_bad (_("duplicated `%s'"), imm_start);
11172 return 0;
11173 }
11174 pstr += RC_NamesTable[j].len;
11175 match_found = 1;
11176 break;
11177 }
11178 }
11179 if (!match_found)
11180 return 0;
11181
11182 if (*pstr++ != '}')
11183 {
11184 as_bad (_("Missing '}': '%s'"), imm_start);
11185 return 0;
11186 }
11187 /* RC/SAE immediate string should contain nothing more. */;
11188 if (*pstr != 0)
11189 {
11190 as_bad (_("Junk after '}': '%s'"), imm_start);
11191 return 0;
11192 }
11193
11194 exp = &im_expressions[i.imm_operands++];
11195 i.op[this_operand].imms = exp;
11196
11197 exp->X_op = O_constant;
11198 exp->X_add_number = 0;
11199 exp->X_add_symbol = (symbolS *) 0;
11200 exp->X_op_symbol = (symbolS *) 0;
11201
11202 i.types[this_operand].bitfield.imm8 = 1;
11203 return 1;
11204}
11205
8325cc63
JB
11206/* Only string instructions can have a second memory operand, so
11207 reduce current_templates to just those if it contains any. */
11208static int
11209maybe_adjust_templates (void)
11210{
11211 const insn_template *t;
11212
11213 gas_assert (i.mem_operands == 1);
11214
11215 for (t = current_templates->start; t < current_templates->end; ++t)
11216 if (t->opcode_modifier.isstring)
11217 break;
11218
11219 if (t < current_templates->end)
11220 {
11221 static templates aux_templates;
11222 bfd_boolean recheck;
11223
11224 aux_templates.start = t;
11225 for (; t < current_templates->end; ++t)
11226 if (!t->opcode_modifier.isstring)
11227 break;
11228 aux_templates.end = t;
11229
11230 /* Determine whether to re-check the first memory operand. */
11231 recheck = (aux_templates.start != current_templates->start
11232 || t != current_templates->end);
11233
11234 current_templates = &aux_templates;
11235
11236 if (recheck)
11237 {
11238 i.mem_operands = 0;
11239 if (i.memop1_string != NULL
11240 && i386_index_check (i.memop1_string) == 0)
11241 return 0;
11242 i.mem_operands = 1;
11243 }
11244 }
11245
11246 return 1;
11247}
11248
fc0763e6 11249/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 11250 on error. */
252b5132 11251
252b5132 11252static int
a7619375 11253i386_att_operand (char *operand_string)
252b5132 11254{
af6bdddf
AM
11255 const reg_entry *r;
11256 char *end_op;
24eab124 11257 char *op_string = operand_string;
252b5132 11258
24eab124 11259 if (is_space_char (*op_string))
252b5132
RH
11260 ++op_string;
11261
24eab124 11262 /* We check for an absolute prefix (differentiating,
47926f60 11263 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
11264 if (*op_string == ABSOLUTE_PREFIX)
11265 {
11266 ++op_string;
11267 if (is_space_char (*op_string))
11268 ++op_string;
6f2f06be 11269 i.jumpabsolute = TRUE;
24eab124 11270 }
252b5132 11271
47926f60 11272 /* Check if operand is a register. */
4d1bb795 11273 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 11274 {
40fb9820
L
11275 i386_operand_type temp;
11276
8a6fb3f9
JB
11277 if (r == &bad_reg)
11278 return 0;
11279
24eab124
AM
11280 /* Check for a segment override by searching for ':' after a
11281 segment register. */
11282 op_string = end_op;
11283 if (is_space_char (*op_string))
11284 ++op_string;
00cee14f 11285 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
11286 {
11287 switch (r->reg_num)
11288 {
11289 case 0:
11290 i.seg[i.mem_operands] = &es;
11291 break;
11292 case 1:
11293 i.seg[i.mem_operands] = &cs;
11294 break;
11295 case 2:
11296 i.seg[i.mem_operands] = &ss;
11297 break;
11298 case 3:
11299 i.seg[i.mem_operands] = &ds;
11300 break;
11301 case 4:
11302 i.seg[i.mem_operands] = &fs;
11303 break;
11304 case 5:
11305 i.seg[i.mem_operands] = &gs;
11306 break;
11307 }
252b5132 11308
24eab124 11309 /* Skip the ':' and whitespace. */
252b5132
RH
11310 ++op_string;
11311 if (is_space_char (*op_string))
24eab124 11312 ++op_string;
252b5132 11313
24eab124
AM
11314 if (!is_digit_char (*op_string)
11315 && !is_identifier_char (*op_string)
11316 && *op_string != '('
11317 && *op_string != ABSOLUTE_PREFIX)
11318 {
11319 as_bad (_("bad memory operand `%s'"), op_string);
11320 return 0;
11321 }
47926f60 11322 /* Handle case of %es:*foo. */
24eab124
AM
11323 if (*op_string == ABSOLUTE_PREFIX)
11324 {
11325 ++op_string;
11326 if (is_space_char (*op_string))
11327 ++op_string;
6f2f06be 11328 i.jumpabsolute = TRUE;
24eab124
AM
11329 }
11330 goto do_memory_reference;
11331 }
43234a1e
L
11332
11333 /* Handle vector operations. */
11334 if (*op_string == '{')
11335 {
11336 op_string = check_VecOperations (op_string, NULL);
11337 if (op_string == NULL)
11338 return 0;
11339 }
11340
24eab124
AM
11341 if (*op_string)
11342 {
d0b47220 11343 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
11344 return 0;
11345 }
40fb9820
L
11346 temp = r->reg_type;
11347 temp.bitfield.baseindex = 0;
c6fb90c8
L
11348 i.types[this_operand] = operand_type_or (i.types[this_operand],
11349 temp);
7d5e4556 11350 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 11351 i.op[this_operand].regs = r;
24eab124
AM
11352 i.reg_operands++;
11353 }
af6bdddf
AM
11354 else if (*op_string == REGISTER_PREFIX)
11355 {
11356 as_bad (_("bad register name `%s'"), op_string);
11357 return 0;
11358 }
24eab124 11359 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 11360 {
24eab124 11361 ++op_string;
6f2f06be 11362 if (i.jumpabsolute)
24eab124 11363 {
d0b47220 11364 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
11365 return 0;
11366 }
11367 if (!i386_immediate (op_string))
11368 return 0;
11369 }
43234a1e
L
11370 else if (RC_SAE_immediate (operand_string))
11371 {
11372 /* If it is a RC or SAE immediate, do nothing. */
11373 ;
11374 }
24eab124
AM
11375 else if (is_digit_char (*op_string)
11376 || is_identifier_char (*op_string)
d02603dc 11377 || *op_string == '"'
e5cb08ac 11378 || *op_string == '(')
24eab124 11379 {
47926f60 11380 /* This is a memory reference of some sort. */
af6bdddf 11381 char *base_string;
252b5132 11382
47926f60 11383 /* Start and end of displacement string expression (if found). */
eecb386c
AM
11384 char *displacement_string_start;
11385 char *displacement_string_end;
43234a1e 11386 char *vop_start;
252b5132 11387
24eab124 11388 do_memory_reference:
8325cc63
JB
11389 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11390 return 0;
24eab124 11391 if ((i.mem_operands == 1
40fb9820 11392 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
11393 || i.mem_operands == 2)
11394 {
11395 as_bad (_("too many memory references for `%s'"),
11396 current_templates->start->name);
11397 return 0;
11398 }
252b5132 11399
24eab124
AM
11400 /* Check for base index form. We detect the base index form by
11401 looking for an ')' at the end of the operand, searching
11402 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11403 after the '('. */
af6bdddf 11404 base_string = op_string + strlen (op_string);
c3332e24 11405
43234a1e
L
11406 /* Handle vector operations. */
11407 vop_start = strchr (op_string, '{');
11408 if (vop_start && vop_start < base_string)
11409 {
11410 if (check_VecOperations (vop_start, base_string) == NULL)
11411 return 0;
11412 base_string = vop_start;
11413 }
11414
af6bdddf
AM
11415 --base_string;
11416 if (is_space_char (*base_string))
11417 --base_string;
252b5132 11418
47926f60 11419 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
11420 displacement_string_start = op_string;
11421 displacement_string_end = base_string + 1;
252b5132 11422
24eab124
AM
11423 if (*base_string == ')')
11424 {
af6bdddf 11425 char *temp_string;
24eab124
AM
11426 unsigned int parens_balanced = 1;
11427 /* We've already checked that the number of left & right ()'s are
47926f60 11428 equal, so this loop will not be infinite. */
24eab124
AM
11429 do
11430 {
11431 base_string--;
11432 if (*base_string == ')')
11433 parens_balanced++;
11434 if (*base_string == '(')
11435 parens_balanced--;
11436 }
11437 while (parens_balanced);
c3332e24 11438
af6bdddf 11439 temp_string = base_string;
c3332e24 11440
24eab124 11441 /* Skip past '(' and whitespace. */
252b5132
RH
11442 ++base_string;
11443 if (is_space_char (*base_string))
24eab124 11444 ++base_string;
252b5132 11445
af6bdddf 11446 if (*base_string == ','
4eed87de
AM
11447 || ((i.base_reg = parse_register (base_string, &end_op))
11448 != NULL))
252b5132 11449 {
af6bdddf 11450 displacement_string_end = temp_string;
252b5132 11451
40fb9820 11452 i.types[this_operand].bitfield.baseindex = 1;
252b5132 11453
af6bdddf 11454 if (i.base_reg)
24eab124 11455 {
8a6fb3f9
JB
11456 if (i.base_reg == &bad_reg)
11457 return 0;
24eab124
AM
11458 base_string = end_op;
11459 if (is_space_char (*base_string))
11460 ++base_string;
af6bdddf
AM
11461 }
11462
11463 /* There may be an index reg or scale factor here. */
11464 if (*base_string == ',')
11465 {
11466 ++base_string;
11467 if (is_space_char (*base_string))
11468 ++base_string;
11469
4eed87de
AM
11470 if ((i.index_reg = parse_register (base_string, &end_op))
11471 != NULL)
24eab124 11472 {
8a6fb3f9
JB
11473 if (i.index_reg == &bad_reg)
11474 return 0;
af6bdddf 11475 base_string = end_op;
24eab124
AM
11476 if (is_space_char (*base_string))
11477 ++base_string;
af6bdddf
AM
11478 if (*base_string == ',')
11479 {
11480 ++base_string;
11481 if (is_space_char (*base_string))
11482 ++base_string;
11483 }
e5cb08ac 11484 else if (*base_string != ')')
af6bdddf 11485 {
4eed87de
AM
11486 as_bad (_("expecting `,' or `)' "
11487 "after index register in `%s'"),
af6bdddf
AM
11488 operand_string);
11489 return 0;
11490 }
24eab124 11491 }
af6bdddf 11492 else if (*base_string == REGISTER_PREFIX)
24eab124 11493 {
f76bf5e0
L
11494 end_op = strchr (base_string, ',');
11495 if (end_op)
11496 *end_op = '\0';
af6bdddf 11497 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
11498 return 0;
11499 }
252b5132 11500
47926f60 11501 /* Check for scale factor. */
551c1ca1 11502 if (*base_string != ')')
af6bdddf 11503 {
551c1ca1
AM
11504 char *end_scale = i386_scale (base_string);
11505
11506 if (!end_scale)
af6bdddf 11507 return 0;
24eab124 11508
551c1ca1 11509 base_string = end_scale;
af6bdddf
AM
11510 if (is_space_char (*base_string))
11511 ++base_string;
11512 if (*base_string != ')')
11513 {
4eed87de
AM
11514 as_bad (_("expecting `)' "
11515 "after scale factor in `%s'"),
af6bdddf
AM
11516 operand_string);
11517 return 0;
11518 }
11519 }
11520 else if (!i.index_reg)
24eab124 11521 {
4eed87de
AM
11522 as_bad (_("expecting index register or scale factor "
11523 "after `,'; got '%c'"),
af6bdddf 11524 *base_string);
24eab124
AM
11525 return 0;
11526 }
11527 }
af6bdddf 11528 else if (*base_string != ')')
24eab124 11529 {
4eed87de
AM
11530 as_bad (_("expecting `,' or `)' "
11531 "after base register in `%s'"),
af6bdddf 11532 operand_string);
24eab124
AM
11533 return 0;
11534 }
c3332e24 11535 }
af6bdddf 11536 else if (*base_string == REGISTER_PREFIX)
c3332e24 11537 {
f76bf5e0
L
11538 end_op = strchr (base_string, ',');
11539 if (end_op)
11540 *end_op = '\0';
af6bdddf 11541 as_bad (_("bad register name `%s'"), base_string);
24eab124 11542 return 0;
c3332e24 11543 }
24eab124
AM
11544 }
11545
11546 /* If there's an expression beginning the operand, parse it,
11547 assuming displacement_string_start and
11548 displacement_string_end are meaningful. */
11549 if (displacement_string_start != displacement_string_end)
11550 {
11551 if (!i386_displacement (displacement_string_start,
11552 displacement_string_end))
11553 return 0;
11554 }
11555
11556 /* Special case for (%dx) while doing input/output op. */
11557 if (i.base_reg
75e5731b
JB
11558 && i.base_reg->reg_type.bitfield.instance == RegD
11559 && i.base_reg->reg_type.bitfield.word
24eab124
AM
11560 && i.index_reg == 0
11561 && i.log2_scale_factor == 0
11562 && i.seg[i.mem_operands] == 0
40fb9820 11563 && !operand_type_check (i.types[this_operand], disp))
24eab124 11564 {
2fb5be8d 11565 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
11566 return 1;
11567 }
11568
eecb386c
AM
11569 if (i386_index_check (operand_string) == 0)
11570 return 0;
c48dadc9 11571 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
11572 if (i.mem_operands == 0)
11573 i.memop1_string = xstrdup (operand_string);
24eab124
AM
11574 i.mem_operands++;
11575 }
11576 else
ce8a8b2f
AM
11577 {
11578 /* It's not a memory operand; argh! */
24eab124
AM
11579 as_bad (_("invalid char %s beginning operand %d `%s'"),
11580 output_invalid (*op_string),
11581 this_operand + 1,
11582 op_string);
11583 return 0;
11584 }
47926f60 11585 return 1; /* Normal return. */
252b5132
RH
11586}
11587\f
fa94de6b
RM
11588/* Calculate the maximum variable size (i.e., excluding fr_fix)
11589 that an rs_machine_dependent frag may reach. */
11590
11591unsigned int
11592i386_frag_max_var (fragS *frag)
11593{
11594 /* The only relaxable frags are for jumps.
11595 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11596 gas_assert (frag->fr_type == rs_machine_dependent);
11597 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11598}
11599
b084df0b
L
11600#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11601static int
8dcea932 11602elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
11603{
11604 /* STT_GNU_IFUNC symbol must go through PLT. */
11605 if ((symbol_get_bfdsym (fr_symbol)->flags
11606 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11607 return 0;
11608
11609 if (!S_IS_EXTERNAL (fr_symbol))
11610 /* Symbol may be weak or local. */
11611 return !S_IS_WEAK (fr_symbol);
11612
8dcea932
L
11613 /* Global symbols with non-default visibility can't be preempted. */
11614 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11615 return 1;
11616
11617 if (fr_var != NO_RELOC)
11618 switch ((enum bfd_reloc_code_real) fr_var)
11619 {
11620 case BFD_RELOC_386_PLT32:
11621 case BFD_RELOC_X86_64_PLT32:
33eaf5de 11622 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
11623 return 0;
11624 default:
11625 abort ();
11626 }
11627
b084df0b
L
11628 /* Global symbols with default visibility in a shared library may be
11629 preempted by another definition. */
8dcea932 11630 return !shared;
b084df0b
L
11631}
11632#endif
11633
79d72f45
HL
11634/* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11635 Note also work for Skylake and Cascadelake.
11636---------------------------------------------------------------------
11637| JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11638| ------ | ----------- | ------- | -------- |
11639| Jo | N | N | Y |
11640| Jno | N | N | Y |
11641| Jc/Jb | Y | N | Y |
11642| Jae/Jnb | Y | N | Y |
11643| Je/Jz | Y | Y | Y |
11644| Jne/Jnz | Y | Y | Y |
11645| Jna/Jbe | Y | N | Y |
11646| Ja/Jnbe | Y | N | Y |
11647| Js | N | N | Y |
11648| Jns | N | N | Y |
11649| Jp/Jpe | N | N | Y |
11650| Jnp/Jpo | N | N | Y |
11651| Jl/Jnge | Y | Y | Y |
11652| Jge/Jnl | Y | Y | Y |
11653| Jle/Jng | Y | Y | Y |
11654| Jg/Jnle | Y | Y | Y |
11655--------------------------------------------------------------------- */
11656static int
11657i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11658{
11659 if (mf_cmp == mf_cmp_alu_cmp)
11660 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11661 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11662 if (mf_cmp == mf_cmp_incdec)
11663 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11664 || mf_jcc == mf_jcc_jle);
11665 if (mf_cmp == mf_cmp_test_and)
11666 return 1;
11667 return 0;
11668}
11669
e379e5f3
L
11670/* Return the next non-empty frag. */
11671
11672static fragS *
11673i386_next_non_empty_frag (fragS *fragP)
11674{
11675 /* There may be a frag with a ".fill 0" when there is no room in
11676 the current frag for frag_grow in output_insn. */
11677 for (fragP = fragP->fr_next;
11678 (fragP != NULL
11679 && fragP->fr_type == rs_fill
11680 && fragP->fr_fix == 0);
11681 fragP = fragP->fr_next)
11682 ;
11683 return fragP;
11684}
11685
11686/* Return the next jcc frag after BRANCH_PADDING. */
11687
11688static fragS *
79d72f45 11689i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
e379e5f3 11690{
79d72f45
HL
11691 fragS *branch_fragP;
11692 if (!pad_fragP)
e379e5f3
L
11693 return NULL;
11694
79d72f45
HL
11695 if (pad_fragP->fr_type == rs_machine_dependent
11696 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
e379e5f3
L
11697 == BRANCH_PADDING))
11698 {
79d72f45
HL
11699 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11700 if (branch_fragP->fr_type != rs_machine_dependent)
e379e5f3 11701 return NULL;
79d72f45
HL
11702 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11703 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11704 pad_fragP->tc_frag_data.mf_type))
11705 return branch_fragP;
e379e5f3
L
11706 }
11707
11708 return NULL;
11709}
11710
11711/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11712
11713static void
11714i386_classify_machine_dependent_frag (fragS *fragP)
11715{
11716 fragS *cmp_fragP;
11717 fragS *pad_fragP;
11718 fragS *branch_fragP;
11719 fragS *next_fragP;
11720 unsigned int max_prefix_length;
11721
11722 if (fragP->tc_frag_data.classified)
11723 return;
11724
11725 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11726 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11727 for (next_fragP = fragP;
11728 next_fragP != NULL;
11729 next_fragP = next_fragP->fr_next)
11730 {
11731 next_fragP->tc_frag_data.classified = 1;
11732 if (next_fragP->fr_type == rs_machine_dependent)
11733 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11734 {
11735 case BRANCH_PADDING:
11736 /* The BRANCH_PADDING frag must be followed by a branch
11737 frag. */
11738 branch_fragP = i386_next_non_empty_frag (next_fragP);
11739 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11740 break;
11741 case FUSED_JCC_PADDING:
11742 /* Check if this is a fused jcc:
11743 FUSED_JCC_PADDING
11744 CMP like instruction
11745 BRANCH_PADDING
11746 COND_JUMP
11747 */
11748 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11749 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
79d72f45 11750 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
e379e5f3
L
11751 if (branch_fragP)
11752 {
11753 /* The BRANCH_PADDING frag is merged with the
11754 FUSED_JCC_PADDING frag. */
11755 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11756 /* CMP like instruction size. */
11757 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11758 frag_wane (pad_fragP);
11759 /* Skip to branch_fragP. */
11760 next_fragP = branch_fragP;
11761 }
11762 else if (next_fragP->tc_frag_data.max_prefix_length)
11763 {
11764 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11765 a fused jcc. */
11766 next_fragP->fr_subtype
11767 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11768 next_fragP->tc_frag_data.max_bytes
11769 = next_fragP->tc_frag_data.max_prefix_length;
11770 /* This will be updated in the BRANCH_PREFIX scan. */
11771 next_fragP->tc_frag_data.max_prefix_length = 0;
11772 }
11773 else
11774 frag_wane (next_fragP);
11775 break;
11776 }
11777 }
11778
11779 /* Stop if there is no BRANCH_PREFIX. */
11780 if (!align_branch_prefix_size)
11781 return;
11782
11783 /* Scan for BRANCH_PREFIX. */
11784 for (; fragP != NULL; fragP = fragP->fr_next)
11785 {
11786 if (fragP->fr_type != rs_machine_dependent
11787 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11788 != BRANCH_PREFIX))
11789 continue;
11790
11791 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11792 COND_JUMP_PREFIX. */
11793 max_prefix_length = 0;
11794 for (next_fragP = fragP;
11795 next_fragP != NULL;
11796 next_fragP = next_fragP->fr_next)
11797 {
11798 if (next_fragP->fr_type == rs_fill)
11799 /* Skip rs_fill frags. */
11800 continue;
11801 else if (next_fragP->fr_type != rs_machine_dependent)
11802 /* Stop for all other frags. */
11803 break;
11804
11805 /* rs_machine_dependent frags. */
11806 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11807 == BRANCH_PREFIX)
11808 {
11809 /* Count BRANCH_PREFIX frags. */
11810 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11811 {
11812 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11813 frag_wane (next_fragP);
11814 }
11815 else
11816 max_prefix_length
11817 += next_fragP->tc_frag_data.max_bytes;
11818 }
11819 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11820 == BRANCH_PADDING)
11821 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11822 == FUSED_JCC_PADDING))
11823 {
11824 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11825 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11826 break;
11827 }
11828 else
11829 /* Stop for other rs_machine_dependent frags. */
11830 break;
11831 }
11832
11833 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11834
11835 /* Skip to the next frag. */
11836 fragP = next_fragP;
11837 }
11838}
11839
11840/* Compute padding size for
11841
11842 FUSED_JCC_PADDING
11843 CMP like instruction
11844 BRANCH_PADDING
11845 COND_JUMP/UNCOND_JUMP
11846
11847 or
11848
11849 BRANCH_PADDING
11850 COND_JUMP/UNCOND_JUMP
11851 */
11852
11853static int
11854i386_branch_padding_size (fragS *fragP, offsetT address)
11855{
11856 unsigned int offset, size, padding_size;
11857 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11858
11859 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11860 if (!address)
11861 address = fragP->fr_address;
11862 address += fragP->fr_fix;
11863
11864 /* CMP like instrunction size. */
11865 size = fragP->tc_frag_data.cmp_size;
11866
11867 /* The base size of the branch frag. */
11868 size += branch_fragP->fr_fix;
11869
11870 /* Add opcode and displacement bytes for the rs_machine_dependent
11871 branch frag. */
11872 if (branch_fragP->fr_type == rs_machine_dependent)
11873 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11874
11875 /* Check if branch is within boundary and doesn't end at the last
11876 byte. */
11877 offset = address & ((1U << align_branch_power) - 1);
11878 if ((offset + size) >= (1U << align_branch_power))
11879 /* Padding needed to avoid crossing boundary. */
11880 padding_size = (1U << align_branch_power) - offset;
11881 else
11882 /* No padding needed. */
11883 padding_size = 0;
11884
11885 /* The return value may be saved in tc_frag_data.length which is
11886 unsigned byte. */
11887 if (!fits_in_unsigned_byte (padding_size))
11888 abort ();
11889
11890 return padding_size;
11891}
11892
11893/* i386_generic_table_relax_frag()
11894
11895 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11896 grow/shrink padding to align branch frags. Hand others to
11897 relax_frag(). */
11898
11899long
11900i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11901{
11902 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11903 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11904 {
11905 long padding_size = i386_branch_padding_size (fragP, 0);
11906 long grow = padding_size - fragP->tc_frag_data.length;
11907
11908 /* When the BRANCH_PREFIX frag is used, the computed address
11909 must match the actual address and there should be no padding. */
11910 if (fragP->tc_frag_data.padding_address
11911 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11912 || padding_size))
11913 abort ();
11914
11915 /* Update the padding size. */
11916 if (grow)
11917 fragP->tc_frag_data.length = padding_size;
11918
11919 return grow;
11920 }
11921 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11922 {
11923 fragS *padding_fragP, *next_fragP;
11924 long padding_size, left_size, last_size;
11925
11926 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11927 if (!padding_fragP)
11928 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11929 return (fragP->tc_frag_data.length
11930 - fragP->tc_frag_data.last_length);
11931
11932 /* Compute the relative address of the padding frag in the very
11933 first time where the BRANCH_PREFIX frag sizes are zero. */
11934 if (!fragP->tc_frag_data.padding_address)
11935 fragP->tc_frag_data.padding_address
11936 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11937
11938 /* First update the last length from the previous interation. */
11939 left_size = fragP->tc_frag_data.prefix_length;
11940 for (next_fragP = fragP;
11941 next_fragP != padding_fragP;
11942 next_fragP = next_fragP->fr_next)
11943 if (next_fragP->fr_type == rs_machine_dependent
11944 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11945 == BRANCH_PREFIX))
11946 {
11947 if (left_size)
11948 {
11949 int max = next_fragP->tc_frag_data.max_bytes;
11950 if (max)
11951 {
11952 int size;
11953 if (max > left_size)
11954 size = left_size;
11955 else
11956 size = max;
11957 left_size -= size;
11958 next_fragP->tc_frag_data.last_length = size;
11959 }
11960 }
11961 else
11962 next_fragP->tc_frag_data.last_length = 0;
11963 }
11964
11965 /* Check the padding size for the padding frag. */
11966 padding_size = i386_branch_padding_size
11967 (padding_fragP, (fragP->fr_address
11968 + fragP->tc_frag_data.padding_address));
11969
11970 last_size = fragP->tc_frag_data.prefix_length;
11971 /* Check if there is change from the last interation. */
11972 if (padding_size == last_size)
11973 {
11974 /* Update the expected address of the padding frag. */
11975 padding_fragP->tc_frag_data.padding_address
11976 = (fragP->fr_address + padding_size
11977 + fragP->tc_frag_data.padding_address);
11978 return 0;
11979 }
11980
11981 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11982 {
11983 /* No padding if there is no sufficient room. Clear the
11984 expected address of the padding frag. */
11985 padding_fragP->tc_frag_data.padding_address = 0;
11986 padding_size = 0;
11987 }
11988 else
11989 /* Store the expected address of the padding frag. */
11990 padding_fragP->tc_frag_data.padding_address
11991 = (fragP->fr_address + padding_size
11992 + fragP->tc_frag_data.padding_address);
11993
11994 fragP->tc_frag_data.prefix_length = padding_size;
11995
11996 /* Update the length for the current interation. */
11997 left_size = padding_size;
11998 for (next_fragP = fragP;
11999 next_fragP != padding_fragP;
12000 next_fragP = next_fragP->fr_next)
12001 if (next_fragP->fr_type == rs_machine_dependent
12002 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
12003 == BRANCH_PREFIX))
12004 {
12005 if (left_size)
12006 {
12007 int max = next_fragP->tc_frag_data.max_bytes;
12008 if (max)
12009 {
12010 int size;
12011 if (max > left_size)
12012 size = left_size;
12013 else
12014 size = max;
12015 left_size -= size;
12016 next_fragP->tc_frag_data.length = size;
12017 }
12018 }
12019 else
12020 next_fragP->tc_frag_data.length = 0;
12021 }
12022
12023 return (fragP->tc_frag_data.length
12024 - fragP->tc_frag_data.last_length);
12025 }
12026 return relax_frag (segment, fragP, stretch);
12027}
12028
ee7fcc42
AM
12029/* md_estimate_size_before_relax()
12030
12031 Called just before relax() for rs_machine_dependent frags. The x86
12032 assembler uses these frags to handle variable size jump
12033 instructions.
12034
12035 Any symbol that is now undefined will not become defined.
12036 Return the correct fr_subtype in the frag.
12037 Return the initial "guess for variable size of frag" to caller.
12038 The guess is actually the growth beyond the fixed part. Whatever
12039 we do to grow the fixed or variable part contributes to our
12040 returned value. */
12041
252b5132 12042int
7016a5d5 12043md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 12044{
e379e5f3
L
12045 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12046 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
12047 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
12048 {
12049 i386_classify_machine_dependent_frag (fragP);
12050 return fragP->tc_frag_data.length;
12051 }
12052
252b5132 12053 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
12054 check for un-relaxable symbols. On an ELF system, we can't relax
12055 an externally visible symbol, because it may be overridden by a
12056 shared library. */
12057 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 12058#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 12059 || (IS_ELF
8dcea932
L
12060 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
12061 fragP->fr_var))
fbeb56a4
DK
12062#endif
12063#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 12064 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 12065 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
12066#endif
12067 )
252b5132 12068 {
b98ef147
AM
12069 /* Symbol is undefined in this segment, or we need to keep a
12070 reloc so that weak symbols can be overridden. */
12071 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 12072 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
12073 unsigned char *opcode;
12074 int old_fr_fix;
f6af82bd 12075
ee7fcc42 12076 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 12077 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 12078 else if (size == 2)
f6af82bd 12079 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
12080#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12081 else if (need_plt32_p (fragP->fr_symbol))
12082 reloc_type = BFD_RELOC_X86_64_PLT32;
12083#endif
f6af82bd
AM
12084 else
12085 reloc_type = BFD_RELOC_32_PCREL;
252b5132 12086
ee7fcc42
AM
12087 old_fr_fix = fragP->fr_fix;
12088 opcode = (unsigned char *) fragP->fr_opcode;
12089
fddf5b5b 12090 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 12091 {
fddf5b5b
AM
12092 case UNCOND_JUMP:
12093 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 12094 opcode[0] = 0xe9;
252b5132 12095 fragP->fr_fix += size;
062cd5e7
AS
12096 fix_new (fragP, old_fr_fix, size,
12097 fragP->fr_symbol,
12098 fragP->fr_offset, 1,
12099 reloc_type);
252b5132
RH
12100 break;
12101
fddf5b5b 12102 case COND_JUMP86:
412167cb
AM
12103 if (size == 2
12104 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
12105 {
12106 /* Negate the condition, and branch past an
12107 unconditional jump. */
12108 opcode[0] ^= 1;
12109 opcode[1] = 3;
12110 /* Insert an unconditional jump. */
12111 opcode[2] = 0xe9;
12112 /* We added two extra opcode bytes, and have a two byte
12113 offset. */
12114 fragP->fr_fix += 2 + 2;
062cd5e7
AS
12115 fix_new (fragP, old_fr_fix + 2, 2,
12116 fragP->fr_symbol,
12117 fragP->fr_offset, 1,
12118 reloc_type);
fddf5b5b
AM
12119 break;
12120 }
12121 /* Fall through. */
12122
12123 case COND_JUMP:
412167cb
AM
12124 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
12125 {
3e02c1cc
AM
12126 fixS *fixP;
12127
412167cb 12128 fragP->fr_fix += 1;
3e02c1cc
AM
12129 fixP = fix_new (fragP, old_fr_fix, 1,
12130 fragP->fr_symbol,
12131 fragP->fr_offset, 1,
12132 BFD_RELOC_8_PCREL);
12133 fixP->fx_signed = 1;
412167cb
AM
12134 break;
12135 }
93c2a809 12136
24eab124 12137 /* This changes the byte-displacement jump 0x7N
fddf5b5b 12138 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 12139 opcode[1] = opcode[0] + 0x10;
f6af82bd 12140 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
12141 /* We've added an opcode byte. */
12142 fragP->fr_fix += 1 + size;
062cd5e7
AS
12143 fix_new (fragP, old_fr_fix + 1, size,
12144 fragP->fr_symbol,
12145 fragP->fr_offset, 1,
12146 reloc_type);
252b5132 12147 break;
fddf5b5b
AM
12148
12149 default:
12150 BAD_CASE (fragP->fr_subtype);
12151 break;
252b5132
RH
12152 }
12153 frag_wane (fragP);
ee7fcc42 12154 return fragP->fr_fix - old_fr_fix;
252b5132 12155 }
93c2a809 12156
93c2a809
AM
12157 /* Guess size depending on current relax state. Initially the relax
12158 state will correspond to a short jump and we return 1, because
12159 the variable part of the frag (the branch offset) is one byte
12160 long. However, we can relax a section more than once and in that
12161 case we must either set fr_subtype back to the unrelaxed state,
12162 or return the value for the appropriate branch. */
12163 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
12164}
12165
47926f60
KH
12166/* Called after relax() is finished.
12167
12168 In: Address of frag.
12169 fr_type == rs_machine_dependent.
12170 fr_subtype is what the address relaxed to.
12171
12172 Out: Any fixSs and constants are set up.
12173 Caller will turn frag into a ".space 0". */
12174
252b5132 12175void
7016a5d5
TG
12176md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
12177 fragS *fragP)
252b5132 12178{
29b0f896 12179 unsigned char *opcode;
252b5132 12180 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
12181 offsetT target_address;
12182 offsetT opcode_address;
252b5132 12183 unsigned int extension = 0;
847f7ad4 12184 offsetT displacement_from_opcode_start;
252b5132 12185
e379e5f3
L
12186 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12187 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
12188 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12189 {
12190 /* Generate nop padding. */
12191 unsigned int size = fragP->tc_frag_data.length;
12192 if (size)
12193 {
12194 if (size > fragP->tc_frag_data.max_bytes)
12195 abort ();
12196
12197 if (flag_debug)
12198 {
12199 const char *msg;
12200 const char *branch = "branch";
12201 const char *prefix = "";
12202 fragS *padding_fragP;
12203 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12204 == BRANCH_PREFIX)
12205 {
12206 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12207 switch (fragP->tc_frag_data.default_prefix)
12208 {
12209 default:
12210 abort ();
12211 break;
12212 case CS_PREFIX_OPCODE:
12213 prefix = " cs";
12214 break;
12215 case DS_PREFIX_OPCODE:
12216 prefix = " ds";
12217 break;
12218 case ES_PREFIX_OPCODE:
12219 prefix = " es";
12220 break;
12221 case FS_PREFIX_OPCODE:
12222 prefix = " fs";
12223 break;
12224 case GS_PREFIX_OPCODE:
12225 prefix = " gs";
12226 break;
12227 case SS_PREFIX_OPCODE:
12228 prefix = " ss";
12229 break;
12230 }
12231 if (padding_fragP)
12232 msg = _("%s:%u: add %d%s at 0x%llx to align "
12233 "%s within %d-byte boundary\n");
12234 else
12235 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12236 "align %s within %d-byte boundary\n");
12237 }
12238 else
12239 {
12240 padding_fragP = fragP;
12241 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12242 "%s within %d-byte boundary\n");
12243 }
12244
12245 if (padding_fragP)
12246 switch (padding_fragP->tc_frag_data.branch_type)
12247 {
12248 case align_branch_jcc:
12249 branch = "jcc";
12250 break;
12251 case align_branch_fused:
12252 branch = "fused jcc";
12253 break;
12254 case align_branch_jmp:
12255 branch = "jmp";
12256 break;
12257 case align_branch_call:
12258 branch = "call";
12259 break;
12260 case align_branch_indirect:
12261 branch = "indiret branch";
12262 break;
12263 case align_branch_ret:
12264 branch = "ret";
12265 break;
12266 default:
12267 break;
12268 }
12269
12270 fprintf (stdout, msg,
12271 fragP->fr_file, fragP->fr_line, size, prefix,
12272 (long long) fragP->fr_address, branch,
12273 1 << align_branch_power);
12274 }
12275 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12276 memset (fragP->fr_opcode,
12277 fragP->tc_frag_data.default_prefix, size);
12278 else
12279 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12280 size, 0);
12281 fragP->fr_fix += size;
12282 }
12283 return;
12284 }
12285
252b5132
RH
12286 opcode = (unsigned char *) fragP->fr_opcode;
12287
47926f60 12288 /* Address we want to reach in file space. */
252b5132 12289 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 12290
47926f60 12291 /* Address opcode resides at in file space. */
252b5132
RH
12292 opcode_address = fragP->fr_address + fragP->fr_fix;
12293
47926f60 12294 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
12295 displacement_from_opcode_start = target_address - opcode_address;
12296
fddf5b5b 12297 if ((fragP->fr_subtype & BIG) == 0)
252b5132 12298 {
47926f60
KH
12299 /* Don't have to change opcode. */
12300 extension = 1; /* 1 opcode + 1 displacement */
252b5132 12301 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
12302 }
12303 else
12304 {
12305 if (no_cond_jump_promotion
12306 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
12307 as_warn_where (fragP->fr_file, fragP->fr_line,
12308 _("long jump required"));
252b5132 12309
fddf5b5b
AM
12310 switch (fragP->fr_subtype)
12311 {
12312 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12313 extension = 4; /* 1 opcode + 4 displacement */
12314 opcode[0] = 0xe9;
12315 where_to_put_displacement = &opcode[1];
12316 break;
252b5132 12317
fddf5b5b
AM
12318 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12319 extension = 2; /* 1 opcode + 2 displacement */
12320 opcode[0] = 0xe9;
12321 where_to_put_displacement = &opcode[1];
12322 break;
252b5132 12323
fddf5b5b
AM
12324 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12325 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12326 extension = 5; /* 2 opcode + 4 displacement */
12327 opcode[1] = opcode[0] + 0x10;
12328 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12329 where_to_put_displacement = &opcode[2];
12330 break;
252b5132 12331
fddf5b5b
AM
12332 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12333 extension = 3; /* 2 opcode + 2 displacement */
12334 opcode[1] = opcode[0] + 0x10;
12335 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12336 where_to_put_displacement = &opcode[2];
12337 break;
252b5132 12338
fddf5b5b
AM
12339 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12340 extension = 4;
12341 opcode[0] ^= 1;
12342 opcode[1] = 3;
12343 opcode[2] = 0xe9;
12344 where_to_put_displacement = &opcode[3];
12345 break;
12346
12347 default:
12348 BAD_CASE (fragP->fr_subtype);
12349 break;
12350 }
252b5132 12351 }
fddf5b5b 12352
7b81dfbb
AJ
12353 /* If size if less then four we are sure that the operand fits,
12354 but if it's 4, then it could be that the displacement is larger
12355 then -/+ 2GB. */
12356 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12357 && object_64bit
12358 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
12359 + ((addressT) 1 << 31))
12360 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
12361 {
12362 as_bad_where (fragP->fr_file, fragP->fr_line,
12363 _("jump target out of range"));
12364 /* Make us emit 0. */
12365 displacement_from_opcode_start = extension;
12366 }
47926f60 12367 /* Now put displacement after opcode. */
252b5132
RH
12368 md_number_to_chars ((char *) where_to_put_displacement,
12369 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 12370 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
12371 fragP->fr_fix += extension;
12372}
12373\f
7016a5d5 12374/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
12375 by our caller that we have all the info we need to fix it up.
12376
7016a5d5
TG
12377 Parameter valP is the pointer to the value of the bits.
12378
252b5132
RH
12379 On the 386, immediates, displacements, and data pointers are all in
12380 the same (little-endian) format, so we don't need to care about which
12381 we are handling. */
12382
94f592af 12383void
7016a5d5 12384md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 12385{
94f592af 12386 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 12387 valueT value = *valP;
252b5132 12388
f86103b7 12389#if !defined (TE_Mach)
93382f6d
AM
12390 if (fixP->fx_pcrel)
12391 {
12392 switch (fixP->fx_r_type)
12393 {
5865bb77
ILT
12394 default:
12395 break;
12396
d6ab8113
JB
12397 case BFD_RELOC_64:
12398 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12399 break;
93382f6d 12400 case BFD_RELOC_32:
ae8887b5 12401 case BFD_RELOC_X86_64_32S:
93382f6d
AM
12402 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12403 break;
12404 case BFD_RELOC_16:
12405 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12406 break;
12407 case BFD_RELOC_8:
12408 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12409 break;
12410 }
12411 }
252b5132 12412
a161fe53 12413 if (fixP->fx_addsy != NULL
31312f95 12414 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 12415 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 12416 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 12417 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 12418 && !use_rela_relocations)
252b5132 12419 {
31312f95
AM
12420 /* This is a hack. There should be a better way to handle this.
12421 This covers for the fact that bfd_install_relocation will
12422 subtract the current location (for partial_inplace, PC relative
12423 relocations); see more below. */
252b5132 12424#ifndef OBJ_AOUT
718ddfc0 12425 if (IS_ELF
252b5132
RH
12426#ifdef TE_PE
12427 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12428#endif
12429 )
12430 value += fixP->fx_where + fixP->fx_frag->fr_address;
12431#endif
12432#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 12433 if (IS_ELF)
252b5132 12434 {
6539b54b 12435 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 12436
6539b54b 12437 if ((sym_seg == seg
2f66722d 12438 || (symbol_section_p (fixP->fx_addsy)
6539b54b 12439 && sym_seg != absolute_section))
af65af87 12440 && !generic_force_reloc (fixP))
2f66722d
AM
12441 {
12442 /* Yes, we add the values in twice. This is because
6539b54b
AM
12443 bfd_install_relocation subtracts them out again. I think
12444 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
12445 it. FIXME. */
12446 value += fixP->fx_where + fixP->fx_frag->fr_address;
12447 }
252b5132
RH
12448 }
12449#endif
12450#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
12451 /* For some reason, the PE format does not store a
12452 section address offset for a PC relative symbol. */
12453 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 12454 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
12455 value += md_pcrel_from (fixP);
12456#endif
12457 }
fbeb56a4 12458#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
12459 if (fixP->fx_addsy != NULL
12460 && S_IS_WEAK (fixP->fx_addsy)
12461 /* PR 16858: Do not modify weak function references. */
12462 && ! fixP->fx_pcrel)
fbeb56a4 12463 {
296a8689
NC
12464#if !defined (TE_PEP)
12465 /* For x86 PE weak function symbols are neither PC-relative
12466 nor do they set S_IS_FUNCTION. So the only reliable way
12467 to detect them is to check the flags of their containing
12468 section. */
12469 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12470 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12471 ;
12472 else
12473#endif
fbeb56a4
DK
12474 value -= S_GET_VALUE (fixP->fx_addsy);
12475 }
12476#endif
252b5132
RH
12477
12478 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 12479 and we must not disappoint it. */
252b5132 12480#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 12481 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
12482 switch (fixP->fx_r_type)
12483 {
12484 case BFD_RELOC_386_PLT32:
3e73aa7c 12485 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
12486 /* Make the jump instruction point to the address of the operand.
12487 At runtime we merely add the offset to the actual PLT entry.
12488 NB: Subtract the offset size only for jump instructions. */
12489 if (fixP->fx_pcrel)
12490 value = -4;
47926f60 12491 break;
31312f95 12492
13ae64f3
JJ
12493 case BFD_RELOC_386_TLS_GD:
12494 case BFD_RELOC_386_TLS_LDM:
13ae64f3 12495 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12496 case BFD_RELOC_386_TLS_IE:
12497 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 12498 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
12499 case BFD_RELOC_X86_64_TLSGD:
12500 case BFD_RELOC_X86_64_TLSLD:
12501 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 12502 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
12503 value = 0; /* Fully resolved at runtime. No addend. */
12504 /* Fallthrough */
12505 case BFD_RELOC_386_TLS_LE:
12506 case BFD_RELOC_386_TLS_LDO_32:
12507 case BFD_RELOC_386_TLS_LE_32:
12508 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12509 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 12510 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 12511 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
12512 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12513 break;
12514
67a4f2b7
AO
12515 case BFD_RELOC_386_TLS_DESC_CALL:
12516 case BFD_RELOC_X86_64_TLSDESC_CALL:
12517 value = 0; /* Fully resolved at runtime. No addend. */
12518 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12519 fixP->fx_done = 0;
12520 return;
12521
47926f60
KH
12522 case BFD_RELOC_VTABLE_INHERIT:
12523 case BFD_RELOC_VTABLE_ENTRY:
12524 fixP->fx_done = 0;
94f592af 12525 return;
47926f60
KH
12526
12527 default:
12528 break;
12529 }
12530#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 12531 *valP = value;
f86103b7 12532#endif /* !defined (TE_Mach) */
3e73aa7c 12533
3e73aa7c 12534 /* Are we finished with this relocation now? */
c6682705 12535 if (fixP->fx_addsy == NULL)
3e73aa7c 12536 fixP->fx_done = 1;
fbeb56a4
DK
12537#if defined (OBJ_COFF) && defined (TE_PE)
12538 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12539 {
12540 fixP->fx_done = 0;
12541 /* Remember value for tc_gen_reloc. */
12542 fixP->fx_addnumber = value;
12543 /* Clear out the frag for now. */
12544 value = 0;
12545 }
12546#endif
3e73aa7c
JH
12547 else if (use_rela_relocations)
12548 {
12549 fixP->fx_no_overflow = 1;
062cd5e7
AS
12550 /* Remember value for tc_gen_reloc. */
12551 fixP->fx_addnumber = value;
3e73aa7c
JH
12552 value = 0;
12553 }
f86103b7 12554
94f592af 12555 md_number_to_chars (p, value, fixP->fx_size);
252b5132 12556}
252b5132 12557\f
6d4af3c2 12558const char *
499ac353 12559md_atof (int type, char *litP, int *sizeP)
252b5132 12560{
499ac353
NC
12561 /* This outputs the LITTLENUMs in REVERSE order;
12562 in accord with the bigendian 386. */
12563 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
12564}
12565\f
2d545b82 12566static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 12567
252b5132 12568static char *
e3bb37b5 12569output_invalid (int c)
252b5132 12570{
3882b010 12571 if (ISPRINT (c))
f9f21a03
L
12572 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12573 "'%c'", c);
252b5132 12574 else
f9f21a03 12575 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 12576 "(0x%x)", (unsigned char) c);
252b5132
RH
12577 return output_invalid_buf;
12578}
12579
8a6fb3f9
JB
12580/* Verify that @r can be used in the current context. */
12581
12582static bfd_boolean check_register (const reg_entry *r)
12583{
12584 if (allow_pseudo_reg)
12585 return TRUE;
12586
12587 if (operand_type_all_zero (&r->reg_type))
12588 return FALSE;
12589
12590 if ((r->reg_type.bitfield.dword
12591 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12592 || r->reg_type.bitfield.class == RegCR
22e00a3f 12593 || r->reg_type.bitfield.class == RegDR)
8a6fb3f9
JB
12594 && !cpu_arch_flags.bitfield.cpui386)
12595 return FALSE;
12596
22e00a3f
JB
12597 if (r->reg_type.bitfield.class == RegTR
12598 && (flag_code == CODE_64BIT
12599 || !cpu_arch_flags.bitfield.cpui386
12600 || cpu_arch_isa_flags.bitfield.cpui586
12601 || cpu_arch_isa_flags.bitfield.cpui686))
12602 return FALSE;
12603
8a6fb3f9
JB
12604 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12605 return FALSE;
12606
12607 if (!cpu_arch_flags.bitfield.cpuavx512f)
12608 {
12609 if (r->reg_type.bitfield.zmmword
12610 || r->reg_type.bitfield.class == RegMask)
12611 return FALSE;
12612
12613 if (!cpu_arch_flags.bitfield.cpuavx)
12614 {
12615 if (r->reg_type.bitfield.ymmword)
12616 return FALSE;
12617
12618 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12619 return FALSE;
12620 }
12621 }
12622
260cd341
LC
12623 if (r->reg_type.bitfield.tmmword
12624 && (!cpu_arch_flags.bitfield.cpuamx_tile
12625 || flag_code != CODE_64BIT))
12626 return FALSE;
12627
8a6fb3f9
JB
12628 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12629 return FALSE;
12630
12631 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12632 if (!allow_index_reg && r->reg_num == RegIZ)
12633 return FALSE;
12634
12635 /* Upper 16 vector registers are only available with VREX in 64bit
12636 mode, and require EVEX encoding. */
12637 if (r->reg_flags & RegVRex)
12638 {
12639 if (!cpu_arch_flags.bitfield.cpuavx512f
12640 || flag_code != CODE_64BIT)
12641 return FALSE;
12642
da4977e0
JB
12643 if (i.vec_encoding == vex_encoding_default)
12644 i.vec_encoding = vex_encoding_evex;
12645 else if (i.vec_encoding != vex_encoding_evex)
12646 i.vec_encoding = vex_encoding_error;
8a6fb3f9
JB
12647 }
12648
12649 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12650 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12651 && flag_code != CODE_64BIT)
12652 return FALSE;
12653
12654 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12655 && !intel_syntax)
12656 return FALSE;
12657
12658 return TRUE;
12659}
12660
af6bdddf 12661/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
12662
12663static const reg_entry *
4d1bb795 12664parse_real_register (char *reg_string, char **end_op)
252b5132 12665{
af6bdddf
AM
12666 char *s = reg_string;
12667 char *p;
252b5132
RH
12668 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12669 const reg_entry *r;
12670
12671 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12672 if (*s == REGISTER_PREFIX)
12673 ++s;
12674
12675 if (is_space_char (*s))
12676 ++s;
12677
12678 p = reg_name_given;
af6bdddf 12679 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
12680 {
12681 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
12682 return (const reg_entry *) NULL;
12683 s++;
252b5132
RH
12684 }
12685
6588847e
DN
12686 /* For naked regs, make sure that we are not dealing with an identifier.
12687 This prevents confusing an identifier like `eax_var' with register
12688 `eax'. */
12689 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12690 return (const reg_entry *) NULL;
12691
af6bdddf 12692 *end_op = s;
252b5132 12693
629310ab 12694 r = (const reg_entry *) str_hash_find (reg_hash, reg_name_given);
252b5132 12695
5f47d35b 12696 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 12697 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 12698 {
0e0eea78
JB
12699 if (!cpu_arch_flags.bitfield.cpu8087
12700 && !cpu_arch_flags.bitfield.cpu287
af32b722
JB
12701 && !cpu_arch_flags.bitfield.cpu387
12702 && !allow_pseudo_reg)
0e0eea78
JB
12703 return (const reg_entry *) NULL;
12704
5f47d35b
AM
12705 if (is_space_char (*s))
12706 ++s;
12707 if (*s == '(')
12708 {
af6bdddf 12709 ++s;
5f47d35b
AM
12710 if (is_space_char (*s))
12711 ++s;
12712 if (*s >= '0' && *s <= '7')
12713 {
db557034 12714 int fpr = *s - '0';
af6bdddf 12715 ++s;
5f47d35b
AM
12716 if (is_space_char (*s))
12717 ++s;
12718 if (*s == ')')
12719 {
12720 *end_op = s + 1;
629310ab 12721 r = (const reg_entry *) str_hash_find (reg_hash, "st(0)");
db557034
AM
12722 know (r);
12723 return r + fpr;
5f47d35b 12724 }
5f47d35b 12725 }
47926f60 12726 /* We have "%st(" then garbage. */
5f47d35b
AM
12727 return (const reg_entry *) NULL;
12728 }
12729 }
12730
8a6fb3f9 12731 return r && check_register (r) ? r : NULL;
252b5132 12732}
4d1bb795
JB
12733
12734/* REG_STRING starts *before* REGISTER_PREFIX. */
12735
12736static const reg_entry *
12737parse_register (char *reg_string, char **end_op)
12738{
12739 const reg_entry *r;
12740
12741 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12742 r = parse_real_register (reg_string, end_op);
12743 else
12744 r = NULL;
12745 if (!r)
12746 {
12747 char *save = input_line_pointer;
12748 char c;
12749 symbolS *symbolP;
12750
12751 input_line_pointer = reg_string;
d02603dc 12752 c = get_symbol_name (&reg_string);
4d1bb795
JB
12753 symbolP = symbol_find (reg_string);
12754 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12755 {
12756 const expressionS *e = symbol_get_value_expression (symbolP);
12757
0398aac5 12758 know (e->X_op == O_register);
4eed87de 12759 know (e->X_add_number >= 0
c3fe08fa 12760 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 12761 r = i386_regtab + e->X_add_number;
8a6fb3f9
JB
12762 if (!check_register (r))
12763 {
12764 as_bad (_("register '%s%s' cannot be used here"),
12765 register_prefix, r->reg_name);
12766 r = &bad_reg;
12767 }
4d1bb795
JB
12768 *end_op = input_line_pointer;
12769 }
12770 *input_line_pointer = c;
12771 input_line_pointer = save;
12772 }
12773 return r;
12774}
12775
12776int
12777i386_parse_name (char *name, expressionS *e, char *nextcharP)
12778{
12779 const reg_entry *r;
12780 char *end = input_line_pointer;
12781
12782 *end = *nextcharP;
12783 r = parse_register (name, &input_line_pointer);
12784 if (r && end <= input_line_pointer)
12785 {
12786 *nextcharP = *input_line_pointer;
12787 *input_line_pointer = 0;
8a6fb3f9
JB
12788 if (r != &bad_reg)
12789 {
12790 e->X_op = O_register;
12791 e->X_add_number = r - i386_regtab;
12792 }
12793 else
12794 e->X_op = O_illegal;
4d1bb795
JB
12795 return 1;
12796 }
12797 input_line_pointer = end;
12798 *end = 0;
ee86248c 12799 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
12800}
12801
12802void
12803md_operand (expressionS *e)
12804{
ee86248c
JB
12805 char *end;
12806 const reg_entry *r;
4d1bb795 12807
ee86248c
JB
12808 switch (*input_line_pointer)
12809 {
12810 case REGISTER_PREFIX:
12811 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
12812 if (r)
12813 {
12814 e->X_op = O_register;
12815 e->X_add_number = r - i386_regtab;
12816 input_line_pointer = end;
12817 }
ee86248c
JB
12818 break;
12819
12820 case '[':
9c2799c2 12821 gas_assert (intel_syntax);
ee86248c
JB
12822 end = input_line_pointer++;
12823 expression (e);
12824 if (*input_line_pointer == ']')
12825 {
12826 ++input_line_pointer;
12827 e->X_op_symbol = make_expr_symbol (e);
12828 e->X_add_symbol = NULL;
12829 e->X_add_number = 0;
12830 e->X_op = O_index;
12831 }
12832 else
12833 {
12834 e->X_op = O_absent;
12835 input_line_pointer = end;
12836 }
12837 break;
4d1bb795
JB
12838 }
12839}
12840
252b5132 12841\f
4cc782b5 12842#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 12843const char *md_shortopts = "kVQ:sqnO::";
252b5132 12844#else
b6f8c7c4 12845const char *md_shortopts = "qnO::";
252b5132 12846#endif
6e0b89ee 12847
3e73aa7c 12848#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
12849#define OPTION_64 (OPTION_MD_BASE + 1)
12850#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
12851#define OPTION_MARCH (OPTION_MD_BASE + 3)
12852#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
12853#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12854#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12855#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12856#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 12857#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 12858#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 12859#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
12860#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12861#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12862#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12863#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12864#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12865#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12866#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12867#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12868#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12869#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12870#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12871#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12872#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12873#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12874#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12875#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12876#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12877#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12878#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
ae531041
L
12879#define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12880#define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12881#define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
b3b91714 12882
99ad8390
NC
12883struct option md_longopts[] =
12884{
3e73aa7c 12885 {"32", no_argument, NULL, OPTION_32},
321098a5 12886#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12887 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12888 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12889#endif
12890#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12891 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12892 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12893 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12894#endif
b3b91714 12895 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12896 {"march", required_argument, NULL, OPTION_MARCH},
12897 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12898 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12899 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12900 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12901 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12902 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12903 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12904 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12905 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12906 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12907 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12908 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12909 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12910# if defined (TE_PE) || defined (TE_PEP)
12911 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12912#endif
d1982f93 12913 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12914 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12915 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12916 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12917 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12918 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12919 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12920 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
ae531041
L
12921 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12922 {"mlfence-before-indirect-branch", required_argument, NULL,
12923 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12924 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
5db04b09
L
12925 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12926 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12927 {NULL, no_argument, NULL, 0}
12928};
12929size_t md_longopts_size = sizeof (md_longopts);
12930
12931int
17b9d67d 12932md_parse_option (int c, const char *arg)
252b5132 12933{
91d6fa6a 12934 unsigned int j;
e379e5f3 12935 char *arch, *next, *saved, *type;
9103f4f4 12936
252b5132
RH
12937 switch (c)
12938 {
12b55ccc
L
12939 case 'n':
12940 optimize_align_code = 0;
12941 break;
12942
a38cf1db
AM
12943 case 'q':
12944 quiet_warnings = 1;
252b5132
RH
12945 break;
12946
12947#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12948 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12949 should be emitted or not. FIXME: Not implemented. */
12950 case 'Q':
d4693039
JB
12951 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12952 return 0;
252b5132
RH
12953 break;
12954
12955 /* -V: SVR4 argument to print version ID. */
12956 case 'V':
12957 print_version_id ();
12958 break;
12959
a38cf1db
AM
12960 /* -k: Ignore for FreeBSD compatibility. */
12961 case 'k':
252b5132 12962 break;
4cc782b5
ILT
12963
12964 case 's':
12965 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12966 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12967 break;
8dcea932
L
12968
12969 case OPTION_MSHARED:
12970 shared = 1;
12971 break;
b4a3a7b4
L
12972
12973 case OPTION_X86_USED_NOTE:
12974 if (strcasecmp (arg, "yes") == 0)
12975 x86_used_note = 1;
12976 else if (strcasecmp (arg, "no") == 0)
12977 x86_used_note = 0;
12978 else
12979 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12980 break;
12981
12982
99ad8390 12983#endif
321098a5 12984#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12985 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12986 case OPTION_64:
12987 {
12988 const char **list, **l;
12989
3e73aa7c
JH
12990 list = bfd_target_list ();
12991 for (l = list; *l != NULL; l++)
8620418b 12992 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12993 || strcmp (*l, "coff-x86-64") == 0
12994 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12995 || strcmp (*l, "pei-x86-64") == 0
12996 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12997 {
12998 default_arch = "x86_64";
12999 break;
13000 }
3e73aa7c 13001 if (*l == NULL)
2b5d6a91 13002 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
13003 free (list);
13004 }
13005 break;
13006#endif
252b5132 13007
351f65ca 13008#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 13009 case OPTION_X32:
351f65ca
L
13010 if (IS_ELF)
13011 {
13012 const char **list, **l;
13013
13014 list = bfd_target_list ();
13015 for (l = list; *l != NULL; l++)
13016 if (CONST_STRNEQ (*l, "elf32-x86-64"))
13017 {
13018 default_arch = "x86_64:32";
13019 break;
13020 }
13021 if (*l == NULL)
2b5d6a91 13022 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
13023 free (list);
13024 }
13025 else
13026 as_fatal (_("32bit x86_64 is only supported for ELF"));
13027 break;
13028#endif
13029
6e0b89ee
AM
13030 case OPTION_32:
13031 default_arch = "i386";
13032 break;
13033
b3b91714
AM
13034 case OPTION_DIVIDE:
13035#ifdef SVR4_COMMENT_CHARS
13036 {
13037 char *n, *t;
13038 const char *s;
13039
add39d23 13040 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
13041 t = n;
13042 for (s = i386_comment_chars; *s != '\0'; s++)
13043 if (*s != '/')
13044 *t++ = *s;
13045 *t = '\0';
13046 i386_comment_chars = n;
13047 }
13048#endif
13049 break;
13050
9103f4f4 13051 case OPTION_MARCH:
293f5f65
L
13052 saved = xstrdup (arg);
13053 arch = saved;
13054 /* Allow -march=+nosse. */
13055 if (*arch == '+')
13056 arch++;
6305a203 13057 do
9103f4f4 13058 {
6305a203 13059 if (*arch == '.')
2b5d6a91 13060 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
13061 next = strchr (arch, '+');
13062 if (next)
13063 *next++ = '\0';
91d6fa6a 13064 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 13065 {
91d6fa6a 13066 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 13067 {
6305a203 13068 /* Processor. */
1ded5609
JB
13069 if (! cpu_arch[j].flags.bitfield.cpui386)
13070 continue;
13071
91d6fa6a 13072 cpu_arch_name = cpu_arch[j].name;
6305a203 13073 cpu_sub_arch_name = NULL;
91d6fa6a
NC
13074 cpu_arch_flags = cpu_arch[j].flags;
13075 cpu_arch_isa = cpu_arch[j].type;
13076 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
13077 if (!cpu_arch_tune_set)
13078 {
13079 cpu_arch_tune = cpu_arch_isa;
13080 cpu_arch_tune_flags = cpu_arch_isa_flags;
13081 }
13082 break;
13083 }
91d6fa6a
NC
13084 else if (*cpu_arch [j].name == '.'
13085 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 13086 {
33eaf5de 13087 /* ISA extension. */
6305a203 13088 i386_cpu_flags flags;
309d3373 13089
293f5f65
L
13090 flags = cpu_flags_or (cpu_arch_flags,
13091 cpu_arch[j].flags);
81486035 13092
5b64d091 13093 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
13094 {
13095 if (cpu_sub_arch_name)
13096 {
13097 char *name = cpu_sub_arch_name;
13098 cpu_sub_arch_name = concat (name,
91d6fa6a 13099 cpu_arch[j].name,
1bf57e9f 13100 (const char *) NULL);
6305a203
L
13101 free (name);
13102 }
13103 else
91d6fa6a 13104 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 13105 cpu_arch_flags = flags;
a586129e 13106 cpu_arch_isa_flags = flags;
6305a203 13107 }
0089dace
L
13108 else
13109 cpu_arch_isa_flags
13110 = cpu_flags_or (cpu_arch_isa_flags,
13111 cpu_arch[j].flags);
6305a203 13112 break;
ccc9c027 13113 }
9103f4f4 13114 }
6305a203 13115
293f5f65
L
13116 if (j >= ARRAY_SIZE (cpu_arch))
13117 {
33eaf5de 13118 /* Disable an ISA extension. */
293f5f65
L
13119 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13120 if (strcmp (arch, cpu_noarch [j].name) == 0)
13121 {
13122 i386_cpu_flags flags;
13123
13124 flags = cpu_flags_and_not (cpu_arch_flags,
13125 cpu_noarch[j].flags);
13126 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13127 {
13128 if (cpu_sub_arch_name)
13129 {
13130 char *name = cpu_sub_arch_name;
13131 cpu_sub_arch_name = concat (arch,
13132 (const char *) NULL);
13133 free (name);
13134 }
13135 else
13136 cpu_sub_arch_name = xstrdup (arch);
13137 cpu_arch_flags = flags;
13138 cpu_arch_isa_flags = flags;
13139 }
13140 break;
13141 }
13142
13143 if (j >= ARRAY_SIZE (cpu_noarch))
13144 j = ARRAY_SIZE (cpu_arch);
13145 }
13146
91d6fa6a 13147 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 13148 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
13149
13150 arch = next;
9103f4f4 13151 }
293f5f65
L
13152 while (next != NULL);
13153 free (saved);
9103f4f4
L
13154 break;
13155
13156 case OPTION_MTUNE:
13157 if (*arg == '.')
2b5d6a91 13158 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 13159 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 13160 {
91d6fa6a 13161 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 13162 {
ccc9c027 13163 cpu_arch_tune_set = 1;
91d6fa6a
NC
13164 cpu_arch_tune = cpu_arch [j].type;
13165 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
13166 break;
13167 }
13168 }
91d6fa6a 13169 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 13170 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
13171 break;
13172
1efbbeb4
L
13173 case OPTION_MMNEMONIC:
13174 if (strcasecmp (arg, "att") == 0)
13175 intel_mnemonic = 0;
13176 else if (strcasecmp (arg, "intel") == 0)
13177 intel_mnemonic = 1;
13178 else
2b5d6a91 13179 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
13180 break;
13181
13182 case OPTION_MSYNTAX:
13183 if (strcasecmp (arg, "att") == 0)
13184 intel_syntax = 0;
13185 else if (strcasecmp (arg, "intel") == 0)
13186 intel_syntax = 1;
13187 else
2b5d6a91 13188 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
13189 break;
13190
13191 case OPTION_MINDEX_REG:
13192 allow_index_reg = 1;
13193 break;
13194
13195 case OPTION_MNAKED_REG:
13196 allow_naked_reg = 1;
13197 break;
13198
c0f3af97
L
13199 case OPTION_MSSE2AVX:
13200 sse2avx = 1;
13201 break;
13202
daf50ae7
L
13203 case OPTION_MSSE_CHECK:
13204 if (strcasecmp (arg, "error") == 0)
7bab8ab5 13205 sse_check = check_error;
daf50ae7 13206 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 13207 sse_check = check_warning;
daf50ae7 13208 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 13209 sse_check = check_none;
daf50ae7 13210 else
2b5d6a91 13211 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
13212 break;
13213
7bab8ab5
JB
13214 case OPTION_MOPERAND_CHECK:
13215 if (strcasecmp (arg, "error") == 0)
13216 operand_check = check_error;
13217 else if (strcasecmp (arg, "warning") == 0)
13218 operand_check = check_warning;
13219 else if (strcasecmp (arg, "none") == 0)
13220 operand_check = check_none;
13221 else
13222 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13223 break;
13224
539f890d
L
13225 case OPTION_MAVXSCALAR:
13226 if (strcasecmp (arg, "128") == 0)
13227 avxscalar = vex128;
13228 else if (strcasecmp (arg, "256") == 0)
13229 avxscalar = vex256;
13230 else
2b5d6a91 13231 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
13232 break;
13233
03751133
L
13234 case OPTION_MVEXWIG:
13235 if (strcmp (arg, "0") == 0)
40c9c8de 13236 vexwig = vexw0;
03751133 13237 else if (strcmp (arg, "1") == 0)
40c9c8de 13238 vexwig = vexw1;
03751133
L
13239 else
13240 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13241 break;
13242
7e8b059b
L
13243 case OPTION_MADD_BND_PREFIX:
13244 add_bnd_prefix = 1;
13245 break;
13246
43234a1e
L
13247 case OPTION_MEVEXLIG:
13248 if (strcmp (arg, "128") == 0)
13249 evexlig = evexl128;
13250 else if (strcmp (arg, "256") == 0)
13251 evexlig = evexl256;
13252 else if (strcmp (arg, "512") == 0)
13253 evexlig = evexl512;
13254 else
13255 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13256 break;
13257
d3d3c6db
IT
13258 case OPTION_MEVEXRCIG:
13259 if (strcmp (arg, "rne") == 0)
13260 evexrcig = rne;
13261 else if (strcmp (arg, "rd") == 0)
13262 evexrcig = rd;
13263 else if (strcmp (arg, "ru") == 0)
13264 evexrcig = ru;
13265 else if (strcmp (arg, "rz") == 0)
13266 evexrcig = rz;
13267 else
13268 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13269 break;
13270
43234a1e
L
13271 case OPTION_MEVEXWIG:
13272 if (strcmp (arg, "0") == 0)
13273 evexwig = evexw0;
13274 else if (strcmp (arg, "1") == 0)
13275 evexwig = evexw1;
13276 else
13277 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13278 break;
13279
167ad85b
TG
13280# if defined (TE_PE) || defined (TE_PEP)
13281 case OPTION_MBIG_OBJ:
13282 use_big_obj = 1;
13283 break;
13284#endif
13285
d1982f93 13286 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
13287 if (strcasecmp (arg, "yes") == 0)
13288 omit_lock_prefix = 1;
13289 else if (strcasecmp (arg, "no") == 0)
13290 omit_lock_prefix = 0;
13291 else
13292 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13293 break;
13294
e4e00185
AS
13295 case OPTION_MFENCE_AS_LOCK_ADD:
13296 if (strcasecmp (arg, "yes") == 0)
13297 avoid_fence = 1;
13298 else if (strcasecmp (arg, "no") == 0)
13299 avoid_fence = 0;
13300 else
13301 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13302 break;
13303
ae531041
L
13304 case OPTION_MLFENCE_AFTER_LOAD:
13305 if (strcasecmp (arg, "yes") == 0)
13306 lfence_after_load = 1;
13307 else if (strcasecmp (arg, "no") == 0)
13308 lfence_after_load = 0;
13309 else
13310 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13311 break;
13312
13313 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13314 if (strcasecmp (arg, "all") == 0)
a09f656b 13315 {
13316 lfence_before_indirect_branch = lfence_branch_all;
13317 if (lfence_before_ret == lfence_before_ret_none)
13318 lfence_before_ret = lfence_before_ret_shl;
13319 }
ae531041
L
13320 else if (strcasecmp (arg, "memory") == 0)
13321 lfence_before_indirect_branch = lfence_branch_memory;
13322 else if (strcasecmp (arg, "register") == 0)
13323 lfence_before_indirect_branch = lfence_branch_register;
13324 else if (strcasecmp (arg, "none") == 0)
13325 lfence_before_indirect_branch = lfence_branch_none;
13326 else
13327 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13328 arg);
13329 break;
13330
13331 case OPTION_MLFENCE_BEFORE_RET:
13332 if (strcasecmp (arg, "or") == 0)
13333 lfence_before_ret = lfence_before_ret_or;
13334 else if (strcasecmp (arg, "not") == 0)
13335 lfence_before_ret = lfence_before_ret_not;
a09f656b 13336 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13337 lfence_before_ret = lfence_before_ret_shl;
ae531041
L
13338 else if (strcasecmp (arg, "none") == 0)
13339 lfence_before_ret = lfence_before_ret_none;
13340 else
13341 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13342 arg);
13343 break;
13344
0cb4071e
L
13345 case OPTION_MRELAX_RELOCATIONS:
13346 if (strcasecmp (arg, "yes") == 0)
13347 generate_relax_relocations = 1;
13348 else if (strcasecmp (arg, "no") == 0)
13349 generate_relax_relocations = 0;
13350 else
13351 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13352 break;
13353
e379e5f3
L
13354 case OPTION_MALIGN_BRANCH_BOUNDARY:
13355 {
13356 char *end;
13357 long int align = strtoul (arg, &end, 0);
13358 if (*end == '\0')
13359 {
13360 if (align == 0)
13361 {
13362 align_branch_power = 0;
13363 break;
13364 }
13365 else if (align >= 16)
13366 {
13367 int align_power;
13368 for (align_power = 0;
13369 (align & 1) == 0;
13370 align >>= 1, align_power++)
13371 continue;
13372 /* Limit alignment power to 31. */
13373 if (align == 1 && align_power < 32)
13374 {
13375 align_branch_power = align_power;
13376 break;
13377 }
13378 }
13379 }
13380 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13381 }
13382 break;
13383
13384 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13385 {
13386 char *end;
13387 int align = strtoul (arg, &end, 0);
13388 /* Some processors only support 5 prefixes. */
13389 if (*end == '\0' && align >= 0 && align < 6)
13390 {
13391 align_branch_prefix_size = align;
13392 break;
13393 }
13394 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13395 arg);
13396 }
13397 break;
13398
13399 case OPTION_MALIGN_BRANCH:
13400 align_branch = 0;
13401 saved = xstrdup (arg);
13402 type = saved;
13403 do
13404 {
13405 next = strchr (type, '+');
13406 if (next)
13407 *next++ = '\0';
13408 if (strcasecmp (type, "jcc") == 0)
13409 align_branch |= align_branch_jcc_bit;
13410 else if (strcasecmp (type, "fused") == 0)
13411 align_branch |= align_branch_fused_bit;
13412 else if (strcasecmp (type, "jmp") == 0)
13413 align_branch |= align_branch_jmp_bit;
13414 else if (strcasecmp (type, "call") == 0)
13415 align_branch |= align_branch_call_bit;
13416 else if (strcasecmp (type, "ret") == 0)
13417 align_branch |= align_branch_ret_bit;
13418 else if (strcasecmp (type, "indirect") == 0)
13419 align_branch |= align_branch_indirect_bit;
13420 else
13421 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13422 type = next;
13423 }
13424 while (next != NULL);
13425 free (saved);
13426 break;
13427
76cf450b
L
13428 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13429 align_branch_power = 5;
13430 align_branch_prefix_size = 5;
13431 align_branch = (align_branch_jcc_bit
13432 | align_branch_fused_bit
13433 | align_branch_jmp_bit);
13434 break;
13435
5db04b09 13436 case OPTION_MAMD64:
4b5aaf5f 13437 isa64 = amd64;
5db04b09
L
13438 break;
13439
13440 case OPTION_MINTEL64:
4b5aaf5f 13441 isa64 = intel64;
5db04b09
L
13442 break;
13443
b6f8c7c4
L
13444 case 'O':
13445 if (arg == NULL)
13446 {
13447 optimize = 1;
13448 /* Turn off -Os. */
13449 optimize_for_space = 0;
13450 }
13451 else if (*arg == 's')
13452 {
13453 optimize_for_space = 1;
13454 /* Turn on all encoding optimizations. */
41fd2579 13455 optimize = INT_MAX;
b6f8c7c4
L
13456 }
13457 else
13458 {
13459 optimize = atoi (arg);
13460 /* Turn off -Os. */
13461 optimize_for_space = 0;
13462 }
13463 break;
13464
252b5132
RH
13465 default:
13466 return 0;
13467 }
13468 return 1;
13469}
13470
8a2c8fef
L
13471#define MESSAGE_TEMPLATE \
13472" "
13473
293f5f65
L
13474static char *
13475output_message (FILE *stream, char *p, char *message, char *start,
13476 int *left_p, const char *name, int len)
13477{
13478 int size = sizeof (MESSAGE_TEMPLATE);
13479 int left = *left_p;
13480
13481 /* Reserve 2 spaces for ", " or ",\0" */
13482 left -= len + 2;
13483
13484 /* Check if there is any room. */
13485 if (left >= 0)
13486 {
13487 if (p != start)
13488 {
13489 *p++ = ',';
13490 *p++ = ' ';
13491 }
13492 p = mempcpy (p, name, len);
13493 }
13494 else
13495 {
13496 /* Output the current message now and start a new one. */
13497 *p++ = ',';
13498 *p = '\0';
13499 fprintf (stream, "%s\n", message);
13500 p = start;
13501 left = size - (start - message) - len - 2;
13502
13503 gas_assert (left >= 0);
13504
13505 p = mempcpy (p, name, len);
13506 }
13507
13508 *left_p = left;
13509 return p;
13510}
13511
8a2c8fef 13512static void
1ded5609 13513show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
13514{
13515 static char message[] = MESSAGE_TEMPLATE;
13516 char *start = message + 27;
13517 char *p;
13518 int size = sizeof (MESSAGE_TEMPLATE);
13519 int left;
13520 const char *name;
13521 int len;
13522 unsigned int j;
13523
13524 p = start;
13525 left = size - (start - message);
13526 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13527 {
13528 /* Should it be skipped? */
13529 if (cpu_arch [j].skip)
13530 continue;
13531
13532 name = cpu_arch [j].name;
13533 len = cpu_arch [j].len;
13534 if (*name == '.')
13535 {
13536 /* It is an extension. Skip if we aren't asked to show it. */
13537 if (ext)
13538 {
13539 name++;
13540 len--;
13541 }
13542 else
13543 continue;
13544 }
13545 else if (ext)
13546 {
13547 /* It is an processor. Skip if we show only extension. */
13548 continue;
13549 }
1ded5609
JB
13550 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13551 {
13552 /* It is an impossible processor - skip. */
13553 continue;
13554 }
8a2c8fef 13555
293f5f65 13556 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
13557 }
13558
293f5f65
L
13559 /* Display disabled extensions. */
13560 if (ext)
13561 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13562 {
13563 name = cpu_noarch [j].name;
13564 len = cpu_noarch [j].len;
13565 p = output_message (stream, p, message, start, &left, name,
13566 len);
13567 }
13568
8a2c8fef
L
13569 *p = '\0';
13570 fprintf (stream, "%s\n", message);
13571}
13572
252b5132 13573void
8a2c8fef 13574md_show_usage (FILE *stream)
252b5132 13575{
4cc782b5
ILT
13576#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13577 fprintf (stream, _("\
d4693039 13578 -Qy, -Qn ignored\n\
a38cf1db 13579 -V print assembler version number\n\
b3b91714
AM
13580 -k ignored\n"));
13581#endif
13582 fprintf (stream, _("\
12b55ccc 13583 -n Do not optimize code alignment\n\
b3b91714
AM
13584 -q quieten some warnings\n"));
13585#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13586 fprintf (stream, _("\
a38cf1db 13587 -s ignored\n"));
b3b91714 13588#endif
d7f449c0
L
13589#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13590 || defined (TE_PE) || defined (TE_PEP))
751d281c 13591 fprintf (stream, _("\
570561f7 13592 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 13593#endif
b3b91714
AM
13594#ifdef SVR4_COMMENT_CHARS
13595 fprintf (stream, _("\
13596 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
13597#else
13598 fprintf (stream, _("\
b3b91714 13599 --divide ignored\n"));
4cc782b5 13600#endif
9103f4f4 13601 fprintf (stream, _("\
6305a203 13602 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 13603 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 13604 show_arch (stream, 0, 1);
8a2c8fef
L
13605 fprintf (stream, _("\
13606 EXTENSION is combination of:\n"));
1ded5609 13607 show_arch (stream, 1, 0);
6305a203 13608 fprintf (stream, _("\
8a2c8fef 13609 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 13610 show_arch (stream, 0, 0);
ba104c83 13611 fprintf (stream, _("\
c0f3af97
L
13612 -msse2avx encode SSE instructions with VEX prefix\n"));
13613 fprintf (stream, _("\
7c5c05ef 13614 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
13615 check SSE instructions\n"));
13616 fprintf (stream, _("\
7c5c05ef 13617 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
13618 check operand combinations for validity\n"));
13619 fprintf (stream, _("\
7c5c05ef
L
13620 -mavxscalar=[128|256] (default: 128)\n\
13621 encode scalar AVX instructions with specific vector\n\
539f890d
L
13622 length\n"));
13623 fprintf (stream, _("\
03751133
L
13624 -mvexwig=[0|1] (default: 0)\n\
13625 encode VEX instructions with specific VEX.W value\n\
13626 for VEX.W bit ignored instructions\n"));
13627 fprintf (stream, _("\
7c5c05ef
L
13628 -mevexlig=[128|256|512] (default: 128)\n\
13629 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
13630 length\n"));
13631 fprintf (stream, _("\
7c5c05ef
L
13632 -mevexwig=[0|1] (default: 0)\n\
13633 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
13634 for EVEX.W bit ignored instructions\n"));
13635 fprintf (stream, _("\
7c5c05ef 13636 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
13637 encode EVEX instructions with specific EVEX.RC value\n\
13638 for SAE-only ignored instructions\n"));
13639 fprintf (stream, _("\
7c5c05ef
L
13640 -mmnemonic=[att|intel] "));
13641 if (SYSV386_COMPAT)
13642 fprintf (stream, _("(default: att)\n"));
13643 else
13644 fprintf (stream, _("(default: intel)\n"));
13645 fprintf (stream, _("\
13646 use AT&T/Intel mnemonic\n"));
ba104c83 13647 fprintf (stream, _("\
7c5c05ef
L
13648 -msyntax=[att|intel] (default: att)\n\
13649 use AT&T/Intel syntax\n"));
ba104c83
L
13650 fprintf (stream, _("\
13651 -mindex-reg support pseudo index registers\n"));
13652 fprintf (stream, _("\
13653 -mnaked-reg don't require `%%' prefix for registers\n"));
13654 fprintf (stream, _("\
7e8b059b 13655 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 13656#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
13657 fprintf (stream, _("\
13658 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
13659 fprintf (stream, _("\
13660 -mx86-used-note=[no|yes] "));
13661 if (DEFAULT_X86_USED_NOTE)
13662 fprintf (stream, _("(default: yes)\n"));
13663 else
13664 fprintf (stream, _("(default: no)\n"));
13665 fprintf (stream, _("\
13666 generate x86 used ISA and feature properties\n"));
13667#endif
13668#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
13669 fprintf (stream, _("\
13670 -mbig-obj generate big object files\n"));
13671#endif
d022bddd 13672 fprintf (stream, _("\
7c5c05ef 13673 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 13674 strip all lock prefixes\n"));
5db04b09 13675 fprintf (stream, _("\
7c5c05ef 13676 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
13677 encode lfence, mfence and sfence as\n\
13678 lock addl $0x0, (%%{re}sp)\n"));
13679 fprintf (stream, _("\
7c5c05ef
L
13680 -mrelax-relocations=[no|yes] "));
13681 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13682 fprintf (stream, _("(default: yes)\n"));
13683 else
13684 fprintf (stream, _("(default: no)\n"));
13685 fprintf (stream, _("\
0cb4071e
L
13686 generate relax relocations\n"));
13687 fprintf (stream, _("\
e379e5f3
L
13688 -malign-branch-boundary=NUM (default: 0)\n\
13689 align branches within NUM byte boundary\n"));
13690 fprintf (stream, _("\
13691 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13692 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13693 indirect\n\
13694 specify types of branches to align\n"));
13695 fprintf (stream, _("\
13696 -malign-branch-prefix-size=NUM (default: 5)\n\
13697 align branches with NUM prefixes per instruction\n"));
13698 fprintf (stream, _("\
76cf450b
L
13699 -mbranches-within-32B-boundaries\n\
13700 align branches within 32 byte boundary\n"));
13701 fprintf (stream, _("\
ae531041
L
13702 -mlfence-after-load=[no|yes] (default: no)\n\
13703 generate lfence after load\n"));
13704 fprintf (stream, _("\
13705 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13706 generate lfence before indirect near branch\n"));
13707 fprintf (stream, _("\
a09f656b 13708 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
ae531041
L
13709 generate lfence before ret\n"));
13710 fprintf (stream, _("\
7c5c05ef 13711 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
13712 fprintf (stream, _("\
13713 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
13714}
13715
3e73aa7c 13716#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 13717 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 13718 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
13719
13720/* Pick the target format to use. */
13721
47926f60 13722const char *
e3bb37b5 13723i386_target_format (void)
252b5132 13724{
351f65ca
L
13725 if (!strncmp (default_arch, "x86_64", 6))
13726 {
13727 update_code_flag (CODE_64BIT, 1);
13728 if (default_arch[6] == '\0')
7f56bc95 13729 x86_elf_abi = X86_64_ABI;
351f65ca 13730 else
7f56bc95 13731 x86_elf_abi = X86_64_X32_ABI;
351f65ca 13732 }
3e73aa7c 13733 else if (!strcmp (default_arch, "i386"))
78f12dd3 13734 update_code_flag (CODE_32BIT, 1);
5197d474
L
13735 else if (!strcmp (default_arch, "iamcu"))
13736 {
13737 update_code_flag (CODE_32BIT, 1);
13738 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13739 {
13740 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13741 cpu_arch_name = "iamcu";
13742 cpu_sub_arch_name = NULL;
13743 cpu_arch_flags = iamcu_flags;
13744 cpu_arch_isa = PROCESSOR_IAMCU;
13745 cpu_arch_isa_flags = iamcu_flags;
13746 if (!cpu_arch_tune_set)
13747 {
13748 cpu_arch_tune = cpu_arch_isa;
13749 cpu_arch_tune_flags = cpu_arch_isa_flags;
13750 }
13751 }
8d471ec1 13752 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
13753 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13754 cpu_arch_name);
13755 }
3e73aa7c 13756 else
2b5d6a91 13757 as_fatal (_("unknown architecture"));
89507696
JB
13758
13759 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13760 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13761 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13762 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13763
252b5132
RH
13764 switch (OUTPUT_FLAVOR)
13765 {
9384f2ff 13766#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 13767 case bfd_target_aout_flavour:
47926f60 13768 return AOUT_TARGET_FORMAT;
4c63da97 13769#endif
9384f2ff
AM
13770#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13771# if defined (TE_PE) || defined (TE_PEP)
13772 case bfd_target_coff_flavour:
167ad85b
TG
13773 if (flag_code == CODE_64BIT)
13774 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13775 else
251dae91 13776 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
9384f2ff 13777# elif defined (TE_GO32)
0561d57c
JK
13778 case bfd_target_coff_flavour:
13779 return "coff-go32";
9384f2ff 13780# else
252b5132
RH
13781 case bfd_target_coff_flavour:
13782 return "coff-i386";
9384f2ff 13783# endif
4c63da97 13784#endif
3e73aa7c 13785#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 13786 case bfd_target_elf_flavour:
3e73aa7c 13787 {
351f65ca
L
13788 const char *format;
13789
13790 switch (x86_elf_abi)
4fa24527 13791 {
351f65ca
L
13792 default:
13793 format = ELF_TARGET_FORMAT;
e379e5f3
L
13794#ifndef TE_SOLARIS
13795 tls_get_addr = "___tls_get_addr";
13796#endif
351f65ca 13797 break;
7f56bc95 13798 case X86_64_ABI:
351f65ca 13799 use_rela_relocations = 1;
4fa24527 13800 object_64bit = 1;
e379e5f3
L
13801#ifndef TE_SOLARIS
13802 tls_get_addr = "__tls_get_addr";
13803#endif
351f65ca
L
13804 format = ELF_TARGET_FORMAT64;
13805 break;
7f56bc95 13806 case X86_64_X32_ABI:
4fa24527 13807 use_rela_relocations = 1;
351f65ca 13808 object_64bit = 1;
e379e5f3
L
13809#ifndef TE_SOLARIS
13810 tls_get_addr = "__tls_get_addr";
13811#endif
862be3fb 13812 disallow_64bit_reloc = 1;
351f65ca
L
13813 format = ELF_TARGET_FORMAT32;
13814 break;
4fa24527 13815 }
3632d14b 13816 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 13817 {
7f56bc95 13818 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
13819 as_fatal (_("Intel L1OM is 64bit only"));
13820 return ELF_TARGET_L1OM_FORMAT;
13821 }
b49f93f6 13822 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
13823 {
13824 if (x86_elf_abi != X86_64_ABI)
13825 as_fatal (_("Intel K1OM is 64bit only"));
13826 return ELF_TARGET_K1OM_FORMAT;
13827 }
81486035
L
13828 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13829 {
13830 if (x86_elf_abi != I386_ABI)
13831 as_fatal (_("Intel MCU is 32bit only"));
13832 return ELF_TARGET_IAMCU_FORMAT;
13833 }
8a9036a4 13834 else
351f65ca 13835 return format;
3e73aa7c 13836 }
e57f8c65
TG
13837#endif
13838#if defined (OBJ_MACH_O)
13839 case bfd_target_mach_o_flavour:
d382c579
TG
13840 if (flag_code == CODE_64BIT)
13841 {
13842 use_rela_relocations = 1;
13843 object_64bit = 1;
13844 return "mach-o-x86-64";
13845 }
13846 else
13847 return "mach-o-i386";
4c63da97 13848#endif
252b5132
RH
13849 default:
13850 abort ();
13851 return NULL;
13852 }
13853}
13854
47926f60 13855#endif /* OBJ_MAYBE_ more than one */
252b5132 13856\f
252b5132 13857symbolS *
7016a5d5 13858md_undefined_symbol (char *name)
252b5132 13859{
18dc2407
ILT
13860 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13861 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13862 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13863 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
13864 {
13865 if (!GOT_symbol)
13866 {
13867 if (symbol_find (name))
13868 as_bad (_("GOT already in symbol table"));
13869 GOT_symbol = symbol_new (name, undefined_section,
e01e1cee 13870 &zero_address_frag, 0);
24eab124
AM
13871 };
13872 return GOT_symbol;
13873 }
252b5132
RH
13874 return 0;
13875}
13876
13877/* Round up a section size to the appropriate boundary. */
47926f60 13878
252b5132 13879valueT
7016a5d5 13880md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 13881{
4c63da97
AM
13882#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13883 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13884 {
13885 /* For a.out, force the section size to be aligned. If we don't do
13886 this, BFD will align it for us, but it will not write out the
13887 final bytes of the section. This may be a bug in BFD, but it is
13888 easier to fix it here since that is how the other a.out targets
13889 work. */
13890 int align;
13891
fd361982 13892 align = bfd_section_alignment (segment);
8d3842cd 13893 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 13894 }
252b5132
RH
13895#endif
13896
13897 return size;
13898}
13899
13900/* On the i386, PC-relative offsets are relative to the start of the
13901 next instruction. That is, the address of the offset, plus its
13902 size, since the offset is always the last part of the insn. */
13903
13904long
e3bb37b5 13905md_pcrel_from (fixS *fixP)
252b5132
RH
13906{
13907 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13908}
13909
13910#ifndef I386COFF
13911
13912static void
e3bb37b5 13913s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 13914{
29b0f896 13915 int temp;
252b5132 13916
8a75718c
JB
13917#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13918 if (IS_ELF)
13919 obj_elf_section_change_hook ();
13920#endif
252b5132
RH
13921 temp = get_absolute_expression ();
13922 subseg_set (bss_section, (subsegT) temp);
13923 demand_empty_rest_of_line ();
13924}
13925
13926#endif
13927
e379e5f3
L
13928/* Remember constant directive. */
13929
13930void
13931i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13932{
13933 if (last_insn.kind != last_insn_directive
13934 && (bfd_section_flags (now_seg) & SEC_CODE))
13935 {
13936 last_insn.seg = now_seg;
13937 last_insn.kind = last_insn_directive;
13938 last_insn.name = "constant directive";
13939 last_insn.file = as_where (&last_insn.line);
ae531041
L
13940 if (lfence_before_ret != lfence_before_ret_none)
13941 {
13942 if (lfence_before_indirect_branch != lfence_branch_none)
13943 as_warn (_("constant directive skips -mlfence-before-ret "
13944 "and -mlfence-before-indirect-branch"));
13945 else
13946 as_warn (_("constant directive skips -mlfence-before-ret"));
13947 }
13948 else if (lfence_before_indirect_branch != lfence_branch_none)
13949 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
e379e5f3
L
13950 }
13951}
13952
252b5132 13953void
e3bb37b5 13954i386_validate_fix (fixS *fixp)
252b5132 13955{
02a86693 13956 if (fixp->fx_subsy)
252b5132 13957 {
02a86693 13958 if (fixp->fx_subsy == GOT_symbol)
23df1078 13959 {
02a86693
L
13960 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13961 {
13962 if (!object_64bit)
13963 abort ();
13964#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13965 if (fixp->fx_tcbit2)
56ceb5b5
L
13966 fixp->fx_r_type = (fixp->fx_tcbit
13967 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13968 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13969 else
13970#endif
13971 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13972 }
d6ab8113 13973 else
02a86693
L
13974 {
13975 if (!object_64bit)
13976 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13977 else
13978 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13979 }
13980 fixp->fx_subsy = 0;
23df1078 13981 }
252b5132 13982 }
02a86693 13983#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2585b7a5 13984 else
02a86693 13985 {
2585b7a5
L
13986 /* NB: Commit 292676c1 resolved PLT32 reloc aganst local symbol
13987 to section. Since PLT32 relocation must be against symbols,
13988 turn such PLT32 relocation into PC32 relocation. */
13989 if (fixp->fx_addsy
13990 && (fixp->fx_r_type == BFD_RELOC_386_PLT32
13991 || fixp->fx_r_type == BFD_RELOC_X86_64_PLT32)
13992 && symbol_section_p (fixp->fx_addsy))
13993 fixp->fx_r_type = BFD_RELOC_32_PCREL;
13994 if (!object_64bit)
13995 {
13996 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13997 && fixp->fx_tcbit2)
13998 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13999 }
02a86693
L
14000 }
14001#endif
252b5132
RH
14002}
14003
252b5132 14004arelent *
7016a5d5 14005tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
14006{
14007 arelent *rel;
14008 bfd_reloc_code_real_type code;
14009
14010 switch (fixp->fx_r_type)
14011 {
8ce3d284 14012#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
14013 case BFD_RELOC_SIZE32:
14014 case BFD_RELOC_SIZE64:
14015 if (S_IS_DEFINED (fixp->fx_addsy)
14016 && !S_IS_EXTERNAL (fixp->fx_addsy))
14017 {
14018 /* Resolve size relocation against local symbol to size of
14019 the symbol plus addend. */
14020 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
14021 if (fixp->fx_r_type == BFD_RELOC_SIZE32
14022 && !fits_in_unsigned_long (value))
14023 as_bad_where (fixp->fx_file, fixp->fx_line,
14024 _("symbol size computation overflow"));
14025 fixp->fx_addsy = NULL;
14026 fixp->fx_subsy = NULL;
14027 md_apply_fix (fixp, (valueT *) &value, NULL);
14028 return NULL;
14029 }
8ce3d284 14030#endif
1a0670f3 14031 /* Fall through. */
8fd4256d 14032
3e73aa7c
JH
14033 case BFD_RELOC_X86_64_PLT32:
14034 case BFD_RELOC_X86_64_GOT32:
14035 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
14036 case BFD_RELOC_X86_64_GOTPCRELX:
14037 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
14038 case BFD_RELOC_386_PLT32:
14039 case BFD_RELOC_386_GOT32:
02a86693 14040 case BFD_RELOC_386_GOT32X:
252b5132
RH
14041 case BFD_RELOC_386_GOTOFF:
14042 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
14043 case BFD_RELOC_386_TLS_GD:
14044 case BFD_RELOC_386_TLS_LDM:
14045 case BFD_RELOC_386_TLS_LDO_32:
14046 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
14047 case BFD_RELOC_386_TLS_IE:
14048 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
14049 case BFD_RELOC_386_TLS_LE_32:
14050 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
14051 case BFD_RELOC_386_TLS_GOTDESC:
14052 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
14053 case BFD_RELOC_X86_64_TLSGD:
14054 case BFD_RELOC_X86_64_TLSLD:
14055 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 14056 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
14057 case BFD_RELOC_X86_64_GOTTPOFF:
14058 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
14059 case BFD_RELOC_X86_64_TPOFF64:
14060 case BFD_RELOC_X86_64_GOTOFF64:
14061 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
14062 case BFD_RELOC_X86_64_GOT64:
14063 case BFD_RELOC_X86_64_GOTPCREL64:
14064 case BFD_RELOC_X86_64_GOTPC64:
14065 case BFD_RELOC_X86_64_GOTPLT64:
14066 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
14067 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14068 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
14069 case BFD_RELOC_RVA:
14070 case BFD_RELOC_VTABLE_ENTRY:
14071 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
14072#ifdef TE_PE
14073 case BFD_RELOC_32_SECREL:
14074#endif
252b5132
RH
14075 code = fixp->fx_r_type;
14076 break;
dbbaec26
L
14077 case BFD_RELOC_X86_64_32S:
14078 if (!fixp->fx_pcrel)
14079 {
14080 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
14081 code = fixp->fx_r_type;
14082 break;
14083 }
1a0670f3 14084 /* Fall through. */
252b5132 14085 default:
93382f6d 14086 if (fixp->fx_pcrel)
252b5132 14087 {
93382f6d
AM
14088 switch (fixp->fx_size)
14089 {
14090 default:
b091f402
AM
14091 as_bad_where (fixp->fx_file, fixp->fx_line,
14092 _("can not do %d byte pc-relative relocation"),
14093 fixp->fx_size);
93382f6d
AM
14094 code = BFD_RELOC_32_PCREL;
14095 break;
14096 case 1: code = BFD_RELOC_8_PCREL; break;
14097 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 14098 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
14099#ifdef BFD64
14100 case 8: code = BFD_RELOC_64_PCREL; break;
14101#endif
93382f6d
AM
14102 }
14103 }
14104 else
14105 {
14106 switch (fixp->fx_size)
14107 {
14108 default:
b091f402
AM
14109 as_bad_where (fixp->fx_file, fixp->fx_line,
14110 _("can not do %d byte relocation"),
14111 fixp->fx_size);
93382f6d
AM
14112 code = BFD_RELOC_32;
14113 break;
14114 case 1: code = BFD_RELOC_8; break;
14115 case 2: code = BFD_RELOC_16; break;
14116 case 4: code = BFD_RELOC_32; break;
937149dd 14117#ifdef BFD64
3e73aa7c 14118 case 8: code = BFD_RELOC_64; break;
937149dd 14119#endif
93382f6d 14120 }
252b5132
RH
14121 }
14122 break;
14123 }
252b5132 14124
d182319b
JB
14125 if ((code == BFD_RELOC_32
14126 || code == BFD_RELOC_32_PCREL
14127 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
14128 && GOT_symbol
14129 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 14130 {
4fa24527 14131 if (!object_64bit)
d6ab8113
JB
14132 code = BFD_RELOC_386_GOTPC;
14133 else
14134 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 14135 }
7b81dfbb
AJ
14136 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
14137 && GOT_symbol
14138 && fixp->fx_addsy == GOT_symbol)
14139 {
14140 code = BFD_RELOC_X86_64_GOTPC64;
14141 }
252b5132 14142
add39d23
TS
14143 rel = XNEW (arelent);
14144 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 14145 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
14146
14147 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 14148
3e73aa7c
JH
14149 if (!use_rela_relocations)
14150 {
14151 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
14152 vtable entry to be used in the relocation's section offset. */
14153 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14154 rel->address = fixp->fx_offset;
fbeb56a4
DK
14155#if defined (OBJ_COFF) && defined (TE_PE)
14156 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
14157 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
14158 else
14159#endif
c6682705 14160 rel->addend = 0;
3e73aa7c
JH
14161 }
14162 /* Use the rela in 64bit mode. */
252b5132 14163 else
3e73aa7c 14164 {
862be3fb
L
14165 if (disallow_64bit_reloc)
14166 switch (code)
14167 {
862be3fb
L
14168 case BFD_RELOC_X86_64_DTPOFF64:
14169 case BFD_RELOC_X86_64_TPOFF64:
14170 case BFD_RELOC_64_PCREL:
14171 case BFD_RELOC_X86_64_GOTOFF64:
14172 case BFD_RELOC_X86_64_GOT64:
14173 case BFD_RELOC_X86_64_GOTPCREL64:
14174 case BFD_RELOC_X86_64_GOTPC64:
14175 case BFD_RELOC_X86_64_GOTPLT64:
14176 case BFD_RELOC_X86_64_PLTOFF64:
14177 as_bad_where (fixp->fx_file, fixp->fx_line,
14178 _("cannot represent relocation type %s in x32 mode"),
14179 bfd_get_reloc_code_name (code));
14180 break;
14181 default:
14182 break;
14183 }
14184
062cd5e7
AS
14185 if (!fixp->fx_pcrel)
14186 rel->addend = fixp->fx_offset;
14187 else
14188 switch (code)
14189 {
14190 case BFD_RELOC_X86_64_PLT32:
14191 case BFD_RELOC_X86_64_GOT32:
14192 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
14193 case BFD_RELOC_X86_64_GOTPCRELX:
14194 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
14195 case BFD_RELOC_X86_64_TLSGD:
14196 case BFD_RELOC_X86_64_TLSLD:
14197 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
14198 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14199 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
14200 rel->addend = fixp->fx_offset - fixp->fx_size;
14201 break;
14202 default:
14203 rel->addend = (section->vma
14204 - fixp->fx_size
14205 + fixp->fx_addnumber
14206 + md_pcrel_from (fixp));
14207 break;
14208 }
3e73aa7c
JH
14209 }
14210
252b5132
RH
14211 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
14212 if (rel->howto == NULL)
14213 {
14214 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 14215 _("cannot represent relocation type %s"),
252b5132
RH
14216 bfd_get_reloc_code_name (code));
14217 /* Set howto to a garbage value so that we can keep going. */
14218 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 14219 gas_assert (rel->howto != NULL);
252b5132
RH
14220 }
14221
14222 return rel;
14223}
14224
ee86248c 14225#include "tc-i386-intel.c"
54cfded0 14226
a60de03c
JB
14227void
14228tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 14229{
a60de03c
JB
14230 int saved_naked_reg;
14231 char saved_register_dot;
54cfded0 14232
a60de03c
JB
14233 saved_naked_reg = allow_naked_reg;
14234 allow_naked_reg = 1;
14235 saved_register_dot = register_chars['.'];
14236 register_chars['.'] = '.';
14237 allow_pseudo_reg = 1;
14238 expression_and_evaluate (exp);
14239 allow_pseudo_reg = 0;
14240 register_chars['.'] = saved_register_dot;
14241 allow_naked_reg = saved_naked_reg;
14242
e96d56a1 14243 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 14244 {
a60de03c
JB
14245 if ((addressT) exp->X_add_number < i386_regtab_size)
14246 {
14247 exp->X_op = O_constant;
14248 exp->X_add_number = i386_regtab[exp->X_add_number]
14249 .dw2_regnum[flag_code >> 1];
14250 }
14251 else
14252 exp->X_op = O_illegal;
54cfded0 14253 }
54cfded0
AM
14254}
14255
14256void
14257tc_x86_frame_initial_instructions (void)
14258{
a60de03c
JB
14259 static unsigned int sp_regno[2];
14260
14261 if (!sp_regno[flag_code >> 1])
14262 {
14263 char *saved_input = input_line_pointer;
14264 char sp[][4] = {"esp", "rsp"};
14265 expressionS exp;
a4447b93 14266
a60de03c
JB
14267 input_line_pointer = sp[flag_code >> 1];
14268 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 14269 gas_assert (exp.X_op == O_constant);
a60de03c
JB
14270 sp_regno[flag_code >> 1] = exp.X_add_number;
14271 input_line_pointer = saved_input;
14272 }
a4447b93 14273
61ff971f
L
14274 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14275 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 14276}
d2b2c203 14277
d7921315
L
14278int
14279x86_dwarf2_addr_size (void)
14280{
14281#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14282 if (x86_elf_abi == X86_64_X32_ABI)
14283 return 4;
14284#endif
14285 return bfd_arch_bits_per_address (stdoutput) / 8;
14286}
14287
d2b2c203
DJ
14288int
14289i386_elf_section_type (const char *str, size_t len)
14290{
14291 if (flag_code == CODE_64BIT
14292 && len == sizeof ("unwind") - 1
14293 && strncmp (str, "unwind", 6) == 0)
14294 return SHT_X86_64_UNWIND;
14295
14296 return -1;
14297}
bb41ade5 14298
ad5fec3b
EB
14299#ifdef TE_SOLARIS
14300void
14301i386_solaris_fix_up_eh_frame (segT sec)
14302{
14303 if (flag_code == CODE_64BIT)
14304 elf_section_type (sec) = SHT_X86_64_UNWIND;
14305}
14306#endif
14307
bb41ade5
AM
14308#ifdef TE_PE
14309void
14310tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14311{
91d6fa6a 14312 expressionS exp;
bb41ade5 14313
91d6fa6a
NC
14314 exp.X_op = O_secrel;
14315 exp.X_add_symbol = symbol;
14316 exp.X_add_number = 0;
14317 emit_expr (&exp, size);
bb41ade5
AM
14318}
14319#endif
3b22753a
L
14320
14321#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14322/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14323
01e1a5bc 14324bfd_vma
6d4af3c2 14325x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
14326{
14327 if (flag_code == CODE_64BIT)
14328 {
14329 if (letter == 'l')
14330 return SHF_X86_64_LARGE;
14331
8f3bae45 14332 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 14333 }
3b22753a 14334 else
8f3bae45 14335 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
14336 return -1;
14337}
14338
01e1a5bc 14339bfd_vma
3b22753a
L
14340x86_64_section_word (char *str, size_t len)
14341{
8620418b 14342 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
14343 return SHF_X86_64_LARGE;
14344
14345 return -1;
14346}
14347
14348static void
14349handle_large_common (int small ATTRIBUTE_UNUSED)
14350{
14351 if (flag_code != CODE_64BIT)
14352 {
14353 s_comm_internal (0, elf_common_parse);
14354 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14355 }
14356 else
14357 {
14358 static segT lbss_section;
14359 asection *saved_com_section_ptr = elf_com_section_ptr;
14360 asection *saved_bss_section = bss_section;
14361
14362 if (lbss_section == NULL)
14363 {
14364 flagword applicable;
14365 segT seg = now_seg;
14366 subsegT subseg = now_subseg;
14367
14368 /* The .lbss section is for local .largecomm symbols. */
14369 lbss_section = subseg_new (".lbss", 0);
14370 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 14371 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
14372 seg_info (lbss_section)->bss = 1;
14373
14374 subseg_set (seg, subseg);
14375 }
14376
14377 elf_com_section_ptr = &_bfd_elf_large_com_section;
14378 bss_section = lbss_section;
14379
14380 s_comm_internal (0, elf_common_parse);
14381
14382 elf_com_section_ptr = saved_com_section_ptr;
14383 bss_section = saved_bss_section;
14384 }
14385}
14386#endif /* OBJ_ELF || OBJ_MAYBE_ELF */