]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
* i386.h (push,pop): Allow 16bit operands in 64bit mode.
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4
NC
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
252b5132 28
252b5132 29#include "as.h"
3882b010 30#include "safe-ctype.h"
252b5132 31#include "subsegs.h"
316e2c05 32#include "dwarf2dbg.h"
252b5132
RH
33#include "opcode/i386.h"
34
252b5132
RH
35#ifndef REGISTER_WARNINGS
36#define REGISTER_WARNINGS 1
37#endif
38
c3332e24 39#ifndef INFER_ADDR_PREFIX
eecb386c 40#define INFER_ADDR_PREFIX 1
c3332e24
AM
41#endif
42
252b5132
RH
43#ifndef SCALE1_WHEN_NO_INDEX
44/* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48#define SCALE1_WHEN_NO_INDEX 1
49#endif
50
246fcdee 51#ifndef true
252b5132 52#define true 1
246fcdee
DJ
53#endif
54#ifndef false
252b5132 55#define false 0
246fcdee 56#endif
252b5132
RH
57
58static unsigned int mode_from_disp_size PARAMS ((unsigned int));
847f7ad4
AM
59static int fits_in_signed_byte PARAMS ((offsetT));
60static int fits_in_unsigned_byte PARAMS ((offsetT));
61static int fits_in_unsigned_word PARAMS ((offsetT));
62static int fits_in_signed_word PARAMS ((offsetT));
3e73aa7c
JH
63static int fits_in_unsigned_long PARAMS ((offsetT));
64static int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
65static int smallest_imm_type PARAMS ((offsetT));
66static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 67static int add_prefix PARAMS ((unsigned int));
3e73aa7c 68static void set_code_flag PARAMS ((int));
47926f60 69static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 70static void set_intel_syntax PARAMS ((int));
e413e4e9 71static void set_cpu_arch PARAMS ((int));
252b5132
RH
72
73#ifdef BFD_ASSEMBLER
74static bfd_reloc_code_real_type reloc
3e73aa7c 75 PARAMS ((int, int, int, bfd_reloc_code_real_type));
f3c180ae
AM
76#define RELOC_ENUM enum bfd_reloc_code_real
77#else
78#define RELOC_ENUM int
252b5132
RH
79#endif
80
3e73aa7c
JH
81#ifndef DEFAULT_ARCH
82#define DEFAULT_ARCH "i386"
83#endif
a847613f 84static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 85
252b5132 86/* 'md_assemble ()' gathers together information and puts it into a
47926f60 87 i386_insn. */
252b5132 88
520dc8e8
AM
89union i386_op
90 {
91 expressionS *disps;
92 expressionS *imms;
93 const reg_entry *regs;
94 };
95
252b5132
RH
96struct _i386_insn
97 {
47926f60 98 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
99 template tm;
100
101 /* SUFFIX holds the instruction mnemonic suffix if given.
102 (e.g. 'l' for 'movl') */
103 char suffix;
104
47926f60 105 /* OPERANDS gives the number of given operands. */
252b5132
RH
106 unsigned int operands;
107
108 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
109 of given register, displacement, memory operands and immediate
47926f60 110 operands. */
252b5132
RH
111 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
112
113 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 114 use OP[i] for the corresponding operand. */
252b5132
RH
115 unsigned int types[MAX_OPERANDS];
116
520dc8e8
AM
117 /* Displacement expression, immediate expression, or register for each
118 operand. */
119 union i386_op op[MAX_OPERANDS];
252b5132 120
3e73aa7c
JH
121 /* Flags for operands. */
122 unsigned int flags[MAX_OPERANDS];
123#define Operand_PCrel 1
124
252b5132 125 /* Relocation type for operand */
f3c180ae 126 RELOC_ENUM reloc[MAX_OPERANDS];
252b5132 127
252b5132
RH
128 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
129 the base index byte below. */
130 const reg_entry *base_reg;
131 const reg_entry *index_reg;
132 unsigned int log2_scale_factor;
133
134 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 135 explicit segment overrides are given. */
ce8a8b2f 136 const seg_entry *seg[2];
252b5132
RH
137
138 /* PREFIX holds all the given prefix opcodes (usually null).
139 PREFIXES is the number of prefix opcodes. */
140 unsigned int prefixes;
141 unsigned char prefix[MAX_PREFIXES];
142
143 /* RM and SIB are the modrm byte and the sib byte where the
144 addressing modes of this insn are encoded. */
145
146 modrm_byte rm;
3e73aa7c 147 rex_byte rex;
252b5132
RH
148 sib_byte sib;
149 };
150
151typedef struct _i386_insn i386_insn;
152
153/* List of chars besides those in app.c:symbol_chars that can start an
154 operand. Used to prevent the scrubber eating vital white-space. */
155#ifdef LEX_AT
156const char extra_symbol_chars[] = "*%-(@";
157#else
158const char extra_symbol_chars[] = "*%-(";
159#endif
160
161/* This array holds the chars that always start a comment. If the
ce8a8b2f 162 pre-processor is disabled, these aren't very useful. */
5bae9b28 163#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
252b5132
RH
164/* Putting '/' here makes it impossible to use the divide operator.
165 However, we need it for compatibility with SVR4 systems. */
166const char comment_chars[] = "#/";
167#define PREFIX_SEPARATOR '\\'
168#else
169const char comment_chars[] = "#";
170#define PREFIX_SEPARATOR '/'
171#endif
172
173/* This array holds the chars that only start a comment at the beginning of
174 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
175 .line and .file directives will appear in the pre-processed output.
176 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 177 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
178 #NO_APP at the beginning of its output.
179 Also note that comments started like this one will always work if
252b5132 180 '/' isn't otherwise defined. */
5bae9b28 181#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
252b5132
RH
182const char line_comment_chars[] = "";
183#else
184const char line_comment_chars[] = "/";
185#endif
186
63a0b638 187const char line_separator_chars[] = ";";
252b5132 188
ce8a8b2f
AM
189/* Chars that can be used to separate mant from exp in floating point
190 nums. */
252b5132
RH
191const char EXP_CHARS[] = "eE";
192
ce8a8b2f
AM
193/* Chars that mean this number is a floating point constant
194 As in 0f12.456
195 or 0d1.2345e12. */
252b5132
RH
196const char FLT_CHARS[] = "fFdDxX";
197
ce8a8b2f 198/* Tables for lexical analysis. */
252b5132
RH
199static char mnemonic_chars[256];
200static char register_chars[256];
201static char operand_chars[256];
202static char identifier_chars[256];
203static char digit_chars[256];
204
ce8a8b2f 205/* Lexical macros. */
252b5132
RH
206#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
207#define is_operand_char(x) (operand_chars[(unsigned char) x])
208#define is_register_char(x) (register_chars[(unsigned char) x])
209#define is_space_char(x) ((x) == ' ')
210#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
211#define is_digit_char(x) (digit_chars[(unsigned char) x])
212
ce8a8b2f 213/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
214static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
215
216/* md_assemble() always leaves the strings it's passed unaltered. To
217 effect this we maintain a stack of saved characters that we've smashed
218 with '\0's (indicating end of strings for various sub-fields of the
47926f60 219 assembler instruction). */
252b5132 220static char save_stack[32];
ce8a8b2f 221static char *save_stack_p;
252b5132
RH
222#define END_STRING_AND_SAVE(s) \
223 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
224#define RESTORE_END_STRING(s) \
225 do { *(s) = *--save_stack_p; } while (0)
226
47926f60 227/* The instruction we're assembling. */
252b5132
RH
228static i386_insn i;
229
230/* Possible templates for current insn. */
231static const templates *current_templates;
232
47926f60 233/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
234static expressionS disp_expressions[2], im_expressions[2];
235
47926f60
KH
236/* Current operand we are working on. */
237static int this_operand;
252b5132 238
3e73aa7c
JH
239/* We support four different modes. FLAG_CODE variable is used to distinguish
240 these. */
241
242enum flag_code {
243 CODE_32BIT,
244 CODE_16BIT,
245 CODE_64BIT };
f3c180ae 246#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
247
248static enum flag_code flag_code;
249static int use_rela_relocations = 0;
250
251/* The names used to print error messages. */
b77a7acd 252static const char *flag_code_names[] =
3e73aa7c
JH
253 {
254 "32",
255 "16",
256 "64"
257 };
252b5132 258
47926f60
KH
259/* 1 for intel syntax,
260 0 if att syntax. */
261static int intel_syntax = 0;
252b5132 262
47926f60
KH
263/* 1 if register prefix % not required. */
264static int allow_naked_reg = 0;
252b5132 265
47926f60
KH
266/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
267 leave, push, and pop instructions so that gcc has the same stack
268 frame as in 32 bit mode. */
269static char stackop_size = '\0';
eecb386c 270
47926f60
KH
271/* Non-zero to quieten some warnings. */
272static int quiet_warnings = 0;
a38cf1db 273
47926f60
KH
274/* CPU name. */
275static const char *cpu_arch_name = NULL;
a38cf1db 276
47926f60 277/* CPU feature flags. */
3e73aa7c 278static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
a38cf1db 279
fddf5b5b
AM
280/* If set, conditional jumps are not automatically promoted to handle
281 larger than a byte offset. */
282static unsigned int no_cond_jump_promotion = 0;
283
252b5132 284/* Interface to relax_segment.
fddf5b5b
AM
285 There are 3 major relax states for 386 jump insns because the
286 different types of jumps add different sizes to frags when we're
287 figuring out what sort of jump to choose to reach a given label. */
252b5132 288
47926f60 289/* Types. */
93c2a809
AM
290#define UNCOND_JUMP 0
291#define COND_JUMP 1
292#define COND_JUMP86 2
fddf5b5b 293
47926f60 294/* Sizes. */
252b5132
RH
295#define CODE16 1
296#define SMALL 0
297#define SMALL16 (SMALL|CODE16)
298#define BIG 2
299#define BIG16 (BIG|CODE16)
300
301#ifndef INLINE
302#ifdef __GNUC__
303#define INLINE __inline__
304#else
305#define INLINE
306#endif
307#endif
308
fddf5b5b
AM
309#define ENCODE_RELAX_STATE(type, size) \
310 ((relax_substateT) (((type) << 2) | (size)))
311#define TYPE_FROM_RELAX_STATE(s) \
312 ((s) >> 2)
313#define DISP_SIZE_FROM_RELAX_STATE(s) \
314 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
315
316/* This table is used by relax_frag to promote short jumps to long
317 ones where necessary. SMALL (short) jumps may be promoted to BIG
318 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
319 don't allow a short jump in a 32 bit code segment to be promoted to
320 a 16 bit offset jump because it's slower (requires data size
321 prefix), and doesn't work, unless the destination is in the bottom
322 64k of the code segment (The top 16 bits of eip are zeroed). */
323
324const relax_typeS md_relax_table[] =
325{
24eab124
AM
326 /* The fields are:
327 1) most positive reach of this state,
328 2) most negative reach of this state,
93c2a809 329 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 330 4) which index into the table to try if we can't fit into this one. */
252b5132 331
fddf5b5b 332 /* UNCOND_JUMP states. */
93c2a809
AM
333 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
334 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
335 /* dword jmp adds 4 bytes to frag:
336 0 extra opcode bytes, 4 displacement bytes. */
252b5132 337 {0, 0, 4, 0},
93c2a809
AM
338 /* word jmp adds 2 byte2 to frag:
339 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
340 {0, 0, 2, 0},
341
93c2a809
AM
342 /* COND_JUMP states. */
343 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
344 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
345 /* dword conditionals adds 5 bytes to frag:
346 1 extra opcode byte, 4 displacement bytes. */
347 {0, 0, 5, 0},
fddf5b5b 348 /* word conditionals add 3 bytes to frag:
93c2a809
AM
349 1 extra opcode byte, 2 displacement bytes. */
350 {0, 0, 3, 0},
351
352 /* COND_JUMP86 states. */
353 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
354 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
355 /* dword conditionals adds 5 bytes to frag:
356 1 extra opcode byte, 4 displacement bytes. */
357 {0, 0, 5, 0},
358 /* word conditionals add 4 bytes to frag:
359 1 displacement byte and a 3 byte long branch insn. */
360 {0, 0, 4, 0}
252b5132
RH
361};
362
e413e4e9
AM
363static const arch_entry cpu_arch[] = {
364 {"i8086", Cpu086 },
365 {"i186", Cpu086|Cpu186 },
366 {"i286", Cpu086|Cpu186|Cpu286 },
367 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
368 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
369 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
370 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
371 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
372 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 373 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
374 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
375 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 376 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
377 {NULL, 0 }
378};
379
252b5132
RH
380void
381i386_align_code (fragP, count)
382 fragS *fragP;
383 int count;
384{
ce8a8b2f
AM
385 /* Various efficient no-op patterns for aligning code labels.
386 Note: Don't try to assemble the instructions in the comments.
387 0L and 0w are not legal. */
252b5132
RH
388 static const char f32_1[] =
389 {0x90}; /* nop */
390 static const char f32_2[] =
391 {0x89,0xf6}; /* movl %esi,%esi */
392 static const char f32_3[] =
393 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
394 static const char f32_4[] =
395 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
396 static const char f32_5[] =
397 {0x90, /* nop */
398 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
399 static const char f32_6[] =
400 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
401 static const char f32_7[] =
402 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
403 static const char f32_8[] =
404 {0x90, /* nop */
405 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
406 static const char f32_9[] =
407 {0x89,0xf6, /* movl %esi,%esi */
408 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
409 static const char f32_10[] =
410 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
411 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
412 static const char f32_11[] =
413 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
414 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
415 static const char f32_12[] =
416 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
417 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
418 static const char f32_13[] =
419 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
420 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
421 static const char f32_14[] =
422 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
423 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
424 static const char f32_15[] =
425 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
426 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
427 static const char f16_3[] =
428 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
429 static const char f16_4[] =
430 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
431 static const char f16_5[] =
432 {0x90, /* nop */
433 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
434 static const char f16_6[] =
435 {0x89,0xf6, /* mov %si,%si */
436 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
437 static const char f16_7[] =
438 {0x8d,0x74,0x00, /* lea 0(%si),%si */
439 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
440 static const char f16_8[] =
441 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
442 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
443 static const char *const f32_patt[] = {
444 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
445 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
446 };
447 static const char *const f16_patt[] = {
c3332e24 448 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
449 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
450 };
451
3e73aa7c
JH
452 /* ??? We can't use these fillers for x86_64, since they often kills the
453 upper halves. Solve later. */
454 if (flag_code == CODE_64BIT)
455 count = 1;
456
252b5132
RH
457 if (count > 0 && count <= 15)
458 {
3e73aa7c 459 if (flag_code == CODE_16BIT)
252b5132 460 {
47926f60
KH
461 memcpy (fragP->fr_literal + fragP->fr_fix,
462 f16_patt[count - 1], count);
463 if (count > 8)
464 /* Adjust jump offset. */
252b5132
RH
465 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
466 }
467 else
47926f60
KH
468 memcpy (fragP->fr_literal + fragP->fr_fix,
469 f32_patt[count - 1], count);
252b5132
RH
470 fragP->fr_var = count;
471 }
472}
473
474static char *output_invalid PARAMS ((int c));
475static int i386_operand PARAMS ((char *operand_string));
476static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
477static const reg_entry *parse_register PARAMS ((char *reg_string,
478 char **end_op));
479
480#ifndef I386COFF
481static void s_bss PARAMS ((int));
482#endif
483
ce8a8b2f 484symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
252b5132
RH
485
486static INLINE unsigned int
487mode_from_disp_size (t)
488 unsigned int t;
489{
3e73aa7c 490 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
491}
492
493static INLINE int
494fits_in_signed_byte (num)
847f7ad4 495 offsetT num;
252b5132
RH
496{
497 return (num >= -128) && (num <= 127);
47926f60 498}
252b5132
RH
499
500static INLINE int
501fits_in_unsigned_byte (num)
847f7ad4 502 offsetT num;
252b5132
RH
503{
504 return (num & 0xff) == num;
47926f60 505}
252b5132
RH
506
507static INLINE int
508fits_in_unsigned_word (num)
847f7ad4 509 offsetT num;
252b5132
RH
510{
511 return (num & 0xffff) == num;
47926f60 512}
252b5132
RH
513
514static INLINE int
515fits_in_signed_word (num)
847f7ad4 516 offsetT num;
252b5132
RH
517{
518 return (-32768 <= num) && (num <= 32767);
47926f60 519}
3e73aa7c
JH
520static INLINE int
521fits_in_signed_long (num)
522 offsetT num ATTRIBUTE_UNUSED;
523{
524#ifndef BFD64
525 return 1;
526#else
527 return (!(((offsetT) -1 << 31) & num)
528 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
529#endif
530} /* fits_in_signed_long() */
531static INLINE int
532fits_in_unsigned_long (num)
533 offsetT num ATTRIBUTE_UNUSED;
534{
535#ifndef BFD64
536 return 1;
537#else
538 return (num & (((offsetT) 2 << 31) - 1)) == num;
539#endif
540} /* fits_in_unsigned_long() */
252b5132
RH
541
542static int
543smallest_imm_type (num)
847f7ad4 544 offsetT num;
252b5132 545{
a847613f 546 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
547 {
548 /* This code is disabled on the 486 because all the Imm1 forms
549 in the opcode table are slower on the i486. They're the
550 versions with the implicitly specified single-position
551 displacement, which has another syntax if you really want to
552 use that form. */
553 if (num == 1)
3e73aa7c 554 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 555 }
252b5132 556 return (fits_in_signed_byte (num)
3e73aa7c 557 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 558 : fits_in_unsigned_byte (num)
3e73aa7c 559 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 560 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
561 ? (Imm16 | Imm32 | Imm32S | Imm64)
562 : fits_in_signed_long (num)
563 ? (Imm32 | Imm32S | Imm64)
564 : fits_in_unsigned_long (num)
565 ? (Imm32 | Imm64)
566 : Imm64);
47926f60 567}
252b5132 568
847f7ad4
AM
569static offsetT
570offset_in_range (val, size)
571 offsetT val;
572 int size;
573{
508866be 574 addressT mask;
ba2adb93 575
847f7ad4
AM
576 switch (size)
577 {
508866be
L
578 case 1: mask = ((addressT) 1 << 8) - 1; break;
579 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 580 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
581#ifdef BFD64
582 case 8: mask = ((addressT) 2 << 63) - 1; break;
583#endif
47926f60 584 default: abort ();
847f7ad4
AM
585 }
586
ba2adb93 587 /* If BFD64, sign extend val. */
3e73aa7c
JH
588 if (!use_rela_relocations)
589 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
590 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 591
47926f60 592 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
593 {
594 char buf1[40], buf2[40];
595
596 sprint_value (buf1, val);
597 sprint_value (buf2, val & mask);
598 as_warn (_("%s shortened to %s"), buf1, buf2);
599 }
600 return val & mask;
601}
602
252b5132
RH
603/* Returns 0 if attempting to add a prefix where one from the same
604 class already exists, 1 if non rep/repne added, 2 if rep/repne
605 added. */
606static int
607add_prefix (prefix)
608 unsigned int prefix;
609{
610 int ret = 1;
611 int q;
612
3e73aa7c
JH
613 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
614 q = REX_PREFIX;
615 else
616 switch (prefix)
617 {
618 default:
619 abort ();
620
621 case CS_PREFIX_OPCODE:
622 case DS_PREFIX_OPCODE:
623 case ES_PREFIX_OPCODE:
624 case FS_PREFIX_OPCODE:
625 case GS_PREFIX_OPCODE:
626 case SS_PREFIX_OPCODE:
627 q = SEG_PREFIX;
628 break;
252b5132 629
3e73aa7c
JH
630 case REPNE_PREFIX_OPCODE:
631 case REPE_PREFIX_OPCODE:
632 ret = 2;
633 /* fall thru */
634 case LOCK_PREFIX_OPCODE:
635 q = LOCKREP_PREFIX;
636 break;
252b5132 637
3e73aa7c
JH
638 case FWAIT_OPCODE:
639 q = WAIT_PREFIX;
640 break;
252b5132 641
3e73aa7c
JH
642 case ADDR_PREFIX_OPCODE:
643 q = ADDR_PREFIX;
644 break;
252b5132 645
3e73aa7c
JH
646 case DATA_PREFIX_OPCODE:
647 q = DATA_PREFIX;
648 break;
649 }
252b5132
RH
650
651 if (i.prefix[q])
652 {
653 as_bad (_("same type of prefix used twice"));
654 return 0;
655 }
656
657 i.prefixes += 1;
658 i.prefix[q] = prefix;
659 return ret;
660}
661
662static void
3e73aa7c 663set_code_flag (value)
e5cb08ac 664 int value;
eecb386c 665{
3e73aa7c
JH
666 flag_code = value;
667 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
668 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
669 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
670 {
671 as_bad (_("64bit mode not supported on this CPU."));
672 }
673 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
674 {
675 as_bad (_("32bit mode not supported on this CPU."));
676 }
eecb386c
AM
677 stackop_size = '\0';
678}
679
680static void
3e73aa7c
JH
681set_16bit_gcc_code_flag (new_code_flag)
682 int new_code_flag;
252b5132 683{
3e73aa7c
JH
684 flag_code = new_code_flag;
685 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
686 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
687 stackop_size = 'l';
252b5132
RH
688}
689
690static void
691set_intel_syntax (syntax_flag)
eecb386c 692 int syntax_flag;
252b5132
RH
693{
694 /* Find out if register prefixing is specified. */
695 int ask_naked_reg = 0;
696
697 SKIP_WHITESPACE ();
698 if (! is_end_of_line[(unsigned char) *input_line_pointer])
699 {
700 char *string = input_line_pointer;
701 int e = get_symbol_end ();
702
47926f60 703 if (strcmp (string, "prefix") == 0)
252b5132 704 ask_naked_reg = 1;
47926f60 705 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
706 ask_naked_reg = -1;
707 else
d0b47220 708 as_bad (_("bad argument to syntax directive."));
252b5132
RH
709 *input_line_pointer = e;
710 }
711 demand_empty_rest_of_line ();
c3332e24 712
252b5132
RH
713 intel_syntax = syntax_flag;
714
715 if (ask_naked_reg == 0)
716 {
717#ifdef BFD_ASSEMBLER
718 allow_naked_reg = (intel_syntax
24eab124 719 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 720#else
47926f60
KH
721 /* Conservative default. */
722 allow_naked_reg = 0;
252b5132
RH
723#endif
724 }
725 else
726 allow_naked_reg = (ask_naked_reg < 0);
727}
728
e413e4e9
AM
729static void
730set_cpu_arch (dummy)
47926f60 731 int dummy ATTRIBUTE_UNUSED;
e413e4e9 732{
47926f60 733 SKIP_WHITESPACE ();
e413e4e9
AM
734
735 if (! is_end_of_line[(unsigned char) *input_line_pointer])
736 {
737 char *string = input_line_pointer;
738 int e = get_symbol_end ();
739 int i;
740
741 for (i = 0; cpu_arch[i].name; i++)
742 {
743 if (strcmp (string, cpu_arch[i].name) == 0)
744 {
745 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
746 cpu_arch_flags = (cpu_arch[i].flags
747 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
748 break;
749 }
750 }
751 if (!cpu_arch[i].name)
752 as_bad (_("no such architecture: `%s'"), string);
753
754 *input_line_pointer = e;
755 }
756 else
757 as_bad (_("missing cpu architecture"));
758
fddf5b5b
AM
759 no_cond_jump_promotion = 0;
760 if (*input_line_pointer == ','
761 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
762 {
763 char *string = ++input_line_pointer;
764 int e = get_symbol_end ();
765
766 if (strcmp (string, "nojumps") == 0)
767 no_cond_jump_promotion = 1;
768 else if (strcmp (string, "jumps") == 0)
769 ;
770 else
771 as_bad (_("no such architecture modifier: `%s'"), string);
772
773 *input_line_pointer = e;
774 }
775
e413e4e9
AM
776 demand_empty_rest_of_line ();
777}
778
252b5132
RH
779const pseudo_typeS md_pseudo_table[] =
780{
252b5132
RH
781#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
782 {"align", s_align_bytes, 0},
783#else
784 {"align", s_align_ptwo, 0},
e413e4e9
AM
785#endif
786 {"arch", set_cpu_arch, 0},
787#ifndef I386COFF
788 {"bss", s_bss, 0},
252b5132
RH
789#endif
790 {"ffloat", float_cons, 'f'},
791 {"dfloat", float_cons, 'd'},
792 {"tfloat", float_cons, 'x'},
793 {"value", cons, 2},
794 {"noopt", s_ignore, 0},
795 {"optim", s_ignore, 0},
3e73aa7c
JH
796 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
797 {"code16", set_code_flag, CODE_16BIT},
798 {"code32", set_code_flag, CODE_32BIT},
799 {"code64", set_code_flag, CODE_64BIT},
252b5132
RH
800 {"intel_syntax", set_intel_syntax, 1},
801 {"att_syntax", set_intel_syntax, 0},
316e2c05
RH
802 {"file", dwarf2_directive_file, 0},
803 {"loc", dwarf2_directive_loc, 0},
252b5132
RH
804 {0, 0, 0}
805};
806
47926f60 807/* For interface with expression (). */
252b5132
RH
808extern char *input_line_pointer;
809
47926f60 810/* Hash table for instruction mnemonic lookup. */
252b5132 811static struct hash_control *op_hash;
47926f60
KH
812
813/* Hash table for register lookup. */
252b5132
RH
814static struct hash_control *reg_hash;
815\f
b9d79e03
JH
816#ifdef BFD_ASSEMBLER
817unsigned long
818i386_mach ()
819{
820 if (!strcmp (default_arch, "x86_64"))
821 return bfd_mach_x86_64;
822 else if (!strcmp (default_arch, "i386"))
823 return bfd_mach_i386_i386;
824 else
825 as_fatal (_("Unknown architecture"));
826}
827#endif
828\f
252b5132
RH
829void
830md_begin ()
831{
832 const char *hash_err;
833
47926f60 834 /* Initialize op_hash hash table. */
252b5132
RH
835 op_hash = hash_new ();
836
837 {
838 register const template *optab;
839 register templates *core_optab;
840
47926f60
KH
841 /* Setup for loop. */
842 optab = i386_optab;
252b5132
RH
843 core_optab = (templates *) xmalloc (sizeof (templates));
844 core_optab->start = optab;
845
846 while (1)
847 {
848 ++optab;
849 if (optab->name == NULL
850 || strcmp (optab->name, (optab - 1)->name) != 0)
851 {
852 /* different name --> ship out current template list;
47926f60 853 add to hash table; & begin anew. */
252b5132
RH
854 core_optab->end = optab;
855 hash_err = hash_insert (op_hash,
856 (optab - 1)->name,
857 (PTR) core_optab);
858 if (hash_err)
859 {
252b5132
RH
860 as_fatal (_("Internal Error: Can't hash %s: %s"),
861 (optab - 1)->name,
862 hash_err);
863 }
864 if (optab->name == NULL)
865 break;
866 core_optab = (templates *) xmalloc (sizeof (templates));
867 core_optab->start = optab;
868 }
869 }
870 }
871
47926f60 872 /* Initialize reg_hash hash table. */
252b5132
RH
873 reg_hash = hash_new ();
874 {
875 register const reg_entry *regtab;
876
877 for (regtab = i386_regtab;
878 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
879 regtab++)
880 {
881 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
882 if (hash_err)
3e73aa7c
JH
883 as_fatal (_("Internal Error: Can't hash %s: %s"),
884 regtab->reg_name,
885 hash_err);
252b5132
RH
886 }
887 }
888
47926f60 889 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132
RH
890 {
891 register int c;
892 register char *p;
893
894 for (c = 0; c < 256; c++)
895 {
3882b010 896 if (ISDIGIT (c))
252b5132
RH
897 {
898 digit_chars[c] = c;
899 mnemonic_chars[c] = c;
900 register_chars[c] = c;
901 operand_chars[c] = c;
902 }
3882b010 903 else if (ISLOWER (c))
252b5132
RH
904 {
905 mnemonic_chars[c] = c;
906 register_chars[c] = c;
907 operand_chars[c] = c;
908 }
3882b010 909 else if (ISUPPER (c))
252b5132 910 {
3882b010 911 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
912 register_chars[c] = mnemonic_chars[c];
913 operand_chars[c] = c;
914 }
915
3882b010 916 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
917 identifier_chars[c] = c;
918 else if (c >= 128)
919 {
920 identifier_chars[c] = c;
921 operand_chars[c] = c;
922 }
923 }
924
925#ifdef LEX_AT
926 identifier_chars['@'] = '@';
927#endif
252b5132
RH
928 digit_chars['-'] = '-';
929 identifier_chars['_'] = '_';
930 identifier_chars['.'] = '.';
931
932 for (p = operand_special_chars; *p != '\0'; p++)
933 operand_chars[(unsigned char) *p] = *p;
934 }
935
936#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
937 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
938 {
939 record_alignment (text_section, 2);
940 record_alignment (data_section, 2);
941 record_alignment (bss_section, 2);
942 }
943#endif
944}
945
946void
947i386_print_statistics (file)
948 FILE *file;
949{
950 hash_print_statistics (file, "i386 opcode", op_hash);
951 hash_print_statistics (file, "i386 register", reg_hash);
952}
953\f
252b5132
RH
954#ifdef DEBUG386
955
ce8a8b2f 956/* Debugging routines for md_assemble. */
252b5132
RH
957static void pi PARAMS ((char *, i386_insn *));
958static void pte PARAMS ((template *));
959static void pt PARAMS ((unsigned int));
960static void pe PARAMS ((expressionS *));
961static void ps PARAMS ((symbolS *));
962
963static void
964pi (line, x)
965 char *line;
966 i386_insn *x;
967{
09f131f2 968 unsigned int i;
252b5132
RH
969
970 fprintf (stdout, "%s: template ", line);
971 pte (&x->tm);
09f131f2
JH
972 fprintf (stdout, " address: base %s index %s scale %x\n",
973 x->base_reg ? x->base_reg->reg_name : "none",
974 x->index_reg ? x->index_reg->reg_name : "none",
975 x->log2_scale_factor);
976 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 977 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
978 fprintf (stdout, " sib: base %x index %x scale %x\n",
979 x->sib.base, x->sib.index, x->sib.scale);
980 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
981 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
252b5132
RH
982 for (i = 0; i < x->operands; i++)
983 {
984 fprintf (stdout, " #%d: ", i + 1);
985 pt (x->types[i]);
986 fprintf (stdout, "\n");
987 if (x->types[i]
3f4438ab 988 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 989 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 990 if (x->types[i] & Imm)
520dc8e8 991 pe (x->op[i].imms);
252b5132 992 if (x->types[i] & Disp)
520dc8e8 993 pe (x->op[i].disps);
252b5132
RH
994 }
995}
996
997static void
998pte (t)
999 template *t;
1000{
09f131f2 1001 unsigned int i;
252b5132 1002 fprintf (stdout, " %d operands ", t->operands);
47926f60 1003 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1004 if (t->extension_opcode != None)
1005 fprintf (stdout, "ext %x ", t->extension_opcode);
1006 if (t->opcode_modifier & D)
1007 fprintf (stdout, "D");
1008 if (t->opcode_modifier & W)
1009 fprintf (stdout, "W");
1010 fprintf (stdout, "\n");
1011 for (i = 0; i < t->operands; i++)
1012 {
1013 fprintf (stdout, " #%d type ", i + 1);
1014 pt (t->operand_types[i]);
1015 fprintf (stdout, "\n");
1016 }
1017}
1018
1019static void
1020pe (e)
1021 expressionS *e;
1022{
24eab124 1023 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1024 fprintf (stdout, " add_number %ld (%lx)\n",
1025 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1026 if (e->X_add_symbol)
1027 {
1028 fprintf (stdout, " add_symbol ");
1029 ps (e->X_add_symbol);
1030 fprintf (stdout, "\n");
1031 }
1032 if (e->X_op_symbol)
1033 {
1034 fprintf (stdout, " op_symbol ");
1035 ps (e->X_op_symbol);
1036 fprintf (stdout, "\n");
1037 }
1038}
1039
1040static void
1041ps (s)
1042 symbolS *s;
1043{
1044 fprintf (stdout, "%s type %s%s",
1045 S_GET_NAME (s),
1046 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1047 segment_name (S_GET_SEGMENT (s)));
1048}
1049
1050struct type_name
1051 {
1052 unsigned int mask;
1053 char *tname;
1054 }
1055
1056type_names[] =
1057{
1058 { Reg8, "r8" },
1059 { Reg16, "r16" },
1060 { Reg32, "r32" },
09f131f2 1061 { Reg64, "r64" },
252b5132
RH
1062 { Imm8, "i8" },
1063 { Imm8S, "i8s" },
1064 { Imm16, "i16" },
1065 { Imm32, "i32" },
09f131f2
JH
1066 { Imm32S, "i32s" },
1067 { Imm64, "i64" },
252b5132
RH
1068 { Imm1, "i1" },
1069 { BaseIndex, "BaseIndex" },
1070 { Disp8, "d8" },
1071 { Disp16, "d16" },
1072 { Disp32, "d32" },
09f131f2
JH
1073 { Disp32S, "d32s" },
1074 { Disp64, "d64" },
252b5132
RH
1075 { InOutPortReg, "InOutPortReg" },
1076 { ShiftCount, "ShiftCount" },
1077 { Control, "control reg" },
1078 { Test, "test reg" },
1079 { Debug, "debug reg" },
1080 { FloatReg, "FReg" },
1081 { FloatAcc, "FAcc" },
1082 { SReg2, "SReg2" },
1083 { SReg3, "SReg3" },
1084 { Acc, "Acc" },
1085 { JumpAbsolute, "Jump Absolute" },
1086 { RegMMX, "rMMX" },
3f4438ab 1087 { RegXMM, "rXMM" },
252b5132
RH
1088 { EsSeg, "es" },
1089 { 0, "" }
1090};
1091
1092static void
1093pt (t)
1094 unsigned int t;
1095{
1096 register struct type_name *ty;
1097
09f131f2
JH
1098 for (ty = type_names; ty->mask; ty++)
1099 if (t & ty->mask)
1100 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1101 fflush (stdout);
1102}
1103
1104#endif /* DEBUG386 */
1105\f
1106int
1107tc_i386_force_relocation (fixp)
1108 struct fix *fixp;
1109{
1110#ifdef BFD_ASSEMBLER
1111 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1112 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1113 return 1;
1114 return 0;
1115#else
ce8a8b2f 1116 /* For COFF. */
f6af82bd 1117 return fixp->fx_r_type == 7;
252b5132
RH
1118#endif
1119}
1120
1121#ifdef BFD_ASSEMBLER
252b5132
RH
1122
1123static bfd_reloc_code_real_type
3e73aa7c 1124reloc (size, pcrel, sign, other)
252b5132
RH
1125 int size;
1126 int pcrel;
3e73aa7c 1127 int sign;
252b5132
RH
1128 bfd_reloc_code_real_type other;
1129{
47926f60
KH
1130 if (other != NO_RELOC)
1131 return other;
252b5132
RH
1132
1133 if (pcrel)
1134 {
3e73aa7c 1135 if (!sign)
e5cb08ac 1136 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1137 switch (size)
1138 {
1139 case 1: return BFD_RELOC_8_PCREL;
1140 case 2: return BFD_RELOC_16_PCREL;
1141 case 4: return BFD_RELOC_32_PCREL;
1142 }
d0b47220 1143 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1144 }
1145 else
1146 {
3e73aa7c 1147 if (sign)
e5cb08ac 1148 switch (size)
3e73aa7c
JH
1149 {
1150 case 4: return BFD_RELOC_X86_64_32S;
1151 }
1152 else
1153 switch (size)
1154 {
1155 case 1: return BFD_RELOC_8;
1156 case 2: return BFD_RELOC_16;
1157 case 4: return BFD_RELOC_32;
1158 case 8: return BFD_RELOC_64;
1159 }
1160 as_bad (_("can not do %s %d byte relocation"),
1161 sign ? "signed" : "unsigned", size);
252b5132
RH
1162 }
1163
bfb32b52 1164 abort ();
252b5132
RH
1165 return BFD_RELOC_NONE;
1166}
1167
47926f60
KH
1168/* Here we decide which fixups can be adjusted to make them relative to
1169 the beginning of the section instead of the symbol. Basically we need
1170 to make sure that the dynamic relocations are done correctly, so in
1171 some cases we force the original symbol to be used. */
1172
252b5132 1173int
c0c949c7 1174tc_i386_fix_adjustable (fixP)
47926f60 1175 fixS *fixP;
252b5132 1176{
6d249963 1177#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
79d292aa
ILT
1178 /* Prevent all adjustments to global symbols, or else dynamic
1179 linking will not work correctly. */
b98ef147
AM
1180 if (S_IS_EXTERNAL (fixP->fx_addsy)
1181 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
1182 return 0;
1183#endif
ce8a8b2f 1184 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1185 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1186 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1187 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3e73aa7c
JH
1188 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1189 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1190 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
252b5132
RH
1191 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1192 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1193 return 0;
1194 return 1;
1195}
1196#else
ec56dfb4
L
1197#define reloc(SIZE,PCREL,SIGN,OTHER) 0
1198#define BFD_RELOC_16 0
1199#define BFD_RELOC_32 0
1200#define BFD_RELOC_16_PCREL 0
1201#define BFD_RELOC_32_PCREL 0
1202#define BFD_RELOC_386_PLT32 0
1203#define BFD_RELOC_386_GOT32 0
1204#define BFD_RELOC_386_GOTOFF 0
1205#define BFD_RELOC_X86_64_PLT32 0
1206#define BFD_RELOC_X86_64_GOT32 0
1207#define BFD_RELOC_X86_64_GOTPCREL 0
252b5132
RH
1208#endif
1209
47926f60 1210static int intel_float_operand PARAMS ((char *mnemonic));
b4cac588
AM
1211
1212static int
252b5132
RH
1213intel_float_operand (mnemonic)
1214 char *mnemonic;
1215{
47926f60 1216 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1217 return 2;
252b5132
RH
1218
1219 if (mnemonic[0] == 'f')
1220 return 1;
1221
1222 return 0;
1223}
1224
1225/* This is the guts of the machine-dependent assembler. LINE points to a
1226 machine dependent instruction. This function is supposed to emit
1227 the frags/bytes it assembles to. */
1228
1229void
1230md_assemble (line)
1231 char *line;
1232{
47926f60 1233 /* Points to template once we've found it. */
252b5132
RH
1234 const template *t;
1235
252b5132
RH
1236 int j;
1237
1238 char mnemonic[MAX_MNEM_SIZE];
1239
47926f60 1240 /* Initialize globals. */
252b5132
RH
1241 memset (&i, '\0', sizeof (i));
1242 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1243 i.reloc[j] = NO_RELOC;
252b5132
RH
1244 memset (disp_expressions, '\0', sizeof (disp_expressions));
1245 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1246 save_stack_p = save_stack;
252b5132
RH
1247
1248 /* First parse an instruction mnemonic & call i386_operand for the operands.
1249 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1250 start of a (possibly prefixed) mnemonic. */
252b5132
RH
1251 {
1252 char *l = line;
1253 char *token_start = l;
1254 char *mnem_p;
1255
47926f60 1256 /* Non-zero if we found a prefix only acceptable with string insns. */
252b5132
RH
1257 const char *expecting_string_instruction = NULL;
1258
1259 while (1)
1260 {
1261 mnem_p = mnemonic;
1262 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1263 {
1264 mnem_p++;
1265 if (mnem_p >= mnemonic + sizeof (mnemonic))
1266 {
e413e4e9 1267 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1268 return;
1269 }
1270 l++;
1271 }
1272 if (!is_space_char (*l)
1273 && *l != END_OF_INSN
5dd0794d
AM
1274 && *l != PREFIX_SEPARATOR
1275 && *l != ',')
252b5132
RH
1276 {
1277 as_bad (_("invalid character %s in mnemonic"),
1278 output_invalid (*l));
1279 return;
1280 }
1281 if (token_start == l)
1282 {
1283 if (*l == PREFIX_SEPARATOR)
1284 as_bad (_("expecting prefix; got nothing"));
1285 else
1286 as_bad (_("expecting mnemonic; got nothing"));
1287 return;
1288 }
1289
1290 /* Look up instruction (or prefix) via hash table. */
1291 current_templates = hash_find (op_hash, mnemonic);
1292
1293 if (*l != END_OF_INSN
1294 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1295 && current_templates
1296 && (current_templates->start->opcode_modifier & IsPrefix))
1297 {
1298 /* If we are in 16-bit mode, do not allow addr16 or data16.
1299 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1300 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1301 && (((current_templates->start->opcode_modifier & Size32) != 0)
3e73aa7c 1302 ^ (flag_code == CODE_16BIT)))
252b5132
RH
1303 {
1304 as_bad (_("redundant %s prefix"),
1305 current_templates->start->name);
1306 return;
1307 }
1308 /* Add prefix, checking for repeated prefixes. */
1309 switch (add_prefix (current_templates->start->base_opcode))
1310 {
1311 case 0:
1312 return;
1313 case 2:
47926f60 1314 expecting_string_instruction = current_templates->start->name;
252b5132
RH
1315 break;
1316 }
1317 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1318 token_start = ++l;
1319 }
1320 else
1321 break;
1322 }
1323
1324 if (!current_templates)
1325 {
24eab124 1326 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1327 switch (mnem_p[-1])
1328 {
252b5132
RH
1329 case WORD_MNEM_SUFFIX:
1330 case BYTE_MNEM_SUFFIX:
3e73aa7c 1331 case QWORD_MNEM_SUFFIX:
252b5132
RH
1332 i.suffix = mnem_p[-1];
1333 mnem_p[-1] = '\0';
1334 current_templates = hash_find (op_hash, mnemonic);
24eab124 1335 break;
f16b83df
JH
1336 case SHORT_MNEM_SUFFIX:
1337 case LONG_MNEM_SUFFIX:
1338 if (!intel_syntax)
1339 {
1340 i.suffix = mnem_p[-1];
1341 mnem_p[-1] = '\0';
1342 current_templates = hash_find (op_hash, mnemonic);
1343 }
1344 break;
24eab124 1345
ce8a8b2f 1346 /* Intel Syntax. */
f16b83df 1347 case 'd':
24eab124
AM
1348 if (intel_syntax)
1349 {
f16b83df
JH
1350 if (intel_float_operand (mnemonic))
1351 i.suffix = SHORT_MNEM_SUFFIX;
1352 else
1353 i.suffix = LONG_MNEM_SUFFIX;
24eab124
AM
1354 mnem_p[-1] = '\0';
1355 current_templates = hash_find (op_hash, mnemonic);
24eab124 1356 }
f16b83df 1357 break;
252b5132
RH
1358 }
1359 if (!current_templates)
1360 {
e413e4e9 1361 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1362 return;
1363 }
1364 }
1365
5dd0794d
AM
1366 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1367 {
1368 /* Check for a branch hint. We allow ",pt" and ",pn" for
1369 predict taken and predict not taken respectively.
1370 I'm not sure that branch hints actually do anything on loop
1371 and jcxz insns (JumpByte) for current Pentium4 chips. They
1372 may work in the future and it doesn't hurt to accept them
1373 now. */
1374 if (l[0] == ',' && l[1] == 'p')
1375 {
1376 if (l[2] == 't')
1377 {
1378 if (! add_prefix (DS_PREFIX_OPCODE))
1379 return;
1380 l += 3;
1381 }
1382 else if (l[2] == 'n')
1383 {
1384 if (! add_prefix (CS_PREFIX_OPCODE))
1385 return;
1386 l += 3;
1387 }
1388 }
1389 }
1390 /* Any other comma loses. */
1391 if (*l == ',')
1392 {
1393 as_bad (_("invalid character %s in mnemonic"),
1394 output_invalid (*l));
1395 return;
1396 }
1397
e413e4e9 1398 /* Check if instruction is supported on specified architecture. */
a847613f
AM
1399 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1400 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
e413e4e9 1401 {
a847613f
AM
1402 as_warn (_("`%s' is not supported on `%s'"),
1403 current_templates->start->name, cpu_arch_name);
1404 }
1405 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1406 {
1407 as_warn (_("use .code16 to ensure correct addressing mode"));
e413e4e9
AM
1408 }
1409
ce8a8b2f 1410 /* Check for rep/repne without a string instruction. */
252b5132
RH
1411 if (expecting_string_instruction
1412 && !(current_templates->start->opcode_modifier & IsString))
1413 {
1414 as_bad (_("expecting string instruction after `%s'"),
1415 expecting_string_instruction);
1416 return;
1417 }
1418
47926f60 1419 /* There may be operands to parse. */
252b5132
RH
1420 if (*l != END_OF_INSN)
1421 {
47926f60 1422 /* 1 if operand is pending after ','. */
252b5132
RH
1423 unsigned int expecting_operand = 0;
1424
47926f60 1425 /* Non-zero if operand parens not balanced. */
252b5132
RH
1426 unsigned int paren_not_balanced;
1427
1428 do
1429 {
ce8a8b2f 1430 /* Skip optional white space before operand. */
252b5132
RH
1431 if (is_space_char (*l))
1432 ++l;
1433 if (!is_operand_char (*l) && *l != END_OF_INSN)
1434 {
1435 as_bad (_("invalid character %s before operand %d"),
1436 output_invalid (*l),
1437 i.operands + 1);
1438 return;
1439 }
1440 token_start = l; /* after white space */
1441 paren_not_balanced = 0;
1442 while (paren_not_balanced || *l != ',')
1443 {
1444 if (*l == END_OF_INSN)
1445 {
1446 if (paren_not_balanced)
1447 {
24eab124 1448 if (!intel_syntax)
252b5132
RH
1449 as_bad (_("unbalanced parenthesis in operand %d."),
1450 i.operands + 1);
24eab124 1451 else
252b5132
RH
1452 as_bad (_("unbalanced brackets in operand %d."),
1453 i.operands + 1);
1454 return;
1455 }
1456 else
1457 break; /* we are done */
1458 }
1459 else if (!is_operand_char (*l) && !is_space_char (*l))
1460 {
1461 as_bad (_("invalid character %s in operand %d"),
1462 output_invalid (*l),
1463 i.operands + 1);
1464 return;
1465 }
24eab124
AM
1466 if (!intel_syntax)
1467 {
252b5132
RH
1468 if (*l == '(')
1469 ++paren_not_balanced;
1470 if (*l == ')')
1471 --paren_not_balanced;
24eab124
AM
1472 }
1473 else
1474 {
252b5132
RH
1475 if (*l == '[')
1476 ++paren_not_balanced;
1477 if (*l == ']')
1478 --paren_not_balanced;
24eab124 1479 }
252b5132
RH
1480 l++;
1481 }
1482 if (l != token_start)
47926f60 1483 { /* Yes, we've read in another operand. */
252b5132
RH
1484 unsigned int operand_ok;
1485 this_operand = i.operands++;
1486 if (i.operands > MAX_OPERANDS)
1487 {
1488 as_bad (_("spurious operands; (%d operands/instruction max)"),
1489 MAX_OPERANDS);
1490 return;
1491 }
47926f60 1492 /* Now parse operand adding info to 'i' as we go along. */
252b5132
RH
1493 END_STRING_AND_SAVE (l);
1494
24eab124 1495 if (intel_syntax)
47926f60
KH
1496 operand_ok =
1497 i386_intel_operand (token_start,
1498 intel_float_operand (mnemonic));
24eab124
AM
1499 else
1500 operand_ok = i386_operand (token_start);
252b5132 1501
ce8a8b2f 1502 RESTORE_END_STRING (l);
252b5132
RH
1503 if (!operand_ok)
1504 return;
1505 }
1506 else
1507 {
1508 if (expecting_operand)
1509 {
1510 expecting_operand_after_comma:
1511 as_bad (_("expecting operand after ','; got nothing"));
1512 return;
1513 }
1514 if (*l == ',')
1515 {
1516 as_bad (_("expecting operand before ','; got nothing"));
1517 return;
1518 }
1519 }
1520
ce8a8b2f 1521 /* Now *l must be either ',' or END_OF_INSN. */
252b5132
RH
1522 if (*l == ',')
1523 {
1524 if (*++l == END_OF_INSN)
ce8a8b2f
AM
1525 {
1526 /* Just skip it, if it's \n complain. */
252b5132
RH
1527 goto expecting_operand_after_comma;
1528 }
1529 expecting_operand = 1;
1530 }
1531 }
ce8a8b2f 1532 while (*l != END_OF_INSN);
252b5132
RH
1533 }
1534 }
1535
1536 /* Now we've parsed the mnemonic into a set of templates, and have the
1537 operands at hand.
1538
1539 Next, we find a template that matches the given insn,
1540 making sure the overlap of the given operands types is consistent
47926f60 1541 with the template operand types. */
252b5132
RH
1542
1543#define MATCH(overlap, given, template) \
3138f287
AM
1544 ((overlap & ~JumpAbsolute) \
1545 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
252b5132
RH
1546
1547 /* If given types r0 and r1 are registers they must be of the same type
1548 unless the expected operand type register overlap is null.
1549 Note that Acc in a template matches every size of reg. */
1550#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1551 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1552 ((g0) & Reg) == ((g1) & Reg) || \
1553 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1554
1555 {
1556 register unsigned int overlap0, overlap1;
252b5132
RH
1557 unsigned int overlap2;
1558 unsigned int found_reverse_match;
1559 int suffix_check;
1560
cc5ca5ce
AM
1561 /* All intel opcodes have reversed operands except for "bound" and
1562 "enter". We also don't reverse intersegment "jmp" and "call"
1563 instructions with 2 immediate operands so that the immediate segment
1564 precedes the offset, as it does when in AT&T mode. "enter" and the
1565 intersegment "jmp" and "call" instructions are the only ones that
1566 have two immediate operands. */
520dc8e8 1567 if (intel_syntax && i.operands > 1
cc5ca5ce
AM
1568 && (strcmp (mnemonic, "bound") != 0)
1569 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
252b5132 1570 {
520dc8e8 1571 union i386_op temp_op;
24eab124 1572 unsigned int temp_type;
f3c180ae 1573 RELOC_ENUM temp_reloc;
24eab124 1574 int xchg1 = 0;
ab9da554 1575 int xchg2 = 0;
252b5132 1576
24eab124
AM
1577 if (i.operands == 2)
1578 {
1579 xchg1 = 0;
1580 xchg2 = 1;
1581 }
1582 else if (i.operands == 3)
1583 {
1584 xchg1 = 0;
1585 xchg2 = 2;
1586 }
520dc8e8
AM
1587 temp_type = i.types[xchg2];
1588 i.types[xchg2] = i.types[xchg1];
1589 i.types[xchg1] = temp_type;
1590 temp_op = i.op[xchg2];
1591 i.op[xchg2] = i.op[xchg1];
1592 i.op[xchg1] = temp_op;
1ae12ab7
AM
1593 temp_reloc = i.reloc[xchg2];
1594 i.reloc[xchg2] = i.reloc[xchg1];
1595 i.reloc[xchg1] = temp_reloc;
36bf8ab9
AM
1596
1597 if (i.mem_operands == 2)
1598 {
1599 const seg_entry *temp_seg;
1600 temp_seg = i.seg[0];
1601 i.seg[0] = i.seg[1];
1602 i.seg[1] = temp_seg;
1603 }
24eab124 1604 }
773f551c
AM
1605
1606 if (i.imm_operands)
1607 {
1608 /* Try to ensure constant immediates are represented in the smallest
1609 opcode possible. */
1610 char guess_suffix = 0;
1611 int op;
1612
1613 if (i.suffix)
1614 guess_suffix = i.suffix;
1615 else if (i.reg_operands)
1616 {
1617 /* Figure out a suffix from the last register operand specified.
1618 We can't do this properly yet, ie. excluding InOutPortReg,
1619 but the following works for instructions with immediates.
1620 In any case, we can't set i.suffix yet. */
47926f60 1621 for (op = i.operands; --op >= 0;)
773f551c
AM
1622 if (i.types[op] & Reg)
1623 {
1624 if (i.types[op] & Reg8)
1625 guess_suffix = BYTE_MNEM_SUFFIX;
1626 else if (i.types[op] & Reg16)
1627 guess_suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1628 else if (i.types[op] & Reg32)
1629 guess_suffix = LONG_MNEM_SUFFIX;
1630 else if (i.types[op] & Reg64)
1631 guess_suffix = QWORD_MNEM_SUFFIX;
773f551c
AM
1632 break;
1633 }
1634 }
3e73aa7c 1635 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
726c5dcd
AM
1636 guess_suffix = WORD_MNEM_SUFFIX;
1637
47926f60 1638 for (op = i.operands; --op >= 0;)
3e73aa7c 1639 if (i.types[op] & Imm)
773f551c 1640 {
3e73aa7c 1641 switch (i.op[op].imms->X_op)
e5cb08ac 1642 {
3e73aa7c
JH
1643 case O_constant:
1644 /* If a suffix is given, this operand may be shortened. */
1645 switch (guess_suffix)
1646 {
1647 case LONG_MNEM_SUFFIX:
1648 i.types[op] |= Imm32 | Imm64;
1649 break;
1650 case WORD_MNEM_SUFFIX:
1651 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1652 break;
1653 case BYTE_MNEM_SUFFIX:
1654 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1655 break;
1656 }
773f551c 1657
e5cb08ac
KH
1658 /* If this operand is at most 16 bits, convert it
1659 to a signed 16 bit number before trying to see
1660 whether it will fit in an even smaller size.
1661 This allows a 16-bit operand such as $0xffe0 to
1662 be recognised as within Imm8S range. */
3e73aa7c 1663 if ((i.types[op] & Imm16)
e5cb08ac 1664 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3e73aa7c
JH
1665 {
1666 i.op[op].imms->X_add_number =
1667 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1668 }
1669 if ((i.types[op] & Imm32)
1670 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1671 {
1672 i.op[op].imms->X_add_number =
1673 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1674 }
1675 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1676 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1677 if (guess_suffix == QWORD_MNEM_SUFFIX)
1678 i.types[op] &= ~Imm32;
1679 break;
1680 case O_absent:
1681 case O_register:
bfb32b52 1682 abort ();
3e73aa7c
JH
1683 /* Symbols and expressions. */
1684 default:
1685 /* Convert symbolic operand to proper sizes for matching. */
1686 switch (guess_suffix)
1687 {
1688 case QWORD_MNEM_SUFFIX:
1689 i.types[op] = Imm64 | Imm32S;
1690 break;
1691 case LONG_MNEM_SUFFIX:
1692 i.types[op] = Imm32 | Imm64;
1693 break;
1694 case WORD_MNEM_SUFFIX:
1695 i.types[op] = Imm16 | Imm32 | Imm64;
1696 break;
1697 break;
1698 case BYTE_MNEM_SUFFIX:
1699 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1700 break;
1701 break;
1702 }
1703 break;
773f551c 1704 }
773f551c
AM
1705 }
1706 }
1707
45288df1
AM
1708 if (i.disp_operands)
1709 {
1710 /* Try to use the smallest displacement type too. */
1711 int op;
1712
47926f60 1713 for (op = i.operands; --op >= 0;)
45288df1 1714 if ((i.types[op] & Disp)
1ae12ab7 1715 && i.op[op].disps->X_op == O_constant)
45288df1
AM
1716 {
1717 offsetT disp = i.op[op].disps->X_add_number;
1718
1719 if (i.types[op] & Disp16)
1720 {
1721 /* We know this operand is at most 16 bits, so
1722 convert to a signed 16 bit number before trying
1723 to see whether it will fit in an even smaller
1724 size. */
47926f60 1725
45288df1
AM
1726 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1727 }
3e73aa7c
JH
1728 else if (i.types[op] & Disp32)
1729 {
1730 /* We know this operand is at most 32 bits, so convert to a
1731 signed 32 bit number before trying to see whether it will
1732 fit in an even smaller size. */
1733 disp &= (((offsetT) 2 << 31) - 1);
1734 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1735 }
1736 if (flag_code == CODE_64BIT)
1737 {
1738 if (fits_in_signed_long (disp))
1739 i.types[op] |= Disp32S;
1740 if (fits_in_unsigned_long (disp))
1741 i.types[op] |= Disp32;
1742 }
1743 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1744 && fits_in_signed_byte (disp))
45288df1
AM
1745 i.types[op] |= Disp8;
1746 }
1747 }
1748
252b5132
RH
1749 overlap0 = 0;
1750 overlap1 = 0;
1751 overlap2 = 0;
1752 found_reverse_match = 0;
1753 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1754 ? No_bSuf
1755 : (i.suffix == WORD_MNEM_SUFFIX
1756 ? No_wSuf
1757 : (i.suffix == SHORT_MNEM_SUFFIX
1758 ? No_sSuf
1759 : (i.suffix == LONG_MNEM_SUFFIX
24eab124 1760 ? No_lSuf
3e73aa7c
JH
1761 : (i.suffix == QWORD_MNEM_SUFFIX
1762 ? No_qSuf
1763 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1764
1765 for (t = current_templates->start;
1766 t < current_templates->end;
1767 t++)
1768 {
47926f60 1769 /* Must have right number of operands. */
252b5132
RH
1770 if (i.operands != t->operands)
1771 continue;
1772
7f3f1ea2
AM
1773 /* Check the suffix, except for some instructions in intel mode. */
1774 if ((t->opcode_modifier & suffix_check)
fa2255cb
DN
1775 && !(intel_syntax
1776 && (t->opcode_modifier & IgnoreSize))
7f3f1ea2
AM
1777 && !(intel_syntax
1778 && t->base_opcode == 0xd9
ce8a8b2f
AM
1779 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1780 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
24eab124 1781 continue;
252b5132 1782
e2914f48 1783 /* Do not verify operands when there are none. */
252b5132 1784 else if (!t->operands)
e2914f48
JH
1785 {
1786 if (t->cpu_flags & ~cpu_arch_flags)
1787 continue;
1788 /* We've found a match; break out of loop. */
1789 break;
e5cb08ac 1790 }
252b5132
RH
1791
1792 overlap0 = i.types[0] & t->operand_types[0];
1793 switch (t->operands)
1794 {
1795 case 1:
1796 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1797 continue;
1798 break;
1799 case 2:
1800 case 3:
1801 overlap1 = i.types[1] & t->operand_types[1];
1802 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1803 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1804 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1805 t->operand_types[0],
1806 overlap1, i.types[1],
1807 t->operand_types[1]))
1808 {
47926f60 1809 /* Check if other direction is valid ... */
252b5132
RH
1810 if ((t->opcode_modifier & (D|FloatD)) == 0)
1811 continue;
1812
47926f60 1813 /* Try reversing direction of operands. */
252b5132
RH
1814 overlap0 = i.types[0] & t->operand_types[1];
1815 overlap1 = i.types[1] & t->operand_types[0];
1816 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1817 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1818 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1819 t->operand_types[1],
1820 overlap1, i.types[1],
1821 t->operand_types[0]))
1822 {
47926f60 1823 /* Does not match either direction. */
252b5132
RH
1824 continue;
1825 }
1826 /* found_reverse_match holds which of D or FloatDR
1827 we've found. */
1828 found_reverse_match = t->opcode_modifier & (D|FloatDR);
252b5132 1829 }
47926f60 1830 /* Found a forward 2 operand match here. */
3e73aa7c 1831 else if (t->operands == 3)
252b5132
RH
1832 {
1833 /* Here we make use of the fact that there are no
1834 reverse match 3 operand instructions, and all 3
1835 operand instructions only need to be checked for
1836 register consistency between operands 2 and 3. */
1837 overlap2 = i.types[2] & t->operand_types[2];
1838 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1839 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1840 t->operand_types[1],
1841 overlap2, i.types[2],
24eab124 1842 t->operand_types[2]))
252b5132 1843
24eab124 1844 continue;
252b5132 1845 }
47926f60 1846 /* Found either forward/reverse 2 or 3 operand match here:
ce8a8b2f 1847 slip through to break. */
252b5132 1848 }
3e73aa7c
JH
1849 if (t->cpu_flags & ~cpu_arch_flags)
1850 {
1851 found_reverse_match = 0;
1852 continue;
1853 }
47926f60
KH
1854 /* We've found a match; break out of loop. */
1855 break;
ce8a8b2f 1856 }
252b5132 1857 if (t == current_templates->end)
47926f60
KH
1858 {
1859 /* We found no match. */
252b5132
RH
1860 as_bad (_("suffix or operands invalid for `%s'"),
1861 current_templates->start->name);
1862 return;
1863 }
1864
a38cf1db 1865 if (!quiet_warnings)
3138f287 1866 {
a38cf1db
AM
1867 if (!intel_syntax
1868 && ((i.types[0] & JumpAbsolute)
1869 != (t->operand_types[0] & JumpAbsolute)))
1870 {
1871 as_warn (_("indirect %s without `*'"), t->name);
1872 }
3138f287 1873
a38cf1db
AM
1874 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1875 == (IsPrefix|IgnoreSize))
1876 {
1877 /* Warn them that a data or address size prefix doesn't
1878 affect assembly of the next line of code. */
1879 as_warn (_("stand-alone `%s' prefix"), t->name);
1880 }
252b5132
RH
1881 }
1882
1883 /* Copy the template we found. */
1884 i.tm = *t;
1885 if (found_reverse_match)
1886 {
7f3f1ea2
AM
1887 /* If we found a reverse match we must alter the opcode
1888 direction bit. found_reverse_match holds bits to change
1889 (different for int & float insns). */
1890
1891 i.tm.base_opcode ^= found_reverse_match;
1892
252b5132
RH
1893 i.tm.operand_types[0] = t->operand_types[1];
1894 i.tm.operand_types[1] = t->operand_types[0];
1895 }
1896
d0b47220 1897 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
e5cb08ac
KH
1898 if (SYSV386_COMPAT
1899 && intel_syntax
1900 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1901 i.tm.base_opcode ^= FloatR;
252b5132
RH
1902
1903 if (i.tm.opcode_modifier & FWait)
1904 if (! add_prefix (FWAIT_OPCODE))
1905 return;
1906
ce8a8b2f 1907 /* Check string instruction segment overrides. */
252b5132
RH
1908 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1909 {
1910 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1911 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1912 {
1913 if (i.seg[0] != NULL && i.seg[0] != &es)
1914 {
1915 as_bad (_("`%s' operand %d must use `%%es' segment"),
1916 i.tm.name,
1917 mem_op + 1);
1918 return;
1919 }
1920 /* There's only ever one segment override allowed per instruction.
1921 This instruction possibly has a legal segment override on the
1922 second operand, so copy the segment to where non-string
1923 instructions store it, allowing common code. */
1924 i.seg[0] = i.seg[1];
1925 }
1926 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1927 {
1928 if (i.seg[1] != NULL && i.seg[1] != &es)
1929 {
1930 as_bad (_("`%s' operand %d must use `%%es' segment"),
1931 i.tm.name,
1932 mem_op + 2);
1933 return;
1934 }
1935 }
1936 }
1937
1938 /* If matched instruction specifies an explicit instruction mnemonic
1939 suffix, use it. */
3e73aa7c 1940 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
252b5132
RH
1941 {
1942 if (i.tm.opcode_modifier & Size16)
1943 i.suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1944 else if (i.tm.opcode_modifier & Size64)
1945 i.suffix = QWORD_MNEM_SUFFIX;
252b5132 1946 else
add0c677 1947 i.suffix = LONG_MNEM_SUFFIX;
252b5132
RH
1948 }
1949 else if (i.reg_operands)
1950 {
1951 /* If there's no instruction mnemonic suffix we try to invent one
47926f60 1952 based on register operands. */
252b5132
RH
1953 if (!i.suffix)
1954 {
1955 /* We take i.suffix from the last register operand specified,
1956 Destination register type is more significant than source
1957 register type. */
1958 int op;
47926f60 1959 for (op = i.operands; --op >= 0;)
cc5ca5ce
AM
1960 if ((i.types[op] & Reg)
1961 && !(i.tm.operand_types[op] & InOutPortReg))
252b5132
RH
1962 {
1963 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1964 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
3e73aa7c 1965 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
add0c677 1966 LONG_MNEM_SUFFIX);
252b5132
RH
1967 break;
1968 }
1969 }
1970 else if (i.suffix == BYTE_MNEM_SUFFIX)
1971 {
1972 int op;
47926f60 1973 for (op = i.operands; --op >= 0;)
252b5132
RH
1974 {
1975 /* If this is an eight bit register, it's OK. If it's
1976 the 16 or 32 bit version of an eight bit register,
47926f60 1977 we will just use the low portion, and that's OK too. */
252b5132
RH
1978 if (i.types[op] & Reg8)
1979 continue;
1980
47926f60 1981 /* movzx and movsx should not generate this warning. */
24eab124
AM
1982 if (intel_syntax
1983 && (i.tm.base_opcode == 0xfb7
1984 || i.tm.base_opcode == 0xfb6
3e73aa7c 1985 || i.tm.base_opcode == 0x63
24eab124
AM
1986 || i.tm.base_opcode == 0xfbe
1987 || i.tm.base_opcode == 0xfbf))
1988 continue;
252b5132 1989
520dc8e8 1990 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
252b5132
RH
1991#if 0
1992 /* Check that the template allows eight bit regs
1993 This kills insns such as `orb $1,%edx', which
1994 maybe should be allowed. */
1995 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1996#endif
1997 )
1998 {
3e73aa7c
JH
1999 /* Prohibit these changes in the 64bit mode, since
2000 the lowering is more complicated. */
2001 if (flag_code == CODE_64BIT
2002 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2003 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2004 i.op[op].regs->reg_name,
2005 i.suffix);
252b5132 2006#if REGISTER_WARNINGS
a38cf1db
AM
2007 if (!quiet_warnings
2008 && (i.tm.operand_types[op] & InOutPortReg) == 0)
252b5132 2009 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de
AM
2010 (i.op[op].regs
2011 + (i.types[op] & Reg16
2012 ? REGNAM_AL - REGNAM_AX
2013 : REGNAM_AL - REGNAM_EAX))->reg_name,
520dc8e8 2014 i.op[op].regs->reg_name,
252b5132
RH
2015 i.suffix);
2016#endif
2017 continue;
2018 }
ce8a8b2f 2019 /* Any other register is bad. */
3f4438ab
AM
2020 if (i.types[op] & (Reg | RegMMX | RegXMM
2021 | SReg2 | SReg3
2022 | Control | Debug | Test
2023 | FloatReg | FloatAcc))
252b5132
RH
2024 {
2025 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2026 i.op[op].regs->reg_name,
252b5132
RH
2027 i.tm.name,
2028 i.suffix);
2029 return;
2030 }
2031 }
2032 }
add0c677 2033 else if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2034 {
2035 int op;
47926f60
KH
2036
2037 for (op = i.operands; --op >= 0;)
252b5132
RH
2038 /* Reject eight bit registers, except where the template
2039 requires them. (eg. movzb) */
2040 if ((i.types[op] & Reg8) != 0
47926f60 2041 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
252b5132
RH
2042 {
2043 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2044 i.op[op].regs->reg_name,
252b5132
RH
2045 i.tm.name,
2046 i.suffix);
2047 return;
2048 }
252b5132 2049 /* Warn if the e prefix on a general reg is missing. */
3e73aa7c 2050 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2051 && (i.types[op] & Reg16) != 0
252b5132
RH
2052 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2053 {
3e73aa7c
JH
2054 /* Prohibit these changes in the 64bit mode, since
2055 the lowering is more complicated. */
2056 if (flag_code == CODE_64BIT)
2057 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2058 i.op[op].regs->reg_name,
2059 i.suffix);
2060#if REGISTER_WARNINGS
2061 else
2062 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2063 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3e73aa7c
JH
2064 i.op[op].regs->reg_name,
2065 i.suffix);
252b5132 2066#endif
3e73aa7c
JH
2067 }
2068 /* Warn if the r prefix on a general reg is missing. */
2069 else if ((i.types[op] & Reg64) != 0
2070 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2071 {
2072 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2073 i.op[op].regs->reg_name,
2074 i.suffix);
2075 }
2076 }
2077 else if (i.suffix == QWORD_MNEM_SUFFIX)
2078 {
2079 int op;
3e73aa7c
JH
2080
2081 for (op = i.operands; --op >= 0; )
2082 /* Reject eight bit registers, except where the template
2083 requires them. (eg. movzb) */
2084 if ((i.types[op] & Reg8) != 0
2085 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2086 {
2087 as_bad (_("`%%%s' not allowed with `%s%c'"),
2088 i.op[op].regs->reg_name,
2089 i.tm.name,
2090 i.suffix);
2091 return;
2092 }
2093 /* Warn if the e prefix on a general reg is missing. */
2094 else if (((i.types[op] & Reg16) != 0
2095 || (i.types[op] & Reg32) != 0)
2096 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2097 {
2098 /* Prohibit these changes in the 64bit mode, since
2099 the lowering is more complicated. */
2100 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2101 i.op[op].regs->reg_name,
2102 i.suffix);
2103 }
252b5132
RH
2104 }
2105 else if (i.suffix == WORD_MNEM_SUFFIX)
2106 {
2107 int op;
47926f60 2108 for (op = i.operands; --op >= 0;)
252b5132
RH
2109 /* Reject eight bit registers, except where the template
2110 requires them. (eg. movzb) */
2111 if ((i.types[op] & Reg8) != 0
2112 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2113 {
2114 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2115 i.op[op].regs->reg_name,
252b5132
RH
2116 i.tm.name,
2117 i.suffix);
2118 return;
2119 }
252b5132 2120 /* Warn if the e prefix on a general reg is present. */
3e73aa7c 2121 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2122 && (i.types[op] & Reg32) != 0
252b5132
RH
2123 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2124 {
3e73aa7c
JH
2125 /* Prohibit these changes in the 64bit mode, since
2126 the lowering is more complicated. */
2127 if (flag_code == CODE_64BIT)
2128 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2129 i.op[op].regs->reg_name,
2130 i.suffix);
2131 else
2132#if REGISTER_WARNINGS
2133 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2134 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3e73aa7c
JH
2135 i.op[op].regs->reg_name,
2136 i.suffix);
252b5132 2137#endif
3e73aa7c 2138 }
252b5132 2139 }
fa2255cb
DN
2140 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2141 /* Do nothing if the instruction is going to ignore the prefix. */
2142 ;
252b5132 2143 else
47926f60 2144 abort ();
252b5132 2145 }
eecb386c
AM
2146 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2147 {
2148 i.suffix = stackop_size;
2149 }
252b5132
RH
2150 /* Make still unresolved immediate matches conform to size of immediate
2151 given in i.suffix. Note: overlap2 cannot be an immediate! */
3e73aa7c 2152 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
252b5132 2153 && overlap0 != Imm8 && overlap0 != Imm8S
e5cb08ac 2154 && overlap0 != Imm16 && overlap0 != Imm32S
b77a7acd 2155 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2156 {
2157 if (i.suffix)
2158 {
24eab124 2159 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd 2160 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
3e73aa7c 2161 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2162 }
3e73aa7c
JH
2163 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2164 || overlap0 == (Imm16 | Imm32)
2165 || overlap0 == (Imm16 | Imm32S))
252b5132 2166 {
24eab124 2167 overlap0 =
3e73aa7c 2168 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2169 }
3e73aa7c
JH
2170 if (overlap0 != Imm8 && overlap0 != Imm8S
2171 && overlap0 != Imm16 && overlap0 != Imm32S
2172 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2173 {
2174 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2175 return;
2176 }
2177 }
3e73aa7c 2178 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
252b5132 2179 && overlap1 != Imm8 && overlap1 != Imm8S
e5cb08ac 2180 && overlap1 != Imm16 && overlap1 != Imm32S
b77a7acd 2181 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132
RH
2182 {
2183 if (i.suffix)
2184 {
24eab124 2185 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd
AJ
2186 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2187 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2188 }
3e73aa7c
JH
2189 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2190 || overlap1 == (Imm16 | Imm32)
2191 || overlap1 == (Imm16 | Imm32S))
252b5132 2192 {
24eab124 2193 overlap1 =
3e73aa7c 2194 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2195 }
3e73aa7c
JH
2196 if (overlap1 != Imm8 && overlap1 != Imm8S
2197 && overlap1 != Imm16 && overlap1 != Imm32S
2198 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132 2199 {
3e73aa7c 2200 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
252b5132
RH
2201 return;
2202 }
2203 }
2204 assert ((overlap2 & Imm) == 0);
2205
2206 i.types[0] = overlap0;
2207 if (overlap0 & ImplicitRegister)
2208 i.reg_operands--;
2209 if (overlap0 & Imm1)
ce8a8b2f 2210 i.imm_operands = 0; /* kludge for shift insns. */
252b5132
RH
2211
2212 i.types[1] = overlap1;
2213 if (overlap1 & ImplicitRegister)
2214 i.reg_operands--;
2215
2216 i.types[2] = overlap2;
2217 if (overlap2 & ImplicitRegister)
2218 i.reg_operands--;
2219
2220 /* Finalize opcode. First, we change the opcode based on the operand
2221 size given by i.suffix: We need not change things for byte insns. */
2222
2223 if (!i.suffix && (i.tm.opcode_modifier & W))
2224 {
2225 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2226 return;
2227 }
2228
ce8a8b2f 2229 /* For movzx and movsx, need to check the register type. */
252b5132 2230 if (intel_syntax
24eab124 2231 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 2232 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
2233 {
2234 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 2235
520dc8e8 2236 if ((i.op[1].regs->reg_type & Reg16) != 0)
24eab124
AM
2237 if (!add_prefix (prefix))
2238 return;
2239 }
252b5132
RH
2240
2241 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2242 {
2243 /* It's not a byte, select word/dword operation. */
2244 if (i.tm.opcode_modifier & W)
2245 {
2246 if (i.tm.opcode_modifier & ShortForm)
2247 i.tm.base_opcode |= 8;
2248 else
2249 i.tm.base_opcode |= 1;
2250 }
2251 /* Now select between word & dword operations via the operand
2252 size prefix, except for instructions that will ignore this
2253 prefix anyway. */
3e73aa7c
JH
2254 if (i.suffix != QWORD_MNEM_SUFFIX
2255 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
252b5132
RH
2256 && !(i.tm.opcode_modifier & IgnoreSize))
2257 {
2258 unsigned int prefix = DATA_PREFIX_OPCODE;
2259 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2260 prefix = ADDR_PREFIX_OPCODE;
2261
2262 if (! add_prefix (prefix))
2263 return;
2264 }
3e73aa7c
JH
2265
2266 /* Set mode64 for an operand. */
2267 if (i.suffix == QWORD_MNEM_SUFFIX
2268 && !(i.tm.opcode_modifier & NoRex64))
b96d3a20 2269 {
3e73aa7c 2270 i.rex.mode64 = 1;
b96d3a20
JH
2271 if (flag_code < CODE_64BIT)
2272 {
e5cb08ac
KH
2273 as_bad (_("64bit operations available only in 64bit modes."));
2274 return;
b96d3a20
JH
2275 }
2276 }
3e73aa7c 2277
252b5132 2278 /* Size floating point instruction. */
f16b83df 2279 if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2280 {
2281 if (i.tm.opcode_modifier & FloatMF)
2282 i.tm.base_opcode ^= 4;
2283 }
252b5132
RH
2284 }
2285
3f4438ab 2286 if (i.tm.opcode_modifier & ImmExt)
252b5132 2287 {
3f4438ab
AM
2288 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2289 opcode suffix which is coded in the same place as an 8-bit
2290 immediate field would be. Here we fake an 8-bit immediate
2291 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
2292
2293 expressionS *exp;
2294
47926f60 2295 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132
RH
2296
2297 exp = &im_expressions[i.imm_operands++];
520dc8e8 2298 i.op[i.operands].imms = exp;
252b5132
RH
2299 i.types[i.operands++] = Imm8;
2300 exp->X_op = O_constant;
2301 exp->X_add_number = i.tm.extension_opcode;
2302 i.tm.extension_opcode = None;
2303 }
2304
47926f60 2305 /* For insns with operands there are more diddles to do to the opcode. */
252b5132
RH
2306 if (i.operands)
2307 {
24eab124 2308 /* Default segment register this instruction will use
252b5132
RH
2309 for memory accesses. 0 means unknown.
2310 This is only for optimizing out unnecessary segment overrides. */
2311 const seg_entry *default_seg = 0;
2312
252b5132
RH
2313 /* The imul $imm, %reg instruction is converted into
2314 imul $imm, %reg, %reg, and the clr %reg instruction
2315 is converted into xor %reg, %reg. */
2316 if (i.tm.opcode_modifier & regKludge)
2317 {
2318 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
47926f60
KH
2319 /* Pretend we saw the extra register operand. */
2320 assert (i.op[first_reg_op + 1].regs == 0);
2321 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2322 i.types[first_reg_op + 1] = i.types[first_reg_op];
252b5132
RH
2323 i.reg_operands = 2;
2324 }
2325
2326 if (i.tm.opcode_modifier & ShortForm)
2327 {
47926f60 2328 /* The register or float register operand is in operand 0 or 1. */
252b5132 2329 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
47926f60 2330 /* Register goes in low 3 bits of opcode. */
520dc8e8 2331 i.tm.base_opcode |= i.op[op].regs->reg_num;
3e73aa7c 2332 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2333 i.rex.extZ = 1;
a38cf1db 2334 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132
RH
2335 {
2336 /* Warn about some common errors, but press on regardless.
2337 The first case can be generated by gcc (<= 2.8.1). */
2338 if (i.operands == 2)
2339 {
47926f60 2340 /* Reversed arguments on faddp, fsubp, etc. */
252b5132 2341 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
520dc8e8
AM
2342 i.op[1].regs->reg_name,
2343 i.op[0].regs->reg_name);
252b5132
RH
2344 }
2345 else
2346 {
47926f60 2347 /* Extraneous `l' suffix on fp insn. */
252b5132 2348 as_warn (_("translating to `%s %%%s'"), i.tm.name,
520dc8e8 2349 i.op[0].regs->reg_name);
252b5132
RH
2350 }
2351 }
2352 }
2353 else if (i.tm.opcode_modifier & Modrm)
2354 {
2355 /* The opcode is completed (modulo i.tm.extension_opcode which
2356 must be put into the modrm byte).
2357 Now, we make the modrm & index base bytes based on all the
47926f60 2358 info we've collected. */
252b5132
RH
2359
2360 /* i.reg_operands MUST be the number of real register operands;
47926f60 2361 implicit registers do not count. */
252b5132
RH
2362 if (i.reg_operands == 2)
2363 {
2364 unsigned int source, dest;
2365 source = ((i.types[0]
3f4438ab
AM
2366 & (Reg | RegMMX | RegXMM
2367 | SReg2 | SReg3
2368 | Control | Debug | Test))
252b5132
RH
2369 ? 0 : 1);
2370 dest = source + 1;
2371
252b5132 2372 i.rm.mode = 3;
3f4438ab
AM
2373 /* One of the register operands will be encoded in the
2374 i.tm.reg field, the other in the combined i.tm.mode
2375 and i.tm.regmem fields. If no form of this
2376 instruction supports a memory destination operand,
2377 then we assume the source operand may sometimes be
2378 a memory operand and so we need to store the
2379 destination in the i.rm.reg field. */
2380 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132 2381 {
520dc8e8
AM
2382 i.rm.reg = i.op[dest].regs->reg_num;
2383 i.rm.regmem = i.op[source].regs->reg_num;
3e73aa7c 2384 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2385 i.rex.extX = 1;
3e73aa7c 2386 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2387 i.rex.extZ = 1;
252b5132
RH
2388 }
2389 else
2390 {
520dc8e8
AM
2391 i.rm.reg = i.op[source].regs->reg_num;
2392 i.rm.regmem = i.op[dest].regs->reg_num;
3e73aa7c 2393 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2394 i.rex.extZ = 1;
3e73aa7c 2395 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2396 i.rex.extX = 1;
252b5132
RH
2397 }
2398 }
2399 else
47926f60 2400 { /* If it's not 2 reg operands... */
252b5132
RH
2401 if (i.mem_operands)
2402 {
2403 unsigned int fake_zero_displacement = 0;
2404 unsigned int op = ((i.types[0] & AnyMem)
2405 ? 0
2406 : (i.types[1] & AnyMem) ? 1 : 2);
2407
2408 default_seg = &ds;
2409
2410 if (! i.base_reg)
2411 {
2412 i.rm.mode = 0;
2413 if (! i.disp_operands)
2414 fake_zero_displacement = 1;
2415 if (! i.index_reg)
2416 {
47926f60 2417 /* Operand is just <disp> */
3e73aa7c 2418 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132
RH
2419 {
2420 i.rm.regmem = NO_BASE_REGISTER_16;
2421 i.types[op] &= ~Disp;
2422 i.types[op] |= Disp16;
2423 }
3e73aa7c 2424 else if (flag_code != CODE_64BIT)
252b5132
RH
2425 {
2426 i.rm.regmem = NO_BASE_REGISTER;
2427 i.types[op] &= ~Disp;
2428 i.types[op] |= Disp32;
2429 }
3e73aa7c
JH
2430 else
2431 {
e5cb08ac
KH
2432 /* 64bit mode overwrites the 32bit
2433 absolute addressing by RIP relative
2434 addressing and absolute addressing
2435 is encoded by one of the redundant
2436 SIB forms. */
3e73aa7c
JH
2437
2438 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2439 i.sib.base = NO_BASE_REGISTER;
2440 i.sib.index = NO_INDEX_REGISTER;
2441 i.types[op] &= ~Disp;
2442 i.types[op] |= Disp32S;
2443 }
252b5132 2444 }
47926f60 2445 else /* ! i.base_reg && i.index_reg */
252b5132
RH
2446 {
2447 i.sib.index = i.index_reg->reg_num;
2448 i.sib.base = NO_BASE_REGISTER;
2449 i.sib.scale = i.log2_scale_factor;
2450 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2451 i.types[op] &= ~Disp;
3e73aa7c
JH
2452 if (flag_code != CODE_64BIT)
2453 i.types[op] |= Disp32; /* Must be 32 bit */
2454 else
2455 i.types[op] |= Disp32S;
2456 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2457 i.rex.extY = 1;
252b5132
RH
2458 }
2459 }
3e73aa7c
JH
2460 /* RIP addressing for 64bit mode. */
2461 else if (i.base_reg->reg_type == BaseIndex)
2462 {
2463 i.rm.regmem = NO_BASE_REGISTER;
2464 i.types[op] &= ~Disp;
2465 i.types[op] |= Disp32S;
2466 i.flags[op] = Operand_PCrel;
2467 }
252b5132
RH
2468 else if (i.base_reg->reg_type & Reg16)
2469 {
2470 switch (i.base_reg->reg_num)
2471 {
47926f60 2472 case 3: /* (%bx) */
252b5132
RH
2473 if (! i.index_reg)
2474 i.rm.regmem = 7;
47926f60 2475 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
252b5132
RH
2476 i.rm.regmem = i.index_reg->reg_num - 6;
2477 break;
47926f60 2478 case 5: /* (%bp) */
252b5132
RH
2479 default_seg = &ss;
2480 if (! i.index_reg)
2481 {
2482 i.rm.regmem = 6;
2483 if ((i.types[op] & Disp) == 0)
2484 {
47926f60 2485 /* fake (%bp) into 0(%bp) */
252b5132
RH
2486 i.types[op] |= Disp8;
2487 fake_zero_displacement = 1;
2488 }
2489 }
47926f60 2490 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
252b5132
RH
2491 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2492 break;
47926f60 2493 default: /* (%si) -> 4 or (%di) -> 5 */
252b5132
RH
2494 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2495 }
2496 i.rm.mode = mode_from_disp_size (i.types[op]);
2497 }
3e73aa7c 2498 else /* i.base_reg and 32/64 bit mode */
252b5132 2499 {
3e73aa7c
JH
2500 if (flag_code == CODE_64BIT
2501 && (i.types[op] & Disp))
2502 {
2503 if (i.types[op] & Disp8)
2504 i.types[op] = Disp8 | Disp32S;
2505 else
2506 i.types[op] = Disp32S;
2507 }
252b5132 2508 i.rm.regmem = i.base_reg->reg_num;
3e73aa7c 2509 if (i.base_reg->reg_flags & RegRex)
e5cb08ac 2510 i.rex.extZ = 1;
252b5132 2511 i.sib.base = i.base_reg->reg_num;
3e73aa7c
JH
2512 /* x86-64 ignores REX prefix bit here to avoid
2513 decoder complications. */
2514 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
252b5132
RH
2515 {
2516 default_seg = &ss;
2517 if (i.disp_operands == 0)
2518 {
2519 fake_zero_displacement = 1;
2520 i.types[op] |= Disp8;
2521 }
2522 }
2523 else if (i.base_reg->reg_num == ESP_REG_NUM)
2524 {
2525 default_seg = &ss;
2526 }
2527 i.sib.scale = i.log2_scale_factor;
2528 if (! i.index_reg)
2529 {
2530 /* <disp>(%esp) becomes two byte modrm
2531 with no index register. We've already
2532 stored the code for esp in i.rm.regmem
2533 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2534 base register besides %esp will not use
2535 the extra modrm byte. */
2536 i.sib.index = NO_INDEX_REGISTER;
2537#if ! SCALE1_WHEN_NO_INDEX
2538 /* Another case where we force the second
2539 modrm byte. */
2540 if (i.log2_scale_factor)
2541 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2542#endif
2543 }
2544 else
2545 {
2546 i.sib.index = i.index_reg->reg_num;
2547 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3e73aa7c 2548 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2549 i.rex.extY = 1;
252b5132
RH
2550 }
2551 i.rm.mode = mode_from_disp_size (i.types[op]);
2552 }
2553
2554 if (fake_zero_displacement)
2555 {
2556 /* Fakes a zero displacement assuming that i.types[op]
47926f60 2557 holds the correct displacement size. */
b4cac588
AM
2558 expressionS *exp;
2559
520dc8e8 2560 assert (i.op[op].disps == 0);
252b5132 2561 exp = &disp_expressions[i.disp_operands++];
520dc8e8 2562 i.op[op].disps = exp;
252b5132
RH
2563 exp->X_op = O_constant;
2564 exp->X_add_number = 0;
2565 exp->X_add_symbol = (symbolS *) 0;
2566 exp->X_op_symbol = (symbolS *) 0;
2567 }
2568 }
2569
2570 /* Fill in i.rm.reg or i.rm.regmem field with register
2571 operand (if any) based on i.tm.extension_opcode.
2572 Again, we must be careful to make sure that
2573 segment/control/debug/test/MMX registers are coded
47926f60 2574 into the i.rm.reg field. */
252b5132
RH
2575 if (i.reg_operands)
2576 {
2577 unsigned int op =
2578 ((i.types[0]
3f4438ab
AM
2579 & (Reg | RegMMX | RegXMM
2580 | SReg2 | SReg3
2581 | Control | Debug | Test))
252b5132
RH
2582 ? 0
2583 : ((i.types[1]
3f4438ab
AM
2584 & (Reg | RegMMX | RegXMM
2585 | SReg2 | SReg3
2586 | Control | Debug | Test))
252b5132
RH
2587 ? 1
2588 : 2));
2589 /* If there is an extension opcode to put here, the
47926f60 2590 register number must be put into the regmem field. */
252b5132 2591 if (i.tm.extension_opcode != None)
3e73aa7c
JH
2592 {
2593 i.rm.regmem = i.op[op].regs->reg_num;
2594 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2595 i.rex.extZ = 1;
3e73aa7c 2596 }
252b5132 2597 else
3e73aa7c
JH
2598 {
2599 i.rm.reg = i.op[op].regs->reg_num;
2600 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2601 i.rex.extX = 1;
3e73aa7c 2602 }
252b5132
RH
2603
2604 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2605 we must set it to 3 to indicate this is a register
2606 operand in the regmem field. */
2607 if (!i.mem_operands)
2608 i.rm.mode = 3;
2609 }
2610
47926f60 2611 /* Fill in i.rm.reg field with extension opcode (if any). */
252b5132
RH
2612 if (i.tm.extension_opcode != None)
2613 i.rm.reg = i.tm.extension_opcode;
2614 }
2615 }
2616 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2617 {
47926f60
KH
2618 if (i.tm.base_opcode == POP_SEG_SHORT
2619 && i.op[0].regs->reg_num == 1)
252b5132
RH
2620 {
2621 as_bad (_("you can't `pop %%cs'"));
2622 return;
2623 }
520dc8e8 2624 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3e73aa7c
JH
2625 if (i.op[0].regs->reg_flags & RegRex)
2626 i.rex.extZ = 1;
252b5132
RH
2627 }
2628 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2629 {
2630 default_seg = &ds;
2631 }
2632 else if ((i.tm.opcode_modifier & IsString) != 0)
2633 {
2634 /* For the string instructions that allow a segment override
2635 on one of their operands, the default segment is ds. */
2636 default_seg = &ds;
2637 }
2638
2639 /* If a segment was explicitly specified,
2640 and the specified segment is not the default,
2641 use an opcode prefix to select it.
2642 If we never figured out what the default segment is,
2643 then default_seg will be zero at this point,
2644 and the specified segment prefix will always be used. */
2645 if ((i.seg[0]) && (i.seg[0] != default_seg))
2646 {
2647 if (! add_prefix (i.seg[0]->seg_prefix))
2648 return;
2649 }
2650 }
a38cf1db 2651 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132 2652 {
24eab124
AM
2653 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2654 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2655 }
2656 }
2657
47926f60 2658 /* Handle conversion of 'int $3' --> special int3 insn. */
520dc8e8 2659 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
252b5132
RH
2660 {
2661 i.tm.base_opcode = INT3_OPCODE;
2662 i.imm_operands = 0;
2663 }
2664
2f66722d 2665 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
520dc8e8 2666 && i.op[0].disps->X_op == O_constant)
2f66722d
AM
2667 {
2668 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2669 the absolute address given by the constant. Since ix86 jumps and
2670 calls are pc relative, we need to generate a reloc. */
520dc8e8
AM
2671 i.op[0].disps->X_add_symbol = &abs_symbol;
2672 i.op[0].disps->X_op = O_symbol;
2f66722d
AM
2673 }
2674
3e73aa7c
JH
2675 if (i.tm.opcode_modifier & Rex64)
2676 i.rex.mode64 = 1;
2677
2678 /* For 8bit registers we would need an empty rex prefix.
2679 Also in the case instruction is already having prefix,
2680 we need to convert old registers to new ones. */
2681
2682 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2683 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2684 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2685 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2686 {
2687 int x;
e5cb08ac 2688 i.rex.empty = 1;
3e73aa7c
JH
2689 for (x = 0; x < 2; x++)
2690 {
2691 /* Look for 8bit operand that does use old registers. */
2692 if (i.types[x] & Reg8
2693 && !(i.op[x].regs->reg_flags & RegRex64))
2694 {
2695 /* In case it is "hi" register, give up. */
2696 if (i.op[x].regs->reg_num > 3)
2697 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2698 i.op[x].regs->reg_name);
2699
2700 /* Otherwise it is equivalent to the extended register.
2701 Since the encoding don't change this is merely cosmetical
2702 cleanup for debug output. */
2703
2704 i.op[x].regs = i.op[x].regs + 8;
2705 }
2706 }
2707 }
2708
2709 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2710 add_prefix (0x40
2711 | (i.rex.mode64 ? 8 : 0)
2712 | (i.rex.extX ? 4 : 0)
2713 | (i.rex.extY ? 2 : 0)
2714 | (i.rex.extZ ? 1 : 0));
2715
47926f60 2716 /* We are ready to output the insn. */
252b5132
RH
2717 {
2718 register char *p;
2719
9fcc94b6
AM
2720 /* Tie dwarf2 debug info to the address at the start of the insn.
2721 We can't do this after the insn has been output as the current
2722 frag may have been closed off. eg. by frag_var. */
2723 dwarf2_emit_insn (0);
2724
47926f60 2725 /* Output jumps. */
252b5132
RH
2726 if (i.tm.opcode_modifier & Jump)
2727 {
a217f122
AM
2728 int code16;
2729 int prefix;
e0890092
AM
2730 relax_substateT subtype;
2731 symbolS *sym;
2732 offsetT off;
252b5132 2733
a217f122 2734 code16 = 0;
3e73aa7c 2735 if (flag_code == CODE_16BIT)
a217f122
AM
2736 code16 = CODE16;
2737
2738 prefix = 0;
2739 if (i.prefix[DATA_PREFIX])
252b5132 2740 {
a217f122 2741 prefix = 1;
252b5132 2742 i.prefixes -= 1;
a217f122 2743 code16 ^= CODE16;
252b5132 2744 }
cb9401fc
AM
2745 /* Pentium4 branch hints. */
2746 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2747 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2748 {
2749 prefix++;
2750 i.prefixes--;
2751 }
3e73aa7c
JH
2752 if (i.prefix[REX_PREFIX])
2753 {
2754 prefix++;
e5cb08ac 2755 i.prefixes--;
3e73aa7c 2756 }
252b5132 2757
a217f122 2758 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2759 as_warn (_("skipping prefixes on this instruction"));
2760
2f66722d
AM
2761 /* It's always a symbol; End frag & setup for relax.
2762 Make sure there is enough room in this frag for the largest
2763 instruction we may generate in md_convert_frag. This is 2
2764 bytes for the opcode and room for the prefix and largest
2765 displacement. */
fddf5b5b 2766 frag_grow (prefix + 2 + 4);
2f66722d
AM
2767 /* Prefix and 1 opcode byte go in fr_fix. */
2768 p = frag_more (prefix + 1);
3e73aa7c 2769 if (i.prefix[DATA_PREFIX])
2f66722d 2770 *p++ = DATA_PREFIX_OPCODE;
cb9401fc
AM
2771 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2772 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2773 *p++ = i.prefix[SEG_PREFIX];
3e73aa7c
JH
2774 if (i.prefix[REX_PREFIX])
2775 *p++ = i.prefix[REX_PREFIX];
2f66722d 2776 *p = i.tm.base_opcode;
e0890092
AM
2777
2778 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2779 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2780 else if ((cpu_arch_flags & Cpu386) != 0)
2781 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2782 else
2783 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2784 subtype |= code16;
2785
2786 sym = i.op[0].disps->X_add_symbol;
2787 off = i.op[0].disps->X_add_number;
2788
2789 if (i.op[0].disps->X_op != O_constant
2790 && i.op[0].disps->X_op != O_symbol)
2791 {
2792 /* Handle complex expressions. */
2793 sym = make_expr_symbol (i.op[0].disps);
2794 off = 0;
2795 }
2796
2797 /* 1 possible extra opcode + 4 byte displacement go in var part.
ee7fcc42 2798 Pass reloc in fr_var. */
e0890092 2799 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
252b5132
RH
2800 }
2801 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2802 {
a217f122 2803 int size;
252b5132 2804
a217f122 2805 if (i.tm.opcode_modifier & JumpByte)
252b5132 2806 {
a217f122
AM
2807 /* This is a loop or jecxz type instruction. */
2808 size = 1;
252b5132
RH
2809 if (i.prefix[ADDR_PREFIX])
2810 {
252b5132
RH
2811 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2812 i.prefixes -= 1;
2813 }
cb9401fc
AM
2814 /* Pentium4 branch hints. */
2815 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2816 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2817 {
2818 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
2819 i.prefixes--;
2820 }
252b5132
RH
2821 }
2822 else
2823 {
a217f122
AM
2824 int code16;
2825
2826 code16 = 0;
3e73aa7c 2827 if (flag_code == CODE_16BIT)
a217f122 2828 code16 = CODE16;
252b5132
RH
2829
2830 if (i.prefix[DATA_PREFIX])
2831 {
252b5132
RH
2832 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2833 i.prefixes -= 1;
a217f122 2834 code16 ^= CODE16;
252b5132 2835 }
252b5132 2836
a217f122 2837 size = 4;
252b5132
RH
2838 if (code16)
2839 size = 2;
2840 }
2841
3e73aa7c
JH
2842 if (i.prefix[REX_PREFIX])
2843 {
2844 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3e73aa7c
JH
2845 i.prefixes -= 1;
2846 }
2847
a217f122 2848 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2849 as_warn (_("skipping prefixes on this instruction"));
2850
cb9401fc
AM
2851 p = frag_more (1 + size);
2852 *p++ = i.tm.base_opcode;
252b5132 2853
2f66722d 2854 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2855 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
252b5132
RH
2856 }
2857 else if (i.tm.opcode_modifier & JumpInterSegment)
2858 {
2859 int size;
a217f122
AM
2860 int prefix;
2861 int code16;
252b5132 2862
a217f122 2863 code16 = 0;
3e73aa7c 2864 if (flag_code == CODE_16BIT)
a217f122
AM
2865 code16 = CODE16;
2866
2867 prefix = 0;
2868 if (i.prefix[DATA_PREFIX])
252b5132 2869 {
a217f122 2870 prefix = 1;
252b5132 2871 i.prefixes -= 1;
a217f122 2872 code16 ^= CODE16;
252b5132 2873 }
3e73aa7c
JH
2874 if (i.prefix[REX_PREFIX])
2875 {
2876 prefix++;
2877 i.prefixes -= 1;
2878 }
252b5132
RH
2879
2880 size = 4;
252b5132 2881 if (code16)
f6af82bd 2882 size = 2;
252b5132 2883
a217f122 2884 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2885 as_warn (_("skipping prefixes on this instruction"));
2886
47926f60 2887 /* 1 opcode; 2 segment; offset */
252b5132 2888 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c
JH
2889
2890 if (i.prefix[DATA_PREFIX])
252b5132 2891 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2892
2893 if (i.prefix[REX_PREFIX])
2894 *p++ = i.prefix[REX_PREFIX];
2895
252b5132 2896 *p++ = i.tm.base_opcode;
520dc8e8 2897 if (i.op[1].imms->X_op == O_constant)
252b5132 2898 {
847f7ad4 2899 offsetT n = i.op[1].imms->X_add_number;
252b5132 2900
773f551c
AM
2901 if (size == 2
2902 && !fits_in_unsigned_word (n)
2903 && !fits_in_signed_word (n))
252b5132
RH
2904 {
2905 as_bad (_("16-bit jump out of range"));
2906 return;
2907 }
847f7ad4 2908 md_number_to_chars (p, n, size);
252b5132
RH
2909 }
2910 else
2911 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2912 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
520dc8e8 2913 if (i.op[0].imms->X_op != O_constant)
252b5132
RH
2914 as_bad (_("can't handle non absolute segment in `%s'"),
2915 i.tm.name);
520dc8e8 2916 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
252b5132
RH
2917 }
2918 else
2919 {
47926f60 2920 /* Output normal instructions here. */
252b5132
RH
2921 unsigned char *q;
2922
7bc70a8e
JH
2923 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2924 byte for the SSE instructions to specify prefix they require. */
2925 if (i.tm.base_opcode & 0xff0000)
2926 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2927
47926f60 2928 /* The prefix bytes. */
252b5132
RH
2929 for (q = i.prefix;
2930 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2931 q++)
2932 {
2933 if (*q)
2934 {
252b5132
RH
2935 p = frag_more (1);
2936 md_number_to_chars (p, (valueT) *q, 1);
2937 }
2938 }
2939
47926f60 2940 /* Now the opcode; be careful about word order here! */
252b5132
RH
2941 if (fits_in_unsigned_byte (i.tm.base_opcode))
2942 {
252b5132
RH
2943 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2944 }
7bc70a8e 2945 else
252b5132 2946 {
252b5132 2947 p = frag_more (2);
47926f60 2948 /* Put out high byte first: can't use md_number_to_chars! */
252b5132
RH
2949 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2950 *p = i.tm.base_opcode & 0xff;
2951 }
252b5132
RH
2952
2953 /* Now the modrm byte and sib byte (if present). */
2954 if (i.tm.opcode_modifier & Modrm)
2955 {
252b5132
RH
2956 p = frag_more (1);
2957 md_number_to_chars (p,
2958 (valueT) (i.rm.regmem << 0
2959 | i.rm.reg << 3
2960 | i.rm.mode << 6),
2961 1);
2962 /* If i.rm.regmem == ESP (4)
2963 && i.rm.mode != (Register mode)
2964 && not 16 bit
2965 ==> need second modrm byte. */
2966 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2967 && i.rm.mode != 3
2968 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2969 {
252b5132
RH
2970 p = frag_more (1);
2971 md_number_to_chars (p,
2972 (valueT) (i.sib.base << 0
2973 | i.sib.index << 3
2974 | i.sib.scale << 6),
2975 1);
2976 }
2977 }
2978
2979 if (i.disp_operands)
2980 {
2981 register unsigned int n;
2982
2983 for (n = 0; n < i.operands; n++)
2984 {
520dc8e8 2985 if (i.types[n] & Disp)
252b5132 2986 {
520dc8e8 2987 if (i.op[n].disps->X_op == O_constant)
252b5132 2988 {
847f7ad4
AM
2989 int size;
2990 offsetT val;
b4cac588 2991
847f7ad4 2992 size = 4;
3e73aa7c 2993 if (i.types[n] & (Disp8 | Disp16 | Disp64))
252b5132 2994 {
b4cac588 2995 size = 2;
b4cac588 2996 if (i.types[n] & Disp8)
847f7ad4 2997 size = 1;
3e73aa7c
JH
2998 if (i.types[n] & Disp64)
2999 size = 8;
252b5132 3000 }
847f7ad4
AM
3001 val = offset_in_range (i.op[n].disps->X_add_number,
3002 size);
b4cac588 3003 p = frag_more (size);
847f7ad4 3004 md_number_to_chars (p, val, size);
252b5132 3005 }
252b5132 3006 else
520dc8e8
AM
3007 {
3008 int size = 4;
3e73aa7c
JH
3009 int sign = 0;
3010 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3011
3012 /* The PC relative address is computed relative
3013 to the instruction boundary, so in case immediate
3014 fields follows, we need to adjust the value. */
3015 if (pcrel && i.imm_operands)
3016 {
3017 int imm_size = 4;
3018 register unsigned int n1;
3019
3020 for (n1 = 0; n1 < i.operands; n1++)
3021 if (i.types[n1] & Imm)
3022 {
3023 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3024 {
3025 imm_size = 2;
3026 if (i.types[n1] & (Imm8 | Imm8S))
3027 imm_size = 1;
3028 if (i.types[n1] & Imm64)
3029 imm_size = 8;
3030 }
3031 break;
3032 }
3033 /* We should find the immediate. */
3034 if (n1 == i.operands)
bfb32b52 3035 abort ();
3e73aa7c
JH
3036 i.op[n].disps->X_add_number -= imm_size;
3037 }
520dc8e8 3038
3e73aa7c
JH
3039 if (i.types[n] & Disp32S)
3040 sign = 1;
3041
e5cb08ac 3042 if (i.types[n] & (Disp16 | Disp64))
3e73aa7c
JH
3043 {
3044 size = 2;
3045 if (i.types[n] & Disp64)
3046 size = 8;
3047 }
520dc8e8 3048
520dc8e8
AM
3049 p = frag_more (size);
3050 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3e73aa7c 3051 i.op[n].disps, pcrel,
1ae12ab7 3052 reloc (size, pcrel, sign, i.reloc[n]));
252b5132
RH
3053 }
3054 }
3055 }
ce8a8b2f 3056 }
252b5132 3057
47926f60 3058 /* Output immediate. */
252b5132
RH
3059 if (i.imm_operands)
3060 {
3061 register unsigned int n;
3062
3063 for (n = 0; n < i.operands; n++)
3064 {
520dc8e8 3065 if (i.types[n] & Imm)
252b5132 3066 {
520dc8e8 3067 if (i.op[n].imms->X_op == O_constant)
252b5132 3068 {
847f7ad4
AM
3069 int size;
3070 offsetT val;
b4cac588 3071
847f7ad4 3072 size = 4;
3e73aa7c 3073 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3074 {
b4cac588 3075 size = 2;
b4cac588 3076 if (i.types[n] & (Imm8 | Imm8S))
847f7ad4 3077 size = 1;
3e73aa7c
JH
3078 else if (i.types[n] & Imm64)
3079 size = 8;
252b5132 3080 }
847f7ad4
AM
3081 val = offset_in_range (i.op[n].imms->X_add_number,
3082 size);
b4cac588 3083 p = frag_more (size);
847f7ad4 3084 md_number_to_chars (p, val, size);
252b5132
RH
3085 }
3086 else
ce8a8b2f
AM
3087 {
3088 /* Not absolute_section.
3089 Need a 32-bit fixup (don't support 8bit
520dc8e8 3090 non-absolute imms). Try to support other
47926f60 3091 sizes ... */
f3c180ae 3092 RELOC_ENUM reloc_type;
520dc8e8 3093 int size = 4;
3e73aa7c 3094 int sign = 0;
252b5132 3095
3e73aa7c
JH
3096 if ((i.types[n] & (Imm32S))
3097 && i.suffix == QWORD_MNEM_SUFFIX)
3098 sign = 1;
3099 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3100 {
3101 size = 2;
3102 if (i.types[n] & (Imm8 | Imm8S))
3103 size = 1;
3104 if (i.types[n] & Imm64)
3105 size = 8;
3106 }
520dc8e8 3107
252b5132 3108 p = frag_more (size);
1ae12ab7 3109 reloc_type = reloc (size, 0, sign, i.reloc[n]);
252b5132 3110#ifdef BFD_ASSEMBLER
f6af82bd 3111 if (reloc_type == BFD_RELOC_32
252b5132 3112 && GOT_symbol
520dc8e8
AM
3113 && GOT_symbol == i.op[n].imms->X_add_symbol
3114 && (i.op[n].imms->X_op == O_symbol
3115 || (i.op[n].imms->X_op == O_add
49309057 3116 && ((symbol_get_value_expression
520dc8e8 3117 (i.op[n].imms->X_op_symbol)->X_op)
252b5132
RH
3118 == O_subtract))))
3119 {
3e73aa7c
JH
3120 /* We don't support dynamic linking on x86-64 yet. */
3121 if (flag_code == CODE_64BIT)
bfb32b52 3122 abort ();
f6af82bd 3123 reloc_type = BFD_RELOC_386_GOTPC;
520dc8e8 3124 i.op[n].imms->X_add_number += 3;
252b5132
RH
3125 }
3126#endif
3127 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8 3128 i.op[n].imms, 0, reloc_type);
252b5132
RH
3129 }
3130 }
3131 }
ce8a8b2f 3132 }
252b5132
RH
3133 }
3134
3135#ifdef DEBUG386
3136 if (flag_debug)
3137 {
3138 pi (line, &i);
3139 }
47926f60 3140#endif /* DEBUG386 */
252b5132
RH
3141 }
3142}
3143\f
f3c180ae
AM
3144#ifndef LEX_AT
3145static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3146
3147/* Parse operands of the form
3148 <symbol>@GOTOFF+<nnn>
3149 and similar .plt or .got references.
3150
3151 If we find one, set up the correct relocation in RELOC and copy the
3152 input string, minus the `@GOTOFF' into a malloc'd buffer for
3153 parsing by the calling routine. Return this buffer, and if ADJUST
3154 is non-null set it to the length of the string we removed from the
3155 input line. Otherwise return NULL. */
3156static char *
3157lex_got (reloc, adjust)
3158 RELOC_ENUM *reloc;
3159 int *adjust;
3160{
3161 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3162 static const struct {
3163 const char *str;
3164 const RELOC_ENUM rel[NUM_FLAG_CODE];
3165 } gotrel[] = {
3166 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3167 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3168 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3169 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3170 };
3171 char *cp;
3172 unsigned int j;
3173
3174 for (cp = input_line_pointer; *cp != '@'; cp++)
3175 if (is_end_of_line[(unsigned char) *cp])
3176 return NULL;
3177
3178 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3179 {
3180 int len;
3181
3182 len = strlen (gotrel[j].str);
28f81592 3183 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3184 {
3185 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3186 {
28f81592
AM
3187 int first, second;
3188 char *tmpbuf, *past_reloc;
f3c180ae
AM
3189
3190 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3191 if (adjust)
3192 *adjust = len;
f3c180ae
AM
3193
3194 if (GOT_symbol == NULL)
3195 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3196
3197 /* Replace the relocation token with ' ', so that
3198 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3199
3200 /* The length of the first part of our input line. */
f3c180ae 3201 first = cp - input_line_pointer;
28f81592
AM
3202
3203 /* The second part goes from after the reloc token until
3204 (and including) an end_of_line char. Don't use strlen
3205 here as the end_of_line char may not be a NUL. */
3206 past_reloc = cp + 1 + len;
3207 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3208 ;
3209 second = cp - past_reloc;
3210
3211 /* Allocate and copy string. The trailing NUL shouldn't
3212 be necessary, but be safe. */
3213 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3214 memcpy (tmpbuf, input_line_pointer, first);
3215 tmpbuf[first] = ' ';
28f81592
AM
3216 memcpy (tmpbuf + first + 1, past_reloc, second);
3217 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3218 return tmpbuf;
3219 }
3220
3221 as_bad (_("@%s reloc is not supported in %s bit mode"),
3222 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3223 return NULL;
3224 }
3225 }
3226
3227 /* Might be a symbol version string. Don't as_bad here. */
3228 return NULL;
3229}
3230
3231/* x86_cons_fix_new is called via the expression parsing code when a
3232 reloc is needed. We use this hook to get the correct .got reloc. */
3233static RELOC_ENUM got_reloc = NO_RELOC;
3234
3235void
3236x86_cons_fix_new (frag, off, len, exp)
3237 fragS *frag;
3238 unsigned int off;
3239 unsigned int len;
3240 expressionS *exp;
3241{
3242 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3243 got_reloc = NO_RELOC;
3244 fix_new_exp (frag, off, len, exp, 0, r);
3245}
3246
3247void
3248x86_cons (exp, size)
3249 expressionS *exp;
3250 int size;
3251{
3252 if (size == 4)
3253 {
3254 /* Handle @GOTOFF and the like in an expression. */
3255 char *save;
3256 char *gotfree_input_line;
3257 int adjust;
3258
3259 save = input_line_pointer;
3260 gotfree_input_line = lex_got (&got_reloc, &adjust);
3261 if (gotfree_input_line)
3262 input_line_pointer = gotfree_input_line;
3263
3264 expression (exp);
3265
3266 if (gotfree_input_line)
3267 {
3268 /* expression () has merrily parsed up to the end of line,
3269 or a comma - in the wrong buffer. Transfer how far
3270 input_line_pointer has moved to the right buffer. */
3271 input_line_pointer = (save
3272 + (input_line_pointer - gotfree_input_line)
3273 + adjust);
3274 free (gotfree_input_line);
3275 }
3276 }
3277 else
3278 expression (exp);
3279}
3280#endif
3281
252b5132
RH
3282static int i386_immediate PARAMS ((char *));
3283
3284static int
3285i386_immediate (imm_start)
3286 char *imm_start;
3287{
3288 char *save_input_line_pointer;
f3c180ae
AM
3289#ifndef LEX_AT
3290 char *gotfree_input_line;
3291#endif
252b5132 3292 segT exp_seg = 0;
47926f60 3293 expressionS *exp;
252b5132
RH
3294
3295 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3296 {
d0b47220 3297 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3298 return 0;
3299 }
3300
3301 exp = &im_expressions[i.imm_operands++];
520dc8e8 3302 i.op[this_operand].imms = exp;
252b5132
RH
3303
3304 if (is_space_char (*imm_start))
3305 ++imm_start;
3306
3307 save_input_line_pointer = input_line_pointer;
3308 input_line_pointer = imm_start;
3309
3310#ifndef LEX_AT
f3c180ae
AM
3311 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3312 if (gotfree_input_line)
3313 input_line_pointer = gotfree_input_line;
252b5132
RH
3314#endif
3315
3316 exp_seg = expression (exp);
3317
83183c0c 3318 SKIP_WHITESPACE ();
252b5132 3319 if (*input_line_pointer)
f3c180ae 3320 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3321
3322 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3323#ifndef LEX_AT
3324 if (gotfree_input_line)
3325 free (gotfree_input_line);
3326#endif
252b5132 3327
2daf4fd8 3328 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3329 {
47926f60 3330 /* Missing or bad expr becomes absolute 0. */
d0b47220 3331 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3332 imm_start);
252b5132
RH
3333 exp->X_op = O_constant;
3334 exp->X_add_number = 0;
3335 exp->X_add_symbol = (symbolS *) 0;
3336 exp->X_op_symbol = (symbolS *) 0;
252b5132 3337 }
3e73aa7c 3338 else if (exp->X_op == O_constant)
252b5132 3339 {
47926f60 3340 /* Size it properly later. */
3e73aa7c
JH
3341 i.types[this_operand] |= Imm64;
3342 /* If BFD64, sign extend val. */
3343 if (!use_rela_relocations)
3344 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3345 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3346 }
4c63da97 3347#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3348 else if (1
4c63da97 3349#ifdef BFD_ASSEMBLER
47926f60 3350 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3351#endif
47926f60 3352 && exp_seg != text_section
24eab124
AM
3353 && exp_seg != data_section
3354 && exp_seg != bss_section
3355 && exp_seg != undefined_section
252b5132 3356#ifdef BFD_ASSEMBLER
24eab124 3357 && !bfd_is_com_section (exp_seg)
252b5132 3358#endif
24eab124 3359 )
252b5132 3360 {
4c63da97 3361#ifdef BFD_ASSEMBLER
d0b47220 3362 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3363#else
d0b47220 3364 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3365#endif
252b5132
RH
3366 return 0;
3367 }
3368#endif
3369 else
3370 {
3371 /* This is an address. The size of the address will be
24eab124 3372 determined later, depending on destination register,
3e73aa7c
JH
3373 suffix, or the default for the section. */
3374 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3375 }
3376
3377 return 1;
3378}
3379
551c1ca1 3380static char *i386_scale PARAMS ((char *));
252b5132 3381
551c1ca1 3382static char *
252b5132
RH
3383i386_scale (scale)
3384 char *scale;
3385{
551c1ca1
AM
3386 offsetT val;
3387 char *save = input_line_pointer;
252b5132 3388
551c1ca1
AM
3389 input_line_pointer = scale;
3390 val = get_absolute_expression ();
3391
3392 switch (val)
252b5132 3393 {
551c1ca1
AM
3394 case 0:
3395 case 1:
252b5132
RH
3396 i.log2_scale_factor = 0;
3397 break;
551c1ca1 3398 case 2:
252b5132
RH
3399 i.log2_scale_factor = 1;
3400 break;
551c1ca1 3401 case 4:
252b5132
RH
3402 i.log2_scale_factor = 2;
3403 break;
551c1ca1 3404 case 8:
252b5132
RH
3405 i.log2_scale_factor = 3;
3406 break;
3407 default:
252b5132 3408 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3409 scale);
551c1ca1
AM
3410 input_line_pointer = save;
3411 return NULL;
252b5132
RH
3412 }
3413 if (i.log2_scale_factor != 0 && ! i.index_reg)
3414 {
3415 as_warn (_("scale factor of %d without an index register"),
24eab124 3416 1 << i.log2_scale_factor);
252b5132
RH
3417#if SCALE1_WHEN_NO_INDEX
3418 i.log2_scale_factor = 0;
3419#endif
3420 }
551c1ca1
AM
3421 scale = input_line_pointer;
3422 input_line_pointer = save;
3423 return scale;
252b5132
RH
3424}
3425
3426static int i386_displacement PARAMS ((char *, char *));
3427
3428static int
3429i386_displacement (disp_start, disp_end)
3430 char *disp_start;
3431 char *disp_end;
3432{
3433 register expressionS *exp;
3434 segT exp_seg = 0;
3435 char *save_input_line_pointer;
f3c180ae
AM
3436#ifndef LEX_AT
3437 char *gotfree_input_line;
3438#endif
252b5132
RH
3439 int bigdisp = Disp32;
3440
3e73aa7c 3441 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132 3442 bigdisp = Disp16;
3e73aa7c
JH
3443 if (flag_code == CODE_64BIT)
3444 bigdisp = Disp64;
252b5132
RH
3445 i.types[this_operand] |= bigdisp;
3446
3447 exp = &disp_expressions[i.disp_operands];
520dc8e8 3448 i.op[this_operand].disps = exp;
252b5132
RH
3449 i.disp_operands++;
3450 save_input_line_pointer = input_line_pointer;
3451 input_line_pointer = disp_start;
3452 END_STRING_AND_SAVE (disp_end);
3453
3454#ifndef GCC_ASM_O_HACK
3455#define GCC_ASM_O_HACK 0
3456#endif
3457#if GCC_ASM_O_HACK
3458 END_STRING_AND_SAVE (disp_end + 1);
3459 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3460 && displacement_string_end[-1] == '+')
252b5132
RH
3461 {
3462 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3463 constraint within gcc asm statements.
3464 For instance:
3465
3466 #define _set_tssldt_desc(n,addr,limit,type) \
3467 __asm__ __volatile__ ( \
3468 "movw %w2,%0\n\t" \
3469 "movw %w1,2+%0\n\t" \
3470 "rorl $16,%1\n\t" \
3471 "movb %b1,4+%0\n\t" \
3472 "movb %4,5+%0\n\t" \
3473 "movb $0,6+%0\n\t" \
3474 "movb %h1,7+%0\n\t" \
3475 "rorl $16,%1" \
3476 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3477
3478 This works great except that the output assembler ends
3479 up looking a bit weird if it turns out that there is
3480 no offset. You end up producing code that looks like:
3481
3482 #APP
3483 movw $235,(%eax)
3484 movw %dx,2+(%eax)
3485 rorl $16,%edx
3486 movb %dl,4+(%eax)
3487 movb $137,5+(%eax)
3488 movb $0,6+(%eax)
3489 movb %dh,7+(%eax)
3490 rorl $16,%edx
3491 #NO_APP
3492
47926f60 3493 So here we provide the missing zero. */
24eab124
AM
3494
3495 *displacement_string_end = '0';
252b5132
RH
3496 }
3497#endif
3498#ifndef LEX_AT
f3c180ae
AM
3499 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3500 if (gotfree_input_line)
3501 input_line_pointer = gotfree_input_line;
252b5132
RH
3502#endif
3503
24eab124 3504 exp_seg = expression (exp);
252b5132 3505
636c26b0
AM
3506 SKIP_WHITESPACE ();
3507 if (*input_line_pointer)
3508 as_bad (_("junk `%s' after expression"), input_line_pointer);
3509#if GCC_ASM_O_HACK
3510 RESTORE_END_STRING (disp_end + 1);
3511#endif
3512 RESTORE_END_STRING (disp_end);
3513 input_line_pointer = save_input_line_pointer;
3514#ifndef LEX_AT
3515 if (gotfree_input_line)
3516 free (gotfree_input_line);
3517#endif
3518
252b5132 3519#ifdef BFD_ASSEMBLER
24eab124
AM
3520 /* We do this to make sure that the section symbol is in
3521 the symbol table. We will ultimately change the relocation
47926f60 3522 to be relative to the beginning of the section. */
1ae12ab7
AM
3523 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3524 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3525 {
636c26b0
AM
3526 if (exp->X_op != O_symbol)
3527 {
3528 as_bad (_("bad expression used with @%s"),
3529 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3530 ? "GOTPCREL"
3531 : "GOTOFF"));
3532 return 0;
3533 }
3534
e5cb08ac 3535 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3536 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3537 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
3538 exp->X_op = O_subtract;
3539 exp->X_op_symbol = GOT_symbol;
1ae12ab7
AM
3540 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3541 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3542 else
1ae12ab7 3543 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3544 }
252b5132
RH
3545#endif
3546
2daf4fd8
AM
3547 if (exp->X_op == O_absent || exp->X_op == O_big)
3548 {
47926f60 3549 /* Missing or bad expr becomes absolute 0. */
d0b47220 3550 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3551 disp_start);
3552 exp->X_op = O_constant;
3553 exp->X_add_number = 0;
3554 exp->X_add_symbol = (symbolS *) 0;
3555 exp->X_op_symbol = (symbolS *) 0;
3556 }
3557
4c63da97 3558#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3559 if (exp->X_op != O_constant
4c63da97 3560#ifdef BFD_ASSEMBLER
45288df1 3561 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3562#endif
45288df1
AM
3563 && exp_seg != text_section
3564 && exp_seg != data_section
3565 && exp_seg != bss_section
3566 && exp_seg != undefined_section)
24eab124 3567 {
4c63da97 3568#ifdef BFD_ASSEMBLER
d0b47220 3569 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3570#else
d0b47220 3571 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3572#endif
24eab124
AM
3573 return 0;
3574 }
252b5132 3575#endif
3e73aa7c
JH
3576 else if (flag_code == CODE_64BIT)
3577 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3578 return 1;
3579}
3580
e5cb08ac 3581static int i386_index_check PARAMS ((const char *));
252b5132 3582
eecb386c 3583/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3584 Return 1 on success, 0 on a failure. */
3585
252b5132 3586static int
eecb386c
AM
3587i386_index_check (operand_string)
3588 const char *operand_string;
252b5132 3589{
3e73aa7c 3590 int ok;
24eab124 3591#if INFER_ADDR_PREFIX
eecb386c
AM
3592 int fudged = 0;
3593
24eab124
AM
3594 tryprefix:
3595#endif
3e73aa7c
JH
3596 ok = 1;
3597 if (flag_code == CODE_64BIT)
3598 {
3599 /* 64bit checks. */
3600 if ((i.base_reg
3601 && ((i.base_reg->reg_type & Reg64) == 0)
3602 && (i.base_reg->reg_type != BaseIndex
3603 || i.index_reg))
3604 || (i.index_reg
3605 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3606 != (Reg64|BaseIndex))))
3607 ok = 0;
3608 }
3609 else
3610 {
3611 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3612 {
3613 /* 16bit checks. */
3614 if ((i.base_reg
3615 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3616 != (Reg16|BaseIndex)))
3617 || (i.index_reg
3618 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3619 != (Reg16|BaseIndex))
3620 || ! (i.base_reg
3621 && i.base_reg->reg_num < 6
3622 && i.index_reg->reg_num >= 6
3623 && i.log2_scale_factor == 0))))
3624 ok = 0;
3625 }
3626 else
e5cb08ac 3627 {
3e73aa7c
JH
3628 /* 32bit checks. */
3629 if ((i.base_reg
3630 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3631 || (i.index_reg
3632 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3633 != (Reg32|BaseIndex))))
e5cb08ac 3634 ok = 0;
3e73aa7c
JH
3635 }
3636 }
3637 if (!ok)
24eab124
AM
3638 {
3639#if INFER_ADDR_PREFIX
3e73aa7c
JH
3640 if (flag_code != CODE_64BIT
3641 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3642 {
3643 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3644 i.prefixes += 1;
b23bac36
AM
3645 /* Change the size of any displacement too. At most one of
3646 Disp16 or Disp32 is set.
3647 FIXME. There doesn't seem to be any real need for separate
3648 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 3649 Removing them would probably clean up the code quite a lot. */
b23bac36
AM
3650 if (i.types[this_operand] & (Disp16|Disp32))
3651 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3652 fudged = 1;
24eab124
AM
3653 goto tryprefix;
3654 }
eecb386c
AM
3655 if (fudged)
3656 as_bad (_("`%s' is not a valid base/index expression"),
3657 operand_string);
3658 else
c388dee8 3659#endif
eecb386c
AM
3660 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3661 operand_string,
3e73aa7c 3662 flag_code_names[flag_code]);
eecb386c 3663 return 0;
24eab124
AM
3664 }
3665 return 1;
3666}
252b5132 3667
252b5132 3668/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 3669 on error. */
252b5132 3670
252b5132
RH
3671static int
3672i386_operand (operand_string)
3673 char *operand_string;
3674{
af6bdddf
AM
3675 const reg_entry *r;
3676 char *end_op;
24eab124 3677 char *op_string = operand_string;
252b5132 3678
24eab124 3679 if (is_space_char (*op_string))
252b5132
RH
3680 ++op_string;
3681
24eab124 3682 /* We check for an absolute prefix (differentiating,
47926f60 3683 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
3684 if (*op_string == ABSOLUTE_PREFIX)
3685 {
3686 ++op_string;
3687 if (is_space_char (*op_string))
3688 ++op_string;
3689 i.types[this_operand] |= JumpAbsolute;
3690 }
252b5132 3691
47926f60 3692 /* Check if operand is a register. */
af6bdddf
AM
3693 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3694 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3695 {
24eab124
AM
3696 /* Check for a segment override by searching for ':' after a
3697 segment register. */
3698 op_string = end_op;
3699 if (is_space_char (*op_string))
3700 ++op_string;
3701 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3702 {
3703 switch (r->reg_num)
3704 {
3705 case 0:
3706 i.seg[i.mem_operands] = &es;
3707 break;
3708 case 1:
3709 i.seg[i.mem_operands] = &cs;
3710 break;
3711 case 2:
3712 i.seg[i.mem_operands] = &ss;
3713 break;
3714 case 3:
3715 i.seg[i.mem_operands] = &ds;
3716 break;
3717 case 4:
3718 i.seg[i.mem_operands] = &fs;
3719 break;
3720 case 5:
3721 i.seg[i.mem_operands] = &gs;
3722 break;
3723 }
252b5132 3724
24eab124 3725 /* Skip the ':' and whitespace. */
252b5132
RH
3726 ++op_string;
3727 if (is_space_char (*op_string))
24eab124 3728 ++op_string;
252b5132 3729
24eab124
AM
3730 if (!is_digit_char (*op_string)
3731 && !is_identifier_char (*op_string)
3732 && *op_string != '('
3733 && *op_string != ABSOLUTE_PREFIX)
3734 {
3735 as_bad (_("bad memory operand `%s'"), op_string);
3736 return 0;
3737 }
47926f60 3738 /* Handle case of %es:*foo. */
24eab124
AM
3739 if (*op_string == ABSOLUTE_PREFIX)
3740 {
3741 ++op_string;
3742 if (is_space_char (*op_string))
3743 ++op_string;
3744 i.types[this_operand] |= JumpAbsolute;
3745 }
3746 goto do_memory_reference;
3747 }
3748 if (*op_string)
3749 {
d0b47220 3750 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
3751 return 0;
3752 }
3753 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 3754 i.op[this_operand].regs = r;
24eab124
AM
3755 i.reg_operands++;
3756 }
af6bdddf
AM
3757 else if (*op_string == REGISTER_PREFIX)
3758 {
3759 as_bad (_("bad register name `%s'"), op_string);
3760 return 0;
3761 }
24eab124 3762 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 3763 {
24eab124
AM
3764 ++op_string;
3765 if (i.types[this_operand] & JumpAbsolute)
3766 {
d0b47220 3767 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
3768 return 0;
3769 }
3770 if (!i386_immediate (op_string))
3771 return 0;
3772 }
3773 else if (is_digit_char (*op_string)
3774 || is_identifier_char (*op_string)
e5cb08ac 3775 || *op_string == '(')
24eab124 3776 {
47926f60 3777 /* This is a memory reference of some sort. */
af6bdddf 3778 char *base_string;
252b5132 3779
47926f60 3780 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3781 char *displacement_string_start;
3782 char *displacement_string_end;
252b5132 3783
24eab124 3784 do_memory_reference:
24eab124
AM
3785 if ((i.mem_operands == 1
3786 && (current_templates->start->opcode_modifier & IsString) == 0)
3787 || i.mem_operands == 2)
3788 {
3789 as_bad (_("too many memory references for `%s'"),
3790 current_templates->start->name);
3791 return 0;
3792 }
252b5132 3793
24eab124
AM
3794 /* Check for base index form. We detect the base index form by
3795 looking for an ')' at the end of the operand, searching
3796 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3797 after the '('. */
af6bdddf 3798 base_string = op_string + strlen (op_string);
c3332e24 3799
af6bdddf
AM
3800 --base_string;
3801 if (is_space_char (*base_string))
3802 --base_string;
252b5132 3803
47926f60 3804 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
3805 displacement_string_start = op_string;
3806 displacement_string_end = base_string + 1;
252b5132 3807
24eab124
AM
3808 if (*base_string == ')')
3809 {
af6bdddf 3810 char *temp_string;
24eab124
AM
3811 unsigned int parens_balanced = 1;
3812 /* We've already checked that the number of left & right ()'s are
47926f60 3813 equal, so this loop will not be infinite. */
24eab124
AM
3814 do
3815 {
3816 base_string--;
3817 if (*base_string == ')')
3818 parens_balanced++;
3819 if (*base_string == '(')
3820 parens_balanced--;
3821 }
3822 while (parens_balanced);
c3332e24 3823
af6bdddf 3824 temp_string = base_string;
c3332e24 3825
24eab124 3826 /* Skip past '(' and whitespace. */
252b5132
RH
3827 ++base_string;
3828 if (is_space_char (*base_string))
24eab124 3829 ++base_string;
252b5132 3830
af6bdddf
AM
3831 if (*base_string == ','
3832 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3833 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3834 {
af6bdddf 3835 displacement_string_end = temp_string;
252b5132 3836
af6bdddf 3837 i.types[this_operand] |= BaseIndex;
252b5132 3838
af6bdddf 3839 if (i.base_reg)
24eab124 3840 {
24eab124
AM
3841 base_string = end_op;
3842 if (is_space_char (*base_string))
3843 ++base_string;
af6bdddf
AM
3844 }
3845
3846 /* There may be an index reg or scale factor here. */
3847 if (*base_string == ',')
3848 {
3849 ++base_string;
3850 if (is_space_char (*base_string))
3851 ++base_string;
3852
3853 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3854 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3855 {
af6bdddf 3856 base_string = end_op;
24eab124
AM
3857 if (is_space_char (*base_string))
3858 ++base_string;
af6bdddf
AM
3859 if (*base_string == ',')
3860 {
3861 ++base_string;
3862 if (is_space_char (*base_string))
3863 ++base_string;
3864 }
e5cb08ac 3865 else if (*base_string != ')')
af6bdddf
AM
3866 {
3867 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3868 operand_string);
3869 return 0;
3870 }
24eab124 3871 }
af6bdddf 3872 else if (*base_string == REGISTER_PREFIX)
24eab124 3873 {
af6bdddf 3874 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3875 return 0;
3876 }
252b5132 3877
47926f60 3878 /* Check for scale factor. */
551c1ca1 3879 if (*base_string != ')')
af6bdddf 3880 {
551c1ca1
AM
3881 char *end_scale = i386_scale (base_string);
3882
3883 if (!end_scale)
af6bdddf 3884 return 0;
24eab124 3885
551c1ca1 3886 base_string = end_scale;
af6bdddf
AM
3887 if (is_space_char (*base_string))
3888 ++base_string;
3889 if (*base_string != ')')
3890 {
3891 as_bad (_("expecting `)' after scale factor in `%s'"),
3892 operand_string);
3893 return 0;
3894 }
3895 }
3896 else if (!i.index_reg)
24eab124 3897 {
af6bdddf
AM
3898 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3899 *base_string);
24eab124
AM
3900 return 0;
3901 }
3902 }
af6bdddf 3903 else if (*base_string != ')')
24eab124 3904 {
af6bdddf
AM
3905 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3906 operand_string);
24eab124
AM
3907 return 0;
3908 }
c3332e24 3909 }
af6bdddf 3910 else if (*base_string == REGISTER_PREFIX)
c3332e24 3911 {
af6bdddf 3912 as_bad (_("bad register name `%s'"), base_string);
24eab124 3913 return 0;
c3332e24 3914 }
24eab124
AM
3915 }
3916
3917 /* If there's an expression beginning the operand, parse it,
3918 assuming displacement_string_start and
3919 displacement_string_end are meaningful. */
3920 if (displacement_string_start != displacement_string_end)
3921 {
3922 if (!i386_displacement (displacement_string_start,
3923 displacement_string_end))
3924 return 0;
3925 }
3926
3927 /* Special case for (%dx) while doing input/output op. */
3928 if (i.base_reg
3929 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3930 && i.index_reg == 0
3931 && i.log2_scale_factor == 0
3932 && i.seg[i.mem_operands] == 0
3933 && (i.types[this_operand] & Disp) == 0)
3934 {
3935 i.types[this_operand] = InOutPortReg;
3936 return 1;
3937 }
3938
eecb386c
AM
3939 if (i386_index_check (operand_string) == 0)
3940 return 0;
24eab124
AM
3941 i.mem_operands++;
3942 }
3943 else
ce8a8b2f
AM
3944 {
3945 /* It's not a memory operand; argh! */
24eab124
AM
3946 as_bad (_("invalid char %s beginning operand %d `%s'"),
3947 output_invalid (*op_string),
3948 this_operand + 1,
3949 op_string);
3950 return 0;
3951 }
47926f60 3952 return 1; /* Normal return. */
252b5132
RH
3953}
3954\f
ee7fcc42
AM
3955/* md_estimate_size_before_relax()
3956
3957 Called just before relax() for rs_machine_dependent frags. The x86
3958 assembler uses these frags to handle variable size jump
3959 instructions.
3960
3961 Any symbol that is now undefined will not become defined.
3962 Return the correct fr_subtype in the frag.
3963 Return the initial "guess for variable size of frag" to caller.
3964 The guess is actually the growth beyond the fixed part. Whatever
3965 we do to grow the fixed or variable part contributes to our
3966 returned value. */
3967
252b5132
RH
3968int
3969md_estimate_size_before_relax (fragP, segment)
3970 register fragS *fragP;
3971 register segT segment;
3972{
252b5132 3973 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
3974 check for un-relaxable symbols. On an ELF system, we can't relax
3975 an externally visible symbol, because it may be overridden by a
3976 shared library. */
3977 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 3978#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b98ef147
AM
3979 || S_IS_EXTERNAL (fragP->fr_symbol)
3980 || S_IS_WEAK (fragP->fr_symbol)
3981#endif
3982 )
252b5132 3983 {
b98ef147
AM
3984 /* Symbol is undefined in this segment, or we need to keep a
3985 reloc so that weak symbols can be overridden. */
3986 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f3c180ae 3987 RELOC_ENUM reloc_type;
ee7fcc42
AM
3988 unsigned char *opcode;
3989 int old_fr_fix;
f6af82bd 3990
ee7fcc42
AM
3991 if (fragP->fr_var != NO_RELOC)
3992 reloc_type = fragP->fr_var;
b98ef147 3993 else if (size == 2)
f6af82bd
AM
3994 reloc_type = BFD_RELOC_16_PCREL;
3995 else
3996 reloc_type = BFD_RELOC_32_PCREL;
252b5132 3997
ee7fcc42
AM
3998 old_fr_fix = fragP->fr_fix;
3999 opcode = (unsigned char *) fragP->fr_opcode;
4000
fddf5b5b 4001 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4002 {
fddf5b5b
AM
4003 case UNCOND_JUMP:
4004 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4005 opcode[0] = 0xe9;
252b5132
RH
4006 fragP->fr_fix += size;
4007 fix_new (fragP, old_fr_fix, size,
4008 fragP->fr_symbol,
4009 fragP->fr_offset, 1,
f6af82bd 4010 reloc_type);
252b5132
RH
4011 break;
4012
fddf5b5b
AM
4013 case COND_JUMP86:
4014 if (no_cond_jump_promotion)
93c2a809
AM
4015 goto relax_guess;
4016
fddf5b5b
AM
4017 if (size == 2)
4018 {
4019 /* Negate the condition, and branch past an
4020 unconditional jump. */
4021 opcode[0] ^= 1;
4022 opcode[1] = 3;
4023 /* Insert an unconditional jump. */
4024 opcode[2] = 0xe9;
4025 /* We added two extra opcode bytes, and have a two byte
4026 offset. */
4027 fragP->fr_fix += 2 + 2;
4028 fix_new (fragP, old_fr_fix + 2, 2,
4029 fragP->fr_symbol,
4030 fragP->fr_offset, 1,
4031 reloc_type);
4032 break;
4033 }
4034 /* Fall through. */
4035
4036 case COND_JUMP:
4037 if (no_cond_jump_promotion)
93c2a809
AM
4038 goto relax_guess;
4039
24eab124 4040 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4041 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4042 opcode[1] = opcode[0] + 0x10;
f6af82bd 4043 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4044 /* We've added an opcode byte. */
4045 fragP->fr_fix += 1 + size;
252b5132
RH
4046 fix_new (fragP, old_fr_fix + 1, size,
4047 fragP->fr_symbol,
4048 fragP->fr_offset, 1,
f6af82bd 4049 reloc_type);
252b5132 4050 break;
fddf5b5b
AM
4051
4052 default:
4053 BAD_CASE (fragP->fr_subtype);
4054 break;
252b5132
RH
4055 }
4056 frag_wane (fragP);
ee7fcc42 4057 return fragP->fr_fix - old_fr_fix;
252b5132 4058 }
93c2a809
AM
4059
4060 relax_guess:
4061 /* Guess size depending on current relax state. Initially the relax
4062 state will correspond to a short jump and we return 1, because
4063 the variable part of the frag (the branch offset) is one byte
4064 long. However, we can relax a section more than once and in that
4065 case we must either set fr_subtype back to the unrelaxed state,
4066 or return the value for the appropriate branch. */
4067 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4068}
4069
47926f60
KH
4070/* Called after relax() is finished.
4071
4072 In: Address of frag.
4073 fr_type == rs_machine_dependent.
4074 fr_subtype is what the address relaxed to.
4075
4076 Out: Any fixSs and constants are set up.
4077 Caller will turn frag into a ".space 0". */
4078
252b5132
RH
4079#ifndef BFD_ASSEMBLER
4080void
4081md_convert_frag (headers, sec, fragP)
a04b544b
ILT
4082 object_headers *headers ATTRIBUTE_UNUSED;
4083 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4084 register fragS *fragP;
4085#else
4086void
4087md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4088 bfd *abfd ATTRIBUTE_UNUSED;
4089 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4090 register fragS *fragP;
4091#endif
4092{
4093 register unsigned char *opcode;
4094 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4095 offsetT target_address;
4096 offsetT opcode_address;
252b5132 4097 unsigned int extension = 0;
847f7ad4 4098 offsetT displacement_from_opcode_start;
252b5132
RH
4099
4100 opcode = (unsigned char *) fragP->fr_opcode;
4101
47926f60 4102 /* Address we want to reach in file space. */
252b5132 4103 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4104
47926f60 4105 /* Address opcode resides at in file space. */
252b5132
RH
4106 opcode_address = fragP->fr_address + fragP->fr_fix;
4107
47926f60 4108 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4109 displacement_from_opcode_start = target_address - opcode_address;
4110
fddf5b5b 4111 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4112 {
47926f60
KH
4113 /* Don't have to change opcode. */
4114 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4115 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4116 }
4117 else
4118 {
4119 if (no_cond_jump_promotion
4120 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4121 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4122
fddf5b5b
AM
4123 switch (fragP->fr_subtype)
4124 {
4125 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4126 extension = 4; /* 1 opcode + 4 displacement */
4127 opcode[0] = 0xe9;
4128 where_to_put_displacement = &opcode[1];
4129 break;
252b5132 4130
fddf5b5b
AM
4131 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4132 extension = 2; /* 1 opcode + 2 displacement */
4133 opcode[0] = 0xe9;
4134 where_to_put_displacement = &opcode[1];
4135 break;
252b5132 4136
fddf5b5b
AM
4137 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4138 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4139 extension = 5; /* 2 opcode + 4 displacement */
4140 opcode[1] = opcode[0] + 0x10;
4141 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4142 where_to_put_displacement = &opcode[2];
4143 break;
252b5132 4144
fddf5b5b
AM
4145 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4146 extension = 3; /* 2 opcode + 2 displacement */
4147 opcode[1] = opcode[0] + 0x10;
4148 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4149 where_to_put_displacement = &opcode[2];
4150 break;
252b5132 4151
fddf5b5b
AM
4152 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4153 extension = 4;
4154 opcode[0] ^= 1;
4155 opcode[1] = 3;
4156 opcode[2] = 0xe9;
4157 where_to_put_displacement = &opcode[3];
4158 break;
4159
4160 default:
4161 BAD_CASE (fragP->fr_subtype);
4162 break;
4163 }
252b5132 4164 }
fddf5b5b 4165
47926f60 4166 /* Now put displacement after opcode. */
252b5132
RH
4167 md_number_to_chars ((char *) where_to_put_displacement,
4168 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4169 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4170 fragP->fr_fix += extension;
4171}
4172\f
47926f60
KH
4173/* Size of byte displacement jmp. */
4174int md_short_jump_size = 2;
4175
4176/* Size of dword displacement jmp. */
4177int md_long_jump_size = 5;
252b5132 4178
47926f60
KH
4179/* Size of relocation record. */
4180const int md_reloc_size = 8;
252b5132
RH
4181
4182void
4183md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4184 char *ptr;
4185 addressT from_addr, to_addr;
ab9da554
ILT
4186 fragS *frag ATTRIBUTE_UNUSED;
4187 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4188{
847f7ad4 4189 offsetT offset;
252b5132
RH
4190
4191 offset = to_addr - (from_addr + 2);
47926f60
KH
4192 /* Opcode for byte-disp jump. */
4193 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4194 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4195}
4196
4197void
4198md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4199 char *ptr;
4200 addressT from_addr, to_addr;
a38cf1db
AM
4201 fragS *frag ATTRIBUTE_UNUSED;
4202 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4203{
847f7ad4 4204 offsetT offset;
252b5132 4205
a38cf1db
AM
4206 offset = to_addr - (from_addr + 5);
4207 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4208 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4209}
4210\f
4211/* Apply a fixup (fixS) to segment data, once it has been determined
4212 by our caller that we have all the info we need to fix it up.
4213
4214 On the 386, immediates, displacements, and data pointers are all in
4215 the same (little-endian) format, so we don't need to care about which
4216 we are handling. */
4217
94f592af
NC
4218void
4219md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4220 /* The fix we're to put in. */
4221 fixS *fixP;
47926f60 4222 /* Pointer to the value of the bits. */
94f592af 4223 valueT * valP;
47926f60
KH
4224 /* Segment fix is from. */
4225 segT seg ATTRIBUTE_UNUSED;
252b5132 4226{
94f592af
NC
4227 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4228 valueT value = * valP;
252b5132 4229
e1b283bb 4230#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4231 if (fixP->fx_pcrel)
4232 {
4233 switch (fixP->fx_r_type)
4234 {
5865bb77
ILT
4235 default:
4236 break;
4237
93382f6d
AM
4238 case BFD_RELOC_32:
4239 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4240 break;
4241 case BFD_RELOC_16:
4242 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4243 break;
4244 case BFD_RELOC_8:
4245 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4246 break;
4247 }
4248 }
252b5132 4249
0723899b
ILT
4250 /* This is a hack. There should be a better way to handle this.
4251 This covers for the fact that bfd_install_relocation will
4252 subtract the current location (for partial_inplace, PC relative
4253 relocations); see more below. */
93382f6d
AM
4254 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4255 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4256 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7c44d1d3 4257 && fixP->fx_addsy && !use_rela_relocations)
252b5132
RH
4258 {
4259#ifndef OBJ_AOUT
4260 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4261#ifdef TE_PE
4262 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4263#endif
4264 )
4265 value += fixP->fx_where + fixP->fx_frag->fr_address;
4266#endif
4267#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4268 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4269 {
2f66722d
AM
4270 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4271
4272 if ((fseg == seg
4273 || (symbol_section_p (fixP->fx_addsy)
4274 && fseg != absolute_section))
4275 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4276 && ! S_IS_WEAK (fixP->fx_addsy)
4277 && S_IS_DEFINED (fixP->fx_addsy)
4278 && ! S_IS_COMMON (fixP->fx_addsy))
4279 {
4280 /* Yes, we add the values in twice. This is because
4281 bfd_perform_relocation subtracts them out again. I think
4282 bfd_perform_relocation is broken, but I don't dare change
4283 it. FIXME. */
4284 value += fixP->fx_where + fixP->fx_frag->fr_address;
4285 }
252b5132
RH
4286 }
4287#endif
4288#if defined (OBJ_COFF) && defined (TE_PE)
4289 /* For some reason, the PE format does not store a section
24eab124 4290 address offset for a PC relative symbol. */
252b5132
RH
4291 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4292 value += md_pcrel_from (fixP);
4293#endif
4294 }
4295
4296 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4297 and we must not dissappoint it. */
252b5132
RH
4298#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4299 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4300 && fixP->fx_addsy)
47926f60
KH
4301 switch (fixP->fx_r_type)
4302 {
4303 case BFD_RELOC_386_PLT32:
3e73aa7c 4304 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4305 /* Make the jump instruction point to the address of the operand. At
4306 runtime we merely add the offset to the actual PLT entry. */
4307 value = -4;
4308 break;
4309 case BFD_RELOC_386_GOTPC:
4310
4311/* This is tough to explain. We end up with this one if we have
252b5132
RH
4312 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4313 * here is to obtain the absolute address of the GOT, and it is strongly
4314 * preferable from a performance point of view to avoid using a runtime
c3332e24 4315 * relocation for this. The actual sequence of instructions often look
252b5132 4316 * something like:
c3332e24 4317 *
24eab124 4318 * call .L66
252b5132 4319 * .L66:
24eab124
AM
4320 * popl %ebx
4321 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 4322 *
24eab124 4323 * The call and pop essentially return the absolute address of
252b5132
RH
4324 * the label .L66 and store it in %ebx. The linker itself will
4325 * ultimately change the first operand of the addl so that %ebx points to
4326 * the GOT, but to keep things simple, the .o file must have this operand
4327 * set so that it generates not the absolute address of .L66, but the
4328 * absolute address of itself. This allows the linker itself simply
4329 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4330 * added in, and the addend of the relocation is stored in the operand
4331 * field for the instruction itself.
c3332e24 4332 *
24eab124 4333 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
4334 * offset so that %ebx would point to itself. The thing that is tricky is
4335 * that .-.L66 will point to the beginning of the instruction, so we need
4336 * to further modify the operand so that it will point to itself.
4337 * There are other cases where you have something like:
c3332e24 4338 *
24eab124 4339 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 4340 *
252b5132 4341 * and here no correction would be required. Internally in the assembler
c3332e24 4342 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
4343 * explicitly mentioned, and I wonder whether it would simplify matters
4344 * to do it this way. Who knows. In earlier versions of the PIC patches,
4345 * the pcrel_adjust field was used to store the correction, but since the
47926f60
KH
4346 * expression is not pcrel, I felt it would be confusing to do it this
4347 * way. */
4348
4349 value -= 1;
4350 break;
4351 case BFD_RELOC_386_GOT32:
3e73aa7c 4352 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4353 value = 0; /* Fully resolved at runtime. No addend. */
4354 break;
4355 case BFD_RELOC_386_GOTOFF:
3e73aa7c 4356 case BFD_RELOC_X86_64_GOTPCREL:
47926f60
KH
4357 break;
4358
4359 case BFD_RELOC_VTABLE_INHERIT:
4360 case BFD_RELOC_VTABLE_ENTRY:
4361 fixP->fx_done = 0;
94f592af 4362 return;
47926f60
KH
4363
4364 default:
4365 break;
4366 }
4367#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
94f592af 4368 * valP = value;
47926f60 4369#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c 4370
3e73aa7c 4371 /* Are we finished with this relocation now? */
94f592af 4372 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
3e73aa7c 4373 fixP->fx_done = 1;
94f592af 4374#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4375 else if (use_rela_relocations)
4376 {
4377 fixP->fx_no_overflow = 1;
4378 value = 0;
4379 }
3e73aa7c 4380#endif
94f592af 4381 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4382}
252b5132 4383\f
252b5132
RH
4384#define MAX_LITTLENUMS 6
4385
47926f60
KH
4386/* Turn the string pointed to by litP into a floating point constant
4387 of type TYPE, and emit the appropriate bytes. The number of
4388 LITTLENUMS emitted is stored in *SIZEP. An error message is
4389 returned, or NULL on OK. */
4390
252b5132
RH
4391char *
4392md_atof (type, litP, sizeP)
2ab9b79e 4393 int type;
252b5132
RH
4394 char *litP;
4395 int *sizeP;
4396{
4397 int prec;
4398 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4399 LITTLENUM_TYPE *wordP;
4400 char *t;
4401
4402 switch (type)
4403 {
4404 case 'f':
4405 case 'F':
4406 prec = 2;
4407 break;
4408
4409 case 'd':
4410 case 'D':
4411 prec = 4;
4412 break;
4413
4414 case 'x':
4415 case 'X':
4416 prec = 5;
4417 break;
4418
4419 default:
4420 *sizeP = 0;
4421 return _("Bad call to md_atof ()");
4422 }
4423 t = atof_ieee (input_line_pointer, type, words);
4424 if (t)
4425 input_line_pointer = t;
4426
4427 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4428 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4429 the bigendian 386. */
4430 for (wordP = words + prec - 1; prec--;)
4431 {
4432 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4433 litP += sizeof (LITTLENUM_TYPE);
4434 }
4435 return 0;
4436}
4437\f
4438char output_invalid_buf[8];
4439
252b5132
RH
4440static char *
4441output_invalid (c)
4442 int c;
4443{
3882b010 4444 if (ISPRINT (c))
252b5132
RH
4445 sprintf (output_invalid_buf, "'%c'", c);
4446 else
4447 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4448 return output_invalid_buf;
4449}
4450
af6bdddf 4451/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4452
4453static const reg_entry *
4454parse_register (reg_string, end_op)
4455 char *reg_string;
4456 char **end_op;
4457{
af6bdddf
AM
4458 char *s = reg_string;
4459 char *p;
252b5132
RH
4460 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4461 const reg_entry *r;
4462
4463 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4464 if (*s == REGISTER_PREFIX)
4465 ++s;
4466
4467 if (is_space_char (*s))
4468 ++s;
4469
4470 p = reg_name_given;
af6bdddf 4471 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4472 {
4473 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4474 return (const reg_entry *) NULL;
4475 s++;
252b5132
RH
4476 }
4477
6588847e
DN
4478 /* For naked regs, make sure that we are not dealing with an identifier.
4479 This prevents confusing an identifier like `eax_var' with register
4480 `eax'. */
4481 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4482 return (const reg_entry *) NULL;
4483
af6bdddf 4484 *end_op = s;
252b5132
RH
4485
4486 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4487
5f47d35b 4488 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4489 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4490 {
5f47d35b
AM
4491 if (is_space_char (*s))
4492 ++s;
4493 if (*s == '(')
4494 {
af6bdddf 4495 ++s;
5f47d35b
AM
4496 if (is_space_char (*s))
4497 ++s;
4498 if (*s >= '0' && *s <= '7')
4499 {
4500 r = &i386_float_regtab[*s - '0'];
af6bdddf 4501 ++s;
5f47d35b
AM
4502 if (is_space_char (*s))
4503 ++s;
4504 if (*s == ')')
4505 {
4506 *end_op = s + 1;
4507 return r;
4508 }
5f47d35b 4509 }
47926f60 4510 /* We have "%st(" then garbage. */
5f47d35b
AM
4511 return (const reg_entry *) NULL;
4512 }
4513 }
4514
1ae00879
AM
4515 if (r != NULL
4516 && r->reg_flags & (RegRex64|RegRex)
4517 && flag_code != CODE_64BIT)
4518 {
4519 return (const reg_entry *) NULL;
4520 }
4521
252b5132
RH
4522 return r;
4523}
4524\f
4cc782b5 4525#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
65172ab8 4526const char *md_shortopts = "kVQ:sq";
252b5132 4527#else
65172ab8 4528const char *md_shortopts = "q";
252b5132 4529#endif
6e0b89ee 4530
252b5132 4531struct option md_longopts[] = {
3e73aa7c
JH
4532#define OPTION_32 (OPTION_MD_BASE + 0)
4533 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4534#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4535#define OPTION_64 (OPTION_MD_BASE + 1)
4536 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4537#endif
252b5132
RH
4538 {NULL, no_argument, NULL, 0}
4539};
4540size_t md_longopts_size = sizeof (md_longopts);
4541
4542int
4543md_parse_option (c, arg)
4544 int c;
ab9da554 4545 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4546{
4547 switch (c)
4548 {
a38cf1db
AM
4549 case 'q':
4550 quiet_warnings = 1;
252b5132
RH
4551 break;
4552
4553#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4554 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4555 should be emitted or not. FIXME: Not implemented. */
4556 case 'Q':
252b5132
RH
4557 break;
4558
4559 /* -V: SVR4 argument to print version ID. */
4560 case 'V':
4561 print_version_id ();
4562 break;
4563
a38cf1db
AM
4564 /* -k: Ignore for FreeBSD compatibility. */
4565 case 'k':
252b5132 4566 break;
4cc782b5
ILT
4567
4568 case 's':
4569 /* -s: On i386 Solaris, this tells the native assembler to use
4570 .stab instead of .stab.excl. We always use .stab anyhow. */
4571 break;
6e0b89ee 4572
3e73aa7c
JH
4573 case OPTION_64:
4574 {
4575 const char **list, **l;
4576
3e73aa7c
JH
4577 list = bfd_target_list ();
4578 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4579 if (strcmp (*l, "elf64-x86-64") == 0)
4580 {
4581 default_arch = "x86_64";
4582 break;
4583 }
3e73aa7c 4584 if (*l == NULL)
6e0b89ee 4585 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4586 free (list);
4587 }
4588 break;
4589#endif
252b5132 4590
6e0b89ee
AM
4591 case OPTION_32:
4592 default_arch = "i386";
4593 break;
4594
252b5132
RH
4595 default:
4596 return 0;
4597 }
4598 return 1;
4599}
4600
4601void
4602md_show_usage (stream)
4603 FILE *stream;
4604{
4cc782b5
ILT
4605#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4606 fprintf (stream, _("\
a38cf1db
AM
4607 -Q ignored\n\
4608 -V print assembler version number\n\
4609 -k ignored\n\
4610 -q quieten some warnings\n\
4611 -s ignored\n"));
4612#else
4613 fprintf (stream, _("\
4614 -q quieten some warnings\n"));
4cc782b5 4615#endif
252b5132
RH
4616}
4617
4618#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4619#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4620 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
4621
4622/* Pick the target format to use. */
4623
47926f60 4624const char *
252b5132
RH
4625i386_target_format ()
4626{
3e73aa7c
JH
4627 if (!strcmp (default_arch, "x86_64"))
4628 set_code_flag (CODE_64BIT);
4629 else if (!strcmp (default_arch, "i386"))
4630 set_code_flag (CODE_32BIT);
4631 else
4632 as_fatal (_("Unknown architecture"));
252b5132
RH
4633 switch (OUTPUT_FLAVOR)
4634 {
4c63da97
AM
4635#ifdef OBJ_MAYBE_AOUT
4636 case bfd_target_aout_flavour:
47926f60 4637 return AOUT_TARGET_FORMAT;
4c63da97
AM
4638#endif
4639#ifdef OBJ_MAYBE_COFF
252b5132
RH
4640 case bfd_target_coff_flavour:
4641 return "coff-i386";
4c63da97 4642#endif
3e73aa7c 4643#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 4644 case bfd_target_elf_flavour:
3e73aa7c 4645 {
e5cb08ac
KH
4646 if (flag_code == CODE_64BIT)
4647 use_rela_relocations = 1;
4648 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
3e73aa7c 4649 }
4c63da97 4650#endif
252b5132
RH
4651 default:
4652 abort ();
4653 return NULL;
4654 }
4655}
4656
47926f60 4657#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
4658
4659#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4660void i386_elf_emit_arch_note ()
4661{
4662 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4663 && cpu_arch_name != NULL)
4664 {
4665 char *p;
4666 asection *seg = now_seg;
4667 subsegT subseg = now_subseg;
4668 Elf_Internal_Note i_note;
4669 Elf_External_Note e_note;
4670 asection *note_secp;
4671 int len;
4672
4673 /* Create the .note section. */
4674 note_secp = subseg_new (".note", 0);
4675 bfd_set_section_flags (stdoutput,
4676 note_secp,
4677 SEC_HAS_CONTENTS | SEC_READONLY);
4678
4679 /* Process the arch string. */
4680 len = strlen (cpu_arch_name);
4681
4682 i_note.namesz = len + 1;
4683 i_note.descsz = 0;
4684 i_note.type = NT_ARCH;
4685 p = frag_more (sizeof (e_note.namesz));
4686 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
4687 p = frag_more (sizeof (e_note.descsz));
4688 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
4689 p = frag_more (sizeof (e_note.type));
4690 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
4691 p = frag_more (len + 1);
4692 strcpy (p, cpu_arch_name);
4693
4694 frag_align (2, 0, 0);
4695
4696 subseg_set (seg, subseg);
4697 }
4698}
4699#endif
47926f60 4700#endif /* BFD_ASSEMBLER */
252b5132 4701\f
252b5132
RH
4702symbolS *
4703md_undefined_symbol (name)
4704 char *name;
4705{
18dc2407
ILT
4706 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4707 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4708 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4709 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
4710 {
4711 if (!GOT_symbol)
4712 {
4713 if (symbol_find (name))
4714 as_bad (_("GOT already in symbol table"));
4715 GOT_symbol = symbol_new (name, undefined_section,
4716 (valueT) 0, &zero_address_frag);
4717 };
4718 return GOT_symbol;
4719 }
252b5132
RH
4720 return 0;
4721}
4722
4723/* Round up a section size to the appropriate boundary. */
47926f60 4724
252b5132
RH
4725valueT
4726md_section_align (segment, size)
ab9da554 4727 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
4728 valueT size;
4729{
252b5132 4730#ifdef BFD_ASSEMBLER
4c63da97
AM
4731#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4732 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4733 {
4734 /* For a.out, force the section size to be aligned. If we don't do
4735 this, BFD will align it for us, but it will not write out the
4736 final bytes of the section. This may be a bug in BFD, but it is
4737 easier to fix it here since that is how the other a.out targets
4738 work. */
4739 int align;
4740
4741 align = bfd_get_section_alignment (stdoutput, segment);
4742 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4743 }
252b5132
RH
4744#endif
4745#endif
4746
4747 return size;
4748}
4749
4750/* On the i386, PC-relative offsets are relative to the start of the
4751 next instruction. That is, the address of the offset, plus its
4752 size, since the offset is always the last part of the insn. */
4753
4754long
4755md_pcrel_from (fixP)
4756 fixS *fixP;
4757{
4758 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4759}
4760
4761#ifndef I386COFF
4762
4763static void
4764s_bss (ignore)
ab9da554 4765 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4766{
4767 register int temp;
4768
4769 temp = get_absolute_expression ();
4770 subseg_set (bss_section, (subsegT) temp);
4771 demand_empty_rest_of_line ();
4772}
4773
4774#endif
4775
252b5132
RH
4776#ifdef BFD_ASSEMBLER
4777
4778void
4779i386_validate_fix (fixp)
4780 fixS *fixp;
4781{
4782 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4783 {
3e73aa7c 4784 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
4785 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4786 {
4787 if (flag_code != CODE_64BIT)
4788 abort ();
4789 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4790 }
4791 else
4792 {
4793 if (flag_code == CODE_64BIT)
4794 abort ();
4795 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4796 }
252b5132
RH
4797 fixp->fx_subsy = 0;
4798 }
4799}
4800
252b5132
RH
4801arelent *
4802tc_gen_reloc (section, fixp)
ab9da554 4803 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4804 fixS *fixp;
4805{
4806 arelent *rel;
4807 bfd_reloc_code_real_type code;
4808
4809 switch (fixp->fx_r_type)
4810 {
3e73aa7c
JH
4811 case BFD_RELOC_X86_64_PLT32:
4812 case BFD_RELOC_X86_64_GOT32:
4813 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
4814 case BFD_RELOC_386_PLT32:
4815 case BFD_RELOC_386_GOT32:
4816 case BFD_RELOC_386_GOTOFF:
4817 case BFD_RELOC_386_GOTPC:
3e73aa7c 4818 case BFD_RELOC_X86_64_32S:
252b5132
RH
4819 case BFD_RELOC_RVA:
4820 case BFD_RELOC_VTABLE_ENTRY:
4821 case BFD_RELOC_VTABLE_INHERIT:
4822 code = fixp->fx_r_type;
4823 break;
4824 default:
93382f6d 4825 if (fixp->fx_pcrel)
252b5132 4826 {
93382f6d
AM
4827 switch (fixp->fx_size)
4828 {
4829 default:
b091f402
AM
4830 as_bad_where (fixp->fx_file, fixp->fx_line,
4831 _("can not do %d byte pc-relative relocation"),
4832 fixp->fx_size);
93382f6d
AM
4833 code = BFD_RELOC_32_PCREL;
4834 break;
4835 case 1: code = BFD_RELOC_8_PCREL; break;
4836 case 2: code = BFD_RELOC_16_PCREL; break;
4837 case 4: code = BFD_RELOC_32_PCREL; break;
4838 }
4839 }
4840 else
4841 {
4842 switch (fixp->fx_size)
4843 {
4844 default:
b091f402
AM
4845 as_bad_where (fixp->fx_file, fixp->fx_line,
4846 _("can not do %d byte relocation"),
4847 fixp->fx_size);
93382f6d
AM
4848 code = BFD_RELOC_32;
4849 break;
4850 case 1: code = BFD_RELOC_8; break;
4851 case 2: code = BFD_RELOC_16; break;
4852 case 4: code = BFD_RELOC_32; break;
3e73aa7c 4853 case 8: code = BFD_RELOC_64; break;
93382f6d 4854 }
252b5132
RH
4855 }
4856 break;
4857 }
252b5132
RH
4858
4859 if (code == BFD_RELOC_32
4860 && GOT_symbol
4861 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
4862 {
4863 /* We don't support GOTPC on 64bit targets. */
4864 if (flag_code == CODE_64BIT)
bfb32b52 4865 abort ();
3e73aa7c
JH
4866 code = BFD_RELOC_386_GOTPC;
4867 }
252b5132
RH
4868
4869 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4870 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4871 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4872
4873 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
4874 if (!use_rela_relocations)
4875 {
4876 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4877 vtable entry to be used in the relocation's section offset. */
4878 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4879 rel->address = fixp->fx_offset;
252b5132 4880
3e73aa7c
JH
4881 if (fixp->fx_pcrel)
4882 rel->addend = fixp->fx_addnumber;
4883 else
4884 rel->addend = 0;
4885 }
4886 /* Use the rela in 64bit mode. */
252b5132 4887 else
3e73aa7c
JH
4888 {
4889 rel->addend = fixp->fx_offset;
3e73aa7c
JH
4890 if (fixp->fx_pcrel)
4891 rel->addend -= fixp->fx_size;
4892 }
4893
252b5132
RH
4894 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4895 if (rel->howto == NULL)
4896 {
4897 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 4898 _("cannot represent relocation type %s"),
252b5132
RH
4899 bfd_get_reloc_code_name (code));
4900 /* Set howto to a garbage value so that we can keep going. */
4901 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4902 assert (rel->howto != NULL);
4903 }
4904
4905 return rel;
4906}
4907
47926f60 4908#else /* ! BFD_ASSEMBLER */
252b5132
RH
4909
4910#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4911void
4912tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4913 char *where;
4914 fixS *fixP;
4915 relax_addressT segment_address_in_file;
4916{
47926f60
KH
4917 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4918 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 4919
47926f60 4920 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
4921 long r_symbolnum;
4922
4923 know (fixP->fx_addsy != NULL);
4924
4925 md_number_to_chars (where,
4926 (valueT) (fixP->fx_frag->fr_address
4927 + fixP->fx_where - segment_address_in_file),
4928 4);
4929
4930 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4931 ? S_GET_TYPE (fixP->fx_addsy)
4932 : fixP->fx_addsy->sy_number);
4933
4934 where[6] = (r_symbolnum >> 16) & 0x0ff;
4935 where[5] = (r_symbolnum >> 8) & 0x0ff;
4936 where[4] = r_symbolnum & 0x0ff;
4937 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4938 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4939 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4940}
4941
47926f60 4942#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
4943
4944#if defined (I386COFF)
4945
4946short
4947tc_coff_fix2rtype (fixP)
4948 fixS *fixP;
4949{
4950 if (fixP->fx_r_type == R_IMAGEBASE)
4951 return R_IMAGEBASE;
4952
4953 return (fixP->fx_pcrel ?
4954 (fixP->fx_size == 1 ? R_PCRBYTE :
4955 fixP->fx_size == 2 ? R_PCRWORD :
4956 R_PCRLONG) :
4957 (fixP->fx_size == 1 ? R_RELBYTE :
4958 fixP->fx_size == 2 ? R_RELWORD :
4959 R_DIR32));
4960}
4961
4962int
4963tc_coff_sizemachdep (frag)
4964 fragS *frag;
4965{
4966 if (frag->fr_next)
4967 return (frag->fr_next->fr_address - frag->fr_address);
4968 else
4969 return 0;
4970}
4971
47926f60 4972#endif /* I386COFF */
252b5132 4973
47926f60 4974#endif /* ! BFD_ASSEMBLER */
64a0c779
DN
4975\f
4976/* Parse operands using Intel syntax. This implements a recursive descent
4977 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4978 Programmer's Guide.
4979
4980 FIXME: We do not recognize the full operand grammar defined in the MASM
4981 documentation. In particular, all the structure/union and
4982 high-level macro operands are missing.
4983
4984 Uppercase words are terminals, lower case words are non-terminals.
4985 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4986 bars '|' denote choices. Most grammar productions are implemented in
4987 functions called 'intel_<production>'.
4988
4989 Initial production is 'expr'.
4990
64a0c779
DN
4991 addOp + | -
4992
4993 alpha [a-zA-Z]
4994
4995 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4996
4997 constant digits [[ radixOverride ]]
4998
4999 dataType BYTE | WORD | DWORD | QWORD | XWORD
5000
5001 digits decdigit
b77a7acd
AJ
5002 | digits decdigit
5003 | digits hexdigit
64a0c779
DN
5004
5005 decdigit [0-9]
5006
5007 e05 e05 addOp e06
b77a7acd 5008 | e06
64a0c779
DN
5009
5010 e06 e06 mulOp e09
b77a7acd 5011 | e09
64a0c779
DN
5012
5013 e09 OFFSET e10
5014 | e09 PTR e10
5015 | e09 : e10
5016 | e10
5017
5018 e10 e10 [ expr ]
b77a7acd 5019 | e11
64a0c779
DN
5020
5021 e11 ( expr )
b77a7acd 5022 | [ expr ]
64a0c779
DN
5023 | constant
5024 | dataType
5025 | id
5026 | $
5027 | register
5028
5029 => expr SHORT e05
b77a7acd 5030 | e05
64a0c779
DN
5031
5032 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5033 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5034
5035 hexdigit a | b | c | d | e | f
b77a7acd 5036 | A | B | C | D | E | F
64a0c779
DN
5037
5038 id alpha
b77a7acd 5039 | id alpha
64a0c779
DN
5040 | id decdigit
5041
5042 mulOp * | / | MOD
5043
5044 quote " | '
5045
5046 register specialRegister
b77a7acd 5047 | gpRegister
64a0c779
DN
5048 | byteRegister
5049
5050 segmentRegister CS | DS | ES | FS | GS | SS
5051
5052 specialRegister CR0 | CR2 | CR3
b77a7acd 5053 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5054 | TR3 | TR4 | TR5 | TR6 | TR7
5055
64a0c779
DN
5056 We simplify the grammar in obvious places (e.g., register parsing is
5057 done by calling parse_register) and eliminate immediate left recursion
5058 to implement a recursive-descent parser.
5059
5060 expr SHORT e05
b77a7acd 5061 | e05
64a0c779
DN
5062
5063 e05 e06 e05'
5064
5065 e05' addOp e06 e05'
b77a7acd 5066 | Empty
64a0c779
DN
5067
5068 e06 e09 e06'
5069
5070 e06' mulOp e09 e06'
b77a7acd 5071 | Empty
64a0c779
DN
5072
5073 e09 OFFSET e10 e09'
b77a7acd 5074 | e10 e09'
64a0c779
DN
5075
5076 e09' PTR e10 e09'
b77a7acd 5077 | : e10 e09'
64a0c779
DN
5078 | Empty
5079
5080 e10 e11 e10'
5081
5082 e10' [ expr ] e10'
b77a7acd 5083 | Empty
64a0c779
DN
5084
5085 e11 ( expr )
b77a7acd 5086 | [ expr ]
64a0c779
DN
5087 | BYTE
5088 | WORD
5089 | DWORD
5090 | QWORD
5091 | XWORD
5092 | .
5093 | $
5094 | register
5095 | id
5096 | constant */
5097
5098/* Parsing structure for the intel syntax parser. Used to implement the
5099 semantic actions for the operand grammar. */
5100struct intel_parser_s
5101 {
5102 char *op_string; /* The string being parsed. */
5103 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5104 int op_modifier; /* Operand modifier. */
64a0c779
DN
5105 int is_mem; /* 1 if operand is memory reference. */
5106 const reg_entry *reg; /* Last register reference found. */
5107 char *disp; /* Displacement string being built. */
5108 };
5109
5110static struct intel_parser_s intel_parser;
5111
5112/* Token structure for parsing intel syntax. */
5113struct intel_token
5114 {
5115 int code; /* Token code. */
5116 const reg_entry *reg; /* Register entry for register tokens. */
5117 char *str; /* String representation. */
5118 };
5119
5120static struct intel_token cur_token, prev_token;
5121
50705ef4
AM
5122/* Token codes for the intel parser. Since T_SHORT is already used
5123 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5124#define T_NIL -1
5125#define T_CONST 1
5126#define T_REG 2
5127#define T_BYTE 3
5128#define T_WORD 4
5129#define T_DWORD 5
5130#define T_QWORD 6
5131#define T_XWORD 7
50705ef4 5132#undef T_SHORT
64a0c779
DN
5133#define T_SHORT 8
5134#define T_OFFSET 9
5135#define T_PTR 10
5136#define T_ID 11
5137
5138/* Prototypes for intel parser functions. */
5139static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5140static void intel_get_token PARAMS ((void));
5141static void intel_putback_token PARAMS ((void));
5142static int intel_expr PARAMS ((void));
5143static int intel_e05 PARAMS ((void));
5144static int intel_e05_1 PARAMS ((void));
5145static int intel_e06 PARAMS ((void));
5146static int intel_e06_1 PARAMS ((void));
5147static int intel_e09 PARAMS ((void));
5148static int intel_e09_1 PARAMS ((void));
5149static int intel_e10 PARAMS ((void));
5150static int intel_e10_1 PARAMS ((void));
5151static int intel_e11 PARAMS ((void));
64a0c779 5152
64a0c779
DN
5153static int
5154i386_intel_operand (operand_string, got_a_float)
5155 char *operand_string;
5156 int got_a_float;
5157{
5158 int ret;
5159 char *p;
5160
5161 /* Initialize token holders. */
5162 cur_token.code = prev_token.code = T_NIL;
5163 cur_token.reg = prev_token.reg = NULL;
5164 cur_token.str = prev_token.str = NULL;
5165
5166 /* Initialize parser structure. */
e5cb08ac 5167 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5168 if (p == NULL)
5169 abort ();
5170 strcpy (intel_parser.op_string, operand_string);
5171 intel_parser.got_a_float = got_a_float;
5172 intel_parser.op_modifier = -1;
5173 intel_parser.is_mem = 0;
5174 intel_parser.reg = NULL;
e5cb08ac 5175 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5176 if (intel_parser.disp == NULL)
5177 abort ();
5178 intel_parser.disp[0] = '\0';
5179
5180 /* Read the first token and start the parser. */
5181 intel_get_token ();
5182 ret = intel_expr ();
5183
5184 if (ret)
5185 {
5186 /* If we found a memory reference, hand it over to i386_displacement
5187 to fill in the rest of the operand fields. */
5188 if (intel_parser.is_mem)
5189 {
5190 if ((i.mem_operands == 1
5191 && (current_templates->start->opcode_modifier & IsString) == 0)
5192 || i.mem_operands == 2)
5193 {
5194 as_bad (_("too many memory references for '%s'"),
5195 current_templates->start->name);
5196 ret = 0;
5197 }
5198 else
5199 {
5200 char *s = intel_parser.disp;
5201 i.mem_operands++;
5202
5203 /* Add the displacement expression. */
5204 if (*s != '\0')
5205 ret = i386_displacement (s, s + strlen (s))
5206 && i386_index_check (s);
5207 }
5208 }
5209
5210 /* Constant and OFFSET expressions are handled by i386_immediate. */
5211 else if (intel_parser.op_modifier == OFFSET_FLAT
5212 || intel_parser.reg == NULL)
5213 ret = i386_immediate (intel_parser.disp);
5214 }
5215
5216 free (p);
5217 free (intel_parser.disp);
5218
5219 return ret;
5220}
5221
64a0c779 5222/* expr SHORT e05
b77a7acd 5223 | e05 */
64a0c779
DN
5224static int
5225intel_expr ()
5226{
5227 /* expr SHORT e05 */
5228 if (cur_token.code == T_SHORT)
5229 {
5230 intel_parser.op_modifier = SHORT;
5231 intel_match_token (T_SHORT);
5232
5233 return (intel_e05 ());
5234 }
5235
5236 /* expr e05 */
5237 else
5238 return intel_e05 ();
5239}
5240
64a0c779
DN
5241/* e05 e06 e05'
5242
4a1805b1 5243 e05' addOp e06 e05'
64a0c779
DN
5244 | Empty */
5245static int
5246intel_e05 ()
5247{
5248 return (intel_e06 () && intel_e05_1 ());
5249}
5250
5251static int
5252intel_e05_1 ()
5253{
5254 /* e05' addOp e06 e05' */
5255 if (cur_token.code == '+' || cur_token.code == '-')
5256 {
5257 strcat (intel_parser.disp, cur_token.str);
5258 intel_match_token (cur_token.code);
5259
5260 return (intel_e06 () && intel_e05_1 ());
5261 }
5262
5263 /* e05' Empty */
5264 else
5265 return 1;
4a1805b1 5266}
64a0c779
DN
5267
5268/* e06 e09 e06'
5269
5270 e06' mulOp e09 e06'
b77a7acd 5271 | Empty */
64a0c779
DN
5272static int
5273intel_e06 ()
5274{
5275 return (intel_e09 () && intel_e06_1 ());
5276}
5277
5278static int
5279intel_e06_1 ()
5280{
5281 /* e06' mulOp e09 e06' */
5282 if (cur_token.code == '*' || cur_token.code == '/')
5283 {
5284 strcat (intel_parser.disp, cur_token.str);
5285 intel_match_token (cur_token.code);
5286
5287 return (intel_e09 () && intel_e06_1 ());
5288 }
4a1805b1 5289
64a0c779 5290 /* e06' Empty */
4a1805b1 5291 else
64a0c779
DN
5292 return 1;
5293}
5294
64a0c779 5295/* e09 OFFSET e10 e09'
b77a7acd 5296 | e10 e09'
64a0c779
DN
5297
5298 e09' PTR e10 e09'
b77a7acd 5299 | : e10 e09'
64a0c779
DN
5300 | Empty */
5301static int
5302intel_e09 ()
5303{
5304 /* e09 OFFSET e10 e09' */
5305 if (cur_token.code == T_OFFSET)
5306 {
5307 intel_parser.is_mem = 0;
5308 intel_parser.op_modifier = OFFSET_FLAT;
5309 intel_match_token (T_OFFSET);
5310
5311 return (intel_e10 () && intel_e09_1 ());
5312 }
5313
5314 /* e09 e10 e09' */
5315 else
5316 return (intel_e10 () && intel_e09_1 ());
5317}
5318
5319static int
5320intel_e09_1 ()
5321{
5322 /* e09' PTR e10 e09' */
5323 if (cur_token.code == T_PTR)
5324 {
5325 if (prev_token.code == T_BYTE)
5326 i.suffix = BYTE_MNEM_SUFFIX;
5327
5328 else if (prev_token.code == T_WORD)
5329 {
5330 if (intel_parser.got_a_float == 2) /* "fi..." */
5331 i.suffix = SHORT_MNEM_SUFFIX;
5332 else
5333 i.suffix = WORD_MNEM_SUFFIX;
5334 }
5335
5336 else if (prev_token.code == T_DWORD)
5337 {
5338 if (intel_parser.got_a_float == 1) /* "f..." */
5339 i.suffix = SHORT_MNEM_SUFFIX;
5340 else
5341 i.suffix = LONG_MNEM_SUFFIX;
5342 }
5343
5344 else if (prev_token.code == T_QWORD)
f16b83df
JH
5345 {
5346 if (intel_parser.got_a_float == 1) /* "f..." */
5347 i.suffix = LONG_MNEM_SUFFIX;
5348 else
3e73aa7c 5349 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5350 }
64a0c779
DN
5351
5352 else if (prev_token.code == T_XWORD)
5353 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5354
5355 else
5356 {
5357 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5358 return 0;
5359 }
5360
5361 intel_match_token (T_PTR);
5362
5363 return (intel_e10 () && intel_e09_1 ());
5364 }
5365
5366 /* e09 : e10 e09' */
5367 else if (cur_token.code == ':')
5368 {
21d6c4af
DN
5369 /* Mark as a memory operand only if it's not already known to be an
5370 offset expression. */
5371 if (intel_parser.op_modifier != OFFSET_FLAT)
5372 intel_parser.is_mem = 1;
64a0c779
DN
5373
5374 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5375 }
5376
5377 /* e09' Empty */
5378 else
5379 return 1;
5380}
5381
5382/* e10 e11 e10'
5383
5384 e10' [ expr ] e10'
b77a7acd 5385 | Empty */
64a0c779
DN
5386static int
5387intel_e10 ()
5388{
5389 return (intel_e11 () && intel_e10_1 ());
5390}
5391
5392static int
5393intel_e10_1 ()
5394{
5395 /* e10' [ expr ] e10' */
5396 if (cur_token.code == '[')
5397 {
5398 intel_match_token ('[');
21d6c4af
DN
5399
5400 /* Mark as a memory operand only if it's not already known to be an
5401 offset expression. If it's an offset expression, we need to keep
5402 the brace in. */
5403 if (intel_parser.op_modifier != OFFSET_FLAT)
5404 intel_parser.is_mem = 1;
5405 else
5406 strcat (intel_parser.disp, "[");
4a1805b1 5407
64a0c779 5408 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5409 if (*intel_parser.disp != '\0'
5410 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5411 strcat (intel_parser.disp, "+");
5412
21d6c4af
DN
5413 if (intel_expr () && intel_match_token (']'))
5414 {
5415 /* Preserve brackets when the operand is an offset expression. */
5416 if (intel_parser.op_modifier == OFFSET_FLAT)
5417 strcat (intel_parser.disp, "]");
5418
5419 return intel_e10_1 ();
5420 }
5421 else
5422 return 0;
64a0c779
DN
5423 }
5424
5425 /* e10' Empty */
5426 else
5427 return 1;
5428}
5429
64a0c779 5430/* e11 ( expr )
b77a7acd 5431 | [ expr ]
64a0c779
DN
5432 | BYTE
5433 | WORD
5434 | DWORD
5435 | QWORD
5436 | XWORD
4a1805b1 5437 | $
64a0c779
DN
5438 | .
5439 | register
5440 | id
5441 | constant */
5442static int
5443intel_e11 ()
5444{
5445 /* e11 ( expr ) */
5446 if (cur_token.code == '(')
5447 {
5448 intel_match_token ('(');
5449 strcat (intel_parser.disp, "(");
5450
5451 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5452 {
5453 strcat (intel_parser.disp, ")");
5454 return 1;
5455 }
64a0c779
DN
5456 else
5457 return 0;
5458 }
5459
5460 /* e11 [ expr ] */
5461 else if (cur_token.code == '[')
5462 {
5463 intel_match_token ('[');
21d6c4af
DN
5464
5465 /* Mark as a memory operand only if it's not already known to be an
5466 offset expression. If it's an offset expression, we need to keep
5467 the brace in. */
5468 if (intel_parser.op_modifier != OFFSET_FLAT)
5469 intel_parser.is_mem = 1;
5470 else
5471 strcat (intel_parser.disp, "[");
4a1805b1 5472
64a0c779
DN
5473 /* Operands for jump/call inside brackets denote absolute addresses. */
5474 if (current_templates->start->opcode_modifier & Jump
5475 || current_templates->start->opcode_modifier & JumpDword
5476 || current_templates->start->opcode_modifier & JumpByte
5477 || current_templates->start->opcode_modifier & JumpInterSegment)
5478 i.types[this_operand] |= JumpAbsolute;
5479
5480 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5481 if (*intel_parser.disp != '\0'
5482 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5483 strcat (intel_parser.disp, "+");
5484
21d6c4af
DN
5485 if (intel_expr () && intel_match_token (']'))
5486 {
5487 /* Preserve brackets when the operand is an offset expression. */
5488 if (intel_parser.op_modifier == OFFSET_FLAT)
5489 strcat (intel_parser.disp, "]");
5490
5491 return 1;
5492 }
5493 else
5494 return 0;
64a0c779
DN
5495 }
5496
4a1805b1 5497 /* e11 BYTE
64a0c779
DN
5498 | WORD
5499 | DWORD
5500 | QWORD
5501 | XWORD */
5502 else if (cur_token.code == T_BYTE
5503 || cur_token.code == T_WORD
5504 || cur_token.code == T_DWORD
5505 || cur_token.code == T_QWORD
5506 || cur_token.code == T_XWORD)
5507 {
5508 intel_match_token (cur_token.code);
5509
5510 return 1;
5511 }
5512
5513 /* e11 $
5514 | . */
5515 else if (cur_token.code == '$' || cur_token.code == '.')
5516 {
5517 strcat (intel_parser.disp, cur_token.str);
5518 intel_match_token (cur_token.code);
21d6c4af
DN
5519
5520 /* Mark as a memory operand only if it's not already known to be an
5521 offset expression. */
5522 if (intel_parser.op_modifier != OFFSET_FLAT)
5523 intel_parser.is_mem = 1;
64a0c779
DN
5524
5525 return 1;
5526 }
5527
5528 /* e11 register */
5529 else if (cur_token.code == T_REG)
5530 {
5531 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5532
5533 intel_match_token (T_REG);
5534
5535 /* Check for segment change. */
5536 if (cur_token.code == ':')
5537 {
5538 if (reg->reg_type & (SReg2 | SReg3))
5539 {
5540 switch (reg->reg_num)
5541 {
5542 case 0:
5543 i.seg[i.mem_operands] = &es;
5544 break;
5545 case 1:
5546 i.seg[i.mem_operands] = &cs;
5547 break;
5548 case 2:
5549 i.seg[i.mem_operands] = &ss;
5550 break;
5551 case 3:
5552 i.seg[i.mem_operands] = &ds;
5553 break;
5554 case 4:
5555 i.seg[i.mem_operands] = &fs;
5556 break;
5557 case 5:
5558 i.seg[i.mem_operands] = &gs;
5559 break;
5560 }
5561 }
5562 else
5563 {
5564 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5565 return 0;
5566 }
5567 }
5568
5569 /* Not a segment register. Check for register scaling. */
5570 else if (cur_token.code == '*')
5571 {
5572 if (!intel_parser.is_mem)
5573 {
5574 as_bad (_("Register scaling only allowed in memory operands."));
5575 return 0;
5576 }
5577
4a1805b1 5578 /* What follows must be a valid scale. */
64a0c779
DN
5579 if (intel_match_token ('*')
5580 && strchr ("01248", *cur_token.str))
5581 {
5582 i.index_reg = reg;
5583 i.types[this_operand] |= BaseIndex;
5584
5585 /* Set the scale after setting the register (otherwise,
5586 i386_scale will complain) */
5587 i386_scale (cur_token.str);
5588 intel_match_token (T_CONST);
5589 }
5590 else
5591 {
5592 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5593 cur_token.str);
5594 return 0;
5595 }
5596 }
5597
5598 /* No scaling. If this is a memory operand, the register is either a
5599 base register (first occurrence) or an index register (second
5600 occurrence). */
5601 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5602 {
5603 if (i.base_reg && i.index_reg)
5604 {
5605 as_bad (_("Too many register references in memory operand.\n"));
5606 return 0;
5607 }
5608
5609 if (i.base_reg == NULL)
5610 i.base_reg = reg;
5611 else
5612 i.index_reg = reg;
5613
5614 i.types[this_operand] |= BaseIndex;
5615 }
5616
5617 /* Offset modifier. Add the register to the displacement string to be
5618 parsed as an immediate expression after we're done. */
5619 else if (intel_parser.op_modifier == OFFSET_FLAT)
5620 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 5621
64a0c779
DN
5622 /* It's neither base nor index nor offset. */
5623 else
5624 {
5625 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5626 i.op[this_operand].regs = reg;
5627 i.reg_operands++;
5628 }
5629
5630 /* Since registers are not part of the displacement string (except
5631 when we're parsing offset operands), we may need to remove any
5632 preceding '+' from the displacement string. */
5633 if (*intel_parser.disp != '\0'
5634 && intel_parser.op_modifier != OFFSET_FLAT)
5635 {
5636 char *s = intel_parser.disp;
5637 s += strlen (s) - 1;
5638 if (*s == '+')
5639 *s = '\0';
5640 }
5641
5642 return 1;
5643 }
4a1805b1 5644
64a0c779
DN
5645 /* e11 id */
5646 else if (cur_token.code == T_ID)
5647 {
5648 /* Add the identifier to the displacement string. */
5649 strcat (intel_parser.disp, cur_token.str);
5650 intel_match_token (T_ID);
5651
5652 /* The identifier represents a memory reference only if it's not
5653 preceded by an offset modifier. */
21d6c4af 5654 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
5655 intel_parser.is_mem = 1;
5656
5657 return 1;
5658 }
5659
5660 /* e11 constant */
5661 else if (cur_token.code == T_CONST
e5cb08ac 5662 || cur_token.code == '-'
64a0c779
DN
5663 || cur_token.code == '+')
5664 {
5665 char *save_str;
5666
5667 /* Allow constants that start with `+' or `-'. */
5668 if (cur_token.code == '-' || cur_token.code == '+')
5669 {
5670 strcat (intel_parser.disp, cur_token.str);
5671 intel_match_token (cur_token.code);
5672 if (cur_token.code != T_CONST)
5673 {
5674 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5675 cur_token.str);
5676 return 0;
5677 }
5678 }
5679
e5cb08ac 5680 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 5681 if (save_str == NULL)
bc805888 5682 abort ();
64a0c779
DN
5683 strcpy (save_str, cur_token.str);
5684
5685 /* Get the next token to check for register scaling. */
5686 intel_match_token (cur_token.code);
5687
5688 /* Check if this constant is a scaling factor for an index register. */
5689 if (cur_token.code == '*')
5690 {
5691 if (intel_match_token ('*') && cur_token.code == T_REG)
5692 {
5693 if (!intel_parser.is_mem)
5694 {
5695 as_bad (_("Register scaling only allowed in memory operands."));
5696 return 0;
5697 }
5698
4a1805b1 5699 /* The constant is followed by `* reg', so it must be
64a0c779
DN
5700 a valid scale. */
5701 if (strchr ("01248", *save_str))
5702 {
5703 i.index_reg = cur_token.reg;
5704 i.types[this_operand] |= BaseIndex;
5705
5706 /* Set the scale after setting the register (otherwise,
5707 i386_scale will complain) */
5708 i386_scale (save_str);
5709 intel_match_token (T_REG);
5710
5711 /* Since registers are not part of the displacement
5712 string, we may need to remove any preceding '+' from
5713 the displacement string. */
5714 if (*intel_parser.disp != '\0')
5715 {
5716 char *s = intel_parser.disp;
5717 s += strlen (s) - 1;
5718 if (*s == '+')
5719 *s = '\0';
5720 }
5721
5722 free (save_str);
5723
5724 return 1;
5725 }
5726 else
5727 return 0;
5728 }
5729
5730 /* The constant was not used for register scaling. Since we have
5731 already consumed the token following `*' we now need to put it
5732 back in the stream. */
5733 else
5734 intel_putback_token ();
5735 }
5736
5737 /* Add the constant to the displacement string. */
5738 strcat (intel_parser.disp, save_str);
5739 free (save_str);
5740
5741 return 1;
5742 }
5743
64a0c779
DN
5744 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5745 return 0;
5746}
5747
64a0c779
DN
5748/* Match the given token against cur_token. If they match, read the next
5749 token from the operand string. */
5750static int
5751intel_match_token (code)
e5cb08ac 5752 int code;
64a0c779
DN
5753{
5754 if (cur_token.code == code)
5755 {
5756 intel_get_token ();
5757 return 1;
5758 }
5759 else
5760 {
5761 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5762 return 0;
5763 }
5764}
5765
64a0c779
DN
5766/* Read a new token from intel_parser.op_string and store it in cur_token. */
5767static void
5768intel_get_token ()
5769{
5770 char *end_op;
5771 const reg_entry *reg;
5772 struct intel_token new_token;
5773
5774 new_token.code = T_NIL;
5775 new_token.reg = NULL;
5776 new_token.str = NULL;
5777
4a1805b1 5778 /* Free the memory allocated to the previous token and move
64a0c779
DN
5779 cur_token to prev_token. */
5780 if (prev_token.str)
5781 free (prev_token.str);
5782
5783 prev_token = cur_token;
5784
5785 /* Skip whitespace. */
5786 while (is_space_char (*intel_parser.op_string))
5787 intel_parser.op_string++;
5788
5789 /* Return an empty token if we find nothing else on the line. */
5790 if (*intel_parser.op_string == '\0')
5791 {
5792 cur_token = new_token;
5793 return;
5794 }
5795
5796 /* The new token cannot be larger than the remainder of the operand
5797 string. */
e5cb08ac 5798 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 5799 if (new_token.str == NULL)
bc805888 5800 abort ();
64a0c779
DN
5801 new_token.str[0] = '\0';
5802
5803 if (strchr ("0123456789", *intel_parser.op_string))
5804 {
5805 char *p = new_token.str;
5806 char *q = intel_parser.op_string;
5807 new_token.code = T_CONST;
5808
5809 /* Allow any kind of identifier char to encompass floating point and
5810 hexadecimal numbers. */
5811 while (is_identifier_char (*q))
5812 *p++ = *q++;
5813 *p = '\0';
5814
5815 /* Recognize special symbol names [0-9][bf]. */
5816 if (strlen (intel_parser.op_string) == 2
4a1805b1 5817 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
5818 || intel_parser.op_string[1] == 'f'))
5819 new_token.code = T_ID;
5820 }
5821
5822 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5823 {
5824 new_token.code = *intel_parser.op_string;
5825 new_token.str[0] = *intel_parser.op_string;
5826 new_token.str[1] = '\0';
5827 }
5828
5829 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5830 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5831 {
5832 new_token.code = T_REG;
5833 new_token.reg = reg;
5834
5835 if (*intel_parser.op_string == REGISTER_PREFIX)
5836 {
5837 new_token.str[0] = REGISTER_PREFIX;
5838 new_token.str[1] = '\0';
5839 }
5840
5841 strcat (new_token.str, reg->reg_name);
5842 }
5843
5844 else if (is_identifier_char (*intel_parser.op_string))
5845 {
5846 char *p = new_token.str;
5847 char *q = intel_parser.op_string;
5848
5849 /* A '.' or '$' followed by an identifier char is an identifier.
5850 Otherwise, it's operator '.' followed by an expression. */
5851 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5852 {
5853 new_token.code = *q;
5854 new_token.str[0] = *q;
5855 new_token.str[1] = '\0';
5856 }
5857 else
5858 {
5859 while (is_identifier_char (*q) || *q == '@')
5860 *p++ = *q++;
5861 *p = '\0';
5862
5863 if (strcasecmp (new_token.str, "BYTE") == 0)
5864 new_token.code = T_BYTE;
5865
5866 else if (strcasecmp (new_token.str, "WORD") == 0)
5867 new_token.code = T_WORD;
5868
5869 else if (strcasecmp (new_token.str, "DWORD") == 0)
5870 new_token.code = T_DWORD;
5871
5872 else if (strcasecmp (new_token.str, "QWORD") == 0)
5873 new_token.code = T_QWORD;
5874
5875 else if (strcasecmp (new_token.str, "XWORD") == 0)
5876 new_token.code = T_XWORD;
5877
5878 else if (strcasecmp (new_token.str, "PTR") == 0)
5879 new_token.code = T_PTR;
5880
5881 else if (strcasecmp (new_token.str, "SHORT") == 0)
5882 new_token.code = T_SHORT;
5883
5884 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5885 {
5886 new_token.code = T_OFFSET;
5887
5888 /* ??? This is not mentioned in the MASM grammar but gcc
5889 makes use of it with -mintel-syntax. OFFSET may be
5890 followed by FLAT: */
5891 if (strncasecmp (q, " FLAT:", 6) == 0)
5892 strcat (new_token.str, " FLAT:");
5893 }
5894
5895 /* ??? This is not mentioned in the MASM grammar. */
5896 else if (strcasecmp (new_token.str, "FLAT") == 0)
5897 new_token.code = T_OFFSET;
5898
5899 else
5900 new_token.code = T_ID;
5901 }
5902 }
5903
5904 else
5905 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5906
5907 intel_parser.op_string += strlen (new_token.str);
5908 cur_token = new_token;
5909}
5910
64a0c779
DN
5911/* Put cur_token back into the token stream and make cur_token point to
5912 prev_token. */
5913static void
5914intel_putback_token ()
5915{
5916 intel_parser.op_string -= strlen (cur_token.str);
5917 free (cur_token.str);
5918 cur_token = prev_token;
4a1805b1 5919
64a0c779
DN
5920 /* Forget prev_token. */
5921 prev_token.code = T_NIL;
5922 prev_token.reg = NULL;
5923 prev_token.str = NULL;
5924}