]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
x86: re-number PREFIX_0X<nn>
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
250d07de 2 Copyright (C) 1989-2021 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
c3332e24 47#ifndef INFER_ADDR_PREFIX
eecb386c 48#define INFER_ADDR_PREFIX 1
c3332e24
AM
49#endif
50
29b0f896
AM
51#ifndef DEFAULT_ARCH
52#define DEFAULT_ARCH "i386"
246fcdee 53#endif
252b5132 54
edde18a5
AM
55#ifndef INLINE
56#if __GNUC__ >= 2
57#define INLINE __inline__
58#else
59#define INLINE
60#endif
61#endif
62
6305a203
L
63/* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
68#define WAIT_PREFIX 0
69#define SEG_PREFIX 1
70#define ADDR_PREFIX 2
71#define DATA_PREFIX 3
c32fa91d 72#define REP_PREFIX 4
42164a71 73#define HLE_PREFIX REP_PREFIX
7e8b059b 74#define BND_PREFIX REP_PREFIX
c32fa91d 75#define LOCK_PREFIX 5
4e9ac44a
L
76#define REX_PREFIX 6 /* must come last. */
77#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
78
79/* we define the syntax here (modulo base,index,scale syntax) */
80#define REGISTER_PREFIX '%'
81#define IMMEDIATE_PREFIX '$'
82#define ABSOLUTE_PREFIX '*'
83
84/* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86#define WORD_MNEM_SUFFIX 'w'
87#define BYTE_MNEM_SUFFIX 'b'
88#define SHORT_MNEM_SUFFIX 's'
89#define LONG_MNEM_SUFFIX 'l'
90#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
91/* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93#define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95#define END_OF_INSN '\0'
96
79dec6b7
JB
97/* This matches the C -> StaticRounding alias in the opcode table. */
98#define commutative staticrounding
99
6305a203
L
100/*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107typedef struct
108{
d3ce72d0
NC
109 const insn_template *start;
110 const insn_template *end;
6305a203
L
111}
112templates;
113
114/* 386 operand encoding bytes: see 386 book for details of this. */
115typedef struct
116{
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120}
121modrm_byte;
122
123/* x86-64 extension prefix. */
124typedef int rex_byte;
125
6305a203
L
126/* 386 opcode byte to code indirect addressing. */
127typedef struct
128{
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132}
133sib_byte;
134
6305a203
L
135/* x86 arch names, types and features */
136typedef struct
137{
138 const char *name; /* arch name */
8a2c8fef 139 unsigned int len; /* arch string length */
6305a203
L
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 142 unsigned int skip; /* show_arch should skip this. */
6305a203
L
143}
144arch_entry;
145
293f5f65
L
146/* Used to turn off indicated flags. */
147typedef struct
148{
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152}
153noarch_entry;
154
78f12dd3 155static void update_code_flag (int, int);
e3bb37b5
L
156static void set_code_flag (int);
157static void set_16bit_gcc_code_flag (int);
158static void set_intel_syntax (int);
1efbbeb4 159static void set_intel_mnemonic (int);
db51cc60 160static void set_allow_index_reg (int);
7bab8ab5 161static void set_check (int);
e3bb37b5 162static void set_cpu_arch (int);
6482c264 163#ifdef TE_PE
e3bb37b5 164static void pe_directive_secrel (int);
6482c264 165#endif
e3bb37b5
L
166static void signed_cons (int);
167static char *output_invalid (int c);
ee86248c
JB
168static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
a7619375 172static int i386_att_operand (char *);
e3bb37b5 173static int i386_intel_operand (char *, int);
ee86248c
JB
174static int i386_intel_simplify (expressionS *);
175static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
176static const reg_entry *parse_register (char *, char **);
177static char *parse_insn (char *, char *);
178static char *parse_operands (char *, const char *);
179static void swap_operands (void);
4d456e3d 180static void swap_2_operands (int, int);
48bcea9f 181static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
8a6fb3f9
JB
213/* parse_register() returns this when a register alias cannot be used. */
214static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
215 { Dw2Inval, Dw2Inval } };
216
43234a1e
L
217/* This struct describes rounding control and SAE in the instruction. */
218struct RC_Operation
219{
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229};
230
231static struct RC_Operation rc_op;
232
233/* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236struct Mask_Operation
237{
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242};
243
244static struct Mask_Operation mask_op;
245
246/* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248struct Broadcast_Operation
249{
8e6e0792 250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
4a1b91ea
L
255
256 /* Number of bytes to broadcast. */
257 int bytes;
43234a1e
L
258};
259
260static struct Broadcast_Operation broadcast_op;
261
c0f3af97
L
262/* VEX prefix. */
263typedef struct
264{
43234a1e
L
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
c0f3af97
L
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270} vex_prefix;
271
252b5132 272/* 'md_assemble ()' gathers together information and puts it into a
47926f60 273 i386_insn. */
252b5132 274
520dc8e8
AM
275union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
a65babc9
L
282enum i386_error
283 {
86e026a4 284 operand_size_mismatch,
a65babc9
L
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
a65babc9
L
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
6c30d220 292 unsupported,
260cd341 293 invalid_sib_address,
6c30d220 294 invalid_vsib_address,
7bab8ab5 295 invalid_vector_register_set,
260cd341 296 invalid_tmm_register_set,
43234a1e
L
297 unsupported_vector_index_register,
298 unsupported_broadcast,
43234a1e
L
299 broadcast_needed,
300 unsupported_masking,
301 mask_not_on_destination,
302 no_default_mask,
303 unsupported_rc_sae,
304 rc_sae_operand_not_last_imm,
305 invalid_register_operand,
a65babc9
L
306 };
307
252b5132
RH
308struct _i386_insn
309 {
47926f60 310 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 311 insn_template tm;
252b5132 312
7d5e4556
L
313 /* SUFFIX holds the instruction size suffix for byte, word, dword
314 or qword, if given. */
252b5132
RH
315 char suffix;
316
47926f60 317 /* OPERANDS gives the number of given operands. */
252b5132
RH
318 unsigned int operands;
319
320 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
321 of given register, displacement, memory operands and immediate
47926f60 322 operands. */
252b5132
RH
323 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
324
325 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 326 use OP[i] for the corresponding operand. */
40fb9820 327 i386_operand_type types[MAX_OPERANDS];
252b5132 328
520dc8e8
AM
329 /* Displacement expression, immediate expression, or register for each
330 operand. */
331 union i386_op op[MAX_OPERANDS];
252b5132 332
3e73aa7c
JH
333 /* Flags for operands. */
334 unsigned int flags[MAX_OPERANDS];
335#define Operand_PCrel 1
c48dadc9 336#define Operand_Mem 2
3e73aa7c 337
252b5132 338 /* Relocation type for operand */
f86103b7 339 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 340
252b5132
RH
341 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
342 the base index byte below. */
343 const reg_entry *base_reg;
344 const reg_entry *index_reg;
345 unsigned int log2_scale_factor;
346
347 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 348 explicit segment overrides are given. */
ce8a8b2f 349 const seg_entry *seg[2];
252b5132 350
8325cc63
JB
351 /* Copied first memory operand string, for re-checking. */
352 char *memop1_string;
353
252b5132
RH
354 /* PREFIX holds all the given prefix opcodes (usually null).
355 PREFIXES is the number of prefix opcodes. */
356 unsigned int prefixes;
357 unsigned char prefix[MAX_PREFIXES];
358
50128d0c
JB
359 /* Register is in low 3 bits of opcode. */
360 bfd_boolean short_form;
361
6f2f06be
JB
362 /* The operand to a branch insn indicates an absolute branch. */
363 bfd_boolean jumpabsolute;
364
921eafea
L
365 /* Extended states. */
366 enum
367 {
368 /* Use MMX state. */
369 xstate_mmx = 1 << 0,
370 /* Use XMM state. */
371 xstate_xmm = 1 << 1,
372 /* Use YMM state. */
373 xstate_ymm = 1 << 2 | xstate_xmm,
374 /* Use ZMM state. */
375 xstate_zmm = 1 << 3 | xstate_ymm,
376 /* Use TMM state. */
32930e4e
L
377 xstate_tmm = 1 << 4,
378 /* Use MASK state. */
379 xstate_mask = 1 << 5
921eafea 380 } xstate;
260cd341 381
e379e5f3
L
382 /* Has GOTPC or TLS relocation. */
383 bfd_boolean has_gotpc_tls_reloc;
384
252b5132 385 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 386 addressing modes of this insn are encoded. */
252b5132 387 modrm_byte rm;
3e73aa7c 388 rex_byte rex;
43234a1e 389 rex_byte vrex;
252b5132 390 sib_byte sib;
c0f3af97 391 vex_prefix vex;
b6169b20 392
43234a1e
L
393 /* Masking attributes. */
394 struct Mask_Operation *mask;
395
396 /* Rounding control and SAE attributes. */
397 struct RC_Operation *rounding;
398
399 /* Broadcasting attributes. */
400 struct Broadcast_Operation *broadcast;
401
402 /* Compressed disp8*N attribute. */
403 unsigned int memshift;
404
86fa6981
L
405 /* Prefer load or store in encoding. */
406 enum
407 {
408 dir_encoding_default = 0,
409 dir_encoding_load,
64c49ab3
JB
410 dir_encoding_store,
411 dir_encoding_swap
86fa6981 412 } dir_encoding;
891edac4 413
41eb8e88 414 /* Prefer 8bit, 16bit, 32bit displacement in encoding. */
a501d77e
L
415 enum
416 {
417 disp_encoding_default = 0,
418 disp_encoding_8bit,
41eb8e88 419 disp_encoding_16bit,
a501d77e
L
420 disp_encoding_32bit
421 } disp_encoding;
f8a5c266 422
6b6b6807
L
423 /* Prefer the REX byte in encoding. */
424 bfd_boolean rex_encoding;
425
b6f8c7c4
L
426 /* Disable instruction size optimization. */
427 bfd_boolean no_optimize;
428
86fa6981
L
429 /* How to encode vector instructions. */
430 enum
431 {
432 vex_encoding_default = 0,
42e04b36 433 vex_encoding_vex,
86fa6981 434 vex_encoding_vex3,
da4977e0
JB
435 vex_encoding_evex,
436 vex_encoding_error
86fa6981
L
437 } vec_encoding;
438
d5de92cf
L
439 /* REP prefix. */
440 const char *rep_prefix;
441
165de32a
L
442 /* HLE prefix. */
443 const char *hle_prefix;
42164a71 444
7e8b059b
L
445 /* Have BND prefix. */
446 const char *bnd_prefix;
447
04ef582a
L
448 /* Have NOTRACK prefix. */
449 const char *notrack_prefix;
450
891edac4 451 /* Error message. */
a65babc9 452 enum i386_error error;
252b5132
RH
453 };
454
455typedef struct _i386_insn i386_insn;
456
43234a1e
L
457/* Link RC type with corresponding string, that'll be looked for in
458 asm. */
459struct RC_name
460{
461 enum rc_type type;
462 const char *name;
463 unsigned int len;
464};
465
466static const struct RC_name RC_NamesTable[] =
467{
468 { rne, STRING_COMMA_LEN ("rn-sae") },
469 { rd, STRING_COMMA_LEN ("rd-sae") },
470 { ru, STRING_COMMA_LEN ("ru-sae") },
471 { rz, STRING_COMMA_LEN ("rz-sae") },
472 { saeonly, STRING_COMMA_LEN ("sae") },
473};
474
252b5132
RH
475/* List of chars besides those in app.c:symbol_chars that can start an
476 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 477const char extra_symbol_chars[] = "*%-([{}"
252b5132 478#ifdef LEX_AT
32137342
NC
479 "@"
480#endif
481#ifdef LEX_QM
482 "?"
252b5132 483#endif
32137342 484 ;
252b5132 485
b3983e5f
JB
486#if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
487 && !defined (TE_GNU) \
488 && !defined (TE_LINUX) \
489 && !defined (TE_FreeBSD) \
490 && !defined (TE_DragonFly) \
491 && !defined (TE_NetBSD))
252b5132 492/* This array holds the chars that always start a comment. If the
b3b91714
AM
493 pre-processor is disabled, these aren't very useful. The option
494 --divide will remove '/' from this list. */
495const char *i386_comment_chars = "#/";
496#define SVR4_COMMENT_CHARS 1
252b5132 497#define PREFIX_SEPARATOR '\\'
252b5132 498
b3b91714
AM
499#else
500const char *i386_comment_chars = "#";
501#define PREFIX_SEPARATOR '/'
502#endif
503
252b5132
RH
504/* This array holds the chars that only start a comment at the beginning of
505 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
506 .line and .file directives will appear in the pre-processed output.
507 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 508 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
509 #NO_APP at the beginning of its output.
510 Also note that comments started like this one will always work if
252b5132 511 '/' isn't otherwise defined. */
b3b91714 512const char line_comment_chars[] = "#/";
252b5132 513
63a0b638 514const char line_separator_chars[] = ";";
252b5132 515
ce8a8b2f
AM
516/* Chars that can be used to separate mant from exp in floating point
517 nums. */
252b5132
RH
518const char EXP_CHARS[] = "eE";
519
ce8a8b2f
AM
520/* Chars that mean this number is a floating point constant
521 As in 0f12.456
522 or 0d1.2345e12. */
252b5132
RH
523const char FLT_CHARS[] = "fFdDxX";
524
ce8a8b2f 525/* Tables for lexical analysis. */
252b5132
RH
526static char mnemonic_chars[256];
527static char register_chars[256];
528static char operand_chars[256];
529static char identifier_chars[256];
530static char digit_chars[256];
531
ce8a8b2f 532/* Lexical macros. */
252b5132
RH
533#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
534#define is_operand_char(x) (operand_chars[(unsigned char) x])
535#define is_register_char(x) (register_chars[(unsigned char) x])
536#define is_space_char(x) ((x) == ' ')
537#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
538#define is_digit_char(x) (digit_chars[(unsigned char) x])
539
0234cb7c 540/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
541static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
542
543/* md_assemble() always leaves the strings it's passed unaltered. To
544 effect this we maintain a stack of saved characters that we've smashed
545 with '\0's (indicating end of strings for various sub-fields of the
47926f60 546 assembler instruction). */
252b5132 547static char save_stack[32];
ce8a8b2f 548static char *save_stack_p;
252b5132
RH
549#define END_STRING_AND_SAVE(s) \
550 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
551#define RESTORE_END_STRING(s) \
552 do { *(s) = *--save_stack_p; } while (0)
553
47926f60 554/* The instruction we're assembling. */
252b5132
RH
555static i386_insn i;
556
557/* Possible templates for current insn. */
558static const templates *current_templates;
559
31b2323c
L
560/* Per instruction expressionS buffers: max displacements & immediates. */
561static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
562static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 563
47926f60 564/* Current operand we are working on. */
ee86248c 565static int this_operand = -1;
252b5132 566
3e73aa7c
JH
567/* We support four different modes. FLAG_CODE variable is used to distinguish
568 these. */
569
570enum flag_code {
571 CODE_32BIT,
572 CODE_16BIT,
573 CODE_64BIT };
574
575static enum flag_code flag_code;
4fa24527 576static unsigned int object_64bit;
862be3fb 577static unsigned int disallow_64bit_reloc;
3e73aa7c 578static int use_rela_relocations = 0;
e379e5f3
L
579/* __tls_get_addr/___tls_get_addr symbol for TLS. */
580static const char *tls_get_addr;
3e73aa7c 581
7af8ed2d
NC
582#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
583 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
584 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
585
351f65ca
L
586/* The ELF ABI to use. */
587enum x86_elf_abi
588{
589 I386_ABI,
7f56bc95
L
590 X86_64_ABI,
591 X86_64_X32_ABI
351f65ca
L
592};
593
594static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 595#endif
351f65ca 596
167ad85b
TG
597#if defined (TE_PE) || defined (TE_PEP)
598/* Use big object file format. */
599static int use_big_obj = 0;
600#endif
601
8dcea932
L
602#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
603/* 1 if generating code for a shared library. */
604static int shared = 0;
605#endif
606
47926f60
KH
607/* 1 for intel syntax,
608 0 if att syntax. */
609static int intel_syntax = 0;
252b5132 610
4b5aaf5f
L
611static enum x86_64_isa
612{
613 amd64 = 1, /* AMD64 ISA. */
614 intel64 /* Intel64 ISA. */
615} isa64;
e89c5eaa 616
1efbbeb4
L
617/* 1 for intel mnemonic,
618 0 if att mnemonic. */
619static int intel_mnemonic = !SYSV386_COMPAT;
620
a60de03c
JB
621/* 1 if pseudo registers are permitted. */
622static int allow_pseudo_reg = 0;
623
47926f60
KH
624/* 1 if register prefix % not required. */
625static int allow_naked_reg = 0;
252b5132 626
33eaf5de 627/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
628 instructions supporting it, even if this prefix wasn't specified
629 explicitly. */
630static int add_bnd_prefix = 0;
631
ba104c83 632/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
633static int allow_index_reg = 0;
634
d022bddd
IT
635/* 1 if the assembler should ignore LOCK prefix, even if it was
636 specified explicitly. */
637static int omit_lock_prefix = 0;
638
e4e00185
AS
639/* 1 if the assembler should encode lfence, mfence, and sfence as
640 "lock addl $0, (%{re}sp)". */
641static int avoid_fence = 0;
642
ae531041
L
643/* 1 if lfence should be inserted after every load. */
644static int lfence_after_load = 0;
645
646/* Non-zero if lfence should be inserted before indirect branch. */
647static enum lfence_before_indirect_branch_kind
648 {
649 lfence_branch_none = 0,
650 lfence_branch_register,
651 lfence_branch_memory,
652 lfence_branch_all
653 }
654lfence_before_indirect_branch;
655
656/* Non-zero if lfence should be inserted before ret. */
657static enum lfence_before_ret_kind
658 {
659 lfence_before_ret_none = 0,
660 lfence_before_ret_not,
a09f656b 661 lfence_before_ret_or,
662 lfence_before_ret_shl
ae531041
L
663 }
664lfence_before_ret;
665
666/* Types of previous instruction is .byte or prefix. */
e379e5f3
L
667static struct
668 {
669 segT seg;
670 const char *file;
671 const char *name;
672 unsigned int line;
673 enum last_insn_kind
674 {
675 last_insn_other = 0,
676 last_insn_directive,
677 last_insn_prefix
678 } kind;
679 } last_insn;
680
0cb4071e
L
681/* 1 if the assembler should generate relax relocations. */
682
683static int generate_relax_relocations
684 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
685
7bab8ab5 686static enum check_kind
daf50ae7 687 {
7bab8ab5
JB
688 check_none = 0,
689 check_warning,
690 check_error
daf50ae7 691 }
7bab8ab5 692sse_check, operand_check = check_warning;
daf50ae7 693
e379e5f3
L
694/* Non-zero if branches should be aligned within power of 2 boundary. */
695static int align_branch_power = 0;
696
697/* Types of branches to align. */
698enum align_branch_kind
699 {
700 align_branch_none = 0,
701 align_branch_jcc = 1,
702 align_branch_fused = 2,
703 align_branch_jmp = 3,
704 align_branch_call = 4,
705 align_branch_indirect = 5,
706 align_branch_ret = 6
707 };
708
709/* Type bits of branches to align. */
710enum align_branch_bit
711 {
712 align_branch_jcc_bit = 1 << align_branch_jcc,
713 align_branch_fused_bit = 1 << align_branch_fused,
714 align_branch_jmp_bit = 1 << align_branch_jmp,
715 align_branch_call_bit = 1 << align_branch_call,
716 align_branch_indirect_bit = 1 << align_branch_indirect,
717 align_branch_ret_bit = 1 << align_branch_ret
718 };
719
720static unsigned int align_branch = (align_branch_jcc_bit
721 | align_branch_fused_bit
722 | align_branch_jmp_bit);
723
79d72f45
HL
724/* Types of condition jump used by macro-fusion. */
725enum mf_jcc_kind
726 {
727 mf_jcc_jo = 0, /* base opcode 0x70 */
728 mf_jcc_jc, /* base opcode 0x72 */
729 mf_jcc_je, /* base opcode 0x74 */
730 mf_jcc_jna, /* base opcode 0x76 */
731 mf_jcc_js, /* base opcode 0x78 */
732 mf_jcc_jp, /* base opcode 0x7a */
733 mf_jcc_jl, /* base opcode 0x7c */
734 mf_jcc_jle, /* base opcode 0x7e */
735 };
736
737/* Types of compare flag-modifying insntructions used by macro-fusion. */
738enum mf_cmp_kind
739 {
740 mf_cmp_test_and, /* test/cmp */
741 mf_cmp_alu_cmp, /* add/sub/cmp */
742 mf_cmp_incdec /* inc/dec */
743 };
744
e379e5f3
L
745/* The maximum padding size for fused jcc. CMP like instruction can
746 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
747 prefixes. */
748#define MAX_FUSED_JCC_PADDING_SIZE 20
749
750/* The maximum number of prefixes added for an instruction. */
751static unsigned int align_branch_prefix_size = 5;
752
b6f8c7c4
L
753/* Optimization:
754 1. Clear the REX_W bit with register operand if possible.
755 2. Above plus use 128bit vector instruction to clear the full vector
756 register.
757 */
758static int optimize = 0;
759
760/* Optimization:
761 1. Clear the REX_W bit with register operand if possible.
762 2. Above plus use 128bit vector instruction to clear the full vector
763 register.
764 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
765 "testb $imm7,%r8".
766 */
767static int optimize_for_space = 0;
768
2ca3ace5
L
769/* Register prefix used for error message. */
770static const char *register_prefix = "%";
771
47926f60
KH
772/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
773 leave, push, and pop instructions so that gcc has the same stack
774 frame as in 32 bit mode. */
775static char stackop_size = '\0';
eecb386c 776
12b55ccc
L
777/* Non-zero to optimize code alignment. */
778int optimize_align_code = 1;
779
47926f60
KH
780/* Non-zero to quieten some warnings. */
781static int quiet_warnings = 0;
a38cf1db 782
47926f60
KH
783/* CPU name. */
784static const char *cpu_arch_name = NULL;
6305a203 785static char *cpu_sub_arch_name = NULL;
a38cf1db 786
47926f60 787/* CPU feature flags. */
40fb9820
L
788static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
789
ccc9c027
L
790/* If we have selected a cpu we are generating instructions for. */
791static int cpu_arch_tune_set = 0;
792
9103f4f4 793/* Cpu we are generating instructions for. */
fbf3f584 794enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
795
796/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 797static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 798
ccc9c027 799/* CPU instruction set architecture used. */
fbf3f584 800enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 801
9103f4f4 802/* CPU feature flags of instruction set architecture used. */
fbf3f584 803i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 804
fddf5b5b
AM
805/* If set, conditional jumps are not automatically promoted to handle
806 larger than a byte offset. */
807static unsigned int no_cond_jump_promotion = 0;
808
c0f3af97
L
809/* Encode SSE instructions with VEX prefix. */
810static unsigned int sse2avx;
811
539f890d
L
812/* Encode scalar AVX instructions with specific vector length. */
813static enum
814 {
815 vex128 = 0,
816 vex256
817 } avxscalar;
818
03751133
L
819/* Encode VEX WIG instructions with specific vex.w. */
820static enum
821 {
822 vexw0 = 0,
823 vexw1
824 } vexwig;
825
43234a1e
L
826/* Encode scalar EVEX LIG instructions with specific vector length. */
827static enum
828 {
829 evexl128 = 0,
830 evexl256,
831 evexl512
832 } evexlig;
833
834/* Encode EVEX WIG instructions with specific evex.w. */
835static enum
836 {
837 evexw0 = 0,
838 evexw1
839 } evexwig;
840
d3d3c6db
IT
841/* Value to encode in EVEX RC bits, for SAE-only instructions. */
842static enum rc_type evexrcig = rne;
843
29b0f896 844/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 845static symbolS *GOT_symbol;
29b0f896 846
a4447b93
RH
847/* The dwarf2 return column, adjusted for 32 or 64 bit. */
848unsigned int x86_dwarf2_return_column;
849
850/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
851int x86_cie_data_alignment;
852
252b5132 853/* Interface to relax_segment.
fddf5b5b
AM
854 There are 3 major relax states for 386 jump insns because the
855 different types of jumps add different sizes to frags when we're
e379e5f3
L
856 figuring out what sort of jump to choose to reach a given label.
857
858 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
859 branches which are handled by md_estimate_size_before_relax() and
860 i386_generic_table_relax_frag(). */
252b5132 861
47926f60 862/* Types. */
93c2a809
AM
863#define UNCOND_JUMP 0
864#define COND_JUMP 1
865#define COND_JUMP86 2
e379e5f3
L
866#define BRANCH_PADDING 3
867#define BRANCH_PREFIX 4
868#define FUSED_JCC_PADDING 5
fddf5b5b 869
47926f60 870/* Sizes. */
252b5132
RH
871#define CODE16 1
872#define SMALL 0
29b0f896 873#define SMALL16 (SMALL | CODE16)
252b5132 874#define BIG 2
29b0f896 875#define BIG16 (BIG | CODE16)
252b5132
RH
876
877#ifndef INLINE
878#ifdef __GNUC__
879#define INLINE __inline__
880#else
881#define INLINE
882#endif
883#endif
884
fddf5b5b
AM
885#define ENCODE_RELAX_STATE(type, size) \
886 ((relax_substateT) (((type) << 2) | (size)))
887#define TYPE_FROM_RELAX_STATE(s) \
888 ((s) >> 2)
889#define DISP_SIZE_FROM_RELAX_STATE(s) \
890 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
891
892/* This table is used by relax_frag to promote short jumps to long
893 ones where necessary. SMALL (short) jumps may be promoted to BIG
894 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
895 don't allow a short jump in a 32 bit code segment to be promoted to
896 a 16 bit offset jump because it's slower (requires data size
897 prefix), and doesn't work, unless the destination is in the bottom
898 64k of the code segment (The top 16 bits of eip are zeroed). */
899
900const relax_typeS md_relax_table[] =
901{
24eab124
AM
902 /* The fields are:
903 1) most positive reach of this state,
904 2) most negative reach of this state,
93c2a809 905 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 906 4) which index into the table to try if we can't fit into this one. */
252b5132 907
fddf5b5b 908 /* UNCOND_JUMP states. */
93c2a809
AM
909 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
910 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
911 /* dword jmp adds 4 bytes to frag:
912 0 extra opcode bytes, 4 displacement bytes. */
252b5132 913 {0, 0, 4, 0},
93c2a809
AM
914 /* word jmp adds 2 byte2 to frag:
915 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
916 {0, 0, 2, 0},
917
93c2a809
AM
918 /* COND_JUMP states. */
919 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
920 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
921 /* dword conditionals adds 5 bytes to frag:
922 1 extra opcode byte, 4 displacement bytes. */
923 {0, 0, 5, 0},
fddf5b5b 924 /* word conditionals add 3 bytes to frag:
93c2a809
AM
925 1 extra opcode byte, 2 displacement bytes. */
926 {0, 0, 3, 0},
927
928 /* COND_JUMP86 states. */
929 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
930 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
931 /* dword conditionals adds 5 bytes to frag:
932 1 extra opcode byte, 4 displacement bytes. */
933 {0, 0, 5, 0},
934 /* word conditionals add 4 bytes to frag:
935 1 displacement byte and a 3 byte long branch insn. */
936 {0, 0, 4, 0}
252b5132
RH
937};
938
9103f4f4
L
939static const arch_entry cpu_arch[] =
940{
89507696
JB
941 /* Do not replace the first two entries - i386_target_format()
942 relies on them being there in this order. */
8a2c8fef 943 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 944 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 946 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_NONE_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_I186_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_I286_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 954 CPU_I386_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 956 CPU_I486_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 958 CPU_I586_FLAGS, 0 },
8a2c8fef 959 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 960 CPU_I686_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 962 CPU_I586_FLAGS, 0 },
8a2c8fef 963 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 964 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 965 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 966 CPU_P2_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 968 CPU_P3_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 970 CPU_P4_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 972 CPU_CORE_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 974 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 976 CPU_CORE_FLAGS, 1 },
8a2c8fef 977 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 978 CPU_CORE_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 980 CPU_CORE2_FLAGS, 1 },
8a2c8fef 981 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 982 CPU_CORE2_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 984 CPU_COREI7_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 986 CPU_L1OM_FLAGS, 0 },
7a9068fe 987 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 988 CPU_K1OM_FLAGS, 0 },
81486035 989 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 990 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 992 CPU_K6_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 994 CPU_K6_2_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 996 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 997 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 998 CPU_K8_FLAGS, 1 },
8a2c8fef 999 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 1000 CPU_K8_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 1002 CPU_K8_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 1004 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 1005 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 1006 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 1007 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 1008 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 1009 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 1010 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 1011 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 1012 CPU_BDVER4_FLAGS, 0 },
029f3522 1013 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 1014 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
1015 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1016 CPU_ZNVER2_FLAGS, 0 },
646cc3e0
GG
1017 { STRING_COMMA_LEN ("znver3"), PROCESSOR_ZNVER,
1018 CPU_ZNVER3_FLAGS, 0 },
7b458c12 1019 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 1020 CPU_BTVER1_FLAGS, 0 },
7b458c12 1021 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 1022 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 1023 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_8087_FLAGS, 0 },
8a2c8fef 1025 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_287_FLAGS, 0 },
8a2c8fef 1027 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_387_FLAGS, 0 },
1848e567
L
1029 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1030 CPU_687_FLAGS, 0 },
d871f3f4
L
1031 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1032 CPU_CMOV_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1034 CPU_FXSR_FLAGS, 0 },
8a2c8fef 1035 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_MMX_FLAGS, 0 },
8a2c8fef 1037 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_SSE_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_SSE2_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_SSE3_FLAGS, 0 },
af5c13b0
L
1043 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1044 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1045 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 1047 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 1049 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1053 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_AVX_FLAGS, 0 },
6c30d220 1055 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_AVX2_FLAGS, 0 },
43234a1e 1057 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_AVX512F_FLAGS, 0 },
43234a1e 1059 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1061 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1063 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1065 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1067 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1069 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_VMX_FLAGS, 0 },
8729a6f6 1073 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_SMX_FLAGS, 0 },
8a2c8fef 1077 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1079 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1080 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1081 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1083 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1085 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_AES_FLAGS, 0 },
8a2c8fef 1087 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1089 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1091 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1093 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1095 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_F16C_FLAGS, 0 },
6c30d220 1097 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1099 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_FMA_FLAGS, 0 },
8a2c8fef 1101 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1103 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_XOP_FLAGS, 0 },
8a2c8fef 1105 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_LWP_FLAGS, 0 },
8a2c8fef 1107 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_MOVBE_FLAGS, 0 },
60aa667e 1109 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_CX16_FLAGS, 0 },
8a2c8fef 1111 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1112 CPU_EPT_FLAGS, 0 },
6c30d220 1113 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1114 CPU_LZCNT_FLAGS, 0 },
272a84b1
L
1115 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1116 CPU_POPCNT_FLAGS, 0 },
42164a71 1117 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1118 CPU_HLE_FLAGS, 0 },
42164a71 1119 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1120 CPU_RTM_FLAGS, 0 },
6c30d220 1121 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1122 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1123 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_CLFLUSH_FLAGS, 0 },
22109423 1125 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_NOP_FLAGS, 0 },
8a2c8fef 1127 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1129 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1131 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1132 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1133 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1134 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1135 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1136 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1137 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1138 CPU_SVME_FLAGS, 1 },
8a2c8fef 1139 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1140 CPU_SVME_FLAGS, 0 },
8a2c8fef 1141 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1142 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1143 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1144 CPU_ABM_FLAGS, 0 },
87973e9f 1145 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1146 CPU_BMI_FLAGS, 0 },
2a2a0f38 1147 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1148 CPU_TBM_FLAGS, 0 },
e2e1fcde 1149 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1150 CPU_ADX_FLAGS, 0 },
e2e1fcde 1151 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1152 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1153 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1154 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1155 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1156 CPU_SMAP_FLAGS, 0 },
7e8b059b 1157 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1158 CPU_MPX_FLAGS, 0 },
a0046408 1159 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1160 CPU_SHA_FLAGS, 0 },
963f3586 1161 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1162 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1163 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1164 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1165 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1166 CPU_SE1_FLAGS, 0 },
c5e7287a 1167 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1168 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1169 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1170 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1171 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1172 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1173 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1174 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1175 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1176 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1177 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1178 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1179 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1180 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1181 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1183 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_BITALG_FLAGS, 0 },
58bf9b6a
L
1185 { STRING_COMMA_LEN (".avx_vnni"), PROCESSOR_UNKNOWN,
1186 CPU_AVX_VNNI_FLAGS, 0 },
029f3522 1187 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1188 CPU_CLZERO_FLAGS, 0 },
9916071f 1189 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1190 CPU_MWAITX_FLAGS, 0 },
8eab4136 1191 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1192 CPU_OSPKE_FLAGS, 0 },
8bc52696 1193 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1194 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1195 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1196 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1197 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1198 CPU_IBT_FLAGS, 0 },
1199 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1200 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1201 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1202 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1203 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1204 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1205 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1206 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1207 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1208 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1209 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1210 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1211 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1212 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1213 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1214 CPU_CLDEMOTE_FLAGS, 0 },
260cd341
LC
1215 { STRING_COMMA_LEN (".amx_int8"), PROCESSOR_UNKNOWN,
1216 CPU_AMX_INT8_FLAGS, 0 },
1217 { STRING_COMMA_LEN (".amx_bf16"), PROCESSOR_UNKNOWN,
1218 CPU_AMX_BF16_FLAGS, 0 },
1219 { STRING_COMMA_LEN (".amx_tile"), PROCESSOR_UNKNOWN,
1220 CPU_AMX_TILE_FLAGS, 0 },
c0a30a9f
L
1221 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1222 CPU_MOVDIRI_FLAGS, 0 },
1223 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1224 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1225 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1226 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1227 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1228 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
81d54bb7
CL
1229 { STRING_COMMA_LEN (".tdx"), PROCESSOR_UNKNOWN,
1230 CPU_TDX_FLAGS, 0 },
dd455cf5
L
1231 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1232 CPU_ENQCMD_FLAGS, 0 },
4b27d27c
L
1233 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1234 CPU_SERIALIZE_FLAGS, 0 },
142861df
JB
1235 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1236 CPU_RDPRU_FLAGS, 0 },
1237 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1238 CPU_MCOMMIT_FLAGS, 0 },
a847e322
JB
1239 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1240 CPU_SEV_ES_FLAGS, 0 },
bb651e8b
CL
1241 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1242 CPU_TSXLDTRK_FLAGS, 0 },
c4694f17
TG
1243 { STRING_COMMA_LEN (".kl"), PROCESSOR_UNKNOWN,
1244 CPU_KL_FLAGS, 0 },
1245 { STRING_COMMA_LEN (".widekl"), PROCESSOR_UNKNOWN,
1246 CPU_WIDEKL_FLAGS, 0 },
f64c42a9
LC
1247 { STRING_COMMA_LEN (".uintr"), PROCESSOR_UNKNOWN,
1248 CPU_UINTR_FLAGS, 0 },
c1fa250a
LC
1249 { STRING_COMMA_LEN (".hreset"), PROCESSOR_UNKNOWN,
1250 CPU_HRESET_FLAGS, 0 },
293f5f65
L
1251};
1252
1253static const noarch_entry cpu_noarch[] =
1254{
1255 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1256 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1257 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1258 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1259 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1260 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1261 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1262 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1263 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1264 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
af5c13b0 1265 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1848e567
L
1266 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1267 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1268 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
af5c13b0 1269 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1270 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1271 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1272 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1273 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1274 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1275 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1276 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1277 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1278 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1279 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1280 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1281 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1282 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1283 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1284 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1285 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1286 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
58bf9b6a 1287 { STRING_COMMA_LEN ("noavx_vnni"), CPU_ANY_AVX_VNNI_FLAGS },
d777820b
IT
1288 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1289 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
260cd341
LC
1290 { STRING_COMMA_LEN ("noamx_int8"), CPU_ANY_AMX_INT8_FLAGS },
1291 { STRING_COMMA_LEN ("noamx_bf16"), CPU_ANY_AMX_BF16_FLAGS },
1292 { STRING_COMMA_LEN ("noamx_tile"), CPU_ANY_AMX_TILE_FLAGS },
c0a30a9f
L
1293 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1294 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1295 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
708a2fff
CL
1296 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1297 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
81d54bb7 1298 { STRING_COMMA_LEN ("notdx"), CPU_ANY_TDX_FLAGS },
dd455cf5 1299 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
4b27d27c 1300 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
bb651e8b 1301 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
c4694f17
TG
1302 { STRING_COMMA_LEN ("nokl"), CPU_ANY_KL_FLAGS },
1303 { STRING_COMMA_LEN ("nowidekl"), CPU_ANY_WIDEKL_FLAGS },
f64c42a9 1304 { STRING_COMMA_LEN ("nouintr"), CPU_ANY_UINTR_FLAGS },
c1fa250a 1305 { STRING_COMMA_LEN ("nohreset"), CPU_ANY_HRESET_FLAGS },
e413e4e9
AM
1306};
1307
704209c0 1308#ifdef I386COFF
a6c24e68
NC
1309/* Like s_lcomm_internal in gas/read.c but the alignment string
1310 is allowed to be optional. */
1311
1312static symbolS *
1313pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1314{
1315 addressT align = 0;
1316
1317 SKIP_WHITESPACE ();
1318
7ab9ffdd 1319 if (needs_align
a6c24e68
NC
1320 && *input_line_pointer == ',')
1321 {
1322 align = parse_align (needs_align - 1);
7ab9ffdd 1323
a6c24e68
NC
1324 if (align == (addressT) -1)
1325 return NULL;
1326 }
1327 else
1328 {
1329 if (size >= 8)
1330 align = 3;
1331 else if (size >= 4)
1332 align = 2;
1333 else if (size >= 2)
1334 align = 1;
1335 else
1336 align = 0;
1337 }
1338
1339 bss_alloc (symbolP, size, align);
1340 return symbolP;
1341}
1342
704209c0 1343static void
a6c24e68
NC
1344pe_lcomm (int needs_align)
1345{
1346 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1347}
704209c0 1348#endif
a6c24e68 1349
29b0f896
AM
1350const pseudo_typeS md_pseudo_table[] =
1351{
1352#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1353 {"align", s_align_bytes, 0},
1354#else
1355 {"align", s_align_ptwo, 0},
1356#endif
1357 {"arch", set_cpu_arch, 0},
1358#ifndef I386COFF
1359 {"bss", s_bss, 0},
a6c24e68
NC
1360#else
1361 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1362#endif
1363 {"ffloat", float_cons, 'f'},
1364 {"dfloat", float_cons, 'd'},
1365 {"tfloat", float_cons, 'x'},
1366 {"value", cons, 2},
d182319b 1367 {"slong", signed_cons, 4},
29b0f896
AM
1368 {"noopt", s_ignore, 0},
1369 {"optim", s_ignore, 0},
1370 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1371 {"code16", set_code_flag, CODE_16BIT},
1372 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1373#ifdef BFD64
29b0f896 1374 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1375#endif
29b0f896
AM
1376 {"intel_syntax", set_intel_syntax, 1},
1377 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1378 {"intel_mnemonic", set_intel_mnemonic, 1},
1379 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1380 {"allow_index_reg", set_allow_index_reg, 1},
1381 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1382 {"sse_check", set_check, 0},
1383 {"operand_check", set_check, 1},
3b22753a
L
1384#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1385 {"largecomm", handle_large_common, 0},
07a53e5c 1386#else
68d20676 1387 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1388 {"loc", dwarf2_directive_loc, 0},
1389 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1390#endif
6482c264
NC
1391#ifdef TE_PE
1392 {"secrel32", pe_directive_secrel, 0},
1393#endif
29b0f896
AM
1394 {0, 0, 0}
1395};
1396
1397/* For interface with expression (). */
1398extern char *input_line_pointer;
1399
1400/* Hash table for instruction mnemonic lookup. */
629310ab 1401static htab_t op_hash;
29b0f896
AM
1402
1403/* Hash table for register lookup. */
629310ab 1404static htab_t reg_hash;
29b0f896 1405\f
ce8a8b2f
AM
1406 /* Various efficient no-op patterns for aligning code labels.
1407 Note: Don't try to assemble the instructions in the comments.
1408 0L and 0w are not legal. */
62a02d25
L
1409static const unsigned char f32_1[] =
1410 {0x90}; /* nop */
1411static const unsigned char f32_2[] =
1412 {0x66,0x90}; /* xchg %ax,%ax */
1413static const unsigned char f32_3[] =
1414 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1415static const unsigned char f32_4[] =
1416 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1417static const unsigned char f32_6[] =
1418 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1419static const unsigned char f32_7[] =
1420 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1421static const unsigned char f16_3[] =
3ae729d5 1422 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1423static const unsigned char f16_4[] =
3ae729d5
L
1424 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1425static const unsigned char jump_disp8[] =
1426 {0xeb}; /* jmp disp8 */
1427static const unsigned char jump32_disp32[] =
1428 {0xe9}; /* jmp disp32 */
1429static const unsigned char jump16_disp32[] =
1430 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1431/* 32-bit NOPs patterns. */
1432static const unsigned char *const f32_patt[] = {
3ae729d5 1433 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1434};
1435/* 16-bit NOPs patterns. */
1436static const unsigned char *const f16_patt[] = {
3ae729d5 1437 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1438};
1439/* nopl (%[re]ax) */
1440static const unsigned char alt_3[] =
1441 {0x0f,0x1f,0x00};
1442/* nopl 0(%[re]ax) */
1443static const unsigned char alt_4[] =
1444 {0x0f,0x1f,0x40,0x00};
1445/* nopl 0(%[re]ax,%[re]ax,1) */
1446static const unsigned char alt_5[] =
1447 {0x0f,0x1f,0x44,0x00,0x00};
1448/* nopw 0(%[re]ax,%[re]ax,1) */
1449static const unsigned char alt_6[] =
1450 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1451/* nopl 0L(%[re]ax) */
1452static const unsigned char alt_7[] =
1453 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1454/* nopl 0L(%[re]ax,%[re]ax,1) */
1455static const unsigned char alt_8[] =
1456 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1457/* nopw 0L(%[re]ax,%[re]ax,1) */
1458static const unsigned char alt_9[] =
1459 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1460/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1461static const unsigned char alt_10[] =
1462 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1463/* data16 nopw %cs:0L(%eax,%eax,1) */
1464static const unsigned char alt_11[] =
1465 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1466/* 32-bit and 64-bit NOPs patterns. */
1467static const unsigned char *const alt_patt[] = {
1468 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1469 alt_9, alt_10, alt_11
62a02d25
L
1470};
1471
1472/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1473 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1474
1475static void
1476i386_output_nops (char *where, const unsigned char *const *patt,
1477 int count, int max_single_nop_size)
1478
1479{
3ae729d5
L
1480 /* Place the longer NOP first. */
1481 int last;
1482 int offset;
3076e594
NC
1483 const unsigned char *nops;
1484
1485 if (max_single_nop_size < 1)
1486 {
1487 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1488 max_single_nop_size);
1489 return;
1490 }
1491
1492 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1493
1494 /* Use the smaller one if the requsted one isn't available. */
1495 if (nops == NULL)
62a02d25 1496 {
3ae729d5
L
1497 max_single_nop_size--;
1498 nops = patt[max_single_nop_size - 1];
62a02d25
L
1499 }
1500
3ae729d5
L
1501 last = count % max_single_nop_size;
1502
1503 count -= last;
1504 for (offset = 0; offset < count; offset += max_single_nop_size)
1505 memcpy (where + offset, nops, max_single_nop_size);
1506
1507 if (last)
1508 {
1509 nops = patt[last - 1];
1510 if (nops == NULL)
1511 {
1512 /* Use the smaller one plus one-byte NOP if the needed one
1513 isn't available. */
1514 last--;
1515 nops = patt[last - 1];
1516 memcpy (where + offset, nops, last);
1517 where[offset + last] = *patt[0];
1518 }
1519 else
1520 memcpy (where + offset, nops, last);
1521 }
62a02d25
L
1522}
1523
3ae729d5
L
1524static INLINE int
1525fits_in_imm7 (offsetT num)
1526{
1527 return (num & 0x7f) == num;
1528}
1529
1530static INLINE int
1531fits_in_imm31 (offsetT num)
1532{
1533 return (num & 0x7fffffff) == num;
1534}
62a02d25
L
1535
1536/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1537 single NOP instruction LIMIT. */
1538
1539void
3ae729d5 1540i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1541{
3ae729d5 1542 const unsigned char *const *patt = NULL;
62a02d25 1543 int max_single_nop_size;
3ae729d5
L
1544 /* Maximum number of NOPs before switching to jump over NOPs. */
1545 int max_number_of_nops;
62a02d25 1546
3ae729d5 1547 switch (fragP->fr_type)
62a02d25 1548 {
3ae729d5
L
1549 case rs_fill_nop:
1550 case rs_align_code:
1551 break;
e379e5f3
L
1552 case rs_machine_dependent:
1553 /* Allow NOP padding for jumps and calls. */
1554 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1555 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1556 break;
1557 /* Fall through. */
3ae729d5 1558 default:
62a02d25
L
1559 return;
1560 }
1561
ccc9c027
L
1562 /* We need to decide which NOP sequence to use for 32bit and
1563 64bit. When -mtune= is used:
4eed87de 1564
76bc74dc
L
1565 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1566 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1567 2. For the rest, alt_patt will be used.
1568
1569 When -mtune= isn't used, alt_patt will be used if
22109423 1570 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1571 be used.
ccc9c027
L
1572
1573 When -march= or .arch is used, we can't use anything beyond
1574 cpu_arch_isa_flags. */
1575
1576 if (flag_code == CODE_16BIT)
1577 {
3ae729d5
L
1578 patt = f16_patt;
1579 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1580 /* Limit number of NOPs to 2 in 16-bit mode. */
1581 max_number_of_nops = 2;
252b5132 1582 }
33fef721 1583 else
ccc9c027 1584 {
fbf3f584 1585 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1586 {
1587 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1588 switch (cpu_arch_tune)
1589 {
1590 case PROCESSOR_UNKNOWN:
1591 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1592 optimize with nops. */
1593 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1594 patt = alt_patt;
ccc9c027
L
1595 else
1596 patt = f32_patt;
1597 break;
ccc9c027
L
1598 case PROCESSOR_PENTIUM4:
1599 case PROCESSOR_NOCONA:
ef05d495 1600 case PROCESSOR_CORE:
76bc74dc 1601 case PROCESSOR_CORE2:
bd5295b2 1602 case PROCESSOR_COREI7:
3632d14b 1603 case PROCESSOR_L1OM:
7a9068fe 1604 case PROCESSOR_K1OM:
76bc74dc 1605 case PROCESSOR_GENERIC64:
ccc9c027
L
1606 case PROCESSOR_K6:
1607 case PROCESSOR_ATHLON:
1608 case PROCESSOR_K8:
4eed87de 1609 case PROCESSOR_AMDFAM10:
8aedb9fe 1610 case PROCESSOR_BD:
029f3522 1611 case PROCESSOR_ZNVER:
7b458c12 1612 case PROCESSOR_BT:
80b8656c 1613 patt = alt_patt;
ccc9c027 1614 break;
76bc74dc 1615 case PROCESSOR_I386:
ccc9c027
L
1616 case PROCESSOR_I486:
1617 case PROCESSOR_PENTIUM:
2dde1948 1618 case PROCESSOR_PENTIUMPRO:
81486035 1619 case PROCESSOR_IAMCU:
ccc9c027
L
1620 case PROCESSOR_GENERIC32:
1621 patt = f32_patt;
1622 break;
4eed87de 1623 }
ccc9c027
L
1624 }
1625 else
1626 {
fbf3f584 1627 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1628 {
1629 case PROCESSOR_UNKNOWN:
e6a14101 1630 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1631 PROCESSOR_UNKNOWN. */
1632 abort ();
1633 break;
1634
76bc74dc 1635 case PROCESSOR_I386:
ccc9c027
L
1636 case PROCESSOR_I486:
1637 case PROCESSOR_PENTIUM:
81486035 1638 case PROCESSOR_IAMCU:
ccc9c027
L
1639 case PROCESSOR_K6:
1640 case PROCESSOR_ATHLON:
1641 case PROCESSOR_K8:
4eed87de 1642 case PROCESSOR_AMDFAM10:
8aedb9fe 1643 case PROCESSOR_BD:
029f3522 1644 case PROCESSOR_ZNVER:
7b458c12 1645 case PROCESSOR_BT:
ccc9c027
L
1646 case PROCESSOR_GENERIC32:
1647 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1648 with nops. */
1649 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1650 patt = alt_patt;
ccc9c027
L
1651 else
1652 patt = f32_patt;
1653 break;
76bc74dc
L
1654 case PROCESSOR_PENTIUMPRO:
1655 case PROCESSOR_PENTIUM4:
1656 case PROCESSOR_NOCONA:
1657 case PROCESSOR_CORE:
ef05d495 1658 case PROCESSOR_CORE2:
bd5295b2 1659 case PROCESSOR_COREI7:
3632d14b 1660 case PROCESSOR_L1OM:
7a9068fe 1661 case PROCESSOR_K1OM:
22109423 1662 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1663 patt = alt_patt;
ccc9c027
L
1664 else
1665 patt = f32_patt;
1666 break;
1667 case PROCESSOR_GENERIC64:
80b8656c 1668 patt = alt_patt;
ccc9c027 1669 break;
4eed87de 1670 }
ccc9c027
L
1671 }
1672
76bc74dc
L
1673 if (patt == f32_patt)
1674 {
3ae729d5
L
1675 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1676 /* Limit number of NOPs to 2 for older processors. */
1677 max_number_of_nops = 2;
76bc74dc
L
1678 }
1679 else
1680 {
3ae729d5
L
1681 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1682 /* Limit number of NOPs to 7 for newer processors. */
1683 max_number_of_nops = 7;
1684 }
1685 }
1686
1687 if (limit == 0)
1688 limit = max_single_nop_size;
1689
1690 if (fragP->fr_type == rs_fill_nop)
1691 {
1692 /* Output NOPs for .nop directive. */
1693 if (limit > max_single_nop_size)
1694 {
1695 as_bad_where (fragP->fr_file, fragP->fr_line,
1696 _("invalid single nop size: %d "
1697 "(expect within [0, %d])"),
1698 limit, max_single_nop_size);
1699 return;
1700 }
1701 }
e379e5f3 1702 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1703 fragP->fr_var = count;
1704
1705 if ((count / max_single_nop_size) > max_number_of_nops)
1706 {
1707 /* Generate jump over NOPs. */
1708 offsetT disp = count - 2;
1709 if (fits_in_imm7 (disp))
1710 {
1711 /* Use "jmp disp8" if possible. */
1712 count = disp;
1713 where[0] = jump_disp8[0];
1714 where[1] = count;
1715 where += 2;
1716 }
1717 else
1718 {
1719 unsigned int size_of_jump;
1720
1721 if (flag_code == CODE_16BIT)
1722 {
1723 where[0] = jump16_disp32[0];
1724 where[1] = jump16_disp32[1];
1725 size_of_jump = 2;
1726 }
1727 else
1728 {
1729 where[0] = jump32_disp32[0];
1730 size_of_jump = 1;
1731 }
1732
1733 count -= size_of_jump + 4;
1734 if (!fits_in_imm31 (count))
1735 {
1736 as_bad_where (fragP->fr_file, fragP->fr_line,
1737 _("jump over nop padding out of range"));
1738 return;
1739 }
1740
1741 md_number_to_chars (where + size_of_jump, count, 4);
1742 where += size_of_jump + 4;
76bc74dc 1743 }
ccc9c027 1744 }
3ae729d5
L
1745
1746 /* Generate multiple NOPs. */
1747 i386_output_nops (where, patt, count, limit);
252b5132
RH
1748}
1749
c6fb90c8 1750static INLINE int
0dfbf9d7 1751operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1752{
0dfbf9d7 1753 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1754 {
1755 case 3:
0dfbf9d7 1756 if (x->array[2])
c6fb90c8 1757 return 0;
1a0670f3 1758 /* Fall through. */
c6fb90c8 1759 case 2:
0dfbf9d7 1760 if (x->array[1])
c6fb90c8 1761 return 0;
1a0670f3 1762 /* Fall through. */
c6fb90c8 1763 case 1:
0dfbf9d7 1764 return !x->array[0];
c6fb90c8
L
1765 default:
1766 abort ();
1767 }
40fb9820
L
1768}
1769
c6fb90c8 1770static INLINE void
0dfbf9d7 1771operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1772{
0dfbf9d7 1773 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1774 {
1775 case 3:
0dfbf9d7 1776 x->array[2] = v;
1a0670f3 1777 /* Fall through. */
c6fb90c8 1778 case 2:
0dfbf9d7 1779 x->array[1] = v;
1a0670f3 1780 /* Fall through. */
c6fb90c8 1781 case 1:
0dfbf9d7 1782 x->array[0] = v;
1a0670f3 1783 /* Fall through. */
c6fb90c8
L
1784 break;
1785 default:
1786 abort ();
1787 }
bab6aec1
JB
1788
1789 x->bitfield.class = ClassNone;
75e5731b 1790 x->bitfield.instance = InstanceNone;
c6fb90c8 1791}
40fb9820 1792
c6fb90c8 1793static INLINE int
0dfbf9d7
L
1794operand_type_equal (const union i386_operand_type *x,
1795 const union i386_operand_type *y)
c6fb90c8 1796{
0dfbf9d7 1797 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1798 {
1799 case 3:
0dfbf9d7 1800 if (x->array[2] != y->array[2])
c6fb90c8 1801 return 0;
1a0670f3 1802 /* Fall through. */
c6fb90c8 1803 case 2:
0dfbf9d7 1804 if (x->array[1] != y->array[1])
c6fb90c8 1805 return 0;
1a0670f3 1806 /* Fall through. */
c6fb90c8 1807 case 1:
0dfbf9d7 1808 return x->array[0] == y->array[0];
c6fb90c8
L
1809 break;
1810 default:
1811 abort ();
1812 }
1813}
40fb9820 1814
0dfbf9d7
L
1815static INLINE int
1816cpu_flags_all_zero (const union i386_cpu_flags *x)
1817{
1818 switch (ARRAY_SIZE(x->array))
1819 {
53467f57
IT
1820 case 4:
1821 if (x->array[3])
1822 return 0;
1823 /* Fall through. */
0dfbf9d7
L
1824 case 3:
1825 if (x->array[2])
1826 return 0;
1a0670f3 1827 /* Fall through. */
0dfbf9d7
L
1828 case 2:
1829 if (x->array[1])
1830 return 0;
1a0670f3 1831 /* Fall through. */
0dfbf9d7
L
1832 case 1:
1833 return !x->array[0];
1834 default:
1835 abort ();
1836 }
1837}
1838
0dfbf9d7
L
1839static INLINE int
1840cpu_flags_equal (const union i386_cpu_flags *x,
1841 const union i386_cpu_flags *y)
1842{
1843 switch (ARRAY_SIZE(x->array))
1844 {
53467f57
IT
1845 case 4:
1846 if (x->array[3] != y->array[3])
1847 return 0;
1848 /* Fall through. */
0dfbf9d7
L
1849 case 3:
1850 if (x->array[2] != y->array[2])
1851 return 0;
1a0670f3 1852 /* Fall through. */
0dfbf9d7
L
1853 case 2:
1854 if (x->array[1] != y->array[1])
1855 return 0;
1a0670f3 1856 /* Fall through. */
0dfbf9d7
L
1857 case 1:
1858 return x->array[0] == y->array[0];
1859 break;
1860 default:
1861 abort ();
1862 }
1863}
c6fb90c8
L
1864
1865static INLINE int
1866cpu_flags_check_cpu64 (i386_cpu_flags f)
1867{
1868 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1869 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1870}
1871
c6fb90c8
L
1872static INLINE i386_cpu_flags
1873cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1874{
c6fb90c8
L
1875 switch (ARRAY_SIZE (x.array))
1876 {
53467f57
IT
1877 case 4:
1878 x.array [3] &= y.array [3];
1879 /* Fall through. */
c6fb90c8
L
1880 case 3:
1881 x.array [2] &= y.array [2];
1a0670f3 1882 /* Fall through. */
c6fb90c8
L
1883 case 2:
1884 x.array [1] &= y.array [1];
1a0670f3 1885 /* Fall through. */
c6fb90c8
L
1886 case 1:
1887 x.array [0] &= y.array [0];
1888 break;
1889 default:
1890 abort ();
1891 }
1892 return x;
1893}
40fb9820 1894
c6fb90c8
L
1895static INLINE i386_cpu_flags
1896cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1897{
c6fb90c8 1898 switch (ARRAY_SIZE (x.array))
40fb9820 1899 {
53467f57
IT
1900 case 4:
1901 x.array [3] |= y.array [3];
1902 /* Fall through. */
c6fb90c8
L
1903 case 3:
1904 x.array [2] |= y.array [2];
1a0670f3 1905 /* Fall through. */
c6fb90c8
L
1906 case 2:
1907 x.array [1] |= y.array [1];
1a0670f3 1908 /* Fall through. */
c6fb90c8
L
1909 case 1:
1910 x.array [0] |= y.array [0];
40fb9820
L
1911 break;
1912 default:
1913 abort ();
1914 }
40fb9820
L
1915 return x;
1916}
1917
309d3373
JB
1918static INLINE i386_cpu_flags
1919cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1920{
1921 switch (ARRAY_SIZE (x.array))
1922 {
53467f57
IT
1923 case 4:
1924 x.array [3] &= ~y.array [3];
1925 /* Fall through. */
309d3373
JB
1926 case 3:
1927 x.array [2] &= ~y.array [2];
1a0670f3 1928 /* Fall through. */
309d3373
JB
1929 case 2:
1930 x.array [1] &= ~y.array [1];
1a0670f3 1931 /* Fall through. */
309d3373
JB
1932 case 1:
1933 x.array [0] &= ~y.array [0];
1934 break;
1935 default:
1936 abort ();
1937 }
1938 return x;
1939}
1940
6c0946d0
JB
1941static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1942
c0f3af97
L
1943#define CPU_FLAGS_ARCH_MATCH 0x1
1944#define CPU_FLAGS_64BIT_MATCH 0x2
1945
c0f3af97 1946#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1947 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1948
1949/* Return CPU flags match bits. */
3629bb00 1950
40fb9820 1951static int
d3ce72d0 1952cpu_flags_match (const insn_template *t)
40fb9820 1953{
c0f3af97
L
1954 i386_cpu_flags x = t->cpu_flags;
1955 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1956
1957 x.bitfield.cpu64 = 0;
1958 x.bitfield.cpuno64 = 0;
1959
0dfbf9d7 1960 if (cpu_flags_all_zero (&x))
c0f3af97
L
1961 {
1962 /* This instruction is available on all archs. */
db12e14e 1963 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1964 }
3629bb00
L
1965 else
1966 {
c0f3af97 1967 /* This instruction is available only on some archs. */
3629bb00
L
1968 i386_cpu_flags cpu = cpu_arch_flags;
1969
ab592e75
JB
1970 /* AVX512VL is no standalone feature - match it and then strip it. */
1971 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1972 return match;
1973 x.bitfield.cpuavx512vl = 0;
1974
3629bb00 1975 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1976 if (!cpu_flags_all_zero (&cpu))
1977 {
57392598 1978 if (x.bitfield.cpuavx)
a5ff0eb2 1979 {
929f69fa 1980 /* We need to check a few extra flags with AVX. */
b9d49817 1981 if (cpu.bitfield.cpuavx
40d231b4
JB
1982 && (!t->opcode_modifier.sse2avx
1983 || (sse2avx && !i.prefix[DATA_PREFIX]))
b9d49817 1984 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1985 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1986 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1987 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1988 }
929f69fa
JB
1989 else if (x.bitfield.cpuavx512f)
1990 {
1991 /* We need to check a few extra flags with AVX512F. */
1992 if (cpu.bitfield.cpuavx512f
1993 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1994 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1995 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1996 match |= CPU_FLAGS_ARCH_MATCH;
1997 }
a5ff0eb2 1998 else
db12e14e 1999 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 2000 }
3629bb00 2001 }
c0f3af97 2002 return match;
40fb9820
L
2003}
2004
c6fb90c8
L
2005static INLINE i386_operand_type
2006operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 2007{
bab6aec1
JB
2008 if (x.bitfield.class != y.bitfield.class)
2009 x.bitfield.class = ClassNone;
75e5731b
JB
2010 if (x.bitfield.instance != y.bitfield.instance)
2011 x.bitfield.instance = InstanceNone;
bab6aec1 2012
c6fb90c8
L
2013 switch (ARRAY_SIZE (x.array))
2014 {
2015 case 3:
2016 x.array [2] &= y.array [2];
1a0670f3 2017 /* Fall through. */
c6fb90c8
L
2018 case 2:
2019 x.array [1] &= y.array [1];
1a0670f3 2020 /* Fall through. */
c6fb90c8
L
2021 case 1:
2022 x.array [0] &= y.array [0];
2023 break;
2024 default:
2025 abort ();
2026 }
2027 return x;
40fb9820
L
2028}
2029
73053c1f
JB
2030static INLINE i386_operand_type
2031operand_type_and_not (i386_operand_type x, i386_operand_type y)
2032{
bab6aec1 2033 gas_assert (y.bitfield.class == ClassNone);
75e5731b 2034 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 2035
73053c1f
JB
2036 switch (ARRAY_SIZE (x.array))
2037 {
2038 case 3:
2039 x.array [2] &= ~y.array [2];
2040 /* Fall through. */
2041 case 2:
2042 x.array [1] &= ~y.array [1];
2043 /* Fall through. */
2044 case 1:
2045 x.array [0] &= ~y.array [0];
2046 break;
2047 default:
2048 abort ();
2049 }
2050 return x;
2051}
2052
c6fb90c8
L
2053static INLINE i386_operand_type
2054operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 2055{
bab6aec1
JB
2056 gas_assert (x.bitfield.class == ClassNone ||
2057 y.bitfield.class == ClassNone ||
2058 x.bitfield.class == y.bitfield.class);
75e5731b
JB
2059 gas_assert (x.bitfield.instance == InstanceNone ||
2060 y.bitfield.instance == InstanceNone ||
2061 x.bitfield.instance == y.bitfield.instance);
bab6aec1 2062
c6fb90c8 2063 switch (ARRAY_SIZE (x.array))
40fb9820 2064 {
c6fb90c8
L
2065 case 3:
2066 x.array [2] |= y.array [2];
1a0670f3 2067 /* Fall through. */
c6fb90c8
L
2068 case 2:
2069 x.array [1] |= y.array [1];
1a0670f3 2070 /* Fall through. */
c6fb90c8
L
2071 case 1:
2072 x.array [0] |= y.array [0];
40fb9820
L
2073 break;
2074 default:
2075 abort ();
2076 }
c6fb90c8
L
2077 return x;
2078}
40fb9820 2079
c6fb90c8
L
2080static INLINE i386_operand_type
2081operand_type_xor (i386_operand_type x, i386_operand_type y)
2082{
bab6aec1 2083 gas_assert (y.bitfield.class == ClassNone);
75e5731b 2084 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 2085
c6fb90c8
L
2086 switch (ARRAY_SIZE (x.array))
2087 {
2088 case 3:
2089 x.array [2] ^= y.array [2];
1a0670f3 2090 /* Fall through. */
c6fb90c8
L
2091 case 2:
2092 x.array [1] ^= y.array [1];
1a0670f3 2093 /* Fall through. */
c6fb90c8
L
2094 case 1:
2095 x.array [0] ^= y.array [0];
2096 break;
2097 default:
2098 abort ();
2099 }
40fb9820
L
2100 return x;
2101}
2102
40fb9820
L
2103static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2104static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2105static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2106static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2107static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2108static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2109static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2110static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2111static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2112static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2113static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2114static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2115static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2116static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2117static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2118static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2119static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2120
2121enum operand_type
2122{
2123 reg,
40fb9820
L
2124 imm,
2125 disp,
2126 anymem
2127};
2128
c6fb90c8 2129static INLINE int
40fb9820
L
2130operand_type_check (i386_operand_type t, enum operand_type c)
2131{
2132 switch (c)
2133 {
2134 case reg:
bab6aec1 2135 return t.bitfield.class == Reg;
40fb9820 2136
40fb9820
L
2137 case imm:
2138 return (t.bitfield.imm8
2139 || t.bitfield.imm8s
2140 || t.bitfield.imm16
2141 || t.bitfield.imm32
2142 || t.bitfield.imm32s
2143 || t.bitfield.imm64);
2144
2145 case disp:
2146 return (t.bitfield.disp8
2147 || t.bitfield.disp16
2148 || t.bitfield.disp32
2149 || t.bitfield.disp32s
2150 || t.bitfield.disp64);
2151
2152 case anymem:
2153 return (t.bitfield.disp8
2154 || t.bitfield.disp16
2155 || t.bitfield.disp32
2156 || t.bitfield.disp32s
2157 || t.bitfield.disp64
2158 || t.bitfield.baseindex);
2159
2160 default:
2161 abort ();
2162 }
2cfe26b6
AM
2163
2164 return 0;
40fb9820
L
2165}
2166
7a54636a
L
2167/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2168 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2169
2170static INLINE int
7a54636a
L
2171match_operand_size (const insn_template *t, unsigned int wanted,
2172 unsigned int given)
5c07affc 2173{
3ac21baa
JB
2174 return !((i.types[given].bitfield.byte
2175 && !t->operand_types[wanted].bitfield.byte)
2176 || (i.types[given].bitfield.word
2177 && !t->operand_types[wanted].bitfield.word)
2178 || (i.types[given].bitfield.dword
2179 && !t->operand_types[wanted].bitfield.dword)
2180 || (i.types[given].bitfield.qword
2181 && !t->operand_types[wanted].bitfield.qword)
2182 || (i.types[given].bitfield.tbyte
2183 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2184}
2185
dd40ce22
L
2186/* Return 1 if there is no conflict in SIMD register between operand
2187 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2188
2189static INLINE int
dd40ce22
L
2190match_simd_size (const insn_template *t, unsigned int wanted,
2191 unsigned int given)
1b54b8d7 2192{
3ac21baa
JB
2193 return !((i.types[given].bitfield.xmmword
2194 && !t->operand_types[wanted].bitfield.xmmword)
2195 || (i.types[given].bitfield.ymmword
2196 && !t->operand_types[wanted].bitfield.ymmword)
2197 || (i.types[given].bitfield.zmmword
260cd341
LC
2198 && !t->operand_types[wanted].bitfield.zmmword)
2199 || (i.types[given].bitfield.tmmword
2200 && !t->operand_types[wanted].bitfield.tmmword));
1b54b8d7
JB
2201}
2202
7a54636a
L
2203/* Return 1 if there is no conflict in any size between operand GIVEN
2204 and opeand WANTED for instruction template T. */
5c07affc
L
2205
2206static INLINE int
dd40ce22
L
2207match_mem_size (const insn_template *t, unsigned int wanted,
2208 unsigned int given)
5c07affc 2209{
7a54636a 2210 return (match_operand_size (t, wanted, given)
3ac21baa 2211 && !((i.types[given].bitfield.unspecified
af508cb9 2212 && !i.broadcast
3ac21baa
JB
2213 && !t->operand_types[wanted].bitfield.unspecified)
2214 || (i.types[given].bitfield.fword
2215 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2216 /* For scalar opcode templates to allow register and memory
2217 operands at the same time, some special casing is needed
d6793fa1
JB
2218 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2219 down-conversion vpmov*. */
3528c362 2220 || ((t->operand_types[wanted].bitfield.class == RegSIMD
bc49bfd8
JB
2221 && t->operand_types[wanted].bitfield.byte
2222 + t->operand_types[wanted].bitfield.word
2223 + t->operand_types[wanted].bitfield.dword
2224 + t->operand_types[wanted].bitfield.qword
2225 > !!t->opcode_modifier.broadcast)
3ac21baa
JB
2226 ? (i.types[given].bitfield.xmmword
2227 || i.types[given].bitfield.ymmword
2228 || i.types[given].bitfield.zmmword)
2229 : !match_simd_size(t, wanted, given))));
5c07affc
L
2230}
2231
3ac21baa
JB
2232/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2233 operands for instruction template T, and it has MATCH_REVERSE set if there
2234 is no size conflict on any operands for the template with operands reversed
2235 (and the template allows for reversing in the first place). */
5c07affc 2236
3ac21baa
JB
2237#define MATCH_STRAIGHT 1
2238#define MATCH_REVERSE 2
2239
2240static INLINE unsigned int
d3ce72d0 2241operand_size_match (const insn_template *t)
5c07affc 2242{
3ac21baa 2243 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2244
0cfa3eb3 2245 /* Don't check non-absolute jump instructions. */
5c07affc 2246 if (t->opcode_modifier.jump
0cfa3eb3 2247 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2248 return match;
2249
2250 /* Check memory and accumulator operand size. */
2251 for (j = 0; j < i.operands; j++)
2252 {
3528c362
JB
2253 if (i.types[j].bitfield.class != Reg
2254 && i.types[j].bitfield.class != RegSIMD
601e8564 2255 && t->opcode_modifier.anysize)
5c07affc
L
2256 continue;
2257
bab6aec1 2258 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2259 && !match_operand_size (t, j, j))
5c07affc
L
2260 {
2261 match = 0;
2262 break;
2263 }
2264
3528c362 2265 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2266 && !match_simd_size (t, j, j))
1b54b8d7
JB
2267 {
2268 match = 0;
2269 break;
2270 }
2271
75e5731b 2272 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2273 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2274 {
2275 match = 0;
2276 break;
2277 }
2278
c48dadc9 2279 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2280 {
2281 match = 0;
2282 break;
2283 }
2284 }
2285
3ac21baa 2286 if (!t->opcode_modifier.d)
891edac4 2287 {
dc1e8a47 2288 mismatch:
3ac21baa
JB
2289 if (!match)
2290 i.error = operand_size_mismatch;
2291 return match;
891edac4 2292 }
5c07affc
L
2293
2294 /* Check reverse. */
f5eb1d70 2295 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2296
f5eb1d70 2297 for (j = 0; j < i.operands; j++)
5c07affc 2298 {
f5eb1d70
JB
2299 unsigned int given = i.operands - j - 1;
2300
bab6aec1 2301 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2302 && !match_operand_size (t, j, given))
891edac4 2303 goto mismatch;
5c07affc 2304
3528c362 2305 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2306 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2307 goto mismatch;
2308
75e5731b 2309 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2310 && (!match_operand_size (t, j, given)
2311 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2312 goto mismatch;
2313
f5eb1d70 2314 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2315 goto mismatch;
5c07affc
L
2316 }
2317
3ac21baa 2318 return match | MATCH_REVERSE;
5c07affc
L
2319}
2320
c6fb90c8 2321static INLINE int
40fb9820
L
2322operand_type_match (i386_operand_type overlap,
2323 i386_operand_type given)
2324{
2325 i386_operand_type temp = overlap;
2326
7d5e4556 2327 temp.bitfield.unspecified = 0;
5c07affc
L
2328 temp.bitfield.byte = 0;
2329 temp.bitfield.word = 0;
2330 temp.bitfield.dword = 0;
2331 temp.bitfield.fword = 0;
2332 temp.bitfield.qword = 0;
2333 temp.bitfield.tbyte = 0;
2334 temp.bitfield.xmmword = 0;
c0f3af97 2335 temp.bitfield.ymmword = 0;
43234a1e 2336 temp.bitfield.zmmword = 0;
260cd341 2337 temp.bitfield.tmmword = 0;
0dfbf9d7 2338 if (operand_type_all_zero (&temp))
891edac4 2339 goto mismatch;
40fb9820 2340
6f2f06be 2341 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2342 return 1;
2343
dc1e8a47 2344 mismatch:
a65babc9 2345 i.error = operand_type_mismatch;
891edac4 2346 return 0;
40fb9820
L
2347}
2348
7d5e4556 2349/* If given types g0 and g1 are registers they must be of the same type
10c17abd 2350 unless the expected operand type register overlap is null.
5de4d9ef 2351 Some Intel syntax memory operand size checking also happens here. */
40fb9820 2352
c6fb90c8 2353static INLINE int
dc821c5f 2354operand_type_register_match (i386_operand_type g0,
40fb9820 2355 i386_operand_type t0,
40fb9820
L
2356 i386_operand_type g1,
2357 i386_operand_type t1)
2358{
bab6aec1 2359 if (g0.bitfield.class != Reg
3528c362 2360 && g0.bitfield.class != RegSIMD
10c17abd
JB
2361 && (!operand_type_check (g0, anymem)
2362 || g0.bitfield.unspecified
5de4d9ef
JB
2363 || (t0.bitfield.class != Reg
2364 && t0.bitfield.class != RegSIMD)))
40fb9820
L
2365 return 1;
2366
bab6aec1 2367 if (g1.bitfield.class != Reg
3528c362 2368 && g1.bitfield.class != RegSIMD
10c17abd
JB
2369 && (!operand_type_check (g1, anymem)
2370 || g1.bitfield.unspecified
5de4d9ef
JB
2371 || (t1.bitfield.class != Reg
2372 && t1.bitfield.class != RegSIMD)))
40fb9820
L
2373 return 1;
2374
dc821c5f
JB
2375 if (g0.bitfield.byte == g1.bitfield.byte
2376 && g0.bitfield.word == g1.bitfield.word
2377 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2378 && g0.bitfield.qword == g1.bitfield.qword
2379 && g0.bitfield.xmmword == g1.bitfield.xmmword
2380 && g0.bitfield.ymmword == g1.bitfield.ymmword
2381 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2382 return 1;
2383
dc821c5f
JB
2384 if (!(t0.bitfield.byte & t1.bitfield.byte)
2385 && !(t0.bitfield.word & t1.bitfield.word)
2386 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2387 && !(t0.bitfield.qword & t1.bitfield.qword)
2388 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2389 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2390 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2391 return 1;
2392
a65babc9 2393 i.error = register_type_mismatch;
891edac4
L
2394
2395 return 0;
40fb9820
L
2396}
2397
4c692bc7
JB
2398static INLINE unsigned int
2399register_number (const reg_entry *r)
2400{
2401 unsigned int nr = r->reg_num;
2402
2403 if (r->reg_flags & RegRex)
2404 nr += 8;
2405
200cbe0f
L
2406 if (r->reg_flags & RegVRex)
2407 nr += 16;
2408
4c692bc7
JB
2409 return nr;
2410}
2411
252b5132 2412static INLINE unsigned int
40fb9820 2413mode_from_disp_size (i386_operand_type t)
252b5132 2414{
b5014f7a 2415 if (t.bitfield.disp8)
40fb9820
L
2416 return 1;
2417 else if (t.bitfield.disp16
2418 || t.bitfield.disp32
2419 || t.bitfield.disp32s)
2420 return 2;
2421 else
2422 return 0;
252b5132
RH
2423}
2424
2425static INLINE int
65879393 2426fits_in_signed_byte (addressT num)
252b5132 2427{
65879393 2428 return num + 0x80 <= 0xff;
47926f60 2429}
252b5132
RH
2430
2431static INLINE int
65879393 2432fits_in_unsigned_byte (addressT num)
252b5132 2433{
65879393 2434 return num <= 0xff;
47926f60 2435}
252b5132
RH
2436
2437static INLINE int
65879393 2438fits_in_unsigned_word (addressT num)
252b5132 2439{
65879393 2440 return num <= 0xffff;
47926f60 2441}
252b5132
RH
2442
2443static INLINE int
65879393 2444fits_in_signed_word (addressT num)
252b5132 2445{
65879393 2446 return num + 0x8000 <= 0xffff;
47926f60 2447}
2a962e6d 2448
3e73aa7c 2449static INLINE int
65879393 2450fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2451{
2452#ifndef BFD64
2453 return 1;
2454#else
65879393 2455 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2456#endif
2457} /* fits_in_signed_long() */
2a962e6d 2458
3e73aa7c 2459static INLINE int
65879393 2460fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2461{
2462#ifndef BFD64
2463 return 1;
2464#else
65879393 2465 return num <= 0xffffffff;
3e73aa7c
JH
2466#endif
2467} /* fits_in_unsigned_long() */
252b5132 2468
43234a1e 2469static INLINE int
b5014f7a 2470fits_in_disp8 (offsetT num)
43234a1e
L
2471{
2472 int shift = i.memshift;
2473 unsigned int mask;
2474
2475 if (shift == -1)
2476 abort ();
2477
2478 mask = (1 << shift) - 1;
2479
2480 /* Return 0 if NUM isn't properly aligned. */
2481 if ((num & mask))
2482 return 0;
2483
2484 /* Check if NUM will fit in 8bit after shift. */
2485 return fits_in_signed_byte (num >> shift);
2486}
2487
a683cc34
SP
2488static INLINE int
2489fits_in_imm4 (offsetT num)
2490{
2491 return (num & 0xf) == num;
2492}
2493
40fb9820 2494static i386_operand_type
e3bb37b5 2495smallest_imm_type (offsetT num)
252b5132 2496{
40fb9820 2497 i386_operand_type t;
7ab9ffdd 2498
0dfbf9d7 2499 operand_type_set (&t, 0);
40fb9820
L
2500 t.bitfield.imm64 = 1;
2501
2502 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2503 {
2504 /* This code is disabled on the 486 because all the Imm1 forms
2505 in the opcode table are slower on the i486. They're the
2506 versions with the implicitly specified single-position
2507 displacement, which has another syntax if you really want to
2508 use that form. */
40fb9820
L
2509 t.bitfield.imm1 = 1;
2510 t.bitfield.imm8 = 1;
2511 t.bitfield.imm8s = 1;
2512 t.bitfield.imm16 = 1;
2513 t.bitfield.imm32 = 1;
2514 t.bitfield.imm32s = 1;
2515 }
2516 else if (fits_in_signed_byte (num))
2517 {
2518 t.bitfield.imm8 = 1;
2519 t.bitfield.imm8s = 1;
2520 t.bitfield.imm16 = 1;
2521 t.bitfield.imm32 = 1;
2522 t.bitfield.imm32s = 1;
2523 }
2524 else if (fits_in_unsigned_byte (num))
2525 {
2526 t.bitfield.imm8 = 1;
2527 t.bitfield.imm16 = 1;
2528 t.bitfield.imm32 = 1;
2529 t.bitfield.imm32s = 1;
2530 }
2531 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2532 {
2533 t.bitfield.imm16 = 1;
2534 t.bitfield.imm32 = 1;
2535 t.bitfield.imm32s = 1;
2536 }
2537 else if (fits_in_signed_long (num))
2538 {
2539 t.bitfield.imm32 = 1;
2540 t.bitfield.imm32s = 1;
2541 }
2542 else if (fits_in_unsigned_long (num))
2543 t.bitfield.imm32 = 1;
2544
2545 return t;
47926f60 2546}
252b5132 2547
847f7ad4 2548static offsetT
e3bb37b5 2549offset_in_range (offsetT val, int size)
847f7ad4 2550{
508866be 2551 addressT mask;
ba2adb93 2552
847f7ad4
AM
2553 switch (size)
2554 {
508866be
L
2555 case 1: mask = ((addressT) 1 << 8) - 1; break;
2556 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2557 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2558#ifdef BFD64
2559 case 8: mask = ((addressT) 2 << 63) - 1; break;
2560#endif
47926f60 2561 default: abort ();
847f7ad4
AM
2562 }
2563
47926f60 2564 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2565 {
2566 char buf1[40], buf2[40];
2567
2568 sprint_value (buf1, val);
2569 sprint_value (buf2, val & mask);
2570 as_warn (_("%s shortened to %s"), buf1, buf2);
2571 }
2572 return val & mask;
2573}
2574
c32fa91d
L
2575enum PREFIX_GROUP
2576{
2577 PREFIX_EXIST = 0,
2578 PREFIX_LOCK,
2579 PREFIX_REP,
04ef582a 2580 PREFIX_DS,
c32fa91d
L
2581 PREFIX_OTHER
2582};
2583
2584/* Returns
2585 a. PREFIX_EXIST if attempting to add a prefix where one from the
2586 same class already exists.
2587 b. PREFIX_LOCK if lock prefix is added.
2588 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2589 d. PREFIX_DS if ds prefix is added.
2590 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2591 */
2592
2593static enum PREFIX_GROUP
e3bb37b5 2594add_prefix (unsigned int prefix)
252b5132 2595{
c32fa91d 2596 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2597 unsigned int q;
252b5132 2598
29b0f896
AM
2599 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2600 && flag_code == CODE_64BIT)
b1905489 2601 {
161a04f6 2602 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2603 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2604 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2605 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2606 ret = PREFIX_EXIST;
b1905489
JB
2607 q = REX_PREFIX;
2608 }
3e73aa7c 2609 else
b1905489
JB
2610 {
2611 switch (prefix)
2612 {
2613 default:
2614 abort ();
2615
b1905489 2616 case DS_PREFIX_OPCODE:
04ef582a
L
2617 ret = PREFIX_DS;
2618 /* Fall through. */
2619 case CS_PREFIX_OPCODE:
b1905489
JB
2620 case ES_PREFIX_OPCODE:
2621 case FS_PREFIX_OPCODE:
2622 case GS_PREFIX_OPCODE:
2623 case SS_PREFIX_OPCODE:
2624 q = SEG_PREFIX;
2625 break;
2626
2627 case REPNE_PREFIX_OPCODE:
2628 case REPE_PREFIX_OPCODE:
c32fa91d
L
2629 q = REP_PREFIX;
2630 ret = PREFIX_REP;
2631 break;
2632
b1905489 2633 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2634 q = LOCK_PREFIX;
2635 ret = PREFIX_LOCK;
b1905489
JB
2636 break;
2637
2638 case FWAIT_OPCODE:
2639 q = WAIT_PREFIX;
2640 break;
2641
2642 case ADDR_PREFIX_OPCODE:
2643 q = ADDR_PREFIX;
2644 break;
2645
2646 case DATA_PREFIX_OPCODE:
2647 q = DATA_PREFIX;
2648 break;
2649 }
2650 if (i.prefix[q] != 0)
c32fa91d 2651 ret = PREFIX_EXIST;
b1905489 2652 }
252b5132 2653
b1905489 2654 if (ret)
252b5132 2655 {
b1905489
JB
2656 if (!i.prefix[q])
2657 ++i.prefixes;
2658 i.prefix[q] |= prefix;
252b5132 2659 }
b1905489
JB
2660 else
2661 as_bad (_("same type of prefix used twice"));
252b5132 2662
252b5132
RH
2663 return ret;
2664}
2665
2666static void
78f12dd3 2667update_code_flag (int value, int check)
eecb386c 2668{
78f12dd3
L
2669 PRINTF_LIKE ((*as_error));
2670
1e9cc1c2 2671 flag_code = (enum flag_code) value;
40fb9820
L
2672 if (flag_code == CODE_64BIT)
2673 {
2674 cpu_arch_flags.bitfield.cpu64 = 1;
2675 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2676 }
2677 else
2678 {
2679 cpu_arch_flags.bitfield.cpu64 = 0;
2680 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2681 }
2682 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2683 {
78f12dd3
L
2684 if (check)
2685 as_error = as_fatal;
2686 else
2687 as_error = as_bad;
2688 (*as_error) (_("64bit mode not supported on `%s'."),
2689 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2690 }
40fb9820 2691 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2692 {
78f12dd3
L
2693 if (check)
2694 as_error = as_fatal;
2695 else
2696 as_error = as_bad;
2697 (*as_error) (_("32bit mode not supported on `%s'."),
2698 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2699 }
eecb386c
AM
2700 stackop_size = '\0';
2701}
2702
78f12dd3
L
2703static void
2704set_code_flag (int value)
2705{
2706 update_code_flag (value, 0);
2707}
2708
eecb386c 2709static void
e3bb37b5 2710set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2711{
1e9cc1c2 2712 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2713 if (flag_code != CODE_16BIT)
2714 abort ();
2715 cpu_arch_flags.bitfield.cpu64 = 0;
2716 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2717 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2718}
2719
2720static void
e3bb37b5 2721set_intel_syntax (int syntax_flag)
252b5132
RH
2722{
2723 /* Find out if register prefixing is specified. */
2724 int ask_naked_reg = 0;
2725
2726 SKIP_WHITESPACE ();
29b0f896 2727 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2728 {
d02603dc
NC
2729 char *string;
2730 int e = get_symbol_name (&string);
252b5132 2731
47926f60 2732 if (strcmp (string, "prefix") == 0)
252b5132 2733 ask_naked_reg = 1;
47926f60 2734 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2735 ask_naked_reg = -1;
2736 else
d0b47220 2737 as_bad (_("bad argument to syntax directive."));
d02603dc 2738 (void) restore_line_pointer (e);
252b5132
RH
2739 }
2740 demand_empty_rest_of_line ();
c3332e24 2741
252b5132
RH
2742 intel_syntax = syntax_flag;
2743
2744 if (ask_naked_reg == 0)
f86103b7
AM
2745 allow_naked_reg = (intel_syntax
2746 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2747 else
2748 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2749
ee86248c 2750 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2751
e4a3b5a4 2752 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2753 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2754 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2755}
2756
1efbbeb4
L
2757static void
2758set_intel_mnemonic (int mnemonic_flag)
2759{
e1d4d893 2760 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2761}
2762
db51cc60
L
2763static void
2764set_allow_index_reg (int flag)
2765{
2766 allow_index_reg = flag;
2767}
2768
cb19c032 2769static void
7bab8ab5 2770set_check (int what)
cb19c032 2771{
7bab8ab5
JB
2772 enum check_kind *kind;
2773 const char *str;
2774
2775 if (what)
2776 {
2777 kind = &operand_check;
2778 str = "operand";
2779 }
2780 else
2781 {
2782 kind = &sse_check;
2783 str = "sse";
2784 }
2785
cb19c032
L
2786 SKIP_WHITESPACE ();
2787
2788 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2789 {
d02603dc
NC
2790 char *string;
2791 int e = get_symbol_name (&string);
cb19c032
L
2792
2793 if (strcmp (string, "none") == 0)
7bab8ab5 2794 *kind = check_none;
cb19c032 2795 else if (strcmp (string, "warning") == 0)
7bab8ab5 2796 *kind = check_warning;
cb19c032 2797 else if (strcmp (string, "error") == 0)
7bab8ab5 2798 *kind = check_error;
cb19c032 2799 else
7bab8ab5 2800 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2801 (void) restore_line_pointer (e);
cb19c032
L
2802 }
2803 else
7bab8ab5 2804 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2805
2806 demand_empty_rest_of_line ();
2807}
2808
8a9036a4
L
2809static void
2810check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2811 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2812{
2813#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2814 static const char *arch;
2815
2816 /* Intel LIOM is only supported on ELF. */
2817 if (!IS_ELF)
2818 return;
2819
2820 if (!arch)
2821 {
2822 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2823 use default_arch. */
2824 arch = cpu_arch_name;
2825 if (!arch)
2826 arch = default_arch;
2827 }
2828
81486035
L
2829 /* If we are targeting Intel MCU, we must enable it. */
2830 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2831 || new_flag.bitfield.cpuiamcu)
2832 return;
2833
3632d14b 2834 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2835 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2836 || new_flag.bitfield.cpul1om)
8a9036a4 2837 return;
76ba9986 2838
7a9068fe
L
2839 /* If we are targeting Intel K1OM, we must enable it. */
2840 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2841 || new_flag.bitfield.cpuk1om)
2842 return;
2843
8a9036a4
L
2844 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2845#endif
2846}
2847
e413e4e9 2848static void
e3bb37b5 2849set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2850{
47926f60 2851 SKIP_WHITESPACE ();
e413e4e9 2852
29b0f896 2853 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2854 {
d02603dc
NC
2855 char *string;
2856 int e = get_symbol_name (&string);
91d6fa6a 2857 unsigned int j;
40fb9820 2858 i386_cpu_flags flags;
e413e4e9 2859
91d6fa6a 2860 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2861 {
91d6fa6a 2862 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2863 {
91d6fa6a 2864 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2865
5c6af06e
JB
2866 if (*string != '.')
2867 {
91d6fa6a 2868 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2869 cpu_sub_arch_name = NULL;
91d6fa6a 2870 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2871 if (flag_code == CODE_64BIT)
2872 {
2873 cpu_arch_flags.bitfield.cpu64 = 1;
2874 cpu_arch_flags.bitfield.cpuno64 = 0;
2875 }
2876 else
2877 {
2878 cpu_arch_flags.bitfield.cpu64 = 0;
2879 cpu_arch_flags.bitfield.cpuno64 = 1;
2880 }
91d6fa6a
NC
2881 cpu_arch_isa = cpu_arch[j].type;
2882 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2883 if (!cpu_arch_tune_set)
2884 {
2885 cpu_arch_tune = cpu_arch_isa;
2886 cpu_arch_tune_flags = cpu_arch_isa_flags;
2887 }
5c6af06e
JB
2888 break;
2889 }
40fb9820 2890
293f5f65
L
2891 flags = cpu_flags_or (cpu_arch_flags,
2892 cpu_arch[j].flags);
81486035 2893
5b64d091 2894 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2895 {
6305a203
L
2896 if (cpu_sub_arch_name)
2897 {
2898 char *name = cpu_sub_arch_name;
2899 cpu_sub_arch_name = concat (name,
91d6fa6a 2900 cpu_arch[j].name,
1bf57e9f 2901 (const char *) NULL);
6305a203
L
2902 free (name);
2903 }
2904 else
91d6fa6a 2905 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2906 cpu_arch_flags = flags;
a586129e 2907 cpu_arch_isa_flags = flags;
5c6af06e 2908 }
0089dace
L
2909 else
2910 cpu_arch_isa_flags
2911 = cpu_flags_or (cpu_arch_isa_flags,
2912 cpu_arch[j].flags);
d02603dc 2913 (void) restore_line_pointer (e);
5c6af06e
JB
2914 demand_empty_rest_of_line ();
2915 return;
e413e4e9
AM
2916 }
2917 }
293f5f65
L
2918
2919 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2920 {
33eaf5de 2921 /* Disable an ISA extension. */
293f5f65
L
2922 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2923 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2924 {
2925 flags = cpu_flags_and_not (cpu_arch_flags,
2926 cpu_noarch[j].flags);
2927 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2928 {
2929 if (cpu_sub_arch_name)
2930 {
2931 char *name = cpu_sub_arch_name;
2932 cpu_sub_arch_name = concat (name, string,
2933 (const char *) NULL);
2934 free (name);
2935 }
2936 else
2937 cpu_sub_arch_name = xstrdup (string);
2938 cpu_arch_flags = flags;
2939 cpu_arch_isa_flags = flags;
2940 }
2941 (void) restore_line_pointer (e);
2942 demand_empty_rest_of_line ();
2943 return;
2944 }
2945
2946 j = ARRAY_SIZE (cpu_arch);
2947 }
2948
91d6fa6a 2949 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2950 as_bad (_("no such architecture: `%s'"), string);
2951
2952 *input_line_pointer = e;
2953 }
2954 else
2955 as_bad (_("missing cpu architecture"));
2956
fddf5b5b
AM
2957 no_cond_jump_promotion = 0;
2958 if (*input_line_pointer == ','
29b0f896 2959 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2960 {
d02603dc
NC
2961 char *string;
2962 char e;
2963
2964 ++input_line_pointer;
2965 e = get_symbol_name (&string);
fddf5b5b
AM
2966
2967 if (strcmp (string, "nojumps") == 0)
2968 no_cond_jump_promotion = 1;
2969 else if (strcmp (string, "jumps") == 0)
2970 ;
2971 else
2972 as_bad (_("no such architecture modifier: `%s'"), string);
2973
d02603dc 2974 (void) restore_line_pointer (e);
fddf5b5b
AM
2975 }
2976
e413e4e9
AM
2977 demand_empty_rest_of_line ();
2978}
2979
8a9036a4
L
2980enum bfd_architecture
2981i386_arch (void)
2982{
3632d14b 2983 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2984 {
2985 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2986 || flag_code != CODE_64BIT)
2987 as_fatal (_("Intel L1OM is 64bit ELF only"));
2988 return bfd_arch_l1om;
2989 }
7a9068fe
L
2990 else if (cpu_arch_isa == PROCESSOR_K1OM)
2991 {
2992 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2993 || flag_code != CODE_64BIT)
2994 as_fatal (_("Intel K1OM is 64bit ELF only"));
2995 return bfd_arch_k1om;
2996 }
81486035
L
2997 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2998 {
2999 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3000 || flag_code == CODE_64BIT)
3001 as_fatal (_("Intel MCU is 32bit ELF only"));
3002 return bfd_arch_iamcu;
3003 }
8a9036a4
L
3004 else
3005 return bfd_arch_i386;
3006}
3007
b9d79e03 3008unsigned long
7016a5d5 3009i386_mach (void)
b9d79e03 3010{
351f65ca 3011 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 3012 {
3632d14b 3013 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 3014 {
351f65ca
L
3015 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3016 || default_arch[6] != '\0')
8a9036a4
L
3017 as_fatal (_("Intel L1OM is 64bit ELF only"));
3018 return bfd_mach_l1om;
3019 }
7a9068fe
L
3020 else if (cpu_arch_isa == PROCESSOR_K1OM)
3021 {
3022 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3023 || default_arch[6] != '\0')
3024 as_fatal (_("Intel K1OM is 64bit ELF only"));
3025 return bfd_mach_k1om;
3026 }
351f65ca 3027 else if (default_arch[6] == '\0')
8a9036a4 3028 return bfd_mach_x86_64;
351f65ca
L
3029 else
3030 return bfd_mach_x64_32;
8a9036a4 3031 }
5197d474
L
3032 else if (!strcmp (default_arch, "i386")
3033 || !strcmp (default_arch, "iamcu"))
81486035
L
3034 {
3035 if (cpu_arch_isa == PROCESSOR_IAMCU)
3036 {
3037 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3038 as_fatal (_("Intel MCU is 32bit ELF only"));
3039 return bfd_mach_i386_iamcu;
3040 }
3041 else
3042 return bfd_mach_i386_i386;
3043 }
b9d79e03 3044 else
2b5d6a91 3045 as_fatal (_("unknown architecture"));
b9d79e03 3046}
b9d79e03 3047\f
252b5132 3048void
7016a5d5 3049md_begin (void)
252b5132 3050{
86fa6981
L
3051 /* Support pseudo prefixes like {disp32}. */
3052 lex_type ['{'] = LEX_BEGIN_NAME;
3053
47926f60 3054 /* Initialize op_hash hash table. */
629310ab 3055 op_hash = str_htab_create ();
252b5132
RH
3056
3057 {
d3ce72d0 3058 const insn_template *optab;
29b0f896 3059 templates *core_optab;
252b5132 3060
47926f60
KH
3061 /* Setup for loop. */
3062 optab = i386_optab;
add39d23 3063 core_optab = XNEW (templates);
252b5132
RH
3064 core_optab->start = optab;
3065
3066 while (1)
3067 {
3068 ++optab;
3069 if (optab->name == NULL
3070 || strcmp (optab->name, (optab - 1)->name) != 0)
3071 {
3072 /* different name --> ship out current template list;
47926f60 3073 add to hash table; & begin anew. */
252b5132 3074 core_optab->end = optab;
fe0e921f
AM
3075 if (str_hash_insert (op_hash, (optab - 1)->name, core_optab, 0))
3076 as_fatal (_("duplicate %s"), (optab - 1)->name);
3077
252b5132
RH
3078 if (optab->name == NULL)
3079 break;
add39d23 3080 core_optab = XNEW (templates);
252b5132
RH
3081 core_optab->start = optab;
3082 }
3083 }
3084 }
3085
47926f60 3086 /* Initialize reg_hash hash table. */
629310ab 3087 reg_hash = str_htab_create ();
252b5132 3088 {
29b0f896 3089 const reg_entry *regtab;
c3fe08fa 3090 unsigned int regtab_size = i386_regtab_size;
252b5132 3091
c3fe08fa 3092 for (regtab = i386_regtab; regtab_size--; regtab++)
fe0e921f
AM
3093 if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL)
3094 as_fatal (_("duplicate %s"), regtab->reg_name);
252b5132
RH
3095 }
3096
47926f60 3097 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3098 {
29b0f896
AM
3099 int c;
3100 char *p;
252b5132
RH
3101
3102 for (c = 0; c < 256; c++)
3103 {
3882b010 3104 if (ISDIGIT (c))
252b5132
RH
3105 {
3106 digit_chars[c] = c;
3107 mnemonic_chars[c] = c;
3108 register_chars[c] = c;
3109 operand_chars[c] = c;
3110 }
3882b010 3111 else if (ISLOWER (c))
252b5132
RH
3112 {
3113 mnemonic_chars[c] = c;
3114 register_chars[c] = c;
3115 operand_chars[c] = c;
3116 }
3882b010 3117 else if (ISUPPER (c))
252b5132 3118 {
3882b010 3119 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3120 register_chars[c] = mnemonic_chars[c];
3121 operand_chars[c] = c;
3122 }
43234a1e 3123 else if (c == '{' || c == '}')
86fa6981
L
3124 {
3125 mnemonic_chars[c] = c;
3126 operand_chars[c] = c;
3127 }
b3983e5f
JB
3128#ifdef SVR4_COMMENT_CHARS
3129 else if (c == '\\' && strchr (i386_comment_chars, '/'))
3130 operand_chars[c] = c;
3131#endif
252b5132 3132
3882b010 3133 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3134 identifier_chars[c] = c;
3135 else if (c >= 128)
3136 {
3137 identifier_chars[c] = c;
3138 operand_chars[c] = c;
3139 }
3140 }
3141
3142#ifdef LEX_AT
3143 identifier_chars['@'] = '@';
32137342
NC
3144#endif
3145#ifdef LEX_QM
3146 identifier_chars['?'] = '?';
3147 operand_chars['?'] = '?';
252b5132 3148#endif
252b5132 3149 digit_chars['-'] = '-';
c0f3af97 3150 mnemonic_chars['_'] = '_';
791fe849 3151 mnemonic_chars['-'] = '-';
0003779b 3152 mnemonic_chars['.'] = '.';
252b5132
RH
3153 identifier_chars['_'] = '_';
3154 identifier_chars['.'] = '.';
3155
3156 for (p = operand_special_chars; *p != '\0'; p++)
3157 operand_chars[(unsigned char) *p] = *p;
3158 }
3159
a4447b93
RH
3160 if (flag_code == CODE_64BIT)
3161 {
ca19b261
KT
3162#if defined (OBJ_COFF) && defined (TE_PE)
3163 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3164 ? 32 : 16);
3165#else
a4447b93 3166 x86_dwarf2_return_column = 16;
ca19b261 3167#endif
61ff971f 3168 x86_cie_data_alignment = -8;
a4447b93
RH
3169 }
3170 else
3171 {
3172 x86_dwarf2_return_column = 8;
3173 x86_cie_data_alignment = -4;
3174 }
e379e5f3
L
3175
3176 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3177 can be turned into BRANCH_PREFIX frag. */
3178 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3179 abort ();
252b5132
RH
3180}
3181
3182void
e3bb37b5 3183i386_print_statistics (FILE *file)
252b5132 3184{
629310ab
ML
3185 htab_print_statistics (file, "i386 opcode", op_hash);
3186 htab_print_statistics (file, "i386 register", reg_hash);
252b5132
RH
3187}
3188\f
252b5132
RH
3189#ifdef DEBUG386
3190
ce8a8b2f 3191/* Debugging routines for md_assemble. */
d3ce72d0 3192static void pte (insn_template *);
40fb9820 3193static void pt (i386_operand_type);
e3bb37b5
L
3194static void pe (expressionS *);
3195static void ps (symbolS *);
252b5132
RH
3196
3197static void
2c703856 3198pi (const char *line, i386_insn *x)
252b5132 3199{
09137c09 3200 unsigned int j;
252b5132
RH
3201
3202 fprintf (stdout, "%s: template ", line);
3203 pte (&x->tm);
09f131f2
JH
3204 fprintf (stdout, " address: base %s index %s scale %x\n",
3205 x->base_reg ? x->base_reg->reg_name : "none",
3206 x->index_reg ? x->index_reg->reg_name : "none",
3207 x->log2_scale_factor);
3208 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3209 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3210 fprintf (stdout, " sib: base %x index %x scale %x\n",
3211 x->sib.base, x->sib.index, x->sib.scale);
3212 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3213 (x->rex & REX_W) != 0,
3214 (x->rex & REX_R) != 0,
3215 (x->rex & REX_X) != 0,
3216 (x->rex & REX_B) != 0);
09137c09 3217 for (j = 0; j < x->operands; j++)
252b5132 3218 {
09137c09
SP
3219 fprintf (stdout, " #%d: ", j + 1);
3220 pt (x->types[j]);
252b5132 3221 fprintf (stdout, "\n");
bab6aec1 3222 if (x->types[j].bitfield.class == Reg
3528c362
JB
3223 || x->types[j].bitfield.class == RegMMX
3224 || x->types[j].bitfield.class == RegSIMD
dd6b8a0b 3225 || x->types[j].bitfield.class == RegMask
00cee14f 3226 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3227 || x->types[j].bitfield.class == RegCR
3228 || x->types[j].bitfield.class == RegDR
dd6b8a0b
JB
3229 || x->types[j].bitfield.class == RegTR
3230 || x->types[j].bitfield.class == RegBND)
09137c09
SP
3231 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3232 if (operand_type_check (x->types[j], imm))
3233 pe (x->op[j].imms);
3234 if (operand_type_check (x->types[j], disp))
3235 pe (x->op[j].disps);
252b5132
RH
3236 }
3237}
3238
3239static void
d3ce72d0 3240pte (insn_template *t)
252b5132 3241{
b933fa4b 3242 static const unsigned char opc_pfx[] = { 0, 0x66, 0xf3, 0xf2 };
441f6aca
JB
3243 static const char *const opc_spc[] = {
3244 NULL, "0f", "0f38", "0f3a", NULL, NULL, NULL, NULL,
3245 "XOP08", "XOP09", "XOP0A",
3246 };
09137c09 3247 unsigned int j;
441f6aca 3248
252b5132 3249 fprintf (stdout, " %d operands ", t->operands);
441f6aca
JB
3250 if (opc_pfx[t->opcode_modifier.opcodeprefix])
3251 fprintf (stdout, "pfx %x ", opc_pfx[t->opcode_modifier.opcodeprefix]);
3252 if (opc_spc[t->opcode_modifier.opcodespace])
3253 fprintf (stdout, "space %s ", opc_spc[t->opcode_modifier.opcodespace]);
47926f60 3254 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3255 if (t->extension_opcode != None)
3256 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3257 if (t->opcode_modifier.d)
252b5132 3258 fprintf (stdout, "D");
40fb9820 3259 if (t->opcode_modifier.w)
252b5132
RH
3260 fprintf (stdout, "W");
3261 fprintf (stdout, "\n");
09137c09 3262 for (j = 0; j < t->operands; j++)
252b5132 3263 {
09137c09
SP
3264 fprintf (stdout, " #%d type ", j + 1);
3265 pt (t->operand_types[j]);
252b5132
RH
3266 fprintf (stdout, "\n");
3267 }
3268}
3269
3270static void
e3bb37b5 3271pe (expressionS *e)
252b5132 3272{
24eab124 3273 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3274 fprintf (stdout, " add_number %ld (%lx)\n",
3275 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3276 if (e->X_add_symbol)
3277 {
3278 fprintf (stdout, " add_symbol ");
3279 ps (e->X_add_symbol);
3280 fprintf (stdout, "\n");
3281 }
3282 if (e->X_op_symbol)
3283 {
3284 fprintf (stdout, " op_symbol ");
3285 ps (e->X_op_symbol);
3286 fprintf (stdout, "\n");
3287 }
3288}
3289
3290static void
e3bb37b5 3291ps (symbolS *s)
252b5132
RH
3292{
3293 fprintf (stdout, "%s type %s%s",
3294 S_GET_NAME (s),
3295 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3296 segment_name (S_GET_SEGMENT (s)));
3297}
3298
7b81dfbb 3299static struct type_name
252b5132 3300 {
40fb9820
L
3301 i386_operand_type mask;
3302 const char *name;
252b5132 3303 }
7b81dfbb 3304const type_names[] =
252b5132 3305{
40fb9820
L
3306 { OPERAND_TYPE_REG8, "r8" },
3307 { OPERAND_TYPE_REG16, "r16" },
3308 { OPERAND_TYPE_REG32, "r32" },
3309 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3310 { OPERAND_TYPE_ACC8, "acc8" },
3311 { OPERAND_TYPE_ACC16, "acc16" },
3312 { OPERAND_TYPE_ACC32, "acc32" },
3313 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3314 { OPERAND_TYPE_IMM8, "i8" },
3315 { OPERAND_TYPE_IMM8, "i8s" },
3316 { OPERAND_TYPE_IMM16, "i16" },
3317 { OPERAND_TYPE_IMM32, "i32" },
3318 { OPERAND_TYPE_IMM32S, "i32s" },
3319 { OPERAND_TYPE_IMM64, "i64" },
3320 { OPERAND_TYPE_IMM1, "i1" },
3321 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3322 { OPERAND_TYPE_DISP8, "d8" },
3323 { OPERAND_TYPE_DISP16, "d16" },
3324 { OPERAND_TYPE_DISP32, "d32" },
3325 { OPERAND_TYPE_DISP32S, "d32s" },
3326 { OPERAND_TYPE_DISP64, "d64" },
3327 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3328 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3329 { OPERAND_TYPE_CONTROL, "control reg" },
3330 { OPERAND_TYPE_TEST, "test reg" },
3331 { OPERAND_TYPE_DEBUG, "debug reg" },
3332 { OPERAND_TYPE_FLOATREG, "FReg" },
3333 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3334 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3335 { OPERAND_TYPE_REGMMX, "rMMX" },
3336 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3337 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e 3338 { OPERAND_TYPE_REGZMM, "rZMM" },
260cd341 3339 { OPERAND_TYPE_REGTMM, "rTMM" },
43234a1e 3340 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3341};
3342
3343static void
40fb9820 3344pt (i386_operand_type t)
252b5132 3345{
40fb9820 3346 unsigned int j;
c6fb90c8 3347 i386_operand_type a;
252b5132 3348
40fb9820 3349 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3350 {
3351 a = operand_type_and (t, type_names[j].mask);
2c703856 3352 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3353 fprintf (stdout, "%s, ", type_names[j].name);
3354 }
252b5132
RH
3355 fflush (stdout);
3356}
3357
3358#endif /* DEBUG386 */
3359\f
252b5132 3360static bfd_reloc_code_real_type
3956db08 3361reloc (unsigned int size,
64e74474
AM
3362 int pcrel,
3363 int sign,
3364 bfd_reloc_code_real_type other)
252b5132 3365{
47926f60 3366 if (other != NO_RELOC)
3956db08 3367 {
91d6fa6a 3368 reloc_howto_type *rel;
3956db08
JB
3369
3370 if (size == 8)
3371 switch (other)
3372 {
64e74474
AM
3373 case BFD_RELOC_X86_64_GOT32:
3374 return BFD_RELOC_X86_64_GOT64;
3375 break;
553d1284
L
3376 case BFD_RELOC_X86_64_GOTPLT64:
3377 return BFD_RELOC_X86_64_GOTPLT64;
3378 break;
64e74474
AM
3379 case BFD_RELOC_X86_64_PLTOFF64:
3380 return BFD_RELOC_X86_64_PLTOFF64;
3381 break;
3382 case BFD_RELOC_X86_64_GOTPC32:
3383 other = BFD_RELOC_X86_64_GOTPC64;
3384 break;
3385 case BFD_RELOC_X86_64_GOTPCREL:
3386 other = BFD_RELOC_X86_64_GOTPCREL64;
3387 break;
3388 case BFD_RELOC_X86_64_TPOFF32:
3389 other = BFD_RELOC_X86_64_TPOFF64;
3390 break;
3391 case BFD_RELOC_X86_64_DTPOFF32:
3392 other = BFD_RELOC_X86_64_DTPOFF64;
3393 break;
3394 default:
3395 break;
3956db08 3396 }
e05278af 3397
8ce3d284 3398#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3399 if (other == BFD_RELOC_SIZE32)
3400 {
3401 if (size == 8)
1ab668bf 3402 other = BFD_RELOC_SIZE64;
8fd4256d 3403 if (pcrel)
1ab668bf
AM
3404 {
3405 as_bad (_("there are no pc-relative size relocations"));
3406 return NO_RELOC;
3407 }
8fd4256d 3408 }
8ce3d284 3409#endif
8fd4256d 3410
e05278af 3411 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3412 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3413 sign = -1;
3414
91d6fa6a
NC
3415 rel = bfd_reloc_type_lookup (stdoutput, other);
3416 if (!rel)
3956db08 3417 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3418 else if (size != bfd_get_reloc_size (rel))
3956db08 3419 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3420 bfd_get_reloc_size (rel),
3956db08 3421 size);
91d6fa6a 3422 else if (pcrel && !rel->pc_relative)
3956db08 3423 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3424 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3425 && !sign)
91d6fa6a 3426 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3427 && sign > 0))
3956db08
JB
3428 as_bad (_("relocated field and relocation type differ in signedness"));
3429 else
3430 return other;
3431 return NO_RELOC;
3432 }
252b5132
RH
3433
3434 if (pcrel)
3435 {
3e73aa7c 3436 if (!sign)
3956db08 3437 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3438 switch (size)
3439 {
3440 case 1: return BFD_RELOC_8_PCREL;
3441 case 2: return BFD_RELOC_16_PCREL;
d258b828 3442 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3443 case 8: return BFD_RELOC_64_PCREL;
252b5132 3444 }
3956db08 3445 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3446 }
3447 else
3448 {
3956db08 3449 if (sign > 0)
e5cb08ac 3450 switch (size)
3e73aa7c
JH
3451 {
3452 case 4: return BFD_RELOC_X86_64_32S;
3453 }
3454 else
3455 switch (size)
3456 {
3457 case 1: return BFD_RELOC_8;
3458 case 2: return BFD_RELOC_16;
3459 case 4: return BFD_RELOC_32;
3460 case 8: return BFD_RELOC_64;
3461 }
3956db08
JB
3462 as_bad (_("cannot do %s %u byte relocation"),
3463 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3464 }
3465
0cc9e1d3 3466 return NO_RELOC;
252b5132
RH
3467}
3468
47926f60
KH
3469/* Here we decide which fixups can be adjusted to make them relative to
3470 the beginning of the section instead of the symbol. Basically we need
3471 to make sure that the dynamic relocations are done correctly, so in
3472 some cases we force the original symbol to be used. */
3473
252b5132 3474int
e3bb37b5 3475tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3476{
6d249963 3477#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3478 if (!IS_ELF)
31312f95
AM
3479 return 1;
3480
a161fe53
AM
3481 /* Don't adjust pc-relative references to merge sections in 64-bit
3482 mode. */
3483 if (use_rela_relocations
3484 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3485 && fixP->fx_pcrel)
252b5132 3486 return 0;
31312f95 3487
8d01d9a9
AJ
3488 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3489 and changed later by validate_fix. */
3490 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3491 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3492 return 0;
3493
8fd4256d
L
3494 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3495 for size relocations. */
3496 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3497 || fixP->fx_r_type == BFD_RELOC_SIZE64
3498 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132 3499 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3500 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3501 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3502 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3503 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3504 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3505 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3506 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3507 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3508 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3509 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3510 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c 3511 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3512 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3513 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3514 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3515 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3516 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3517 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3518 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3519 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3520 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3521 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3522 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3523 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3524 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3525 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3526 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3527 return 0;
31312f95 3528#endif
252b5132
RH
3529 return 1;
3530}
252b5132 3531
b4cac588 3532static int
e3bb37b5 3533intel_float_operand (const char *mnemonic)
252b5132 3534{
9306ca4a
JB
3535 /* Note that the value returned is meaningful only for opcodes with (memory)
3536 operands, hence the code here is free to improperly handle opcodes that
3537 have no operands (for better performance and smaller code). */
3538
3539 if (mnemonic[0] != 'f')
3540 return 0; /* non-math */
3541
3542 switch (mnemonic[1])
3543 {
3544 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3545 the fs segment override prefix not currently handled because no
3546 call path can make opcodes without operands get here */
3547 case 'i':
3548 return 2 /* integer op */;
3549 case 'l':
3550 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3551 return 3; /* fldcw/fldenv */
3552 break;
3553 case 'n':
3554 if (mnemonic[2] != 'o' /* fnop */)
3555 return 3; /* non-waiting control op */
3556 break;
3557 case 'r':
3558 if (mnemonic[2] == 's')
3559 return 3; /* frstor/frstpm */
3560 break;
3561 case 's':
3562 if (mnemonic[2] == 'a')
3563 return 3; /* fsave */
3564 if (mnemonic[2] == 't')
3565 {
3566 switch (mnemonic[3])
3567 {
3568 case 'c': /* fstcw */
3569 case 'd': /* fstdw */
3570 case 'e': /* fstenv */
3571 case 's': /* fsts[gw] */
3572 return 3;
3573 }
3574 }
3575 break;
3576 case 'x':
3577 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3578 return 0; /* fxsave/fxrstor are not really math ops */
3579 break;
3580 }
252b5132 3581
9306ca4a 3582 return 1;
252b5132
RH
3583}
3584
c0f3af97
L
3585/* Build the VEX prefix. */
3586
3587static void
d3ce72d0 3588build_vex_prefix (const insn_template *t)
c0f3af97
L
3589{
3590 unsigned int register_specifier;
3591 unsigned int implied_prefix;
3592 unsigned int vector_length;
03751133 3593 unsigned int w;
c0f3af97
L
3594
3595 /* Check register specifier. */
3596 if (i.vex.register_specifier)
43234a1e
L
3597 {
3598 register_specifier =
3599 ~register_number (i.vex.register_specifier) & 0xf;
3600 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3601 }
c0f3af97
L
3602 else
3603 register_specifier = 0xf;
3604
79f0fa25
L
3605 /* Use 2-byte VEX prefix by swapping destination and source operand
3606 if there are more than 1 register operand. */
3607 if (i.reg_operands > 1
3608 && i.vec_encoding != vex_encoding_vex3
86fa6981 3609 && i.dir_encoding == dir_encoding_default
fa99fab2 3610 && i.operands == i.reg_operands
dbbc8b7e 3611 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
441f6aca 3612 && i.tm.opcode_modifier.opcodespace == SPACE_0F
dbbc8b7e 3613 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3614 && i.rex == REX_B)
3615 {
3616 unsigned int xchg = i.operands - 1;
3617 union i386_op temp_op;
3618 i386_operand_type temp_type;
3619
3620 temp_type = i.types[xchg];
3621 i.types[xchg] = i.types[0];
3622 i.types[0] = temp_type;
3623 temp_op = i.op[xchg];
3624 i.op[xchg] = i.op[0];
3625 i.op[0] = temp_op;
3626
9c2799c2 3627 gas_assert (i.rm.mode == 3);
fa99fab2
L
3628
3629 i.rex = REX_R;
3630 xchg = i.rm.regmem;
3631 i.rm.regmem = i.rm.reg;
3632 i.rm.reg = xchg;
3633
dbbc8b7e
JB
3634 if (i.tm.opcode_modifier.d)
3635 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3636 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3637 else /* Use the next insn. */
3638 i.tm = t[1];
fa99fab2
L
3639 }
3640
79dec6b7
JB
3641 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3642 are no memory operands and at least 3 register ones. */
3643 if (i.reg_operands >= 3
3644 && i.vec_encoding != vex_encoding_vex3
3645 && i.reg_operands == i.operands - i.imm_operands
3646 && i.tm.opcode_modifier.vex
3647 && i.tm.opcode_modifier.commutative
3648 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3649 && i.rex == REX_B
3650 && i.vex.register_specifier
3651 && !(i.vex.register_specifier->reg_flags & RegRex))
3652 {
3653 unsigned int xchg = i.operands - i.reg_operands;
3654 union i386_op temp_op;
3655 i386_operand_type temp_type;
3656
441f6aca 3657 gas_assert (i.tm.opcode_modifier.opcodespace == SPACE_0F);
79dec6b7
JB
3658 gas_assert (!i.tm.opcode_modifier.sae);
3659 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3660 &i.types[i.operands - 3]));
3661 gas_assert (i.rm.mode == 3);
3662
3663 temp_type = i.types[xchg];
3664 i.types[xchg] = i.types[xchg + 1];
3665 i.types[xchg + 1] = temp_type;
3666 temp_op = i.op[xchg];
3667 i.op[xchg] = i.op[xchg + 1];
3668 i.op[xchg + 1] = temp_op;
3669
3670 i.rex = 0;
3671 xchg = i.rm.regmem | 8;
3672 i.rm.regmem = ~register_specifier & 0xf;
3673 gas_assert (!(i.rm.regmem & 8));
3674 i.vex.register_specifier += xchg - i.rm.regmem;
3675 register_specifier = ~xchg & 0xf;
3676 }
3677
539f890d
L
3678 if (i.tm.opcode_modifier.vex == VEXScalar)
3679 vector_length = avxscalar;
10c17abd
JB
3680 else if (i.tm.opcode_modifier.vex == VEX256)
3681 vector_length = 1;
539f890d 3682 else
10c17abd 3683 {
56522fc5 3684 unsigned int op;
10c17abd 3685
c7213af9
L
3686 /* Determine vector length from the last multi-length vector
3687 operand. */
10c17abd 3688 vector_length = 0;
56522fc5 3689 for (op = t->operands; op--;)
10c17abd
JB
3690 if (t->operand_types[op].bitfield.xmmword
3691 && t->operand_types[op].bitfield.ymmword
3692 && i.types[op].bitfield.ymmword)
3693 {
3694 vector_length = 1;
3695 break;
3696 }
3697 }
c0f3af97 3698
8c190ce0 3699 switch ((i.tm.base_opcode >> (i.tm.opcode_length << 3)) & 0xff)
c0f3af97
L
3700 {
3701 case 0:
3702 implied_prefix = 0;
3703 break;
3704 case DATA_PREFIX_OPCODE:
3705 implied_prefix = 1;
3706 break;
3707 case REPE_PREFIX_OPCODE:
3708 implied_prefix = 2;
3709 break;
3710 case REPNE_PREFIX_OPCODE:
3711 implied_prefix = 3;
3712 break;
3713 default:
3714 abort ();
3715 }
3716
03751133
L
3717 /* Check the REX.W bit and VEXW. */
3718 if (i.tm.opcode_modifier.vexw == VEXWIG)
3719 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3720 else if (i.tm.opcode_modifier.vexw)
3721 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3722 else
931d03b7 3723 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3724
c0f3af97 3725 /* Use 2-byte VEX prefix if possible. */
03751133
L
3726 if (w == 0
3727 && i.vec_encoding != vex_encoding_vex3
441f6aca 3728 && i.tm.opcode_modifier.opcodespace == SPACE_0F
c0f3af97
L
3729 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3730 {
3731 /* 2-byte VEX prefix. */
3732 unsigned int r;
3733
3734 i.vex.length = 2;
3735 i.vex.bytes[0] = 0xc5;
3736
3737 /* Check the REX.R bit. */
3738 r = (i.rex & REX_R) ? 0 : 1;
3739 i.vex.bytes[1] = (r << 7
3740 | register_specifier << 3
3741 | vector_length << 2
3742 | implied_prefix);
3743 }
3744 else
3745 {
3746 /* 3-byte VEX prefix. */
f88c9eb0 3747 i.vex.length = 3;
f88c9eb0 3748
441f6aca 3749 switch (i.tm.opcode_modifier.opcodespace)
5dd85c99 3750 {
441f6aca
JB
3751 case SPACE_0F:
3752 case SPACE_0F38:
3753 case SPACE_0F3A:
80de6e00 3754 i.vex.bytes[0] = 0xc4;
7f399153 3755 break;
441f6aca
JB
3756 case SPACE_XOP08:
3757 case SPACE_XOP09:
3758 case SPACE_XOP0A:
f88c9eb0 3759 i.vex.bytes[0] = 0x8f;
7f399153
L
3760 break;
3761 default:
3762 abort ();
f88c9eb0 3763 }
c0f3af97 3764
c0f3af97
L
3765 /* The high 3 bits of the second VEX byte are 1's compliment
3766 of RXB bits from REX. */
441f6aca 3767 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | i.tm.opcode_modifier.opcodespace;
c0f3af97 3768
c0f3af97
L
3769 i.vex.bytes[2] = (w << 7
3770 | register_specifier << 3
3771 | vector_length << 2
3772 | implied_prefix);
3773 }
3774}
3775
e771e7c9
JB
3776static INLINE bfd_boolean
3777is_evex_encoding (const insn_template *t)
3778{
7091c612 3779 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3780 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3781 || t->opcode_modifier.sae;
e771e7c9
JB
3782}
3783
7a8655d2
JB
3784static INLINE bfd_boolean
3785is_any_vex_encoding (const insn_template *t)
3786{
7b47a312 3787 return t->opcode_modifier.vex || is_evex_encoding (t);
7a8655d2
JB
3788}
3789
43234a1e
L
3790/* Build the EVEX prefix. */
3791
3792static void
3793build_evex_prefix (void)
3794{
3795 unsigned int register_specifier;
441f6aca 3796 unsigned int implied_prefix, w;
43234a1e
L
3797 rex_byte vrex_used = 0;
3798
3799 /* Check register specifier. */
3800 if (i.vex.register_specifier)
3801 {
3802 gas_assert ((i.vrex & REX_X) == 0);
3803
3804 register_specifier = i.vex.register_specifier->reg_num;
3805 if ((i.vex.register_specifier->reg_flags & RegRex))
3806 register_specifier += 8;
3807 /* The upper 16 registers are encoded in the fourth byte of the
3808 EVEX prefix. */
3809 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3810 i.vex.bytes[3] = 0x8;
3811 register_specifier = ~register_specifier & 0xf;
3812 }
3813 else
3814 {
3815 register_specifier = 0xf;
3816
3817 /* Encode upper 16 vector index register in the fourth byte of
3818 the EVEX prefix. */
3819 if (!(i.vrex & REX_X))
3820 i.vex.bytes[3] = 0x8;
3821 else
3822 vrex_used |= REX_X;
3823 }
3824
3825 switch ((i.tm.base_opcode >> 8) & 0xff)
3826 {
3827 case 0:
3828 implied_prefix = 0;
3829 break;
3830 case DATA_PREFIX_OPCODE:
3831 implied_prefix = 1;
3832 break;
3833 case REPE_PREFIX_OPCODE:
3834 implied_prefix = 2;
3835 break;
3836 case REPNE_PREFIX_OPCODE:
3837 implied_prefix = 3;
3838 break;
3839 default:
3840 abort ();
3841 }
3842
3843 /* 4 byte EVEX prefix. */
3844 i.vex.length = 4;
3845 i.vex.bytes[0] = 0x62;
3846
43234a1e
L
3847 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3848 bits from REX. */
441f6aca
JB
3849 gas_assert (i.tm.opcode_modifier.opcodespace >= SPACE_0F);
3850 gas_assert (i.tm.opcode_modifier.opcodespace <= SPACE_0F3A);
3851 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | i.tm.opcode_modifier.opcodespace;
43234a1e
L
3852
3853 /* The fifth bit of the second EVEX byte is 1's compliment of the
3854 REX_R bit in VREX. */
3855 if (!(i.vrex & REX_R))
3856 i.vex.bytes[1] |= 0x10;
3857 else
3858 vrex_used |= REX_R;
3859
3860 if ((i.reg_operands + i.imm_operands) == i.operands)
3861 {
3862 /* When all operands are registers, the REX_X bit in REX is not
3863 used. We reuse it to encode the upper 16 registers, which is
3864 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3865 as 1's compliment. */
3866 if ((i.vrex & REX_B))
3867 {
3868 vrex_used |= REX_B;
3869 i.vex.bytes[1] &= ~0x40;
3870 }
3871 }
3872
3873 /* EVEX instructions shouldn't need the REX prefix. */
3874 i.vrex &= ~vrex_used;
3875 gas_assert (i.vrex == 0);
3876
6865c043
L
3877 /* Check the REX.W bit and VEXW. */
3878 if (i.tm.opcode_modifier.vexw == VEXWIG)
3879 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3880 else if (i.tm.opcode_modifier.vexw)
3881 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3882 else
931d03b7 3883 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3884
3885 /* Encode the U bit. */
3886 implied_prefix |= 0x4;
3887
3888 /* The third byte of the EVEX prefix. */
3889 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3890
3891 /* The fourth byte of the EVEX prefix. */
3892 /* The zeroing-masking bit. */
3893 if (i.mask && i.mask->zeroing)
3894 i.vex.bytes[3] |= 0x80;
3895
3896 /* Don't always set the broadcast bit if there is no RC. */
3897 if (!i.rounding)
3898 {
3899 /* Encode the vector length. */
3900 unsigned int vec_length;
3901
e771e7c9
JB
3902 if (!i.tm.opcode_modifier.evex
3903 || i.tm.opcode_modifier.evex == EVEXDYN)
3904 {
56522fc5 3905 unsigned int op;
e771e7c9 3906
c7213af9
L
3907 /* Determine vector length from the last multi-length vector
3908 operand. */
56522fc5 3909 for (op = i.operands; op--;)
e771e7c9
JB
3910 if (i.tm.operand_types[op].bitfield.xmmword
3911 + i.tm.operand_types[op].bitfield.ymmword
3912 + i.tm.operand_types[op].bitfield.zmmword > 1)
3913 {
3914 if (i.types[op].bitfield.zmmword)
c7213af9
L
3915 {
3916 i.tm.opcode_modifier.evex = EVEX512;
3917 break;
3918 }
e771e7c9 3919 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3920 {
3921 i.tm.opcode_modifier.evex = EVEX256;
3922 break;
3923 }
e771e7c9 3924 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3925 {
3926 i.tm.opcode_modifier.evex = EVEX128;
3927 break;
3928 }
625cbd7a
JB
3929 else if (i.broadcast && (int) op == i.broadcast->operand)
3930 {
4a1b91ea 3931 switch (i.broadcast->bytes)
625cbd7a
JB
3932 {
3933 case 64:
3934 i.tm.opcode_modifier.evex = EVEX512;
3935 break;
3936 case 32:
3937 i.tm.opcode_modifier.evex = EVEX256;
3938 break;
3939 case 16:
3940 i.tm.opcode_modifier.evex = EVEX128;
3941 break;
3942 default:
c7213af9 3943 abort ();
625cbd7a 3944 }
c7213af9 3945 break;
625cbd7a 3946 }
e771e7c9 3947 }
c7213af9 3948
56522fc5 3949 if (op >= MAX_OPERANDS)
c7213af9 3950 abort ();
e771e7c9
JB
3951 }
3952
43234a1e
L
3953 switch (i.tm.opcode_modifier.evex)
3954 {
3955 case EVEXLIG: /* LL' is ignored */
3956 vec_length = evexlig << 5;
3957 break;
3958 case EVEX128:
3959 vec_length = 0 << 5;
3960 break;
3961 case EVEX256:
3962 vec_length = 1 << 5;
3963 break;
3964 case EVEX512:
3965 vec_length = 2 << 5;
3966 break;
3967 default:
3968 abort ();
3969 break;
3970 }
3971 i.vex.bytes[3] |= vec_length;
3972 /* Encode the broadcast bit. */
3973 if (i.broadcast)
3974 i.vex.bytes[3] |= 0x10;
3975 }
3976 else
3977 {
3978 if (i.rounding->type != saeonly)
3979 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3980 else
d3d3c6db 3981 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3982 }
3983
3984 if (i.mask && i.mask->mask)
3985 i.vex.bytes[3] |= i.mask->mask->reg_num;
3986}
3987
65da13b5
L
3988static void
3989process_immext (void)
3990{
3991 expressionS *exp;
3992
c0f3af97 3993 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3994 which is coded in the same place as an 8-bit immediate field
3995 would be. Here we fake an 8-bit immediate operand from the
3996 opcode suffix stored in tm.extension_opcode.
3997
c1e679ec 3998 AVX instructions also use this encoding, for some of
c0f3af97 3999 3 argument instructions. */
65da13b5 4000
43234a1e 4001 gas_assert (i.imm_operands <= 1
7ab9ffdd 4002 && (i.operands <= 2
7a8655d2 4003 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 4004 && i.operands <= 4)));
65da13b5
L
4005
4006 exp = &im_expressions[i.imm_operands++];
4007 i.op[i.operands].imms = exp;
4008 i.types[i.operands] = imm8;
4009 i.operands++;
4010 exp->X_op = O_constant;
4011 exp->X_add_number = i.tm.extension_opcode;
4012 i.tm.extension_opcode = None;
4013}
4014
42164a71
L
4015
4016static int
4017check_hle (void)
4018{
742732c7 4019 switch (i.tm.opcode_modifier.prefixok)
42164a71
L
4020 {
4021 default:
4022 abort ();
742732c7
JB
4023 case PrefixLock:
4024 case PrefixNone:
4025 case PrefixNoTrack:
4026 case PrefixRep:
165de32a
L
4027 as_bad (_("invalid instruction `%s' after `%s'"),
4028 i.tm.name, i.hle_prefix);
42164a71 4029 return 0;
742732c7 4030 case PrefixHLELock:
42164a71
L
4031 if (i.prefix[LOCK_PREFIX])
4032 return 1;
165de32a 4033 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 4034 return 0;
742732c7 4035 case PrefixHLEAny:
42164a71 4036 return 1;
742732c7 4037 case PrefixHLERelease:
42164a71
L
4038 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4039 {
4040 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4041 i.tm.name);
4042 return 0;
4043 }
8dc0818e 4044 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
4045 {
4046 as_bad (_("memory destination needed for instruction `%s'"
4047 " after `xrelease'"), i.tm.name);
4048 return 0;
4049 }
4050 return 1;
4051 }
4052}
4053
b6f8c7c4
L
4054/* Try the shortest encoding by shortening operand size. */
4055
4056static void
4057optimize_encoding (void)
4058{
a0a1771e 4059 unsigned int j;
b6f8c7c4
L
4060
4061 if (optimize_for_space
72aea328 4062 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
4063 && i.reg_operands == 1
4064 && i.imm_operands == 1
4065 && !i.types[1].bitfield.byte
4066 && i.op[0].imms->X_op == O_constant
4067 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 4068 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4069 || (i.tm.base_opcode == 0xf6
4070 && i.tm.extension_opcode == 0x0)))
4071 {
4072 /* Optimize: -Os:
4073 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4074 */
4075 unsigned int base_regnum = i.op[1].regs->reg_num;
4076 if (flag_code == CODE_64BIT || base_regnum < 4)
4077 {
4078 i.types[1].bitfield.byte = 1;
4079 /* Ignore the suffix. */
4080 i.suffix = 0;
7697afb6
JB
4081 /* Convert to byte registers. */
4082 if (i.types[1].bitfield.word)
4083 j = 16;
4084 else if (i.types[1].bitfield.dword)
4085 j = 32;
4086 else
4087 j = 48;
4088 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4089 j += 8;
4090 i.op[1].regs -= j;
b6f8c7c4
L
4091 }
4092 }
4093 else if (flag_code == CODE_64BIT
72aea328 4094 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4095 && ((i.types[1].bitfield.qword
4096 && i.reg_operands == 1
b6f8c7c4
L
4097 && i.imm_operands == 1
4098 && i.op[0].imms->X_op == O_constant
507916b8 4099 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4100 && i.tm.extension_opcode == None
4101 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4102 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4103 && ((i.tm.base_opcode == 0x24
4104 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4105 || (i.tm.base_opcode == 0x80
4106 && i.tm.extension_opcode == 0x4)
4107 || ((i.tm.base_opcode == 0xf6
507916b8 4108 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4109 && i.tm.extension_opcode == 0x0)))
4110 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4111 && i.tm.base_opcode == 0x83
4112 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4113 || (i.types[0].bitfield.qword
4114 && ((i.reg_operands == 2
4115 && i.op[0].regs == i.op[1].regs
72aea328
JB
4116 && (i.tm.base_opcode == 0x30
4117 || i.tm.base_opcode == 0x28))
d3d50934
L
4118 || (i.reg_operands == 1
4119 && i.operands == 1
72aea328 4120 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4121 {
4122 /* Optimize: -O:
4123 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4124 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4125 testq $imm31, %r64 -> testl $imm31, %r32
4126 xorq %r64, %r64 -> xorl %r32, %r32
4127 subq %r64, %r64 -> subl %r32, %r32
4128 movq $imm31, %r64 -> movl $imm31, %r32
4129 movq $imm32, %r64 -> movl $imm32, %r32
4130 */
4131 i.tm.opcode_modifier.norex64 = 1;
507916b8 4132 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4133 {
4134 /* Handle
4135 movq $imm31, %r64 -> movl $imm31, %r32
4136 movq $imm32, %r64 -> movl $imm32, %r32
4137 */
4138 i.tm.operand_types[0].bitfield.imm32 = 1;
4139 i.tm.operand_types[0].bitfield.imm32s = 0;
4140 i.tm.operand_types[0].bitfield.imm64 = 0;
4141 i.types[0].bitfield.imm32 = 1;
4142 i.types[0].bitfield.imm32s = 0;
4143 i.types[0].bitfield.imm64 = 0;
4144 i.types[1].bitfield.dword = 1;
4145 i.types[1].bitfield.qword = 0;
507916b8 4146 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4147 {
4148 /* Handle
4149 movq $imm31, %r64 -> movl $imm31, %r32
4150 */
507916b8 4151 i.tm.base_opcode = 0xb8;
b6f8c7c4 4152 i.tm.extension_opcode = None;
507916b8 4153 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4154 i.tm.opcode_modifier.modrm = 0;
4155 }
4156 }
4157 }
5641ec01
JB
4158 else if (optimize > 1
4159 && !optimize_for_space
72aea328 4160 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4161 && i.reg_operands == 2
4162 && i.op[0].regs == i.op[1].regs
4163 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4164 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4165 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4166 {
4167 /* Optimize: -O2:
4168 andb %rN, %rN -> testb %rN, %rN
4169 andw %rN, %rN -> testw %rN, %rN
4170 andq %rN, %rN -> testq %rN, %rN
4171 orb %rN, %rN -> testb %rN, %rN
4172 orw %rN, %rN -> testw %rN, %rN
4173 orq %rN, %rN -> testq %rN, %rN
4174
4175 and outside of 64-bit mode
4176
4177 andl %rN, %rN -> testl %rN, %rN
4178 orl %rN, %rN -> testl %rN, %rN
4179 */
4180 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4181 }
99112332 4182 else if (i.reg_operands == 3
b6f8c7c4
L
4183 && i.op[0].regs == i.op[1].regs
4184 && !i.types[2].bitfield.xmmword
4185 && (i.tm.opcode_modifier.vex
7a69eac3 4186 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4187 && !i.rounding
e771e7c9 4188 && is_evex_encoding (&i.tm)
80c34c38 4189 && (i.vec_encoding != vex_encoding_evex
dd22218c 4190 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4191 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4192 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4193 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4194 && ((i.tm.base_opcode == 0x55
4195 || i.tm.base_opcode == 0x6655
4196 || i.tm.base_opcode == 0x66df
4197 || i.tm.base_opcode == 0x57
4198 || i.tm.base_opcode == 0x6657
8305403a
L
4199 || i.tm.base_opcode == 0x66ef
4200 || i.tm.base_opcode == 0x66f8
4201 || i.tm.base_opcode == 0x66f9
4202 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4203 || i.tm.base_opcode == 0x66fb
4204 || i.tm.base_opcode == 0x42
4205 || i.tm.base_opcode == 0x6642
4206 || i.tm.base_opcode == 0x47
4207 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4208 && i.tm.extension_opcode == None))
4209 {
99112332 4210 /* Optimize: -O1:
8305403a
L
4211 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4212 vpsubq and vpsubw:
b6f8c7c4
L
4213 EVEX VOP %zmmM, %zmmM, %zmmN
4214 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4215 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4216 EVEX VOP %ymmM, %ymmM, %ymmN
4217 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4218 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4219 VEX VOP %ymmM, %ymmM, %ymmN
4220 -> VEX VOP %xmmM, %xmmM, %xmmN
4221 VOP, one of vpandn and vpxor:
4222 VEX VOP %ymmM, %ymmM, %ymmN
4223 -> VEX VOP %xmmM, %xmmM, %xmmN
4224 VOP, one of vpandnd and vpandnq:
4225 EVEX VOP %zmmM, %zmmM, %zmmN
4226 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4227 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4228 EVEX VOP %ymmM, %ymmM, %ymmN
4229 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4230 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4231 VOP, one of vpxord and vpxorq:
4232 EVEX VOP %zmmM, %zmmM, %zmmN
4233 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4234 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4235 EVEX VOP %ymmM, %ymmM, %ymmN
4236 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4237 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4238 VOP, one of kxord and kxorq:
4239 VEX VOP %kM, %kM, %kN
4240 -> VEX kxorw %kM, %kM, %kN
4241 VOP, one of kandnd and kandnq:
4242 VEX VOP %kM, %kM, %kN
4243 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4244 */
e771e7c9 4245 if (is_evex_encoding (&i.tm))
b6f8c7c4 4246 {
7b1d7ca1 4247 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4248 {
4249 i.tm.opcode_modifier.vex = VEX128;
4250 i.tm.opcode_modifier.vexw = VEXW0;
4251 i.tm.opcode_modifier.evex = 0;
4252 }
7b1d7ca1 4253 else if (optimize > 1)
dd22218c
L
4254 i.tm.opcode_modifier.evex = EVEX128;
4255 else
4256 return;
b6f8c7c4 4257 }
f74a6307 4258 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4259 {
4260 i.tm.base_opcode &= 0xff;
4261 i.tm.opcode_modifier.vexw = VEXW0;
4262 }
b6f8c7c4
L
4263 else
4264 i.tm.opcode_modifier.vex = VEX128;
4265
4266 if (i.tm.opcode_modifier.vex)
4267 for (j = 0; j < 3; j++)
4268 {
4269 i.types[j].bitfield.xmmword = 1;
4270 i.types[j].bitfield.ymmword = 0;
4271 }
4272 }
392a5972 4273 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4274 && !i.types[0].bitfield.zmmword
392a5972 4275 && !i.types[1].bitfield.zmmword
97ed31ae 4276 && !i.mask
a0a1771e 4277 && !i.broadcast
97ed31ae 4278 && is_evex_encoding (&i.tm)
392a5972
L
4279 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4280 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4281 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4282 || (i.tm.base_opcode & ~4) == 0x66db
4283 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4284 && i.tm.extension_opcode == None)
4285 {
4286 /* Optimize: -O1:
4287 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4288 vmovdqu32 and vmovdqu64:
4289 EVEX VOP %xmmM, %xmmN
4290 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4291 EVEX VOP %ymmM, %ymmN
4292 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4293 EVEX VOP %xmmM, mem
4294 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4295 EVEX VOP %ymmM, mem
4296 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4297 EVEX VOP mem, %xmmN
4298 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4299 EVEX VOP mem, %ymmN
4300 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4301 VOP, one of vpand, vpandn, vpor, vpxor:
4302 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4303 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4304 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4305 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4306 EVEX VOP{d,q} mem, %xmmM, %xmmN
4307 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4308 EVEX VOP{d,q} mem, %ymmM, %ymmN
4309 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4310 */
a0a1771e 4311 for (j = 0; j < i.operands; j++)
392a5972
L
4312 if (operand_type_check (i.types[j], disp)
4313 && i.op[j].disps->X_op == O_constant)
4314 {
4315 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4316 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4317 bytes, we choose EVEX Disp8 over VEX Disp32. */
4318 int evex_disp8, vex_disp8;
4319 unsigned int memshift = i.memshift;
4320 offsetT n = i.op[j].disps->X_add_number;
4321
4322 evex_disp8 = fits_in_disp8 (n);
4323 i.memshift = 0;
4324 vex_disp8 = fits_in_disp8 (n);
4325 if (evex_disp8 != vex_disp8)
4326 {
4327 i.memshift = memshift;
4328 return;
4329 }
4330
4331 i.types[j].bitfield.disp8 = vex_disp8;
4332 break;
4333 }
4334 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4335 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4336 i.tm.opcode_modifier.vex
4337 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4338 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4339 /* VPAND, VPOR, and VPXOR are commutative. */
4340 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4341 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4342 i.tm.opcode_modifier.evex = 0;
4343 i.tm.opcode_modifier.masking = 0;
a0a1771e 4344 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4345 i.tm.opcode_modifier.disp8memshift = 0;
4346 i.memshift = 0;
a0a1771e
JB
4347 if (j < i.operands)
4348 i.types[j].bitfield.disp8
4349 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4350 }
b6f8c7c4
L
4351}
4352
ae531041
L
4353/* Return non-zero for load instruction. */
4354
4355static int
4356load_insn_p (void)
4357{
4358 unsigned int dest;
4359 int any_vex_p = is_any_vex_encoding (&i.tm);
4360 unsigned int base_opcode = i.tm.base_opcode | 1;
4361
4362 if (!any_vex_p)
4363 {
a09f656b 4364 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4365 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4366 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4367 if (i.tm.opcode_modifier.anysize)
ae531041
L
4368 return 0;
4369
a09f656b 4370 /* pop, popf, popa. */
4371 if (strcmp (i.tm.name, "pop") == 0
4372 || i.tm.base_opcode == 0x9d
4373 || i.tm.base_opcode == 0x61)
ae531041
L
4374 return 1;
4375
4376 /* movs, cmps, lods, scas. */
4377 if ((i.tm.base_opcode | 0xb) == 0xaf)
4378 return 1;
4379
a09f656b 4380 /* outs, xlatb. */
4381 if (base_opcode == 0x6f
4382 || i.tm.base_opcode == 0xd7)
ae531041 4383 return 1;
a09f656b 4384 /* NB: For AMD-specific insns with implicit memory operands,
4385 they're intentionally not covered. */
ae531041
L
4386 }
4387
4388 /* No memory operand. */
4389 if (!i.mem_operands)
4390 return 0;
4391
4392 if (any_vex_p)
4393 {
4394 /* vldmxcsr. */
4395 if (i.tm.base_opcode == 0xae
4396 && i.tm.opcode_modifier.vex
441f6aca 4397 && i.tm.opcode_modifier.opcodespace == SPACE_0F
ae531041
L
4398 && i.tm.extension_opcode == 2)
4399 return 1;
4400 }
4401 else
4402 {
4403 /* test, not, neg, mul, imul, div, idiv. */
4404 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4405 && i.tm.extension_opcode != 1)
4406 return 1;
4407
4408 /* inc, dec. */
4409 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4410 return 1;
4411
4412 /* add, or, adc, sbb, and, sub, xor, cmp. */
4413 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4414 return 1;
4415
4416 /* bt, bts, btr, btc. */
4417 if (i.tm.base_opcode == 0xfba
4418 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4419 return 1;
4420
4421 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4422 if ((base_opcode == 0xc1
4423 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4424 && i.tm.extension_opcode != 6)
4425 return 1;
4426
70e95837 4427 /* cmpxchg8b, cmpxchg16b, xrstors, vmptrld. */
ae531041 4428 if (i.tm.base_opcode == 0xfc7
70e95837
JB
4429 && i.tm.opcode_modifier.opcodeprefix == PREFIX_NONE
4430 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3
4431 || i.tm.extension_opcode == 6))
ae531041
L
4432 return 1;
4433
4434 /* fxrstor, ldmxcsr, xrstor. */
4435 if (i.tm.base_opcode == 0xfae
4436 && (i.tm.extension_opcode == 1
4437 || i.tm.extension_opcode == 2
4438 || i.tm.extension_opcode == 5))
4439 return 1;
4440
4441 /* lgdt, lidt, lmsw. */
4442 if (i.tm.base_opcode == 0xf01
4443 && (i.tm.extension_opcode == 2
4444 || i.tm.extension_opcode == 3
4445 || i.tm.extension_opcode == 6))
4446 return 1;
4447
ae531041
L
4448 /* Check for x87 instructions. */
4449 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4450 {
4451 /* Skip fst, fstp, fstenv, fstcw. */
4452 if (i.tm.base_opcode == 0xd9
4453 && (i.tm.extension_opcode == 2
4454 || i.tm.extension_opcode == 3
4455 || i.tm.extension_opcode == 6
4456 || i.tm.extension_opcode == 7))
4457 return 0;
4458
4459 /* Skip fisttp, fist, fistp, fstp. */
4460 if (i.tm.base_opcode == 0xdb
4461 && (i.tm.extension_opcode == 1
4462 || i.tm.extension_opcode == 2
4463 || i.tm.extension_opcode == 3
4464 || i.tm.extension_opcode == 7))
4465 return 0;
4466
4467 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4468 if (i.tm.base_opcode == 0xdd
4469 && (i.tm.extension_opcode == 1
4470 || i.tm.extension_opcode == 2
4471 || i.tm.extension_opcode == 3
4472 || i.tm.extension_opcode == 6
4473 || i.tm.extension_opcode == 7))
4474 return 0;
4475
4476 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4477 if (i.tm.base_opcode == 0xdf
4478 && (i.tm.extension_opcode == 1
4479 || i.tm.extension_opcode == 2
4480 || i.tm.extension_opcode == 3
4481 || i.tm.extension_opcode == 6
4482 || i.tm.extension_opcode == 7))
4483 return 0;
4484
4485 return 1;
4486 }
4487 }
4488
4489 dest = i.operands - 1;
4490
4491 /* Check fake imm8 operand and 3 source operands. */
4492 if ((i.tm.opcode_modifier.immext
4493 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4494 && i.types[dest].bitfield.imm8)
4495 dest--;
4496
4497 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4498 if (!any_vex_p
4499 && (base_opcode == 0x1
4500 || base_opcode == 0x9
4501 || base_opcode == 0x11
4502 || base_opcode == 0x19
4503 || base_opcode == 0x21
4504 || base_opcode == 0x29
4505 || base_opcode == 0x31
4506 || base_opcode == 0x39
4507 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4508 || base_opcode == 0xfc1))
4509 return 1;
4510
4511 /* Check for load instruction. */
4512 return (i.types[dest].bitfield.class != ClassNone
4513 || i.types[dest].bitfield.instance == Accum);
4514}
4515
4516/* Output lfence, 0xfaee8, after instruction. */
4517
4518static void
4519insert_lfence_after (void)
4520{
4521 if (lfence_after_load && load_insn_p ())
4522 {
a09f656b 4523 /* There are also two REP string instructions that require
4524 special treatment. Specifically, the compare string (CMPS)
4525 and scan string (SCAS) instructions set EFLAGS in a manner
4526 that depends on the data being compared/scanned. When used
4527 with a REP prefix, the number of iterations may therefore
4528 vary depending on this data. If the data is a program secret
4529 chosen by the adversary using an LVI method,
4530 then this data-dependent behavior may leak some aspect
4531 of the secret. */
4532 if (((i.tm.base_opcode | 0x1) == 0xa7
4533 || (i.tm.base_opcode | 0x1) == 0xaf)
4534 && i.prefix[REP_PREFIX])
4535 {
4536 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4537 i.tm.name);
4538 }
ae531041
L
4539 char *p = frag_more (3);
4540 *p++ = 0xf;
4541 *p++ = 0xae;
4542 *p = 0xe8;
4543 }
4544}
4545
4546/* Output lfence, 0xfaee8, before instruction. */
4547
4548static void
4549insert_lfence_before (void)
4550{
4551 char *p;
4552
4553 if (is_any_vex_encoding (&i.tm))
4554 return;
4555
4556 if (i.tm.base_opcode == 0xff
4557 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4558 {
4559 /* Insert lfence before indirect branch if needed. */
4560
4561 if (lfence_before_indirect_branch == lfence_branch_none)
4562 return;
4563
4564 if (i.operands != 1)
4565 abort ();
4566
4567 if (i.reg_operands == 1)
4568 {
4569 /* Indirect branch via register. Don't insert lfence with
4570 -mlfence-after-load=yes. */
4571 if (lfence_after_load
4572 || lfence_before_indirect_branch == lfence_branch_memory)
4573 return;
4574 }
4575 else if (i.mem_operands == 1
4576 && lfence_before_indirect_branch != lfence_branch_register)
4577 {
4578 as_warn (_("indirect `%s` with memory operand should be avoided"),
4579 i.tm.name);
4580 return;
4581 }
4582 else
4583 return;
4584
4585 if (last_insn.kind != last_insn_other
4586 && last_insn.seg == now_seg)
4587 {
4588 as_warn_where (last_insn.file, last_insn.line,
4589 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4590 last_insn.name, i.tm.name);
4591 return;
4592 }
4593
4594 p = frag_more (3);
4595 *p++ = 0xf;
4596 *p++ = 0xae;
4597 *p = 0xe8;
4598 return;
4599 }
4600
503648e4 4601 /* Output or/not/shl and lfence before near ret. */
ae531041
L
4602 if (lfence_before_ret != lfence_before_ret_none
4603 && (i.tm.base_opcode == 0xc2
503648e4 4604 || i.tm.base_opcode == 0xc3))
ae531041
L
4605 {
4606 if (last_insn.kind != last_insn_other
4607 && last_insn.seg == now_seg)
4608 {
4609 as_warn_where (last_insn.file, last_insn.line,
4610 _("`%s` skips -mlfence-before-ret on `%s`"),
4611 last_insn.name, i.tm.name);
4612 return;
4613 }
a09f656b 4614
a09f656b 4615 /* Near ret ingore operand size override under CPU64. */
503648e4 4616 char prefix = flag_code == CODE_64BIT
4617 ? 0x48
4618 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
a09f656b 4619
4620 if (lfence_before_ret == lfence_before_ret_not)
4621 {
4622 /* not: 0xf71424, may add prefix
4623 for operand size override or 64-bit code. */
4624 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4625 if (prefix)
4626 *p++ = prefix;
ae531041
L
4627 *p++ = 0xf7;
4628 *p++ = 0x14;
4629 *p++ = 0x24;
a09f656b 4630 if (prefix)
4631 *p++ = prefix;
ae531041
L
4632 *p++ = 0xf7;
4633 *p++ = 0x14;
4634 *p++ = 0x24;
4635 }
a09f656b 4636 else
4637 {
4638 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4639 if (prefix)
4640 *p++ = prefix;
4641 if (lfence_before_ret == lfence_before_ret_or)
4642 {
4643 /* or: 0x830c2400, may add prefix
4644 for operand size override or 64-bit code. */
4645 *p++ = 0x83;
4646 *p++ = 0x0c;
4647 }
4648 else
4649 {
4650 /* shl: 0xc1242400, may add prefix
4651 for operand size override or 64-bit code. */
4652 *p++ = 0xc1;
4653 *p++ = 0x24;
4654 }
4655
4656 *p++ = 0x24;
4657 *p++ = 0x0;
4658 }
4659
ae531041
L
4660 *p++ = 0xf;
4661 *p++ = 0xae;
4662 *p = 0xe8;
4663 }
4664}
4665
252b5132
RH
4666/* This is the guts of the machine-dependent assembler. LINE points to a
4667 machine dependent instruction. This function is supposed to emit
4668 the frags/bytes it assembles to. */
4669
4670void
65da13b5 4671md_assemble (char *line)
252b5132 4672{
40fb9820 4673 unsigned int j;
83b16ac6 4674 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4675 const insn_template *t;
252b5132 4676
47926f60 4677 /* Initialize globals. */
252b5132
RH
4678 memset (&i, '\0', sizeof (i));
4679 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4680 i.reloc[j] = NO_RELOC;
252b5132
RH
4681 memset (disp_expressions, '\0', sizeof (disp_expressions));
4682 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4683 save_stack_p = save_stack;
252b5132
RH
4684
4685 /* First parse an instruction mnemonic & call i386_operand for the operands.
4686 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4687 start of a (possibly prefixed) mnemonic. */
252b5132 4688
29b0f896
AM
4689 line = parse_insn (line, mnemonic);
4690 if (line == NULL)
4691 return;
83b16ac6 4692 mnem_suffix = i.suffix;
252b5132 4693
29b0f896 4694 line = parse_operands (line, mnemonic);
ee86248c 4695 this_operand = -1;
8325cc63
JB
4696 xfree (i.memop1_string);
4697 i.memop1_string = NULL;
29b0f896
AM
4698 if (line == NULL)
4699 return;
252b5132 4700
29b0f896
AM
4701 /* Now we've parsed the mnemonic into a set of templates, and have the
4702 operands at hand. */
4703
b630c145
JB
4704 /* All Intel opcodes have reversed operands except for "bound", "enter",
4705 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4706 intersegment "jmp" and "call" instructions with 2 immediate operands so
4707 that the immediate segment precedes the offset, as it does when in AT&T
4708 mode. */
4d456e3d
L
4709 if (intel_syntax
4710 && i.operands > 1
29b0f896 4711 && (strcmp (mnemonic, "bound") != 0)
30123838 4712 && (strcmp (mnemonic, "invlpga") != 0)
eedb0f2c
JB
4713 && (strncmp (mnemonic, "monitor", 7) != 0)
4714 && (strncmp (mnemonic, "mwait", 5) != 0)
b630c145
JB
4715 && (strcmp (mnemonic, "tpause") != 0)
4716 && (strcmp (mnemonic, "umwait") != 0)
40fb9820
L
4717 && !(operand_type_check (i.types[0], imm)
4718 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4719 swap_operands ();
4720
ec56d5c0
JB
4721 /* The order of the immediates should be reversed
4722 for 2 immediates extrq and insertq instructions */
4723 if (i.imm_operands == 2
4724 && (strcmp (mnemonic, "extrq") == 0
4725 || strcmp (mnemonic, "insertq") == 0))
4726 swap_2_operands (0, 1);
4727
29b0f896
AM
4728 if (i.imm_operands)
4729 optimize_imm ();
4730
b300c311
L
4731 /* Don't optimize displacement for movabs since it only takes 64bit
4732 displacement. */
4733 if (i.disp_operands
a501d77e 4734 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4735 && (flag_code != CODE_64BIT
4736 || strcmp (mnemonic, "movabs") != 0))
4737 optimize_disp ();
29b0f896
AM
4738
4739 /* Next, we find a template that matches the given insn,
4740 making sure the overlap of the given operands types is consistent
4741 with the template operand types. */
252b5132 4742
83b16ac6 4743 if (!(t = match_template (mnem_suffix)))
29b0f896 4744 return;
252b5132 4745
7bab8ab5 4746 if (sse_check != check_none
81f8a913 4747 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4748 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4749 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4750 && (i.tm.cpu_flags.bitfield.cpusse
4751 || i.tm.cpu_flags.bitfield.cpusse2
4752 || i.tm.cpu_flags.bitfield.cpusse3
4753 || i.tm.cpu_flags.bitfield.cpussse3
4754 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4755 || i.tm.cpu_flags.bitfield.cpusse4_2
4756 || i.tm.cpu_flags.bitfield.cpupclmul
4757 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4758 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4759 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4760 {
7bab8ab5 4761 (sse_check == check_warning
daf50ae7
L
4762 ? as_warn
4763 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4764 }
4765
40fb9820 4766 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4767 if (!add_prefix (FWAIT_OPCODE))
4768 return;
252b5132 4769
d5de92cf 4770 /* Check if REP prefix is OK. */
742732c7 4771 if (i.rep_prefix && i.tm.opcode_modifier.prefixok != PrefixRep)
d5de92cf
L
4772 {
4773 as_bad (_("invalid instruction `%s' after `%s'"),
4774 i.tm.name, i.rep_prefix);
4775 return;
4776 }
4777
c1ba0266
L
4778 /* Check for lock without a lockable instruction. Destination operand
4779 must be memory unless it is xchg (0x86). */
c32fa91d 4780 if (i.prefix[LOCK_PREFIX]
742732c7 4781 && (i.tm.opcode_modifier.prefixok < PrefixLock
c1ba0266
L
4782 || i.mem_operands == 0
4783 || (i.tm.base_opcode != 0x86
8dc0818e 4784 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4785 {
4786 as_bad (_("expecting lockable instruction after `lock'"));
4787 return;
4788 }
4789
40d231b4
JB
4790 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4791 if (i.prefix[DATA_PREFIX]
4792 && (is_any_vex_encoding (&i.tm)
4793 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4794 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
7a8655d2
JB
4795 {
4796 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4797 return;
4798 }
4799
42164a71 4800 /* Check if HLE prefix is OK. */
165de32a 4801 if (i.hle_prefix && !check_hle ())
42164a71
L
4802 return;
4803
7e8b059b
L
4804 /* Check BND prefix. */
4805 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4806 as_bad (_("expecting valid branch instruction after `bnd'"));
4807
04ef582a 4808 /* Check NOTRACK prefix. */
742732c7 4809 if (i.notrack_prefix && i.tm.opcode_modifier.prefixok != PrefixNoTrack)
9fef80d6 4810 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4811
327e8c42
JB
4812 if (i.tm.cpu_flags.bitfield.cpumpx)
4813 {
4814 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4815 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4816 else if (flag_code != CODE_16BIT
4817 ? i.prefix[ADDR_PREFIX]
4818 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4819 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4820 }
7e8b059b
L
4821
4822 /* Insert BND prefix. */
76d3a78a
JB
4823 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4824 {
4825 if (!i.prefix[BND_PREFIX])
4826 add_prefix (BND_PREFIX_OPCODE);
4827 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4828 {
4829 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4830 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4831 }
4832 }
7e8b059b 4833
29b0f896 4834 /* Check string instruction segment overrides. */
51c8edf6 4835 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4836 {
51c8edf6 4837 gas_assert (i.mem_operands);
29b0f896 4838 if (!check_string ())
5dd0794d 4839 return;
fc0763e6 4840 i.disp_operands = 0;
29b0f896 4841 }
5dd0794d 4842
b6f8c7c4
L
4843 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4844 optimize_encoding ();
4845
29b0f896
AM
4846 if (!process_suffix ())
4847 return;
e413e4e9 4848
921eafea 4849 /* Update operand types and check extended states. */
bc0844ae 4850 for (j = 0; j < i.operands; j++)
921eafea
L
4851 {
4852 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3d70986f 4853 switch (i.tm.operand_types[j].bitfield.class)
921eafea
L
4854 {
4855 default:
4856 break;
4857 case RegMMX:
4858 i.xstate |= xstate_mmx;
4859 break;
4860 case RegMask:
32930e4e 4861 i.xstate |= xstate_mask;
921eafea
L
4862 break;
4863 case RegSIMD:
3d70986f 4864 if (i.tm.operand_types[j].bitfield.tmmword)
921eafea 4865 i.xstate |= xstate_tmm;
3d70986f 4866 else if (i.tm.operand_types[j].bitfield.zmmword)
921eafea 4867 i.xstate |= xstate_zmm;
3d70986f 4868 else if (i.tm.operand_types[j].bitfield.ymmword)
921eafea 4869 i.xstate |= xstate_ymm;
3d70986f 4870 else if (i.tm.operand_types[j].bitfield.xmmword)
921eafea
L
4871 i.xstate |= xstate_xmm;
4872 break;
4873 }
4874 }
bc0844ae 4875
29b0f896
AM
4876 /* Make still unresolved immediate matches conform to size of immediate
4877 given in i.suffix. */
4878 if (!finalize_imm ())
4879 return;
252b5132 4880
40fb9820 4881 if (i.types[0].bitfield.imm1)
29b0f896 4882 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4883
9afe6eb8
L
4884 /* We only need to check those implicit registers for instructions
4885 with 3 operands or less. */
4886 if (i.operands <= 3)
4887 for (j = 0; j < i.operands; j++)
75e5731b
JB
4888 if (i.types[j].bitfield.instance != InstanceNone
4889 && !i.types[j].bitfield.xmmword)
9afe6eb8 4890 i.reg_operands--;
40fb9820 4891
29b0f896
AM
4892 /* For insns with operands there are more diddles to do to the opcode. */
4893 if (i.operands)
4894 {
4895 if (!process_operands ())
4896 return;
4897 }
8c190ce0 4898 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4899 {
4900 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4901 as_warn (_("translating to `%sp'"), i.tm.name);
4902 }
252b5132 4903
7a8655d2 4904 if (is_any_vex_encoding (&i.tm))
9e5e5283 4905 {
c1dc7af5 4906 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4907 {
c1dc7af5 4908 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4909 i.tm.name);
4910 return;
4911 }
c0f3af97 4912
0b9404fd
JB
4913 /* Check for explicit REX prefix. */
4914 if (i.prefix[REX_PREFIX] || i.rex_encoding)
4915 {
4916 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
4917 return;
4918 }
4919
9e5e5283
L
4920 if (i.tm.opcode_modifier.vex)
4921 build_vex_prefix (t);
4922 else
4923 build_evex_prefix ();
0b9404fd
JB
4924
4925 /* The individual REX.RXBW bits got consumed. */
4926 i.rex &= REX_OPCODE;
9e5e5283 4927 }
43234a1e 4928
5dd85c99
SP
4929 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4930 instructions may define INT_OPCODE as well, so avoid this corner
4931 case for those instructions that use MODRM. */
4932 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4933 && !i.tm.opcode_modifier.modrm
4934 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4935 {
4936 i.tm.base_opcode = INT3_OPCODE;
4937 i.imm_operands = 0;
4938 }
252b5132 4939
0cfa3eb3
JB
4940 if ((i.tm.opcode_modifier.jump == JUMP
4941 || i.tm.opcode_modifier.jump == JUMP_BYTE
4942 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4943 && i.op[0].disps->X_op == O_constant)
4944 {
4945 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4946 the absolute address given by the constant. Since ix86 jumps and
4947 calls are pc relative, we need to generate a reloc. */
4948 i.op[0].disps->X_add_symbol = &abs_symbol;
4949 i.op[0].disps->X_op = O_symbol;
4950 }
252b5132 4951
29b0f896
AM
4952 /* For 8 bit registers we need an empty rex prefix. Also if the
4953 instruction already has a prefix, we need to convert old
4954 registers to new ones. */
773f551c 4955
bab6aec1 4956 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4957 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4958 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4959 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4960 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4961 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4962 && i.rex != 0))
4963 {
4964 int x;
726c5dcd 4965
29b0f896
AM
4966 i.rex |= REX_OPCODE;
4967 for (x = 0; x < 2; x++)
4968 {
4969 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4970 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4971 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4972 {
3f93af61 4973 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4974 /* In case it is "hi" register, give up. */
4975 if (i.op[x].regs->reg_num > 3)
a540244d 4976 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4977 "instruction requiring REX prefix."),
a540244d 4978 register_prefix, i.op[x].regs->reg_name);
773f551c 4979
29b0f896
AM
4980 /* Otherwise it is equivalent to the extended register.
4981 Since the encoding doesn't change this is merely
4982 cosmetic cleanup for debug output. */
4983
4984 i.op[x].regs = i.op[x].regs + 8;
773f551c 4985 }
29b0f896
AM
4986 }
4987 }
773f551c 4988
6b6b6807
L
4989 if (i.rex == 0 && i.rex_encoding)
4990 {
4991 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 4992 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
4993 the REX_OPCODE byte. */
4994 int x;
4995 for (x = 0; x < 2; x++)
bab6aec1 4996 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4997 && i.types[x].bitfield.byte
4998 && (i.op[x].regs->reg_flags & RegRex64) == 0
4999 && i.op[x].regs->reg_num > 3)
5000 {
3f93af61 5001 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
5002 i.rex_encoding = FALSE;
5003 break;
5004 }
5005
5006 if (i.rex_encoding)
5007 i.rex = REX_OPCODE;
5008 }
5009
7ab9ffdd 5010 if (i.rex != 0)
29b0f896
AM
5011 add_prefix (REX_OPCODE | i.rex);
5012
ae531041
L
5013 insert_lfence_before ();
5014
29b0f896
AM
5015 /* We are ready to output the insn. */
5016 output_insn ();
e379e5f3 5017
ae531041
L
5018 insert_lfence_after ();
5019
e379e5f3
L
5020 last_insn.seg = now_seg;
5021
5022 if (i.tm.opcode_modifier.isprefix)
5023 {
5024 last_insn.kind = last_insn_prefix;
5025 last_insn.name = i.tm.name;
5026 last_insn.file = as_where (&last_insn.line);
5027 }
5028 else
5029 last_insn.kind = last_insn_other;
29b0f896
AM
5030}
5031
5032static char *
e3bb37b5 5033parse_insn (char *line, char *mnemonic)
29b0f896
AM
5034{
5035 char *l = line;
5036 char *token_start = l;
5037 char *mnem_p;
5c6af06e 5038 int supported;
d3ce72d0 5039 const insn_template *t;
b6169b20 5040 char *dot_p = NULL;
29b0f896 5041
29b0f896
AM
5042 while (1)
5043 {
5044 mnem_p = mnemonic;
5045 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5046 {
b6169b20
L
5047 if (*mnem_p == '.')
5048 dot_p = mnem_p;
29b0f896
AM
5049 mnem_p++;
5050 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 5051 {
29b0f896
AM
5052 as_bad (_("no such instruction: `%s'"), token_start);
5053 return NULL;
5054 }
5055 l++;
5056 }
5057 if (!is_space_char (*l)
5058 && *l != END_OF_INSN
e44823cf
JB
5059 && (intel_syntax
5060 || (*l != PREFIX_SEPARATOR
5061 && *l != ',')))
29b0f896
AM
5062 {
5063 as_bad (_("invalid character %s in mnemonic"),
5064 output_invalid (*l));
5065 return NULL;
5066 }
5067 if (token_start == l)
5068 {
e44823cf 5069 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
5070 as_bad (_("expecting prefix; got nothing"));
5071 else
5072 as_bad (_("expecting mnemonic; got nothing"));
5073 return NULL;
5074 }
45288df1 5075
29b0f896 5076 /* Look up instruction (or prefix) via hash table. */
629310ab 5077 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
47926f60 5078
29b0f896
AM
5079 if (*l != END_OF_INSN
5080 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5081 && current_templates
40fb9820 5082 && current_templates->start->opcode_modifier.isprefix)
29b0f896 5083 {
c6fb90c8 5084 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
5085 {
5086 as_bad ((flag_code != CODE_64BIT
5087 ? _("`%s' is only supported in 64-bit mode")
5088 : _("`%s' is not supported in 64-bit mode")),
5089 current_templates->start->name);
5090 return NULL;
5091 }
29b0f896
AM
5092 /* If we are in 16-bit mode, do not allow addr16 or data16.
5093 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
5094 if ((current_templates->start->opcode_modifier.size == SIZE16
5095 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 5096 && flag_code != CODE_64BIT
673fe0f0 5097 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
5098 ^ (flag_code == CODE_16BIT)))
5099 {
5100 as_bad (_("redundant %s prefix"),
5101 current_templates->start->name);
5102 return NULL;
45288df1 5103 }
86fa6981 5104 if (current_templates->start->opcode_length == 0)
29b0f896 5105 {
86fa6981
L
5106 /* Handle pseudo prefixes. */
5107 switch (current_templates->start->base_opcode)
5108 {
41eb8e88 5109 case Prefix_Disp8:
86fa6981
L
5110 /* {disp8} */
5111 i.disp_encoding = disp_encoding_8bit;
5112 break;
41eb8e88
L
5113 case Prefix_Disp16:
5114 /* {disp16} */
5115 i.disp_encoding = disp_encoding_16bit;
5116 break;
5117 case Prefix_Disp32:
86fa6981
L
5118 /* {disp32} */
5119 i.disp_encoding = disp_encoding_32bit;
5120 break;
41eb8e88 5121 case Prefix_Load:
86fa6981
L
5122 /* {load} */
5123 i.dir_encoding = dir_encoding_load;
5124 break;
41eb8e88 5125 case Prefix_Store:
86fa6981
L
5126 /* {store} */
5127 i.dir_encoding = dir_encoding_store;
5128 break;
41eb8e88 5129 case Prefix_VEX:
42e04b36
L
5130 /* {vex} */
5131 i.vec_encoding = vex_encoding_vex;
86fa6981 5132 break;
41eb8e88 5133 case Prefix_VEX3:
86fa6981
L
5134 /* {vex3} */
5135 i.vec_encoding = vex_encoding_vex3;
5136 break;
41eb8e88 5137 case Prefix_EVEX:
86fa6981
L
5138 /* {evex} */
5139 i.vec_encoding = vex_encoding_evex;
5140 break;
41eb8e88 5141 case Prefix_REX:
6b6b6807
L
5142 /* {rex} */
5143 i.rex_encoding = TRUE;
5144 break;
41eb8e88 5145 case Prefix_NoOptimize:
b6f8c7c4
L
5146 /* {nooptimize} */
5147 i.no_optimize = TRUE;
5148 break;
86fa6981
L
5149 default:
5150 abort ();
5151 }
5152 }
5153 else
5154 {
5155 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 5156 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 5157 {
4e9ac44a
L
5158 case PREFIX_EXIST:
5159 return NULL;
5160 case PREFIX_DS:
d777820b 5161 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
5162 i.notrack_prefix = current_templates->start->name;
5163 break;
5164 case PREFIX_REP:
5165 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5166 i.hle_prefix = current_templates->start->name;
5167 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5168 i.bnd_prefix = current_templates->start->name;
5169 else
5170 i.rep_prefix = current_templates->start->name;
5171 break;
5172 default:
5173 break;
86fa6981 5174 }
29b0f896
AM
5175 }
5176 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5177 token_start = ++l;
5178 }
5179 else
5180 break;
5181 }
45288df1 5182
30a55f88 5183 if (!current_templates)
b6169b20 5184 {
07d5e953
JB
5185 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5186 Check if we should swap operand or force 32bit displacement in
f8a5c266 5187 encoding. */
30a55f88 5188 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 5189 i.dir_encoding = dir_encoding_swap;
8d63c93e 5190 else if (mnem_p - 3 == dot_p
a501d77e
L
5191 && dot_p[1] == 'd'
5192 && dot_p[2] == '8')
5193 i.disp_encoding = disp_encoding_8bit;
8d63c93e 5194 else if (mnem_p - 4 == dot_p
f8a5c266
L
5195 && dot_p[1] == 'd'
5196 && dot_p[2] == '3'
5197 && dot_p[3] == '2')
a501d77e 5198 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
5199 else
5200 goto check_suffix;
5201 mnem_p = dot_p;
5202 *dot_p = '\0';
629310ab 5203 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
b6169b20
L
5204 }
5205
29b0f896
AM
5206 if (!current_templates)
5207 {
dc1e8a47 5208 check_suffix:
1c529385 5209 if (mnem_p > mnemonic)
29b0f896 5210 {
1c529385
LH
5211 /* See if we can get a match by trimming off a suffix. */
5212 switch (mnem_p[-1])
29b0f896 5213 {
1c529385
LH
5214 case WORD_MNEM_SUFFIX:
5215 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
5216 i.suffix = SHORT_MNEM_SUFFIX;
5217 else
1c529385
LH
5218 /* Fall through. */
5219 case BYTE_MNEM_SUFFIX:
5220 case QWORD_MNEM_SUFFIX:
5221 i.suffix = mnem_p[-1];
29b0f896 5222 mnem_p[-1] = '\0';
fe0e921f
AM
5223 current_templates
5224 = (const templates *) str_hash_find (op_hash, mnemonic);
1c529385
LH
5225 break;
5226 case SHORT_MNEM_SUFFIX:
5227 case LONG_MNEM_SUFFIX:
5228 if (!intel_syntax)
5229 {
5230 i.suffix = mnem_p[-1];
5231 mnem_p[-1] = '\0';
fe0e921f
AM
5232 current_templates
5233 = (const templates *) str_hash_find (op_hash, mnemonic);
1c529385
LH
5234 }
5235 break;
5236
5237 /* Intel Syntax. */
5238 case 'd':
5239 if (intel_syntax)
5240 {
5241 if (intel_float_operand (mnemonic) == 1)
5242 i.suffix = SHORT_MNEM_SUFFIX;
5243 else
5244 i.suffix = LONG_MNEM_SUFFIX;
5245 mnem_p[-1] = '\0';
fe0e921f
AM
5246 current_templates
5247 = (const templates *) str_hash_find (op_hash, mnemonic);
1c529385
LH
5248 }
5249 break;
29b0f896 5250 }
29b0f896 5251 }
1c529385 5252
29b0f896
AM
5253 if (!current_templates)
5254 {
5255 as_bad (_("no such instruction: `%s'"), token_start);
5256 return NULL;
5257 }
5258 }
252b5132 5259
0cfa3eb3
JB
5260 if (current_templates->start->opcode_modifier.jump == JUMP
5261 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
5262 {
5263 /* Check for a branch hint. We allow ",pt" and ",pn" for
5264 predict taken and predict not taken respectively.
5265 I'm not sure that branch hints actually do anything on loop
5266 and jcxz insns (JumpByte) for current Pentium4 chips. They
5267 may work in the future and it doesn't hurt to accept them
5268 now. */
5269 if (l[0] == ',' && l[1] == 'p')
5270 {
5271 if (l[2] == 't')
5272 {
5273 if (!add_prefix (DS_PREFIX_OPCODE))
5274 return NULL;
5275 l += 3;
5276 }
5277 else if (l[2] == 'n')
5278 {
5279 if (!add_prefix (CS_PREFIX_OPCODE))
5280 return NULL;
5281 l += 3;
5282 }
5283 }
5284 }
5285 /* Any other comma loses. */
5286 if (*l == ',')
5287 {
5288 as_bad (_("invalid character %s in mnemonic"),
5289 output_invalid (*l));
5290 return NULL;
5291 }
252b5132 5292
29b0f896 5293 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
5294 supported = 0;
5295 for (t = current_templates->start; t < current_templates->end; ++t)
5296 {
c0f3af97
L
5297 supported |= cpu_flags_match (t);
5298 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
5299 {
5300 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5301 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 5302
548d0ee6
JB
5303 return l;
5304 }
29b0f896 5305 }
3629bb00 5306
548d0ee6
JB
5307 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5308 as_bad (flag_code == CODE_64BIT
5309 ? _("`%s' is not supported in 64-bit mode")
5310 : _("`%s' is only supported in 64-bit mode"),
5311 current_templates->start->name);
5312 else
5313 as_bad (_("`%s' is not supported on `%s%s'"),
5314 current_templates->start->name,
5315 cpu_arch_name ? cpu_arch_name : default_arch,
5316 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 5317
548d0ee6 5318 return NULL;
29b0f896 5319}
252b5132 5320
29b0f896 5321static char *
e3bb37b5 5322parse_operands (char *l, const char *mnemonic)
29b0f896
AM
5323{
5324 char *token_start;
3138f287 5325
29b0f896
AM
5326 /* 1 if operand is pending after ','. */
5327 unsigned int expecting_operand = 0;
252b5132 5328
29b0f896
AM
5329 /* Non-zero if operand parens not balanced. */
5330 unsigned int paren_not_balanced;
5331
5332 while (*l != END_OF_INSN)
5333 {
5334 /* Skip optional white space before operand. */
5335 if (is_space_char (*l))
5336 ++l;
d02603dc 5337 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
5338 {
5339 as_bad (_("invalid character %s before operand %d"),
5340 output_invalid (*l),
5341 i.operands + 1);
5342 return NULL;
5343 }
d02603dc 5344 token_start = l; /* After white space. */
29b0f896
AM
5345 paren_not_balanced = 0;
5346 while (paren_not_balanced || *l != ',')
5347 {
5348 if (*l == END_OF_INSN)
5349 {
5350 if (paren_not_balanced)
5351 {
5352 if (!intel_syntax)
5353 as_bad (_("unbalanced parenthesis in operand %d."),
5354 i.operands + 1);
5355 else
5356 as_bad (_("unbalanced brackets in operand %d."),
5357 i.operands + 1);
5358 return NULL;
5359 }
5360 else
5361 break; /* we are done */
5362 }
d02603dc 5363 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
5364 {
5365 as_bad (_("invalid character %s in operand %d"),
5366 output_invalid (*l),
5367 i.operands + 1);
5368 return NULL;
5369 }
5370 if (!intel_syntax)
5371 {
5372 if (*l == '(')
5373 ++paren_not_balanced;
5374 if (*l == ')')
5375 --paren_not_balanced;
5376 }
5377 else
5378 {
5379 if (*l == '[')
5380 ++paren_not_balanced;
5381 if (*l == ']')
5382 --paren_not_balanced;
5383 }
5384 l++;
5385 }
5386 if (l != token_start)
5387 { /* Yes, we've read in another operand. */
5388 unsigned int operand_ok;
5389 this_operand = i.operands++;
5390 if (i.operands > MAX_OPERANDS)
5391 {
5392 as_bad (_("spurious operands; (%d operands/instruction max)"),
5393 MAX_OPERANDS);
5394 return NULL;
5395 }
9d46ce34 5396 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
5397 /* Now parse operand adding info to 'i' as we go along. */
5398 END_STRING_AND_SAVE (l);
5399
1286ab78
L
5400 if (i.mem_operands > 1)
5401 {
5402 as_bad (_("too many memory references for `%s'"),
5403 mnemonic);
5404 return 0;
5405 }
5406
29b0f896
AM
5407 if (intel_syntax)
5408 operand_ok =
5409 i386_intel_operand (token_start,
5410 intel_float_operand (mnemonic));
5411 else
a7619375 5412 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5413
5414 RESTORE_END_STRING (l);
5415 if (!operand_ok)
5416 return NULL;
5417 }
5418 else
5419 {
5420 if (expecting_operand)
5421 {
5422 expecting_operand_after_comma:
5423 as_bad (_("expecting operand after ','; got nothing"));
5424 return NULL;
5425 }
5426 if (*l == ',')
5427 {
5428 as_bad (_("expecting operand before ','; got nothing"));
5429 return NULL;
5430 }
5431 }
7f3f1ea2 5432
29b0f896
AM
5433 /* Now *l must be either ',' or END_OF_INSN. */
5434 if (*l == ',')
5435 {
5436 if (*++l == END_OF_INSN)
5437 {
5438 /* Just skip it, if it's \n complain. */
5439 goto expecting_operand_after_comma;
5440 }
5441 expecting_operand = 1;
5442 }
5443 }
5444 return l;
5445}
7f3f1ea2 5446
050dfa73 5447static void
4d456e3d 5448swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5449{
5450 union i386_op temp_op;
40fb9820 5451 i386_operand_type temp_type;
c48dadc9 5452 unsigned int temp_flags;
050dfa73 5453 enum bfd_reloc_code_real temp_reloc;
4eed87de 5454
050dfa73
MM
5455 temp_type = i.types[xchg2];
5456 i.types[xchg2] = i.types[xchg1];
5457 i.types[xchg1] = temp_type;
c48dadc9
JB
5458
5459 temp_flags = i.flags[xchg2];
5460 i.flags[xchg2] = i.flags[xchg1];
5461 i.flags[xchg1] = temp_flags;
5462
050dfa73
MM
5463 temp_op = i.op[xchg2];
5464 i.op[xchg2] = i.op[xchg1];
5465 i.op[xchg1] = temp_op;
c48dadc9 5466
050dfa73
MM
5467 temp_reloc = i.reloc[xchg2];
5468 i.reloc[xchg2] = i.reloc[xchg1];
5469 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5470
5471 if (i.mask)
5472 {
5473 if (i.mask->operand == xchg1)
5474 i.mask->operand = xchg2;
5475 else if (i.mask->operand == xchg2)
5476 i.mask->operand = xchg1;
5477 }
5478 if (i.broadcast)
5479 {
5480 if (i.broadcast->operand == xchg1)
5481 i.broadcast->operand = xchg2;
5482 else if (i.broadcast->operand == xchg2)
5483 i.broadcast->operand = xchg1;
5484 }
5485 if (i.rounding)
5486 {
5487 if (i.rounding->operand == xchg1)
5488 i.rounding->operand = xchg2;
5489 else if (i.rounding->operand == xchg2)
5490 i.rounding->operand = xchg1;
5491 }
050dfa73
MM
5492}
5493
29b0f896 5494static void
e3bb37b5 5495swap_operands (void)
29b0f896 5496{
b7c61d9a 5497 switch (i.operands)
050dfa73 5498 {
c0f3af97 5499 case 5:
b7c61d9a 5500 case 4:
4d456e3d 5501 swap_2_operands (1, i.operands - 2);
1a0670f3 5502 /* Fall through. */
b7c61d9a
L
5503 case 3:
5504 case 2:
4d456e3d 5505 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5506 break;
5507 default:
5508 abort ();
29b0f896 5509 }
29b0f896
AM
5510
5511 if (i.mem_operands == 2)
5512 {
5513 const seg_entry *temp_seg;
5514 temp_seg = i.seg[0];
5515 i.seg[0] = i.seg[1];
5516 i.seg[1] = temp_seg;
5517 }
5518}
252b5132 5519
29b0f896
AM
5520/* Try to ensure constant immediates are represented in the smallest
5521 opcode possible. */
5522static void
e3bb37b5 5523optimize_imm (void)
29b0f896
AM
5524{
5525 char guess_suffix = 0;
5526 int op;
252b5132 5527
29b0f896
AM
5528 if (i.suffix)
5529 guess_suffix = i.suffix;
5530 else if (i.reg_operands)
5531 {
5532 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5533 We can't do this properly yet, i.e. excluding special register
5534 instances, but the following works for instructions with
5535 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5536 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5537 if (i.types[op].bitfield.class != Reg)
5538 continue;
5539 else if (i.types[op].bitfield.byte)
7ab9ffdd 5540 {
40fb9820
L
5541 guess_suffix = BYTE_MNEM_SUFFIX;
5542 break;
5543 }
bab6aec1 5544 else if (i.types[op].bitfield.word)
252b5132 5545 {
40fb9820
L
5546 guess_suffix = WORD_MNEM_SUFFIX;
5547 break;
5548 }
bab6aec1 5549 else if (i.types[op].bitfield.dword)
40fb9820
L
5550 {
5551 guess_suffix = LONG_MNEM_SUFFIX;
5552 break;
5553 }
bab6aec1 5554 else if (i.types[op].bitfield.qword)
40fb9820
L
5555 {
5556 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5557 break;
252b5132 5558 }
29b0f896
AM
5559 }
5560 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5561 guess_suffix = WORD_MNEM_SUFFIX;
5562
5563 for (op = i.operands; --op >= 0;)
40fb9820 5564 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5565 {
5566 switch (i.op[op].imms->X_op)
252b5132 5567 {
29b0f896
AM
5568 case O_constant:
5569 /* If a suffix is given, this operand may be shortened. */
5570 switch (guess_suffix)
252b5132 5571 {
29b0f896 5572 case LONG_MNEM_SUFFIX:
40fb9820
L
5573 i.types[op].bitfield.imm32 = 1;
5574 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5575 break;
5576 case WORD_MNEM_SUFFIX:
40fb9820
L
5577 i.types[op].bitfield.imm16 = 1;
5578 i.types[op].bitfield.imm32 = 1;
5579 i.types[op].bitfield.imm32s = 1;
5580 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5581 break;
5582 case BYTE_MNEM_SUFFIX:
40fb9820
L
5583 i.types[op].bitfield.imm8 = 1;
5584 i.types[op].bitfield.imm8s = 1;
5585 i.types[op].bitfield.imm16 = 1;
5586 i.types[op].bitfield.imm32 = 1;
5587 i.types[op].bitfield.imm32s = 1;
5588 i.types[op].bitfield.imm64 = 1;
29b0f896 5589 break;
252b5132 5590 }
252b5132 5591
29b0f896
AM
5592 /* If this operand is at most 16 bits, convert it
5593 to a signed 16 bit number before trying to see
5594 whether it will fit in an even smaller size.
5595 This allows a 16-bit operand such as $0xffe0 to
5596 be recognised as within Imm8S range. */
40fb9820 5597 if ((i.types[op].bitfield.imm16)
29b0f896 5598 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5599 {
29b0f896
AM
5600 i.op[op].imms->X_add_number =
5601 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5602 }
a28def75
L
5603#ifdef BFD64
5604 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5605 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5606 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5607 == 0))
5608 {
5609 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5610 ^ ((offsetT) 1 << 31))
5611 - ((offsetT) 1 << 31));
5612 }
a28def75 5613#endif
40fb9820 5614 i.types[op]
c6fb90c8
L
5615 = operand_type_or (i.types[op],
5616 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5617
29b0f896
AM
5618 /* We must avoid matching of Imm32 templates when 64bit
5619 only immediate is available. */
5620 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5621 i.types[op].bitfield.imm32 = 0;
29b0f896 5622 break;
252b5132 5623
29b0f896
AM
5624 case O_absent:
5625 case O_register:
5626 abort ();
5627
5628 /* Symbols and expressions. */
5629 default:
9cd96992
JB
5630 /* Convert symbolic operand to proper sizes for matching, but don't
5631 prevent matching a set of insns that only supports sizes other
5632 than those matching the insn suffix. */
5633 {
40fb9820 5634 i386_operand_type mask, allowed;
d3ce72d0 5635 const insn_template *t;
9cd96992 5636
0dfbf9d7
L
5637 operand_type_set (&mask, 0);
5638 operand_type_set (&allowed, 0);
40fb9820 5639
4eed87de
AM
5640 for (t = current_templates->start;
5641 t < current_templates->end;
5642 ++t)
bab6aec1
JB
5643 {
5644 allowed = operand_type_or (allowed, t->operand_types[op]);
5645 allowed = operand_type_and (allowed, anyimm);
5646 }
9cd96992
JB
5647 switch (guess_suffix)
5648 {
5649 case QWORD_MNEM_SUFFIX:
40fb9820
L
5650 mask.bitfield.imm64 = 1;
5651 mask.bitfield.imm32s = 1;
9cd96992
JB
5652 break;
5653 case LONG_MNEM_SUFFIX:
40fb9820 5654 mask.bitfield.imm32 = 1;
9cd96992
JB
5655 break;
5656 case WORD_MNEM_SUFFIX:
40fb9820 5657 mask.bitfield.imm16 = 1;
9cd96992
JB
5658 break;
5659 case BYTE_MNEM_SUFFIX:
40fb9820 5660 mask.bitfield.imm8 = 1;
9cd96992
JB
5661 break;
5662 default:
9cd96992
JB
5663 break;
5664 }
c6fb90c8 5665 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5666 if (!operand_type_all_zero (&allowed))
c6fb90c8 5667 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5668 }
29b0f896 5669 break;
252b5132 5670 }
29b0f896
AM
5671 }
5672}
47926f60 5673
29b0f896
AM
5674/* Try to use the smallest displacement type too. */
5675static void
e3bb37b5 5676optimize_disp (void)
29b0f896
AM
5677{
5678 int op;
3e73aa7c 5679
29b0f896 5680 for (op = i.operands; --op >= 0;)
40fb9820 5681 if (operand_type_check (i.types[op], disp))
252b5132 5682 {
b300c311 5683 if (i.op[op].disps->X_op == O_constant)
252b5132 5684 {
91d6fa6a 5685 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5686
40fb9820 5687 if (i.types[op].bitfield.disp16
91d6fa6a 5688 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5689 {
5690 /* If this operand is at most 16 bits, convert
5691 to a signed 16 bit number and don't use 64bit
5692 displacement. */
91d6fa6a 5693 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5694 i.types[op].bitfield.disp64 = 0;
b300c311 5695 }
a28def75
L
5696#ifdef BFD64
5697 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5698 if (i.types[op].bitfield.disp32
91d6fa6a 5699 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5700 {
5701 /* If this operand is at most 32 bits, convert
5702 to a signed 32 bit number and don't use 64bit
5703 displacement. */
91d6fa6a
NC
5704 op_disp &= (((offsetT) 2 << 31) - 1);
5705 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5706 i.types[op].bitfield.disp64 = 0;
b300c311 5707 }
a28def75 5708#endif
91d6fa6a 5709 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5710 {
40fb9820
L
5711 i.types[op].bitfield.disp8 = 0;
5712 i.types[op].bitfield.disp16 = 0;
5713 i.types[op].bitfield.disp32 = 0;
5714 i.types[op].bitfield.disp32s = 0;
5715 i.types[op].bitfield.disp64 = 0;
b300c311
L
5716 i.op[op].disps = 0;
5717 i.disp_operands--;
5718 }
5719 else if (flag_code == CODE_64BIT)
5720 {
91d6fa6a 5721 if (fits_in_signed_long (op_disp))
28a9d8f5 5722 {
40fb9820
L
5723 i.types[op].bitfield.disp64 = 0;
5724 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5725 }
0e1147d9 5726 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5727 && fits_in_unsigned_long (op_disp))
40fb9820 5728 i.types[op].bitfield.disp32 = 1;
b300c311 5729 }
40fb9820
L
5730 if ((i.types[op].bitfield.disp32
5731 || i.types[op].bitfield.disp32s
5732 || i.types[op].bitfield.disp16)
b5014f7a 5733 && fits_in_disp8 (op_disp))
40fb9820 5734 i.types[op].bitfield.disp8 = 1;
252b5132 5735 }
67a4f2b7
AO
5736 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5737 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5738 {
5739 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5740 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5741 i.types[op].bitfield.disp8 = 0;
5742 i.types[op].bitfield.disp16 = 0;
5743 i.types[op].bitfield.disp32 = 0;
5744 i.types[op].bitfield.disp32s = 0;
5745 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5746 }
5747 else
b300c311 5748 /* We only support 64bit displacement on constants. */
40fb9820 5749 i.types[op].bitfield.disp64 = 0;
252b5132 5750 }
29b0f896
AM
5751}
5752
4a1b91ea
L
5753/* Return 1 if there is a match in broadcast bytes between operand
5754 GIVEN and instruction template T. */
5755
5756static INLINE int
5757match_broadcast_size (const insn_template *t, unsigned int given)
5758{
5759 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5760 && i.types[given].bitfield.byte)
5761 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5762 && i.types[given].bitfield.word)
5763 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5764 && i.types[given].bitfield.dword)
5765 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5766 && i.types[given].bitfield.qword));
5767}
5768
6c30d220
L
5769/* Check if operands are valid for the instruction. */
5770
5771static int
5772check_VecOperands (const insn_template *t)
5773{
43234a1e 5774 unsigned int op;
e2195274 5775 i386_cpu_flags cpu;
e2195274
JB
5776
5777 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5778 any one operand are implicity requiring AVX512VL support if the actual
5779 operand size is YMMword or XMMword. Since this function runs after
5780 template matching, there's no need to check for YMMword/XMMword in
5781 the template. */
5782 cpu = cpu_flags_and (t->cpu_flags, avx512);
5783 if (!cpu_flags_all_zero (&cpu)
5784 && !t->cpu_flags.bitfield.cpuavx512vl
5785 && !cpu_arch_flags.bitfield.cpuavx512vl)
5786 {
5787 for (op = 0; op < t->operands; ++op)
5788 {
5789 if (t->operand_types[op].bitfield.zmmword
5790 && (i.types[op].bitfield.ymmword
5791 || i.types[op].bitfield.xmmword))
5792 {
5793 i.error = unsupported;
5794 return 1;
5795 }
5796 }
5797 }
43234a1e 5798
6c30d220 5799 /* Without VSIB byte, we can't have a vector register for index. */
63112cd6 5800 if (!t->opcode_modifier.sib
6c30d220 5801 && i.index_reg
1b54b8d7
JB
5802 && (i.index_reg->reg_type.bitfield.xmmword
5803 || i.index_reg->reg_type.bitfield.ymmword
5804 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5805 {
5806 i.error = unsupported_vector_index_register;
5807 return 1;
5808 }
5809
ad8ecc81
MZ
5810 /* Check if default mask is allowed. */
5811 if (t->opcode_modifier.nodefmask
5812 && (!i.mask || i.mask->mask->reg_num == 0))
5813 {
5814 i.error = no_default_mask;
5815 return 1;
5816 }
5817
7bab8ab5
JB
5818 /* For VSIB byte, we need a vector register for index, and all vector
5819 registers must be distinct. */
260cd341 5820 if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
7bab8ab5
JB
5821 {
5822 if (!i.index_reg
63112cd6 5823 || !((t->opcode_modifier.sib == VECSIB128
1b54b8d7 5824 && i.index_reg->reg_type.bitfield.xmmword)
63112cd6 5825 || (t->opcode_modifier.sib == VECSIB256
1b54b8d7 5826 && i.index_reg->reg_type.bitfield.ymmword)
63112cd6 5827 || (t->opcode_modifier.sib == VECSIB512
1b54b8d7 5828 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5829 {
5830 i.error = invalid_vsib_address;
5831 return 1;
5832 }
5833
43234a1e
L
5834 gas_assert (i.reg_operands == 2 || i.mask);
5835 if (i.reg_operands == 2 && !i.mask)
5836 {
3528c362 5837 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5838 gas_assert (i.types[0].bitfield.xmmword
5839 || i.types[0].bitfield.ymmword);
3528c362 5840 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5841 gas_assert (i.types[2].bitfield.xmmword
5842 || i.types[2].bitfield.ymmword);
43234a1e
L
5843 if (operand_check == check_none)
5844 return 0;
5845 if (register_number (i.op[0].regs)
5846 != register_number (i.index_reg)
5847 && register_number (i.op[2].regs)
5848 != register_number (i.index_reg)
5849 && register_number (i.op[0].regs)
5850 != register_number (i.op[2].regs))
5851 return 0;
5852 if (operand_check == check_error)
5853 {
5854 i.error = invalid_vector_register_set;
5855 return 1;
5856 }
5857 as_warn (_("mask, index, and destination registers should be distinct"));
5858 }
8444f82a
MZ
5859 else if (i.reg_operands == 1 && i.mask)
5860 {
3528c362 5861 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5862 && (i.types[1].bitfield.xmmword
5863 || i.types[1].bitfield.ymmword
5864 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5865 && (register_number (i.op[1].regs)
5866 == register_number (i.index_reg)))
5867 {
5868 if (operand_check == check_error)
5869 {
5870 i.error = invalid_vector_register_set;
5871 return 1;
5872 }
5873 if (operand_check != check_none)
5874 as_warn (_("index and destination registers should be distinct"));
5875 }
5876 }
43234a1e 5877 }
7bab8ab5 5878
260cd341
LC
5879 /* For AMX instructions with three tmmword operands, all tmmword operand must be
5880 distinct */
5881 if (t->operand_types[0].bitfield.tmmword
5882 && i.reg_operands == 3)
5883 {
5884 if (register_number (i.op[0].regs)
5885 == register_number (i.op[1].regs)
5886 || register_number (i.op[0].regs)
5887 == register_number (i.op[2].regs)
5888 || register_number (i.op[1].regs)
5889 == register_number (i.op[2].regs))
5890 {
5891 i.error = invalid_tmm_register_set;
5892 return 1;
5893 }
5894 }
5895
43234a1e
L
5896 /* Check if broadcast is supported by the instruction and is applied
5897 to the memory operand. */
5898 if (i.broadcast)
5899 {
8e6e0792 5900 i386_operand_type type, overlap;
43234a1e
L
5901
5902 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5903 and its broadcast bytes match the memory operand. */
32546502 5904 op = i.broadcast->operand;
8e6e0792 5905 if (!t->opcode_modifier.broadcast
c48dadc9 5906 || !(i.flags[op] & Operand_Mem)
c39e5b26 5907 || (!i.types[op].bitfield.unspecified
4a1b91ea 5908 && !match_broadcast_size (t, op)))
43234a1e
L
5909 {
5910 bad_broadcast:
5911 i.error = unsupported_broadcast;
5912 return 1;
5913 }
8e6e0792 5914
4a1b91ea
L
5915 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5916 * i.broadcast->type);
8e6e0792 5917 operand_type_set (&type, 0);
4a1b91ea 5918 switch (i.broadcast->bytes)
8e6e0792 5919 {
4a1b91ea
L
5920 case 2:
5921 type.bitfield.word = 1;
5922 break;
5923 case 4:
5924 type.bitfield.dword = 1;
5925 break;
8e6e0792
JB
5926 case 8:
5927 type.bitfield.qword = 1;
5928 break;
5929 case 16:
5930 type.bitfield.xmmword = 1;
5931 break;
5932 case 32:
5933 type.bitfield.ymmword = 1;
5934 break;
5935 case 64:
5936 type.bitfield.zmmword = 1;
5937 break;
5938 default:
5939 goto bad_broadcast;
5940 }
5941
5942 overlap = operand_type_and (type, t->operand_types[op]);
bc49bfd8
JB
5943 if (t->operand_types[op].bitfield.class == RegSIMD
5944 && t->operand_types[op].bitfield.byte
5945 + t->operand_types[op].bitfield.word
5946 + t->operand_types[op].bitfield.dword
5947 + t->operand_types[op].bitfield.qword > 1)
5948 {
5949 overlap.bitfield.xmmword = 0;
5950 overlap.bitfield.ymmword = 0;
5951 overlap.bitfield.zmmword = 0;
5952 }
8e6e0792
JB
5953 if (operand_type_all_zero (&overlap))
5954 goto bad_broadcast;
5955
5956 if (t->opcode_modifier.checkregsize)
5957 {
5958 unsigned int j;
5959
e2195274 5960 type.bitfield.baseindex = 1;
8e6e0792
JB
5961 for (j = 0; j < i.operands; ++j)
5962 {
5963 if (j != op
5964 && !operand_type_register_match(i.types[j],
5965 t->operand_types[j],
5966 type,
5967 t->operand_types[op]))
5968 goto bad_broadcast;
5969 }
5970 }
43234a1e
L
5971 }
5972 /* If broadcast is supported in this instruction, we need to check if
5973 operand of one-element size isn't specified without broadcast. */
5974 else if (t->opcode_modifier.broadcast && i.mem_operands)
5975 {
5976 /* Find memory operand. */
5977 for (op = 0; op < i.operands; op++)
8dc0818e 5978 if (i.flags[op] & Operand_Mem)
43234a1e
L
5979 break;
5980 gas_assert (op < i.operands);
5981 /* Check size of the memory operand. */
4a1b91ea 5982 if (match_broadcast_size (t, op))
43234a1e
L
5983 {
5984 i.error = broadcast_needed;
5985 return 1;
5986 }
5987 }
c39e5b26
JB
5988 else
5989 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5990
5991 /* Check if requested masking is supported. */
ae2387fe 5992 if (i.mask)
43234a1e 5993 {
ae2387fe
JB
5994 switch (t->opcode_modifier.masking)
5995 {
5996 case BOTH_MASKING:
5997 break;
5998 case MERGING_MASKING:
5999 if (i.mask->zeroing)
6000 {
6001 case 0:
6002 i.error = unsupported_masking;
6003 return 1;
6004 }
6005 break;
6006 case DYNAMIC_MASKING:
6007 /* Memory destinations allow only merging masking. */
6008 if (i.mask->zeroing && i.mem_operands)
6009 {
6010 /* Find memory operand. */
6011 for (op = 0; op < i.operands; op++)
c48dadc9 6012 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
6013 break;
6014 gas_assert (op < i.operands);
6015 if (op == i.operands - 1)
6016 {
6017 i.error = unsupported_masking;
6018 return 1;
6019 }
6020 }
6021 break;
6022 default:
6023 abort ();
6024 }
43234a1e
L
6025 }
6026
6027 /* Check if masking is applied to dest operand. */
6028 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
6029 {
6030 i.error = mask_not_on_destination;
6031 return 1;
6032 }
6033
43234a1e
L
6034 /* Check RC/SAE. */
6035 if (i.rounding)
6036 {
a80195f1
JB
6037 if (!t->opcode_modifier.sae
6038 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
6039 {
6040 i.error = unsupported_rc_sae;
6041 return 1;
6042 }
6043 /* If the instruction has several immediate operands and one of
6044 them is rounding, the rounding operand should be the last
6045 immediate operand. */
6046 if (i.imm_operands > 1
6047 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 6048 {
43234a1e 6049 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
6050 return 1;
6051 }
6c30d220
L
6052 }
6053
da4977e0
JB
6054 /* Check the special Imm4 cases; must be the first operand. */
6055 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6056 {
6057 if (i.op[0].imms->X_op != O_constant
6058 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6059 {
6060 i.error = bad_imm4;
6061 return 1;
6062 }
6063
6064 /* Turn off Imm<N> so that update_imm won't complain. */
6065 operand_type_set (&i.types[0], 0);
6066 }
6067
43234a1e 6068 /* Check vector Disp8 operand. */
b5014f7a
JB
6069 if (t->opcode_modifier.disp8memshift
6070 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
6071 {
6072 if (i.broadcast)
4a1b91ea 6073 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 6074 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 6075 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
6076 else
6077 {
6078 const i386_operand_type *type = NULL;
6079
6080 i.memshift = 0;
6081 for (op = 0; op < i.operands; op++)
8dc0818e 6082 if (i.flags[op] & Operand_Mem)
7091c612 6083 {
4174bfff
JB
6084 if (t->opcode_modifier.evex == EVEXLIG)
6085 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6086 else if (t->operand_types[op].bitfield.xmmword
6087 + t->operand_types[op].bitfield.ymmword
6088 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
6089 type = &t->operand_types[op];
6090 else if (!i.types[op].bitfield.unspecified)
6091 type = &i.types[op];
6092 }
3528c362 6093 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 6094 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
6095 {
6096 if (i.types[op].bitfield.zmmword)
6097 i.memshift = 6;
6098 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6099 i.memshift = 5;
6100 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6101 i.memshift = 4;
6102 }
6103
6104 if (type)
6105 {
6106 if (type->bitfield.zmmword)
6107 i.memshift = 6;
6108 else if (type->bitfield.ymmword)
6109 i.memshift = 5;
6110 else if (type->bitfield.xmmword)
6111 i.memshift = 4;
6112 }
6113
6114 /* For the check in fits_in_disp8(). */
6115 if (i.memshift == 0)
6116 i.memshift = -1;
6117 }
43234a1e
L
6118
6119 for (op = 0; op < i.operands; op++)
6120 if (operand_type_check (i.types[op], disp)
6121 && i.op[op].disps->X_op == O_constant)
6122 {
b5014f7a 6123 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 6124 {
b5014f7a
JB
6125 i.types[op].bitfield.disp8 = 1;
6126 return 0;
43234a1e 6127 }
b5014f7a 6128 i.types[op].bitfield.disp8 = 0;
43234a1e
L
6129 }
6130 }
b5014f7a
JB
6131
6132 i.memshift = 0;
43234a1e 6133
6c30d220
L
6134 return 0;
6135}
6136
da4977e0 6137/* Check if encoding requirements are met by the instruction. */
a683cc34
SP
6138
6139static int
da4977e0 6140VEX_check_encoding (const insn_template *t)
a683cc34 6141{
da4977e0
JB
6142 if (i.vec_encoding == vex_encoding_error)
6143 {
6144 i.error = unsupported;
6145 return 1;
6146 }
6147
86fa6981 6148 if (i.vec_encoding == vex_encoding_evex)
43234a1e 6149 {
86fa6981 6150 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 6151 if (!is_evex_encoding (t))
86fa6981
L
6152 {
6153 i.error = unsupported;
6154 return 1;
6155 }
6156 return 0;
43234a1e
L
6157 }
6158
a683cc34 6159 if (!t->opcode_modifier.vex)
86fa6981
L
6160 {
6161 /* This instruction template doesn't have VEX prefix. */
6162 if (i.vec_encoding != vex_encoding_default)
6163 {
6164 i.error = unsupported;
6165 return 1;
6166 }
6167 return 0;
6168 }
a683cc34 6169
a683cc34
SP
6170 return 0;
6171}
6172
d3ce72d0 6173static const insn_template *
83b16ac6 6174match_template (char mnem_suffix)
29b0f896
AM
6175{
6176 /* Points to template once we've found it. */
d3ce72d0 6177 const insn_template *t;
40fb9820 6178 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 6179 i386_operand_type overlap4;
29b0f896 6180 unsigned int found_reverse_match;
dc2be329 6181 i386_opcode_modifier suffix_check;
40fb9820 6182 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 6183 int addr_prefix_disp;
45a4bb20 6184 unsigned int j, size_match, check_register;
5614d22c 6185 enum i386_error specific_error = 0;
29b0f896 6186
c0f3af97
L
6187#if MAX_OPERANDS != 5
6188# error "MAX_OPERANDS must be 5."
f48ff2ae
L
6189#endif
6190
29b0f896 6191 found_reverse_match = 0;
539e75ad 6192 addr_prefix_disp = -1;
40fb9820 6193
dc2be329 6194 /* Prepare for mnemonic suffix check. */
40fb9820 6195 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
6196 switch (mnem_suffix)
6197 {
6198 case BYTE_MNEM_SUFFIX:
6199 suffix_check.no_bsuf = 1;
6200 break;
6201 case WORD_MNEM_SUFFIX:
6202 suffix_check.no_wsuf = 1;
6203 break;
6204 case SHORT_MNEM_SUFFIX:
6205 suffix_check.no_ssuf = 1;
6206 break;
6207 case LONG_MNEM_SUFFIX:
6208 suffix_check.no_lsuf = 1;
6209 break;
6210 case QWORD_MNEM_SUFFIX:
6211 suffix_check.no_qsuf = 1;
6212 break;
6213 default:
6214 /* NB: In Intel syntax, normally we can check for memory operand
6215 size when there is no mnemonic suffix. But jmp and call have
6216 2 different encodings with Dword memory operand size, one with
6217 No_ldSuf and the other without. i.suffix is set to
6218 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6219 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6220 suffix_check.no_ldsuf = 1;
83b16ac6
JB
6221 }
6222
01559ecc
L
6223 /* Must have right number of operands. */
6224 i.error = number_of_operands_mismatch;
6225
45aa61fe 6226 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 6227 {
539e75ad 6228 addr_prefix_disp = -1;
dbbc8b7e 6229 found_reverse_match = 0;
539e75ad 6230
29b0f896
AM
6231 if (i.operands != t->operands)
6232 continue;
6233
50aecf8c 6234 /* Check processor support. */
a65babc9 6235 i.error = unsupported;
45a4bb20 6236 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
6237 continue;
6238
57392598
CL
6239 /* Check Pseudo Prefix. */
6240 i.error = unsupported;
6241 if (t->opcode_modifier.pseudovexprefix
6242 && !(i.vec_encoding == vex_encoding_vex
6243 || i.vec_encoding == vex_encoding_vex3))
6244 continue;
6245
e1d4d893 6246 /* Check AT&T mnemonic. */
a65babc9 6247 i.error = unsupported_with_intel_mnemonic;
e1d4d893 6248 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
6249 continue;
6250
4b5aaf5f 6251 /* Check AT&T/Intel syntax. */
a65babc9 6252 i.error = unsupported_syntax;
5c07affc 6253 if ((intel_syntax && t->opcode_modifier.attsyntax)
4b5aaf5f 6254 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
6255 continue;
6256
4b5aaf5f
L
6257 /* Check Intel64/AMD64 ISA. */
6258 switch (isa64)
6259 {
6260 default:
6261 /* Default: Don't accept Intel64. */
6262 if (t->opcode_modifier.isa64 == INTEL64)
6263 continue;
6264 break;
6265 case amd64:
6266 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6267 if (t->opcode_modifier.isa64 >= INTEL64)
6268 continue;
6269 break;
6270 case intel64:
6271 /* -mintel64: Don't accept AMD64. */
5990e377 6272 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
4b5aaf5f
L
6273 continue;
6274 break;
6275 }
6276
dc2be329 6277 /* Check the suffix. */
a65babc9 6278 i.error = invalid_instruction_suffix;
dc2be329
L
6279 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6280 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6281 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6282 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6283 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6284 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 6285 continue;
29b0f896 6286
3ac21baa
JB
6287 size_match = operand_size_match (t);
6288 if (!size_match)
7d5e4556 6289 continue;
539e75ad 6290
6f2f06be
JB
6291 /* This is intentionally not
6292
0cfa3eb3 6293 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
6294
6295 as the case of a missing * on the operand is accepted (perhaps with
6296 a warning, issued further down). */
0cfa3eb3 6297 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
6298 {
6299 i.error = operand_type_mismatch;
6300 continue;
6301 }
6302
5c07affc
L
6303 for (j = 0; j < MAX_OPERANDS; j++)
6304 operand_types[j] = t->operand_types[j];
6305
e365e234
JB
6306 /* In general, don't allow
6307 - 64-bit operands outside of 64-bit mode,
6308 - 32-bit operands on pre-386. */
4873e243 6309 j = i.imm_operands + (t->operands > i.imm_operands + 1);
e365e234
JB
6310 if (((i.suffix == QWORD_MNEM_SUFFIX
6311 && flag_code != CODE_64BIT
8b65b895 6312 && !(t->base_opcode == 0xfc7
70e95837 6313 && i.tm.opcode_modifier.opcodeprefix == PREFIX_NONE
8b65b895 6314 && t->extension_opcode == 1) /* cmpxchg8b */)
e365e234
JB
6315 || (i.suffix == LONG_MNEM_SUFFIX
6316 && !cpu_arch_flags.bitfield.cpui386))
45aa61fe 6317 && (intel_syntax
3cd7f3e3 6318 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
45aa61fe
AM
6319 && !intel_float_operand (t->name))
6320 : intel_float_operand (t->name) != 2)
4873e243
JB
6321 && (t->operands == i.imm_operands
6322 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6323 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6324 && operand_types[i.imm_operands].bitfield.class != RegMask)
6325 || (operand_types[j].bitfield.class != RegMMX
6326 && operand_types[j].bitfield.class != RegSIMD
6327 && operand_types[j].bitfield.class != RegMask))
63112cd6 6328 && !t->opcode_modifier.sib)
192dc9c6
JB
6329 continue;
6330
29b0f896 6331 /* Do not verify operands when there are none. */
e365e234 6332 if (!t->operands)
da4977e0
JB
6333 {
6334 if (VEX_check_encoding (t))
6335 {
6336 specific_error = i.error;
6337 continue;
6338 }
6339
6340 /* We've found a match; break out of loop. */
6341 break;
6342 }
252b5132 6343
48bcea9f
JB
6344 if (!t->opcode_modifier.jump
6345 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6346 {
6347 /* There should be only one Disp operand. */
6348 for (j = 0; j < MAX_OPERANDS; j++)
6349 if (operand_type_check (operand_types[j], disp))
539e75ad 6350 break;
48bcea9f
JB
6351 if (j < MAX_OPERANDS)
6352 {
6353 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6354
6355 addr_prefix_disp = j;
6356
6357 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6358 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6359 switch (flag_code)
40fb9820 6360 {
48bcea9f
JB
6361 case CODE_16BIT:
6362 override = !override;
6363 /* Fall through. */
6364 case CODE_32BIT:
6365 if (operand_types[j].bitfield.disp32
6366 && operand_types[j].bitfield.disp16)
40fb9820 6367 {
48bcea9f
JB
6368 operand_types[j].bitfield.disp16 = override;
6369 operand_types[j].bitfield.disp32 = !override;
40fb9820 6370 }
48bcea9f
JB
6371 operand_types[j].bitfield.disp32s = 0;
6372 operand_types[j].bitfield.disp64 = 0;
6373 break;
6374
6375 case CODE_64BIT:
6376 if (operand_types[j].bitfield.disp32s
6377 || operand_types[j].bitfield.disp64)
40fb9820 6378 {
48bcea9f
JB
6379 operand_types[j].bitfield.disp64 &= !override;
6380 operand_types[j].bitfield.disp32s &= !override;
6381 operand_types[j].bitfield.disp32 = override;
40fb9820 6382 }
48bcea9f
JB
6383 operand_types[j].bitfield.disp16 = 0;
6384 break;
40fb9820 6385 }
539e75ad 6386 }
48bcea9f 6387 }
539e75ad 6388
02a86693
L
6389 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6390 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6391 continue;
6392
56ffb741 6393 /* We check register size if needed. */
e2195274
JB
6394 if (t->opcode_modifier.checkregsize)
6395 {
6396 check_register = (1 << t->operands) - 1;
6397 if (i.broadcast)
6398 check_register &= ~(1 << i.broadcast->operand);
6399 }
6400 else
6401 check_register = 0;
6402
c6fb90c8 6403 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
6404 switch (t->operands)
6405 {
6406 case 1:
40fb9820 6407 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
6408 continue;
6409 break;
6410 case 2:
33eaf5de 6411 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
6412 only in 32bit mode and we can use opcode 0x90. In 64bit
6413 mode, we can't use 0x90 for xchg %eax, %eax since it should
6414 zero-extend %eax to %rax. */
6415 if (flag_code == CODE_64BIT
6416 && t->base_opcode == 0x90
75e5731b
JB
6417 && i.types[0].bitfield.instance == Accum
6418 && i.types[0].bitfield.dword
6419 && i.types[1].bitfield.instance == Accum
6420 && i.types[1].bitfield.dword)
8b38ad71 6421 continue;
1212781b
JB
6422 /* xrelease mov %eax, <disp> is another special case. It must not
6423 match the accumulator-only encoding of mov. */
6424 if (flag_code != CODE_64BIT
6425 && i.hle_prefix
6426 && t->base_opcode == 0xa0
75e5731b 6427 && i.types[0].bitfield.instance == Accum
8dc0818e 6428 && (i.flags[1] & Operand_Mem))
1212781b 6429 continue;
f5eb1d70
JB
6430 /* Fall through. */
6431
6432 case 3:
3ac21baa
JB
6433 if (!(size_match & MATCH_STRAIGHT))
6434 goto check_reverse;
64c49ab3
JB
6435 /* Reverse direction of operands if swapping is possible in the first
6436 place (operands need to be symmetric) and
6437 - the load form is requested, and the template is a store form,
6438 - the store form is requested, and the template is a load form,
6439 - the non-default (swapped) form is requested. */
6440 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 6441 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
6442 && !operand_type_all_zero (&overlap1))
6443 switch (i.dir_encoding)
6444 {
6445 case dir_encoding_load:
6446 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6447 || t->opcode_modifier.regmem)
64c49ab3
JB
6448 goto check_reverse;
6449 break;
6450
6451 case dir_encoding_store:
6452 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6453 && !t->opcode_modifier.regmem)
64c49ab3
JB
6454 goto check_reverse;
6455 break;
6456
6457 case dir_encoding_swap:
6458 goto check_reverse;
6459
6460 case dir_encoding_default:
6461 break;
6462 }
86fa6981 6463 /* If we want store form, we skip the current load. */
64c49ab3
JB
6464 if ((i.dir_encoding == dir_encoding_store
6465 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6466 && i.mem_operands == 0
6467 && t->opcode_modifier.load)
fa99fab2 6468 continue;
1a0670f3 6469 /* Fall through. */
f48ff2ae 6470 case 4:
c0f3af97 6471 case 5:
c6fb90c8 6472 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6473 if (!operand_type_match (overlap0, i.types[0])
6474 || !operand_type_match (overlap1, i.types[1])
e2195274 6475 || ((check_register & 3) == 3
dc821c5f 6476 && !operand_type_register_match (i.types[0],
40fb9820 6477 operand_types[0],
dc821c5f 6478 i.types[1],
40fb9820 6479 operand_types[1])))
29b0f896
AM
6480 {
6481 /* Check if other direction is valid ... */
38e314eb 6482 if (!t->opcode_modifier.d)
29b0f896
AM
6483 continue;
6484
dc1e8a47 6485 check_reverse:
3ac21baa
JB
6486 if (!(size_match & MATCH_REVERSE))
6487 continue;
29b0f896 6488 /* Try reversing direction of operands. */
f5eb1d70
JB
6489 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6490 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6491 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6492 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6493 || (check_register
dc821c5f 6494 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6495 operand_types[i.operands - 1],
6496 i.types[i.operands - 1],
45664ddb 6497 operand_types[0])))
29b0f896
AM
6498 {
6499 /* Does not match either direction. */
6500 continue;
6501 }
38e314eb 6502 /* found_reverse_match holds which of D or FloatR
29b0f896 6503 we've found. */
38e314eb
JB
6504 if (!t->opcode_modifier.d)
6505 found_reverse_match = 0;
6506 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6507 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6508 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6509 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6510 || operand_types[0].bitfield.class == RegMMX
6511 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6512 || is_any_vex_encoding(t))
6513 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6514 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6515 else
38e314eb 6516 found_reverse_match = Opcode_D;
40fb9820 6517 if (t->opcode_modifier.floatr)
8a2ed489 6518 found_reverse_match |= Opcode_FloatR;
29b0f896 6519 }
f48ff2ae 6520 else
29b0f896 6521 {
f48ff2ae 6522 /* Found a forward 2 operand match here. */
d1cbb4db
L
6523 switch (t->operands)
6524 {
c0f3af97
L
6525 case 5:
6526 overlap4 = operand_type_and (i.types[4],
6527 operand_types[4]);
1a0670f3 6528 /* Fall through. */
d1cbb4db 6529 case 4:
c6fb90c8
L
6530 overlap3 = operand_type_and (i.types[3],
6531 operand_types[3]);
1a0670f3 6532 /* Fall through. */
d1cbb4db 6533 case 3:
c6fb90c8
L
6534 overlap2 = operand_type_and (i.types[2],
6535 operand_types[2]);
d1cbb4db
L
6536 break;
6537 }
29b0f896 6538
f48ff2ae
L
6539 switch (t->operands)
6540 {
c0f3af97
L
6541 case 5:
6542 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6543 || !operand_type_register_match (i.types[3],
c0f3af97 6544 operand_types[3],
c0f3af97
L
6545 i.types[4],
6546 operand_types[4]))
6547 continue;
1a0670f3 6548 /* Fall through. */
f48ff2ae 6549 case 4:
40fb9820 6550 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6551 || ((check_register & 0xa) == 0xa
6552 && !operand_type_register_match (i.types[1],
f7768225
JB
6553 operand_types[1],
6554 i.types[3],
e2195274
JB
6555 operand_types[3]))
6556 || ((check_register & 0xc) == 0xc
6557 && !operand_type_register_match (i.types[2],
6558 operand_types[2],
6559 i.types[3],
6560 operand_types[3])))
f48ff2ae 6561 continue;
1a0670f3 6562 /* Fall through. */
f48ff2ae
L
6563 case 3:
6564 /* Here we make use of the fact that there are no
23e42951 6565 reverse match 3 operand instructions. */
40fb9820 6566 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6567 || ((check_register & 5) == 5
6568 && !operand_type_register_match (i.types[0],
23e42951
JB
6569 operand_types[0],
6570 i.types[2],
e2195274
JB
6571 operand_types[2]))
6572 || ((check_register & 6) == 6
6573 && !operand_type_register_match (i.types[1],
6574 operand_types[1],
6575 i.types[2],
6576 operand_types[2])))
f48ff2ae
L
6577 continue;
6578 break;
6579 }
29b0f896 6580 }
f48ff2ae 6581 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6582 slip through to break. */
6583 }
c0f3af97 6584
da4977e0
JB
6585 /* Check if vector operands are valid. */
6586 if (check_VecOperands (t))
6587 {
6588 specific_error = i.error;
6589 continue;
6590 }
6591
6592 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6593 if (VEX_check_encoding (t))
5614d22c
JB
6594 {
6595 specific_error = i.error;
6596 continue;
6597 }
a683cc34 6598
29b0f896
AM
6599 /* We've found a match; break out of loop. */
6600 break;
6601 }
6602
6603 if (t == current_templates->end)
6604 {
6605 /* We found no match. */
a65babc9 6606 const char *err_msg;
5614d22c 6607 switch (specific_error ? specific_error : i.error)
a65babc9
L
6608 {
6609 default:
6610 abort ();
86e026a4 6611 case operand_size_mismatch:
a65babc9
L
6612 err_msg = _("operand size mismatch");
6613 break;
6614 case operand_type_mismatch:
6615 err_msg = _("operand type mismatch");
6616 break;
6617 case register_type_mismatch:
6618 err_msg = _("register type mismatch");
6619 break;
6620 case number_of_operands_mismatch:
6621 err_msg = _("number of operands mismatch");
6622 break;
6623 case invalid_instruction_suffix:
6624 err_msg = _("invalid instruction suffix");
6625 break;
6626 case bad_imm4:
4a2608e3 6627 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6628 break;
a65babc9
L
6629 case unsupported_with_intel_mnemonic:
6630 err_msg = _("unsupported with Intel mnemonic");
6631 break;
6632 case unsupported_syntax:
6633 err_msg = _("unsupported syntax");
6634 break;
6635 case unsupported:
35262a23 6636 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6637 current_templates->start->name);
6638 return NULL;
260cd341
LC
6639 case invalid_sib_address:
6640 err_msg = _("invalid SIB address");
6641 break;
6c30d220
L
6642 case invalid_vsib_address:
6643 err_msg = _("invalid VSIB address");
6644 break;
7bab8ab5
JB
6645 case invalid_vector_register_set:
6646 err_msg = _("mask, index, and destination registers must be distinct");
6647 break;
260cd341
LC
6648 case invalid_tmm_register_set:
6649 err_msg = _("all tmm registers must be distinct");
6650 break;
6c30d220
L
6651 case unsupported_vector_index_register:
6652 err_msg = _("unsupported vector index register");
6653 break;
43234a1e
L
6654 case unsupported_broadcast:
6655 err_msg = _("unsupported broadcast");
6656 break;
43234a1e
L
6657 case broadcast_needed:
6658 err_msg = _("broadcast is needed for operand of such type");
6659 break;
6660 case unsupported_masking:
6661 err_msg = _("unsupported masking");
6662 break;
6663 case mask_not_on_destination:
6664 err_msg = _("mask not on destination operand");
6665 break;
6666 case no_default_mask:
6667 err_msg = _("default mask isn't allowed");
6668 break;
6669 case unsupported_rc_sae:
6670 err_msg = _("unsupported static rounding/sae");
6671 break;
6672 case rc_sae_operand_not_last_imm:
6673 if (intel_syntax)
6674 err_msg = _("RC/SAE operand must precede immediate operands");
6675 else
6676 err_msg = _("RC/SAE operand must follow immediate operands");
6677 break;
6678 case invalid_register_operand:
6679 err_msg = _("invalid register operand");
6680 break;
a65babc9
L
6681 }
6682 as_bad (_("%s for `%s'"), err_msg,
891edac4 6683 current_templates->start->name);
fa99fab2 6684 return NULL;
29b0f896 6685 }
252b5132 6686
29b0f896
AM
6687 if (!quiet_warnings)
6688 {
6689 if (!intel_syntax
0cfa3eb3 6690 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6691 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6692
40fb9820 6693 if (t->opcode_modifier.isprefix
3cd7f3e3 6694 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6695 {
6696 /* Warn them that a data or address size prefix doesn't
6697 affect assembly of the next line of code. */
6698 as_warn (_("stand-alone `%s' prefix"), t->name);
6699 }
6700 }
6701
6702 /* Copy the template we found. */
6703 i.tm = *t;
539e75ad
L
6704
6705 if (addr_prefix_disp != -1)
6706 i.tm.operand_types[addr_prefix_disp]
6707 = operand_types[addr_prefix_disp];
6708
29b0f896
AM
6709 if (found_reverse_match)
6710 {
dfd69174
JB
6711 /* If we found a reverse match we must alter the opcode direction
6712 bit and clear/flip the regmem modifier one. found_reverse_match
6713 holds bits to change (different for int & float insns). */
29b0f896
AM
6714
6715 i.tm.base_opcode ^= found_reverse_match;
6716
f5eb1d70
JB
6717 i.tm.operand_types[0] = operand_types[i.operands - 1];
6718 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6719
6720 /* Certain SIMD insns have their load forms specified in the opcode
6721 table, and hence we need to _set_ RegMem instead of clearing it.
6722 We need to avoid setting the bit though on insns like KMOVW. */
6723 i.tm.opcode_modifier.regmem
6724 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6725 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6726 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6727 }
6728
fa99fab2 6729 return t;
29b0f896
AM
6730}
6731
6732static int
e3bb37b5 6733check_string (void)
29b0f896 6734{
51c8edf6
JB
6735 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6736 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6737
51c8edf6 6738 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6739 {
51c8edf6
JB
6740 as_bad (_("`%s' operand %u must use `%ses' segment"),
6741 i.tm.name,
6742 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6743 register_prefix);
6744 return 0;
29b0f896 6745 }
51c8edf6
JB
6746
6747 /* There's only ever one segment override allowed per instruction.
6748 This instruction possibly has a legal segment override on the
6749 second operand, so copy the segment to where non-string
6750 instructions store it, allowing common code. */
6751 i.seg[op] = i.seg[1];
6752
29b0f896
AM
6753 return 1;
6754}
6755
6756static int
543613e9 6757process_suffix (void)
29b0f896 6758{
8b65b895
L
6759 bfd_boolean is_crc32 = FALSE;
6760
29b0f896
AM
6761 /* If matched instruction specifies an explicit instruction mnemonic
6762 suffix, use it. */
673fe0f0 6763 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6764 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6765 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6766 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6767 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6768 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0 6769 else if (i.reg_operands
c8f8eebc
JB
6770 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6771 && !i.tm.opcode_modifier.addrprefixopreg)
29b0f896 6772 {
65fca059 6773 unsigned int numop = i.operands;
8b65b895
L
6774 /* CRC32 */
6775 is_crc32 = (i.tm.base_opcode == 0xf38f0
6776 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2);
65fca059
JB
6777
6778 /* movsx/movzx want only their source operand considered here, for the
6779 ambiguity checking below. The suffix will be replaced afterwards
6780 to represent the destination (register). */
6781 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6782 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6783 --i.operands;
6784
643bb870 6785 /* crc32 needs REX.W set regardless of suffix / source operand size. */
8b65b895 6786 if (is_crc32 && i.tm.operand_types[1].bitfield.qword)
643bb870
JB
6787 i.rex |= REX_W;
6788
29b0f896 6789 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6790 based on GPR operands. */
29b0f896
AM
6791 if (!i.suffix)
6792 {
6793 /* We take i.suffix from the last register operand specified,
6794 Destination register type is more significant than source
381d071f
L
6795 register type. crc32 in SSE4.2 prefers source register
6796 type. */
8b65b895 6797 unsigned int op = is_crc32 ? 1 : i.operands;
20592a94 6798
1a035124
JB
6799 while (op--)
6800 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6801 || i.tm.operand_types[op].bitfield.instance == Accum)
6802 {
6803 if (i.types[op].bitfield.class != Reg)
6804 continue;
6805 if (i.types[op].bitfield.byte)
6806 i.suffix = BYTE_MNEM_SUFFIX;
6807 else if (i.types[op].bitfield.word)
6808 i.suffix = WORD_MNEM_SUFFIX;
6809 else if (i.types[op].bitfield.dword)
6810 i.suffix = LONG_MNEM_SUFFIX;
6811 else if (i.types[op].bitfield.qword)
6812 i.suffix = QWORD_MNEM_SUFFIX;
6813 else
6814 continue;
6815 break;
6816 }
65fca059
JB
6817
6818 /* As an exception, movsx/movzx silently default to a byte source
6819 in AT&T mode. */
6820 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6821 && !i.suffix && !intel_syntax)
6822 i.suffix = BYTE_MNEM_SUFFIX;
29b0f896
AM
6823 }
6824 else if (i.suffix == BYTE_MNEM_SUFFIX)
6825 {
2eb952a4 6826 if (intel_syntax
3cd7f3e3 6827 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6828 && i.tm.opcode_modifier.no_bsuf)
6829 i.suffix = 0;
6830 else if (!check_byte_reg ())
29b0f896
AM
6831 return 0;
6832 }
6833 else if (i.suffix == LONG_MNEM_SUFFIX)
6834 {
2eb952a4 6835 if (intel_syntax
3cd7f3e3 6836 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6837 && i.tm.opcode_modifier.no_lsuf
6838 && !i.tm.opcode_modifier.todword
6839 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6840 i.suffix = 0;
6841 else if (!check_long_reg ())
29b0f896
AM
6842 return 0;
6843 }
6844 else if (i.suffix == QWORD_MNEM_SUFFIX)
6845 {
955e1e6a 6846 if (intel_syntax
3cd7f3e3 6847 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6848 && i.tm.opcode_modifier.no_qsuf
6849 && !i.tm.opcode_modifier.todword
6850 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6851 i.suffix = 0;
6852 else if (!check_qword_reg ())
29b0f896
AM
6853 return 0;
6854 }
6855 else if (i.suffix == WORD_MNEM_SUFFIX)
6856 {
2eb952a4 6857 if (intel_syntax
3cd7f3e3 6858 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6859 && i.tm.opcode_modifier.no_wsuf)
6860 i.suffix = 0;
6861 else if (!check_word_reg ())
29b0f896
AM
6862 return 0;
6863 }
3cd7f3e3
L
6864 else if (intel_syntax
6865 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6866 /* Do nothing if the instruction is going to ignore the prefix. */
6867 ;
6868 else
6869 abort ();
65fca059
JB
6870
6871 /* Undo the movsx/movzx change done above. */
6872 i.operands = numop;
29b0f896 6873 }
3cd7f3e3
L
6874 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6875 && !i.suffix)
29b0f896 6876 {
13e600d0
JB
6877 i.suffix = stackop_size;
6878 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6879 {
6880 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6881 .code16gcc directive to support 16-bit mode with
6882 32-bit address. For IRET without a suffix, generate
6883 16-bit IRET (opcode 0xcf) to return from an interrupt
6884 handler. */
13e600d0
JB
6885 if (i.tm.base_opcode == 0xcf)
6886 {
6887 i.suffix = WORD_MNEM_SUFFIX;
6888 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6889 }
6890 /* Warn about changed behavior for segment register push/pop. */
6891 else if ((i.tm.base_opcode | 1) == 0x07)
6892 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6893 i.tm.name);
06f74c5c 6894 }
29b0f896 6895 }
c006a730 6896 else if (!i.suffix
0cfa3eb3
JB
6897 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6898 || i.tm.opcode_modifier.jump == JUMP_BYTE
6899 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6900 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6901 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6902 {
6903 switch (flag_code)
6904 {
6905 case CODE_64BIT:
40fb9820 6906 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a 6907 {
828c2a25
JB
6908 if (i.tm.opcode_modifier.jump == JUMP_BYTE
6909 || i.tm.opcode_modifier.no_lsuf)
6910 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a
JB
6911 break;
6912 }
1a0670f3 6913 /* Fall through. */
9306ca4a 6914 case CODE_32BIT:
40fb9820 6915 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6916 i.suffix = LONG_MNEM_SUFFIX;
6917 break;
6918 case CODE_16BIT:
40fb9820 6919 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6920 i.suffix = WORD_MNEM_SUFFIX;
6921 break;
6922 }
6923 }
252b5132 6924
c006a730 6925 if (!i.suffix
3cd7f3e3 6926 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8
JB
6927 /* Also cover lret/retf/iret in 64-bit mode. */
6928 || (flag_code == CODE_64BIT
6929 && !i.tm.opcode_modifier.no_lsuf
6930 && !i.tm.opcode_modifier.no_qsuf))
3cd7f3e3 6931 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
8bbb3ad8
JB
6932 /* Explicit sizing prefixes are assumed to disambiguate insns. */
6933 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
62b3f548
JB
6934 /* Accept FLDENV et al without suffix. */
6935 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
29b0f896 6936 {
6c0946d0 6937 unsigned int suffixes, evex = 0;
c006a730
JB
6938
6939 suffixes = !i.tm.opcode_modifier.no_bsuf;
6940 if (!i.tm.opcode_modifier.no_wsuf)
6941 suffixes |= 1 << 1;
6942 if (!i.tm.opcode_modifier.no_lsuf)
6943 suffixes |= 1 << 2;
6944 if (!i.tm.opcode_modifier.no_ldsuf)
6945 suffixes |= 1 << 3;
6946 if (!i.tm.opcode_modifier.no_ssuf)
6947 suffixes |= 1 << 4;
6948 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6949 suffixes |= 1 << 5;
6950
6c0946d0
JB
6951 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6952 also suitable for AT&T syntax mode, it was requested that this be
6953 restricted to just Intel syntax. */
b9915cbc 6954 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6c0946d0 6955 {
b9915cbc 6956 unsigned int op;
6c0946d0 6957
b9915cbc 6958 for (op = 0; op < i.tm.operands; ++op)
6c0946d0 6959 {
b9915cbc
JB
6960 if (is_evex_encoding (&i.tm)
6961 && !cpu_arch_flags.bitfield.cpuavx512vl)
6c0946d0 6962 {
b9915cbc
JB
6963 if (i.tm.operand_types[op].bitfield.ymmword)
6964 i.tm.operand_types[op].bitfield.xmmword = 0;
6965 if (i.tm.operand_types[op].bitfield.zmmword)
6966 i.tm.operand_types[op].bitfield.ymmword = 0;
6967 if (!i.tm.opcode_modifier.evex
6968 || i.tm.opcode_modifier.evex == EVEXDYN)
6969 i.tm.opcode_modifier.evex = EVEX512;
6970 }
6c0946d0 6971
b9915cbc
JB
6972 if (i.tm.operand_types[op].bitfield.xmmword
6973 + i.tm.operand_types[op].bitfield.ymmword
6974 + i.tm.operand_types[op].bitfield.zmmword < 2)
6975 continue;
6c0946d0 6976
b9915cbc
JB
6977 /* Any properly sized operand disambiguates the insn. */
6978 if (i.types[op].bitfield.xmmword
6979 || i.types[op].bitfield.ymmword
6980 || i.types[op].bitfield.zmmword)
6981 {
6982 suffixes &= ~(7 << 6);
6983 evex = 0;
6984 break;
6985 }
6c0946d0 6986
b9915cbc
JB
6987 if ((i.flags[op] & Operand_Mem)
6988 && i.tm.operand_types[op].bitfield.unspecified)
6989 {
6990 if (i.tm.operand_types[op].bitfield.xmmword)
6991 suffixes |= 1 << 6;
6992 if (i.tm.operand_types[op].bitfield.ymmword)
6993 suffixes |= 1 << 7;
6994 if (i.tm.operand_types[op].bitfield.zmmword)
6995 suffixes |= 1 << 8;
6996 if (is_evex_encoding (&i.tm))
6997 evex = EVEX512;
6c0946d0
JB
6998 }
6999 }
7000 }
7001
7002 /* Are multiple suffixes / operand sizes allowed? */
c006a730 7003 if (suffixes & (suffixes - 1))
9306ca4a 7004 {
873494c8 7005 if (intel_syntax
3cd7f3e3 7006 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8 7007 || operand_check == check_error))
9306ca4a 7008 {
c006a730 7009 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
9306ca4a
JB
7010 return 0;
7011 }
c006a730 7012 if (operand_check == check_error)
9306ca4a 7013 {
c006a730
JB
7014 as_bad (_("no instruction mnemonic suffix given and "
7015 "no register operands; can't size `%s'"), i.tm.name);
9306ca4a
JB
7016 return 0;
7017 }
c006a730 7018 if (operand_check == check_warning)
873494c8
JB
7019 as_warn (_("%s; using default for `%s'"),
7020 intel_syntax
7021 ? _("ambiguous operand size")
7022 : _("no instruction mnemonic suffix given and "
7023 "no register operands"),
7024 i.tm.name);
c006a730
JB
7025
7026 if (i.tm.opcode_modifier.floatmf)
7027 i.suffix = SHORT_MNEM_SUFFIX;
65fca059
JB
7028 else if ((i.tm.base_opcode | 8) == 0xfbe
7029 || (i.tm.base_opcode == 0x63
7030 && i.tm.cpu_flags.bitfield.cpu64))
7031 /* handled below */;
6c0946d0
JB
7032 else if (evex)
7033 i.tm.opcode_modifier.evex = evex;
c006a730
JB
7034 else if (flag_code == CODE_16BIT)
7035 i.suffix = WORD_MNEM_SUFFIX;
1a035124 7036 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 7037 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
7038 else
7039 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 7040 }
29b0f896 7041 }
252b5132 7042
65fca059
JB
7043 if ((i.tm.base_opcode | 8) == 0xfbe
7044 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
7045 {
7046 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
7047 In AT&T syntax, if there is no suffix (warned about above), the default
7048 will be byte extension. */
7049 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
7050 i.tm.base_opcode |= 1;
7051
7052 /* For further processing, the suffix should represent the destination
7053 (register). This is already the case when one was used with
7054 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
7055 no suffix to begin with. */
7056 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
7057 {
7058 if (i.types[1].bitfield.word)
7059 i.suffix = WORD_MNEM_SUFFIX;
7060 else if (i.types[1].bitfield.qword)
7061 i.suffix = QWORD_MNEM_SUFFIX;
7062 else
7063 i.suffix = LONG_MNEM_SUFFIX;
7064
7065 i.tm.opcode_modifier.w = 0;
7066 }
7067 }
7068
50128d0c
JB
7069 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7070 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7071 != (i.tm.operand_types[1].bitfield.class == Reg);
7072
d2224064
JB
7073 /* Change the opcode based on the operand size given by i.suffix. */
7074 switch (i.suffix)
29b0f896 7075 {
d2224064
JB
7076 /* Size floating point instruction. */
7077 case LONG_MNEM_SUFFIX:
7078 if (i.tm.opcode_modifier.floatmf)
7079 {
7080 i.tm.base_opcode ^= 4;
7081 break;
7082 }
7083 /* fall through */
7084 case WORD_MNEM_SUFFIX:
7085 case QWORD_MNEM_SUFFIX:
29b0f896 7086 /* It's not a byte, select word/dword operation. */
40fb9820 7087 if (i.tm.opcode_modifier.w)
29b0f896 7088 {
50128d0c 7089 if (i.short_form)
29b0f896
AM
7090 i.tm.base_opcode |= 8;
7091 else
7092 i.tm.base_opcode |= 1;
7093 }
d2224064
JB
7094 /* fall through */
7095 case SHORT_MNEM_SUFFIX:
29b0f896
AM
7096 /* Now select between word & dword operations via the operand
7097 size prefix, except for instructions that will ignore this
7098 prefix anyway. */
c8f8eebc 7099 if (i.suffix != QWORD_MNEM_SUFFIX
3cd7f3e3 7100 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
c8f8eebc
JB
7101 && !i.tm.opcode_modifier.floatmf
7102 && !is_any_vex_encoding (&i.tm)
7103 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7104 || (flag_code == CODE_64BIT
7105 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
7106 {
7107 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 7108
0cfa3eb3 7109 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 7110 prefix = ADDR_PREFIX_OPCODE;
252b5132 7111
29b0f896
AM
7112 if (!add_prefix (prefix))
7113 return 0;
24eab124 7114 }
252b5132 7115
29b0f896
AM
7116 /* Set mode64 for an operand. */
7117 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 7118 && flag_code == CODE_64BIT
d2224064 7119 && !i.tm.opcode_modifier.norex64
4ed21b58 7120 && !i.tm.opcode_modifier.vexw
46e883c5 7121 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
7122 need rex64. */
7123 && ! (i.operands == 2
7124 && i.tm.base_opcode == 0x90
7125 && i.tm.extension_opcode == None
75e5731b
JB
7126 && i.types[0].bitfield.instance == Accum
7127 && i.types[0].bitfield.qword
7128 && i.types[1].bitfield.instance == Accum
7129 && i.types[1].bitfield.qword))
d2224064 7130 i.rex |= REX_W;
3e73aa7c 7131
d2224064 7132 break;
8bbb3ad8
JB
7133
7134 case 0:
f9a6a8f0 7135 /* Select word/dword/qword operation with explicit data sizing prefix
8bbb3ad8
JB
7136 when there are no suitable register operands. */
7137 if (i.tm.opcode_modifier.w
7138 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
7139 && (!i.reg_operands
7140 || (i.reg_operands == 1
7141 /* ShiftCount */
7142 && (i.tm.operand_types[0].bitfield.instance == RegC
7143 /* InOutPortReg */
7144 || i.tm.operand_types[0].bitfield.instance == RegD
7145 || i.tm.operand_types[1].bitfield.instance == RegD
7146 /* CRC32 */
8b65b895 7147 || is_crc32))))
8bbb3ad8
JB
7148 i.tm.base_opcode |= 1;
7149 break;
29b0f896 7150 }
7ecd2f8b 7151
c8f8eebc 7152 if (i.tm.opcode_modifier.addrprefixopreg)
c0a30a9f 7153 {
c8f8eebc
JB
7154 gas_assert (!i.suffix);
7155 gas_assert (i.reg_operands);
c0a30a9f 7156
c8f8eebc
JB
7157 if (i.tm.operand_types[0].bitfield.instance == Accum
7158 || i.operands == 1)
7159 {
7160 /* The address size override prefix changes the size of the
7161 first operand. */
7162 if (flag_code == CODE_64BIT
7163 && i.op[0].regs->reg_type.bitfield.word)
7164 {
7165 as_bad (_("16-bit addressing unavailable for `%s'"),
7166 i.tm.name);
7167 return 0;
7168 }
7169
7170 if ((flag_code == CODE_32BIT
7171 ? i.op[0].regs->reg_type.bitfield.word
7172 : i.op[0].regs->reg_type.bitfield.dword)
7173 && !add_prefix (ADDR_PREFIX_OPCODE))
7174 return 0;
7175 }
c0a30a9f
L
7176 else
7177 {
c8f8eebc
JB
7178 /* Check invalid register operand when the address size override
7179 prefix changes the size of register operands. */
7180 unsigned int op;
7181 enum { need_word, need_dword, need_qword } need;
7182
27f13469 7183 /* Check the register operand for the address size prefix if
b3a3496f
L
7184 the memory operand has no real registers, like symbol, DISP
7185 or symbol(%rip). */
27f13469
L
7186 if (i.mem_operands == 1
7187 && i.reg_operands == 1
7188 && i.operands == 2
27f13469 7189 && i.types[1].bitfield.class == Reg
b3a3496f
L
7190 && (flag_code == CODE_32BIT
7191 ? i.op[1].regs->reg_type.bitfield.word
7192 : i.op[1].regs->reg_type.bitfield.dword)
7193 && ((i.base_reg == NULL && i.index_reg == NULL)
7194 || (i.base_reg
7195 && i.base_reg->reg_num == RegIP
7196 && i.base_reg->reg_type.bitfield.qword))
27f13469
L
7197 && !add_prefix (ADDR_PREFIX_OPCODE))
7198 return 0;
7199
c8f8eebc
JB
7200 if (flag_code == CODE_32BIT)
7201 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7202 else if (i.prefix[ADDR_PREFIX])
c0a30a9f
L
7203 need = need_dword;
7204 else
7205 need = flag_code == CODE_64BIT ? need_qword : need_word;
c0a30a9f 7206
c8f8eebc
JB
7207 for (op = 0; op < i.operands; op++)
7208 {
7209 if (i.types[op].bitfield.class != Reg)
7210 continue;
7211
7212 switch (need)
7213 {
7214 case need_word:
7215 if (i.op[op].regs->reg_type.bitfield.word)
7216 continue;
7217 break;
7218 case need_dword:
7219 if (i.op[op].regs->reg_type.bitfield.dword)
7220 continue;
7221 break;
7222 case need_qword:
7223 if (i.op[op].regs->reg_type.bitfield.qword)
7224 continue;
7225 break;
7226 }
7227
7228 as_bad (_("invalid register operand size for `%s'"),
7229 i.tm.name);
7230 return 0;
7231 }
7232 }
c0a30a9f
L
7233 }
7234
29b0f896
AM
7235 return 1;
7236}
3e73aa7c 7237
29b0f896 7238static int
543613e9 7239check_byte_reg (void)
29b0f896
AM
7240{
7241 int op;
543613e9 7242
29b0f896
AM
7243 for (op = i.operands; --op >= 0;)
7244 {
dc821c5f 7245 /* Skip non-register operands. */
bab6aec1 7246 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
7247 continue;
7248
29b0f896
AM
7249 /* If this is an eight bit register, it's OK. If it's the 16 or
7250 32 bit version of an eight bit register, we will just use the
7251 low portion, and that's OK too. */
dc821c5f 7252 if (i.types[op].bitfield.byte)
29b0f896
AM
7253 continue;
7254
5a819eb9 7255 /* I/O port address operands are OK too. */
75e5731b
JB
7256 if (i.tm.operand_types[op].bitfield.instance == RegD
7257 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
7258 continue;
7259
9706160a 7260 /* crc32 only wants its source operand checked here. */
8b65b895
L
7261 if (i.tm.base_opcode == 0xf38f0
7262 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2
7263 && op != 0)
9344ff29
L
7264 continue;
7265
29b0f896 7266 /* Any other register is bad. */
73c76375
JB
7267 as_bad (_("`%s%s' not allowed with `%s%c'"),
7268 register_prefix, i.op[op].regs->reg_name,
7269 i.tm.name, i.suffix);
7270 return 0;
29b0f896
AM
7271 }
7272 return 1;
7273}
7274
7275static int
e3bb37b5 7276check_long_reg (void)
29b0f896
AM
7277{
7278 int op;
7279
7280 for (op = i.operands; --op >= 0;)
dc821c5f 7281 /* Skip non-register operands. */
bab6aec1 7282 if (i.types[op].bitfield.class != Reg)
dc821c5f 7283 continue;
29b0f896
AM
7284 /* Reject eight bit registers, except where the template requires
7285 them. (eg. movzb) */
dc821c5f 7286 else if (i.types[op].bitfield.byte
bab6aec1 7287 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7288 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
7289 && (i.tm.operand_types[op].bitfield.word
7290 || i.tm.operand_types[op].bitfield.dword))
29b0f896 7291 {
a540244d
L
7292 as_bad (_("`%s%s' not allowed with `%s%c'"),
7293 register_prefix,
29b0f896
AM
7294 i.op[op].regs->reg_name,
7295 i.tm.name,
7296 i.suffix);
7297 return 0;
7298 }
be4c5e58
L
7299 /* Error if the e prefix on a general reg is missing. */
7300 else if (i.types[op].bitfield.word
bab6aec1 7301 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7302 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7303 && i.tm.operand_types[op].bitfield.dword)
29b0f896 7304 {
be4c5e58
L
7305 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7306 register_prefix, i.op[op].regs->reg_name,
7307 i.suffix);
7308 return 0;
252b5132 7309 }
e4630f71 7310 /* Warn if the r prefix on a general reg is present. */
dc821c5f 7311 else if (i.types[op].bitfield.qword
bab6aec1 7312 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7313 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7314 && i.tm.operand_types[op].bitfield.dword)
252b5132 7315 {
34828aad 7316 if (intel_syntax
65fca059 7317 && i.tm.opcode_modifier.toqword
3528c362 7318 && i.types[0].bitfield.class != RegSIMD)
34828aad 7319 {
ca61edf2 7320 /* Convert to QWORD. We want REX byte. */
34828aad
L
7321 i.suffix = QWORD_MNEM_SUFFIX;
7322 }
7323 else
7324 {
2b5d6a91 7325 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
7326 register_prefix, i.op[op].regs->reg_name,
7327 i.suffix);
7328 return 0;
7329 }
29b0f896
AM
7330 }
7331 return 1;
7332}
252b5132 7333
29b0f896 7334static int
e3bb37b5 7335check_qword_reg (void)
29b0f896
AM
7336{
7337 int op;
252b5132 7338
29b0f896 7339 for (op = i.operands; --op >= 0; )
dc821c5f 7340 /* Skip non-register operands. */
bab6aec1 7341 if (i.types[op].bitfield.class != Reg)
dc821c5f 7342 continue;
29b0f896
AM
7343 /* Reject eight bit registers, except where the template requires
7344 them. (eg. movzb) */
dc821c5f 7345 else if (i.types[op].bitfield.byte
bab6aec1 7346 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7347 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
7348 && (i.tm.operand_types[op].bitfield.word
7349 || i.tm.operand_types[op].bitfield.dword))
29b0f896 7350 {
a540244d
L
7351 as_bad (_("`%s%s' not allowed with `%s%c'"),
7352 register_prefix,
29b0f896
AM
7353 i.op[op].regs->reg_name,
7354 i.tm.name,
7355 i.suffix);
7356 return 0;
7357 }
e4630f71 7358 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
7359 else if ((i.types[op].bitfield.word
7360 || i.types[op].bitfield.dword)
bab6aec1 7361 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7362 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7363 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
7364 {
7365 /* Prohibit these changes in the 64bit mode, since the
7366 lowering is more complicated. */
34828aad 7367 if (intel_syntax
ca61edf2 7368 && i.tm.opcode_modifier.todword
3528c362 7369 && i.types[0].bitfield.class != RegSIMD)
34828aad 7370 {
ca61edf2 7371 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
7372 i.suffix = LONG_MNEM_SUFFIX;
7373 }
7374 else
7375 {
2b5d6a91 7376 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
7377 register_prefix, i.op[op].regs->reg_name,
7378 i.suffix);
7379 return 0;
7380 }
252b5132 7381 }
29b0f896
AM
7382 return 1;
7383}
252b5132 7384
29b0f896 7385static int
e3bb37b5 7386check_word_reg (void)
29b0f896
AM
7387{
7388 int op;
7389 for (op = i.operands; --op >= 0;)
dc821c5f 7390 /* Skip non-register operands. */
bab6aec1 7391 if (i.types[op].bitfield.class != Reg)
dc821c5f 7392 continue;
29b0f896
AM
7393 /* Reject eight bit registers, except where the template requires
7394 them. (eg. movzb) */
dc821c5f 7395 else if (i.types[op].bitfield.byte
bab6aec1 7396 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7397 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
7398 && (i.tm.operand_types[op].bitfield.word
7399 || i.tm.operand_types[op].bitfield.dword))
29b0f896 7400 {
a540244d
L
7401 as_bad (_("`%s%s' not allowed with `%s%c'"),
7402 register_prefix,
29b0f896
AM
7403 i.op[op].regs->reg_name,
7404 i.tm.name,
7405 i.suffix);
7406 return 0;
7407 }
9706160a
JB
7408 /* Error if the e or r prefix on a general reg is present. */
7409 else if ((i.types[op].bitfield.dword
dc821c5f 7410 || i.types[op].bitfield.qword)
bab6aec1 7411 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7412 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7413 && i.tm.operand_types[op].bitfield.word)
252b5132 7414 {
9706160a
JB
7415 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7416 register_prefix, i.op[op].regs->reg_name,
7417 i.suffix);
7418 return 0;
29b0f896
AM
7419 }
7420 return 1;
7421}
252b5132 7422
29b0f896 7423static int
40fb9820 7424update_imm (unsigned int j)
29b0f896 7425{
bc0844ae 7426 i386_operand_type overlap = i.types[j];
40fb9820
L
7427 if ((overlap.bitfield.imm8
7428 || overlap.bitfield.imm8s
7429 || overlap.bitfield.imm16
7430 || overlap.bitfield.imm32
7431 || overlap.bitfield.imm32s
7432 || overlap.bitfield.imm64)
0dfbf9d7
L
7433 && !operand_type_equal (&overlap, &imm8)
7434 && !operand_type_equal (&overlap, &imm8s)
7435 && !operand_type_equal (&overlap, &imm16)
7436 && !operand_type_equal (&overlap, &imm32)
7437 && !operand_type_equal (&overlap, &imm32s)
7438 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
7439 {
7440 if (i.suffix)
7441 {
40fb9820
L
7442 i386_operand_type temp;
7443
0dfbf9d7 7444 operand_type_set (&temp, 0);
7ab9ffdd 7445 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
7446 {
7447 temp.bitfield.imm8 = overlap.bitfield.imm8;
7448 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7449 }
7450 else if (i.suffix == WORD_MNEM_SUFFIX)
7451 temp.bitfield.imm16 = overlap.bitfield.imm16;
7452 else if (i.suffix == QWORD_MNEM_SUFFIX)
7453 {
7454 temp.bitfield.imm64 = overlap.bitfield.imm64;
7455 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7456 }
7457 else
7458 temp.bitfield.imm32 = overlap.bitfield.imm32;
7459 overlap = temp;
29b0f896 7460 }
0dfbf9d7
L
7461 else if (operand_type_equal (&overlap, &imm16_32_32s)
7462 || operand_type_equal (&overlap, &imm16_32)
7463 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 7464 {
40fb9820 7465 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 7466 overlap = imm16;
40fb9820 7467 else
65da13b5 7468 overlap = imm32s;
29b0f896 7469 }
8bbb3ad8
JB
7470 else if (i.prefix[REX_PREFIX] & REX_W)
7471 overlap = operand_type_and (overlap, imm32s);
7472 else if (i.prefix[DATA_PREFIX])
7473 overlap = operand_type_and (overlap,
7474 flag_code != CODE_16BIT ? imm16 : imm32);
0dfbf9d7
L
7475 if (!operand_type_equal (&overlap, &imm8)
7476 && !operand_type_equal (&overlap, &imm8s)
7477 && !operand_type_equal (&overlap, &imm16)
7478 && !operand_type_equal (&overlap, &imm32)
7479 && !operand_type_equal (&overlap, &imm32s)
7480 && !operand_type_equal (&overlap, &imm64))
29b0f896 7481 {
4eed87de
AM
7482 as_bad (_("no instruction mnemonic suffix given; "
7483 "can't determine immediate size"));
29b0f896
AM
7484 return 0;
7485 }
7486 }
40fb9820 7487 i.types[j] = overlap;
29b0f896 7488
40fb9820
L
7489 return 1;
7490}
7491
7492static int
7493finalize_imm (void)
7494{
bc0844ae 7495 unsigned int j, n;
29b0f896 7496
bc0844ae
L
7497 /* Update the first 2 immediate operands. */
7498 n = i.operands > 2 ? 2 : i.operands;
7499 if (n)
7500 {
7501 for (j = 0; j < n; j++)
7502 if (update_imm (j) == 0)
7503 return 0;
40fb9820 7504
bc0844ae
L
7505 /* The 3rd operand can't be immediate operand. */
7506 gas_assert (operand_type_check (i.types[2], imm) == 0);
7507 }
29b0f896
AM
7508
7509 return 1;
7510}
7511
7512static int
e3bb37b5 7513process_operands (void)
29b0f896
AM
7514{
7515 /* Default segment register this instruction will use for memory
7516 accesses. 0 means unknown. This is only for optimizing out
7517 unnecessary segment overrides. */
7518 const seg_entry *default_seg = 0;
7519
a5aeccd9
JB
7520 if (i.tm.opcode_modifier.sse2avx)
7521 {
7522 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7523 need converting. */
7524 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7525 i.prefix[REX_PREFIX] = 0;
7526 i.rex_encoding = 0;
7527 }
c423d21a
JB
7528 /* ImmExt should be processed after SSE2AVX. */
7529 else if (i.tm.opcode_modifier.immext)
7530 process_immext ();
a5aeccd9 7531
2426c15f 7532 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 7533 {
91d6fa6a
NC
7534 unsigned int dupl = i.operands;
7535 unsigned int dest = dupl - 1;
9fcfb3d7
L
7536 unsigned int j;
7537
c0f3af97 7538 /* The destination must be an xmm register. */
9c2799c2 7539 gas_assert (i.reg_operands
91d6fa6a 7540 && MAX_OPERANDS > dupl
7ab9ffdd 7541 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 7542
75e5731b 7543 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7544 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 7545 {
8cd7925b 7546 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
7547 {
7548 /* Keep xmm0 for instructions with VEX prefix and 3
7549 sources. */
75e5731b 7550 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 7551 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
7552 goto duplicate;
7553 }
e2ec9d29 7554 else
c0f3af97
L
7555 {
7556 /* We remove the first xmm0 and keep the number of
7557 operands unchanged, which in fact duplicates the
7558 destination. */
7559 for (j = 1; j < i.operands; j++)
7560 {
7561 i.op[j - 1] = i.op[j];
7562 i.types[j - 1] = i.types[j];
7563 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 7564 i.flags[j - 1] = i.flags[j];
c0f3af97
L
7565 }
7566 }
7567 }
7568 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 7569 {
91d6fa6a 7570 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
7571 && (i.tm.opcode_modifier.vexsources
7572 == VEX3SOURCES));
c0f3af97
L
7573
7574 /* Add the implicit xmm0 for instructions with VEX prefix
7575 and 3 sources. */
7576 for (j = i.operands; j > 0; j--)
7577 {
7578 i.op[j] = i.op[j - 1];
7579 i.types[j] = i.types[j - 1];
7580 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 7581 i.flags[j] = i.flags[j - 1];
c0f3af97
L
7582 }
7583 i.op[0].regs
629310ab 7584 = (const reg_entry *) str_hash_find (reg_hash, "xmm0");
7ab9ffdd 7585 i.types[0] = regxmm;
c0f3af97
L
7586 i.tm.operand_types[0] = regxmm;
7587
7588 i.operands += 2;
7589 i.reg_operands += 2;
7590 i.tm.operands += 2;
7591
91d6fa6a 7592 dupl++;
c0f3af97 7593 dest++;
91d6fa6a
NC
7594 i.op[dupl] = i.op[dest];
7595 i.types[dupl] = i.types[dest];
7596 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7597 i.flags[dupl] = i.flags[dest];
e2ec9d29 7598 }
c0f3af97
L
7599 else
7600 {
dc1e8a47 7601 duplicate:
c0f3af97
L
7602 i.operands++;
7603 i.reg_operands++;
7604 i.tm.operands++;
7605
91d6fa6a
NC
7606 i.op[dupl] = i.op[dest];
7607 i.types[dupl] = i.types[dest];
7608 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7609 i.flags[dupl] = i.flags[dest];
c0f3af97
L
7610 }
7611
7612 if (i.tm.opcode_modifier.immext)
7613 process_immext ();
7614 }
75e5731b 7615 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7616 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7617 {
7618 unsigned int j;
7619
9fcfb3d7
L
7620 for (j = 1; j < i.operands; j++)
7621 {
7622 i.op[j - 1] = i.op[j];
7623 i.types[j - 1] = i.types[j];
7624
7625 /* We need to adjust fields in i.tm since they are used by
7626 build_modrm_byte. */
7627 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7628
7629 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7630 }
7631
e2ec9d29
L
7632 i.operands--;
7633 i.reg_operands--;
e2ec9d29
L
7634 i.tm.operands--;
7635 }
920d2ddc
IT
7636 else if (i.tm.opcode_modifier.implicitquadgroup)
7637 {
a477a8c4
JB
7638 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7639
920d2ddc 7640 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7641 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7642 regnum = register_number (i.op[1].regs);
7643 first_reg_in_group = regnum & ~3;
7644 last_reg_in_group = first_reg_in_group + 3;
7645 if (regnum != first_reg_in_group)
7646 as_warn (_("source register `%s%s' implicitly denotes"
7647 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7648 register_prefix, i.op[1].regs->reg_name,
7649 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7650 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7651 i.tm.name);
7652 }
e2ec9d29
L
7653 else if (i.tm.opcode_modifier.regkludge)
7654 {
7655 /* The imul $imm, %reg instruction is converted into
7656 imul $imm, %reg, %reg, and the clr %reg instruction
7657 is converted into xor %reg, %reg. */
7658
7659 unsigned int first_reg_op;
7660
7661 if (operand_type_check (i.types[0], reg))
7662 first_reg_op = 0;
7663 else
7664 first_reg_op = 1;
7665 /* Pretend we saw the extra register operand. */
9c2799c2 7666 gas_assert (i.reg_operands == 1
7ab9ffdd 7667 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7668 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7669 i.types[first_reg_op + 1] = i.types[first_reg_op];
7670 i.operands++;
7671 i.reg_operands++;
29b0f896
AM
7672 }
7673
85b80b0f 7674 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7675 {
7676 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7677 must be put into the modrm byte). Now, we make the modrm and
7678 index base bytes based on all the info we've collected. */
29b0f896
AM
7679
7680 default_seg = build_modrm_byte ();
7681 }
00cee14f 7682 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7683 {
7684 if (flag_code != CODE_64BIT
7685 ? i.tm.base_opcode == POP_SEG_SHORT
7686 && i.op[0].regs->reg_num == 1
7687 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7688 && i.op[0].regs->reg_num < 4)
7689 {
7690 as_bad (_("you can't `%s %s%s'"),
7691 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7692 return 0;
7693 }
7694 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7695 {
7696 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7697 i.tm.opcode_length = 2;
7698 }
7699 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7700 }
8a2ed489 7701 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7702 {
7703 default_seg = &ds;
7704 }
40fb9820 7705 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7706 {
7707 /* For the string instructions that allow a segment override
7708 on one of their operands, the default segment is ds. */
7709 default_seg = &ds;
7710 }
50128d0c 7711 else if (i.short_form)
85b80b0f
JB
7712 {
7713 /* The register or float register operand is in operand
7714 0 or 1. */
bab6aec1 7715 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7716
7717 /* Register goes in low 3 bits of opcode. */
7718 i.tm.base_opcode |= i.op[op].regs->reg_num;
7719 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7720 i.rex |= REX_B;
7721 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7722 {
7723 /* Warn about some common errors, but press on regardless.
7724 The first case can be generated by gcc (<= 2.8.1). */
7725 if (i.operands == 2)
7726 {
7727 /* Reversed arguments on faddp, fsubp, etc. */
7728 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7729 register_prefix, i.op[!intel_syntax].regs->reg_name,
7730 register_prefix, i.op[intel_syntax].regs->reg_name);
7731 }
7732 else
7733 {
7734 /* Extraneous `l' suffix on fp insn. */
7735 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7736 register_prefix, i.op[0].regs->reg_name);
7737 }
7738 }
7739 }
29b0f896 7740
514a8bb0 7741 if ((i.seg[0] || i.prefix[SEG_PREFIX])
514a8bb0
JB
7742 && i.tm.base_opcode == 0x8d /* lea */
7743 && !is_any_vex_encoding(&i.tm))
92334ad2
JB
7744 {
7745 if (!quiet_warnings)
7746 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7747 if (optimize)
7748 {
7749 i.seg[0] = NULL;
7750 i.prefix[SEG_PREFIX] = 0;
7751 }
7752 }
52271982
AM
7753
7754 /* If a segment was explicitly specified, and the specified segment
b6773884
JB
7755 is neither the default nor the one already recorded from a prefix,
7756 use an opcode prefix to select it. If we never figured out what
7757 the default segment is, then default_seg will be zero at this
7758 point, and the specified segment prefix will always be used. */
7759 if (i.seg[0]
7760 && i.seg[0] != default_seg
7761 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
29b0f896
AM
7762 {
7763 if (!add_prefix (i.seg[0]->seg_prefix))
7764 return 0;
7765 }
7766 return 1;
7767}
7768
a5aeccd9
JB
7769static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7770 bfd_boolean do_sse2avx)
7771{
7772 if (r->reg_flags & RegRex)
7773 {
7774 if (i.rex & rex_bit)
7775 as_bad (_("same type of prefix used twice"));
7776 i.rex |= rex_bit;
7777 }
7778 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7779 {
7780 gas_assert (i.vex.register_specifier == r);
7781 i.vex.register_specifier += 8;
7782 }
7783
7784 if (r->reg_flags & RegVRex)
7785 i.vrex |= rex_bit;
7786}
7787
29b0f896 7788static const seg_entry *
e3bb37b5 7789build_modrm_byte (void)
29b0f896
AM
7790{
7791 const seg_entry *default_seg = 0;
c0f3af97 7792 unsigned int source, dest;
8cd7925b 7793 int vex_3_sources;
c0f3af97 7794
8cd7925b 7795 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7796 if (vex_3_sources)
7797 {
91d6fa6a 7798 unsigned int nds, reg_slot;
4c2c6516 7799 expressionS *exp;
c0f3af97 7800
6b8d3588 7801 dest = i.operands - 1;
c0f3af97 7802 nds = dest - 1;
922d8de8 7803
a683cc34 7804 /* There are 2 kinds of instructions:
bed3d976 7805 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7806 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7807 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7808 ZMM register.
bed3d976 7809 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7810 plus 1 memory operand, with VexXDS. */
922d8de8 7811 gas_assert ((i.reg_operands == 4
bed3d976
JB
7812 || (i.reg_operands == 3 && i.mem_operands == 1))
7813 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7814 && i.tm.opcode_modifier.vexw
3528c362 7815 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7816
48db9223
JB
7817 /* If VexW1 is set, the first non-immediate operand is the source and
7818 the second non-immediate one is encoded in the immediate operand. */
7819 if (i.tm.opcode_modifier.vexw == VEXW1)
7820 {
7821 source = i.imm_operands;
7822 reg_slot = i.imm_operands + 1;
7823 }
7824 else
7825 {
7826 source = i.imm_operands + 1;
7827 reg_slot = i.imm_operands;
7828 }
7829
a683cc34 7830 if (i.imm_operands == 0)
bed3d976
JB
7831 {
7832 /* When there is no immediate operand, generate an 8bit
7833 immediate operand to encode the first operand. */
7834 exp = &im_expressions[i.imm_operands++];
7835 i.op[i.operands].imms = exp;
7836 i.types[i.operands] = imm8;
7837 i.operands++;
7838
3528c362 7839 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7840 exp->X_op = O_constant;
7841 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7842 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7843 }
922d8de8 7844 else
bed3d976 7845 {
9d3bf266
JB
7846 gas_assert (i.imm_operands == 1);
7847 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7848 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7849
9d3bf266
JB
7850 /* Turn on Imm8 again so that output_imm will generate it. */
7851 i.types[0].bitfield.imm8 = 1;
bed3d976 7852
3528c362 7853 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7854 i.op[0].imms->X_add_number
bed3d976 7855 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7856 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7857 }
a683cc34 7858
3528c362 7859 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7860 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7861 }
7862 else
7863 source = dest = 0;
29b0f896
AM
7864
7865 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7866 implicit registers do not count. If there are 3 register
7867 operands, it must be a instruction with VexNDS. For a
7868 instruction with VexNDD, the destination register is encoded
7869 in VEX prefix. If there are 4 register operands, it must be
7870 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7871 if (i.mem_operands == 0
7872 && ((i.reg_operands == 2
2426c15f 7873 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7874 || (i.reg_operands == 3
2426c15f 7875 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7876 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7877 {
cab737b9
L
7878 switch (i.operands)
7879 {
7880 case 2:
7881 source = 0;
7882 break;
7883 case 3:
c81128dc
L
7884 /* When there are 3 operands, one of them may be immediate,
7885 which may be the first or the last operand. Otherwise,
c0f3af97
L
7886 the first operand must be shift count register (cl) or it
7887 is an instruction with VexNDS. */
9c2799c2 7888 gas_assert (i.imm_operands == 1
7ab9ffdd 7889 || (i.imm_operands == 0
2426c15f 7890 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7891 || (i.types[0].bitfield.instance == RegC
7892 && i.types[0].bitfield.byte))));
40fb9820 7893 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7894 || (i.types[0].bitfield.instance == RegC
7895 && i.types[0].bitfield.byte))
40fb9820
L
7896 source = 1;
7897 else
7898 source = 0;
cab737b9
L
7899 break;
7900 case 4:
368d64cc
L
7901 /* When there are 4 operands, the first two must be 8bit
7902 immediate operands. The source operand will be the 3rd
c0f3af97
L
7903 one.
7904
7905 For instructions with VexNDS, if the first operand
7906 an imm8, the source operand is the 2nd one. If the last
7907 operand is imm8, the source operand is the first one. */
9c2799c2 7908 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7909 && i.types[0].bitfield.imm8
7910 && i.types[1].bitfield.imm8)
2426c15f 7911 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7912 && i.imm_operands == 1
7913 && (i.types[0].bitfield.imm8
43234a1e
L
7914 || i.types[i.operands - 1].bitfield.imm8
7915 || i.rounding)));
9f2670f2
L
7916 if (i.imm_operands == 2)
7917 source = 2;
7918 else
c0f3af97
L
7919 {
7920 if (i.types[0].bitfield.imm8)
7921 source = 1;
7922 else
7923 source = 0;
7924 }
c0f3af97
L
7925 break;
7926 case 5:
e771e7c9 7927 if (is_evex_encoding (&i.tm))
43234a1e
L
7928 {
7929 /* For EVEX instructions, when there are 5 operands, the
7930 first one must be immediate operand. If the second one
7931 is immediate operand, the source operand is the 3th
7932 one. If the last one is immediate operand, the source
7933 operand is the 2nd one. */
7934 gas_assert (i.imm_operands == 2
7935 && i.tm.opcode_modifier.sae
7936 && operand_type_check (i.types[0], imm));
7937 if (operand_type_check (i.types[1], imm))
7938 source = 2;
7939 else if (operand_type_check (i.types[4], imm))
7940 source = 1;
7941 else
7942 abort ();
7943 }
cab737b9
L
7944 break;
7945 default:
7946 abort ();
7947 }
7948
c0f3af97
L
7949 if (!vex_3_sources)
7950 {
7951 dest = source + 1;
7952
43234a1e
L
7953 /* RC/SAE operand could be between DEST and SRC. That happens
7954 when one operand is GPR and the other one is XMM/YMM/ZMM
7955 register. */
7956 if (i.rounding && i.rounding->operand == (int) dest)
7957 dest++;
7958
2426c15f 7959 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7960 {
43234a1e 7961 /* For instructions with VexNDS, the register-only source
c5d0745b 7962 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7963 register. It is encoded in VEX prefix. */
f12dc422
L
7964
7965 i386_operand_type op;
7966 unsigned int vvvv;
7967
c2ecccb3
L
7968 /* Swap two source operands if needed. */
7969 if (i.tm.opcode_modifier.swapsources)
f12dc422
L
7970 {
7971 vvvv = source;
7972 source = dest;
7973 }
7974 else
7975 vvvv = dest;
7976
7977 op = i.tm.operand_types[vvvv];
c0f3af97 7978 if ((dest + 1) >= i.operands
bab6aec1 7979 || ((op.bitfield.class != Reg
dc821c5f 7980 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7981 && op.bitfield.class != RegSIMD
43234a1e 7982 && !operand_type_equal (&op, &regmask)))
c0f3af97 7983 abort ();
f12dc422 7984 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7985 dest++;
7986 }
7987 }
29b0f896
AM
7988
7989 i.rm.mode = 3;
dfd69174
JB
7990 /* One of the register operands will be encoded in the i.rm.reg
7991 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7992 fields. If no form of this instruction supports a memory
7993 destination operand, then we assume the source operand may
7994 sometimes be a memory operand and so we need to store the
7995 destination in the i.rm.reg field. */
dfd69174 7996 if (!i.tm.opcode_modifier.regmem
40fb9820 7997 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7998 {
7999 i.rm.reg = i.op[dest].regs->reg_num;
8000 i.rm.regmem = i.op[source].regs->reg_num;
a5aeccd9
JB
8001 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
8002 set_rex_vrex (i.op[source].regs, REX_B, FALSE);
29b0f896
AM
8003 }
8004 else
8005 {
8006 i.rm.reg = i.op[source].regs->reg_num;
8007 i.rm.regmem = i.op[dest].regs->reg_num;
a5aeccd9
JB
8008 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
8009 set_rex_vrex (i.op[source].regs, REX_R, FALSE);
29b0f896 8010 }
e0c7f900 8011 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 8012 {
4a5c67ed 8013 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 8014 abort ();
e0c7f900 8015 i.rex &= ~REX_R;
c4a530c5
JB
8016 add_prefix (LOCK_PREFIX_OPCODE);
8017 }
29b0f896
AM
8018 }
8019 else
8020 { /* If it's not 2 reg operands... */
c0f3af97
L
8021 unsigned int mem;
8022
29b0f896
AM
8023 if (i.mem_operands)
8024 {
8025 unsigned int fake_zero_displacement = 0;
99018f42 8026 unsigned int op;
4eed87de 8027
7ab9ffdd 8028 for (op = 0; op < i.operands; op++)
8dc0818e 8029 if (i.flags[op] & Operand_Mem)
7ab9ffdd 8030 break;
7ab9ffdd 8031 gas_assert (op < i.operands);
29b0f896 8032
63112cd6 8033 if (i.tm.opcode_modifier.sib)
6c30d220 8034 {
260cd341
LC
8035 /* The index register of VSIB shouldn't be RegIZ. */
8036 if (i.tm.opcode_modifier.sib != SIBMEM
8037 && i.index_reg->reg_num == RegIZ)
6c30d220
L
8038 abort ();
8039
8040 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8041 if (!i.base_reg)
8042 {
8043 i.sib.base = NO_BASE_REGISTER;
8044 i.sib.scale = i.log2_scale_factor;
8045 i.types[op].bitfield.disp8 = 0;
8046 i.types[op].bitfield.disp16 = 0;
8047 i.types[op].bitfield.disp64 = 0;
43083a50 8048 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
8049 {
8050 /* Must be 32 bit */
8051 i.types[op].bitfield.disp32 = 1;
8052 i.types[op].bitfield.disp32s = 0;
8053 }
8054 else
8055 {
8056 i.types[op].bitfield.disp32 = 0;
8057 i.types[op].bitfield.disp32s = 1;
8058 }
8059 }
260cd341
LC
8060
8061 /* Since the mandatory SIB always has index register, so
8062 the code logic remains unchanged. The non-mandatory SIB
8063 without index register is allowed and will be handled
8064 later. */
8065 if (i.index_reg)
8066 {
8067 if (i.index_reg->reg_num == RegIZ)
8068 i.sib.index = NO_INDEX_REGISTER;
8069 else
8070 i.sib.index = i.index_reg->reg_num;
8071 set_rex_vrex (i.index_reg, REX_X, FALSE);
8072 }
6c30d220
L
8073 }
8074
29b0f896
AM
8075 default_seg = &ds;
8076
8077 if (i.base_reg == 0)
8078 {
8079 i.rm.mode = 0;
8080 if (!i.disp_operands)
9bb129e8 8081 fake_zero_displacement = 1;
29b0f896
AM
8082 if (i.index_reg == 0)
8083 {
73053c1f
JB
8084 i386_operand_type newdisp;
8085
260cd341
LC
8086 /* Both check for VSIB and mandatory non-vector SIB. */
8087 gas_assert (!i.tm.opcode_modifier.sib
8088 || i.tm.opcode_modifier.sib == SIBMEM);
29b0f896 8089 /* Operand is just <disp> */
20f0a1fc 8090 if (flag_code == CODE_64BIT)
29b0f896
AM
8091 {
8092 /* 64bit mode overwrites the 32bit absolute
8093 addressing by RIP relative addressing and
8094 absolute addressing is encoded by one of the
8095 redundant SIB forms. */
8096 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8097 i.sib.base = NO_BASE_REGISTER;
8098 i.sib.index = NO_INDEX_REGISTER;
73053c1f 8099 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 8100 }
fc225355
L
8101 else if ((flag_code == CODE_16BIT)
8102 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
8103 {
8104 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 8105 newdisp = disp16;
20f0a1fc
NC
8106 }
8107 else
8108 {
8109 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 8110 newdisp = disp32;
29b0f896 8111 }
73053c1f
JB
8112 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8113 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 8114 }
63112cd6 8115 else if (!i.tm.opcode_modifier.sib)
29b0f896 8116 {
6c30d220 8117 /* !i.base_reg && i.index_reg */
e968fc9b 8118 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
8119 i.sib.index = NO_INDEX_REGISTER;
8120 else
8121 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
8122 i.sib.base = NO_BASE_REGISTER;
8123 i.sib.scale = i.log2_scale_factor;
8124 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
8125 i.types[op].bitfield.disp8 = 0;
8126 i.types[op].bitfield.disp16 = 0;
8127 i.types[op].bitfield.disp64 = 0;
43083a50 8128 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
8129 {
8130 /* Must be 32 bit */
8131 i.types[op].bitfield.disp32 = 1;
8132 i.types[op].bitfield.disp32s = 0;
8133 }
29b0f896 8134 else
40fb9820
L
8135 {
8136 i.types[op].bitfield.disp32 = 0;
8137 i.types[op].bitfield.disp32s = 1;
8138 }
29b0f896 8139 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 8140 i.rex |= REX_X;
29b0f896
AM
8141 }
8142 }
8143 /* RIP addressing for 64bit mode. */
e968fc9b 8144 else if (i.base_reg->reg_num == RegIP)
29b0f896 8145 {
63112cd6 8146 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896 8147 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
8148 i.types[op].bitfield.disp8 = 0;
8149 i.types[op].bitfield.disp16 = 0;
8150 i.types[op].bitfield.disp32 = 0;
8151 i.types[op].bitfield.disp32s = 1;
8152 i.types[op].bitfield.disp64 = 0;
71903a11 8153 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
8154 if (! i.disp_operands)
8155 fake_zero_displacement = 1;
29b0f896 8156 }
dc821c5f 8157 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 8158 {
63112cd6 8159 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896
AM
8160 switch (i.base_reg->reg_num)
8161 {
8162 case 3: /* (%bx) */
8163 if (i.index_reg == 0)
8164 i.rm.regmem = 7;
8165 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8166 i.rm.regmem = i.index_reg->reg_num - 6;
8167 break;
8168 case 5: /* (%bp) */
8169 default_seg = &ss;
8170 if (i.index_reg == 0)
8171 {
8172 i.rm.regmem = 6;
40fb9820 8173 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
8174 {
8175 /* fake (%bp) into 0(%bp) */
41eb8e88 8176 if (i.disp_encoding == disp_encoding_16bit)
1a02d6b0
L
8177 i.types[op].bitfield.disp16 = 1;
8178 else
8179 i.types[op].bitfield.disp8 = 1;
252b5132 8180 fake_zero_displacement = 1;
29b0f896
AM
8181 }
8182 }
8183 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8184 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8185 break;
8186 default: /* (%si) -> 4 or (%di) -> 5 */
8187 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8188 }
41eb8e88
L
8189 if (!fake_zero_displacement
8190 && !i.disp_operands
8191 && i.disp_encoding)
8192 {
8193 fake_zero_displacement = 1;
8194 if (i.disp_encoding == disp_encoding_8bit)
8195 i.types[op].bitfield.disp8 = 1;
8196 else
8197 i.types[op].bitfield.disp16 = 1;
8198 }
29b0f896
AM
8199 i.rm.mode = mode_from_disp_size (i.types[op]);
8200 }
8201 else /* i.base_reg and 32/64 bit mode */
8202 {
8203 if (flag_code == CODE_64BIT
40fb9820
L
8204 && operand_type_check (i.types[op], disp))
8205 {
73053c1f
JB
8206 i.types[op].bitfield.disp16 = 0;
8207 i.types[op].bitfield.disp64 = 0;
40fb9820 8208 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
8209 {
8210 i.types[op].bitfield.disp32 = 0;
8211 i.types[op].bitfield.disp32s = 1;
8212 }
40fb9820 8213 else
73053c1f
JB
8214 {
8215 i.types[op].bitfield.disp32 = 1;
8216 i.types[op].bitfield.disp32s = 0;
8217 }
40fb9820 8218 }
20f0a1fc 8219
63112cd6 8220 if (!i.tm.opcode_modifier.sib)
6c30d220 8221 i.rm.regmem = i.base_reg->reg_num;
29b0f896 8222 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 8223 i.rex |= REX_B;
29b0f896
AM
8224 i.sib.base = i.base_reg->reg_num;
8225 /* x86-64 ignores REX prefix bit here to avoid decoder
8226 complications. */
848930b2
JB
8227 if (!(i.base_reg->reg_flags & RegRex)
8228 && (i.base_reg->reg_num == EBP_REG_NUM
8229 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 8230 default_seg = &ss;
848930b2 8231 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 8232 {
848930b2 8233 fake_zero_displacement = 1;
1a02d6b0
L
8234 if (i.disp_encoding == disp_encoding_32bit)
8235 i.types[op].bitfield.disp32 = 1;
8236 else
8237 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
8238 }
8239 i.sib.scale = i.log2_scale_factor;
8240 if (i.index_reg == 0)
8241 {
260cd341
LC
8242 /* Only check for VSIB. */
8243 gas_assert (i.tm.opcode_modifier.sib != VECSIB128
8244 && i.tm.opcode_modifier.sib != VECSIB256
8245 && i.tm.opcode_modifier.sib != VECSIB512);
8246
29b0f896
AM
8247 /* <disp>(%esp) becomes two byte modrm with no index
8248 register. We've already stored the code for esp
8249 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8250 Any base register besides %esp will not use the
8251 extra modrm byte. */
8252 i.sib.index = NO_INDEX_REGISTER;
29b0f896 8253 }
63112cd6 8254 else if (!i.tm.opcode_modifier.sib)
29b0f896 8255 {
e968fc9b 8256 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
8257 i.sib.index = NO_INDEX_REGISTER;
8258 else
8259 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
8260 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8261 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 8262 i.rex |= REX_X;
29b0f896 8263 }
67a4f2b7
AO
8264
8265 if (i.disp_operands
8266 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8267 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8268 i.rm.mode = 0;
8269 else
a501d77e
L
8270 {
8271 if (!fake_zero_displacement
8272 && !i.disp_operands
8273 && i.disp_encoding)
8274 {
8275 fake_zero_displacement = 1;
8276 if (i.disp_encoding == disp_encoding_8bit)
8277 i.types[op].bitfield.disp8 = 1;
8278 else
8279 i.types[op].bitfield.disp32 = 1;
8280 }
8281 i.rm.mode = mode_from_disp_size (i.types[op]);
8282 }
29b0f896 8283 }
252b5132 8284
29b0f896
AM
8285 if (fake_zero_displacement)
8286 {
8287 /* Fakes a zero displacement assuming that i.types[op]
8288 holds the correct displacement size. */
8289 expressionS *exp;
8290
9c2799c2 8291 gas_assert (i.op[op].disps == 0);
29b0f896
AM
8292 exp = &disp_expressions[i.disp_operands++];
8293 i.op[op].disps = exp;
8294 exp->X_op = O_constant;
8295 exp->X_add_number = 0;
8296 exp->X_add_symbol = (symbolS *) 0;
8297 exp->X_op_symbol = (symbolS *) 0;
8298 }
c0f3af97
L
8299
8300 mem = op;
29b0f896 8301 }
c0f3af97
L
8302 else
8303 mem = ~0;
252b5132 8304
8c43a48b 8305 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
8306 {
8307 if (operand_type_check (i.types[0], imm))
8308 i.vex.register_specifier = NULL;
8309 else
8310 {
8311 /* VEX.vvvv encodes one of the sources when the first
8312 operand is not an immediate. */
1ef99a7b 8313 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
8314 i.vex.register_specifier = i.op[0].regs;
8315 else
8316 i.vex.register_specifier = i.op[1].regs;
8317 }
8318
8319 /* Destination is a XMM register encoded in the ModRM.reg
8320 and VEX.R bit. */
8321 i.rm.reg = i.op[2].regs->reg_num;
8322 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8323 i.rex |= REX_R;
8324
8325 /* ModRM.rm and VEX.B encodes the other source. */
8326 if (!i.mem_operands)
8327 {
8328 i.rm.mode = 3;
8329
1ef99a7b 8330 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
8331 i.rm.regmem = i.op[1].regs->reg_num;
8332 else
8333 i.rm.regmem = i.op[0].regs->reg_num;
8334
8335 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8336 i.rex |= REX_B;
8337 }
8338 }
2426c15f 8339 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
8340 {
8341 i.vex.register_specifier = i.op[2].regs;
8342 if (!i.mem_operands)
8343 {
8344 i.rm.mode = 3;
8345 i.rm.regmem = i.op[1].regs->reg_num;
8346 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8347 i.rex |= REX_B;
8348 }
8349 }
29b0f896
AM
8350 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8351 (if any) based on i.tm.extension_opcode. Again, we must be
8352 careful to make sure that segment/control/debug/test/MMX
8353 registers are coded into the i.rm.reg field. */
f88c9eb0 8354 else if (i.reg_operands)
29b0f896 8355 {
99018f42 8356 unsigned int op;
7ab9ffdd
L
8357 unsigned int vex_reg = ~0;
8358
8359 for (op = 0; op < i.operands; op++)
921eafea
L
8360 if (i.types[op].bitfield.class == Reg
8361 || i.types[op].bitfield.class == RegBND
8362 || i.types[op].bitfield.class == RegMask
8363 || i.types[op].bitfield.class == SReg
8364 || i.types[op].bitfield.class == RegCR
8365 || i.types[op].bitfield.class == RegDR
8366 || i.types[op].bitfield.class == RegTR
8367 || i.types[op].bitfield.class == RegSIMD
8368 || i.types[op].bitfield.class == RegMMX)
8369 break;
c0209578 8370
7ab9ffdd
L
8371 if (vex_3_sources)
8372 op = dest;
2426c15f 8373 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
8374 {
8375 /* For instructions with VexNDS, the register-only
8376 source operand is encoded in VEX prefix. */
8377 gas_assert (mem != (unsigned int) ~0);
c0f3af97 8378
7ab9ffdd 8379 if (op > mem)
c0f3af97 8380 {
7ab9ffdd
L
8381 vex_reg = op++;
8382 gas_assert (op < i.operands);
c0f3af97
L
8383 }
8384 else
c0f3af97 8385 {
f12dc422
L
8386 /* Check register-only source operand when two source
8387 operands are swapped. */
8388 if (!i.tm.operand_types[op].bitfield.baseindex
8389 && i.tm.operand_types[op + 1].bitfield.baseindex)
8390 {
8391 vex_reg = op;
8392 op += 2;
8393 gas_assert (mem == (vex_reg + 1)
8394 && op < i.operands);
8395 }
8396 else
8397 {
8398 vex_reg = op + 1;
8399 gas_assert (vex_reg < i.operands);
8400 }
c0f3af97 8401 }
7ab9ffdd 8402 }
2426c15f 8403 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 8404 {
f12dc422 8405 /* For instructions with VexNDD, the register destination
7ab9ffdd 8406 is encoded in VEX prefix. */
f12dc422
L
8407 if (i.mem_operands == 0)
8408 {
8409 /* There is no memory operand. */
8410 gas_assert ((op + 2) == i.operands);
8411 vex_reg = op + 1;
8412 }
8413 else
8d63c93e 8414 {
ed438a93
JB
8415 /* There are only 2 non-immediate operands. */
8416 gas_assert (op < i.imm_operands + 2
8417 && i.operands == i.imm_operands + 2);
8418 vex_reg = i.imm_operands + 1;
f12dc422 8419 }
7ab9ffdd
L
8420 }
8421 else
8422 gas_assert (op < i.operands);
99018f42 8423
7ab9ffdd
L
8424 if (vex_reg != (unsigned int) ~0)
8425 {
f12dc422 8426 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 8427
bab6aec1 8428 if ((type->bitfield.class != Reg
dc821c5f 8429 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 8430 && type->bitfield.class != RegSIMD
43234a1e 8431 && !operand_type_equal (type, &regmask))
7ab9ffdd 8432 abort ();
f88c9eb0 8433
7ab9ffdd
L
8434 i.vex.register_specifier = i.op[vex_reg].regs;
8435 }
8436
1b9f0c97
L
8437 /* Don't set OP operand twice. */
8438 if (vex_reg != op)
7ab9ffdd 8439 {
1b9f0c97
L
8440 /* If there is an extension opcode to put here, the
8441 register number must be put into the regmem field. */
8442 if (i.tm.extension_opcode != None)
8443 {
8444 i.rm.regmem = i.op[op].regs->reg_num;
a5aeccd9
JB
8445 set_rex_vrex (i.op[op].regs, REX_B,
8446 i.tm.opcode_modifier.sse2avx);
1b9f0c97
L
8447 }
8448 else
8449 {
8450 i.rm.reg = i.op[op].regs->reg_num;
a5aeccd9
JB
8451 set_rex_vrex (i.op[op].regs, REX_R,
8452 i.tm.opcode_modifier.sse2avx);
1b9f0c97 8453 }
7ab9ffdd 8454 }
252b5132 8455
29b0f896
AM
8456 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8457 must set it to 3 to indicate this is a register operand
8458 in the regmem field. */
8459 if (!i.mem_operands)
8460 i.rm.mode = 3;
8461 }
252b5132 8462
29b0f896 8463 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 8464 if (i.tm.extension_opcode != None)
29b0f896
AM
8465 i.rm.reg = i.tm.extension_opcode;
8466 }
8467 return default_seg;
8468}
252b5132 8469
48ef937e
JB
8470static INLINE void
8471frag_opcode_byte (unsigned char byte)
8472{
8473 if (now_seg != absolute_section)
8474 FRAG_APPEND_1_CHAR (byte);
8475 else
8476 ++abs_section_offset;
8477}
8478
376cd056
JB
8479static unsigned int
8480flip_code16 (unsigned int code16)
8481{
8482 gas_assert (i.tm.operands == 1);
8483
8484 return !(i.prefix[REX_PREFIX] & REX_W)
8485 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8486 || i.tm.operand_types[0].bitfield.disp32s
8487 : i.tm.operand_types[0].bitfield.disp16)
8488 ? CODE16 : 0;
8489}
8490
29b0f896 8491static void
e3bb37b5 8492output_branch (void)
29b0f896
AM
8493{
8494 char *p;
f8a5c266 8495 int size;
29b0f896
AM
8496 int code16;
8497 int prefix;
8498 relax_substateT subtype;
8499 symbolS *sym;
8500 offsetT off;
8501
48ef937e
JB
8502 if (now_seg == absolute_section)
8503 {
8504 as_bad (_("relaxable branches not supported in absolute section"));
8505 return;
8506 }
8507
f8a5c266 8508 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 8509 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
8510
8511 prefix = 0;
8512 if (i.prefix[DATA_PREFIX] != 0)
252b5132 8513 {
29b0f896
AM
8514 prefix = 1;
8515 i.prefixes -= 1;
376cd056 8516 code16 ^= flip_code16(code16);
252b5132 8517 }
29b0f896
AM
8518 /* Pentium4 branch hints. */
8519 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8520 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 8521 {
29b0f896
AM
8522 prefix++;
8523 i.prefixes--;
8524 }
8525 if (i.prefix[REX_PREFIX] != 0)
8526 {
8527 prefix++;
8528 i.prefixes--;
2f66722d
AM
8529 }
8530
7e8b059b
L
8531 /* BND prefixed jump. */
8532 if (i.prefix[BND_PREFIX] != 0)
8533 {
6cb0a70e
JB
8534 prefix++;
8535 i.prefixes--;
7e8b059b
L
8536 }
8537
f2810fe0
JB
8538 if (i.prefixes != 0)
8539 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
8540
8541 /* It's always a symbol; End frag & setup for relax.
8542 Make sure there is enough room in this frag for the largest
8543 instruction we may generate in md_convert_frag. This is 2
8544 bytes for the opcode and room for the prefix and largest
8545 displacement. */
8546 frag_grow (prefix + 2 + 4);
8547 /* Prefix and 1 opcode byte go in fr_fix. */
8548 p = frag_more (prefix + 1);
8549 if (i.prefix[DATA_PREFIX] != 0)
8550 *p++ = DATA_PREFIX_OPCODE;
8551 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8552 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8553 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
8554 if (i.prefix[BND_PREFIX] != 0)
8555 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
8556 if (i.prefix[REX_PREFIX] != 0)
8557 *p++ = i.prefix[REX_PREFIX];
8558 *p = i.tm.base_opcode;
8559
8560 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 8561 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 8562 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 8563 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 8564 else
f8a5c266 8565 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 8566 subtype |= code16;
3e73aa7c 8567
29b0f896
AM
8568 sym = i.op[0].disps->X_add_symbol;
8569 off = i.op[0].disps->X_add_number;
3e73aa7c 8570
29b0f896
AM
8571 if (i.op[0].disps->X_op != O_constant
8572 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 8573 {
29b0f896
AM
8574 /* Handle complex expressions. */
8575 sym = make_expr_symbol (i.op[0].disps);
8576 off = 0;
8577 }
3e73aa7c 8578
29b0f896
AM
8579 /* 1 possible extra opcode + 4 byte displacement go in var part.
8580 Pass reloc in fr_var. */
d258b828 8581 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 8582}
3e73aa7c 8583
bd7ab16b
L
8584#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8585/* Return TRUE iff PLT32 relocation should be used for branching to
8586 symbol S. */
8587
8588static bfd_boolean
8589need_plt32_p (symbolS *s)
8590{
8591 /* PLT32 relocation is ELF only. */
8592 if (!IS_ELF)
8593 return FALSE;
8594
a5def729
RO
8595#ifdef TE_SOLARIS
8596 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8597 krtld support it. */
8598 return FALSE;
8599#endif
8600
bd7ab16b
L
8601 /* Since there is no need to prepare for PLT branch on x86-64, we
8602 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8603 be used as a marker for 32-bit PC-relative branches. */
8604 if (!object_64bit)
8605 return FALSE;
8606
44365e88
AM
8607 if (s == NULL)
8608 return FALSE;
8609
bd7ab16b
L
8610 /* Weak or undefined symbol need PLT32 relocation. */
8611 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8612 return TRUE;
8613
8614 /* Non-global symbol doesn't need PLT32 relocation. */
8615 if (! S_IS_EXTERNAL (s))
8616 return FALSE;
8617
8618 /* Other global symbols need PLT32 relocation. NB: Symbol with
8619 non-default visibilities are treated as normal global symbol
8620 so that PLT32 relocation can be used as a marker for 32-bit
8621 PC-relative branches. It is useful for linker relaxation. */
8622 return TRUE;
8623}
8624#endif
8625
29b0f896 8626static void
e3bb37b5 8627output_jump (void)
29b0f896
AM
8628{
8629 char *p;
8630 int size;
3e02c1cc 8631 fixS *fixP;
bd7ab16b 8632 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 8633
0cfa3eb3 8634 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
8635 {
8636 /* This is a loop or jecxz type instruction. */
8637 size = 1;
8638 if (i.prefix[ADDR_PREFIX] != 0)
8639 {
48ef937e 8640 frag_opcode_byte (ADDR_PREFIX_OPCODE);
29b0f896
AM
8641 i.prefixes -= 1;
8642 }
8643 /* Pentium4 branch hints. */
8644 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8645 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8646 {
48ef937e 8647 frag_opcode_byte (i.prefix[SEG_PREFIX]);
29b0f896 8648 i.prefixes--;
3e73aa7c
JH
8649 }
8650 }
29b0f896
AM
8651 else
8652 {
8653 int code16;
3e73aa7c 8654
29b0f896
AM
8655 code16 = 0;
8656 if (flag_code == CODE_16BIT)
8657 code16 = CODE16;
3e73aa7c 8658
29b0f896
AM
8659 if (i.prefix[DATA_PREFIX] != 0)
8660 {
48ef937e 8661 frag_opcode_byte (DATA_PREFIX_OPCODE);
29b0f896 8662 i.prefixes -= 1;
376cd056 8663 code16 ^= flip_code16(code16);
29b0f896 8664 }
252b5132 8665
29b0f896
AM
8666 size = 4;
8667 if (code16)
8668 size = 2;
8669 }
9fcc94b6 8670
6cb0a70e
JB
8671 /* BND prefixed jump. */
8672 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8673 {
48ef937e 8674 frag_opcode_byte (i.prefix[BND_PREFIX]);
29b0f896
AM
8675 i.prefixes -= 1;
8676 }
252b5132 8677
6cb0a70e 8678 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8679 {
48ef937e 8680 frag_opcode_byte (i.prefix[REX_PREFIX]);
7e8b059b
L
8681 i.prefixes -= 1;
8682 }
8683
f2810fe0
JB
8684 if (i.prefixes != 0)
8685 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8686
48ef937e
JB
8687 if (now_seg == absolute_section)
8688 {
8689 abs_section_offset += i.tm.opcode_length + size;
8690 return;
8691 }
8692
42164a71
L
8693 p = frag_more (i.tm.opcode_length + size);
8694 switch (i.tm.opcode_length)
8695 {
8696 case 2:
8697 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8698 /* Fall through. */
42164a71
L
8699 case 1:
8700 *p++ = i.tm.base_opcode;
8701 break;
8702 default:
8703 abort ();
8704 }
e0890092 8705
bd7ab16b
L
8706#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8707 if (size == 4
8708 && jump_reloc == NO_RELOC
8709 && need_plt32_p (i.op[0].disps->X_add_symbol))
8710 jump_reloc = BFD_RELOC_X86_64_PLT32;
8711#endif
8712
8713 jump_reloc = reloc (size, 1, 1, jump_reloc);
8714
3e02c1cc 8715 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8716 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8717
8718 /* All jumps handled here are signed, but don't use a signed limit
8719 check for 32 and 16 bit jumps as we want to allow wrap around at
8720 4G and 64k respectively. */
8721 if (size == 1)
8722 fixP->fx_signed = 1;
29b0f896 8723}
e0890092 8724
29b0f896 8725static void
e3bb37b5 8726output_interseg_jump (void)
29b0f896
AM
8727{
8728 char *p;
8729 int size;
8730 int prefix;
8731 int code16;
252b5132 8732
29b0f896
AM
8733 code16 = 0;
8734 if (flag_code == CODE_16BIT)
8735 code16 = CODE16;
a217f122 8736
29b0f896
AM
8737 prefix = 0;
8738 if (i.prefix[DATA_PREFIX] != 0)
8739 {
8740 prefix = 1;
8741 i.prefixes -= 1;
8742 code16 ^= CODE16;
8743 }
6cb0a70e
JB
8744
8745 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8746
29b0f896
AM
8747 size = 4;
8748 if (code16)
8749 size = 2;
252b5132 8750
f2810fe0
JB
8751 if (i.prefixes != 0)
8752 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8753
48ef937e
JB
8754 if (now_seg == absolute_section)
8755 {
8756 abs_section_offset += prefix + 1 + 2 + size;
8757 return;
8758 }
8759
29b0f896
AM
8760 /* 1 opcode; 2 segment; offset */
8761 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8762
29b0f896
AM
8763 if (i.prefix[DATA_PREFIX] != 0)
8764 *p++ = DATA_PREFIX_OPCODE;
252b5132 8765
29b0f896
AM
8766 if (i.prefix[REX_PREFIX] != 0)
8767 *p++ = i.prefix[REX_PREFIX];
252b5132 8768
29b0f896
AM
8769 *p++ = i.tm.base_opcode;
8770 if (i.op[1].imms->X_op == O_constant)
8771 {
8772 offsetT n = i.op[1].imms->X_add_number;
252b5132 8773
29b0f896
AM
8774 if (size == 2
8775 && !fits_in_unsigned_word (n)
8776 && !fits_in_signed_word (n))
8777 {
8778 as_bad (_("16-bit jump out of range"));
8779 return;
8780 }
8781 md_number_to_chars (p, n, size);
8782 }
8783 else
8784 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8785 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6d96a594
C
8786
8787 p += size;
8788 if (i.op[0].imms->X_op == O_constant)
8789 md_number_to_chars (p, (valueT) i.op[0].imms->X_add_number, 2);
8790 else
8791 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
8792 i.op[0].imms, 0, reloc (2, 0, 0, i.reloc[0]));
29b0f896 8793}
a217f122 8794
b4a3a7b4
L
8795#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8796void
8797x86_cleanup (void)
8798{
8799 char *p;
8800 asection *seg = now_seg;
8801 subsegT subseg = now_subseg;
8802 asection *sec;
8803 unsigned int alignment, align_size_1;
8804 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8805 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8806 unsigned int padding;
8807
8808 if (!IS_ELF || !x86_used_note)
8809 return;
8810
b4a3a7b4
L
8811 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8812
8813 /* The .note.gnu.property section layout:
8814
8815 Field Length Contents
8816 ---- ---- ----
8817 n_namsz 4 4
8818 n_descsz 4 The note descriptor size
8819 n_type 4 NT_GNU_PROPERTY_TYPE_0
8820 n_name 4 "GNU"
8821 n_desc n_descsz The program property array
8822 .... .... ....
8823 */
8824
8825 /* Create the .note.gnu.property section. */
8826 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8827 bfd_set_section_flags (sec,
b4a3a7b4
L
8828 (SEC_ALLOC
8829 | SEC_LOAD
8830 | SEC_DATA
8831 | SEC_HAS_CONTENTS
8832 | SEC_READONLY));
8833
8834 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8835 {
8836 align_size_1 = 7;
8837 alignment = 3;
8838 }
8839 else
8840 {
8841 align_size_1 = 3;
8842 alignment = 2;
8843 }
8844
fd361982 8845 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8846 elf_section_type (sec) = SHT_NOTE;
8847
8848 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8849 + 4-byte data */
8850 isa_1_descsz_raw = 4 + 4 + 4;
8851 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8852 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8853
8854 feature_2_descsz_raw = isa_1_descsz;
8855 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8856 + 4-byte data */
8857 feature_2_descsz_raw += 4 + 4 + 4;
8858 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8859 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8860 & ~align_size_1);
8861
8862 descsz = feature_2_descsz;
8863 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8864 p = frag_more (4 + 4 + 4 + 4 + descsz);
8865
8866 /* Write n_namsz. */
8867 md_number_to_chars (p, (valueT) 4, 4);
8868
8869 /* Write n_descsz. */
8870 md_number_to_chars (p + 4, (valueT) descsz, 4);
8871
8872 /* Write n_type. */
8873 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8874
8875 /* Write n_name. */
8876 memcpy (p + 4 * 3, "GNU", 4);
8877
8878 /* Write 4-byte type. */
8879 md_number_to_chars (p + 4 * 4,
8880 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8881
8882 /* Write 4-byte data size. */
8883 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8884
8885 /* Write 4-byte data. */
8886 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8887
8888 /* Zero out paddings. */
8889 padding = isa_1_descsz - isa_1_descsz_raw;
8890 if (padding)
8891 memset (p + 4 * 7, 0, padding);
8892
8893 /* Write 4-byte type. */
8894 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8895 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8896
8897 /* Write 4-byte data size. */
8898 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8899
8900 /* Write 4-byte data. */
8901 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8902 (valueT) x86_feature_2_used, 4);
8903
8904 /* Zero out paddings. */
8905 padding = feature_2_descsz - feature_2_descsz_raw;
8906 if (padding)
8907 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8908
8909 /* We probably can't restore the current segment, for there likely
8910 isn't one yet... */
8911 if (seg && subseg)
8912 subseg_set (seg, subseg);
8913}
8914#endif
8915
9c33702b
JB
8916static unsigned int
8917encoding_length (const fragS *start_frag, offsetT start_off,
8918 const char *frag_now_ptr)
8919{
8920 unsigned int len = 0;
8921
8922 if (start_frag != frag_now)
8923 {
8924 const fragS *fr = start_frag;
8925
8926 do {
8927 len += fr->fr_fix;
8928 fr = fr->fr_next;
8929 } while (fr && fr != frag_now);
8930 }
8931
8932 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8933}
8934
e379e5f3 8935/* Return 1 for test, and, cmp, add, sub, inc and dec which may
79d72f45
HL
8936 be macro-fused with conditional jumps.
8937 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8938 or is one of the following format:
8939
8940 cmp m, imm
8941 add m, imm
8942 sub m, imm
8943 test m, imm
8944 and m, imm
8945 inc m
8946 dec m
8947
8948 it is unfusible. */
e379e5f3
L
8949
8950static int
79d72f45 8951maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
8952{
8953 /* No RIP address. */
8954 if (i.base_reg && i.base_reg->reg_num == RegIP)
8955 return 0;
8956
8957 /* No VEX/EVEX encoding. */
8958 if (is_any_vex_encoding (&i.tm))
8959 return 0;
8960
79d72f45
HL
8961 /* add, sub without add/sub m, imm. */
8962 if (i.tm.base_opcode <= 5
e379e5f3
L
8963 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8964 || ((i.tm.base_opcode | 3) == 0x83
79d72f45 8965 && (i.tm.extension_opcode == 0x5
e379e5f3 8966 || i.tm.extension_opcode == 0x0)))
79d72f45
HL
8967 {
8968 *mf_cmp_p = mf_cmp_alu_cmp;
8969 return !(i.mem_operands && i.imm_operands);
8970 }
e379e5f3 8971
79d72f45
HL
8972 /* and without and m, imm. */
8973 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8974 || ((i.tm.base_opcode | 3) == 0x83
8975 && i.tm.extension_opcode == 0x4))
8976 {
8977 *mf_cmp_p = mf_cmp_test_and;
8978 return !(i.mem_operands && i.imm_operands);
8979 }
8980
8981 /* test without test m imm. */
e379e5f3
L
8982 if ((i.tm.base_opcode | 1) == 0x85
8983 || (i.tm.base_opcode | 1) == 0xa9
8984 || ((i.tm.base_opcode | 1) == 0xf7
79d72f45
HL
8985 && i.tm.extension_opcode == 0))
8986 {
8987 *mf_cmp_p = mf_cmp_test_and;
8988 return !(i.mem_operands && i.imm_operands);
8989 }
8990
8991 /* cmp without cmp m, imm. */
8992 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
e379e5f3
L
8993 || ((i.tm.base_opcode | 3) == 0x83
8994 && (i.tm.extension_opcode == 0x7)))
79d72f45
HL
8995 {
8996 *mf_cmp_p = mf_cmp_alu_cmp;
8997 return !(i.mem_operands && i.imm_operands);
8998 }
e379e5f3 8999
79d72f45 9000 /* inc, dec without inc/dec m. */
e379e5f3
L
9001 if ((i.tm.cpu_flags.bitfield.cpuno64
9002 && (i.tm.base_opcode | 0xf) == 0x4f)
9003 || ((i.tm.base_opcode | 1) == 0xff
9004 && i.tm.extension_opcode <= 0x1))
79d72f45
HL
9005 {
9006 *mf_cmp_p = mf_cmp_incdec;
9007 return !i.mem_operands;
9008 }
e379e5f3
L
9009
9010 return 0;
9011}
9012
9013/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
9014
9015static int
79d72f45 9016add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
9017{
9018 /* NB: Don't work with COND_JUMP86 without i386. */
9019 if (!align_branch_power
9020 || now_seg == absolute_section
9021 || !cpu_arch_flags.bitfield.cpui386
9022 || !(align_branch & align_branch_fused_bit))
9023 return 0;
9024
79d72f45 9025 if (maybe_fused_with_jcc_p (mf_cmp_p))
e379e5f3
L
9026 {
9027 if (last_insn.kind == last_insn_other
9028 || last_insn.seg != now_seg)
9029 return 1;
9030 if (flag_debug)
9031 as_warn_where (last_insn.file, last_insn.line,
9032 _("`%s` skips -malign-branch-boundary on `%s`"),
9033 last_insn.name, i.tm.name);
9034 }
9035
9036 return 0;
9037}
9038
9039/* Return 1 if a BRANCH_PREFIX frag should be generated. */
9040
9041static int
9042add_branch_prefix_frag_p (void)
9043{
9044 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
9045 to PadLock instructions since they include prefixes in opcode. */
9046 if (!align_branch_power
9047 || !align_branch_prefix_size
9048 || now_seg == absolute_section
9049 || i.tm.cpu_flags.bitfield.cpupadlock
9050 || !cpu_arch_flags.bitfield.cpui386)
9051 return 0;
9052
9053 /* Don't add prefix if it is a prefix or there is no operand in case
9054 that segment prefix is special. */
9055 if (!i.operands || i.tm.opcode_modifier.isprefix)
9056 return 0;
9057
9058 if (last_insn.kind == last_insn_other
9059 || last_insn.seg != now_seg)
9060 return 1;
9061
9062 if (flag_debug)
9063 as_warn_where (last_insn.file, last_insn.line,
9064 _("`%s` skips -malign-branch-boundary on `%s`"),
9065 last_insn.name, i.tm.name);
9066
9067 return 0;
9068}
9069
9070/* Return 1 if a BRANCH_PADDING frag should be generated. */
9071
9072static int
79d72f45
HL
9073add_branch_padding_frag_p (enum align_branch_kind *branch_p,
9074 enum mf_jcc_kind *mf_jcc_p)
e379e5f3
L
9075{
9076 int add_padding;
9077
9078 /* NB: Don't work with COND_JUMP86 without i386. */
9079 if (!align_branch_power
9080 || now_seg == absolute_section
9081 || !cpu_arch_flags.bitfield.cpui386)
9082 return 0;
9083
9084 add_padding = 0;
9085
9086 /* Check for jcc and direct jmp. */
9087 if (i.tm.opcode_modifier.jump == JUMP)
9088 {
9089 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
9090 {
9091 *branch_p = align_branch_jmp;
9092 add_padding = align_branch & align_branch_jmp_bit;
9093 }
9094 else
9095 {
79d72f45
HL
9096 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
9097 igore the lowest bit. */
9098 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
e379e5f3
L
9099 *branch_p = align_branch_jcc;
9100 if ((align_branch & align_branch_jcc_bit))
9101 add_padding = 1;
9102 }
9103 }
9104 else if (is_any_vex_encoding (&i.tm))
9105 return 0;
9106 else if ((i.tm.base_opcode | 1) == 0xc3)
9107 {
9108 /* Near ret. */
9109 *branch_p = align_branch_ret;
9110 if ((align_branch & align_branch_ret_bit))
9111 add_padding = 1;
9112 }
9113 else
9114 {
9115 /* Check for indirect jmp, direct and indirect calls. */
9116 if (i.tm.base_opcode == 0xe8)
9117 {
9118 /* Direct call. */
9119 *branch_p = align_branch_call;
9120 if ((align_branch & align_branch_call_bit))
9121 add_padding = 1;
9122 }
9123 else if (i.tm.base_opcode == 0xff
9124 && (i.tm.extension_opcode == 2
9125 || i.tm.extension_opcode == 4))
9126 {
9127 /* Indirect call and jmp. */
9128 *branch_p = align_branch_indirect;
9129 if ((align_branch & align_branch_indirect_bit))
9130 add_padding = 1;
9131 }
9132
9133 if (add_padding
9134 && i.disp_operands
9135 && tls_get_addr
9136 && (i.op[0].disps->X_op == O_symbol
9137 || (i.op[0].disps->X_op == O_subtract
9138 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9139 {
9140 symbolS *s = i.op[0].disps->X_add_symbol;
9141 /* No padding to call to global or undefined tls_get_addr. */
9142 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9143 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9144 return 0;
9145 }
9146 }
9147
9148 if (add_padding
9149 && last_insn.kind != last_insn_other
9150 && last_insn.seg == now_seg)
9151 {
9152 if (flag_debug)
9153 as_warn_where (last_insn.file, last_insn.line,
9154 _("`%s` skips -malign-branch-boundary on `%s`"),
9155 last_insn.name, i.tm.name);
9156 return 0;
9157 }
9158
9159 return add_padding;
9160}
9161
29b0f896 9162static void
e3bb37b5 9163output_insn (void)
29b0f896 9164{
2bbd9c25
JJ
9165 fragS *insn_start_frag;
9166 offsetT insn_start_off;
e379e5f3
L
9167 fragS *fragP = NULL;
9168 enum align_branch_kind branch = align_branch_none;
79d72f45
HL
9169 /* The initializer is arbitrary just to avoid uninitialized error.
9170 it's actually either assigned in add_branch_padding_frag_p
9171 or never be used. */
9172 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
2bbd9c25 9173
b4a3a7b4 9174#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
48ef937e 9175 if (IS_ELF && x86_used_note && now_seg != absolute_section)
b4a3a7b4 9176 {
32930e4e
L
9177 if ((i.xstate & xstate_tmm) == xstate_tmm
9178 || i.tm.cpu_flags.bitfield.cpuamx_tile)
9179 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
9180
b4a3a7b4
L
9181 if (i.tm.cpu_flags.bitfield.cpu8087
9182 || i.tm.cpu_flags.bitfield.cpu287
9183 || i.tm.cpu_flags.bitfield.cpu387
9184 || i.tm.cpu_flags.bitfield.cpu687
9185 || i.tm.cpu_flags.bitfield.cpufisttp)
9186 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
014d61ea 9187
921eafea 9188 if ((i.xstate & xstate_mmx)
319ff62c 9189 || i.tm.base_opcode == 0xf77 /* emms */
921eafea 9190 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4 9191 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
014d61ea 9192
32930e4e
L
9193 if (i.index_reg)
9194 {
9195 if (i.index_reg->reg_type.bitfield.zmmword)
9196 i.xstate |= xstate_zmm;
9197 else if (i.index_reg->reg_type.bitfield.ymmword)
9198 i.xstate |= xstate_ymm;
9199 else if (i.index_reg->reg_type.bitfield.xmmword)
9200 i.xstate |= xstate_xmm;
9201 }
014d61ea
JB
9202
9203 /* vzeroall / vzeroupper */
9204 if (i.tm.base_opcode == 0x77 && i.tm.cpu_flags.bitfield.cpuavx)
9205 i.xstate |= xstate_ymm;
9206
c4694f17 9207 if ((i.xstate & xstate_xmm)
014d61ea
JB
9208 /* ldmxcsr / stmxcsr */
9209 || (i.tm.base_opcode == 0xfae && i.tm.cpu_flags.bitfield.cpusse)
9210 /* vldmxcsr / vstmxcsr */
9211 || (i.tm.base_opcode == 0xae && i.tm.cpu_flags.bitfield.cpuavx)
c4694f17
TG
9212 || i.tm.cpu_flags.bitfield.cpuwidekl
9213 || i.tm.cpu_flags.bitfield.cpukl)
b4a3a7b4 9214 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
014d61ea 9215
921eafea 9216 if ((i.xstate & xstate_ymm) == xstate_ymm)
b4a3a7b4 9217 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
921eafea 9218 if ((i.xstate & xstate_zmm) == xstate_zmm)
b4a3a7b4 9219 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
32930e4e
L
9220 if (i.mask || (i.xstate & xstate_mask) == xstate_mask)
9221 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MASK;
b4a3a7b4
L
9222 if (i.tm.cpu_flags.bitfield.cpufxsr)
9223 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9224 if (i.tm.cpu_flags.bitfield.cpuxsave)
9225 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9226 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9227 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9228 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9229 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
b0ab0693
L
9230
9231 if (x86_feature_2_used
9232 || i.tm.cpu_flags.bitfield.cpucmov
9233 || i.tm.cpu_flags.bitfield.cpusyscall
9234 || (i.tm.base_opcode == 0xfc7
70e95837 9235 && i.tm.opcode_modifier.opcodeprefix == PREFIX_NONE
b0ab0693
L
9236 && i.tm.extension_opcode == 1) /* cmpxchg8b */)
9237 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_BASELINE;
9238 if (i.tm.cpu_flags.bitfield.cpusse3
9239 || i.tm.cpu_flags.bitfield.cpussse3
9240 || i.tm.cpu_flags.bitfield.cpusse4_1
9241 || i.tm.cpu_flags.bitfield.cpusse4_2
9242 || i.tm.cpu_flags.bitfield.cpucx16
9243 || i.tm.cpu_flags.bitfield.cpupopcnt
9244 /* LAHF-SAHF insns in 64-bit mode. */
9245 || (flag_code == CODE_64BIT
9246 && (i.tm.base_opcode | 1) == 0x9f))
9247 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V2;
9248 if (i.tm.cpu_flags.bitfield.cpuavx
9249 || i.tm.cpu_flags.bitfield.cpuavx2
9250 /* Any VEX encoded insns execpt for CpuAVX512F, CpuAVX512BW,
9251 CpuAVX512DQ, LPW, TBM and AMX. */
9252 || (i.tm.opcode_modifier.vex
9253 && !i.tm.cpu_flags.bitfield.cpuavx512f
9254 && !i.tm.cpu_flags.bitfield.cpuavx512bw
9255 && !i.tm.cpu_flags.bitfield.cpuavx512dq
9256 && !i.tm.cpu_flags.bitfield.cpulwp
9257 && !i.tm.cpu_flags.bitfield.cputbm
9258 && !(x86_feature_2_used & GNU_PROPERTY_X86_FEATURE_2_TMM))
9259 || i.tm.cpu_flags.bitfield.cpuf16c
9260 || i.tm.cpu_flags.bitfield.cpufma
9261 || i.tm.cpu_flags.bitfield.cpulzcnt
9262 || i.tm.cpu_flags.bitfield.cpumovbe
9263 || i.tm.cpu_flags.bitfield.cpuxsaves
9264 || (x86_feature_2_used
9265 & (GNU_PROPERTY_X86_FEATURE_2_XSAVE
9266 | GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
9267 | GNU_PROPERTY_X86_FEATURE_2_XSAVEC)) != 0)
9268 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V3;
9269 if (i.tm.cpu_flags.bitfield.cpuavx512f
9270 || i.tm.cpu_flags.bitfield.cpuavx512bw
9271 || i.tm.cpu_flags.bitfield.cpuavx512dq
9272 || i.tm.cpu_flags.bitfield.cpuavx512vl
9273 /* Any EVEX encoded insns except for AVX512ER, AVX512PF and
9274 VNNIW. */
9275 || (i.tm.opcode_modifier.evex
9276 && !i.tm.cpu_flags.bitfield.cpuavx512er
9277 && !i.tm.cpu_flags.bitfield.cpuavx512pf
9278 && !i.tm.cpu_flags.bitfield.cpuavx512_4vnniw))
9279 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V4;
b4a3a7b4
L
9280 }
9281#endif
9282
29b0f896
AM
9283 /* Tie dwarf2 debug info to the address at the start of the insn.
9284 We can't do this after the insn has been output as the current
9285 frag may have been closed off. eg. by frag_var. */
9286 dwarf2_emit_insn (0);
9287
2bbd9c25
JJ
9288 insn_start_frag = frag_now;
9289 insn_start_off = frag_now_fix ();
9290
79d72f45 9291 if (add_branch_padding_frag_p (&branch, &mf_jcc))
e379e5f3
L
9292 {
9293 char *p;
9294 /* Branch can be 8 bytes. Leave some room for prefixes. */
9295 unsigned int max_branch_padding_size = 14;
9296
9297 /* Align section to boundary. */
9298 record_alignment (now_seg, align_branch_power);
9299
9300 /* Make room for padding. */
9301 frag_grow (max_branch_padding_size);
9302
9303 /* Start of the padding. */
9304 p = frag_more (0);
9305
9306 fragP = frag_now;
9307
9308 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9309 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9310 NULL, 0, p);
9311
79d72f45 9312 fragP->tc_frag_data.mf_type = mf_jcc;
e379e5f3
L
9313 fragP->tc_frag_data.branch_type = branch;
9314 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9315 }
9316
29b0f896 9317 /* Output jumps. */
0cfa3eb3 9318 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 9319 output_branch ();
0cfa3eb3
JB
9320 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9321 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 9322 output_jump ();
0cfa3eb3 9323 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
9324 output_interseg_jump ();
9325 else
9326 {
9327 /* Output normal instructions here. */
9328 char *p;
9329 unsigned char *q;
47465058 9330 unsigned int j;
79d72f45 9331 enum mf_cmp_kind mf_cmp;
4dffcebc 9332
e4e00185 9333 if (avoid_fence
c3949f43
JB
9334 && (i.tm.base_opcode == 0xfaee8
9335 || i.tm.base_opcode == 0xfaef0
9336 || i.tm.base_opcode == 0xfaef8))
48ef937e
JB
9337 {
9338 /* Encode lfence, mfence, and sfence as
9339 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9340 if (now_seg != absolute_section)
9341 {
9342 offsetT val = 0x240483f0ULL;
9343
9344 p = frag_more (5);
9345 md_number_to_chars (p, val, 5);
9346 }
9347 else
9348 abs_section_offset += 5;
9349 return;
9350 }
e4e00185 9351
d022bddd
IT
9352 /* Some processors fail on LOCK prefix. This options makes
9353 assembler ignore LOCK prefix and serves as a workaround. */
9354 if (omit_lock_prefix)
9355 {
9356 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9357 return;
9358 i.prefix[LOCK_PREFIX] = 0;
9359 }
9360
e379e5f3
L
9361 if (branch)
9362 /* Skip if this is a branch. */
9363 ;
79d72f45 9364 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
e379e5f3
L
9365 {
9366 /* Make room for padding. */
9367 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9368 p = frag_more (0);
9369
9370 fragP = frag_now;
9371
9372 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9373 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9374 NULL, 0, p);
9375
79d72f45 9376 fragP->tc_frag_data.mf_type = mf_cmp;
e379e5f3
L
9377 fragP->tc_frag_data.branch_type = align_branch_fused;
9378 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9379 }
9380 else if (add_branch_prefix_frag_p ())
9381 {
9382 unsigned int max_prefix_size = align_branch_prefix_size;
9383
9384 /* Make room for padding. */
9385 frag_grow (max_prefix_size);
9386 p = frag_more (0);
9387
9388 fragP = frag_now;
9389
9390 frag_var (rs_machine_dependent, max_prefix_size, 0,
9391 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9392 NULL, 0, p);
9393
9394 fragP->tc_frag_data.max_bytes = max_prefix_size;
9395 }
9396
43234a1e
L
9397 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9398 don't need the explicit prefix. */
9399 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 9400 {
7b47a312 9401 switch (i.tm.opcode_modifier.opcodeprefix)
bc4bd9ab 9402 {
7b47a312
L
9403 case PREFIX_0X66:
9404 add_prefix (0x66);
9405 break;
9406 case PREFIX_0XF2:
9407 add_prefix (0xf2);
9408 break;
9409 case PREFIX_0XF3:
8b65b895
L
9410 if (!i.tm.cpu_flags.bitfield.cpupadlock
9411 || (i.prefix[REP_PREFIX] != 0xf3))
9412 add_prefix (0xf3);
c0f3af97 9413 break;
7b47a312
L
9414 case PREFIX_NONE:
9415 switch (i.tm.opcode_length)
c0f3af97 9416 {
7b47a312 9417 case 3:
7b47a312 9418 case 2:
7b47a312
L
9419 case 1:
9420 break;
9421 case 0:
9422 /* Check for pseudo prefixes. */
9423 as_bad_where (insn_start_frag->fr_file,
9424 insn_start_frag->fr_line,
9425 _("pseudo prefix without instruction"));
9426 return;
9427 default:
9428 abort ();
4dffcebc 9429 }
c0f3af97 9430 break;
c0f3af97
L
9431 default:
9432 abort ();
bc4bd9ab 9433 }
c0f3af97 9434
6d19a37a 9435#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
9436 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9437 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
9438 perform IE->LE optimization. A dummy REX_OPCODE prefix
9439 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9440 relocation for GDesc -> IE/LE optimization. */
cf61b747
L
9441 if (x86_elf_abi == X86_64_X32_ABI
9442 && i.operands == 2
14470f07
L
9443 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9444 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
9445 && i.prefix[REX_PREFIX] == 0)
9446 add_prefix (REX_OPCODE);
6d19a37a 9447#endif
cf61b747 9448
c0f3af97
L
9449 /* The prefix bytes. */
9450 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9451 if (*q)
48ef937e 9452 frag_opcode_byte (*q);
0f10071e 9453 }
ae5c1c7b 9454 else
c0f3af97
L
9455 {
9456 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9457 if (*q)
9458 switch (j)
9459 {
c0f3af97
L
9460 case SEG_PREFIX:
9461 case ADDR_PREFIX:
48ef937e 9462 frag_opcode_byte (*q);
c0f3af97
L
9463 break;
9464 default:
9465 /* There should be no other prefixes for instructions
9466 with VEX prefix. */
9467 abort ();
9468 }
9469
43234a1e
L
9470 /* For EVEX instructions i.vrex should become 0 after
9471 build_evex_prefix. For VEX instructions upper 16 registers
9472 aren't available, so VREX should be 0. */
9473 if (i.vrex)
9474 abort ();
c0f3af97 9475 /* Now the VEX prefix. */
48ef937e
JB
9476 if (now_seg != absolute_section)
9477 {
9478 p = frag_more (i.vex.length);
9479 for (j = 0; j < i.vex.length; j++)
9480 p[j] = i.vex.bytes[j];
9481 }
9482 else
9483 abs_section_offset += i.vex.length;
c0f3af97 9484 }
252b5132 9485
29b0f896 9486 /* Now the opcode; be careful about word order here! */
48ef937e
JB
9487 if (now_seg == absolute_section)
9488 abs_section_offset += i.tm.opcode_length;
9489 else if (i.tm.opcode_length == 1)
29b0f896
AM
9490 {
9491 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9492 }
9493 else
9494 {
4dffcebc 9495 switch (i.tm.opcode_length)
331d2d0d 9496 {
43234a1e
L
9497 case 4:
9498 p = frag_more (4);
9499 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9500 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9501 break;
4dffcebc 9502 case 3:
331d2d0d
L
9503 p = frag_more (3);
9504 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
9505 break;
9506 case 2:
9507 p = frag_more (2);
9508 break;
9509 default:
9510 abort ();
9511 break;
331d2d0d 9512 }
0f10071e 9513
29b0f896
AM
9514 /* Put out high byte first: can't use md_number_to_chars! */
9515 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9516 *p = i.tm.base_opcode & 0xff;
9517 }
3e73aa7c 9518
29b0f896 9519 /* Now the modrm byte and sib byte (if present). */
40fb9820 9520 if (i.tm.opcode_modifier.modrm)
29b0f896 9521 {
48ef937e
JB
9522 frag_opcode_byte ((i.rm.regmem << 0)
9523 | (i.rm.reg << 3)
9524 | (i.rm.mode << 6));
29b0f896
AM
9525 /* If i.rm.regmem == ESP (4)
9526 && i.rm.mode != (Register mode)
9527 && not 16 bit
9528 ==> need second modrm byte. */
9529 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9530 && i.rm.mode != 3
dc821c5f 9531 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
48ef937e
JB
9532 frag_opcode_byte ((i.sib.base << 0)
9533 | (i.sib.index << 3)
9534 | (i.sib.scale << 6));
29b0f896 9535 }
3e73aa7c 9536
29b0f896 9537 if (i.disp_operands)
2bbd9c25 9538 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 9539
29b0f896 9540 if (i.imm_operands)
2bbd9c25 9541 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
9542
9543 /*
9544 * frag_now_fix () returning plain abs_section_offset when we're in the
9545 * absolute section, and abs_section_offset not getting updated as data
9546 * gets added to the frag breaks the logic below.
9547 */
9548 if (now_seg != absolute_section)
9549 {
9550 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9551 if (j > 15)
9552 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9553 j);
e379e5f3
L
9554 else if (fragP)
9555 {
9556 /* NB: Don't add prefix with GOTPC relocation since
9557 output_disp() above depends on the fixed encoding
9558 length. Can't add prefix with TLS relocation since
9559 it breaks TLS linker optimization. */
9560 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9561 /* Prefix count on the current instruction. */
9562 unsigned int count = i.vex.length;
9563 unsigned int k;
9564 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9565 /* REX byte is encoded in VEX/EVEX prefix. */
9566 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9567 count++;
9568
9569 /* Count prefixes for extended opcode maps. */
9570 if (!i.vex.length)
9571 switch (i.tm.opcode_length)
9572 {
9573 case 3:
9574 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9575 {
9576 count++;
9577 switch ((i.tm.base_opcode >> 8) & 0xff)
9578 {
9579 case 0x38:
9580 case 0x3a:
9581 count++;
9582 break;
9583 default:
9584 break;
9585 }
9586 }
9587 break;
9588 case 2:
9589 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9590 count++;
9591 break;
9592 case 1:
9593 break;
9594 default:
9595 abort ();
9596 }
9597
9598 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9599 == BRANCH_PREFIX)
9600 {
9601 /* Set the maximum prefix size in BRANCH_PREFIX
9602 frag. */
9603 if (fragP->tc_frag_data.max_bytes > max)
9604 fragP->tc_frag_data.max_bytes = max;
9605 if (fragP->tc_frag_data.max_bytes > count)
9606 fragP->tc_frag_data.max_bytes -= count;
9607 else
9608 fragP->tc_frag_data.max_bytes = 0;
9609 }
9610 else
9611 {
9612 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9613 frag. */
9614 unsigned int max_prefix_size;
9615 if (align_branch_prefix_size > max)
9616 max_prefix_size = max;
9617 else
9618 max_prefix_size = align_branch_prefix_size;
9619 if (max_prefix_size > count)
9620 fragP->tc_frag_data.max_prefix_length
9621 = max_prefix_size - count;
9622 }
9623
9624 /* Use existing segment prefix if possible. Use CS
9625 segment prefix in 64-bit mode. In 32-bit mode, use SS
9626 segment prefix with ESP/EBP base register and use DS
9627 segment prefix without ESP/EBP base register. */
9628 if (i.prefix[SEG_PREFIX])
9629 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9630 else if (flag_code == CODE_64BIT)
9631 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9632 else if (i.base_reg
9633 && (i.base_reg->reg_num == 4
9634 || i.base_reg->reg_num == 5))
9635 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9636 else
9637 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9638 }
9c33702b 9639 }
29b0f896 9640 }
252b5132 9641
e379e5f3
L
9642 /* NB: Don't work with COND_JUMP86 without i386. */
9643 if (align_branch_power
9644 && now_seg != absolute_section
9645 && cpu_arch_flags.bitfield.cpui386)
9646 {
9647 /* Terminate each frag so that we can add prefix and check for
9648 fused jcc. */
9649 frag_wane (frag_now);
9650 frag_new (0);
9651 }
9652
29b0f896
AM
9653#ifdef DEBUG386
9654 if (flag_debug)
9655 {
7b81dfbb 9656 pi ("" /*line*/, &i);
29b0f896
AM
9657 }
9658#endif /* DEBUG386 */
9659}
252b5132 9660
e205caa7
L
9661/* Return the size of the displacement operand N. */
9662
9663static int
9664disp_size (unsigned int n)
9665{
9666 int size = 4;
43234a1e 9667
b5014f7a 9668 if (i.types[n].bitfield.disp64)
40fb9820
L
9669 size = 8;
9670 else if (i.types[n].bitfield.disp8)
9671 size = 1;
9672 else if (i.types[n].bitfield.disp16)
9673 size = 2;
e205caa7
L
9674 return size;
9675}
9676
9677/* Return the size of the immediate operand N. */
9678
9679static int
9680imm_size (unsigned int n)
9681{
9682 int size = 4;
40fb9820
L
9683 if (i.types[n].bitfield.imm64)
9684 size = 8;
9685 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9686 size = 1;
9687 else if (i.types[n].bitfield.imm16)
9688 size = 2;
e205caa7
L
9689 return size;
9690}
9691
29b0f896 9692static void
64e74474 9693output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9694{
9695 char *p;
9696 unsigned int n;
252b5132 9697
29b0f896
AM
9698 for (n = 0; n < i.operands; n++)
9699 {
b5014f7a 9700 if (operand_type_check (i.types[n], disp))
29b0f896 9701 {
48ef937e
JB
9702 int size = disp_size (n);
9703
9704 if (now_seg == absolute_section)
9705 abs_section_offset += size;
9706 else if (i.op[n].disps->X_op == O_constant)
29b0f896 9707 {
43234a1e 9708 offsetT val = i.op[n].disps->X_add_number;
252b5132 9709
629cfaf1
JB
9710 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9711 size);
29b0f896
AM
9712 p = frag_more (size);
9713 md_number_to_chars (p, val, size);
9714 }
9715 else
9716 {
f86103b7 9717 enum bfd_reloc_code_real reloc_type;
40fb9820 9718 int sign = i.types[n].bitfield.disp32s;
29b0f896 9719 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 9720 fixS *fixP;
29b0f896 9721
e205caa7 9722 /* We can't have 8 bit displacement here. */
9c2799c2 9723 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 9724
29b0f896
AM
9725 /* The PC relative address is computed relative
9726 to the instruction boundary, so in case immediate
9727 fields follows, we need to adjust the value. */
9728 if (pcrel && i.imm_operands)
9729 {
29b0f896 9730 unsigned int n1;
e205caa7 9731 int sz = 0;
252b5132 9732
29b0f896 9733 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 9734 if (operand_type_check (i.types[n1], imm))
252b5132 9735 {
e205caa7
L
9736 /* Only one immediate is allowed for PC
9737 relative address. */
9c2799c2 9738 gas_assert (sz == 0);
e205caa7
L
9739 sz = imm_size (n1);
9740 i.op[n].disps->X_add_number -= sz;
252b5132 9741 }
29b0f896 9742 /* We should find the immediate. */
9c2799c2 9743 gas_assert (sz != 0);
29b0f896 9744 }
520dc8e8 9745
29b0f896 9746 p = frag_more (size);
d258b828 9747 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9748 if (GOT_symbol
2bbd9c25 9749 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9750 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9751 || reloc_type == BFD_RELOC_X86_64_32S
9752 || (reloc_type == BFD_RELOC_64
9753 && object_64bit))
d6ab8113
JB
9754 && (i.op[n].disps->X_op == O_symbol
9755 || (i.op[n].disps->X_op == O_add
9756 && ((symbol_get_value_expression
9757 (i.op[n].disps->X_op_symbol)->X_op)
9758 == O_subtract))))
9759 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9760 {
4fa24527 9761 if (!object_64bit)
7b81dfbb
AJ
9762 {
9763 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9764 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9765 i.op[n].imms->X_add_number +=
9766 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9767 }
9768 else if (reloc_type == BFD_RELOC_64)
9769 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9770 else
7b81dfbb
AJ
9771 /* Don't do the adjustment for x86-64, as there
9772 the pcrel addressing is relative to the _next_
9773 insn, and that is taken care of in other code. */
d6ab8113 9774 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9775 }
e379e5f3
L
9776 else if (align_branch_power)
9777 {
9778 switch (reloc_type)
9779 {
9780 case BFD_RELOC_386_TLS_GD:
9781 case BFD_RELOC_386_TLS_LDM:
9782 case BFD_RELOC_386_TLS_IE:
9783 case BFD_RELOC_386_TLS_IE_32:
9784 case BFD_RELOC_386_TLS_GOTIE:
9785 case BFD_RELOC_386_TLS_GOTDESC:
9786 case BFD_RELOC_386_TLS_DESC_CALL:
9787 case BFD_RELOC_X86_64_TLSGD:
9788 case BFD_RELOC_X86_64_TLSLD:
9789 case BFD_RELOC_X86_64_GOTTPOFF:
9790 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9791 case BFD_RELOC_X86_64_TLSDESC_CALL:
9792 i.has_gotpc_tls_reloc = TRUE;
9793 default:
9794 break;
9795 }
9796 }
02a86693
L
9797 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9798 size, i.op[n].disps, pcrel,
9799 reloc_type);
9800 /* Check for "call/jmp *mem", "mov mem, %reg",
9801 "test %reg, mem" and "binop mem, %reg" where binop
9802 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9803 instructions without data prefix. Always generate
9804 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9805 if (i.prefix[DATA_PREFIX] == 0
9806 && (generate_relax_relocations
9807 || (!object_64bit
9808 && i.rm.mode == 0
9809 && i.rm.regmem == 5))
0cb4071e
L
9810 && (i.rm.mode == 2
9811 || (i.rm.mode == 0 && i.rm.regmem == 5))
2ae4c703 9812 && !is_any_vex_encoding(&i.tm)
02a86693
L
9813 && ((i.operands == 1
9814 && i.tm.base_opcode == 0xff
9815 && (i.rm.reg == 2 || i.rm.reg == 4))
9816 || (i.operands == 2
9817 && (i.tm.base_opcode == 0x8b
9818 || i.tm.base_opcode == 0x85
2ae4c703 9819 || (i.tm.base_opcode & ~0x38) == 0x03))))
02a86693
L
9820 {
9821 if (object_64bit)
9822 {
9823 fixP->fx_tcbit = i.rex != 0;
9824 if (i.base_reg
e968fc9b 9825 && (i.base_reg->reg_num == RegIP))
02a86693
L
9826 fixP->fx_tcbit2 = 1;
9827 }
9828 else
9829 fixP->fx_tcbit2 = 1;
9830 }
29b0f896
AM
9831 }
9832 }
9833 }
9834}
252b5132 9835
29b0f896 9836static void
64e74474 9837output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9838{
9839 char *p;
9840 unsigned int n;
252b5132 9841
29b0f896
AM
9842 for (n = 0; n < i.operands; n++)
9843 {
43234a1e
L
9844 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9845 if (i.rounding && (int) n == i.rounding->operand)
9846 continue;
9847
40fb9820 9848 if (operand_type_check (i.types[n], imm))
29b0f896 9849 {
48ef937e
JB
9850 int size = imm_size (n);
9851
9852 if (now_seg == absolute_section)
9853 abs_section_offset += size;
9854 else if (i.op[n].imms->X_op == O_constant)
29b0f896 9855 {
29b0f896 9856 offsetT val;
b4cac588 9857
29b0f896
AM
9858 val = offset_in_range (i.op[n].imms->X_add_number,
9859 size);
9860 p = frag_more (size);
9861 md_number_to_chars (p, val, size);
9862 }
9863 else
9864 {
9865 /* Not absolute_section.
9866 Need a 32-bit fixup (don't support 8bit
9867 non-absolute imms). Try to support other
9868 sizes ... */
f86103b7 9869 enum bfd_reloc_code_real reloc_type;
e205caa7 9870 int sign;
29b0f896 9871
40fb9820 9872 if (i.types[n].bitfield.imm32s
a7d61044 9873 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9874 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9875 sign = 1;
e205caa7
L
9876 else
9877 sign = 0;
520dc8e8 9878
29b0f896 9879 p = frag_more (size);
d258b828 9880 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9881
2bbd9c25
JJ
9882 /* This is tough to explain. We end up with this one if we
9883 * have operands that look like
9884 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9885 * obtain the absolute address of the GOT, and it is strongly
9886 * preferable from a performance point of view to avoid using
9887 * a runtime relocation for this. The actual sequence of
9888 * instructions often look something like:
9889 *
9890 * call .L66
9891 * .L66:
9892 * popl %ebx
9893 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9894 *
9895 * The call and pop essentially return the absolute address
9896 * of the label .L66 and store it in %ebx. The linker itself
9897 * will ultimately change the first operand of the addl so
9898 * that %ebx points to the GOT, but to keep things simple, the
9899 * .o file must have this operand set so that it generates not
9900 * the absolute address of .L66, but the absolute address of
9901 * itself. This allows the linker itself simply treat a GOTPC
9902 * relocation as asking for a pcrel offset to the GOT to be
9903 * added in, and the addend of the relocation is stored in the
9904 * operand field for the instruction itself.
9905 *
9906 * Our job here is to fix the operand so that it would add
9907 * the correct offset so that %ebx would point to itself. The
9908 * thing that is tricky is that .-.L66 will point to the
9909 * beginning of the instruction, so we need to further modify
9910 * the operand so that it will point to itself. There are
9911 * other cases where you have something like:
9912 *
9913 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9914 *
9915 * and here no correction would be required. Internally in
9916 * the assembler we treat operands of this form as not being
9917 * pcrel since the '.' is explicitly mentioned, and I wonder
9918 * whether it would simplify matters to do it this way. Who
9919 * knows. In earlier versions of the PIC patches, the
9920 * pcrel_adjust field was used to store the correction, but
9921 * since the expression is not pcrel, I felt it would be
9922 * confusing to do it this way. */
9923
d6ab8113 9924 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9925 || reloc_type == BFD_RELOC_X86_64_32S
9926 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9927 && GOT_symbol
9928 && GOT_symbol == i.op[n].imms->X_add_symbol
9929 && (i.op[n].imms->X_op == O_symbol
9930 || (i.op[n].imms->X_op == O_add
9931 && ((symbol_get_value_expression
9932 (i.op[n].imms->X_op_symbol)->X_op)
9933 == O_subtract))))
9934 {
4fa24527 9935 if (!object_64bit)
d6ab8113 9936 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9937 else if (size == 4)
d6ab8113 9938 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9939 else if (size == 8)
9940 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9941 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9942 i.op[n].imms->X_add_number +=
9943 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9944 }
29b0f896
AM
9945 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9946 i.op[n].imms, 0, reloc_type);
9947 }
9948 }
9949 }
252b5132
RH
9950}
9951\f
d182319b
JB
9952/* x86_cons_fix_new is called via the expression parsing code when a
9953 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9954static int cons_sign = -1;
9955
9956void
e3bb37b5 9957x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9958 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9959{
d258b828 9960 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9961
9962#ifdef TE_PE
9963 if (exp->X_op == O_secrel)
9964 {
9965 exp->X_op = O_symbol;
9966 r = BFD_RELOC_32_SECREL;
9967 }
9968#endif
9969
9970 fix_new_exp (frag, off, len, exp, 0, r);
9971}
9972
357d1bd8
L
9973/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9974 purpose of the `.dc.a' internal pseudo-op. */
9975
9976int
9977x86_address_bytes (void)
9978{
9979 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9980 return 4;
9981 return stdoutput->arch_info->bits_per_address / 8;
9982}
9983
d382c579
TG
9984#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9985 || defined (LEX_AT)
d258b828 9986# define lex_got(reloc, adjust, types) NULL
718ddfc0 9987#else
f3c180ae
AM
9988/* Parse operands of the form
9989 <symbol>@GOTOFF+<nnn>
9990 and similar .plt or .got references.
9991
9992 If we find one, set up the correct relocation in RELOC and copy the
9993 input string, minus the `@GOTOFF' into a malloc'd buffer for
9994 parsing by the calling routine. Return this buffer, and if ADJUST
9995 is non-null set it to the length of the string we removed from the
9996 input line. Otherwise return NULL. */
9997static char *
91d6fa6a 9998lex_got (enum bfd_reloc_code_real *rel,
64e74474 9999 int *adjust,
d258b828 10000 i386_operand_type *types)
f3c180ae 10001{
7b81dfbb
AJ
10002 /* Some of the relocations depend on the size of what field is to
10003 be relocated. But in our callers i386_immediate and i386_displacement
10004 we don't yet know the operand size (this will be set by insn
10005 matching). Hence we record the word32 relocation here,
10006 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
10007 static const struct {
10008 const char *str;
cff8d58a 10009 int len;
4fa24527 10010 const enum bfd_reloc_code_real rel[2];
40fb9820 10011 const i386_operand_type types64;
844bf810 10012 bfd_boolean need_GOT_symbol;
f3c180ae 10013 } gotrel[] = {
8ce3d284 10014#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10015 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
10016 BFD_RELOC_SIZE32 },
844bf810 10017 OPERAND_TYPE_IMM32_64, FALSE },
8ce3d284 10018#endif
cff8d58a
L
10019 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
10020 BFD_RELOC_X86_64_PLTOFF64 },
844bf810 10021 OPERAND_TYPE_IMM64, TRUE },
cff8d58a
L
10022 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
10023 BFD_RELOC_X86_64_PLT32 },
844bf810 10024 OPERAND_TYPE_IMM32_32S_DISP32, FALSE },
cff8d58a
L
10025 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
10026 BFD_RELOC_X86_64_GOTPLT64 },
844bf810 10027 OPERAND_TYPE_IMM64_DISP64, TRUE },
cff8d58a
L
10028 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
10029 BFD_RELOC_X86_64_GOTOFF64 },
844bf810 10030 OPERAND_TYPE_IMM64_DISP64, TRUE },
cff8d58a
L
10031 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
10032 BFD_RELOC_X86_64_GOTPCREL },
844bf810 10033 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
cff8d58a
L
10034 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
10035 BFD_RELOC_X86_64_TLSGD },
844bf810 10036 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
cff8d58a
L
10037 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
10038 _dummy_first_bfd_reloc_code_real },
844bf810 10039 OPERAND_TYPE_NONE, TRUE },
cff8d58a
L
10040 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
10041 BFD_RELOC_X86_64_TLSLD },
844bf810 10042 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
cff8d58a
L
10043 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
10044 BFD_RELOC_X86_64_GOTTPOFF },
844bf810 10045 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
cff8d58a
L
10046 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
10047 BFD_RELOC_X86_64_TPOFF32 },
844bf810 10048 OPERAND_TYPE_IMM32_32S_64_DISP32_64, TRUE },
cff8d58a
L
10049 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
10050 _dummy_first_bfd_reloc_code_real },
844bf810 10051 OPERAND_TYPE_NONE, TRUE },
cff8d58a
L
10052 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
10053 BFD_RELOC_X86_64_DTPOFF32 },
844bf810 10054 OPERAND_TYPE_IMM32_32S_64_DISP32_64, TRUE },
cff8d58a
L
10055 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
10056 _dummy_first_bfd_reloc_code_real },
844bf810 10057 OPERAND_TYPE_NONE, TRUE },
cff8d58a
L
10058 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
10059 _dummy_first_bfd_reloc_code_real },
844bf810 10060 OPERAND_TYPE_NONE, TRUE },
cff8d58a
L
10061 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
10062 BFD_RELOC_X86_64_GOT32 },
844bf810 10063 OPERAND_TYPE_IMM32_32S_64_DISP32, TRUE },
cff8d58a
L
10064 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
10065 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
844bf810 10066 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
cff8d58a
L
10067 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
10068 BFD_RELOC_X86_64_TLSDESC_CALL },
844bf810 10069 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
f3c180ae
AM
10070 };
10071 char *cp;
10072 unsigned int j;
10073
d382c579 10074#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
10075 if (!IS_ELF)
10076 return NULL;
d382c579 10077#endif
718ddfc0 10078
f3c180ae 10079 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 10080 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
10081 return NULL;
10082
47465058 10083 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 10084 {
cff8d58a 10085 int len = gotrel[j].len;
28f81592 10086 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 10087 {
4fa24527 10088 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 10089 {
28f81592
AM
10090 int first, second;
10091 char *tmpbuf, *past_reloc;
f3c180ae 10092
91d6fa6a 10093 *rel = gotrel[j].rel[object_64bit];
f3c180ae 10094
3956db08
JB
10095 if (types)
10096 {
10097 if (flag_code != CODE_64BIT)
40fb9820
L
10098 {
10099 types->bitfield.imm32 = 1;
10100 types->bitfield.disp32 = 1;
10101 }
3956db08
JB
10102 else
10103 *types = gotrel[j].types64;
10104 }
10105
844bf810 10106 if (gotrel[j].need_GOT_symbol && GOT_symbol == NULL)
f3c180ae
AM
10107 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
10108
28f81592 10109 /* The length of the first part of our input line. */
f3c180ae 10110 first = cp - input_line_pointer;
28f81592
AM
10111
10112 /* The second part goes from after the reloc token until
67c11a9b 10113 (and including) an end_of_line char or comma. */
28f81592 10114 past_reloc = cp + 1 + len;
67c11a9b
AM
10115 cp = past_reloc;
10116 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10117 ++cp;
10118 second = cp + 1 - past_reloc;
28f81592
AM
10119
10120 /* Allocate and copy string. The trailing NUL shouldn't
10121 be necessary, but be safe. */
add39d23 10122 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 10123 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
10124 if (second != 0 && *past_reloc != ' ')
10125 /* Replace the relocation token with ' ', so that
10126 errors like foo@GOTOFF1 will be detected. */
10127 tmpbuf[first++] = ' ';
af89796a
L
10128 else
10129 /* Increment length by 1 if the relocation token is
10130 removed. */
10131 len++;
10132 if (adjust)
10133 *adjust = len;
0787a12d
AM
10134 memcpy (tmpbuf + first, past_reloc, second);
10135 tmpbuf[first + second] = '\0';
f3c180ae
AM
10136 return tmpbuf;
10137 }
10138
4fa24527
JB
10139 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10140 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
10141 return NULL;
10142 }
10143 }
10144
10145 /* Might be a symbol version string. Don't as_bad here. */
10146 return NULL;
10147}
4e4f7c87 10148#endif
f3c180ae 10149
a988325c
NC
10150#ifdef TE_PE
10151#ifdef lex_got
10152#undef lex_got
10153#endif
10154/* Parse operands of the form
10155 <symbol>@SECREL32+<nnn>
10156
10157 If we find one, set up the correct relocation in RELOC and copy the
10158 input string, minus the `@SECREL32' into a malloc'd buffer for
10159 parsing by the calling routine. Return this buffer, and if ADJUST
10160 is non-null set it to the length of the string we removed from the
34bca508
L
10161 input line. Otherwise return NULL.
10162
a988325c
NC
10163 This function is copied from the ELF version above adjusted for PE targets. */
10164
10165static char *
10166lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
10167 int *adjust ATTRIBUTE_UNUSED,
d258b828 10168 i386_operand_type *types)
a988325c
NC
10169{
10170 static const struct
10171 {
10172 const char *str;
10173 int len;
10174 const enum bfd_reloc_code_real rel[2];
10175 const i386_operand_type types64;
10176 }
10177 gotrel[] =
10178 {
10179 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
10180 BFD_RELOC_32_SECREL },
10181 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10182 };
10183
10184 char *cp;
10185 unsigned j;
10186
10187 for (cp = input_line_pointer; *cp != '@'; cp++)
10188 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10189 return NULL;
10190
10191 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10192 {
10193 int len = gotrel[j].len;
10194
10195 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10196 {
10197 if (gotrel[j].rel[object_64bit] != 0)
10198 {
10199 int first, second;
10200 char *tmpbuf, *past_reloc;
10201
10202 *rel = gotrel[j].rel[object_64bit];
10203 if (adjust)
10204 *adjust = len;
10205
10206 if (types)
10207 {
10208 if (flag_code != CODE_64BIT)
10209 {
10210 types->bitfield.imm32 = 1;
10211 types->bitfield.disp32 = 1;
10212 }
10213 else
10214 *types = gotrel[j].types64;
10215 }
10216
10217 /* The length of the first part of our input line. */
10218 first = cp - input_line_pointer;
10219
10220 /* The second part goes from after the reloc token until
10221 (and including) an end_of_line char or comma. */
10222 past_reloc = cp + 1 + len;
10223 cp = past_reloc;
10224 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10225 ++cp;
10226 second = cp + 1 - past_reloc;
10227
10228 /* Allocate and copy string. The trailing NUL shouldn't
10229 be necessary, but be safe. */
add39d23 10230 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
10231 memcpy (tmpbuf, input_line_pointer, first);
10232 if (second != 0 && *past_reloc != ' ')
10233 /* Replace the relocation token with ' ', so that
10234 errors like foo@SECLREL321 will be detected. */
10235 tmpbuf[first++] = ' ';
10236 memcpy (tmpbuf + first, past_reloc, second);
10237 tmpbuf[first + second] = '\0';
10238 return tmpbuf;
10239 }
10240
10241 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10242 gotrel[j].str, 1 << (5 + object_64bit));
10243 return NULL;
10244 }
10245 }
10246
10247 /* Might be a symbol version string. Don't as_bad here. */
10248 return NULL;
10249}
10250
10251#endif /* TE_PE */
10252
62ebcb5c 10253bfd_reloc_code_real_type
e3bb37b5 10254x86_cons (expressionS *exp, int size)
f3c180ae 10255{
62ebcb5c
AM
10256 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10257
ee86248c
JB
10258 intel_syntax = -intel_syntax;
10259
3c7b9c2c 10260 exp->X_md = 0;
4fa24527 10261 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
10262 {
10263 /* Handle @GOTOFF and the like in an expression. */
10264 char *save;
10265 char *gotfree_input_line;
4a57f2cf 10266 int adjust = 0;
f3c180ae
AM
10267
10268 save = input_line_pointer;
d258b828 10269 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
10270 if (gotfree_input_line)
10271 input_line_pointer = gotfree_input_line;
10272
10273 expression (exp);
10274
10275 if (gotfree_input_line)
10276 {
10277 /* expression () has merrily parsed up to the end of line,
10278 or a comma - in the wrong buffer. Transfer how far
10279 input_line_pointer has moved to the right buffer. */
10280 input_line_pointer = (save
10281 + (input_line_pointer - gotfree_input_line)
10282 + adjust);
10283 free (gotfree_input_line);
3992d3b7
AM
10284 if (exp->X_op == O_constant
10285 || exp->X_op == O_absent
10286 || exp->X_op == O_illegal
0398aac5 10287 || exp->X_op == O_register
3992d3b7
AM
10288 || exp->X_op == O_big)
10289 {
10290 char c = *input_line_pointer;
10291 *input_line_pointer = 0;
10292 as_bad (_("missing or invalid expression `%s'"), save);
10293 *input_line_pointer = c;
10294 }
b9519cfe
L
10295 else if ((got_reloc == BFD_RELOC_386_PLT32
10296 || got_reloc == BFD_RELOC_X86_64_PLT32)
10297 && exp->X_op != O_symbol)
10298 {
10299 char c = *input_line_pointer;
10300 *input_line_pointer = 0;
10301 as_bad (_("invalid PLT expression `%s'"), save);
10302 *input_line_pointer = c;
10303 }
f3c180ae
AM
10304 }
10305 }
10306 else
10307 expression (exp);
ee86248c
JB
10308
10309 intel_syntax = -intel_syntax;
10310
10311 if (intel_syntax)
10312 i386_intel_simplify (exp);
62ebcb5c
AM
10313
10314 return got_reloc;
f3c180ae 10315}
f3c180ae 10316
9f32dd5b
L
10317static void
10318signed_cons (int size)
6482c264 10319{
d182319b
JB
10320 if (flag_code == CODE_64BIT)
10321 cons_sign = 1;
10322 cons (size);
10323 cons_sign = -1;
6482c264
NC
10324}
10325
d182319b 10326#ifdef TE_PE
6482c264 10327static void
7016a5d5 10328pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
10329{
10330 expressionS exp;
10331
10332 do
10333 {
10334 expression (&exp);
10335 if (exp.X_op == O_symbol)
10336 exp.X_op = O_secrel;
10337
10338 emit_expr (&exp, 4);
10339 }
10340 while (*input_line_pointer++ == ',');
10341
10342 input_line_pointer--;
10343 demand_empty_rest_of_line ();
10344}
6482c264
NC
10345#endif
10346
43234a1e
L
10347/* Handle Vector operations. */
10348
10349static char *
10350check_VecOperations (char *op_string, char *op_end)
10351{
10352 const reg_entry *mask;
10353 const char *saved;
10354 char *end_op;
10355
10356 while (*op_string
10357 && (op_end == NULL || op_string < op_end))
10358 {
10359 saved = op_string;
10360 if (*op_string == '{')
10361 {
10362 op_string++;
10363
10364 /* Check broadcasts. */
10365 if (strncmp (op_string, "1to", 3) == 0)
10366 {
10367 int bcst_type;
10368
10369 if (i.broadcast)
10370 goto duplicated_vec_op;
10371
10372 op_string += 3;
10373 if (*op_string == '8')
8e6e0792 10374 bcst_type = 8;
b28d1bda 10375 else if (*op_string == '4')
8e6e0792 10376 bcst_type = 4;
b28d1bda 10377 else if (*op_string == '2')
8e6e0792 10378 bcst_type = 2;
43234a1e
L
10379 else if (*op_string == '1'
10380 && *(op_string+1) == '6')
10381 {
8e6e0792 10382 bcst_type = 16;
43234a1e
L
10383 op_string++;
10384 }
10385 else
10386 {
10387 as_bad (_("Unsupported broadcast: `%s'"), saved);
10388 return NULL;
10389 }
10390 op_string++;
10391
10392 broadcast_op.type = bcst_type;
10393 broadcast_op.operand = this_operand;
1f75763a 10394 broadcast_op.bytes = 0;
43234a1e
L
10395 i.broadcast = &broadcast_op;
10396 }
10397 /* Check masking operation. */
10398 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10399 {
8a6fb3f9
JB
10400 if (mask == &bad_reg)
10401 return NULL;
10402
43234a1e 10403 /* k0 can't be used for write mask. */
f74a6307 10404 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 10405 {
6d2cd6b2
JB
10406 as_bad (_("`%s%s' can't be used for write mask"),
10407 register_prefix, mask->reg_name);
43234a1e
L
10408 return NULL;
10409 }
10410
10411 if (!i.mask)
10412 {
10413 mask_op.mask = mask;
10414 mask_op.zeroing = 0;
10415 mask_op.operand = this_operand;
10416 i.mask = &mask_op;
10417 }
10418 else
10419 {
10420 if (i.mask->mask)
10421 goto duplicated_vec_op;
10422
10423 i.mask->mask = mask;
10424
10425 /* Only "{z}" is allowed here. No need to check
10426 zeroing mask explicitly. */
10427 if (i.mask->operand != this_operand)
10428 {
10429 as_bad (_("invalid write mask `%s'"), saved);
10430 return NULL;
10431 }
10432 }
10433
10434 op_string = end_op;
10435 }
10436 /* Check zeroing-flag for masking operation. */
10437 else if (*op_string == 'z')
10438 {
10439 if (!i.mask)
10440 {
10441 mask_op.mask = NULL;
10442 mask_op.zeroing = 1;
10443 mask_op.operand = this_operand;
10444 i.mask = &mask_op;
10445 }
10446 else
10447 {
10448 if (i.mask->zeroing)
10449 {
10450 duplicated_vec_op:
10451 as_bad (_("duplicated `%s'"), saved);
10452 return NULL;
10453 }
10454
10455 i.mask->zeroing = 1;
10456
10457 /* Only "{%k}" is allowed here. No need to check mask
10458 register explicitly. */
10459 if (i.mask->operand != this_operand)
10460 {
10461 as_bad (_("invalid zeroing-masking `%s'"),
10462 saved);
10463 return NULL;
10464 }
10465 }
10466
10467 op_string++;
10468 }
10469 else
10470 goto unknown_vec_op;
10471
10472 if (*op_string != '}')
10473 {
10474 as_bad (_("missing `}' in `%s'"), saved);
10475 return NULL;
10476 }
10477 op_string++;
0ba3a731
L
10478
10479 /* Strip whitespace since the addition of pseudo prefixes
10480 changed how the scrubber treats '{'. */
10481 if (is_space_char (*op_string))
10482 ++op_string;
10483
43234a1e
L
10484 continue;
10485 }
10486 unknown_vec_op:
10487 /* We don't know this one. */
10488 as_bad (_("unknown vector operation: `%s'"), saved);
10489 return NULL;
10490 }
10491
6d2cd6b2
JB
10492 if (i.mask && i.mask->zeroing && !i.mask->mask)
10493 {
10494 as_bad (_("zeroing-masking only allowed with write mask"));
10495 return NULL;
10496 }
10497
43234a1e
L
10498 return op_string;
10499}
10500
252b5132 10501static int
70e41ade 10502i386_immediate (char *imm_start)
252b5132
RH
10503{
10504 char *save_input_line_pointer;
f3c180ae 10505 char *gotfree_input_line;
252b5132 10506 segT exp_seg = 0;
47926f60 10507 expressionS *exp;
40fb9820
L
10508 i386_operand_type types;
10509
0dfbf9d7 10510 operand_type_set (&types, ~0);
252b5132
RH
10511
10512 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10513 {
31b2323c
L
10514 as_bad (_("at most %d immediate operands are allowed"),
10515 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
10516 return 0;
10517 }
10518
10519 exp = &im_expressions[i.imm_operands++];
520dc8e8 10520 i.op[this_operand].imms = exp;
252b5132
RH
10521
10522 if (is_space_char (*imm_start))
10523 ++imm_start;
10524
10525 save_input_line_pointer = input_line_pointer;
10526 input_line_pointer = imm_start;
10527
d258b828 10528 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10529 if (gotfree_input_line)
10530 input_line_pointer = gotfree_input_line;
252b5132
RH
10531
10532 exp_seg = expression (exp);
10533
83183c0c 10534 SKIP_WHITESPACE ();
43234a1e
L
10535
10536 /* Handle vector operations. */
10537 if (*input_line_pointer == '{')
10538 {
10539 input_line_pointer = check_VecOperations (input_line_pointer,
10540 NULL);
10541 if (input_line_pointer == NULL)
10542 return 0;
10543 }
10544
252b5132 10545 if (*input_line_pointer)
f3c180ae 10546 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
10547
10548 input_line_pointer = save_input_line_pointer;
f3c180ae 10549 if (gotfree_input_line)
ee86248c
JB
10550 {
10551 free (gotfree_input_line);
10552
10553 if (exp->X_op == O_constant || exp->X_op == O_register)
10554 exp->X_op = O_illegal;
10555 }
10556
10557 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10558}
252b5132 10559
ee86248c
JB
10560static int
10561i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10562 i386_operand_type types, const char *imm_start)
10563{
10564 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 10565 {
313c53d1
L
10566 if (imm_start)
10567 as_bad (_("missing or invalid immediate expression `%s'"),
10568 imm_start);
3992d3b7 10569 return 0;
252b5132 10570 }
3e73aa7c 10571 else if (exp->X_op == O_constant)
252b5132 10572 {
47926f60 10573 /* Size it properly later. */
40fb9820 10574 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
10575 /* If not 64bit, sign extend val. */
10576 if (flag_code != CODE_64BIT
4eed87de
AM
10577 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10578 exp->X_add_number
10579 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 10580 }
4c63da97 10581#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 10582 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 10583 && exp_seg != absolute_section
47926f60 10584 && exp_seg != text_section
24eab124
AM
10585 && exp_seg != data_section
10586 && exp_seg != bss_section
10587 && exp_seg != undefined_section
f86103b7 10588 && !bfd_is_com_section (exp_seg))
252b5132 10589 {
d0b47220 10590 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
10591 return 0;
10592 }
10593#endif
a841bdf5 10594 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 10595 {
313c53d1
L
10596 if (imm_start)
10597 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
10598 return 0;
10599 }
252b5132
RH
10600 else
10601 {
10602 /* This is an address. The size of the address will be
24eab124 10603 determined later, depending on destination register,
3e73aa7c 10604 suffix, or the default for the section. */
40fb9820
L
10605 i.types[this_operand].bitfield.imm8 = 1;
10606 i.types[this_operand].bitfield.imm16 = 1;
10607 i.types[this_operand].bitfield.imm32 = 1;
10608 i.types[this_operand].bitfield.imm32s = 1;
10609 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
10610 i.types[this_operand] = operand_type_and (i.types[this_operand],
10611 types);
252b5132
RH
10612 }
10613
10614 return 1;
10615}
10616
551c1ca1 10617static char *
e3bb37b5 10618i386_scale (char *scale)
252b5132 10619{
551c1ca1
AM
10620 offsetT val;
10621 char *save = input_line_pointer;
252b5132 10622
551c1ca1
AM
10623 input_line_pointer = scale;
10624 val = get_absolute_expression ();
10625
10626 switch (val)
252b5132 10627 {
551c1ca1 10628 case 1:
252b5132
RH
10629 i.log2_scale_factor = 0;
10630 break;
551c1ca1 10631 case 2:
252b5132
RH
10632 i.log2_scale_factor = 1;
10633 break;
551c1ca1 10634 case 4:
252b5132
RH
10635 i.log2_scale_factor = 2;
10636 break;
551c1ca1 10637 case 8:
252b5132
RH
10638 i.log2_scale_factor = 3;
10639 break;
10640 default:
a724f0f4
JB
10641 {
10642 char sep = *input_line_pointer;
10643
10644 *input_line_pointer = '\0';
10645 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10646 scale);
10647 *input_line_pointer = sep;
10648 input_line_pointer = save;
10649 return NULL;
10650 }
252b5132 10651 }
29b0f896 10652 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
10653 {
10654 as_warn (_("scale factor of %d without an index register"),
24eab124 10655 1 << i.log2_scale_factor);
252b5132 10656 i.log2_scale_factor = 0;
252b5132 10657 }
551c1ca1
AM
10658 scale = input_line_pointer;
10659 input_line_pointer = save;
10660 return scale;
252b5132
RH
10661}
10662
252b5132 10663static int
e3bb37b5 10664i386_displacement (char *disp_start, char *disp_end)
252b5132 10665{
29b0f896 10666 expressionS *exp;
252b5132
RH
10667 segT exp_seg = 0;
10668 char *save_input_line_pointer;
f3c180ae 10669 char *gotfree_input_line;
40fb9820
L
10670 int override;
10671 i386_operand_type bigdisp, types = anydisp;
3992d3b7 10672 int ret;
252b5132 10673
31b2323c
L
10674 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10675 {
10676 as_bad (_("at most %d displacement operands are allowed"),
10677 MAX_MEMORY_OPERANDS);
10678 return 0;
10679 }
10680
0dfbf9d7 10681 operand_type_set (&bigdisp, 0);
6f2f06be 10682 if (i.jumpabsolute
48bcea9f 10683 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
10684 || (current_templates->start->opcode_modifier.jump != JUMP
10685 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 10686 {
48bcea9f 10687 i386_addressing_mode ();
e05278af 10688 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
10689 if (flag_code == CODE_64BIT)
10690 {
10691 if (!override)
10692 {
10693 bigdisp.bitfield.disp32s = 1;
10694 bigdisp.bitfield.disp64 = 1;
10695 }
48bcea9f
JB
10696 else
10697 bigdisp.bitfield.disp32 = 1;
40fb9820
L
10698 }
10699 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 10700 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
10701 else
10702 bigdisp.bitfield.disp32 = 1;
e05278af
JB
10703 }
10704 else
10705 {
376cd056
JB
10706 /* For PC-relative branches, the width of the displacement may be
10707 dependent upon data size, but is never dependent upon address size.
10708 Also make sure to not unintentionally match against a non-PC-relative
10709 branch template. */
10710 static templates aux_templates;
10711 const insn_template *t = current_templates->start;
10712 bfd_boolean has_intel64 = FALSE;
10713
10714 aux_templates.start = t;
10715 while (++t < current_templates->end)
10716 {
10717 if (t->opcode_modifier.jump
10718 != current_templates->start->opcode_modifier.jump)
10719 break;
4b5aaf5f 10720 if ((t->opcode_modifier.isa64 >= INTEL64))
376cd056
JB
10721 has_intel64 = TRUE;
10722 }
10723 if (t < current_templates->end)
10724 {
10725 aux_templates.end = t;
10726 current_templates = &aux_templates;
10727 }
10728
e05278af 10729 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
10730 if (flag_code == CODE_64BIT)
10731 {
376cd056
JB
10732 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10733 && (!intel64 || !has_intel64))
40fb9820
L
10734 bigdisp.bitfield.disp16 = 1;
10735 else
48bcea9f 10736 bigdisp.bitfield.disp32s = 1;
40fb9820
L
10737 }
10738 else
e05278af
JB
10739 {
10740 if (!override)
10741 override = (i.suffix == (flag_code != CODE_16BIT
10742 ? WORD_MNEM_SUFFIX
10743 : LONG_MNEM_SUFFIX));
40fb9820
L
10744 bigdisp.bitfield.disp32 = 1;
10745 if ((flag_code == CODE_16BIT) ^ override)
10746 {
10747 bigdisp.bitfield.disp32 = 0;
10748 bigdisp.bitfield.disp16 = 1;
10749 }
e05278af 10750 }
e05278af 10751 }
c6fb90c8
L
10752 i.types[this_operand] = operand_type_or (i.types[this_operand],
10753 bigdisp);
252b5132
RH
10754
10755 exp = &disp_expressions[i.disp_operands];
520dc8e8 10756 i.op[this_operand].disps = exp;
252b5132
RH
10757 i.disp_operands++;
10758 save_input_line_pointer = input_line_pointer;
10759 input_line_pointer = disp_start;
10760 END_STRING_AND_SAVE (disp_end);
10761
10762#ifndef GCC_ASM_O_HACK
10763#define GCC_ASM_O_HACK 0
10764#endif
10765#if GCC_ASM_O_HACK
10766 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10767 if (i.types[this_operand].bitfield.baseIndex
24eab124 10768 && displacement_string_end[-1] == '+')
252b5132
RH
10769 {
10770 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10771 constraint within gcc asm statements.
10772 For instance:
10773
10774 #define _set_tssldt_desc(n,addr,limit,type) \
10775 __asm__ __volatile__ ( \
10776 "movw %w2,%0\n\t" \
10777 "movw %w1,2+%0\n\t" \
10778 "rorl $16,%1\n\t" \
10779 "movb %b1,4+%0\n\t" \
10780 "movb %4,5+%0\n\t" \
10781 "movb $0,6+%0\n\t" \
10782 "movb %h1,7+%0\n\t" \
10783 "rorl $16,%1" \
10784 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10785
10786 This works great except that the output assembler ends
10787 up looking a bit weird if it turns out that there is
10788 no offset. You end up producing code that looks like:
10789
10790 #APP
10791 movw $235,(%eax)
10792 movw %dx,2+(%eax)
10793 rorl $16,%edx
10794 movb %dl,4+(%eax)
10795 movb $137,5+(%eax)
10796 movb $0,6+(%eax)
10797 movb %dh,7+(%eax)
10798 rorl $16,%edx
10799 #NO_APP
10800
47926f60 10801 So here we provide the missing zero. */
24eab124
AM
10802
10803 *displacement_string_end = '0';
252b5132
RH
10804 }
10805#endif
d258b828 10806 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10807 if (gotfree_input_line)
10808 input_line_pointer = gotfree_input_line;
252b5132 10809
24eab124 10810 exp_seg = expression (exp);
252b5132 10811
636c26b0
AM
10812 SKIP_WHITESPACE ();
10813 if (*input_line_pointer)
10814 as_bad (_("junk `%s' after expression"), input_line_pointer);
10815#if GCC_ASM_O_HACK
10816 RESTORE_END_STRING (disp_end + 1);
10817#endif
636c26b0 10818 input_line_pointer = save_input_line_pointer;
636c26b0 10819 if (gotfree_input_line)
ee86248c
JB
10820 {
10821 free (gotfree_input_line);
10822
10823 if (exp->X_op == O_constant || exp->X_op == O_register)
10824 exp->X_op = O_illegal;
10825 }
10826
10827 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10828
10829 RESTORE_END_STRING (disp_end);
10830
10831 return ret;
10832}
10833
10834static int
10835i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10836 i386_operand_type types, const char *disp_start)
10837{
10838 i386_operand_type bigdisp;
10839 int ret = 1;
636c26b0 10840
24eab124
AM
10841 /* We do this to make sure that the section symbol is in
10842 the symbol table. We will ultimately change the relocation
47926f60 10843 to be relative to the beginning of the section. */
1ae12ab7 10844 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10845 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10846 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10847 {
636c26b0 10848 if (exp->X_op != O_symbol)
3992d3b7 10849 goto inv_disp;
636c26b0 10850
e5cb08ac 10851 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10852 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10853 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10854 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10855 exp->X_op = O_subtract;
10856 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10857 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10858 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10859 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10860 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10861 else
29b0f896 10862 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10863 }
252b5132 10864
3992d3b7
AM
10865 else if (exp->X_op == O_absent
10866 || exp->X_op == O_illegal
ee86248c 10867 || exp->X_op == O_big)
2daf4fd8 10868 {
3992d3b7
AM
10869 inv_disp:
10870 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10871 disp_start);
3992d3b7 10872 ret = 0;
2daf4fd8
AM
10873 }
10874
0e1147d9
L
10875 else if (flag_code == CODE_64BIT
10876 && !i.prefix[ADDR_PREFIX]
10877 && exp->X_op == O_constant)
10878 {
10879 /* Since displacement is signed extended to 64bit, don't allow
10880 disp32 and turn off disp32s if they are out of range. */
10881 i.types[this_operand].bitfield.disp32 = 0;
10882 if (!fits_in_signed_long (exp->X_add_number))
10883 {
10884 i.types[this_operand].bitfield.disp32s = 0;
10885 if (i.types[this_operand].bitfield.baseindex)
10886 {
10887 as_bad (_("0x%lx out range of signed 32bit displacement"),
10888 (long) exp->X_add_number);
10889 ret = 0;
10890 }
10891 }
10892 }
10893
4c63da97 10894#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10895 else if (exp->X_op != O_constant
10896 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10897 && exp_seg != absolute_section
10898 && exp_seg != text_section
10899 && exp_seg != data_section
10900 && exp_seg != bss_section
10901 && exp_seg != undefined_section
10902 && !bfd_is_com_section (exp_seg))
24eab124 10903 {
d0b47220 10904 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10905 ret = 0;
24eab124 10906 }
252b5132 10907#endif
3956db08 10908
48bcea9f
JB
10909 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10910 /* Constants get taken care of by optimize_disp(). */
10911 && exp->X_op != O_constant)
10912 i.types[this_operand].bitfield.disp8 = 1;
10913
40fb9820
L
10914 /* Check if this is a displacement only operand. */
10915 bigdisp = i.types[this_operand];
10916 bigdisp.bitfield.disp8 = 0;
10917 bigdisp.bitfield.disp16 = 0;
10918 bigdisp.bitfield.disp32 = 0;
10919 bigdisp.bitfield.disp32s = 0;
10920 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10921 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10922 i.types[this_operand] = operand_type_and (i.types[this_operand],
10923 types);
3956db08 10924
3992d3b7 10925 return ret;
252b5132
RH
10926}
10927
2abc2bec
JB
10928/* Return the active addressing mode, taking address override and
10929 registers forming the address into consideration. Update the
10930 address override prefix if necessary. */
47926f60 10931
2abc2bec
JB
10932static enum flag_code
10933i386_addressing_mode (void)
252b5132 10934{
be05d201
L
10935 enum flag_code addr_mode;
10936
10937 if (i.prefix[ADDR_PREFIX])
10938 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
a23b33b3
JB
10939 else if (flag_code == CODE_16BIT
10940 && current_templates->start->cpu_flags.bitfield.cpumpx
10941 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10942 from md_assemble() by "is not a valid base/index expression"
10943 when there is a base and/or index. */
10944 && !i.types[this_operand].bitfield.baseindex)
10945 {
10946 /* MPX insn memory operands with neither base nor index must be forced
10947 to use 32-bit addressing in 16-bit mode. */
10948 addr_mode = CODE_32BIT;
10949 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10950 ++i.prefixes;
10951 gas_assert (!i.types[this_operand].bitfield.disp16);
10952 gas_assert (!i.types[this_operand].bitfield.disp32);
10953 }
be05d201
L
10954 else
10955 {
10956 addr_mode = flag_code;
10957
24eab124 10958#if INFER_ADDR_PREFIX
be05d201
L
10959 if (i.mem_operands == 0)
10960 {
10961 /* Infer address prefix from the first memory operand. */
10962 const reg_entry *addr_reg = i.base_reg;
10963
10964 if (addr_reg == NULL)
10965 addr_reg = i.index_reg;
eecb386c 10966
be05d201
L
10967 if (addr_reg)
10968 {
e968fc9b 10969 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10970 addr_mode = CODE_32BIT;
10971 else if (flag_code != CODE_64BIT
dc821c5f 10972 && addr_reg->reg_type.bitfield.word)
be05d201
L
10973 addr_mode = CODE_16BIT;
10974
10975 if (addr_mode != flag_code)
10976 {
10977 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10978 i.prefixes += 1;
10979 /* Change the size of any displacement too. At most one
10980 of Disp16 or Disp32 is set.
10981 FIXME. There doesn't seem to be any real need for
10982 separate Disp16 and Disp32 flags. The same goes for
10983 Imm16 and Imm32. Removing them would probably clean
10984 up the code quite a lot. */
10985 if (flag_code != CODE_64BIT
10986 && (i.types[this_operand].bitfield.disp16
10987 || i.types[this_operand].bitfield.disp32))
10988 i.types[this_operand]
10989 = operand_type_xor (i.types[this_operand], disp16_32);
10990 }
10991 }
10992 }
24eab124 10993#endif
be05d201
L
10994 }
10995
2abc2bec
JB
10996 return addr_mode;
10997}
10998
10999/* Make sure the memory operand we've been dealt is valid.
11000 Return 1 on success, 0 on a failure. */
11001
11002static int
11003i386_index_check (const char *operand_string)
11004{
11005 const char *kind = "base/index";
11006 enum flag_code addr_mode = i386_addressing_mode ();
a152332d 11007 const insn_template *t = current_templates->start;
2abc2bec 11008
a152332d
JB
11009 if (t->opcode_modifier.isstring
11010 && !t->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
11011 && (current_templates->end[-1].opcode_modifier.isstring
11012 || i.mem_operands))
11013 {
11014 /* Memory operands of string insns are special in that they only allow
11015 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
11016 const reg_entry *expected_reg;
11017 static const char *di_si[][2] =
11018 {
11019 { "esi", "edi" },
11020 { "si", "di" },
11021 { "rsi", "rdi" }
11022 };
11023 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
11024
11025 kind = "string address";
11026
a152332d 11027 if (t->opcode_modifier.prefixok == PrefixRep)
fc0763e6 11028 {
51c8edf6
JB
11029 int es_op = current_templates->end[-1].opcode_modifier.isstring
11030 - IS_STRING_ES_OP0;
11031 int op = 0;
fc0763e6 11032
51c8edf6 11033 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
11034 || ((!i.mem_operands != !intel_syntax)
11035 && current_templates->end[-1].operand_types[1]
11036 .bitfield.baseindex))
51c8edf6 11037 op = 1;
fe0e921f
AM
11038 expected_reg
11039 = (const reg_entry *) str_hash_find (reg_hash,
11040 di_si[addr_mode][op == es_op]);
fc0763e6
JB
11041 }
11042 else
fe0e921f
AM
11043 expected_reg
11044 = (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]);
fc0763e6 11045
be05d201
L
11046 if (i.base_reg != expected_reg
11047 || i.index_reg
fc0763e6 11048 || operand_type_check (i.types[this_operand], disp))
fc0763e6 11049 {
be05d201
L
11050 /* The second memory operand must have the same size as
11051 the first one. */
11052 if (i.mem_operands
11053 && i.base_reg
11054 && !((addr_mode == CODE_64BIT
dc821c5f 11055 && i.base_reg->reg_type.bitfield.qword)
be05d201 11056 || (addr_mode == CODE_32BIT
dc821c5f
JB
11057 ? i.base_reg->reg_type.bitfield.dword
11058 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
11059 goto bad_address;
11060
fc0763e6
JB
11061 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
11062 operand_string,
11063 intel_syntax ? '[' : '(',
11064 register_prefix,
be05d201 11065 expected_reg->reg_name,
fc0763e6 11066 intel_syntax ? ']' : ')');
be05d201 11067 return 1;
fc0763e6 11068 }
be05d201
L
11069 else
11070 return 1;
11071
dc1e8a47 11072 bad_address:
be05d201
L
11073 as_bad (_("`%s' is not a valid %s expression"),
11074 operand_string, kind);
11075 return 0;
3e73aa7c
JH
11076 }
11077 else
11078 {
be05d201
L
11079 if (addr_mode != CODE_16BIT)
11080 {
11081 /* 32-bit/64-bit checks. */
41eb8e88
L
11082 if (i.disp_encoding == disp_encoding_16bit)
11083 {
11084 bad_disp:
11085 as_bad (_("invalid `%s' prefix"),
11086 addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}");
11087 return 0;
11088 }
11089
be05d201 11090 if ((i.base_reg
e968fc9b
JB
11091 && ((addr_mode == CODE_64BIT
11092 ? !i.base_reg->reg_type.bitfield.qword
11093 : !i.base_reg->reg_type.bitfield.dword)
11094 || (i.index_reg && i.base_reg->reg_num == RegIP)
11095 || i.base_reg->reg_num == RegIZ))
be05d201 11096 || (i.index_reg
1b54b8d7
JB
11097 && !i.index_reg->reg_type.bitfield.xmmword
11098 && !i.index_reg->reg_type.bitfield.ymmword
11099 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 11100 && ((addr_mode == CODE_64BIT
e968fc9b
JB
11101 ? !i.index_reg->reg_type.bitfield.qword
11102 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
11103 || !i.index_reg->reg_type.bitfield.baseindex)))
11104 goto bad_address;
8178be5b 11105
260cd341 11106 /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
a152332d
JB
11107 if ((t->opcode_modifier.opcodeprefix == PREFIX_0XF3
11108 && t->base_opcode == 0x0f1b)
11109 || (t->opcode_modifier.opcodeprefix == PREFIX_NONE
11110 && (t->base_opcode & ~1) == 0x0f1a)
11111 || t->opcode_modifier.sib == SIBMEM)
8178be5b
JB
11112 {
11113 /* They cannot use RIP-relative addressing. */
e968fc9b 11114 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
11115 {
11116 as_bad (_("`%s' cannot be used here"), operand_string);
11117 return 0;
11118 }
11119
11120 /* bndldx and bndstx ignore their scale factor. */
a152332d
JB
11121 if (t->opcode_modifier.opcodeprefix == PREFIX_NONE
11122 && (t->base_opcode & ~1) == 0x0f1a
8178be5b
JB
11123 && i.log2_scale_factor)
11124 as_warn (_("register scaling is being ignored here"));
11125 }
be05d201
L
11126 }
11127 else
3e73aa7c 11128 {
be05d201 11129 /* 16-bit checks. */
41eb8e88
L
11130 if (i.disp_encoding == disp_encoding_32bit)
11131 goto bad_disp;
11132
3e73aa7c 11133 if ((i.base_reg
dc821c5f 11134 && (!i.base_reg->reg_type.bitfield.word
40fb9820 11135 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 11136 || (i.index_reg
dc821c5f 11137 && (!i.index_reg->reg_type.bitfield.word
40fb9820 11138 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
11139 || !(i.base_reg
11140 && i.base_reg->reg_num < 6
11141 && i.index_reg->reg_num >= 6
11142 && i.log2_scale_factor == 0))))
be05d201 11143 goto bad_address;
3e73aa7c
JH
11144 }
11145 }
be05d201 11146 return 1;
24eab124 11147}
252b5132 11148
43234a1e
L
11149/* Handle vector immediates. */
11150
11151static int
11152RC_SAE_immediate (const char *imm_start)
11153{
11154 unsigned int match_found, j;
11155 const char *pstr = imm_start;
11156 expressionS *exp;
11157
11158 if (*pstr != '{')
11159 return 0;
11160
11161 pstr++;
11162 match_found = 0;
11163 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
11164 {
11165 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
11166 {
11167 if (!i.rounding)
11168 {
11169 rc_op.type = RC_NamesTable[j].type;
11170 rc_op.operand = this_operand;
11171 i.rounding = &rc_op;
11172 }
11173 else
11174 {
11175 as_bad (_("duplicated `%s'"), imm_start);
11176 return 0;
11177 }
11178 pstr += RC_NamesTable[j].len;
11179 match_found = 1;
11180 break;
11181 }
11182 }
11183 if (!match_found)
11184 return 0;
11185
11186 if (*pstr++ != '}')
11187 {
11188 as_bad (_("Missing '}': '%s'"), imm_start);
11189 return 0;
11190 }
11191 /* RC/SAE immediate string should contain nothing more. */;
11192 if (*pstr != 0)
11193 {
11194 as_bad (_("Junk after '}': '%s'"), imm_start);
11195 return 0;
11196 }
11197
11198 exp = &im_expressions[i.imm_operands++];
11199 i.op[this_operand].imms = exp;
11200
11201 exp->X_op = O_constant;
11202 exp->X_add_number = 0;
11203 exp->X_add_symbol = (symbolS *) 0;
11204 exp->X_op_symbol = (symbolS *) 0;
11205
11206 i.types[this_operand].bitfield.imm8 = 1;
11207 return 1;
11208}
11209
8325cc63
JB
11210/* Only string instructions can have a second memory operand, so
11211 reduce current_templates to just those if it contains any. */
11212static int
11213maybe_adjust_templates (void)
11214{
11215 const insn_template *t;
11216
11217 gas_assert (i.mem_operands == 1);
11218
11219 for (t = current_templates->start; t < current_templates->end; ++t)
11220 if (t->opcode_modifier.isstring)
11221 break;
11222
11223 if (t < current_templates->end)
11224 {
11225 static templates aux_templates;
11226 bfd_boolean recheck;
11227
11228 aux_templates.start = t;
11229 for (; t < current_templates->end; ++t)
11230 if (!t->opcode_modifier.isstring)
11231 break;
11232 aux_templates.end = t;
11233
11234 /* Determine whether to re-check the first memory operand. */
11235 recheck = (aux_templates.start != current_templates->start
11236 || t != current_templates->end);
11237
11238 current_templates = &aux_templates;
11239
11240 if (recheck)
11241 {
11242 i.mem_operands = 0;
11243 if (i.memop1_string != NULL
11244 && i386_index_check (i.memop1_string) == 0)
11245 return 0;
11246 i.mem_operands = 1;
11247 }
11248 }
11249
11250 return 1;
11251}
11252
fc0763e6 11253/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 11254 on error. */
252b5132 11255
252b5132 11256static int
a7619375 11257i386_att_operand (char *operand_string)
252b5132 11258{
af6bdddf
AM
11259 const reg_entry *r;
11260 char *end_op;
24eab124 11261 char *op_string = operand_string;
252b5132 11262
24eab124 11263 if (is_space_char (*op_string))
252b5132
RH
11264 ++op_string;
11265
24eab124 11266 /* We check for an absolute prefix (differentiating,
47926f60 11267 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
11268 if (*op_string == ABSOLUTE_PREFIX)
11269 {
11270 ++op_string;
11271 if (is_space_char (*op_string))
11272 ++op_string;
6f2f06be 11273 i.jumpabsolute = TRUE;
24eab124 11274 }
252b5132 11275
47926f60 11276 /* Check if operand is a register. */
4d1bb795 11277 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 11278 {
40fb9820
L
11279 i386_operand_type temp;
11280
8a6fb3f9
JB
11281 if (r == &bad_reg)
11282 return 0;
11283
24eab124
AM
11284 /* Check for a segment override by searching for ':' after a
11285 segment register. */
11286 op_string = end_op;
11287 if (is_space_char (*op_string))
11288 ++op_string;
00cee14f 11289 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
11290 {
11291 switch (r->reg_num)
11292 {
11293 case 0:
11294 i.seg[i.mem_operands] = &es;
11295 break;
11296 case 1:
11297 i.seg[i.mem_operands] = &cs;
11298 break;
11299 case 2:
11300 i.seg[i.mem_operands] = &ss;
11301 break;
11302 case 3:
11303 i.seg[i.mem_operands] = &ds;
11304 break;
11305 case 4:
11306 i.seg[i.mem_operands] = &fs;
11307 break;
11308 case 5:
11309 i.seg[i.mem_operands] = &gs;
11310 break;
11311 }
252b5132 11312
24eab124 11313 /* Skip the ':' and whitespace. */
252b5132
RH
11314 ++op_string;
11315 if (is_space_char (*op_string))
24eab124 11316 ++op_string;
252b5132 11317
24eab124
AM
11318 if (!is_digit_char (*op_string)
11319 && !is_identifier_char (*op_string)
11320 && *op_string != '('
11321 && *op_string != ABSOLUTE_PREFIX)
11322 {
11323 as_bad (_("bad memory operand `%s'"), op_string);
11324 return 0;
11325 }
47926f60 11326 /* Handle case of %es:*foo. */
24eab124
AM
11327 if (*op_string == ABSOLUTE_PREFIX)
11328 {
11329 ++op_string;
11330 if (is_space_char (*op_string))
11331 ++op_string;
6f2f06be 11332 i.jumpabsolute = TRUE;
24eab124
AM
11333 }
11334 goto do_memory_reference;
11335 }
43234a1e
L
11336
11337 /* Handle vector operations. */
11338 if (*op_string == '{')
11339 {
11340 op_string = check_VecOperations (op_string, NULL);
11341 if (op_string == NULL)
11342 return 0;
11343 }
11344
24eab124
AM
11345 if (*op_string)
11346 {
d0b47220 11347 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
11348 return 0;
11349 }
40fb9820
L
11350 temp = r->reg_type;
11351 temp.bitfield.baseindex = 0;
c6fb90c8
L
11352 i.types[this_operand] = operand_type_or (i.types[this_operand],
11353 temp);
7d5e4556 11354 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 11355 i.op[this_operand].regs = r;
24eab124
AM
11356 i.reg_operands++;
11357 }
af6bdddf
AM
11358 else if (*op_string == REGISTER_PREFIX)
11359 {
11360 as_bad (_("bad register name `%s'"), op_string);
11361 return 0;
11362 }
24eab124 11363 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 11364 {
24eab124 11365 ++op_string;
6f2f06be 11366 if (i.jumpabsolute)
24eab124 11367 {
d0b47220 11368 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
11369 return 0;
11370 }
11371 if (!i386_immediate (op_string))
11372 return 0;
11373 }
43234a1e
L
11374 else if (RC_SAE_immediate (operand_string))
11375 {
11376 /* If it is a RC or SAE immediate, do nothing. */
11377 ;
11378 }
24eab124
AM
11379 else if (is_digit_char (*op_string)
11380 || is_identifier_char (*op_string)
d02603dc 11381 || *op_string == '"'
e5cb08ac 11382 || *op_string == '(')
24eab124 11383 {
47926f60 11384 /* This is a memory reference of some sort. */
af6bdddf 11385 char *base_string;
252b5132 11386
47926f60 11387 /* Start and end of displacement string expression (if found). */
eecb386c
AM
11388 char *displacement_string_start;
11389 char *displacement_string_end;
43234a1e 11390 char *vop_start;
252b5132 11391
24eab124 11392 do_memory_reference:
8325cc63
JB
11393 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11394 return 0;
24eab124 11395 if ((i.mem_operands == 1
40fb9820 11396 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
11397 || i.mem_operands == 2)
11398 {
11399 as_bad (_("too many memory references for `%s'"),
11400 current_templates->start->name);
11401 return 0;
11402 }
252b5132 11403
24eab124
AM
11404 /* Check for base index form. We detect the base index form by
11405 looking for an ')' at the end of the operand, searching
11406 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11407 after the '('. */
af6bdddf 11408 base_string = op_string + strlen (op_string);
c3332e24 11409
43234a1e
L
11410 /* Handle vector operations. */
11411 vop_start = strchr (op_string, '{');
11412 if (vop_start && vop_start < base_string)
11413 {
11414 if (check_VecOperations (vop_start, base_string) == NULL)
11415 return 0;
11416 base_string = vop_start;
11417 }
11418
af6bdddf
AM
11419 --base_string;
11420 if (is_space_char (*base_string))
11421 --base_string;
252b5132 11422
47926f60 11423 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
11424 displacement_string_start = op_string;
11425 displacement_string_end = base_string + 1;
252b5132 11426
24eab124
AM
11427 if (*base_string == ')')
11428 {
af6bdddf 11429 char *temp_string;
24eab124
AM
11430 unsigned int parens_balanced = 1;
11431 /* We've already checked that the number of left & right ()'s are
47926f60 11432 equal, so this loop will not be infinite. */
24eab124
AM
11433 do
11434 {
11435 base_string--;
11436 if (*base_string == ')')
11437 parens_balanced++;
11438 if (*base_string == '(')
11439 parens_balanced--;
11440 }
11441 while (parens_balanced);
c3332e24 11442
af6bdddf 11443 temp_string = base_string;
c3332e24 11444
24eab124 11445 /* Skip past '(' and whitespace. */
252b5132
RH
11446 ++base_string;
11447 if (is_space_char (*base_string))
24eab124 11448 ++base_string;
252b5132 11449
af6bdddf 11450 if (*base_string == ','
4eed87de
AM
11451 || ((i.base_reg = parse_register (base_string, &end_op))
11452 != NULL))
252b5132 11453 {
af6bdddf 11454 displacement_string_end = temp_string;
252b5132 11455
40fb9820 11456 i.types[this_operand].bitfield.baseindex = 1;
252b5132 11457
af6bdddf 11458 if (i.base_reg)
24eab124 11459 {
8a6fb3f9
JB
11460 if (i.base_reg == &bad_reg)
11461 return 0;
24eab124
AM
11462 base_string = end_op;
11463 if (is_space_char (*base_string))
11464 ++base_string;
af6bdddf
AM
11465 }
11466
11467 /* There may be an index reg or scale factor here. */
11468 if (*base_string == ',')
11469 {
11470 ++base_string;
11471 if (is_space_char (*base_string))
11472 ++base_string;
11473
4eed87de
AM
11474 if ((i.index_reg = parse_register (base_string, &end_op))
11475 != NULL)
24eab124 11476 {
8a6fb3f9
JB
11477 if (i.index_reg == &bad_reg)
11478 return 0;
af6bdddf 11479 base_string = end_op;
24eab124
AM
11480 if (is_space_char (*base_string))
11481 ++base_string;
af6bdddf
AM
11482 if (*base_string == ',')
11483 {
11484 ++base_string;
11485 if (is_space_char (*base_string))
11486 ++base_string;
11487 }
e5cb08ac 11488 else if (*base_string != ')')
af6bdddf 11489 {
4eed87de
AM
11490 as_bad (_("expecting `,' or `)' "
11491 "after index register in `%s'"),
af6bdddf
AM
11492 operand_string);
11493 return 0;
11494 }
24eab124 11495 }
af6bdddf 11496 else if (*base_string == REGISTER_PREFIX)
24eab124 11497 {
f76bf5e0
L
11498 end_op = strchr (base_string, ',');
11499 if (end_op)
11500 *end_op = '\0';
af6bdddf 11501 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
11502 return 0;
11503 }
252b5132 11504
47926f60 11505 /* Check for scale factor. */
551c1ca1 11506 if (*base_string != ')')
af6bdddf 11507 {
551c1ca1
AM
11508 char *end_scale = i386_scale (base_string);
11509
11510 if (!end_scale)
af6bdddf 11511 return 0;
24eab124 11512
551c1ca1 11513 base_string = end_scale;
af6bdddf
AM
11514 if (is_space_char (*base_string))
11515 ++base_string;
11516 if (*base_string != ')')
11517 {
4eed87de
AM
11518 as_bad (_("expecting `)' "
11519 "after scale factor in `%s'"),
af6bdddf
AM
11520 operand_string);
11521 return 0;
11522 }
11523 }
11524 else if (!i.index_reg)
24eab124 11525 {
4eed87de
AM
11526 as_bad (_("expecting index register or scale factor "
11527 "after `,'; got '%c'"),
af6bdddf 11528 *base_string);
24eab124
AM
11529 return 0;
11530 }
11531 }
af6bdddf 11532 else if (*base_string != ')')
24eab124 11533 {
4eed87de
AM
11534 as_bad (_("expecting `,' or `)' "
11535 "after base register in `%s'"),
af6bdddf 11536 operand_string);
24eab124
AM
11537 return 0;
11538 }
c3332e24 11539 }
af6bdddf 11540 else if (*base_string == REGISTER_PREFIX)
c3332e24 11541 {
f76bf5e0
L
11542 end_op = strchr (base_string, ',');
11543 if (end_op)
11544 *end_op = '\0';
af6bdddf 11545 as_bad (_("bad register name `%s'"), base_string);
24eab124 11546 return 0;
c3332e24 11547 }
24eab124
AM
11548 }
11549
11550 /* If there's an expression beginning the operand, parse it,
11551 assuming displacement_string_start and
11552 displacement_string_end are meaningful. */
11553 if (displacement_string_start != displacement_string_end)
11554 {
11555 if (!i386_displacement (displacement_string_start,
11556 displacement_string_end))
11557 return 0;
11558 }
11559
11560 /* Special case for (%dx) while doing input/output op. */
11561 if (i.base_reg
75e5731b
JB
11562 && i.base_reg->reg_type.bitfield.instance == RegD
11563 && i.base_reg->reg_type.bitfield.word
24eab124
AM
11564 && i.index_reg == 0
11565 && i.log2_scale_factor == 0
11566 && i.seg[i.mem_operands] == 0
40fb9820 11567 && !operand_type_check (i.types[this_operand], disp))
24eab124 11568 {
2fb5be8d 11569 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
11570 return 1;
11571 }
11572
eecb386c
AM
11573 if (i386_index_check (operand_string) == 0)
11574 return 0;
c48dadc9 11575 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
11576 if (i.mem_operands == 0)
11577 i.memop1_string = xstrdup (operand_string);
24eab124
AM
11578 i.mem_operands++;
11579 }
11580 else
ce8a8b2f
AM
11581 {
11582 /* It's not a memory operand; argh! */
24eab124
AM
11583 as_bad (_("invalid char %s beginning operand %d `%s'"),
11584 output_invalid (*op_string),
11585 this_operand + 1,
11586 op_string);
11587 return 0;
11588 }
47926f60 11589 return 1; /* Normal return. */
252b5132
RH
11590}
11591\f
fa94de6b
RM
11592/* Calculate the maximum variable size (i.e., excluding fr_fix)
11593 that an rs_machine_dependent frag may reach. */
11594
11595unsigned int
11596i386_frag_max_var (fragS *frag)
11597{
11598 /* The only relaxable frags are for jumps.
11599 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11600 gas_assert (frag->fr_type == rs_machine_dependent);
11601 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11602}
11603
b084df0b
L
11604#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11605static int
8dcea932 11606elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
11607{
11608 /* STT_GNU_IFUNC symbol must go through PLT. */
11609 if ((symbol_get_bfdsym (fr_symbol)->flags
11610 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11611 return 0;
11612
11613 if (!S_IS_EXTERNAL (fr_symbol))
11614 /* Symbol may be weak or local. */
11615 return !S_IS_WEAK (fr_symbol);
11616
8dcea932
L
11617 /* Global symbols with non-default visibility can't be preempted. */
11618 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11619 return 1;
11620
11621 if (fr_var != NO_RELOC)
11622 switch ((enum bfd_reloc_code_real) fr_var)
11623 {
11624 case BFD_RELOC_386_PLT32:
11625 case BFD_RELOC_X86_64_PLT32:
33eaf5de 11626 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
11627 return 0;
11628 default:
11629 abort ();
11630 }
11631
b084df0b
L
11632 /* Global symbols with default visibility in a shared library may be
11633 preempted by another definition. */
8dcea932 11634 return !shared;
b084df0b
L
11635}
11636#endif
11637
79d72f45
HL
11638/* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11639 Note also work for Skylake and Cascadelake.
11640---------------------------------------------------------------------
11641| JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11642| ------ | ----------- | ------- | -------- |
11643| Jo | N | N | Y |
11644| Jno | N | N | Y |
11645| Jc/Jb | Y | N | Y |
11646| Jae/Jnb | Y | N | Y |
11647| Je/Jz | Y | Y | Y |
11648| Jne/Jnz | Y | Y | Y |
11649| Jna/Jbe | Y | N | Y |
11650| Ja/Jnbe | Y | N | Y |
11651| Js | N | N | Y |
11652| Jns | N | N | Y |
11653| Jp/Jpe | N | N | Y |
11654| Jnp/Jpo | N | N | Y |
11655| Jl/Jnge | Y | Y | Y |
11656| Jge/Jnl | Y | Y | Y |
11657| Jle/Jng | Y | Y | Y |
11658| Jg/Jnle | Y | Y | Y |
11659--------------------------------------------------------------------- */
11660static int
11661i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11662{
11663 if (mf_cmp == mf_cmp_alu_cmp)
11664 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11665 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11666 if (mf_cmp == mf_cmp_incdec)
11667 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11668 || mf_jcc == mf_jcc_jle);
11669 if (mf_cmp == mf_cmp_test_and)
11670 return 1;
11671 return 0;
11672}
11673
e379e5f3
L
11674/* Return the next non-empty frag. */
11675
11676static fragS *
11677i386_next_non_empty_frag (fragS *fragP)
11678{
11679 /* There may be a frag with a ".fill 0" when there is no room in
11680 the current frag for frag_grow in output_insn. */
11681 for (fragP = fragP->fr_next;
11682 (fragP != NULL
11683 && fragP->fr_type == rs_fill
11684 && fragP->fr_fix == 0);
11685 fragP = fragP->fr_next)
11686 ;
11687 return fragP;
11688}
11689
11690/* Return the next jcc frag after BRANCH_PADDING. */
11691
11692static fragS *
79d72f45 11693i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
e379e5f3 11694{
79d72f45
HL
11695 fragS *branch_fragP;
11696 if (!pad_fragP)
e379e5f3
L
11697 return NULL;
11698
79d72f45
HL
11699 if (pad_fragP->fr_type == rs_machine_dependent
11700 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
e379e5f3
L
11701 == BRANCH_PADDING))
11702 {
79d72f45
HL
11703 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11704 if (branch_fragP->fr_type != rs_machine_dependent)
e379e5f3 11705 return NULL;
79d72f45
HL
11706 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11707 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11708 pad_fragP->tc_frag_data.mf_type))
11709 return branch_fragP;
e379e5f3
L
11710 }
11711
11712 return NULL;
11713}
11714
11715/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11716
11717static void
11718i386_classify_machine_dependent_frag (fragS *fragP)
11719{
11720 fragS *cmp_fragP;
11721 fragS *pad_fragP;
11722 fragS *branch_fragP;
11723 fragS *next_fragP;
11724 unsigned int max_prefix_length;
11725
11726 if (fragP->tc_frag_data.classified)
11727 return;
11728
11729 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11730 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11731 for (next_fragP = fragP;
11732 next_fragP != NULL;
11733 next_fragP = next_fragP->fr_next)
11734 {
11735 next_fragP->tc_frag_data.classified = 1;
11736 if (next_fragP->fr_type == rs_machine_dependent)
11737 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11738 {
11739 case BRANCH_PADDING:
11740 /* The BRANCH_PADDING frag must be followed by a branch
11741 frag. */
11742 branch_fragP = i386_next_non_empty_frag (next_fragP);
11743 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11744 break;
11745 case FUSED_JCC_PADDING:
11746 /* Check if this is a fused jcc:
11747 FUSED_JCC_PADDING
11748 CMP like instruction
11749 BRANCH_PADDING
11750 COND_JUMP
11751 */
11752 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11753 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
79d72f45 11754 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
e379e5f3
L
11755 if (branch_fragP)
11756 {
11757 /* The BRANCH_PADDING frag is merged with the
11758 FUSED_JCC_PADDING frag. */
11759 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11760 /* CMP like instruction size. */
11761 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11762 frag_wane (pad_fragP);
11763 /* Skip to branch_fragP. */
11764 next_fragP = branch_fragP;
11765 }
11766 else if (next_fragP->tc_frag_data.max_prefix_length)
11767 {
11768 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11769 a fused jcc. */
11770 next_fragP->fr_subtype
11771 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11772 next_fragP->tc_frag_data.max_bytes
11773 = next_fragP->tc_frag_data.max_prefix_length;
11774 /* This will be updated in the BRANCH_PREFIX scan. */
11775 next_fragP->tc_frag_data.max_prefix_length = 0;
11776 }
11777 else
11778 frag_wane (next_fragP);
11779 break;
11780 }
11781 }
11782
11783 /* Stop if there is no BRANCH_PREFIX. */
11784 if (!align_branch_prefix_size)
11785 return;
11786
11787 /* Scan for BRANCH_PREFIX. */
11788 for (; fragP != NULL; fragP = fragP->fr_next)
11789 {
11790 if (fragP->fr_type != rs_machine_dependent
11791 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11792 != BRANCH_PREFIX))
11793 continue;
11794
11795 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11796 COND_JUMP_PREFIX. */
11797 max_prefix_length = 0;
11798 for (next_fragP = fragP;
11799 next_fragP != NULL;
11800 next_fragP = next_fragP->fr_next)
11801 {
11802 if (next_fragP->fr_type == rs_fill)
11803 /* Skip rs_fill frags. */
11804 continue;
11805 else if (next_fragP->fr_type != rs_machine_dependent)
11806 /* Stop for all other frags. */
11807 break;
11808
11809 /* rs_machine_dependent frags. */
11810 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11811 == BRANCH_PREFIX)
11812 {
11813 /* Count BRANCH_PREFIX frags. */
11814 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11815 {
11816 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11817 frag_wane (next_fragP);
11818 }
11819 else
11820 max_prefix_length
11821 += next_fragP->tc_frag_data.max_bytes;
11822 }
11823 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11824 == BRANCH_PADDING)
11825 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11826 == FUSED_JCC_PADDING))
11827 {
11828 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11829 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11830 break;
11831 }
11832 else
11833 /* Stop for other rs_machine_dependent frags. */
11834 break;
11835 }
11836
11837 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11838
11839 /* Skip to the next frag. */
11840 fragP = next_fragP;
11841 }
11842}
11843
11844/* Compute padding size for
11845
11846 FUSED_JCC_PADDING
11847 CMP like instruction
11848 BRANCH_PADDING
11849 COND_JUMP/UNCOND_JUMP
11850
11851 or
11852
11853 BRANCH_PADDING
11854 COND_JUMP/UNCOND_JUMP
11855 */
11856
11857static int
11858i386_branch_padding_size (fragS *fragP, offsetT address)
11859{
11860 unsigned int offset, size, padding_size;
11861 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11862
11863 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11864 if (!address)
11865 address = fragP->fr_address;
11866 address += fragP->fr_fix;
11867
11868 /* CMP like instrunction size. */
11869 size = fragP->tc_frag_data.cmp_size;
11870
11871 /* The base size of the branch frag. */
11872 size += branch_fragP->fr_fix;
11873
11874 /* Add opcode and displacement bytes for the rs_machine_dependent
11875 branch frag. */
11876 if (branch_fragP->fr_type == rs_machine_dependent)
11877 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11878
11879 /* Check if branch is within boundary and doesn't end at the last
11880 byte. */
11881 offset = address & ((1U << align_branch_power) - 1);
11882 if ((offset + size) >= (1U << align_branch_power))
11883 /* Padding needed to avoid crossing boundary. */
11884 padding_size = (1U << align_branch_power) - offset;
11885 else
11886 /* No padding needed. */
11887 padding_size = 0;
11888
11889 /* The return value may be saved in tc_frag_data.length which is
11890 unsigned byte. */
11891 if (!fits_in_unsigned_byte (padding_size))
11892 abort ();
11893
11894 return padding_size;
11895}
11896
11897/* i386_generic_table_relax_frag()
11898
11899 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11900 grow/shrink padding to align branch frags. Hand others to
11901 relax_frag(). */
11902
11903long
11904i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11905{
11906 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11907 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11908 {
11909 long padding_size = i386_branch_padding_size (fragP, 0);
11910 long grow = padding_size - fragP->tc_frag_data.length;
11911
11912 /* When the BRANCH_PREFIX frag is used, the computed address
11913 must match the actual address and there should be no padding. */
11914 if (fragP->tc_frag_data.padding_address
11915 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11916 || padding_size))
11917 abort ();
11918
11919 /* Update the padding size. */
11920 if (grow)
11921 fragP->tc_frag_data.length = padding_size;
11922
11923 return grow;
11924 }
11925 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11926 {
11927 fragS *padding_fragP, *next_fragP;
11928 long padding_size, left_size, last_size;
11929
11930 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11931 if (!padding_fragP)
11932 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11933 return (fragP->tc_frag_data.length
11934 - fragP->tc_frag_data.last_length);
11935
11936 /* Compute the relative address of the padding frag in the very
11937 first time where the BRANCH_PREFIX frag sizes are zero. */
11938 if (!fragP->tc_frag_data.padding_address)
11939 fragP->tc_frag_data.padding_address
11940 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11941
11942 /* First update the last length from the previous interation. */
11943 left_size = fragP->tc_frag_data.prefix_length;
11944 for (next_fragP = fragP;
11945 next_fragP != padding_fragP;
11946 next_fragP = next_fragP->fr_next)
11947 if (next_fragP->fr_type == rs_machine_dependent
11948 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11949 == BRANCH_PREFIX))
11950 {
11951 if (left_size)
11952 {
11953 int max = next_fragP->tc_frag_data.max_bytes;
11954 if (max)
11955 {
11956 int size;
11957 if (max > left_size)
11958 size = left_size;
11959 else
11960 size = max;
11961 left_size -= size;
11962 next_fragP->tc_frag_data.last_length = size;
11963 }
11964 }
11965 else
11966 next_fragP->tc_frag_data.last_length = 0;
11967 }
11968
11969 /* Check the padding size for the padding frag. */
11970 padding_size = i386_branch_padding_size
11971 (padding_fragP, (fragP->fr_address
11972 + fragP->tc_frag_data.padding_address));
11973
11974 last_size = fragP->tc_frag_data.prefix_length;
11975 /* Check if there is change from the last interation. */
11976 if (padding_size == last_size)
11977 {
11978 /* Update the expected address of the padding frag. */
11979 padding_fragP->tc_frag_data.padding_address
11980 = (fragP->fr_address + padding_size
11981 + fragP->tc_frag_data.padding_address);
11982 return 0;
11983 }
11984
11985 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11986 {
11987 /* No padding if there is no sufficient room. Clear the
11988 expected address of the padding frag. */
11989 padding_fragP->tc_frag_data.padding_address = 0;
11990 padding_size = 0;
11991 }
11992 else
11993 /* Store the expected address of the padding frag. */
11994 padding_fragP->tc_frag_data.padding_address
11995 = (fragP->fr_address + padding_size
11996 + fragP->tc_frag_data.padding_address);
11997
11998 fragP->tc_frag_data.prefix_length = padding_size;
11999
12000 /* Update the length for the current interation. */
12001 left_size = padding_size;
12002 for (next_fragP = fragP;
12003 next_fragP != padding_fragP;
12004 next_fragP = next_fragP->fr_next)
12005 if (next_fragP->fr_type == rs_machine_dependent
12006 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
12007 == BRANCH_PREFIX))
12008 {
12009 if (left_size)
12010 {
12011 int max = next_fragP->tc_frag_data.max_bytes;
12012 if (max)
12013 {
12014 int size;
12015 if (max > left_size)
12016 size = left_size;
12017 else
12018 size = max;
12019 left_size -= size;
12020 next_fragP->tc_frag_data.length = size;
12021 }
12022 }
12023 else
12024 next_fragP->tc_frag_data.length = 0;
12025 }
12026
12027 return (fragP->tc_frag_data.length
12028 - fragP->tc_frag_data.last_length);
12029 }
12030 return relax_frag (segment, fragP, stretch);
12031}
12032
ee7fcc42
AM
12033/* md_estimate_size_before_relax()
12034
12035 Called just before relax() for rs_machine_dependent frags. The x86
12036 assembler uses these frags to handle variable size jump
12037 instructions.
12038
12039 Any symbol that is now undefined will not become defined.
12040 Return the correct fr_subtype in the frag.
12041 Return the initial "guess for variable size of frag" to caller.
12042 The guess is actually the growth beyond the fixed part. Whatever
12043 we do to grow the fixed or variable part contributes to our
12044 returned value. */
12045
252b5132 12046int
7016a5d5 12047md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 12048{
e379e5f3
L
12049 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12050 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
12051 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
12052 {
12053 i386_classify_machine_dependent_frag (fragP);
12054 return fragP->tc_frag_data.length;
12055 }
12056
252b5132 12057 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
12058 check for un-relaxable symbols. On an ELF system, we can't relax
12059 an externally visible symbol, because it may be overridden by a
12060 shared library. */
12061 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 12062#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 12063 || (IS_ELF
8dcea932
L
12064 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
12065 fragP->fr_var))
fbeb56a4
DK
12066#endif
12067#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 12068 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 12069 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
12070#endif
12071 )
252b5132 12072 {
b98ef147
AM
12073 /* Symbol is undefined in this segment, or we need to keep a
12074 reloc so that weak symbols can be overridden. */
12075 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 12076 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
12077 unsigned char *opcode;
12078 int old_fr_fix;
f6af82bd 12079
ee7fcc42 12080 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 12081 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 12082 else if (size == 2)
f6af82bd 12083 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
12084#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12085 else if (need_plt32_p (fragP->fr_symbol))
12086 reloc_type = BFD_RELOC_X86_64_PLT32;
12087#endif
f6af82bd
AM
12088 else
12089 reloc_type = BFD_RELOC_32_PCREL;
252b5132 12090
ee7fcc42
AM
12091 old_fr_fix = fragP->fr_fix;
12092 opcode = (unsigned char *) fragP->fr_opcode;
12093
fddf5b5b 12094 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 12095 {
fddf5b5b
AM
12096 case UNCOND_JUMP:
12097 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 12098 opcode[0] = 0xe9;
252b5132 12099 fragP->fr_fix += size;
062cd5e7
AS
12100 fix_new (fragP, old_fr_fix, size,
12101 fragP->fr_symbol,
12102 fragP->fr_offset, 1,
12103 reloc_type);
252b5132
RH
12104 break;
12105
fddf5b5b 12106 case COND_JUMP86:
412167cb
AM
12107 if (size == 2
12108 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
12109 {
12110 /* Negate the condition, and branch past an
12111 unconditional jump. */
12112 opcode[0] ^= 1;
12113 opcode[1] = 3;
12114 /* Insert an unconditional jump. */
12115 opcode[2] = 0xe9;
12116 /* We added two extra opcode bytes, and have a two byte
12117 offset. */
12118 fragP->fr_fix += 2 + 2;
062cd5e7
AS
12119 fix_new (fragP, old_fr_fix + 2, 2,
12120 fragP->fr_symbol,
12121 fragP->fr_offset, 1,
12122 reloc_type);
fddf5b5b
AM
12123 break;
12124 }
12125 /* Fall through. */
12126
12127 case COND_JUMP:
412167cb
AM
12128 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
12129 {
3e02c1cc
AM
12130 fixS *fixP;
12131
412167cb 12132 fragP->fr_fix += 1;
3e02c1cc
AM
12133 fixP = fix_new (fragP, old_fr_fix, 1,
12134 fragP->fr_symbol,
12135 fragP->fr_offset, 1,
12136 BFD_RELOC_8_PCREL);
12137 fixP->fx_signed = 1;
412167cb
AM
12138 break;
12139 }
93c2a809 12140
24eab124 12141 /* This changes the byte-displacement jump 0x7N
fddf5b5b 12142 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 12143 opcode[1] = opcode[0] + 0x10;
f6af82bd 12144 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
12145 /* We've added an opcode byte. */
12146 fragP->fr_fix += 1 + size;
062cd5e7
AS
12147 fix_new (fragP, old_fr_fix + 1, size,
12148 fragP->fr_symbol,
12149 fragP->fr_offset, 1,
12150 reloc_type);
252b5132 12151 break;
fddf5b5b
AM
12152
12153 default:
12154 BAD_CASE (fragP->fr_subtype);
12155 break;
252b5132
RH
12156 }
12157 frag_wane (fragP);
ee7fcc42 12158 return fragP->fr_fix - old_fr_fix;
252b5132 12159 }
93c2a809 12160
93c2a809
AM
12161 /* Guess size depending on current relax state. Initially the relax
12162 state will correspond to a short jump and we return 1, because
12163 the variable part of the frag (the branch offset) is one byte
12164 long. However, we can relax a section more than once and in that
12165 case we must either set fr_subtype back to the unrelaxed state,
12166 or return the value for the appropriate branch. */
12167 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
12168}
12169
47926f60
KH
12170/* Called after relax() is finished.
12171
12172 In: Address of frag.
12173 fr_type == rs_machine_dependent.
12174 fr_subtype is what the address relaxed to.
12175
12176 Out: Any fixSs and constants are set up.
12177 Caller will turn frag into a ".space 0". */
12178
252b5132 12179void
7016a5d5
TG
12180md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
12181 fragS *fragP)
252b5132 12182{
29b0f896 12183 unsigned char *opcode;
252b5132 12184 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
12185 offsetT target_address;
12186 offsetT opcode_address;
252b5132 12187 unsigned int extension = 0;
847f7ad4 12188 offsetT displacement_from_opcode_start;
252b5132 12189
e379e5f3
L
12190 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12191 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
12192 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12193 {
12194 /* Generate nop padding. */
12195 unsigned int size = fragP->tc_frag_data.length;
12196 if (size)
12197 {
12198 if (size > fragP->tc_frag_data.max_bytes)
12199 abort ();
12200
12201 if (flag_debug)
12202 {
12203 const char *msg;
12204 const char *branch = "branch";
12205 const char *prefix = "";
12206 fragS *padding_fragP;
12207 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12208 == BRANCH_PREFIX)
12209 {
12210 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12211 switch (fragP->tc_frag_data.default_prefix)
12212 {
12213 default:
12214 abort ();
12215 break;
12216 case CS_PREFIX_OPCODE:
12217 prefix = " cs";
12218 break;
12219 case DS_PREFIX_OPCODE:
12220 prefix = " ds";
12221 break;
12222 case ES_PREFIX_OPCODE:
12223 prefix = " es";
12224 break;
12225 case FS_PREFIX_OPCODE:
12226 prefix = " fs";
12227 break;
12228 case GS_PREFIX_OPCODE:
12229 prefix = " gs";
12230 break;
12231 case SS_PREFIX_OPCODE:
12232 prefix = " ss";
12233 break;
12234 }
12235 if (padding_fragP)
12236 msg = _("%s:%u: add %d%s at 0x%llx to align "
12237 "%s within %d-byte boundary\n");
12238 else
12239 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12240 "align %s within %d-byte boundary\n");
12241 }
12242 else
12243 {
12244 padding_fragP = fragP;
12245 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12246 "%s within %d-byte boundary\n");
12247 }
12248
12249 if (padding_fragP)
12250 switch (padding_fragP->tc_frag_data.branch_type)
12251 {
12252 case align_branch_jcc:
12253 branch = "jcc";
12254 break;
12255 case align_branch_fused:
12256 branch = "fused jcc";
12257 break;
12258 case align_branch_jmp:
12259 branch = "jmp";
12260 break;
12261 case align_branch_call:
12262 branch = "call";
12263 break;
12264 case align_branch_indirect:
12265 branch = "indiret branch";
12266 break;
12267 case align_branch_ret:
12268 branch = "ret";
12269 break;
12270 default:
12271 break;
12272 }
12273
12274 fprintf (stdout, msg,
12275 fragP->fr_file, fragP->fr_line, size, prefix,
12276 (long long) fragP->fr_address, branch,
12277 1 << align_branch_power);
12278 }
12279 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12280 memset (fragP->fr_opcode,
12281 fragP->tc_frag_data.default_prefix, size);
12282 else
12283 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12284 size, 0);
12285 fragP->fr_fix += size;
12286 }
12287 return;
12288 }
12289
252b5132
RH
12290 opcode = (unsigned char *) fragP->fr_opcode;
12291
47926f60 12292 /* Address we want to reach in file space. */
252b5132 12293 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 12294
47926f60 12295 /* Address opcode resides at in file space. */
252b5132
RH
12296 opcode_address = fragP->fr_address + fragP->fr_fix;
12297
47926f60 12298 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
12299 displacement_from_opcode_start = target_address - opcode_address;
12300
fddf5b5b 12301 if ((fragP->fr_subtype & BIG) == 0)
252b5132 12302 {
47926f60
KH
12303 /* Don't have to change opcode. */
12304 extension = 1; /* 1 opcode + 1 displacement */
252b5132 12305 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
12306 }
12307 else
12308 {
12309 if (no_cond_jump_promotion
12310 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
12311 as_warn_where (fragP->fr_file, fragP->fr_line,
12312 _("long jump required"));
252b5132 12313
fddf5b5b
AM
12314 switch (fragP->fr_subtype)
12315 {
12316 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12317 extension = 4; /* 1 opcode + 4 displacement */
12318 opcode[0] = 0xe9;
12319 where_to_put_displacement = &opcode[1];
12320 break;
252b5132 12321
fddf5b5b
AM
12322 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12323 extension = 2; /* 1 opcode + 2 displacement */
12324 opcode[0] = 0xe9;
12325 where_to_put_displacement = &opcode[1];
12326 break;
252b5132 12327
fddf5b5b
AM
12328 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12329 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12330 extension = 5; /* 2 opcode + 4 displacement */
12331 opcode[1] = opcode[0] + 0x10;
12332 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12333 where_to_put_displacement = &opcode[2];
12334 break;
252b5132 12335
fddf5b5b
AM
12336 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12337 extension = 3; /* 2 opcode + 2 displacement */
12338 opcode[1] = opcode[0] + 0x10;
12339 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12340 where_to_put_displacement = &opcode[2];
12341 break;
252b5132 12342
fddf5b5b
AM
12343 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12344 extension = 4;
12345 opcode[0] ^= 1;
12346 opcode[1] = 3;
12347 opcode[2] = 0xe9;
12348 where_to_put_displacement = &opcode[3];
12349 break;
12350
12351 default:
12352 BAD_CASE (fragP->fr_subtype);
12353 break;
12354 }
252b5132 12355 }
fddf5b5b 12356
7b81dfbb
AJ
12357 /* If size if less then four we are sure that the operand fits,
12358 but if it's 4, then it could be that the displacement is larger
12359 then -/+ 2GB. */
12360 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12361 && object_64bit
12362 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
12363 + ((addressT) 1 << 31))
12364 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
12365 {
12366 as_bad_where (fragP->fr_file, fragP->fr_line,
12367 _("jump target out of range"));
12368 /* Make us emit 0. */
12369 displacement_from_opcode_start = extension;
12370 }
47926f60 12371 /* Now put displacement after opcode. */
252b5132
RH
12372 md_number_to_chars ((char *) where_to_put_displacement,
12373 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 12374 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
12375 fragP->fr_fix += extension;
12376}
12377\f
7016a5d5 12378/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
12379 by our caller that we have all the info we need to fix it up.
12380
7016a5d5
TG
12381 Parameter valP is the pointer to the value of the bits.
12382
252b5132
RH
12383 On the 386, immediates, displacements, and data pointers are all in
12384 the same (little-endian) format, so we don't need to care about which
12385 we are handling. */
12386
94f592af 12387void
7016a5d5 12388md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 12389{
94f592af 12390 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 12391 valueT value = *valP;
252b5132 12392
f86103b7 12393#if !defined (TE_Mach)
93382f6d
AM
12394 if (fixP->fx_pcrel)
12395 {
12396 switch (fixP->fx_r_type)
12397 {
5865bb77
ILT
12398 default:
12399 break;
12400
d6ab8113
JB
12401 case BFD_RELOC_64:
12402 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12403 break;
93382f6d 12404 case BFD_RELOC_32:
ae8887b5 12405 case BFD_RELOC_X86_64_32S:
93382f6d
AM
12406 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12407 break;
12408 case BFD_RELOC_16:
12409 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12410 break;
12411 case BFD_RELOC_8:
12412 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12413 break;
12414 }
12415 }
252b5132 12416
a161fe53 12417 if (fixP->fx_addsy != NULL
31312f95 12418 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 12419 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 12420 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 12421 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 12422 && !use_rela_relocations)
252b5132 12423 {
31312f95
AM
12424 /* This is a hack. There should be a better way to handle this.
12425 This covers for the fact that bfd_install_relocation will
12426 subtract the current location (for partial_inplace, PC relative
12427 relocations); see more below. */
252b5132 12428#ifndef OBJ_AOUT
718ddfc0 12429 if (IS_ELF
252b5132
RH
12430#ifdef TE_PE
12431 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12432#endif
12433 )
12434 value += fixP->fx_where + fixP->fx_frag->fr_address;
12435#endif
12436#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 12437 if (IS_ELF)
252b5132 12438 {
6539b54b 12439 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 12440
6539b54b 12441 if ((sym_seg == seg
2f66722d 12442 || (symbol_section_p (fixP->fx_addsy)
6539b54b 12443 && sym_seg != absolute_section))
af65af87 12444 && !generic_force_reloc (fixP))
2f66722d
AM
12445 {
12446 /* Yes, we add the values in twice. This is because
6539b54b
AM
12447 bfd_install_relocation subtracts them out again. I think
12448 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
12449 it. FIXME. */
12450 value += fixP->fx_where + fixP->fx_frag->fr_address;
12451 }
252b5132
RH
12452 }
12453#endif
12454#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
12455 /* For some reason, the PE format does not store a
12456 section address offset for a PC relative symbol. */
12457 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 12458 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
12459 value += md_pcrel_from (fixP);
12460#endif
12461 }
fbeb56a4 12462#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
12463 if (fixP->fx_addsy != NULL
12464 && S_IS_WEAK (fixP->fx_addsy)
12465 /* PR 16858: Do not modify weak function references. */
12466 && ! fixP->fx_pcrel)
fbeb56a4 12467 {
296a8689
NC
12468#if !defined (TE_PEP)
12469 /* For x86 PE weak function symbols are neither PC-relative
12470 nor do they set S_IS_FUNCTION. So the only reliable way
12471 to detect them is to check the flags of their containing
12472 section. */
12473 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12474 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12475 ;
12476 else
12477#endif
fbeb56a4
DK
12478 value -= S_GET_VALUE (fixP->fx_addsy);
12479 }
12480#endif
252b5132
RH
12481
12482 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 12483 and we must not disappoint it. */
252b5132 12484#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 12485 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
12486 switch (fixP->fx_r_type)
12487 {
12488 case BFD_RELOC_386_PLT32:
3e73aa7c 12489 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
12490 /* Make the jump instruction point to the address of the operand.
12491 At runtime we merely add the offset to the actual PLT entry.
12492 NB: Subtract the offset size only for jump instructions. */
12493 if (fixP->fx_pcrel)
12494 value = -4;
47926f60 12495 break;
31312f95 12496
13ae64f3
JJ
12497 case BFD_RELOC_386_TLS_GD:
12498 case BFD_RELOC_386_TLS_LDM:
13ae64f3 12499 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12500 case BFD_RELOC_386_TLS_IE:
12501 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 12502 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
12503 case BFD_RELOC_X86_64_TLSGD:
12504 case BFD_RELOC_X86_64_TLSLD:
12505 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 12506 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
12507 value = 0; /* Fully resolved at runtime. No addend. */
12508 /* Fallthrough */
12509 case BFD_RELOC_386_TLS_LE:
12510 case BFD_RELOC_386_TLS_LDO_32:
12511 case BFD_RELOC_386_TLS_LE_32:
12512 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12513 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 12514 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 12515 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
12516 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12517 break;
12518
67a4f2b7
AO
12519 case BFD_RELOC_386_TLS_DESC_CALL:
12520 case BFD_RELOC_X86_64_TLSDESC_CALL:
12521 value = 0; /* Fully resolved at runtime. No addend. */
12522 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12523 fixP->fx_done = 0;
12524 return;
12525
47926f60
KH
12526 case BFD_RELOC_VTABLE_INHERIT:
12527 case BFD_RELOC_VTABLE_ENTRY:
12528 fixP->fx_done = 0;
94f592af 12529 return;
47926f60
KH
12530
12531 default:
12532 break;
12533 }
12534#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 12535 *valP = value;
f86103b7 12536#endif /* !defined (TE_Mach) */
3e73aa7c 12537
3e73aa7c 12538 /* Are we finished with this relocation now? */
c6682705 12539 if (fixP->fx_addsy == NULL)
3e73aa7c 12540 fixP->fx_done = 1;
fbeb56a4
DK
12541#if defined (OBJ_COFF) && defined (TE_PE)
12542 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12543 {
12544 fixP->fx_done = 0;
12545 /* Remember value for tc_gen_reloc. */
12546 fixP->fx_addnumber = value;
12547 /* Clear out the frag for now. */
12548 value = 0;
12549 }
12550#endif
3e73aa7c
JH
12551 else if (use_rela_relocations)
12552 {
12553 fixP->fx_no_overflow = 1;
062cd5e7
AS
12554 /* Remember value for tc_gen_reloc. */
12555 fixP->fx_addnumber = value;
3e73aa7c
JH
12556 value = 0;
12557 }
f86103b7 12558
94f592af 12559 md_number_to_chars (p, value, fixP->fx_size);
252b5132 12560}
252b5132 12561\f
6d4af3c2 12562const char *
499ac353 12563md_atof (int type, char *litP, int *sizeP)
252b5132 12564{
499ac353
NC
12565 /* This outputs the LITTLENUMs in REVERSE order;
12566 in accord with the bigendian 386. */
12567 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
12568}
12569\f
2d545b82 12570static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 12571
252b5132 12572static char *
e3bb37b5 12573output_invalid (int c)
252b5132 12574{
3882b010 12575 if (ISPRINT (c))
f9f21a03
L
12576 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12577 "'%c'", c);
252b5132 12578 else
f9f21a03 12579 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 12580 "(0x%x)", (unsigned char) c);
252b5132
RH
12581 return output_invalid_buf;
12582}
12583
8a6fb3f9
JB
12584/* Verify that @r can be used in the current context. */
12585
12586static bfd_boolean check_register (const reg_entry *r)
12587{
12588 if (allow_pseudo_reg)
12589 return TRUE;
12590
12591 if (operand_type_all_zero (&r->reg_type))
12592 return FALSE;
12593
12594 if ((r->reg_type.bitfield.dword
12595 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12596 || r->reg_type.bitfield.class == RegCR
22e00a3f 12597 || r->reg_type.bitfield.class == RegDR)
8a6fb3f9
JB
12598 && !cpu_arch_flags.bitfield.cpui386)
12599 return FALSE;
12600
22e00a3f
JB
12601 if (r->reg_type.bitfield.class == RegTR
12602 && (flag_code == CODE_64BIT
12603 || !cpu_arch_flags.bitfield.cpui386
12604 || cpu_arch_isa_flags.bitfield.cpui586
12605 || cpu_arch_isa_flags.bitfield.cpui686))
12606 return FALSE;
12607
8a6fb3f9
JB
12608 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12609 return FALSE;
12610
12611 if (!cpu_arch_flags.bitfield.cpuavx512f)
12612 {
12613 if (r->reg_type.bitfield.zmmword
12614 || r->reg_type.bitfield.class == RegMask)
12615 return FALSE;
12616
12617 if (!cpu_arch_flags.bitfield.cpuavx)
12618 {
12619 if (r->reg_type.bitfield.ymmword)
12620 return FALSE;
12621
12622 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12623 return FALSE;
12624 }
12625 }
12626
260cd341
LC
12627 if (r->reg_type.bitfield.tmmword
12628 && (!cpu_arch_flags.bitfield.cpuamx_tile
12629 || flag_code != CODE_64BIT))
12630 return FALSE;
12631
8a6fb3f9
JB
12632 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12633 return FALSE;
12634
12635 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12636 if (!allow_index_reg && r->reg_num == RegIZ)
12637 return FALSE;
12638
12639 /* Upper 16 vector registers are only available with VREX in 64bit
12640 mode, and require EVEX encoding. */
12641 if (r->reg_flags & RegVRex)
12642 {
12643 if (!cpu_arch_flags.bitfield.cpuavx512f
12644 || flag_code != CODE_64BIT)
12645 return FALSE;
12646
da4977e0
JB
12647 if (i.vec_encoding == vex_encoding_default)
12648 i.vec_encoding = vex_encoding_evex;
12649 else if (i.vec_encoding != vex_encoding_evex)
12650 i.vec_encoding = vex_encoding_error;
8a6fb3f9
JB
12651 }
12652
12653 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12654 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12655 && flag_code != CODE_64BIT)
12656 return FALSE;
12657
12658 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12659 && !intel_syntax)
12660 return FALSE;
12661
12662 return TRUE;
12663}
12664
af6bdddf 12665/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
12666
12667static const reg_entry *
4d1bb795 12668parse_real_register (char *reg_string, char **end_op)
252b5132 12669{
af6bdddf
AM
12670 char *s = reg_string;
12671 char *p;
252b5132
RH
12672 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12673 const reg_entry *r;
12674
12675 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12676 if (*s == REGISTER_PREFIX)
12677 ++s;
12678
12679 if (is_space_char (*s))
12680 ++s;
12681
12682 p = reg_name_given;
af6bdddf 12683 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
12684 {
12685 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
12686 return (const reg_entry *) NULL;
12687 s++;
252b5132
RH
12688 }
12689
6588847e
DN
12690 /* For naked regs, make sure that we are not dealing with an identifier.
12691 This prevents confusing an identifier like `eax_var' with register
12692 `eax'. */
12693 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12694 return (const reg_entry *) NULL;
12695
af6bdddf 12696 *end_op = s;
252b5132 12697
629310ab 12698 r = (const reg_entry *) str_hash_find (reg_hash, reg_name_given);
252b5132 12699
5f47d35b 12700 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 12701 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 12702 {
0e0eea78
JB
12703 if (!cpu_arch_flags.bitfield.cpu8087
12704 && !cpu_arch_flags.bitfield.cpu287
af32b722
JB
12705 && !cpu_arch_flags.bitfield.cpu387
12706 && !allow_pseudo_reg)
0e0eea78
JB
12707 return (const reg_entry *) NULL;
12708
5f47d35b
AM
12709 if (is_space_char (*s))
12710 ++s;
12711 if (*s == '(')
12712 {
af6bdddf 12713 ++s;
5f47d35b
AM
12714 if (is_space_char (*s))
12715 ++s;
12716 if (*s >= '0' && *s <= '7')
12717 {
db557034 12718 int fpr = *s - '0';
af6bdddf 12719 ++s;
5f47d35b
AM
12720 if (is_space_char (*s))
12721 ++s;
12722 if (*s == ')')
12723 {
12724 *end_op = s + 1;
629310ab 12725 r = (const reg_entry *) str_hash_find (reg_hash, "st(0)");
db557034
AM
12726 know (r);
12727 return r + fpr;
5f47d35b 12728 }
5f47d35b 12729 }
47926f60 12730 /* We have "%st(" then garbage. */
5f47d35b
AM
12731 return (const reg_entry *) NULL;
12732 }
12733 }
12734
8a6fb3f9 12735 return r && check_register (r) ? r : NULL;
252b5132 12736}
4d1bb795
JB
12737
12738/* REG_STRING starts *before* REGISTER_PREFIX. */
12739
12740static const reg_entry *
12741parse_register (char *reg_string, char **end_op)
12742{
12743 const reg_entry *r;
12744
12745 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12746 r = parse_real_register (reg_string, end_op);
12747 else
12748 r = NULL;
12749 if (!r)
12750 {
12751 char *save = input_line_pointer;
12752 char c;
12753 symbolS *symbolP;
12754
12755 input_line_pointer = reg_string;
d02603dc 12756 c = get_symbol_name (&reg_string);
4d1bb795
JB
12757 symbolP = symbol_find (reg_string);
12758 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12759 {
12760 const expressionS *e = symbol_get_value_expression (symbolP);
12761
0398aac5 12762 know (e->X_op == O_register);
4eed87de 12763 know (e->X_add_number >= 0
c3fe08fa 12764 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 12765 r = i386_regtab + e->X_add_number;
8a6fb3f9
JB
12766 if (!check_register (r))
12767 {
12768 as_bad (_("register '%s%s' cannot be used here"),
12769 register_prefix, r->reg_name);
12770 r = &bad_reg;
12771 }
4d1bb795
JB
12772 *end_op = input_line_pointer;
12773 }
12774 *input_line_pointer = c;
12775 input_line_pointer = save;
12776 }
12777 return r;
12778}
12779
12780int
12781i386_parse_name (char *name, expressionS *e, char *nextcharP)
12782{
12783 const reg_entry *r;
12784 char *end = input_line_pointer;
12785
12786 *end = *nextcharP;
12787 r = parse_register (name, &input_line_pointer);
12788 if (r && end <= input_line_pointer)
12789 {
12790 *nextcharP = *input_line_pointer;
12791 *input_line_pointer = 0;
8a6fb3f9
JB
12792 if (r != &bad_reg)
12793 {
12794 e->X_op = O_register;
12795 e->X_add_number = r - i386_regtab;
12796 }
12797 else
12798 e->X_op = O_illegal;
4d1bb795
JB
12799 return 1;
12800 }
12801 input_line_pointer = end;
12802 *end = 0;
ee86248c 12803 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
12804}
12805
12806void
12807md_operand (expressionS *e)
12808{
ee86248c
JB
12809 char *end;
12810 const reg_entry *r;
4d1bb795 12811
ee86248c
JB
12812 switch (*input_line_pointer)
12813 {
12814 case REGISTER_PREFIX:
12815 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
12816 if (r)
12817 {
12818 e->X_op = O_register;
12819 e->X_add_number = r - i386_regtab;
12820 input_line_pointer = end;
12821 }
ee86248c
JB
12822 break;
12823
12824 case '[':
9c2799c2 12825 gas_assert (intel_syntax);
ee86248c
JB
12826 end = input_line_pointer++;
12827 expression (e);
12828 if (*input_line_pointer == ']')
12829 {
12830 ++input_line_pointer;
12831 e->X_op_symbol = make_expr_symbol (e);
12832 e->X_add_symbol = NULL;
12833 e->X_add_number = 0;
12834 e->X_op = O_index;
12835 }
12836 else
12837 {
12838 e->X_op = O_absent;
12839 input_line_pointer = end;
12840 }
12841 break;
4d1bb795
JB
12842 }
12843}
12844
252b5132 12845\f
4cc782b5 12846#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 12847const char *md_shortopts = "kVQ:sqnO::";
252b5132 12848#else
b6f8c7c4 12849const char *md_shortopts = "qnO::";
252b5132 12850#endif
6e0b89ee 12851
3e73aa7c 12852#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
12853#define OPTION_64 (OPTION_MD_BASE + 1)
12854#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
12855#define OPTION_MARCH (OPTION_MD_BASE + 3)
12856#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
12857#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12858#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12859#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12860#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 12861#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 12862#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 12863#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
12864#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12865#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12866#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12867#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12868#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12869#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12870#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12871#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12872#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12873#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12874#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12875#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12876#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12877#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12878#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12879#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12880#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12881#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12882#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
ae531041
L
12883#define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12884#define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12885#define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
b3b91714 12886
99ad8390
NC
12887struct option md_longopts[] =
12888{
3e73aa7c 12889 {"32", no_argument, NULL, OPTION_32},
321098a5 12890#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12891 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12892 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12893#endif
12894#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12895 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12896 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12897 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12898#endif
b3b91714 12899 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12900 {"march", required_argument, NULL, OPTION_MARCH},
12901 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12902 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12903 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12904 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12905 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12906 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12907 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12908 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12909 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12910 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12911 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12912 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12913 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12914# if defined (TE_PE) || defined (TE_PEP)
12915 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12916#endif
d1982f93 12917 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12918 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12919 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12920 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12921 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12922 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12923 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12924 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
ae531041
L
12925 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12926 {"mlfence-before-indirect-branch", required_argument, NULL,
12927 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12928 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
5db04b09
L
12929 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12930 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12931 {NULL, no_argument, NULL, 0}
12932};
12933size_t md_longopts_size = sizeof (md_longopts);
12934
12935int
17b9d67d 12936md_parse_option (int c, const char *arg)
252b5132 12937{
91d6fa6a 12938 unsigned int j;
e379e5f3 12939 char *arch, *next, *saved, *type;
9103f4f4 12940
252b5132
RH
12941 switch (c)
12942 {
12b55ccc
L
12943 case 'n':
12944 optimize_align_code = 0;
12945 break;
12946
a38cf1db
AM
12947 case 'q':
12948 quiet_warnings = 1;
252b5132
RH
12949 break;
12950
12951#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12952 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12953 should be emitted or not. FIXME: Not implemented. */
12954 case 'Q':
d4693039
JB
12955 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12956 return 0;
252b5132
RH
12957 break;
12958
12959 /* -V: SVR4 argument to print version ID. */
12960 case 'V':
12961 print_version_id ();
12962 break;
12963
a38cf1db
AM
12964 /* -k: Ignore for FreeBSD compatibility. */
12965 case 'k':
252b5132 12966 break;
4cc782b5
ILT
12967
12968 case 's':
12969 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12970 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12971 break;
8dcea932
L
12972
12973 case OPTION_MSHARED:
12974 shared = 1;
12975 break;
b4a3a7b4
L
12976
12977 case OPTION_X86_USED_NOTE:
12978 if (strcasecmp (arg, "yes") == 0)
12979 x86_used_note = 1;
12980 else if (strcasecmp (arg, "no") == 0)
12981 x86_used_note = 0;
12982 else
12983 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12984 break;
12985
12986
99ad8390 12987#endif
321098a5 12988#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12989 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12990 case OPTION_64:
12991 {
12992 const char **list, **l;
12993
3e73aa7c
JH
12994 list = bfd_target_list ();
12995 for (l = list; *l != NULL; l++)
08dedd66 12996 if (startswith (*l, "elf64-x86-64")
99ad8390
NC
12997 || strcmp (*l, "coff-x86-64") == 0
12998 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12999 || strcmp (*l, "pei-x86-64") == 0
13000 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
13001 {
13002 default_arch = "x86_64";
13003 break;
13004 }
3e73aa7c 13005 if (*l == NULL)
2b5d6a91 13006 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
13007 free (list);
13008 }
13009 break;
13010#endif
252b5132 13011
351f65ca 13012#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 13013 case OPTION_X32:
351f65ca
L
13014 if (IS_ELF)
13015 {
13016 const char **list, **l;
13017
13018 list = bfd_target_list ();
13019 for (l = list; *l != NULL; l++)
08dedd66 13020 if (startswith (*l, "elf32-x86-64"))
351f65ca
L
13021 {
13022 default_arch = "x86_64:32";
13023 break;
13024 }
13025 if (*l == NULL)
2b5d6a91 13026 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
13027 free (list);
13028 }
13029 else
13030 as_fatal (_("32bit x86_64 is only supported for ELF"));
13031 break;
13032#endif
13033
6e0b89ee
AM
13034 case OPTION_32:
13035 default_arch = "i386";
13036 break;
13037
b3b91714
AM
13038 case OPTION_DIVIDE:
13039#ifdef SVR4_COMMENT_CHARS
13040 {
13041 char *n, *t;
13042 const char *s;
13043
add39d23 13044 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
13045 t = n;
13046 for (s = i386_comment_chars; *s != '\0'; s++)
13047 if (*s != '/')
13048 *t++ = *s;
13049 *t = '\0';
13050 i386_comment_chars = n;
13051 }
13052#endif
13053 break;
13054
9103f4f4 13055 case OPTION_MARCH:
293f5f65
L
13056 saved = xstrdup (arg);
13057 arch = saved;
13058 /* Allow -march=+nosse. */
13059 if (*arch == '+')
13060 arch++;
6305a203 13061 do
9103f4f4 13062 {
6305a203 13063 if (*arch == '.')
2b5d6a91 13064 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
13065 next = strchr (arch, '+');
13066 if (next)
13067 *next++ = '\0';
91d6fa6a 13068 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 13069 {
91d6fa6a 13070 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 13071 {
6305a203 13072 /* Processor. */
1ded5609
JB
13073 if (! cpu_arch[j].flags.bitfield.cpui386)
13074 continue;
13075
91d6fa6a 13076 cpu_arch_name = cpu_arch[j].name;
6305a203 13077 cpu_sub_arch_name = NULL;
91d6fa6a
NC
13078 cpu_arch_flags = cpu_arch[j].flags;
13079 cpu_arch_isa = cpu_arch[j].type;
13080 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
13081 if (!cpu_arch_tune_set)
13082 {
13083 cpu_arch_tune = cpu_arch_isa;
13084 cpu_arch_tune_flags = cpu_arch_isa_flags;
13085 }
13086 break;
13087 }
91d6fa6a
NC
13088 else if (*cpu_arch [j].name == '.'
13089 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 13090 {
33eaf5de 13091 /* ISA extension. */
6305a203 13092 i386_cpu_flags flags;
309d3373 13093
293f5f65
L
13094 flags = cpu_flags_or (cpu_arch_flags,
13095 cpu_arch[j].flags);
81486035 13096
5b64d091 13097 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
13098 {
13099 if (cpu_sub_arch_name)
13100 {
13101 char *name = cpu_sub_arch_name;
13102 cpu_sub_arch_name = concat (name,
91d6fa6a 13103 cpu_arch[j].name,
1bf57e9f 13104 (const char *) NULL);
6305a203
L
13105 free (name);
13106 }
13107 else
91d6fa6a 13108 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 13109 cpu_arch_flags = flags;
a586129e 13110 cpu_arch_isa_flags = flags;
6305a203 13111 }
0089dace
L
13112 else
13113 cpu_arch_isa_flags
13114 = cpu_flags_or (cpu_arch_isa_flags,
13115 cpu_arch[j].flags);
6305a203 13116 break;
ccc9c027 13117 }
9103f4f4 13118 }
6305a203 13119
293f5f65
L
13120 if (j >= ARRAY_SIZE (cpu_arch))
13121 {
33eaf5de 13122 /* Disable an ISA extension. */
293f5f65
L
13123 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13124 if (strcmp (arch, cpu_noarch [j].name) == 0)
13125 {
13126 i386_cpu_flags flags;
13127
13128 flags = cpu_flags_and_not (cpu_arch_flags,
13129 cpu_noarch[j].flags);
13130 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13131 {
13132 if (cpu_sub_arch_name)
13133 {
13134 char *name = cpu_sub_arch_name;
13135 cpu_sub_arch_name = concat (arch,
13136 (const char *) NULL);
13137 free (name);
13138 }
13139 else
13140 cpu_sub_arch_name = xstrdup (arch);
13141 cpu_arch_flags = flags;
13142 cpu_arch_isa_flags = flags;
13143 }
13144 break;
13145 }
13146
13147 if (j >= ARRAY_SIZE (cpu_noarch))
13148 j = ARRAY_SIZE (cpu_arch);
13149 }
13150
91d6fa6a 13151 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 13152 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
13153
13154 arch = next;
9103f4f4 13155 }
293f5f65
L
13156 while (next != NULL);
13157 free (saved);
9103f4f4
L
13158 break;
13159
13160 case OPTION_MTUNE:
13161 if (*arg == '.')
2b5d6a91 13162 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 13163 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 13164 {
91d6fa6a 13165 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 13166 {
ccc9c027 13167 cpu_arch_tune_set = 1;
91d6fa6a
NC
13168 cpu_arch_tune = cpu_arch [j].type;
13169 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
13170 break;
13171 }
13172 }
91d6fa6a 13173 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 13174 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
13175 break;
13176
1efbbeb4
L
13177 case OPTION_MMNEMONIC:
13178 if (strcasecmp (arg, "att") == 0)
13179 intel_mnemonic = 0;
13180 else if (strcasecmp (arg, "intel") == 0)
13181 intel_mnemonic = 1;
13182 else
2b5d6a91 13183 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
13184 break;
13185
13186 case OPTION_MSYNTAX:
13187 if (strcasecmp (arg, "att") == 0)
13188 intel_syntax = 0;
13189 else if (strcasecmp (arg, "intel") == 0)
13190 intel_syntax = 1;
13191 else
2b5d6a91 13192 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
13193 break;
13194
13195 case OPTION_MINDEX_REG:
13196 allow_index_reg = 1;
13197 break;
13198
13199 case OPTION_MNAKED_REG:
13200 allow_naked_reg = 1;
13201 break;
13202
c0f3af97
L
13203 case OPTION_MSSE2AVX:
13204 sse2avx = 1;
13205 break;
13206
daf50ae7
L
13207 case OPTION_MSSE_CHECK:
13208 if (strcasecmp (arg, "error") == 0)
7bab8ab5 13209 sse_check = check_error;
daf50ae7 13210 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 13211 sse_check = check_warning;
daf50ae7 13212 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 13213 sse_check = check_none;
daf50ae7 13214 else
2b5d6a91 13215 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
13216 break;
13217
7bab8ab5
JB
13218 case OPTION_MOPERAND_CHECK:
13219 if (strcasecmp (arg, "error") == 0)
13220 operand_check = check_error;
13221 else if (strcasecmp (arg, "warning") == 0)
13222 operand_check = check_warning;
13223 else if (strcasecmp (arg, "none") == 0)
13224 operand_check = check_none;
13225 else
13226 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13227 break;
13228
539f890d
L
13229 case OPTION_MAVXSCALAR:
13230 if (strcasecmp (arg, "128") == 0)
13231 avxscalar = vex128;
13232 else if (strcasecmp (arg, "256") == 0)
13233 avxscalar = vex256;
13234 else
2b5d6a91 13235 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
13236 break;
13237
03751133
L
13238 case OPTION_MVEXWIG:
13239 if (strcmp (arg, "0") == 0)
40c9c8de 13240 vexwig = vexw0;
03751133 13241 else if (strcmp (arg, "1") == 0)
40c9c8de 13242 vexwig = vexw1;
03751133
L
13243 else
13244 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13245 break;
13246
7e8b059b
L
13247 case OPTION_MADD_BND_PREFIX:
13248 add_bnd_prefix = 1;
13249 break;
13250
43234a1e
L
13251 case OPTION_MEVEXLIG:
13252 if (strcmp (arg, "128") == 0)
13253 evexlig = evexl128;
13254 else if (strcmp (arg, "256") == 0)
13255 evexlig = evexl256;
13256 else if (strcmp (arg, "512") == 0)
13257 evexlig = evexl512;
13258 else
13259 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13260 break;
13261
d3d3c6db
IT
13262 case OPTION_MEVEXRCIG:
13263 if (strcmp (arg, "rne") == 0)
13264 evexrcig = rne;
13265 else if (strcmp (arg, "rd") == 0)
13266 evexrcig = rd;
13267 else if (strcmp (arg, "ru") == 0)
13268 evexrcig = ru;
13269 else if (strcmp (arg, "rz") == 0)
13270 evexrcig = rz;
13271 else
13272 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13273 break;
13274
43234a1e
L
13275 case OPTION_MEVEXWIG:
13276 if (strcmp (arg, "0") == 0)
13277 evexwig = evexw0;
13278 else if (strcmp (arg, "1") == 0)
13279 evexwig = evexw1;
13280 else
13281 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13282 break;
13283
167ad85b
TG
13284# if defined (TE_PE) || defined (TE_PEP)
13285 case OPTION_MBIG_OBJ:
13286 use_big_obj = 1;
13287 break;
13288#endif
13289
d1982f93 13290 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
13291 if (strcasecmp (arg, "yes") == 0)
13292 omit_lock_prefix = 1;
13293 else if (strcasecmp (arg, "no") == 0)
13294 omit_lock_prefix = 0;
13295 else
13296 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13297 break;
13298
e4e00185
AS
13299 case OPTION_MFENCE_AS_LOCK_ADD:
13300 if (strcasecmp (arg, "yes") == 0)
13301 avoid_fence = 1;
13302 else if (strcasecmp (arg, "no") == 0)
13303 avoid_fence = 0;
13304 else
13305 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13306 break;
13307
ae531041
L
13308 case OPTION_MLFENCE_AFTER_LOAD:
13309 if (strcasecmp (arg, "yes") == 0)
13310 lfence_after_load = 1;
13311 else if (strcasecmp (arg, "no") == 0)
13312 lfence_after_load = 0;
13313 else
13314 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13315 break;
13316
13317 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13318 if (strcasecmp (arg, "all") == 0)
a09f656b 13319 {
13320 lfence_before_indirect_branch = lfence_branch_all;
13321 if (lfence_before_ret == lfence_before_ret_none)
13322 lfence_before_ret = lfence_before_ret_shl;
13323 }
ae531041
L
13324 else if (strcasecmp (arg, "memory") == 0)
13325 lfence_before_indirect_branch = lfence_branch_memory;
13326 else if (strcasecmp (arg, "register") == 0)
13327 lfence_before_indirect_branch = lfence_branch_register;
13328 else if (strcasecmp (arg, "none") == 0)
13329 lfence_before_indirect_branch = lfence_branch_none;
13330 else
13331 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13332 arg);
13333 break;
13334
13335 case OPTION_MLFENCE_BEFORE_RET:
13336 if (strcasecmp (arg, "or") == 0)
13337 lfence_before_ret = lfence_before_ret_or;
13338 else if (strcasecmp (arg, "not") == 0)
13339 lfence_before_ret = lfence_before_ret_not;
a09f656b 13340 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13341 lfence_before_ret = lfence_before_ret_shl;
ae531041
L
13342 else if (strcasecmp (arg, "none") == 0)
13343 lfence_before_ret = lfence_before_ret_none;
13344 else
13345 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13346 arg);
13347 break;
13348
0cb4071e
L
13349 case OPTION_MRELAX_RELOCATIONS:
13350 if (strcasecmp (arg, "yes") == 0)
13351 generate_relax_relocations = 1;
13352 else if (strcasecmp (arg, "no") == 0)
13353 generate_relax_relocations = 0;
13354 else
13355 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13356 break;
13357
e379e5f3
L
13358 case OPTION_MALIGN_BRANCH_BOUNDARY:
13359 {
13360 char *end;
13361 long int align = strtoul (arg, &end, 0);
13362 if (*end == '\0')
13363 {
13364 if (align == 0)
13365 {
13366 align_branch_power = 0;
13367 break;
13368 }
13369 else if (align >= 16)
13370 {
13371 int align_power;
13372 for (align_power = 0;
13373 (align & 1) == 0;
13374 align >>= 1, align_power++)
13375 continue;
13376 /* Limit alignment power to 31. */
13377 if (align == 1 && align_power < 32)
13378 {
13379 align_branch_power = align_power;
13380 break;
13381 }
13382 }
13383 }
13384 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13385 }
13386 break;
13387
13388 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13389 {
13390 char *end;
13391 int align = strtoul (arg, &end, 0);
13392 /* Some processors only support 5 prefixes. */
13393 if (*end == '\0' && align >= 0 && align < 6)
13394 {
13395 align_branch_prefix_size = align;
13396 break;
13397 }
13398 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13399 arg);
13400 }
13401 break;
13402
13403 case OPTION_MALIGN_BRANCH:
13404 align_branch = 0;
13405 saved = xstrdup (arg);
13406 type = saved;
13407 do
13408 {
13409 next = strchr (type, '+');
13410 if (next)
13411 *next++ = '\0';
13412 if (strcasecmp (type, "jcc") == 0)
13413 align_branch |= align_branch_jcc_bit;
13414 else if (strcasecmp (type, "fused") == 0)
13415 align_branch |= align_branch_fused_bit;
13416 else if (strcasecmp (type, "jmp") == 0)
13417 align_branch |= align_branch_jmp_bit;
13418 else if (strcasecmp (type, "call") == 0)
13419 align_branch |= align_branch_call_bit;
13420 else if (strcasecmp (type, "ret") == 0)
13421 align_branch |= align_branch_ret_bit;
13422 else if (strcasecmp (type, "indirect") == 0)
13423 align_branch |= align_branch_indirect_bit;
13424 else
13425 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13426 type = next;
13427 }
13428 while (next != NULL);
13429 free (saved);
13430 break;
13431
76cf450b
L
13432 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13433 align_branch_power = 5;
13434 align_branch_prefix_size = 5;
13435 align_branch = (align_branch_jcc_bit
13436 | align_branch_fused_bit
13437 | align_branch_jmp_bit);
13438 break;
13439
5db04b09 13440 case OPTION_MAMD64:
4b5aaf5f 13441 isa64 = amd64;
5db04b09
L
13442 break;
13443
13444 case OPTION_MINTEL64:
4b5aaf5f 13445 isa64 = intel64;
5db04b09
L
13446 break;
13447
b6f8c7c4
L
13448 case 'O':
13449 if (arg == NULL)
13450 {
13451 optimize = 1;
13452 /* Turn off -Os. */
13453 optimize_for_space = 0;
13454 }
13455 else if (*arg == 's')
13456 {
13457 optimize_for_space = 1;
13458 /* Turn on all encoding optimizations. */
41fd2579 13459 optimize = INT_MAX;
b6f8c7c4
L
13460 }
13461 else
13462 {
13463 optimize = atoi (arg);
13464 /* Turn off -Os. */
13465 optimize_for_space = 0;
13466 }
13467 break;
13468
252b5132
RH
13469 default:
13470 return 0;
13471 }
13472 return 1;
13473}
13474
8a2c8fef
L
13475#define MESSAGE_TEMPLATE \
13476" "
13477
293f5f65
L
13478static char *
13479output_message (FILE *stream, char *p, char *message, char *start,
13480 int *left_p, const char *name, int len)
13481{
13482 int size = sizeof (MESSAGE_TEMPLATE);
13483 int left = *left_p;
13484
13485 /* Reserve 2 spaces for ", " or ",\0" */
13486 left -= len + 2;
13487
13488 /* Check if there is any room. */
13489 if (left >= 0)
13490 {
13491 if (p != start)
13492 {
13493 *p++ = ',';
13494 *p++ = ' ';
13495 }
13496 p = mempcpy (p, name, len);
13497 }
13498 else
13499 {
13500 /* Output the current message now and start a new one. */
13501 *p++ = ',';
13502 *p = '\0';
13503 fprintf (stream, "%s\n", message);
13504 p = start;
13505 left = size - (start - message) - len - 2;
13506
13507 gas_assert (left >= 0);
13508
13509 p = mempcpy (p, name, len);
13510 }
13511
13512 *left_p = left;
13513 return p;
13514}
13515
8a2c8fef 13516static void
1ded5609 13517show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
13518{
13519 static char message[] = MESSAGE_TEMPLATE;
13520 char *start = message + 27;
13521 char *p;
13522 int size = sizeof (MESSAGE_TEMPLATE);
13523 int left;
13524 const char *name;
13525 int len;
13526 unsigned int j;
13527
13528 p = start;
13529 left = size - (start - message);
13530 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13531 {
13532 /* Should it be skipped? */
13533 if (cpu_arch [j].skip)
13534 continue;
13535
13536 name = cpu_arch [j].name;
13537 len = cpu_arch [j].len;
13538 if (*name == '.')
13539 {
13540 /* It is an extension. Skip if we aren't asked to show it. */
13541 if (ext)
13542 {
13543 name++;
13544 len--;
13545 }
13546 else
13547 continue;
13548 }
13549 else if (ext)
13550 {
13551 /* It is an processor. Skip if we show only extension. */
13552 continue;
13553 }
1ded5609
JB
13554 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13555 {
13556 /* It is an impossible processor - skip. */
13557 continue;
13558 }
8a2c8fef 13559
293f5f65 13560 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
13561 }
13562
293f5f65
L
13563 /* Display disabled extensions. */
13564 if (ext)
13565 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13566 {
13567 name = cpu_noarch [j].name;
13568 len = cpu_noarch [j].len;
13569 p = output_message (stream, p, message, start, &left, name,
13570 len);
13571 }
13572
8a2c8fef
L
13573 *p = '\0';
13574 fprintf (stream, "%s\n", message);
13575}
13576
252b5132 13577void
8a2c8fef 13578md_show_usage (FILE *stream)
252b5132 13579{
4cc782b5
ILT
13580#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13581 fprintf (stream, _("\
d4693039 13582 -Qy, -Qn ignored\n\
a38cf1db 13583 -V print assembler version number\n\
b3b91714
AM
13584 -k ignored\n"));
13585#endif
13586 fprintf (stream, _("\
12b55ccc 13587 -n Do not optimize code alignment\n\
b3b91714
AM
13588 -q quieten some warnings\n"));
13589#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13590 fprintf (stream, _("\
a38cf1db 13591 -s ignored\n"));
b3b91714 13592#endif
d7f449c0
L
13593#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13594 || defined (TE_PE) || defined (TE_PEP))
751d281c 13595 fprintf (stream, _("\
570561f7 13596 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 13597#endif
b3b91714
AM
13598#ifdef SVR4_COMMENT_CHARS
13599 fprintf (stream, _("\
13600 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
13601#else
13602 fprintf (stream, _("\
b3b91714 13603 --divide ignored\n"));
4cc782b5 13604#endif
9103f4f4 13605 fprintf (stream, _("\
6305a203 13606 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 13607 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 13608 show_arch (stream, 0, 1);
8a2c8fef
L
13609 fprintf (stream, _("\
13610 EXTENSION is combination of:\n"));
1ded5609 13611 show_arch (stream, 1, 0);
6305a203 13612 fprintf (stream, _("\
8a2c8fef 13613 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 13614 show_arch (stream, 0, 0);
ba104c83 13615 fprintf (stream, _("\
c0f3af97
L
13616 -msse2avx encode SSE instructions with VEX prefix\n"));
13617 fprintf (stream, _("\
7c5c05ef 13618 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
13619 check SSE instructions\n"));
13620 fprintf (stream, _("\
7c5c05ef 13621 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
13622 check operand combinations for validity\n"));
13623 fprintf (stream, _("\
7c5c05ef
L
13624 -mavxscalar=[128|256] (default: 128)\n\
13625 encode scalar AVX instructions with specific vector\n\
539f890d
L
13626 length\n"));
13627 fprintf (stream, _("\
03751133
L
13628 -mvexwig=[0|1] (default: 0)\n\
13629 encode VEX instructions with specific VEX.W value\n\
13630 for VEX.W bit ignored instructions\n"));
13631 fprintf (stream, _("\
7c5c05ef
L
13632 -mevexlig=[128|256|512] (default: 128)\n\
13633 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
13634 length\n"));
13635 fprintf (stream, _("\
7c5c05ef
L
13636 -mevexwig=[0|1] (default: 0)\n\
13637 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
13638 for EVEX.W bit ignored instructions\n"));
13639 fprintf (stream, _("\
7c5c05ef 13640 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
13641 encode EVEX instructions with specific EVEX.RC value\n\
13642 for SAE-only ignored instructions\n"));
13643 fprintf (stream, _("\
7c5c05ef
L
13644 -mmnemonic=[att|intel] "));
13645 if (SYSV386_COMPAT)
13646 fprintf (stream, _("(default: att)\n"));
13647 else
13648 fprintf (stream, _("(default: intel)\n"));
13649 fprintf (stream, _("\
13650 use AT&T/Intel mnemonic\n"));
ba104c83 13651 fprintf (stream, _("\
7c5c05ef
L
13652 -msyntax=[att|intel] (default: att)\n\
13653 use AT&T/Intel syntax\n"));
ba104c83
L
13654 fprintf (stream, _("\
13655 -mindex-reg support pseudo index registers\n"));
13656 fprintf (stream, _("\
13657 -mnaked-reg don't require `%%' prefix for registers\n"));
13658 fprintf (stream, _("\
7e8b059b 13659 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 13660#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
13661 fprintf (stream, _("\
13662 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
13663 fprintf (stream, _("\
13664 -mx86-used-note=[no|yes] "));
13665 if (DEFAULT_X86_USED_NOTE)
13666 fprintf (stream, _("(default: yes)\n"));
13667 else
13668 fprintf (stream, _("(default: no)\n"));
13669 fprintf (stream, _("\
13670 generate x86 used ISA and feature properties\n"));
13671#endif
13672#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
13673 fprintf (stream, _("\
13674 -mbig-obj generate big object files\n"));
13675#endif
d022bddd 13676 fprintf (stream, _("\
7c5c05ef 13677 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 13678 strip all lock prefixes\n"));
5db04b09 13679 fprintf (stream, _("\
7c5c05ef 13680 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
13681 encode lfence, mfence and sfence as\n\
13682 lock addl $0x0, (%%{re}sp)\n"));
13683 fprintf (stream, _("\
7c5c05ef
L
13684 -mrelax-relocations=[no|yes] "));
13685 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13686 fprintf (stream, _("(default: yes)\n"));
13687 else
13688 fprintf (stream, _("(default: no)\n"));
13689 fprintf (stream, _("\
0cb4071e
L
13690 generate relax relocations\n"));
13691 fprintf (stream, _("\
e379e5f3
L
13692 -malign-branch-boundary=NUM (default: 0)\n\
13693 align branches within NUM byte boundary\n"));
13694 fprintf (stream, _("\
13695 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13696 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13697 indirect\n\
13698 specify types of branches to align\n"));
13699 fprintf (stream, _("\
13700 -malign-branch-prefix-size=NUM (default: 5)\n\
13701 align branches with NUM prefixes per instruction\n"));
13702 fprintf (stream, _("\
76cf450b
L
13703 -mbranches-within-32B-boundaries\n\
13704 align branches within 32 byte boundary\n"));
13705 fprintf (stream, _("\
ae531041
L
13706 -mlfence-after-load=[no|yes] (default: no)\n\
13707 generate lfence after load\n"));
13708 fprintf (stream, _("\
13709 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13710 generate lfence before indirect near branch\n"));
13711 fprintf (stream, _("\
a09f656b 13712 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
ae531041
L
13713 generate lfence before ret\n"));
13714 fprintf (stream, _("\
7c5c05ef 13715 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
13716 fprintf (stream, _("\
13717 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
13718}
13719
3e73aa7c 13720#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 13721 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 13722 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
13723
13724/* Pick the target format to use. */
13725
47926f60 13726const char *
e3bb37b5 13727i386_target_format (void)
252b5132 13728{
351f65ca
L
13729 if (!strncmp (default_arch, "x86_64", 6))
13730 {
13731 update_code_flag (CODE_64BIT, 1);
13732 if (default_arch[6] == '\0')
7f56bc95 13733 x86_elf_abi = X86_64_ABI;
351f65ca 13734 else
7f56bc95 13735 x86_elf_abi = X86_64_X32_ABI;
351f65ca 13736 }
3e73aa7c 13737 else if (!strcmp (default_arch, "i386"))
78f12dd3 13738 update_code_flag (CODE_32BIT, 1);
5197d474
L
13739 else if (!strcmp (default_arch, "iamcu"))
13740 {
13741 update_code_flag (CODE_32BIT, 1);
13742 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13743 {
13744 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13745 cpu_arch_name = "iamcu";
13746 cpu_sub_arch_name = NULL;
13747 cpu_arch_flags = iamcu_flags;
13748 cpu_arch_isa = PROCESSOR_IAMCU;
13749 cpu_arch_isa_flags = iamcu_flags;
13750 if (!cpu_arch_tune_set)
13751 {
13752 cpu_arch_tune = cpu_arch_isa;
13753 cpu_arch_tune_flags = cpu_arch_isa_flags;
13754 }
13755 }
8d471ec1 13756 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
13757 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13758 cpu_arch_name);
13759 }
3e73aa7c 13760 else
2b5d6a91 13761 as_fatal (_("unknown architecture"));
89507696
JB
13762
13763 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13764 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13765 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13766 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13767
252b5132
RH
13768 switch (OUTPUT_FLAVOR)
13769 {
9384f2ff 13770#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 13771 case bfd_target_aout_flavour:
47926f60 13772 return AOUT_TARGET_FORMAT;
4c63da97 13773#endif
9384f2ff
AM
13774#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13775# if defined (TE_PE) || defined (TE_PEP)
13776 case bfd_target_coff_flavour:
167ad85b
TG
13777 if (flag_code == CODE_64BIT)
13778 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13779 else
251dae91 13780 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
9384f2ff 13781# elif defined (TE_GO32)
0561d57c
JK
13782 case bfd_target_coff_flavour:
13783 return "coff-go32";
9384f2ff 13784# else
252b5132
RH
13785 case bfd_target_coff_flavour:
13786 return "coff-i386";
9384f2ff 13787# endif
4c63da97 13788#endif
3e73aa7c 13789#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 13790 case bfd_target_elf_flavour:
3e73aa7c 13791 {
351f65ca
L
13792 const char *format;
13793
13794 switch (x86_elf_abi)
4fa24527 13795 {
351f65ca
L
13796 default:
13797 format = ELF_TARGET_FORMAT;
e379e5f3
L
13798#ifndef TE_SOLARIS
13799 tls_get_addr = "___tls_get_addr";
13800#endif
351f65ca 13801 break;
7f56bc95 13802 case X86_64_ABI:
351f65ca 13803 use_rela_relocations = 1;
4fa24527 13804 object_64bit = 1;
e379e5f3
L
13805#ifndef TE_SOLARIS
13806 tls_get_addr = "__tls_get_addr";
13807#endif
351f65ca
L
13808 format = ELF_TARGET_FORMAT64;
13809 break;
7f56bc95 13810 case X86_64_X32_ABI:
4fa24527 13811 use_rela_relocations = 1;
351f65ca 13812 object_64bit = 1;
e379e5f3
L
13813#ifndef TE_SOLARIS
13814 tls_get_addr = "__tls_get_addr";
13815#endif
862be3fb 13816 disallow_64bit_reloc = 1;
351f65ca
L
13817 format = ELF_TARGET_FORMAT32;
13818 break;
4fa24527 13819 }
3632d14b 13820 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 13821 {
7f56bc95 13822 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
13823 as_fatal (_("Intel L1OM is 64bit only"));
13824 return ELF_TARGET_L1OM_FORMAT;
13825 }
b49f93f6 13826 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
13827 {
13828 if (x86_elf_abi != X86_64_ABI)
13829 as_fatal (_("Intel K1OM is 64bit only"));
13830 return ELF_TARGET_K1OM_FORMAT;
13831 }
81486035
L
13832 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13833 {
13834 if (x86_elf_abi != I386_ABI)
13835 as_fatal (_("Intel MCU is 32bit only"));
13836 return ELF_TARGET_IAMCU_FORMAT;
13837 }
8a9036a4 13838 else
351f65ca 13839 return format;
3e73aa7c 13840 }
e57f8c65
TG
13841#endif
13842#if defined (OBJ_MACH_O)
13843 case bfd_target_mach_o_flavour:
d382c579
TG
13844 if (flag_code == CODE_64BIT)
13845 {
13846 use_rela_relocations = 1;
13847 object_64bit = 1;
13848 return "mach-o-x86-64";
13849 }
13850 else
13851 return "mach-o-i386";
4c63da97 13852#endif
252b5132
RH
13853 default:
13854 abort ();
13855 return NULL;
13856 }
13857}
13858
47926f60 13859#endif /* OBJ_MAYBE_ more than one */
252b5132 13860\f
252b5132 13861symbolS *
7016a5d5 13862md_undefined_symbol (char *name)
252b5132 13863{
18dc2407
ILT
13864 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13865 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13866 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13867 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
13868 {
13869 if (!GOT_symbol)
13870 {
13871 if (symbol_find (name))
13872 as_bad (_("GOT already in symbol table"));
13873 GOT_symbol = symbol_new (name, undefined_section,
e01e1cee 13874 &zero_address_frag, 0);
24eab124
AM
13875 };
13876 return GOT_symbol;
13877 }
252b5132
RH
13878 return 0;
13879}
13880
13881/* Round up a section size to the appropriate boundary. */
47926f60 13882
252b5132 13883valueT
7016a5d5 13884md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 13885{
4c63da97
AM
13886#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13887 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13888 {
13889 /* For a.out, force the section size to be aligned. If we don't do
13890 this, BFD will align it for us, but it will not write out the
13891 final bytes of the section. This may be a bug in BFD, but it is
13892 easier to fix it here since that is how the other a.out targets
13893 work. */
13894 int align;
13895
fd361982 13896 align = bfd_section_alignment (segment);
8d3842cd 13897 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 13898 }
252b5132
RH
13899#endif
13900
13901 return size;
13902}
13903
13904/* On the i386, PC-relative offsets are relative to the start of the
13905 next instruction. That is, the address of the offset, plus its
13906 size, since the offset is always the last part of the insn. */
13907
13908long
e3bb37b5 13909md_pcrel_from (fixS *fixP)
252b5132
RH
13910{
13911 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13912}
13913
13914#ifndef I386COFF
13915
13916static void
e3bb37b5 13917s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 13918{
29b0f896 13919 int temp;
252b5132 13920
8a75718c
JB
13921#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13922 if (IS_ELF)
13923 obj_elf_section_change_hook ();
13924#endif
252b5132
RH
13925 temp = get_absolute_expression ();
13926 subseg_set (bss_section, (subsegT) temp);
13927 demand_empty_rest_of_line ();
13928}
13929
13930#endif
13931
e379e5f3
L
13932/* Remember constant directive. */
13933
13934void
13935i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13936{
13937 if (last_insn.kind != last_insn_directive
13938 && (bfd_section_flags (now_seg) & SEC_CODE))
13939 {
13940 last_insn.seg = now_seg;
13941 last_insn.kind = last_insn_directive;
13942 last_insn.name = "constant directive";
13943 last_insn.file = as_where (&last_insn.line);
ae531041
L
13944 if (lfence_before_ret != lfence_before_ret_none)
13945 {
13946 if (lfence_before_indirect_branch != lfence_branch_none)
13947 as_warn (_("constant directive skips -mlfence-before-ret "
13948 "and -mlfence-before-indirect-branch"));
13949 else
13950 as_warn (_("constant directive skips -mlfence-before-ret"));
13951 }
13952 else if (lfence_before_indirect_branch != lfence_branch_none)
13953 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
e379e5f3
L
13954 }
13955}
13956
252b5132 13957void
e3bb37b5 13958i386_validate_fix (fixS *fixp)
252b5132 13959{
02a86693 13960 if (fixp->fx_subsy)
252b5132 13961 {
02a86693 13962 if (fixp->fx_subsy == GOT_symbol)
23df1078 13963 {
02a86693
L
13964 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13965 {
13966 if (!object_64bit)
13967 abort ();
13968#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13969 if (fixp->fx_tcbit2)
56ceb5b5
L
13970 fixp->fx_r_type = (fixp->fx_tcbit
13971 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13972 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13973 else
13974#endif
13975 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13976 }
d6ab8113 13977 else
02a86693
L
13978 {
13979 if (!object_64bit)
13980 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13981 else
13982 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13983 }
13984 fixp->fx_subsy = 0;
23df1078 13985 }
252b5132 13986 }
02a86693 13987#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2585b7a5 13988 else
02a86693 13989 {
2585b7a5
L
13990 /* NB: Commit 292676c1 resolved PLT32 reloc aganst local symbol
13991 to section. Since PLT32 relocation must be against symbols,
13992 turn such PLT32 relocation into PC32 relocation. */
13993 if (fixp->fx_addsy
13994 && (fixp->fx_r_type == BFD_RELOC_386_PLT32
13995 || fixp->fx_r_type == BFD_RELOC_X86_64_PLT32)
13996 && symbol_section_p (fixp->fx_addsy))
13997 fixp->fx_r_type = BFD_RELOC_32_PCREL;
13998 if (!object_64bit)
13999 {
14000 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
14001 && fixp->fx_tcbit2)
14002 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
14003 }
02a86693
L
14004 }
14005#endif
252b5132
RH
14006}
14007
252b5132 14008arelent *
7016a5d5 14009tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
14010{
14011 arelent *rel;
14012 bfd_reloc_code_real_type code;
14013
14014 switch (fixp->fx_r_type)
14015 {
8ce3d284 14016#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
14017 case BFD_RELOC_SIZE32:
14018 case BFD_RELOC_SIZE64:
14019 if (S_IS_DEFINED (fixp->fx_addsy)
14020 && !S_IS_EXTERNAL (fixp->fx_addsy))
14021 {
14022 /* Resolve size relocation against local symbol to size of
14023 the symbol plus addend. */
14024 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
14025 if (fixp->fx_r_type == BFD_RELOC_SIZE32
14026 && !fits_in_unsigned_long (value))
14027 as_bad_where (fixp->fx_file, fixp->fx_line,
14028 _("symbol size computation overflow"));
14029 fixp->fx_addsy = NULL;
14030 fixp->fx_subsy = NULL;
14031 md_apply_fix (fixp, (valueT *) &value, NULL);
14032 return NULL;
14033 }
8ce3d284 14034#endif
1a0670f3 14035 /* Fall through. */
8fd4256d 14036
3e73aa7c
JH
14037 case BFD_RELOC_X86_64_PLT32:
14038 case BFD_RELOC_X86_64_GOT32:
14039 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
14040 case BFD_RELOC_X86_64_GOTPCRELX:
14041 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
14042 case BFD_RELOC_386_PLT32:
14043 case BFD_RELOC_386_GOT32:
02a86693 14044 case BFD_RELOC_386_GOT32X:
252b5132
RH
14045 case BFD_RELOC_386_GOTOFF:
14046 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
14047 case BFD_RELOC_386_TLS_GD:
14048 case BFD_RELOC_386_TLS_LDM:
14049 case BFD_RELOC_386_TLS_LDO_32:
14050 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
14051 case BFD_RELOC_386_TLS_IE:
14052 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
14053 case BFD_RELOC_386_TLS_LE_32:
14054 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
14055 case BFD_RELOC_386_TLS_GOTDESC:
14056 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
14057 case BFD_RELOC_X86_64_TLSGD:
14058 case BFD_RELOC_X86_64_TLSLD:
14059 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 14060 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
14061 case BFD_RELOC_X86_64_GOTTPOFF:
14062 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
14063 case BFD_RELOC_X86_64_TPOFF64:
14064 case BFD_RELOC_X86_64_GOTOFF64:
14065 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
14066 case BFD_RELOC_X86_64_GOT64:
14067 case BFD_RELOC_X86_64_GOTPCREL64:
14068 case BFD_RELOC_X86_64_GOTPC64:
14069 case BFD_RELOC_X86_64_GOTPLT64:
14070 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
14071 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14072 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
14073 case BFD_RELOC_RVA:
14074 case BFD_RELOC_VTABLE_ENTRY:
14075 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
14076#ifdef TE_PE
14077 case BFD_RELOC_32_SECREL:
14078#endif
252b5132
RH
14079 code = fixp->fx_r_type;
14080 break;
dbbaec26
L
14081 case BFD_RELOC_X86_64_32S:
14082 if (!fixp->fx_pcrel)
14083 {
14084 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
14085 code = fixp->fx_r_type;
14086 break;
14087 }
1a0670f3 14088 /* Fall through. */
252b5132 14089 default:
93382f6d 14090 if (fixp->fx_pcrel)
252b5132 14091 {
93382f6d
AM
14092 switch (fixp->fx_size)
14093 {
14094 default:
b091f402
AM
14095 as_bad_where (fixp->fx_file, fixp->fx_line,
14096 _("can not do %d byte pc-relative relocation"),
14097 fixp->fx_size);
93382f6d
AM
14098 code = BFD_RELOC_32_PCREL;
14099 break;
14100 case 1: code = BFD_RELOC_8_PCREL; break;
14101 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 14102 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
14103#ifdef BFD64
14104 case 8: code = BFD_RELOC_64_PCREL; break;
14105#endif
93382f6d
AM
14106 }
14107 }
14108 else
14109 {
14110 switch (fixp->fx_size)
14111 {
14112 default:
b091f402
AM
14113 as_bad_where (fixp->fx_file, fixp->fx_line,
14114 _("can not do %d byte relocation"),
14115 fixp->fx_size);
93382f6d
AM
14116 code = BFD_RELOC_32;
14117 break;
14118 case 1: code = BFD_RELOC_8; break;
14119 case 2: code = BFD_RELOC_16; break;
14120 case 4: code = BFD_RELOC_32; break;
937149dd 14121#ifdef BFD64
3e73aa7c 14122 case 8: code = BFD_RELOC_64; break;
937149dd 14123#endif
93382f6d 14124 }
252b5132
RH
14125 }
14126 break;
14127 }
252b5132 14128
d182319b
JB
14129 if ((code == BFD_RELOC_32
14130 || code == BFD_RELOC_32_PCREL
14131 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
14132 && GOT_symbol
14133 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 14134 {
4fa24527 14135 if (!object_64bit)
d6ab8113
JB
14136 code = BFD_RELOC_386_GOTPC;
14137 else
14138 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 14139 }
7b81dfbb
AJ
14140 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
14141 && GOT_symbol
14142 && fixp->fx_addsy == GOT_symbol)
14143 {
14144 code = BFD_RELOC_X86_64_GOTPC64;
14145 }
252b5132 14146
add39d23
TS
14147 rel = XNEW (arelent);
14148 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 14149 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
14150
14151 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 14152
3e73aa7c
JH
14153 if (!use_rela_relocations)
14154 {
14155 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
14156 vtable entry to be used in the relocation's section offset. */
14157 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14158 rel->address = fixp->fx_offset;
fbeb56a4
DK
14159#if defined (OBJ_COFF) && defined (TE_PE)
14160 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
14161 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
14162 else
14163#endif
c6682705 14164 rel->addend = 0;
3e73aa7c
JH
14165 }
14166 /* Use the rela in 64bit mode. */
252b5132 14167 else
3e73aa7c 14168 {
862be3fb
L
14169 if (disallow_64bit_reloc)
14170 switch (code)
14171 {
862be3fb
L
14172 case BFD_RELOC_X86_64_DTPOFF64:
14173 case BFD_RELOC_X86_64_TPOFF64:
14174 case BFD_RELOC_64_PCREL:
14175 case BFD_RELOC_X86_64_GOTOFF64:
14176 case BFD_RELOC_X86_64_GOT64:
14177 case BFD_RELOC_X86_64_GOTPCREL64:
14178 case BFD_RELOC_X86_64_GOTPC64:
14179 case BFD_RELOC_X86_64_GOTPLT64:
14180 case BFD_RELOC_X86_64_PLTOFF64:
14181 as_bad_where (fixp->fx_file, fixp->fx_line,
14182 _("cannot represent relocation type %s in x32 mode"),
14183 bfd_get_reloc_code_name (code));
14184 break;
14185 default:
14186 break;
14187 }
14188
062cd5e7
AS
14189 if (!fixp->fx_pcrel)
14190 rel->addend = fixp->fx_offset;
14191 else
14192 switch (code)
14193 {
14194 case BFD_RELOC_X86_64_PLT32:
14195 case BFD_RELOC_X86_64_GOT32:
14196 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
14197 case BFD_RELOC_X86_64_GOTPCRELX:
14198 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
14199 case BFD_RELOC_X86_64_TLSGD:
14200 case BFD_RELOC_X86_64_TLSLD:
14201 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
14202 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14203 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
14204 rel->addend = fixp->fx_offset - fixp->fx_size;
14205 break;
14206 default:
14207 rel->addend = (section->vma
14208 - fixp->fx_size
14209 + fixp->fx_addnumber
14210 + md_pcrel_from (fixp));
14211 break;
14212 }
3e73aa7c
JH
14213 }
14214
252b5132
RH
14215 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
14216 if (rel->howto == NULL)
14217 {
14218 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 14219 _("cannot represent relocation type %s"),
252b5132
RH
14220 bfd_get_reloc_code_name (code));
14221 /* Set howto to a garbage value so that we can keep going. */
14222 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 14223 gas_assert (rel->howto != NULL);
252b5132
RH
14224 }
14225
14226 return rel;
14227}
14228
ee86248c 14229#include "tc-i386-intel.c"
54cfded0 14230
a60de03c
JB
14231void
14232tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 14233{
a60de03c
JB
14234 int saved_naked_reg;
14235 char saved_register_dot;
54cfded0 14236
a60de03c
JB
14237 saved_naked_reg = allow_naked_reg;
14238 allow_naked_reg = 1;
14239 saved_register_dot = register_chars['.'];
14240 register_chars['.'] = '.';
14241 allow_pseudo_reg = 1;
14242 expression_and_evaluate (exp);
14243 allow_pseudo_reg = 0;
14244 register_chars['.'] = saved_register_dot;
14245 allow_naked_reg = saved_naked_reg;
14246
e96d56a1 14247 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 14248 {
a60de03c
JB
14249 if ((addressT) exp->X_add_number < i386_regtab_size)
14250 {
14251 exp->X_op = O_constant;
14252 exp->X_add_number = i386_regtab[exp->X_add_number]
14253 .dw2_regnum[flag_code >> 1];
14254 }
14255 else
14256 exp->X_op = O_illegal;
54cfded0 14257 }
54cfded0
AM
14258}
14259
14260void
14261tc_x86_frame_initial_instructions (void)
14262{
a60de03c
JB
14263 static unsigned int sp_regno[2];
14264
14265 if (!sp_regno[flag_code >> 1])
14266 {
14267 char *saved_input = input_line_pointer;
14268 char sp[][4] = {"esp", "rsp"};
14269 expressionS exp;
a4447b93 14270
a60de03c
JB
14271 input_line_pointer = sp[flag_code >> 1];
14272 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 14273 gas_assert (exp.X_op == O_constant);
a60de03c
JB
14274 sp_regno[flag_code >> 1] = exp.X_add_number;
14275 input_line_pointer = saved_input;
14276 }
a4447b93 14277
61ff971f
L
14278 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14279 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 14280}
d2b2c203 14281
d7921315
L
14282int
14283x86_dwarf2_addr_size (void)
14284{
14285#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14286 if (x86_elf_abi == X86_64_X32_ABI)
14287 return 4;
14288#endif
14289 return bfd_arch_bits_per_address (stdoutput) / 8;
14290}
14291
d2b2c203
DJ
14292int
14293i386_elf_section_type (const char *str, size_t len)
14294{
14295 if (flag_code == CODE_64BIT
14296 && len == sizeof ("unwind") - 1
14297 && strncmp (str, "unwind", 6) == 0)
14298 return SHT_X86_64_UNWIND;
14299
14300 return -1;
14301}
bb41ade5 14302
ad5fec3b
EB
14303#ifdef TE_SOLARIS
14304void
14305i386_solaris_fix_up_eh_frame (segT sec)
14306{
14307 if (flag_code == CODE_64BIT)
14308 elf_section_type (sec) = SHT_X86_64_UNWIND;
14309}
14310#endif
14311
bb41ade5
AM
14312#ifdef TE_PE
14313void
14314tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14315{
91d6fa6a 14316 expressionS exp;
bb41ade5 14317
91d6fa6a
NC
14318 exp.X_op = O_secrel;
14319 exp.X_add_symbol = symbol;
14320 exp.X_add_number = 0;
14321 emit_expr (&exp, size);
bb41ade5
AM
14322}
14323#endif
3b22753a
L
14324
14325#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14326/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14327
01e1a5bc 14328bfd_vma
6d4af3c2 14329x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
14330{
14331 if (flag_code == CODE_64BIT)
14332 {
14333 if (letter == 'l')
14334 return SHF_X86_64_LARGE;
14335
8f3bae45 14336 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 14337 }
3b22753a 14338 else
8f3bae45 14339 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
14340 return -1;
14341}
14342
01e1a5bc 14343bfd_vma
3b22753a
L
14344x86_64_section_word (char *str, size_t len)
14345{
08dedd66 14346 if (len == 5 && flag_code == CODE_64BIT && startswith (str, "large"))
3b22753a
L
14347 return SHF_X86_64_LARGE;
14348
14349 return -1;
14350}
14351
14352static void
14353handle_large_common (int small ATTRIBUTE_UNUSED)
14354{
14355 if (flag_code != CODE_64BIT)
14356 {
14357 s_comm_internal (0, elf_common_parse);
14358 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14359 }
14360 else
14361 {
14362 static segT lbss_section;
14363 asection *saved_com_section_ptr = elf_com_section_ptr;
14364 asection *saved_bss_section = bss_section;
14365
14366 if (lbss_section == NULL)
14367 {
14368 flagword applicable;
14369 segT seg = now_seg;
14370 subsegT subseg = now_subseg;
14371
14372 /* The .lbss section is for local .largecomm symbols. */
14373 lbss_section = subseg_new (".lbss", 0);
14374 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 14375 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
14376 seg_info (lbss_section)->bss = 1;
14377
14378 subseg_set (seg, subseg);
14379 }
14380
14381 elf_com_section_ptr = &_bfd_elf_large_com_section;
14382 bss_section = lbss_section;
14383
14384 s_comm_internal (0, elf_common_parse);
14385
14386 elf_com_section_ptr = saved_com_section_ptr;
14387 bss_section = saved_bss_section;
14388 }
14389}
14390#endif /* OBJ_ELF || OBJ_MAYBE_ELF */