]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
* gnu-nat.c: Include "gdb_assert.h" instead of <assert.h>.
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4
NC
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
252b5132
RH
28
29#include <ctype.h>
30
31#include "as.h"
32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
252b5132
RH
34#include "opcode/i386.h"
35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
252b5132
RH
44#ifndef SCALE1_WHEN_NO_INDEX
45/* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49#define SCALE1_WHEN_NO_INDEX 1
50#endif
51
52#define true 1
53#define false 0
54
55static unsigned int mode_from_disp_size PARAMS ((unsigned int));
847f7ad4
AM
56static int fits_in_signed_byte PARAMS ((offsetT));
57static int fits_in_unsigned_byte PARAMS ((offsetT));
58static int fits_in_unsigned_word PARAMS ((offsetT));
59static int fits_in_signed_word PARAMS ((offsetT));
3e73aa7c
JH
60static int fits_in_unsigned_long PARAMS ((offsetT));
61static int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
62static int smallest_imm_type PARAMS ((offsetT));
63static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 64static int add_prefix PARAMS ((unsigned int));
3e73aa7c 65static void set_code_flag PARAMS ((int));
47926f60 66static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 67static void set_intel_syntax PARAMS ((int));
e413e4e9 68static void set_cpu_arch PARAMS ((int));
252b5132
RH
69
70#ifdef BFD_ASSEMBLER
71static bfd_reloc_code_real_type reloc
3e73aa7c 72 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
73#endif
74
3e73aa7c
JH
75#ifndef DEFAULT_ARCH
76#define DEFAULT_ARCH "i386"
77#endif
78static char *default_arch = DEFAULT_ARCH;
79
252b5132 80/* 'md_assemble ()' gathers together information and puts it into a
47926f60 81 i386_insn. */
252b5132 82
520dc8e8
AM
83union i386_op
84 {
85 expressionS *disps;
86 expressionS *imms;
87 const reg_entry *regs;
88 };
89
252b5132
RH
90struct _i386_insn
91 {
47926f60 92 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
93 template tm;
94
95 /* SUFFIX holds the instruction mnemonic suffix if given.
96 (e.g. 'l' for 'movl') */
97 char suffix;
98
47926f60 99 /* OPERANDS gives the number of given operands. */
252b5132
RH
100 unsigned int operands;
101
102 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
103 of given register, displacement, memory operands and immediate
47926f60 104 operands. */
252b5132
RH
105 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
106
107 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 108 use OP[i] for the corresponding operand. */
252b5132
RH
109 unsigned int types[MAX_OPERANDS];
110
520dc8e8
AM
111 /* Displacement expression, immediate expression, or register for each
112 operand. */
113 union i386_op op[MAX_OPERANDS];
252b5132 114
3e73aa7c
JH
115 /* Flags for operands. */
116 unsigned int flags[MAX_OPERANDS];
117#define Operand_PCrel 1
118
252b5132
RH
119 /* Relocation type for operand */
120#ifdef BFD_ASSEMBLER
1ae12ab7 121 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 122#else
1ae12ab7 123 int reloc[MAX_OPERANDS];
252b5132
RH
124#endif
125
252b5132
RH
126 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
127 the base index byte below. */
128 const reg_entry *base_reg;
129 const reg_entry *index_reg;
130 unsigned int log2_scale_factor;
131
132 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 133 explicit segment overrides are given. */
ce8a8b2f 134 const seg_entry *seg[2];
252b5132
RH
135
136 /* PREFIX holds all the given prefix opcodes (usually null).
137 PREFIXES is the number of prefix opcodes. */
138 unsigned int prefixes;
139 unsigned char prefix[MAX_PREFIXES];
140
141 /* RM and SIB are the modrm byte and the sib byte where the
142 addressing modes of this insn are encoded. */
143
144 modrm_byte rm;
3e73aa7c 145 rex_byte rex;
252b5132
RH
146 sib_byte sib;
147 };
148
149typedef struct _i386_insn i386_insn;
150
151/* List of chars besides those in app.c:symbol_chars that can start an
152 operand. Used to prevent the scrubber eating vital white-space. */
153#ifdef LEX_AT
154const char extra_symbol_chars[] = "*%-(@";
155#else
156const char extra_symbol_chars[] = "*%-(";
157#endif
158
159/* This array holds the chars that always start a comment. If the
ce8a8b2f 160 pre-processor is disabled, these aren't very useful. */
60bcf0fa 161#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
252b5132
RH
162/* Putting '/' here makes it impossible to use the divide operator.
163 However, we need it for compatibility with SVR4 systems. */
164const char comment_chars[] = "#/";
165#define PREFIX_SEPARATOR '\\'
166#else
167const char comment_chars[] = "#";
168#define PREFIX_SEPARATOR '/'
169#endif
170
171/* This array holds the chars that only start a comment at the beginning of
172 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
173 .line and .file directives will appear in the pre-processed output.
174 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 175 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
176 #NO_APP at the beginning of its output.
177 Also note that comments started like this one will always work if
252b5132 178 '/' isn't otherwise defined. */
60bcf0fa 179#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
252b5132
RH
180const char line_comment_chars[] = "";
181#else
182const char line_comment_chars[] = "/";
183#endif
184
63a0b638 185const char line_separator_chars[] = ";";
252b5132 186
ce8a8b2f
AM
187/* Chars that can be used to separate mant from exp in floating point
188 nums. */
252b5132
RH
189const char EXP_CHARS[] = "eE";
190
ce8a8b2f
AM
191/* Chars that mean this number is a floating point constant
192 As in 0f12.456
193 or 0d1.2345e12. */
252b5132
RH
194const char FLT_CHARS[] = "fFdDxX";
195
ce8a8b2f 196/* Tables for lexical analysis. */
252b5132
RH
197static char mnemonic_chars[256];
198static char register_chars[256];
199static char operand_chars[256];
200static char identifier_chars[256];
201static char digit_chars[256];
202
ce8a8b2f 203/* Lexical macros. */
252b5132
RH
204#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
205#define is_operand_char(x) (operand_chars[(unsigned char) x])
206#define is_register_char(x) (register_chars[(unsigned char) x])
207#define is_space_char(x) ((x) == ' ')
208#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
209#define is_digit_char(x) (digit_chars[(unsigned char) x])
210
ce8a8b2f 211/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
212static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
213
214/* md_assemble() always leaves the strings it's passed unaltered. To
215 effect this we maintain a stack of saved characters that we've smashed
216 with '\0's (indicating end of strings for various sub-fields of the
47926f60 217 assembler instruction). */
252b5132 218static char save_stack[32];
ce8a8b2f 219static char *save_stack_p;
252b5132
RH
220#define END_STRING_AND_SAVE(s) \
221 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
222#define RESTORE_END_STRING(s) \
223 do { *(s) = *--save_stack_p; } while (0)
224
47926f60 225/* The instruction we're assembling. */
252b5132
RH
226static i386_insn i;
227
228/* Possible templates for current insn. */
229static const templates *current_templates;
230
47926f60 231/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
232static expressionS disp_expressions[2], im_expressions[2];
233
47926f60
KH
234/* Current operand we are working on. */
235static int this_operand;
252b5132 236
3e73aa7c
JH
237/* We support four different modes. FLAG_CODE variable is used to distinguish
238 these. */
239
240enum flag_code {
241 CODE_32BIT,
242 CODE_16BIT,
243 CODE_64BIT };
244
245static enum flag_code flag_code;
246static int use_rela_relocations = 0;
247
248/* The names used to print error messages. */
b77a7acd 249static const char *flag_code_names[] =
3e73aa7c
JH
250 {
251 "32",
252 "16",
253 "64"
254 };
252b5132 255
47926f60
KH
256/* 1 for intel syntax,
257 0 if att syntax. */
258static int intel_syntax = 0;
252b5132 259
47926f60
KH
260/* 1 if register prefix % not required. */
261static int allow_naked_reg = 0;
252b5132 262
47926f60
KH
263/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266static char stackop_size = '\0';
eecb386c 267
47926f60
KH
268/* Non-zero to quieten some warnings. */
269static int quiet_warnings = 0;
a38cf1db 270
47926f60
KH
271/* CPU name. */
272static const char *cpu_arch_name = NULL;
a38cf1db 273
47926f60 274/* CPU feature flags. */
3e73aa7c 275static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
a38cf1db 276
fddf5b5b
AM
277/* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279static unsigned int no_cond_jump_promotion = 0;
280
252b5132 281/* Interface to relax_segment.
fddf5b5b
AM
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
252b5132 285
47926f60 286/* Types. */
fddf5b5b
AM
287#define UNCOND_JUMP 1
288#define COND_JUMP 2
289#define COND_JUMP86 3
290
47926f60 291/* Sizes. */
252b5132
RH
292#define CODE16 1
293#define SMALL 0
294#define SMALL16 (SMALL|CODE16)
295#define BIG 2
296#define BIG16 (BIG|CODE16)
297
298#ifndef INLINE
299#ifdef __GNUC__
300#define INLINE __inline__
301#else
302#define INLINE
303#endif
304#endif
305
fddf5b5b
AM
306#define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308#define TYPE_FROM_RELAX_STATE(s) \
309 ((s) >> 2)
310#define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
312
313/* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
320
321const relax_typeS md_relax_table[] =
322{
24eab124
AM
323 /* The fields are:
324 1) most positive reach of this state,
325 2) most negative reach of this state,
326 3) how many bytes this mode will add to the size of the current frag
ce8a8b2f 327 4) which index into the table to try if we can't fit into this one. */
252b5132
RH
328 {1, 1, 0, 0},
329 {1, 1, 0, 0},
330 {1, 1, 0, 0},
331 {1, 1, 0, 0},
332
fddf5b5b
AM
333 /* UNCOND_JUMP states. */
334 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
335 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
336 /* dword jmp adds 3 bytes to frag:
337 0 extra opcode bytes, 3 extra displacement bytes. */
338 {0, 0, 3, 0},
339 /* word jmp adds 1 byte to frag:
340 0 extra opcode bytes, 1 extra displacement byte. */
341 {0, 0, 1, 0},
342
343 /* COND_JUMP states. */
252b5132
RH
344 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
345 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
346 /* dword conditionals adds 4 bytes to frag:
347 1 extra opcode byte, 3 extra displacement bytes. */
348 {0, 0, 4, 0},
349 /* word conditionals add 2 bytes to frag:
350 1 extra opcode byte, 1 extra displacement byte. */
351 {0, 0, 2, 0},
352
fddf5b5b
AM
353 /* COND_JUMP86 states. */
354 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
355 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
356 /* dword conditionals adds 4 bytes to frag:
357 1 extra opcode byte, 3 extra displacement bytes. */
358 {0, 0, 4, 0},
359 /* word conditionals add 3 bytes to frag:
360 1 extra opcode byte, 2 extra displacement bytes. */
361 {0, 0, 3, 0}
252b5132
RH
362};
363
e413e4e9
AM
364static const arch_entry cpu_arch[] = {
365 {"i8086", Cpu086 },
366 {"i186", Cpu086|Cpu186 },
367 {"i286", Cpu086|Cpu186|Cpu286 },
368 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
369 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
370 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
371 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
372 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
373 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 374 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
375 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
376 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 377 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
378 {NULL, 0 }
379};
380
252b5132
RH
381void
382i386_align_code (fragP, count)
383 fragS *fragP;
384 int count;
385{
ce8a8b2f
AM
386 /* Various efficient no-op patterns for aligning code labels.
387 Note: Don't try to assemble the instructions in the comments.
388 0L and 0w are not legal. */
252b5132
RH
389 static const char f32_1[] =
390 {0x90}; /* nop */
391 static const char f32_2[] =
392 {0x89,0xf6}; /* movl %esi,%esi */
393 static const char f32_3[] =
394 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
395 static const char f32_4[] =
396 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
397 static const char f32_5[] =
398 {0x90, /* nop */
399 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
400 static const char f32_6[] =
401 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
402 static const char f32_7[] =
403 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
404 static const char f32_8[] =
405 {0x90, /* nop */
406 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
407 static const char f32_9[] =
408 {0x89,0xf6, /* movl %esi,%esi */
409 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
410 static const char f32_10[] =
411 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
412 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
413 static const char f32_11[] =
414 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
415 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
416 static const char f32_12[] =
417 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
418 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
419 static const char f32_13[] =
420 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
421 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
422 static const char f32_14[] =
423 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
424 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
425 static const char f32_15[] =
426 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
427 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
428 static const char f16_3[] =
429 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
430 static const char f16_4[] =
431 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
432 static const char f16_5[] =
433 {0x90, /* nop */
434 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
435 static const char f16_6[] =
436 {0x89,0xf6, /* mov %si,%si */
437 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
438 static const char f16_7[] =
439 {0x8d,0x74,0x00, /* lea 0(%si),%si */
440 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
441 static const char f16_8[] =
442 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
443 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
444 static const char *const f32_patt[] = {
445 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
446 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
447 };
448 static const char *const f16_patt[] = {
c3332e24 449 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
450 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
451 };
452
3e73aa7c
JH
453 /* ??? We can't use these fillers for x86_64, since they often kills the
454 upper halves. Solve later. */
455 if (flag_code == CODE_64BIT)
456 count = 1;
457
252b5132
RH
458 if (count > 0 && count <= 15)
459 {
3e73aa7c 460 if (flag_code == CODE_16BIT)
252b5132 461 {
47926f60
KH
462 memcpy (fragP->fr_literal + fragP->fr_fix,
463 f16_patt[count - 1], count);
464 if (count > 8)
465 /* Adjust jump offset. */
252b5132
RH
466 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
467 }
468 else
47926f60
KH
469 memcpy (fragP->fr_literal + fragP->fr_fix,
470 f32_patt[count - 1], count);
252b5132
RH
471 fragP->fr_var = count;
472 }
473}
474
475static char *output_invalid PARAMS ((int c));
476static int i386_operand PARAMS ((char *operand_string));
477static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
478static const reg_entry *parse_register PARAMS ((char *reg_string,
479 char **end_op));
480
481#ifndef I386COFF
482static void s_bss PARAMS ((int));
483#endif
484
ce8a8b2f 485symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
252b5132
RH
486
487static INLINE unsigned int
488mode_from_disp_size (t)
489 unsigned int t;
490{
3e73aa7c 491 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
492}
493
494static INLINE int
495fits_in_signed_byte (num)
847f7ad4 496 offsetT num;
252b5132
RH
497{
498 return (num >= -128) && (num <= 127);
47926f60 499}
252b5132
RH
500
501static INLINE int
502fits_in_unsigned_byte (num)
847f7ad4 503 offsetT num;
252b5132
RH
504{
505 return (num & 0xff) == num;
47926f60 506}
252b5132
RH
507
508static INLINE int
509fits_in_unsigned_word (num)
847f7ad4 510 offsetT num;
252b5132
RH
511{
512 return (num & 0xffff) == num;
47926f60 513}
252b5132
RH
514
515static INLINE int
516fits_in_signed_word (num)
847f7ad4 517 offsetT num;
252b5132
RH
518{
519 return (-32768 <= num) && (num <= 32767);
47926f60 520}
3e73aa7c
JH
521static INLINE int
522fits_in_signed_long (num)
523 offsetT num ATTRIBUTE_UNUSED;
524{
525#ifndef BFD64
526 return 1;
527#else
528 return (!(((offsetT) -1 << 31) & num)
529 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
530#endif
531} /* fits_in_signed_long() */
532static INLINE int
533fits_in_unsigned_long (num)
534 offsetT num ATTRIBUTE_UNUSED;
535{
536#ifndef BFD64
537 return 1;
538#else
539 return (num & (((offsetT) 2 << 31) - 1)) == num;
540#endif
541} /* fits_in_unsigned_long() */
252b5132
RH
542
543static int
544smallest_imm_type (num)
847f7ad4 545 offsetT num;
252b5132 546{
3e73aa7c
JH
547 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
548 && !(cpu_arch_flags & (CpuUnknown)))
e413e4e9
AM
549 {
550 /* This code is disabled on the 486 because all the Imm1 forms
551 in the opcode table are slower on the i486. They're the
552 versions with the implicitly specified single-position
553 displacement, which has another syntax if you really want to
554 use that form. */
555 if (num == 1)
3e73aa7c 556 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 557 }
252b5132 558 return (fits_in_signed_byte (num)
3e73aa7c 559 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 560 : fits_in_unsigned_byte (num)
3e73aa7c 561 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 562 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
563 ? (Imm16 | Imm32 | Imm32S | Imm64)
564 : fits_in_signed_long (num)
565 ? (Imm32 | Imm32S | Imm64)
566 : fits_in_unsigned_long (num)
567 ? (Imm32 | Imm64)
568 : Imm64);
47926f60 569}
252b5132 570
847f7ad4
AM
571static offsetT
572offset_in_range (val, size)
573 offsetT val;
574 int size;
575{
508866be 576 addressT mask;
ba2adb93 577
847f7ad4
AM
578 switch (size)
579 {
508866be
L
580 case 1: mask = ((addressT) 1 << 8) - 1; break;
581 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 582 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
583#ifdef BFD64
584 case 8: mask = ((addressT) 2 << 63) - 1; break;
585#endif
47926f60 586 default: abort ();
847f7ad4
AM
587 }
588
ba2adb93 589 /* If BFD64, sign extend val. */
3e73aa7c
JH
590 if (!use_rela_relocations)
591 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
592 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 593
47926f60 594 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
595 {
596 char buf1[40], buf2[40];
597
598 sprint_value (buf1, val);
599 sprint_value (buf2, val & mask);
600 as_warn (_("%s shortened to %s"), buf1, buf2);
601 }
602 return val & mask;
603}
604
252b5132
RH
605/* Returns 0 if attempting to add a prefix where one from the same
606 class already exists, 1 if non rep/repne added, 2 if rep/repne
607 added. */
608static int
609add_prefix (prefix)
610 unsigned int prefix;
611{
612 int ret = 1;
613 int q;
614
3e73aa7c
JH
615 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
616 q = REX_PREFIX;
617 else
618 switch (prefix)
619 {
620 default:
621 abort ();
622
623 case CS_PREFIX_OPCODE:
624 case DS_PREFIX_OPCODE:
625 case ES_PREFIX_OPCODE:
626 case FS_PREFIX_OPCODE:
627 case GS_PREFIX_OPCODE:
628 case SS_PREFIX_OPCODE:
629 q = SEG_PREFIX;
630 break;
252b5132 631
3e73aa7c
JH
632 case REPNE_PREFIX_OPCODE:
633 case REPE_PREFIX_OPCODE:
634 ret = 2;
635 /* fall thru */
636 case LOCK_PREFIX_OPCODE:
637 q = LOCKREP_PREFIX;
638 break;
252b5132 639
3e73aa7c
JH
640 case FWAIT_OPCODE:
641 q = WAIT_PREFIX;
642 break;
252b5132 643
3e73aa7c
JH
644 case ADDR_PREFIX_OPCODE:
645 q = ADDR_PREFIX;
646 break;
252b5132 647
3e73aa7c
JH
648 case DATA_PREFIX_OPCODE:
649 q = DATA_PREFIX;
650 break;
651 }
252b5132
RH
652
653 if (i.prefix[q])
654 {
655 as_bad (_("same type of prefix used twice"));
656 return 0;
657 }
658
659 i.prefixes += 1;
660 i.prefix[q] = prefix;
661 return ret;
662}
663
664static void
3e73aa7c 665set_code_flag (value)
e5cb08ac 666 int value;
eecb386c 667{
3e73aa7c
JH
668 flag_code = value;
669 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
670 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
671 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
672 {
673 as_bad (_("64bit mode not supported on this CPU."));
674 }
675 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
676 {
677 as_bad (_("32bit mode not supported on this CPU."));
678 }
eecb386c
AM
679 stackop_size = '\0';
680}
681
682static void
3e73aa7c
JH
683set_16bit_gcc_code_flag (new_code_flag)
684 int new_code_flag;
252b5132 685{
3e73aa7c
JH
686 flag_code = new_code_flag;
687 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
688 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
689 stackop_size = 'l';
252b5132
RH
690}
691
692static void
693set_intel_syntax (syntax_flag)
eecb386c 694 int syntax_flag;
252b5132
RH
695{
696 /* Find out if register prefixing is specified. */
697 int ask_naked_reg = 0;
698
699 SKIP_WHITESPACE ();
700 if (! is_end_of_line[(unsigned char) *input_line_pointer])
701 {
702 char *string = input_line_pointer;
703 int e = get_symbol_end ();
704
47926f60 705 if (strcmp (string, "prefix") == 0)
252b5132 706 ask_naked_reg = 1;
47926f60 707 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
708 ask_naked_reg = -1;
709 else
d0b47220 710 as_bad (_("bad argument to syntax directive."));
252b5132
RH
711 *input_line_pointer = e;
712 }
713 demand_empty_rest_of_line ();
c3332e24 714
252b5132
RH
715 intel_syntax = syntax_flag;
716
717 if (ask_naked_reg == 0)
718 {
719#ifdef BFD_ASSEMBLER
720 allow_naked_reg = (intel_syntax
24eab124 721 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 722#else
47926f60
KH
723 /* Conservative default. */
724 allow_naked_reg = 0;
252b5132
RH
725#endif
726 }
727 else
728 allow_naked_reg = (ask_naked_reg < 0);
729}
730
e413e4e9
AM
731static void
732set_cpu_arch (dummy)
47926f60 733 int dummy ATTRIBUTE_UNUSED;
e413e4e9 734{
47926f60 735 SKIP_WHITESPACE ();
e413e4e9
AM
736
737 if (! is_end_of_line[(unsigned char) *input_line_pointer])
738 {
739 char *string = input_line_pointer;
740 int e = get_symbol_end ();
741 int i;
742
743 for (i = 0; cpu_arch[i].name; i++)
744 {
745 if (strcmp (string, cpu_arch[i].name) == 0)
746 {
747 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
748 cpu_arch_flags = (cpu_arch[i].flags
749 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
750 break;
751 }
752 }
753 if (!cpu_arch[i].name)
754 as_bad (_("no such architecture: `%s'"), string);
755
756 *input_line_pointer = e;
757 }
758 else
759 as_bad (_("missing cpu architecture"));
760
fddf5b5b
AM
761 no_cond_jump_promotion = 0;
762 if (*input_line_pointer == ','
763 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
764 {
765 char *string = ++input_line_pointer;
766 int e = get_symbol_end ();
767
768 if (strcmp (string, "nojumps") == 0)
769 no_cond_jump_promotion = 1;
770 else if (strcmp (string, "jumps") == 0)
771 ;
772 else
773 as_bad (_("no such architecture modifier: `%s'"), string);
774
775 *input_line_pointer = e;
776 }
777
e413e4e9
AM
778 demand_empty_rest_of_line ();
779}
780
252b5132
RH
781const pseudo_typeS md_pseudo_table[] =
782{
252b5132
RH
783#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
784 {"align", s_align_bytes, 0},
785#else
786 {"align", s_align_ptwo, 0},
e413e4e9
AM
787#endif
788 {"arch", set_cpu_arch, 0},
789#ifndef I386COFF
790 {"bss", s_bss, 0},
252b5132
RH
791#endif
792 {"ffloat", float_cons, 'f'},
793 {"dfloat", float_cons, 'd'},
794 {"tfloat", float_cons, 'x'},
795 {"value", cons, 2},
796 {"noopt", s_ignore, 0},
797 {"optim", s_ignore, 0},
3e73aa7c
JH
798 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
799 {"code16", set_code_flag, CODE_16BIT},
800 {"code32", set_code_flag, CODE_32BIT},
801 {"code64", set_code_flag, CODE_64BIT},
252b5132
RH
802 {"intel_syntax", set_intel_syntax, 1},
803 {"att_syntax", set_intel_syntax, 0},
316e2c05
RH
804 {"file", dwarf2_directive_file, 0},
805 {"loc", dwarf2_directive_loc, 0},
252b5132
RH
806 {0, 0, 0}
807};
808
47926f60 809/* For interface with expression (). */
252b5132
RH
810extern char *input_line_pointer;
811
47926f60 812/* Hash table for instruction mnemonic lookup. */
252b5132 813static struct hash_control *op_hash;
47926f60
KH
814
815/* Hash table for register lookup. */
252b5132
RH
816static struct hash_control *reg_hash;
817\f
b9d79e03
JH
818#ifdef BFD_ASSEMBLER
819unsigned long
820i386_mach ()
821{
822 if (!strcmp (default_arch, "x86_64"))
823 return bfd_mach_x86_64;
824 else if (!strcmp (default_arch, "i386"))
825 return bfd_mach_i386_i386;
826 else
827 as_fatal (_("Unknown architecture"));
828}
829#endif
830\f
252b5132
RH
831void
832md_begin ()
833{
834 const char *hash_err;
835
47926f60 836 /* Initialize op_hash hash table. */
252b5132
RH
837 op_hash = hash_new ();
838
839 {
840 register const template *optab;
841 register templates *core_optab;
842
47926f60
KH
843 /* Setup for loop. */
844 optab = i386_optab;
252b5132
RH
845 core_optab = (templates *) xmalloc (sizeof (templates));
846 core_optab->start = optab;
847
848 while (1)
849 {
850 ++optab;
851 if (optab->name == NULL
852 || strcmp (optab->name, (optab - 1)->name) != 0)
853 {
854 /* different name --> ship out current template list;
47926f60 855 add to hash table; & begin anew. */
252b5132
RH
856 core_optab->end = optab;
857 hash_err = hash_insert (op_hash,
858 (optab - 1)->name,
859 (PTR) core_optab);
860 if (hash_err)
861 {
252b5132
RH
862 as_fatal (_("Internal Error: Can't hash %s: %s"),
863 (optab - 1)->name,
864 hash_err);
865 }
866 if (optab->name == NULL)
867 break;
868 core_optab = (templates *) xmalloc (sizeof (templates));
869 core_optab->start = optab;
870 }
871 }
872 }
873
47926f60 874 /* Initialize reg_hash hash table. */
252b5132
RH
875 reg_hash = hash_new ();
876 {
877 register const reg_entry *regtab;
878
879 for (regtab = i386_regtab;
880 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
881 regtab++)
882 {
883 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
884 if (hash_err)
3e73aa7c
JH
885 as_fatal (_("Internal Error: Can't hash %s: %s"),
886 regtab->reg_name,
887 hash_err);
252b5132
RH
888 }
889 }
890
47926f60 891 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132
RH
892 {
893 register int c;
894 register char *p;
895
896 for (c = 0; c < 256; c++)
897 {
898 if (isdigit (c))
899 {
900 digit_chars[c] = c;
901 mnemonic_chars[c] = c;
902 register_chars[c] = c;
903 operand_chars[c] = c;
904 }
905 else if (islower (c))
906 {
907 mnemonic_chars[c] = c;
908 register_chars[c] = c;
909 operand_chars[c] = c;
910 }
911 else if (isupper (c))
912 {
913 mnemonic_chars[c] = tolower (c);
914 register_chars[c] = mnemonic_chars[c];
915 operand_chars[c] = c;
916 }
917
918 if (isalpha (c) || isdigit (c))
919 identifier_chars[c] = c;
920 else if (c >= 128)
921 {
922 identifier_chars[c] = c;
923 operand_chars[c] = c;
924 }
925 }
926
927#ifdef LEX_AT
928 identifier_chars['@'] = '@';
929#endif
252b5132
RH
930 digit_chars['-'] = '-';
931 identifier_chars['_'] = '_';
932 identifier_chars['.'] = '.';
933
934 for (p = operand_special_chars; *p != '\0'; p++)
935 operand_chars[(unsigned char) *p] = *p;
936 }
937
938#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
939 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
940 {
941 record_alignment (text_section, 2);
942 record_alignment (data_section, 2);
943 record_alignment (bss_section, 2);
944 }
945#endif
946}
947
948void
949i386_print_statistics (file)
950 FILE *file;
951{
952 hash_print_statistics (file, "i386 opcode", op_hash);
953 hash_print_statistics (file, "i386 register", reg_hash);
954}
955\f
252b5132
RH
956#ifdef DEBUG386
957
ce8a8b2f 958/* Debugging routines for md_assemble. */
252b5132
RH
959static void pi PARAMS ((char *, i386_insn *));
960static void pte PARAMS ((template *));
961static void pt PARAMS ((unsigned int));
962static void pe PARAMS ((expressionS *));
963static void ps PARAMS ((symbolS *));
964
965static void
966pi (line, x)
967 char *line;
968 i386_insn *x;
969{
09f131f2 970 unsigned int i;
252b5132
RH
971
972 fprintf (stdout, "%s: template ", line);
973 pte (&x->tm);
09f131f2
JH
974 fprintf (stdout, " address: base %s index %s scale %x\n",
975 x->base_reg ? x->base_reg->reg_name : "none",
976 x->index_reg ? x->index_reg->reg_name : "none",
977 x->log2_scale_factor);
978 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 979 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
980 fprintf (stdout, " sib: base %x index %x scale %x\n",
981 x->sib.base, x->sib.index, x->sib.scale);
982 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
983 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
252b5132
RH
984 for (i = 0; i < x->operands; i++)
985 {
986 fprintf (stdout, " #%d: ", i + 1);
987 pt (x->types[i]);
988 fprintf (stdout, "\n");
989 if (x->types[i]
3f4438ab 990 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 991 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 992 if (x->types[i] & Imm)
520dc8e8 993 pe (x->op[i].imms);
252b5132 994 if (x->types[i] & Disp)
520dc8e8 995 pe (x->op[i].disps);
252b5132
RH
996 }
997}
998
999static void
1000pte (t)
1001 template *t;
1002{
09f131f2 1003 unsigned int i;
252b5132 1004 fprintf (stdout, " %d operands ", t->operands);
47926f60 1005 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1006 if (t->extension_opcode != None)
1007 fprintf (stdout, "ext %x ", t->extension_opcode);
1008 if (t->opcode_modifier & D)
1009 fprintf (stdout, "D");
1010 if (t->opcode_modifier & W)
1011 fprintf (stdout, "W");
1012 fprintf (stdout, "\n");
1013 for (i = 0; i < t->operands; i++)
1014 {
1015 fprintf (stdout, " #%d type ", i + 1);
1016 pt (t->operand_types[i]);
1017 fprintf (stdout, "\n");
1018 }
1019}
1020
1021static void
1022pe (e)
1023 expressionS *e;
1024{
24eab124 1025 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1026 fprintf (stdout, " add_number %ld (%lx)\n",
1027 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1028 if (e->X_add_symbol)
1029 {
1030 fprintf (stdout, " add_symbol ");
1031 ps (e->X_add_symbol);
1032 fprintf (stdout, "\n");
1033 }
1034 if (e->X_op_symbol)
1035 {
1036 fprintf (stdout, " op_symbol ");
1037 ps (e->X_op_symbol);
1038 fprintf (stdout, "\n");
1039 }
1040}
1041
1042static void
1043ps (s)
1044 symbolS *s;
1045{
1046 fprintf (stdout, "%s type %s%s",
1047 S_GET_NAME (s),
1048 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1049 segment_name (S_GET_SEGMENT (s)));
1050}
1051
1052struct type_name
1053 {
1054 unsigned int mask;
1055 char *tname;
1056 }
1057
1058type_names[] =
1059{
1060 { Reg8, "r8" },
1061 { Reg16, "r16" },
1062 { Reg32, "r32" },
09f131f2 1063 { Reg64, "r64" },
252b5132
RH
1064 { Imm8, "i8" },
1065 { Imm8S, "i8s" },
1066 { Imm16, "i16" },
1067 { Imm32, "i32" },
09f131f2
JH
1068 { Imm32S, "i32s" },
1069 { Imm64, "i64" },
252b5132
RH
1070 { Imm1, "i1" },
1071 { BaseIndex, "BaseIndex" },
1072 { Disp8, "d8" },
1073 { Disp16, "d16" },
1074 { Disp32, "d32" },
09f131f2
JH
1075 { Disp32S, "d32s" },
1076 { Disp64, "d64" },
252b5132
RH
1077 { InOutPortReg, "InOutPortReg" },
1078 { ShiftCount, "ShiftCount" },
1079 { Control, "control reg" },
1080 { Test, "test reg" },
1081 { Debug, "debug reg" },
1082 { FloatReg, "FReg" },
1083 { FloatAcc, "FAcc" },
1084 { SReg2, "SReg2" },
1085 { SReg3, "SReg3" },
1086 { Acc, "Acc" },
1087 { JumpAbsolute, "Jump Absolute" },
1088 { RegMMX, "rMMX" },
3f4438ab 1089 { RegXMM, "rXMM" },
252b5132
RH
1090 { EsSeg, "es" },
1091 { 0, "" }
1092};
1093
1094static void
1095pt (t)
1096 unsigned int t;
1097{
1098 register struct type_name *ty;
1099
09f131f2
JH
1100 for (ty = type_names; ty->mask; ty++)
1101 if (t & ty->mask)
1102 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1103 fflush (stdout);
1104}
1105
1106#endif /* DEBUG386 */
1107\f
1108int
1109tc_i386_force_relocation (fixp)
1110 struct fix *fixp;
1111{
1112#ifdef BFD_ASSEMBLER
1113 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1114 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1115 return 1;
1116 return 0;
1117#else
ce8a8b2f 1118 /* For COFF. */
f6af82bd 1119 return fixp->fx_r_type == 7;
252b5132
RH
1120#endif
1121}
1122
1123#ifdef BFD_ASSEMBLER
252b5132
RH
1124
1125static bfd_reloc_code_real_type
3e73aa7c 1126reloc (size, pcrel, sign, other)
252b5132
RH
1127 int size;
1128 int pcrel;
3e73aa7c 1129 int sign;
252b5132
RH
1130 bfd_reloc_code_real_type other;
1131{
47926f60
KH
1132 if (other != NO_RELOC)
1133 return other;
252b5132
RH
1134
1135 if (pcrel)
1136 {
3e73aa7c 1137 if (!sign)
e5cb08ac 1138 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1139 switch (size)
1140 {
1141 case 1: return BFD_RELOC_8_PCREL;
1142 case 2: return BFD_RELOC_16_PCREL;
1143 case 4: return BFD_RELOC_32_PCREL;
1144 }
d0b47220 1145 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1146 }
1147 else
1148 {
3e73aa7c 1149 if (sign)
e5cb08ac 1150 switch (size)
3e73aa7c
JH
1151 {
1152 case 4: return BFD_RELOC_X86_64_32S;
1153 }
1154 else
1155 switch (size)
1156 {
1157 case 1: return BFD_RELOC_8;
1158 case 2: return BFD_RELOC_16;
1159 case 4: return BFD_RELOC_32;
1160 case 8: return BFD_RELOC_64;
1161 }
1162 as_bad (_("can not do %s %d byte relocation"),
1163 sign ? "signed" : "unsigned", size);
252b5132
RH
1164 }
1165
bfb32b52 1166 abort ();
252b5132
RH
1167 return BFD_RELOC_NONE;
1168}
1169
47926f60
KH
1170/* Here we decide which fixups can be adjusted to make them relative to
1171 the beginning of the section instead of the symbol. Basically we need
1172 to make sure that the dynamic relocations are done correctly, so in
1173 some cases we force the original symbol to be used. */
1174
252b5132 1175int
c0c949c7 1176tc_i386_fix_adjustable (fixP)
47926f60 1177 fixS *fixP;
252b5132 1178{
6d249963 1179#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
79d292aa
ILT
1180 /* Prevent all adjustments to global symbols, or else dynamic
1181 linking will not work correctly. */
b98ef147
AM
1182 if (S_IS_EXTERNAL (fixP->fx_addsy)
1183 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
1184 return 0;
1185#endif
ce8a8b2f 1186 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1187 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1188 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1189 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3e73aa7c
JH
1190 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1191 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1192 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
252b5132
RH
1193 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1194 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1195 return 0;
1196 return 1;
1197}
1198#else
ec56dfb4
L
1199#define reloc(SIZE,PCREL,SIGN,OTHER) 0
1200#define BFD_RELOC_16 0
1201#define BFD_RELOC_32 0
1202#define BFD_RELOC_16_PCREL 0
1203#define BFD_RELOC_32_PCREL 0
1204#define BFD_RELOC_386_PLT32 0
1205#define BFD_RELOC_386_GOT32 0
1206#define BFD_RELOC_386_GOTOFF 0
1207#define BFD_RELOC_X86_64_PLT32 0
1208#define BFD_RELOC_X86_64_GOT32 0
1209#define BFD_RELOC_X86_64_GOTPCREL 0
252b5132
RH
1210#endif
1211
47926f60 1212static int intel_float_operand PARAMS ((char *mnemonic));
b4cac588
AM
1213
1214static int
252b5132
RH
1215intel_float_operand (mnemonic)
1216 char *mnemonic;
1217{
47926f60 1218 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1219 return 2;
252b5132
RH
1220
1221 if (mnemonic[0] == 'f')
1222 return 1;
1223
1224 return 0;
1225}
1226
1227/* This is the guts of the machine-dependent assembler. LINE points to a
1228 machine dependent instruction. This function is supposed to emit
1229 the frags/bytes it assembles to. */
1230
1231void
1232md_assemble (line)
1233 char *line;
1234{
47926f60 1235 /* Points to template once we've found it. */
252b5132
RH
1236 const template *t;
1237
fddf5b5b
AM
1238 /* Count the size of the instruction generated. Does not include
1239 variable part of jump insns before relax. */
252b5132
RH
1240 int insn_size = 0;
1241
1242 int j;
1243
1244 char mnemonic[MAX_MNEM_SIZE];
1245
47926f60 1246 /* Initialize globals. */
252b5132
RH
1247 memset (&i, '\0', sizeof (i));
1248 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1249 i.reloc[j] = NO_RELOC;
252b5132
RH
1250 memset (disp_expressions, '\0', sizeof (disp_expressions));
1251 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1252 save_stack_p = save_stack;
252b5132
RH
1253
1254 /* First parse an instruction mnemonic & call i386_operand for the operands.
1255 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1256 start of a (possibly prefixed) mnemonic. */
252b5132
RH
1257 {
1258 char *l = line;
1259 char *token_start = l;
1260 char *mnem_p;
1261
47926f60 1262 /* Non-zero if we found a prefix only acceptable with string insns. */
252b5132
RH
1263 const char *expecting_string_instruction = NULL;
1264
1265 while (1)
1266 {
1267 mnem_p = mnemonic;
1268 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1269 {
1270 mnem_p++;
1271 if (mnem_p >= mnemonic + sizeof (mnemonic))
1272 {
e413e4e9 1273 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1274 return;
1275 }
1276 l++;
1277 }
1278 if (!is_space_char (*l)
1279 && *l != END_OF_INSN
1280 && *l != PREFIX_SEPARATOR)
1281 {
1282 as_bad (_("invalid character %s in mnemonic"),
1283 output_invalid (*l));
1284 return;
1285 }
1286 if (token_start == l)
1287 {
1288 if (*l == PREFIX_SEPARATOR)
1289 as_bad (_("expecting prefix; got nothing"));
1290 else
1291 as_bad (_("expecting mnemonic; got nothing"));
1292 return;
1293 }
1294
1295 /* Look up instruction (or prefix) via hash table. */
1296 current_templates = hash_find (op_hash, mnemonic);
1297
1298 if (*l != END_OF_INSN
1299 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1300 && current_templates
1301 && (current_templates->start->opcode_modifier & IsPrefix))
1302 {
1303 /* If we are in 16-bit mode, do not allow addr16 or data16.
1304 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1305 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1306 && (((current_templates->start->opcode_modifier & Size32) != 0)
3e73aa7c 1307 ^ (flag_code == CODE_16BIT)))
252b5132
RH
1308 {
1309 as_bad (_("redundant %s prefix"),
1310 current_templates->start->name);
1311 return;
1312 }
1313 /* Add prefix, checking for repeated prefixes. */
1314 switch (add_prefix (current_templates->start->base_opcode))
1315 {
1316 case 0:
1317 return;
1318 case 2:
47926f60 1319 expecting_string_instruction = current_templates->start->name;
252b5132
RH
1320 break;
1321 }
1322 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1323 token_start = ++l;
1324 }
1325 else
1326 break;
1327 }
1328
1329 if (!current_templates)
1330 {
24eab124 1331 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1332 switch (mnem_p[-1])
1333 {
252b5132
RH
1334 case WORD_MNEM_SUFFIX:
1335 case BYTE_MNEM_SUFFIX:
3e73aa7c 1336 case QWORD_MNEM_SUFFIX:
252b5132
RH
1337 i.suffix = mnem_p[-1];
1338 mnem_p[-1] = '\0';
1339 current_templates = hash_find (op_hash, mnemonic);
24eab124 1340 break;
f16b83df
JH
1341 case SHORT_MNEM_SUFFIX:
1342 case LONG_MNEM_SUFFIX:
1343 if (!intel_syntax)
1344 {
1345 i.suffix = mnem_p[-1];
1346 mnem_p[-1] = '\0';
1347 current_templates = hash_find (op_hash, mnemonic);
1348 }
1349 break;
24eab124 1350
ce8a8b2f 1351 /* Intel Syntax. */
f16b83df 1352 case 'd':
24eab124
AM
1353 if (intel_syntax)
1354 {
f16b83df
JH
1355 if (intel_float_operand (mnemonic))
1356 i.suffix = SHORT_MNEM_SUFFIX;
1357 else
1358 i.suffix = LONG_MNEM_SUFFIX;
24eab124
AM
1359 mnem_p[-1] = '\0';
1360 current_templates = hash_find (op_hash, mnemonic);
24eab124 1361 }
f16b83df 1362 break;
252b5132
RH
1363 }
1364 if (!current_templates)
1365 {
e413e4e9 1366 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1367 return;
1368 }
1369 }
1370
e413e4e9
AM
1371 /* Check if instruction is supported on specified architecture. */
1372 if (cpu_arch_flags != 0)
1373 {
3e73aa7c
JH
1374 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1375 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
e413e4e9
AM
1376 {
1377 as_warn (_("`%s' is not supported on `%s'"),
1378 current_templates->start->name, cpu_arch_name);
1379 }
3e73aa7c 1380 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
e413e4e9
AM
1381 {
1382 as_warn (_("use .code16 to ensure correct addressing mode"));
1383 }
1384 }
1385
ce8a8b2f 1386 /* Check for rep/repne without a string instruction. */
252b5132
RH
1387 if (expecting_string_instruction
1388 && !(current_templates->start->opcode_modifier & IsString))
1389 {
1390 as_bad (_("expecting string instruction after `%s'"),
1391 expecting_string_instruction);
1392 return;
1393 }
1394
47926f60 1395 /* There may be operands to parse. */
252b5132
RH
1396 if (*l != END_OF_INSN)
1397 {
47926f60 1398 /* 1 if operand is pending after ','. */
252b5132
RH
1399 unsigned int expecting_operand = 0;
1400
47926f60 1401 /* Non-zero if operand parens not balanced. */
252b5132
RH
1402 unsigned int paren_not_balanced;
1403
1404 do
1405 {
ce8a8b2f 1406 /* Skip optional white space before operand. */
252b5132
RH
1407 if (is_space_char (*l))
1408 ++l;
1409 if (!is_operand_char (*l) && *l != END_OF_INSN)
1410 {
1411 as_bad (_("invalid character %s before operand %d"),
1412 output_invalid (*l),
1413 i.operands + 1);
1414 return;
1415 }
1416 token_start = l; /* after white space */
1417 paren_not_balanced = 0;
1418 while (paren_not_balanced || *l != ',')
1419 {
1420 if (*l == END_OF_INSN)
1421 {
1422 if (paren_not_balanced)
1423 {
24eab124 1424 if (!intel_syntax)
252b5132
RH
1425 as_bad (_("unbalanced parenthesis in operand %d."),
1426 i.operands + 1);
24eab124 1427 else
252b5132
RH
1428 as_bad (_("unbalanced brackets in operand %d."),
1429 i.operands + 1);
1430 return;
1431 }
1432 else
1433 break; /* we are done */
1434 }
1435 else if (!is_operand_char (*l) && !is_space_char (*l))
1436 {
1437 as_bad (_("invalid character %s in operand %d"),
1438 output_invalid (*l),
1439 i.operands + 1);
1440 return;
1441 }
24eab124
AM
1442 if (!intel_syntax)
1443 {
252b5132
RH
1444 if (*l == '(')
1445 ++paren_not_balanced;
1446 if (*l == ')')
1447 --paren_not_balanced;
24eab124
AM
1448 }
1449 else
1450 {
252b5132
RH
1451 if (*l == '[')
1452 ++paren_not_balanced;
1453 if (*l == ']')
1454 --paren_not_balanced;
24eab124 1455 }
252b5132
RH
1456 l++;
1457 }
1458 if (l != token_start)
47926f60 1459 { /* Yes, we've read in another operand. */
252b5132
RH
1460 unsigned int operand_ok;
1461 this_operand = i.operands++;
1462 if (i.operands > MAX_OPERANDS)
1463 {
1464 as_bad (_("spurious operands; (%d operands/instruction max)"),
1465 MAX_OPERANDS);
1466 return;
1467 }
47926f60 1468 /* Now parse operand adding info to 'i' as we go along. */
252b5132
RH
1469 END_STRING_AND_SAVE (l);
1470
24eab124 1471 if (intel_syntax)
47926f60
KH
1472 operand_ok =
1473 i386_intel_operand (token_start,
1474 intel_float_operand (mnemonic));
24eab124
AM
1475 else
1476 operand_ok = i386_operand (token_start);
252b5132 1477
ce8a8b2f 1478 RESTORE_END_STRING (l);
252b5132
RH
1479 if (!operand_ok)
1480 return;
1481 }
1482 else
1483 {
1484 if (expecting_operand)
1485 {
1486 expecting_operand_after_comma:
1487 as_bad (_("expecting operand after ','; got nothing"));
1488 return;
1489 }
1490 if (*l == ',')
1491 {
1492 as_bad (_("expecting operand before ','; got nothing"));
1493 return;
1494 }
1495 }
1496
ce8a8b2f 1497 /* Now *l must be either ',' or END_OF_INSN. */
252b5132
RH
1498 if (*l == ',')
1499 {
1500 if (*++l == END_OF_INSN)
ce8a8b2f
AM
1501 {
1502 /* Just skip it, if it's \n complain. */
252b5132
RH
1503 goto expecting_operand_after_comma;
1504 }
1505 expecting_operand = 1;
1506 }
1507 }
ce8a8b2f 1508 while (*l != END_OF_INSN);
252b5132
RH
1509 }
1510 }
1511
1512 /* Now we've parsed the mnemonic into a set of templates, and have the
1513 operands at hand.
1514
1515 Next, we find a template that matches the given insn,
1516 making sure the overlap of the given operands types is consistent
47926f60 1517 with the template operand types. */
252b5132
RH
1518
1519#define MATCH(overlap, given, template) \
3138f287
AM
1520 ((overlap & ~JumpAbsolute) \
1521 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
252b5132
RH
1522
1523 /* If given types r0 and r1 are registers they must be of the same type
1524 unless the expected operand type register overlap is null.
1525 Note that Acc in a template matches every size of reg. */
1526#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1527 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1528 ((g0) & Reg) == ((g1) & Reg) || \
1529 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1530
1531 {
1532 register unsigned int overlap0, overlap1;
252b5132
RH
1533 unsigned int overlap2;
1534 unsigned int found_reverse_match;
1535 int suffix_check;
1536
cc5ca5ce
AM
1537 /* All intel opcodes have reversed operands except for "bound" and
1538 "enter". We also don't reverse intersegment "jmp" and "call"
1539 instructions with 2 immediate operands so that the immediate segment
1540 precedes the offset, as it does when in AT&T mode. "enter" and the
1541 intersegment "jmp" and "call" instructions are the only ones that
1542 have two immediate operands. */
520dc8e8 1543 if (intel_syntax && i.operands > 1
cc5ca5ce
AM
1544 && (strcmp (mnemonic, "bound") != 0)
1545 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
252b5132 1546 {
520dc8e8 1547 union i386_op temp_op;
24eab124 1548 unsigned int temp_type;
76a0ddac 1549#ifdef BFD_ASSEMBLER
3e73aa7c 1550 enum bfd_reloc_code_real temp_reloc;
76a0ddac 1551#else
3e73aa7c 1552 int temp_reloc;
76a0ddac 1553#endif
24eab124 1554 int xchg1 = 0;
ab9da554 1555 int xchg2 = 0;
252b5132 1556
24eab124
AM
1557 if (i.operands == 2)
1558 {
1559 xchg1 = 0;
1560 xchg2 = 1;
1561 }
1562 else if (i.operands == 3)
1563 {
1564 xchg1 = 0;
1565 xchg2 = 2;
1566 }
520dc8e8
AM
1567 temp_type = i.types[xchg2];
1568 i.types[xchg2] = i.types[xchg1];
1569 i.types[xchg1] = temp_type;
1570 temp_op = i.op[xchg2];
1571 i.op[xchg2] = i.op[xchg1];
1572 i.op[xchg1] = temp_op;
1ae12ab7
AM
1573 temp_reloc = i.reloc[xchg2];
1574 i.reloc[xchg2] = i.reloc[xchg1];
1575 i.reloc[xchg1] = temp_reloc;
36bf8ab9
AM
1576
1577 if (i.mem_operands == 2)
1578 {
1579 const seg_entry *temp_seg;
1580 temp_seg = i.seg[0];
1581 i.seg[0] = i.seg[1];
1582 i.seg[1] = temp_seg;
1583 }
24eab124 1584 }
773f551c
AM
1585
1586 if (i.imm_operands)
1587 {
1588 /* Try to ensure constant immediates are represented in the smallest
1589 opcode possible. */
1590 char guess_suffix = 0;
1591 int op;
1592
1593 if (i.suffix)
1594 guess_suffix = i.suffix;
1595 else if (i.reg_operands)
1596 {
1597 /* Figure out a suffix from the last register operand specified.
1598 We can't do this properly yet, ie. excluding InOutPortReg,
1599 but the following works for instructions with immediates.
1600 In any case, we can't set i.suffix yet. */
47926f60 1601 for (op = i.operands; --op >= 0;)
773f551c
AM
1602 if (i.types[op] & Reg)
1603 {
1604 if (i.types[op] & Reg8)
1605 guess_suffix = BYTE_MNEM_SUFFIX;
1606 else if (i.types[op] & Reg16)
1607 guess_suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1608 else if (i.types[op] & Reg32)
1609 guess_suffix = LONG_MNEM_SUFFIX;
1610 else if (i.types[op] & Reg64)
1611 guess_suffix = QWORD_MNEM_SUFFIX;
773f551c
AM
1612 break;
1613 }
1614 }
3e73aa7c 1615 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
726c5dcd
AM
1616 guess_suffix = WORD_MNEM_SUFFIX;
1617
47926f60 1618 for (op = i.operands; --op >= 0;)
3e73aa7c 1619 if (i.types[op] & Imm)
773f551c 1620 {
3e73aa7c 1621 switch (i.op[op].imms->X_op)
e5cb08ac 1622 {
3e73aa7c
JH
1623 case O_constant:
1624 /* If a suffix is given, this operand may be shortened. */
1625 switch (guess_suffix)
1626 {
1627 case LONG_MNEM_SUFFIX:
1628 i.types[op] |= Imm32 | Imm64;
1629 break;
1630 case WORD_MNEM_SUFFIX:
1631 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1632 break;
1633 case BYTE_MNEM_SUFFIX:
1634 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1635 break;
1636 }
773f551c 1637
e5cb08ac
KH
1638 /* If this operand is at most 16 bits, convert it
1639 to a signed 16 bit number before trying to see
1640 whether it will fit in an even smaller size.
1641 This allows a 16-bit operand such as $0xffe0 to
1642 be recognised as within Imm8S range. */
3e73aa7c 1643 if ((i.types[op] & Imm16)
e5cb08ac 1644 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3e73aa7c
JH
1645 {
1646 i.op[op].imms->X_add_number =
1647 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1648 }
1649 if ((i.types[op] & Imm32)
1650 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1651 {
1652 i.op[op].imms->X_add_number =
1653 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1654 }
1655 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1656 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1657 if (guess_suffix == QWORD_MNEM_SUFFIX)
1658 i.types[op] &= ~Imm32;
1659 break;
1660 case O_absent:
1661 case O_register:
bfb32b52 1662 abort ();
3e73aa7c
JH
1663 /* Symbols and expressions. */
1664 default:
1665 /* Convert symbolic operand to proper sizes for matching. */
1666 switch (guess_suffix)
1667 {
1668 case QWORD_MNEM_SUFFIX:
1669 i.types[op] = Imm64 | Imm32S;
1670 break;
1671 case LONG_MNEM_SUFFIX:
1672 i.types[op] = Imm32 | Imm64;
1673 break;
1674 case WORD_MNEM_SUFFIX:
1675 i.types[op] = Imm16 | Imm32 | Imm64;
1676 break;
1677 break;
1678 case BYTE_MNEM_SUFFIX:
1679 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1680 break;
1681 break;
1682 }
1683 break;
773f551c 1684 }
773f551c
AM
1685 }
1686 }
1687
45288df1
AM
1688 if (i.disp_operands)
1689 {
1690 /* Try to use the smallest displacement type too. */
1691 int op;
1692
47926f60 1693 for (op = i.operands; --op >= 0;)
45288df1 1694 if ((i.types[op] & Disp)
1ae12ab7 1695 && i.op[op].disps->X_op == O_constant)
45288df1
AM
1696 {
1697 offsetT disp = i.op[op].disps->X_add_number;
1698
1699 if (i.types[op] & Disp16)
1700 {
1701 /* We know this operand is at most 16 bits, so
1702 convert to a signed 16 bit number before trying
1703 to see whether it will fit in an even smaller
1704 size. */
47926f60 1705
45288df1
AM
1706 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1707 }
3e73aa7c
JH
1708 else if (i.types[op] & Disp32)
1709 {
1710 /* We know this operand is at most 32 bits, so convert to a
1711 signed 32 bit number before trying to see whether it will
1712 fit in an even smaller size. */
1713 disp &= (((offsetT) 2 << 31) - 1);
1714 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1715 }
1716 if (flag_code == CODE_64BIT)
1717 {
1718 if (fits_in_signed_long (disp))
1719 i.types[op] |= Disp32S;
1720 if (fits_in_unsigned_long (disp))
1721 i.types[op] |= Disp32;
1722 }
1723 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1724 && fits_in_signed_byte (disp))
45288df1
AM
1725 i.types[op] |= Disp8;
1726 }
1727 }
1728
252b5132
RH
1729 overlap0 = 0;
1730 overlap1 = 0;
1731 overlap2 = 0;
1732 found_reverse_match = 0;
1733 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1734 ? No_bSuf
1735 : (i.suffix == WORD_MNEM_SUFFIX
1736 ? No_wSuf
1737 : (i.suffix == SHORT_MNEM_SUFFIX
1738 ? No_sSuf
1739 : (i.suffix == LONG_MNEM_SUFFIX
24eab124 1740 ? No_lSuf
3e73aa7c
JH
1741 : (i.suffix == QWORD_MNEM_SUFFIX
1742 ? No_qSuf
1743 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1744
1745 for (t = current_templates->start;
1746 t < current_templates->end;
1747 t++)
1748 {
47926f60 1749 /* Must have right number of operands. */
252b5132
RH
1750 if (i.operands != t->operands)
1751 continue;
1752
7f3f1ea2
AM
1753 /* Check the suffix, except for some instructions in intel mode. */
1754 if ((t->opcode_modifier & suffix_check)
fa2255cb
DN
1755 && !(intel_syntax
1756 && (t->opcode_modifier & IgnoreSize))
7f3f1ea2
AM
1757 && !(intel_syntax
1758 && t->base_opcode == 0xd9
ce8a8b2f
AM
1759 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1760 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
24eab124 1761 continue;
252b5132 1762
e2914f48 1763 /* Do not verify operands when there are none. */
252b5132 1764 else if (!t->operands)
e2914f48
JH
1765 {
1766 if (t->cpu_flags & ~cpu_arch_flags)
1767 continue;
1768 /* We've found a match; break out of loop. */
1769 break;
e5cb08ac 1770 }
252b5132
RH
1771
1772 overlap0 = i.types[0] & t->operand_types[0];
1773 switch (t->operands)
1774 {
1775 case 1:
1776 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1777 continue;
1778 break;
1779 case 2:
1780 case 3:
1781 overlap1 = i.types[1] & t->operand_types[1];
1782 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1783 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1784 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1785 t->operand_types[0],
1786 overlap1, i.types[1],
1787 t->operand_types[1]))
1788 {
47926f60 1789 /* Check if other direction is valid ... */
252b5132
RH
1790 if ((t->opcode_modifier & (D|FloatD)) == 0)
1791 continue;
1792
47926f60 1793 /* Try reversing direction of operands. */
252b5132
RH
1794 overlap0 = i.types[0] & t->operand_types[1];
1795 overlap1 = i.types[1] & t->operand_types[0];
1796 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1797 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1798 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1799 t->operand_types[1],
1800 overlap1, i.types[1],
1801 t->operand_types[0]))
1802 {
47926f60 1803 /* Does not match either direction. */
252b5132
RH
1804 continue;
1805 }
1806 /* found_reverse_match holds which of D or FloatDR
1807 we've found. */
1808 found_reverse_match = t->opcode_modifier & (D|FloatDR);
252b5132 1809 }
47926f60 1810 /* Found a forward 2 operand match here. */
3e73aa7c 1811 else if (t->operands == 3)
252b5132
RH
1812 {
1813 /* Here we make use of the fact that there are no
1814 reverse match 3 operand instructions, and all 3
1815 operand instructions only need to be checked for
1816 register consistency between operands 2 and 3. */
1817 overlap2 = i.types[2] & t->operand_types[2];
1818 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1819 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1820 t->operand_types[1],
1821 overlap2, i.types[2],
24eab124 1822 t->operand_types[2]))
252b5132 1823
24eab124 1824 continue;
252b5132 1825 }
47926f60 1826 /* Found either forward/reverse 2 or 3 operand match here:
ce8a8b2f 1827 slip through to break. */
252b5132 1828 }
3e73aa7c
JH
1829 if (t->cpu_flags & ~cpu_arch_flags)
1830 {
1831 found_reverse_match = 0;
1832 continue;
1833 }
47926f60
KH
1834 /* We've found a match; break out of loop. */
1835 break;
ce8a8b2f 1836 }
252b5132 1837 if (t == current_templates->end)
47926f60
KH
1838 {
1839 /* We found no match. */
252b5132
RH
1840 as_bad (_("suffix or operands invalid for `%s'"),
1841 current_templates->start->name);
1842 return;
1843 }
1844
a38cf1db 1845 if (!quiet_warnings)
3138f287 1846 {
a38cf1db
AM
1847 if (!intel_syntax
1848 && ((i.types[0] & JumpAbsolute)
1849 != (t->operand_types[0] & JumpAbsolute)))
1850 {
1851 as_warn (_("indirect %s without `*'"), t->name);
1852 }
3138f287 1853
a38cf1db
AM
1854 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1855 == (IsPrefix|IgnoreSize))
1856 {
1857 /* Warn them that a data or address size prefix doesn't
1858 affect assembly of the next line of code. */
1859 as_warn (_("stand-alone `%s' prefix"), t->name);
1860 }
252b5132
RH
1861 }
1862
1863 /* Copy the template we found. */
1864 i.tm = *t;
1865 if (found_reverse_match)
1866 {
7f3f1ea2
AM
1867 /* If we found a reverse match we must alter the opcode
1868 direction bit. found_reverse_match holds bits to change
1869 (different for int & float insns). */
1870
1871 i.tm.base_opcode ^= found_reverse_match;
1872
252b5132
RH
1873 i.tm.operand_types[0] = t->operand_types[1];
1874 i.tm.operand_types[1] = t->operand_types[0];
1875 }
1876
d0b47220 1877 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
e5cb08ac
KH
1878 if (SYSV386_COMPAT
1879 && intel_syntax
1880 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1881 i.tm.base_opcode ^= FloatR;
252b5132
RH
1882
1883 if (i.tm.opcode_modifier & FWait)
1884 if (! add_prefix (FWAIT_OPCODE))
1885 return;
1886
ce8a8b2f 1887 /* Check string instruction segment overrides. */
252b5132
RH
1888 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1889 {
1890 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1891 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1892 {
1893 if (i.seg[0] != NULL && i.seg[0] != &es)
1894 {
1895 as_bad (_("`%s' operand %d must use `%%es' segment"),
1896 i.tm.name,
1897 mem_op + 1);
1898 return;
1899 }
1900 /* There's only ever one segment override allowed per instruction.
1901 This instruction possibly has a legal segment override on the
1902 second operand, so copy the segment to where non-string
1903 instructions store it, allowing common code. */
1904 i.seg[0] = i.seg[1];
1905 }
1906 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1907 {
1908 if (i.seg[1] != NULL && i.seg[1] != &es)
1909 {
1910 as_bad (_("`%s' operand %d must use `%%es' segment"),
1911 i.tm.name,
1912 mem_op + 2);
1913 return;
1914 }
1915 }
1916 }
1917
3e73aa7c
JH
1918 if (i.reg_operands && flag_code < CODE_64BIT)
1919 {
1920 int op;
e5cb08ac 1921 for (op = i.operands; --op >= 0;)
3e73aa7c
JH
1922 if ((i.types[op] & Reg)
1923 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
b96d3a20
JH
1924 {
1925 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1926 i.op[op].regs->reg_name);
1927 return;
1928 }
3e73aa7c
JH
1929 }
1930
252b5132
RH
1931 /* If matched instruction specifies an explicit instruction mnemonic
1932 suffix, use it. */
3e73aa7c 1933 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
252b5132
RH
1934 {
1935 if (i.tm.opcode_modifier & Size16)
1936 i.suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1937 else if (i.tm.opcode_modifier & Size64)
1938 i.suffix = QWORD_MNEM_SUFFIX;
252b5132 1939 else
add0c677 1940 i.suffix = LONG_MNEM_SUFFIX;
252b5132
RH
1941 }
1942 else if (i.reg_operands)
1943 {
1944 /* If there's no instruction mnemonic suffix we try to invent one
47926f60 1945 based on register operands. */
252b5132
RH
1946 if (!i.suffix)
1947 {
1948 /* We take i.suffix from the last register operand specified,
1949 Destination register type is more significant than source
1950 register type. */
1951 int op;
47926f60 1952 for (op = i.operands; --op >= 0;)
cc5ca5ce
AM
1953 if ((i.types[op] & Reg)
1954 && !(i.tm.operand_types[op] & InOutPortReg))
252b5132
RH
1955 {
1956 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1957 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
3e73aa7c 1958 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
add0c677 1959 LONG_MNEM_SUFFIX);
252b5132
RH
1960 break;
1961 }
1962 }
1963 else if (i.suffix == BYTE_MNEM_SUFFIX)
1964 {
1965 int op;
47926f60 1966 for (op = i.operands; --op >= 0;)
252b5132
RH
1967 {
1968 /* If this is an eight bit register, it's OK. If it's
1969 the 16 or 32 bit version of an eight bit register,
47926f60 1970 we will just use the low portion, and that's OK too. */
252b5132
RH
1971 if (i.types[op] & Reg8)
1972 continue;
1973
47926f60 1974 /* movzx and movsx should not generate this warning. */
24eab124
AM
1975 if (intel_syntax
1976 && (i.tm.base_opcode == 0xfb7
1977 || i.tm.base_opcode == 0xfb6
3e73aa7c 1978 || i.tm.base_opcode == 0x63
24eab124
AM
1979 || i.tm.base_opcode == 0xfbe
1980 || i.tm.base_opcode == 0xfbf))
1981 continue;
252b5132 1982
520dc8e8 1983 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
252b5132
RH
1984#if 0
1985 /* Check that the template allows eight bit regs
1986 This kills insns such as `orb $1,%edx', which
1987 maybe should be allowed. */
1988 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1989#endif
1990 )
1991 {
3e73aa7c
JH
1992 /* Prohibit these changes in the 64bit mode, since
1993 the lowering is more complicated. */
1994 if (flag_code == CODE_64BIT
1995 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1996 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1997 i.op[op].regs->reg_name,
1998 i.suffix);
252b5132 1999#if REGISTER_WARNINGS
a38cf1db
AM
2000 if (!quiet_warnings
2001 && (i.tm.operand_types[op] & InOutPortReg) == 0)
252b5132 2002 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
520dc8e8
AM
2003 (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
2004 i.op[op].regs->reg_name,
252b5132
RH
2005 i.suffix);
2006#endif
2007 continue;
2008 }
ce8a8b2f 2009 /* Any other register is bad. */
3f4438ab
AM
2010 if (i.types[op] & (Reg | RegMMX | RegXMM
2011 | SReg2 | SReg3
2012 | Control | Debug | Test
2013 | FloatReg | FloatAcc))
252b5132
RH
2014 {
2015 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2016 i.op[op].regs->reg_name,
252b5132
RH
2017 i.tm.name,
2018 i.suffix);
2019 return;
2020 }
2021 }
2022 }
add0c677 2023 else if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2024 {
2025 int op;
47926f60
KH
2026
2027 for (op = i.operands; --op >= 0;)
252b5132
RH
2028 /* Reject eight bit registers, except where the template
2029 requires them. (eg. movzb) */
2030 if ((i.types[op] & Reg8) != 0
47926f60 2031 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
252b5132
RH
2032 {
2033 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2034 i.op[op].regs->reg_name,
252b5132
RH
2035 i.tm.name,
2036 i.suffix);
2037 return;
2038 }
252b5132 2039 /* Warn if the e prefix on a general reg is missing. */
3e73aa7c 2040 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2041 && (i.types[op] & Reg16) != 0
252b5132
RH
2042 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2043 {
3e73aa7c
JH
2044 /* Prohibit these changes in the 64bit mode, since
2045 the lowering is more complicated. */
2046 if (flag_code == CODE_64BIT)
2047 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2048 i.op[op].regs->reg_name,
2049 i.suffix);
2050#if REGISTER_WARNINGS
2051 else
2052 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2053 (i.op[op].regs + 8)->reg_name,
2054 i.op[op].regs->reg_name,
2055 i.suffix);
252b5132 2056#endif
3e73aa7c
JH
2057 }
2058 /* Warn if the r prefix on a general reg is missing. */
2059 else if ((i.types[op] & Reg64) != 0
2060 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2061 {
2062 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2063 i.op[op].regs->reg_name,
2064 i.suffix);
2065 }
2066 }
2067 else if (i.suffix == QWORD_MNEM_SUFFIX)
2068 {
2069 int op;
3e73aa7c
JH
2070
2071 for (op = i.operands; --op >= 0; )
2072 /* Reject eight bit registers, except where the template
2073 requires them. (eg. movzb) */
2074 if ((i.types[op] & Reg8) != 0
2075 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2076 {
2077 as_bad (_("`%%%s' not allowed with `%s%c'"),
2078 i.op[op].regs->reg_name,
2079 i.tm.name,
2080 i.suffix);
2081 return;
2082 }
2083 /* Warn if the e prefix on a general reg is missing. */
2084 else if (((i.types[op] & Reg16) != 0
2085 || (i.types[op] & Reg32) != 0)
2086 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2087 {
2088 /* Prohibit these changes in the 64bit mode, since
2089 the lowering is more complicated. */
2090 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2091 i.op[op].regs->reg_name,
2092 i.suffix);
2093 }
252b5132
RH
2094 }
2095 else if (i.suffix == WORD_MNEM_SUFFIX)
2096 {
2097 int op;
47926f60 2098 for (op = i.operands; --op >= 0;)
252b5132
RH
2099 /* Reject eight bit registers, except where the template
2100 requires them. (eg. movzb) */
2101 if ((i.types[op] & Reg8) != 0
2102 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2103 {
2104 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2105 i.op[op].regs->reg_name,
252b5132
RH
2106 i.tm.name,
2107 i.suffix);
2108 return;
2109 }
252b5132 2110 /* Warn if the e prefix on a general reg is present. */
3e73aa7c 2111 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2112 && (i.types[op] & Reg32) != 0
252b5132
RH
2113 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2114 {
3e73aa7c
JH
2115 /* Prohibit these changes in the 64bit mode, since
2116 the lowering is more complicated. */
2117 if (flag_code == CODE_64BIT)
2118 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2119 i.op[op].regs->reg_name,
2120 i.suffix);
2121 else
2122#if REGISTER_WARNINGS
2123 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2124 (i.op[op].regs - 8)->reg_name,
2125 i.op[op].regs->reg_name,
2126 i.suffix);
252b5132 2127#endif
3e73aa7c 2128 }
252b5132 2129 }
fa2255cb
DN
2130 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2131 /* Do nothing if the instruction is going to ignore the prefix. */
2132 ;
252b5132 2133 else
47926f60 2134 abort ();
252b5132 2135 }
eecb386c
AM
2136 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2137 {
2138 i.suffix = stackop_size;
2139 }
252b5132
RH
2140 /* Make still unresolved immediate matches conform to size of immediate
2141 given in i.suffix. Note: overlap2 cannot be an immediate! */
3e73aa7c 2142 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
252b5132 2143 && overlap0 != Imm8 && overlap0 != Imm8S
e5cb08ac 2144 && overlap0 != Imm16 && overlap0 != Imm32S
b77a7acd 2145 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2146 {
2147 if (i.suffix)
2148 {
24eab124 2149 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd 2150 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
3e73aa7c 2151 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2152 }
3e73aa7c
JH
2153 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2154 || overlap0 == (Imm16 | Imm32)
2155 || overlap0 == (Imm16 | Imm32S))
252b5132 2156 {
24eab124 2157 overlap0 =
3e73aa7c 2158 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2159 }
3e73aa7c
JH
2160 if (overlap0 != Imm8 && overlap0 != Imm8S
2161 && overlap0 != Imm16 && overlap0 != Imm32S
2162 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2163 {
2164 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2165 return;
2166 }
2167 }
3e73aa7c 2168 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
252b5132 2169 && overlap1 != Imm8 && overlap1 != Imm8S
e5cb08ac 2170 && overlap1 != Imm16 && overlap1 != Imm32S
b77a7acd 2171 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132
RH
2172 {
2173 if (i.suffix)
2174 {
24eab124 2175 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd
AJ
2176 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2177 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2178 }
3e73aa7c
JH
2179 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2180 || overlap1 == (Imm16 | Imm32)
2181 || overlap1 == (Imm16 | Imm32S))
252b5132 2182 {
24eab124 2183 overlap1 =
3e73aa7c 2184 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2185 }
3e73aa7c
JH
2186 if (overlap1 != Imm8 && overlap1 != Imm8S
2187 && overlap1 != Imm16 && overlap1 != Imm32S
2188 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132 2189 {
3e73aa7c 2190 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
252b5132
RH
2191 return;
2192 }
2193 }
2194 assert ((overlap2 & Imm) == 0);
2195
2196 i.types[0] = overlap0;
2197 if (overlap0 & ImplicitRegister)
2198 i.reg_operands--;
2199 if (overlap0 & Imm1)
ce8a8b2f 2200 i.imm_operands = 0; /* kludge for shift insns. */
252b5132
RH
2201
2202 i.types[1] = overlap1;
2203 if (overlap1 & ImplicitRegister)
2204 i.reg_operands--;
2205
2206 i.types[2] = overlap2;
2207 if (overlap2 & ImplicitRegister)
2208 i.reg_operands--;
2209
2210 /* Finalize opcode. First, we change the opcode based on the operand
2211 size given by i.suffix: We need not change things for byte insns. */
2212
2213 if (!i.suffix && (i.tm.opcode_modifier & W))
2214 {
2215 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2216 return;
2217 }
2218
ce8a8b2f 2219 /* For movzx and movsx, need to check the register type. */
252b5132 2220 if (intel_syntax
24eab124 2221 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 2222 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
2223 {
2224 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 2225
520dc8e8 2226 if ((i.op[1].regs->reg_type & Reg16) != 0)
24eab124
AM
2227 if (!add_prefix (prefix))
2228 return;
2229 }
252b5132
RH
2230
2231 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2232 {
2233 /* It's not a byte, select word/dword operation. */
2234 if (i.tm.opcode_modifier & W)
2235 {
2236 if (i.tm.opcode_modifier & ShortForm)
2237 i.tm.base_opcode |= 8;
2238 else
2239 i.tm.base_opcode |= 1;
2240 }
2241 /* Now select between word & dword operations via the operand
2242 size prefix, except for instructions that will ignore this
2243 prefix anyway. */
3e73aa7c
JH
2244 if (i.suffix != QWORD_MNEM_SUFFIX
2245 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
252b5132
RH
2246 && !(i.tm.opcode_modifier & IgnoreSize))
2247 {
2248 unsigned int prefix = DATA_PREFIX_OPCODE;
2249 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2250 prefix = ADDR_PREFIX_OPCODE;
2251
2252 if (! add_prefix (prefix))
2253 return;
2254 }
3e73aa7c
JH
2255
2256 /* Set mode64 for an operand. */
2257 if (i.suffix == QWORD_MNEM_SUFFIX
2258 && !(i.tm.opcode_modifier & NoRex64))
b96d3a20 2259 {
3e73aa7c 2260 i.rex.mode64 = 1;
b96d3a20
JH
2261 if (flag_code < CODE_64BIT)
2262 {
e5cb08ac
KH
2263 as_bad (_("64bit operations available only in 64bit modes."));
2264 return;
b96d3a20
JH
2265 }
2266 }
3e73aa7c 2267
252b5132 2268 /* Size floating point instruction. */
f16b83df 2269 if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2270 {
2271 if (i.tm.opcode_modifier & FloatMF)
2272 i.tm.base_opcode ^= 4;
2273 }
252b5132
RH
2274 }
2275
3f4438ab 2276 if (i.tm.opcode_modifier & ImmExt)
252b5132 2277 {
3f4438ab
AM
2278 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2279 opcode suffix which is coded in the same place as an 8-bit
2280 immediate field would be. Here we fake an 8-bit immediate
2281 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
2282
2283 expressionS *exp;
2284
47926f60 2285 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132
RH
2286
2287 exp = &im_expressions[i.imm_operands++];
520dc8e8 2288 i.op[i.operands].imms = exp;
252b5132
RH
2289 i.types[i.operands++] = Imm8;
2290 exp->X_op = O_constant;
2291 exp->X_add_number = i.tm.extension_opcode;
2292 i.tm.extension_opcode = None;
2293 }
2294
47926f60 2295 /* For insns with operands there are more diddles to do to the opcode. */
252b5132
RH
2296 if (i.operands)
2297 {
24eab124 2298 /* Default segment register this instruction will use
252b5132
RH
2299 for memory accesses. 0 means unknown.
2300 This is only for optimizing out unnecessary segment overrides. */
2301 const seg_entry *default_seg = 0;
2302
252b5132
RH
2303 /* The imul $imm, %reg instruction is converted into
2304 imul $imm, %reg, %reg, and the clr %reg instruction
2305 is converted into xor %reg, %reg. */
2306 if (i.tm.opcode_modifier & regKludge)
2307 {
2308 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
47926f60
KH
2309 /* Pretend we saw the extra register operand. */
2310 assert (i.op[first_reg_op + 1].regs == 0);
2311 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2312 i.types[first_reg_op + 1] = i.types[first_reg_op];
252b5132
RH
2313 i.reg_operands = 2;
2314 }
2315
2316 if (i.tm.opcode_modifier & ShortForm)
2317 {
47926f60 2318 /* The register or float register operand is in operand 0 or 1. */
252b5132 2319 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
47926f60 2320 /* Register goes in low 3 bits of opcode. */
520dc8e8 2321 i.tm.base_opcode |= i.op[op].regs->reg_num;
3e73aa7c 2322 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2323 i.rex.extZ = 1;
a38cf1db 2324 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132
RH
2325 {
2326 /* Warn about some common errors, but press on regardless.
2327 The first case can be generated by gcc (<= 2.8.1). */
2328 if (i.operands == 2)
2329 {
47926f60 2330 /* Reversed arguments on faddp, fsubp, etc. */
252b5132 2331 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
520dc8e8
AM
2332 i.op[1].regs->reg_name,
2333 i.op[0].regs->reg_name);
252b5132
RH
2334 }
2335 else
2336 {
47926f60 2337 /* Extraneous `l' suffix on fp insn. */
252b5132 2338 as_warn (_("translating to `%s %%%s'"), i.tm.name,
520dc8e8 2339 i.op[0].regs->reg_name);
252b5132
RH
2340 }
2341 }
2342 }
2343 else if (i.tm.opcode_modifier & Modrm)
2344 {
2345 /* The opcode is completed (modulo i.tm.extension_opcode which
2346 must be put into the modrm byte).
2347 Now, we make the modrm & index base bytes based on all the
47926f60 2348 info we've collected. */
252b5132
RH
2349
2350 /* i.reg_operands MUST be the number of real register operands;
47926f60 2351 implicit registers do not count. */
252b5132
RH
2352 if (i.reg_operands == 2)
2353 {
2354 unsigned int source, dest;
2355 source = ((i.types[0]
3f4438ab
AM
2356 & (Reg | RegMMX | RegXMM
2357 | SReg2 | SReg3
2358 | Control | Debug | Test))
252b5132
RH
2359 ? 0 : 1);
2360 dest = source + 1;
2361
252b5132 2362 i.rm.mode = 3;
3f4438ab
AM
2363 /* One of the register operands will be encoded in the
2364 i.tm.reg field, the other in the combined i.tm.mode
2365 and i.tm.regmem fields. If no form of this
2366 instruction supports a memory destination operand,
2367 then we assume the source operand may sometimes be
2368 a memory operand and so we need to store the
2369 destination in the i.rm.reg field. */
2370 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132 2371 {
520dc8e8
AM
2372 i.rm.reg = i.op[dest].regs->reg_num;
2373 i.rm.regmem = i.op[source].regs->reg_num;
3e73aa7c 2374 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2375 i.rex.extX = 1;
3e73aa7c 2376 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2377 i.rex.extZ = 1;
252b5132
RH
2378 }
2379 else
2380 {
520dc8e8
AM
2381 i.rm.reg = i.op[source].regs->reg_num;
2382 i.rm.regmem = i.op[dest].regs->reg_num;
3e73aa7c 2383 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2384 i.rex.extZ = 1;
3e73aa7c 2385 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2386 i.rex.extX = 1;
252b5132
RH
2387 }
2388 }
2389 else
47926f60 2390 { /* If it's not 2 reg operands... */
252b5132
RH
2391 if (i.mem_operands)
2392 {
2393 unsigned int fake_zero_displacement = 0;
2394 unsigned int op = ((i.types[0] & AnyMem)
2395 ? 0
2396 : (i.types[1] & AnyMem) ? 1 : 2);
2397
2398 default_seg = &ds;
2399
2400 if (! i.base_reg)
2401 {
2402 i.rm.mode = 0;
2403 if (! i.disp_operands)
2404 fake_zero_displacement = 1;
2405 if (! i.index_reg)
2406 {
47926f60 2407 /* Operand is just <disp> */
3e73aa7c 2408 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132
RH
2409 {
2410 i.rm.regmem = NO_BASE_REGISTER_16;
2411 i.types[op] &= ~Disp;
2412 i.types[op] |= Disp16;
2413 }
3e73aa7c 2414 else if (flag_code != CODE_64BIT)
252b5132
RH
2415 {
2416 i.rm.regmem = NO_BASE_REGISTER;
2417 i.types[op] &= ~Disp;
2418 i.types[op] |= Disp32;
2419 }
3e73aa7c
JH
2420 else
2421 {
e5cb08ac
KH
2422 /* 64bit mode overwrites the 32bit
2423 absolute addressing by RIP relative
2424 addressing and absolute addressing
2425 is encoded by one of the redundant
2426 SIB forms. */
3e73aa7c
JH
2427
2428 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2429 i.sib.base = NO_BASE_REGISTER;
2430 i.sib.index = NO_INDEX_REGISTER;
2431 i.types[op] &= ~Disp;
2432 i.types[op] |= Disp32S;
2433 }
252b5132 2434 }
47926f60 2435 else /* ! i.base_reg && i.index_reg */
252b5132
RH
2436 {
2437 i.sib.index = i.index_reg->reg_num;
2438 i.sib.base = NO_BASE_REGISTER;
2439 i.sib.scale = i.log2_scale_factor;
2440 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2441 i.types[op] &= ~Disp;
3e73aa7c
JH
2442 if (flag_code != CODE_64BIT)
2443 i.types[op] |= Disp32; /* Must be 32 bit */
2444 else
2445 i.types[op] |= Disp32S;
2446 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2447 i.rex.extY = 1;
252b5132
RH
2448 }
2449 }
3e73aa7c
JH
2450 /* RIP addressing for 64bit mode. */
2451 else if (i.base_reg->reg_type == BaseIndex)
2452 {
2453 i.rm.regmem = NO_BASE_REGISTER;
2454 i.types[op] &= ~Disp;
2455 i.types[op] |= Disp32S;
2456 i.flags[op] = Operand_PCrel;
2457 }
252b5132
RH
2458 else if (i.base_reg->reg_type & Reg16)
2459 {
2460 switch (i.base_reg->reg_num)
2461 {
47926f60 2462 case 3: /* (%bx) */
252b5132
RH
2463 if (! i.index_reg)
2464 i.rm.regmem = 7;
47926f60 2465 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
252b5132
RH
2466 i.rm.regmem = i.index_reg->reg_num - 6;
2467 break;
47926f60 2468 case 5: /* (%bp) */
252b5132
RH
2469 default_seg = &ss;
2470 if (! i.index_reg)
2471 {
2472 i.rm.regmem = 6;
2473 if ((i.types[op] & Disp) == 0)
2474 {
47926f60 2475 /* fake (%bp) into 0(%bp) */
252b5132
RH
2476 i.types[op] |= Disp8;
2477 fake_zero_displacement = 1;
2478 }
2479 }
47926f60 2480 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
252b5132
RH
2481 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2482 break;
47926f60 2483 default: /* (%si) -> 4 or (%di) -> 5 */
252b5132
RH
2484 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2485 }
2486 i.rm.mode = mode_from_disp_size (i.types[op]);
2487 }
3e73aa7c 2488 else /* i.base_reg and 32/64 bit mode */
252b5132 2489 {
3e73aa7c
JH
2490 if (flag_code == CODE_64BIT
2491 && (i.types[op] & Disp))
2492 {
2493 if (i.types[op] & Disp8)
2494 i.types[op] = Disp8 | Disp32S;
2495 else
2496 i.types[op] = Disp32S;
2497 }
252b5132 2498 i.rm.regmem = i.base_reg->reg_num;
3e73aa7c 2499 if (i.base_reg->reg_flags & RegRex)
e5cb08ac 2500 i.rex.extZ = 1;
252b5132 2501 i.sib.base = i.base_reg->reg_num;
3e73aa7c
JH
2502 /* x86-64 ignores REX prefix bit here to avoid
2503 decoder complications. */
2504 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
252b5132
RH
2505 {
2506 default_seg = &ss;
2507 if (i.disp_operands == 0)
2508 {
2509 fake_zero_displacement = 1;
2510 i.types[op] |= Disp8;
2511 }
2512 }
2513 else if (i.base_reg->reg_num == ESP_REG_NUM)
2514 {
2515 default_seg = &ss;
2516 }
2517 i.sib.scale = i.log2_scale_factor;
2518 if (! i.index_reg)
2519 {
2520 /* <disp>(%esp) becomes two byte modrm
2521 with no index register. We've already
2522 stored the code for esp in i.rm.regmem
2523 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2524 base register besides %esp will not use
2525 the extra modrm byte. */
2526 i.sib.index = NO_INDEX_REGISTER;
2527#if ! SCALE1_WHEN_NO_INDEX
2528 /* Another case where we force the second
2529 modrm byte. */
2530 if (i.log2_scale_factor)
2531 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2532#endif
2533 }
2534 else
2535 {
2536 i.sib.index = i.index_reg->reg_num;
2537 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3e73aa7c 2538 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2539 i.rex.extY = 1;
252b5132
RH
2540 }
2541 i.rm.mode = mode_from_disp_size (i.types[op]);
2542 }
2543
2544 if (fake_zero_displacement)
2545 {
2546 /* Fakes a zero displacement assuming that i.types[op]
47926f60 2547 holds the correct displacement size. */
b4cac588
AM
2548 expressionS *exp;
2549
520dc8e8 2550 assert (i.op[op].disps == 0);
252b5132 2551 exp = &disp_expressions[i.disp_operands++];
520dc8e8 2552 i.op[op].disps = exp;
252b5132
RH
2553 exp->X_op = O_constant;
2554 exp->X_add_number = 0;
2555 exp->X_add_symbol = (symbolS *) 0;
2556 exp->X_op_symbol = (symbolS *) 0;
2557 }
2558 }
2559
2560 /* Fill in i.rm.reg or i.rm.regmem field with register
2561 operand (if any) based on i.tm.extension_opcode.
2562 Again, we must be careful to make sure that
2563 segment/control/debug/test/MMX registers are coded
47926f60 2564 into the i.rm.reg field. */
252b5132
RH
2565 if (i.reg_operands)
2566 {
2567 unsigned int op =
2568 ((i.types[0]
3f4438ab
AM
2569 & (Reg | RegMMX | RegXMM
2570 | SReg2 | SReg3
2571 | Control | Debug | Test))
252b5132
RH
2572 ? 0
2573 : ((i.types[1]
3f4438ab
AM
2574 & (Reg | RegMMX | RegXMM
2575 | SReg2 | SReg3
2576 | Control | Debug | Test))
252b5132
RH
2577 ? 1
2578 : 2));
2579 /* If there is an extension opcode to put here, the
47926f60 2580 register number must be put into the regmem field. */
252b5132 2581 if (i.tm.extension_opcode != None)
3e73aa7c
JH
2582 {
2583 i.rm.regmem = i.op[op].regs->reg_num;
2584 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2585 i.rex.extZ = 1;
3e73aa7c 2586 }
252b5132 2587 else
3e73aa7c
JH
2588 {
2589 i.rm.reg = i.op[op].regs->reg_num;
2590 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2591 i.rex.extX = 1;
3e73aa7c 2592 }
252b5132
RH
2593
2594 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2595 we must set it to 3 to indicate this is a register
2596 operand in the regmem field. */
2597 if (!i.mem_operands)
2598 i.rm.mode = 3;
2599 }
2600
47926f60 2601 /* Fill in i.rm.reg field with extension opcode (if any). */
252b5132
RH
2602 if (i.tm.extension_opcode != None)
2603 i.rm.reg = i.tm.extension_opcode;
2604 }
2605 }
2606 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2607 {
47926f60
KH
2608 if (i.tm.base_opcode == POP_SEG_SHORT
2609 && i.op[0].regs->reg_num == 1)
252b5132
RH
2610 {
2611 as_bad (_("you can't `pop %%cs'"));
2612 return;
2613 }
520dc8e8 2614 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3e73aa7c
JH
2615 if (i.op[0].regs->reg_flags & RegRex)
2616 i.rex.extZ = 1;
252b5132
RH
2617 }
2618 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2619 {
2620 default_seg = &ds;
2621 }
2622 else if ((i.tm.opcode_modifier & IsString) != 0)
2623 {
2624 /* For the string instructions that allow a segment override
2625 on one of their operands, the default segment is ds. */
2626 default_seg = &ds;
2627 }
2628
2629 /* If a segment was explicitly specified,
2630 and the specified segment is not the default,
2631 use an opcode prefix to select it.
2632 If we never figured out what the default segment is,
2633 then default_seg will be zero at this point,
2634 and the specified segment prefix will always be used. */
2635 if ((i.seg[0]) && (i.seg[0] != default_seg))
2636 {
2637 if (! add_prefix (i.seg[0]->seg_prefix))
2638 return;
2639 }
2640 }
a38cf1db 2641 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132 2642 {
24eab124
AM
2643 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2644 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2645 }
2646 }
2647
47926f60 2648 /* Handle conversion of 'int $3' --> special int3 insn. */
520dc8e8 2649 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
252b5132
RH
2650 {
2651 i.tm.base_opcode = INT3_OPCODE;
2652 i.imm_operands = 0;
2653 }
2654
2f66722d 2655 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
520dc8e8 2656 && i.op[0].disps->X_op == O_constant)
2f66722d
AM
2657 {
2658 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2659 the absolute address given by the constant. Since ix86 jumps and
2660 calls are pc relative, we need to generate a reloc. */
520dc8e8
AM
2661 i.op[0].disps->X_add_symbol = &abs_symbol;
2662 i.op[0].disps->X_op = O_symbol;
2f66722d
AM
2663 }
2664
3e73aa7c
JH
2665 if (i.tm.opcode_modifier & Rex64)
2666 i.rex.mode64 = 1;
2667
2668 /* For 8bit registers we would need an empty rex prefix.
2669 Also in the case instruction is already having prefix,
2670 we need to convert old registers to new ones. */
2671
2672 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2673 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2674 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2675 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2676 {
2677 int x;
e5cb08ac 2678 i.rex.empty = 1;
3e73aa7c
JH
2679 for (x = 0; x < 2; x++)
2680 {
2681 /* Look for 8bit operand that does use old registers. */
2682 if (i.types[x] & Reg8
2683 && !(i.op[x].regs->reg_flags & RegRex64))
2684 {
2685 /* In case it is "hi" register, give up. */
2686 if (i.op[x].regs->reg_num > 3)
2687 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2688 i.op[x].regs->reg_name);
2689
2690 /* Otherwise it is equivalent to the extended register.
2691 Since the encoding don't change this is merely cosmetical
2692 cleanup for debug output. */
2693
2694 i.op[x].regs = i.op[x].regs + 8;
2695 }
2696 }
2697 }
2698
2699 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2700 add_prefix (0x40
2701 | (i.rex.mode64 ? 8 : 0)
2702 | (i.rex.extX ? 4 : 0)
2703 | (i.rex.extY ? 2 : 0)
2704 | (i.rex.extZ ? 1 : 0));
2705
47926f60 2706 /* We are ready to output the insn. */
252b5132
RH
2707 {
2708 register char *p;
2709
47926f60 2710 /* Output jumps. */
252b5132
RH
2711 if (i.tm.opcode_modifier & Jump)
2712 {
a217f122
AM
2713 int code16;
2714 int prefix;
252b5132 2715
a217f122 2716 code16 = 0;
3e73aa7c 2717 if (flag_code == CODE_16BIT)
a217f122
AM
2718 code16 = CODE16;
2719
2720 prefix = 0;
2721 if (i.prefix[DATA_PREFIX])
252b5132 2722 {
a217f122 2723 prefix = 1;
252b5132 2724 i.prefixes -= 1;
a217f122 2725 code16 ^= CODE16;
252b5132 2726 }
3e73aa7c
JH
2727 if (i.prefix[REX_PREFIX])
2728 {
2729 prefix++;
e5cb08ac 2730 i.prefixes--;
3e73aa7c 2731 }
252b5132 2732
a217f122 2733 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2734 as_warn (_("skipping prefixes on this instruction"));
2735
2f66722d
AM
2736 /* It's always a symbol; End frag & setup for relax.
2737 Make sure there is enough room in this frag for the largest
2738 instruction we may generate in md_convert_frag. This is 2
2739 bytes for the opcode and room for the prefix and largest
2740 displacement. */
fddf5b5b 2741 frag_grow (prefix + 2 + 4);
2f66722d
AM
2742 insn_size += prefix + 1;
2743 /* Prefix and 1 opcode byte go in fr_fix. */
2744 p = frag_more (prefix + 1);
3e73aa7c 2745 if (i.prefix[DATA_PREFIX])
2f66722d 2746 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2747 if (i.prefix[REX_PREFIX])
2748 *p++ = i.prefix[REX_PREFIX];
2f66722d 2749 *p = i.tm.base_opcode;
ee7fcc42
AM
2750 /* 1 possible extra opcode + displacement go in var part.
2751 Pass reloc in fr_var. */
2f66722d 2752 frag_var (rs_machine_dependent,
fddf5b5b 2753 1 + 4,
1ae12ab7 2754 i.reloc[0],
2f66722d
AM
2755 ((unsigned char) *p == JUMP_PC_RELATIVE
2756 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
fddf5b5b
AM
2757 : ((cpu_arch_flags & Cpu386) != 0
2758 ? ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16
2759 : ENCODE_RELAX_STATE (COND_JUMP86, SMALL) | code16)),
520dc8e8
AM
2760 i.op[0].disps->X_add_symbol,
2761 i.op[0].disps->X_add_number,
2f66722d 2762 p);
252b5132
RH
2763 }
2764 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2765 {
a217f122 2766 int size;
252b5132 2767
a217f122 2768 if (i.tm.opcode_modifier & JumpByte)
252b5132 2769 {
a217f122
AM
2770 /* This is a loop or jecxz type instruction. */
2771 size = 1;
252b5132
RH
2772 if (i.prefix[ADDR_PREFIX])
2773 {
2774 insn_size += 1;
2775 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2776 i.prefixes -= 1;
2777 }
2778 }
2779 else
2780 {
a217f122
AM
2781 int code16;
2782
2783 code16 = 0;
3e73aa7c 2784 if (flag_code == CODE_16BIT)
a217f122 2785 code16 = CODE16;
252b5132
RH
2786
2787 if (i.prefix[DATA_PREFIX])
2788 {
2789 insn_size += 1;
2790 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2791 i.prefixes -= 1;
a217f122 2792 code16 ^= CODE16;
252b5132 2793 }
252b5132 2794
a217f122 2795 size = 4;
252b5132
RH
2796 if (code16)
2797 size = 2;
2798 }
2799
3e73aa7c
JH
2800 if (i.prefix[REX_PREFIX])
2801 {
2802 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2803 insn_size++;
2804 i.prefixes -= 1;
2805 }
2806
a217f122 2807 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2808 as_warn (_("skipping prefixes on this instruction"));
2809
2810 if (fits_in_unsigned_byte (i.tm.base_opcode))
2811 {
2812 insn_size += 1 + size;
2813 p = frag_more (1 + size);
2814 }
2815 else
2816 {
47926f60 2817 /* Opcode can be at most two bytes. */
a217f122 2818 insn_size += 2 + size;
252b5132
RH
2819 p = frag_more (2 + size);
2820 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2821 }
2822 *p++ = i.tm.base_opcode & 0xff;
2823
2f66722d 2824 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2825 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
252b5132
RH
2826 }
2827 else if (i.tm.opcode_modifier & JumpInterSegment)
2828 {
2829 int size;
a217f122
AM
2830 int prefix;
2831 int code16;
252b5132 2832
a217f122 2833 code16 = 0;
3e73aa7c 2834 if (flag_code == CODE_16BIT)
a217f122
AM
2835 code16 = CODE16;
2836
2837 prefix = 0;
2838 if (i.prefix[DATA_PREFIX])
252b5132 2839 {
a217f122 2840 prefix = 1;
252b5132 2841 i.prefixes -= 1;
a217f122 2842 code16 ^= CODE16;
252b5132 2843 }
3e73aa7c
JH
2844 if (i.prefix[REX_PREFIX])
2845 {
2846 prefix++;
2847 i.prefixes -= 1;
2848 }
252b5132
RH
2849
2850 size = 4;
252b5132 2851 if (code16)
f6af82bd 2852 size = 2;
252b5132 2853
a217f122 2854 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2855 as_warn (_("skipping prefixes on this instruction"));
2856
47926f60
KH
2857 /* 1 opcode; 2 segment; offset */
2858 insn_size += prefix + 1 + 2 + size;
252b5132 2859 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c
JH
2860
2861 if (i.prefix[DATA_PREFIX])
252b5132 2862 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2863
2864 if (i.prefix[REX_PREFIX])
2865 *p++ = i.prefix[REX_PREFIX];
2866
252b5132 2867 *p++ = i.tm.base_opcode;
520dc8e8 2868 if (i.op[1].imms->X_op == O_constant)
252b5132 2869 {
847f7ad4 2870 offsetT n = i.op[1].imms->X_add_number;
252b5132 2871
773f551c
AM
2872 if (size == 2
2873 && !fits_in_unsigned_word (n)
2874 && !fits_in_signed_word (n))
252b5132
RH
2875 {
2876 as_bad (_("16-bit jump out of range"));
2877 return;
2878 }
847f7ad4 2879 md_number_to_chars (p, n, size);
252b5132
RH
2880 }
2881 else
2882 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2883 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
520dc8e8 2884 if (i.op[0].imms->X_op != O_constant)
252b5132
RH
2885 as_bad (_("can't handle non absolute segment in `%s'"),
2886 i.tm.name);
520dc8e8 2887 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
252b5132
RH
2888 }
2889 else
2890 {
47926f60 2891 /* Output normal instructions here. */
252b5132
RH
2892 unsigned char *q;
2893
7bc70a8e
JH
2894 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2895 byte for the SSE instructions to specify prefix they require. */
2896 if (i.tm.base_opcode & 0xff0000)
2897 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2898
47926f60 2899 /* The prefix bytes. */
252b5132
RH
2900 for (q = i.prefix;
2901 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2902 q++)
2903 {
2904 if (*q)
2905 {
2906 insn_size += 1;
2907 p = frag_more (1);
2908 md_number_to_chars (p, (valueT) *q, 1);
2909 }
2910 }
2911
47926f60 2912 /* Now the opcode; be careful about word order here! */
252b5132
RH
2913 if (fits_in_unsigned_byte (i.tm.base_opcode))
2914 {
2915 insn_size += 1;
2916 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2917 }
7bc70a8e 2918 else
252b5132
RH
2919 {
2920 insn_size += 2;
2921 p = frag_more (2);
47926f60 2922 /* Put out high byte first: can't use md_number_to_chars! */
252b5132
RH
2923 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2924 *p = i.tm.base_opcode & 0xff;
2925 }
252b5132
RH
2926
2927 /* Now the modrm byte and sib byte (if present). */
2928 if (i.tm.opcode_modifier & Modrm)
2929 {
2930 insn_size += 1;
2931 p = frag_more (1);
2932 md_number_to_chars (p,
2933 (valueT) (i.rm.regmem << 0
2934 | i.rm.reg << 3
2935 | i.rm.mode << 6),
2936 1);
2937 /* If i.rm.regmem == ESP (4)
2938 && i.rm.mode != (Register mode)
2939 && not 16 bit
2940 ==> need second modrm byte. */
2941 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2942 && i.rm.mode != 3
2943 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2944 {
2945 insn_size += 1;
2946 p = frag_more (1);
2947 md_number_to_chars (p,
2948 (valueT) (i.sib.base << 0
2949 | i.sib.index << 3
2950 | i.sib.scale << 6),
2951 1);
2952 }
2953 }
2954
2955 if (i.disp_operands)
2956 {
2957 register unsigned int n;
2958
2959 for (n = 0; n < i.operands; n++)
2960 {
520dc8e8 2961 if (i.types[n] & Disp)
252b5132 2962 {
520dc8e8 2963 if (i.op[n].disps->X_op == O_constant)
252b5132 2964 {
847f7ad4
AM
2965 int size;
2966 offsetT val;
b4cac588 2967
847f7ad4 2968 size = 4;
3e73aa7c 2969 if (i.types[n] & (Disp8 | Disp16 | Disp64))
252b5132 2970 {
b4cac588 2971 size = 2;
b4cac588 2972 if (i.types[n] & Disp8)
847f7ad4 2973 size = 1;
3e73aa7c
JH
2974 if (i.types[n] & Disp64)
2975 size = 8;
252b5132 2976 }
847f7ad4
AM
2977 val = offset_in_range (i.op[n].disps->X_add_number,
2978 size);
b4cac588
AM
2979 insn_size += size;
2980 p = frag_more (size);
847f7ad4 2981 md_number_to_chars (p, val, size);
252b5132 2982 }
252b5132 2983 else
520dc8e8
AM
2984 {
2985 int size = 4;
3e73aa7c
JH
2986 int sign = 0;
2987 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
2988
2989 /* The PC relative address is computed relative
2990 to the instruction boundary, so in case immediate
2991 fields follows, we need to adjust the value. */
2992 if (pcrel && i.imm_operands)
2993 {
2994 int imm_size = 4;
2995 register unsigned int n1;
2996
2997 for (n1 = 0; n1 < i.operands; n1++)
2998 if (i.types[n1] & Imm)
2999 {
3000 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3001 {
3002 imm_size = 2;
3003 if (i.types[n1] & (Imm8 | Imm8S))
3004 imm_size = 1;
3005 if (i.types[n1] & Imm64)
3006 imm_size = 8;
3007 }
3008 break;
3009 }
3010 /* We should find the immediate. */
3011 if (n1 == i.operands)
bfb32b52 3012 abort ();
3e73aa7c
JH
3013 i.op[n].disps->X_add_number -= imm_size;
3014 }
520dc8e8 3015
3e73aa7c
JH
3016 if (i.types[n] & Disp32S)
3017 sign = 1;
3018
e5cb08ac 3019 if (i.types[n] & (Disp16 | Disp64))
3e73aa7c
JH
3020 {
3021 size = 2;
3022 if (i.types[n] & Disp64)
3023 size = 8;
3024 }
520dc8e8
AM
3025
3026 insn_size += size;
3027 p = frag_more (size);
3028 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3e73aa7c 3029 i.op[n].disps, pcrel,
1ae12ab7 3030 reloc (size, pcrel, sign, i.reloc[n]));
252b5132
RH
3031 }
3032 }
3033 }
ce8a8b2f 3034 }
252b5132 3035
47926f60 3036 /* Output immediate. */
252b5132
RH
3037 if (i.imm_operands)
3038 {
3039 register unsigned int n;
3040
3041 for (n = 0; n < i.operands; n++)
3042 {
520dc8e8 3043 if (i.types[n] & Imm)
252b5132 3044 {
520dc8e8 3045 if (i.op[n].imms->X_op == O_constant)
252b5132 3046 {
847f7ad4
AM
3047 int size;
3048 offsetT val;
b4cac588 3049
847f7ad4 3050 size = 4;
3e73aa7c 3051 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3052 {
b4cac588 3053 size = 2;
b4cac588 3054 if (i.types[n] & (Imm8 | Imm8S))
847f7ad4 3055 size = 1;
3e73aa7c
JH
3056 else if (i.types[n] & Imm64)
3057 size = 8;
252b5132 3058 }
847f7ad4
AM
3059 val = offset_in_range (i.op[n].imms->X_add_number,
3060 size);
b4cac588
AM
3061 insn_size += size;
3062 p = frag_more (size);
847f7ad4 3063 md_number_to_chars (p, val, size);
252b5132
RH
3064 }
3065 else
ce8a8b2f
AM
3066 {
3067 /* Not absolute_section.
3068 Need a 32-bit fixup (don't support 8bit
520dc8e8 3069 non-absolute imms). Try to support other
47926f60 3070 sizes ... */
f6af82bd
AM
3071#ifdef BFD_ASSEMBLER
3072 enum bfd_reloc_code_real reloc_type;
3073#else
3074 int reloc_type;
3075#endif
520dc8e8 3076 int size = 4;
3e73aa7c 3077 int sign = 0;
252b5132 3078
3e73aa7c
JH
3079 if ((i.types[n] & (Imm32S))
3080 && i.suffix == QWORD_MNEM_SUFFIX)
3081 sign = 1;
3082 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3083 {
3084 size = 2;
3085 if (i.types[n] & (Imm8 | Imm8S))
3086 size = 1;
3087 if (i.types[n] & Imm64)
3088 size = 8;
3089 }
520dc8e8 3090
252b5132
RH
3091 insn_size += size;
3092 p = frag_more (size);
1ae12ab7 3093 reloc_type = reloc (size, 0, sign, i.reloc[n]);
252b5132 3094#ifdef BFD_ASSEMBLER
f6af82bd 3095 if (reloc_type == BFD_RELOC_32
252b5132 3096 && GOT_symbol
520dc8e8
AM
3097 && GOT_symbol == i.op[n].imms->X_add_symbol
3098 && (i.op[n].imms->X_op == O_symbol
3099 || (i.op[n].imms->X_op == O_add
49309057 3100 && ((symbol_get_value_expression
520dc8e8 3101 (i.op[n].imms->X_op_symbol)->X_op)
252b5132
RH
3102 == O_subtract))))
3103 {
3e73aa7c
JH
3104 /* We don't support dynamic linking on x86-64 yet. */
3105 if (flag_code == CODE_64BIT)
bfb32b52 3106 abort ();
f6af82bd 3107 reloc_type = BFD_RELOC_386_GOTPC;
520dc8e8 3108 i.op[n].imms->X_add_number += 3;
252b5132
RH
3109 }
3110#endif
3111 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8 3112 i.op[n].imms, 0, reloc_type);
252b5132
RH
3113 }
3114 }
3115 }
ce8a8b2f 3116 }
252b5132
RH
3117 }
3118
e346e481
RH
3119 dwarf2_emit_insn (insn_size);
3120
252b5132
RH
3121#ifdef DEBUG386
3122 if (flag_debug)
3123 {
3124 pi (line, &i);
3125 }
47926f60 3126#endif /* DEBUG386 */
252b5132
RH
3127 }
3128}
3129\f
252b5132
RH
3130static int i386_immediate PARAMS ((char *));
3131
3132static int
3133i386_immediate (imm_start)
3134 char *imm_start;
3135{
3136 char *save_input_line_pointer;
3137 segT exp_seg = 0;
47926f60 3138 expressionS *exp;
252b5132
RH
3139
3140 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3141 {
d0b47220 3142 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3143 return 0;
3144 }
3145
3146 exp = &im_expressions[i.imm_operands++];
520dc8e8 3147 i.op[this_operand].imms = exp;
252b5132
RH
3148
3149 if (is_space_char (*imm_start))
3150 ++imm_start;
3151
3152 save_input_line_pointer = input_line_pointer;
3153 input_line_pointer = imm_start;
3154
3155#ifndef LEX_AT
24eab124 3156 {
47926f60
KH
3157 /* We can have operands of the form
3158 <symbol>@GOTOFF+<nnn>
3159 Take the easy way out here and copy everything
3160 into a temporary buffer... */
24eab124
AM
3161 register char *cp;
3162
3163 cp = strchr (input_line_pointer, '@');
3164 if (cp != NULL)
3165 {
3166 char *tmpbuf;
3167 int len = 0;
3168 int first;
3169
47926f60 3170 /* GOT relocations are not supported in 16 bit mode. */
3e73aa7c 3171 if (flag_code == CODE_16BIT)
24eab124
AM
3172 as_bad (_("GOT relocations not supported in 16 bit mode"));
3173
3174 if (GOT_symbol == NULL)
3175 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3176
3177 if (strncmp (cp + 1, "PLT", 3) == 0)
3178 {
3e73aa7c 3179 if (flag_code == CODE_64BIT)
1ae12ab7 3180 i.reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3e73aa7c 3181 else
1ae12ab7 3182 i.reloc[this_operand] = BFD_RELOC_386_PLT32;
24eab124
AM
3183 len = 3;
3184 }
3185 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3186 {
3e73aa7c
JH
3187 if (flag_code == CODE_64BIT)
3188 as_bad ("GOTOFF relocations are unsupported in 64bit mode.");
1ae12ab7 3189 i.reloc[this_operand] = BFD_RELOC_386_GOTOFF;
24eab124
AM
3190 len = 6;
3191 }
b77a7acd 3192 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
24eab124 3193 {
3e73aa7c 3194 if (flag_code == CODE_64BIT)
1ae12ab7 3195 i.reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
3e73aa7c 3196 else
b77a7acd
AJ
3197 as_bad ("GOTPCREL relocations are supported only in 64bit mode.");
3198 len = 8;
3e73aa7c 3199 }
b77a7acd 3200 else if (strncmp (cp + 1, "GOT", 3) == 0)
3e73aa7c
JH
3201 {
3202 if (flag_code == CODE_64BIT)
1ae12ab7 3203 i.reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3e73aa7c 3204 else
1ae12ab7 3205 i.reloc[this_operand] = BFD_RELOC_386_GOT32;
24eab124
AM
3206 len = 3;
3207 }
3208 else
d0b47220 3209 as_bad (_("bad reloc specifier in expression"));
24eab124
AM
3210
3211 /* Replace the relocation token with ' ', so that errors like
3212 foo@GOTOFF1 will be detected. */
3213 first = cp - input_line_pointer;
47926f60 3214 tmpbuf = (char *) alloca (strlen (input_line_pointer));
24eab124
AM
3215 memcpy (tmpbuf, input_line_pointer, first);
3216 tmpbuf[first] = ' ';
3217 strcpy (tmpbuf + first + 1, cp + 1 + len);
3218 input_line_pointer = tmpbuf;
3219 }
3220 }
252b5132
RH
3221#endif
3222
3223 exp_seg = expression (exp);
3224
83183c0c 3225 SKIP_WHITESPACE ();
252b5132 3226 if (*input_line_pointer)
d0b47220 3227 as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);
252b5132
RH
3228
3229 input_line_pointer = save_input_line_pointer;
3230
2daf4fd8 3231 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3232 {
47926f60 3233 /* Missing or bad expr becomes absolute 0. */
d0b47220 3234 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3235 imm_start);
252b5132
RH
3236 exp->X_op = O_constant;
3237 exp->X_add_number = 0;
3238 exp->X_add_symbol = (symbolS *) 0;
3239 exp->X_op_symbol = (symbolS *) 0;
252b5132 3240 }
3e73aa7c 3241 else if (exp->X_op == O_constant)
252b5132 3242 {
47926f60 3243 /* Size it properly later. */
3e73aa7c
JH
3244 i.types[this_operand] |= Imm64;
3245 /* If BFD64, sign extend val. */
3246 if (!use_rela_relocations)
3247 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3248 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3249 }
4c63da97 3250#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3251 else if (1
4c63da97 3252#ifdef BFD_ASSEMBLER
47926f60 3253 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3254#endif
47926f60 3255 && exp_seg != text_section
24eab124
AM
3256 && exp_seg != data_section
3257 && exp_seg != bss_section
3258 && exp_seg != undefined_section
252b5132 3259#ifdef BFD_ASSEMBLER
24eab124 3260 && !bfd_is_com_section (exp_seg)
252b5132 3261#endif
24eab124 3262 )
252b5132 3263 {
4c63da97 3264#ifdef BFD_ASSEMBLER
d0b47220 3265 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3266#else
d0b47220 3267 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3268#endif
252b5132
RH
3269 return 0;
3270 }
3271#endif
3272 else
3273 {
3274 /* This is an address. The size of the address will be
24eab124 3275 determined later, depending on destination register,
3e73aa7c
JH
3276 suffix, or the default for the section. */
3277 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3278 }
3279
3280 return 1;
3281}
3282
3283static int i386_scale PARAMS ((char *));
3284
3285static int
3286i386_scale (scale)
3287 char *scale;
3288{
3289 if (!isdigit (*scale))
3290 goto bad_scale;
3291
3292 switch (*scale)
3293 {
3294 case '0':
3295 case '1':
3296 i.log2_scale_factor = 0;
3297 break;
3298 case '2':
3299 i.log2_scale_factor = 1;
3300 break;
3301 case '4':
3302 i.log2_scale_factor = 2;
3303 break;
3304 case '8':
3305 i.log2_scale_factor = 3;
3306 break;
3307 default:
3308 bad_scale:
3309 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3310 scale);
252b5132
RH
3311 return 0;
3312 }
3313 if (i.log2_scale_factor != 0 && ! i.index_reg)
3314 {
3315 as_warn (_("scale factor of %d without an index register"),
24eab124 3316 1 << i.log2_scale_factor);
252b5132
RH
3317#if SCALE1_WHEN_NO_INDEX
3318 i.log2_scale_factor = 0;
3319#endif
3320 }
3321 return 1;
3322}
3323
3324static int i386_displacement PARAMS ((char *, char *));
3325
3326static int
3327i386_displacement (disp_start, disp_end)
3328 char *disp_start;
3329 char *disp_end;
3330{
3331 register expressionS *exp;
3332 segT exp_seg = 0;
3333 char *save_input_line_pointer;
3334 int bigdisp = Disp32;
3335
3e73aa7c 3336 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132 3337 bigdisp = Disp16;
3e73aa7c
JH
3338 if (flag_code == CODE_64BIT)
3339 bigdisp = Disp64;
252b5132
RH
3340 i.types[this_operand] |= bigdisp;
3341
3342 exp = &disp_expressions[i.disp_operands];
520dc8e8 3343 i.op[this_operand].disps = exp;
252b5132
RH
3344 i.disp_operands++;
3345 save_input_line_pointer = input_line_pointer;
3346 input_line_pointer = disp_start;
3347 END_STRING_AND_SAVE (disp_end);
3348
3349#ifndef GCC_ASM_O_HACK
3350#define GCC_ASM_O_HACK 0
3351#endif
3352#if GCC_ASM_O_HACK
3353 END_STRING_AND_SAVE (disp_end + 1);
3354 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3355 && displacement_string_end[-1] == '+')
252b5132
RH
3356 {
3357 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3358 constraint within gcc asm statements.
3359 For instance:
3360
3361 #define _set_tssldt_desc(n,addr,limit,type) \
3362 __asm__ __volatile__ ( \
3363 "movw %w2,%0\n\t" \
3364 "movw %w1,2+%0\n\t" \
3365 "rorl $16,%1\n\t" \
3366 "movb %b1,4+%0\n\t" \
3367 "movb %4,5+%0\n\t" \
3368 "movb $0,6+%0\n\t" \
3369 "movb %h1,7+%0\n\t" \
3370 "rorl $16,%1" \
3371 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3372
3373 This works great except that the output assembler ends
3374 up looking a bit weird if it turns out that there is
3375 no offset. You end up producing code that looks like:
3376
3377 #APP
3378 movw $235,(%eax)
3379 movw %dx,2+(%eax)
3380 rorl $16,%edx
3381 movb %dl,4+(%eax)
3382 movb $137,5+(%eax)
3383 movb $0,6+(%eax)
3384 movb %dh,7+(%eax)
3385 rorl $16,%edx
3386 #NO_APP
3387
47926f60 3388 So here we provide the missing zero. */
24eab124
AM
3389
3390 *displacement_string_end = '0';
252b5132
RH
3391 }
3392#endif
3393#ifndef LEX_AT
24eab124 3394 {
47926f60
KH
3395 /* We can have operands of the form
3396 <symbol>@GOTOFF+<nnn>
3397 Take the easy way out here and copy everything
3398 into a temporary buffer... */
24eab124
AM
3399 register char *cp;
3400
3401 cp = strchr (input_line_pointer, '@');
3402 if (cp != NULL)
3403 {
3404 char *tmpbuf;
3405 int len = 0;
3406 int first;
3407
47926f60 3408 /* GOT relocations are not supported in 16 bit mode. */
3e73aa7c 3409 if (flag_code == CODE_16BIT)
24eab124
AM
3410 as_bad (_("GOT relocations not supported in 16 bit mode"));
3411
3412 if (GOT_symbol == NULL)
3413 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3414
3415 if (strncmp (cp + 1, "PLT", 3) == 0)
3416 {
3e73aa7c 3417 if (flag_code == CODE_64BIT)
1ae12ab7 3418 i.reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3e73aa7c 3419 else
1ae12ab7 3420 i.reloc[this_operand] = BFD_RELOC_386_PLT32;
24eab124
AM
3421 len = 3;
3422 }
3423 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3424 {
3e73aa7c
JH
3425 if (flag_code == CODE_64BIT)
3426 as_bad ("GOTOFF relocation is not supported in 64bit mode.");
1ae12ab7 3427 i.reloc[this_operand] = BFD_RELOC_386_GOTOFF;
24eab124
AM
3428 len = 6;
3429 }
b77a7acd
AJ
3430 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
3431 {
3432 if (flag_code != CODE_64BIT)
3433 as_bad ("GOTPCREL relocation is supported only in 64bit mode.");
1ae12ab7 3434 i.reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
b77a7acd
AJ
3435 len = 8;
3436 }
24eab124
AM
3437 else if (strncmp (cp + 1, "GOT", 3) == 0)
3438 {
3e73aa7c 3439 if (flag_code == CODE_64BIT)
1ae12ab7 3440 i.reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3e73aa7c 3441 else
1ae12ab7 3442 i.reloc[this_operand] = BFD_RELOC_386_GOT32;
3e73aa7c
JH
3443 len = 3;
3444 }
24eab124 3445 else
d0b47220 3446 as_bad (_("bad reloc specifier in expression"));
24eab124
AM
3447
3448 /* Replace the relocation token with ' ', so that errors like
3449 foo@GOTOFF1 will be detected. */
3450 first = cp - input_line_pointer;
47926f60 3451 tmpbuf = (char *) alloca (strlen (input_line_pointer));
24eab124
AM
3452 memcpy (tmpbuf, input_line_pointer, first);
3453 tmpbuf[first] = ' ';
3454 strcpy (tmpbuf + first + 1, cp + 1 + len);
3455 input_line_pointer = tmpbuf;
3456 }
3457 }
252b5132
RH
3458#endif
3459
24eab124 3460 exp_seg = expression (exp);
252b5132
RH
3461
3462#ifdef BFD_ASSEMBLER
24eab124
AM
3463 /* We do this to make sure that the section symbol is in
3464 the symbol table. We will ultimately change the relocation
47926f60 3465 to be relative to the beginning of the section. */
1ae12ab7
AM
3466 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3467 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3468 {
e5cb08ac 3469 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3470 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3471 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3472 assert (exp->X_op == O_symbol);
3473 exp->X_op = O_subtract;
3474 exp->X_op_symbol = GOT_symbol;
1ae12ab7
AM
3475 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3476 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3477 else
1ae12ab7 3478 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3479 }
252b5132
RH
3480#endif
3481
24eab124
AM
3482 SKIP_WHITESPACE ();
3483 if (*input_line_pointer)
d0b47220 3484 as_bad (_("ignoring junk `%s' after expression"),
24eab124 3485 input_line_pointer);
252b5132 3486#if GCC_ASM_O_HACK
24eab124 3487 RESTORE_END_STRING (disp_end + 1);
252b5132 3488#endif
24eab124
AM
3489 RESTORE_END_STRING (disp_end);
3490 input_line_pointer = save_input_line_pointer;
3491
2daf4fd8
AM
3492 if (exp->X_op == O_absent || exp->X_op == O_big)
3493 {
47926f60 3494 /* Missing or bad expr becomes absolute 0. */
d0b47220 3495 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3496 disp_start);
3497 exp->X_op = O_constant;
3498 exp->X_add_number = 0;
3499 exp->X_add_symbol = (symbolS *) 0;
3500 exp->X_op_symbol = (symbolS *) 0;
3501 }
3502
4c63da97 3503#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3504 if (exp->X_op != O_constant
4c63da97 3505#ifdef BFD_ASSEMBLER
45288df1 3506 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3507#endif
45288df1
AM
3508 && exp_seg != text_section
3509 && exp_seg != data_section
3510 && exp_seg != bss_section
3511 && exp_seg != undefined_section)
24eab124 3512 {
4c63da97 3513#ifdef BFD_ASSEMBLER
d0b47220 3514 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3515#else
d0b47220 3516 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3517#endif
24eab124
AM
3518 return 0;
3519 }
252b5132 3520#endif
3e73aa7c
JH
3521 else if (flag_code == CODE_64BIT)
3522 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3523 return 1;
3524}
3525
e5cb08ac 3526static int i386_index_check PARAMS ((const char *));
252b5132 3527
eecb386c 3528/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3529 Return 1 on success, 0 on a failure. */
3530
252b5132 3531static int
eecb386c
AM
3532i386_index_check (operand_string)
3533 const char *operand_string;
252b5132 3534{
3e73aa7c 3535 int ok;
24eab124 3536#if INFER_ADDR_PREFIX
eecb386c
AM
3537 int fudged = 0;
3538
24eab124
AM
3539 tryprefix:
3540#endif
3e73aa7c
JH
3541 ok = 1;
3542 if (flag_code == CODE_64BIT)
3543 {
3544 /* 64bit checks. */
3545 if ((i.base_reg
3546 && ((i.base_reg->reg_type & Reg64) == 0)
3547 && (i.base_reg->reg_type != BaseIndex
3548 || i.index_reg))
3549 || (i.index_reg
3550 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3551 != (Reg64|BaseIndex))))
3552 ok = 0;
3553 }
3554 else
3555 {
3556 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3557 {
3558 /* 16bit checks. */
3559 if ((i.base_reg
3560 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3561 != (Reg16|BaseIndex)))
3562 || (i.index_reg
3563 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3564 != (Reg16|BaseIndex))
3565 || ! (i.base_reg
3566 && i.base_reg->reg_num < 6
3567 && i.index_reg->reg_num >= 6
3568 && i.log2_scale_factor == 0))))
3569 ok = 0;
3570 }
3571 else
e5cb08ac 3572 {
3e73aa7c
JH
3573 /* 32bit checks. */
3574 if ((i.base_reg
3575 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3576 || (i.index_reg
3577 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3578 != (Reg32|BaseIndex))))
e5cb08ac 3579 ok = 0;
3e73aa7c
JH
3580 }
3581 }
3582 if (!ok)
24eab124
AM
3583 {
3584#if INFER_ADDR_PREFIX
3e73aa7c
JH
3585 if (flag_code != CODE_64BIT
3586 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3587 {
3588 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3589 i.prefixes += 1;
b23bac36
AM
3590 /* Change the size of any displacement too. At most one of
3591 Disp16 or Disp32 is set.
3592 FIXME. There doesn't seem to be any real need for separate
3593 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 3594 Removing them would probably clean up the code quite a lot. */
b23bac36
AM
3595 if (i.types[this_operand] & (Disp16|Disp32))
3596 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3597 fudged = 1;
24eab124
AM
3598 goto tryprefix;
3599 }
eecb386c
AM
3600 if (fudged)
3601 as_bad (_("`%s' is not a valid base/index expression"),
3602 operand_string);
3603 else
c388dee8 3604#endif
eecb386c
AM
3605 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3606 operand_string,
3e73aa7c 3607 flag_code_names[flag_code]);
eecb386c 3608 return 0;
24eab124
AM
3609 }
3610 return 1;
3611}
252b5132 3612
252b5132 3613/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 3614 on error. */
252b5132 3615
252b5132
RH
3616static int
3617i386_operand (operand_string)
3618 char *operand_string;
3619{
af6bdddf
AM
3620 const reg_entry *r;
3621 char *end_op;
24eab124 3622 char *op_string = operand_string;
252b5132 3623
24eab124 3624 if (is_space_char (*op_string))
252b5132
RH
3625 ++op_string;
3626
24eab124 3627 /* We check for an absolute prefix (differentiating,
47926f60 3628 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
3629 if (*op_string == ABSOLUTE_PREFIX)
3630 {
3631 ++op_string;
3632 if (is_space_char (*op_string))
3633 ++op_string;
3634 i.types[this_operand] |= JumpAbsolute;
3635 }
252b5132 3636
47926f60 3637 /* Check if operand is a register. */
af6bdddf
AM
3638 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3639 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3640 {
24eab124
AM
3641 /* Check for a segment override by searching for ':' after a
3642 segment register. */
3643 op_string = end_op;
3644 if (is_space_char (*op_string))
3645 ++op_string;
3646 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3647 {
3648 switch (r->reg_num)
3649 {
3650 case 0:
3651 i.seg[i.mem_operands] = &es;
3652 break;
3653 case 1:
3654 i.seg[i.mem_operands] = &cs;
3655 break;
3656 case 2:
3657 i.seg[i.mem_operands] = &ss;
3658 break;
3659 case 3:
3660 i.seg[i.mem_operands] = &ds;
3661 break;
3662 case 4:
3663 i.seg[i.mem_operands] = &fs;
3664 break;
3665 case 5:
3666 i.seg[i.mem_operands] = &gs;
3667 break;
3668 }
252b5132 3669
24eab124 3670 /* Skip the ':' and whitespace. */
252b5132
RH
3671 ++op_string;
3672 if (is_space_char (*op_string))
24eab124 3673 ++op_string;
252b5132 3674
24eab124
AM
3675 if (!is_digit_char (*op_string)
3676 && !is_identifier_char (*op_string)
3677 && *op_string != '('
3678 && *op_string != ABSOLUTE_PREFIX)
3679 {
3680 as_bad (_("bad memory operand `%s'"), op_string);
3681 return 0;
3682 }
47926f60 3683 /* Handle case of %es:*foo. */
24eab124
AM
3684 if (*op_string == ABSOLUTE_PREFIX)
3685 {
3686 ++op_string;
3687 if (is_space_char (*op_string))
3688 ++op_string;
3689 i.types[this_operand] |= JumpAbsolute;
3690 }
3691 goto do_memory_reference;
3692 }
3693 if (*op_string)
3694 {
d0b47220 3695 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
3696 return 0;
3697 }
3698 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 3699 i.op[this_operand].regs = r;
24eab124
AM
3700 i.reg_operands++;
3701 }
af6bdddf
AM
3702 else if (*op_string == REGISTER_PREFIX)
3703 {
3704 as_bad (_("bad register name `%s'"), op_string);
3705 return 0;
3706 }
24eab124 3707 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 3708 {
24eab124
AM
3709 ++op_string;
3710 if (i.types[this_operand] & JumpAbsolute)
3711 {
d0b47220 3712 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
3713 return 0;
3714 }
3715 if (!i386_immediate (op_string))
3716 return 0;
3717 }
3718 else if (is_digit_char (*op_string)
3719 || is_identifier_char (*op_string)
e5cb08ac 3720 || *op_string == '(')
24eab124 3721 {
47926f60 3722 /* This is a memory reference of some sort. */
af6bdddf 3723 char *base_string;
252b5132 3724
47926f60 3725 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3726 char *displacement_string_start;
3727 char *displacement_string_end;
252b5132 3728
24eab124 3729 do_memory_reference:
24eab124
AM
3730 if ((i.mem_operands == 1
3731 && (current_templates->start->opcode_modifier & IsString) == 0)
3732 || i.mem_operands == 2)
3733 {
3734 as_bad (_("too many memory references for `%s'"),
3735 current_templates->start->name);
3736 return 0;
3737 }
252b5132 3738
24eab124
AM
3739 /* Check for base index form. We detect the base index form by
3740 looking for an ')' at the end of the operand, searching
3741 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3742 after the '('. */
af6bdddf 3743 base_string = op_string + strlen (op_string);
c3332e24 3744
af6bdddf
AM
3745 --base_string;
3746 if (is_space_char (*base_string))
3747 --base_string;
252b5132 3748
47926f60 3749 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
3750 displacement_string_start = op_string;
3751 displacement_string_end = base_string + 1;
252b5132 3752
24eab124
AM
3753 if (*base_string == ')')
3754 {
af6bdddf 3755 char *temp_string;
24eab124
AM
3756 unsigned int parens_balanced = 1;
3757 /* We've already checked that the number of left & right ()'s are
47926f60 3758 equal, so this loop will not be infinite. */
24eab124
AM
3759 do
3760 {
3761 base_string--;
3762 if (*base_string == ')')
3763 parens_balanced++;
3764 if (*base_string == '(')
3765 parens_balanced--;
3766 }
3767 while (parens_balanced);
c3332e24 3768
af6bdddf 3769 temp_string = base_string;
c3332e24 3770
24eab124 3771 /* Skip past '(' and whitespace. */
252b5132
RH
3772 ++base_string;
3773 if (is_space_char (*base_string))
24eab124 3774 ++base_string;
252b5132 3775
af6bdddf
AM
3776 if (*base_string == ','
3777 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3778 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3779 {
af6bdddf 3780 displacement_string_end = temp_string;
252b5132 3781
af6bdddf 3782 i.types[this_operand] |= BaseIndex;
252b5132 3783
af6bdddf 3784 if (i.base_reg)
24eab124 3785 {
24eab124
AM
3786 base_string = end_op;
3787 if (is_space_char (*base_string))
3788 ++base_string;
af6bdddf
AM
3789 }
3790
3791 /* There may be an index reg or scale factor here. */
3792 if (*base_string == ',')
3793 {
3794 ++base_string;
3795 if (is_space_char (*base_string))
3796 ++base_string;
3797
3798 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3799 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3800 {
af6bdddf 3801 base_string = end_op;
24eab124
AM
3802 if (is_space_char (*base_string))
3803 ++base_string;
af6bdddf
AM
3804 if (*base_string == ',')
3805 {
3806 ++base_string;
3807 if (is_space_char (*base_string))
3808 ++base_string;
3809 }
e5cb08ac 3810 else if (*base_string != ')')
af6bdddf
AM
3811 {
3812 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3813 operand_string);
3814 return 0;
3815 }
24eab124 3816 }
af6bdddf 3817 else if (*base_string == REGISTER_PREFIX)
24eab124 3818 {
af6bdddf 3819 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3820 return 0;
3821 }
252b5132 3822
47926f60 3823 /* Check for scale factor. */
af6bdddf
AM
3824 if (isdigit ((unsigned char) *base_string))
3825 {
3826 if (!i386_scale (base_string))
3827 return 0;
24eab124 3828
af6bdddf
AM
3829 ++base_string;
3830 if (is_space_char (*base_string))
3831 ++base_string;
3832 if (*base_string != ')')
3833 {
3834 as_bad (_("expecting `)' after scale factor in `%s'"),
3835 operand_string);
3836 return 0;
3837 }
3838 }
3839 else if (!i.index_reg)
24eab124 3840 {
af6bdddf
AM
3841 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3842 *base_string);
24eab124
AM
3843 return 0;
3844 }
3845 }
af6bdddf 3846 else if (*base_string != ')')
24eab124 3847 {
af6bdddf
AM
3848 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3849 operand_string);
24eab124
AM
3850 return 0;
3851 }
c3332e24 3852 }
af6bdddf 3853 else if (*base_string == REGISTER_PREFIX)
c3332e24 3854 {
af6bdddf 3855 as_bad (_("bad register name `%s'"), base_string);
24eab124 3856 return 0;
c3332e24 3857 }
24eab124
AM
3858 }
3859
3860 /* If there's an expression beginning the operand, parse it,
3861 assuming displacement_string_start and
3862 displacement_string_end are meaningful. */
3863 if (displacement_string_start != displacement_string_end)
3864 {
3865 if (!i386_displacement (displacement_string_start,
3866 displacement_string_end))
3867 return 0;
3868 }
3869
3870 /* Special case for (%dx) while doing input/output op. */
3871 if (i.base_reg
3872 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3873 && i.index_reg == 0
3874 && i.log2_scale_factor == 0
3875 && i.seg[i.mem_operands] == 0
3876 && (i.types[this_operand] & Disp) == 0)
3877 {
3878 i.types[this_operand] = InOutPortReg;
3879 return 1;
3880 }
3881
eecb386c
AM
3882 if (i386_index_check (operand_string) == 0)
3883 return 0;
24eab124
AM
3884 i.mem_operands++;
3885 }
3886 else
ce8a8b2f
AM
3887 {
3888 /* It's not a memory operand; argh! */
24eab124
AM
3889 as_bad (_("invalid char %s beginning operand %d `%s'"),
3890 output_invalid (*op_string),
3891 this_operand + 1,
3892 op_string);
3893 return 0;
3894 }
47926f60 3895 return 1; /* Normal return. */
252b5132
RH
3896}
3897\f
ee7fcc42
AM
3898/* md_estimate_size_before_relax()
3899
3900 Called just before relax() for rs_machine_dependent frags. The x86
3901 assembler uses these frags to handle variable size jump
3902 instructions.
3903
3904 Any symbol that is now undefined will not become defined.
3905 Return the correct fr_subtype in the frag.
3906 Return the initial "guess for variable size of frag" to caller.
3907 The guess is actually the growth beyond the fixed part. Whatever
3908 we do to grow the fixed or variable part contributes to our
3909 returned value. */
3910
252b5132
RH
3911int
3912md_estimate_size_before_relax (fragP, segment)
3913 register fragS *fragP;
3914 register segT segment;
3915{
252b5132 3916 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
3917 check for un-relaxable symbols. On an ELF system, we can't relax
3918 an externally visible symbol, because it may be overridden by a
3919 shared library. */
3920 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 3921#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b98ef147
AM
3922 || S_IS_EXTERNAL (fragP->fr_symbol)
3923 || S_IS_WEAK (fragP->fr_symbol)
3924#endif
3925 )
252b5132 3926 {
b98ef147
AM
3927 /* Symbol is undefined in this segment, or we need to keep a
3928 reloc so that weak symbols can be overridden. */
3929 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f6af82bd
AM
3930#ifdef BFD_ASSEMBLER
3931 enum bfd_reloc_code_real reloc_type;
3932#else
3933 int reloc_type;
3934#endif
ee7fcc42
AM
3935 unsigned char *opcode;
3936 int old_fr_fix;
f6af82bd 3937
ee7fcc42
AM
3938 if (fragP->fr_var != NO_RELOC)
3939 reloc_type = fragP->fr_var;
b98ef147 3940 else if (size == 2)
f6af82bd
AM
3941 reloc_type = BFD_RELOC_16_PCREL;
3942 else
3943 reloc_type = BFD_RELOC_32_PCREL;
252b5132 3944
ee7fcc42
AM
3945 old_fr_fix = fragP->fr_fix;
3946 opcode = (unsigned char *) fragP->fr_opcode;
3947
fddf5b5b 3948 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 3949 {
fddf5b5b
AM
3950 case UNCOND_JUMP:
3951 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 3952 opcode[0] = 0xe9;
252b5132
RH
3953 fragP->fr_fix += size;
3954 fix_new (fragP, old_fr_fix, size,
3955 fragP->fr_symbol,
3956 fragP->fr_offset, 1,
f6af82bd 3957 reloc_type);
252b5132
RH
3958 break;
3959
fddf5b5b
AM
3960 case COND_JUMP86:
3961 if (no_cond_jump_promotion)
3962 return 1;
3963 if (size == 2)
3964 {
3965 /* Negate the condition, and branch past an
3966 unconditional jump. */
3967 opcode[0] ^= 1;
3968 opcode[1] = 3;
3969 /* Insert an unconditional jump. */
3970 opcode[2] = 0xe9;
3971 /* We added two extra opcode bytes, and have a two byte
3972 offset. */
3973 fragP->fr_fix += 2 + 2;
3974 fix_new (fragP, old_fr_fix + 2, 2,
3975 fragP->fr_symbol,
3976 fragP->fr_offset, 1,
3977 reloc_type);
3978 break;
3979 }
3980 /* Fall through. */
3981
3982 case COND_JUMP:
3983 if (no_cond_jump_promotion)
3984 return 1;
24eab124 3985 /* This changes the byte-displacement jump 0x7N
fddf5b5b 3986 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 3987 opcode[1] = opcode[0] + 0x10;
f6af82bd 3988 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
3989 /* We've added an opcode byte. */
3990 fragP->fr_fix += 1 + size;
252b5132
RH
3991 fix_new (fragP, old_fr_fix + 1, size,
3992 fragP->fr_symbol,
3993 fragP->fr_offset, 1,
f6af82bd 3994 reloc_type);
252b5132 3995 break;
fddf5b5b
AM
3996
3997 default:
3998 BAD_CASE (fragP->fr_subtype);
3999 break;
252b5132
RH
4000 }
4001 frag_wane (fragP);
ee7fcc42 4002 return fragP->fr_fix - old_fr_fix;
252b5132 4003 }
47926f60
KH
4004 /* Guess a short jump. */
4005 return 1;
ee7fcc42
AM
4006}
4007
47926f60
KH
4008/* Called after relax() is finished.
4009
4010 In: Address of frag.
4011 fr_type == rs_machine_dependent.
4012 fr_subtype is what the address relaxed to.
4013
4014 Out: Any fixSs and constants are set up.
4015 Caller will turn frag into a ".space 0". */
4016
252b5132
RH
4017#ifndef BFD_ASSEMBLER
4018void
4019md_convert_frag (headers, sec, fragP)
a04b544b
ILT
4020 object_headers *headers ATTRIBUTE_UNUSED;
4021 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4022 register fragS *fragP;
4023#else
4024void
4025md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4026 bfd *abfd ATTRIBUTE_UNUSED;
4027 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4028 register fragS *fragP;
4029#endif
4030{
4031 register unsigned char *opcode;
4032 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4033 offsetT target_address;
4034 offsetT opcode_address;
252b5132 4035 unsigned int extension = 0;
847f7ad4 4036 offsetT displacement_from_opcode_start;
252b5132
RH
4037
4038 opcode = (unsigned char *) fragP->fr_opcode;
4039
47926f60 4040 /* Address we want to reach in file space. */
252b5132 4041 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
47926f60
KH
4042#ifdef BFD_ASSEMBLER
4043 /* Not needed otherwise? */
49309057 4044 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
252b5132
RH
4045#endif
4046
47926f60 4047 /* Address opcode resides at in file space. */
252b5132
RH
4048 opcode_address = fragP->fr_address + fragP->fr_fix;
4049
47926f60 4050 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4051 displacement_from_opcode_start = target_address - opcode_address;
4052
fddf5b5b 4053 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4054 {
47926f60
KH
4055 /* Don't have to change opcode. */
4056 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4057 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4058 }
4059 else
4060 {
4061 if (no_cond_jump_promotion
4062 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4063 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4064
fddf5b5b
AM
4065 switch (fragP->fr_subtype)
4066 {
4067 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4068 extension = 4; /* 1 opcode + 4 displacement */
4069 opcode[0] = 0xe9;
4070 where_to_put_displacement = &opcode[1];
4071 break;
252b5132 4072
fddf5b5b
AM
4073 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4074 extension = 2; /* 1 opcode + 2 displacement */
4075 opcode[0] = 0xe9;
4076 where_to_put_displacement = &opcode[1];
4077 break;
252b5132 4078
fddf5b5b
AM
4079 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4080 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4081 extension = 5; /* 2 opcode + 4 displacement */
4082 opcode[1] = opcode[0] + 0x10;
4083 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4084 where_to_put_displacement = &opcode[2];
4085 break;
252b5132 4086
fddf5b5b
AM
4087 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4088 extension = 3; /* 2 opcode + 2 displacement */
4089 opcode[1] = opcode[0] + 0x10;
4090 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4091 where_to_put_displacement = &opcode[2];
4092 break;
252b5132 4093
fddf5b5b
AM
4094 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4095 extension = 4;
4096 opcode[0] ^= 1;
4097 opcode[1] = 3;
4098 opcode[2] = 0xe9;
4099 where_to_put_displacement = &opcode[3];
4100 break;
4101
4102 default:
4103 BAD_CASE (fragP->fr_subtype);
4104 break;
4105 }
252b5132 4106 }
fddf5b5b 4107
47926f60 4108 /* Now put displacement after opcode. */
252b5132
RH
4109 md_number_to_chars ((char *) where_to_put_displacement,
4110 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4111 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4112 fragP->fr_fix += extension;
4113}
4114\f
47926f60
KH
4115/* Size of byte displacement jmp. */
4116int md_short_jump_size = 2;
4117
4118/* Size of dword displacement jmp. */
4119int md_long_jump_size = 5;
252b5132 4120
47926f60
KH
4121/* Size of relocation record. */
4122const int md_reloc_size = 8;
252b5132
RH
4123
4124void
4125md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4126 char *ptr;
4127 addressT from_addr, to_addr;
ab9da554
ILT
4128 fragS *frag ATTRIBUTE_UNUSED;
4129 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4130{
847f7ad4 4131 offsetT offset;
252b5132
RH
4132
4133 offset = to_addr - (from_addr + 2);
47926f60
KH
4134 /* Opcode for byte-disp jump. */
4135 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4136 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4137}
4138
4139void
4140md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4141 char *ptr;
4142 addressT from_addr, to_addr;
a38cf1db
AM
4143 fragS *frag ATTRIBUTE_UNUSED;
4144 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4145{
847f7ad4 4146 offsetT offset;
252b5132 4147
a38cf1db
AM
4148 offset = to_addr - (from_addr + 5);
4149 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4150 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4151}
4152\f
4153/* Apply a fixup (fixS) to segment data, once it has been determined
4154 by our caller that we have all the info we need to fix it up.
4155
4156 On the 386, immediates, displacements, and data pointers are all in
4157 the same (little-endian) format, so we don't need to care about which
4158 we are handling. */
4159
4160int
4161md_apply_fix3 (fixP, valp, seg)
47926f60
KH
4162 /* The fix we're to put in. */
4163 fixS *fixP;
4164
4165 /* Pointer to the value of the bits. */
4166 valueT *valp;
4167
4168 /* Segment fix is from. */
4169 segT seg ATTRIBUTE_UNUSED;
252b5132
RH
4170{
4171 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4172 valueT value = *valp;
4173
e1b283bb 4174#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4175 if (fixP->fx_pcrel)
4176 {
4177 switch (fixP->fx_r_type)
4178 {
5865bb77
ILT
4179 default:
4180 break;
4181
93382f6d
AM
4182 case BFD_RELOC_32:
4183 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4184 break;
4185 case BFD_RELOC_16:
4186 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4187 break;
4188 case BFD_RELOC_8:
4189 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4190 break;
4191 }
4192 }
252b5132 4193
0723899b
ILT
4194 /* This is a hack. There should be a better way to handle this.
4195 This covers for the fact that bfd_install_relocation will
4196 subtract the current location (for partial_inplace, PC relative
4197 relocations); see more below. */
93382f6d
AM
4198 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4199 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4200 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7c44d1d3 4201 && fixP->fx_addsy && !use_rela_relocations)
252b5132
RH
4202 {
4203#ifndef OBJ_AOUT
4204 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4205#ifdef TE_PE
4206 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4207#endif
4208 )
4209 value += fixP->fx_where + fixP->fx_frag->fr_address;
4210#endif
4211#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4212 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4213 {
2f66722d
AM
4214 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4215
4216 if ((fseg == seg
4217 || (symbol_section_p (fixP->fx_addsy)
4218 && fseg != absolute_section))
4219 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4220 && ! S_IS_WEAK (fixP->fx_addsy)
4221 && S_IS_DEFINED (fixP->fx_addsy)
4222 && ! S_IS_COMMON (fixP->fx_addsy))
4223 {
4224 /* Yes, we add the values in twice. This is because
4225 bfd_perform_relocation subtracts them out again. I think
4226 bfd_perform_relocation is broken, but I don't dare change
4227 it. FIXME. */
4228 value += fixP->fx_where + fixP->fx_frag->fr_address;
4229 }
252b5132
RH
4230 }
4231#endif
4232#if defined (OBJ_COFF) && defined (TE_PE)
4233 /* For some reason, the PE format does not store a section
24eab124 4234 address offset for a PC relative symbol. */
252b5132
RH
4235 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4236 value += md_pcrel_from (fixP);
4237#endif
4238 }
4239
4240 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4241 and we must not dissappoint it. */
252b5132
RH
4242#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4243 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4244 && fixP->fx_addsy)
47926f60
KH
4245 switch (fixP->fx_r_type)
4246 {
4247 case BFD_RELOC_386_PLT32:
3e73aa7c 4248 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4249 /* Make the jump instruction point to the address of the operand. At
4250 runtime we merely add the offset to the actual PLT entry. */
4251 value = -4;
4252 break;
4253 case BFD_RELOC_386_GOTPC:
4254
4255/* This is tough to explain. We end up with this one if we have
252b5132
RH
4256 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4257 * here is to obtain the absolute address of the GOT, and it is strongly
4258 * preferable from a performance point of view to avoid using a runtime
c3332e24 4259 * relocation for this. The actual sequence of instructions often look
252b5132 4260 * something like:
c3332e24 4261 *
24eab124 4262 * call .L66
252b5132 4263 * .L66:
24eab124
AM
4264 * popl %ebx
4265 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 4266 *
24eab124 4267 * The call and pop essentially return the absolute address of
252b5132
RH
4268 * the label .L66 and store it in %ebx. The linker itself will
4269 * ultimately change the first operand of the addl so that %ebx points to
4270 * the GOT, but to keep things simple, the .o file must have this operand
4271 * set so that it generates not the absolute address of .L66, but the
4272 * absolute address of itself. This allows the linker itself simply
4273 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4274 * added in, and the addend of the relocation is stored in the operand
4275 * field for the instruction itself.
c3332e24 4276 *
24eab124 4277 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
4278 * offset so that %ebx would point to itself. The thing that is tricky is
4279 * that .-.L66 will point to the beginning of the instruction, so we need
4280 * to further modify the operand so that it will point to itself.
4281 * There are other cases where you have something like:
c3332e24 4282 *
24eab124 4283 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 4284 *
252b5132 4285 * and here no correction would be required. Internally in the assembler
c3332e24 4286 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
4287 * explicitly mentioned, and I wonder whether it would simplify matters
4288 * to do it this way. Who knows. In earlier versions of the PIC patches,
4289 * the pcrel_adjust field was used to store the correction, but since the
47926f60
KH
4290 * expression is not pcrel, I felt it would be confusing to do it this
4291 * way. */
4292
4293 value -= 1;
4294 break;
4295 case BFD_RELOC_386_GOT32:
3e73aa7c 4296 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4297 value = 0; /* Fully resolved at runtime. No addend. */
4298 break;
4299 case BFD_RELOC_386_GOTOFF:
3e73aa7c 4300 case BFD_RELOC_X86_64_GOTPCREL:
47926f60
KH
4301 break;
4302
4303 case BFD_RELOC_VTABLE_INHERIT:
4304 case BFD_RELOC_VTABLE_ENTRY:
4305 fixP->fx_done = 0;
4306 return 1;
4307
4308 default:
4309 break;
4310 }
4311#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
93382f6d 4312 *valp = value;
47926f60 4313#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c
JH
4314
4315#ifndef BFD_ASSEMBLER
252b5132 4316 md_number_to_chars (p, value, fixP->fx_size);
3e73aa7c
JH
4317#else
4318 /* Are we finished with this relocation now? */
4319 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4320 fixP->fx_done = 1;
4321 else if (use_rela_relocations)
4322 {
4323 fixP->fx_no_overflow = 1;
4324 value = 0;
4325 }
4326 md_number_to_chars (p, value, fixP->fx_size);
4327#endif
252b5132
RH
4328
4329 return 1;
4330}
252b5132 4331\f
252b5132
RH
4332#define MAX_LITTLENUMS 6
4333
47926f60
KH
4334/* Turn the string pointed to by litP into a floating point constant
4335 of type TYPE, and emit the appropriate bytes. The number of
4336 LITTLENUMS emitted is stored in *SIZEP. An error message is
4337 returned, or NULL on OK. */
4338
252b5132
RH
4339char *
4340md_atof (type, litP, sizeP)
2ab9b79e 4341 int type;
252b5132
RH
4342 char *litP;
4343 int *sizeP;
4344{
4345 int prec;
4346 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4347 LITTLENUM_TYPE *wordP;
4348 char *t;
4349
4350 switch (type)
4351 {
4352 case 'f':
4353 case 'F':
4354 prec = 2;
4355 break;
4356
4357 case 'd':
4358 case 'D':
4359 prec = 4;
4360 break;
4361
4362 case 'x':
4363 case 'X':
4364 prec = 5;
4365 break;
4366
4367 default:
4368 *sizeP = 0;
4369 return _("Bad call to md_atof ()");
4370 }
4371 t = atof_ieee (input_line_pointer, type, words);
4372 if (t)
4373 input_line_pointer = t;
4374
4375 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4376 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4377 the bigendian 386. */
4378 for (wordP = words + prec - 1; prec--;)
4379 {
4380 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4381 litP += sizeof (LITTLENUM_TYPE);
4382 }
4383 return 0;
4384}
4385\f
4386char output_invalid_buf[8];
4387
252b5132
RH
4388static char *
4389output_invalid (c)
4390 int c;
4391{
4392 if (isprint (c))
4393 sprintf (output_invalid_buf, "'%c'", c);
4394 else
4395 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4396 return output_invalid_buf;
4397}
4398
af6bdddf 4399/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4400
4401static const reg_entry *
4402parse_register (reg_string, end_op)
4403 char *reg_string;
4404 char **end_op;
4405{
af6bdddf
AM
4406 char *s = reg_string;
4407 char *p;
252b5132
RH
4408 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4409 const reg_entry *r;
4410
4411 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4412 if (*s == REGISTER_PREFIX)
4413 ++s;
4414
4415 if (is_space_char (*s))
4416 ++s;
4417
4418 p = reg_name_given;
af6bdddf 4419 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4420 {
4421 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4422 return (const reg_entry *) NULL;
4423 s++;
252b5132
RH
4424 }
4425
6588847e
DN
4426 /* For naked regs, make sure that we are not dealing with an identifier.
4427 This prevents confusing an identifier like `eax_var' with register
4428 `eax'. */
4429 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4430 return (const reg_entry *) NULL;
4431
af6bdddf 4432 *end_op = s;
252b5132
RH
4433
4434 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4435
5f47d35b 4436 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4437 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4438 {
5f47d35b
AM
4439 if (is_space_char (*s))
4440 ++s;
4441 if (*s == '(')
4442 {
af6bdddf 4443 ++s;
5f47d35b
AM
4444 if (is_space_char (*s))
4445 ++s;
4446 if (*s >= '0' && *s <= '7')
4447 {
4448 r = &i386_float_regtab[*s - '0'];
af6bdddf 4449 ++s;
5f47d35b
AM
4450 if (is_space_char (*s))
4451 ++s;
4452 if (*s == ')')
4453 {
4454 *end_op = s + 1;
4455 return r;
4456 }
5f47d35b 4457 }
47926f60 4458 /* We have "%st(" then garbage. */
5f47d35b
AM
4459 return (const reg_entry *) NULL;
4460 }
4461 }
4462
252b5132
RH
4463 return r;
4464}
4465\f
4cc782b5 4466#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
65172ab8 4467const char *md_shortopts = "kVQ:sq";
252b5132 4468#else
65172ab8 4469const char *md_shortopts = "q";
252b5132 4470#endif
6e0b89ee 4471
252b5132 4472struct option md_longopts[] = {
3e73aa7c
JH
4473#define OPTION_32 (OPTION_MD_BASE + 0)
4474 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4475#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4476#define OPTION_64 (OPTION_MD_BASE + 1)
4477 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4478#endif
252b5132
RH
4479 {NULL, no_argument, NULL, 0}
4480};
4481size_t md_longopts_size = sizeof (md_longopts);
4482
4483int
4484md_parse_option (c, arg)
4485 int c;
ab9da554 4486 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4487{
4488 switch (c)
4489 {
a38cf1db
AM
4490 case 'q':
4491 quiet_warnings = 1;
252b5132
RH
4492 break;
4493
4494#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4495 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4496 should be emitted or not. FIXME: Not implemented. */
4497 case 'Q':
252b5132
RH
4498 break;
4499
4500 /* -V: SVR4 argument to print version ID. */
4501 case 'V':
4502 print_version_id ();
4503 break;
4504
a38cf1db
AM
4505 /* -k: Ignore for FreeBSD compatibility. */
4506 case 'k':
252b5132 4507 break;
4cc782b5
ILT
4508
4509 case 's':
4510 /* -s: On i386 Solaris, this tells the native assembler to use
4511 .stab instead of .stab.excl. We always use .stab anyhow. */
4512 break;
6e0b89ee 4513
3e73aa7c
JH
4514 case OPTION_64:
4515 {
4516 const char **list, **l;
4517
3e73aa7c
JH
4518 list = bfd_target_list ();
4519 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4520 if (strcmp (*l, "elf64-x86-64") == 0)
4521 {
4522 default_arch = "x86_64";
4523 break;
4524 }
3e73aa7c 4525 if (*l == NULL)
6e0b89ee 4526 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4527 free (list);
4528 }
4529 break;
4530#endif
252b5132 4531
6e0b89ee
AM
4532 case OPTION_32:
4533 default_arch = "i386";
4534 break;
4535
252b5132
RH
4536 default:
4537 return 0;
4538 }
4539 return 1;
4540}
4541
4542void
4543md_show_usage (stream)
4544 FILE *stream;
4545{
4cc782b5
ILT
4546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4547 fprintf (stream, _("\
a38cf1db
AM
4548 -Q ignored\n\
4549 -V print assembler version number\n\
4550 -k ignored\n\
4551 -q quieten some warnings\n\
4552 -s ignored\n"));
4553#else
4554 fprintf (stream, _("\
4555 -q quieten some warnings\n"));
4cc782b5 4556#endif
252b5132
RH
4557}
4558
4559#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4560#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
4562
4563/* Pick the target format to use. */
4564
47926f60 4565const char *
252b5132
RH
4566i386_target_format ()
4567{
3e73aa7c
JH
4568 if (!strcmp (default_arch, "x86_64"))
4569 set_code_flag (CODE_64BIT);
4570 else if (!strcmp (default_arch, "i386"))
4571 set_code_flag (CODE_32BIT);
4572 else
4573 as_fatal (_("Unknown architecture"));
252b5132
RH
4574 switch (OUTPUT_FLAVOR)
4575 {
4c63da97
AM
4576#ifdef OBJ_MAYBE_AOUT
4577 case bfd_target_aout_flavour:
47926f60 4578 return AOUT_TARGET_FORMAT;
4c63da97
AM
4579#endif
4580#ifdef OBJ_MAYBE_COFF
252b5132
RH
4581 case bfd_target_coff_flavour:
4582 return "coff-i386";
4c63da97 4583#endif
3e73aa7c 4584#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 4585 case bfd_target_elf_flavour:
3e73aa7c 4586 {
e5cb08ac
KH
4587 if (flag_code == CODE_64BIT)
4588 use_rela_relocations = 1;
4589 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
3e73aa7c 4590 }
4c63da97 4591#endif
252b5132
RH
4592 default:
4593 abort ();
4594 return NULL;
4595 }
4596}
4597
47926f60
KH
4598#endif /* OBJ_MAYBE_ more than one */
4599#endif /* BFD_ASSEMBLER */
252b5132 4600\f
252b5132
RH
4601symbolS *
4602md_undefined_symbol (name)
4603 char *name;
4604{
18dc2407
ILT
4605 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4606 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4607 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4608 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
4609 {
4610 if (!GOT_symbol)
4611 {
4612 if (symbol_find (name))
4613 as_bad (_("GOT already in symbol table"));
4614 GOT_symbol = symbol_new (name, undefined_section,
4615 (valueT) 0, &zero_address_frag);
4616 };
4617 return GOT_symbol;
4618 }
252b5132
RH
4619 return 0;
4620}
4621
4622/* Round up a section size to the appropriate boundary. */
47926f60 4623
252b5132
RH
4624valueT
4625md_section_align (segment, size)
ab9da554 4626 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
4627 valueT size;
4628{
252b5132 4629#ifdef BFD_ASSEMBLER
4c63da97
AM
4630#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4631 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4632 {
4633 /* For a.out, force the section size to be aligned. If we don't do
4634 this, BFD will align it for us, but it will not write out the
4635 final bytes of the section. This may be a bug in BFD, but it is
4636 easier to fix it here since that is how the other a.out targets
4637 work. */
4638 int align;
4639
4640 align = bfd_get_section_alignment (stdoutput, segment);
4641 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4642 }
252b5132
RH
4643#endif
4644#endif
4645
4646 return size;
4647}
4648
4649/* On the i386, PC-relative offsets are relative to the start of the
4650 next instruction. That is, the address of the offset, plus its
4651 size, since the offset is always the last part of the insn. */
4652
4653long
4654md_pcrel_from (fixP)
4655 fixS *fixP;
4656{
4657 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4658}
4659
4660#ifndef I386COFF
4661
4662static void
4663s_bss (ignore)
ab9da554 4664 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4665{
4666 register int temp;
4667
4668 temp = get_absolute_expression ();
4669 subseg_set (bss_section, (subsegT) temp);
4670 demand_empty_rest_of_line ();
4671}
4672
4673#endif
4674
252b5132
RH
4675#ifdef BFD_ASSEMBLER
4676
4677void
4678i386_validate_fix (fixp)
4679 fixS *fixp;
4680{
4681 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4682 {
3e73aa7c 4683 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
4684 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4685 {
4686 if (flag_code != CODE_64BIT)
4687 abort ();
4688 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4689 }
4690 else
4691 {
4692 if (flag_code == CODE_64BIT)
4693 abort ();
4694 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4695 }
252b5132
RH
4696 fixp->fx_subsy = 0;
4697 }
4698}
4699
252b5132
RH
4700arelent *
4701tc_gen_reloc (section, fixp)
ab9da554 4702 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4703 fixS *fixp;
4704{
4705 arelent *rel;
4706 bfd_reloc_code_real_type code;
4707
4708 switch (fixp->fx_r_type)
4709 {
3e73aa7c
JH
4710 case BFD_RELOC_X86_64_PLT32:
4711 case BFD_RELOC_X86_64_GOT32:
4712 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
4713 case BFD_RELOC_386_PLT32:
4714 case BFD_RELOC_386_GOT32:
4715 case BFD_RELOC_386_GOTOFF:
4716 case BFD_RELOC_386_GOTPC:
3e73aa7c 4717 case BFD_RELOC_X86_64_32S:
252b5132
RH
4718 case BFD_RELOC_RVA:
4719 case BFD_RELOC_VTABLE_ENTRY:
4720 case BFD_RELOC_VTABLE_INHERIT:
4721 code = fixp->fx_r_type;
4722 break;
4723 default:
93382f6d 4724 if (fixp->fx_pcrel)
252b5132 4725 {
93382f6d
AM
4726 switch (fixp->fx_size)
4727 {
4728 default:
d0b47220 4729 as_bad (_("can not do %d byte pc-relative relocation"),
93382f6d
AM
4730 fixp->fx_size);
4731 code = BFD_RELOC_32_PCREL;
4732 break;
4733 case 1: code = BFD_RELOC_8_PCREL; break;
4734 case 2: code = BFD_RELOC_16_PCREL; break;
4735 case 4: code = BFD_RELOC_32_PCREL; break;
4736 }
4737 }
4738 else
4739 {
4740 switch (fixp->fx_size)
4741 {
4742 default:
d0b47220 4743 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
93382f6d
AM
4744 code = BFD_RELOC_32;
4745 break;
4746 case 1: code = BFD_RELOC_8; break;
4747 case 2: code = BFD_RELOC_16; break;
4748 case 4: code = BFD_RELOC_32; break;
3e73aa7c 4749 case 8: code = BFD_RELOC_64; break;
93382f6d 4750 }
252b5132
RH
4751 }
4752 break;
4753 }
252b5132
RH
4754
4755 if (code == BFD_RELOC_32
4756 && GOT_symbol
4757 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
4758 {
4759 /* We don't support GOTPC on 64bit targets. */
4760 if (flag_code == CODE_64BIT)
bfb32b52 4761 abort ();
3e73aa7c
JH
4762 code = BFD_RELOC_386_GOTPC;
4763 }
252b5132
RH
4764
4765 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4766 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4767 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4768
4769 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
4770 if (!use_rela_relocations)
4771 {
4772 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4773 vtable entry to be used in the relocation's section offset. */
4774 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4775 rel->address = fixp->fx_offset;
252b5132 4776
3e73aa7c
JH
4777 if (fixp->fx_pcrel)
4778 rel->addend = fixp->fx_addnumber;
4779 else
4780 rel->addend = 0;
4781 }
4782 /* Use the rela in 64bit mode. */
252b5132 4783 else
3e73aa7c
JH
4784 {
4785 rel->addend = fixp->fx_offset;
3e73aa7c
JH
4786 if (fixp->fx_pcrel)
4787 rel->addend -= fixp->fx_size;
4788 }
4789
252b5132
RH
4790 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4791 if (rel->howto == NULL)
4792 {
4793 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 4794 _("cannot represent relocation type %s"),
252b5132
RH
4795 bfd_get_reloc_code_name (code));
4796 /* Set howto to a garbage value so that we can keep going. */
4797 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4798 assert (rel->howto != NULL);
4799 }
4800
4801 return rel;
4802}
4803
47926f60 4804#else /* ! BFD_ASSEMBLER */
252b5132
RH
4805
4806#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4807void
4808tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4809 char *where;
4810 fixS *fixP;
4811 relax_addressT segment_address_in_file;
4812{
47926f60
KH
4813 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4814 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 4815
47926f60 4816 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
4817 long r_symbolnum;
4818
4819 know (fixP->fx_addsy != NULL);
4820
4821 md_number_to_chars (where,
4822 (valueT) (fixP->fx_frag->fr_address
4823 + fixP->fx_where - segment_address_in_file),
4824 4);
4825
4826 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4827 ? S_GET_TYPE (fixP->fx_addsy)
4828 : fixP->fx_addsy->sy_number);
4829
4830 where[6] = (r_symbolnum >> 16) & 0x0ff;
4831 where[5] = (r_symbolnum >> 8) & 0x0ff;
4832 where[4] = r_symbolnum & 0x0ff;
4833 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4834 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4835 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4836}
4837
47926f60 4838#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
4839
4840#if defined (I386COFF)
4841
4842short
4843tc_coff_fix2rtype (fixP)
4844 fixS *fixP;
4845{
4846 if (fixP->fx_r_type == R_IMAGEBASE)
4847 return R_IMAGEBASE;
4848
4849 return (fixP->fx_pcrel ?
4850 (fixP->fx_size == 1 ? R_PCRBYTE :
4851 fixP->fx_size == 2 ? R_PCRWORD :
4852 R_PCRLONG) :
4853 (fixP->fx_size == 1 ? R_RELBYTE :
4854 fixP->fx_size == 2 ? R_RELWORD :
4855 R_DIR32));
4856}
4857
4858int
4859tc_coff_sizemachdep (frag)
4860 fragS *frag;
4861{
4862 if (frag->fr_next)
4863 return (frag->fr_next->fr_address - frag->fr_address);
4864 else
4865 return 0;
4866}
4867
47926f60 4868#endif /* I386COFF */
252b5132 4869
47926f60 4870#endif /* ! BFD_ASSEMBLER */
64a0c779
DN
4871\f
4872/* Parse operands using Intel syntax. This implements a recursive descent
4873 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4874 Programmer's Guide.
4875
4876 FIXME: We do not recognize the full operand grammar defined in the MASM
4877 documentation. In particular, all the structure/union and
4878 high-level macro operands are missing.
4879
4880 Uppercase words are terminals, lower case words are non-terminals.
4881 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4882 bars '|' denote choices. Most grammar productions are implemented in
4883 functions called 'intel_<production>'.
4884
4885 Initial production is 'expr'.
4886
64a0c779
DN
4887 addOp + | -
4888
4889 alpha [a-zA-Z]
4890
4891 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4892
4893 constant digits [[ radixOverride ]]
4894
4895 dataType BYTE | WORD | DWORD | QWORD | XWORD
4896
4897 digits decdigit
b77a7acd
AJ
4898 | digits decdigit
4899 | digits hexdigit
64a0c779
DN
4900
4901 decdigit [0-9]
4902
4903 e05 e05 addOp e06
b77a7acd 4904 | e06
64a0c779
DN
4905
4906 e06 e06 mulOp e09
b77a7acd 4907 | e09
64a0c779
DN
4908
4909 e09 OFFSET e10
4910 | e09 PTR e10
4911 | e09 : e10
4912 | e10
4913
4914 e10 e10 [ expr ]
b77a7acd 4915 | e11
64a0c779
DN
4916
4917 e11 ( expr )
b77a7acd 4918 | [ expr ]
64a0c779
DN
4919 | constant
4920 | dataType
4921 | id
4922 | $
4923 | register
4924
4925 => expr SHORT e05
b77a7acd 4926 | e05
64a0c779
DN
4927
4928 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 4929 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
4930
4931 hexdigit a | b | c | d | e | f
b77a7acd 4932 | A | B | C | D | E | F
64a0c779
DN
4933
4934 id alpha
b77a7acd 4935 | id alpha
64a0c779
DN
4936 | id decdigit
4937
4938 mulOp * | / | MOD
4939
4940 quote " | '
4941
4942 register specialRegister
b77a7acd 4943 | gpRegister
64a0c779
DN
4944 | byteRegister
4945
4946 segmentRegister CS | DS | ES | FS | GS | SS
4947
4948 specialRegister CR0 | CR2 | CR3
b77a7acd 4949 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
4950 | TR3 | TR4 | TR5 | TR6 | TR7
4951
64a0c779
DN
4952 We simplify the grammar in obvious places (e.g., register parsing is
4953 done by calling parse_register) and eliminate immediate left recursion
4954 to implement a recursive-descent parser.
4955
4956 expr SHORT e05
b77a7acd 4957 | e05
64a0c779
DN
4958
4959 e05 e06 e05'
4960
4961 e05' addOp e06 e05'
b77a7acd 4962 | Empty
64a0c779
DN
4963
4964 e06 e09 e06'
4965
4966 e06' mulOp e09 e06'
b77a7acd 4967 | Empty
64a0c779
DN
4968
4969 e09 OFFSET e10 e09'
b77a7acd 4970 | e10 e09'
64a0c779
DN
4971
4972 e09' PTR e10 e09'
b77a7acd 4973 | : e10 e09'
64a0c779
DN
4974 | Empty
4975
4976 e10 e11 e10'
4977
4978 e10' [ expr ] e10'
b77a7acd 4979 | Empty
64a0c779
DN
4980
4981 e11 ( expr )
b77a7acd 4982 | [ expr ]
64a0c779
DN
4983 | BYTE
4984 | WORD
4985 | DWORD
4986 | QWORD
4987 | XWORD
4988 | .
4989 | $
4990 | register
4991 | id
4992 | constant */
4993
4994/* Parsing structure for the intel syntax parser. Used to implement the
4995 semantic actions for the operand grammar. */
4996struct intel_parser_s
4997 {
4998 char *op_string; /* The string being parsed. */
4999 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5000 int op_modifier; /* Operand modifier. */
64a0c779
DN
5001 int is_mem; /* 1 if operand is memory reference. */
5002 const reg_entry *reg; /* Last register reference found. */
5003 char *disp; /* Displacement string being built. */
5004 };
5005
5006static struct intel_parser_s intel_parser;
5007
5008/* Token structure for parsing intel syntax. */
5009struct intel_token
5010 {
5011 int code; /* Token code. */
5012 const reg_entry *reg; /* Register entry for register tokens. */
5013 char *str; /* String representation. */
5014 };
5015
5016static struct intel_token cur_token, prev_token;
5017
50705ef4
AM
5018/* Token codes for the intel parser. Since T_SHORT is already used
5019 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5020#define T_NIL -1
5021#define T_CONST 1
5022#define T_REG 2
5023#define T_BYTE 3
5024#define T_WORD 4
5025#define T_DWORD 5
5026#define T_QWORD 6
5027#define T_XWORD 7
50705ef4 5028#undef T_SHORT
64a0c779
DN
5029#define T_SHORT 8
5030#define T_OFFSET 9
5031#define T_PTR 10
5032#define T_ID 11
5033
5034/* Prototypes for intel parser functions. */
5035static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5036static void intel_get_token PARAMS ((void));
5037static void intel_putback_token PARAMS ((void));
5038static int intel_expr PARAMS ((void));
5039static int intel_e05 PARAMS ((void));
5040static int intel_e05_1 PARAMS ((void));
5041static int intel_e06 PARAMS ((void));
5042static int intel_e06_1 PARAMS ((void));
5043static int intel_e09 PARAMS ((void));
5044static int intel_e09_1 PARAMS ((void));
5045static int intel_e10 PARAMS ((void));
5046static int intel_e10_1 PARAMS ((void));
5047static int intel_e11 PARAMS ((void));
64a0c779 5048
64a0c779
DN
5049static int
5050i386_intel_operand (operand_string, got_a_float)
5051 char *operand_string;
5052 int got_a_float;
5053{
5054 int ret;
5055 char *p;
5056
5057 /* Initialize token holders. */
5058 cur_token.code = prev_token.code = T_NIL;
5059 cur_token.reg = prev_token.reg = NULL;
5060 cur_token.str = prev_token.str = NULL;
5061
5062 /* Initialize parser structure. */
e5cb08ac 5063 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5064 if (p == NULL)
5065 abort ();
5066 strcpy (intel_parser.op_string, operand_string);
5067 intel_parser.got_a_float = got_a_float;
5068 intel_parser.op_modifier = -1;
5069 intel_parser.is_mem = 0;
5070 intel_parser.reg = NULL;
e5cb08ac 5071 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5072 if (intel_parser.disp == NULL)
5073 abort ();
5074 intel_parser.disp[0] = '\0';
5075
5076 /* Read the first token and start the parser. */
5077 intel_get_token ();
5078 ret = intel_expr ();
5079
5080 if (ret)
5081 {
5082 /* If we found a memory reference, hand it over to i386_displacement
5083 to fill in the rest of the operand fields. */
5084 if (intel_parser.is_mem)
5085 {
5086 if ((i.mem_operands == 1
5087 && (current_templates->start->opcode_modifier & IsString) == 0)
5088 || i.mem_operands == 2)
5089 {
5090 as_bad (_("too many memory references for '%s'"),
5091 current_templates->start->name);
5092 ret = 0;
5093 }
5094 else
5095 {
5096 char *s = intel_parser.disp;
5097 i.mem_operands++;
5098
5099 /* Add the displacement expression. */
5100 if (*s != '\0')
5101 ret = i386_displacement (s, s + strlen (s))
5102 && i386_index_check (s);
5103 }
5104 }
5105
5106 /* Constant and OFFSET expressions are handled by i386_immediate. */
5107 else if (intel_parser.op_modifier == OFFSET_FLAT
5108 || intel_parser.reg == NULL)
5109 ret = i386_immediate (intel_parser.disp);
5110 }
5111
5112 free (p);
5113 free (intel_parser.disp);
5114
5115 return ret;
5116}
5117
64a0c779 5118/* expr SHORT e05
b77a7acd 5119 | e05 */
64a0c779
DN
5120static int
5121intel_expr ()
5122{
5123 /* expr SHORT e05 */
5124 if (cur_token.code == T_SHORT)
5125 {
5126 intel_parser.op_modifier = SHORT;
5127 intel_match_token (T_SHORT);
5128
5129 return (intel_e05 ());
5130 }
5131
5132 /* expr e05 */
5133 else
5134 return intel_e05 ();
5135}
5136
64a0c779
DN
5137/* e05 e06 e05'
5138
4a1805b1 5139 e05' addOp e06 e05'
64a0c779
DN
5140 | Empty */
5141static int
5142intel_e05 ()
5143{
5144 return (intel_e06 () && intel_e05_1 ());
5145}
5146
5147static int
5148intel_e05_1 ()
5149{
5150 /* e05' addOp e06 e05' */
5151 if (cur_token.code == '+' || cur_token.code == '-')
5152 {
5153 strcat (intel_parser.disp, cur_token.str);
5154 intel_match_token (cur_token.code);
5155
5156 return (intel_e06 () && intel_e05_1 ());
5157 }
5158
5159 /* e05' Empty */
5160 else
5161 return 1;
4a1805b1 5162}
64a0c779
DN
5163
5164/* e06 e09 e06'
5165
5166 e06' mulOp e09 e06'
b77a7acd 5167 | Empty */
64a0c779
DN
5168static int
5169intel_e06 ()
5170{
5171 return (intel_e09 () && intel_e06_1 ());
5172}
5173
5174static int
5175intel_e06_1 ()
5176{
5177 /* e06' mulOp e09 e06' */
5178 if (cur_token.code == '*' || cur_token.code == '/')
5179 {
5180 strcat (intel_parser.disp, cur_token.str);
5181 intel_match_token (cur_token.code);
5182
5183 return (intel_e09 () && intel_e06_1 ());
5184 }
4a1805b1 5185
64a0c779 5186 /* e06' Empty */
4a1805b1 5187 else
64a0c779
DN
5188 return 1;
5189}
5190
64a0c779 5191/* e09 OFFSET e10 e09'
b77a7acd 5192 | e10 e09'
64a0c779
DN
5193
5194 e09' PTR e10 e09'
b77a7acd 5195 | : e10 e09'
64a0c779
DN
5196 | Empty */
5197static int
5198intel_e09 ()
5199{
5200 /* e09 OFFSET e10 e09' */
5201 if (cur_token.code == T_OFFSET)
5202 {
5203 intel_parser.is_mem = 0;
5204 intel_parser.op_modifier = OFFSET_FLAT;
5205 intel_match_token (T_OFFSET);
5206
5207 return (intel_e10 () && intel_e09_1 ());
5208 }
5209
5210 /* e09 e10 e09' */
5211 else
5212 return (intel_e10 () && intel_e09_1 ());
5213}
5214
5215static int
5216intel_e09_1 ()
5217{
5218 /* e09' PTR e10 e09' */
5219 if (cur_token.code == T_PTR)
5220 {
5221 if (prev_token.code == T_BYTE)
5222 i.suffix = BYTE_MNEM_SUFFIX;
5223
5224 else if (prev_token.code == T_WORD)
5225 {
5226 if (intel_parser.got_a_float == 2) /* "fi..." */
5227 i.suffix = SHORT_MNEM_SUFFIX;
5228 else
5229 i.suffix = WORD_MNEM_SUFFIX;
5230 }
5231
5232 else if (prev_token.code == T_DWORD)
5233 {
5234 if (intel_parser.got_a_float == 1) /* "f..." */
5235 i.suffix = SHORT_MNEM_SUFFIX;
5236 else
5237 i.suffix = LONG_MNEM_SUFFIX;
5238 }
5239
5240 else if (prev_token.code == T_QWORD)
f16b83df
JH
5241 {
5242 if (intel_parser.got_a_float == 1) /* "f..." */
5243 i.suffix = LONG_MNEM_SUFFIX;
5244 else
3e73aa7c 5245 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5246 }
64a0c779
DN
5247
5248 else if (prev_token.code == T_XWORD)
5249 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5250
5251 else
5252 {
5253 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5254 return 0;
5255 }
5256
5257 intel_match_token (T_PTR);
5258
5259 return (intel_e10 () && intel_e09_1 ());
5260 }
5261
5262 /* e09 : e10 e09' */
5263 else if (cur_token.code == ':')
5264 {
21d6c4af
DN
5265 /* Mark as a memory operand only if it's not already known to be an
5266 offset expression. */
5267 if (intel_parser.op_modifier != OFFSET_FLAT)
5268 intel_parser.is_mem = 1;
64a0c779
DN
5269
5270 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5271 }
5272
5273 /* e09' Empty */
5274 else
5275 return 1;
5276}
5277
5278/* e10 e11 e10'
5279
5280 e10' [ expr ] e10'
b77a7acd 5281 | Empty */
64a0c779
DN
5282static int
5283intel_e10 ()
5284{
5285 return (intel_e11 () && intel_e10_1 ());
5286}
5287
5288static int
5289intel_e10_1 ()
5290{
5291 /* e10' [ expr ] e10' */
5292 if (cur_token.code == '[')
5293 {
5294 intel_match_token ('[');
21d6c4af
DN
5295
5296 /* Mark as a memory operand only if it's not already known to be an
5297 offset expression. If it's an offset expression, we need to keep
5298 the brace in. */
5299 if (intel_parser.op_modifier != OFFSET_FLAT)
5300 intel_parser.is_mem = 1;
5301 else
5302 strcat (intel_parser.disp, "[");
4a1805b1 5303
64a0c779 5304 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5305 if (*intel_parser.disp != '\0'
5306 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5307 strcat (intel_parser.disp, "+");
5308
21d6c4af
DN
5309 if (intel_expr () && intel_match_token (']'))
5310 {
5311 /* Preserve brackets when the operand is an offset expression. */
5312 if (intel_parser.op_modifier == OFFSET_FLAT)
5313 strcat (intel_parser.disp, "]");
5314
5315 return intel_e10_1 ();
5316 }
5317 else
5318 return 0;
64a0c779
DN
5319 }
5320
5321 /* e10' Empty */
5322 else
5323 return 1;
5324}
5325
64a0c779 5326/* e11 ( expr )
b77a7acd 5327 | [ expr ]
64a0c779
DN
5328 | BYTE
5329 | WORD
5330 | DWORD
5331 | QWORD
5332 | XWORD
4a1805b1 5333 | $
64a0c779
DN
5334 | .
5335 | register
5336 | id
5337 | constant */
5338static int
5339intel_e11 ()
5340{
5341 /* e11 ( expr ) */
5342 if (cur_token.code == '(')
5343 {
5344 intel_match_token ('(');
5345 strcat (intel_parser.disp, "(");
5346
5347 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5348 {
5349 strcat (intel_parser.disp, ")");
5350 return 1;
5351 }
64a0c779
DN
5352 else
5353 return 0;
5354 }
5355
5356 /* e11 [ expr ] */
5357 else if (cur_token.code == '[')
5358 {
5359 intel_match_token ('[');
21d6c4af
DN
5360
5361 /* Mark as a memory operand only if it's not already known to be an
5362 offset expression. If it's an offset expression, we need to keep
5363 the brace in. */
5364 if (intel_parser.op_modifier != OFFSET_FLAT)
5365 intel_parser.is_mem = 1;
5366 else
5367 strcat (intel_parser.disp, "[");
4a1805b1 5368
64a0c779
DN
5369 /* Operands for jump/call inside brackets denote absolute addresses. */
5370 if (current_templates->start->opcode_modifier & Jump
5371 || current_templates->start->opcode_modifier & JumpDword
5372 || current_templates->start->opcode_modifier & JumpByte
5373 || current_templates->start->opcode_modifier & JumpInterSegment)
5374 i.types[this_operand] |= JumpAbsolute;
5375
5376 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5377 if (*intel_parser.disp != '\0'
5378 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5379 strcat (intel_parser.disp, "+");
5380
21d6c4af
DN
5381 if (intel_expr () && intel_match_token (']'))
5382 {
5383 /* Preserve brackets when the operand is an offset expression. */
5384 if (intel_parser.op_modifier == OFFSET_FLAT)
5385 strcat (intel_parser.disp, "]");
5386
5387 return 1;
5388 }
5389 else
5390 return 0;
64a0c779
DN
5391 }
5392
4a1805b1 5393 /* e11 BYTE
64a0c779
DN
5394 | WORD
5395 | DWORD
5396 | QWORD
5397 | XWORD */
5398 else if (cur_token.code == T_BYTE
5399 || cur_token.code == T_WORD
5400 || cur_token.code == T_DWORD
5401 || cur_token.code == T_QWORD
5402 || cur_token.code == T_XWORD)
5403 {
5404 intel_match_token (cur_token.code);
5405
5406 return 1;
5407 }
5408
5409 /* e11 $
5410 | . */
5411 else if (cur_token.code == '$' || cur_token.code == '.')
5412 {
5413 strcat (intel_parser.disp, cur_token.str);
5414 intel_match_token (cur_token.code);
21d6c4af
DN
5415
5416 /* Mark as a memory operand only if it's not already known to be an
5417 offset expression. */
5418 if (intel_parser.op_modifier != OFFSET_FLAT)
5419 intel_parser.is_mem = 1;
64a0c779
DN
5420
5421 return 1;
5422 }
5423
5424 /* e11 register */
5425 else if (cur_token.code == T_REG)
5426 {
5427 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5428
5429 intel_match_token (T_REG);
5430
5431 /* Check for segment change. */
5432 if (cur_token.code == ':')
5433 {
5434 if (reg->reg_type & (SReg2 | SReg3))
5435 {
5436 switch (reg->reg_num)
5437 {
5438 case 0:
5439 i.seg[i.mem_operands] = &es;
5440 break;
5441 case 1:
5442 i.seg[i.mem_operands] = &cs;
5443 break;
5444 case 2:
5445 i.seg[i.mem_operands] = &ss;
5446 break;
5447 case 3:
5448 i.seg[i.mem_operands] = &ds;
5449 break;
5450 case 4:
5451 i.seg[i.mem_operands] = &fs;
5452 break;
5453 case 5:
5454 i.seg[i.mem_operands] = &gs;
5455 break;
5456 }
5457 }
5458 else
5459 {
5460 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5461 return 0;
5462 }
5463 }
5464
5465 /* Not a segment register. Check for register scaling. */
5466 else if (cur_token.code == '*')
5467 {
5468 if (!intel_parser.is_mem)
5469 {
5470 as_bad (_("Register scaling only allowed in memory operands."));
5471 return 0;
5472 }
5473
4a1805b1 5474 /* What follows must be a valid scale. */
64a0c779
DN
5475 if (intel_match_token ('*')
5476 && strchr ("01248", *cur_token.str))
5477 {
5478 i.index_reg = reg;
5479 i.types[this_operand] |= BaseIndex;
5480
5481 /* Set the scale after setting the register (otherwise,
5482 i386_scale will complain) */
5483 i386_scale (cur_token.str);
5484 intel_match_token (T_CONST);
5485 }
5486 else
5487 {
5488 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5489 cur_token.str);
5490 return 0;
5491 }
5492 }
5493
5494 /* No scaling. If this is a memory operand, the register is either a
5495 base register (first occurrence) or an index register (second
5496 occurrence). */
5497 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5498 {
5499 if (i.base_reg && i.index_reg)
5500 {
5501 as_bad (_("Too many register references in memory operand.\n"));
5502 return 0;
5503 }
5504
5505 if (i.base_reg == NULL)
5506 i.base_reg = reg;
5507 else
5508 i.index_reg = reg;
5509
5510 i.types[this_operand] |= BaseIndex;
5511 }
5512
5513 /* Offset modifier. Add the register to the displacement string to be
5514 parsed as an immediate expression after we're done. */
5515 else if (intel_parser.op_modifier == OFFSET_FLAT)
5516 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 5517
64a0c779
DN
5518 /* It's neither base nor index nor offset. */
5519 else
5520 {
5521 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5522 i.op[this_operand].regs = reg;
5523 i.reg_operands++;
5524 }
5525
5526 /* Since registers are not part of the displacement string (except
5527 when we're parsing offset operands), we may need to remove any
5528 preceding '+' from the displacement string. */
5529 if (*intel_parser.disp != '\0'
5530 && intel_parser.op_modifier != OFFSET_FLAT)
5531 {
5532 char *s = intel_parser.disp;
5533 s += strlen (s) - 1;
5534 if (*s == '+')
5535 *s = '\0';
5536 }
5537
5538 return 1;
5539 }
4a1805b1 5540
64a0c779
DN
5541 /* e11 id */
5542 else if (cur_token.code == T_ID)
5543 {
5544 /* Add the identifier to the displacement string. */
5545 strcat (intel_parser.disp, cur_token.str);
5546 intel_match_token (T_ID);
5547
5548 /* The identifier represents a memory reference only if it's not
5549 preceded by an offset modifier. */
21d6c4af 5550 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
5551 intel_parser.is_mem = 1;
5552
5553 return 1;
5554 }
5555
5556 /* e11 constant */
5557 else if (cur_token.code == T_CONST
e5cb08ac 5558 || cur_token.code == '-'
64a0c779
DN
5559 || cur_token.code == '+')
5560 {
5561 char *save_str;
5562
5563 /* Allow constants that start with `+' or `-'. */
5564 if (cur_token.code == '-' || cur_token.code == '+')
5565 {
5566 strcat (intel_parser.disp, cur_token.str);
5567 intel_match_token (cur_token.code);
5568 if (cur_token.code != T_CONST)
5569 {
5570 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5571 cur_token.str);
5572 return 0;
5573 }
5574 }
5575
e5cb08ac 5576 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 5577 if (save_str == NULL)
bc805888 5578 abort ();
64a0c779
DN
5579 strcpy (save_str, cur_token.str);
5580
5581 /* Get the next token to check for register scaling. */
5582 intel_match_token (cur_token.code);
5583
5584 /* Check if this constant is a scaling factor for an index register. */
5585 if (cur_token.code == '*')
5586 {
5587 if (intel_match_token ('*') && cur_token.code == T_REG)
5588 {
5589 if (!intel_parser.is_mem)
5590 {
5591 as_bad (_("Register scaling only allowed in memory operands."));
5592 return 0;
5593 }
5594
4a1805b1 5595 /* The constant is followed by `* reg', so it must be
64a0c779
DN
5596 a valid scale. */
5597 if (strchr ("01248", *save_str))
5598 {
5599 i.index_reg = cur_token.reg;
5600 i.types[this_operand] |= BaseIndex;
5601
5602 /* Set the scale after setting the register (otherwise,
5603 i386_scale will complain) */
5604 i386_scale (save_str);
5605 intel_match_token (T_REG);
5606
5607 /* Since registers are not part of the displacement
5608 string, we may need to remove any preceding '+' from
5609 the displacement string. */
5610 if (*intel_parser.disp != '\0')
5611 {
5612 char *s = intel_parser.disp;
5613 s += strlen (s) - 1;
5614 if (*s == '+')
5615 *s = '\0';
5616 }
5617
5618 free (save_str);
5619
5620 return 1;
5621 }
5622 else
5623 return 0;
5624 }
5625
5626 /* The constant was not used for register scaling. Since we have
5627 already consumed the token following `*' we now need to put it
5628 back in the stream. */
5629 else
5630 intel_putback_token ();
5631 }
5632
5633 /* Add the constant to the displacement string. */
5634 strcat (intel_parser.disp, save_str);
5635 free (save_str);
5636
5637 return 1;
5638 }
5639
64a0c779
DN
5640 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5641 return 0;
5642}
5643
64a0c779
DN
5644/* Match the given token against cur_token. If they match, read the next
5645 token from the operand string. */
5646static int
5647intel_match_token (code)
e5cb08ac 5648 int code;
64a0c779
DN
5649{
5650 if (cur_token.code == code)
5651 {
5652 intel_get_token ();
5653 return 1;
5654 }
5655 else
5656 {
5657 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5658 return 0;
5659 }
5660}
5661
64a0c779
DN
5662/* Read a new token from intel_parser.op_string and store it in cur_token. */
5663static void
5664intel_get_token ()
5665{
5666 char *end_op;
5667 const reg_entry *reg;
5668 struct intel_token new_token;
5669
5670 new_token.code = T_NIL;
5671 new_token.reg = NULL;
5672 new_token.str = NULL;
5673
4a1805b1 5674 /* Free the memory allocated to the previous token and move
64a0c779
DN
5675 cur_token to prev_token. */
5676 if (prev_token.str)
5677 free (prev_token.str);
5678
5679 prev_token = cur_token;
5680
5681 /* Skip whitespace. */
5682 while (is_space_char (*intel_parser.op_string))
5683 intel_parser.op_string++;
5684
5685 /* Return an empty token if we find nothing else on the line. */
5686 if (*intel_parser.op_string == '\0')
5687 {
5688 cur_token = new_token;
5689 return;
5690 }
5691
5692 /* The new token cannot be larger than the remainder of the operand
5693 string. */
e5cb08ac 5694 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 5695 if (new_token.str == NULL)
bc805888 5696 abort ();
64a0c779
DN
5697 new_token.str[0] = '\0';
5698
5699 if (strchr ("0123456789", *intel_parser.op_string))
5700 {
5701 char *p = new_token.str;
5702 char *q = intel_parser.op_string;
5703 new_token.code = T_CONST;
5704
5705 /* Allow any kind of identifier char to encompass floating point and
5706 hexadecimal numbers. */
5707 while (is_identifier_char (*q))
5708 *p++ = *q++;
5709 *p = '\0';
5710
5711 /* Recognize special symbol names [0-9][bf]. */
5712 if (strlen (intel_parser.op_string) == 2
4a1805b1 5713 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
5714 || intel_parser.op_string[1] == 'f'))
5715 new_token.code = T_ID;
5716 }
5717
5718 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5719 {
5720 new_token.code = *intel_parser.op_string;
5721 new_token.str[0] = *intel_parser.op_string;
5722 new_token.str[1] = '\0';
5723 }
5724
5725 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5726 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5727 {
5728 new_token.code = T_REG;
5729 new_token.reg = reg;
5730
5731 if (*intel_parser.op_string == REGISTER_PREFIX)
5732 {
5733 new_token.str[0] = REGISTER_PREFIX;
5734 new_token.str[1] = '\0';
5735 }
5736
5737 strcat (new_token.str, reg->reg_name);
5738 }
5739
5740 else if (is_identifier_char (*intel_parser.op_string))
5741 {
5742 char *p = new_token.str;
5743 char *q = intel_parser.op_string;
5744
5745 /* A '.' or '$' followed by an identifier char is an identifier.
5746 Otherwise, it's operator '.' followed by an expression. */
5747 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5748 {
5749 new_token.code = *q;
5750 new_token.str[0] = *q;
5751 new_token.str[1] = '\0';
5752 }
5753 else
5754 {
5755 while (is_identifier_char (*q) || *q == '@')
5756 *p++ = *q++;
5757 *p = '\0';
5758
5759 if (strcasecmp (new_token.str, "BYTE") == 0)
5760 new_token.code = T_BYTE;
5761
5762 else if (strcasecmp (new_token.str, "WORD") == 0)
5763 new_token.code = T_WORD;
5764
5765 else if (strcasecmp (new_token.str, "DWORD") == 0)
5766 new_token.code = T_DWORD;
5767
5768 else if (strcasecmp (new_token.str, "QWORD") == 0)
5769 new_token.code = T_QWORD;
5770
5771 else if (strcasecmp (new_token.str, "XWORD") == 0)
5772 new_token.code = T_XWORD;
5773
5774 else if (strcasecmp (new_token.str, "PTR") == 0)
5775 new_token.code = T_PTR;
5776
5777 else if (strcasecmp (new_token.str, "SHORT") == 0)
5778 new_token.code = T_SHORT;
5779
5780 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5781 {
5782 new_token.code = T_OFFSET;
5783
5784 /* ??? This is not mentioned in the MASM grammar but gcc
5785 makes use of it with -mintel-syntax. OFFSET may be
5786 followed by FLAT: */
5787 if (strncasecmp (q, " FLAT:", 6) == 0)
5788 strcat (new_token.str, " FLAT:");
5789 }
5790
5791 /* ??? This is not mentioned in the MASM grammar. */
5792 else if (strcasecmp (new_token.str, "FLAT") == 0)
5793 new_token.code = T_OFFSET;
5794
5795 else
5796 new_token.code = T_ID;
5797 }
5798 }
5799
5800 else
5801 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5802
5803 intel_parser.op_string += strlen (new_token.str);
5804 cur_token = new_token;
5805}
5806
64a0c779
DN
5807/* Put cur_token back into the token stream and make cur_token point to
5808 prev_token. */
5809static void
5810intel_putback_token ()
5811{
5812 intel_parser.op_string -= strlen (cur_token.str);
5813 free (cur_token.str);
5814 cur_token = prev_token;
4a1805b1 5815
64a0c779
DN
5816 /* Forget prev_token. */
5817 prev_token.code = T_NIL;
5818 prev_token.reg = NULL;
5819 prev_token.str = NULL;
5820}