]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
Approved by Kevin Buettner <kevinb@redhat.com>
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0f10071e 3 2000, 2001, 2002, 2003, 2004
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
252b5132 35#include "opcode/i386.h"
d2b2c203 36#include "elf/x86-64.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
252b5132
RH
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
29b0f896
AM
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
246fcdee 56#endif
252b5132 57
edde18a5
AM
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
29b0f896
AM
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 75static int add_prefix PARAMS ((unsigned int));
3e73aa7c 76static void set_code_flag PARAMS ((int));
47926f60 77static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 78static void set_intel_syntax PARAMS ((int));
e413e4e9 79static void set_cpu_arch PARAMS ((int));
6482c264
NC
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
29b0f896
AM
83static char *output_invalid PARAMS ((int c));
84static int i386_operand PARAMS ((char *operand_string));
85static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88static char *parse_insn PARAMS ((char *, char *));
89static char *parse_operands PARAMS ((char *, const char *));
90static void swap_operands PARAMS ((void));
91static void optimize_imm PARAMS ((void));
92static void optimize_disp PARAMS ((void));
93static int match_template PARAMS ((void));
94static int check_string PARAMS ((void));
95static int process_suffix PARAMS ((void));
96static int check_byte_reg PARAMS ((void));
97static int check_long_reg PARAMS ((void));
98static int check_qword_reg PARAMS ((void));
99static int check_word_reg PARAMS ((void));
100static int finalize_imm PARAMS ((void));
101static int process_operands PARAMS ((void));
102static const seg_entry *build_modrm_byte PARAMS ((void));
103static void output_insn PARAMS ((void));
104static void output_branch PARAMS ((void));
105static void output_jump PARAMS ((void));
106static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
107static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
29b0f896
AM
111#ifndef I386COFF
112static void s_bss PARAMS ((int));
252b5132
RH
113#endif
114
a847613f 115static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 116
252b5132 117/* 'md_assemble ()' gathers together information and puts it into a
47926f60 118 i386_insn. */
252b5132 119
520dc8e8
AM
120union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
252b5132
RH
127struct _i386_insn
128 {
47926f60 129 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
47926f60 136 /* OPERANDS gives the number of given operands. */
252b5132
RH
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
47926f60 141 operands. */
252b5132
RH
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 145 use OP[i] for the corresponding operand. */
252b5132
RH
146 unsigned int types[MAX_OPERANDS];
147
520dc8e8
AM
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
252b5132 151
3e73aa7c
JH
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154#define Operand_PCrel 1
155
252b5132 156 /* Relocation type for operand */
f86103b7 157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 158
252b5132
RH
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 166 explicit segment overrides are given. */
ce8a8b2f 167 const seg_entry *seg[2];
252b5132
RH
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
3e73aa7c 178 rex_byte rex;
252b5132
RH
179 sib_byte sib;
180 };
181
182typedef struct _i386_insn i386_insn;
183
184/* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
32137342 186const char extra_symbol_chars[] = "*%-(["
252b5132 187#ifdef LEX_AT
32137342
NC
188 "@"
189#endif
190#ifdef LEX_QM
191 "?"
252b5132 192#endif
32137342 193 ;
252b5132 194
29b0f896
AM
195#if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
32137342 198 && !defined (TE_NETWARE) \
29b0f896
AM
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
252b5132 201/* This array holds the chars that always start a comment. If the
ce8a8b2f 202 pre-processor is disabled, these aren't very useful. */
252b5132
RH
203const char comment_chars[] = "#/";
204#define PREFIX_SEPARATOR '\\'
252b5132
RH
205
206/* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 210 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
252b5132 213 '/' isn't otherwise defined. */
0d9f6d04 214const char line_comment_chars[] = "#";
29b0f896 215
252b5132 216#else
29b0f896
AM
217/* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219const char comment_chars[] = "#";
220#define PREFIX_SEPARATOR '/'
221
0d9f6d04 222const char line_comment_chars[] = "/#";
252b5132
RH
223#endif
224
63a0b638 225const char line_separator_chars[] = ";";
252b5132 226
ce8a8b2f
AM
227/* Chars that can be used to separate mant from exp in floating point
228 nums. */
252b5132
RH
229const char EXP_CHARS[] = "eE";
230
ce8a8b2f
AM
231/* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
252b5132
RH
234const char FLT_CHARS[] = "fFdDxX";
235
ce8a8b2f 236/* Tables for lexical analysis. */
252b5132
RH
237static char mnemonic_chars[256];
238static char register_chars[256];
239static char operand_chars[256];
240static char identifier_chars[256];
241static char digit_chars[256];
242
ce8a8b2f 243/* Lexical macros. */
252b5132
RH
244#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245#define is_operand_char(x) (operand_chars[(unsigned char) x])
246#define is_register_char(x) (register_chars[(unsigned char) x])
247#define is_space_char(x) ((x) == ' ')
248#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249#define is_digit_char(x) (digit_chars[(unsigned char) x])
250
0234cb7c 251/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
252static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254/* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
47926f60 257 assembler instruction). */
252b5132 258static char save_stack[32];
ce8a8b2f 259static char *save_stack_p;
252b5132
RH
260#define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262#define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
47926f60 265/* The instruction we're assembling. */
252b5132
RH
266static i386_insn i;
267
268/* Possible templates for current insn. */
269static const templates *current_templates;
270
47926f60 271/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
272static expressionS disp_expressions[2], im_expressions[2];
273
47926f60
KH
274/* Current operand we are working on. */
275static int this_operand;
252b5132 276
3e73aa7c
JH
277/* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
f3c180ae 284#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
285
286static enum flag_code flag_code;
287static int use_rela_relocations = 0;
288
289/* The names used to print error messages. */
b77a7acd 290static const char *flag_code_names[] =
3e73aa7c
JH
291 {
292 "32",
293 "16",
294 "64"
295 };
252b5132 296
47926f60
KH
297/* 1 for intel syntax,
298 0 if att syntax. */
299static int intel_syntax = 0;
252b5132 300
47926f60
KH
301/* 1 if register prefix % not required. */
302static int allow_naked_reg = 0;
252b5132 303
47926f60
KH
304/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307static char stackop_size = '\0';
eecb386c 308
12b55ccc
L
309/* Non-zero to optimize code alignment. */
310int optimize_align_code = 1;
311
47926f60
KH
312/* Non-zero to quieten some warnings. */
313static int quiet_warnings = 0;
a38cf1db 314
47926f60
KH
315/* CPU name. */
316static const char *cpu_arch_name = NULL;
5c6af06e 317static const char *cpu_sub_arch_name = NULL;
a38cf1db 318
47926f60 319/* CPU feature flags. */
29b0f896 320static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 321
fddf5b5b
AM
322/* If set, conditional jumps are not automatically promoted to handle
323 larger than a byte offset. */
324static unsigned int no_cond_jump_promotion = 0;
325
29b0f896
AM
326/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
327symbolS *GOT_symbol;
328
a4447b93
RH
329/* The dwarf2 return column, adjusted for 32 or 64 bit. */
330unsigned int x86_dwarf2_return_column;
331
332/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
333int x86_cie_data_alignment;
334
252b5132 335/* Interface to relax_segment.
fddf5b5b
AM
336 There are 3 major relax states for 386 jump insns because the
337 different types of jumps add different sizes to frags when we're
338 figuring out what sort of jump to choose to reach a given label. */
252b5132 339
47926f60 340/* Types. */
93c2a809
AM
341#define UNCOND_JUMP 0
342#define COND_JUMP 1
343#define COND_JUMP86 2
fddf5b5b 344
47926f60 345/* Sizes. */
252b5132
RH
346#define CODE16 1
347#define SMALL 0
29b0f896 348#define SMALL16 (SMALL | CODE16)
252b5132 349#define BIG 2
29b0f896 350#define BIG16 (BIG | CODE16)
252b5132
RH
351
352#ifndef INLINE
353#ifdef __GNUC__
354#define INLINE __inline__
355#else
356#define INLINE
357#endif
358#endif
359
fddf5b5b
AM
360#define ENCODE_RELAX_STATE(type, size) \
361 ((relax_substateT) (((type) << 2) | (size)))
362#define TYPE_FROM_RELAX_STATE(s) \
363 ((s) >> 2)
364#define DISP_SIZE_FROM_RELAX_STATE(s) \
365 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
366
367/* This table is used by relax_frag to promote short jumps to long
368 ones where necessary. SMALL (short) jumps may be promoted to BIG
369 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
370 don't allow a short jump in a 32 bit code segment to be promoted to
371 a 16 bit offset jump because it's slower (requires data size
372 prefix), and doesn't work, unless the destination is in the bottom
373 64k of the code segment (The top 16 bits of eip are zeroed). */
374
375const relax_typeS md_relax_table[] =
376{
24eab124
AM
377 /* The fields are:
378 1) most positive reach of this state,
379 2) most negative reach of this state,
93c2a809 380 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 381 4) which index into the table to try if we can't fit into this one. */
252b5132 382
fddf5b5b 383 /* UNCOND_JUMP states. */
93c2a809
AM
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
385 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
386 /* dword jmp adds 4 bytes to frag:
387 0 extra opcode bytes, 4 displacement bytes. */
252b5132 388 {0, 0, 4, 0},
93c2a809
AM
389 /* word jmp adds 2 byte2 to frag:
390 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
391 {0, 0, 2, 0},
392
93c2a809
AM
393 /* COND_JUMP states. */
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
395 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
396 /* dword conditionals adds 5 bytes to frag:
397 1 extra opcode byte, 4 displacement bytes. */
398 {0, 0, 5, 0},
fddf5b5b 399 /* word conditionals add 3 bytes to frag:
93c2a809
AM
400 1 extra opcode byte, 2 displacement bytes. */
401 {0, 0, 3, 0},
402
403 /* COND_JUMP86 states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
406 /* dword conditionals adds 5 bytes to frag:
407 1 extra opcode byte, 4 displacement bytes. */
408 {0, 0, 5, 0},
409 /* word conditionals add 4 bytes to frag:
410 1 displacement byte and a 3 byte long branch insn. */
411 {0, 0, 4, 0}
252b5132
RH
412};
413
e413e4e9
AM
414static const arch_entry cpu_arch[] = {
415 {"i8086", Cpu086 },
416 {"i186", Cpu086|Cpu186 },
417 {"i286", Cpu086|Cpu186|Cpu286 },
418 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
419 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
5c6af06e
JB
420 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
421 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
422 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
423 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
424 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
425 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
426 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
427 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
428 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
429 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
430 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
431 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
432 {".mmx", CpuMMX },
433 {".sse", CpuMMX|CpuMMX2|CpuSSE },
434 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
435 {".3dnow", CpuMMX|Cpu3dnow },
436 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
437 {".padlock", CpuPadLock },
e413e4e9
AM
438 {NULL, 0 }
439};
440
29b0f896
AM
441const pseudo_typeS md_pseudo_table[] =
442{
443#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
444 {"align", s_align_bytes, 0},
445#else
446 {"align", s_align_ptwo, 0},
447#endif
448 {"arch", set_cpu_arch, 0},
449#ifndef I386COFF
450 {"bss", s_bss, 0},
451#endif
452 {"ffloat", float_cons, 'f'},
453 {"dfloat", float_cons, 'd'},
454 {"tfloat", float_cons, 'x'},
455 {"value", cons, 2},
456 {"noopt", s_ignore, 0},
457 {"optim", s_ignore, 0},
458 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
459 {"code16", set_code_flag, CODE_16BIT},
460 {"code32", set_code_flag, CODE_32BIT},
461 {"code64", set_code_flag, CODE_64BIT},
462 {"intel_syntax", set_intel_syntax, 1},
463 {"att_syntax", set_intel_syntax, 0},
c6682705 464 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896 465 {"loc", dwarf2_directive_loc, 0},
6482c264
NC
466#ifdef TE_PE
467 {"secrel32", pe_directive_secrel, 0},
468#endif
29b0f896
AM
469 {0, 0, 0}
470};
471
472/* For interface with expression (). */
473extern char *input_line_pointer;
474
475/* Hash table for instruction mnemonic lookup. */
476static struct hash_control *op_hash;
477
478/* Hash table for register lookup. */
479static struct hash_control *reg_hash;
480\f
252b5132
RH
481void
482i386_align_code (fragP, count)
483 fragS *fragP;
484 int count;
485{
ce8a8b2f
AM
486 /* Various efficient no-op patterns for aligning code labels.
487 Note: Don't try to assemble the instructions in the comments.
488 0L and 0w are not legal. */
252b5132
RH
489 static const char f32_1[] =
490 {0x90}; /* nop */
491 static const char f32_2[] =
492 {0x89,0xf6}; /* movl %esi,%esi */
493 static const char f32_3[] =
494 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
495 static const char f32_4[] =
496 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
497 static const char f32_5[] =
498 {0x90, /* nop */
499 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
500 static const char f32_6[] =
501 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
502 static const char f32_7[] =
503 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
504 static const char f32_8[] =
505 {0x90, /* nop */
506 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
507 static const char f32_9[] =
508 {0x89,0xf6, /* movl %esi,%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_10[] =
511 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_11[] =
514 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
515 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
516 static const char f32_12[] =
517 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
518 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
519 static const char f32_13[] =
520 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
521 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
522 static const char f32_14[] =
523 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
524 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
525 static const char f32_15[] =
526 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
527 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
528 static const char f16_3[] =
529 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
530 static const char f16_4[] =
531 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
532 static const char f16_5[] =
533 {0x90, /* nop */
534 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
535 static const char f16_6[] =
536 {0x89,0xf6, /* mov %si,%si */
537 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
538 static const char f16_7[] =
539 {0x8d,0x74,0x00, /* lea 0(%si),%si */
540 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
541 static const char f16_8[] =
542 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
543 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
544 static const char *const f32_patt[] = {
545 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
546 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
547 };
548 static const char *const f16_patt[] = {
c3332e24 549 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
550 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
551 };
552
33fef721
JH
553 if (count <= 0 || count > 15)
554 return;
3e73aa7c 555
33fef721
JH
556 /* The recommended way to pad 64bit code is to use NOPs preceded by
557 maximally four 0x66 prefixes. Balance the size of nops. */
558 if (flag_code == CODE_64BIT)
252b5132 559 {
33fef721
JH
560 int i;
561 int nnops = (count + 3) / 4;
562 int len = count / nnops;
563 int remains = count - nnops * len;
564 int pos = 0;
565
566 for (i = 0; i < remains; i++)
252b5132 567 {
33fef721
JH
568 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
569 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
570 pos += len + 1;
571 }
572 for (; i < nnops; i++)
573 {
574 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
575 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
576 pos += len;
252b5132 577 }
252b5132 578 }
33fef721
JH
579 else
580 if (flag_code == CODE_16BIT)
581 {
582 memcpy (fragP->fr_literal + fragP->fr_fix,
583 f16_patt[count - 1], count);
584 if (count > 8)
585 /* Adjust jump offset. */
586 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
587 }
588 else
589 memcpy (fragP->fr_literal + fragP->fr_fix,
590 f32_patt[count - 1], count);
591 fragP->fr_var = count;
252b5132
RH
592}
593
252b5132
RH
594static INLINE unsigned int
595mode_from_disp_size (t)
596 unsigned int t;
597{
3e73aa7c 598 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
599}
600
601static INLINE int
602fits_in_signed_byte (num)
847f7ad4 603 offsetT num;
252b5132
RH
604{
605 return (num >= -128) && (num <= 127);
47926f60 606}
252b5132
RH
607
608static INLINE int
609fits_in_unsigned_byte (num)
847f7ad4 610 offsetT num;
252b5132
RH
611{
612 return (num & 0xff) == num;
47926f60 613}
252b5132
RH
614
615static INLINE int
616fits_in_unsigned_word (num)
847f7ad4 617 offsetT num;
252b5132
RH
618{
619 return (num & 0xffff) == num;
47926f60 620}
252b5132
RH
621
622static INLINE int
623fits_in_signed_word (num)
847f7ad4 624 offsetT num;
252b5132
RH
625{
626 return (-32768 <= num) && (num <= 32767);
47926f60 627}
3e73aa7c
JH
628static INLINE int
629fits_in_signed_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631{
632#ifndef BFD64
633 return 1;
634#else
635 return (!(((offsetT) -1 << 31) & num)
636 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
637#endif
638} /* fits_in_signed_long() */
639static INLINE int
640fits_in_unsigned_long (num)
641 offsetT num ATTRIBUTE_UNUSED;
642{
643#ifndef BFD64
644 return 1;
645#else
646 return (num & (((offsetT) 2 << 31) - 1)) == num;
647#endif
648} /* fits_in_unsigned_long() */
252b5132
RH
649
650static int
651smallest_imm_type (num)
847f7ad4 652 offsetT num;
252b5132 653{
a847613f 654 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
655 {
656 /* This code is disabled on the 486 because all the Imm1 forms
657 in the opcode table are slower on the i486. They're the
658 versions with the implicitly specified single-position
659 displacement, which has another syntax if you really want to
660 use that form. */
661 if (num == 1)
3e73aa7c 662 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 663 }
252b5132 664 return (fits_in_signed_byte (num)
3e73aa7c 665 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 666 : fits_in_unsigned_byte (num)
3e73aa7c 667 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 668 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
669 ? (Imm16 | Imm32 | Imm32S | Imm64)
670 : fits_in_signed_long (num)
671 ? (Imm32 | Imm32S | Imm64)
672 : fits_in_unsigned_long (num)
673 ? (Imm32 | Imm64)
674 : Imm64);
47926f60 675}
252b5132 676
847f7ad4
AM
677static offsetT
678offset_in_range (val, size)
679 offsetT val;
680 int size;
681{
508866be 682 addressT mask;
ba2adb93 683
847f7ad4
AM
684 switch (size)
685 {
508866be
L
686 case 1: mask = ((addressT) 1 << 8) - 1; break;
687 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 688 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
689#ifdef BFD64
690 case 8: mask = ((addressT) 2 << 63) - 1; break;
691#endif
47926f60 692 default: abort ();
847f7ad4
AM
693 }
694
ba2adb93 695 /* If BFD64, sign extend val. */
3e73aa7c
JH
696 if (!use_rela_relocations)
697 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
698 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 699
47926f60 700 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
701 {
702 char buf1[40], buf2[40];
703
704 sprint_value (buf1, val);
705 sprint_value (buf2, val & mask);
706 as_warn (_("%s shortened to %s"), buf1, buf2);
707 }
708 return val & mask;
709}
710
252b5132
RH
711/* Returns 0 if attempting to add a prefix where one from the same
712 class already exists, 1 if non rep/repne added, 2 if rep/repne
713 added. */
714static int
715add_prefix (prefix)
716 unsigned int prefix;
717{
718 int ret = 1;
719 int q;
720
29b0f896
AM
721 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
722 && flag_code == CODE_64BIT)
3e73aa7c
JH
723 q = REX_PREFIX;
724 else
725 switch (prefix)
726 {
727 default:
728 abort ();
729
730 case CS_PREFIX_OPCODE:
731 case DS_PREFIX_OPCODE:
732 case ES_PREFIX_OPCODE:
733 case FS_PREFIX_OPCODE:
734 case GS_PREFIX_OPCODE:
735 case SS_PREFIX_OPCODE:
736 q = SEG_PREFIX;
737 break;
252b5132 738
3e73aa7c
JH
739 case REPNE_PREFIX_OPCODE:
740 case REPE_PREFIX_OPCODE:
741 ret = 2;
742 /* fall thru */
743 case LOCK_PREFIX_OPCODE:
744 q = LOCKREP_PREFIX;
745 break;
252b5132 746
3e73aa7c
JH
747 case FWAIT_OPCODE:
748 q = WAIT_PREFIX;
749 break;
252b5132 750
3e73aa7c
JH
751 case ADDR_PREFIX_OPCODE:
752 q = ADDR_PREFIX;
753 break;
252b5132 754
3e73aa7c
JH
755 case DATA_PREFIX_OPCODE:
756 q = DATA_PREFIX;
757 break;
758 }
252b5132 759
29b0f896 760 if (i.prefix[q] != 0)
252b5132
RH
761 {
762 as_bad (_("same type of prefix used twice"));
763 return 0;
764 }
765
766 i.prefixes += 1;
767 i.prefix[q] = prefix;
768 return ret;
769}
770
771static void
3e73aa7c 772set_code_flag (value)
e5cb08ac 773 int value;
eecb386c 774{
3e73aa7c
JH
775 flag_code = value;
776 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
777 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
778 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
779 {
780 as_bad (_("64bit mode not supported on this CPU."));
781 }
782 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
783 {
784 as_bad (_("32bit mode not supported on this CPU."));
785 }
eecb386c
AM
786 stackop_size = '\0';
787}
788
789static void
3e73aa7c
JH
790set_16bit_gcc_code_flag (new_code_flag)
791 int new_code_flag;
252b5132 792{
3e73aa7c
JH
793 flag_code = new_code_flag;
794 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
795 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
9306ca4a 796 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
797}
798
799static void
800set_intel_syntax (syntax_flag)
eecb386c 801 int syntax_flag;
252b5132
RH
802{
803 /* Find out if register prefixing is specified. */
804 int ask_naked_reg = 0;
805
806 SKIP_WHITESPACE ();
29b0f896 807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
808 {
809 char *string = input_line_pointer;
810 int e = get_symbol_end ();
811
47926f60 812 if (strcmp (string, "prefix") == 0)
252b5132 813 ask_naked_reg = 1;
47926f60 814 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
815 ask_naked_reg = -1;
816 else
d0b47220 817 as_bad (_("bad argument to syntax directive."));
252b5132
RH
818 *input_line_pointer = e;
819 }
820 demand_empty_rest_of_line ();
c3332e24 821
252b5132
RH
822 intel_syntax = syntax_flag;
823
824 if (ask_naked_reg == 0)
f86103b7
AM
825 allow_naked_reg = (intel_syntax
826 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
827 else
828 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a
JB
829
830 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
831 identifier_chars['$'] = intel_syntax ? '$' : 0;
252b5132
RH
832}
833
e413e4e9
AM
834static void
835set_cpu_arch (dummy)
47926f60 836 int dummy ATTRIBUTE_UNUSED;
e413e4e9 837{
47926f60 838 SKIP_WHITESPACE ();
e413e4e9 839
29b0f896 840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
841 {
842 char *string = input_line_pointer;
843 int e = get_symbol_end ();
844 int i;
845
846 for (i = 0; cpu_arch[i].name; i++)
847 {
848 if (strcmp (string, cpu_arch[i].name) == 0)
849 {
5c6af06e
JB
850 if (*string != '.')
851 {
852 cpu_arch_name = cpu_arch[i].name;
853 cpu_sub_arch_name = NULL;
854 cpu_arch_flags = (cpu_arch[i].flags
855 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
856 break;
857 }
858 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
859 {
860 cpu_sub_arch_name = cpu_arch[i].name;
861 cpu_arch_flags |= cpu_arch[i].flags;
862 }
863 *input_line_pointer = e;
864 demand_empty_rest_of_line ();
865 return;
e413e4e9
AM
866 }
867 }
868 if (!cpu_arch[i].name)
869 as_bad (_("no such architecture: `%s'"), string);
870
871 *input_line_pointer = e;
872 }
873 else
874 as_bad (_("missing cpu architecture"));
875
fddf5b5b
AM
876 no_cond_jump_promotion = 0;
877 if (*input_line_pointer == ','
29b0f896 878 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
879 {
880 char *string = ++input_line_pointer;
881 int e = get_symbol_end ();
882
883 if (strcmp (string, "nojumps") == 0)
884 no_cond_jump_promotion = 1;
885 else if (strcmp (string, "jumps") == 0)
886 ;
887 else
888 as_bad (_("no such architecture modifier: `%s'"), string);
889
890 *input_line_pointer = e;
891 }
892
e413e4e9
AM
893 demand_empty_rest_of_line ();
894}
895
b9d79e03
JH
896unsigned long
897i386_mach ()
898{
899 if (!strcmp (default_arch, "x86_64"))
900 return bfd_mach_x86_64;
901 else if (!strcmp (default_arch, "i386"))
902 return bfd_mach_i386_i386;
903 else
904 as_fatal (_("Unknown architecture"));
905}
b9d79e03 906\f
252b5132
RH
907void
908md_begin ()
909{
910 const char *hash_err;
911
47926f60 912 /* Initialize op_hash hash table. */
252b5132
RH
913 op_hash = hash_new ();
914
915 {
29b0f896
AM
916 const template *optab;
917 templates *core_optab;
252b5132 918
47926f60
KH
919 /* Setup for loop. */
920 optab = i386_optab;
252b5132
RH
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923
924 while (1)
925 {
926 ++optab;
927 if (optab->name == NULL
928 || strcmp (optab->name, (optab - 1)->name) != 0)
929 {
930 /* different name --> ship out current template list;
47926f60 931 add to hash table; & begin anew. */
252b5132
RH
932 core_optab->end = optab;
933 hash_err = hash_insert (op_hash,
934 (optab - 1)->name,
935 (PTR) core_optab);
936 if (hash_err)
937 {
252b5132
RH
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 (optab - 1)->name,
940 hash_err);
941 }
942 if (optab->name == NULL)
943 break;
944 core_optab = (templates *) xmalloc (sizeof (templates));
945 core_optab->start = optab;
946 }
947 }
948 }
949
47926f60 950 /* Initialize reg_hash hash table. */
252b5132
RH
951 reg_hash = hash_new ();
952 {
29b0f896 953 const reg_entry *regtab;
252b5132
RH
954
955 for (regtab = i386_regtab;
956 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
957 regtab++)
958 {
959 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
960 if (hash_err)
3e73aa7c
JH
961 as_fatal (_("Internal Error: Can't hash %s: %s"),
962 regtab->reg_name,
963 hash_err);
252b5132
RH
964 }
965 }
966
47926f60 967 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 968 {
29b0f896
AM
969 int c;
970 char *p;
252b5132
RH
971
972 for (c = 0; c < 256; c++)
973 {
3882b010 974 if (ISDIGIT (c))
252b5132
RH
975 {
976 digit_chars[c] = c;
977 mnemonic_chars[c] = c;
978 register_chars[c] = c;
979 operand_chars[c] = c;
980 }
3882b010 981 else if (ISLOWER (c))
252b5132
RH
982 {
983 mnemonic_chars[c] = c;
984 register_chars[c] = c;
985 operand_chars[c] = c;
986 }
3882b010 987 else if (ISUPPER (c))
252b5132 988 {
3882b010 989 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
990 register_chars[c] = mnemonic_chars[c];
991 operand_chars[c] = c;
992 }
993
3882b010 994 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
995 identifier_chars[c] = c;
996 else if (c >= 128)
997 {
998 identifier_chars[c] = c;
999 operand_chars[c] = c;
1000 }
1001 }
1002
1003#ifdef LEX_AT
1004 identifier_chars['@'] = '@';
32137342
NC
1005#endif
1006#ifdef LEX_QM
1007 identifier_chars['?'] = '?';
1008 operand_chars['?'] = '?';
252b5132 1009#endif
252b5132
RH
1010 digit_chars['-'] = '-';
1011 identifier_chars['_'] = '_';
1012 identifier_chars['.'] = '.';
1013
1014 for (p = operand_special_chars; *p != '\0'; p++)
1015 operand_chars[(unsigned char) *p] = *p;
1016 }
1017
1018#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1019 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1020 {
1021 record_alignment (text_section, 2);
1022 record_alignment (data_section, 2);
1023 record_alignment (bss_section, 2);
1024 }
1025#endif
a4447b93
RH
1026
1027 if (flag_code == CODE_64BIT)
1028 {
1029 x86_dwarf2_return_column = 16;
1030 x86_cie_data_alignment = -8;
1031 }
1032 else
1033 {
1034 x86_dwarf2_return_column = 8;
1035 x86_cie_data_alignment = -4;
1036 }
252b5132
RH
1037}
1038
1039void
1040i386_print_statistics (file)
1041 FILE *file;
1042{
1043 hash_print_statistics (file, "i386 opcode", op_hash);
1044 hash_print_statistics (file, "i386 register", reg_hash);
1045}
1046\f
252b5132
RH
1047#ifdef DEBUG386
1048
ce8a8b2f 1049/* Debugging routines for md_assemble. */
252b5132
RH
1050static void pi PARAMS ((char *, i386_insn *));
1051static void pte PARAMS ((template *));
1052static void pt PARAMS ((unsigned int));
1053static void pe PARAMS ((expressionS *));
1054static void ps PARAMS ((symbolS *));
1055
1056static void
1057pi (line, x)
1058 char *line;
1059 i386_insn *x;
1060{
09f131f2 1061 unsigned int i;
252b5132
RH
1062
1063 fprintf (stdout, "%s: template ", line);
1064 pte (&x->tm);
09f131f2
JH
1065 fprintf (stdout, " address: base %s index %s scale %x\n",
1066 x->base_reg ? x->base_reg->reg_name : "none",
1067 x->index_reg ? x->index_reg->reg_name : "none",
1068 x->log2_scale_factor);
1069 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1070 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1071 fprintf (stdout, " sib: base %x index %x scale %x\n",
1072 x->sib.base, x->sib.index, x->sib.scale);
1073 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1074 (x->rex & REX_MODE64) != 0,
1075 (x->rex & REX_EXTX) != 0,
1076 (x->rex & REX_EXTY) != 0,
1077 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1078 for (i = 0; i < x->operands; i++)
1079 {
1080 fprintf (stdout, " #%d: ", i + 1);
1081 pt (x->types[i]);
1082 fprintf (stdout, "\n");
1083 if (x->types[i]
3f4438ab 1084 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1085 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1086 if (x->types[i] & Imm)
520dc8e8 1087 pe (x->op[i].imms);
252b5132 1088 if (x->types[i] & Disp)
520dc8e8 1089 pe (x->op[i].disps);
252b5132
RH
1090 }
1091}
1092
1093static void
1094pte (t)
1095 template *t;
1096{
09f131f2 1097 unsigned int i;
252b5132 1098 fprintf (stdout, " %d operands ", t->operands);
47926f60 1099 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1100 if (t->extension_opcode != None)
1101 fprintf (stdout, "ext %x ", t->extension_opcode);
1102 if (t->opcode_modifier & D)
1103 fprintf (stdout, "D");
1104 if (t->opcode_modifier & W)
1105 fprintf (stdout, "W");
1106 fprintf (stdout, "\n");
1107 for (i = 0; i < t->operands; i++)
1108 {
1109 fprintf (stdout, " #%d type ", i + 1);
1110 pt (t->operand_types[i]);
1111 fprintf (stdout, "\n");
1112 }
1113}
1114
1115static void
1116pe (e)
1117 expressionS *e;
1118{
24eab124 1119 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1120 fprintf (stdout, " add_number %ld (%lx)\n",
1121 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1122 if (e->X_add_symbol)
1123 {
1124 fprintf (stdout, " add_symbol ");
1125 ps (e->X_add_symbol);
1126 fprintf (stdout, "\n");
1127 }
1128 if (e->X_op_symbol)
1129 {
1130 fprintf (stdout, " op_symbol ");
1131 ps (e->X_op_symbol);
1132 fprintf (stdout, "\n");
1133 }
1134}
1135
1136static void
1137ps (s)
1138 symbolS *s;
1139{
1140 fprintf (stdout, "%s type %s%s",
1141 S_GET_NAME (s),
1142 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1143 segment_name (S_GET_SEGMENT (s)));
1144}
1145
1146struct type_name
1147 {
1148 unsigned int mask;
1149 char *tname;
1150 }
1151
29b0f896 1152static const type_names[] =
252b5132
RH
1153{
1154 { Reg8, "r8" },
1155 { Reg16, "r16" },
1156 { Reg32, "r32" },
09f131f2 1157 { Reg64, "r64" },
252b5132
RH
1158 { Imm8, "i8" },
1159 { Imm8S, "i8s" },
1160 { Imm16, "i16" },
1161 { Imm32, "i32" },
09f131f2
JH
1162 { Imm32S, "i32s" },
1163 { Imm64, "i64" },
252b5132
RH
1164 { Imm1, "i1" },
1165 { BaseIndex, "BaseIndex" },
1166 { Disp8, "d8" },
1167 { Disp16, "d16" },
1168 { Disp32, "d32" },
09f131f2
JH
1169 { Disp32S, "d32s" },
1170 { Disp64, "d64" },
252b5132
RH
1171 { InOutPortReg, "InOutPortReg" },
1172 { ShiftCount, "ShiftCount" },
1173 { Control, "control reg" },
1174 { Test, "test reg" },
1175 { Debug, "debug reg" },
1176 { FloatReg, "FReg" },
1177 { FloatAcc, "FAcc" },
1178 { SReg2, "SReg2" },
1179 { SReg3, "SReg3" },
1180 { Acc, "Acc" },
1181 { JumpAbsolute, "Jump Absolute" },
1182 { RegMMX, "rMMX" },
3f4438ab 1183 { RegXMM, "rXMM" },
252b5132
RH
1184 { EsSeg, "es" },
1185 { 0, "" }
1186};
1187
1188static void
1189pt (t)
1190 unsigned int t;
1191{
29b0f896 1192 const struct type_name *ty;
252b5132 1193
09f131f2
JH
1194 for (ty = type_names; ty->mask; ty++)
1195 if (t & ty->mask)
1196 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1197 fflush (stdout);
1198}
1199
1200#endif /* DEBUG386 */
1201\f
29b0f896
AM
1202static bfd_reloc_code_real_type reloc
1203 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1204
1205static bfd_reloc_code_real_type
3e73aa7c 1206reloc (size, pcrel, sign, other)
252b5132
RH
1207 int size;
1208 int pcrel;
3e73aa7c 1209 int sign;
252b5132
RH
1210 bfd_reloc_code_real_type other;
1211{
47926f60
KH
1212 if (other != NO_RELOC)
1213 return other;
252b5132
RH
1214
1215 if (pcrel)
1216 {
3e73aa7c 1217 if (!sign)
e5cb08ac 1218 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1219 switch (size)
1220 {
1221 case 1: return BFD_RELOC_8_PCREL;
1222 case 2: return BFD_RELOC_16_PCREL;
1223 case 4: return BFD_RELOC_32_PCREL;
1224 }
d0b47220 1225 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1226 }
1227 else
1228 {
3e73aa7c 1229 if (sign)
e5cb08ac 1230 switch (size)
3e73aa7c
JH
1231 {
1232 case 4: return BFD_RELOC_X86_64_32S;
1233 }
1234 else
1235 switch (size)
1236 {
1237 case 1: return BFD_RELOC_8;
1238 case 2: return BFD_RELOC_16;
1239 case 4: return BFD_RELOC_32;
1240 case 8: return BFD_RELOC_64;
1241 }
1242 as_bad (_("can not do %s %d byte relocation"),
1243 sign ? "signed" : "unsigned", size);
252b5132
RH
1244 }
1245
bfb32b52 1246 abort ();
252b5132
RH
1247 return BFD_RELOC_NONE;
1248}
1249
47926f60
KH
1250/* Here we decide which fixups can be adjusted to make them relative to
1251 the beginning of the section instead of the symbol. Basically we need
1252 to make sure that the dynamic relocations are done correctly, so in
1253 some cases we force the original symbol to be used. */
1254
252b5132 1255int
c0c949c7 1256tc_i386_fix_adjustable (fixP)
31312f95 1257 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1258{
6d249963 1259#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1260 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1261 return 1;
1262
a161fe53
AM
1263 /* Don't adjust pc-relative references to merge sections in 64-bit
1264 mode. */
1265 if (use_rela_relocations
1266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1267 && fixP->fx_pcrel)
252b5132 1268 return 0;
31312f95 1269
8d01d9a9
AJ
1270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1271 and changed later by validate_fix. */
1272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1274 return 0;
1275
ce8a8b2f 1276 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1277 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1278 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1279 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1280 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1281 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1282 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1283 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1284 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1285 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1287 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1288 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1290 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1291 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1292 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1293 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1294 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1295 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1296 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1297 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1298 return 0;
31312f95 1299#endif
252b5132
RH
1300 return 1;
1301}
252b5132 1302
29b0f896 1303static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1304
1305static int
252b5132 1306intel_float_operand (mnemonic)
29b0f896 1307 const char *mnemonic;
252b5132 1308{
9306ca4a
JB
1309 /* Note that the value returned is meaningful only for opcodes with (memory)
1310 operands, hence the code here is free to improperly handle opcodes that
1311 have no operands (for better performance and smaller code). */
1312
1313 if (mnemonic[0] != 'f')
1314 return 0; /* non-math */
1315
1316 switch (mnemonic[1])
1317 {
1318 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1319 the fs segment override prefix not currently handled because no
1320 call path can make opcodes without operands get here */
1321 case 'i':
1322 return 2 /* integer op */;
1323 case 'l':
1324 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1325 return 3; /* fldcw/fldenv */
1326 break;
1327 case 'n':
1328 if (mnemonic[2] != 'o' /* fnop */)
1329 return 3; /* non-waiting control op */
1330 break;
1331 case 'r':
1332 if (mnemonic[2] == 's')
1333 return 3; /* frstor/frstpm */
1334 break;
1335 case 's':
1336 if (mnemonic[2] == 'a')
1337 return 3; /* fsave */
1338 if (mnemonic[2] == 't')
1339 {
1340 switch (mnemonic[3])
1341 {
1342 case 'c': /* fstcw */
1343 case 'd': /* fstdw */
1344 case 'e': /* fstenv */
1345 case 's': /* fsts[gw] */
1346 return 3;
1347 }
1348 }
1349 break;
1350 case 'x':
1351 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1352 return 0; /* fxsave/fxrstor are not really math ops */
1353 break;
1354 }
252b5132 1355
9306ca4a 1356 return 1;
252b5132
RH
1357}
1358
1359/* This is the guts of the machine-dependent assembler. LINE points to a
1360 machine dependent instruction. This function is supposed to emit
1361 the frags/bytes it assembles to. */
1362
1363void
1364md_assemble (line)
1365 char *line;
1366{
252b5132 1367 int j;
252b5132
RH
1368 char mnemonic[MAX_MNEM_SIZE];
1369
47926f60 1370 /* Initialize globals. */
252b5132
RH
1371 memset (&i, '\0', sizeof (i));
1372 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1373 i.reloc[j] = NO_RELOC;
252b5132
RH
1374 memset (disp_expressions, '\0', sizeof (disp_expressions));
1375 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1376 save_stack_p = save_stack;
252b5132
RH
1377
1378 /* First parse an instruction mnemonic & call i386_operand for the operands.
1379 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1380 start of a (possibly prefixed) mnemonic. */
252b5132 1381
29b0f896
AM
1382 line = parse_insn (line, mnemonic);
1383 if (line == NULL)
1384 return;
252b5132 1385
29b0f896
AM
1386 line = parse_operands (line, mnemonic);
1387 if (line == NULL)
1388 return;
252b5132 1389
29b0f896
AM
1390 /* Now we've parsed the mnemonic into a set of templates, and have the
1391 operands at hand. */
1392
1393 /* All intel opcodes have reversed operands except for "bound" and
1394 "enter". We also don't reverse intersegment "jmp" and "call"
1395 instructions with 2 immediate operands so that the immediate segment
1396 precedes the offset, as it does when in AT&T mode. "enter" and the
1397 intersegment "jmp" and "call" instructions are the only ones that
1398 have two immediate operands. */
1399 if (intel_syntax && i.operands > 1
1400 && (strcmp (mnemonic, "bound") != 0)
1401 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1402 swap_operands ();
1403
1404 if (i.imm_operands)
1405 optimize_imm ();
1406
1407 if (i.disp_operands)
1408 optimize_disp ();
1409
1410 /* Next, we find a template that matches the given insn,
1411 making sure the overlap of the given operands types is consistent
1412 with the template operand types. */
252b5132 1413
29b0f896
AM
1414 if (!match_template ())
1415 return;
252b5132 1416
cd61ebfe
AM
1417 if (intel_syntax)
1418 {
1419 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1420 if (SYSV386_COMPAT
1421 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1422 i.tm.base_opcode ^= FloatR;
1423
1424 /* Zap movzx and movsx suffix. The suffix may have been set from
1425 "word ptr" or "byte ptr" on the source operand, but we'll use
1426 the suffix later to choose the destination register. */
1427 if ((i.tm.base_opcode & ~9) == 0x0fb6)
9306ca4a
JB
1428 {
1429 if (i.reg_operands < 2
1430 && !i.suffix
1431 && (~i.tm.opcode_modifier
1432 & (No_bSuf
1433 | No_wSuf
1434 | No_lSuf
1435 | No_sSuf
1436 | No_xSuf
1437 | No_qSuf)))
1438 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1439
1440 i.suffix = 0;
1441 }
cd61ebfe 1442 }
24eab124 1443
29b0f896
AM
1444 if (i.tm.opcode_modifier & FWait)
1445 if (!add_prefix (FWAIT_OPCODE))
1446 return;
252b5132 1447
29b0f896
AM
1448 /* Check string instruction segment overrides. */
1449 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1450 {
1451 if (!check_string ())
5dd0794d 1452 return;
29b0f896 1453 }
5dd0794d 1454
29b0f896
AM
1455 if (!process_suffix ())
1456 return;
e413e4e9 1457
29b0f896
AM
1458 /* Make still unresolved immediate matches conform to size of immediate
1459 given in i.suffix. */
1460 if (!finalize_imm ())
1461 return;
252b5132 1462
29b0f896
AM
1463 if (i.types[0] & Imm1)
1464 i.imm_operands = 0; /* kludge for shift insns. */
1465 if (i.types[0] & ImplicitRegister)
1466 i.reg_operands--;
1467 if (i.types[1] & ImplicitRegister)
1468 i.reg_operands--;
1469 if (i.types[2] & ImplicitRegister)
1470 i.reg_operands--;
252b5132 1471
29b0f896
AM
1472 if (i.tm.opcode_modifier & ImmExt)
1473 {
02fc3089
L
1474 expressionS *exp;
1475
ca164297
L
1476 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1477 {
67c1ffbe 1478 /* These Intel Prescott New Instructions have the fixed
ca164297
L
1479 operands with an opcode suffix which is coded in the same
1480 place as an 8-bit immediate field would be. Here we check
1481 those operands and remove them afterwards. */
1482 unsigned int x;
1483
a4622f40 1484 for (x = 0; x < i.operands; x++)
ca164297
L
1485 if (i.op[x].regs->reg_num != x)
1486 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1487 i.op[x].regs->reg_name, x + 1, i.tm.name);
1488 i.operands = 0;
1489 }
1490
29b0f896
AM
1491 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1492 opcode suffix which is coded in the same place as an 8-bit
1493 immediate field would be. Here we fake an 8-bit immediate
1494 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1495
29b0f896 1496 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1497
29b0f896
AM
1498 exp = &im_expressions[i.imm_operands++];
1499 i.op[i.operands].imms = exp;
1500 i.types[i.operands++] = Imm8;
1501 exp->X_op = O_constant;
1502 exp->X_add_number = i.tm.extension_opcode;
1503 i.tm.extension_opcode = None;
1504 }
252b5132 1505
29b0f896
AM
1506 /* For insns with operands there are more diddles to do to the opcode. */
1507 if (i.operands)
1508 {
1509 if (!process_operands ())
1510 return;
1511 }
1512 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1513 {
1514 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1515 as_warn (_("translating to `%sp'"), i.tm.name);
1516 }
252b5132 1517
29b0f896
AM
1518 /* Handle conversion of 'int $3' --> special int3 insn. */
1519 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1520 {
1521 i.tm.base_opcode = INT3_OPCODE;
1522 i.imm_operands = 0;
1523 }
252b5132 1524
29b0f896
AM
1525 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1526 && i.op[0].disps->X_op == O_constant)
1527 {
1528 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1529 the absolute address given by the constant. Since ix86 jumps and
1530 calls are pc relative, we need to generate a reloc. */
1531 i.op[0].disps->X_add_symbol = &abs_symbol;
1532 i.op[0].disps->X_op = O_symbol;
1533 }
252b5132 1534
29b0f896
AM
1535 if ((i.tm.opcode_modifier & Rex64) != 0)
1536 i.rex |= REX_MODE64;
252b5132 1537
29b0f896
AM
1538 /* For 8 bit registers we need an empty rex prefix. Also if the
1539 instruction already has a prefix, we need to convert old
1540 registers to new ones. */
773f551c 1541
29b0f896
AM
1542 if (((i.types[0] & Reg8) != 0
1543 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1544 || ((i.types[1] & Reg8) != 0
1545 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1546 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1547 && i.rex != 0))
1548 {
1549 int x;
726c5dcd 1550
29b0f896
AM
1551 i.rex |= REX_OPCODE;
1552 for (x = 0; x < 2; x++)
1553 {
1554 /* Look for 8 bit operand that uses old registers. */
1555 if ((i.types[x] & Reg8) != 0
1556 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1557 {
29b0f896
AM
1558 /* In case it is "hi" register, give up. */
1559 if (i.op[x].regs->reg_num > 3)
0477af35 1560 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
29b0f896 1561 i.op[x].regs->reg_name);
773f551c 1562
29b0f896
AM
1563 /* Otherwise it is equivalent to the extended register.
1564 Since the encoding doesn't change this is merely
1565 cosmetic cleanup for debug output. */
1566
1567 i.op[x].regs = i.op[x].regs + 8;
773f551c 1568 }
29b0f896
AM
1569 }
1570 }
773f551c 1571
29b0f896
AM
1572 if (i.rex != 0)
1573 add_prefix (REX_OPCODE | i.rex);
1574
1575 /* We are ready to output the insn. */
1576 output_insn ();
1577}
1578
1579static char *
1580parse_insn (line, mnemonic)
1581 char *line;
1582 char *mnemonic;
1583{
1584 char *l = line;
1585 char *token_start = l;
1586 char *mnem_p;
5c6af06e
JB
1587 int supported;
1588 const template *t;
29b0f896
AM
1589
1590 /* Non-zero if we found a prefix only acceptable with string insns. */
1591 const char *expecting_string_instruction = NULL;
45288df1 1592
29b0f896
AM
1593 while (1)
1594 {
1595 mnem_p = mnemonic;
1596 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1597 {
1598 mnem_p++;
1599 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1600 {
29b0f896
AM
1601 as_bad (_("no such instruction: `%s'"), token_start);
1602 return NULL;
1603 }
1604 l++;
1605 }
1606 if (!is_space_char (*l)
1607 && *l != END_OF_INSN
1608 && *l != PREFIX_SEPARATOR
1609 && *l != ',')
1610 {
1611 as_bad (_("invalid character %s in mnemonic"),
1612 output_invalid (*l));
1613 return NULL;
1614 }
1615 if (token_start == l)
1616 {
1617 if (*l == PREFIX_SEPARATOR)
1618 as_bad (_("expecting prefix; got nothing"));
1619 else
1620 as_bad (_("expecting mnemonic; got nothing"));
1621 return NULL;
1622 }
45288df1 1623
29b0f896
AM
1624 /* Look up instruction (or prefix) via hash table. */
1625 current_templates = hash_find (op_hash, mnemonic);
47926f60 1626
29b0f896
AM
1627 if (*l != END_OF_INSN
1628 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1629 && current_templates
1630 && (current_templates->start->opcode_modifier & IsPrefix))
1631 {
1632 /* If we are in 16-bit mode, do not allow addr16 or data16.
1633 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1634 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1635 && flag_code != CODE_64BIT
1636 && (((current_templates->start->opcode_modifier & Size32) != 0)
1637 ^ (flag_code == CODE_16BIT)))
1638 {
1639 as_bad (_("redundant %s prefix"),
1640 current_templates->start->name);
1641 return NULL;
45288df1 1642 }
29b0f896
AM
1643 /* Add prefix, checking for repeated prefixes. */
1644 switch (add_prefix (current_templates->start->base_opcode))
1645 {
1646 case 0:
1647 return NULL;
1648 case 2:
1649 expecting_string_instruction = current_templates->start->name;
1650 break;
1651 }
1652 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1653 token_start = ++l;
1654 }
1655 else
1656 break;
1657 }
45288df1 1658
29b0f896
AM
1659 if (!current_templates)
1660 {
1661 /* See if we can get a match by trimming off a suffix. */
1662 switch (mnem_p[-1])
1663 {
1664 case WORD_MNEM_SUFFIX:
9306ca4a
JB
1665 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1666 i.suffix = SHORT_MNEM_SUFFIX;
1667 else
29b0f896
AM
1668 case BYTE_MNEM_SUFFIX:
1669 case QWORD_MNEM_SUFFIX:
1670 i.suffix = mnem_p[-1];
1671 mnem_p[-1] = '\0';
1672 current_templates = hash_find (op_hash, mnemonic);
1673 break;
1674 case SHORT_MNEM_SUFFIX:
1675 case LONG_MNEM_SUFFIX:
1676 if (!intel_syntax)
1677 {
1678 i.suffix = mnem_p[-1];
1679 mnem_p[-1] = '\0';
1680 current_templates = hash_find (op_hash, mnemonic);
1681 }
1682 break;
252b5132 1683
29b0f896
AM
1684 /* Intel Syntax. */
1685 case 'd':
1686 if (intel_syntax)
1687 {
9306ca4a 1688 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
1689 i.suffix = SHORT_MNEM_SUFFIX;
1690 else
1691 i.suffix = LONG_MNEM_SUFFIX;
1692 mnem_p[-1] = '\0';
1693 current_templates = hash_find (op_hash, mnemonic);
1694 }
1695 break;
1696 }
1697 if (!current_templates)
1698 {
1699 as_bad (_("no such instruction: `%s'"), token_start);
1700 return NULL;
1701 }
1702 }
252b5132 1703
29b0f896
AM
1704 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1705 {
1706 /* Check for a branch hint. We allow ",pt" and ",pn" for
1707 predict taken and predict not taken respectively.
1708 I'm not sure that branch hints actually do anything on loop
1709 and jcxz insns (JumpByte) for current Pentium4 chips. They
1710 may work in the future and it doesn't hurt to accept them
1711 now. */
1712 if (l[0] == ',' && l[1] == 'p')
1713 {
1714 if (l[2] == 't')
1715 {
1716 if (!add_prefix (DS_PREFIX_OPCODE))
1717 return NULL;
1718 l += 3;
1719 }
1720 else if (l[2] == 'n')
1721 {
1722 if (!add_prefix (CS_PREFIX_OPCODE))
1723 return NULL;
1724 l += 3;
1725 }
1726 }
1727 }
1728 /* Any other comma loses. */
1729 if (*l == ',')
1730 {
1731 as_bad (_("invalid character %s in mnemonic"),
1732 output_invalid (*l));
1733 return NULL;
1734 }
252b5132 1735
29b0f896 1736 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
1737 supported = 0;
1738 for (t = current_templates->start; t < current_templates->end; ++t)
1739 {
1740 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1741 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1742 supported |= 1;
1743 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1744 supported |= 2;
1745 }
1746 if (!(supported & 2))
1747 {
1748 as_bad (flag_code == CODE_64BIT
1749 ? _("`%s' is not supported in 64-bit mode")
1750 : _("`%s' is only supported in 64-bit mode"),
1751 current_templates->start->name);
1752 return NULL;
1753 }
1754 if (!(supported & 1))
29b0f896 1755 {
5c6af06e
JB
1756 as_warn (_("`%s' is not supported on `%s%s'"),
1757 current_templates->start->name,
1758 cpu_arch_name,
1759 cpu_sub_arch_name ? cpu_sub_arch_name : "");
29b0f896
AM
1760 }
1761 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1762 {
1763 as_warn (_("use .code16 to ensure correct addressing mode"));
1764 }
252b5132 1765
29b0f896
AM
1766 /* Check for rep/repne without a string instruction. */
1767 if (expecting_string_instruction
1768 && !(current_templates->start->opcode_modifier & IsString))
1769 {
1770 as_bad (_("expecting string instruction after `%s'"),
1771 expecting_string_instruction);
1772 return NULL;
1773 }
252b5132 1774
29b0f896
AM
1775 return l;
1776}
252b5132 1777
29b0f896
AM
1778static char *
1779parse_operands (l, mnemonic)
1780 char *l;
1781 const char *mnemonic;
1782{
1783 char *token_start;
3138f287 1784
29b0f896
AM
1785 /* 1 if operand is pending after ','. */
1786 unsigned int expecting_operand = 0;
252b5132 1787
29b0f896
AM
1788 /* Non-zero if operand parens not balanced. */
1789 unsigned int paren_not_balanced;
1790
1791 while (*l != END_OF_INSN)
1792 {
1793 /* Skip optional white space before operand. */
1794 if (is_space_char (*l))
1795 ++l;
1796 if (!is_operand_char (*l) && *l != END_OF_INSN)
1797 {
1798 as_bad (_("invalid character %s before operand %d"),
1799 output_invalid (*l),
1800 i.operands + 1);
1801 return NULL;
1802 }
1803 token_start = l; /* after white space */
1804 paren_not_balanced = 0;
1805 while (paren_not_balanced || *l != ',')
1806 {
1807 if (*l == END_OF_INSN)
1808 {
1809 if (paren_not_balanced)
1810 {
1811 if (!intel_syntax)
1812 as_bad (_("unbalanced parenthesis in operand %d."),
1813 i.operands + 1);
1814 else
1815 as_bad (_("unbalanced brackets in operand %d."),
1816 i.operands + 1);
1817 return NULL;
1818 }
1819 else
1820 break; /* we are done */
1821 }
1822 else if (!is_operand_char (*l) && !is_space_char (*l))
1823 {
1824 as_bad (_("invalid character %s in operand %d"),
1825 output_invalid (*l),
1826 i.operands + 1);
1827 return NULL;
1828 }
1829 if (!intel_syntax)
1830 {
1831 if (*l == '(')
1832 ++paren_not_balanced;
1833 if (*l == ')')
1834 --paren_not_balanced;
1835 }
1836 else
1837 {
1838 if (*l == '[')
1839 ++paren_not_balanced;
1840 if (*l == ']')
1841 --paren_not_balanced;
1842 }
1843 l++;
1844 }
1845 if (l != token_start)
1846 { /* Yes, we've read in another operand. */
1847 unsigned int operand_ok;
1848 this_operand = i.operands++;
1849 if (i.operands > MAX_OPERANDS)
1850 {
1851 as_bad (_("spurious operands; (%d operands/instruction max)"),
1852 MAX_OPERANDS);
1853 return NULL;
1854 }
1855 /* Now parse operand adding info to 'i' as we go along. */
1856 END_STRING_AND_SAVE (l);
1857
1858 if (intel_syntax)
1859 operand_ok =
1860 i386_intel_operand (token_start,
1861 intel_float_operand (mnemonic));
1862 else
1863 operand_ok = i386_operand (token_start);
1864
1865 RESTORE_END_STRING (l);
1866 if (!operand_ok)
1867 return NULL;
1868 }
1869 else
1870 {
1871 if (expecting_operand)
1872 {
1873 expecting_operand_after_comma:
1874 as_bad (_("expecting operand after ','; got nothing"));
1875 return NULL;
1876 }
1877 if (*l == ',')
1878 {
1879 as_bad (_("expecting operand before ','; got nothing"));
1880 return NULL;
1881 }
1882 }
7f3f1ea2 1883
29b0f896
AM
1884 /* Now *l must be either ',' or END_OF_INSN. */
1885 if (*l == ',')
1886 {
1887 if (*++l == END_OF_INSN)
1888 {
1889 /* Just skip it, if it's \n complain. */
1890 goto expecting_operand_after_comma;
1891 }
1892 expecting_operand = 1;
1893 }
1894 }
1895 return l;
1896}
7f3f1ea2 1897
29b0f896
AM
1898static void
1899swap_operands ()
1900{
1901 union i386_op temp_op;
1902 unsigned int temp_type;
f86103b7 1903 enum bfd_reloc_code_real temp_reloc;
29b0f896
AM
1904 int xchg1 = 0;
1905 int xchg2 = 0;
252b5132 1906
29b0f896
AM
1907 if (i.operands == 2)
1908 {
1909 xchg1 = 0;
1910 xchg2 = 1;
1911 }
1912 else if (i.operands == 3)
1913 {
1914 xchg1 = 0;
1915 xchg2 = 2;
1916 }
1917 temp_type = i.types[xchg2];
1918 i.types[xchg2] = i.types[xchg1];
1919 i.types[xchg1] = temp_type;
1920 temp_op = i.op[xchg2];
1921 i.op[xchg2] = i.op[xchg1];
1922 i.op[xchg1] = temp_op;
1923 temp_reloc = i.reloc[xchg2];
1924 i.reloc[xchg2] = i.reloc[xchg1];
1925 i.reloc[xchg1] = temp_reloc;
1926
1927 if (i.mem_operands == 2)
1928 {
1929 const seg_entry *temp_seg;
1930 temp_seg = i.seg[0];
1931 i.seg[0] = i.seg[1];
1932 i.seg[1] = temp_seg;
1933 }
1934}
252b5132 1935
29b0f896
AM
1936/* Try to ensure constant immediates are represented in the smallest
1937 opcode possible. */
1938static void
1939optimize_imm ()
1940{
1941 char guess_suffix = 0;
1942 int op;
252b5132 1943
29b0f896
AM
1944 if (i.suffix)
1945 guess_suffix = i.suffix;
1946 else if (i.reg_operands)
1947 {
1948 /* Figure out a suffix from the last register operand specified.
1949 We can't do this properly yet, ie. excluding InOutPortReg,
1950 but the following works for instructions with immediates.
1951 In any case, we can't set i.suffix yet. */
1952 for (op = i.operands; --op >= 0;)
1953 if (i.types[op] & Reg)
252b5132 1954 {
29b0f896
AM
1955 if (i.types[op] & Reg8)
1956 guess_suffix = BYTE_MNEM_SUFFIX;
1957 else if (i.types[op] & Reg16)
1958 guess_suffix = WORD_MNEM_SUFFIX;
1959 else if (i.types[op] & Reg32)
1960 guess_suffix = LONG_MNEM_SUFFIX;
1961 else if (i.types[op] & Reg64)
1962 guess_suffix = QWORD_MNEM_SUFFIX;
1963 break;
252b5132 1964 }
29b0f896
AM
1965 }
1966 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1967 guess_suffix = WORD_MNEM_SUFFIX;
1968
1969 for (op = i.operands; --op >= 0;)
1970 if (i.types[op] & Imm)
1971 {
1972 switch (i.op[op].imms->X_op)
252b5132 1973 {
29b0f896
AM
1974 case O_constant:
1975 /* If a suffix is given, this operand may be shortened. */
1976 switch (guess_suffix)
252b5132 1977 {
29b0f896
AM
1978 case LONG_MNEM_SUFFIX:
1979 i.types[op] |= Imm32 | Imm64;
1980 break;
1981 case WORD_MNEM_SUFFIX:
1982 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1983 break;
1984 case BYTE_MNEM_SUFFIX:
1985 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1986 break;
252b5132 1987 }
252b5132 1988
29b0f896
AM
1989 /* If this operand is at most 16 bits, convert it
1990 to a signed 16 bit number before trying to see
1991 whether it will fit in an even smaller size.
1992 This allows a 16-bit operand such as $0xffe0 to
1993 be recognised as within Imm8S range. */
1994 if ((i.types[op] & Imm16)
1995 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1996 {
29b0f896
AM
1997 i.op[op].imms->X_add_number =
1998 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1999 }
2000 if ((i.types[op] & Imm32)
2001 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2002 == 0))
2003 {
2004 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2005 ^ ((offsetT) 1 << 31))
2006 - ((offsetT) 1 << 31));
2007 }
2008 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 2009
29b0f896
AM
2010 /* We must avoid matching of Imm32 templates when 64bit
2011 only immediate is available. */
2012 if (guess_suffix == QWORD_MNEM_SUFFIX)
2013 i.types[op] &= ~Imm32;
2014 break;
252b5132 2015
29b0f896
AM
2016 case O_absent:
2017 case O_register:
2018 abort ();
2019
2020 /* Symbols and expressions. */
2021 default:
2022 /* Convert symbolic operand to proper sizes for matching. */
2023 switch (guess_suffix)
2024 {
2025 case QWORD_MNEM_SUFFIX:
2026 i.types[op] = Imm64 | Imm32S;
2027 break;
2028 case LONG_MNEM_SUFFIX:
20f0a1fc 2029 i.types[op] = Imm32;
29b0f896
AM
2030 break;
2031 case WORD_MNEM_SUFFIX:
20f0a1fc 2032 i.types[op] = Imm16;
29b0f896
AM
2033 break;
2034 case BYTE_MNEM_SUFFIX:
20f0a1fc 2035 i.types[op] = Imm8 | Imm8S;
29b0f896 2036 break;
252b5132 2037 }
29b0f896 2038 break;
252b5132 2039 }
29b0f896
AM
2040 }
2041}
47926f60 2042
29b0f896
AM
2043/* Try to use the smallest displacement type too. */
2044static void
2045optimize_disp ()
2046{
2047 int op;
3e73aa7c 2048
29b0f896
AM
2049 for (op = i.operands; --op >= 0;)
2050 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 2051 {
29b0f896
AM
2052 offsetT disp = i.op[op].disps->X_add_number;
2053
2054 if (i.types[op] & Disp16)
252b5132 2055 {
29b0f896
AM
2056 /* We know this operand is at most 16 bits, so
2057 convert to a signed 16 bit number before trying
2058 to see whether it will fit in an even smaller
2059 size. */
2060
2061 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 2062 }
29b0f896 2063 else if (i.types[op] & Disp32)
252b5132 2064 {
29b0f896
AM
2065 /* We know this operand is at most 32 bits, so convert to a
2066 signed 32 bit number before trying to see whether it will
2067 fit in an even smaller size. */
2068 disp &= (((offsetT) 2 << 31) - 1);
2069 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 2070 }
29b0f896 2071 if (flag_code == CODE_64BIT)
252b5132 2072 {
29b0f896
AM
2073 if (fits_in_signed_long (disp))
2074 i.types[op] |= Disp32S;
2075 if (fits_in_unsigned_long (disp))
2076 i.types[op] |= Disp32;
252b5132 2077 }
29b0f896
AM
2078 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2079 && fits_in_signed_byte (disp))
2080 i.types[op] |= Disp8;
252b5132 2081 }
29b0f896
AM
2082}
2083
2084static int
2085match_template ()
2086{
2087 /* Points to template once we've found it. */
2088 const template *t;
2089 unsigned int overlap0, overlap1, overlap2;
2090 unsigned int found_reverse_match;
2091 int suffix_check;
2092
2093#define MATCH(overlap, given, template) \
2094 ((overlap & ~JumpAbsolute) \
2095 && (((given) & (BaseIndex | JumpAbsolute)) \
2096 == ((overlap) & (BaseIndex | JumpAbsolute))))
2097
2098 /* If given types r0 and r1 are registers they must be of the same type
2099 unless the expected operand type register overlap is null.
2100 Note that Acc in a template matches every size of reg. */
2101#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2102 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2103 || ((g0) & Reg) == ((g1) & Reg) \
2104 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2105
2106 overlap0 = 0;
2107 overlap1 = 0;
2108 overlap2 = 0;
2109 found_reverse_match = 0;
2110 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2111 ? No_bSuf
2112 : (i.suffix == WORD_MNEM_SUFFIX
2113 ? No_wSuf
2114 : (i.suffix == SHORT_MNEM_SUFFIX
2115 ? No_sSuf
2116 : (i.suffix == LONG_MNEM_SUFFIX
2117 ? No_lSuf
2118 : (i.suffix == QWORD_MNEM_SUFFIX
2119 ? No_qSuf
2120 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2121 ? No_xSuf : 0))))));
2122
20f0a1fc
NC
2123 t = current_templates->start;
2124 if (i.suffix == QWORD_MNEM_SUFFIX
2125 && flag_code != CODE_64BIT
9306ca4a
JB
2126 && (intel_syntax
2127 ? !(t->opcode_modifier & IgnoreSize)
2128 && !intel_float_operand (t->name)
2129 : intel_float_operand (t->name) != 2)
20f0a1fc
NC
2130 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2131 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2132 && (t->base_opcode != 0x0fc7
2133 || t->extension_opcode != 1 /* cmpxchg8b */))
2134 t = current_templates->end;
2135 for (; t < current_templates->end; t++)
29b0f896
AM
2136 {
2137 /* Must have right number of operands. */
2138 if (i.operands != t->operands)
2139 continue;
2140
2141 /* Check the suffix, except for some instructions in intel mode. */
2142 if ((t->opcode_modifier & suffix_check)
2143 && !(intel_syntax
9306ca4a 2144 && (t->opcode_modifier & IgnoreSize)))
29b0f896
AM
2145 continue;
2146
2147 /* Do not verify operands when there are none. */
2148 else if (!t->operands)
2149 {
2150 if (t->cpu_flags & ~cpu_arch_flags)
2151 continue;
2152 /* We've found a match; break out of loop. */
2153 break;
2154 }
252b5132 2155
29b0f896
AM
2156 overlap0 = i.types[0] & t->operand_types[0];
2157 switch (t->operands)
2158 {
2159 case 1:
2160 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2161 continue;
2162 break;
2163 case 2:
2164 case 3:
2165 overlap1 = i.types[1] & t->operand_types[1];
2166 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2167 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2168 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2169 t->operand_types[0],
2170 overlap1, i.types[1],
2171 t->operand_types[1]))
2172 {
2173 /* Check if other direction is valid ... */
2174 if ((t->opcode_modifier & (D | FloatD)) == 0)
2175 continue;
2176
2177 /* Try reversing direction of operands. */
2178 overlap0 = i.types[0] & t->operand_types[1];
2179 overlap1 = i.types[1] & t->operand_types[0];
2180 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2181 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2182 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2183 t->operand_types[1],
2184 overlap1, i.types[1],
2185 t->operand_types[0]))
2186 {
2187 /* Does not match either direction. */
2188 continue;
2189 }
2190 /* found_reverse_match holds which of D or FloatDR
2191 we've found. */
2192 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2193 }
2194 /* Found a forward 2 operand match here. */
2195 else if (t->operands == 3)
2196 {
2197 /* Here we make use of the fact that there are no
2198 reverse match 3 operand instructions, and all 3
2199 operand instructions only need to be checked for
2200 register consistency between operands 2 and 3. */
2201 overlap2 = i.types[2] & t->operand_types[2];
2202 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2203 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2204 t->operand_types[1],
2205 overlap2, i.types[2],
2206 t->operand_types[2]))
2207
2208 continue;
2209 }
2210 /* Found either forward/reverse 2 or 3 operand match here:
2211 slip through to break. */
2212 }
2213 if (t->cpu_flags & ~cpu_arch_flags)
2214 {
2215 found_reverse_match = 0;
2216 continue;
2217 }
2218 /* We've found a match; break out of loop. */
2219 break;
2220 }
2221
2222 if (t == current_templates->end)
2223 {
2224 /* We found no match. */
2225 as_bad (_("suffix or operands invalid for `%s'"),
2226 current_templates->start->name);
2227 return 0;
2228 }
252b5132 2229
29b0f896
AM
2230 if (!quiet_warnings)
2231 {
2232 if (!intel_syntax
2233 && ((i.types[0] & JumpAbsolute)
2234 != (t->operand_types[0] & JumpAbsolute)))
2235 {
2236 as_warn (_("indirect %s without `*'"), t->name);
2237 }
2238
2239 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2240 == (IsPrefix | IgnoreSize))
2241 {
2242 /* Warn them that a data or address size prefix doesn't
2243 affect assembly of the next line of code. */
2244 as_warn (_("stand-alone `%s' prefix"), t->name);
2245 }
2246 }
2247
2248 /* Copy the template we found. */
2249 i.tm = *t;
2250 if (found_reverse_match)
2251 {
2252 /* If we found a reverse match we must alter the opcode
2253 direction bit. found_reverse_match holds bits to change
2254 (different for int & float insns). */
2255
2256 i.tm.base_opcode ^= found_reverse_match;
2257
2258 i.tm.operand_types[0] = t->operand_types[1];
2259 i.tm.operand_types[1] = t->operand_types[0];
2260 }
2261
2262 return 1;
2263}
2264
2265static int
2266check_string ()
2267{
2268 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2269 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2270 {
2271 if (i.seg[0] != NULL && i.seg[0] != &es)
2272 {
2273 as_bad (_("`%s' operand %d must use `%%es' segment"),
2274 i.tm.name,
2275 mem_op + 1);
2276 return 0;
2277 }
2278 /* There's only ever one segment override allowed per instruction.
2279 This instruction possibly has a legal segment override on the
2280 second operand, so copy the segment to where non-string
2281 instructions store it, allowing common code. */
2282 i.seg[0] = i.seg[1];
2283 }
2284 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2285 {
2286 if (i.seg[1] != NULL && i.seg[1] != &es)
2287 {
2288 as_bad (_("`%s' operand %d must use `%%es' segment"),
2289 i.tm.name,
2290 mem_op + 2);
2291 return 0;
2292 }
2293 }
2294 return 1;
2295}
2296
2297static int
543613e9 2298process_suffix (void)
29b0f896
AM
2299{
2300 /* If matched instruction specifies an explicit instruction mnemonic
2301 suffix, use it. */
2302 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2303 {
2304 if (i.tm.opcode_modifier & Size16)
2305 i.suffix = WORD_MNEM_SUFFIX;
2306 else if (i.tm.opcode_modifier & Size64)
2307 i.suffix = QWORD_MNEM_SUFFIX;
2308 else
2309 i.suffix = LONG_MNEM_SUFFIX;
2310 }
2311 else if (i.reg_operands)
2312 {
2313 /* If there's no instruction mnemonic suffix we try to invent one
2314 based on register operands. */
2315 if (!i.suffix)
2316 {
2317 /* We take i.suffix from the last register operand specified,
2318 Destination register type is more significant than source
2319 register type. */
2320 int op;
543613e9 2321
29b0f896
AM
2322 for (op = i.operands; --op >= 0;)
2323 if ((i.types[op] & Reg)
2324 && !(i.tm.operand_types[op] & InOutPortReg))
2325 {
2326 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2327 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2328 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2329 LONG_MNEM_SUFFIX);
2330 break;
2331 }
2332 }
2333 else if (i.suffix == BYTE_MNEM_SUFFIX)
2334 {
2335 if (!check_byte_reg ())
2336 return 0;
2337 }
2338 else if (i.suffix == LONG_MNEM_SUFFIX)
2339 {
2340 if (!check_long_reg ())
2341 return 0;
2342 }
2343 else if (i.suffix == QWORD_MNEM_SUFFIX)
2344 {
2345 if (!check_qword_reg ())
2346 return 0;
2347 }
2348 else if (i.suffix == WORD_MNEM_SUFFIX)
2349 {
2350 if (!check_word_reg ())
2351 return 0;
2352 }
2353 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2354 /* Do nothing if the instruction is going to ignore the prefix. */
2355 ;
2356 else
2357 abort ();
2358 }
9306ca4a
JB
2359 else if ((i.tm.opcode_modifier & DefaultSize)
2360 && !i.suffix
2361 /* exclude fldenv/frstor/fsave/fstenv */
2362 && (i.tm.opcode_modifier & No_sSuf))
29b0f896
AM
2363 {
2364 i.suffix = stackop_size;
543613e9
NC
2365 if (i.suffix == QWORD_MNEM_SUFFIX
2366 && (i.tm.opcode_modifier & No_qSuf))
2367 i.suffix = LONG_MNEM_SUFFIX;
29b0f896 2368 }
9306ca4a
JB
2369 else if (intel_syntax
2370 && !i.suffix
2371 && ((i.tm.operand_types[0] & JumpAbsolute)
2372 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2373 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2374 && i.tm.extension_opcode <= 3)))
2375 {
2376 switch (flag_code)
2377 {
2378 case CODE_64BIT:
2379 if (!(i.tm.opcode_modifier & No_qSuf))
2380 {
2381 i.suffix = QWORD_MNEM_SUFFIX;
2382 break;
2383 }
2384 case CODE_32BIT:
2385 if (!(i.tm.opcode_modifier & No_lSuf))
2386 i.suffix = LONG_MNEM_SUFFIX;
2387 break;
2388 case CODE_16BIT:
2389 if (!(i.tm.opcode_modifier & No_wSuf))
2390 i.suffix = WORD_MNEM_SUFFIX;
2391 break;
2392 }
2393 }
252b5132 2394
9306ca4a 2395 if (!i.suffix)
29b0f896 2396 {
9306ca4a
JB
2397 if (!intel_syntax)
2398 {
2399 if (i.tm.opcode_modifier & W)
2400 {
2401 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2402 return 0;
2403 }
2404 }
2405 else
2406 {
2407 unsigned int suffixes = ~i.tm.opcode_modifier
2408 & (No_bSuf
2409 | No_wSuf
2410 | No_lSuf
2411 | No_sSuf
2412 | No_xSuf
2413 | No_qSuf);
2414
2415 if ((i.tm.opcode_modifier & W)
2416 || ((suffixes & (suffixes - 1))
2417 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2418 {
2419 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2420 return 0;
2421 }
2422 }
29b0f896 2423 }
252b5132 2424
9306ca4a
JB
2425 /* Change the opcode based on the operand size given by i.suffix;
2426 We don't need to change things for byte insns. */
2427
29b0f896
AM
2428 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2429 {
2430 /* It's not a byte, select word/dword operation. */
2431 if (i.tm.opcode_modifier & W)
2432 {
2433 if (i.tm.opcode_modifier & ShortForm)
2434 i.tm.base_opcode |= 8;
2435 else
2436 i.tm.base_opcode |= 1;
2437 }
0f3f3d8b 2438
29b0f896
AM
2439 /* Now select between word & dword operations via the operand
2440 size prefix, except for instructions that will ignore this
2441 prefix anyway. */
2442 if (i.suffix != QWORD_MNEM_SUFFIX
9306ca4a
JB
2443 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2444 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
9146926a
AM
2445 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2446 || (flag_code == CODE_64BIT
2447 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2448 {
2449 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 2450
29b0f896
AM
2451 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2452 prefix = ADDR_PREFIX_OPCODE;
252b5132 2453
29b0f896
AM
2454 if (!add_prefix (prefix))
2455 return 0;
24eab124 2456 }
252b5132 2457
29b0f896
AM
2458 /* Set mode64 for an operand. */
2459 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2460 && flag_code == CODE_64BIT
29b0f896 2461 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2462 i.rex |= REX_MODE64;
3e73aa7c 2463
29b0f896
AM
2464 /* Size floating point instruction. */
2465 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
2466 if (i.tm.opcode_modifier & FloatMF)
2467 i.tm.base_opcode ^= 4;
29b0f896 2468 }
7ecd2f8b 2469
29b0f896
AM
2470 return 1;
2471}
3e73aa7c 2472
29b0f896 2473static int
543613e9 2474check_byte_reg (void)
29b0f896
AM
2475{
2476 int op;
543613e9 2477
29b0f896
AM
2478 for (op = i.operands; --op >= 0;)
2479 {
2480 /* If this is an eight bit register, it's OK. If it's the 16 or
2481 32 bit version of an eight bit register, we will just use the
2482 low portion, and that's OK too. */
2483 if (i.types[op] & Reg8)
2484 continue;
2485
2486 /* movzx and movsx should not generate this warning. */
2487 if (intel_syntax
2488 && (i.tm.base_opcode == 0xfb7
2489 || i.tm.base_opcode == 0xfb6
2490 || i.tm.base_opcode == 0x63
2491 || i.tm.base_opcode == 0xfbe
2492 || i.tm.base_opcode == 0xfbf))
2493 continue;
2494
2495 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2496#if 0
2497 /* Check that the template allows eight bit regs. This
2498 kills insns such as `orb $1,%edx', which maybe should be
2499 allowed. */
2500 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2501#endif
2502 )
2503 {
2504 /* Prohibit these changes in the 64bit mode, since the
2505 lowering is more complicated. */
2506 if (flag_code == CODE_64BIT
2507 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2508 {
0f3f3d8b 2509 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2510 i.op[op].regs->reg_name,
2511 i.suffix);
2512 return 0;
2513 }
2514#if REGISTER_WARNINGS
2515 if (!quiet_warnings
2516 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2517 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2518 (i.op[op].regs + (i.types[op] & Reg16
2519 ? REGNAM_AL - REGNAM_AX
2520 : REGNAM_AL - REGNAM_EAX))->reg_name,
2521 i.op[op].regs->reg_name,
2522 i.suffix);
2523#endif
2524 continue;
2525 }
2526 /* Any other register is bad. */
2527 if (i.types[op] & (Reg | RegMMX | RegXMM
2528 | SReg2 | SReg3
2529 | Control | Debug | Test
2530 | FloatReg | FloatAcc))
2531 {
2532 as_bad (_("`%%%s' not allowed with `%s%c'"),
2533 i.op[op].regs->reg_name,
2534 i.tm.name,
2535 i.suffix);
2536 return 0;
2537 }
2538 }
2539 return 1;
2540}
2541
2542static int
2543check_long_reg ()
2544{
2545 int op;
2546
2547 for (op = i.operands; --op >= 0;)
2548 /* Reject eight bit registers, except where the template requires
2549 them. (eg. movzb) */
2550 if ((i.types[op] & Reg8) != 0
2551 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2552 {
2553 as_bad (_("`%%%s' not allowed with `%s%c'"),
2554 i.op[op].regs->reg_name,
2555 i.tm.name,
2556 i.suffix);
2557 return 0;
2558 }
2559 /* Warn if the e prefix on a general reg is missing. */
2560 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2561 && (i.types[op] & Reg16) != 0
2562 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2563 {
2564 /* Prohibit these changes in the 64bit mode, since the
2565 lowering is more complicated. */
2566 if (flag_code == CODE_64BIT)
252b5132 2567 {
0f3f3d8b 2568 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2569 i.op[op].regs->reg_name,
2570 i.suffix);
2571 return 0;
252b5132 2572 }
29b0f896
AM
2573#if REGISTER_WARNINGS
2574 else
2575 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2576 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2577 i.op[op].regs->reg_name,
2578 i.suffix);
2579#endif
252b5132 2580 }
29b0f896
AM
2581 /* Warn if the r prefix on a general reg is missing. */
2582 else if ((i.types[op] & Reg64) != 0
2583 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2584 {
0f3f3d8b 2585 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2586 i.op[op].regs->reg_name,
2587 i.suffix);
2588 return 0;
2589 }
2590 return 1;
2591}
252b5132 2592
29b0f896
AM
2593static int
2594check_qword_reg ()
2595{
2596 int op;
252b5132 2597
29b0f896
AM
2598 for (op = i.operands; --op >= 0; )
2599 /* Reject eight bit registers, except where the template requires
2600 them. (eg. movzb) */
2601 if ((i.types[op] & Reg8) != 0
2602 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2603 {
2604 as_bad (_("`%%%s' not allowed with `%s%c'"),
2605 i.op[op].regs->reg_name,
2606 i.tm.name,
2607 i.suffix);
2608 return 0;
2609 }
2610 /* Warn if the e prefix on a general reg is missing. */
2611 else if (((i.types[op] & Reg16) != 0
2612 || (i.types[op] & Reg32) != 0)
2613 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2614 {
2615 /* Prohibit these changes in the 64bit mode, since the
2616 lowering is more complicated. */
0f3f3d8b 2617 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2618 i.op[op].regs->reg_name,
2619 i.suffix);
2620 return 0;
252b5132 2621 }
29b0f896
AM
2622 return 1;
2623}
252b5132 2624
29b0f896
AM
2625static int
2626check_word_reg ()
2627{
2628 int op;
2629 for (op = i.operands; --op >= 0;)
2630 /* Reject eight bit registers, except where the template requires
2631 them. (eg. movzb) */
2632 if ((i.types[op] & Reg8) != 0
2633 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2634 {
2635 as_bad (_("`%%%s' not allowed with `%s%c'"),
2636 i.op[op].regs->reg_name,
2637 i.tm.name,
2638 i.suffix);
2639 return 0;
2640 }
2641 /* Warn if the e prefix on a general reg is present. */
2642 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2643 && (i.types[op] & Reg32) != 0
2644 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2645 {
29b0f896
AM
2646 /* Prohibit these changes in the 64bit mode, since the
2647 lowering is more complicated. */
2648 if (flag_code == CODE_64BIT)
252b5132 2649 {
0f3f3d8b 2650 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2651 i.op[op].regs->reg_name,
2652 i.suffix);
2653 return 0;
252b5132 2654 }
29b0f896
AM
2655 else
2656#if REGISTER_WARNINGS
2657 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2658 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2659 i.op[op].regs->reg_name,
2660 i.suffix);
2661#endif
2662 }
2663 return 1;
2664}
252b5132 2665
29b0f896
AM
2666static int
2667finalize_imm ()
2668{
2669 unsigned int overlap0, overlap1, overlap2;
2670
2671 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 2672 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
2673 && overlap0 != Imm8 && overlap0 != Imm8S
2674 && overlap0 != Imm16 && overlap0 != Imm32S
2675 && overlap0 != Imm32 && overlap0 != Imm64)
2676 {
2677 if (i.suffix)
2678 {
2679 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2680 ? Imm8 | Imm8S
2681 : (i.suffix == WORD_MNEM_SUFFIX
2682 ? Imm16
2683 : (i.suffix == QWORD_MNEM_SUFFIX
2684 ? Imm64 | Imm32S
2685 : Imm32)));
2686 }
2687 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2688 || overlap0 == (Imm16 | Imm32)
2689 || overlap0 == (Imm16 | Imm32S))
2690 {
2691 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2692 ? Imm16 : Imm32S);
2693 }
2694 if (overlap0 != Imm8 && overlap0 != Imm8S
2695 && overlap0 != Imm16 && overlap0 != Imm32S
2696 && overlap0 != Imm32 && overlap0 != Imm64)
2697 {
2698 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2699 return 0;
2700 }
2701 }
2702 i.types[0] = overlap0;
2703
2704 overlap1 = i.types[1] & i.tm.operand_types[1];
2705 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2706 && overlap1 != Imm8 && overlap1 != Imm8S
2707 && overlap1 != Imm16 && overlap1 != Imm32S
2708 && overlap1 != Imm32 && overlap1 != Imm64)
2709 {
2710 if (i.suffix)
2711 {
2712 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2713 ? Imm8 | Imm8S
2714 : (i.suffix == WORD_MNEM_SUFFIX
2715 ? Imm16
2716 : (i.suffix == QWORD_MNEM_SUFFIX
2717 ? Imm64 | Imm32S
2718 : Imm32)));
2719 }
2720 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2721 || overlap1 == (Imm16 | Imm32)
2722 || overlap1 == (Imm16 | Imm32S))
2723 {
2724 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2725 ? Imm16 : Imm32S);
2726 }
2727 if (overlap1 != Imm8 && overlap1 != Imm8S
2728 && overlap1 != Imm16 && overlap1 != Imm32S
2729 && overlap1 != Imm32 && overlap1 != Imm64)
2730 {
2731 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2732 return 0;
2733 }
2734 }
2735 i.types[1] = overlap1;
2736
2737 overlap2 = i.types[2] & i.tm.operand_types[2];
2738 assert ((overlap2 & Imm) == 0);
2739 i.types[2] = overlap2;
2740
2741 return 1;
2742}
2743
2744static int
2745process_operands ()
2746{
2747 /* Default segment register this instruction will use for memory
2748 accesses. 0 means unknown. This is only for optimizing out
2749 unnecessary segment overrides. */
2750 const seg_entry *default_seg = 0;
2751
2752 /* The imul $imm, %reg instruction is converted into
2753 imul $imm, %reg, %reg, and the clr %reg instruction
2754 is converted into xor %reg, %reg. */
2755 if (i.tm.opcode_modifier & regKludge)
2756 {
2757 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2758 /* Pretend we saw the extra register operand. */
2759 assert (i.op[first_reg_op + 1].regs == 0);
2760 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2761 i.types[first_reg_op + 1] = i.types[first_reg_op];
2762 i.reg_operands = 2;
2763 }
2764
2765 if (i.tm.opcode_modifier & ShortForm)
2766 {
2767 /* The register or float register operand is in operand 0 or 1. */
2768 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2769 /* Register goes in low 3 bits of opcode. */
2770 i.tm.base_opcode |= i.op[op].regs->reg_num;
2771 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2772 i.rex |= REX_EXTZ;
2773 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2774 {
2775 /* Warn about some common errors, but press on regardless.
2776 The first case can be generated by gcc (<= 2.8.1). */
2777 if (i.operands == 2)
2778 {
2779 /* Reversed arguments on faddp, fsubp, etc. */
2780 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2781 i.op[1].regs->reg_name,
2782 i.op[0].regs->reg_name);
2783 }
2784 else
2785 {
2786 /* Extraneous `l' suffix on fp insn. */
2787 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2788 i.op[0].regs->reg_name);
2789 }
2790 }
2791 }
2792 else if (i.tm.opcode_modifier & Modrm)
2793 {
2794 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2795 must be put into the modrm byte). Now, we make the modrm and
2796 index base bytes based on all the info we've collected. */
29b0f896
AM
2797
2798 default_seg = build_modrm_byte ();
2799 }
2800 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2801 {
2802 if (i.tm.base_opcode == POP_SEG_SHORT
2803 && i.op[0].regs->reg_num == 1)
2804 {
2805 as_bad (_("you can't `pop %%cs'"));
2806 return 0;
2807 }
2808 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2809 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2810 i.rex |= REX_EXTZ;
2811 }
2812 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2813 {
2814 default_seg = &ds;
2815 }
2816 else if ((i.tm.opcode_modifier & IsString) != 0)
2817 {
2818 /* For the string instructions that allow a segment override
2819 on one of their operands, the default segment is ds. */
2820 default_seg = &ds;
2821 }
2822
52271982
AM
2823 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2824 as_warn (_("segment override on `lea' is ineffectual"));
2825
2826 /* If a segment was explicitly specified, and the specified segment
2827 is not the default, use an opcode prefix to select it. If we
2828 never figured out what the default segment is, then default_seg
2829 will be zero at this point, and the specified segment prefix will
2830 always be used. */
29b0f896
AM
2831 if ((i.seg[0]) && (i.seg[0] != default_seg))
2832 {
2833 if (!add_prefix (i.seg[0]->seg_prefix))
2834 return 0;
2835 }
2836 return 1;
2837}
2838
2839static const seg_entry *
2840build_modrm_byte ()
2841{
2842 const seg_entry *default_seg = 0;
2843
2844 /* i.reg_operands MUST be the number of real register operands;
2845 implicit registers do not count. */
2846 if (i.reg_operands == 2)
2847 {
2848 unsigned int source, dest;
2849 source = ((i.types[0]
2850 & (Reg | RegMMX | RegXMM
2851 | SReg2 | SReg3
2852 | Control | Debug | Test))
2853 ? 0 : 1);
2854 dest = source + 1;
2855
2856 i.rm.mode = 3;
2857 /* One of the register operands will be encoded in the i.tm.reg
2858 field, the other in the combined i.tm.mode and i.tm.regmem
2859 fields. If no form of this instruction supports a memory
2860 destination operand, then we assume the source operand may
2861 sometimes be a memory operand and so we need to store the
2862 destination in the i.rm.reg field. */
2863 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2864 {
2865 i.rm.reg = i.op[dest].regs->reg_num;
2866 i.rm.regmem = i.op[source].regs->reg_num;
2867 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2868 i.rex |= REX_EXTX;
2869 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2870 i.rex |= REX_EXTZ;
2871 }
2872 else
2873 {
2874 i.rm.reg = i.op[source].regs->reg_num;
2875 i.rm.regmem = i.op[dest].regs->reg_num;
2876 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2877 i.rex |= REX_EXTZ;
2878 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2879 i.rex |= REX_EXTX;
2880 }
2881 }
2882 else
2883 { /* If it's not 2 reg operands... */
2884 if (i.mem_operands)
2885 {
2886 unsigned int fake_zero_displacement = 0;
2887 unsigned int op = ((i.types[0] & AnyMem)
2888 ? 0
2889 : (i.types[1] & AnyMem) ? 1 : 2);
2890
2891 default_seg = &ds;
2892
2893 if (i.base_reg == 0)
2894 {
2895 i.rm.mode = 0;
2896 if (!i.disp_operands)
2897 fake_zero_displacement = 1;
2898 if (i.index_reg == 0)
2899 {
2900 /* Operand is just <disp> */
20f0a1fc 2901 if (flag_code == CODE_64BIT)
29b0f896
AM
2902 {
2903 /* 64bit mode overwrites the 32bit absolute
2904 addressing by RIP relative addressing and
2905 absolute addressing is encoded by one of the
2906 redundant SIB forms. */
2907 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2908 i.sib.base = NO_BASE_REGISTER;
2909 i.sib.index = NO_INDEX_REGISTER;
20f0a1fc
NC
2910 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2911 }
2912 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2913 {
2914 i.rm.regmem = NO_BASE_REGISTER_16;
2915 i.types[op] = Disp16;
2916 }
2917 else
2918 {
2919 i.rm.regmem = NO_BASE_REGISTER;
2920 i.types[op] = Disp32;
29b0f896
AM
2921 }
2922 }
2923 else /* !i.base_reg && i.index_reg */
2924 {
2925 i.sib.index = i.index_reg->reg_num;
2926 i.sib.base = NO_BASE_REGISTER;
2927 i.sib.scale = i.log2_scale_factor;
2928 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2929 i.types[op] &= ~Disp;
2930 if (flag_code != CODE_64BIT)
2931 i.types[op] |= Disp32; /* Must be 32 bit */
2932 else
2933 i.types[op] |= Disp32S;
2934 if ((i.index_reg->reg_flags & RegRex) != 0)
2935 i.rex |= REX_EXTY;
2936 }
2937 }
2938 /* RIP addressing for 64bit mode. */
2939 else if (i.base_reg->reg_type == BaseIndex)
2940 {
2941 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 2942 i.types[op] &= ~ Disp;
29b0f896
AM
2943 i.types[op] |= Disp32S;
2944 i.flags[op] = Operand_PCrel;
20f0a1fc
NC
2945 if (! i.disp_operands)
2946 fake_zero_displacement = 1;
29b0f896
AM
2947 }
2948 else if (i.base_reg->reg_type & Reg16)
2949 {
2950 switch (i.base_reg->reg_num)
2951 {
2952 case 3: /* (%bx) */
2953 if (i.index_reg == 0)
2954 i.rm.regmem = 7;
2955 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2956 i.rm.regmem = i.index_reg->reg_num - 6;
2957 break;
2958 case 5: /* (%bp) */
2959 default_seg = &ss;
2960 if (i.index_reg == 0)
2961 {
2962 i.rm.regmem = 6;
2963 if ((i.types[op] & Disp) == 0)
2964 {
2965 /* fake (%bp) into 0(%bp) */
2966 i.types[op] |= Disp8;
252b5132 2967 fake_zero_displacement = 1;
29b0f896
AM
2968 }
2969 }
2970 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2971 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2972 break;
2973 default: /* (%si) -> 4 or (%di) -> 5 */
2974 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2975 }
2976 i.rm.mode = mode_from_disp_size (i.types[op]);
2977 }
2978 else /* i.base_reg and 32/64 bit mode */
2979 {
2980 if (flag_code == CODE_64BIT
2981 && (i.types[op] & Disp))
20f0a1fc
NC
2982 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2983
29b0f896
AM
2984 i.rm.regmem = i.base_reg->reg_num;
2985 if ((i.base_reg->reg_flags & RegRex) != 0)
2986 i.rex |= REX_EXTZ;
2987 i.sib.base = i.base_reg->reg_num;
2988 /* x86-64 ignores REX prefix bit here to avoid decoder
2989 complications. */
2990 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2991 {
2992 default_seg = &ss;
2993 if (i.disp_operands == 0)
2994 {
2995 fake_zero_displacement = 1;
2996 i.types[op] |= Disp8;
2997 }
2998 }
2999 else if (i.base_reg->reg_num == ESP_REG_NUM)
3000 {
3001 default_seg = &ss;
3002 }
3003 i.sib.scale = i.log2_scale_factor;
3004 if (i.index_reg == 0)
3005 {
3006 /* <disp>(%esp) becomes two byte modrm with no index
3007 register. We've already stored the code for esp
3008 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3009 Any base register besides %esp will not use the
3010 extra modrm byte. */
3011 i.sib.index = NO_INDEX_REGISTER;
3012#if !SCALE1_WHEN_NO_INDEX
3013 /* Another case where we force the second modrm byte. */
3014 if (i.log2_scale_factor)
3015 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 3016#endif
29b0f896
AM
3017 }
3018 else
3019 {
3020 i.sib.index = i.index_reg->reg_num;
3021 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3022 if ((i.index_reg->reg_flags & RegRex) != 0)
3023 i.rex |= REX_EXTY;
3024 }
3025 i.rm.mode = mode_from_disp_size (i.types[op]);
3026 }
252b5132 3027
29b0f896
AM
3028 if (fake_zero_displacement)
3029 {
3030 /* Fakes a zero displacement assuming that i.types[op]
3031 holds the correct displacement size. */
3032 expressionS *exp;
3033
3034 assert (i.op[op].disps == 0);
3035 exp = &disp_expressions[i.disp_operands++];
3036 i.op[op].disps = exp;
3037 exp->X_op = O_constant;
3038 exp->X_add_number = 0;
3039 exp->X_add_symbol = (symbolS *) 0;
3040 exp->X_op_symbol = (symbolS *) 0;
3041 }
3042 }
252b5132 3043
29b0f896
AM
3044 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3045 (if any) based on i.tm.extension_opcode. Again, we must be
3046 careful to make sure that segment/control/debug/test/MMX
3047 registers are coded into the i.rm.reg field. */
3048 if (i.reg_operands)
3049 {
3050 unsigned int op =
3051 ((i.types[0]
3052 & (Reg | RegMMX | RegXMM
3053 | SReg2 | SReg3
3054 | Control | Debug | Test))
3055 ? 0
3056 : ((i.types[1]
3057 & (Reg | RegMMX | RegXMM
3058 | SReg2 | SReg3
3059 | Control | Debug | Test))
3060 ? 1
3061 : 2));
3062 /* If there is an extension opcode to put here, the register
3063 number must be put into the regmem field. */
3064 if (i.tm.extension_opcode != None)
3065 {
3066 i.rm.regmem = i.op[op].regs->reg_num;
3067 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3068 i.rex |= REX_EXTZ;
3069 }
3070 else
3071 {
3072 i.rm.reg = i.op[op].regs->reg_num;
3073 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3074 i.rex |= REX_EXTX;
3075 }
252b5132 3076
29b0f896
AM
3077 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3078 must set it to 3 to indicate this is a register operand
3079 in the regmem field. */
3080 if (!i.mem_operands)
3081 i.rm.mode = 3;
3082 }
252b5132 3083
29b0f896
AM
3084 /* Fill in i.rm.reg field with extension opcode (if any). */
3085 if (i.tm.extension_opcode != None)
3086 i.rm.reg = i.tm.extension_opcode;
3087 }
3088 return default_seg;
3089}
252b5132 3090
29b0f896
AM
3091static void
3092output_branch ()
3093{
3094 char *p;
3095 int code16;
3096 int prefix;
3097 relax_substateT subtype;
3098 symbolS *sym;
3099 offsetT off;
3100
3101 code16 = 0;
3102 if (flag_code == CODE_16BIT)
3103 code16 = CODE16;
3104
3105 prefix = 0;
3106 if (i.prefix[DATA_PREFIX] != 0)
252b5132 3107 {
29b0f896
AM
3108 prefix = 1;
3109 i.prefixes -= 1;
3110 code16 ^= CODE16;
252b5132 3111 }
29b0f896
AM
3112 /* Pentium4 branch hints. */
3113 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3114 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 3115 {
29b0f896
AM
3116 prefix++;
3117 i.prefixes--;
3118 }
3119 if (i.prefix[REX_PREFIX] != 0)
3120 {
3121 prefix++;
3122 i.prefixes--;
2f66722d
AM
3123 }
3124
29b0f896
AM
3125 if (i.prefixes != 0 && !intel_syntax)
3126 as_warn (_("skipping prefixes on this instruction"));
3127
3128 /* It's always a symbol; End frag & setup for relax.
3129 Make sure there is enough room in this frag for the largest
3130 instruction we may generate in md_convert_frag. This is 2
3131 bytes for the opcode and room for the prefix and largest
3132 displacement. */
3133 frag_grow (prefix + 2 + 4);
3134 /* Prefix and 1 opcode byte go in fr_fix. */
3135 p = frag_more (prefix + 1);
3136 if (i.prefix[DATA_PREFIX] != 0)
3137 *p++ = DATA_PREFIX_OPCODE;
3138 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3139 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3140 *p++ = i.prefix[SEG_PREFIX];
3141 if (i.prefix[REX_PREFIX] != 0)
3142 *p++ = i.prefix[REX_PREFIX];
3143 *p = i.tm.base_opcode;
3144
3145 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3146 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3147 else if ((cpu_arch_flags & Cpu386) != 0)
3148 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3149 else
3150 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3151 subtype |= code16;
3e73aa7c 3152
29b0f896
AM
3153 sym = i.op[0].disps->X_add_symbol;
3154 off = i.op[0].disps->X_add_number;
3e73aa7c 3155
29b0f896
AM
3156 if (i.op[0].disps->X_op != O_constant
3157 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3158 {
29b0f896
AM
3159 /* Handle complex expressions. */
3160 sym = make_expr_symbol (i.op[0].disps);
3161 off = 0;
3162 }
3e73aa7c 3163
29b0f896
AM
3164 /* 1 possible extra opcode + 4 byte displacement go in var part.
3165 Pass reloc in fr_var. */
3166 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3167}
3e73aa7c 3168
29b0f896
AM
3169static void
3170output_jump ()
3171{
3172 char *p;
3173 int size;
3e02c1cc 3174 fixS *fixP;
29b0f896
AM
3175
3176 if (i.tm.opcode_modifier & JumpByte)
3177 {
3178 /* This is a loop or jecxz type instruction. */
3179 size = 1;
3180 if (i.prefix[ADDR_PREFIX] != 0)
3181 {
3182 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3183 i.prefixes -= 1;
3184 }
3185 /* Pentium4 branch hints. */
3186 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3187 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3188 {
3189 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3190 i.prefixes--;
3e73aa7c
JH
3191 }
3192 }
29b0f896
AM
3193 else
3194 {
3195 int code16;
3e73aa7c 3196
29b0f896
AM
3197 code16 = 0;
3198 if (flag_code == CODE_16BIT)
3199 code16 = CODE16;
3e73aa7c 3200
29b0f896
AM
3201 if (i.prefix[DATA_PREFIX] != 0)
3202 {
3203 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3204 i.prefixes -= 1;
3205 code16 ^= CODE16;
3206 }
252b5132 3207
29b0f896
AM
3208 size = 4;
3209 if (code16)
3210 size = 2;
3211 }
9fcc94b6 3212
29b0f896
AM
3213 if (i.prefix[REX_PREFIX] != 0)
3214 {
3215 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3216 i.prefixes -= 1;
3217 }
252b5132 3218
29b0f896
AM
3219 if (i.prefixes != 0 && !intel_syntax)
3220 as_warn (_("skipping prefixes on this instruction"));
e0890092 3221
29b0f896
AM
3222 p = frag_more (1 + size);
3223 *p++ = i.tm.base_opcode;
e0890092 3224
3e02c1cc
AM
3225 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3226 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3227
3228 /* All jumps handled here are signed, but don't use a signed limit
3229 check for 32 and 16 bit jumps as we want to allow wrap around at
3230 4G and 64k respectively. */
3231 if (size == 1)
3232 fixP->fx_signed = 1;
29b0f896 3233}
e0890092 3234
29b0f896
AM
3235static void
3236output_interseg_jump ()
3237{
3238 char *p;
3239 int size;
3240 int prefix;
3241 int code16;
252b5132 3242
29b0f896
AM
3243 code16 = 0;
3244 if (flag_code == CODE_16BIT)
3245 code16 = CODE16;
a217f122 3246
29b0f896
AM
3247 prefix = 0;
3248 if (i.prefix[DATA_PREFIX] != 0)
3249 {
3250 prefix = 1;
3251 i.prefixes -= 1;
3252 code16 ^= CODE16;
3253 }
3254 if (i.prefix[REX_PREFIX] != 0)
3255 {
3256 prefix++;
3257 i.prefixes -= 1;
3258 }
252b5132 3259
29b0f896
AM
3260 size = 4;
3261 if (code16)
3262 size = 2;
252b5132 3263
29b0f896
AM
3264 if (i.prefixes != 0 && !intel_syntax)
3265 as_warn (_("skipping prefixes on this instruction"));
252b5132 3266
29b0f896
AM
3267 /* 1 opcode; 2 segment; offset */
3268 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3269
29b0f896
AM
3270 if (i.prefix[DATA_PREFIX] != 0)
3271 *p++ = DATA_PREFIX_OPCODE;
252b5132 3272
29b0f896
AM
3273 if (i.prefix[REX_PREFIX] != 0)
3274 *p++ = i.prefix[REX_PREFIX];
252b5132 3275
29b0f896
AM
3276 *p++ = i.tm.base_opcode;
3277 if (i.op[1].imms->X_op == O_constant)
3278 {
3279 offsetT n = i.op[1].imms->X_add_number;
252b5132 3280
29b0f896
AM
3281 if (size == 2
3282 && !fits_in_unsigned_word (n)
3283 && !fits_in_signed_word (n))
3284 {
3285 as_bad (_("16-bit jump out of range"));
3286 return;
3287 }
3288 md_number_to_chars (p, n, size);
3289 }
3290 else
3291 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3292 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3293 if (i.op[0].imms->X_op != O_constant)
3294 as_bad (_("can't handle non absolute segment in `%s'"),
3295 i.tm.name);
3296 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3297}
a217f122 3298
29b0f896
AM
3299static void
3300output_insn ()
3301{
2bbd9c25
JJ
3302 fragS *insn_start_frag;
3303 offsetT insn_start_off;
3304
29b0f896
AM
3305 /* Tie dwarf2 debug info to the address at the start of the insn.
3306 We can't do this after the insn has been output as the current
3307 frag may have been closed off. eg. by frag_var. */
3308 dwarf2_emit_insn (0);
3309
2bbd9c25
JJ
3310 insn_start_frag = frag_now;
3311 insn_start_off = frag_now_fix ();
3312
29b0f896
AM
3313 /* Output jumps. */
3314 if (i.tm.opcode_modifier & Jump)
3315 output_branch ();
3316 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3317 output_jump ();
3318 else if (i.tm.opcode_modifier & JumpInterSegment)
3319 output_interseg_jump ();
3320 else
3321 {
3322 /* Output normal instructions here. */
3323 char *p;
3324 unsigned char *q;
252b5132 3325
0f10071e
ML
3326 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3327 have 3 bytes. We may use one more higher byte to specify a prefix
3328 the instruction requires. */
3329 if ((i.tm.cpu_flags & CpuPadLock) != 0
3330 && (i.tm.base_opcode & 0xff000000) != 0)
3331 {
3332 unsigned int prefix;
3333 prefix = (i.tm.base_opcode >> 24) & 0xff;
3334
3335 if (prefix != REPE_PREFIX_OPCODE
3336 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3337 add_prefix (prefix);
3338 }
3339 else
3340 if ((i.tm.cpu_flags & CpuPadLock) == 0
3341 && (i.tm.base_opcode & 0xff0000) != 0)
3342 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
252b5132 3343
29b0f896
AM
3344 /* The prefix bytes. */
3345 for (q = i.prefix;
3346 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3347 q++)
3348 {
3349 if (*q)
3350 {
3351 p = frag_more (1);
3352 md_number_to_chars (p, (valueT) *q, 1);
3353 }
3354 }
252b5132 3355
29b0f896
AM
3356 /* Now the opcode; be careful about word order here! */
3357 if (fits_in_unsigned_byte (i.tm.base_opcode))
3358 {
3359 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3360 }
3361 else
3362 {
0f10071e
ML
3363 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3364 {
3365 p = frag_more (3);
3366 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3367 }
3368 else
3369 p = frag_more (2);
3370
29b0f896
AM
3371 /* Put out high byte first: can't use md_number_to_chars! */
3372 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3373 *p = i.tm.base_opcode & 0xff;
3374 }
3e73aa7c 3375
29b0f896
AM
3376 /* Now the modrm byte and sib byte (if present). */
3377 if (i.tm.opcode_modifier & Modrm)
3378 {
3379 p = frag_more (1);
3380 md_number_to_chars (p,
3381 (valueT) (i.rm.regmem << 0
3382 | i.rm.reg << 3
3383 | i.rm.mode << 6),
3384 1);
3385 /* If i.rm.regmem == ESP (4)
3386 && i.rm.mode != (Register mode)
3387 && not 16 bit
3388 ==> need second modrm byte. */
3389 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3390 && i.rm.mode != 3
3391 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3392 {
3393 p = frag_more (1);
3394 md_number_to_chars (p,
3395 (valueT) (i.sib.base << 0
3396 | i.sib.index << 3
3397 | i.sib.scale << 6),
3398 1);
3399 }
3400 }
3e73aa7c 3401
29b0f896 3402 if (i.disp_operands)
2bbd9c25 3403 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3404
29b0f896 3405 if (i.imm_operands)
2bbd9c25 3406 output_imm (insn_start_frag, insn_start_off);
29b0f896 3407 }
252b5132 3408
29b0f896
AM
3409#ifdef DEBUG386
3410 if (flag_debug)
3411 {
3412 pi (line, &i);
3413 }
3414#endif /* DEBUG386 */
3415}
252b5132 3416
29b0f896 3417static void
2bbd9c25
JJ
3418output_disp (insn_start_frag, insn_start_off)
3419 fragS *insn_start_frag;
3420 offsetT insn_start_off;
29b0f896
AM
3421{
3422 char *p;
3423 unsigned int n;
252b5132 3424
29b0f896
AM
3425 for (n = 0; n < i.operands; n++)
3426 {
3427 if (i.types[n] & Disp)
3428 {
3429 if (i.op[n].disps->X_op == O_constant)
3430 {
3431 int size;
3432 offsetT val;
252b5132 3433
29b0f896
AM
3434 size = 4;
3435 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3436 {
3437 size = 2;
3438 if (i.types[n] & Disp8)
3439 size = 1;
3440 if (i.types[n] & Disp64)
3441 size = 8;
3442 }
3443 val = offset_in_range (i.op[n].disps->X_add_number,
3444 size);
3445 p = frag_more (size);
3446 md_number_to_chars (p, val, size);
3447 }
3448 else
3449 {
f86103b7 3450 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3451 int size = 4;
3452 int sign = 0;
3453 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3454
3455 /* The PC relative address is computed relative
3456 to the instruction boundary, so in case immediate
3457 fields follows, we need to adjust the value. */
3458 if (pcrel && i.imm_operands)
3459 {
3460 int imm_size = 4;
3461 unsigned int n1;
252b5132 3462
29b0f896
AM
3463 for (n1 = 0; n1 < i.operands; n1++)
3464 if (i.types[n1] & Imm)
252b5132 3465 {
29b0f896 3466 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3467 {
29b0f896
AM
3468 imm_size = 2;
3469 if (i.types[n1] & (Imm8 | Imm8S))
3470 imm_size = 1;
3471 if (i.types[n1] & Imm64)
3472 imm_size = 8;
252b5132 3473 }
29b0f896 3474 break;
252b5132 3475 }
29b0f896
AM
3476 /* We should find the immediate. */
3477 if (n1 == i.operands)
3478 abort ();
3479 i.op[n].disps->X_add_number -= imm_size;
3480 }
520dc8e8 3481
29b0f896
AM
3482 if (i.types[n] & Disp32S)
3483 sign = 1;
3e73aa7c 3484
29b0f896
AM
3485 if (i.types[n] & (Disp16 | Disp64))
3486 {
3487 size = 2;
3488 if (i.types[n] & Disp64)
3489 size = 8;
3490 }
520dc8e8 3491
29b0f896 3492 p = frag_more (size);
2bbd9c25 3493 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
2bbd9c25
JJ
3494 if (reloc_type == BFD_RELOC_32
3495 && GOT_symbol
3496 && GOT_symbol == i.op[n].disps->X_add_symbol
3497 && (i.op[n].disps->X_op == O_symbol
3498 || (i.op[n].disps->X_op == O_add
3499 && ((symbol_get_value_expression
3500 (i.op[n].disps->X_op_symbol)->X_op)
3501 == O_subtract))))
3502 {
3503 offsetT add;
3504
3505 if (insn_start_frag == frag_now)
3506 add = (p - frag_now->fr_literal) - insn_start_off;
3507 else
3508 {
3509 fragS *fr;
3510
3511 add = insn_start_frag->fr_fix - insn_start_off;
3512 for (fr = insn_start_frag->fr_next;
3513 fr && fr != frag_now; fr = fr->fr_next)
3514 add += fr->fr_fix;
3515 add += p - frag_now->fr_literal;
3516 }
3517
3518 /* We don't support dynamic linking on x86-64 yet. */
3519 if (flag_code == CODE_64BIT)
3520 abort ();
3521 reloc_type = BFD_RELOC_386_GOTPC;
3522 i.op[n].disps->X_add_number += add;
3523 }
062cd5e7 3524 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3525 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3526 }
3527 }
3528 }
3529}
252b5132 3530
29b0f896 3531static void
2bbd9c25
JJ
3532output_imm (insn_start_frag, insn_start_off)
3533 fragS *insn_start_frag;
3534 offsetT insn_start_off;
29b0f896
AM
3535{
3536 char *p;
3537 unsigned int n;
252b5132 3538
29b0f896
AM
3539 for (n = 0; n < i.operands; n++)
3540 {
3541 if (i.types[n] & Imm)
3542 {
3543 if (i.op[n].imms->X_op == O_constant)
3544 {
3545 int size;
3546 offsetT val;
b4cac588 3547
29b0f896
AM
3548 size = 4;
3549 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3550 {
3551 size = 2;
3552 if (i.types[n] & (Imm8 | Imm8S))
3553 size = 1;
3554 else if (i.types[n] & Imm64)
3555 size = 8;
3556 }
3557 val = offset_in_range (i.op[n].imms->X_add_number,
3558 size);
3559 p = frag_more (size);
3560 md_number_to_chars (p, val, size);
3561 }
3562 else
3563 {
3564 /* Not absolute_section.
3565 Need a 32-bit fixup (don't support 8bit
3566 non-absolute imms). Try to support other
3567 sizes ... */
f86103b7 3568 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3569 int size = 4;
3570 int sign = 0;
3571
3572 if ((i.types[n] & (Imm32S))
3573 && i.suffix == QWORD_MNEM_SUFFIX)
3574 sign = 1;
3575 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3576 {
3577 size = 2;
3578 if (i.types[n] & (Imm8 | Imm8S))
3579 size = 1;
3580 if (i.types[n] & Imm64)
3581 size = 8;
3582 }
520dc8e8 3583
29b0f896
AM
3584 p = frag_more (size);
3585 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 3586
2bbd9c25
JJ
3587 /* This is tough to explain. We end up with this one if we
3588 * have operands that look like
3589 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3590 * obtain the absolute address of the GOT, and it is strongly
3591 * preferable from a performance point of view to avoid using
3592 * a runtime relocation for this. The actual sequence of
3593 * instructions often look something like:
3594 *
3595 * call .L66
3596 * .L66:
3597 * popl %ebx
3598 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3599 *
3600 * The call and pop essentially return the absolute address
3601 * of the label .L66 and store it in %ebx. The linker itself
3602 * will ultimately change the first operand of the addl so
3603 * that %ebx points to the GOT, but to keep things simple, the
3604 * .o file must have this operand set so that it generates not
3605 * the absolute address of .L66, but the absolute address of
3606 * itself. This allows the linker itself simply treat a GOTPC
3607 * relocation as asking for a pcrel offset to the GOT to be
3608 * added in, and the addend of the relocation is stored in the
3609 * operand field for the instruction itself.
3610 *
3611 * Our job here is to fix the operand so that it would add
3612 * the correct offset so that %ebx would point to itself. The
3613 * thing that is tricky is that .-.L66 will point to the
3614 * beginning of the instruction, so we need to further modify
3615 * the operand so that it will point to itself. There are
3616 * other cases where you have something like:
3617 *
3618 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3619 *
3620 * and here no correction would be required. Internally in
3621 * the assembler we treat operands of this form as not being
3622 * pcrel since the '.' is explicitly mentioned, and I wonder
3623 * whether it would simplify matters to do it this way. Who
3624 * knows. In earlier versions of the PIC patches, the
3625 * pcrel_adjust field was used to store the correction, but
3626 * since the expression is not pcrel, I felt it would be
3627 * confusing to do it this way. */
3628
29b0f896
AM
3629 if (reloc_type == BFD_RELOC_32
3630 && GOT_symbol
3631 && GOT_symbol == i.op[n].imms->X_add_symbol
3632 && (i.op[n].imms->X_op == O_symbol
3633 || (i.op[n].imms->X_op == O_add
3634 && ((symbol_get_value_expression
3635 (i.op[n].imms->X_op_symbol)->X_op)
3636 == O_subtract))))
3637 {
2bbd9c25
JJ
3638 offsetT add;
3639
3640 if (insn_start_frag == frag_now)
3641 add = (p - frag_now->fr_literal) - insn_start_off;
3642 else
3643 {
3644 fragS *fr;
3645
3646 add = insn_start_frag->fr_fix - insn_start_off;
3647 for (fr = insn_start_frag->fr_next;
3648 fr && fr != frag_now; fr = fr->fr_next)
3649 add += fr->fr_fix;
3650 add += p - frag_now->fr_literal;
3651 }
3652
29b0f896
AM
3653 /* We don't support dynamic linking on x86-64 yet. */
3654 if (flag_code == CODE_64BIT)
3655 abort ();
3656 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3657 i.op[n].imms->X_add_number += add;
29b0f896 3658 }
29b0f896
AM
3659 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3660 i.op[n].imms, 0, reloc_type);
3661 }
3662 }
3663 }
252b5132
RH
3664}
3665\f
f3c180ae 3666#ifndef LEX_AT
f86103b7 3667static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
f3c180ae
AM
3668
3669/* Parse operands of the form
3670 <symbol>@GOTOFF+<nnn>
3671 and similar .plt or .got references.
3672
3673 If we find one, set up the correct relocation in RELOC and copy the
3674 input string, minus the `@GOTOFF' into a malloc'd buffer for
3675 parsing by the calling routine. Return this buffer, and if ADJUST
3676 is non-null set it to the length of the string we removed from the
3677 input line. Otherwise return NULL. */
3678static char *
3679lex_got (reloc, adjust)
f86103b7 3680 enum bfd_reloc_code_real *reloc;
f3c180ae
AM
3681 int *adjust;
3682{
3683 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3684 static const struct {
3685 const char *str;
f86103b7 3686 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
f3c180ae 3687 } gotrel[] = {
13ae64f3
JJ
3688 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3689 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3690 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3691 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3692 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3693 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3694 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3695 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3696 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3697 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3698 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3699 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3700 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3701 };
3702 char *cp;
3703 unsigned int j;
3704
3705 for (cp = input_line_pointer; *cp != '@'; cp++)
3706 if (is_end_of_line[(unsigned char) *cp])
3707 return NULL;
3708
3709 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3710 {
3711 int len;
3712
3713 len = strlen (gotrel[j].str);
28f81592 3714 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3715 {
3716 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3717 {
28f81592
AM
3718 int first, second;
3719 char *tmpbuf, *past_reloc;
f3c180ae
AM
3720
3721 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3722 if (adjust)
3723 *adjust = len;
f3c180ae
AM
3724
3725 if (GOT_symbol == NULL)
3726 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3727
3728 /* Replace the relocation token with ' ', so that
3729 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3730
3731 /* The length of the first part of our input line. */
f3c180ae 3732 first = cp - input_line_pointer;
28f81592
AM
3733
3734 /* The second part goes from after the reloc token until
3735 (and including) an end_of_line char. Don't use strlen
3736 here as the end_of_line char may not be a NUL. */
3737 past_reloc = cp + 1 + len;
3738 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3739 ;
3740 second = cp - past_reloc;
3741
3742 /* Allocate and copy string. The trailing NUL shouldn't
3743 be necessary, but be safe. */
3744 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3745 memcpy (tmpbuf, input_line_pointer, first);
3746 tmpbuf[first] = ' ';
28f81592
AM
3747 memcpy (tmpbuf + first + 1, past_reloc, second);
3748 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3749 return tmpbuf;
3750 }
3751
3752 as_bad (_("@%s reloc is not supported in %s bit mode"),
3753 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3754 return NULL;
3755 }
3756 }
3757
3758 /* Might be a symbol version string. Don't as_bad here. */
3759 return NULL;
3760}
3761
3762/* x86_cons_fix_new is called via the expression parsing code when a
3763 reloc is needed. We use this hook to get the correct .got reloc. */
f86103b7 3764static enum bfd_reloc_code_real got_reloc = NO_RELOC;
f3c180ae
AM
3765
3766void
3767x86_cons_fix_new (frag, off, len, exp)
3768 fragS *frag;
3769 unsigned int off;
3770 unsigned int len;
3771 expressionS *exp;
3772{
f86103b7 3773 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
f3c180ae
AM
3774 got_reloc = NO_RELOC;
3775 fix_new_exp (frag, off, len, exp, 0, r);
3776}
3777
3778void
3779x86_cons (exp, size)
3780 expressionS *exp;
3781 int size;
3782{
3783 if (size == 4)
3784 {
3785 /* Handle @GOTOFF and the like in an expression. */
3786 char *save;
3787 char *gotfree_input_line;
3788 int adjust;
3789
3790 save = input_line_pointer;
3791 gotfree_input_line = lex_got (&got_reloc, &adjust);
3792 if (gotfree_input_line)
3793 input_line_pointer = gotfree_input_line;
3794
3795 expression (exp);
3796
3797 if (gotfree_input_line)
3798 {
3799 /* expression () has merrily parsed up to the end of line,
3800 or a comma - in the wrong buffer. Transfer how far
3801 input_line_pointer has moved to the right buffer. */
3802 input_line_pointer = (save
3803 + (input_line_pointer - gotfree_input_line)
3804 + adjust);
3805 free (gotfree_input_line);
3806 }
3807 }
3808 else
3809 expression (exp);
3810}
3811#endif
3812
6482c264
NC
3813#ifdef TE_PE
3814
6482c264
NC
3815void
3816x86_pe_cons_fix_new (frag, off, len, exp)
3817 fragS *frag;
3818 unsigned int off;
3819 unsigned int len;
3820 expressionS *exp;
3821{
3822 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3823
3824 if (exp->X_op == O_secrel)
3825 {
3826 exp->X_op = O_symbol;
3827 r = BFD_RELOC_32_SECREL;
3828 }
3829
3830 fix_new_exp (frag, off, len, exp, 0, r);
3831}
3832
3833static void
3834pe_directive_secrel (dummy)
3835 int dummy ATTRIBUTE_UNUSED;
3836{
3837 expressionS exp;
3838
3839 do
3840 {
3841 expression (&exp);
3842 if (exp.X_op == O_symbol)
3843 exp.X_op = O_secrel;
3844
3845 emit_expr (&exp, 4);
3846 }
3847 while (*input_line_pointer++ == ',');
3848
3849 input_line_pointer--;
3850 demand_empty_rest_of_line ();
3851}
3852
3853#endif
3854
252b5132
RH
3855static int i386_immediate PARAMS ((char *));
3856
3857static int
3858i386_immediate (imm_start)
3859 char *imm_start;
3860{
3861 char *save_input_line_pointer;
f3c180ae
AM
3862#ifndef LEX_AT
3863 char *gotfree_input_line;
3864#endif
252b5132 3865 segT exp_seg = 0;
47926f60 3866 expressionS *exp;
252b5132
RH
3867
3868 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3869 {
d0b47220 3870 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3871 return 0;
3872 }
3873
3874 exp = &im_expressions[i.imm_operands++];
520dc8e8 3875 i.op[this_operand].imms = exp;
252b5132
RH
3876
3877 if (is_space_char (*imm_start))
3878 ++imm_start;
3879
3880 save_input_line_pointer = input_line_pointer;
3881 input_line_pointer = imm_start;
3882
3883#ifndef LEX_AT
f3c180ae
AM
3884 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3885 if (gotfree_input_line)
3886 input_line_pointer = gotfree_input_line;
252b5132
RH
3887#endif
3888
3889 exp_seg = expression (exp);
3890
83183c0c 3891 SKIP_WHITESPACE ();
252b5132 3892 if (*input_line_pointer)
f3c180ae 3893 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3894
3895 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3896#ifndef LEX_AT
3897 if (gotfree_input_line)
3898 free (gotfree_input_line);
3899#endif
252b5132 3900
2daf4fd8 3901 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3902 {
47926f60 3903 /* Missing or bad expr becomes absolute 0. */
d0b47220 3904 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3905 imm_start);
252b5132
RH
3906 exp->X_op = O_constant;
3907 exp->X_add_number = 0;
3908 exp->X_add_symbol = (symbolS *) 0;
3909 exp->X_op_symbol = (symbolS *) 0;
252b5132 3910 }
3e73aa7c 3911 else if (exp->X_op == O_constant)
252b5132 3912 {
47926f60 3913 /* Size it properly later. */
3e73aa7c
JH
3914 i.types[this_operand] |= Imm64;
3915 /* If BFD64, sign extend val. */
3916 if (!use_rela_relocations)
3917 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3918 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3919 }
4c63da97 3920#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 3921 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 3922 && exp_seg != absolute_section
47926f60 3923 && exp_seg != text_section
24eab124
AM
3924 && exp_seg != data_section
3925 && exp_seg != bss_section
3926 && exp_seg != undefined_section
f86103b7 3927 && !bfd_is_com_section (exp_seg))
252b5132 3928 {
d0b47220 3929 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
3930 return 0;
3931 }
3932#endif
3933 else
3934 {
3935 /* This is an address. The size of the address will be
24eab124 3936 determined later, depending on destination register,
3e73aa7c
JH
3937 suffix, or the default for the section. */
3938 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3939 }
3940
3941 return 1;
3942}
3943
551c1ca1 3944static char *i386_scale PARAMS ((char *));
252b5132 3945
551c1ca1 3946static char *
252b5132
RH
3947i386_scale (scale)
3948 char *scale;
3949{
551c1ca1
AM
3950 offsetT val;
3951 char *save = input_line_pointer;
252b5132 3952
551c1ca1
AM
3953 input_line_pointer = scale;
3954 val = get_absolute_expression ();
3955
3956 switch (val)
252b5132 3957 {
551c1ca1
AM
3958 case 0:
3959 case 1:
252b5132
RH
3960 i.log2_scale_factor = 0;
3961 break;
551c1ca1 3962 case 2:
252b5132
RH
3963 i.log2_scale_factor = 1;
3964 break;
551c1ca1 3965 case 4:
252b5132
RH
3966 i.log2_scale_factor = 2;
3967 break;
551c1ca1 3968 case 8:
252b5132
RH
3969 i.log2_scale_factor = 3;
3970 break;
3971 default:
252b5132 3972 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3973 scale);
551c1ca1
AM
3974 input_line_pointer = save;
3975 return NULL;
252b5132 3976 }
29b0f896 3977 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3978 {
3979 as_warn (_("scale factor of %d without an index register"),
24eab124 3980 1 << i.log2_scale_factor);
252b5132
RH
3981#if SCALE1_WHEN_NO_INDEX
3982 i.log2_scale_factor = 0;
3983#endif
3984 }
551c1ca1
AM
3985 scale = input_line_pointer;
3986 input_line_pointer = save;
3987 return scale;
252b5132
RH
3988}
3989
3990static int i386_displacement PARAMS ((char *, char *));
3991
3992static int
3993i386_displacement (disp_start, disp_end)
3994 char *disp_start;
3995 char *disp_end;
3996{
29b0f896 3997 expressionS *exp;
252b5132
RH
3998 segT exp_seg = 0;
3999 char *save_input_line_pointer;
f3c180ae
AM
4000#ifndef LEX_AT
4001 char *gotfree_input_line;
4002#endif
252b5132
RH
4003 int bigdisp = Disp32;
4004
3e73aa7c 4005 if (flag_code == CODE_64BIT)
7ecd2f8b 4006 {
29b0f896
AM
4007 if (i.prefix[ADDR_PREFIX] == 0)
4008 bigdisp = Disp64;
7ecd2f8b
JH
4009 }
4010 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4011 bigdisp = Disp16;
252b5132
RH
4012 i.types[this_operand] |= bigdisp;
4013
4014 exp = &disp_expressions[i.disp_operands];
520dc8e8 4015 i.op[this_operand].disps = exp;
252b5132
RH
4016 i.disp_operands++;
4017 save_input_line_pointer = input_line_pointer;
4018 input_line_pointer = disp_start;
4019 END_STRING_AND_SAVE (disp_end);
4020
4021#ifndef GCC_ASM_O_HACK
4022#define GCC_ASM_O_HACK 0
4023#endif
4024#if GCC_ASM_O_HACK
4025 END_STRING_AND_SAVE (disp_end + 1);
4026 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 4027 && displacement_string_end[-1] == '+')
252b5132
RH
4028 {
4029 /* This hack is to avoid a warning when using the "o"
24eab124
AM
4030 constraint within gcc asm statements.
4031 For instance:
4032
4033 #define _set_tssldt_desc(n,addr,limit,type) \
4034 __asm__ __volatile__ ( \
4035 "movw %w2,%0\n\t" \
4036 "movw %w1,2+%0\n\t" \
4037 "rorl $16,%1\n\t" \
4038 "movb %b1,4+%0\n\t" \
4039 "movb %4,5+%0\n\t" \
4040 "movb $0,6+%0\n\t" \
4041 "movb %h1,7+%0\n\t" \
4042 "rorl $16,%1" \
4043 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4044
4045 This works great except that the output assembler ends
4046 up looking a bit weird if it turns out that there is
4047 no offset. You end up producing code that looks like:
4048
4049 #APP
4050 movw $235,(%eax)
4051 movw %dx,2+(%eax)
4052 rorl $16,%edx
4053 movb %dl,4+(%eax)
4054 movb $137,5+(%eax)
4055 movb $0,6+(%eax)
4056 movb %dh,7+(%eax)
4057 rorl $16,%edx
4058 #NO_APP
4059
47926f60 4060 So here we provide the missing zero. */
24eab124
AM
4061
4062 *displacement_string_end = '0';
252b5132
RH
4063 }
4064#endif
4065#ifndef LEX_AT
f3c180ae
AM
4066 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4067 if (gotfree_input_line)
4068 input_line_pointer = gotfree_input_line;
252b5132
RH
4069#endif
4070
24eab124 4071 exp_seg = expression (exp);
252b5132 4072
636c26b0
AM
4073 SKIP_WHITESPACE ();
4074 if (*input_line_pointer)
4075 as_bad (_("junk `%s' after expression"), input_line_pointer);
4076#if GCC_ASM_O_HACK
4077 RESTORE_END_STRING (disp_end + 1);
4078#endif
4079 RESTORE_END_STRING (disp_end);
4080 input_line_pointer = save_input_line_pointer;
4081#ifndef LEX_AT
4082 if (gotfree_input_line)
4083 free (gotfree_input_line);
4084#endif
4085
24eab124
AM
4086 /* We do this to make sure that the section symbol is in
4087 the symbol table. We will ultimately change the relocation
47926f60 4088 to be relative to the beginning of the section. */
1ae12ab7
AM
4089 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4090 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 4091 {
636c26b0
AM
4092 if (exp->X_op != O_symbol)
4093 {
4094 as_bad (_("bad expression used with @%s"),
4095 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4096 ? "GOTPCREL"
4097 : "GOTOFF"));
4098 return 0;
4099 }
4100
e5cb08ac 4101 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
4102 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4103 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
4104 exp->X_op = O_subtract;
4105 exp->X_op_symbol = GOT_symbol;
1ae12ab7 4106 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 4107 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 4108 else
29b0f896 4109 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 4110 }
252b5132 4111
2daf4fd8
AM
4112 if (exp->X_op == O_absent || exp->X_op == O_big)
4113 {
47926f60 4114 /* Missing or bad expr becomes absolute 0. */
d0b47220 4115 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
4116 disp_start);
4117 exp->X_op = O_constant;
4118 exp->X_add_number = 0;
4119 exp->X_add_symbol = (symbolS *) 0;
4120 exp->X_op_symbol = (symbolS *) 0;
4121 }
4122
4c63da97 4123#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 4124 if (exp->X_op != O_constant
45288df1 4125 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4126 && exp_seg != absolute_section
45288df1
AM
4127 && exp_seg != text_section
4128 && exp_seg != data_section
4129 && exp_seg != bss_section
31312f95 4130 && exp_seg != undefined_section
f86103b7 4131 && !bfd_is_com_section (exp_seg))
24eab124 4132 {
d0b47220 4133 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
4134 return 0;
4135 }
252b5132 4136#endif
3e73aa7c
JH
4137 else if (flag_code == CODE_64BIT)
4138 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
4139 return 1;
4140}
4141
e5cb08ac 4142static int i386_index_check PARAMS ((const char *));
252b5132 4143
eecb386c 4144/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
4145 Return 1 on success, 0 on a failure. */
4146
252b5132 4147static int
eecb386c
AM
4148i386_index_check (operand_string)
4149 const char *operand_string;
252b5132 4150{
3e73aa7c 4151 int ok;
24eab124 4152#if INFER_ADDR_PREFIX
eecb386c
AM
4153 int fudged = 0;
4154
24eab124
AM
4155 tryprefix:
4156#endif
3e73aa7c 4157 ok = 1;
20f0a1fc
NC
4158 if (flag_code == CODE_64BIT)
4159 {
4160 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4161
4162 if ((i.base_reg
4163 && ((i.base_reg->reg_type & RegXX) == 0)
4164 && (i.base_reg->reg_type != BaseIndex
4165 || i.index_reg))
4166 || (i.index_reg
4167 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4168 != (RegXX | BaseIndex))))
4169 ok = 0;
3e73aa7c
JH
4170 }
4171 else
4172 {
4173 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4174 {
4175 /* 16bit checks. */
4176 if ((i.base_reg
29b0f896
AM
4177 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4178 != (Reg16 | BaseIndex)))
3e73aa7c 4179 || (i.index_reg
29b0f896
AM
4180 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4181 != (Reg16 | BaseIndex))
4182 || !(i.base_reg
4183 && i.base_reg->reg_num < 6
4184 && i.index_reg->reg_num >= 6
4185 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4186 ok = 0;
4187 }
4188 else
e5cb08ac 4189 {
3e73aa7c
JH
4190 /* 32bit checks. */
4191 if ((i.base_reg
4192 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4193 || (i.index_reg
29b0f896
AM
4194 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4195 != (Reg32 | BaseIndex))))
e5cb08ac 4196 ok = 0;
3e73aa7c
JH
4197 }
4198 }
4199 if (!ok)
24eab124
AM
4200 {
4201#if INFER_ADDR_PREFIX
20f0a1fc 4202 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4203 {
4204 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4205 i.prefixes += 1;
b23bac36
AM
4206 /* Change the size of any displacement too. At most one of
4207 Disp16 or Disp32 is set.
4208 FIXME. There doesn't seem to be any real need for separate
4209 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4210 Removing them would probably clean up the code quite a lot. */
20f0a1fc 4211 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
29b0f896 4212 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4213 fudged = 1;
24eab124
AM
4214 goto tryprefix;
4215 }
eecb386c
AM
4216 if (fudged)
4217 as_bad (_("`%s' is not a valid base/index expression"),
4218 operand_string);
4219 else
c388dee8 4220#endif
eecb386c
AM
4221 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4222 operand_string,
3e73aa7c 4223 flag_code_names[flag_code]);
24eab124 4224 }
20f0a1fc 4225 return ok;
24eab124 4226}
252b5132 4227
252b5132 4228/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4229 on error. */
252b5132 4230
252b5132
RH
4231static int
4232i386_operand (operand_string)
4233 char *operand_string;
4234{
af6bdddf
AM
4235 const reg_entry *r;
4236 char *end_op;
24eab124 4237 char *op_string = operand_string;
252b5132 4238
24eab124 4239 if (is_space_char (*op_string))
252b5132
RH
4240 ++op_string;
4241
24eab124 4242 /* We check for an absolute prefix (differentiating,
47926f60 4243 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4244 if (*op_string == ABSOLUTE_PREFIX)
4245 {
4246 ++op_string;
4247 if (is_space_char (*op_string))
4248 ++op_string;
4249 i.types[this_operand] |= JumpAbsolute;
4250 }
252b5132 4251
47926f60 4252 /* Check if operand is a register. */
af6bdddf
AM
4253 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4254 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4255 {
24eab124
AM
4256 /* Check for a segment override by searching for ':' after a
4257 segment register. */
4258 op_string = end_op;
4259 if (is_space_char (*op_string))
4260 ++op_string;
4261 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4262 {
4263 switch (r->reg_num)
4264 {
4265 case 0:
4266 i.seg[i.mem_operands] = &es;
4267 break;
4268 case 1:
4269 i.seg[i.mem_operands] = &cs;
4270 break;
4271 case 2:
4272 i.seg[i.mem_operands] = &ss;
4273 break;
4274 case 3:
4275 i.seg[i.mem_operands] = &ds;
4276 break;
4277 case 4:
4278 i.seg[i.mem_operands] = &fs;
4279 break;
4280 case 5:
4281 i.seg[i.mem_operands] = &gs;
4282 break;
4283 }
252b5132 4284
24eab124 4285 /* Skip the ':' and whitespace. */
252b5132
RH
4286 ++op_string;
4287 if (is_space_char (*op_string))
24eab124 4288 ++op_string;
252b5132 4289
24eab124
AM
4290 if (!is_digit_char (*op_string)
4291 && !is_identifier_char (*op_string)
4292 && *op_string != '('
4293 && *op_string != ABSOLUTE_PREFIX)
4294 {
4295 as_bad (_("bad memory operand `%s'"), op_string);
4296 return 0;
4297 }
47926f60 4298 /* Handle case of %es:*foo. */
24eab124
AM
4299 if (*op_string == ABSOLUTE_PREFIX)
4300 {
4301 ++op_string;
4302 if (is_space_char (*op_string))
4303 ++op_string;
4304 i.types[this_operand] |= JumpAbsolute;
4305 }
4306 goto do_memory_reference;
4307 }
4308 if (*op_string)
4309 {
d0b47220 4310 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4311 return 0;
4312 }
4313 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4314 i.op[this_operand].regs = r;
24eab124
AM
4315 i.reg_operands++;
4316 }
af6bdddf
AM
4317 else if (*op_string == REGISTER_PREFIX)
4318 {
4319 as_bad (_("bad register name `%s'"), op_string);
4320 return 0;
4321 }
24eab124 4322 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4323 {
24eab124
AM
4324 ++op_string;
4325 if (i.types[this_operand] & JumpAbsolute)
4326 {
d0b47220 4327 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4328 return 0;
4329 }
4330 if (!i386_immediate (op_string))
4331 return 0;
4332 }
4333 else if (is_digit_char (*op_string)
4334 || is_identifier_char (*op_string)
e5cb08ac 4335 || *op_string == '(')
24eab124 4336 {
47926f60 4337 /* This is a memory reference of some sort. */
af6bdddf 4338 char *base_string;
252b5132 4339
47926f60 4340 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4341 char *displacement_string_start;
4342 char *displacement_string_end;
252b5132 4343
24eab124 4344 do_memory_reference:
24eab124
AM
4345 if ((i.mem_operands == 1
4346 && (current_templates->start->opcode_modifier & IsString) == 0)
4347 || i.mem_operands == 2)
4348 {
4349 as_bad (_("too many memory references for `%s'"),
4350 current_templates->start->name);
4351 return 0;
4352 }
252b5132 4353
24eab124
AM
4354 /* Check for base index form. We detect the base index form by
4355 looking for an ')' at the end of the operand, searching
4356 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4357 after the '('. */
af6bdddf 4358 base_string = op_string + strlen (op_string);
c3332e24 4359
af6bdddf
AM
4360 --base_string;
4361 if (is_space_char (*base_string))
4362 --base_string;
252b5132 4363
47926f60 4364 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4365 displacement_string_start = op_string;
4366 displacement_string_end = base_string + 1;
252b5132 4367
24eab124
AM
4368 if (*base_string == ')')
4369 {
af6bdddf 4370 char *temp_string;
24eab124
AM
4371 unsigned int parens_balanced = 1;
4372 /* We've already checked that the number of left & right ()'s are
47926f60 4373 equal, so this loop will not be infinite. */
24eab124
AM
4374 do
4375 {
4376 base_string--;
4377 if (*base_string == ')')
4378 parens_balanced++;
4379 if (*base_string == '(')
4380 parens_balanced--;
4381 }
4382 while (parens_balanced);
c3332e24 4383
af6bdddf 4384 temp_string = base_string;
c3332e24 4385
24eab124 4386 /* Skip past '(' and whitespace. */
252b5132
RH
4387 ++base_string;
4388 if (is_space_char (*base_string))
24eab124 4389 ++base_string;
252b5132 4390
af6bdddf
AM
4391 if (*base_string == ','
4392 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4393 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4394 {
af6bdddf 4395 displacement_string_end = temp_string;
252b5132 4396
af6bdddf 4397 i.types[this_operand] |= BaseIndex;
252b5132 4398
af6bdddf 4399 if (i.base_reg)
24eab124 4400 {
24eab124
AM
4401 base_string = end_op;
4402 if (is_space_char (*base_string))
4403 ++base_string;
af6bdddf
AM
4404 }
4405
4406 /* There may be an index reg or scale factor here. */
4407 if (*base_string == ',')
4408 {
4409 ++base_string;
4410 if (is_space_char (*base_string))
4411 ++base_string;
4412
4413 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4414 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4415 {
af6bdddf 4416 base_string = end_op;
24eab124
AM
4417 if (is_space_char (*base_string))
4418 ++base_string;
af6bdddf
AM
4419 if (*base_string == ',')
4420 {
4421 ++base_string;
4422 if (is_space_char (*base_string))
4423 ++base_string;
4424 }
e5cb08ac 4425 else if (*base_string != ')')
af6bdddf
AM
4426 {
4427 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4428 operand_string);
4429 return 0;
4430 }
24eab124 4431 }
af6bdddf 4432 else if (*base_string == REGISTER_PREFIX)
24eab124 4433 {
af6bdddf 4434 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4435 return 0;
4436 }
252b5132 4437
47926f60 4438 /* Check for scale factor. */
551c1ca1 4439 if (*base_string != ')')
af6bdddf 4440 {
551c1ca1
AM
4441 char *end_scale = i386_scale (base_string);
4442
4443 if (!end_scale)
af6bdddf 4444 return 0;
24eab124 4445
551c1ca1 4446 base_string = end_scale;
af6bdddf
AM
4447 if (is_space_char (*base_string))
4448 ++base_string;
4449 if (*base_string != ')')
4450 {
4451 as_bad (_("expecting `)' after scale factor in `%s'"),
4452 operand_string);
4453 return 0;
4454 }
4455 }
4456 else if (!i.index_reg)
24eab124 4457 {
af6bdddf
AM
4458 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4459 *base_string);
24eab124
AM
4460 return 0;
4461 }
4462 }
af6bdddf 4463 else if (*base_string != ')')
24eab124 4464 {
af6bdddf
AM
4465 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4466 operand_string);
24eab124
AM
4467 return 0;
4468 }
c3332e24 4469 }
af6bdddf 4470 else if (*base_string == REGISTER_PREFIX)
c3332e24 4471 {
af6bdddf 4472 as_bad (_("bad register name `%s'"), base_string);
24eab124 4473 return 0;
c3332e24 4474 }
24eab124
AM
4475 }
4476
4477 /* If there's an expression beginning the operand, parse it,
4478 assuming displacement_string_start and
4479 displacement_string_end are meaningful. */
4480 if (displacement_string_start != displacement_string_end)
4481 {
4482 if (!i386_displacement (displacement_string_start,
4483 displacement_string_end))
4484 return 0;
4485 }
4486
4487 /* Special case for (%dx) while doing input/output op. */
4488 if (i.base_reg
4489 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4490 && i.index_reg == 0
4491 && i.log2_scale_factor == 0
4492 && i.seg[i.mem_operands] == 0
4493 && (i.types[this_operand] & Disp) == 0)
4494 {
4495 i.types[this_operand] = InOutPortReg;
4496 return 1;
4497 }
4498
eecb386c
AM
4499 if (i386_index_check (operand_string) == 0)
4500 return 0;
24eab124
AM
4501 i.mem_operands++;
4502 }
4503 else
ce8a8b2f
AM
4504 {
4505 /* It's not a memory operand; argh! */
24eab124
AM
4506 as_bad (_("invalid char %s beginning operand %d `%s'"),
4507 output_invalid (*op_string),
4508 this_operand + 1,
4509 op_string);
4510 return 0;
4511 }
47926f60 4512 return 1; /* Normal return. */
252b5132
RH
4513}
4514\f
ee7fcc42
AM
4515/* md_estimate_size_before_relax()
4516
4517 Called just before relax() for rs_machine_dependent frags. The x86
4518 assembler uses these frags to handle variable size jump
4519 instructions.
4520
4521 Any symbol that is now undefined will not become defined.
4522 Return the correct fr_subtype in the frag.
4523 Return the initial "guess for variable size of frag" to caller.
4524 The guess is actually the growth beyond the fixed part. Whatever
4525 we do to grow the fixed or variable part contributes to our
4526 returned value. */
4527
252b5132
RH
4528int
4529md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4530 fragS *fragP;
4531 segT segment;
252b5132 4532{
252b5132 4533 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4534 check for un-relaxable symbols. On an ELF system, we can't relax
4535 an externally visible symbol, because it may be overridden by a
4536 shared library. */
4537 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4538#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4539 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4540 && (S_IS_EXTERNAL (fragP->fr_symbol)
4541 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4542#endif
4543 )
252b5132 4544 {
b98ef147
AM
4545 /* Symbol is undefined in this segment, or we need to keep a
4546 reloc so that weak symbols can be overridden. */
4547 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 4548 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
4549 unsigned char *opcode;
4550 int old_fr_fix;
f6af82bd 4551
ee7fcc42
AM
4552 if (fragP->fr_var != NO_RELOC)
4553 reloc_type = fragP->fr_var;
b98ef147 4554 else if (size == 2)
f6af82bd
AM
4555 reloc_type = BFD_RELOC_16_PCREL;
4556 else
4557 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4558
ee7fcc42
AM
4559 old_fr_fix = fragP->fr_fix;
4560 opcode = (unsigned char *) fragP->fr_opcode;
4561
fddf5b5b 4562 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4563 {
fddf5b5b
AM
4564 case UNCOND_JUMP:
4565 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4566 opcode[0] = 0xe9;
252b5132 4567 fragP->fr_fix += size;
062cd5e7
AS
4568 fix_new (fragP, old_fr_fix, size,
4569 fragP->fr_symbol,
4570 fragP->fr_offset, 1,
4571 reloc_type);
252b5132
RH
4572 break;
4573
fddf5b5b 4574 case COND_JUMP86:
412167cb
AM
4575 if (size == 2
4576 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4577 {
4578 /* Negate the condition, and branch past an
4579 unconditional jump. */
4580 opcode[0] ^= 1;
4581 opcode[1] = 3;
4582 /* Insert an unconditional jump. */
4583 opcode[2] = 0xe9;
4584 /* We added two extra opcode bytes, and have a two byte
4585 offset. */
4586 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4587 fix_new (fragP, old_fr_fix + 2, 2,
4588 fragP->fr_symbol,
4589 fragP->fr_offset, 1,
4590 reloc_type);
fddf5b5b
AM
4591 break;
4592 }
4593 /* Fall through. */
4594
4595 case COND_JUMP:
412167cb
AM
4596 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4597 {
3e02c1cc
AM
4598 fixS *fixP;
4599
412167cb 4600 fragP->fr_fix += 1;
3e02c1cc
AM
4601 fixP = fix_new (fragP, old_fr_fix, 1,
4602 fragP->fr_symbol,
4603 fragP->fr_offset, 1,
4604 BFD_RELOC_8_PCREL);
4605 fixP->fx_signed = 1;
412167cb
AM
4606 break;
4607 }
93c2a809 4608
24eab124 4609 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4610 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4611 opcode[1] = opcode[0] + 0x10;
f6af82bd 4612 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4613 /* We've added an opcode byte. */
4614 fragP->fr_fix += 1 + size;
062cd5e7
AS
4615 fix_new (fragP, old_fr_fix + 1, size,
4616 fragP->fr_symbol,
4617 fragP->fr_offset, 1,
4618 reloc_type);
252b5132 4619 break;
fddf5b5b
AM
4620
4621 default:
4622 BAD_CASE (fragP->fr_subtype);
4623 break;
252b5132
RH
4624 }
4625 frag_wane (fragP);
ee7fcc42 4626 return fragP->fr_fix - old_fr_fix;
252b5132 4627 }
93c2a809 4628
93c2a809
AM
4629 /* Guess size depending on current relax state. Initially the relax
4630 state will correspond to a short jump and we return 1, because
4631 the variable part of the frag (the branch offset) is one byte
4632 long. However, we can relax a section more than once and in that
4633 case we must either set fr_subtype back to the unrelaxed state,
4634 or return the value for the appropriate branch. */
4635 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4636}
4637
47926f60
KH
4638/* Called after relax() is finished.
4639
4640 In: Address of frag.
4641 fr_type == rs_machine_dependent.
4642 fr_subtype is what the address relaxed to.
4643
4644 Out: Any fixSs and constants are set up.
4645 Caller will turn frag into a ".space 0". */
4646
252b5132
RH
4647void
4648md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4649 bfd *abfd ATTRIBUTE_UNUSED;
4650 segT sec ATTRIBUTE_UNUSED;
29b0f896 4651 fragS *fragP;
252b5132 4652{
29b0f896 4653 unsigned char *opcode;
252b5132 4654 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4655 offsetT target_address;
4656 offsetT opcode_address;
252b5132 4657 unsigned int extension = 0;
847f7ad4 4658 offsetT displacement_from_opcode_start;
252b5132
RH
4659
4660 opcode = (unsigned char *) fragP->fr_opcode;
4661
47926f60 4662 /* Address we want to reach in file space. */
252b5132 4663 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4664
47926f60 4665 /* Address opcode resides at in file space. */
252b5132
RH
4666 opcode_address = fragP->fr_address + fragP->fr_fix;
4667
47926f60 4668 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4669 displacement_from_opcode_start = target_address - opcode_address;
4670
fddf5b5b 4671 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4672 {
47926f60
KH
4673 /* Don't have to change opcode. */
4674 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4675 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4676 }
4677 else
4678 {
4679 if (no_cond_jump_promotion
4680 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4681 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4682
fddf5b5b
AM
4683 switch (fragP->fr_subtype)
4684 {
4685 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4686 extension = 4; /* 1 opcode + 4 displacement */
4687 opcode[0] = 0xe9;
4688 where_to_put_displacement = &opcode[1];
4689 break;
252b5132 4690
fddf5b5b
AM
4691 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4692 extension = 2; /* 1 opcode + 2 displacement */
4693 opcode[0] = 0xe9;
4694 where_to_put_displacement = &opcode[1];
4695 break;
252b5132 4696
fddf5b5b
AM
4697 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4698 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4699 extension = 5; /* 2 opcode + 4 displacement */
4700 opcode[1] = opcode[0] + 0x10;
4701 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4702 where_to_put_displacement = &opcode[2];
4703 break;
252b5132 4704
fddf5b5b
AM
4705 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4706 extension = 3; /* 2 opcode + 2 displacement */
4707 opcode[1] = opcode[0] + 0x10;
4708 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4709 where_to_put_displacement = &opcode[2];
4710 break;
252b5132 4711
fddf5b5b
AM
4712 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4713 extension = 4;
4714 opcode[0] ^= 1;
4715 opcode[1] = 3;
4716 opcode[2] = 0xe9;
4717 where_to_put_displacement = &opcode[3];
4718 break;
4719
4720 default:
4721 BAD_CASE (fragP->fr_subtype);
4722 break;
4723 }
252b5132 4724 }
fddf5b5b 4725
47926f60 4726 /* Now put displacement after opcode. */
252b5132
RH
4727 md_number_to_chars ((char *) where_to_put_displacement,
4728 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4729 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4730 fragP->fr_fix += extension;
4731}
4732\f
47926f60
KH
4733/* Size of byte displacement jmp. */
4734int md_short_jump_size = 2;
4735
4736/* Size of dword displacement jmp. */
4737int md_long_jump_size = 5;
252b5132 4738
47926f60
KH
4739/* Size of relocation record. */
4740const int md_reloc_size = 8;
252b5132
RH
4741
4742void
4743md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4744 char *ptr;
4745 addressT from_addr, to_addr;
ab9da554
ILT
4746 fragS *frag ATTRIBUTE_UNUSED;
4747 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4748{
847f7ad4 4749 offsetT offset;
252b5132
RH
4750
4751 offset = to_addr - (from_addr + 2);
47926f60
KH
4752 /* Opcode for byte-disp jump. */
4753 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4754 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4755}
4756
4757void
4758md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4759 char *ptr;
4760 addressT from_addr, to_addr;
a38cf1db
AM
4761 fragS *frag ATTRIBUTE_UNUSED;
4762 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4763{
847f7ad4 4764 offsetT offset;
252b5132 4765
a38cf1db
AM
4766 offset = to_addr - (from_addr + 5);
4767 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4768 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4769}
4770\f
4771/* Apply a fixup (fixS) to segment data, once it has been determined
4772 by our caller that we have all the info we need to fix it up.
4773
4774 On the 386, immediates, displacements, and data pointers are all in
4775 the same (little-endian) format, so we don't need to care about which
4776 we are handling. */
4777
94f592af
NC
4778void
4779md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4780 /* The fix we're to put in. */
4781 fixS *fixP;
47926f60 4782 /* Pointer to the value of the bits. */
c6682705 4783 valueT *valP;
47926f60
KH
4784 /* Segment fix is from. */
4785 segT seg ATTRIBUTE_UNUSED;
252b5132 4786{
94f592af 4787 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4788 valueT value = *valP;
252b5132 4789
f86103b7 4790#if !defined (TE_Mach)
93382f6d
AM
4791 if (fixP->fx_pcrel)
4792 {
4793 switch (fixP->fx_r_type)
4794 {
5865bb77
ILT
4795 default:
4796 break;
4797
93382f6d
AM
4798 case BFD_RELOC_32:
4799 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4800 break;
4801 case BFD_RELOC_16:
4802 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4803 break;
4804 case BFD_RELOC_8:
4805 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4806 break;
4807 }
4808 }
252b5132 4809
a161fe53 4810 if (fixP->fx_addsy != NULL
31312f95
AM
4811 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4812 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4813 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4814 && !use_rela_relocations)
252b5132 4815 {
31312f95
AM
4816 /* This is a hack. There should be a better way to handle this.
4817 This covers for the fact that bfd_install_relocation will
4818 subtract the current location (for partial_inplace, PC relative
4819 relocations); see more below. */
252b5132
RH
4820#ifndef OBJ_AOUT
4821 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4822#ifdef TE_PE
4823 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4824#endif
4825 )
4826 value += fixP->fx_where + fixP->fx_frag->fr_address;
4827#endif
4828#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4829 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4830 {
6539b54b 4831 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4832
6539b54b 4833 if ((sym_seg == seg
2f66722d 4834 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4835 && sym_seg != absolute_section))
ae6063d4 4836 && !generic_force_reloc (fixP))
2f66722d
AM
4837 {
4838 /* Yes, we add the values in twice. This is because
6539b54b
AM
4839 bfd_install_relocation subtracts them out again. I think
4840 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4841 it. FIXME. */
4842 value += fixP->fx_where + fixP->fx_frag->fr_address;
4843 }
252b5132
RH
4844 }
4845#endif
4846#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
4847 /* For some reason, the PE format does not store a
4848 section address offset for a PC relative symbol. */
4849 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4850#if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4851 || S_IS_WEAK (fixP->fx_addsy)
4852#endif
4853 )
252b5132
RH
4854 value += md_pcrel_from (fixP);
4855#endif
4856 }
4857
4858 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 4859 and we must not disappoint it. */
252b5132
RH
4860#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4861 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4862 && fixP->fx_addsy)
47926f60
KH
4863 switch (fixP->fx_r_type)
4864 {
4865 case BFD_RELOC_386_PLT32:
3e73aa7c 4866 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4867 /* Make the jump instruction point to the address of the operand. At
4868 runtime we merely add the offset to the actual PLT entry. */
4869 value = -4;
4870 break;
31312f95 4871
13ae64f3
JJ
4872 case BFD_RELOC_386_TLS_GD:
4873 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4874 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4875 case BFD_RELOC_386_TLS_IE:
4876 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4877 case BFD_RELOC_X86_64_TLSGD:
4878 case BFD_RELOC_X86_64_TLSLD:
4879 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4880 value = 0; /* Fully resolved at runtime. No addend. */
4881 /* Fallthrough */
4882 case BFD_RELOC_386_TLS_LE:
4883 case BFD_RELOC_386_TLS_LDO_32:
4884 case BFD_RELOC_386_TLS_LE_32:
4885 case BFD_RELOC_X86_64_DTPOFF32:
4886 case BFD_RELOC_X86_64_TPOFF32:
4887 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4888 break;
4889
4890 case BFD_RELOC_386_GOT32:
4891 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4892 value = 0; /* Fully resolved at runtime. No addend. */
4893 break;
47926f60
KH
4894
4895 case BFD_RELOC_VTABLE_INHERIT:
4896 case BFD_RELOC_VTABLE_ENTRY:
4897 fixP->fx_done = 0;
94f592af 4898 return;
47926f60
KH
4899
4900 default:
4901 break;
4902 }
4903#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4904 *valP = value;
f86103b7 4905#endif /* !defined (TE_Mach) */
3e73aa7c 4906
3e73aa7c 4907 /* Are we finished with this relocation now? */
c6682705 4908 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
4909 fixP->fx_done = 1;
4910 else if (use_rela_relocations)
4911 {
4912 fixP->fx_no_overflow = 1;
062cd5e7
AS
4913 /* Remember value for tc_gen_reloc. */
4914 fixP->fx_addnumber = value;
3e73aa7c
JH
4915 value = 0;
4916 }
f86103b7 4917
94f592af 4918 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4919}
252b5132 4920\f
252b5132
RH
4921#define MAX_LITTLENUMS 6
4922
47926f60
KH
4923/* Turn the string pointed to by litP into a floating point constant
4924 of type TYPE, and emit the appropriate bytes. The number of
4925 LITTLENUMS emitted is stored in *SIZEP. An error message is
4926 returned, or NULL on OK. */
4927
252b5132
RH
4928char *
4929md_atof (type, litP, sizeP)
2ab9b79e 4930 int type;
252b5132
RH
4931 char *litP;
4932 int *sizeP;
4933{
4934 int prec;
4935 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4936 LITTLENUM_TYPE *wordP;
4937 char *t;
4938
4939 switch (type)
4940 {
4941 case 'f':
4942 case 'F':
4943 prec = 2;
4944 break;
4945
4946 case 'd':
4947 case 'D':
4948 prec = 4;
4949 break;
4950
4951 case 'x':
4952 case 'X':
4953 prec = 5;
4954 break;
4955
4956 default:
4957 *sizeP = 0;
4958 return _("Bad call to md_atof ()");
4959 }
4960 t = atof_ieee (input_line_pointer, type, words);
4961 if (t)
4962 input_line_pointer = t;
4963
4964 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4965 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4966 the bigendian 386. */
4967 for (wordP = words + prec - 1; prec--;)
4968 {
4969 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4970 litP += sizeof (LITTLENUM_TYPE);
4971 }
4972 return 0;
4973}
4974\f
4975char output_invalid_buf[8];
4976
252b5132
RH
4977static char *
4978output_invalid (c)
4979 int c;
4980{
3882b010 4981 if (ISPRINT (c))
252b5132
RH
4982 sprintf (output_invalid_buf, "'%c'", c);
4983 else
4984 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4985 return output_invalid_buf;
4986}
4987
af6bdddf 4988/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4989
4990static const reg_entry *
4991parse_register (reg_string, end_op)
4992 char *reg_string;
4993 char **end_op;
4994{
af6bdddf
AM
4995 char *s = reg_string;
4996 char *p;
252b5132
RH
4997 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4998 const reg_entry *r;
4999
5000 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5001 if (*s == REGISTER_PREFIX)
5002 ++s;
5003
5004 if (is_space_char (*s))
5005 ++s;
5006
5007 p = reg_name_given;
af6bdddf 5008 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
5009 {
5010 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
5011 return (const reg_entry *) NULL;
5012 s++;
252b5132
RH
5013 }
5014
6588847e
DN
5015 /* For naked regs, make sure that we are not dealing with an identifier.
5016 This prevents confusing an identifier like `eax_var' with register
5017 `eax'. */
5018 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5019 return (const reg_entry *) NULL;
5020
af6bdddf 5021 *end_op = s;
252b5132
RH
5022
5023 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5024
5f47d35b 5025 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 5026 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 5027 {
5f47d35b
AM
5028 if (is_space_char (*s))
5029 ++s;
5030 if (*s == '(')
5031 {
af6bdddf 5032 ++s;
5f47d35b
AM
5033 if (is_space_char (*s))
5034 ++s;
5035 if (*s >= '0' && *s <= '7')
5036 {
5037 r = &i386_float_regtab[*s - '0'];
af6bdddf 5038 ++s;
5f47d35b
AM
5039 if (is_space_char (*s))
5040 ++s;
5041 if (*s == ')')
5042 {
5043 *end_op = s + 1;
5044 return r;
5045 }
5f47d35b 5046 }
47926f60 5047 /* We have "%st(" then garbage. */
5f47d35b
AM
5048 return (const reg_entry *) NULL;
5049 }
5050 }
5051
1ae00879 5052 if (r != NULL
20f0a1fc 5053 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
1ae00879 5054 && flag_code != CODE_64BIT)
20f0a1fc 5055 return (const reg_entry *) NULL;
1ae00879 5056
252b5132
RH
5057 return r;
5058}
5059\f
4cc782b5 5060#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 5061const char *md_shortopts = "kVQ:sqn";
252b5132 5062#else
12b55ccc 5063const char *md_shortopts = "qn";
252b5132 5064#endif
6e0b89ee 5065
252b5132 5066struct option md_longopts[] = {
3e73aa7c
JH
5067#define OPTION_32 (OPTION_MD_BASE + 0)
5068 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 5069#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
5070#define OPTION_64 (OPTION_MD_BASE + 1)
5071 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 5072#endif
252b5132
RH
5073 {NULL, no_argument, NULL, 0}
5074};
5075size_t md_longopts_size = sizeof (md_longopts);
5076
5077int
5078md_parse_option (c, arg)
5079 int c;
ab9da554 5080 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
5081{
5082 switch (c)
5083 {
12b55ccc
L
5084 case 'n':
5085 optimize_align_code = 0;
5086 break;
5087
a38cf1db
AM
5088 case 'q':
5089 quiet_warnings = 1;
252b5132
RH
5090 break;
5091
5092#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
5093 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5094 should be emitted or not. FIXME: Not implemented. */
5095 case 'Q':
252b5132
RH
5096 break;
5097
5098 /* -V: SVR4 argument to print version ID. */
5099 case 'V':
5100 print_version_id ();
5101 break;
5102
a38cf1db
AM
5103 /* -k: Ignore for FreeBSD compatibility. */
5104 case 'k':
252b5132 5105 break;
4cc782b5
ILT
5106
5107 case 's':
5108 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 5109 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 5110 break;
6e0b89ee 5111
3e73aa7c
JH
5112 case OPTION_64:
5113 {
5114 const char **list, **l;
5115
3e73aa7c
JH
5116 list = bfd_target_list ();
5117 for (l = list; *l != NULL; l++)
6e0b89ee
AM
5118 if (strcmp (*l, "elf64-x86-64") == 0)
5119 {
5120 default_arch = "x86_64";
5121 break;
5122 }
3e73aa7c 5123 if (*l == NULL)
6e0b89ee 5124 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
5125 free (list);
5126 }
5127 break;
5128#endif
252b5132 5129
6e0b89ee
AM
5130 case OPTION_32:
5131 default_arch = "i386";
5132 break;
5133
252b5132
RH
5134 default:
5135 return 0;
5136 }
5137 return 1;
5138}
5139
5140void
5141md_show_usage (stream)
5142 FILE *stream;
5143{
4cc782b5
ILT
5144#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5145 fprintf (stream, _("\
a38cf1db
AM
5146 -Q ignored\n\
5147 -V print assembler version number\n\
5148 -k ignored\n\
12b55ccc 5149 -n Do not optimize code alignment\n\
a38cf1db
AM
5150 -q quieten some warnings\n\
5151 -s ignored\n"));
5152#else
5153 fprintf (stream, _("\
12b55ccc 5154 -n Do not optimize code alignment\n\
a38cf1db 5155 -q quieten some warnings\n"));
4cc782b5 5156#endif
252b5132
RH
5157}
5158
3e73aa7c
JH
5159#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5160 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5161
5162/* Pick the target format to use. */
5163
47926f60 5164const char *
252b5132
RH
5165i386_target_format ()
5166{
3e73aa7c
JH
5167 if (!strcmp (default_arch, "x86_64"))
5168 set_code_flag (CODE_64BIT);
5169 else if (!strcmp (default_arch, "i386"))
5170 set_code_flag (CODE_32BIT);
5171 else
5172 as_fatal (_("Unknown architecture"));
252b5132
RH
5173 switch (OUTPUT_FLAVOR)
5174 {
4c63da97
AM
5175#ifdef OBJ_MAYBE_AOUT
5176 case bfd_target_aout_flavour:
47926f60 5177 return AOUT_TARGET_FORMAT;
4c63da97
AM
5178#endif
5179#ifdef OBJ_MAYBE_COFF
252b5132
RH
5180 case bfd_target_coff_flavour:
5181 return "coff-i386";
4c63da97 5182#endif
3e73aa7c 5183#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5184 case bfd_target_elf_flavour:
3e73aa7c 5185 {
e5cb08ac
KH
5186 if (flag_code == CODE_64BIT)
5187 use_rela_relocations = 1;
4ada7262 5188 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5189 }
4c63da97 5190#endif
252b5132
RH
5191 default:
5192 abort ();
5193 return NULL;
5194 }
5195}
5196
47926f60 5197#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5198
5199#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5200void i386_elf_emit_arch_note ()
5201{
5202 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5203 && cpu_arch_name != NULL)
5204 {
5205 char *p;
5206 asection *seg = now_seg;
5207 subsegT subseg = now_subseg;
5208 Elf_Internal_Note i_note;
5209 Elf_External_Note e_note;
5210 asection *note_secp;
5211 int len;
5212
5213 /* Create the .note section. */
5214 note_secp = subseg_new (".note", 0);
5215 bfd_set_section_flags (stdoutput,
5216 note_secp,
5217 SEC_HAS_CONTENTS | SEC_READONLY);
5218
5219 /* Process the arch string. */
5220 len = strlen (cpu_arch_name);
5221
5222 i_note.namesz = len + 1;
5223 i_note.descsz = 0;
5224 i_note.type = NT_ARCH;
5225 p = frag_more (sizeof (e_note.namesz));
5226 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5227 p = frag_more (sizeof (e_note.descsz));
5228 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5229 p = frag_more (sizeof (e_note.type));
5230 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5231 p = frag_more (len + 1);
5232 strcpy (p, cpu_arch_name);
5233
5234 frag_align (2, 0, 0);
5235
5236 subseg_set (seg, subseg);
5237 }
5238}
5239#endif
252b5132 5240\f
252b5132
RH
5241symbolS *
5242md_undefined_symbol (name)
5243 char *name;
5244{
18dc2407
ILT
5245 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5246 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5247 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5248 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5249 {
5250 if (!GOT_symbol)
5251 {
5252 if (symbol_find (name))
5253 as_bad (_("GOT already in symbol table"));
5254 GOT_symbol = symbol_new (name, undefined_section,
5255 (valueT) 0, &zero_address_frag);
5256 };
5257 return GOT_symbol;
5258 }
252b5132
RH
5259 return 0;
5260}
5261
5262/* Round up a section size to the appropriate boundary. */
47926f60 5263
252b5132
RH
5264valueT
5265md_section_align (segment, size)
ab9da554 5266 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5267 valueT size;
5268{
4c63da97
AM
5269#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5270 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5271 {
5272 /* For a.out, force the section size to be aligned. If we don't do
5273 this, BFD will align it for us, but it will not write out the
5274 final bytes of the section. This may be a bug in BFD, but it is
5275 easier to fix it here since that is how the other a.out targets
5276 work. */
5277 int align;
5278
5279 align = bfd_get_section_alignment (stdoutput, segment);
5280 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5281 }
252b5132
RH
5282#endif
5283
5284 return size;
5285}
5286
5287/* On the i386, PC-relative offsets are relative to the start of the
5288 next instruction. That is, the address of the offset, plus its
5289 size, since the offset is always the last part of the insn. */
5290
5291long
5292md_pcrel_from (fixP)
5293 fixS *fixP;
5294{
5295 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5296}
5297
5298#ifndef I386COFF
5299
5300static void
5301s_bss (ignore)
ab9da554 5302 int ignore ATTRIBUTE_UNUSED;
252b5132 5303{
29b0f896 5304 int temp;
252b5132
RH
5305
5306 temp = get_absolute_expression ();
5307 subseg_set (bss_section, (subsegT) temp);
5308 demand_empty_rest_of_line ();
5309}
5310
5311#endif
5312
252b5132
RH
5313void
5314i386_validate_fix (fixp)
5315 fixS *fixp;
5316{
5317 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5318 {
3e73aa7c 5319 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5320 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5321 {
5322 if (flag_code != CODE_64BIT)
5323 abort ();
5324 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5325 }
5326 else
5327 {
5328 if (flag_code == CODE_64BIT)
5329 abort ();
5330 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5331 }
252b5132
RH
5332 fixp->fx_subsy = 0;
5333 }
5334}
5335
252b5132
RH
5336arelent *
5337tc_gen_reloc (section, fixp)
ab9da554 5338 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5339 fixS *fixp;
5340{
5341 arelent *rel;
5342 bfd_reloc_code_real_type code;
5343
5344 switch (fixp->fx_r_type)
5345 {
3e73aa7c
JH
5346 case BFD_RELOC_X86_64_PLT32:
5347 case BFD_RELOC_X86_64_GOT32:
5348 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5349 case BFD_RELOC_386_PLT32:
5350 case BFD_RELOC_386_GOT32:
5351 case BFD_RELOC_386_GOTOFF:
5352 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5353 case BFD_RELOC_386_TLS_GD:
5354 case BFD_RELOC_386_TLS_LDM:
5355 case BFD_RELOC_386_TLS_LDO_32:
5356 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5357 case BFD_RELOC_386_TLS_IE:
5358 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5359 case BFD_RELOC_386_TLS_LE_32:
5360 case BFD_RELOC_386_TLS_LE:
3e73aa7c 5361 case BFD_RELOC_X86_64_32S:
bffbf940
JJ
5362 case BFD_RELOC_X86_64_TLSGD:
5363 case BFD_RELOC_X86_64_TLSLD:
5364 case BFD_RELOC_X86_64_DTPOFF32:
5365 case BFD_RELOC_X86_64_GOTTPOFF:
5366 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5367 case BFD_RELOC_RVA:
5368 case BFD_RELOC_VTABLE_ENTRY:
5369 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
5370#ifdef TE_PE
5371 case BFD_RELOC_32_SECREL:
5372#endif
252b5132
RH
5373 code = fixp->fx_r_type;
5374 break;
5375 default:
93382f6d 5376 if (fixp->fx_pcrel)
252b5132 5377 {
93382f6d
AM
5378 switch (fixp->fx_size)
5379 {
5380 default:
b091f402
AM
5381 as_bad_where (fixp->fx_file, fixp->fx_line,
5382 _("can not do %d byte pc-relative relocation"),
5383 fixp->fx_size);
93382f6d
AM
5384 code = BFD_RELOC_32_PCREL;
5385 break;
5386 case 1: code = BFD_RELOC_8_PCREL; break;
5387 case 2: code = BFD_RELOC_16_PCREL; break;
5388 case 4: code = BFD_RELOC_32_PCREL; break;
5389 }
5390 }
5391 else
5392 {
5393 switch (fixp->fx_size)
5394 {
5395 default:
b091f402
AM
5396 as_bad_where (fixp->fx_file, fixp->fx_line,
5397 _("can not do %d byte relocation"),
5398 fixp->fx_size);
93382f6d
AM
5399 code = BFD_RELOC_32;
5400 break;
5401 case 1: code = BFD_RELOC_8; break;
5402 case 2: code = BFD_RELOC_16; break;
5403 case 4: code = BFD_RELOC_32; break;
937149dd 5404#ifdef BFD64
3e73aa7c 5405 case 8: code = BFD_RELOC_64; break;
937149dd 5406#endif
93382f6d 5407 }
252b5132
RH
5408 }
5409 break;
5410 }
252b5132
RH
5411
5412 if (code == BFD_RELOC_32
5413 && GOT_symbol
5414 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5415 {
5416 /* We don't support GOTPC on 64bit targets. */
5417 if (flag_code == CODE_64BIT)
bfb32b52 5418 abort ();
3e73aa7c
JH
5419 code = BFD_RELOC_386_GOTPC;
5420 }
252b5132
RH
5421
5422 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5423 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5424 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5425
5426 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 5427
3e73aa7c
JH
5428 if (!use_rela_relocations)
5429 {
5430 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5431 vtable entry to be used in the relocation's section offset. */
5432 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5433 rel->address = fixp->fx_offset;
252b5132 5434
c6682705 5435 rel->addend = 0;
3e73aa7c
JH
5436 }
5437 /* Use the rela in 64bit mode. */
252b5132 5438 else
3e73aa7c 5439 {
062cd5e7
AS
5440 if (!fixp->fx_pcrel)
5441 rel->addend = fixp->fx_offset;
5442 else
5443 switch (code)
5444 {
5445 case BFD_RELOC_X86_64_PLT32:
5446 case BFD_RELOC_X86_64_GOT32:
5447 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5448 case BFD_RELOC_X86_64_TLSGD:
5449 case BFD_RELOC_X86_64_TLSLD:
5450 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5451 rel->addend = fixp->fx_offset - fixp->fx_size;
5452 break;
5453 default:
5454 rel->addend = (section->vma
5455 - fixp->fx_size
5456 + fixp->fx_addnumber
5457 + md_pcrel_from (fixp));
5458 break;
5459 }
3e73aa7c
JH
5460 }
5461
252b5132
RH
5462 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5463 if (rel->howto == NULL)
5464 {
5465 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5466 _("cannot represent relocation type %s"),
252b5132
RH
5467 bfd_get_reloc_code_name (code));
5468 /* Set howto to a garbage value so that we can keep going. */
5469 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5470 assert (rel->howto != NULL);
5471 }
5472
5473 return rel;
5474}
5475
64a0c779
DN
5476\f
5477/* Parse operands using Intel syntax. This implements a recursive descent
5478 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5479 Programmer's Guide.
5480
5481 FIXME: We do not recognize the full operand grammar defined in the MASM
5482 documentation. In particular, all the structure/union and
5483 high-level macro operands are missing.
5484
5485 Uppercase words are terminals, lower case words are non-terminals.
5486 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5487 bars '|' denote choices. Most grammar productions are implemented in
5488 functions called 'intel_<production>'.
5489
5490 Initial production is 'expr'.
5491
9306ca4a 5492 addOp + | -
64a0c779
DN
5493
5494 alpha [a-zA-Z]
5495
9306ca4a
JB
5496 binOp & | AND | \| | OR | ^ | XOR
5497
64a0c779
DN
5498 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5499
5500 constant digits [[ radixOverride ]]
5501
9306ca4a 5502 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
64a0c779
DN
5503
5504 digits decdigit
b77a7acd
AJ
5505 | digits decdigit
5506 | digits hexdigit
64a0c779
DN
5507
5508 decdigit [0-9]
5509
9306ca4a
JB
5510 e04 e04 addOp e05
5511 | e05
5512
5513 e05 e05 binOp e06
b77a7acd 5514 | e06
64a0c779
DN
5515
5516 e06 e06 mulOp e09
b77a7acd 5517 | e09
64a0c779
DN
5518
5519 e09 OFFSET e10
9306ca4a
JB
5520 | ~ e10
5521 | NOT e10
64a0c779
DN
5522 | e09 PTR e10
5523 | e09 : e10
5524 | e10
5525
5526 e10 e10 [ expr ]
b77a7acd 5527 | e11
64a0c779
DN
5528
5529 e11 ( expr )
b77a7acd 5530 | [ expr ]
64a0c779
DN
5531 | constant
5532 | dataType
5533 | id
5534 | $
5535 | register
5536
9306ca4a
JB
5537 => expr SHORT e04
5538 | e04
64a0c779
DN
5539
5540 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5541 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5542
5543 hexdigit a | b | c | d | e | f
b77a7acd 5544 | A | B | C | D | E | F
64a0c779
DN
5545
5546 id alpha
b77a7acd 5547 | id alpha
64a0c779
DN
5548 | id decdigit
5549
9306ca4a 5550 mulOp * | / | % | MOD | << | SHL | >> | SHR
64a0c779
DN
5551
5552 quote " | '
5553
5554 register specialRegister
b77a7acd 5555 | gpRegister
64a0c779
DN
5556 | byteRegister
5557
5558 segmentRegister CS | DS | ES | FS | GS | SS
5559
9306ca4a 5560 specialRegister CR0 | CR2 | CR3 | CR4
b77a7acd 5561 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5562 | TR3 | TR4 | TR5 | TR6 | TR7
5563
64a0c779
DN
5564 We simplify the grammar in obvious places (e.g., register parsing is
5565 done by calling parse_register) and eliminate immediate left recursion
5566 to implement a recursive-descent parser.
5567
9306ca4a
JB
5568 expr SHORT e04
5569 | e04
5570
5571 e04 e05 e04'
5572
5573 e04' addOp e05 e04'
5574 | Empty
64a0c779
DN
5575
5576 e05 e06 e05'
5577
9306ca4a 5578 e05' binOp e06 e05'
b77a7acd 5579 | Empty
64a0c779
DN
5580
5581 e06 e09 e06'
5582
5583 e06' mulOp e09 e06'
b77a7acd 5584 | Empty
64a0c779
DN
5585
5586 e09 OFFSET e10 e09'
9306ca4a
JB
5587 | ~ e10
5588 | NOT e10
b77a7acd 5589 | e10 e09'
64a0c779
DN
5590
5591 e09' PTR e10 e09'
b77a7acd 5592 | : e10 e09'
64a0c779
DN
5593 | Empty
5594
5595 e10 e11 e10'
5596
5597 e10' [ expr ] e10'
b77a7acd 5598 | Empty
64a0c779
DN
5599
5600 e11 ( expr )
b77a7acd 5601 | [ expr ]
64a0c779
DN
5602 | BYTE
5603 | WORD
5604 | DWORD
9306ca4a 5605 | FWORD
64a0c779 5606 | QWORD
9306ca4a
JB
5607 | TBYTE
5608 | OWORD
5609 | XMMWORD
64a0c779
DN
5610 | .
5611 | $
5612 | register
5613 | id
5614 | constant */
5615
5616/* Parsing structure for the intel syntax parser. Used to implement the
5617 semantic actions for the operand grammar. */
5618struct intel_parser_s
5619 {
5620 char *op_string; /* The string being parsed. */
5621 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5622 int op_modifier; /* Operand modifier. */
64a0c779
DN
5623 int is_mem; /* 1 if operand is memory reference. */
5624 const reg_entry *reg; /* Last register reference found. */
5625 char *disp; /* Displacement string being built. */
5626 };
5627
5628static struct intel_parser_s intel_parser;
5629
5630/* Token structure for parsing intel syntax. */
5631struct intel_token
5632 {
5633 int code; /* Token code. */
5634 const reg_entry *reg; /* Register entry for register tokens. */
5635 char *str; /* String representation. */
5636 };
5637
5638static struct intel_token cur_token, prev_token;
5639
50705ef4
AM
5640/* Token codes for the intel parser. Since T_SHORT is already used
5641 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5642#define T_NIL -1
5643#define T_CONST 1
5644#define T_REG 2
5645#define T_BYTE 3
5646#define T_WORD 4
9306ca4a
JB
5647#define T_DWORD 5
5648#define T_FWORD 6
5649#define T_QWORD 7
5650#define T_TBYTE 8
5651#define T_XMMWORD 9
50705ef4 5652#undef T_SHORT
9306ca4a
JB
5653#define T_SHORT 10
5654#define T_OFFSET 11
5655#define T_PTR 12
5656#define T_ID 13
5657#define T_SHL 14
5658#define T_SHR 15
64a0c779
DN
5659
5660/* Prototypes for intel parser functions. */
5661static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5662static void intel_get_token PARAMS ((void));
5663static void intel_putback_token PARAMS ((void));
5664static int intel_expr PARAMS ((void));
9306ca4a
JB
5665static int intel_e04 PARAMS ((void));
5666static int intel_e04_1 PARAMS ((void));
cce0cbdc
DN
5667static int intel_e05 PARAMS ((void));
5668static int intel_e05_1 PARAMS ((void));
5669static int intel_e06 PARAMS ((void));
5670static int intel_e06_1 PARAMS ((void));
5671static int intel_e09 PARAMS ((void));
5672static int intel_e09_1 PARAMS ((void));
5673static int intel_e10 PARAMS ((void));
5674static int intel_e10_1 PARAMS ((void));
5675static int intel_e11 PARAMS ((void));
64a0c779 5676
64a0c779
DN
5677static int
5678i386_intel_operand (operand_string, got_a_float)
5679 char *operand_string;
5680 int got_a_float;
5681{
5682 int ret;
5683 char *p;
5684
5685 /* Initialize token holders. */
5686 cur_token.code = prev_token.code = T_NIL;
5687 cur_token.reg = prev_token.reg = NULL;
5688 cur_token.str = prev_token.str = NULL;
5689
5690 /* Initialize parser structure. */
e5cb08ac 5691 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5692 if (p == NULL)
5693 abort ();
5694 strcpy (intel_parser.op_string, operand_string);
5695 intel_parser.got_a_float = got_a_float;
5696 intel_parser.op_modifier = -1;
5697 intel_parser.is_mem = 0;
5698 intel_parser.reg = NULL;
e5cb08ac 5699 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5700 if (intel_parser.disp == NULL)
5701 abort ();
5702 intel_parser.disp[0] = '\0';
5703
5704 /* Read the first token and start the parser. */
5705 intel_get_token ();
5706 ret = intel_expr ();
5707
5708 if (ret)
5709 {
9306ca4a
JB
5710 if (cur_token.code != T_NIL)
5711 {
5712 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5713 current_templates->start->name, cur_token.str);
5714 ret = 0;
5715 }
64a0c779
DN
5716 /* If we found a memory reference, hand it over to i386_displacement
5717 to fill in the rest of the operand fields. */
9306ca4a 5718 else if (intel_parser.is_mem)
64a0c779
DN
5719 {
5720 if ((i.mem_operands == 1
5721 && (current_templates->start->opcode_modifier & IsString) == 0)
5722 || i.mem_operands == 2)
5723 {
5724 as_bad (_("too many memory references for '%s'"),
5725 current_templates->start->name);
5726 ret = 0;
5727 }
5728 else
5729 {
5730 char *s = intel_parser.disp;
5731 i.mem_operands++;
5732
5733 /* Add the displacement expression. */
5734 if (*s != '\0')
a4622f40
AM
5735 ret = i386_displacement (s, s + strlen (s));
5736 if (ret)
5737 ret = i386_index_check (operand_string);
64a0c779
DN
5738 }
5739 }
5740
5741 /* Constant and OFFSET expressions are handled by i386_immediate. */
9306ca4a 5742 else if (intel_parser.op_modifier == T_OFFSET
64a0c779
DN
5743 || intel_parser.reg == NULL)
5744 ret = i386_immediate (intel_parser.disp);
5745 }
5746
5747 free (p);
5748 free (intel_parser.disp);
5749
5750 return ret;
5751}
5752
9306ca4a
JB
5753/* expr SHORT e04
5754 | e04 */
64a0c779
DN
5755static int
5756intel_expr ()
5757{
9306ca4a 5758 /* expr SHORT e04 */
64a0c779
DN
5759 if (cur_token.code == T_SHORT)
5760 {
9306ca4a 5761 intel_parser.op_modifier = T_SHORT;
64a0c779
DN
5762 intel_match_token (T_SHORT);
5763
9306ca4a
JB
5764 return (intel_e04 ());
5765 }
5766
5767 /* expr e04 */
5768 else
5769 return intel_e04 ();
5770}
5771
5772/* e04 e06 e04'
5773
5774 e04' addOp e06 e04'
5775 | Empty */
5776static int
5777intel_e04 ()
5778{
5779 return (intel_e05 () && intel_e04_1 ());
5780}
5781
5782static int
5783intel_e04_1 ()
5784{
5785 /* e04' addOp e05 e04' */
5786 if (cur_token.code == '+' || cur_token.code == '-')
5787 {
5788 char str[2];
5789
5790 str[0] = cur_token.code;
5791 str[1] = 0;
5792 strcat (intel_parser.disp, str);
5793 intel_match_token (cur_token.code);
5794
5795 return (intel_e05 () && intel_e04_1 ());
64a0c779
DN
5796 }
5797
9306ca4a 5798 /* e04' Empty */
64a0c779 5799 else
9306ca4a 5800 return 1;
64a0c779
DN
5801}
5802
64a0c779
DN
5803/* e05 e06 e05'
5804
9306ca4a 5805 e05' binOp e06 e05'
64a0c779
DN
5806 | Empty */
5807static int
5808intel_e05 ()
5809{
5810 return (intel_e06 () && intel_e05_1 ());
5811}
5812
5813static int
5814intel_e05_1 ()
5815{
9306ca4a
JB
5816 /* e05' binOp e06 e05' */
5817 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
64a0c779 5818 {
9306ca4a
JB
5819 char str[2];
5820
5821 str[0] = cur_token.code;
5822 str[1] = 0;
5823 strcat (intel_parser.disp, str);
64a0c779
DN
5824 intel_match_token (cur_token.code);
5825
5826 return (intel_e06 () && intel_e05_1 ());
5827 }
5828
5829 /* e05' Empty */
5830 else
5831 return 1;
4a1805b1 5832}
64a0c779
DN
5833
5834/* e06 e09 e06'
5835
5836 e06' mulOp e09 e06'
b77a7acd 5837 | Empty */
64a0c779
DN
5838static int
5839intel_e06 ()
5840{
5841 return (intel_e09 () && intel_e06_1 ());
5842}
5843
5844static int
5845intel_e06_1 ()
5846{
5847 /* e06' mulOp e09 e06' */
9306ca4a 5848 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
64a0c779 5849 {
9306ca4a
JB
5850 char str[2];
5851
5852 str[0] = cur_token.code;
5853 str[1] = 0;
5854 strcat (intel_parser.disp, str);
5855 intel_match_token (cur_token.code);
5856
5857 return (intel_e09 () && intel_e06_1 ());
5858 }
5859 else if (cur_token.code == T_SHL)
5860 {
5861 strcat (intel_parser.disp, "<<");
5862 intel_match_token (cur_token.code);
5863
5864 return (intel_e09 () && intel_e06_1 ());
5865 }
5866 else if (cur_token.code == T_SHR)
5867 {
5868 strcat (intel_parser.disp, ">>");
64a0c779
DN
5869 intel_match_token (cur_token.code);
5870
5871 return (intel_e09 () && intel_e06_1 ());
5872 }
4a1805b1 5873
64a0c779 5874 /* e06' Empty */
4a1805b1 5875 else
64a0c779
DN
5876 return 1;
5877}
5878
64a0c779 5879/* e09 OFFSET e10 e09'
b77a7acd 5880 | e10 e09'
64a0c779 5881
9306ca4a
JB
5882 e09 ~ e10 e09'
5883 | NOT e10 e09'
5884 | e10 e09'
5885
64a0c779 5886 e09' PTR e10 e09'
b77a7acd 5887 | : e10 e09'
64a0c779
DN
5888 | Empty */
5889static int
5890intel_e09 ()
5891{
5892 /* e09 OFFSET e10 e09' */
5893 if (cur_token.code == T_OFFSET)
5894 {
5895 intel_parser.is_mem = 0;
9306ca4a 5896 intel_parser.op_modifier = T_OFFSET;
64a0c779
DN
5897 intel_match_token (T_OFFSET);
5898
5899 return (intel_e10 () && intel_e09_1 ());
5900 }
5901
9306ca4a
JB
5902 /* e09 NOT e10 e09' */
5903 else if (cur_token.code == '~')
5904 {
5905 char str[2];
5906
5907 str[0] = cur_token.code;
5908 str[1] = 0;
5909 strcat (intel_parser.disp, str);
5910 intel_match_token (cur_token.code);
5911
5912 return (intel_e10 () && intel_e09_1 ());
5913 }
5914
64a0c779
DN
5915 /* e09 e10 e09' */
5916 else
5917 return (intel_e10 () && intel_e09_1 ());
5918}
5919
5920static int
5921intel_e09_1 ()
5922{
5923 /* e09' PTR e10 e09' */
5924 if (cur_token.code == T_PTR)
5925 {
9306ca4a
JB
5926 char suffix;
5927
64a0c779 5928 if (prev_token.code == T_BYTE)
9306ca4a 5929 suffix = BYTE_MNEM_SUFFIX;
64a0c779
DN
5930
5931 else if (prev_token.code == T_WORD)
5932 {
9306ca4a
JB
5933 if (current_templates->start->name[0] == 'l'
5934 && current_templates->start->name[2] == 's'
5935 && current_templates->start->name[3] == 0)
5936 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5937 else if (intel_parser.got_a_float == 2) /* "fi..." */
5938 suffix = SHORT_MNEM_SUFFIX;
64a0c779 5939 else
9306ca4a 5940 suffix = WORD_MNEM_SUFFIX;
64a0c779
DN
5941 }
5942
5943 else if (prev_token.code == T_DWORD)
5944 {
9306ca4a
JB
5945 if (current_templates->start->name[0] == 'l'
5946 && current_templates->start->name[2] == 's'
5947 && current_templates->start->name[3] == 0)
5948 suffix = WORD_MNEM_SUFFIX;
5949 else if (flag_code == CODE_16BIT
5950 && (current_templates->start->opcode_modifier
5951 & (Jump|JumpDword|JumpInterSegment)))
5952 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5953 else if (intel_parser.got_a_float == 1) /* "f..." */
5954 suffix = SHORT_MNEM_SUFFIX;
64a0c779 5955 else
9306ca4a
JB
5956 suffix = LONG_MNEM_SUFFIX;
5957 }
5958
5959 else if (prev_token.code == T_FWORD)
5960 {
5961 if (current_templates->start->name[0] == 'l'
5962 && current_templates->start->name[2] == 's'
5963 && current_templates->start->name[3] == 0)
5964 suffix = LONG_MNEM_SUFFIX;
5965 else if (!intel_parser.got_a_float)
5966 {
5967 if (flag_code == CODE_16BIT)
5968 add_prefix (DATA_PREFIX_OPCODE);
5969 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5970 }
5971 else
5972 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
64a0c779
DN
5973 }
5974
5975 else if (prev_token.code == T_QWORD)
f16b83df
JH
5976 {
5977 if (intel_parser.got_a_float == 1) /* "f..." */
9306ca4a 5978 suffix = LONG_MNEM_SUFFIX;
f16b83df 5979 else
9306ca4a 5980 suffix = QWORD_MNEM_SUFFIX;
f16b83df 5981 }
64a0c779 5982
9306ca4a
JB
5983 else if (prev_token.code == T_TBYTE)
5984 {
5985 if (intel_parser.got_a_float == 1)
5986 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5987 else
5988 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5989 }
5990
5991 else if (prev_token.code == T_XMMWORD)
5992 {
5993 /* XXX ignored for now, but accepted since gcc uses it */
5994 suffix = 0;
5995 }
64a0c779
DN
5996
5997 else
5998 {
0477af35 5999 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
64a0c779
DN
6000 return 0;
6001 }
6002
9306ca4a
JB
6003 if (current_templates->start->base_opcode == 0x8d /* lea */)
6004 ;
6005 else if (!i.suffix)
6006 i.suffix = suffix;
6007 else if (i.suffix != suffix)
6008 {
6009 as_bad (_("Conflicting operand modifiers"));
6010 return 0;
6011 }
6012
64a0c779
DN
6013 intel_match_token (T_PTR);
6014
6015 return (intel_e10 () && intel_e09_1 ());
6016 }
6017
6018 /* e09 : e10 e09' */
6019 else if (cur_token.code == ':')
6020 {
21d6c4af
DN
6021 /* Mark as a memory operand only if it's not already known to be an
6022 offset expression. */
9306ca4a 6023 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af 6024 intel_parser.is_mem = 1;
64a0c779
DN
6025
6026 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
6027 }
6028
6029 /* e09' Empty */
6030 else
6031 return 1;
6032}
6033
6034/* e10 e11 e10'
6035
6036 e10' [ expr ] e10'
b77a7acd 6037 | Empty */
64a0c779
DN
6038static int
6039intel_e10 ()
6040{
6041 return (intel_e11 () && intel_e10_1 ());
6042}
6043
6044static int
6045intel_e10_1 ()
6046{
6047 /* e10' [ expr ] e10' */
6048 if (cur_token.code == '[')
6049 {
6050 intel_match_token ('[');
21d6c4af
DN
6051
6052 /* Mark as a memory operand only if it's not already known to be an
6053 offset expression. If it's an offset expression, we need to keep
6054 the brace in. */
9306ca4a 6055 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af
DN
6056 intel_parser.is_mem = 1;
6057 else
6058 strcat (intel_parser.disp, "[");
4a1805b1 6059
64a0c779 6060 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
6061 if (*intel_parser.disp != '\0'
6062 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
6063 strcat (intel_parser.disp, "+");
6064
21d6c4af
DN
6065 if (intel_expr () && intel_match_token (']'))
6066 {
6067 /* Preserve brackets when the operand is an offset expression. */
9306ca4a 6068 if (intel_parser.op_modifier == T_OFFSET)
21d6c4af
DN
6069 strcat (intel_parser.disp, "]");
6070
6071 return intel_e10_1 ();
6072 }
6073 else
6074 return 0;
64a0c779
DN
6075 }
6076
6077 /* e10' Empty */
6078 else
6079 return 1;
6080}
6081
64a0c779 6082/* e11 ( expr )
b77a7acd 6083 | [ expr ]
64a0c779
DN
6084 | BYTE
6085 | WORD
6086 | DWORD
9306ca4a 6087 | FWORD
64a0c779 6088 | QWORD
9306ca4a
JB
6089 | TBYTE
6090 | OWORD
6091 | XMMWORD
4a1805b1 6092 | $
64a0c779
DN
6093 | .
6094 | register
6095 | id
6096 | constant */
6097static int
6098intel_e11 ()
6099{
6100 /* e11 ( expr ) */
6101 if (cur_token.code == '(')
6102 {
6103 intel_match_token ('(');
6104 strcat (intel_parser.disp, "(");
6105
6106 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
6107 {
6108 strcat (intel_parser.disp, ")");
6109 return 1;
6110 }
64a0c779
DN
6111 else
6112 return 0;
6113 }
6114
6115 /* e11 [ expr ] */
6116 else if (cur_token.code == '[')
6117 {
6118 intel_match_token ('[');
21d6c4af
DN
6119
6120 /* Mark as a memory operand only if it's not already known to be an
6121 offset expression. If it's an offset expression, we need to keep
6122 the brace in. */
9306ca4a 6123 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af
DN
6124 intel_parser.is_mem = 1;
6125 else
6126 strcat (intel_parser.disp, "[");
4a1805b1 6127
64a0c779 6128 /* Operands for jump/call inside brackets denote absolute addresses. */
9306ca4a
JB
6129 if (current_templates->start->opcode_modifier
6130 & (Jump|JumpDword|JumpByte|JumpInterSegment))
64a0c779
DN
6131 i.types[this_operand] |= JumpAbsolute;
6132
6133 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
6134 if (*intel_parser.disp != '\0'
6135 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
6136 strcat (intel_parser.disp, "+");
6137
21d6c4af
DN
6138 if (intel_expr () && intel_match_token (']'))
6139 {
6140 /* Preserve brackets when the operand is an offset expression. */
9306ca4a 6141 if (intel_parser.op_modifier == T_OFFSET)
21d6c4af
DN
6142 strcat (intel_parser.disp, "]");
6143
6144 return 1;
6145 }
6146 else
6147 return 0;
64a0c779
DN
6148 }
6149
4a1805b1 6150 /* e11 BYTE
64a0c779
DN
6151 | WORD
6152 | DWORD
9306ca4a 6153 | FWORD
64a0c779 6154 | QWORD
9306ca4a
JB
6155 | TBYTE
6156 | OWORD
6157 | XMMWORD */
64a0c779
DN
6158 else if (cur_token.code == T_BYTE
6159 || cur_token.code == T_WORD
6160 || cur_token.code == T_DWORD
9306ca4a 6161 || cur_token.code == T_FWORD
64a0c779 6162 || cur_token.code == T_QWORD
9306ca4a
JB
6163 || cur_token.code == T_TBYTE
6164 || cur_token.code == T_XMMWORD)
64a0c779
DN
6165 {
6166 intel_match_token (cur_token.code);
6167
6168 return 1;
6169 }
6170
6171 /* e11 $
6172 | . */
9306ca4a 6173 else if (cur_token.code == '.')
64a0c779
DN
6174 {
6175 strcat (intel_parser.disp, cur_token.str);
6176 intel_match_token (cur_token.code);
21d6c4af
DN
6177
6178 /* Mark as a memory operand only if it's not already known to be an
6179 offset expression. */
9306ca4a 6180 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af 6181 intel_parser.is_mem = 1;
64a0c779
DN
6182
6183 return 1;
6184 }
6185
6186 /* e11 register */
6187 else if (cur_token.code == T_REG)
6188 {
6189 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6190
6191 intel_match_token (T_REG);
6192
6193 /* Check for segment change. */
6194 if (cur_token.code == ':')
6195 {
6196 if (reg->reg_type & (SReg2 | SReg3))
6197 {
6198 switch (reg->reg_num)
6199 {
6200 case 0:
6201 i.seg[i.mem_operands] = &es;
6202 break;
6203 case 1:
6204 i.seg[i.mem_operands] = &cs;
6205 break;
6206 case 2:
6207 i.seg[i.mem_operands] = &ss;
6208 break;
6209 case 3:
6210 i.seg[i.mem_operands] = &ds;
6211 break;
6212 case 4:
6213 i.seg[i.mem_operands] = &fs;
6214 break;
6215 case 5:
6216 i.seg[i.mem_operands] = &gs;
6217 break;
6218 }
6219 }
6220 else
6221 {
6222 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6223 return 0;
6224 }
6225 }
6226
6227 /* Not a segment register. Check for register scaling. */
6228 else if (cur_token.code == '*')
6229 {
6230 if (!intel_parser.is_mem)
6231 {
6232 as_bad (_("Register scaling only allowed in memory operands."));
6233 return 0;
6234 }
6235
4a1805b1 6236 /* What follows must be a valid scale. */
64a0c779
DN
6237 if (intel_match_token ('*')
6238 && strchr ("01248", *cur_token.str))
6239 {
6240 i.index_reg = reg;
6241 i.types[this_operand] |= BaseIndex;
6242
6243 /* Set the scale after setting the register (otherwise,
6244 i386_scale will complain) */
6245 i386_scale (cur_token.str);
6246 intel_match_token (T_CONST);
6247 }
6248 else
6249 {
6250 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6251 cur_token.str);
6252 return 0;
6253 }
6254 }
6255
6256 /* No scaling. If this is a memory operand, the register is either a
6257 base register (first occurrence) or an index register (second
6258 occurrence). */
6259 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6260 {
6261 if (i.base_reg && i.index_reg)
6262 {
0477af35 6263 as_bad (_("Too many register references in memory operand."));
64a0c779
DN
6264 return 0;
6265 }
6266
6267 if (i.base_reg == NULL)
6268 i.base_reg = reg;
6269 else
6270 i.index_reg = reg;
6271
6272 i.types[this_operand] |= BaseIndex;
6273 }
6274
6275 /* Offset modifier. Add the register to the displacement string to be
6276 parsed as an immediate expression after we're done. */
9306ca4a 6277 else if (intel_parser.op_modifier == T_OFFSET)
64a0c779 6278 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 6279
64a0c779
DN
6280 /* It's neither base nor index nor offset. */
6281 else
6282 {
6283 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6284 i.op[this_operand].regs = reg;
6285 i.reg_operands++;
6286 }
6287
6288 /* Since registers are not part of the displacement string (except
6289 when we're parsing offset operands), we may need to remove any
6290 preceding '+' from the displacement string. */
6291 if (*intel_parser.disp != '\0'
9306ca4a 6292 && intel_parser.op_modifier != T_OFFSET)
64a0c779
DN
6293 {
6294 char *s = intel_parser.disp;
6295 s += strlen (s) - 1;
6296 if (*s == '+')
6297 *s = '\0';
6298 }
6299
6300 return 1;
6301 }
4a1805b1 6302
64a0c779
DN
6303 /* e11 id */
6304 else if (cur_token.code == T_ID)
6305 {
6306 /* Add the identifier to the displacement string. */
6307 strcat (intel_parser.disp, cur_token.str);
64a0c779
DN
6308
6309 /* The identifier represents a memory reference only if it's not
9306ca4a
JB
6310 preceded by an offset modifier and if it's not an equate. */
6311 if (intel_parser.op_modifier != T_OFFSET)
6312 {
6313 symbolS *symbolP;
6314
6315 symbolP = symbol_find(cur_token.str);
6316 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6317 intel_parser.is_mem = 1;
6318 }
64a0c779 6319
9306ca4a 6320 intel_match_token (T_ID);
64a0c779
DN
6321 return 1;
6322 }
6323
6324 /* e11 constant */
6325 else if (cur_token.code == T_CONST
e5cb08ac 6326 || cur_token.code == '-'
64a0c779
DN
6327 || cur_token.code == '+')
6328 {
6329 char *save_str;
6330
6331 /* Allow constants that start with `+' or `-'. */
6332 if (cur_token.code == '-' || cur_token.code == '+')
6333 {
6334 strcat (intel_parser.disp, cur_token.str);
6335 intel_match_token (cur_token.code);
6336 if (cur_token.code != T_CONST)
6337 {
0477af35 6338 as_bad (_("Syntax error. Expecting a constant. Got `%s'."),
64a0c779
DN
6339 cur_token.str);
6340 return 0;
6341 }
6342 }
6343
e5cb08ac 6344 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 6345 if (save_str == NULL)
bc805888 6346 abort ();
64a0c779
DN
6347 strcpy (save_str, cur_token.str);
6348
6349 /* Get the next token to check for register scaling. */
6350 intel_match_token (cur_token.code);
6351
6352 /* Check if this constant is a scaling factor for an index register. */
6353 if (cur_token.code == '*')
6354 {
6355 if (intel_match_token ('*') && cur_token.code == T_REG)
6356 {
6357 if (!intel_parser.is_mem)
6358 {
6359 as_bad (_("Register scaling only allowed in memory operands."));
6360 return 0;
6361 }
6362
4a1805b1 6363 /* The constant is followed by `* reg', so it must be
64a0c779
DN
6364 a valid scale. */
6365 if (strchr ("01248", *save_str))
6366 {
6367 i.index_reg = cur_token.reg;
6368 i.types[this_operand] |= BaseIndex;
6369
6370 /* Set the scale after setting the register (otherwise,
6371 i386_scale will complain) */
6372 i386_scale (save_str);
6373 intel_match_token (T_REG);
6374
6375 /* Since registers are not part of the displacement
6376 string, we may need to remove any preceding '+' from
6377 the displacement string. */
6378 if (*intel_parser.disp != '\0')
6379 {
6380 char *s = intel_parser.disp;
6381 s += strlen (s) - 1;
6382 if (*s == '+')
6383 *s = '\0';
6384 }
6385
6386 free (save_str);
6387
6388 return 1;
6389 }
6390 else
6391 return 0;
6392 }
6393
6394 /* The constant was not used for register scaling. Since we have
6395 already consumed the token following `*' we now need to put it
6396 back in the stream. */
6397 else
6398 intel_putback_token ();
6399 }
6400
6401 /* Add the constant to the displacement string. */
6402 strcat (intel_parser.disp, save_str);
6403 free (save_str);
6404
6405 return 1;
6406 }
6407
64a0c779
DN
6408 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6409 return 0;
6410}
6411
64a0c779
DN
6412/* Match the given token against cur_token. If they match, read the next
6413 token from the operand string. */
6414static int
6415intel_match_token (code)
e5cb08ac 6416 int code;
64a0c779
DN
6417{
6418 if (cur_token.code == code)
6419 {
6420 intel_get_token ();
6421 return 1;
6422 }
6423 else
6424 {
0477af35 6425 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
6426 return 0;
6427 }
6428}
6429
64a0c779
DN
6430/* Read a new token from intel_parser.op_string and store it in cur_token. */
6431static void
6432intel_get_token ()
6433{
6434 char *end_op;
6435 const reg_entry *reg;
6436 struct intel_token new_token;
6437
6438 new_token.code = T_NIL;
6439 new_token.reg = NULL;
6440 new_token.str = NULL;
6441
4a1805b1 6442 /* Free the memory allocated to the previous token and move
64a0c779
DN
6443 cur_token to prev_token. */
6444 if (prev_token.str)
6445 free (prev_token.str);
6446
6447 prev_token = cur_token;
6448
6449 /* Skip whitespace. */
6450 while (is_space_char (*intel_parser.op_string))
6451 intel_parser.op_string++;
6452
6453 /* Return an empty token if we find nothing else on the line. */
6454 if (*intel_parser.op_string == '\0')
6455 {
6456 cur_token = new_token;
6457 return;
6458 }
6459
6460 /* The new token cannot be larger than the remainder of the operand
6461 string. */
e5cb08ac 6462 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 6463 if (new_token.str == NULL)
bc805888 6464 abort ();
64a0c779
DN
6465 new_token.str[0] = '\0';
6466
6467 if (strchr ("0123456789", *intel_parser.op_string))
6468 {
6469 char *p = new_token.str;
6470 char *q = intel_parser.op_string;
6471 new_token.code = T_CONST;
6472
6473 /* Allow any kind of identifier char to encompass floating point and
6474 hexadecimal numbers. */
6475 while (is_identifier_char (*q))
6476 *p++ = *q++;
6477 *p = '\0';
6478
6479 /* Recognize special symbol names [0-9][bf]. */
6480 if (strlen (intel_parser.op_string) == 2
4a1805b1 6481 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6482 || intel_parser.op_string[1] == 'f'))
6483 new_token.code = T_ID;
6484 }
6485
64a0c779
DN
6486 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6487 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6488 {
6489 new_token.code = T_REG;
6490 new_token.reg = reg;
6491
6492 if (*intel_parser.op_string == REGISTER_PREFIX)
6493 {
6494 new_token.str[0] = REGISTER_PREFIX;
6495 new_token.str[1] = '\0';
6496 }
6497
6498 strcat (new_token.str, reg->reg_name);
6499 }
6500
6501 else if (is_identifier_char (*intel_parser.op_string))
6502 {
6503 char *p = new_token.str;
6504 char *q = intel_parser.op_string;
6505
6506 /* A '.' or '$' followed by an identifier char is an identifier.
6507 Otherwise, it's operator '.' followed by an expression. */
6508 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6509 {
9306ca4a
JB
6510 new_token.code = '.';
6511 new_token.str[0] = '.';
64a0c779
DN
6512 new_token.str[1] = '\0';
6513 }
6514 else
6515 {
6516 while (is_identifier_char (*q) || *q == '@')
6517 *p++ = *q++;
6518 *p = '\0';
6519
9306ca4a
JB
6520 if (strcasecmp (new_token.str, "NOT") == 0)
6521 new_token.code = '~';
6522
6523 else if (strcasecmp (new_token.str, "MOD") == 0)
6524 new_token.code = '%';
6525
6526 else if (strcasecmp (new_token.str, "AND") == 0)
6527 new_token.code = '&';
6528
6529 else if (strcasecmp (new_token.str, "OR") == 0)
6530 new_token.code = '|';
6531
6532 else if (strcasecmp (new_token.str, "XOR") == 0)
6533 new_token.code = '^';
6534
6535 else if (strcasecmp (new_token.str, "SHL") == 0)
6536 new_token.code = T_SHL;
6537
6538 else if (strcasecmp (new_token.str, "SHR") == 0)
6539 new_token.code = T_SHR;
6540
6541 else if (strcasecmp (new_token.str, "BYTE") == 0)
64a0c779
DN
6542 new_token.code = T_BYTE;
6543
6544 else if (strcasecmp (new_token.str, "WORD") == 0)
6545 new_token.code = T_WORD;
6546
6547 else if (strcasecmp (new_token.str, "DWORD") == 0)
6548 new_token.code = T_DWORD;
6549
9306ca4a
JB
6550 else if (strcasecmp (new_token.str, "FWORD") == 0)
6551 new_token.code = T_FWORD;
6552
64a0c779
DN
6553 else if (strcasecmp (new_token.str, "QWORD") == 0)
6554 new_token.code = T_QWORD;
6555
9306ca4a
JB
6556 else if (strcasecmp (new_token.str, "TBYTE") == 0
6557 /* XXX remove (gcc still uses it) */
6558 || strcasecmp (new_token.str, "XWORD") == 0)
6559 new_token.code = T_TBYTE;
6560
6561 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6562 || strcasecmp (new_token.str, "OWORD") == 0)
6563 new_token.code = T_XMMWORD;
64a0c779
DN
6564
6565 else if (strcasecmp (new_token.str, "PTR") == 0)
6566 new_token.code = T_PTR;
6567
6568 else if (strcasecmp (new_token.str, "SHORT") == 0)
6569 new_token.code = T_SHORT;
6570
6571 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6572 {
6573 new_token.code = T_OFFSET;
6574
6575 /* ??? This is not mentioned in the MASM grammar but gcc
6576 makes use of it with -mintel-syntax. OFFSET may be
6577 followed by FLAT: */
6578 if (strncasecmp (q, " FLAT:", 6) == 0)
6579 strcat (new_token.str, " FLAT:");
6580 }
6581
6582 /* ??? This is not mentioned in the MASM grammar. */
6583 else if (strcasecmp (new_token.str, "FLAT") == 0)
6584 new_token.code = T_OFFSET;
6585
6586 else
6587 new_token.code = T_ID;
6588 }
6589 }
6590
9306ca4a
JB
6591 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6592 {
6593 new_token.code = *intel_parser.op_string;
6594 new_token.str[0] = *intel_parser.op_string;
6595 new_token.str[1] = '\0';
6596 }
6597
6598 else if (strchr ("<>", *intel_parser.op_string)
6599 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6600 {
6601 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6602 new_token.str[0] = *intel_parser.op_string;
6603 new_token.str[1] = *intel_parser.op_string;
6604 new_token.str[2] = '\0';
6605 }
6606
64a0c779 6607 else
0477af35 6608 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
6609
6610 intel_parser.op_string += strlen (new_token.str);
6611 cur_token = new_token;
6612}
6613
64a0c779
DN
6614/* Put cur_token back into the token stream and make cur_token point to
6615 prev_token. */
6616static void
6617intel_putback_token ()
6618{
6619 intel_parser.op_string -= strlen (cur_token.str);
6620 free (cur_token.str);
6621 cur_token = prev_token;
4a1805b1 6622
64a0c779
DN
6623 /* Forget prev_token. */
6624 prev_token.code = T_NIL;
6625 prev_token.reg = NULL;
6626 prev_token.str = NULL;
6627}
54cfded0 6628
a4447b93 6629int
54cfded0
AM
6630tc_x86_regname_to_dw2regnum (const char *regname)
6631{
6632 unsigned int regnum;
6633 unsigned int regnames_count;
6634 char *regnames_32[] =
6635 {
a4447b93
RH
6636 "eax", "ecx", "edx", "ebx",
6637 "esp", "ebp", "esi", "edi",
54cfded0
AM
6638 "eip"
6639 };
6640 char *regnames_64[] =
6641 {
6642 "rax", "rbx", "rcx", "rdx",
6643 "rdi", "rsi", "rbp", "rsp",
6644 "r8", "r9", "r10", "r11",
6645 "r12", "r13", "r14", "r15",
6646 "rip"
6647 };
6648 char **regnames;
6649
6650 if (flag_code == CODE_64BIT)
6651 {
6652 regnames = regnames_64;
0cea6190 6653 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
6654 }
6655 else
6656 {
6657 regnames = regnames_32;
0cea6190 6658 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
6659 }
6660
6661 for (regnum = 0; regnum < regnames_count; regnum++)
6662 if (strcmp (regname, regnames[regnum]) == 0)
6663 return regnum;
6664
54cfded0
AM
6665 return -1;
6666}
6667
6668void
6669tc_x86_frame_initial_instructions (void)
6670{
a4447b93
RH
6671 static unsigned int sp_regno;
6672
6673 if (!sp_regno)
6674 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6675 ? "rsp" : "esp");
6676
6677 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6678 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6679}
d2b2c203
DJ
6680
6681int
6682i386_elf_section_type (const char *str, size_t len)
6683{
6684 if (flag_code == CODE_64BIT
6685 && len == sizeof ("unwind") - 1
6686 && strncmp (str, "unwind", 6) == 0)
6687 return SHT_X86_64_UNWIND;
6688
6689 return -1;
6690}
bb41ade5
AM
6691
6692#ifdef TE_PE
6693void
6694tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6695{
6696 expressionS expr;
6697
6698 expr.X_op = O_secrel;
6699 expr.X_add_symbol = symbol;
6700 expr.X_add_number = 0;
6701 emit_expr (&expr, size);
6702}
6703#endif